Exclusive QCD processes, quark-hadron duality, and the transition to perturbative QCD
NASA Astrophysics Data System (ADS)
Corianò, Claudio; Li, Hsiang-nan; Savkli, Cetin
1998-07-01
Experiments at CEBAF will scan the intermediate-energy region of the QCD dynamics for the nucleon form factors and for Compton Scattering. These experiments will definitely clarify the role of resummed perturbation theory and of quark-hadron duality (QCD sum rules) in this regime. With this perspective in mind, we review the factorization theorem of perturbative QCD for exclusive processes at intermediate energy scales, which embodies the transverse degrees of freedom of a parton and the Sudakov resummation of the corresponding large logarithms. We concentrate on the pion and proton electromagnetic form factors and on pion Compton scattering. New ingredients, such as the evolution of the pion wave function and the complete two-loop expression of the Sudakov factor, are included. The sensitivity of our predictions to the infrared cutoff for the Sudakov evolution is discussed. We also elaborate on QCD sum rule methods for Compton Scattering, which provide an alternative description of this process. We show that, by comparing the local duality analysis to resummed perturbation theory, it is possible to describe the transition of exclusive processes to perturbative QCD.
Iso-vector form factors of the delta and nucleon in QCD sum rules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozpineci, A.
Form factors are important non-perturbative properties of hadrons. They give information about the internal structure of the hadrons. In this work, iso-vector axial-vector and iso-vector tensor form factors of the nucleon and the iso-vector axial-vector {Delta}{yields}N transition form factor calculations in QCD Sum Rules are presented.
Improved perturbative QCD formalism for Bc meson decays
NASA Astrophysics Data System (ADS)
Liu, Xin; Li, Hsiang-nan; Xiao, Zhen-Jun
2018-06-01
We derive the kT resummation for doubly heavy-flavored Bc meson decays by including the charm quark mass effect into the known formula for a heavy-light system. The resultant Sudakov factor is employed in the perutrbative QCD study of the "golden channel" Bc+→J /ψ π+. With a reasonable model for the Bc meson distribution amplitude, which maintains approximate on-shell conditions of both the partonic bottom and charm quarks, it is observed that the imaginary piece of the Bc→J /ψ transition form factor appears to be power suppressed, and the Bc+→J /ψ π+ branching ratio is not lower than 10-3. The above improved perturbative QCD formalism is applicable to Bc meson decays to other charmonia and charmed mesons.
Calculation of neutral weak nucleon form factors with the AdS/QCD correspondence
NASA Astrophysics Data System (ADS)
Lohmann, Mark
The AdS/QCD (Anti-de Sitter/Quantum Chromodynamics) is a mathematical formalism applied to a theory based on the original AdS/CFT (Anti-de Sitter/ Conformal Field Theory) correspondence. The aim is to describe properties of the strong force in an essentially non-perturbative way. AdS/QCD theories break the conformal symmetry of the AdS metric (a sacrifice) to arrive at a boundary theory which is QCD-like (a payoff). This correspondence has been used to calculate well-known quantities in nucleon spectra and structure like Regge trajectories, form factors, and many others within an error of less than 20% from experiment. This is impressive considering that ordinary perturbation theory in QCD applied to the strongly interacting domain usually obtains an error of about 30%. In this thesis, the AdS/QCD correspondence method of light-front holography established by Brodsky and de Teramond is used in an attempt to calculate the Dirac and Pauli neutral weak form factors, FZ1 (Q2) and FZ2 (Q 2) respectively, for both the proton and the neutron. With this approach, we were able to determine the neutral weak Dirac form factor for both nucleons and the Pauli form factor for the proton, while the method did not succeed at determining the neutral weak Pauli form factor for the neutron. With these we were also able to extract the proton's strange electric and magnetic form factor, which addresses important questions in nucleon sub-structure that are currently being investigated through experiments at the Thomas Jefferson National Accelerator Facility.
New Methods in Non-Perturbative QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unsal, Mithat
2017-01-31
In this work, we investigate the properties of quantum chromodynamics (QCD), by using newly developing mathematics and physics formalisms. Almost all of the mass in the visible universe emerges from a quantum chromodynamics (QCD), which has a completely negligible microscopic mass content. An intimately related issue in QCD is the quark confinement problem. Answers to non-perturbative questions in QCD remained largely elusive despite much effort over the years. It is also believed that the usual perturbation theory is inadequate to address these kinds of problems. Perturbation theory gives a divergent asymptotic series (even when the theory is properly renormalized), andmore » there are non-perturbative phenomena which never appear at any order in perturbation theory. Recently, a fascinating bridge between perturbation theory and non-perturbative effects has been found: a formalism called resurgence theory in mathematics tells us that perturbative data and non-perturbative data are intimately related. Translating this to the language of quantum field theory, it turns out that non-perturbative information is present in a coded form in perturbation theory and it can be decoded. We take advantage of this feature, which is particularly useful to understand some unresolved mysteries of QCD from first principles. In particular, we use: a) Circle compactifications which provide a semi-classical window to study confinement and mass gap problems, and calculable prototypes of the deconfinement phase transition; b) Resurgence theory and transseries which provide a unified framework for perturbative and non-perturbative expansion; c) Analytic continuation of path integrals and Lefschetz thimbles which may be useful to address sign problem in QCD at finite density.« less
Non-perturbative quark mass renormalisation and running in N_{f}=3 QCD
NASA Astrophysics Data System (ADS)
Campos, I.; Fritzsch, P.; Pena, C.; Preti, D.; Ramos, A.; Vladikas, A.
2018-05-01
We determine from first principles the quark mass anomalous dimension in N_{f}=3 QCD between the electroweak and hadronic scales. This allows for a fully non-perturbative connection of the perturbative and non-perturbative regimes of the Standard Model in the hadronic sector. The computation is carried out to high accuracy, employing massless O (a)-improved Wilson quarks and finite-size scaling techniques. We also provide the matching factors required in the renormalisation of light quark masses from lattice computations with O (a)-improved Wilson fermions and a tree-level Symanzik improved gauge action. The total uncertainty due to renormalisation and running in the determination of light quark masses in the SM is thus reduced to about 1%.
Blum, Thomas; Chowdhury, Saumitra; Hayakawa, Masashi; ...
2015-01-07
The form factor that yields the light-by-light scattering contribution to the muon anomalous magnetic moment is computed in lattice QCD+QED and QED. A non-perturbative treatment of QED is used and is checked against perturbation theory. The hadronic contribution is calculated for unphysical quark and muon masses, and only the diagram with a single quark loop is computed. Statistically significant signals are obtained. Initial results appear promising, and the prospect for a complete calculation with physical masses and controlled errors is discussed.
Prompt atmospheric neutrino fluxes: perturbative QCD models and nuclear effects
Bhattacharya, Atri; Enberg, Rikard; Jeong, Yu Seon; ...
2016-11-28
We evaluate the prompt atmospheric neutrino flux at high energies using three different frameworks for calculating the heavy quark production cross section in QCD: NLO perturbative QCD, k T factorization including low-x resummation, and the dipole model including parton saturation. We use QCD parameters, the value for the charm quark mass and the range for the factorization and renormalization scales that provide the best description of the total charm cross section measured at fixed target experiments, at RHIC and at LHC. Using these parameters we calculate differential cross sections for charm and bottom production and compare with the latest datamore » on forward charm meson production from LHCb at 7 TeV and at 13 TeV, finding good agreement with the data. In addition, we investigate the role of nuclear shadowing by including nuclear parton distribution functions (PDF) for the target air nucleus using two different nuclear PDF schemes. Depending on the scheme used, we find the reduction of the flux due to nuclear effects varies from 10% to 50% at the highest energies. Finally, we compare our results with the IceCube limit on the prompt neutrino flux, which is already providing valuable information about some of the QCD models.« less
QCD Sum Rules and Models for Generalized Parton Distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anatoly Radyushkin
2004-10-01
I use QCD sum rule ideas to construct models for generalized parton distributions. To this end, the perturbative parts of QCD sum rules for the pion and nucleon electromagnetic form factors are interpreted in terms of GPDs and two models are discussed. One of them takes the double Borel transform at adjusted value of the Borel parameter as a model for nonforward parton densities, and another is based on the local duality relation. Possible ways of improving these Ansaetze are briefly discussed.
Resonant conversions of QCD axions into hidden axions and suppressed isocurvature perturbations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitajima, Naoya; Takahashi, Fuminobu, E-mail: kitajima@tuhep.phys.tohoku.ac.jp, E-mail: fumi@tuhep.phys.tohoku.ac.jp
2015-01-01
We study in detail MSW-like resonant conversions of QCD axions into hidden axions, including cases where the adiabaticity condition is only marginally satisfied, and where anharmonic effects are non-negligible. When the resonant conversion is efficient, the QCD axion abundance is suppressed by the hidden and QCD axion mass ratio. We find that, when the resonant conversion is incomplete due to a weak violation of the adiabaticity, the CDM isocurvature perturbations can be significantly suppressed, while non-Gaussianity of the isocurvature perturbations generically remain unsuppressed. The isocurvature bounds on the inflation scale can therefore be relaxed by the partial resonant conversion ofmore » the QCD axions into hidden axions.« less
A study of energy-energy correlations and measurement of {alpha}{sub s} at the Z{sup 0} resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-12-31
We present the energy-energy correlation (EEC) distribution and its asymmetry (AEEC) in hadronic decays of {Zeta}{sup 0} bosons measured by the SLD at SLAC. The data are found to be in good agreement with the predictions of perturbative QCD and fragmentation Monte Carlo models of hadron production. After correction for hadronization effects the data are compared with {Omicron}({alpha}{sub s}{sup 2}) perturbative QCD calculations from various authors. Fits to the central region of the EEC yield substantially different values of the QCD scale {lambda}{sub {ovr MS}} for each of the QCD calculations. There is also a sizeable dependence of the fittedmore » {lambda}{sub {ovr MS}} value on the QCD renormalization scale factor, f. Our preliminary results are {alpha}{sub s}(M {sub Z}) = 0.121 {plus_minus} 0.002(stat.) {plus_minus} 0.004(exp.sys.) {sub {minus}0.009}{sup +0.016} (theor.) for EEC and {alpha}{sub s}(M{sub Z}) = 0.108 {plus_minus} 0.003(stat.) {plus_minus} 0.005(exp.sys.){sub {minus}0.003}{sup +0.008}(theor.) for AEEC. The largest contribution to the error arises from the theoretical uncertainty in choosing the QCD renormalization scale.« less
NASA Astrophysics Data System (ADS)
Garkusha, A. V.; Kataev, A. L.; Molokoedov, V. S.
2018-02-01
The problem of scheme and gauge dependence of the factorization property of the renormalization group β-function in the SU( N c ) QCD generalized Crewther relation (GCR), which connects the flavor non-singlet contributions to the Adler and Bjorken polarized sum rule functions, is investigated at the O({a}_s^4) level of perturbation theory. It is known that in the gauge-invariant renormalization \\overline{MS} -scheme this property holds in the QCD GCR at least at this order. To study whether this factorization property is true in all gauge-invariant schemes, we consider the MS-like schemes in QCD and the QED-limit of the GCR in the \\overline{MS} -scheme and in two other gauge-independent subtraction schemes, namely in the momentum MOM and the on-shell OS schemes. In these schemes we confirm the existence of the β-function factorization in the QCD and QED variants of the GCR. The problem of the possible β-factorization in the gauge-dependent renormalization schemes in QCD is studied. To investigate this problem we consider the gauge non-invariant mMOM and MOMgggg-schemes. We demonstrate that in the mMOM scheme at the O({a}_s^3) level the β-factorization is valid for three values of the gauge parameter ξ only, namely for ξ = -3 , -1 and ξ = 0. In the O({a}_s^4) order of PT it remains valid only for case of the Landau gauge ξ = 0. The consideration of these two gauge-dependent schemes for the QCD GCR allows us to conclude that the factorization of RG β-function will always be implemented in any MOM-like renormalization schemes with linear covariant gauge at ξ = 0 and ξ = -3 at the O({a}_s^3) approximation. It is demonstrated that if factorization property for the MS-like schemes is true in all orders of PT, as theoretically indicated in the several works on the subject, then the factorization will also occur in the arbitrary MOM-like scheme in the Landau gauge in all orders of perturbation theory as well.
Renormalizability of quasiparton distribution functions
Ishikawa, Tomomi; Ma, Yan-Qing; Qiu, Jian-Wei; ...
2017-11-21
Quasi-parton distribution functions have received a lot of attentions in both perturbative QCD and lattice QCD communities in recent years because they not only carry good information on the parton distribution functions, but also could be evaluated by lattice QCD simulations. However, unlike the parton distribution functions, the quasi-parton distribution functions have perturbative ultraviolet power divergences because they are not defined by twist-2 operators. Here in this article, we identify all sources of ultraviolet divergences for the quasi-parton distribution functions in coordinate-space, and demonstrated that power divergences, as well as all logarithmic divergences can be renormalized multiplicatively to all ordersmore » in QCD perturbation theory.« less
Renormalizability of quasiparton distribution functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishikawa, Tomomi; Ma, Yan-Qing; Qiu, Jian-Wei
Quasi-parton distribution functions have received a lot of attentions in both perturbative QCD and lattice QCD communities in recent years because they not only carry good information on the parton distribution functions, but also could be evaluated by lattice QCD simulations. However, unlike the parton distribution functions, the quasi-parton distribution functions have perturbative ultraviolet power divergences because they are not defined by twist-2 operators. Here in this article, we identify all sources of ultraviolet divergences for the quasi-parton distribution functions in coordinate-space, and demonstrated that power divergences, as well as all logarithmic divergences can be renormalized multiplicatively to all ordersmore » in QCD perturbation theory.« less
Nonleptonic decays of B →(f1(1285 ),f1(1420 ))V in the perturbative QCD approach
NASA Astrophysics Data System (ADS)
Liu, Xin; Xiao, Zhen-Jun; Zou, Zhi-Tian
2016-12-01
We investigate the branching ratios, the polarization fractions, the direct C P -violating asymmetries, and the relative phases in 20 nonleptonic decay modes of B →f1V within the framework of the perturbative QCD approach at leading order with f1 including two 3P1-axial-vector states f1(1285 ) and f1(1420 ) . Here, B denotes B+, B0, and Bs0 mesons and V stands for the lightest vector mesons ρ , K*, ω , and ϕ , respectively. The Bs0→f1V decays are studied theoretically for the first time in the literature. Together with the angle ϕf1≈(24-2.7+3.2)∘ extracted from the measurement through Bd /s→J /ψ f1(1285 ) modes for the f1(1285 )-f1(1420 ) mixing system, it is of great interest to find phenomenologically some modes such as the tree-dominated B+→f1ρ+ and the penguin-dominated B+,0→f1K*+,0 , Bs0→f1ϕ with large branching ratios around O (10-6) or even O (10-5), which are expected to be measurable at the LHCb and/or the Belle-II experiments in the near future. The good agreement (sharp contrast) of branching ratios and decay pattern for B+→f1ρ+ , B+,0→f1(1285 )K*+,0[B+,0→f1(1420 )K*+,0] decays between QCD factorization and perturbative QCD factorization predictions can help us to distinguish these two rather different factorization approaches via precision measurements, which would also be helpful for us in exploring the annihilation decay mechanism through its important roles for the considered B →f1V decays.
The pion form factor from first principles
NASA Astrophysics Data System (ADS)
van der Heide, J.
2004-08-01
We calculate the electromagnetic form factor of the pion in quenched lattice QCD. The non-perturbatively improved Sheikoleslami-Wohlert lattice action is used together with the O(a) improved current. We calculate form factor for pion masses down to mπ = 380 MeV. We compare the mean square radius for the pion extracted from our form factors to the value obtained from the `Bethe Salpeter amplitude'. Using (quenched) chiral perturbation theory, we extrapolate our results towards the physical pion mass.
Perturbative corrections to B → D form factors in QCD
NASA Astrophysics Data System (ADS)
Wang, Yu-Ming; Wei, Yan-Bing; Shen, Yue-Long; Lü, Cai-Dian
2017-06-01
We compute perturbative QCD corrections to B → D form factors at leading power in Λ/ m b , at large hadronic recoil, from the light-cone sum rules (LCSR) with B-meson distribution amplitudes in HQET. QCD factorization for the vacuum-to- B-meson correlation function with an interpolating current for the D-meson is demonstrated explicitly at one loop with the power counting scheme {m}_c˜ O(√{Λ {m}_b}) . The jet functions encoding information of the hard-collinear dynamics in the above-mentioned correlation function are complicated by the appearance of an additional hard-collinear scale m c , compared to the counterparts entering the factorization formula of the vacuum-to- B-meson correction function for the construction of B → π from factors. Inspecting the next-to-leading-logarithmic sum rules for the form factors of B → Dℓν indicates that perturbative corrections to the hard-collinear functions are more profound than that for the hard functions, with the default theory inputs, in the physical kinematic region. We further compute the subleading power correction induced by the three-particle quark-gluon distribution amplitudes of the B-meson at tree level employing the background gluon field approach. The LCSR predictions for the semileptonic B → Dℓν form factors are then extrapolated to the entire kinematic region with the z-series parametrization. Phenomenological implications of our determinations for the form factors f BD +,0 ( q 2) are explored by investigating the (differential) branching fractions and the R( D) ratio of B → Dℓν and by determining the CKM matrix element |V cb | from the total decay rate of B → Dμν μ .
Quasi-two-body decays B → Kρ → Kππ in perturbative QCD approach
NASA Astrophysics Data System (ADS)
Wang, Wen-Fei; Li, Hsiang-nan
2016-12-01
We analyze the quasi-two-body decays B → Kρ → Kππ in the perturbative QCD (PQCD) approach, in which final-state interactions between the pions in the resonant regions associated with the P-wave states ρ (770) and ρ‧ (1450) are factorized into two-pion distribution amplitudes. Adopting experimental inputs for the time-like pion form factors involved in two-pion distribution amplitudes, we calculate branching ratios and direct CP asymmetries of the B → Kρ (770) , Kρ‧ (1450) → Kππ modes. It is shown that agreement of theoretical results with data can be achieved, through which Gegenbauer moments of the P-wave two-pion distribution amplitudes are determined. The consistency between the three-body and two-body analyses of the B → Kρ (770) → Kππ decays supports the PQCD factorization framework for exclusive hadronic B meson decays.
Polyakov loop modeling for hot QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukushima, Kenji; Skokov, Vladimir
Here, we review theoretical aspects of quantum chromodynamics (QCD) at finite temperature. The most important physical variable to characterize hot QCD is the Polyakov loop, which is an approximate order parameter for quark deconfinement in a hot gluonic medium. Additionally to its role as an order parameter, the Polyakov loop has rich physical contents in both perturbative and non-perturbative sectors. This review covers a wide range of subjects associated with the Polyakov loop from topological defects in hot QCD to model building with coupling to the Polyakov loop.
Polyakov loop modeling for hot QCD
Fukushima, Kenji; Skokov, Vladimir
2017-06-19
Here, we review theoretical aspects of quantum chromodynamics (QCD) at finite temperature. The most important physical variable to characterize hot QCD is the Polyakov loop, which is an approximate order parameter for quark deconfinement in a hot gluonic medium. Additionally to its role as an order parameter, the Polyakov loop has rich physical contents in both perturbative and non-perturbative sectors. This review covers a wide range of subjects associated with the Polyakov loop from topological defects in hot QCD to model building with coupling to the Polyakov loop.
τ hadronic spectral function moments in a nonpower QCD perturbation theory
NASA Astrophysics Data System (ADS)
Abbas, Gauhar; Ananthanarayan, B.; Caprini, I.; Fischer, J.
2016-04-01
The moments of the hadronic spectral functions are of interest for the extraction of the strong coupling and other QCD parameters from the hadronic decays of the τ lepton. We consider the perturbative behavior of these moments in the framework of a QCD nonpower perturbation theory, defined by the technique of series acceleration by conformal mappings, which simultaneously implements renormalization-group summation and has a tame large-order behavior. Two recently proposed models of the Adler function are employed to generate the higher order coefficients of the perturbation series and to predict the exact values of the moments, required for testing the properties of the perturbative expansions. We show that the contour-improved nonpower perturbation theories and the renormalization-group-summed nonpower perturbation theories have very good convergence properties for a large class of moments of the so-called ;reference model;, including moments that are poorly described by the standard expansions.
On the interface between perturbative and nonperturbative QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deur, Alexandre; Brodsky, Stanley J.; de Teramond, Guy F.
2016-04-04
The QCD running couplingmore » $$\\alpha_s(Q^2)$$ sets the strength of the interactions of quarks and gluons as a function of the momentum transfer $Q$. The $Q^2$ dependence of the coupling is required to describe hadronic interactions at both large and short distances. In this article we adopt the light-front holographic approach to strongly-coupled QCD, a formalism which incorporates confinement, predicts the spectroscopy of hadrons composed of light quarks, and describes the low-$Q^2$ analytic behavior of the strong coupling $$\\alpha_s(Q^2)$$. The high-$Q^2$ dependence of the coupling $$\\alpha_s(Q^2)$$ is specified by perturbative QCD and its renormalization group equation. The matching of the high and low $Q^2$ regimes of $$\\alpha_s(Q^2)$$ then determines the scale $$Q_0$$ which sets the interface between perturbative and nonperturbative hadron dynamics. The value of $$Q_0$$ can be used to set the factorization scale for DGLAP evolution of hadronic structure functions and the ERBL evolution of distribution amplitudes. We discuss the scheme-dependence of the value of $$Q_0$$ and the infrared fixed-point of the QCD coupling. Our analysis is carried out for the $$\\bar{MS}$$, $$g_1$$, $MOM$ and $V$ renormalization schemes. Our results show that the discrepancies on the value of $$\\alpha_s$$ at large distance seen in the literature can be explained by different choices of renormalization schemes. Lastly, we also provide the formulae to compute $$\\alpha_s(Q^2)$$ over the entire range of space-like momentum transfer for the different renormalization schemes discussed in this article.« less
Duality between QCD perturbative series and power corrections
NASA Astrophysics Data System (ADS)
Narison, S.; Zakharov, V. I.
2009-08-01
We elaborate on the relation between perturbative and power-like corrections to short-distance sensitive QCD observables. We confront theoretical expectations with explicit perturbative calculations existing in literature. As is expected, the quadratic correction is dual to a long perturbative series and one should use one of them but not both. However, this might be true only for very long perturbative series, with number of terms needed in most cases exceeding the number of terms available. What has not been foreseen, the quartic corrections might also be dual to the perturbative series. If confirmed, this would imply a crucial modification of the dogma. We confront this quadratic correction against existing phenomenology (QCD (spectral) sum rules scales, determinations of light quark masses and of αs from τ-decay). We find no contradiction and (to some extent) better agreement with the data and with recent lattice calculations.
High-mass diffraction in the QCD dipole picture
NASA Astrophysics Data System (ADS)
Bialas, A.; Navelet, H.; Peschanski, R.
1998-05-01
Using the QCD dipole picture of the BFKL pomeron, the cross-section of single diffractive dissociation of virtual photons at high energy and large diffractively excited masses is calculated. The calculation takes into account the full impact-parameter phase-space and thus allows to obtain an exact value of the triple BFKL Pomeron vertex. It appears large enough to compensate the perturbative 6-gluon coupling factor (α/π)3 thus suggesting a rather appreciable diffractive cross-section.
Non-perturbative determination of cV, ZV and ZS/ZP in Nf = 3 lattice QCD
NASA Astrophysics Data System (ADS)
Heitger, Jochen; Joswig, Fabian; Vladikas, Anastassios; Wittemeier, Christian
2018-03-01
We report on non-perturbative computations of the improvement coefficient cV and the renormalization factor ZV of the vector current in three-flavour O(a) improved lattice QCD with Wilson quarks and tree-level Symanzik improved gauge action. To reduce finite quark mass effects, our improvement and normalization conditions exploit massive chiral Ward identities formulated in the Schrödinger functional setup, which also allow deriving a new method to extract the ratio ZS/ZP of scalar to pseudoscalar renormalization constants. We present preliminary results of a numerical evaluation of ZV and cV along a line of constant physics with gauge couplings corresponding to lattice spacings of about 0:09 fm and below, relevant for phenomenological applications.
Calculation of shear viscosity using Green-Kubo relations within a parton cascade
NASA Astrophysics Data System (ADS)
Wesp, C.; El, A.; Reining, F.; Xu, Z.; Bouras, I.; Greiner, C.
2011-11-01
The shear viscosity of a gluon gas is calculated using the Green-Kubo relation. Time correlations of the energy-momentum tensor in thermal equilibrium are extracted from microscopic simulations using a parton cascade solving various Boltzmann collision processes. We find that the perturbation-QCD- (pQCD-) based gluon bremsstrahlung described by Gunion-Bertsch processes significantly lowers the shear viscosity by a factor of 3 to 8 compared to elastic scatterings. The shear viscosity scales with the coupling as η˜1/[αs2log(1/αs)]. For constant αs the shear viscosity to entropy density ratio η/s has no dependence on temperature. Replacing the pQCD-based collision angle distribution of binary scatterings by an isotropic form decreases the shear viscosity by a factor of 3.
Higgs boson gluon-fusion production in QCD at three loops.
Anastasiou, Charalampos; Duhr, Claude; Dulat, Falko; Herzog, Franz; Mistlberger, Bernhard
2015-05-29
We present the cross section for the production of a Higgs boson at hadron colliders at next-to-next-to-next-to-leading order (N^{3}LO) in perturbative QCD. The calculation is based on a method to perform a series expansion of the partonic cross section around the threshold limit to an arbitrary order. We perform this expansion to sufficiently high order to obtain the value of the hadronic cross at N^{3}LO in the large top-mass limit. For renormalization and factorization scales equal to half the Higgs boson mass, the N^{3}LO corrections are of the order of +2.2%. The total scale variation at N^{3}LO is 3%, reducing the uncertainty due to missing higher order QCD corrections by a factor of 3.
NASA Astrophysics Data System (ADS)
Kang, K.; Fried, H. M.; Tan, C.-I.
1994-02-01
The Table of Contents for the book is as follows: * Preface * `Overview' on Elastic Scattering and Total Cross-Sections * A Precise Measurement of the Real Part of the Elastic Scattering Amplitude at the {S bar{p}pS} * Luminosity Dependent Measurement of the p bar{p} Total Cross Section at √{s} = 541 GeV * Status of Fermilab E-710 * Luminosity-Independent Measurement of bar{p}p Elastic Scattering, Single Diffraction, Dissociation and Total Cross Section at √{s} = 546 and 1800 GeV * Phase Relations Revisited: A Challenge for SSC and LHC * Status of Near-Forward Elastic Scattering * bar{p}p Collisions at √{s} = 1.8 TeV: p, σt and B * p bar{p} Forward Scattering Parameters Results from Fermilab E760 * Photoproduction Results from H1 at HERA * Total and Jet Photoproduction Cross Sections at HERA and Fermilab * Minijet Model for High Energy γp Cross Sections * The Pomeron as Massive Gluons * Large N Theories with Glueball-like Spectra * Unitarity Relations for Gluonic Pomeron * The Donnachie-Landshoff Pomeron vs. QCD * The Odderon Intercept in Perturbative QCD * Theoret. and Phenomenol. Aspects of the Odderon * First Theorist's Gaze at HERA Data at Low xB * H1 Results for Structure Functions at Small x * Partial Photoproduction Cross Sections at √{s} ≈prox 180 GeV and First Results on F2 of the Proton from the ZEUS Experiment * Observation of a New Class of Events in Deep Inelastic Scattering * Jet Production in Muon-Proton and Muon-Nuclei Scattering at Fermilab-E665 * D0 Studies of Perturbative QCD * Large Rapidity Gaps and Single Diffraction Dissociation in High Energy pp and bar{p}p Collisions * Hadron and Reggeon Structure in High Energy Collisions * Monte Carlo Studies of Diffractive Processes in Deep Inelastic Scattering * Elastic Parton-Parton Amplitudes in Geometrical Models * Non-Perturbative QCD Calculations of High-Energy Observables * Effective Field Theory for Diffractive QCD Processes * High Energy Behavior of σtot, ρ, and B - Asymptotic Amplitude Analysis and a QCD-Inspired Analysis * Rapidity Gaps and Multiplicity Fluctuations * Branching Processes and Multi-Particle Production * High Energy Elastic Scattering and Nucleon as a Topological Soliton * The Behavior of Cross Sections at Very High Energies * The Pomeron and QCD with Many Light Quarks * Heterotic Pomeron: High Energy Hadronic Collisions in QCD * CDF Results on Electroweak Physics * DØ Results on Electroweak Physics * Search for the Top Quark and Other New Particles at DØ * Rapidity Gaps and Forward Physics at DØ * High Energy Asymptotics of Perturbative Multi-Color QCD * Rapidity Gaps in e+e- Collisions * Large Rapidity Gap, Jet Events at HERA: a PQCD Approach * High Energy Parton-Parton Elastic Scattering in QCD * Parton-Parton Elastic Scattering and Rapidity Gaps at Tevatron Energies * Hard Elastic Scattering * Hard Diffractive Processes * Three Successful Tests of Color Transparency and Nuclear Filtering * New KNO in QCD * A Chiral Condensate Search at the Tevatron * Cosmic Ray Evidences for Aligned High Energy Jets at Supertevatron Energy and Hard DDD * "New Hadronic State" Observed in Extremely High Energy Cosmic-Ray Interactions * Meson and Nucleon Form Factors in PQCD * Elastic Charge Form Factors for Pseudoscalar Mesons * The Ultimate Experiment * Search for Coherent Charm Production in 800 GeV/c Proton-Silicon Interactions * Chiral Quark Model and Hadron Scattering * Elastic Spin Experiments at UNK, Fermilab and SSC * Spin-Flip in Elastic and Diffractive Scattering * FNAL Polarized Beams and Spin Dependence at RHIC * Particle Tracking in the Close-to-Forward Region (η > 5.5) * Blois V: Experimental Summary * Blois V: Summary Talk * List of Participants
Hadronic decays of B →a1(1260 )b1(1235 ) in the perturbative QCD approach
NASA Astrophysics Data System (ADS)
Jing, Hao-Yang; Liu, Xin; Xiao, Zhen-Jun
2017-12-01
We calculate the branching ratios and polarization fractions of the B →a1b1 decays in the perturbative QCD(pQCD) approach at leading order, where a1(b1) stands for the axial-vector a1(1260 )[b1(1235 )] state. By combining the phenomenological analyses with the perturbative calculations, we find the following results: (a) the large decay rates around 10-5 to 10-6 of the B →a1b1 decays dominated by the longitudinal polarization(except for the B+→b1+a10 mode) are predicted and basically consistent with those in the QCD factorization(QCDF) within errors, which are expected to be tested by the Large Hadron Collider and Belle-II experiments. The large B0→a10b10 branching ratio could provide hints to help explore the mechanism of the color-suppressed decays. (b) the rather different QCD behaviors between the a1 and b1 mesons result in the destructive(constructive) contributions in the nonfactorizable spectator diagrams with a1(b1) emission. Therefore, an interesting pattern of the branching ratios appears for the color-suppressed B0→a10a10,a10b10, and b10b10 modes in the pQCD approach, BR (B0→b10b10)>BR (B0→a10b10)≳BR (B0→a10a10), which is different from BR (B0→b10b10)˜BR (B0→a10b10)≳BR (B0→a10a10) in the QCDF and would be verified at future experiments. (c) the large naive factorization breaking effects are observed in these B →a1b1 decays. Specifically, the large nonfactorizable spectator(weak annihilation) amplitudes contribute to the B0→b1+a1-(B+→a1+b10andB+→b1+a10) mode(s), which demand confirmations via the precise measurements. Furthermore, the different phenomenologies shown among B →a1b1, B →a1a1, and B →b1b1 decays are also expected to be tested stringently, which could shed light on the typical QCD dynamics involved in these modes, even further distinguish those two popular pQCD and QCDF approaches.
A study on the interplay between perturbative QCD and CSS/TMD formalism in SIDIS processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boglione, M.; Gonzalez Hernandez, J. O.; Melis, S.
We study the Semi-Inclusive Deep Inelastic Scattering (SIDIS) cross section as a function of the transverse momentum, qT. In order to describe it over a wide region of qT, soft gluon resummation has to be performed. Here we will use the original Collins-Soper-Sterman (CSS) formalism; however, the same procedure would hold within the improved Transverse Momentum Dependent (TMD) framework. We study the matching between the region where fixed order perturbative QCD can successfully be applied and the region where soft gluon resummation is necessary. We find that the commonly used prescription of matching through the so-called Y-factor cannot be appliedmore » in the SIDIS kinematical configurations we examine. In particular, the non-perturbative component of the resummed cross section turns out to play a crucial role and should not be overlooked even at relatively high energies. As a result, the perturbative expansion of the resummed cross section in the matching region is not as reliable as it is usually believed and its treatment requires special attention.« less
A study on the interplay between perturbative QCD and CSS/TMD formalism in SIDIS processes
NASA Astrophysics Data System (ADS)
Boglione, M.; Gonzalez Hernandez, J. O.; Melis, S.; Prokudin, A.
2015-02-01
We study the Semi-Inclusive Deep Inelastic Scattering (SIDIS) cross section as a function of the transverse momentum, q T . In order to describe it over a wide region of q T , soft gluon resummation has to be performed. Here we will use the original Collins-Soper-Sterman (CSS) formalism; however, the same procedure would hold within the improved Transverse Momentum Dependent (TMD) framework. We study the matching between the region where fixed order perturbative QCD can successfully be applied and the region where soft gluon resummation is necessary. We find that the commonly used prescription of matching through the so-called Y-factor cannot be applied in the SIDIS kinematical configurations we examine. In particular, the non-perturbative component of the resummed cross section turns out to play a crucial role and should not be overlooked even at relatively high energies. Moreover, the perturbative expansion of the resummed cross section in the matching region is not as reliable as it is usually believed and its treatment requires special attention.
Infrared singularities of scattering amplitudes in perturbative QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becher, Thomas; Neubert, Matthias
2013-11-01
An exact formula is derived for the infrared singularities of dimensionally regularized scattering amplitudes in massless QCD with an arbitrary number of legs, valid at any number of loops. It is based on the conjecture that the anomalous-dimension matrix of n-jet operators in soft-collinear effective theory contains only a single non-trivial color structure, whose coefficient is the cusp anomalous dimension of Wilson loops with light-like segments. Its color-diagonal part is characterized by two anomalous dimensions, which are extracted to three-loop order from known perturbative results for the quark and gluon form factors. This allows us to predict the three-loop coefficientsmore » of all 1/epsilon^k poles for an arbitrary n-parton scattering amplitudes, generalizing existing two-loop results.« less
Basics of QCD perturbation theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soper, D.E.
1997-06-01
This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs.
NASA Astrophysics Data System (ADS)
Narison, Stephan
2004-05-01
About Stephan Narison; Outline of the book; Preface; Acknowledgements; Part I. General Introduction: 1. A short flash on particle physics; 2. The pre-QCD era; 3. The QCD story; 4. Field theory ingredients; Part II. QCD Gauge Theory: 5. Lagrangian and gauge invariance; 6. Quantization using path integral; 7. QCD and its global invariance; Part III. MS scheme for QCD and QED: Introduction; 8. Dimensional regularization; 9. The MS renormalization scheme; 10. Renormalization of operators using the background field method; 11. The renormalization group; 12. Other renormalization schemes; 13. MS scheme for QED; 14. High-precision low-energy QED tests; Part IV. Deep Inelastic Scattering at Hadron Colliders: 15. OPE for deep inelastic scattering; 16. Unpolarized lepton-hadron scattering; 17. The Altarelli-Parisi equation; 18. More on unpolarized deep inelastic scatterings; 19. Polarized deep-inelastic processes; 20. Drell-Yan process; 21. One 'prompt photon' inclusive production; Part V. Hard Processes in e+e- Collisions: Introduction; 22. One hadron inclusive production; 23. gg scatterings and the 'spin' of the photon; 24. QCD jets; 25. Total inclusive hadron productions; Part VI. Summary of QCD Tests and as Measurements; Part VII. Power Corrections in QCD: 26. Introduction; 27. The SVZ expansion; 28. Technologies for evaluating Wilson coefficients; 29. Renormalons; 30. Beyond the SVZ expansion; Part VIII. QCD Two-Point Functions: 31. References guide to original works; 32. (Pseudo)scalar correlators; 33. (Axial-)vector two-point functions; 34. Tensor-quark correlator; 35. Baryonic correlators; 36. Four-quark correlators; 37. Gluonia correlators; 38. Hybrid correlators; 39. Correlators in x-space; Part IX. QCD Non-Perturbative Methods: 40. Introduction; 41. Lattice gauge theory; 42. Chiral perturbation theory; 43. Models of the QCD effective action; 44. Heavy quark effective theory; 45. Potential approaches to quarkonia; 46. On monopole and confinement; Part X. QCD Spectral Sum Rules: 47. Introduction; 48. Theoretical foundations; 49. Survey of QCD spectral sum rules; 50. Weinberg and DMO sum rules; 51. The QCD coupling as; 52. The QCD condensates; 53. Light and heavy quark masses, etc.; 54. Hadron spectroscopy; 55. D, B and Bc exclusive weak decays; 56. B0(s)-B0(s) mixing, kaon CP violation; 57. Thermal behaviour of QCD; 58. More on spectral sum rules; Part XI. Appendix A: physical constants and unites; Appendix B: weight factors for SU(N)c; Appendix C: coordinates and momenta; Appendix D: Dirac equation and matrices; Appendix E: Feynman rules; Appendix F: Feynman integrals; Appendix G: useful formulae for the sum rules; Bibliography; Index.
NASA Astrophysics Data System (ADS)
Narison, Stephan
2007-07-01
About Stephan Narison; Outline of the book; Preface; Acknowledgements; Part I. General Introduction: 1. A short flash on particle physics; 2. The pre-QCD era; 3. The QCD story; 4. Field theory ingredients; Part II. QCD Gauge Theory: 5. Lagrangian and gauge invariance; 6. Quantization using path integral; 7. QCD and its global invariance; Part III. MS scheme for QCD and QED: Introduction; 8. Dimensional regularization; 9. The MS renormalization scheme; 10. Renormalization of operators using the background field method; 11. The renormalization group; 12. Other renormalization schemes; 13. MS scheme for QED; 14. High-precision low-energy QED tests; Part IV. Deep Inelastic Scattering at Hadron Colliders: 15. OPE for deep inelastic scattering; 16. Unpolarized lepton-hadron scattering; 17. The Altarelli-Parisi equation; 18. More on unpolarized deep inelastic scatterings; 19. Polarized deep-inelastic processes; 20. Drell-Yan process; 21. One 'prompt photon' inclusive production; Part V. Hard Processes in e+e- Collisions: Introduction; 22. One hadron inclusive production; 23. gg scatterings and the 'spin' of the photon; 24. QCD jets; 25. Total inclusive hadron productions; Part VI. Summary of QCD Tests and as Measurements; Part VII. Power Corrections in QCD: 26. Introduction; 27. The SVZ expansion; 28. Technologies for evaluating Wilson coefficients; 29. Renormalons; 30. Beyond the SVZ expansion; Part VIII. QCD Two-Point Functions: 31. References guide to original works; 32. (Pseudo)scalar correlators; 33. (Axial-)vector two-point functions; 34. Tensor-quark correlator; 35. Baryonic correlators; 36. Four-quark correlators; 37. Gluonia correlators; 38. Hybrid correlators; 39. Correlators in x-space; Part IX. QCD Non-Perturbative Methods: 40. Introduction; 41. Lattice gauge theory; 42. Chiral perturbation theory; 43. Models of the QCD effective action; 44. Heavy quark effective theory; 45. Potential approaches to quarkonia; 46. On monopole and confinement; Part X. QCD Spectral Sum Rules: 47. Introduction; 48. Theoretical foundations; 49. Survey of QCD spectral sum rules; 50. Weinberg and DMO sum rules; 51. The QCD coupling as; 52. The QCD condensates; 53. Light and heavy quark masses, etc.; 54. Hadron spectroscopy; 55. D, B and Bc exclusive weak decays; 56. B0(s)-B0(s) mixing, kaon CP violation; 57. Thermal behaviour of QCD; 58. More on spectral sum rules; Part XI. Appendix A: physical constants and unites; Appendix B: weight factors for SU(N)c; Appendix C: coordinates and momenta; Appendix D: Dirac equation and matrices; Appendix E: Feynman rules; Appendix F: Feynman integrals; Appendix G: useful formulae for the sum rules; Bibliography; Index.
Determination of the QCD Λ Parameter and the Accuracy of Perturbation Theory at High Energies.
Dalla Brida, Mattia; Fritzsch, Patrick; Korzec, Tomasz; Ramos, Alberto; Sint, Stefan; Sommer, Rainer
2016-10-28
We discuss the determination of the strong coupling α_{MS[over ¯]}(m_{Z}) or, equivalently, the QCD Λ parameter. Its determination requires the use of perturbation theory in α_{s}(μ) in some scheme s and at some energy scale μ. The higher the scale μ, the more accurate perturbation theory becomes, owing to asymptotic freedom. As one step in our computation of the Λ parameter in three-flavor QCD, we perform lattice computations in a scheme that allows us to nonperturbatively reach very high energies, corresponding to α_{s}=0.1 and below. We find that (continuum) perturbation theory is very accurate there, yielding a 3% error in the Λ parameter, while data around α_{s}≈0.2 are clearly insufficient to quote such a precision. It is important to realize that these findings are expected to be generic, as our scheme has advantageous properties regarding the applicability of perturbation theory.
Spin-1 Particles and Perturbative QCD
NASA Astrophysics Data System (ADS)
de Melo, J. P. B. C.; Frederico, T.; Ji, Chueng-Ryong
2018-07-01
Due to the angular condition in the light-front dynamics (LFD), the extraction of the electromagnetic form factors for spin-1 particles can be uniquely determined taking into account implicitly non-valence and/or the zero-mode contributions to the matrix elements of the electromagnetic current. No matter which matrix elements of the electromagnetic current is used to extract the electromagnetic form factors, the same unique result is obtained. As physical observables, the electromagnetic form factors obtained from matrix elements of the current in LFD must be equal to those obtained in the instant form calculations. Recently, the Babar collaboration (Phys Rev D 78:071103, 2008) has analyzed the reaction e^+ + e^-→ ρ ^+ + ρ ^- at √{s}=10.58 GeV to measure the cross section as well as the ratios of the helicity amplitudes F_{λ 'λ }. We present our recent analysis of the Babar data for the rho meson considering the angular condition in LFD to put a stringent test on the onset of asymptotic perturbative QCD and predict the energy regime where the subleading contributions are still considerable.
The Future of Hadrons: The Nexus of Subatomic Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quigg, Chris
2011-09-01
The author offers brief observations on matters discussed at the XIV International Conference on Hadron Spectroscopy and explore prospects for hadron physics. Quantum chromodynamics (QCD) has been validated as a new law of nature. It is internally consistent up to very high energies, and so could be a complete theory of the strong interactions. Whether QCD is the final answer for the strong interactions is a subject for continuing experimental tests, which are being extended in experimentation at the Large Hadron Collider. Beyond the comparison of perturbative calculations with experiment, it remains critically important to test the confinement hypothesis bymore » searching for free quarks, or for signatures of unconfined color. Sensitive negative searches for quarks continue to be interesting, and the definitive observation of free quarks would be revolutionary. Breakdowns of factorization would compromise the utility of perturbative QCD. Other discoveries that would require small or large revisions to QCD include the observation of new kinds of colored matter beyond quarks and gluons, the discovery that quarks are composite, or evidence that SU(3){sub c} gauge symmetry is the vestige of a larger, spontaneously broken, color symmetry. While probing our underlying theory for weakness or new openings, we have plenty to do to apply QCD to myriad experimental settings, to learn its implications for matter under unusual conditions, and to become more adept at calculating its consequences. New experimental tools provide the means for progress on a very broad front.« less
Renormalization scheme dependence of high-order perturbative QCD predictions
NASA Astrophysics Data System (ADS)
Ma, Yang; Wu, Xing-Gang
2018-02-01
Conventionally, one adopts typical momentum flow of a physical observable as the renormalization scale for its perturbative QCD (pQCD) approximant. This simple treatment leads to renormalization scheme-and-scale ambiguities due to the renormalization scheme and scale dependence of the strong coupling and the perturbative coefficients do not exactly cancel at any fixed order. It is believed that those ambiguities will be softened by including more higher-order terms. In the paper, to show how the renormalization scheme dependence changes when more loop terms have been included, we discuss the sensitivity of pQCD prediction on the scheme parameters by using the scheme-dependent {βm ≥2}-terms. We adopt two four-loop examples, e+e-→hadrons and τ decays into hadrons, for detailed analysis. Our results show that under the conventional scale setting, by including more-and-more loop terms, the scheme dependence of the pQCD prediction cannot be reduced as efficiently as that of the scale dependence. Thus a proper scale-setting approach should be important to reduce the scheme dependence. We observe that the principle of minimum sensitivity could be such a scale-setting approach, which provides a practical way to achieve optimal scheme and scale by requiring the pQCD approximate be independent to the "unphysical" theoretical conventions.
Proof of factorization using background field method of QCD
NASA Astrophysics Data System (ADS)
Nayak, Gouranga C.
2010-02-01
Factorization theorem plays the central role at high energy colliders to study standard model and beyond standard model physics. The proof of factorization theorem is given by Collins, Soper and Sterman to all orders in perturbation theory by using diagrammatic approach. One might wonder if one can obtain the proof of factorization theorem through symmetry considerations at the lagrangian level. In this paper we provide such a proof.
Proof of factorization using background field method of QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nayak, Gouranga C.
Factorization theorem plays the central role at high energy colliders to study standard model and beyond standard model physics. The proof of factorization theorem is given by Collins, Soper and Sterman to all orders in perturbation theory by using diagrammatic approach. One might wonder if one can obtain the proof of factorization theorem through symmetry considerations at the lagrangian level. In this paper we provide such a proof.
Heavy quarkonium production at collider energies: Partonic cross section and polarization
Qiu, Jian -Wei; Kang, Zhong -Bo; Ma, Yan -Qing; ...
2015-01-27
We calculate the O(α³ s) short-distance, QCD collinear-factorized coefficient functions for all partonic channels that include the production of a heavy quark pair at short distances. Thus, this provides the first power correction to the collinear-factorized inclusive hadronic production of heavy quarkonia at large transverse momentum, pT, including the full leading-order perturbative contributions to the production of heavy quark pairs in all color and spin states employed in NRQCD treatments of this process. We discuss the role of the first power correction in the production rates and the polarizations of heavy quarkonia in high-energy hadronic collisions. The consistency of QCDmore » collinear factorization and nonrelativistic QCD factorization applied to heavy quarkonium production is also discussed.« less
Lepton-rich cold QCD matter in protoneutron stars
NASA Astrophysics Data System (ADS)
Jiménez, J. C.; Fraga, E. S.
2018-05-01
We investigate protoneutron star matter using the state-of-the-art perturbative equation of state for cold and dense QCD in the presence of a fixed lepton fraction in which both electrons and neutrinos are included. Besides computing the modifications in the equation of state due to the presence of trapped neutrinos, we show that stable strange quark matter has a more restricted parameter space. We also study the possibility of nucleation of unpaired quark matter in the core of protoneutron stars by matching the lepton-rich QCD pressure onto a hadronic equation of state, namely TM1 with trapped neutrinos. Using the inherent dependence of perturbative QCD on the renormalization scale parameter, we provide a measure of the uncertainty in the observables we compute.
A study of energy-energy correlations and measurement of [alpha][sub s] at the Z[sup 0] resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-01-01
We present the energy-energy correlation (EEC) distribution and its asymmetry (AEEC) in hadronic decays of [Zeta][sup 0] bosons measured by the SLD at SLAC. The data are found to be in good agreement with the predictions of perturbative QCD and fragmentation Monte Carlo models of hadron production. After correction for hadronization effects the data are compared with [Omicron]([alpha][sub s][sup 2]) perturbative QCD calculations from various authors. Fits to the central region of the EEC yield substantially different values of the QCD scale [lambda][sub [ovr MS
The b Quark Fragmentation Function, From LEP to TeVatron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben-haim, Eli
2004-12-01
The b quark fragmentation distribution has been measured, using data registered by the DELPHI experiment at the Z pole, in the years 1994-1995. The measurement made use of 176000 inclusively reconstructed B meson candidates. The errors of this measurement are dominated by systematic effects, the principal ones being related to the energy calibration. The distribution has been established in a nine bin histogram. Its mean value has been found to be
Neutrinoless double beta decay and QCD running at low energy scales
NASA Astrophysics Data System (ADS)
González, M.; Hirsch, M.; Kovalenko, S. G.
2018-06-01
There is a common belief that the main uncertainties in the theoretical analysis of neutrinoless double beta (0 ν β β ) decay originate from the nuclear matrix elements. Here, we uncover another previously overlooked source of potentially large uncertainties stemming from nonperturbative QCD effects. Recently perturbative QCD corrections have been calculated for all dimension 6 and 9 effective operators describing 0 ν β β -decay and their importance for a reliable treatment of 0 ν β β -decay has been demonstrated. However, these perturbative results are valid at energy scales above ˜1 GeV , while the typical 0 ν β β scale is about ˜100 MeV . In view of this fact we examine the possibility of extrapolating the perturbative results towards sub-GeV nonperturbative scales on the basis of the QCD coupling constant "freezing" behavior using background perturbation theory. Our analysis suggests that such an infrared extrapolation does modify the perturbative results for both short-range and long-range mechanisms of 0 ν β β -decay in general only moderately. We also discuss that the tensor⊗tensor effective operator cannot appear alone in the low energy limit of any renormalizable high-scale model and then demonstrate that all five linearly independent combinations of the scalar and tensor operators, which can appear in renormalizable models, are infrared stable.
NASA Astrophysics Data System (ADS)
Manohar, A. V.
2003-02-01
These lecture notes present some of the basic ideas of heavy quark effective theory. The topics covered include the classification of states, the derivation of the HQET Lagrangian at tree level, hadron masses, meson form factors, Luke's theorem, reparameterization invariance and inclusive decays. Radiative corrections are discussed in some detail, including an explicit computation of a matching correction for HQET. Borel summability, renormalons, and their connection with the QCD perturbation series is covered, as well as the use of the upsilon expansion to improve the convergence of the perturbation series.
Final-state interaction and B-->KK decays in perturbative QCD
NASA Astrophysics Data System (ADS)
Chen, Chuan-Hung; Li, Hsiang-Nan
2001-01-01
We predict the branching ratios and CP asymmetries of the B-->KK decays using the perturbative QCD factorization theorem, in which tree, penguin, and annihilation contributions, including both factorizable and nonfactorizable ones, are expressed as convolutions of hard six-quark amplitudes with universal meson wave functions. The unitarity angle φ3=90° and the B and K meson wave functions extracted from experimental data of the B-->Kπ and ππ decays are employed. Since the B-->KK decays are sensitive to final-state interaction effects, the comparision of our predictions with future data can test the neglect of these effects in the above formalism. The CP asymmetry in the B+/--->K+/-K0 modes and the B0d-->K+/-K-/+ branching ratios depend on annihilation and nonfactorizable amplitudes. The B-->KK data can also verify the evaluation of these contributions.
Three-body decays B →ϕ (ρ )K γ in perturbative QCD approach
NASA Astrophysics Data System (ADS)
Wang, Chao; Liu, Jing-Bin; Li, Hsiang-nan; Lü, Cai-Dian
2018-02-01
We study the three-body radiative decays B →ϕ (ρ )K γ induced by a flavor-changing neutral current in the perturbative QCD approach. Pseudoscalar-vector (P V ) distribution amplitudes (DAs) are introduced for the final-state ϕ K (ρ K ) pair to capture important infrared dynamics in the region with a small P V -pair invariant mass. The dependence of these P V DAs on the parton momentum fraction is parametrized in terms of the Gegenbauer polynomials, and the dependence on the meson momentum fraction is derived through their normalizations to timelike P V form factors. In addition to the dominant electromagnetic penguin, the subleading chromomagnetic penguin, quark-loop and annihilation diagrams are also calculated. After determining the P V DAs from relevant branching-ratio data, the direct C P asymmetries and decay spectra in the P V -pair invariant mass are predicted for each B →ϕ (ρ )K γ mode.
QCD PHASE TRANSITIONS-VOLUME 15.
DOE Office of Scientific and Technical Information (OSTI.GOV)
SCHAFER,T.
1998-11-04
The title of the workshop, ''The QCD Phase Transitions'', in fact happened to be too narrow for its real contents. It would be more accurate to say that it was devoted to different phases of QCD and QCD-related gauge theories, with strong emphasis on discussion of the underlying non-perturbative mechanisms which manifest themselves as all those phases. Before we go to specifics, let us emphasize one important aspect of the present status of non-perturbative Quantum Field Theory in general. It remains true that its studies do not get attention proportional to the intellectual challenge they deserve, and that the theoristsmore » working on it remain very fragmented. The efforts to create Theory of Everything including Quantum Gravity have attracted the lion share of attention and young talent. Nevertheless, in the last few years there was also a tremendous progress and even some shift of attention toward emphasis on the unity of non-perturbative phenomena. For example, we have seen some. efforts to connect the lessons from recent progress in Supersymmetric theories with that in QCD, as derived from phenomenology and lattice. Another example is Maldacena conjecture and related development, which connect three things together, string theory, super-gravity and the (N=4) supersymmetric gauge theory. Although the progress mentioned is remarkable by itself, if we would listen to each other more we may have chance to strengthen the field and reach better understanding of the spectacular non-perturbative physics.« less
QCD Phase Transitions, Volume 15
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, T.; Shuryak, E.
1999-03-20
The title of the workshop, ''The QCD Phase Transitions'', in fact happened to be too narrow for its real contents. It would be more accurate to say that it was devoted to different phases of QCD and QCD-related gauge theories, with strong emphasis on discussion of the underlying non-perturbative mechanisms which manifest themselves as all those phases. Before we go to specifics, let us emphasize one important aspect of the present status of non-perturbative Quantum Field Theory in general. It remains true that its studies do not get attention proportional to the intellectual challenge they deserve, and that the theoristsmore » working on it remain very fragmented. The efforts to create Theory of Everything including Quantum Gravity have attracted the lion share of attention and young talent. Nevertheless, in the last few years there was also a tremendous progress and even some shift of attention toward emphasis on the unity of non-perturbative phenomena. For example, we have seen some efforts to connect the lessons from recent progress in Supersymmetric theories with that in QCD, as derived from phenomenology and lattice. Another example is Maldacena conjecture and related development, which connect three things together, string theory, super-gravity and the (N=4) supersymmetric gauge theory. Although the progress mentioned is remarkable by itself, if we would listen to each other more we may have chance to strengthen the field and reach better understanding of the spectacular non-perturbative physics.« less
$$|V_{ub}|$$ from $$B\\to\\pi\\ell\
Bailey, Jon A.; et al.
2015-07-23
We present a lattice-QCD calculation of the B → πℓν semileptonic form factors and a new determination of the CKM matrix element |V ub|. We use the MILC asqtad (2+1)-flavor lattice configurations at four lattice spacings and light-quark masses down to 1/20 of the physical strange-quark mass. We extrapolate the lattice form factors to the continuum using staggered chiral perturbation theory in the hard-pion and SU(2) limits. We employ a model-independent z parametrization to extrapolate our lattice form factors from large-recoil momentum to the full kinematic range. We introduce a new functional method to propagate information from the chiral-continuum extrapolationmore » to the z expansion. We present our results together with a complete systematic error budget, including a covariance matrix to enable the combination of our form factors with other lattice-QCD and experimental results. To obtain |V ub|, we simultaneously fit the experimental data for the B → πℓν differential decay rate obtained by the BABAR and Belle collaborations together with our lattice form-factor results. We find |V ub|=(3.72±0.16) × 10 –3, where the error is from the combined fit to lattice plus experiments and includes all sources of uncertainty. Our form-factor results bring the QCD error on |V ub| to the same level as the experimental error. We also provide results for the B → πℓν vector and scalar form factors obtained from the combined lattice and experiment fit, which are more precisely determined than from our lattice-QCD calculation alone. Lastly, these results can be used in other phenomenological applications and to test other approaches to QCD.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, Jon A.; et al.
We present a lattice-QCD calculation of the B → πℓν semileptonic form factors and a new determination of the CKM matrix element |V ub|. We use the MILC asqtad (2+1)-flavor lattice configurations at four lattice spacings and light-quark masses down to 1/20 of the physical strange-quark mass. We extrapolate the lattice form factors to the continuum using staggered chiral perturbation theory in the hard-pion and SU(2) limits. We employ a model-independent z parametrization to extrapolate our lattice form factors from large-recoil momentum to the full kinematic range. We introduce a new functional method to propagate information from the chiral-continuum extrapolationmore » to the z expansion. We present our results together with a complete systematic error budget, including a covariance matrix to enable the combination of our form factors with other lattice-QCD and experimental results. To obtain |V ub|, we simultaneously fit the experimental data for the B → πℓν differential decay rate obtained by the BABAR and Belle collaborations together with our lattice form-factor results. We find |V ub|=(3.72±0.16) × 10 –3, where the error is from the combined fit to lattice plus experiments and includes all sources of uncertainty. Our form-factor results bring the QCD error on |V ub| to the same level as the experimental error. We also provide results for the B → πℓν vector and scalar form factors obtained from the combined lattice and experiment fit, which are more precisely determined than from our lattice-QCD calculation alone. Lastly, these results can be used in other phenomenological applications and to test other approaches to QCD.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorbahn, Martin; Jaeger, Sebastian; Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH
2010-12-01
We compute the conversion factors needed to obtain the MS and renormalization-group-invariant (RGI) up, down, and strange quark masses at next-to-next-to-leading order from the corresponding parameters renormalized in the recently proposed RI/SMOM and RI/SMOM{sub {gamma}{sub {mu}} }renormalization schemes. This is important for obtaining the MS masses with the best possible precision from numerical lattice QCD simulations, because the customary RI{sup (')}/MOM scheme is afflicted with large irreducible uncertainties both on the lattice and in perturbation theory. We find that the smallness of the known one-loop matching coefficients is accompanied by even smaller two-loop contributions. From a study of residual scalemore » dependences, we estimate the resulting perturbative uncertainty on the light-quark masses to be about 2% in the RI/SMOM scheme and about 3% in the RI/SMOM{sub {gamma}{sub {mu}} }scheme. Our conversion factors are given in fully analytic form, for general covariant gauge and renormalization point. We provide expressions for the associated anomalous dimensions.« less
Constraints on the [Formula: see text] form factor from analyticity and unitarity.
Ananthanarayan, B; Caprini, I; Kubis, B
Motivated by the discrepancies noted recently between the theoretical calculations of the electromagnetic [Formula: see text] form factor and certain experimental data, we investigate this form factor using analyticity and unitarity in a framework known as the method of unitarity bounds. We use a QCD correlator computed on the spacelike axis by operator product expansion and perturbative QCD as input, and exploit unitarity and the positivity of its spectral function, including the two-pion contribution that can be reliably calculated using high-precision data on the pion form factor. From this information, we derive upper and lower bounds on the modulus of the [Formula: see text] form factor in the elastic region. The results provide a significant check on those obtained with standard dispersion relations, confirming the existence of a disagreement with experimental data in the region around [Formula: see text].
NASA Astrophysics Data System (ADS)
Mantry, Sonny; Petriello, Frank
2010-05-01
We derive a factorization theorem for the Higgs boson transverse momentum (pT) and rapidity (Y) distributions at hadron colliders, using the soft-collinear effective theory (SCET), for mh≫pT≫ΛQCD, where mh denotes the Higgs mass. In addition to the factorization of the various scales involved, the perturbative physics at the pT scale is further factorized into two collinear impact-parameter beam functions (IBFs) and an inverse soft function (ISF). These newly defined functions are of a universal nature for the study of differential distributions at hadron colliders. The additional factorization of the pT-scale physics simplifies the implementation of higher order radiative corrections in αs(pT). We derive formulas for factorization in both momentum and impact parameter space and discuss the relationship between them. Large logarithms of the relevant scales in the problem are summed using the renormalization group equations of the effective theories. Power corrections to the factorization theorem in pT/mh and ΛQCD/pT can be systematically derived. We perform multiple consistency checks on our factorization theorem including a comparison with known fixed-order QCD results. We compare the SCET factorization theorem with the Collins-Soper-Sterman approach to low-pT resummation.
Challenges in the extraction of TMDs from SIDIS data: perturbative vs non-perturbative aspects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boglione, Mariaelena; Gonzalez Hernandez, Jose O.; Melis, Stefano
We present our recent results on the study of the Semi-Inclusive Deep Inelastic Scattering (SIDIS) cross section as a function of the transverse momentum, q T. Using the Collins-Soper-Sterman (CSS) formalism, we study the matching between the region where fixed-order perturbative QCD can successfully be applied and the region where soft gluon resummation is necessary. We find that the commonly used prescription of matching through the so-called Y-factor cannot be applied in the SIDIS kinematical configurations we examine. We comment on the impact that the nonperturbative component has even at relatively high energies.
Connecting different TMD factorization formalisms in QCD
Collins, John; Rogers, Ted C.
2017-09-11
In the original Collins-Soper-Sterman (CSS) presentation of the results of transverse-momentum-dependent (TMD) factorization for the Drell-Yan process, results for perturbative coefficients can be obtained from calculations for collinear factorization. Here we show how to use these results, plus known results for the quark form factor, to obtain coefficients for TMD factorization in more recent formulations, e.g., that due to Collins, and apply them to known results at ordermore » $$\\alpha_s^2$$ and $$\\alpha_s^3$$. We also show that the ``non-perturbative'' functions as obtained from fits to data are equal in the two schemes. We compile the higher-order perturbative inputs needed for the updated CSS scheme by appealing to results obtained in a variety of different formalisms. In addition, we derive the connection between both versions of the CSS formalism and several formalisms based in soft-collinear effective theory (SCET). As a result, our work uses some important new results for factorization for the quark form factor, which we derive.« less
Connecting different TMD factorization formalisms in QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, John; Rogers, Ted C.
In the original Collins-Soper-Sterman (CSS) presentation of the results of transverse-momentum-dependent (TMD) factorization for the Drell-Yan process, results for perturbative coefficients can be obtained from calculations for collinear factorization. Here we show how to use these results, plus known results for the quark form factor, to obtain coefficients for TMD factorization in more recent formulations, e.g., that due to Collins, and apply them to known results at ordermore » $$\\alpha_s^2$$ and $$\\alpha_s^3$$. We also show that the ``non-perturbative'' functions as obtained from fits to data are equal in the two schemes. We compile the higher-order perturbative inputs needed for the updated CSS scheme by appealing to results obtained in a variety of different formalisms. In addition, we derive the connection between both versions of the CSS formalism and several formalisms based in soft-collinear effective theory (SCET). As a result, our work uses some important new results for factorization for the quark form factor, which we derive.« less
QCD in heavy quark production and decay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiss, J.
1997-06-01
The author discusses how QCD is used to understand the physics of heavy quark production and decay dynamics. His discussion of production dynamics primarily concentrates on charm photoproduction data which are compared to perturbative QCD calculations which incorporate fragmentation effects. He begins his discussion of heavy quark decay by reviewing data on charm and beauty lifetimes. Present data on fully leptonic and semileptonic charm decay are then reviewed. Measurements of the hadronic weak current form factors are compared to the nonperturbative QCD-based predictions of Lattice Gauge Theories. He next discusses polarization phenomena present in charmed baryon decay. Heavy Quark Effectivemore » Theory predicts that the daughter baryon will recoil from the charmed parent with nearly 100% left-handed polarization, which is in excellent agreement with present data. He concludes by discussing nonleptonic charm decay which is traditionally analyzed in a factorization framework applicable to two-body and quasi-two-body nonleptonic decays. This discussion emphasizes the important role of final state interactions in influencing both the observed decay width of various two-body final states as well as modifying the interference between interfering resonance channels which contribute to specific multibody decays. 50 refs., 77 figs.« less
The Chiral Separation Effect in quenched finite-density QCD
NASA Astrophysics Data System (ADS)
Puhr, Matthias; Buividovich, Pavel
2018-03-01
We present results of a study of the Chiral Separation Effect (CSE) in quenched finite-density QCD. Using a recently developed numerical method we calculate the conserved axial current for exactly chiral overlap fermions at finite density for the first time. We compute the anomalous transport coeffcient for the CSE in the confining and deconfining phase and investigate possible deviations from the universal value. In both phases we find that non-perturbative corrections to the CSE are absent and we reproduce the universal value for the transport coeffcient within small statistical errors. Our results suggest that the CSE can be used to determine the renormalisation factor of the axial current.
Counting the number of Feynman graphs in QCD
NASA Astrophysics Data System (ADS)
Kaneko, T.
2018-05-01
Information about the number of Feynman graphs for a given physical process in a given field theory is especially useful for confirming the result of a Feynman graph generator used in an automatic system of perturbative calculations. A method of counting the number of Feynman graphs with weight of symmetry factor was established based on zero-dimensional field theory, and was used in scalar theories and QED. In this article this method is generalized to more complicated models by direct calculation of generating functions on a computer algebra system. This method is applied to QCD with and without counter terms, where many higher order are being calculated automatically.
NASA Astrophysics Data System (ADS)
Gabadadze, Gregory; Tukhashvili, Giorgi
2018-07-01
The Crewther-Broadhurst-Kataev (CBK) relation connects the Bjorken function for deep-inelastic sum rules (or the Gross-Llewellyn Smith function) with the Adler function for electron-positron annihilation in QCD; it has been checked to hold up to four loops in perturbation theory. Here we study non-perturbative terms in the CBK relation using a holographic dual theory that is believed to capture properties of QCD. We show that for the large invariant momenta the perturbative CBK relation is exactly satisfied. For the small momenta non-perturbative corrections enter the relation and we calculate their significant effects. We also give an exact holographic expression for the Bjorken function, as well as for the entire three-point axial-vector-vector correlation function, and check their consistency in the conformal limit.
Color Confinement and Screening in the θ Vacuum of QCD.
Kharzeev, Dmitri E; Levin, Eugene M
2015-06-19
QCD perturbation theory ignores the compact nature of the SU(3) gauge group that gives rise to the periodic θ vacuum of the theory. We propose to modify the gluon propagator to reconcile perturbation theory with the anomalous Ward identities for the topological current in the θ vacuum. As a result, the gluon couples to the Veneziano ghost describing the tunneling transitions between different Chern-Simons sectors of the vacuum; we call the emerging gluon dressed by ghost loops a "glost." We evaluate the glost propagator and find that it has the form G(p)=(p(2)+χ(top)/p(2))(-1) where χ(top) is the Yang-Mills topological susceptibility related to the η' mass by the Witten-Veneziano relation; this propagator describes the confinement of gluons at distances ∼χ(top)(-1/4)≃1 fm. The same functional form of the propagator was originally proposed by Gribov as a solution to the gauge copies problem that plagues perturbation theory. The resulting running coupling coincides with the perturbative one at p(2)≫√[χ(top)], but in the infrared region either freezes (in pure Yang-Mills theory) or vanishes (in full QCD with light quarks), in accord with experimental evidence. Our scenario makes explicit the connection between confinement and topology of the QCD vacuum; we discuss the implications for spin physics, high energy scattering, and the physics of quark-gluon plasma.
Connecting the hadron mass scale to the fundamental mass scale of quantum chromodynamics
Deur, Alexandre; Brodsky, Stanley J.; de Teramond, Guy F.
2015-10-01
We establish an explicit connection between the long distance physics of confinement and the dynamical interactions of quarks and gluons at short distances and it has been a long-sought goal of quantum chromodynamics. Using holographic QCD, we derive a direct analytic relation between the scale κ which determines the masses of hadrons and the scale Λ s which controls the predictions of perturbative QCD at very short distances. The resulting prediction Λ s=0.341±0.032 GeV in the MS -scheme agrees well with the experimental average 0.339±0.016 GeV. We also derive a relation between Λs and the QCD string tension σ. Furthermore,more » this connection between the fundamental hadronic scale underlying the physics of quark confinement and the perturbative QCD scale controlling hard collisions can be carried out in any renormalization scheme.« less
{lambda}{sub b}{yields}p, {lambda} transition form factors from QCD light-cone sum rules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Yuming; Lue Caidian; Shen Yuelong
2009-10-01
Light-cone sum rules for the {lambda}{sub b}{yields}p, {lambda} transition form factors are derived from the correlation functions expanded by the twist of the distribution amplitudes of the {lambda}{sub b} baryon. In terms of the {lambda}{sub b} three-quark distribution amplitude models constrained by the QCD theory, we calculate the form factors at small momentum transfers and compare the results with those estimated in the conventional light-cone sum rules (LCSR) and perturbative QCD approaches. Our results indicate that the two different versions of sum rules can lead to the consistent numbers of form factors responsible for {lambda}{sub b}{yields}p transition. The {lambda}{sub b}{yields}{lambda}more » transition form factors from LCSR with the asymptotic {lambda} baryon distribution amplitudes are found to be almost 1 order larger than those obtained in the {lambda}{sub b}-baryon LCSR, implying that the preasymptotic corrections to the baryonic distribution amplitudes are of great importance. Moreover, the SU(3) symmetry breaking effects between the form factors f{sub 1}{sup {lambda}{sub b}}{sup {yields}}{sup p} and f{sub 1}{sup {lambda}{sub b}}{sup {yields}}{sup {lambda}} are computed as 28{sub -8}{sup +14}% in the framework of {lambda}{sub b}-baryon LCSR.« less
CP violation in multibody B decays from QCD factorization
NASA Astrophysics Data System (ADS)
Klein, Rebecca; Mannel, Thomas; Virto, Javier; Vos, K. Keri
2017-10-01
We test a data-driven approach based on QCD factorization for charmless three-body B-decays by confronting it to measurements of CP violation in B - → π - π + π -. While some of the needed non-perturbative objects can be directly extracted from data, some others can, so far, only be modelled. Although this approach is currently model dependent, we comment on the perspectives to reduce this model dependence. While our model naturally accommodates the gross features of the Dalitz distribution, it cannot quantitatively explain the details seen in the current experimental data on local CP asymmetries. We comment on possible refinements of our simple model and conclude by briefly discussing a possible extension of the model to large invariant masses, where large local CP asymmetries have been measured.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mantry, Sonny; Petriello, Frank
We derive a factorization theorem for the Higgs boson transverse momentum (p{sub T}) and rapidity (Y) distributions at hadron colliders, using the soft-collinear effective theory (SCET), for m{sub h}>>p{sub T}>>{Lambda}{sub QCD}, where m{sub h} denotes the Higgs mass. In addition to the factorization of the various scales involved, the perturbative physics at the p{sub T} scale is further factorized into two collinear impact-parameter beam functions (IBFs) and an inverse soft function (ISF). These newly defined functions are of a universal nature for the study of differential distributions at hadron colliders. The additional factorization of the p{sub T}-scale physics simplifies themore » implementation of higher order radiative corrections in {alpha}{sub s}(p{sub T}). We derive formulas for factorization in both momentum and impact parameter space and discuss the relationship between them. Large logarithms of the relevant scales in the problem are summed using the renormalization group equations of the effective theories. Power corrections to the factorization theorem in p{sub T}/m{sub h} and {Lambda}{sub QCD}/p{sub T} can be systematically derived. We perform multiple consistency checks on our factorization theorem including a comparison with known fixed-order QCD results. We compare the SCET factorization theorem with the Collins-Soper-Sterman approach to low-p{sub T} resummation.« less
Ghost-Free APT Analysis of Perturbative QCD Observables
NASA Astrophysics Data System (ADS)
Shirkov, Dmitry V.
The review of the essence and of application of recently devised ghost-free Analytic Perturbation Theory (APT) is presented. First, we discuss the main intrinsic problem of perturbative QCD - ghost singularities and with the resume of its resolving within the APT. By examples for diverse energy and momentum transfer values we show the property of better convergence for the APT modified QCD expansion. It is shown that in the APT analysis the three-loop contribution (sim alpha_s^3) is numerically inessential. This gives raise a hope for practical solution of the well-known problem of non-satisfactory convergence of QFT perturbation series due to its asymptotic nature. Our next result is that a usual perturbative analysis of time-like events is not adequate at sleq 2 GeV2. In particular, this relates to tau decay. Then, for the "high" (f=5) region it is shown that the common NLO, NLLA perturbation approximation widely used there (at 10 GeV lesssimsqrt{s}lesssim 170 GeV) yields a systematic theoretic negative error of a couple per cent level for the bar {alpha}_s^2 values. This results in a conclusion that the bar α_s(M^2_Z) value averaged over the f=5 data appreciably differs < bar {alpha}_s(M^2_Z)rangle_{f=5} simeq 0.124 from the currently popular "world average" (=0.118 ).
Transverse momentum dependent parton distribution and fragmentation functions with QCD evolution
NASA Astrophysics Data System (ADS)
Aybat, S. Mert; Rogers, Ted C.
2011-06-01
We assess the current phenomenological status of transverse momentum dependent (TMD) parton distribution functions (PDFs) and fragmentation functions (FFs) and study the effect of consistently including perturbative QCD (pQCD) evolution. Our goal is to initiate the process of establishing reliable, QCD-evolved parametrizations for the TMD PDFs and TMD FFs that can be used both to test TMD factorization and to search for evidence of the breakdown of TMD factorization that is expected for certain processes. In this article, we focus on spin-independent processes because they provide the simplest illustration of the basic steps and can already be used in direct tests of TMD factorization. Our calculations are based on the Collins-Soper-Sterman (CSS) formalism, supplemented by recent theoretical developments which have clarified the precise definitions of the TMD PDFs and TMD FFs needed for a valid TMD-factorization theorem. Starting with these definitions, we numerically generate evolved TMD PDFs and TMD FFs using as input existing parametrizations for the collinear PDFs, collinear FFs, nonperturbative factors in the CSS factorization formalism, and recent fixed-scale fits. We confirm that evolution has important consequences, both qualitatively and quantitatively, and argue that it should be included in future phenomenological studies of TMD functions. Our analysis is also suggestive of extensions to processes that involve spin-dependent functions such as the Boer-Mulders, Sivers, or Collins functions, which we intend to pursue in future publications. At our website [http://projects.hepforge.org/tmd/], we have made available the tables and calculations needed to obtain the TMD parametrizations presented herein.
NASA Astrophysics Data System (ADS)
Andersen, Jens O.; Haque, Najmul; Mustafa, Munshi G.; Strickland, Michael
2016-03-01
In a previous paper [N. Haque et al., J. High Energy Phys. 05 (2014) 27], we calculated the three-loop thermodynamic potential of QCD at finite temperature T and quark chemical potentials μq using the hard-thermal-loop perturbation theory (HTLpt) reorganization of finite temperature and density QCD. The result allows us to study the thermodynamics of QCD at finite temperature and finite baryon, strangeness, and isospin chemical potentials μB, μS, and μI. We calculate the pressure at nonzero μB and μI with μS=0 , and the energy density, the entropy density, the trace anomaly, and the speed of sound at nonzero μI with μB=μS=0 . The second- and fourth-order isospin susceptibilities are calculated at μB=μS=μI=0 . Our results can be directly compared to lattice QCD without Taylor expansions around μq=0 since QCD has no sign problem at μB=μS=0 and finite isospin chemical potential μI.
Inclusive jet cross section and strong coupling constant measurements at CMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerci, Salim, E-mail: Salim.Cerci@cern.ch
2016-03-25
The probes which are abundantly produced in high energetic proton-proton (pp) collisions at the LHC are called jets. Events with jets can be described by Quantum Chromodynamics (QCD) in terms of parton-parton scattering. The inclusive jet cross section in pp collision is the fundamental quantity which can be measured and predicted within the framework of perturbative QCD (pQCD). The strong coupling constant α{sub S} which can be determined empirically in the limit of massless quarks, is the single parameter in QCD. The jet measurements can also be used to determine strong coupling constant α{sub S} and parton density functions (PDFs).more » The recent jet measurements which are performed with the data collected by the CMS detector at different center-of-mass energies and down to very low transverse momentum p{sub T} are presented. The measurements are compared to Monte Carlo predictions and perturbative calculations up to next-to-next-to leading order. Finally, the precision jet measurements give further insight into the QCD dynamics.« less
Higgs Boson Production in Association with a Jet at Next-to-Next-to-Leading Order.
Boughezal, Radja; Caola, Fabrizio; Melnikov, Kirill; Petriello, Frank; Schulze, Markus
2015-08-21
We present precise predictions for Higgs boson production in association with a jet. We work in the Higgs effective field theory framework and compute next-to-next-to-leading order QCD corrections to the gluon-gluon and quark-gluon channels, which is sufficient for reliable LHC phenomenology. We present fully differential results as well as total cross sections for the LHC. Our next-to-next-to-leading order predictions reduce the unphysical scale dependence by more than a factor of 2 and enhance the total rate by about twenty percent compared to next-to-leading order QCD predictions. Our results demonstrate for the first time satisfactory convergence of the perturbative series.
NASA Astrophysics Data System (ADS)
Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.
2016-09-01
We review the present theoretical and empirical knowledge for αs, the fundamental coupling underlying the interactions of quarks and gluons in Quantum Chromodynamics (QCD). The dependence of αs(Q2) on momentum transfer Q encodes the underlying dynamics of hadron physics-from color confinement in the infrared domain to asymptotic freedom at short distances. We review constraints on αs(Q2) at high Q2, as predicted by perturbative QCD, and its analytic behavior at small Q2, based on models of nonperturbative dynamics. In the introductory part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss the behavior of αs(Q2) in the high momentum transfer domain of QCD. We review how αs is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as "Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization-scale ambiguity. We also report recent significant measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the "Principle of Maximum Conformality", which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of theoretical conventions such as the renormalization scheme. In the last part of the review, we discuss the challenge of understanding the analytic behavior αs(Q2) in the low momentum transfer domain. We survey various theoretical models for the nonperturbative strongly coupled regime, such as the light-front holographic approach to QCD. This new framework predicts the form of the quark-confinement potential underlying hadron spectroscopy and dynamics, and it gives a remarkable connection between the perturbative QCD scale Λ and hadron masses. One can also identify a specific scale Q0 which demarcates the division between perturbative and nonperturbative QCD. We also review other important methods for computing the QCD coupling, including lattice QCD, the Schwinger-Dyson equations and the Gribov-Zwanziger analysis. After describing these approaches and enumerating their conflicting predictions, we discuss the origin of these discrepancies and how to remedy them. Our aim is not only to review the advances in this difficult area, but also to suggest what could be an optimal definition of αs(Q2) in order to bring better unity to the subject.
Color Confinement and Screening in the θ Vacuum of QCD
Kharzeev, Dmitri E.; Levin, Eugene M.
2015-06-16
QCD perturbation theory ignores the compact nature of the SU(3) gauge group that gives rise to the periodic θ vacuum of the theory. In this paper, we propose to modify the gluon propagator to reconcile perturbation theory with the anomalous Ward identities for the topological current in the θ vacuum. As a result, the gluon couples to the Veneziano ghost describing the tunneling transitions between different Chern-Simons sectors of the vacuum; we call the emerging gluon dressed by ghost loops a “glost.” We evaluate the glost propagator and find that it has the form G(p)=(p 2+χ top/p 2) -1 wheremore » χ top is the Yang-Mills topological susceptibility related to the η" mass by the Witten-Veneziano relation; this propagator describes the confinement of gluons at distances ~χ top -1/4≃1 fm. The same functional form of the propagator was originally proposed by Gribov as a solution to the gauge copies problem that plagues perturbation theory. The resulting running coupling coincides with the perturbative one at p 2>>√χtop, but in the infrared region either freezes (in pure Yang-Mills theory) or vanishes (in full QCD with light quarks), in accord with experimental evidence. In conclusion, our scenario makes explicit the connection between confinement and topology of the QCD vacuum; we discuss the implications for spin physics, high energy scattering, and the physics of quark-gluon plasma.« less
First moments of nucleon generalized parton distributions
Wang, P.; Thomas, A. W.
2010-06-01
We extrapolate the first moments of the generalized parton distributions using heavy baryon chiral perturbation theory. The calculation is based on the one loop level with the finite range regularization. The description of the lattice data is satisfactory, and the extrapolated moments at physical pion mass are consistent with the results obtained with dimensional regularization, although the extrapolation in the momentum transfer to t=0 does show sensitivity to form factor effects, which lie outside the realm of chiral perturbation theory. We discuss the significance of the results in the light of modern experiments as well as QCD inspired models.
Light meson form factors at high Q2 from lattice QCD
NASA Astrophysics Data System (ADS)
Koponen, Jonna; Zimermmane-Santos, André; Davies, Christine; Lepage, G. Peter; Lytle, Andrew
2018-03-01
Measurements and theoretical calculations of meson form factors are essential for our understanding of internal hadron structure and QCD, the dynamics that bind the quarks in hadrons. The pion electromagnetic form factor has been measured at small space-like momentum transfer |q2| < 0.3 GeV2 by pion scattering from atomic electrons and at values up to 2.5 GeV2 by scattering electrons from the pion cloud around a proton. On the other hand, in the limit of very large (or infinite) Q2 = -q2, perturbation theory is applicable. This leaves a gap in the intermediate Q2 where the form factors are not known. As a part of their 12 GeV upgrade Jefferson Lab will measure pion and kaon form factors in this intermediate region, up to Q2 of 6 GeV2. This is then an ideal opportunity for lattice QCD to make an accurate prediction ahead of the experimental results. Lattice QCD provides a from-first-principles approach to calculate form factors, and the challenge here is to control the statistical and systematic uncertainties as errors grow when going to higher Q2 values. Here we report on a calculation that tests the method using an ηs meson, a 'heavy pion' made of strange quarks, and also present preliminary results for kaon and pion form factors. We use the nf = 2 + 1 + 1 ensembles made by the MILC collaboration and Highly Improved Staggered Quarks, which allows us to obtain high statistics. The HISQ action is also designed to have small dicretisation errors. Using several light quark masses and lattice spacings allows us to control the chiral and continuum extrapolation and keep systematic errors in check. Warning, no authors found for 2018EPJWC.17506016.
The quark condensate in multi-flavour QCD – planar equivalence confronting lattice simulations
Armoni, Adi; Shifman, Mikhail; Shore, Graham; ...
2015-02-01
Planar equivalence between the large N limits of N=1 Super Yang–Mills (SYM) theory and a variant of QCD with fermions in the antisymmetric representation is a powerful tool to obtain analytic non-perturbative results in QCD itself. In particular, it allows the quark condensate for N=3 QCD with quarks in the fundamental representation to be inferred from exact calculations of the gluino condensate in N=1 SYM. In this paper, we review and refine our earlier predictions for the quark condensate in QCD with a general number nf of flavours and confront these with lattice results.
Longitudinal conductivity in strong magnetic field in perturbative QCD: Complete leading order
NASA Astrophysics Data System (ADS)
Hattori, Koichi; Li, Shiyong; Satow, Daisuke; Yee, Ho-Ung
2017-04-01
We compute the longitudinal electrical conductivity in the presence of a strong background magnetic field in complete leading order of perturbative QCD, based on the assumed hierarchy of scales αse B ≪(mq2,T2)≪e B . We formulate an effective kinetic theory of lowest Landau level quarks with the leading order QCD collision term arising from 1-to-2 processes that become possible due to 1 +1 dimensional Landau level kinematics. In the small mq/T ≪1 regime, the longitudinal conductivity behaves as σz z˜e2(e B )T /(αsmq2log (T /mq)) , where the quark mass dependence can be understood from the chiral anomaly with the axial charge relaxation provided by a finite quark mass mq. We also present parametric estimates for the longitudinal and transverse "color conductivities" in the presence of the strong magnetic field, by computing dominant damping rates for quarks and gluons that are responsible for color charge transportation. We observe that the longitudinal color conductivity is enhanced by the strong magnetic field, which implies that the sphaleron transition rate in perturbative QCD is suppressed by the strong magnetic field due to the enhanced Lenz's law in color field dynamics.
Shear viscosity of the quark-gluon plasma in a weak magnetic field in perturbative QCD: Leading log
NASA Astrophysics Data System (ADS)
Li, Shiyong; Yee, Ho-Ung
2018-03-01
We compute the shear viscosity of two-flavor QCD plasma in an external magnetic field in perturbative QCD at leading log order, assuming that the magnetic field is weak or soft: e B ˜g4log (1 /g )T2. We work in the assumption that the magnetic field is homogeneous and static, and the electrodynamics is nondynamical in a formal limit e →0 while e B is kept fixed. We show that the shear viscosity takes a form η =η ¯(B ¯)T3/(g4log (1 /g )) with a dimensionless function η ¯(B ¯) in terms of a dimensionless variable B ¯=(e B )/(g4log (1 /g )T2). The variable B ¯ corresponds to the relative strength of the effect of cyclotron motions compared to the QCD collisions: B ¯˜lmfp/lcyclo. We provide a full numerical result for the scaled shear viscosity η ¯(B ¯).
W -Boson Production in Association with a Jet at Next-to-Next-to-Leading Order in Perturbative QCD
NASA Astrophysics Data System (ADS)
Boughezal, Radja; Focke, Christfried; Liu, Xiaohui; Petriello, Frank
2015-08-01
We present the complete calculation of W -boson production in association with a jet in hadronic collisions through next-to-next-to-leading order (NNLO) in perturbative QCD. To cancel infrared divergences, we discuss a new subtraction method that exploits the fact that the N -jettiness event-shape variable fully captures the singularity structure of QCD amplitudes with final-state partons. This method holds for processes with an arbitrary number of jets and is easily implemented into existing frameworks for higher-order calculations. We present initial phenomenological results for W +jet production at the LHC. The NNLO corrections are small and lead to a significantly reduced theoretical error, opening the door to precision measurements in the W +jet channel at the LHC.
A new approach to analytic, non-perturbative and gauge-invariant QCD
NASA Astrophysics Data System (ADS)
Fried, H. M.; Grandou, T.; Sheu, Y.-M.
2012-11-01
Following a previous calculation of quark scattering in eikonal approximation, this paper presents a new, analytic and rigorous approach to the calculation of QCD phenomena. In this formulation a basic distinction between the conventional "idealistic" description of QCD and a more "realistic" description is brought into focus by a non-perturbative, gauge-invariant evaluation of the Schwinger solution for the QCD generating functional in terms of the exact Fradkin representations of Green's functional G(x,y|A) and the vacuum functional L[A]. Because quarks exist asymptotically only in bound states, their transverse coordinates can never be measured with arbitrary precision; the non-perturbative neglect of this statement leads to obstructions that are easily corrected by invoking in the basic Lagrangian a probability amplitude which describes such transverse imprecision. The second result of this non-perturbative analysis is the appearance of a new and simplifying output called "Effective Locality", in which the interactions between quarks by the exchange of a "gluon bundle"-which "bundle" contains an infinite number of gluons, including cubic and quartic gluon interactions-display an exact locality property that reduces the several functional integrals of the formulation down to a set of ordinary integrals. It should be emphasized that "non-perturbative" here refers to the effective summation of all gluons between a pair of quark lines-which may be the same quark line, as in a self-energy graph-but does not (yet) include a summation over all closed-quark loops which are tied by gluon-bundle exchange to the rest of the "Bundle Diagram". As an example of the power of these methods we offer as a first analytic calculation the quark-antiquark binding potential of a pion, and the corresponding three-quark binding potential of a nucleon, obtained in a simple way from relevant eikonal scattering approximations. A second calculation, analytic, non-perturbative and gauge-invariant, of a nucleon-nucleon binding potential to form a model deuteron, will appear separately.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.
Here, we review present knowledge onmore » $$\\alpha_{s}$$, the Quantum Chromodynamics (QCD) running coupling. The dependence of $$\\alpha_s(Q^2)$$ on momentum transfer $Q$ encodes the underlying dynamics of hadron physics --from color confinement in the infrared domain to asymptotic freedom at short distances. We will survey our present theoretical and empirical knowledge of $$\\alpha_s(Q^2)$$, including constraints at high $Q^2$ predicted by perturbative QCD, and constraints at small $Q^2$ based on models of nonperturbative dynamics. In the first, introductory, part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss $$\\alpha_s(Q^2)$$ in the high momentum transfer domain of QCD. We review how $$\\alpha_s$$ is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as `` Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization scale ambiguity. We also report recent important experimental measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the ``Principle of Maximum Conformality" which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of the gauge and renormalization scheme. In last part of the review, we discuss $$\\alpha_s(Q^2)$$ in the low momentum transfer domain, where there has been no consensus on how to define $$\\alpha_s(Q^2)$$ or its analytic behavior. We will discuss the various approaches used for low energy calculations. Among them, we will discuss the light-front holographic approach to QCD in the strongly coupled regime and its prediction for the analytic form of $$\\alpha_s(Q^2)$$. The AdS/QCD light-front holographic analysis predicts the color confinement potential underlying hadron spectroscopy and dynamics, and it gives a remarkable connection between the perturbative QCD scale $$\\Lambda$$ and hadron masses. One can also identify a specific scale $$Q_0$$ which demarcates the division between perturbative and nonperturbative QCD. We also review other important methods for computing the QCD coupling, including Lattice QCD, Schwinger-Dyson equations and the Gribov-Zwanziger analysis. After describing these approaches and enumerating conflicting results, we provide a partial discussion on the origin of these discrepancies and how to remedy them. Our aim is not only to review the advances on this difficult subject, but also to suggest what could be the best definition of $$\\alpha_s(Q^2)$$ in order to bring better unity to the subject.« less
Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.
2016-05-09
Here, we review present knowledge onmore » $$\\alpha_{s}$$, the Quantum Chromodynamics (QCD) running coupling. The dependence of $$\\alpha_s(Q^2)$$ on momentum transfer $Q$ encodes the underlying dynamics of hadron physics --from color confinement in the infrared domain to asymptotic freedom at short distances. We will survey our present theoretical and empirical knowledge of $$\\alpha_s(Q^2)$$, including constraints at high $Q^2$ predicted by perturbative QCD, and constraints at small $Q^2$ based on models of nonperturbative dynamics. In the first, introductory, part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss $$\\alpha_s(Q^2)$$ in the high momentum transfer domain of QCD. We review how $$\\alpha_s$$ is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as `` Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization scale ambiguity. We also report recent important experimental measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the ``Principle of Maximum Conformality" which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of the gauge and renormalization scheme. In last part of the review, we discuss $$\\alpha_s(Q^2)$$ in the low momentum transfer domain, where there has been no consensus on how to define $$\\alpha_s(Q^2)$$ or its analytic behavior. We will discuss the various approaches used for low energy calculations. Among them, we will discuss the light-front holographic approach to QCD in the strongly coupled regime and its prediction for the analytic form of $$\\alpha_s(Q^2)$$. The AdS/QCD light-front holographic analysis predicts the color confinement potential underlying hadron spectroscopy and dynamics, and it gives a remarkable connection between the perturbative QCD scale $$\\Lambda$$ and hadron masses. One can also identify a specific scale $$Q_0$$ which demarcates the division between perturbative and nonperturbative QCD. We also review other important methods for computing the QCD coupling, including Lattice QCD, Schwinger-Dyson equations and the Gribov-Zwanziger analysis. After describing these approaches and enumerating conflicting results, we provide a partial discussion on the origin of these discrepancies and how to remedy them. Our aim is not only to review the advances on this difficult subject, but also to suggest what could be the best definition of $$\\alpha_s(Q^2)$$ in order to bring better unity to the subject.« less
θ and the η ' in large N supersymmetric QCD
Dine, Michael; Draper, Patrick; Stephenson-Haskins, Laurel; ...
2017-05-22
Here, we study the large N θ dependence and the η' potential in supersymmetric QCD with small soft SUSY-breaking terms. Known exact results in SUSY QCD are found to reflect a variety of expectations from large N perturbation theory, including the presence of branches and the behavior of theories with matter (both with N f << N and N f ~ N ). But, there are also striking departures from ordinary QCD and the conventional large N description: instanton effects, when under control, are not exponentially suppressed at large N , and branched structure in supersymmetric QCD is always associatedmore » with approximate discrete symmetries. We suggest that these differences motivate further study of large N QCD on the lattice.« less
NASA Astrophysics Data System (ADS)
Brodsky, Stanley J.
2017-05-01
A remarkable feature of QCD is that the mass scale κ which controls color confinement and light-quark hadron mass scales does not appear explicitly in the QCD Lagrangian. However, de Alfaro, Fubini, and Furlan have shown that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ ^4 ζ ^2 for mesons, where ζ ^2 is the LF radial variable conjugate to the q \\bar{q} invariant mass. The same result, including spin terms, is obtained using light-front holography—the duality between the front form and AdS_5, the space of isometries of the conformal group—if one modifies the action of AdS_5 by the dilaton e^{κ ^2 z^2} in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict a unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ _{\\overline{MS}} in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α _s(Q^2) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale Q_0 which sets the interface between perturbative and nonperturbative hadron dynamics. The use of Q_0 to resolve the factorization scale uncertainty for structure functions and distribution amplitudes, in combination with the principle of maximal conformality for setting the renormalization scales, can greatly improve the precision of perturbative QCD predictions for collider phenomenology. The absence of vacuum excitations of the causal, frame-independent front-form vacuum has important consequences for the cosmological constant. I also discuss evidence that the antishadowing of nuclear structure functions is non-universal; i.e., flavor dependent, and why shadowing and antishadowing phenomena may be incompatible with sum rules for nuclear parton distribution functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.
A remarkable feature of QCD is that the mass scalemore » $k$ which controls color confinement and light-quark hadron mass scales does not appear explicitly in the QCD Lagrangian. However, de Alfaro, Fubini, and Furlan have shown that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to the $$q\\bar{q}$$ invariant mass. The same result, including spin terms, is obtained using light-front holography$-$the duality between the front form and AdS 5, the space of isometries of the conformal group$-$if one modifies the action of AdS 5 by the dilaton e $κ^2z^2$ in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict a unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κκ underlying confinement and hadron masses can be connected to the parameter Λ $$\\overline{MS}$$ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α s (Q 2) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale Q 0 which sets the interface between perturbative and nonperturbative hadron dynamics. The use of Q 0 to resolve the factorization scale uncertainty for structure functions and distribution amplitudes, in combination with the principle of maximal conformality for setting the renormalization scales, can greatly improve the precision of perturbative QCD predictions for collider phenomenology. The absence of vacuum excitations of the causal, frame-independent front-form vacuum has important consequences for the cosmological constant. In conclusion, I also discuss evidence that the antishadowing of nuclear structure functions is non-universal; i.e., flavor dependent, and why shadowing and antishadowing phenomena may be incompatible with sum rules for nuclear parton distribution functions.« less
Brodsky, Stanley J.
2017-04-19
A remarkable feature of QCD is that the mass scalemore » $k$ which controls color confinement and light-quark hadron mass scales does not appear explicitly in the QCD Lagrangian. However, de Alfaro, Fubini, and Furlan have shown that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to the $$q\\bar{q}$$ invariant mass. The same result, including spin terms, is obtained using light-front holography$-$the duality between the front form and AdS 5, the space of isometries of the conformal group$-$if one modifies the action of AdS 5 by the dilaton e $κ^2z^2$ in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict a unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κκ underlying confinement and hadron masses can be connected to the parameter Λ $$\\overline{MS}$$ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α s (Q 2) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale Q 0 which sets the interface between perturbative and nonperturbative hadron dynamics. The use of Q 0 to resolve the factorization scale uncertainty for structure functions and distribution amplitudes, in combination with the principle of maximal conformality for setting the renormalization scales, can greatly improve the precision of perturbative QCD predictions for collider phenomenology. The absence of vacuum excitations of the causal, frame-independent front-form vacuum has important consequences for the cosmological constant. In conclusion, I also discuss evidence that the antishadowing of nuclear structure functions is non-universal; i.e., flavor dependent, and why shadowing and antishadowing phenomena may be incompatible with sum rules for nuclear parton distribution functions.« less
Heavy quarkonium production at collider energies: Factorization and evolution
NASA Astrophysics Data System (ADS)
Kang, Zhong-Bo; Ma, Yan-Qing; Qiu, Jian-Wei; Sterman, George
2014-08-01
We present a perturbative QCD factorization formalism for inclusive production of heavy quarkonia of large transverse momentum, pT at collider energies, including both leading power (LP) and next-to-leading power (NLP) behavior in pT. We demonstrate that both LP and NLP contributions can be factorized in terms of perturbatively calculable short-distance partonic coefficient functions and universal nonperturbative fragmentation functions, and derive the evolution equations that are implied by the factorization. We identify projection operators for all channels of the factorized LP and NLP infrared safe short-distance partonic hard parts, and corresponding operator definitions of fragmentation functions. For the NLP, we focus on the contributions involving the production of a heavy quark pair, a necessary condition for producing a heavy quarkonium. We evaluate the first nontrivial order of evolution kernels for all relevant fragmentation functions, and discuss the role of NLP contributions.
Nearly perturbative lattice-motivated QCD coupling with zero IR limit
NASA Astrophysics Data System (ADS)
Ayala, César; Cvetič, Gorazd; Kögerler, Reinhart; Kondrashuk, Igor
2018-03-01
The product of the gluon dressing function and the square of the ghost dressing function in the Landau gauge can be regarded to represent, apart from the inverse power corrections 1/{Q}2n, a nonperturbative generalization { \\mathcal A }({Q}2) of the perturbative QCD running coupling a({Q}2) (\\equiv {α }s({Q}2)/π ). Recent large volume lattice calculations for these dressing functions indicate that the coupling defined in such a way goes to zero as { \\mathcal A }({Q}2)∼ {Q}2 when the squared momenta Q 2 go to zero ({Q}2\\ll 1 {GeV}}2). In this work we construct such a QCD coupling { \\mathcal A }({Q}2) which fulfills also various other physically motivated conditions. At high momenta it becomes the underlying perturbative coupling a({Q}2) to a very high precision. And at intermediate low squared momenta {Q}2∼ 1 {GeV}}2 it gives results consistent with the data of the semihadronic τ lepton decays as measured by OPAL and ALEPH. The coupling is constructed in a dispersive way, resulting as a byproduct in the holomorphic behavior of { \\mathcal A }({Q}2) in the complex Q 2-plane which reflects the holomorphic behavior of the spacelike QCD observables. Application of the Borel sum rules to τ-decay V + A spectral functions allows us to obtain values for the gluon (dimension-4) condensate and the dimension-6 condensate, which reproduce the measured OPAL and ALEPH data to a significantly better precision than the perturbative \\overline{MS}} coupling approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dine, Michael; Draper, Patrick; Stephenson-Haskins, Laurel
Here, we study the large N θ dependence and the η' potential in supersymmetric QCD with small soft SUSY-breaking terms. Known exact results in SUSY QCD are found to reflect a variety of expectations from large N perturbation theory, including the presence of branches and the behavior of theories with matter (both with N f << N and N f ~ N ). But, there are also striking departures from ordinary QCD and the conventional large N description: instanton effects, when under control, are not exponentially suppressed at large N , and branched structure in supersymmetric QCD is always associatedmore » with approximate discrete symmetries. We suggest that these differences motivate further study of large N QCD on the lattice.« less
Scheme Variations of the QCD Coupling and Hadronic τ Decays
NASA Astrophysics Data System (ADS)
Boito, Diogo; Jamin, Matthias; Miravitllas, Ramon
2016-10-01
The quantum chromodynamics (QCD) coupling αs is not a physical observable of the theory, since it depends on conventions related to the renormalization procedure. We introduce a definition of the QCD coupling, denoted by α^s, whose running is explicitly renormalization scheme invariant. The scheme dependence of the new coupling α^s is parametrized by a single parameter C , related to transformations of the QCD scale Λ . It is demonstrated that appropriate choices of C can lead to substantial improvements in the perturbative prediction of physical observables. As phenomenological applications, we study e+e- scattering and decays of the τ lepton into hadrons, both being governed by the QCD Adler function.
Accurate determinations of alpha(s) from realistic lattice QCD.
Mason, Q; Trottier, H D; Davies, C T H; Foley, K; Gray, A; Lepage, G P; Nobes, M; Shigemitsu, J
2005-07-29
We obtain a new value for the QCD coupling constant by combining lattice QCD simulations with experimental data for hadron masses. Our lattice analysis is the first to (1) include vacuum polarization effects from all three light-quark flavors (using MILC configurations), (2) include third-order terms in perturbation theory, (3) systematically estimate fourth and higher-order terms, (4) use an unambiguous lattice spacing, and (5) use an [symbol: see text](a2)-accurate QCD action. We use 28 different (but related) short-distance quantities to obtain alpha((5)/(MS))(M(Z)) = 0.1170(12).
Double Parton Fragmentation Function and its Evolution in Quarkonium Production
NASA Astrophysics Data System (ADS)
Kang, Zhong-Bo
2014-01-01
We summarize the results of a recent study on a new perturbative QCD factorization formalism for the production of heavy quarkonia of large transverse momentum pT at collider energies. Such a new factorization formalism includes both the leading power (LP) and next-to-leading power (NLP) contributions to the cross section in the mQ2/p_T^2 expansion for heavy quark mass mQ. For the NLP contribution, the so-called double parton fragmentation functions are involved, whose evolution equations have been derived. We estimate fragmentation functions in the non-relativistic QCD formalism, and found that their contribution reproduce the bulk of the large enhancement found in explicit NLO calculations in the color singlet model. Heavy quarkonia produced from NLP channels prefer longitudinal polarization, in contrast to the single parton fragmentation function. This might shed some light on the heavy quarkonium polarization puzzle.
Branching ratio and polarization of B→ρ(ω)ρ(ω) decays in perturbative QCD approach
NASA Astrophysics Data System (ADS)
Li, Ying; Lü, Cai-Dian
2006-01-01
In this work, we calculate the branching ratios, polarization fractions and CP asymmetry parameters of decay modes B→ρ(ω)ρ(ω) in the perturbative QCD approach, which is based on kT factorization. After calculation, we find that the branching ratios of B0→ρ+ρ-, B+→ρ+ρ0, and B+→ρ+ω are at the order of 10-5, and their longitudinal polarization fractions are more than 90%. The above results agree with BaBar’s measurements. We also calculate the branching ratios and polarization fractions of B0→ρ0ρ0, B0→ρ0ω, and B0→ωω decays. We find that their longitudinal polarization fractions are suppressed to 60-80% due to a small color suppressed tree contribution. The dominant penguin and nonfactorization tree contributions equally contribute to the longitudinal and transverse polarization, which will be tested in the future experiments. We predict the CP asymmetry of B0→ρ+ρ- and B+→ρ+ρ0, which will be measured in B factories.
Perturbative QCD analysis of exclusive processes e+e-→V P and e+e-→T P
NASA Astrophysics Data System (ADS)
Lü, Cai-Dian; Wang, Wei; Xing, Ye; Zhang, Qi-An
2018-06-01
We study the e+e-→V P and e+e-→T P processes in the perturbative QCD approach based on kT factorization, where the P , V and T denotes a light pseudoscalar, vector, and tensor meson, respectively. We point out in the case of e+e-→T P transition due to charge conjugation invariance, only three channels are allowed: e+e-→a2±π∓ , e+e-→K2*±K∓ and the V-spin suppressed e+e-→K2*0K¯ 0+K¯2 *0K0 . Cross sections of e+e-→V P and e+e-→T P at √{s }=3.67 GeV and √{s }=10.58 GeV are calculated and the invariant mass dependence is found to favor the 1 /s4 power law. Most of our theoretical results are consistent with the available experimental data and other predictions can be tested at the ongoing BESIII and forthcoming Belle-II experiments.
Three-particle N π π state contribution to the nucleon two-point function in lattice QCD
NASA Astrophysics Data System (ADS)
Bär, Oliver
2018-05-01
The three-particle N π π state contribution to the QCD two-point function of standard nucleon interpolating fields is computed to leading order in chiral perturbation theory. Using the experimental values for two low-energy coefficients, the impact of this contribution on lattice QCD calculations of the nucleon mass is estimated. The impact is found to be at the per mille level at most and negligible in practice.
Continuous Advances in QCD 2008
NASA Astrophysics Data System (ADS)
Peloso, Marco M.
2008-12-01
1. High-order calculations in QCD and in general gauge theories. NLO evolution of color dipoles / I. Balitsky. Recent perturbative results on heavy quark decays / J. H. Piclum, M. Dowling, A. Pak. Leading and non-leading singularities in gauge theory hard scattering / G. Sterman. The space-cone gauge, Lorentz invariance and on-shell recursion for one-loop Yang-Mills amplitudes / D. Vaman, Y.-P. Yao -- 2. Heavy flavor physics. Exotic cc¯ mesons / E. Braaten. Search for new physics in B[symbol]-mixing / A. J. Lenz. Implications of D[symbol]-D[symbol] mixing for new physics / A. A. Petrov. Precise determinations of the charm quark mass / M. Steinhauser -- 3. Quark-gluon dynamics at high density and/or high temperature. Crystalline condensate in the chiral Gross-Neveu model / G. V. Dunne, G. Basar. The strong coupling constant at low and high energies / J. H. Kühn. Quarkyonic matter and the phase diagram of QCD / L. McLerran. Statistical QCD with non-positive measure / J. C. Osborn, K. Splittorff, J. J. M. Verbaarschot. From equilibrium to transport properties of strongly correlated fermi liquids / T. Schäfer. Lessons from random matrix theory for QCD at finite density / K. Splittorff, J. J. M. Verbaarschot -- 4. Methods and models of holographic correspondence. Soft-wall dynamics in AdS/QCD / B. Batell. Holographic QCD / N. Evans, E. Threlfall. QCD glueball sum rules and vacuum topology / H. Forkel. The pion form factor in AdS/QCD / H. J. Kwee, R. F. Lebed. The fast life of holographic mesons / R. C. Myers, A. Sinha. Properties of Baryons from D-branes and instantons / S. Sugimoto. The master space of N = 1 quiver gauge theories: counting BPS operators / A. Zaffaroni. Topological field congurations. Skyrmions in theories with massless adjoint quarks / R. Auzzi. Domain walls, localization and confinement: what binds strings inside walls / S. Bolognesi. Static interactions of non-abelian vortices / M. Eto. Vortices which do not abelianize dynamically: semi-classical origin of non-abelian monopoles / K. Konishi. A generalized construction for lumps and non-abelian vortices / W. Vinci -- 6. Dynamics in supersymmetric theories. Cusp anomalous dimension in planar maximally supersymmetric Yang-Mills theory / B. Basso. SO(2M) and USp(2M) (hyper)Kähler quotients and lumps / S. B. Gudnason -- 7. Other developments. Gluinos condensing at the CCNI: 4096 CPUs weigh in / J. Giedt ... [et al.]. Baryon Regge trajectories and the 1/N[symbol] expansion / J. L. Goity, N. Matagne. Infrared behavior of the fermion propagator in unquenched QED[symbol] with finite threshold effects / Y. Hoshino. Gauge fields in accelerated frames / F. Lenz. QCD at complex coupling, large order in perturbation theory and the gluon condensate / Y. Meurice. 511 KeV line and other diffuse emissions as a trace of the dark matter / A. R. Zhitnitsky -- 8. Glimpses of the conference.
Relativistic corrections to exclusive χc J+γ production from e+e- annihilation
NASA Astrophysics Data System (ADS)
Brambilla, Nora; Chen, Wen; Jia, Yu; Shtabovenko, Vladyslav; Vairo, Antonio
2018-05-01
We calculate in the nonrelativistic QCD (NRQCD) factorization framework all leading relativistic corrections to the exclusive production of χc J+γ in e+e- annihilation. In particular, we compute for the first time contributions induced by octet operators with a chromoelectric field. The matching coefficients multiplying production long distance matrix elements (LDMEs) are determined through perturbative matching between QCD and NRQCD at the amplitude level. Technical challenges encountered in the nonrelativistic expansion of the QCD amplitudes are discussed in detail. The main source of uncertainty comes from the not so well known LDMEs. Accounting for it, we provide the following estimates for the production cross sections at √{s }=10.6 GeV : σ (e+e-→χc 0+γ )=(1.4 ±0.3 ) fb , σ (e+e-→χc 1+γ )=(15.0 ±3.3 ) fb , and σ (e+e-→χc 2+γ )=(4.5 ±1.4 ) fb .
Next-to-Next-to-Leading-Order QCD Corrections to the Hadronic Width of Pseudoscalar Quarkonium
NASA Astrophysics Data System (ADS)
Feng, Feng; Jia, Yu; Sang, Wen-Long
2017-12-01
We compute the next-to-next-to-leading-order QCD corrections to the hadronic decay rates of the pseudoscalar quarkonia, at the lowest order in velocity expansion. The validity of nonrelativistic QCD (NRQCD) factorization for inclusive quarkonium decay process, for the first time, is verified to relative order αs2. As a by-product, the renormalization group equation of the leading NRQCD four-fermion operator O1(1S0 ) is also deduced to this perturbative order. By incorporating this new piece of correction together with available relativistic corrections, we find that there exists severe tension between the state-of-the-art NRQCD predictions and the measured ηc hadronic width and, in particular, the branching fraction of ηc→γ γ . NRQCD appears to be capable of accounting for ηb hadronic decay to a satisfactory degree, and our most refined prediction is Br(ηb→γ γ )=(4.8 ±0.7 )×10-5.
Study of Bc→ψ (2 S )K , ηc(2 S )K , ψ (3770 )K decays with perturbative QCD approach
NASA Astrophysics Data System (ADS)
Duan, Feng-Bo; Yu, Xian-Qiao
2018-05-01
We study the Bc→ψ (2 S ) K , ηc(2 S ) K , ψ (3770 ) K decays with perturbative QCD approach based on kT factorization. The new orbitally excited charmonium distribution amplitudes ψ (1 3D1) based on the Schrödinger wave function of the n =1 , l =2 state for the harmonic-oscillator potential are employed. By using the corresponding distribution amplitudes, we calculate the branching ratio of Bc→ψ (2 S ) K , ηc(2 S ) K , ψ (3770 ) K decays and the form factors A0 ,1 ,2 and V for the transition Bc→ψ (1 3D1) . We obtain the branching ratio of both Bc→ψ (2 S ) K and Bc→ηc(2 S ) K are at the order of 10-5. The effects of two sets of the S-D mixing angle θ =-1 2 ° and θ =2 7 ° for the decay Bc→ψ (3770 ) K are studied first in this paper. Our calculations show that the branching ratio of the decay Bc→ψ (3770 ) K can be raised from the order of 10-6 to the order of 10-5 at the mixing angle θ =-1 2 ° , which can be tested by the running LHC-b experiments.
Smeared quasidistributions in perturbation theory
NASA Astrophysics Data System (ADS)
Monahan, Christopher
2018-03-01
Quasi- and pseudodistributions provide a new approach to determining parton distribution functions from first principles' calculations of QCD. Here, I calculate the flavor nonsinglet unpolarized quasidistribution at one loop in perturbation theory, using the gradient flow to remove ultraviolet divergences. I demonstrate that, as expected, the gradient flow does not change the infrared structure of the quasidistribution at one loop and use the results to match the smeared matrix elements to those in the MS ¯ scheme. This matching calculation is required to relate numerical results obtained from nonperturbative lattice QCD computations to light-front parton distribution functions extracted from global analyses of experimental data.
The generalized scheme-independent Crewther relation in QCD
NASA Astrophysics Data System (ADS)
Shen, Jian-Ming; Wu, Xing-Gang; Ma, Yang; Brodsky, Stanley J.
2017-07-01
The Principle of Maximal Conformality (PMC) provides a systematic way to set the renormalization scales order-by-order for any perturbative QCD calculable processes. The resulting predictions are independent of the choice of renormalization scheme, a requirement of renormalization group invariance. The Crewther relation, which was originally derived as a consequence of conformally invariant field theory, provides a remarkable connection between two observables when the β function vanishes: one can show that the product of the Bjorken sum rule for spin-dependent deep inelastic lepton-nucleon scattering times the Adler function, defined from the cross section for electron-positron annihilation into hadrons, has no pQCD radiative corrections. The ;Generalized Crewther Relation; relates these two observables for physical QCD with nonzero β function; specifically, it connects the non-singlet Adler function (Dns) to the Bjorken sum rule coefficient for polarized deep-inelastic electron scattering (CBjp) at leading twist. A scheme-dependent ΔCSB-term appears in the analysis in order to compensate for the conformal symmetry breaking (CSB) terms from perturbative QCD. In conventional analyses, this normally leads to unphysical dependence in both the choice of the renormalization scheme and the choice of the initial scale at any finite order. However, by applying PMC scale-setting, we can fix the scales of the QCD coupling unambiguously at every order of pQCD. The result is that both Dns and the inverse coefficient CBjp-1 have identical pQCD coefficients, which also exactly match the coefficients of the corresponding conformal theory. Thus one obtains a new generalized Crewther relation for QCD which connects two effective charges, αˆd (Q) =∑i≥1 αˆg1 i (Qi), at their respective physical scales. This identity is independent of the choice of the renormalization scheme at any finite order, and the dependence on the choice of the initial scale is negligible. Similar scale-fixed commensurate scale relations also connect other physical observables at their physical momentum scales, thus providing convention-independent, fundamental precision tests of QCD.
Inducing the Einstein action in QCD-like theories
NASA Astrophysics Data System (ADS)
Donoghue, John F.; Menezes, Gabriel
2018-03-01
We evaluate the induced value of Newton's constant which would arise in QCD. The ingredients are modern lattice results, perturbation theory and the operator product expansion. The resulting shift in the Planck mass is positive. A scaled-up version of such a theory may be part of a quantum field theory treatment of gravity.
NASA Astrophysics Data System (ADS)
Nayak, Gouranga C.
2017-09-01
Recently we have proved factorization of infrared divergences in NRQCD S-wave heavy quarkonium production at high energy colliders at all orders in coupling constant. One of the problem which still exists in the higher order pQCD calculation of color singlet P-wave heavy quarkonium production/anihillation is the appearance of noncanceling infrared divergences due to real soft gluons exchange, although no such infrared divergences are present in the color singlet S-wave heavy quarkonium. In this paper we find that since the non-perturbative matrix element of the color singlet P-wave heavy quarkonium production contains derivative operators, the gauge links are necessary to make it gauge invariant and be consistent with the factorization of such non-canceling infrared divergences at all orders in coupling constant.
Connecting different TMD factorization formalisms in QCD
NASA Astrophysics Data System (ADS)
Collins, John; Rogers, Ted C.
2017-09-01
In the original Collins-Soper-Sterman (CSS) presentation of the results of transverse-momentum-dependent (TMD) factorization for the Drell-Yan process, results for perturbative coefficients can be obtained from calculations for collinear factorization. Here we show how to use these results, plus known results for the quark form factor, to obtain coefficients for TMD factorization in more recent formulations, e.g., that due to Collins, and apply them to known results at order αs2 and αs3. We also show that the "nonperturbative" functions as obtained from fits to data are equal in the two schemes. We compile the higher-order perturbative inputs needed for the updated CSS scheme by appealing to results obtained in a variety of different formalisms. In addition, we derive the connection between both versions of the CSS formalism and several formalisms based in soft-collinear effective theory (SCET). Our work uses some important new results for factorization for the quark form factor, which we derive.
Scheme variations of the QCD coupling
NASA Astrophysics Data System (ADS)
Boito, Diogo; Jamin, Matthias; Miravitllas, Ramon
2017-03-01
The Quantum Chromodynamics (QCD) coupling αs is a central parameter in the Standard Model of particle physics. However, it depends on theoretical conventions related to renormalisation and hence is not an observable quantity. In order to capture this dependence in a transparent way, a novel definition of the QCD coupling, denoted by â, is introduced, whose running is explicitly renormalisation scheme invariant. The remaining renormalisation scheme dependence is related to transformations of the QCD scale Λ, and can be parametrised by a single parameter C. Hence, we call â the C-scheme coupling. The dependence on C can be exploited to study and improve perturbative predictions of physical observables. This is demonstrated for the QCD Adler function and hadronic decays of the τ lepton.
Higgs boson production at hadron colliders at N3LO in QCD
NASA Astrophysics Data System (ADS)
Mistlberger, Bernhard
2018-05-01
We present the Higgs boson production cross section at Hadron colliders in the gluon fusion production mode through N3LO in perturbative QCD. Specifically, we work in an effective theory where the top quark is assumed to be infinitely heavy and all other quarks are considered to be massless. Our result is the first exact formula for a partonic hadron collider cross section at N3LO in perturbative QCD. Furthermore, our result is an analytic computation of a hadron collider cross section involving elliptic integrals. We derive numerical predictions for the Higgs boson cross section at the LHC. Previously this result was approximated by an expansion of the cross section around the production threshold of the Higgs boson and we compare our findings. Finally, we study the impact of our new result on the state of the art prediction for the Higgs boson cross section at the LHC.
Aad, G.; Abbott, B.; Abdallah, J.; ...
2011-10-13
A measurement of the Z/γ* transverse momentum (p T Z) distribution in proton–proton collisions at √s = 7 TeV is presented using Z/γ* → e +e – and Z/γ* → μ +μ – decays collected with the ATLAS detector in data sets with integrated luminosities of 35 pb –1 and 40 pb –1, respectively. The normalized differential cross sections are measured separately for electron and muon decay channels as well as for their combination up to p T Z of 350 GeV for invariant dilepton masses 66 GeV < m ℓℓ < 116 GeV. The measurement is compared to predictionsmore » of perturbative QCD and various event generators. In conclusion, the prediction of resummed QCD combined with fixed order perturbative QCD is found to be in good agreement with the data.« less
NASA Astrophysics Data System (ADS)
Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andari, N.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, D.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H. S.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bona, M.; Bondarenko, V. G.; Boonekamp, M.; Boorman, G.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchanan, N. J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Buira-Clark, D.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Byatt, T.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciba, K.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clifft, R. W.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Cogan, J. G.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cuneo, S.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czirr, H.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Silva, P. V. M.; da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Daum, C.; Dauvergne, J. P.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, E.; Davies, M.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Dawson, J. W.; Daya, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de La Taille, C.; de la Torre, H.; de Lotto, B.; de Mora, L.; de Nooij, L.; de Oliveira Branco, M.; de Pedis, D.; de Saintignon, P.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dean, S.; Dedovich, D. V.; Degenhardt, J.; Dehchar, M.; Deile, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donadelli, M.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doxiadis, A. D.; Doyle, A. T.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Dubbert, J.; Dubbs, T.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fischer, P.; Fisher, M. J.; Fisher, S. M.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giunta, M.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Goldin, D.; Golling, T.; Golovnia, S. N.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, L.; Gonidec, A.; Gonzalez, S.; González de La Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gouanère, M.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafström, P.; Grah, C.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenfield, D.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grinstein, S.; Grishkevich, Y. V.; Grivaz, J.-F.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guest, D.; Guicheney, C.; Guida, A.; Guillemin, T.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Guo, J.; Gupta, A.; Gusakov, Y.; Gushchin, V. N.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamal, P.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Hatch, M.; Hauff, D.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawes, B. M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayden, D.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henß, T.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg, R.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hill, N.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmes, A.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Hong, T. M.; Hooft van Huysduynen, L.; Horazdovsky, T.; Horn, C.; Horner, S.; Horton, K.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howarth, J.; Howell, D. F.; Hristova, I.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Huhtinen, M.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Imbault, D.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Ionescu, G.; Irles Quiles, A.; Ishii, K.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joram, C.; Jorge, P. M.; Joseph, J.; Jovin, T.; Ju, X.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagoz, M.; Karnevskiy, M.; Karr, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazanin, V. A.; Kazarinov, M. Y.; Keates, J. R.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenney, C. J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Ketterer, C.; Keung, J.; Khakzad, M.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiver, A. M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Kneringer, E.; Knobloch, J.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kollefrath, M.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Komori, Y.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S. V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasel, O.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumshteyn, Z. V.; Kruth, A.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kundu, N.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuze, M.; Kuzhir, P.; Kvasnicka, O.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Landsman, H.; Lane, J. L.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Lebel, C.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, M.; Legendre, M.; Leger, A.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewandowska, M.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lifshitz, R.; Lilley, J. N.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lo Sterzo, F.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lupi, A.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Macina, D.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magnoni, L.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marin, A.; Marino, C. P.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti-Garcia, S.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph.; Martin, T. A.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Maß, M.; Massa, I.; Massaro, G.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maugain, J. M.; Maxfield, S. J.; Maximov, D. A.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzoni, E.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; McFayden, J. A.; McGlone, H.; McHedlidze, G.; McLaren, R. A.; McLaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meinhardt, J.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Menot, C.; Meoni, E.; Mercurio, K. M.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meuser, S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Miele, P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misiejuk, A.; Mitrevski, J.; Mitrofanov, G. Y.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Miyazaki, K.; Mjörnmark, J. U.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohapatra, S.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moorhead, G. F.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morii, M.; Morin, J.; Morita, Y.; Morley, A. K.; Mornacchi, G.; Morone, M.-C.; Morozov, S. V.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muijs, A.; Muir, A.; Munwes, Y.; Murakami, K.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakano, I.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nebot, E.; Nechaeva, P. Yu.; Negri, A.; Negri, G.; Nektarijevic, S.; Nelson, S.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Nesterov, S. Y.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen Thi Hong, V.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Niinikoski, T.; Nikiforov, A.; Nikolaenko, V.; Nikolaev, K.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Norton, P. R.; Novakova, J.; Nozaki, M.; Nožička, M.; Nozka, L.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nyman, T.; O'Brien, B. J.; O'Neale, S. W.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohska, T. K.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero Y Garzon, G.; P Ottersbach, J.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Øye, O. K.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Pagan Griso, S.; Paganis, E.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadelis, A.; Papadopoulou, Th. D.; Paramonov, A.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Pengo, R.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Peshekhonov, V. D.; Peters, O.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A. W.; Phillips, P. W.; Piacquadio, G.; Piccaro, E.; Piccinini, M.; Pickford, A.; Piec, S. M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Pleskach, A. V.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Porter, R.; Posch, C.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Price, M. J.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qian, Z.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Ramstedt, M.; Randrianarivony, K.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reichold, A.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renaud, A.; Renkel, P.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodier, S.; Rodriguez, D.; Roe, A.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, M.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rossi, L.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubinskiy, I.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, C.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rurikova, Z.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Rzaeva, S.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchez, A.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Savva, P.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaepe, S.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, M.; Schöning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schuh, S.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shichi, H.; Shimizu, S.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skovpen, K.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloan, T. J.; Sloper, J.; Smakhtin, V.; Smirnov, S. Yu.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Sondericker, J.; Soni, N.; Sopko, V.; Sopko, B.; Sorbi, M.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G. A.; Stillings, J. A.; Stockmanns, T.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Soh, D. A.; Su, D.; Subramania, H. S.; Succurro, A.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Sviridov, Yu. M.; Swedish, S.; Sykora, I.; Sykora, T.; Szeless, B.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tani, K.; Tannoury, N.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Thadome, J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomson, E.; Thomson, M.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Traynor, D.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tuggle, J. M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Tyrvainen, H.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van der Graaf, H.; van der Kraaij, E.; van der Leeuw, R.; van der Poel, E.; van der Ster, D.; van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wakabayashi, J.; Walbersloh, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, J. C.; Wang, R.; Wang, S. M.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, J.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Weydert, C.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wunstorf, R.; Wynne, B. M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xie, Y.; Xu, C.; Xu, D.; Xu, G.; Yabsley, B.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ybeles Smit, G. V.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zalite, Yo. K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, A. V.; Zenin, O.; Ženiš, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi Della Porta, G.; Zhan, Z.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zolnierowski, Y.; Zsenei, A.; Zur Nedden, M.; Zutshi, V.; Zwalinski, L.; Atlas Collaboration
2011-11-01
A measurement of the Z /γ* transverse momentum (pTZ) distribution in proton-proton collisions at √{ s} = 7 TeV is presented using Z /γ* →e+e- and Z /γ* →μ+μ- decays collected with the ATLAS detector in data sets with integrated luminosities of 35 pb-1 and 40 pb-1, respectively. The normalized differential cross sections are measured separately for electron and muon decay channels as well as for their combination up to pTZ of 350 GeV for invariant dilepton masses 66 GeV
NASA Astrophysics Data System (ADS)
Suganuma, H.; Fukushima, M.; Toki, H.
The Table of Contents for the book is as follows: * Preface * Opening Address * Monopole Condensation and Quark Confinement * Dual QCD, Effective String Theory, and Regge Trajectories * Abelian Dominance and Monopole Condensation * Non-Abelian Stokes Theorem and Quark Confinement in QCD * Infrared Region of QCD and Confining Configurations * BRS Quartet Mechanism for Color Confinement * Color Confinement and Quartet Mechanism * Numerical Tests of the Kugo-Ojima Color Confinement Criterion * Monopoles and Confinement in Lattice QCD * SU(2) Lattice Gauge Theory at T > 0 in a Finite Box with Fixed Holonomy * Confining and Dirac Strings in Gluodynamics * Cooling, Monopoles, and Vortices in SU(2) Lattice Gauge Theory * Quark Confinement Physics from Lattice QCD * An (Almost) Perfect Lattice Action for SU(2) and SU(3) Gluodynamics * Vortices and Confinement in Lattice QCD * P-Vortices, Nexuses and Effects of Gribov Copies in the Center Gauges * Laplacian Center Vortices * Center Vortices at Strong Couplings and All Couplings * Simulations in SO(3) × Z(2) Lattice Gauge Theory * Exciting a Vortex - the Cost of Confinement * Instantons in QCD * Deformation of Instanton in External Color Fields * Field Strength Correlators in the Instanton Liquid * Instanton and Meron Physics in Lattice QCD * The Dual Ginzburg-Landau Theory for Confinement and the Role of Instantons * Lattice QCD for Quarks, Gluons and Hadrons * Hadronic Spectral Functions in QCD * Universality and Chaos in Quantum Field Theories * Lattice QCD Study of Three Quark Potential * Probing the QCD Vacuum with Flavour Singlet Objects : η' on the Lattice * Lattice Studies of Quarks and Gluons * Quarks and Hadrons in QCD * Supersymmetric Nonlinear Sigma Models * Chiral Transition and Baryon-number Susceptibility * Light Quark Masses in QCD * Chiral Symmetry of Baryons and Baryon Resonances * Confinement and Bound States in QCD * Parallel Session * Off-diagonal Gluon Mass Generation and Strong Randomness of Off-diagonal Gluon Phase in the Maximally Abelian Gauge * On the Colour Confinement and the Minimal Surface * Glueball Mass and String Tension of SU(2) Gluodynamics from Abelian Monopoles and Strings * Application of the Non-Perturbative Renormalization Group to the Nambu-Jona-Lasinio Model at Finite Temperature and Density * Confining Flux-Tube and Hadrons in QCD * Gauge Symmetry Breakdown due to Dynamical Higgs Scalar * Spatial Structure of Quark Cooper Pairs * New Approach to Axial Coupling Constants in the QCD Sum Rule and Instanton Effects * String Breaking on a Lattice * Bethe-Salpeter Approach for Mesons within the Dual Ginzburg-Landau Theory * Gauge Dependence and Matching Procedure of a Nonrelativistic QCD Boundstate Formalism * A Mathematical Approach to the SU(2)-Quark Confinement * Simulations of Odd Flavors QCD by Hybrid Monte Carlo * Non-Perturbative Renormalization Group Analysis of Dynamical Chiral Symmetry Breaking with Beyond Ladder Contributions * Charmonium Physics in Finite Temperature Lattice QCD * From Meson-Nucleon Scattering to Vector Mesons in Nuclear Matter * Symposium Program * List of Participants
Renormalization constants for 2-twist operators in twisted mass QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexandrou, C.; Computation-based Science and Technology Research Center, The Cyprus Institute, 15 Kypranoros Str., 1645 Nicosia; Constantinou, M.
2011-01-01
Perturbative and nonperturbative results on the renormalization constants of the fermion field and the twist-2 fermion bilinears are presented with emphasis on the nonperturbative evaluation of the one-derivative twist-2 vector and axial-vector operators. Nonperturbative results are obtained using the twisted mass Wilson fermion formulation employing two degenerate dynamical quarks and the tree-level Symanzik improved gluon action. The simulations have been performed for pion masses in the range of about 450-260 MeV and at three values of the lattice spacing a corresponding to {beta}=3.9, 4.05, 4.20. Subtraction of O(a{sup 2}) terms is carried out by performing the perturbative evaluation of thesemore » operators at 1-loop and up to O(a{sup 2}). The renormalization conditions are defined in the RI{sup '}-MOM scheme, for both perturbative and nonperturbative results. The renormalization factors, obtained for different values of the renormalization scale, are evolved perturbatively to a reference scale set by the inverse of the lattice spacing. In addition, they are translated to MS at 2 GeV using 3-loop perturbative results for the conversion factors.« less
The Conformal Template and New Perspectives for Quantum Chromodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.; /SLAC
2007-03-06
Conformal symmetry provides a systematic approximation to QCD in both its perturbative and nonperturbative domains. One can use the AdS/CFT correspondence between Anti-de Sitter space and conformal gauge theories to obtain an analytically tractable approximation to QCD in the regime where the QCD coupling is large and constant. For example, there is an exact correspondence between the fifth-dimensional coordinate of AdS space and a specific impact variable which measures the separation of the quark constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions of mesons and baryons, themore » fundamental entities which encode hadron properties and allow the computation of exclusive scattering amplitudes. One can also use conformal symmetry as a template for perturbative QCD predictions where the effects of the nonzero beta function can be systematically included in the scale of the QCD coupling. This leads to fixing of the renormalization scale and commensurate scale relations which relate observables without scale or scheme ambiguity. The results are consistent with the renormalization group and the analytic connection of QCD to Abelian theory at N{sub C} {yields} 0. I also discuss a number of novel phenomenological features of QCD. Initial- and .nal-state interactions from gluon-exchange, normally neglected in the parton model, have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, di.ractive hard hadronic reactions, the breakdown of the Lam Tung relation in Drell-Yan reactions, and nuclear shadowing and non-universal antishadowing--leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also discuss tests of hidden color in nuclear wavefunctions, the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency, nonperturbative antisymmetric sea quark distributions, anomalous heavy quark e.ects, and the unexpected effects of direct higher-twist processes.« less
Holographic corrections to the Veneziano amplitude
NASA Astrophysics Data System (ADS)
Armoni, Adi; Ireson, Edwin
2017-08-01
We propose a holographic computation of the 2 → 2 meson scattering in a curved string background, dual to a QCD-like theory. We recover the Veneziano amplitude and compute a perturbative correction due to the background curvature. The result implies a small deviation from a linear trajectory, which is a requirement of the UV regime of QCD.
Fundamental dynamics: Past, present and the future — like CP violation and EDMs
NASA Astrophysics Data System (ADS)
Bigi, Ikaros I.
2015-04-01
Working with Kolya Uraltsev was a real 'marvel' for me in general, but in particular about CP and T violation, QCD and its impact on transitions in heavy flavor hadrons and EDMs. The goal was — and still is — to define fundamental parameters for dynamics, how to measure them and compare SM forces with New Dynamics using the best tools including our brains. The correlations of them with accurate data were crucial for Kolya. Here is a review of CP asymmetries in B, D and τ decays, the impact of perturbative and non-perturbative QCD, about EDMs till 2013 — and for the future.
Z -Boson Production in Association with a Jet at Next-To-Next-To-Leading Order in Perturbative QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boughezal, Radja; Campbell, John; Ellis, R. Keith
2016-04-01
We present the first complete calculation of Z-boson production in association with a jet in hadronic collisions through next-to-next-to-leading order in perturbative QCD. Our computation uses the recently proposed N-jettiness subtraction scheme to regulate the infrared divergences that appear in the real-emission contributions. We present phenomenological results for 13 TeV proton-proton collisions with fully realistic fiducial cuts on the final-state particles. The remaining theoretical uncertainties after the inclusion of our calculations are at the percent level, making the Z + jet channel ready for precision studies at the LHC run II.
NASA Astrophysics Data System (ADS)
Khellat, M. R.; Mirjalili, A.
2017-03-01
We first consider the idea of renormalization group-induced estimates, in the context of optimization procedures, for the Brodsky-Lepage-Mackenzie approach to generate higher-order contributions to QCD perturbative series. Secondly, we develop the deviation pattern approach (DPA) in which through a series of comparisons between lowerorder RG-induced estimates and the corresponding analytical calculations, one could modify higher-order RG-induced estimates. Finally, using the normal estimation procedure and DPA, we get estimates of αs4 corrections for the Bjorken sum rule of polarized deep-inelastic scattering and for the non-singlet contribution to the Adler function.
Hadron scattering, resonances, and QCD
NASA Astrophysics Data System (ADS)
Briceño, R. A.
2016-11-01
The non-perturbative nature of quantum chromodynamics (QCD) has historically left a gap in our understanding of the connection between the fundamental theory of the strong interactions and the rich structure of experimentally observed phenomena. For the simplest properties of stable hadrons, this is now circumvented with the use of lattice QCD (LQCD). In this talk I discuss a path towards a rigorous determination of few-hadron observables from LQCD. I illustrate the power of the methodology by presenting recently determined scattering amplitudes in the light-meson sector and their resonance content.
The Revival of Kaon Flavour Physics
NASA Astrophysics Data System (ADS)
Buras, Andrzej J.
2016-11-01
After years of silence we should witness in the rest of this decade and in the next decade the revival of kaon flavour physics. This is not only because of the crucial measurements of the branching ratios for the rare decays K+ → π+vv¯ and KL → π0vv¯ by NA62 and KOTO that being theoretically clean and very sensitive to new physics (NP) could hint for new phenomena even beyond the reach of the LHC without any significant theoretical uncertainties. Indeed simultaneously the advances in the calculations of perturbative and in particular non-perturbative QCD effects in ɛ'/ɛ, ɛK, ΔMK, KL → μ+μ- and KL → π0ℓ+ℓ- will increase the role of these observables in searching for NP. In fact the hints for NP contributing to ɛ'/ɛ have been already signalled last year through improved estimates of hadronic matrix elements of QCD and electroweak penguin operators Q6 and Q8 by lattice QCD and large N dual QCD approach. This talk summarizes in addition to this new flavour anomaly the present highlights of this field including some results from concrete NP scenarios.
The generalized scheme-independent Crewther relation in QCD
Shen, Jian-Ming; Wu, Xing-Gang; Ma, Yang; ...
2017-05-10
The Principle of Maximal Conformality (PMC) provides a systematic way to set the renormalization scales order-by-order for any perturbative QCD calculable processes. The resulting predictions are independent of the choice of renormalization scheme, a requirement of renormalization group invariance. The Crewther relation, which was originally derived as a consequence of conformally invariant field theory, provides a remarkable connection between two observables when the β function vanishes: one can show that the product of the Bjorken sum rule for spin-dependent deep inelastic lepton–nucleon scattering times the Adler function, defined from the cross section for electron–positron annihilation into hadrons, has no pQCD radiative corrections. The “Generalized Crewther Relation” relates these two observables for physical QCD with nonzero β function; specifically, it connects the non-singlet Adler function (D ns) to the Bjorken sum rule coefficient for polarized deep-inelastic electron scattering (C Bjp) at leading twist. A scheme-dependent Δ CSB-term appears in the analysis in order to compensate for the conformal symmetry breaking (CSB) terms from perturbative QCD. In conventional analyses, this normally leads to unphysical dependence in both the choice of the renormalization scheme and the choice of the initial scale at any finite order. However, by applying PMC scale-setting, we can fix the scales of the QCD coupling unambiguously at every order of pQCD. The result is that both D ns and the inverse coefficient Cmore » $$-1\\atop{Bjp}$$ have identical pQCD coefficients, which also exactly match the coefficients of the corresponding conformal theory. Thus one obtains a new generalized Crewther relation for QCD which connects two effective charges, $$\\hat{α}$$ d(Q)=Σ i≥1$$\\hat{α}^i\\atop{g1}$$(Qi), at their respective physical scales. This identity is independent of the choice of the renormalization scheme at any finite order, and the dependence on the choice of the initial scale is negligible. Lastly, similar scale-fixed commensurate scale relations also connect other physical observables at their physical momentum scales, thus providing convention-independent, fundamental precision tests of QCD.« less
The generalized scheme-independent Crewther relation in QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Jian-Ming; Wu, Xing-Gang; Ma, Yang
The Principle of Maximal Conformality (PMC) provides a systematic way to set the renormalization scales order-by-order for any perturbative QCD calculable processes. The resulting predictions are independent of the choice of renormalization scheme, a requirement of renormalization group invariance. The Crewther relation, which was originally derived as a consequence of conformally invariant field theory, provides a remarkable connection between two observables when the β function vanishes: one can show that the product of the Bjorken sum rule for spin-dependent deep inelastic lepton–nucleon scattering times the Adler function, defined from the cross section for electron–positron annihilation into hadrons, has no pQCD radiative corrections. The “Generalized Crewther Relation” relates these two observables for physical QCD with nonzero β function; specifically, it connects the non-singlet Adler function (D ns) to the Bjorken sum rule coefficient for polarized deep-inelastic electron scattering (C Bjp) at leading twist. A scheme-dependent Δ CSB-term appears in the analysis in order to compensate for the conformal symmetry breaking (CSB) terms from perturbative QCD. In conventional analyses, this normally leads to unphysical dependence in both the choice of the renormalization scheme and the choice of the initial scale at any finite order. However, by applying PMC scale-setting, we can fix the scales of the QCD coupling unambiguously at every order of pQCD. The result is that both D ns and the inverse coefficient Cmore » $$-1\\atop{Bjp}$$ have identical pQCD coefficients, which also exactly match the coefficients of the corresponding conformal theory. Thus one obtains a new generalized Crewther relation for QCD which connects two effective charges, $$\\hat{α}$$ d(Q)=Σ i≥1$$\\hat{α}^i\\atop{g1}$$(Qi), at their respective physical scales. This identity is independent of the choice of the renormalization scheme at any finite order, and the dependence on the choice of the initial scale is negligible. Lastly, similar scale-fixed commensurate scale relations also connect other physical observables at their physical momentum scales, thus providing convention-independent, fundamental precision tests of QCD.« less
Longitudinal-Transverse Separation of Deep-Inelastic Scattering at Low Q² on Nucleons and Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tvaskis, Vladas
2004-12-06
Since the early experiments at SLAC, which discovered the nucleon substructure and led to the development of the quark parton model, deep inelastic scattering (DIS) has been the most powerful tool to investigate the partonic substructure of the nucleon. After about 30 years of experiments with electron and muon beams the nucleon structure function F 2(x,Q 2) is known with high precision over about four orders of magnitude in x and Q 2. In the region of Q 2 > 1 (GeV/c) 2 the results of the DIS measurements are interpreted in terms of partons (quarks and gluons). The theoreticalmore » framework is provided in this case by perturbative Quantum Chromo Dynamics (pQCD), which includes scaling violations, as described by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations. The description starts to fail when Q 2 becomes of the order of 1 (GeV/c) 2, where non-perturbative effects (higher-twist effects), which are still not fully understood, become important (non-pQCD). The sensitivity for order-n twist effects increases with decreasing Q 2, since they include a factor 1/(Q 2n) (n ≥ 1).« less
Chakraborty, Bipasha; Davies, C. T. H.; Donald, G. C.; ...
2017-10-02
Here, we compare correlators for pseudoscalar and vector mesons made from valence strange quarks using the clover quark and highly improved staggered quark (HISQ) formalisms in full lattice QCD. We use fully nonperturbative methods to normalise vector and axial vector current operators made from HISQ quarks, clover quarks and from combining HISQ and clover fields. This allows us to test expectations for the renormalisation factors based on perturbative QCD, with implications for the error budget of lattice QCD calculations of the matrix elements of clover-staggeredmore » $b$-light weak currents, as well as further HISQ calculations of the hadronic vacuum polarisation. We also compare the approach to the (same) continuum limit in clover and HISQ formalisms for the mass and decay constant of the $$\\phi$$ meson. Our final results for these parameters, using single-meson correlators and neglecting quark-line disconnected diagrams are: $$m_{\\phi} =$$ 1.023(5) GeV and $$f_{\\phi} = $$ 0.238(3) GeV in good agreement with experiment. These results come from calculations in the HISQ formalism using gluon fields that include the effect of $u$, $d$, $s$ and $c$ quarks in the sea with three lattice spacing values and $$m_{u/d}$$ values going down to the physical point.« less
The Evolution of Soft Collinear Effective Theory
Lee, Christopher
2015-02-25
Soft Collinear Effective Theory (SCET) is an effective field theory of Quantum Chromodynamics (QCD) for processes where there are energetic, nearly lightlike degrees of freedom interacting with one another via soft radiation. SCET has found many applications in high-energy and nuclear physics, especially in recent years the physics of hadronic jets in e +e -, lepton-hadron, hadron-hadron, and heavy-ion collisions. SCET can be used to factorize multi-scale cross sections in these processes into single-scale hard, collinear, and soft functions, and to evolve these through the renormalization group to resum large logarithms of ratios of the scales that appear in themore » QCD perturbative expansion, as well as to study properties of nonperturbative effects. We overview the elementary concepts of SCET and describe how they can be applied in high-energy and nuclear physics.« less
Calculation of TMD Evolution for Transverse Single Spin Asymmetry Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mert Aybat, Ted Rogers, Alexey Prokudin
In this letter, we show that it is necessary to include the full treatment of QCD evolution of Transverse Momentum Dependent parton densities to explain discrepancies between HERMES data and recent COMPASS data on a proton target for the Sivers transverse single spin asymmetry in Semi-Inclusive Deep Inelastic Scattering (SIDIS). Calculations based on existing fits to TMDs in SIDIS, and including evolution within the Collins-Soper-Sterman with properly defined TMD PDFs are shown to provide a good explanation for the discrepancy. The non-perturbative input needed for the implementation of evolution is taken from earlier analyses of unpolarized Drell-Yan (DY) scattering atmore » high energy. Its success in describing the Sivers function in SIDIS data at much lower energies is strong evidence in support of the unifying aspect of the QCD TMD-factorization formalism.« less
Z-boson production in association with a jet at next-to-next-to-leading order in perturbative QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boughezal, Radja; Campbell, John M.; Ellis, R. Keith
2016-04-14
Here, we present the first complete calculation of Z-boson production in association with a jet in hadronic collisions through next-to-next-to-leading order in perturbative QCD. Our computation uses the recently proposed N-jettiness subtraction scheme to regulate the infrared divergences that appear in the real-emission contributions. We present phenomenological results for 13 TeV proton-proton collisions with fully realistic fiducial cuts on the final-state particles. The remaining theoretical uncertainties after the inclusion of our calculations are at the percent level, making the Z+jet channel ready for precision studies at the LHC run II.
Spontaneous breaking of discrete symmetries in QCD on a small volume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucini, B.; Patella, A.; Pica, C.
2007-11-20
In a compact space with non-trivial cycles, for sufficiently small values of the compact dimensions, charge conjugation (C), spatial reflection (P) and time reversal (J) are spontaneously broken in QCD. The order parameter for the symmetry breaking is the trace of the Wilson line wrapping around the compact dimension, which acquires an imaginary part in the broken phase. We show that a physical signature for the symmetry breaking is a persistent baryonic current wrapping in the compact directions. The existence of such a current is derived analytically at first order in perturbation theory and confirmed in the non-perturbative regime bymore » lattice simulations.« less
2+1 flavor lattice QCD toward the physical point
NASA Astrophysics Data System (ADS)
Aoki, S.; Ishikawa, K.-I.; Ishizuka, N.; Izubuchi, T.; Kadoh, D.; Kanaya, K.; Kuramashi, Y.; Namekawa, Y.; Okawa, M.; Taniguchi, Y.; Ukawa, A.; Ukita, N.; Yoshié, T.
2009-02-01
We present the first results of the PACS-CS project which aims to simulate 2+1 flavor lattice QCD on the physical point with the nonperturbatively O(a)-improved Wilson quark action and the Iwasaki gauge action. Numerical simulations are carried out at β=1.9, corresponding to the lattice spacing of a=0.0907(13)fm, on a 323×64 lattice with the use of the domain-decomposed HMC algorithm to reduce the up-down quark mass. Further algorithmic improvements make possible the simulation whose up-down quark mass is as light as the physical value. The resulting pseudoscalar meson masses range from 702 MeV down to 156 MeV, which clearly exhibit the presence of chiral logarithms. An analysis of the pseudoscalar meson sector with SU(3) chiral perturbation theory reveals that the next-to-leading order corrections are large at the physical strange quark mass. In order to estimate the physical up-down quark mass, we employ the SU(2) chiral analysis expanding the strange quark contributions analytically around the physical strange quark mass. The SU(2) low energy constants lmacr 3 and lmacr 4 are comparable with the recent estimates by other lattice QCD calculations. We determine the physical point together with the lattice spacing employing mπ, mK and mΩ as input. The hadron spectrum extrapolated to the physical point shows an agreement with the experimental values at a few % level of statistical errors, albeit there remain possible cutoff effects. We also find that our results of fπ, fK and their ratio, where renormalization is carries out perturbatively at one loop, are compatible with the experimental values. For the physical quark masses we obtain mudM Smacr and msM Smacr extracted from the axial-vector Ward-Takahashi identity with the perturbative renormalization factors. We also briefly discuss the results for the static quark potential.
Quantum Yang-Mills Dark Energy
NASA Astrophysics Data System (ADS)
Pasechnik, Roman
2016-02-01
In this short review, I discuss basic qualitative characteristics of quantum non-Abelian gauge dynamics in the non-stationary background of the expanding Universe in the framework of the standard Einstein--Yang--Mills formulation. A brief outlook of existing studies of cosmological Yang--Mills fields and their properties will be given. Quantum effects have a profound impact on the gauge field-driven cosmological evolution. In particular, a dynamical formation of the spatially-homogeneous and isotropic gauge field condensate may be responsible for both early and late-time acceleration, as well as for dynamical compensation of non-perturbative quantum vacua contributions to the ground state of the Universe. The main properties of such a condensate in the effective QCD theory at the flat Friedmann--Lema\\'itre--Robertson--Walker (FLRW) background will be discussed within and beyond perturbation theory. Finally, a phenomenologically consistent dark energy can be induced dynamically as a remnant of the QCD vacua compensation arising from leading-order graviton-mediated corrections to the QCD ground state.
Hadron electric polarizability from lattice QCD
NASA Astrophysics Data System (ADS)
Alexandru, Andrei; Lujan, Michael; Freeman, Walter; Lee, Frank
2015-04-01
Electric polarizability measures the ability of the electric field to deform a particle. Experimentally, electric and magnetic polarizabilities can be measured in Compton scattering experiments. To compute these quantities theoretically we need to understand the internal structure of the scatterer and the dynamics of its constituents. For hadrons - bound stated of quarks and gluons - this is a very difficult problem. Lattice QCD can be used to compute the polarizabilities directly in terms of quark and gluons degrees of freedom. In this talk we focus on the neutron. We present results for the electric polarizability for two different quark masses, light enough to connect to chiral perturbation theory. These are currently the lightest quark masses used in lattice QCD polarizability studies. For each pion mass we compute the polarizability at four different volumes and perform an infinite volume extrapolation. For one ensemble, we also discuss the effect of turning on the coupling between the background field and the sea quarks. We compare our results to chiral perturbation theory expectations.
Nonperturbative QCD Coupling and its $$\\beta$$-function from Light-Front Holography
Brodskey, Stanley J.; de Teramond, Guy; Deur, Alexandre P.
2010-05-28
The light-front holographic mapping of classical gravity in AdS space, modified by a positive-sign dilaton background, leads to a non-perturbative effective couplingmore » $$\\alpha_s^{AdS}(Q^2)$$. It agrees with hadron physics data extracted from different observables, such as the effective charge defined by the Bjorken sum rule, as well as with the predictions of models with built-in confinement and lattice simulations. It also displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale $$ \\sim 1$$ GeV. The resulting $$\\beta$$-function appears to capture the essential characteristics of the full $$\\beta$$-function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD. Commensurate scale relations relate observables to each other without scheme or scale ambiguity. In this paper we extrapolate these relations to the nonperturbative domain, thus extending the range of predictions based on $$\\alpha_s^{AdS}(Q^2)$$.« less
Renormalization group invariance and optimal QCD renormalization scale-setting: a key issues review.
Wu, Xing-Gang; Ma, Yang; Wang, Sheng-Quan; Fu, Hai-Bing; Ma, Hong-Hao; Brodsky, Stanley J; Mojaza, Matin
2015-12-01
A valid prediction for a physical observable from quantum field theory should be independent of the choice of renormalization scheme--this is the primary requirement of renormalization group invariance (RGI). Satisfying scheme invariance is a challenging problem for perturbative QCD (pQCD), since a truncated perturbation series does not automatically satisfy the requirements of the renormalization group. In a previous review, we provided a general introduction to the various scale setting approaches suggested in the literature. As a step forward, in the present review, we present a discussion in depth of two well-established scale-setting methods based on RGI. One is the 'principle of maximum conformality' (PMC) in which the terms associated with the β-function are absorbed into the scale of the running coupling at each perturbative order; its predictions are scheme and scale independent at every finite order. The other approach is the 'principle of minimum sensitivity' (PMS), which is based on local RGI; the PMS approach determines the optimal renormalization scale by requiring the slope of the approximant of an observable to vanish. In this paper, we present a detailed comparison of the PMC and PMS procedures by analyzing two physical observables R(e+e-) and [Formula: see text] up to four-loop order in pQCD. At the four-loop level, the PMC and PMS predictions for both observables agree within small errors with those of conventional scale setting assuming a physically-motivated scale, and each prediction shows small scale dependences. However, the convergence of the pQCD series at high orders, behaves quite differently: the PMC displays the best pQCD convergence since it eliminates divergent renormalon terms; in contrast, the convergence of the PMS prediction is questionable, often even worse than the conventional prediction based on an arbitrary guess for the renormalization scale. PMC predictions also have the property that any residual dependence on the choice of initial scale is highly suppressed even for low-order predictions. Thus the PMC, based on the standard RGI, has a rigorous foundation; it eliminates an unnecessary systematic error for high precision pQCD predictions and can be widely applied to virtually all high-energy hadronic processes, including multi-scale problems.
Renormalization group invariance and optimal QCD renormalization scale-setting: a key issues review
NASA Astrophysics Data System (ADS)
Wu, Xing-Gang; Ma, Yang; Wang, Sheng-Quan; Fu, Hai-Bing; Ma, Hong-Hao; Brodsky, Stanley J.; Mojaza, Matin
2015-12-01
A valid prediction for a physical observable from quantum field theory should be independent of the choice of renormalization scheme—this is the primary requirement of renormalization group invariance (RGI). Satisfying scheme invariance is a challenging problem for perturbative QCD (pQCD), since a truncated perturbation series does not automatically satisfy the requirements of the renormalization group. In a previous review, we provided a general introduction to the various scale setting approaches suggested in the literature. As a step forward, in the present review, we present a discussion in depth of two well-established scale-setting methods based on RGI. One is the ‘principle of maximum conformality’ (PMC) in which the terms associated with the β-function are absorbed into the scale of the running coupling at each perturbative order; its predictions are scheme and scale independent at every finite order. The other approach is the ‘principle of minimum sensitivity’ (PMS), which is based on local RGI; the PMS approach determines the optimal renormalization scale by requiring the slope of the approximant of an observable to vanish. In this paper, we present a detailed comparison of the PMC and PMS procedures by analyzing two physical observables R e+e- and Γ(H\\to b\\bar{b}) up to four-loop order in pQCD. At the four-loop level, the PMC and PMS predictions for both observables agree within small errors with those of conventional scale setting assuming a physically-motivated scale, and each prediction shows small scale dependences. However, the convergence of the pQCD series at high orders, behaves quite differently: the PMC displays the best pQCD convergence since it eliminates divergent renormalon terms; in contrast, the convergence of the PMS prediction is questionable, often even worse than the conventional prediction based on an arbitrary guess for the renormalization scale. PMC predictions also have the property that any residual dependence on the choice of initial scale is highly suppressed even for low-order predictions. Thus the PMC, based on the standard RGI, has a rigorous foundation; it eliminates an unnecessary systematic error for high precision pQCD predictions and can be widely applied to virtually all high-energy hadronic processes, including multi-scale problems.
Factorization and resummation for groomed multi-prong jet shapes
NASA Astrophysics Data System (ADS)
Larkoski, Andrew J.; Moult, Ian; Neill, Duff
2018-02-01
Observables which distinguish boosted topologies from QCD jets are playing an increasingly important role at the Large Hadron Collider (LHC). These observables are often used in conjunction with jet grooming algorithms, which reduce contamination from both theoretical and experimental sources. In this paper we derive factorization formulae for groomed multi-prong substructure observables, focusing in particular on the groomed D 2 observable, which is used to identify boosted hadronic decays of electroweak bosons at the LHC. Our factorization formulae allow systematically improvable calculations of the perturbative D 2 distribution and the resummation of logarithmically enhanced terms in all regions of phase space using renormalization group evolution. They include a novel factorization for the production of a soft subjet in the presence of a grooming algorithm, in which clustering effects enter directly into the hard matching. We use these factorization formulae to draw robust conclusions of experimental relevance regarding the universality of the D 2 distribution in both e + e - and pp collisions. In particular, we show that the only process dependence is carried by the relative quark vs. gluon jet fraction in the sample, no non-global logarithms from event-wide correlations are present in the distribution, hadronization corrections are controlled by the perturbative mass of the jet, and all global color correlations are completely removed by grooming, making groomed D 2 a theoretically clean QCD observable even in the LHC environment. We compute all ingredients to one-loop accuracy, and present numerical results at next-to-leading logarithmic accuracy for e + e - collisions, comparing with parton shower Monte Carlo simulations. Results for pp collisions, as relevant for phenomenology at the LHC, are presented in a companion paper [1].
HQET form factors for Bs → Klv decays beyond leading order
NASA Astrophysics Data System (ADS)
Banerjee, Debasish; Koren, Mateusz; Simma, Hubert; Sommer, Rainer
2018-03-01
We compute semi-leptonic Bs decay form factors using Heavy Quark Effective Theory on the lattice. To obtain good control of the 1 /mb expansion, one has to take into account not only the leading static order but also the terms arising at O (1/mb): kinetic, spin and current insertions. We show results for these terms calculated through the ratio method, using our prior results for the static order. After combining them with non-perturbative HQET parameters they can be continuum-extrapolated to give the QCD form factor correct up to O (1/mb2) corrections and without O (αs(mb)n) corrections.
Reliable semiclassical computations in QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dine, Michael; Department of Physics, Stanford University Stanford, California 94305-4060; Festuccia, Guido
We revisit the question of whether or not one can perform reliable semiclassical QCD computations at zero temperature. We study correlation functions with no perturbative contributions, and organize the problem by means of the operator product expansion, establishing a precise criterion for the validity of a semiclassical calculation. For N{sub f}>N, a systematic computation is possible; for N{sub f}
Gluon and ghost correlation functions of 2-color QCD at finite density
NASA Astrophysics Data System (ADS)
Hajizadeh, Ouraman; Boz, Tamer; Maas, Axel; Skullerud, Jon-Ivar
2018-03-01
2-color QCD, i. e. QCD with the gauge group SU(2), is the simplest non-Abelian gauge theory without sign problem at finite quark density. Therefore its study on the lattice is a benchmark for other non-perturbative approaches at finite density. To provide such benchmarks we determine the minimal-Landau-gauge 2-point and 3-gluon correlation functions of the gauge sector and the running gauge coupling at finite density. We observe no significant effects, except for some low-momentum screening of the gluons at and above the supposed high-density phase transition.
QCD Physics with the CMS Experiment
NASA Astrophysics Data System (ADS)
Cerci, S.
2017-12-01
Jets which are the signatures of quarks and gluons in the detector can be described by Quantum Chromodynamics (QCD) in terms of parton-parton scattering. Jets are abundantly produced at the LHC's high energy scales. Measurements of inclusive jets, dijets and multijets can be used to test perturbative QCD predictions and to constrain parton distribution functions (PDF), as well as to measure the strong coupling constant αS . The measurements use the samples of proton-proton collisions collected with the CMS detector at the LHC at various center-of-mass energies of 7, 8 and 13 TeV.
Associated Higgs-W-boson production at hadron colliders: a fully exclusive QCD calculation at NNLO.
Ferrera, Giancarlo; Grazzini, Massimiliano; Tramontano, Francesco
2011-10-07
We consider QCD radiative corrections to standard model Higgs-boson production in association with a W boson in hadron collisions. We present a fully exclusive calculation up to next-to-next-to-leading order (NNLO) in QCD perturbation theory. To perform this NNLO computation, we use a recently proposed version of the subtraction formalism. Our calculation includes finite-width effects, the leptonic decay of the W boson with its spin correlations, and the decay of the Higgs boson into a bb pair. We present selected numerical results at the Tevatron and the LHC.
Data consistency checks for Jefferson Lab Experiment E00-002
NASA Astrophysics Data System (ADS)
Telfeyan, John; Niculescu, Gabriel; Niculescu, Ioana
2006-10-01
Jefferson Lab experiment E00-002 aims to measure inclusive electron-proton and electron-deuteron scattering cross section at low Q squared and moderately low Bjorken x. Data in this kinematic region will further our understanding of the transition between the perturbative and non-perturbative regimes of Quantum Chromodynamics (QCD). As part of the data analysis effort underway at James Madison University (JMU) a comprehensive set of checks and tests was implemented. These tests ensure the quality and consistency of the experimental data, as well as providing, where appropriate, correction factors between the experimental apparatus as used and its idealized computer-simulated representation. This contribution will outline this testing procedure as implemented in the JMU analysis, highlighting the most important features/results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nadolsky, Pavel M.
2015-08-31
The report summarizes research activities of the project ”Integrated analysis of particle interactions” at Southern Methodist University, funded by 2010 DOE Early Career Research Award DE-SC0003870. The goal of the project is to provide state-of-the-art predictions in quantum chromodynamics in order to achieve objectives of the LHC program for studies of electroweak symmetry breaking and new physics searches. We published 19 journal papers focusing on in-depth studies of proton structure and integration of advanced calculations from different areas of particle phenomenology: multi-loop calculations, accurate long-distance hadronic functions, and precise numerical programs. Methods for factorization of QCD cross sections were advancedmore » in order to develop new generations of CTEQ parton distribution functions (PDFs), CT10 and CT14. These distributions provide the core theoretical input for multi-loop perturbative calculations by LHC experimental collaborations. A novel ”PDF meta-analysis” technique was invented to streamline applications of PDFs in numerous LHC simulations and to combine PDFs from various groups using multivariate stochastic sampling of PDF parameters. The meta-analysis will help to bring the LHC perturbative calculations to the new level of accuracy, while reducing computational efforts. The work on parton distributions was complemented by development of advanced perturbative techniques to predict observables dependent on several momentum scales, including production of massive quarks and transverse momentum resummation at the next-to-next-to-leading order in QCD.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.; de Teramond, Guy F.; Deur, Alexandre P.
2015-09-01
The valence Fock-state wavefunctions of the light-front QCD Hamiltonian satisfy a relativistic equation of motion with an effective confining potential U which systematically incorporates the effects of higher quark and gluon Fock states. If one requires that the effective action which underlies the QCD Lagrangian remains conformally invariant and extends the formalism of de Alfaro, Fubini and Furlan to light front Hamiltonian theory, the potential U has a unique form of a harmonic oscillator potential, and a mass gap arises. The result is a nonperturbative relativistic light-front quantum mechanical wave equation which incorporates color confinement and other essential spectroscopic andmore » dynamical features of hadron physics, including a massless pion for zero quark mass and linear Regge trajectories with the same slope in the radial quantum number n and orbital angular momentum L. Only one mass parameter κ appears. Light-front holography thus provides a precise relation between the bound-state amplitudes in the fifth dimension of AdS space and the boost-invariant light-front wavefunctions describing the internal structure of hadrons in physical space-time. We also show how the mass scale κ underlying confinement and hadron masses determines the scale Λ {ovr MS} controlling the evolution of the perturbative QCD coupling. The relation between scales is obtained by matching the nonperturbative dynamics, as described by an effective conformal theory mapped to the light-front and its embedding in AdS space, to the perturbative QCD regime computed to four-loop order. The result is an effective coupling defined at all momenta. The predicted value Λ {ovr MS}=0.328±0.034 GeV is in agreement with the world average 0.339±0.010 GeV. The analysis applies to any renormalization scheme.« less
A non-perturbative exploration of the high energy regime in Nf=3 QCD. ALPHA Collaboration
NASA Astrophysics Data System (ADS)
Dalla Brida, Mattia; Fritzsch, Patrick; Korzec, Tomasz; Ramos, Alberto; Sint, Stefan; Sommer, Rainer
2018-05-01
Using continuum extrapolated lattice data we trace a family of running couplings in three-flavour QCD over a large range of scales from about 4 to 128 GeV. The scale is set by the finite space time volume so that recursive finite size techniques can be applied, and Schrödinger functional (SF) boundary conditions enable direct simulations in the chiral limit. Compared to earlier studies we have improved on both statistical and systematic errors. Using the SF coupling to implicitly define a reference scale 1/L_0≈ 4 GeV through \\bar{g}^2(L_0) =2.012, we quote L_0 Λ ^{N_f=3}_{{\\overline{MS}}} =0.0791(21). This error is dominated by statistics; in particular, the remnant perturbative uncertainty is negligible and very well controlled, by connecting to infinite renormalization scale from different scales 2^n/L_0 for n=0,1,\\ldots ,5. An intermediate step in this connection may involve any member of a one-parameter family of SF couplings. This provides an excellent opportunity for tests of perturbation theory some of which have been published in a letter (ALPHA collaboration, M. Dalla Brida et al. in Phys Rev Lett 117(18):182001, 2016). The results indicate that for our target precision of 3 per cent in L_0 Λ ^{N_f=3}_{{\\overline{MS}}}, a reliable estimate of the truncation error requires non-perturbative data for a sufficiently large range of values of α _s=\\bar{g}^2/(4π ). In the present work we reach this precision by studying scales that vary by a factor 2^5= 32, reaching down to α _s≈ 0.1. We here provide the details of our analysis and an extended discussion.
NASA Astrophysics Data System (ADS)
The QCD Evolution 2016 workshop was held at the National Institute for Subatomic Physics (Nikhef) in Amsterdam, May 30 - June 3, 2016. The workshop is a continuation of a series of workshops held during five consecutive years, in 2011, 2012, 2013, 2015 at Jefferson Lab, and in 2014 in Santa Fe, NM. With the rapid developments in our understanding of the evolution of parton distributions including low-x, TMDs, GPDs, higher-twist correlation functions, and the associated progress in perturbative QCD, lattice QCD and effective field theory techniques, we look forward to yet another exciting meeting in 2016. The program of QCD Evolution 2016 will pay special attention to the topics of importance for ongoing experiments, in the full range from Jefferson Lab energies to LHC energies or future experiments such as a future Electron Ion Collider, recently recommended as a highest priority in U.S. Department of Energy's 2015 Long Range Plan for Nuclear Science.
NASA Astrophysics Data System (ADS)
2017-05-01
The QCD Evolution 2017 workshop was held at Jefferson Lab, May 22-26, 2017. The workshop is a continuation of a series of workshops held during six consecutive years, in 2011, 2012, 2013, 2015 at Jefferson Lab, and in 2014 in Santa Fe, NM, and in 2016 at the National Institute for Subatomic Physics (Nikhef) in Amsterdam. With the rapid developments in our understanding of the evolution of parton distributions including TMDs, GPDs, low-x, higher-twist correlation functions, and the associated progress in perturbative QCD, lattice QCD and effective field theory techniques, we look forward to yet another exciting meeting in 2017. The program of QCD Evolution 2017 will pay special attention to the topics of importance for ongoing experiments, in the full range from Jefferson Lab energies to RHIC and LHC energies or future experiments such as a future Electron Ion Collider, recently recommended as a highest priority in U.S. Department of Energy's 2015 Long Range Plan for Nuclear Science.
Effective holographic models for QCD: Glueball spectrum and trace anomaly
NASA Astrophysics Data System (ADS)
Ballon-Bayona, Alfonso; Boschi-Filho, Henrique; Mamani, Luis A. H.; Miranda, Alex S.; Zanchin, Vilson T.
2018-02-01
We investigate effective holographic models for QCD arising from five-dimensional dilaton gravity. The models are characterized by a dilaton with a mass term in the UV, dual to a CFT deformation by a relevant operator, and quadratic in the IR. The UV constraint leads to the explicit breaking of conformal symmetry, whereas the IR constraint guarantees linear confinement. We propose semianalytic interpolations between the UV and the IR and obtain a spectrum for scalar and tensor glueballs consistent with lattice QCD data. We use the glueball spectrum as a physical constraint to find the evolution of the model parameters as the mass term goes to 0. Finally, we reproduce the universal result for the trace anomaly of deformed CFTs and propose a dictionary between this result and the QCD trace anomaly. A nontrivial consequence of this dictionary is the emergence of a β function similar to the two-loop perturbative QCD result.
Adams, J; Adler, C; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Badyal, S K; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bezverkhny, B I; Bhardwaj, S; Bhaskar, P; Bhati, A K; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Derevschikov, A A; Didenko, L; Dietel, T; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Majumdar, M R; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Filip, P; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Ganti, M S; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Grachov, O; Grigoriev, V; Gronstal, S; Grosnick, D; Guedon, M; Guertin, S M; Gupta, A; Gushin, E; Gutierrez, T D; Hallman, T J; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Huang, S L; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Jiang, H; Johnson, I; Jones, P G; Judd, E G; Kabana, S; Kaneta, M; Kaplan, M; Keane, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; LeVine, M J; Li, C; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Ma, Y G; Magestro, D; Mahajan, S; Mangotra, L K; Mahapatra, D P; Majka, R; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mironov, C; Mishra, D; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Mora-Corral, M J; Morozov, D A; Morozov, V; de Moura, M M; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L J; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shao, M; Sharma, M; Shestermanov, K E; Shimanskii, S S; Singaraju, R N; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stanislaus, S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trivedi, M D; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasiliev, A N; Vasiliev, M; Vigdor, S E; Viyogi, Y P; Voloshin, S A; Waggoner, W; Wang, F; Wang, G; Wang, X L; Wang, Z M; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zhang, Z P; Zołnierczuk, P A; Zoulkarneev, R; Zoulkarneeva, J; Zubarev, A N
2004-04-30
Measurements of the production of forward high-energy pi(0) mesons from transversely polarized proton collisions at sqrt[s]=200 GeV are reported. The cross section is generally consistent with next-to-leading order perturbative QCD calculations. The analyzing power is small at x(F) below about 0.3, and becomes positive and large at higher x(F), similar to the trend in data at sqrt[s]< or =20 GeV. The analyzing power is in qualitative agreement with perturbative QCD model expectations. This is the first significant spin result seen for particles produced with p(T)>1 GeV/c at a polarized proton collider.
NASA Astrophysics Data System (ADS)
Ma, Ai-Jun; Li, Ya; Xiao, Zhen-Jun
2018-01-01
In this paper, we studied the quasi-two-body Bc →D(s) [ ρ (770) , ρ (1450) , ρ (1700) → ] ππ decays by employing the perturbative QCD (PQCD) factorization approach. The two-pion distribution amplitudes Φππ are applied to include the final-state interactions between the pion pair, while the time-like form factors Fπ (w2) associated with the P-wave resonant states ρ (770), ρ (1450) and ρ (1700) are extracted from the experimental data of the e+e- annihilation. We found that: (a) the PQCD predictions for the branching ratios of the quasi-two-body Bc →D(s) [ ρ (770) , ρ (1450) , ρ (1700) → ] ππ decays are in the order of 10-9 to 10-5 and the direct CP violations around (10 - 40)% in magnitude; (b) the two sets of the large hierarchy R 1 a , 1 b , 1 c and R 2 a , 2 b , 2 c for the ratios of the branching ratios of the considered decays are defined and can be understood in the PQCD factorization approach, while the self-consistency between the quasi-two-body and two-body framework for Bc →D(s) [ ρ (770) → ] ππ and Bc →D(s) ρ (770) decays are confirmed by our numerical results; (c) taking currently known B (ρ (1450) → ππ) and B (ρ (1700) → ππ) as input, we extracted the theoretical predictions for B (Bc → Dρ (1450)) and B (Bc → Dρ (1700)) from the PQCD predictions for the decay rates of the quasi-two-body decays Bc → D [ ρ (1450) , ρ (1700) → ] ππ. All the PQCD predictions will be tested in the future experiments.
Refactorizing NRQCD short-distance coefficients in exclusive quarkonium production
NASA Astrophysics Data System (ADS)
Jia, Yu; Yang, Deshan
2009-06-01
In a typical exclusive quarkonium production process, when the center-of-mass energy, √{s}, is much greater than the heavy quark mass m, large kinematic logarithms of s/m will unavoidably arise at each order of perturbative expansion in the short-distance coefficients of the nonrelativistic QCD (NRQCD) factorization formalism, which may potentially harm the perturbative expansion. This symptom reflects that the hard regime in NRQCD factorization is too coarse and should be further factorized. We suggest that this regime can be further separated into "hard" and "collinear" degrees of freedom, so that the familiar light-cone approach can be employed to reproduce the NRQCD matching coefficients at the zeroth order of m/s and order by order in α. Taking two simple processes, exclusive η+γ production in ee annihilation and Higgs boson radiative decay into ϒ, as examples, we illustrate how the leading logarithms of s/m in the NRQCD matching coefficients are identified and summed to all orders in α with the aid of Brodsky-Lepage evolution equation.
Next-to-leading order QCD predictions for top-quark pair production with up to three jets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Höche, S.; Maierhöfer, P.; Moretti, N.
2017-03-07
Here, we present theoretical predictions for the production of top-quark pairs with up to three jets at the next-to leading order in perturbative QCD. The relevant calculations are performed with Sherpa and OpenLoops. In order to address the issue of scale choices and related uncertainties in the presence of multiple scales, we compare results obtained with the standard scale HT/2HT/2 at fixed order and the MiNLO procedure. By analyzing various cross sections and distributions for tmore » $$\\bar{t}$$+0,1,2,3 jets at the 13 TeV LHC we found a remarkable overall agreement between fixed-order and MiNLO results. The differences are typically below the respective factor-two scale variations, suggesting that for all considered jet multiplicities missing higher-order effects should not exceed the ten percent level.« less
Higgs boson decay into b-quarks at NNLO accuracy
NASA Astrophysics Data System (ADS)
Del Duca, Vittorio; Duhr, Claude; Somogyi, Gábor; Tramontano, Francesco; Trócsányi, Zoltán
2015-04-01
We compute the fully differential decay rate of the Standard Model Higgs boson into b-quarks at next-to-next-to-leading order (NNLO) accuracy in αs. We employ a general subtraction scheme developed for the calculation of higher order perturbative corrections to QCD jet cross sections, which is based on the universal infrared factorization properties of QCD squared matrix elements. We show that the subtractions render the various contributions to the NNLO correction finite. In particular, we demonstrate analytically that the sum of integrated subtraction terms correctly reproduces the infrared poles of the two-loop double virtual contribution to this process. We present illustrative differential distributions obtained by implementing the method in a parton level Monte Carlo program. The basic ingredients of our subtraction scheme, used here for the first time to compute a physical observable, are universal and can be employed for the computation of more involved processes.
NASA Astrophysics Data System (ADS)
Kataev, A. L.; Molokoedov, V. S.
2017-12-01
The analytical {\\mathscr{O}}({a}s4) perturbative QCD expression for the flavour non-singlet contribution to the Bjorken polarized sum rule in the rather applicable at present gauge-dependent miniMOM scheme is obtained. For the considered three values of the gauge parameter, namely ξ = 0 (Landau gauge), ξ = -1 (anti-Feynman gauge) and ξ = -3 (Stefanis-Mikhailov gauge), the scheme-dependent coefficients are considerably smaller than the gauge-independent {\\overline{{MS}}} results. It is found that the fundamental property of the factorization of the QCD renormalization group β-function in the generalized Crewther relation, which is valid in the gauge-invariant {\\overline{{MS}}} scheme up to {\\mathscr{O}}({a}s4)-level at least, is unexpectedly valid at the same level in the miniMOM-scheme for ξ = 0, and for ξ = -1 and ξ = -3 in part.
DØ Results on Diphoton Direct Production and Photon + b and c Jet Production
NASA Astrophysics Data System (ADS)
Sawyer, Lee
2013-11-01
In this note we present measurements of the direct photon pair production cross sections using 8.5 fb-1 of data collected with the DØ detector at the Fermilab Tevatron pmathop plimits^ collider at √s = 1.96 TeV. The results are shown as differential distributions with respect to the photon pair mass, pair transverse momentum, azimuthal angle, and polar scattering angle in the Collins-Soper frame. We also present measurements of the differential cross section dσ/dpTγ for the inclusive production of a photon in association with a b- or c-quark jet. The results are based on 8.7 fb-1 of data, and the measured cross sections are compared with next-to-leading order perturbative QCD calculations using different sets of parton distribution functions as well as to predictions based on the kT-factorization QCD approach, and those from various Monte Carlo event generators.
The pion: an enigma within the Standard Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horn, Tanja; Roberts, Craig D.
2016-05-27
Almost 50 years after the discovery of gluons & quarks, we are only just beginning to understand how QCD builds the basic bricks for nuclei: neutrons, protons, and the pions that bind them. QCD is characterised by two emergent phenomena: confinement & dynamical chiral symmetry breaking (DCSB). They are expressed with great force in the character of the pion. In turn, pion properties suggest that confinement & DCSB are closely connected. As both a Nambu-Goldstone boson and a quark-antiquark bound-state, the pion is unique in Nature. Developing an understanding of its properties is thus critical to revealing basic features ofmore » the Standard Model. We describe experimental progress in this direction, made using electromagnetic probes, highlighting both improvements in the precision of charged-pion form factor data, achieved in the past decade, and new results on the neutral-pion transition form factor. Both challenge existing notions of pion structure. We also provide a theoretical context for these empirical advances, first explaining how DCSB works to guarantee that the pion is unnaturally light; but also, nevertheless, ensures the pion is key to revealing the mechanisms that generate nearly all the mass of hadrons. Our discussion unifies the charged-pion elastic and neutral-pion transition form factors, and the pion's twist-2 parton distribution amplitude. It also indicates how studies of the charged-kaon form factor can provide significant contributions. Importantly, recent predictions for the large-$Q^2$ behaviour of the pion form factor can be tested by experiments planned at JLab 12. Those experiments will extend precise charged-pion form factor data to momenta that can potentially serve in validating factorisation theorems in QCD, exposing the transition between the nonperturbative and perturbative domains, and thereby reaching a goal that has long driven hadro-particle physics.« less
Chiral behavior of K →π l ν decay form factors in lattice QCD with exact chiral symmetry
NASA Astrophysics Data System (ADS)
Aoki, S.; Cossu, G.; Feng, X.; Fukaya, H.; Hashimoto, S.; Kaneko, T.; Noaki, J.; Onogi, T.; Jlqcd Collaboration
2017-08-01
We calculate the form factors of the K →π l ν semileptonic decays in three-flavor lattice QCD and study their chiral behavior as a function of the momentum transfer and the Nambu-Goldstone boson masses. Chiral symmetry is exactly preserved by using the overlap quark action, which enables us to directly compare the lattice data with chiral perturbation theory (ChPT). We generate gauge ensembles at a lattice spacing of 0.11 fm with four pion masses covering 290-540 MeV and a strange quark mass ms close to its physical value. By using the all-to-all quark propagator, we calculate the vector and scalar form factors with high precision. Their dependence on ms and the momentum transfer is studied by using the reweighting technique and the twisted boundary conditions for the quark fields. We compare the results for the semileptonic form factors with ChPT at next-to-next-to-leading order in detail. While many low-energy constants appear at this order, we make use of our data of the light meson electromagnetic form factors in order to control the chiral extrapolation. We determine the normalization of the form factors as f+(0 )=0.9636 (36 )(-35+57) and observe reasonable agreement of their shape with experiment.
Renormalization of Supersymmetric QCD on the Lattice
NASA Astrophysics Data System (ADS)
Costa, Marios; Panagopoulos, Haralambos
2018-03-01
We perform a pilot study of the perturbative renormalization of a Supersymmetric gauge theory with matter fields on the lattice. As a specific example, we consider Supersymmetric N=1 QCD (SQCD). We study the self-energies of all particles which appear in this theory, as well as the renormalization of the coupling constant. To this end we compute, perturbatively to one-loop, the relevant two-point and three-point Green's functions using both dimensional and lattice regularizations. Our lattice formulation involves theWilson discretization for the gluino and quark fields; for gluons we employ the Wilson gauge action; for scalar fields (squarks) we use naive discretization. The gauge group that we consider is SU(Nc), while the number of colors, Nc, the number of flavors, Nf, and the gauge parameter, α, are left unspecified. We obtain analytic expressions for the renormalization factors of the coupling constant (Zg) and of the quark (ZΨ), gluon (Zu), gluino (Zλ), squark (ZA±), and ghost (Zc) fields on the lattice. We also compute the critical values of the gluino, quark and squark masses. Finally, we address the mixing which occurs among squark degrees of freedom beyond tree level: we calculate the corresponding mixing matrix which is necessary in order to disentangle the components of the squark field via an additional finite renormalization.
Supersymmetric QCD on the lattice: An exploratory study
NASA Astrophysics Data System (ADS)
Costa, M.; Panagopoulos, H.
2017-08-01
We perform a pilot study of the perturbative renormalization of a supersymmetric gauge theory with matter fields on the lattice. As a specific example, we consider supersymmetric N =1 QCD (SQCD). We study the self-energies of all particles which appear in this theory, as well as the renormalization of the coupling constant. To this end we compute, perturbatively to one-loop, the relevant two-point and three-point Green's functions using both dimensional and lattice regularizations. Our lattice formulation involves the Wilson discretization for the gluino and quark fields; for gluons we employ the Wilson gauge action; for scalar fields (squarks) we use naïve discretization. The gauge group that we consider is S U (Nc), while the number of colors, Nc, the number of flavors, Nf, and the gauge parameter, α , are left unspecified. We obtain analytic expressions for the renormalization factors of the coupling constant (Zg) and of the quark (Zψ), gluon (Zu), gluino (Zλ), squark (ZA ±), and ghost (Zc) fields on the lattice. We also compute the critical values of the gluino, quark and squark masses. Finally, we address the mixing which occurs among squark degrees of freedom beyond tree level: we calculate the corresponding mixing matrix which is necessary in order to disentangle the components of the squark field via an additional finite renormalization.
Mass-improvement of the vector current in three-flavor QCD
NASA Astrophysics Data System (ADS)
Fritzsch, P.
2018-06-01
We determine two improvement coefficients which are relevant to cancel mass-dependent cutoff effects in correlation functions with operator insertions of the non-singlet local QCD vector current. This determination is based on degenerate three-flavor QCD simulations of non-perturbatively O( a) improved Wilson fermions with tree-level improved gauge action. Employing a very robust strategy that has been pioneered in the quenched approximation leads to an accurate estimate of a counterterm cancelling dynamical quark cutoff effects linear in the trace of the quark mass matrix. To our knowledge this is the first time that such an effect has been determined systematically with large significance.
Dixon, Lance J.; Luo, Ming-xing; Shtabovenko, Vladyslav; ...
2018-03-09
Here, the energy-energy correlation (EEC) between two detectors in e +e – annihilation was computed analytically at leading order in QCD almost 40 years ago, and numerically at next-to-leading order (NLO) starting in the 1980s. We present the first analytical result for the EEC at NLO, which is remarkably simple, and facilitates analytical study of the perturbative structure of the EEC. We provide the expansion of the EEC in the collinear and back-to-back regions through next-to-leading power, information which should aid resummation in these regions.
Constraints on spin-dependent parton distributions at large x from global QCD analysis
Jimenez-Delgado, P.; Avakian, H.; Melnitchouk, W.
2014-09-28
This study investigate the behavior of spin-dependent parton distribution functions (PDFs) at large parton momentum fractions x in the context of global QCD analysis. We explore the constraints from existing deep-inelastic scattering data, and from theoretical expectations for the leading x → 1 behavior based on hard gluon exchange in perturbative QCD. Systematic uncertainties from the dependence of the PDFs on the choice of parametrization are studied by considering functional forms motivated by orbital angular momentum arguments. Finally, we quantify the reduction in the PDF uncertainties that may be expected from future high-x data from Jefferson Lab at 12 GeV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, Lance J.; Luo, Ming-xing; Shtabovenko, Vladyslav
Here, the energy-energy correlation (EEC) between two detectors in e +e – annihilation was computed analytically at leading order in QCD almost 40 years ago, and numerically at next-to-leading order (NLO) starting in the 1980s. We present the first analytical result for the EEC at NLO, which is remarkably simple, and facilitates analytical study of the perturbative structure of the EEC. We provide the expansion of the EEC in the collinear and back-to-back regions through next-to-leading power, information which should aid resummation in these regions.
Parton Densities: A Personal Retrospective
NASA Astrophysics Data System (ADS)
Petronzio, R.
The beginning of perturbative QCD and the generalisation of parton evolution probabilities beyond leading order are briefly recalled, together with my personal experience of collaboration and friendships with Gabriele.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nesterenko, A. V.
The dispersive approach to QCD, which properly embodies the intrinsically nonperturbative constraints originating in the kinematic restrictions on relevant physical processes and extends the applicability range of perturbation theory towards the infrared domain, is briefly overviewed. The study of OPAL (update 2012) and ALEPH (update 2014) experimental data on inclusive τ lepton hadronic decay in vector and axial-vector channels within dispersive approach is presented.
Scientific and personal recollections of Roberto Petronzio
NASA Astrophysics Data System (ADS)
Parisi, Giorgio
2018-03-01
This paper aims to recall some of the main contributions of Roberto Petronzio to physics, with a particular regard to the period we have been working together. His seminal contributions cover an extremely wide range of topics: the foundation of the perturbative approach to QCD, various aspects of weak interaction theory, from basic questions (e.g. the mass of the Higgs) to lattice weak interaction, lattice QCD from the beginning to most recent computations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Bipasha; Davies, C. T. H.; Donald, G. C.
Here, we compare correlators for pseudoscalar and vector mesons made from valence strange quarks using the clover quark and highly improved staggered quark (HISQ) formalisms in full lattice QCD. We use fully nonperturbative methods to normalise vector and axial vector current operators made from HISQ quarks, clover quarks and from combining HISQ and clover fields. This allows us to test expectations for the renormalisation factors based on perturbative QCD, with implications for the error budget of lattice QCD calculations of the matrix elements of clover-staggeredmore » $b$-light weak currents, as well as further HISQ calculations of the hadronic vacuum polarisation. We also compare the approach to the (same) continuum limit in clover and HISQ formalisms for the mass and decay constant of the $$\\phi$$ meson. Our final results for these parameters, using single-meson correlators and neglecting quark-line disconnected diagrams are: $$m_{\\phi} =$$ 1.023(5) GeV and $$f_{\\phi} = $$ 0.238(3) GeV in good agreement with experiment. These results come from calculations in the HISQ formalism using gluon fields that include the effect of $u$, $d$, $s$ and $c$ quarks in the sea with three lattice spacing values and $$m_{u/d}$$ values going down to the physical point.« less
Blum, Thomas; Chowdhury, Saumitra; Hayakawa, Masashi; Izubuchi, Taku
2015-01-09
The most compelling possibility for a new law of nature beyond the four fundamental forces comprising the standard model of high-energy physics is the discrepancy between measurements and calculations of the muon anomalous magnetic moment. Until now a key part of the calculation, the hadronic light-by-light contribution, has only been accessible from models of QCD, the quantum description of the strong force, whose accuracy at the required level may be questioned. A first principles calculation with systematically improvable errors is needed, along with the upcoming experiments, to decisively settle the matter. For the first time, the form factor that yields the light-by-light scattering contribution to the muon anomalous magnetic moment is computed in such a framework, lattice QCD+QED and QED. A nonperturbative treatment of QED is used and checked against perturbation theory. The hadronic contribution is calculated for unphysical quark and muon masses, and only the diagram with a single quark loop is computed for which statistically significant signals are obtained. Initial results are promising, and the prospect for a complete calculation with physical masses and controlled errors is discussed.
Baryon mass splittings and strong CP violation in SU(3) chiral perturbation theory
de Vries, Jordy; Mereghetti, Emanuele; Walker-Loud, Andre P.
2015-10-08
We study SU(3) flavor breaking corrections to the relation between the octet baryon masses and the nucleon-meson CP-violating interactions induced by the QCD theta term. We also work within the framework of SU(3) chiral perturbation theory and work through next-to-next-to-leading order in the SU(3) chiral expansion, which is O(m 2 q). At lowest order, the CP-odd couplings induced by the QCD θ - term are determined by mass splittings of the baryon octet, the classic result of Crewther et al. We show that for each isospin-invariant CP-violating nucleon-meson interaction there exists one relation which is respected by loop corrections upmore » to the order we work, while other leading-order relations are violated. With these relations we extract a precise value of the pion-nucleon coupling g - 0 by using recent lattice QCD evaluations of the proton-neutron mass splitting. Additionally, we derive semi-precise values for CP-violating coupling constants between heavier mesons and nucleons and discuss their phenomenological impact on electric dipole moments of nucleons and nuclei.« less
Baryon mass splittings and strong CP violation in SU(3) chiral perturbation theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Vries, Jordy; Mereghetti, Emanuele; Walker-Loud, Andre P.
We study SU(3) flavor breaking corrections to the relation between the octet baryon masses and the nucleon-meson CP-violating interactions induced by the QCD theta term. We also work within the framework of SU(3) chiral perturbation theory and work through next-to-next-to-leading order in the SU(3) chiral expansion, which is O(m 2 q). At lowest order, the CP-odd couplings induced by the QCD θ - term are determined by mass splittings of the baryon octet, the classic result of Crewther et al. We show that for each isospin-invariant CP-violating nucleon-meson interaction there exists one relation which is respected by loop corrections upmore » to the order we work, while other leading-order relations are violated. With these relations we extract a precise value of the pion-nucleon coupling g - 0 by using recent lattice QCD evaluations of the proton-neutron mass splitting. Additionally, we derive semi-precise values for CP-violating coupling constants between heavier mesons and nucleons and discuss their phenomenological impact on electric dipole moments of nucleons and nuclei.« less
OPE, charm-quark mass, and decay constants of D and Ds mesons from QCD sum rules
Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano
2011-01-01
We present a sum-rule extraction of the decay constants of the charmed mesons D and Ds from the two-point correlator of pseudoscalar currents. First, we compare the perturbative expansion for the correlator and the decay constant performed in terms of the pole and the running MS¯ masses of the charm quark. The perturbative expansion in terms of the pole mass shows no signs of convergence whereas reorganizing this very expansion in terms of the MS¯ mass leads to a distinct hierarchy of the perturbative expansion. Furthermore, the decay constants extracted from the pole-mass correlator turn out to be considerably smaller than those obtained by means of the MS¯-mass correlator. Second, making use of the OPE in terms of the MS¯ mass, we determine the decay constants of both D and Ds mesons with an emphasis on the uncertainties in these quantities related both to the input QCD parameters and to the limited accuracy of the method of sum rules. PMID:21949465
Threshold resummation of the rapidity distribution for Higgs production at NNLO +NNLL
NASA Astrophysics Data System (ADS)
Banerjee, Pulak; Das, Goutam; Dhani, Prasanna K.; Ravindran, V.
2018-03-01
We present a formalism that resums threshold-enhanced logarithms to all orders in perturbative QCD for the rapidity distribution of any colorless particle produced in hadron colliders. We achieve this by exploiting the factorization properties and K +G equations satisfied by the soft and virtual parts of the cross section. We compute for the first time compact and most general expressions in two-dimensional Mellin space for the resummed coefficients. Using various state-of-the-art multiloop and multileg results, we demonstrate the numerical impact of our resummed results up to next-to-next-to-leading order for the rapidity distribution of the Higgs boson at the LHC. We find that inclusion of these threshold logs through resummation improves the reliability of perturbative predictions.
B → Dℓν form factors at nonzero recoil and |V cb| from 2+1-flavor lattice QCD
Bailey, Jon A.
2015-08-10
We present the first unquenched lattice-QCD calculation of the hadronic form factors for the exclusive decay B¯→Dℓν¯ at nonzero recoil. We carry out numerical simulations on 14 ensembles of gauge-field configurations generated with 2+1 flavors of asqtad-improved staggered sea quarks. The ensembles encompass a wide range of lattice spacings (approximately 0.045 to 0.12 fm) and ratios of light (up and down) to strange sea-quark masses ranging from 0.05 to 0.4. For the b and c valence quarks we use improved Wilson fermions with the Fermilab interpretation, while for the light valence quarks we use asqtad-improved staggered fermions. We extrapolate ourmore » results to the physical point using rooted staggered heavy-light meson chiral perturbation theory. We then parametrize the form factors and extend them to the full kinematic range using model-independent functions based on analyticity and unitarity. We present our final results for f +(q 2) and f 0(q 2), including statistical and systematic errors, as coefficients of a series in the variable z and the covariance matrix between these coefficients. We then fit the lattice form-factor data jointly with the experimentally measured differential decay rate from BABAR to determine the CKM matrix element, |V cb|=(39.6 ± 1.7 QCD+exp ± 0.2 QED) × 10 –3. As a byproduct of the joint fit we obtain the form factors with improved precision at large recoil. In conclusion, we use them to update our calculation of the ratio R(D) in the Standard Model, which yields R(D)=0.299(11).« less
Status of the observed and predicted b anti-b production at the Tevatron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Happacher, F.; Giromini, P.; /Frascati
2005-09-01
The authors review the experimental status of the b-quark production at the Fermilab Tevatron. They compare all available measurements to perturbative QCD predictions (NLO and FONLL) and also to the parton-level cross section evaluated with parton-shower Monte Carlo generators. They examine both the single b cross section and the so called b{bar b} correlations. The review shows that the experimental situation is quite complicated because the measurements appear to be inconsistent among themselves. In this situation, there is no solid basis to either claim that perturbative QCD is challenged by these measurements or, in contrast, that long-standing discrepancies between datamore » and theory have been resolved by incrementally improving the measurements and the theoretical prediction.« less
Spin-dependent quark beam function at NNLO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boughezal, Radja; Petriello, Frank; Schubert, Ulrich
2017-08-01
We calculate the beam function for longitudinally polarized quarks through next-to-next-to-leading order (NNLO) in QCD perturbation theory. This is the last missing ingredient needed to apply the factorization theorem for the N-jettiness event-shape variable in a variety of polarized collisions through the NNLO level. We present all technical details of our derivation. As a by-product of our calculation we provide the first independent check of the previously obtained unpolarized quark beam function. We anticipate that our result will have phenomenological applications in describing data from polarized collisions.
Determination of the chiral condensate from (2+1)-flavor lattice QCD.
Fukaya, H; Aoki, S; Hashimoto, S; Kaneko, T; Noaki, J; Onogi, T; Yamada, N
2010-03-26
We perform a precise calculation of the chiral condensate in QCD using lattice QCD with 2+1 flavors of dynamical overlap quarks. Up and down quark masses cover a range between 3 and 100 MeV on a 16{3}x48 lattice at a lattice spacing approximately 0.11 fm. At the lightest sea quark mass, the finite volume system on the lattice is in the regime. By matching the low-lying eigenvalue spectrum of the Dirac operator with the prediction of chiral perturbation theory at the next-to-leading order, we determine the chiral condensate in (2+1)-flavor QCD with strange quark mass fixed at its physical value as Sigma;{MS[over ]}(2 GeV)=[242(04)(+19/-18) MeV]{3} where the errors are statistical and systematic, respectively.
Going Beyond QCD in Lattice Gauge Theory
NASA Astrophysics Data System (ADS)
Fleming, G. T.
2011-01-01
Strongly coupled gauge theories (SCGT's) have been studied theoretically for many decades using numerous techniques. The obvious motivation for these efforts stemmed from a desire to understand the source of the strong nuclear force: Quantum Chromo-dynamics (QCD). Guided by experimental results, theorists generally consider QCD to be a well-understood SCGT. Unfortunately, it is not clear how to extend the lessons learned from QCD to other SCGT's. Particularly urgent motivators for new studies of other SCGT's are the ongoing searches for physics beyond the standard model (BSM) at the Large Hadron Collider (LHC) and the Tevatron. Lattice gauge theory (LGT) is a technique for systematically-improvable calculations in many SCGT's. It has become the standard for non-perturbative calculations in QCD and it is widely believed that it may be useful for study of other SCGT's in the realm of BSM physics. We will discuss the prospects and potential pitfalls for these LGT studies, focusing primarily on the flavor dependence of SU(3) gauge theory.
The Top Quark, QCD, And New Physics.
DOE R&D Accomplishments Database
Dawson, S.
2002-06-01
The role of the top quark in completing the Standard Model quark sector is reviewed, along with a discussion of production, decay, and theoretical restrictions on the top quark properties. Particular attention is paid to the top quark as a laboratory for perturbative QCD. As examples of the relevance of QCD corrections in the top quark sector, the calculation of e{sup+}e{sup -}+ t{bar t} at next-to-leading-order QCD using the phase space slicing algorithm and the implications of a precision measurement of the top quark mass are discussed in detail. The associated production of a t{bar t} pair and a Higgs boson in either e{sup+}e{sup -} or hadronic collisions is presented at next-to-leading-order QCD and its importance for a measurement of the top quark Yulrawa coupling emphasized. Implications of the heavy top quark mass for model builders are briefly examined, with the minimal supersymmetric Standard Model and topcolor discussed as specific examples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horn, Tanja; Roberts, Craig D.
Quantum chromodynamics (QCDs) is the strongly interacting part of the Standard Model. It is supposed to describe all of nuclear physics; and yet, almost 50 years after the discovery of gluons and quarks, we are only just beginning to understand how QCD builds the basic bricks for nuclei: neutrons and protons, and the pions that bind them together. QCD is characterised by two emergent phenomena: confinement and dynamical chiral symmetry breaking (DCSB). They have far-reaching consequences, expressed with great force in the character of the pion; and pion properties, in turn, suggest that confinement and DCSB are intimately connected. Indeed,more » since the pion is both a Nambu–Goldstone boson and a quark–antiquark bound-state, it holds a unique position in nature and, consequently, developing an understanding of its properties is critical to revealing some very basic features of the Standard Model. We describe experimental progress toward meeting this challenge that has been made using electromagnetic probes, highlighting both dramatic improvements in the precision of charged-pion form factor data that have been achieved in the past decade and new results on the neutral-pion transition form factor, both of which challenge existing notions of pion structure. We also provide a theoretical context for these empirical advances, which begins with an explanation of how DCSB works to guarantee that the pion is un-naturally light; but also, nevertheless, ensures that the pion is the best object to study in order to reveal the mechanisms that generate nearly all the mass of hadrons. In canvassing advances in these areas, our discussion unifies many aspects of pion structure and interactions, connecting the charged-pion elastic form factor, the neutral-pion transition form factor and the pion's leading-twist parton distribution amplitude. It also sketches novel ways in which experimental and theoretical studies of the charged-kaon electromagnetic form factor can provide significant contributions. Importantly, it appears that recent predictions for the large-Q 2 behaviour of the charged-pion form factor can be tested by experiments planned at the upgraded 12 GeV Jefferson Laboratory. Those experiments will extend precise charged-pion form factor data up to momentum transfers that it now appears may be large enough to serve in validating factorisation theorems in QCD. If so, they may expose the transition between the non-perturbative and perturbative domains and thereby reach a goal that has driven hadro-particle physics for around 35 years.« less
The pion: an enigma within the Standard Model
NASA Astrophysics Data System (ADS)
Horn, Tanja; Roberts, Craig D.
2016-07-01
Quantum chromodynamics (QCDs) is the strongly interacting part of the Standard Model. It is supposed to describe all of nuclear physics; and yet, almost 50 years after the discovery of gluons and quarks, we are only just beginning to understand how QCD builds the basic bricks for nuclei: neutrons and protons, and the pions that bind them together. QCD is characterised by two emergent phenomena: confinement and dynamical chiral symmetry breaking (DCSB). They have far-reaching consequences, expressed with great force in the character of the pion; and pion properties, in turn, suggest that confinement and DCSB are intimately connected. Indeed, since the pion is both a Nambu-Goldstone boson and a quark-antiquark bound-state, it holds a unique position in nature and, consequently, developing an understanding of its properties is critical to revealing some very basic features of the Standard Model. We describe experimental progress toward meeting this challenge that has been made using electromagnetic probes, highlighting both dramatic improvements in the precision of charged-pion form factor data that have been achieved in the past decade and new results on the neutral-pion transition form factor, both of which challenge existing notions of pion structure. We also provide a theoretical context for these empirical advances, which begins with an explanation of how DCSB works to guarantee that the pion is un-naturally light; but also, nevertheless, ensures that the pion is the best object to study in order to reveal the mechanisms that generate nearly all the mass of hadrons. In canvassing advances in these areas, our discussion unifies many aspects of pion structure and interactions, connecting the charged-pion elastic form factor, the neutral-pion transition form factor and the pion's leading-twist parton distribution amplitude. It also sketches novel ways in which experimental and theoretical studies of the charged-kaon electromagnetic form factor can provide significant contributions. Importantly, it appears that recent predictions for the large-Q 2 behaviour of the charged-pion form factor can be tested by experiments planned at the upgraded 12 GeV Jefferson Laboratory. Those experiments will extend precise charged-pion form factor data up to momentum transfers that it now appears may be large enough to serve in validating factorisation theorems in QCD. If so, they may expose the transition between the non-perturbative and perturbative domains and thereby reach a goal that has driven hadro-particle physics for around 35 years.
NASA Astrophysics Data System (ADS)
Yan, Da-Cheng; Yang, Ping; Liu, Xin; Xiao, Zhen-Jun
2018-06-01
In this paper, we will make systematic calculations for the branching ratios and the CP-violating asymmetries of the twenty one Bbars0 → PV decays by employing the perturbative QCD (PQCD) factorization approach. Besides the full leading-order (LO) contributions, all currently known next-to-leading order (NLO) contributions are taken into account. We found numerically that: (a) the NLO contributions can provide ∼ 40% enhancement to the LO PQCD predictions for B (Bbars0 →K0K bar * 0) and B (Bbars0 →K±K*∓), or a ∼ 37% reduction to B (Bbars0 →π-K*+); and we confirmed that the inclusion of the known NLO contributions can improve significantly the agreement between the theory and those currently available experimental measurements; (b) the total effects on the PQCD predictions for the relevant Bs0 → P transition form factors after the inclusion of the NLO twist-2 and twist-3 contributions is generally small in magnitude: less than 10% enhancement respect to the leading order result; (c) for the "tree" dominated decay Bbars0 →K+ρ- and the "color-suppressed-tree" decay Bbars0 →π0K*0, the big difference between the PQCD predictions for their branching ratios are induced by different topological structure and by interference effects among the decay amplitude AT,C and AP: constructive for the first decay but destructive for the second one; and (d) for Bbars0 → V (η ,η‧) decays, the complex pattern of the PQCD predictions for their branching ratios can be understood by rather different topological structures and the interference effects between the decay amplitude A (Vηq) and A (Vηs) due to the η-η‧ mixing.
Electroexcitation of nucleon resonances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inna Aznauryan, Volker D. Burkert
2012-01-01
We review recent progress in the investigation of the electroexcitation of nucleon resonances, both in experiment and in theory. The most accurate results have been obtained for the electroexcitation amplitudes of the four lowest excited states, which have been measured in a range of Q2 up to 8 and 4.5 GeV2 for the Delta(1232)P33, N(1535)S11 and N(1440)P11, N(1520)D13, respectively. These results have been confronted with calculations based on lattice QCD, large-Nc relations, perturbative QCD (pQCD), and QCD-inspired models. The amplitudes for the Delta(1232) indicate large pion-cloud contributions at low Q2 and don't show any sign of approaching the pQCD regimemore » for Q2<7 GeV2. Measured for the first time, the electroexcitation amplitudes of the Roper resonance, N(1440)P11, provide strong evidence for this state as a predominantly radial excitation of a three-quark (3q) ground state, with additional non-3-quark contributions needed to describe the low Q2 behavior of the amplitudes. The longitudinal transition amplitude for the N(1535)S11 was determined and has become a challenge for quark models. Explanations may require large meson-cloud contributions or alternative representations of this state. The N(1520)D13 clearly shows the rapid changeover from helicity-3/2 dominance at the real photon point to helicity-1/2 dominance at Q2 > 0.5 GeV2, confirming a long-standing prediction of the constituent quark model. The interpretation of the moments of resonance transition form factors in terms of transition transverse charge distributions in infinite momentum frame is presented.« less
NASA Astrophysics Data System (ADS)
Kobayashi, Tatsuo; Seto, Osamu; Shimomura, Takashi; Urakawa, Yuko
2017-09-01
We investigate cosmological constraints on the original relaxion scenario proposed by Graham, Kaplan and Rajendran. We first discuss the appropriate sign choice of the terms in the scalar potential, when the QCD axion is the relaxion with a relaxion-inflaton coupling proposed in the original paper. We next derive the cosmologically consistent ranges of the mass and a coupling of the relaxion for both the QCD relaxion and non-QCD relaxion. The mass range is obtained by 10-5eV ≪ m ϕ ≲ 104eV. We also find that a strong correlation between the Hubble parameter at the relaxion stabilization and the scale Λ of non-QCD strong dynamics, which generates the non-perturbative relaxion cosine potential. For a higher relaxion mass, a large scale Λ becomes available. However, for its lower mass, Λ should be small and constructing such a particle physics model is challenging.
ATLAS measurement of Electroweak Vector Boson production
NASA Astrophysics Data System (ADS)
Vittori, C.; Atlas Collaboration
2017-01-01
The measurements of the Drell-Yan production of W and Z /γ* bosons at the LHC provide a benchmark of our understanding of the perturbative QCD and probe the proton structure in a unique way. The ATLAS collaboration has performed new high precision measurements of the double differential cross-sections as a function of the dilepton mass and rapidity. The measurements are compared to state of calculations at NNLO in QCD and constrain the photon content of the proton. The angular distributions of the Drell-Yan lepton pairs around the Z-boson mass peak probe the underlying QCD dynamics of the Z-boson production mechanisms. The complete set of angular coefficients describing these distributions is presented and compared to theoretical predictions highlighting different approaches of the QCD and EW modelling. First precise inclusive measurements of W and Z production at 13 TeV are presented. W / Z and W+ /W- ratios profit from a cancellation of experimental uncertainties.
Inverse magnetic catalysis from improved holographic QCD in the Veneziano limit
NASA Astrophysics Data System (ADS)
Gürsoy, Umut; Iatrakis, Ioannis; Järvinen, Matti; Nijs, Govert
2017-03-01
We study the dependence of the chiral condensate on external magnetic field in the context of holographic QCD at large number of flavors. We consider a holographic QCD model where the flavor degrees of freedom fully backreact on the color dynamics. Perturbative QCD calculations have shown that B acts constructively on the chiral condensate, a phenomenon called "magnetic catalysis". In contrast, recent lattice calculations show that, depending on the number of flavors and temperature, the magnetic field may also act destructively, which is called "inverse magnetic catalysis". Here we show that the holographic theory is capable of both behaviors depending on the choice of parameters. For reasonable choice of the potentials entering the model we find qualitative agreement with the lattice expectations. Our results provide insight for the physical reasons behind the inverse magnetic catalysis. In particular, we argue that the backreaction of the flavors to the background geometry decatalyzes the condensate.
Light-Front Hamiltonian Approach to the Bound-State Problem in Quantum Electrodynamics
NASA Astrophysics Data System (ADS)
Jones, Billy D.
1997-10-01
Why is the study of the Lamb shift in hydrogen, which at the level of detail found in this paper was largely completed by Bethe in 1947, of any real interest today? While completing such a calculation using new techniques may be very interesting for formal and academic reasons, our primary motivation is to lay groundwork for precision bound-state calculations in QCD. The Lamb shift provides an excellent pedagogical tool for illustrating light-front Hamiltonian techniques, which are not widely known; but more importantly it presents three of the central dynamical and computational problems that we must face to make these techniques useful for solving QCD: How does a constituent picture emerge in a gauge field theory? How do bound-state energy scales emerge non-perturbatively? How does rotational symmetry emerge in a non-perturbative light-front calculation?
CP violation induced by the double resonance for pure annihilation decay process in perturbative QCD
Lü, Gang; Lu, Ye; Li, Sheng-Tao; ...
2017-08-04
In a perturbative QCD approach we study the direct CP violation in the pure annihilation decay process ofmore » $$\\bar{B}$$$0\\atop{s}$$→π +π -π +π - induced by the ρ and ω double resonance effect.Generally, the CP violation is small in the pure annihilation type decay process. But, we find that the CP violation can be enhanced by doubleinterference when the invariant masses of the π + π - pairs are in the vicinity of the ω resonance. For the decay process of $$\\bar{B}$$$0\\atop{s}$$→π +π -π +π -, the CP violation can reach ACP($$\\bar{B}$$$0\\atop{s}$$→π +π -π +π -)=27.20$$+0.05+0.28+7.13\\atop{-0.15-0.31-6.11}$$%.« less
Aaltonen, T; Adelman, J; Akimoto, T; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Hussein, M; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlok, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Pagan Griso, S; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Wynne, S M; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, X; Zheng, Y; Zucchelli, S
2009-06-12
We present a measurement of the transverse momentum with respect to the jet axis (k(t)) of particles in jets produced in pp collisions at sqrt(s)=1.96 TeV. Results are obtained for charged particles in a cone of 0.5 radians around the jet axis in events with dijet invariant masses between 66 and 737 GeV/c(2). The experimental data are compared to theoretical predictions obtained for fragmentation partons within the framework of resummed perturbative QCD using the modified leading log and next-to-modified leading log approximations. The comparison shows that trends in data are successfully described by the theoretical predictions, indicating that the perturbative QCD stage of jet fragmentation is dominant in shaping basic jet characteristics.
CP violation induced by the double resonance for pure annihilation decay process in perturbative QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lü, Gang; Lu, Ye; Li, Sheng-Tao
In a perturbative QCD approach we study the direct CP violation in the pure annihilation decay process ofmore » $$\\bar{B}$$$0\\atop{s}$$→π +π -π +π - induced by the ρ and ω double resonance effect.Generally, the CP violation is small in the pure annihilation type decay process. But, we find that the CP violation can be enhanced by doubleinterference when the invariant masses of the π + π - pairs are in the vicinity of the ω resonance. For the decay process of $$\\bar{B}$$$0\\atop{s}$$→π +π -π +π -, the CP violation can reach ACP($$\\bar{B}$$$0\\atop{s}$$→π +π -π +π -)=27.20$$+0.05+0.28+7.13\\atop{-0.15-0.31-6.11}$$%.« less
Diphoton production at the LHC: a QCD study up to NNLO
NASA Astrophysics Data System (ADS)
Catani, Stefano; Cieri, Leandro; de Florian, Daniel; Ferrera, Giancarlo; Grazzini, Massimiliano
2018-04-01
We consider the production of prompt-photon pairs at the LHC and we report on a study of QCD radiative corrections up to the next-to-next-to-leading order (NNLO). We present a detailed comparison of next-to-leading order (NLO) results obtained within the standard and smooth cone isolation criteria, by studying the dependence on the isolation parameters. We highlight the role of different partonic subprocesses within the two isolation criteria, and we show that they produce large radiative corrections for both criteria. Smooth cone isolation is a consistent procedure to compute QCD radiative corrections at NLO and beyond. If photon isolation is sufficiently tight, we show that the NLO results for the two isolation procedures are consistent with each other within their perturbative uncertainties. We then extend our study to NNLO by using smooth cone isolation. We discuss the impact of the NNLO corrections and the corresponding perturbative uncertainties for both fiducial cross sections and distributions, and we comment on the comparison with some LHC data. Throughout our study we remark on the main features that are produced by the kinematical selection cuts that are applied to the photons. In particular, we examine soft-gluon singularities that appear in the perturbative computations of the invariant mass distribution of the photon pair, the transverse-momentum spectra of the photons, and the fiducial cross section with asymmetric and symmetric photon transverse-momentum cuts, and we present their behaviour in analytic form.
Highlights in light-baryon spectroscopy and searches for gluonic excitations
NASA Astrophysics Data System (ADS)
Crede, Volker
2016-01-01
The spectrum of excited hadrons - mesons and baryons - serves as an excellent probe of quantum chromodynamics (QCD), the fundamental theory of the strong interaction. The strong coupling however makes QCD challenging. It confines quarks and breaks chiral symmetry, thus providing us with the world of light hadrons. Highly-excited hadronic states are sensitive to the details of quark confinement, which is only poorly understood within QCD. This is the regime of non-perturbative QCD and it is one of the key issues in hadronic physics to identify the corresponding internal degrees of freedom and how they relate to strong coupling QCD. The quark model suggests mesons are made of a constituent quark and an antiquark and baryons consist of three such quarks. QCD predicts other forms of matter. What is the role of glue? Resonances with large gluonic components are predicted as bound states by QCD. The lightest hybrid mesons with exotic quantum numbers are estimated to have masses in the range from 1 to 2 GeV/c2 and are well in reach of current experimental programs. At Jefferson Laboratory (JLab) and other facilities worldwide, the high-energy electron and photon beams present a remarkably clean probe of hadronic matter, providing an excellent microscope for examining atomic nuclei and the strong nuclear force.
Testing Quantum Chromodynamics with Antiprotons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, S.
2004-10-21
The antiproton storage ring HESR to be constructed at GSI will open up a new range of perturbative and nonperturbative tests of QCD in exclusive and inclusive reactions. I discuss 21 tests of QCD using antiproton beams which can illuminate novel features of QCD. The proposed experiments include the formation of exotic hadrons, measurements of timelike generalized parton distributions, the production of charm at threshold, transversity measurements in Drell-Yan reactions, and searches for single-spin asymmetries. The interactions of antiprotons in nuclear targets will allow tests of exotic nuclear phenomena such as color transparency, hidden color, reduced nuclear amplitudes, and themore » non-universality of nuclear antishadowing. The central tool used in these lectures are light-front Fock state wavefunctions which encode the bound-state properties of hadrons in terms of their quark and gluon degrees of freedom at the amplitude level. The freedom to choose the light-like quantization four-vector provides an explicitly covariant formulation of light-front quantization and can be used to determine the analytic structure of light-front wave functions. QCD becomes scale free and conformally symmetric in the analytic limit of zero quark mass and zero {beta} function. This ''conformal correspondence principle'' determines the form of the expansion polynomials for distribution amplitudes and the behavior of non-perturbative wavefunctions which control hard exclusive processes at leading twist. The conformal template also can be used to derive commensurate scale relations which connect observables in QCD without scale or scheme ambiguity. The AdS/CFT correspondence of large N{sub C} supergravity theory in higher-dimensional anti-de Sitter space with supersymmetric QCD in 4-dimensional space-time has important implications for hadron phenomenology in the conformal limit, including the nonperturbative derivation of counting rules for exclusive processes and the behavior of structure functions at large x{sub bj}. String/gauge duality also predicts the QCD power-law fall-off of light-front Fock-state hadronic wavefunctions with arbitrary orbital angular momentum at high momentum transfer. I also review recent work which shows that the diffractive component of deep inelastic scattering, single spin asymmetries, as well as nuclear shadowing and antishadowing, cannot be computed from the LFWFs of hadrons in isolation.« less
A percent-level determination of the nucleon axial coupling from Quantum Chromodynamics
Chang, Chia C.; Rinaldi, Enrico; Nicholson, A. N.; ...
2018-06-15
Here, the axial coupling of the nucleon, g A, is the strength of its coupling to the weak axial current of the Standard Model, much as the electric charge is the strength of the coupling to the electromagnetic current. This axial coupling dictates, for example, the rate of β-decay of neutrons to protons and the strength of the attractive long-range force between nucleons. Precision tests of the Standard Model in nuclear environments require a quantitative understanding of nuclear physics rooted in Quantum Chromodynamics, a pillar of this theory. The prominence of g A makes it a benchmark quantity to determinemore » from theory, a difficult task as the theory is non-perturbative. Lattice QCD provides a rigorous, non-perturbative definition of the theory which can be numerically implemented. In order to determine g A, the lattice QCD community has identified two challenges that must be overcome to achieve a 2% precision by 2020: the excited state contamination must be controlled, and the statistical precision must be markedly improved. Here we report a calculation of g A QCD =1.271 ± 0.013, using an unconventional method11 that overcomes these challenges.« less
A percent-level determination of the nucleon axial coupling from Quantum Chromodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Chia C.; Rinaldi, Enrico; Nicholson, A. N.
Here, the axial coupling of the nucleon, g A, is the strength of its coupling to the weak axial current of the Standard Model, much as the electric charge is the strength of the coupling to the electromagnetic current. This axial coupling dictates, for example, the rate of β-decay of neutrons to protons and the strength of the attractive long-range force between nucleons. Precision tests of the Standard Model in nuclear environments require a quantitative understanding of nuclear physics rooted in Quantum Chromodynamics, a pillar of this theory. The prominence of g A makes it a benchmark quantity to determinemore » from theory, a difficult task as the theory is non-perturbative. Lattice QCD provides a rigorous, non-perturbative definition of the theory which can be numerically implemented. In order to determine g A, the lattice QCD community has identified two challenges that must be overcome to achieve a 2% precision by 2020: the excited state contamination must be controlled, and the statistical precision must be markedly improved. Here we report a calculation of g A QCD =1.271 ± 0.013, using an unconventional method11 that overcomes these challenges.« less
NASA Astrophysics Data System (ADS)
Yepez-Martinez, Tochtli; Civitarese, Osvaldo; Hess, Peter O.
2018-02-01
Starting from an algebraic model based on the QCD-Hamiltonian and previously applied to study meson states, we have developed an extension of it in order to explore the structure of baryon states. In developing our approach we have adapted concepts taken from group theory and non-perturbative many-body methods to describe states built from effective quarks and anti-quarks degrees of freedom. As a Hamiltonian we have used the QCD Hamiltonian written in the Coulomb Gauge, and expressed it in terms of effective quark-antiquark, di-quarks and di-antiquark excitations. To gain some insights about the relevant interactions of quarks in hadronic states, the Hamiltonian was approximately diagonalized by mapping quark-antiquark pairs and di-quarks (di-antiquarks) onto phonon states. In dealing with the structure of the vacuum of the theory, color-scalar and color-vector states are introduced to account for ground-state correlations. While the use of a purely color-scalar ground state is an obvious choice, so that colorless hadrons contain at least three quarks, the presence of coupled color-vector pairs in the ground state allows for colorless excitations resulting from the action of color objects upon it.
Quasi-two-body decays B(s )→P ρ →P π π in the perturbative QCD approach
NASA Astrophysics Data System (ADS)
Li, Ya; Ma, Ai-Jun; Wang, Wen-Fei; Xiao, Zhen-Jun
2017-03-01
In this work, we calculate the C P -averaged branching ratios and the direct C P -violating asymmetries of the quasi-two-body decays B(s )→P (ρ →)π π by employing the perturbative QCD (PQCD) approach (here P stands for a light pseudoscalar meson π , K , η or η'). The vector current timelike form factor Fπ, which contains the final-state interactions between the pion pair in the resonant region associated with the P -wave states ρ (770 ) along with the two-pion distribution amplitudes, is employed to describe the interactions between the ρ and the pion pair under the hypothesis of the conserved vector current. We found that (a) the PQCD predictions for the branching ratios and the direct C P -violating asymmetries for most considered B(s )→P (ρ →)π π decays agree with currently available data within errors, (b) for B (B →π0ρ0→π0(π+π-) , the PQCD prediction is much smaller than the measured one, and (c) for the B+→π+(ρ0→)π+π- decay mode, there is a negative C P asymmetry (-27.5-3.7+3.0)% , which agrees with other theoretical predictions but is different in sign from those reported by the BABAR and LHCb Collaborations.
Cosmological perturbations of axion with a dynamical decay constant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Takeshi; INFN, Sezione di Trieste,Via Bonomea 265, 34136 Trieste; Takahashi, Fuminobu
2016-08-25
A QCD axion with a time-dependent decay constant has been known to be able to accommodate high-scale inflation without producing topological defects or too large isocurvature perturbations on CMB scales. We point out that a dynamical decay constant also has the effect of enhancing the small-scale axion isocurvature perturbations. The enhanced axion perturbations can even exceed the periodicity of the axion potential, and thus lead to the formation of axionic domain walls. Unlike the well-studied axionic walls, the walls produced from the enhanced perturbations are not bounded by cosmic strings, and thus would overclose the universe independently of the numbermore » of degenerate vacua along the axion potential.« less
Neutron and proton electric dipole moments from N f=2+1 domain-wall fermion lattice QCD
Shintani, Eigo; Blum, Thomas; Izubuchi, Taku; ...
2016-05-05
We present a lattice calculation of the neutron and proton electric dipole moments (EDM’s) with N f = 2 + 1 flavors of domain-wall fermions. The neutron and proton EDM form factors are extracted from three-point functions at the next-to-leading order in the θ vacuum of QCD. In this computation, we use pion masses 330 and 420 MeV and 2.7 fm 3 lattices with Iwasaki gauge action and a 170 MeV pion and 4.6 fm 3 lattice with I-DSDR gauge action, all generated by the RBC and UKQCD collaborations. The all-mode-averaging technique enables an efficient, high statistics calculation; however themore » statistical errors on our results are still relatively large, so we investigate a new direction to reduce them, reweighting with the local topological charge density which appears promising. Furthermore, we discuss the chiral behavior and finite size effects of the EDM’s in the context of baryon chiral perturbation theory.« less
Top-quark decay at next-to-next-to-leading order in QCD.
Gao, Jun; Li, Chong Sheng; Zhu, Hua Xing
2013-01-25
We present the complete calculation of the top-quark decay width at next-to-next-to-leading order in QCD, including next-to-leading electroweak corrections as well as finite bottom quark mass and W boson width effects. In particular, we also show the first results of the fully differential decay rates for the top-quark semileptonic decay t → W(+)(l(+)ν)b at next-to-next-to-leading order in QCD. Our method is based on the understanding of the invariant mass distribution of the final-state jet in the singular limit from effective field theory. Our result can be used to study arbitrary infrared-safe observables of top-quark decay with the highest perturbative accuracy.
Spontaneous supersymmetry breaking in two dimensional lattice super QCD
Catterall, Simon; Veernala, Aarti
2015-10-02
We report on a non-perturbative study of two dimensional N=(2,2) super QCD. Our lattice formulation retains a single exact supersymmetry at non-zero lattice spacing, and contains N f fermions in the fundamental representation of a U(N c) gauge group. The lattice action we employ contains an additional Fayet-Iliopoulos term which is also invariant under the exact lattice supersymmetry. This work constitutes the first numerical study of this theory which serves as a toy model for understanding some of the issues that are expected to arise in four dimensional super QCD. As a result, we present evidence that the exact supersymmetrymore » breaks spontaneously when N f < N c in agreement with theoretical expectations.« less
Static quark-antiquark potential in the quark-gluon plasma from lattice QCD.
Burnier, Yannis; Kaczmarek, Olaf; Rothkopf, Alexander
2015-02-27
We present a state-of-the-art determination of the complex valued static quark-antiquark potential at phenomenologically relevant temperatures around the deconfinement phase transition. Its values are obtained from nonperturbative lattice QCD simulations using spectral functions extracted via a novel Bayesian inference prescription. We find that the real part, both in a gluonic medium, as well as in realistic QCD with light u, d, and s quarks, lies close to the color singlet free energies in Coulomb gauge and shows Debye screening above the (pseudo)critical temperature T_{c}. The imaginary part is estimated in the gluonic medium, where we find that it is of the same order of magnitude as in hard-thermal loop resummed perturbation theory in the deconfined phase.
NASA Astrophysics Data System (ADS)
Mahmood, Shakeel; Tahir, Farida; Mir, Azeem
2018-05-01
We study the contributions of nonstandard neutrino interactions (NSI) to the rare decays of pseudoscalar mesons involving neutrinos in the final state {B^0} \\to {π ^0}\\bar vv, B_c^ - \\to {D^ - }\\bar vv and \\bar B_s^0 \\to {\\bar K^0}\\bar vv, It is pointed that dominant contribution comes from the interference between standard model and nonstandard interaction We predict limits on NSIs free parameter ɛ uL ττ and compare them with experimental data. We further compare our results with perturbative QCD (pQCD) and QCD results for these reactions.
The Nc dependencies of baryon masses: Analysis with Lattice QCD and Effective Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calle Cordon, Alvaro C.; DeGrand, Thomas A.; Goity, Jose L.
Baryon masses at varying values of Nc and light quark masses are studied with Lattice QCD and the results are analyzed in a low energy effective theory based on a combined framework of the 1/Nc and Heavy Baryon Chiral Perturbation Theory expansions. Lattice QCD results for Nc=3, 5 and 7 obtained in quenched calculations, as well as results for unquenched calculations for Nc=3, are used for the analysis. The results are consistent with a previous analysis of Nc=3 LQCD results, and in addition permit the determination of sub-leading in 1/Nc effects in the spin-flavor singlet component of the baryon massesmore » as well as in the hyperfine splittings.« less
Nonperturbative calculations in the framework of variational perturbation theory in QCD
NASA Astrophysics Data System (ADS)
Solovtsova, O. P.
2017-07-01
We discuss applications of the method based on the variational perturbation theory to perform calculations down to the lowest energy scale. The variational series is different from the conventional perturbative expansion and can be used to go beyond the weak-coupling regime. We apply this method to investigate the Borel representation of the light Adler function constructed from the τ data and to determine the residual condensates. It is shown that within the method suggested the optimal values of these lower dimension condensates are close to zero.
Lattice QCD results on soft and hard probes of strongly interacting matter
NASA Astrophysics Data System (ADS)
Kaczmarek, Olaf
2017-11-01
We present recent results from lattice QCD relevant for the study of strongly interacting matter as it is produced in heavy ion collision experiments. The equation of state at non-vanishing density from a Taylor expansion up to 6th order will be discussed for a strangeness neutral system and using the expansion coefficients of the series limits on the critical point are estimated. Chemical freeze-out temperatures from the STAR and ALICE Collaborations will be compared to lines of constant physics calculated from the Taylor expansion of QCD bulk thermodynamic quantities. We show that qualitative features of the √{sNN} dependence of skewness and kurtosis ratios of net proton-number fluctuations measured by the STAR Collaboration can be understood from QCD results for cumulants of conserved baryon-number fluctuations. As an example for recent progress towards the determination of spectral and transport properties of the QGP from lattice QCD, we will present constraints on the thermal photon rate determined from a spectral reconstruction of continuum extrapolated lattice correlation functions in combination with input from most recent perturbative calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ALICE collaboration, Cristiane Jahnke for the
Electrons from the decay of hadrons containing charm or beauty quarks have been measured in p-Pb collisions at √(S{sub NN}) = 5.02 TeV with ALICE. Electrons from heavy-flavour hadron decays were identified using the Time Projection Chamber and the Electromagnetic Calorimeter of ALICE. The nuclear modification factor R{sub pPb} was calculated using a pp reference obtained from a perturbative QCD-based √(s)-extrapolation of the cross section measured at 7 TeV and from a FONLL prediction.
NASA Astrophysics Data System (ADS)
Csörgő, Tamás Hegyi, Sándor Kittel, Wolfram
The Table of Contents for the book is as follows: * Preface * QCD IN MULTIPARTICLE PRODUCTION * QCD and multiparticle production - The status of the perturbative cascade * Test of QCD predictions for multiparticle production at LEP * Multijet final states in e+e- annihilation * Tests of QCD in two photon physics at LEP * Interplay between perturbative and non-perturbative QCD in three-jet events * QCD and hadronic final states at the LHC * Transverse energy and minijets in high energy collisions * Multiparticle production at RHIC and LHC: A classical point of view * High energy interaction with the nucleus in the perturbative QCD with Nc → ∞ * DIFFRACTIVE PRODUCTION AND SMALL-x * Introduction to low-x physics and diffraction * Low-x physics at HERA * Diffractive structure functions at the Tevatron * What is the experimental evidence for the BFKL Pomeron? * Self-organized criticality in gluon systems and its consequences * Scale anomaly and dipole scattering in QCD * Pomeron and AdS/CFT correspondence for QCD * INTERPLAY BETWEEN SOFT AND HARD PHENOMENA * Inclusive jet cross sections and BFKL dynamics searches in dijet cross sections * Soft and hard interactions in p bar{p} Collisions at √ s = 1800 and 630 GeV * Recent results on particle production from OPAL * New results on αs and optimized scales * Preliminary results of the standard model Higgs boson search at LEP 2 in 2000 * Ways to go between hard and soft QCD * Alternative scenarios for fragmentation of a gluonic Lund String * A simultaneous measurement of the QCD colour charges and the strong coupling from LEP multijet data * Branching processes and Koenigs function * Soft and hard QCD dynamics in J/ψ hadroproduction * HADRONIC FINAL STATES IN 1+1, 1+h AND h+h REACTIONS * Universality in hadron production in electron-positron, lepton-hadron and hadron-hadron reactions * Search for gluonic mesons in gluon jets * Vector-to-pseudoscalar and meson-to-baryon ratios in hadronic Z decays at LEP * Polarization and spin alignment in multihadronic Z0 decays * Jet physics at HERA * Final state studies at HERA * A gauge-invariant subtraction technique for non-inclusive observables in QCD * Baryon transport in dual models and the possibility of a backward peak in diffraction * ASTROPARTICLE PHYSICS * Cosmic rays in the energy range of the knee - Recent results from KASCADE * Imaging atmospheric Čerenkov telescopes: Techniques and results * Extensive air shower simulations with CORSIKA and the influence of high-energy hadronic interaction models * Future directions in astroparticle physics and the AUGER experiment * p+A COLLISIONS * pp and pA collisions at CERN SPS * Charmonium attenuation and the quark-gluon plasma * Gluon depletion and J/ψ suppression in pA collisions * CORRELATIONS AND FLUCTUATIONS - EXPERIMENT * Experimental correlation analysis: Foundations and practice * Intermittency and correlations at LEP and at HERA * Moments of the charged-particle multiplicity distribution in Z decays at LEP * On the scale of visible jets in high energy electron-positron collisions * HBT in relativistic heavy ion collisions * Comparison of the pion emission function in hadron-hadron and heavy ion collisions * Multiparticle correlations at LEP1 * Inter-W Bose-Einstein correlations ellipse ... or not? * Colour reconnection at LEP2 * CORRELATIONS AND FLUCTUATIONS - THEORY * Correlations and fluctuations - introduction * Coherence and incoherence in Bose-Einstein correlations * Bose-Einstein correlations in cascade processes and non-extensive statistics * A systematic approach to anomalous phenomena at high energies * Reconstruction of hadronization stage in Pb+Pb collisions at 158A GeV/c * Status of ring-like correlations and wavelets * Fluctuation probes of quark deconfinement * PQCD structure and hadronization in jets and heavy-ion collisions * Net-baryon fluctuations at the QCD critical point * Fractional Fokker-Planck equation in time variable and oscillation of cumulant moments * QCD and multiplicity scaling * RELATIVISTIC HEAVY ION COLLISIONS - EXPERIMENT * Introduction to multiparticle dynamics at RHIC * First results from the STAR experiment at RHIC * Preliminary results from the PHENIX experiment at RHIC * Forward energy and multiplicity in Au-Au reactions at √ {s_{nn} } = 130{text{GeV}} * Results from the PHOBOS experiment on Au+Au collisions at RHIC * Strangeness production in Pb-Pb collisions at the CERN SPS: Results from the WA97 experiment * Direct photon production in 158A GeV 208Pb+208Pb collisions * Search for critical phenomena in Pb+Pb collisions * Recent NA49 results on Pb+Pb collisions at CERN SPS * J/ψ suppression in Pb+Pb collisions at CERN SPS * RELATIVISTIC HEAVY ION COLLISIONS - THEORY * Hyperon ratios at RHIC and the coalescence predictions at mid-rapidity * Dynamics of nuclear collisions and the dependence of the onset of anomalous J/ψ suppression on nucleon numbers of colliding nuclei * Multi-boson effects in Bose-Einstein interferometry * The source of the "third flow component" * Collective flow and multiparticle azimuthal correlations * Microscopic strangeness enhancement mechanisms at the SPS * Jet quenching at finite opacity and its application at RHIC energy * Particle rapidity density and collective phenomena in heavy ion collisions * Elliptic flow from an on-shell parton cascade * Dilepton production in ultrarelativistic heavy ion collisions * Coulomb and core/halo corrections to Bose-Einstein n-particle correlations * CP VIOLATION IN MULTIPARTICLE DYNAMICS * New results from NA48 experiment on neutral kaon rare decays * Measurement of direct CP violation by the NA48 experiment at CERN * Aspects of parity, CP, and time reversal violation in hot QCD * Decay of parity odd bubbles * Parity and time reversal studies at RHIC * Constraining CP-violating TGCS and measuring W-polarization at OPAL * Buckyballs of QCD: Gluon junction networks * List of participants
Precision Light Flavor Physics from Lattice QCD
NASA Astrophysics Data System (ADS)
Murphy, David
In this thesis we present three distinct contributions to the study of light flavor physics using the techniques of lattice QCD. These results are arranged into four self-contained papers. The first two papers concern global fits of the quark mass, lattice spacing, and finite volume dependence of the pseudoscalar meson masses and decay constants, computed in a series of lattice QCD simulations, to partially quenched SU(2) and SU(3) chiral perturbation theory (chiPT). These fits determine a subset of the low energy constants of chiral perturbation theory -- in some cases with increased precision, and in other cases for the first time -- which, once determined, can be used to compute other observables and amplitudes in chiPT. We also use our formalism to self-consistently probe the behavior of the (asymptotic) chiral expansion as a function of the quark masses by repeating the fits with different subsets of the data. The third paper concerns the first lattice QCD calculation of the semileptonic K0 → pi-l +nul ( Kl3) form factor at vanishing momentum transfer, f+Kpi(0), with physical mass domain wall quarks. The value of this form factor can be combined with a Standard Model analysis of the experimentally measured K0 → pi -l+nu l decay rate to extract a precise value of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element Vus, and to test unitarity of the CKM matrix. We also discuss lattice calculations of the pion and kaon decay constants, which can be used to extract Vud through an analogous Standard Model analysis of experimental constraints on leptonic pion and kaon decays. The final paper explores the recently proposed exact one flavor algorithm (EOFA). This algorithm has been shown to drastically reduce the memory footprint required to simulate single quark flavors on the lattice relative to the widely used rational hybrid Monte Carlo (RHMC) algorithm, while also offering modest O(20%) speed-ups. We independently derive the exact one flavor action, explore its equivalence to the RHMC action, and demonstrate that additional preconditioning techniques can be used to significantly accelerate EOFA simulations. We apply EOFA to the ongoing RBC/UKQCD calculation of the Delta I = 1/2 K → pipi decay amplitude, and demonstrate that, in this context, gauge field configurations can be generated a factor of 4.2 times faster using an EOFA-based simulation rather than the previous RHMC-based simulations. We expect that EOFA will help to significantly reduce the statistical error in the first-principles determination of the Standard Model CP-violation parameters epsilon and epsilon' offered by the K → pipi calculation.
Hou, Wei-Shu; Li, Hsiang-nan; Mishima, Satoshi; Nagashima, Makiko
2007-03-30
We study the effect from a sequential fourth generation quark on penguin-dominated two-body nonleptonic B meson decays in the next-to-leading order perturbative QCD formalism. With an enhancement of the color-suppressed tree amplitude and possibility of a new CP phase in the electroweak penguin amplitude, we can account better for A(CP)(B(0)-->K+ pi-)-A(CP)(B+-->K+ pi0). Taking |V(t's)V(t'b)| approximately 0.02 with a phase just below 90 degrees, which is consistent with the b-->sl+ l- rate and the B(s) mixing parameter Deltam(B)(s), we find a downward shift in the mixing-induced CP asymmetries of B(0)-->K(S)(pi 0) and phi(K)(S). The predicted behavior for B(0)-->rho(0)(K)(S) is opposite.
Current-Current Interactions, Dynamical Symmetry - and Quantum Chromodynamics.
NASA Astrophysics Data System (ADS)
Neuenschwander, Dwight Edward, Jr.
Quantum Chromodynamics with massive gluons (gluon mass (TBOND) xm(,p)) in a contact-interaction limit called CQCD (strong coupling g (--->) (INFIN); x (--->) (INFIN)), despite its non-renormalizability and lack of hope of confinement, is nevertheless interesting for at least two reasons. (1) Some authors have suggested a relation between 4-Fermi and Yang-Mills theories. If g/x('2) << 1, then CQCD is not merely a 4-Fermi interaction, but includes 4, 6, 8, ...-Fermi non-Abelian contact interactions. (2) With the possibility of infrared slavery, perturbative evaluation of QCD in the infrared is a dubious practice. However, if g('2)/x('2) << 1 in CQCD, then the simplest 4-Fermi interaction is dominant, and CQCD admits perturbative treatment, but only in the infrared. With the dominant interaction, a dynamical Nambu-Goldstone realization of chiral symmetry -breaking (XSB) is found. Although in QCD the relation between confinement and XSB is controversial, XSB occurs in CQCD provided confinement is sacrificed.
Finite-width Laplace sum rules for 0-+ pseudoscalar glueball in the instanton vacuum model
NASA Astrophysics Data System (ADS)
Wang, Feng; Chen, Junlong; Liu, Jueping
2015-10-01
The correlation function of the 0-+ pseudoscalar glueball current is calculated based on the semiclassical expansion for quantum chromodynamics (QCD) in the instanton liquid background. Besides taking the pure classical contribution from instantons and the perturbative one into account, we calculate the contribution arising from the interaction (or the interference) between instantons and the quantum gluon fields, which is infrared free and more important than the pure perturbative one. Instead of the usual zero-width approximation for the resonances, the Breit-Wigner form with a correct threshold behavior for the spectral function of the finite-width resonance is adopted. The properties of the 0-+ pseudoscalar glueball are investigated via a family of the QCD Laplacian sum rules. A consistency between the subtracted and unsubtracted sum rules is very well justified. The values of the mass, decay width, and coupling constants for the 0-+ resonance in which the glueball fraction is dominant are obtained.
NASA Astrophysics Data System (ADS)
Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdelalim, A. A.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; Abouzeid, O. S.; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adomeit, S.; Adye, T.; Aefsky, S.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alam, M. A.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alonso, F.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Ammosov, V. V.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angelidakis, S.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Arfaoui, S.; Arguin, J.-F.; Argyropoulos, S.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asbah, N.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Astbury, A.; Atkinson, M.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, D.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Backus Mayes, J.; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, S.; Balek, P.; Balli, F.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartsch, V.; Basye, A.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beale, S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belloni, A.; Beloborodova, O. L.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Bertella, C.; Bertolucci, F.; Besana, M. I.; Besjes, G. J.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Bittner, B.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blocki, J.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boek, T. T.; Boelaert, N.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bomben, M.; Bona, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borri, M.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Branchini, P.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Bremer, J.; Brendlinger, K.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brost, E.; Brown, G.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Bugge, L.; Bulekov, O.; Bundock, A. C.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Byszewski, M.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, K.; Chang, P.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Charlton, D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, X.; Chen, Y.; Cheng, Y.; Cheplakov, A.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiarella, V.; Chiefari, G.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Chow, B. K. B.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocio, A.; Cirilli, M.; Cirkovic, P.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Clarke, R. N.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coffey, L.; Cogan, J. G.; Coggeshall, J.; Colas, J.; Cole, S.; Colijn, A. P.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colombo, T.; Colon, G.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Courneyea, L.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crépé-Renaudin, S.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Curtis, C. J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Damiani, D. S.; Daniells, A. C.; Danielsson, H. O.; Dao, V.; Darbo, G.; Darlea, G. L.; Darmora, S.; Dassoulas, J. A.; Davey, W.; Davidek, T.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de La Taille, C.; de la Torre, H.; de Lorenzi, F.; de Nooij, L.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; de Zorzi, G.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Degenhardt, J.; Del Peso, J.; Del Prete, T.; Delemontex, T.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demilly, A.; Demirkoz, B.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dinut, F.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobos, D.; Dobson, E.; Dodd, J.; Doglioni, C.; Doherty, T.; Dohmae, T.; Doi, Y.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doyle, A. T.; Dris, M.; Dubbert, J.; Dube, S.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Duda, D.; Dudarev, A.; Dudziak, F.; Duflot, L.; Dufour, M.-A.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Dwuznik, M.; Ebke, J.; Eckweiler, S.; Edson, W.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Engelmann, R.; Engl, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Ferencei, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, J.; Fisher, M. J.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Florez Bustos, A. C.; Flowerdew, M. J.; Fonseca Martin, T.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fox, H.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Friedrich, C.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch, S.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Gan, K. K.; Gandrajula, R. P.; Gao, Y. S.; Gaponenko, A.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giuliani, C.; Giunta, M.; Gjelsten, B. K.; Gkialas, I.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glonti, G. L.; Goblirsch-Kolb, M.; Goddard, J. R.; Godfrey, J.; Godlewski, J.; Goebel, M.; Goeringer, C.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, L.; González de La Hoz, S.; Gonzalez Parra, G.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Gramstad, E.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenshaw, T.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guescini, F.; Guest, D.; Gueta, O.; Guicheney, C.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gunther, J.; Guo, J.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H. K.; Haefner, P.; Hajduk, Z.; Hakobyan, H.; Hall, D.; Halladjian, G.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hard, A. S.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayakawa, T.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Hejbal, J.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Hensel, C.; Herbert, G. H.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hickling, R.; Higón-Rodriguez, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hofmann, J. I.; Hohlfeld, M.; Holmgren, S. O.; Holzbauer, J. L.; Hong, T. M.; Hooft van Huysduynen, L.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, X.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huettmann, A.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Hurwitz, M.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Iliadis, D.; Ilic, N.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansen, H.; Janssen, J.; Jantsch, A.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jeanty, L.; Jeng, G.-Y.; Jen-La Plante, I.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jungst, R. M.; Jussel, P.; Juste Rozas, A.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kajomovitz, E.; Kalinin, S.; Kama, S.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karnevskiy, M.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Keller, J. S.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitamura, T.; Kittelmann, T.; Kiuchi, K.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koenig, S.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Koll, J.; Komar, A. A.; Komori, Y.; Kondo, T.; Köneke, K.; König, A. C.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laier, H.; Laisne, E.; Lambourne, L.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavorini, V.; Lavrijsen, W.; Laycock, P.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legendre, M.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Lepold, F.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Lester, C. M.; Levêque, J.; Levin, D.; Levinson, L. J.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, B.; Li, H.; Li, H. L.; Li, S.; Li, X.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, D.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Lukas, W.; Luminari, L.; Lund, E.; Lundberg, J.; Lundberg, O.; Lund-Jensen, B.; Lundquist, J.; Lungwitz, M.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Macina, D.; Mackeprang, R.; Madar, R.; Madaras, R. J.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeno, M.; Maeno, T.; Magnoni, L.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Mahmoud, S.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J. A.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marques, C. N.; Marroquim, F.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, B.; Martin, J. P.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, H.; Martinez, M.; Martin-Haugh, S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Matsunaga, H.; Matsushita, T.; Mättig, P.; Mättig, S.; Mattravers, C.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazur, M.; Mazzaferro, L.; Mazzanti, M.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; McFayden, J. A.; McHedlidze, G.; McLaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meehan, S.; Meera-Lebbai, R.; Meguro, T.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.; Mendoza Navas, L.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Meric, N.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Michal, S.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano Moya, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Moeller, V.; Mohapatra, S.; Mohr, W.; Moles-Valls, R.; Molfetas, A.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Mora Herrera, C.; Moraes, A.; Morange, N.; Morel, J.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Möser, N.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, T.; Mueller, T.; Muenstermann, D.; Munwes, Y.; Murillo Quijada, J. A.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Nanava, G.; Napier, A.; Narayan, R.; Nash, M.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negri, G.; Negrini, M.; Nektarijevic, S.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newcomer, F. M.; Newman, P. R.; Nguyen, D. H.; Nguyen Thi Hong, V.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Norberg, S.; Nordberg, M.; Novakova, J.; Nozaki, M.; Nozka, L.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Brien, B. J.; O'Neil, D. C.; O'Shea, V.; Oakes, L. B.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Ochoa, M. I.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, S.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Paleari, C. P.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panduro Vazquez, J. G.; Pani, P.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Papadelis, A.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pashapour, S.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pearce, J.; Pedersen, M.; Pedraza Lopez, S.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penson, A.; Penwell, J.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piec, S. M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pizio, C.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Poddar, S.; Podlyski, F.; Poettgen, R.; Poggioli, L.; Pohl, D.; Pohl, M.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Polychronakos, V.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Prabhu, R.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Price, D.; Price, J.; Price, L. E.; Prieur, D.; Primavera, M.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przybycien, M.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quilty, D.; Raas, M.; Radeka, V.; Radescu, V.; Radloff, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Randle-Conde, A. S.; Randrianarivony, K.; Rangel-Smith, C.; Rao, K.; Rauscher, F.; Rave, T. C.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinsch, A.; Reisinger, I.; Relich, M.; Rembser, C.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieck, P.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Ritsch, E.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Roe, A.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romeo, G.; Romero Adam, E.; Rompotis, N.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, A.; Rose, M.; Rosenbaum, G. A.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Ruckstuhl, N.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Rutherfoord, J. P.; Ruthmann, N.; Ruzicka, P.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Saddique, A.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarrazin, B.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, Y.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Sawyer, C.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D. A.; Scarcella, M.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaelicke, A.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, C.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scott, W. G.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Seuster, R.; Severini, H.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Sherwood, P.; Shimizu, S.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simoniello, R.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skottowe, H. P.; Skovpen, K. Yu.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snow, J.; Snyder, S.; Sobie, R.; Sodomka, J.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Solovyev, V.; Soni, N.; Sood, A.; Sopko, V.; Sopko, B.; Sosebee, M.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Staude, A.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Styles, N. A.; Su, D.; Subramania, Hs.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tamsett, M. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tani, K.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tayalati, Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teinturier, M.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong, W. M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tran, H. L.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tudorache, A.; Tudorache, V.; Tuggle, J. M.; Tuna, A. N.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Urbaniec, D.; Urquijo, P.; Usai, G.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van Berg, R.; van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van der Leeuw, R.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vazquez Schroeder, T.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, W.; Wagner, P.; Wahrmund, S.; Wakabayashi, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Walsh, B.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watanabe, I.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, M. S.; Webster, J. S.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wells, P. S.; Wenaus, T.; Wendland, D.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Wetter, J.; Whalen, K.; White, A.; White, M. J.; White, R.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Williams, S.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wittig, T.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wong, W. C.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wraight, K.; Wright, M.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wynne, B. M.; Xella, S.; Xiao, M.; Xie, S.; Xu, C.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamada, M.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamauchi, K.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, L.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yen, A. L.; Yildirim, E.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D.; Yu, D. R.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zambito, S.; Zanello, L.; Zanzi, D.; Zaytsev, A.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zevi Della Porta, G.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, X.; Zhang, Z.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zibell, A.; Zieminska, D.; Zimin, N. I.; Zimmermann, C.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Zinonos, Z.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zutshi, V.; Zwalinski, L.; ATLAS Collaboration
2014-03-01
A measurement of the cross section for the production of isolated prompt photons in pp collisions at a center-of-mass energy √s =7 TeV is presented. The results are based on an integrated luminosity of 4.6 fb-1 collected with the ATLAS detector at the LHC. The cross section is measured as a function of photon pseudorapidity ηγ and transverse energy ETγ in the kinematic range 100≤ETγ<1000 GeV and in the regions |ηγ|<1.37 and 1.52≤|ηγ|<2.37. The results are compared to leading-order parton-shower Monte Carlo models and next-to-leading-order perturbative QCD calculations. Next-to-leading-order perturbative QCD calculations agree well with the measured cross sections as a function of ETγ and ηγ.
Spin-Flavor van der Waals Forces and NN interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvaro Calle Cordon, Enrique Ruiz Arriola
A major goal in Nuclear Physics is the derivation of the Nucleon-Nucleon (NN) interaction from Quantum Chromodynamics (QCD). In QCD the fundamental degrees of freedom are colored quarks and gluons which are confined to form colorless strongly interacting hadrons. Because of this the resulting nuclear forces at sufficiently large distances correspond to spin-flavor excitations, very much like the dipole excitations generating the van der Waals (vdW) forces acting between atoms. We study the Nucleon-Nucleon interaction in the Born-Oppenheimer approximation at second order in perturbation theory including the Delta resonance as an intermediate state. The potential resembles strongly chiral potentials computedmore » either via soliton models or chiral perturbation theory and has a van der Waals like singularity at short distances which is handled by means of renormalization techniques. Results for the deuteron are discussed.« less
Light-Front Holography, Light-Front Wavefunctions, and Novel QCD Phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.
2012-02-16
Light-Front Holography is one of the most remarkable features of the AdS/CFT correspondence. In spite of its present limitations it provides important physical insights into the nonperturbative regime of QCD and its transition to the perturbative domain. This novel framework allows hadronic amplitudes in a higher dimensional anti-de Sitter (AdS) space to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The model leads to an effective confining light-front QCD Hamiltonian and a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z inmore » AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound-state wavefunctions, and thus the fall-off as a function of the invariant mass of the constituents. The soft-wall holographic model modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics - a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryons. The model predicts a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number n. The hadron eigensolutions projected on the free Fock basis provides the complete set of valence and non-valence light-front Fock state wavefunctions {Psi}{sub n/H} (x{sub i}, k{sub {perpendicular}i}, {lambda}{sub i}) which describe the hadron's momentum and spin distributions needed to compute the direct measures of hadron structure at the quark and gluon level, such as elastic and transition form factors, distribution amplitudes, structure functions, generalized parton distributions and transverse momentum distributions. The effective confining potential also creates quark-antiquark pairs from the amplitude q {yields} q{bar q}q. Thus in holographic QCD higher Fock states can have any number of extra q{bar q} pairs. We discuss the relevance of higher Fock-states for describing the detailed structure of space and time-like form factors. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms. A new perspective on quark and gluon condensates is also obtained.« less
Precise QCD Predictions for the Production of a Z Boson in Association with a Hadronic Jet.
Gehrmann-De Ridder, A; Gehrmann, T; Glover, E W N; Huss, A; Morgan, T A
2016-07-08
We compute the cross section and differential distributions for the production of a Z boson in association with a hadronic jet to next-to-next-to-leading order (NNLO) in perturbative QCD, including the leptonic decay of the Z boson. We present numerical results for the transverse momentum and rapidity distributions of both the Z boson and the associated jet at the LHC. We find that the NNLO corrections increase the NLO predictions by approximately 1% and significantly reduce the scale variation uncertainty.
Production of π0 mesons in muon-hydrogen interactions at 200 GeV
NASA Astrophysics Data System (ADS)
Aubert, J. J.; Bassompierre, G.; Becks, K. H.; Benchouk, C.; Best, C.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Broll, C.; Brown, S.; Carr, J.; Clifft, R. W.; Cobb, J. H.; Coignet, G.; Combley, F.; Court, G. R.; Dau, W. D.; Davies, J. K.; Déclais, Y.; Dobinson, R. W.; Dosselli, U.; Drees, J.; Edwards, A.; Edwards, M.; Favier, J.; Ferrero, M. I.; Flauger, W.; Forsbach, H.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gerhardt, V.; Gössling, C.; Gregory, P.; Haas, J.; Hamacher, K.; Hayman, P.; Henckes, M.; Korbel, V.; Landgraf, U.; Leenen, M.; Maire, M.; Minssieux, H.; Mohr, W.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Nagy, E.; Nassalski, J.; Norton, P. R.; McNicholas, J.; Osborne, A. M.; Payre, P.; Peroni, C.; Pessard, H.; Pietrzyk, U.; Rith, K.; Rousseau, M. D.; Schneegans, M.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Thénard, J. M.; Thompson, J. C.; Urban, L.; Villers, M.; Wahlen, H.; Whalley, M.; Williams, D.; Williams, W. S. C.; Williamson, J.; Wimpenny, S. J.
1983-09-01
The z and p {/T 2} distributions of π0 mesons produced by the interaction of 200 GeV muons on hydrogen are presented. Comparisons are made with other π0 and charged hadron data and with the predictions of perturbative QCD. The data show a rise of < p {/T 2}> with W 2 which is consistent with QCD, and with z 2 which requires a contribution from a primordial k T . The fraction of total energy which appears as π0 mesons is 0.27±0.05.
Separated kaon electroproduction cross section and the kaon form factor from 6 GeV JLab data
Carmignotto, M.; Ali, S.; Aniol, K.; ...
2018-02-28
The 1H(e,e 'K +)Λ reaction was studied as a function of the Mandelstam variable -t using data from the E01-004 (FPI-2) and E93-018 experiments that were carried out in Hall C at the 6 GeV Jefferson Laboratory. The cross section was fully separated into longitudinal and transverse components, and two interference terms at four-momentum transfers Q 2 of 1.00, 1.36, and 2.07 GeV 2. The kaon form factor was extracted from the longitudinal cross section using the Regge model by Vanderhaeghen et al. [Phys. Rev. C 57, 1454 (1998)]. Here, the results establish the method, previously used successfully for pionmore » analyses, for extracting the kaon form factor. Data from 12 GeV Jefferson Laboratory experiments are expected to have sufficient precision to distinguish between theoretical predictions, for example, recent perturbative QCD calculations with modern parton distribution amplitudes. The leading-twist behavior for light mesons is predicted to set in for values of Q 2 between 5 and 10 GeV 2, which makes data in the few-GeV regime particularly interesting. Finally, the Q 2 dependence at fixed x and -t of the longitudinal cross section that we extracted seems consistent with the QCD factorization prediction within the experimental uncertainty.« less
Separated kaon electroproduction cross section and the kaon form factor from 6 GeV JLab data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmignotto, M.; Ali, S.; Aniol, K.
The 1H(e,e 'K +)Λ reaction was studied as a function of the Mandelstam variable -t using data from the E01-004 (FPI-2) and E93-018 experiments that were carried out in Hall C at the 6 GeV Jefferson Laboratory. The cross section was fully separated into longitudinal and transverse components, and two interference terms at four-momentum transfers Q 2 of 1.00, 1.36, and 2.07 GeV 2. The kaon form factor was extracted from the longitudinal cross section using the Regge model by Vanderhaeghen et al. [Phys. Rev. C 57, 1454 (1998)]. Here, the results establish the method, previously used successfully for pionmore » analyses, for extracting the kaon form factor. Data from 12 GeV Jefferson Laboratory experiments are expected to have sufficient precision to distinguish between theoretical predictions, for example, recent perturbative QCD calculations with modern parton distribution amplitudes. The leading-twist behavior for light mesons is predicted to set in for values of Q 2 between 5 and 10 GeV 2, which makes data in the few-GeV regime particularly interesting. Finally, the Q 2 dependence at fixed x and -t of the longitudinal cross section that we extracted seems consistent with the QCD factorization prediction within the experimental uncertainty.« less
Separated kaon electroproduction cross section and the kaon form factor from 6 GeV JLab data
NASA Astrophysics Data System (ADS)
Carmignotto, M.; Ali, S.; Aniol, K.; Arrington, J.; Barrett, B.; Beise, E. J.; Blok, H. P.; Boeglin, W.; Brash, E. J.; Breuer, H.; Chang, C. C.; Christy, M. E.; Dittmann, A.; Ent, R.; Fenker, H.; Gaskell, D.; Gibson, E.; Holt, R. J.; Horn, T.; Huber, G. M.; Jin, S.; Jones, M. K.; Keppel, C. E.; Kim, W.; King, P. M.; Kovaltchouk, V.; Liu, J.; Lolos, G. J.; Mack, D. J.; Margaziotis, D. J.; Markowitz, P.; Matsumura, A.; Meekins, D.; Miyoshi, T.; Mkrtchyan, H.; Niculescu, G.; Niculescu, I.; Okayasu, Y.; Pegg, I. L.; Pentchev, L.; Perdrisat, C.; Potterveld, D.; Punjabi, V.; Reimer, P. E.; Reinhold, J.; Roche, J.; Sarty, A.; Smith, G. R.; Tadevosyan, V.; Tang, L. G.; Trotta, R.; Tvaskis, V.; Vargas, A.; Vidakovic, S.; Volmer, J.; Vulcan, W.; Warren, G.; Wood, S. A.; Xu, C.; Zheng, X.; JLAB FPI-2; E93-018 Collaboration
2018-02-01
The 1H(e ,e'K+ )Λ reaction was studied as a function of the Mandelstam variable -t using data from the E01-004 (FPI-2) and E93-018 experiments that were carried out in Hall C at the 6 GeV Jefferson Laboratory. The cross section was fully separated into longitudinal and transverse components, and two interference terms at four-momentum transfers Q2 of 1.00, 1.36, and 2.07 GeV2. The kaon form factor was extracted from the longitudinal cross section using the Regge model by Vanderhaeghen et al. [Phys. Rev. C 57, 1454 (1998), 10.1103/PhysRevC.57.1454]. The results establish the method, previously used successfully for pion analyses, for extracting the kaon form factor. Data from 12 GeV Jefferson Laboratory experiments are expected to have sufficient precision to distinguish between theoretical predictions, for example, recent perturbative QCD calculations with modern parton distribution amplitudes. The leading-twist behavior for light mesons is predicted to set in for values of Q2 between 5 and 10 GeV2, which makes data in the few-GeV regime particularly interesting. The Q2 dependence at fixed x and -t of the longitudinal cross section that we extracted seems consistent with the QCD factorization prediction within the experimental uncertainty.
Baryon currents in QCD with compact dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucini, B.; Patella, A.; Istituto Nazionale Fisica Nucleare Sezione di Pisa, Largo Pontecorvo 3, 56126 Pisa
2007-06-15
On a compact space with nontrivial cycles, for sufficiently small values of the radii of the compact dimensions, SU(N) gauge theories coupled with fermions in the fundamental representation spontaneously break charge conjugation, time reversal, and parity. We show at one loop in perturbation theory that a physical signature for this phenomenon is a nonzero baryonic current wrapping around the compact directions. The persistence of this current beyond the perturbative regime is checked by lattice simulations.
Masses of Open-Flavour Heavy-Light Hybrids from QCD Sum Rules
NASA Astrophysics Data System (ADS)
Ho, Jason; Harnett, Derek; Steele, Tom
2017-01-01
Our current understanding of the strong interaction (QCD) permits the construction of colour singlet states with novel structures that do not fit within the traditional quark model, including hybrid mesons. To date, though other exotic structures such as pentaquark and tetraquark states have been confirmed, no unambiguous hybrid meson signals have been observed. However, with data collection at the GlueX experiment ongoing and with the construction of the PANDA experiment at FAIR, the opportunity to observe hybrid states has never been better. As theoretical calculations are a necessary piece for the identification of any observed experimental resonance, we present our mass predictions of heavy-light open-flavour hybrid mesons using QCD Laplace sum-rules for all scalar and vector JP channels, and including non-perturbative condensate contributions up to six-dimensions.
Anomalous magnetic moment of the muon: A hybrid approach
NASA Astrophysics Data System (ADS)
Dominguez, C. A.; Horch, H.; Jäger, B.; Nasrallah, N. F.; Schilcher, K.; Spiesberger, H.; Wittig, H.
2017-10-01
A new QCD sum rule determination of the leading order hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon, aμhvp, is proposed. This approach combines data on e+e- annihilation into hadrons, perturbative QCD and lattice QCD results for the first derivative of the electromagnetic current correlator at zero momentum transfer, ΠEM'(0 ). The idea is based on the observation that, in the relevant kinematic domain, the integration kernel K (s ), entering the formula relating aμhvp to e+e- annihilation data, behaves like 1 /s times a very smooth function of s , the squared energy. We find an expression for aμ in terms of ΠEM'(0 ), which can be calculated in lattice QCD. Using recent lattice results we find a good approximation for aμhvp, but the precision is not yet sufficient to resolve the discrepancy between the R (s ) data-based results and the experimentally measured value.
Implications of the principle of maximum conformality for the QCD strong coupling
Deur, Alexandre; Shen, Jian -Ming; Wu, Xing -Gang; ...
2017-08-14
The Principle of Maximum Conformality (PMC) provides scale-fixed perturbative QCD predictions which are independent of the choice of the renormalization scheme, as well as the choice of the initial renormalization scale. In this article, we will test the PMC by comparing its predictions for the strong couplingmore » $$\\alpha^s_{g_1}(Q)$$, defined from the Bjorken sum rule, with predictions using conventional pQCD scale-setting. The two results are found to be compatible with each other and with the available experimental data. However, the PMC provides a significantly more precise determination, although its domain of applicability ($$Q \\gtrsim 1.5$$ GeV) does not extend to as small values of momentum transfer as that of a conventional pQCD analysis ($$Q \\gtrsim 1$$ GeV). In conclusion, we suggest that the PMC range of applicability could be improved by a modified intermediate scheme choice or using a single effective PMC scale.« less
K-->pipi amplitudes from lattice QCD with a light charm quark.
Giusti, L; Hernández, P; Laine, M; Pena, C; Wennekers, J; Wittig, H
2007-02-23
We compute the leading-order low-energy constants of the DeltaS=1 effective weak Hamiltonian in the quenched approximation of QCD with up, down, strange, and charm quarks degenerate and light. They are extracted by comparing the predictions of finite-volume chiral perturbation theory with lattice QCD computations of suitable correlation functions carried out with quark masses ranging from a few MeV up to half of the physical strange mass. We observe a DeltaI=1/2 enhancement in this corner of the parameter space of the theory. Although matching with the experimental result is not observed for the DeltaI=1/2 amplitude, our computation suggests large QCD contributions to the physical DeltaI=1/2 rule in the GIM limit, and represents the first step to quantify the role of the charm-quark mass in K-->pipi amplitudes. The use of fermions with an exact chiral symmetry is an essential ingredient in our computation.
Hadronic vacuum polarization in true muonium
NASA Astrophysics Data System (ADS)
Lamm, Henry
2017-01-01
In order to reduce the theoretical uncertainty in the prediction, the leading-order hadronic vacuum polarization contribution to the hyperfine splitting of true muonium is reevaluated in two ways. A more complex pionic form factor and better estimates of the perturbative QCD contributions are used to study the model dependence of the previous calculation. The second, more accurate method directly integrates the Drell ratio R (s ) to obtain C1 ,HVP=-0.04874 (9 ) . This corresponds to an energy shift in the hyperfine splitting (HFS) of Δ EHFS,HVP μ=-8202 (16 ) MHz and represents a factor-of-50 reduction in the theoretical uncertainty from hadronic sources. We also compute the contribution in positronium, which is too small at present to detect.
Jet transverse fragmentation momentum from h-h correlations in pp and p-Pb collisions
NASA Astrophysics Data System (ADS)
Viinikainen, J.; Alice Collaboration
2017-08-01
QCD color coherence phenomena, like angular ordering, can be studied by looking at jet fragmentation. As the jet is fragmenting, it is expected to go through two different phases. First, there is QCD branching that is calculable in perturbative QCD. Next, the produced partons hadronize in a non-perturbative way later in a hadronization process. The jet fragmentation can be studied using the method of two particle correlations. A useful observable is the jet transverse fragmentation momentum jT, which describes the angular width of the jet. In this contribution, a differential study will be presented in which separate jT components for branching and hadronization will be distinguished from the data measured by the ALICE experiment. The pTt dependence of the hadronization component √{ 〈jT2 〉 } is found to be rather flat, which is consistent with universal hadronization assumption. However, the branching component shows slightly rising trend in pTt. The √{ s } = 7 TeV pp and √{sNN } = 5.02 TeV p-Pb data give the same results within error bars, suggesting that this observable is not affected by cold nuclear matter effects in p-Pb collisions. The measured data will also be compared to the results obtained from PYTHIA8 simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Sheng-Quan; Wu, Xing-Gang; Brodsky, Stanley J.
We present improved perturbative QCD (pQCD) predictions for Higgs boson hadroproduction at the LHC by applying the principle of maximum conformality (PMC), a procedure which resums the pQCD series using the renormalization group (RG), thereby eliminating the dependence of the predictions on the choice of the renormalization scheme while minimizing sensitivity to the initial choice of the renormalization scale. In previous pQCD predictions for Higgs boson hadroproduction, it has been conventional to assume that the renormalization scale μ r of the QCD coupling α s ( μ r ) is the Higgs mass and then to vary this choice overmore » the range 1 / 2 m H < μ r < 2 m H in order to estimate the theory uncertainty. However, this error estimate is only sensitive to the nonconformal β terms in the pQCD series, and thus it fails to correctly estimate the theory uncertainty in cases where a pQCD series has large higher-order contributions, as is the case for Higgs boson hadroproduction. Furthermore, this ad hoc choice of scale and range gives pQCD predictions which depend on the renormalization scheme being used, in contradiction to basic RG principles. In contrast, after applying the PMC, we obtain next-to-next-to-leading-order RG resummed pQCD predictions for Higgs boson hadroproduction which are renormalization-scheme independent and have minimal sensitivity to the choice of the initial renormalization scale. Taking m H = 125 GeV , the PMC predictions for the p p → H X Higgs inclusive hadroproduction cross sections for various LHC center-of-mass energies are σ Incl | 7 TeV = 21.2 1 + 1.36 - 1.32 pb , σ Incl | 8 TeV = 27.3 7 + 1.65 - 1.59 pb , and σ Incl | 13 TeV = 65.7 2 + 3.46 - 3.0 pb . We also predict the fiducial cross section σ fid ( p p → H → γ γ ) : σ fid | 7 TeV = 30.1 + 2.3 - 2.2 fb , σ fid | 8 TeV = 38.3 + 2.9 - 2.8 fb , and σ fid | 13 TeV = 85.8 + 5.7 - 5.3 fb . The error limits in these predictions include the small residual high-order renormalization-scale dependence plus the uncertainty from the factorization scale. The PMC predictions show better agreement with the ATLAS measurements than the LHC Higgs Cross Section Working Group predictions which are based on conventional renormalization-scale setting.« less
Conformal expansions and renormalons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rathsman, J.
2000-02-07
The coefficients in perturbative expansions in gauge theories are factorially increasing, predominantly due to renormalons. This type of factorial increase is not expected in conformal theories. In QCD conformal relations between observables can be defined in the presence of a perturbative infrared fixed-point. Using the Banks-Zaks expansion the authors study the effect of the large-order behavior of the perturbative series on the conformal coefficients. The authors find that in general these coefficients become factorially increasing. However, when the factorial behavior genuinely originates in a renormalon integral, as implied by a postulated skeleton expansion, it does not affect the conformal coefficients.more » As a consequence, the conformal coefficients will indeed be free of renormalon divergence, in accordance with previous observations concerning the smallness of these coefficients for specific observables. The authors further show that the correspondence of the BLM method with the skeleton expansion implies a unique scale-setting procedure. The BLM coefficients can be interpreted as the conformal coefficients in the series relating the fixed-point value of the observable with that of the skeleton effective charge. Through the skeleton expansion the relevance of renormalon-free conformal coefficients extends to real-world QCD.« less
Tau hadronic spectral function moments: perturbative expansion and αs extractions
NASA Astrophysics Data System (ADS)
Boito, D.
2016-04-01
In the extraction of αs from hadronic τ decays different moments of the spectral functions have been used. Furthermore, the two mainstream renormalization group improvement (RGI) frameworks, namely Fixed Order Perturbation Theory (FOPT) and Contour Improved Perturbation Theory (CIPT), lead to conflicting values of αs. In order to improve the strategy used in αs determinations, we have performed a systematic study of the perturbative behaviour of these spectral moments in the context of FOPT and CIPT. Higher order coefficients of the perturbative series, yet unknown, were modelled using available knowledge of the renormalon content of the QCD Adler function. We conclude that within these RGI frameworks some of the moments often employed in αs extractions should be avoided due to their poor perturbative behaviour. Finally, under reasonable assumptions about higher orders, we conclude that FOPT is the preferred method to perform the renormalization group improvement of the perturbative series.
Hard-thermal-loop perturbation theory to two loops
NASA Astrophysics Data System (ADS)
Andersen, Jens O.; Braaten, Eric; Petitgirard, Emmanuel; Strickland, Michael
2002-10-01
We calculate the pressure for pure-glue QCD at high temperature to two-loop order using hard-thermal-loop (HTL) perturbation theory. At this order, all the ultraviolet divergences can be absorbed into renormalizations of the vacuum energy density and the HTL mass parameter. We determine the HTL mass parameter by a variational prescription. The resulting predictions for the pressure fail to agree with results from lattice gauge theory at temperatures for which they are available.
The QCD matter; perturbation and lattice gauge theory
NASA Astrophysics Data System (ADS)
Saini, Abhilasha; Bhardwaj, Sudhir; Keswani, Bright
2018-05-01
In this review we are watching towards the probes of quark gluon plasma which provides the unique option to create such nuclear stuff at controlled laboratory conditions. The observables from hadronic and leptonic residues provide the required information. The other tool is the detailed rapidity and momentum spectra of hadrons. Here the information regarding the de-confined phase transition and chiral symmetry restoration is mentioned; also the perturbation and lattice gauge theory is described in short.
Illustrated study of the semiholographic nonperturbative framework
NASA Astrophysics Data System (ADS)
Banerjee, Souvik; Gaddam, Nava; Mukhopadhyay, Ayan
2017-03-01
Semiholography has been proposed as an effective nonperturbative framework which can consistently combine perturbative and nonperturbative effects for theories like QCD. It is postulated that the strongly coupled nonperturbative sector has a holographic dual in the form of a classical gravity theory in the large N limit, and the perturbative fields determine the gravitational boundary conditions. In this work, we pursue a fundamental derivation of this framework particularly showing how perturbative physics by itself can determine the holographic dual of the infrared, and also the interactions between the perturbative and the holographic sectors. We firstly demonstrate that the interactions between the two sectors can be constrained through the existence of a conserved local energy-momentum tensor for the full system up to hard-soft coupling constants. As an illustration, we set up a biholographic toy theory where both the UV and IR sectors are strongly coupled and holographic with distinct classical gravity duals. In this construction, the requirement that an appropriate gluing can cure the singularities (geodetic incompleteness) of the respective geometries leads us to determine the parameters of the IR theory and the hard-soft couplings in terms of those of the UV theory. The high energy scale behavior of the hard-soft couplings is state-independent but their runnings turn out to be state-dependent. We discuss how our approach can be adapted to the construction of the semiholographic framework for QCD.
Hadronic and nuclear interactions in QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Despite the evidence that QCD - or something close to it - gives a correct description of the structure of hadrons and their interactions, it seems paradoxical that the theory has thus far had very little impact in nuclear physics. One reason for this is that the application of QCD to distances larger than 1 fm involves coherent, non-perturbative dynamics which is beyond present calculational techniques. For example, in QCD the nuclear force can evidently be ascribed to quark interchange and gluon exchange processes. These, however, are as complicated to analyze from a fundamental point of view as is themore » analogous covalent bond in molecular physics. Since a detailed description of quark-quark interactions and the structure of hadronic wavefunctions is not yet well-understood in QCD, it is evident that a quantitative first-principle description of the nuclear force will require a great deal of theoretical effort. Another reason for the limited impact of QCD in nuclear physics has been the conventional assumption that nuclear interactions can for the most part be analyzed in terms of an effective meson-nucleon field theory or potential model in isolation from the details of short distance quark and gluon structure of hadrons. These lectures, argue that this view is untenable: in fact, there is no correspondence principle which yields traditional nuclear physics as a rigorous large-distance or non-relativistic limit of QCD dynamics. On the other hand, the distinctions between standard nuclear physics dynamics and QCD at nuclear dimensions are extremely interesting and illuminating for both particle and nuclear physics.« less
Exploring Partonic Structure of Hadrons Using ab initio Lattice QCD Calculations.
Ma, Yan-Qing; Qiu, Jian-Wei
2018-01-12
Following our previous proposal, we construct a class of good "lattice cross sections" (LCSs), from which we can study the partonic structure of hadrons from ab initio lattice QCD calculations. These good LCSs, on the one hand, can be calculated directly in lattice QCD, and on the other hand, can be factorized into parton distribution functions (PDFs) with calculable coefficients, in the same way as QCD factorization for factorizable hadronic cross sections. PDFs could be extracted from QCD global analysis of the lattice QCD generated data of LCSs. We also show that the proposed functions for lattice QCD calculation of PDFs in the literature are special cases of these good LCSs.
Current Issues and Challenges in Global Analysis of Parton Distributions
NASA Astrophysics Data System (ADS)
Tung, Wu-Ki
2007-01-01
A new implementation of precise perturbative QCD calculation of deep inelastic scattering structure functions and cross sections, incorporating heavy quark mass effects, is applied to the global analysis of the full HERA I data sets on NC and CC cross sections, in conjunction with other experiments. Improved agreement between the NLO QCD theory and the global data sets are obtained. Comparison of the new results to that of previous analysis based on conventional zero-mass parton formalism is made. Exploratory work on implications of new fixed-target neutrino scattering and Drell-Yan data on global analysis is also discussed.
Subtraction method of computing QCD jet cross sections at NNLO accuracy
NASA Astrophysics Data System (ADS)
Trócsányi, Zoltán; Somogyi, Gábor
2008-10-01
We present a general subtraction method for computing radiative corrections to QCD jet cross sections at next-to-next-to-leading order accuracy. The steps needed to set up this subtraction scheme are the same as those used in next-to-leading order computations. However, all steps need non-trivial modifications, which we implement such that that those can be defined at any order in perturbation theory. We give a status report of the implementation of the method to computing jet cross sections in electron-positron annihilation at the next-to-next-to-leading order accuracy.
Analytical Computation of Energy-Energy Correlation at Next-to-Leading Order in QCD
NASA Astrophysics Data System (ADS)
Dixon, Lance J.; Luo, Ming-xing; Shtabovenko, Vladyslav; Yang, Tong-Zhi; Zhu, Hua Xing
2018-03-01
The energy-energy correlation (EEC) between two detectors in e+e- annihilation was computed analytically at leading order in QCD almost 40 years ago, and numerically at next-to-leading order (NLO) starting in the 1980s. We present the first analytical result for the EEC at NLO, which is remarkably simple, and facilitates analytical study of the perturbative structure of the EEC. We provide the expansion of the EEC in the collinear and back-to-back regions through next-to-leading power, information which should aid resummation in these regions.
NASA Astrophysics Data System (ADS)
Mariño, Marcos
2015-09-01
Preface; Part I. Instantons: 1. Instantons in quantum mechanics; 2. Unstable vacua in quantum field theory; 3. Large order behavior and Borel summability; 4. Non-perturbative aspects of Yang-Mills theories; 5. Instantons and fermions; Part II. Large N: 6. Sigma models at large N; 7. The 1=N expansion in QCD; 8. Matrix models and matrix quantum mechanics at large N; 9. Large N QCD in two dimensions; 10. Instantons at large N; Appendix A. Harmonic analysis on S3; Appendix B. Heat kernel and zeta functions; Appendix C. Effective action for large N sigma models; References; Author index; Subject index.
Higgs boson gluon-fusion production beyond threshold in N 3LO QCD
Anastasiou, Charalampos; Duhr, Claude; Dulat, Falko; ...
2015-03-18
In this study, we compute the gluon fusion Higgs boson cross-section at N 3LO through the second term in the threshold expansion. This calculation constitutes a major milestone towards the full N 3LO cross section. Our result has the best formal accuracy in the threshold expansion currently available, and includes contributions from collinear regions besides subleading corrections from soft and hard regions, as well as certain logarithmically enhanced contributions for general kinematics. We use our results to perform a critical appraisal of the validity of the threshold approximation at N 3LO in perturbative QCD.
Higgs boson gluon–fusion production at threshold in N 3LO QCD
Anastasiou, Charalampos; Duhr, Claude; Dulat, Falko; ...
2014-09-02
We present the cross-section for the threshold production of the Higgs boson at hadron-colliders at next-to-next-to-next-to-leading order (N 3LO) in perturbative QCD. Furthermore, we present an analytic expression for the partonic cross-section at threshold and the impact of these corrections on the numerical estimates for the hadronic cross-section at the LHC. With this result we achieve a major milestone towards a complete evaluation of the cross-section at N 3LO which will reduce the theoretical uncertainty in the determination of the strengths of the Higgs boson interactions.
Effective Theories for QCD-like at TeV Scale
NASA Astrophysics Data System (ADS)
Lu, Jie; Bijnens, Johan
2016-04-01
We study the Effective Field Theory of three QCD-like theories, which can be classified by having quarks in a complex, real or pseudo-real representations of the gauge group. The Lagrangians are written in a very similar way so that the calculations can be done using techniques from Chiral Perturbation Theory (ChPT). We calculated the vacuum-expectation-value, the mass and the decay constant of pseudo-Goldstone Bosons up to next-to-next-to leading order (NNLO) [J. Bijnens and J. Lu, JHEP 0911 (2009) 116 [arxiv:arXiv:0910.5424 [hep-ph
Restoration of rotational symmetry in the continuum limit of lattice field theories
NASA Astrophysics Data System (ADS)
Davoudi, Zohreh; Savage, Martin J.
2012-09-01
We explore how rotational invariance is systematically recovered from calculations on hyper-cubic lattices through the use of smeared lattice operators that smoothly evolve into continuum operators with definite angular momentum as the lattice-spacing is reduced. Perturbative calculations of the angular momentum violation associated with such operators at tree level and at one loop are presented in λϕ4 theory and QCD. Contributions from these operators that violate rotational invariance occur at tree-level, with coefficients that are suppressed by O(a2) in the continuum limit. Quantum loops do not modify this behavior in λϕ4, nor in QCD if the gauge-fields are smeared over a comparable spatial region. Consequently, the use of this type of operator should, in principle, allow for Lattice QCD calculations of the higher moments of the hadron structure functions.
Constraints on the ωπ Form Factor from Analyticity and Unitarity
NASA Astrophysics Data System (ADS)
Ananthanarayan, B.; Caprini, Irinel; Kubis, Bastian
Form factors are important low-energy quantities and an accurate knowledge of these sheds light on the strong interactions. A variety of methods based on general principles have been developed to use information known in different energy regimes to constrain them in regions where experimental information needs to be tested precisely. Here we review our recent work on the electromagnetic ωπ form factor in a model-independent framework known as the method of unitarity bounds, partly motivated by the discre-pancies noted recently between the theoretical calculations of the form factor based on dispersion relations and certain experimental data measured from the decay ω → π0γ*. We have applied a modified dispersive formalism, which uses as input the discontinuity of the ωπ form factor calculated by unitarity below the ωπ threshold and an integral constraint on the square of its modulus above this threshold. The latter constraint was obtained by exploiting unitarity and the positivity of the spectral function of a QCD correlator, computed on the spacelike axis by operator product expansion and perturbative QCD. An alternative constraint is obtained by using data available at higher energies for evaluating an integral of the modulus squared with a suitable weight function. From these conditions we derived upper and lower bounds on the modulus of the ωπ form factor in the region below the ωπ threshold. The results confirm the existence of a disagreement between dispersion theory and experimental data on the ωπ form factor around 0:6 GeV, including those from NA60 published in 2016.
Constraints on the ωπ form factor from analyticity and unitarity
NASA Astrophysics Data System (ADS)
Ananthanarayan, B.; Caprini, Irinel; Kubis, Bastian
2016-05-01
Form factors are important low-energy quantities and an accurate knowledge of these sheds light on the strong interactions. A variety of methods based on general principles have been developed to use information known in different energy regimes to constrain them in regions where experimental information needs to be tested precisely. Here we review our recent work on the electromagnetic ωπ form factor in a model-independent framework known as the method of unitarity bounds, partly motivated by the discrepancies noted recently between the theoretical calculations of the form factor based on dispersion relations and certain experimental data measured from the decay ω → π0γ∗. We have applied a modified dispersive formalism, which uses as input the discontinuity of the ωπ form factor calculated by unitarity below the ωπ threshold and an integral constraint on the square of its modulus above this threshold. The latter constraint was obtained by exploiting unitarity and the positivity of the spectral function of a QCD correlator, computed on the spacelike axis by operator product expansion and perturbative QCD. An alternative constraint is obtained by using data available at higher energies for evaluating an integral of the modulus squared with a suitable weight function. From these conditions we derived upper and lower bounds on the modulus of the ωπ form factor in the region below the ωπ threshold. The results confirm the existence of a disagreement between dispersion theory and experimental data on the ωπ form factor around 0.6 GeV, including those from NA60 published in 2016.
Color-suppression of non-planar diagrams in bosonic bound states
NASA Astrophysics Data System (ADS)
Alvarenga Nogueira, J. H.; Ji, Chueng-Ryong; Ydrefors, E.; Frederico, T.
2018-02-01
We study the suppression of non-planar diagrams in a scalar QCD model of a meson system in 3 + 1 space-time dimensions due to the inclusion of the color degrees of freedom. As a prototype of the color-singlet meson, we consider a flavor-nonsinglet system consisting of a scalar-quark and a scalar-antiquark with equal masses exchanging a scalar-gluon of a different mass, which is investigated within the framework of the homogeneous Bethe-Salpeter equation. The equation is solved by using the Nakanishi representation for the manifestly covariant bound-state amplitude and its light-front projection. The resulting non-singular integral equation is solved numerically. The damping of the impact of the cross-ladder kernel on the binding energies are studied in detail. The color-suppression of the cross-ladder effects on the light-front wave function and the elastic electromagnetic form factor are also discussed. As our results show, the suppression appears significantly large for Nc = 3, which supports the use of rainbow-ladder truncations in practical non-perturbative calculations within QCD.
NASA Astrophysics Data System (ADS)
von Hippel, Georg; Rae, Thomas D.; Shintani, Eigo; Wittig, Hartmut
2017-01-01
We study the performance of all-mode-averaging (AMA) when used in conjunction with a locally deflated SAP-preconditioned solver, determining how to optimize the local block sizes and number of deflation fields in order to minimize the computational cost for a given level of overall statistical accuracy. We find that AMA enables a reduction of the statistical error on nucleon charges by a factor of around two at the same cost when compared to the standard method. As a demonstration, we compute the axial, scalar and tensor charges of the nucleon in Nf = 2 lattice QCD with non-perturbatively O(a)-improved Wilson quarks, using O(10,000) measurements to pursue the signal out to source-sink separations of ts ∼ 1.5 fm. Our results suggest that the axial charge is suffering from a significant amount (5-10%) of excited-state contamination at source-sink separations of up to ts ∼ 1.2 fm, whereas the excited-state contamination in the scalar and tensor charges seems to be small.
The { β}-expansion formalism in perturbative QCD and its extension
NASA Astrophysics Data System (ADS)
Kataev, A. L.; Mikhailov, S. V.
2016-11-01
We discuss the { β}-expansion for renormalization group invariant quantities tracing this expansion to the different contractions of the corresponding incomplete BPHZ R-operation. All of the coupling renormalizations, which follow from these contractions, should be taken into account for the { β}-expansion. We illustrate this feature considering the nonsinglet Adler function D NS in the third order of perturbation. We propose a generalization of the { β}-expansion for the renormalization group covariant quantities — the { β, γ}-expansion.
XYZ-like spectra from Laplace sum rule at N2LO in the chiral limit
NASA Astrophysics Data System (ADS)
Albuquerque, R.; Narison, S.; Fanomezana, F.; Rabemananjara, A.; Rabetiarivony, D.; Randriamanatrika, G.
2016-12-01
We present new compact integrated expressions of QCD spectral functions of heavy-light molecules and four-quark XY Z-like states at lowest order (LO) of perturbative (PT) QCD and up to d = 8 condensates of the Operator Product Expansion (OPE). Then, by including up to next-to-next leading order (N2LO) PT QCD corrections, which we have estimated by assuming the factorization of the four-quark spectral functions, we improve previous LO results from QCD spectral sum rules (QSSR), on the XY Z-like masses and decay constants which suffer from the ill-defined heavy quark mass. PT N3LO corrections are estimated using a geometric growth of the PT series and are included in the systematic errors. Our optimal results based on stability criteria are summarized in Tables 11-14 and compared, in Sec. 10, with experimental candidates and some LO QSSR results. We conclude that the masses of the XZ observed states are compatible with (almost) pure JPC = 1+±, 0++ molecule or/and four-quark states. The ones of the 1-±, 0-± molecule/four-quark states are about 1.5 GeV above the Yc,b mesons experimental candidates and hadronic thresholds. We also find that the couplings of these exotics to the associated interpolating currents are weaker than that of ordinary D,B mesons (fDD ≈ 10-3f D) and may behave numerically as 1/m¯b3/2 (respectively 1/m¯b) for the 1+, 0+ (respectively 1-, 0-) states which can stimulate further theoretical studies of these decay constants.
Resumming double logarithms in the QCD evolution of color dipoles
Iancu, E.; Madrigal, J. D.; Mueller, A. H.; ...
2015-05-01
The higher-order perturbative corrections, beyond leading logarithmic accuracy, to the BFKL evolution in QCD at high energy are well known to suffer from a severe lack-of-convergence problem, due to radiative corrections enhanced by double collinear logarithms. Via an explicit calculation of Feynman graphs in light cone (time-ordered) perturbation theory, we show that the corrections enhanced by double logarithms (either energy-collinear, or double collinear) are associated with soft gluon emissions which are strictly ordered in lifetime. These corrections can be resummed to all orders by solving an evolution equation which is non-local in rapidity. This equation can be equivalently rewritten inmore » local form, but with modified kernel and initial conditions, which resum double collinear logs to all orders. We extend this resummation to the next-to-leading order BFKL and BK equations. The first numerical studies of the collinearly-improved BK equation demonstrate the essential role of the resummation in both stabilizing and slowing down the evolution.« less
Bärnreuther, Peter; Czakon, Michał; Mitov, Alexander
2012-09-28
We compute the next-to-next-to-leading order QCD corrections to the partonic reaction that dominates top-pair production at the Tevatron. This is the first ever next-to-next-to-leading order calculation of an observable with more than two colored partons and/or massive fermions at hadron colliders. Augmenting our fixed order calculation with soft-gluon resummation through next-to-next-to-leading logarithmic accuracy, we observe that the predicted total inclusive cross section exhibits a very small perturbative uncertainty, estimated at ±2.7%. We expect that once all subdominant partonic reactions are accounted for, and work in this direction is ongoing, the perturbative theoretical uncertainty for this observable could drop below ±2%. Our calculation demonstrates the power of our computational approach and proves it can be successfully applied to all processes at hadron colliders for which high-precision analyses are needed.
NASA Astrophysics Data System (ADS)
Bärnreuther, Peter; Czakon, Michał; Mitov, Alexander
2012-09-01
We compute the next-to-next-to-leading order QCD corrections to the partonic reaction that dominates top-pair production at the Tevatron. This is the first ever next-to-next-to-leading order calculation of an observable with more than two colored partons and/or massive fermions at hadron colliders. Augmenting our fixed order calculation with soft-gluon resummation through next-to-next-to-leading logarithmic accuracy, we observe that the predicted total inclusive cross section exhibits a very small perturbative uncertainty, estimated at ±2.7%. We expect that once all subdominant partonic reactions are accounted for, and work in this direction is ongoing, the perturbative theoretical uncertainty for this observable could drop below ±2%. Our calculation demonstrates the power of our computational approach and proves it can be successfully applied to all processes at hadron colliders for which high-precision analyses are needed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyle, P. A.; Christ, N. H.; Garron, N.
2016-03-09
Here, we have performed fits of the pseudoscalar masses and decay constants, from a variety of the RBC-UKQCD Collaboration’s domain wall fermion ensembles, to SU(2) partially quenched chiral perturbation theory at next-to-leading order (NLO) and next-to-next-to-leading order (NNLO). We report values for 9 NLO and 8 linearly independent combinations of NNLO partially quenched low-energy constants, which we compare to other lattice and phenomenological determinations. We discuss the size of successive terms in the chiral expansion and use our large set of low-energy constants to make predictions for mass splittings due to QCD isospin-breaking effects and the S-wave ππ scattering lengths.more » Lastly, we conclude that, for the range of pseudoscalar masses explored in this work, 115 MeV≲mPS≲430 MeV, the NNLO SU(2) expansion is quite robust and can fit lattice data with percent-scale accuracy.« less
Current-current interactions, dynamical symmetry-breaking, and quantum chromodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuenschwander, D.E. Jr.
1983-01-01
Quantum Chromodynamics with massive gluons (gluon mass triple bond xm/sub p/) in a contact-interaction limit called CQCD (strong coupling g..-->..infinity; x..-->..infinity), despite its non-renormalizability and lack of hope of confinement, is nevertheless interesting for at least two reasons. Some authors have suggested a relation between 4-Fermi and Yang-Mills theories. If g/x/sup 2/ much less than 1, then CQCD is not merely a 4-Fermi interaction, but includes 4,6,8 etc-Fermi non-Abelian contact interactions. With possibility of infrared slavery, perturbative evaluation of QCD in the infrared is a dubious practice. However, if g/sup 2//x/sup 2/ much less than 1 in CQCD, then themore » simplest 4-Fermi interaction is dominant, and CQCD admits perturbative treatment, but only in the infrared. With the dominant interaction, a dynamical Nambu-Goldstone realization of chiral symmetry-breaking (XSB) is found. Although in QCD the relation between confinement and XSB is controversial, XSB occurs in CQCD provided confinement is sacrificed.« less
Exploratory Lattice QCD Study of the Rare Kaon Decay K^{+}→π^{+}νν[over ¯].
Bai, Ziyuan; Christ, Norman H; Feng, Xu; Lawson, Andrew; Portelli, Antonin; Sachrajda, Christopher T
2017-06-23
We report a first, complete lattice QCD calculation of the long-distance contribution to the K^{+}→π^{+}νν[over ¯] decay within the standard model. This is a second-order weak process involving two four-Fermi operators that is highly sensitive to new physics and being studied by the NA62 experiment at CERN. While much of this decay comes from perturbative, short-distance physics, there is a long-distance part, perhaps as large as the planned experimental error, which involves nonperturbative phenomena. The calculation presented here, with unphysical quark masses, demonstrates that this contribution can be computed using lattice methods by overcoming three technical difficulties: (i) a short-distance divergence that results when the two weak operators approach each other, (ii) exponentially growing, unphysical terms that appear in Euclidean, second-order perturbation theory, and (iii) potentially large finite-volume effects. A follow-on calculation with physical quark masses and controlled systematic errors will be possible with the next generation of computers.
An ϵ' improvement from right-handed currents
Cirigliano, Vincenzo; Dekens, Wouter Gerard; de Vries, Jordy; ...
2017-01-23
Recent lattice QCD calculations of direct CP violation in K L → ππ decays indicate tension with the experimental results. Assuming this tension to be real, we investigate a possible beyond-the-Standard Model explanation via right-handed charged currents. By using chiral perturbation theory in combination with lattice QCD results, we accurately calculate the modification of ϵ'/ϵ induced by right-handed charged currents and extract values of the couplings that are necessary to explain the discrepancy, pointing to a scale around 10–100 TeV. We find that couplings of this size are not in conflict with constraints from other precision experiments, but next-generation hadronicmore » electric dipole moment searches (such as neutron and 225Ra) can falsify this scenario. As a result, we work out in detail a direct link, based on chiral perturbation theory, between CP violation in the kaon sector and electric dipole moments induced by right-handed currents which can be used in future analyses of left-right symmetric models.« less
Gravitational wave from dark sector with dark pion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsumura, Koji; Yamada, Masatoshi; Yamaguchi, Yuya, E-mail: ko2@gauge.scphys.kyoto-u.ac.jp, E-mail: m.yamada@thphys.uni-heidelberg.de, E-mail: yy@particle.sci.hokudai.ac.jp
In this work, we investigate the spectra of gravitational waves produced by chiral symmetry breaking in dark quantum chromodynamics (dQCD) sector. The dark pion (π) can be a dark matter candidate as weakly interacting massive particle (WIMP) or strongly interacting massive particle (SIMP). For a WIMP scenario, we introduce the dQCD sector coupled to the standard model (SM) sector with classical scale invariance and investigate the annihilation process of the dark pion via the 2π → 2 SM process. For a SIMP scenario, we investigate the 3π → 2π annihilation process of the dark pion as a SIMP using chiralmore » perturbation theory. We find that in the WIMP scenario the gravitational wave background spectra can be observed by future space gravitational wave antennas. On the other hand, when the dark pion is the SIMP dark matter with the constraints for the chiral perturbative limit and pion-pion scattering cross section, the chiral phase transition becomes crossover and then the gravitational waves are not produced.« less
Exploratory Lattice QCD Study of the Rare Kaon Decay K+→π+ν ν ¯
NASA Astrophysics Data System (ADS)
Bai, Ziyuan; Christ, Norman H.; Feng, Xu; Lawson, Andrew; Portelli, Antonin; Sachrajda, Christopher T.; Rbc-Ukqcd Collaboration
2017-06-01
We report a first, complete lattice QCD calculation of the long-distance contribution to the K+→π+ν ν ¯ decay within the standard model. This is a second-order weak process involving two four-Fermi operators that is highly sensitive to new physics and being studied by the NA62 experiment at CERN. While much of this decay comes from perturbative, short-distance physics, there is a long-distance part, perhaps as large as the planned experimental error, which involves nonperturbative phenomena. The calculation presented here, with unphysical quark masses, demonstrates that this contribution can be computed using lattice methods by overcoming three technical difficulties: (i) a short-distance divergence that results when the two weak operators approach each other, (ii) exponentially growing, unphysical terms that appear in Euclidean, second-order perturbation theory, and (iii) potentially large finite-volume effects. A follow-on calculation with physical quark masses and controlled systematic errors will be possible with the next generation of computers.
Magnetic bion condensation: A new mechanism of confinement and mass gap in four dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uensal, Mithat
In recent work, we derived the long-distance confining dynamics of certain QCD-like gauge theories formulated on small S{sup 1}xR{sup 3} based on symmetries, an index theorem, and Abelian duality. Here, we give the microscopic derivation. The solution reveals a new mechanism of confinement in QCD(adj) in the regime where we have control over both perturbative and nonperturbative aspects. In particular, consider SU(2) QCD(adj) theory with 1{<=}n{sub f}{<=}4 Majorana fermions, a theory which undergoes gauge symmetry breaking at small S{sup 1}. If the magnetic charge of the Bogomol'nyi-Prasad-Sommerfield (BPS) monopole is normalized to unity, we show that confinement occurs due tomore » condensation of objects with magnetic charge 2, not 1. Because of index theorems, we know that such an object cannot be a two identical monopole configuration. Its net topological charge must vanish, and hence it must be topologically indistinguishable from the perturbative vacuum. We construct such non-self-dual topological excitations, the magnetically charged, topologically null molecules of a BPS monopole and KK antimonopole, which we refer to as magnetic bions. An immediate puzzle with this proposal is the apparent Coulomb repulsion between the BPS-KK pair. An attraction which overcomes the Coulomb repulsion between the two is induced by 2n{sub f}-fermion exchange. Bion condensation is also the mechanism of confinement in N=1 SYM on the same four-manifold. The SU(N) generalization hints a possible hidden integrability behind nonsupersymmetric QCD of affine Toda type, and allows us to analytically compute the mass gap in the gauge sector. We currently do not know the extension to R{sup 4}.« less
Importance of proper renormalization scale-setting for QCD testing at colliders
Wu, Xing -Gang; Wang, Sheng -Quan; Brodsky, Stanley J.
2015-12-22
A primary problem affecting perturbative quantum chromodynamic (pQCD) analyses is the lack of a method for setting the QCD running-coupling renormalization scale such that maximally precise fixed-order predictions for physical observables are obtained. The Principle of Maximum Conformality (PMC) eliminates the ambiguities associated with the conventional renormalization scale-setting procedure, yielding predictions that are independent of the choice of renormalization scheme. The QCD coupling scales and the effective number of quark flavors are set order-by-order in the pQCD series. The PMC has a solid theoretical foundation, satisfying the standard renormalization group invariance condition and all of the self-consistency conditions derived frommore » the renormalization group. The PMC scales at each order are obtained by shifting the arguments of the strong force coupling constant αs to eliminate all non-conformal {βi} terms in the pQCD series. The {βi} terms are determined from renormalization group equations without ambiguity. The correct behavior of the running coupling at each order and at each phase-space point can then be obtained. The PMC reduces in the N C → 0 Abelian limit to the Gell-Mann-Low method. In this brief report, we summarize the results of our recent application of the PMC to a number of collider processes, emphasizing the generality and applicability of this approach. A discussion of hadronic Z decays shows that, by applying the PMC, one can achieve accurate predictions for the total and separate decay widths at each order without scale ambiguities. We also show that, if one employs the PMC to determine the top-quark pair forward-backward asymmetry at the next-to-next-to-leading order level, one obtains a comprehensive, self-consistent pQCD explanation for the Tevatron measurements of the asymmetry. This accounts for the “increasing-decreasing” behavior observed by the D0 collaboration for increasing tt¯ invariant mass. At lower energies, the angular distributions of heavy quarks can be used to obtain a direct determination of the heavy quark potential. A discussion of the angular distributions of massive quarks and leptons is also presented, including the fermionic component of the two-loop corrections to the electromagnetic form factors. Furthermore, these results demonstrate that the application of the PMC systematically eliminates a major theoretical uncertainty for pQCD predictions, thus increasing collider sensitivity to possible new physics beyond the Standard Model.« less
The I=2 ππ S-wave Scattering Phase Shift from Lattice QCD
Beane, S. R.; Chang, E.; Detmold, W.; ...
2012-02-16
The π +π + s-wave scattering phase-shift is determined below the inelastic threshold using Lattice QCD. Calculations were performed at a pion mass of m π ≈ 390 MeV with an anisotropic n f = 2+1 clover fermion discretization in four lattice volumes, with spatial extent L ≈ 2.0, 2.5, 3.0 and 3.9 fm, and with a lattice spacing of b s ≈ 0.123 fm in the spatial direction and b t b s/3.5 in the time direction. The phase-shift is determined from the energy-eigenvalues of π +π + systems with both zero and non-zero total momentum in the latticemore » volume using Luscher's method. Our calculations are precise enough to allow for a determination of the threshold scattering parameters, the scattering length a, the effective range r, and the shape-parameter P, in this channel and to examine the prediction of two-flavor chiral perturbation theory: m π 2 a r = 3+O(m π 2/Λ χ 2). Chiral perturbation theory is used, with the Lattice QCD results as input, to predict the scattering phase-shift (and threshold parameters) at the physical pion mass. Our results are consistent with determinations from the Roy equations and with the existing experimental phase shift data.« less
Forward and small-x QCD physics results from CMS experiment at LHC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerci, Deniz Sunar, E-mail: deniz.sunar.cerci@cern.ch
2016-03-25
The Compact Muon Solenoid (CMS) is one of the two large, multi-purpose experiments at the Large Hadron Collider (LHC) at CERN. During the Run I Phase a large pp collision dataset has been collected and the CMS collaboration has explored measurements that shed light on a new era. Forward and small-x quantum chromodynamics (QCD) physics measurements with CMS experiment covers a wide range of physics subjects. Some of highlights in terms of testing the very low-x QCD, underlying event and multiple interaction characteristics, photon-mediated processes, jets with large rapidity separation at high pseudo-rapidities and the inelastic proton-proton cross section dominatedmore » by diffractive interactions are presented. Results are compared to Monte Carlo (MC) models with different parameter tunes for the description of the underlying event and to perturbative QCD calculations. The prominent role of multi-parton interactions has been confirmed in the semihard sector but no clear deviation from the standard Dglap parton evolution due to Bfkl has been observed. An outlook to the prospects at 13 TeV is given.« less
QCD sum-rules analysis of vector (1-) heavy quarkonium meson-hybrid mixing
NASA Astrophysics Data System (ADS)
Palameta, A.; Ho, J.; Harnett, D.; Steele, T. G.
2018-02-01
We use QCD Laplace sum rules to study meson-hybrid mixing in vector (1-) heavy quarkonium. We compute the QCD cross-correlator between a heavy meson current and a heavy hybrid current within the operator product expansion. In addition to leading-order perturbation theory, we include four- and six-dimensional gluon condensate contributions as well as a six-dimensional quark condensate contribution. We construct several single and multiresonance models that take known hadron masses as inputs. We investigate which resonances couple to both currents and so exhibit meson-hybrid mixing. Compared to single resonance models that include only the ground state, we find that models that also include excited states lead to significantly improved agreement between QCD and experiment. In the charmonium sector, we find that meson-hybrid mixing is consistent with a two-resonance model consisting of the J /ψ and a 4.3 GeV resonance. In the bottomonium sector, we find evidence for meson-hybrid mixing in the ϒ (1 S ) , ϒ (2 S ), ϒ (3 S ), and ϒ (4 S ).
Hidden axion dark matter decaying through mixing with QCD axion and the 3.5 keV X-ray line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higaki, Tetsutaro; Kitajima, Naoya; Takahashi, Fuminobu, E-mail: thigaki@post.kek.jp, E-mail: kitajima@tuhep.phys.tohoku.ac.jp, E-mail: fumi@tuhep.phys.tohoku.ac.jp
2014-12-01
Hidden axions may be coupled to the standard model particles through a kinetic or mass mixing with QCD axion. We study a scenario in which a hidden axion constitutes a part of or the whole of dark matter and decays into photons through the mixing, explaining the 3.5 keV X-ray line signal. Interestingly, the required long lifetime of the hidden axion dark matter can be realized for the QCD axion decay constant at an intermediate scale, if the mixing is sufficiently small. In such a two component dark matter scenario, the primordial density perturbations of the hidden axion can bemore » highly non-Gaussian, leading to a possible dispersion in the X-ray line strength from various galaxy clusters and near-by galaxies. We also discuss how the parallel and orthogonal alignment of two axions affects their couplings to gauge fields. In particular, the QCD axion decay constant can be much larger than the actual Peccei-Quinn symmetry breaking.« less
Borel Summability of Perturbative Series in 4D N=2 and 5D N=1 Supersymmetric Theories.
Honda, Masazumi
2016-05-27
We study weak coupling perturbative series in 4D N=2 and 5D N=1 supersymmetric gauge theories with Lagrangians. We prove that the perturbative series of these theories in the zero-instanton sector are Borel summable for various observables. Our result for the 4D N=2 case supports an expectation from a recent proposal on a semiclassical realization of infrared renormalons in QCD-like theories, where the semiclassical solution does not exist in N=2 theories and the perturbative series are unambiguous, namely, Borel summable. We also prove that the perturbative series in an arbitrary number of instanton sectors are Borel summable for a wide class of theories. It turns out that exact results can be obtained by summing over the Borel resummations with every instanton number.
The renormalization scale-setting problem in QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Xing-Gang; Brodsky, Stanley J.; Mojaza, Matin
2013-09-01
A key problem in making precise perturbative QCD predictions is to set the proper renormalization scale of the running coupling. The conventional scale-setting procedure assigns an arbitrary range and an arbitrary systematic error to fixed-order pQCD predictions. In fact, this ad hoc procedure gives results which depend on the choice of the renormalization scheme, and it is in conflict with the standard scale-setting procedure used in QED. Predictions for physical results should be independent of the choice of the scheme or other theoretical conventions. We review current ideas and points of view on how to deal with the renormalization scalemore » ambiguity and show how to obtain renormalization scheme- and scale-independent estimates. We begin by introducing the renormalization group (RG) equation and an extended version, which expresses the invariance of physical observables under both the renormalization scheme and scale-parameter transformations. The RG equation provides a convenient way for estimating the scheme- and scale-dependence of a physical process. We then discuss self-consistency requirements of the RG equations, such as reflexivity, symmetry, and transitivity, which must be satisfied by a scale-setting method. Four typical scale setting methods suggested in the literature, i.e., the Fastest Apparent Convergence (FAC) criterion, the Principle of Minimum Sensitivity (PMS), the Brodsky–Lepage–Mackenzie method (BLM), and the Principle of Maximum Conformality (PMC), are introduced. Basic properties and their applications are discussed. We pay particular attention to the PMC, which satisfies all of the requirements of RG invariance. Using the PMC, all non-conformal terms associated with the β-function in the perturbative series are summed into the running coupling, and one obtains a unique, scale-fixed, scheme-independent prediction at any finite order. The PMC provides the principle underlying the BLM method, since it gives the general rule for extending BLM up to any perturbative order; in fact, they are equivalent to each other through the PMC–BLM correspondence principle. Thus, all the features previously observed in the BLM literature are also adaptable to the PMC. The PMC scales and the resulting finite-order PMC predictions are to high accuracy independent of the choice of the initial renormalization scale, and thus consistent with RG invariance. The PMC is also consistent with the renormalization scale-setting procedure for QED in the zero-color limit. The use of the PMC thus eliminates a serious systematic scale error in perturbative QCD predictions, greatly improving the precision of empirical tests of the Standard Model and their sensitivity to new physics.« less
Convergence of the chiral expansion in two-flavor lattice QCD.
Noaki, J; Aoki, S; Chiu, T W; Fukaya, H; Hashimoto, S; Hsieh, T H; Kaneko, T; Matsufuru, H; Onogi, T; Shintani, E; Yamada, N
2008-11-14
We test the convergence property of the chiral perturbation theory using a lattice QCD calculation of pion mass and decay constant with two dynamical quark flavors. The lattice calculation is performed using the overlap fermion formulation, which realizes exact chiral symmetry at finite lattice spacing. By comparing various expansion prescriptions, we find that the chiral expansion is well saturated at the next-to-leading order for pions lighter than approximately 450 MeV. Better convergence behavior is found, in particular, for a resummed expansion parameter xi, with which the lattice data in the pion mass region 290-750 MeV can be fitted well with the next-to-next-to-leading order formulas. We obtain the results in two-flavor QCD for the low energy constants l[over ]_{3} and l[over ]_{4} as well as the pion decay constant, the chiral condensate, and the average up and down quark mass.
Productions of η, ρ0 and ϕ at large transverse momentum in Heavy ion Collisions
NASA Astrophysics Data System (ADS)
Dai, Wei; Zhang, Ben-Wei
2017-08-01
The suppression of the productions of the η meson in relativistic heavy-ion collisions and its ratio of η /π0 are computed theoretically in the framework of the perturbative QCD(pQCD) to confront the experimental data which matches well. We explore how the hadron production ratios as η /π0 would further disclose the informations of the production suppressions due to the energy loss of the energetic jet that propagating though the QGP medium. Also, we present our further studies on vector mesons such as ρ0 and ϕ within the same framework. The theoretical predictions based on pQCD are thus firstly given which give a decent description on the experimental measurements. It paved the way to the uniformly understanding of the strong suppression of single hadron productions at large transverse momentum which is a convincing evidence of the jet quenching effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deur, Alexandre; Shen, Jian -Ming; Wu, Xing -Gang
The Principle of Maximum Conformality (PMC) provides scale-fixed perturbative QCD predictions which are independent of the choice of the renormalization scheme, as well as the choice of the initial renormalization scale. In this article, we will test the PMC by comparing its predictions for the strong couplingmore » $$\\alpha^s_{g_1}(Q)$$, defined from the Bjorken sum rule, with predictions using conventional pQCD scale-setting. The two results are found to be compatible with each other and with the available experimental data. However, the PMC provides a significantly more precise determination, although its domain of applicability ($$Q \\gtrsim 1.5$$ GeV) does not extend to as small values of momentum transfer as that of a conventional pQCD analysis ($$Q \\gtrsim 1$$ GeV). In conclusion, we suggest that the PMC range of applicability could be improved by a modified intermediate scheme choice or using a single effective PMC scale.« less
Physics with charmonium - Highlights of BESIII and PANDA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messchendorp, Johan
2014-11-11
The physics of the strong interaction is undoubtedly one of the most challenging areas of modern science. Quantum ChromoDynamics (QCD) is reproducing successfully the physics phenomena at distances much shorter than the size of the nucleon, where perturbation theory can be used yielding results of high precision and predictive power. At larger distance scales, however, perturbative methods cannot be applied anymore, although spectacular phenomena, such as the generation of hadron masses and quark confinement, occur. Studies using charmed quarks and gluon-rich matter have the potential to connect the perturbative and the non-perturbative QCD region. The annihilation of matter with antimattermore » in the mass regime of charmonium is an ideal environment to discover new states or transitions that could reveal the secrets of the strong interaction. Hadronic and electromagnetic transitions between charmonium states and their decays have been measured with a world-record in precision with the BESIII spectrometer at the electron-positron collider at IHEP Beijing, China. Moreover, unconventional narrow charmonium-rich states have been discovered recently in an energy regime above the open-charm threshold, thereby, possibly initiating a new era in charmonium spectroscopy. The near future experiment, PANDA, at the research facility FAIR in Germany, Darmstadt, will exploit the annihilation of cooled anti-protons with protons to perform charmonium spectroscopy with an incredible precision. I will present the most promising results that have been recently obtained with BESIII together with the future perspectives of PANDA in the field of charmonium spectroscopy.« less
How perfect can a gluon plasma be in perturbative QCD?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jiunn-Wei; Deng Jian; Dong Hui
2011-02-01
The shear viscosity to entropy density ratio, {eta}/s, characterizes how perfect a fluid is. We calculate the leading order {eta}/s of a gluon plasma in perturbation using the kinetic theory. The leading order contribution only involves the elastic gg{r_reversible}gg (22) process and the inelastic gg{r_reversible}ggg (23) process. The hard-thermal-loop (HTL) treatment is used for the 22 matrix element, while the exact matrix element in vacuum is supplemented by the gluon Debye mass insertion for the 23 process. Also, the asymptotic mass is used for the external gluons in the kinetic theory. The errors from not implementing HTL and the Landau-Pomeranchuk-Migdalmore » effect in the 23 process, and from the uncalculated higher order corrections, are estimated. Our result smoothly connects the two different approximations used by Arnold, Moore, and Yaffe (AMY) and Xu and Greiner (XG). At small {alpha}{sub s} ({alpha}{sub s}<<1), our result is closer to AMY's collinear result while at larger {alpha}{sub s} the finite angle noncollinear configurations become more important and our result is closer to XG's soft bremsstrahlung result. In the region where perturbation is reliable ({alpha}{sub s} < or approx. 0.1), we find no indication that the proposed perfect fluid limit {eta}/s{approx_equal}1/(4{pi}) can be achieved by perturbative QCD alone. Whether this can be achieve for {alpha}{sub s} > or approx. 0.1 is still an open question.« less
Physics with charmonium - Highlights of BESIII and PANDA
NASA Astrophysics Data System (ADS)
Messchendorp, Johan
2014-11-01
The physics of the strong interaction is undoubtedly one of the most challenging areas of modern science. Quantum ChromoDynamics (QCD) is reproducing successfully the physics phenomena at distances much shorter than the size of the nucleon, where perturbation theory can be used yielding results of high precision and predictive power. At larger distance scales, however, perturbative methods cannot be applied anymore, although spectacular phenomena, such as the generation of hadron masses and quark confinement, occur. Studies using charmed quarks and gluon-rich matter have the potential to connect the perturbative and the non-perturbative QCD region. The annihilation of matter with antimatter in the mass regime of charmonium is an ideal environment to discover new states or transitions that could reveal the secrets of the strong interaction. Hadronic and electromagnetic transitions between charmonium states and their decays have been measured with a world-record in precision with the BESIII spectrometer at the electron-positron collider at IHEP Beijing, China. Moreover, unconventional narrow charmonium-rich states have been discovered recently in an energy regime above the open-charm threshold, thereby, possibly initiating a new era in charmonium spectroscopy. The near future experiment, PANDA, at the research facility FAIR in Germany, Darmstadt, will exploit the annihilation of cooled anti-protons with protons to perform charmonium spectroscopy with an incredible precision. I will present the most promising results that have been recently obtained with BESIII together with the future perspectives of PANDA in the field of charmonium spectroscopy.
QCD Coupling from a Nonperturbative Determination of the Three-Flavor Λ Parameter
Bruno, Mattia; Brida, Mattia Dalla; Fritzsch, Patrick; ...
2017-09-08
We present a lattice determination of the Λ parameter in three-flavor QCD and the strong coupling at the Z pole mass. Computing the nonperturbative running of the coupling in the range from 0.2 to 70 GeV, and using experimental input values for the masses and decay constants of the pion and the kaon, we obtain Λ(3)MS=341(12) MeV. The nonperturbative running up to very high energies guarantees that systematic effects associated with perturbation theory are well under control. Using the four-loop prediction for Λ(5)MS/Λ(3)MS yields α(5)MS(mZ)=0.11852(84).
Zimmermann's forest formula, infrared divergences and the QCD beta function
NASA Astrophysics Data System (ADS)
Herzog, Franz
2018-01-01
We review Zimmermann's forest formula, which solves Bogoliubov's recursive R-operation for the subtraction of ultraviolet divergences in perturbative Quantum Field Theory. We further discuss a generalisation of the R-operation which subtracts besides ultraviolet also Euclidean infrared divergences. This generalisation, which goes under the name of the R*-operation, can be used efficiently to compute renormalisation constants. We will discuss several results obtained by this method with focus on the QCD beta function at five loops as well as the application to hadronic Higgs boson decay rates at N4LO. This article summarizes a talk given at the Wolfhart Zimmermann Memorial Symposium.
Cooper, Fred; Liu, Ming X; Nayak, Gouranga C
2004-10-22
We study J/psi production in pp collisions at BNL Relativistic Heavy Ion Collider (RHIC) within the PHENIX detector acceptance range using the color singlet and color octet mechanism which are based on perturbative QCD and nonrelativistic QCD. Here we show that the color octet mechanism reproduces the RHIC data for J/psi production in pp collisions with respect to the p(T) distribution, the rapidity distribution, and the total cross section at square root = 200 GeV. The color singlet mechanism leads to a relatively small contribution to the total cross section when compared to the octet contribution.
Study of hadronic event-shape variables in multijet final states in pp collisions at √s = 7 TeV
Khachatryan, V.
2014-10-14
Event-shape variables, which are sensitive to perturbative and nonperturbative aspects of quantum chromodynamic (QCD) interactions, are studied in multijet events recorded in proton-proton collisions at √s = 7 TeV. Events are selected with at least one jet with transverse momentum p T > 110 GeV and pseudorapidity |η| < 2.4, in a data sample corresponding to integrated luminosities of up to 5 fb –1. As a result, the distributions of five event-shape variables in various leading jet p T ranges are compared to predictions from different QCD Monte Carlo event generators.
Thrust at N{sup 3}LL with power corrections and a precision global fit for {alpha}{sub s}(m{sub Z})
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbate, Riccardo; Stewart, Iain W.; Fickinger, Michael
2011-04-01
We give a factorization formula for the e{sup +}e{sup -} thrust distribution d{sigma}/d{tau} with {tau}=1-T based on the soft-collinear effective theory. The result is applicable for all {tau}, i.e. in the peak, tail, and far-tail regions. The formula includes O({alpha}{sub s}{sup 3}) fixed-order QCD results, resummation of singular partonic {alpha}{sub s}{sup j}ln{sup k}({tau})/{tau} terms with N{sup 3}LL accuracy, hadronization effects from fitting a universal nonperturbative soft function defined with field theory, bottom quark mass effects, QED corrections, and the dominant top mass dependent terms from the axial anomaly. We do not rely on Monte Carlo generators to determine nonperturbative effectsmore » since they are not compatible with higher order perturbative analyses. Instead our treatment is based on fitting nonperturbative matrix elements in field theory, which are moments {Omega}{sub i} of a nonperturbative soft function. We present a global analysis of all available thrust data measured at center-of-mass energies Q=35-207 GeV in the tail region, where a two-parameter fit to {alpha}{sub s}(m{sub Z}) and the first moment {Omega}{sub 1} suffices. We use a short-distance scheme to define {Omega}{sub 1}, called the R-gap scheme, thus ensuring that the perturbative d{sigma}/d{tau} does not suffer from an O({Lambda}{sub QCD}) renormalon ambiguity. We find {alpha}{sub s}(m{sub Z})=0.1135{+-}(0.0002){sub expt{+-}}(0.0005){sub hadr{+-}}(0.0009){sub pert}, with {chi}{sup 2}/dof=0.91, where the displayed 1-sigma errors are the total experimental error, the hadronization uncertainty, and the perturbative theory uncertainty, respectively. The hadronization uncertainty in {alpha}{sub s} is significantly decreased compared to earlier analyses by our two-parameter fit, which determines {Omega}{sub 1}=0.323 GeV with 16% uncertainty.« less
The baryon vector current in the combined chiral and 1/Nc expansions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flores-Mendieta, Ruben; Goity, Jose L
2014-12-01
The baryon vector current is computed at one-loop order in large-Nc baryon chiral perturbation theory, where Nc is the number of colors. Loop graphs with octet and decuplet intermediate states are systematically incorporated into the analysis and the effects of the decuplet-octet mass difference and SU(3) flavor symmetry breaking are accounted for. There are large-Nc cancellations between different one-loop graphs as a consequence of the large-Nc spin-flavor symmetry of QCD baryons. The results are compared against the available experimental data through several fits in order to extract information about the unknown parameters. The large-Nc baryon chiral perturbation theory predictions aremore » in very good agreement both with the expectations from the 1/Nc expansion and with the experimental data. The effect of SU(3) flavor symmetry breaking for the |Delta S|=1 vector current form factors f1(0) results in a reduction by a few percent with respect to the corresponding SU(3) symmetric values.« less
Studies of L-T Separated Kaon Electroproduction
NASA Astrophysics Data System (ADS)
Trotta, Richard; Horn, Tanja; Vargas, Andres
2017-09-01
QCD is characterized by two emergent phenomena: confinement and dynamical chiral symmetry breaking (DCSB). Pion and kaon form factors are of particular interest as they are connected to the Goldstone modes of DCSB. The flavor degrees of freedom of the produced meson selectively probe aspects of the reaction mechanism and the transition from hadronic to partonic degrees of freedom. There has been significant progress in the theoretical description of the nucleon structure in terms of QCD degrees of freedom, in particular through Generalized Parton Distributions (GPDs).The last decade saw a dramatic improvement in precision of charged pion form factor data and new results have become available on the pion transition form factor. The kaon provides an interesting way to expand these studies, opening the possibility to access the production mechanism involving strangeness. Kaon data at larger virtual photon mass allow one to search for the onset of the partonic picture. In this regime, hard and soft physics have been shown to factorize and GPDs provide the most complete description of the non-perturbative physics. The lack of necessary experimental facilities has left a gap in L-T separated data for exclusive K + production from the proton above the resonance region.The newly upgraded 12 GeV beam energy at Jlab, in addition to the recently built SHMS spectrometer for Hall C, has provided an opportunity to expand the kaon data. Recent kaon form factor and cross section results will be discussed showing the impact of E12-09-011, the running Jlab 12 GeV kaon experiment. NSF Grants PHY1306227, PHY1306418 and PHY1530874.
NASA Astrophysics Data System (ADS)
Guzzi, Marco; Nadolsky, Pavel M.; Wang, Bowen
2014-07-01
We present an analysis of nonperturbative contributions to the transverse momentum distribution of Z/γ* bosons produced at hadron colliders. The new data on the angular distribution ϕη* of Drell-Yan pairs measured at the Tevatron are shown to be in excellent agreement with a perturbative QCD prediction based on the Collins-Soper-Sterman (CSS) resummation formalism at next-to-next-to-leading logarithmic (NNLL) accuracy. Using these data, we determine the nonperturbative component of the CSS resummed cross section and estimate its dependence on arbitrary resummation scales and other factors. With the scale dependence included at the NNLL level, a significant nonperturbative component is needed to describe the angular data.
NASA Astrophysics Data System (ADS)
Bochicchio, Marco
2017-03-01
Yang-Mills (YM) theory and QCD are known to be renormalizable, but not ultraviolet (UV) finite, order by order, in perturbation theory. It is a fundamental question whether YM theory or QCD is UV finite, or only renormalizable, order by order, in the large-N 't Hooft or Veneziano expansions. We demonstrate that the renormalization group (RG) and asymptotic freedom imply that in 't Hooft large-N expansion the S matrix in YM theory is UV finite, while in both 't Hooft and Veneziano large-N expansions, the S matrix in confining massless QCD is renormalizable but not UV finite. By the same argument, the large-N N =1 supersymmetry (SUSY) YM S matrix is UV finite as well. Besides, we demonstrate that, in both 't Hooft and Veneziano large-N expansions, the correlators of local gauge-invariant operators, as opposed to the S matrix, are renormalizable but, in general, not UV finite, either in YM theory and N =1 SUSY YM theory or a fortiori in massless QCD. Moreover, we compute explicitly the counterterms that arise from renormalizing the 't Hooft and Veneziano expansions by deriving in confining massless QCD-like theories a low-energy theorem of the Novikov-Shifman-Vainshtein-Zakharov type that relates the log derivative with respect to the gauge coupling of a k -point correlator, or the log derivative with respect to the RG-invariant scale, to a (k +1 )-point correlator with the insertion of Tr F2 at zero momentum. Finally, we argue that similar results hold in the large-N limit of a vast class of confining massive QCD-like theories, provided a renormalization scheme exists—as, for example, MS ¯ —in which the beta function is not dependent on the masses. Specifically, in both 't Hooft and Veneziano large-N expansions, the S matrix in confining massive QCD and massive N =1 SUSY QCD is renormalizable but not UV finite.
Exploring Partonic Structure of Hadrons Using ab initio Lattice QCD Calculations
Ma, Yan-Qing; Qiu, Jian-Wei
2018-01-10
Following our previous proposal, we construct a class of good "lattice cross sections" (LCSs), from which we can study the partonic structure of hadrons from ab initio lattice QCD calculations. These good LCSs, on the one hand, can be calculated directly in lattice QCD, and on the other hand, can be factorized into parton distribution functions (PDFs) with calculable coefficients, in the same way as QCD factorization for factorizable hadronic cross sections. PDFs could be extracted from QCD global analysis of the lattice QCD generated data of LCSs. In conclusion, we also show that the proposed functions for lattice QCDmore » calculation of PDFs in the literature are special cases of these good LCSs.« less
Baryon chiral perturbation theory combined with the 1 /Nc expansion in SU(3): Framework
NASA Astrophysics Data System (ADS)
Fernando, I. P.; Goity, J. L.
2018-03-01
Baryon chiral perturbation theory combined with the 1 /Nc expansion is implemented for three flavors. Baryon masses, vector charges and axial vector couplings are studied to one-loop and organized according to the ξ -expansion, in which the 1 /Nc and the low-energy power countings are linked according to 1 /Nc=O (ξ )=O (p ). The renormalization to O (ξ3) necessary for the mentioned observables is provided, along with applications to the baryon masses and axial couplings as obtained in lattice QCD calculations.
Isocurvature constraints and anharmonic effects on QCD axion dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Takeshi; Kurematsu, Ryosuke; Takahashi, Fuminobu, E-mail: takeshi@cita.utoronto.ca, E-mail: rkurematsu@tuhep.phys.tohoku.ac.jp, E-mail: fumi@tuhep.phys.tohoku.ac.jp
2013-09-01
We revisit the isocurvature density perturbations induced by quantum fluctuations of the axion field by extending a recently developed analytic method and approximations to a time-dependent scalar potential, which enables us to follow the evolution of the axion until it starts to oscillate. We find that, as the initial misalignment angle approaches the hilltop of the potential, the isocurvature perturbations become significantly enhanced, while the non-Gaussianity parameter increases slowly but surely. As a result, the isocurvature constraint on the inflation scale is tightened as H{sub inf}∼
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Yan-Qing; Qiu, Jian-Wei
Following our previous proposal, we construct a class of good "lattice cross sections" (LCSs), from which we can study the partonic structure of hadrons from ab initio lattice QCD calculations. These good LCSs, on the one hand, can be calculated directly in lattice QCD, and on the other hand, can be factorized into parton distribution functions (PDFs) with calculable coefficients, in the same way as QCD factorization for factorizable hadronic cross sections. PDFs could be extracted from QCD global analysis of the lattice QCD generated data of LCSs. In conclusion, we also show that the proposed functions for lattice QCDmore » calculation of PDFs in the literature are special cases of these good LCSs.« less
NASA Astrophysics Data System (ADS)
Brodsky, S. J.
2017-07-01
A fundamental problem in hadron physics is to obtain a relativistic color-confining, first approximation to QCD which can predict both hadron spectroscopy and the frame-independent light-front (LF) wavefunctions underlying hadron dynamics. The QCD Lagrangian with zero quark mass has no explicit mass scale; the classical theory is conformally invariant. Thus, a fundamental problem is to understand how the mass gap and ratios of masses - such as m ρ/ m p - can arise in chiral QCD. De Alfaro, Fubini, and Furlan have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator and rescales the time variable. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4 ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to the q\\overline{q} invariant mass squared. The same result, including spin terms, is obtained using light-front holography - the duality between light-front dynamics and AdS5, the space of isometries of the conformal group if one modifies the action of AdS5 by the dilaton {e}^{κ^2}{z}^2 in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κ underlying confinement and hadron masses can be connected to the parameter {Λ}_{\\overline{MS}} in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α s ( Q 2) defined at all momenta. The matching of the high and low momentum transfer regimes also determines a scale Q0 which sets the interface between perturbative and nonperturbative hadron dynamics.
Testing the Concept of Quark-Hadron Duality with the ALEPH τ Decay Data
NASA Astrophysics Data System (ADS)
Magradze, B. A.
2010-12-01
We propose a modified procedure for extracting the numerical value for the strong coupling constant α s from the τ lepton hadronic decay rate into non-strange particles in the vector channel. We employ the concept of the quark-hadron duality specifically, introducing a boundary energy squared s p > 0, the onset of the perturbative QCD continuum in Minkowski space (Bertlmann et al. in Nucl Phys B 250:61, 1985; de Rafael in An introduction to sum rules in QCD. In: Lectures at the Les Houches Summer School. arXiv: 9802448 [hep-ph], 1997; Peris et al. in JHEP 9805:011, 1998). To approximate the hadronic spectral function in the region s > s p, we use analytic perturbation theory (APT) up to the fifth order. A new feature of our procedure is that it enables us to extract from the data simultaneously the QCD scale parameter {Λ_{overlineMS}} and the boundary energy squared s p. We carefully determine the experimental errors on these parameters which come from the errors on the invariant mass squared distribution. For the {overlineMS} scheme coupling constant, we obtain {α_s(m2_{tau})=0.3204± 0.0159_{exp.}}. We show that our numerical analysis is much more stable against higher-order corrections than the standard one. Additionally, we recalculate the “experimental” Adler function in the infrared region using final ALEPH results. The uncertainty on this function is also determined.
NASA Astrophysics Data System (ADS)
Burnier, Yannis; Kaczmarek, Olaf; Rothkopf, Alexander
2016-01-01
We report recent results of a non-perturbative determination of the static heavy-quark potential in quenched and dynamical lattice QCD at finite temperature. The real and imaginary part of this complex quantity are extracted from the spectral function of Wilson line correlators in Coulomb gauge. To obtain spectral information from Euclidean time numerical data, our study relies on a novel Bayesian prescription that differs from the Maximum Entropy Method. We perform simulations on quenched 323 × Nτ (β = 7.0, ξ = 3.5) lattices with Nτ = 24, …, 96, which cover 839MeV ≥ T ≥ 210MeV. To investigate the potential in a quark-gluon plasma with light u,d and s quarks we utilize Nf = 2 + 1 ASQTAD lattices with ml = ms/20 by the HotQCD collaboration, giving access to temperatures between 286MeV ≥ T ≥ 148MeV. The real part of the potential exhibits a clean transition from a linear, confining behavior in the hadronic phase to a Debye screened form above deconfinement. Interestingly its values lie close to the color singlet free energies in Coulomb gauge at all temperatures. We estimate the imaginary part on quenched lattices and find that it is of the same order of magnitude as in hard-thermal loop perturbation theory. From among all the systematic checks carried out in our study, we discuss explicitly the dependence of the result on the default model and the number of datapoints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Hong -Hao; Wu, Xing -Gang; Ma, Yang
A key problem in making precise perturbative QCD (pQCD) predictions is how to set the renormalization scale of the running coupling unambiguously at each finite order. The elimination of the uncertainty in setting the renormalization scale in pQCD will greatly increase the precision of collider tests of the Standard Model and the sensitivity to new phenomena. Renormalization group invariance requires that predictions for observables must also be independent on the choice of the renormalization scheme. The well-known Brodsky-Lepage-Mackenzie (BLM) approach cannot be easily extended beyond next-to-next-to-leading order of pQCD. Several suggestions have been proposed to extend the BLM approach tomore » all orders. In this paper we discuss two distinct methods. One is based on the “Principle of Maximum Conformality” (PMC), which provides a systematic all-orders method to eliminate the scale and scheme ambiguities of pQCD. The PMC extends the BLM procedure to all orders using renormalization group methods; as an outcome, it significantly improves the pQCD convergence by eliminating renormalon divergences. An alternative method is the “sequential extended BLM” (seBLM) approach, which has been primarily designed to improve the convergence of pQCD series. The seBLM, as originally proposed, introduces auxiliary fields and follows the pattern of the β0-expansion to fix the renormalization scale. However, the seBLM requires a recomputation of pQCD amplitudes including the auxiliary fields; due to the limited availability of calculations using these auxiliary fields, the seBLM has only been applied to a few processes at low orders. In order to avoid the complications of adding extra fields, we propose a modified version of seBLM which allows us to apply this method to higher orders. As a result, we then perform detailed numerical comparisons of the two alternative scale-setting approaches by investigating their predictions for the annihilation cross section ratio R e+e– at four-loop order in pQCD.« less
Final Report May 1, 2012 to May 31, 2015: "Theoretical Studies in Elementary Particle Physics"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, John C.; Roiban, Radu
2015-08-19
This final report summarizes work at Penn State University from May 1, 2012 to May 31, 2015. The work was in theoretical elementary particle physics. Many new results in perturbative QCD, in string theory, and in related areas were obtained, with a substantial impact on the experimental program.
Perturbative matching of lattice and continuum heavy-light currents with NRQCD heavy quarks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morningstar, C.J.; Shigemitsu, J.
1999-05-01
The temporal and spatial components of the heavy-light vector current and the spatial components of the axial-vector current are expressed in terms of lattice-regulated operators suitable for simulations of {ital B} and {ital D} mesons. The currents are constructed by matching the appropriate scattering amplitudes in continuum QCD and a lattice model to one-loop order in perturbation theory. In the lattice theory, the heavy quarks are treated using the nonrelativistic (NRQCD) formulation and the light quarks are described by the tadpole-improved clover action. The light quarks are treated as massless. Our currents include relativistic and discretization corrections through O({alpha}{sub s}/M,a{alpha}{submore » s}), where {ital M} is the heavy-quark mass, {ital a} is the lattice spacing, and {alpha}{sub s} is the QCD coupling. As in our previous construction of the temporal component of the heavy-light axial-vector current, mixing between several lattice operators is encountered at one-loop order, and O(a{alpha}{sub s}) dimension-four improvement terms are identified. {copyright} {ital 1999} {ital The American Physical Society}« less
NASA Astrophysics Data System (ADS)
Briceño, Raúl A.; Hansen, Maxwell T.; Monahan, Christopher J.
2017-07-01
Lattice quantum chromodynamics (QCD) provides the only known systematic, nonperturbative method for first-principles calculations of nucleon structure. However, for quantities such as light-front parton distribution functions (PDFs) and generalized parton distributions (GPDs), the restriction to Euclidean time prevents direct calculation of the desired observable. Recently, progress has been made in relating these quantities to matrix elements of spatially nonlocal, zero-time operators, referred to as quasidistributions. Still, even for these time-independent matrix elements, potential subtleties have been identified in the role of the Euclidean signature. In this work, we investigate the analytic behavior of spatially nonlocal correlation functions and demonstrate that the matrix elements obtained from Euclidean lattice QCD are identical to those obtained using the Lehmann-Symanzik-Zimmermann reduction formula in Minkowski space. After arguing the equivalence on general grounds, we also show that it holds in a perturbative calculation, where special care is needed to identify the lattice prediction. Finally we present a proof of the uniqueness of the matrix elements obtained from Minkowski and Euclidean correlation functions to all order in perturbation theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-06-01
The goal of this work is to study the behavior of the angular distribution of the electron from the decay of the W boson in a specific rest frame of the W, the Collins-Soper frame. More specifically, the parameter {alpha}{sub 2} from the expression d{sigma}/d(P{sub T}{sup W}){sup 2} d cos {theta}* = k(1 + {alpha}{sub 2} cos {theta}* + {alpha}{sup 2}(cos {theta}*){sup 2}), corresponding to the distribution of cos {theta}* in the Collins-Soper frame, was measured. The experimental value of {alpha}P{sub 2} was compared with the predictions made by E. Mirkes [11] who included the radiative QCD perturbations in themore » weak-interaction B{sub boson} {r_arrow} lepton + lepton. This experimental value was extracted for the first time using knowledge about how the radiative QCD perturbations will modify the predictions given by the Electro-Weak process only.« less
NASA Astrophysics Data System (ADS)
Maelger, J.; Reinosa, U.; Serreau, J.
2018-04-01
We extend a previous investigation [U. Reinosa et al., Phys. Rev. D 92, 025021 (2015), 10.1103/PhysRevD.92.025021] of the QCD phase diagram with heavy quarks in the context of background field methods by including the two-loop corrections to the background field effective potential. The nonperturbative dynamics in the pure-gauge sector is modeled by a phenomenological gluon mass term in the Landau-DeWitt gauge-fixed action, which results in an improved perturbative expansion. We investigate the phase diagram at nonzero temperature and (real or imaginary) chemical potential. Two-loop corrections yield an improved agreement with lattice data as compared to the leading-order results. We also compare with the results of nonperturbative continuum approaches. We further study the equation of state as well as the thermodynamic stability of the system at two-loop order. Finally, using simple thermodynamic arguments, we show that the behavior of the Polyakov loops as functions of the chemical potential complies with their interpretation in terms of quark and antiquark free energies.
Briceno, Raul A.; Hansen, Maxwell T.; Monahan, Christopher J.
2017-07-11
Lattice quantum chromodynamics (QCD) provides the only known systematic, nonperturbative method for first-principles calculations of nucleon structure. However, for quantities such as light-front parton distribution functions (PDFs) and generalized parton distributions (GPDs), the restriction to Euclidean time prevents direct calculation of the desired observable. Recently, progress has been made in relating these quantities to matrix elements of spatially nonlocal, zero-time operators, referred to as quasidistributions. Still, even for these time-independent matrix elements, potential subtleties have been identified in the role of the Euclidean signature. In this work, we investigate the analytic behavior of spatially nonlocal correlation functions and demonstrate thatmore » the matrix elements obtained from Euclidean lattice QCD are identical to those obtained using the Lehmann-Symanzik-Zimmermann reduction formula in Minkowski space. After arguing the equivalence on general grounds, we also show that it holds in a perturbative calculation, where special care is needed to identify the lattice prediction. Lastly, we present a proof of the uniqueness of the matrix elements obtained from Minkowski and Euclidean correlation functions to all order in perturbation theory.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briceno, Raul A.; Hansen, Maxwell T.; Monahan, Christopher J.
Lattice quantum chromodynamics (QCD) provides the only known systematic, nonperturbative method for first-principles calculations of nucleon structure. However, for quantities such as light-front parton distribution functions (PDFs) and generalized parton distributions (GPDs), the restriction to Euclidean time prevents direct calculation of the desired observable. Recently, progress has been made in relating these quantities to matrix elements of spatially nonlocal, zero-time operators, referred to as quasidistributions. Still, even for these time-independent matrix elements, potential subtleties have been identified in the role of the Euclidean signature. In this work, we investigate the analytic behavior of spatially nonlocal correlation functions and demonstrate thatmore » the matrix elements obtained from Euclidean lattice QCD are identical to those obtained using the Lehmann-Symanzik-Zimmermann reduction formula in Minkowski space. After arguing the equivalence on general grounds, we also show that it holds in a perturbative calculation, where special care is needed to identify the lattice prediction. Lastly, we present a proof of the uniqueness of the matrix elements obtained from Minkowski and Euclidean correlation functions to all order in perturbation theory.« less
Features and flaws of a contact interaction treatment of the kaon
NASA Astrophysics Data System (ADS)
Chen, Chen; Chang, Lei; Roberts, Craig D.; Schmidt, Sebastian M.; Wan, Shaolong; Wilson, David J.
2013-04-01
Elastic and semileptonic transition form factors for the kaon and pion are calculated using the leading order in a global-symmetry-preserving truncation of the Dyson-Schwinger equations and a momentum-independent form for the associated kernels in the gap and Bethe-Salpeter equations. The computed form factors are compared both with those obtained using the same truncation but an interaction that preserves the one-loop renormalization-group behavior of QCD and with data. The comparisons show that in connection with observables revealed by probes with |Q2|≲M2, where M≈0.4GeV is an infrared value of the dressed-quark mass, results obtained using a symmetry-preserving regularization of the contact interaction are not realistically distinguishable from those produced by more sophisticated kernels, and available data on kaon form factors do not extend into the domain whereupon one could distinguish among the interactions. The situation differs if one includes the domain Q2>M2. Thereupon, a fully consistent treatment of the contact interaction produces form factors that are typically harder than those obtained with QCD renormalization-group-improved kernels. Among other things also described are a Ward identity for the inhomogeneous scalar vertex, similarity between the charge distribution of a dressed u quark in the K+ and that of the dressed u quark in the π+, and reflections upon the point whereat one might begin to see perturbative behavior in the pion form factor. Interpolations of the form factors are provided, which should assist in working to chart the interaction between light quarks by explicating the impact on hadron properties of differing assumptions about the behavior of the Bethe-Salpeter kernel.
Evolving images of the proton: Hadron physics over the past 40 years
Pennington, Michael R.
2016-04-05
Once upon a time, the world was simple: the proton contained three quarks, two ups and a down. How these give the proton its mass and its spin seemed obvious. Over the past 40 years the proton has become more complicated, and how even these most obvious of its properties is explained in a universe of quarks, antiquarks and gluons remains a challenge. That this should be so should come as no surprise. Quantum chromodynamics, the theory of the strong interaction, is seemingly simple, and its consequences are straightforward in the domain of hard scattering where perturbation theory applies. However,more » the beauty of the hadron world is its diversity. The existence of hadrons, their properties, and their binding into nuclei do not appear in the Lagrangian of QCD. They all emerge as a result of its strong coupling. Strong coupling QCD creates complex phenomena, much richer than known 40 years ago: a richness that ensures colour confinement and accounts for more than 95% of the mass of the visible Universe. How strong coupling QCD really works requires a synergy between experiment and theory. Furthermore, a very personal view of these fascinating developments in cold QCD is presented.« less
Evolving images of the proton: Hadron physics over the past 40 years
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pennington, Michael R.
Once upon a time, the world was simple: the proton contained three quarks, two ups and a down. How these give the proton its mass and its spin seemed obvious. Over the past 40 years the proton has become more complicated, and how even these most obvious of its properties is explained in a universe of quarks, antiquarks and gluons remains a challenge. That this should be so should come as no surprise. Quantum chromodynamics, the theory of the strong interaction, is seemingly simple, and its consequences are straightforward in the domain of hard scattering where perturbation theory applies. However,more » the beauty of the hadron world is its diversity. The existence of hadrons, their properties, and their binding into nuclei do not appear in the Lagrangian of QCD. They all emerge as a result of its strong coupling. Strong coupling QCD creates complex phenomena, much richer than known 40 years ago: a richness that ensures colour confinement and accounts for more than 95% of the mass of the visible Universe. How strong coupling QCD really works requires a synergy between experiment and theory. Furthermore, a very personal view of these fascinating developments in cold QCD is presented.« less
Open charm production in double parton scattering processes in the forward kinematics
Blok, B.; Strikman, M.
2016-12-18
We calculate the rate of double open charm production in the forward kinematics studied recently in the LHCb experiment.We find that the mean field approximation for the double partonGPD (generalized parton distributions), which neglects parton–parton correlations, underestimates the rate by a factor of 2. The enhancement due to the perturbative QCD correlation 1Ⓧ2 mechanism which explains the rate of double parton interactions at the central rapidities is found to explain 60 ÷ 80% of the discrepancy. We argue that the nonperturbative fluctuations leading to nonfactorized (correlated) contributions to the initial conditions for the DGLAP collinear evolution of the double partonmore » GPD play an important role in this kinematics. Combined, the two correlation mechanisms provide a good description of the rate of double charm production reported by the LHCb. We also give predictions for the variation of the σeff (i.e. the ratio of double and square of single inclusive rates) in the discussed kinematics as a function of pt . The account for two correlation mechanisms strongly reduces the sensitivity of the results to the starting point of the QCD evolution.« less
QCD matter thermalization at the RHIC and the LHC
NASA Astrophysics Data System (ADS)
Xu, Zhe; Cheng, Luan; El, Andrej; Gallmeister, Kai; Greiner, Carsten
2009-06-01
Employing the perturbative QCD inspired parton cascade, we investigate kinetic and chemical equilibration of the partonic matter created in central heavy ion collisions at RHIC and LHC energies. Two types of initial conditions are chosen. One is generated by the model of wounded nucleons using the PYTHIA event generator and Glauber geometry. Another is considered as a color glass condensate. We show that kinetic equilibration is almost independent of the chosen initial conditions, whereas there is a sensitive dependence for chemical equilibration. The time scale of thermalization lies between 1 and 1.5 fm/c. The final parton transverse energy obtained from BAMPS calculations is compared with the RHIC data and is estimated for the LHC energy.
NNLO QCD predictions for fully-differential top-quark pair production at the Tevatron
NASA Astrophysics Data System (ADS)
Czakon, Michal; Fiedler, Paul; Heymes, David; Mitov, Alexander
2016-05-01
We present a comprehensive study of differential distributions for Tevatron top-pair events at the level of stable top quarks. All calculations are performed in NNLO QCD with the help of a fully differential partonic Monte-Carlo and are exact at this order in perturbation theory. We present predictions for all kinematic distributions for which data exists. Particular attention is paid on the top-quark forward-backward asymmetry which we study in detail. We compare the NNLO results with existing approximate NNLO predictions as well as differential distributions computed with different parton distribution sets. Theory errors are significantly smaller than current experimental ones with overall agreement between theory and data.
Wilson Lines and Webs in Higher-Order QCD
NASA Astrophysics Data System (ADS)
White, Chris D.
2018-03-01
Wilson lines have a number of uses in non-abelian gauge theories. A topical example in QCD is the description of radiation in the soft or collinear limit, which must often be resummed to all orders in perturbation theory. Correlators involving a pair of Wilson lines are known to exponentiate in terms of special Feynman diagrams called "webs". I will show how this language can be extended to an arbitrary number of Wilson lines, which introduces novel new combinatoric structures (web mixing matrices) of interest in their own right. I will also summarise recent results obtained from applying this formalism at three-loop order, before concluding with a list of open problems.
Assessing the role of the Kelvin-Helmholtz instability at the QCD cosmological transition
NASA Astrophysics Data System (ADS)
Mourão Roque, V. R. C.; Lugones, G.
2018-03-01
We performed numerical simulations with the PLUTO code in order to analyze the non-linear behavior of the Kelvin-Helmholtz instability in non-magnetized relativistic fluids. The relevance of the instability at the cosmological QCD phase transition was explored using an equation of state based on lattice QCD results with the addition of leptons. The results of the simulations were compared with the theoretical predictions of the linearized theory. For small Mach numbers up to Ms ~ 0.1 we find that both results are in good agreement. However, for higher Mach numbers, non-linear effects are significant. In particular, many initial conditions that look stable according to the linear analysis are shown to be unstable according to the full calculation. Since according to lattice calculations the cosmological QCD transition is a smooth crossover, violent fluid motions are not expected. Thus, in order to assess the role of the Kelvin-Helmholtz instability at the QCD epoch, we focus on simulations with low shear velocity and use monochromatic as well as random perturbations to trigger the instability. We find that the Kelvin-Helmholtz instability can strongly amplify turbulence in the primordial plasma and as a consequence it may increase the amount of primordial gravitational radiation. Such turbulence may be relevant for the evolution of the Universe at later stages and may have an impact in the stochastic gravitational wave background.
Conformal Symmetry as a Template for QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, S
2004-08-04
Conformal symmetry is broken in physical QCD; nevertheless, one can use conformal symmetry as a template, systematically correcting for its nonzero {beta} function as well as higher-twist effects. For example, commensurate scale relations which relate QCD observables to each other, such as the generalized Crewther relation, have no renormalization scale or scheme ambiguity and retain a convergent perturbative structure which reflects the underlying conformal symmetry of the classical theory. The ''conformal correspondence principle'' also dictates the form of the expansion basis for hadronic distribution amplitudes. The AdS/CFT correspondence connecting superstring theory to superconformal gauge theory has important implications for hadronmore » phenomenology in the conformal limit, including an all-orders demonstration of counting rules for hard exclusive processes as well as determining essential aspects of hadronic light-front wavefunctions. Theoretical and phenomenological evidence is now accumulating that QCD couplings based on physical observables such as {tau} decay become constant at small virtuality; i.e., effective charges develop an infrared fixed point in contradiction to the usual assumption of singular growth in the infrared. The near-constant behavior of effective couplings also suggests that QCD can be approximated as a conformal theory even at relatively small momentum transfer. The importance of using an analytic effective charge such as the pinch scheme for unifying the electroweak and strong couplings and forces is also emphasized.« less
Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano
2018-01-01
We discuss the leptonic decay constants of heavy-light mesons by means of Borel QCD sum rules in the local-duality (LD) limit of infinitely large Borel mass parameter. In this limit, for an appropriate choice of the invariant structures in the QCD correlation functions, all vacuum-condensate contributions vanish and all nonperturbative effects are contained in only one quantity, the effective threshold. We study properties of the LD effective thresholds in the limits of large heavy-quark mass [Formula: see text] and small light-quark mass [Formula: see text]. In the heavy-quark limit, we clarify the role played by the radiative corrections in the effective threshold for reproducing the pQCD expansion of the decay constants of pseudoscalar and vector mesons. We show that the dependence of the meson decay constants on [Formula: see text] arises predominantly (at the level of 70-80%) from the calculable [Formula: see text]-dependence of the perturbative spectral densities. Making use of the lattice QCD results for the decay constants of nonstrange and strange pseudoscalar and vector heavy mesons, we obtain solid predictions for the decay constants of heavy-light mesons as functions of [Formula: see text] in the range from a few to 100 MeV and evaluate the corresponding strong isospin-breaking effects: [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text].
Quantum chromodynamics near the confinement limit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quigg, C.
1985-09-01
These nine lectures deal at an elementary level with the strong interaction between quarks and its implications for the structure of hadrons. Quarkonium systems are studied as a means for measuring the interquark interaction. This is presumably (part of) the answer a solution to QCD must yield, if it is indeed the correct theory of the strong interactions. Some elements of QCD are reviewed, and metaphors for QCD as a confining theory are introduced. The 1/N expansion is summarized as a way of guessing the consequences of QCD for hadron physics. Lattice gauge theory is developed as a means formore » going beyond perturbation theory in the solution of QCD. The correspondence between statistical mechanics, quantum mechanics, and field theory is made, and simple spin systems are formulated on the lattice. The lattice analog of local gauge invariance is developed, and analytic methods for solving lattice gauge theory are considered. The strong-coupling expansion indicates the existence of a confining phase, and the renormalization group provides a means for recovering the consequences of continuum field theory. Finally, Monte Carlo simulations of lattice theories give evidence for the phase structure of gauge theories, yield an estimate for the string tension characterizing the interquark force, and provide an approximate description of the quarkonium potential in encouraging good agreement with what is known from experiment.« less
On the impact of power corrections in the prediction of B → K *μ+μ- observables
NASA Astrophysics Data System (ADS)
Descotes-Genon, Sébastien; Hofer, Lars; Matias, Joaquim; Virto, Javier
2014-12-01
The recent LHCb angular analysis of the exclusive decay B → K * μ + μ - has indicated significant deviations from the Standard Model expectations. Accurate predictions can be achieved at large K *-meson recoil for an optimised set of observables designed to have no sensitivity to hadronic input in the heavy-quark limit at leading order in α s . However, hadronic uncertainties reappear through non-perturbative ΛQCD /m b power corrections, which must be assessed precisely. In the framework of QCD factorisation we present a systematic method to include factorisable power corrections and point out that their impact on angular observables depends on the scheme chosen to define the soft form factors. Associated uncertainties are found to be under control, contrary to earlier claims in the literature. We also discuss the impact of possible non-factorisable power corrections, including an estimate of charm-loop effects. We provide results for angular observables at large recoil for two different sets of inputs for the form factors, spelling out the different sources of theoretical uncertainties. Finally, we comment on a recent proposal to explain the anomaly in B → K * μ + μ - observables through charm-resonance effects, and we propose strategies to test this proposal identifying observables and kinematic regions where either the charm-loop model can be disentangled from New Physics effects or the two options leave different imprints.
The asymptotic form of non-global logarithms, black disc saturation, and gluonic deserts
NASA Astrophysics Data System (ADS)
Neill, Duff
2017-01-01
We develop an asymptotic perturbation theory for the large logarithmic behavior of the non-linear integro-differential equation describing the soft correlations of QCD jet measurements, the Banfi-Marchesini-Smye (BMS) equation. This equation captures the late-time evolution of radiating color dipoles after a hard collision. This allows us to prove that at large values of the control variable (the non-global logarithm, a function of the infra-red energy scales associated with distinct hard jets in an event), the distribution has a gaussian tail. We compute the decay width analytically, giving a closed form expression, and find it to be jet geometry independent, up to the number of legs of the dipole in the active jet. Enabling the asymptotic expansion is the correct perturbative seed, where we perturb around an anzats encoding formally no real emissions, an intuition motivated by the buffer region found in jet dynamics. This must be supplemented with the correct application of the BFKL approximation to the BMS equation in collinear limits. Comparing to the asymptotics of the conformally related evolution equation encountered in small-x physics, the Balitisky-Kovchegov (BK) equation, we find that the asymptotic form of the non-global logarithms directly maps to the black-disc unitarity limit of the BK equation, despite the contrasting physical pictures. Indeed, we recover the equations of saturation physics in the final state dynamics of QCD.
NASA Astrophysics Data System (ADS)
Alkofer, Reinhard; von Smekal, Lorenz
2001-11-01
Recent studies of QCD Green's functions and their applications in hadronic physics are reviewed. We discuss the definition of the generating functional in gauge theories, in particular, the rôle of redundant degrees of freedom, possibilities of a complete gauge fixing versus gauge fixing in presence of Gribov copies, BRS invariance and positivity. The apparent contradiction between positivity and colour antiscreening in combination with BRS invariance in QCD is considered. Evidence for the violation of positivity by quarks and transverse gluons in the covariant gauge is collected, and it is argued that this is one manifestation of confinement. We summarise the derivation of the Dyson-Schwinger equations (DSEs) of QED and QCD. For the latter, the implications of BRS invariance on the Green's functions are explored. The possible influence of instantons on DSEs is discussed in a two-dimensional model. In QED in (2+1) and (3+1) dimensions, the solutions for Green's functions provide tests of truncation schemes which can under certain circumstances be extended to the DSEs of QCD. We discuss some limitations of such extensions and assess the validity of assumptions for QCD as motivated from studies in QED. Truncation schemes for DSEs are discussed in axial and related gauges, as well as in the Landau gauge. Furthermore, we review the available results from a systematic non-perturbative expansion scheme established for Landau gauge QCD. Comparisons to related lattice results, where available, are presented. The applications of QCD Green's functions to hadron physics are summarised. Properties of ground state mesons are discussed on the basis of the ladder Bethe-Salpeter equation for quarks and antiquarks. The Goldstone nature of pseudoscalar mesons and a mechanism for diquark confinement beyond the ladder approximation are reviewed. We discuss some properties of ground state baryons based on their description as Bethe-Salpeter/Faddeev bound states of quark-diquark correlations in the quantum field theory of confined quarks and gluons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darling, Christopher Lynn
By determining the production cross sections for heavy flavor hadrons, we test the theoretical predictions from perturhative quantum chroma-dynamics (QCD). In the case of pion induced beauty production, the few published results do not resolve the issue of the applicability of perturbative QCD. This analysis is undertaken in order to help resolve this situation. We determine the total beauty and charm production cross sections using an analysis of single electron decay products. We extract the cross sections per nucleon from the two-dimensional distribution of electron p versus impact parameter ( d) to the primary vertex. We place an upper limit on the beauty production cross section of σ bmore » $$\\bar{b}$$ < 105 nb at the 90% confidence level, where the limit includes both statistical and systematic errors. The charm production cross section is determined to be σ cc = 13.9$$+2.4/atop{-2.3}$$ (stat) ± 1.8 (syst) μ.b, which is in good agreement with next-to-leading order QCD predictions and other measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darling, Christopher Lynn
By determining the production cross sections for heavy flavor hadrons, we test the theoretical predictions from perturhative quantum chroma-dynamics (QCD). In the case of pion induced beauty production, the few published results do not resolve the issue of the applicability of perturbative QCD. This analysis is undertaken in order to help resolve this situation. We determine the total beauty and charm production cross sections using an analysis of single electron decay products. We extract the cross sections per nucleon from the two-dimensional distribution of electronmore » $$p^2_{\\tau}$$ versus impact parameter (d) to the primary vertex. We place an upper limit on the beauty production cross section of $$\\sigma_{b\\overline{b}}$$ < 105 nb at the 90% confidence level, where the limit includes both statistical and systematic errors. The charm production cross section is determined to be $$\\sigma_{c\\overline{c}} = 13.9 ^{+2.4}_{-2.3}$$(stat)±l.8(syst) $$\\mu b$$, which is in good agreement with next-to-leading order QCD predictions and other measurements.« less
Lattice NRQCD study on in-medium bottomonium spectra using a novel Bayesian reconstruction approach
NASA Astrophysics Data System (ADS)
Kim, Seyong; Petreczky, Peter; Rothkopf, Alexander
2016-01-01
We present recent results on the in-medium modification of S- and P-wave bottomonium states around the deconfinement transition. Our study uses lattice QCD with Nf = 2 + 1 light quark flavors to describe the non-perturbative thermal QCD medium between 140MeV < T < 249MeV and deploys lattice regularized non-relativistic QCD (NRQCD) effective field theory to capture the physics of heavy quark bound states immersed therein. The spectral functions of the 3S1 (ϒ) and 3P1 (χb1) bottomonium states are extracted from Euclidean time Monte Carlo simulations using a novel Bayesian prescription, which provides higher accuracy than the Maximum Entropy Method. Based on a systematic comparison of interacting and free spectral functions we conclude that the ground states of both the S-wave (ϒ) and P-wave (χb1) channel survive up to T = 249MeV. Stringent upper limits on the size of the in-medium modification of bottomonium masses and widths are provided.
Connecting physical resonant amplitudes and lattice QCD
Bolton, Daniel R.; Briceno, Raul A.; Wilson, David J.
2016-03-18
Here, we present a determination of the isovector,more » $P$-wave $$\\pi\\pi$$ scattering phase shift obtained by extrapolating recent lattice QCD results from the Hadron Spectrum Collaboration using $$m_\\pi =236$$ MeV. The finite volume spectra are described using extensions of L\\"uscher's method to determine the infinite volume Unitarized Chiral Perturbation Theory scattering amplitude. We exploit the pion mass dependence of this effective theory to obtain the scattering amplitude at $$m_\\pi= 140$$ MeV. The scattering phase shift is found to be in good agreement with experiment up to center of mass energies of 1.2 GeV. The analytic continuation of the scattering amplitude to the complex plane yields a $$\\rho$$-resonance pole at $$E_\\rho= \\left[755(2)(1)(^{20}_{02})-\\frac{i}{2}\\,129(3)(1)(^{7}_{1})\\right]~{\\rm MeV}$$. The techniques presented illustrate a possible pathway towards connecting lattice QCD observables of few-body, strongly interacting systems to experimentally accessible quantities.« less
Charmed bottom baryon spectroscopy from lattice QCD
Brown, Zachary S.; Detmold, William; Meinel, Stefan; ...
2014-11-19
In this study, we calculate the masses of baryons containing one, two, or three heavy quarks using lattice QCD. We consider all possible combinations of charm and bottom quarks, and compute a total of 36 different states with J P = 1/2 + and J P = 3/2 +. We use domain-wall fermions for the up, down, and strange quarks, a relativistic heavy-quark action for the charm quarks, and nonrelativistic QCD for the bottom quarks. Our analysis includes results from two different lattice spacings and seven different pion masses. We perform extrapolations of the baryon masses to the continuum limitmore » and to the physical pion mass using SU(4|2) heavy-hadron chiral perturbation theory including 1/m Q and finite-volume effects. For the 14 singly heavy baryons that have already been observed, our results agree with the experimental values within the uncertainties. We compare our predictions for the hitherto unobserved states with other lattice calculations and quark-model studies.« less
Holographic photon production in heavy ion collisions
NASA Astrophysics Data System (ADS)
Iatrakis, Ioannis; Kiritsis, Elias; Shen, Chun; Yang, Di-Lun
2017-04-01
The thermal-photon emission from strongly coupled gauge theories at finite temperature is calculated using holographic models for QCD in the Veneziano limit (V-QCD). The emission rates are then embedded in hydrodynamic simulations combined with prompt photons from hard scattering and the thermal photons from hadron gas to analyze the spectra and anisotropic flow of direct photons at RHIC and LHC. The results from different sources responsible for the thermal photons in QGP including the weakly coupled QGP (wQGP) from perturbative calculations, strongly coupled N = 4 super Yang-Mills (SYM) plasma (as a benchmark for reference), and Gubser's phenomenological holographic model are then compared. It is found that the direct-photon spectra are enhanced in the strongly coupled scenario compared with the ones in the wQGP, especially at high momenta. Moreover, both the elliptic flow and triangular flow of direct photons are amplified at high momenta for V-QCD and the SYM plasma. The results are further compared with experimental observations.
Polarization components in π 0 photoproduction at photon energies up to 5.6 GeV
Luo, W.; Brash, E. J.; Gilman, R.; ...
2012-05-31
We present new data for the polarization observables of the final state proton in the 1H(→ γ, → p)π 0 reaction. These data can be used to test predictions based on hadron helicity conservation (HHC) and perturbative QCD (pQCD). These data have both small statistical and systematic uncertainties, and were obtained with beam energies between 1.8 and 5.6 GeV and for π 0 scattering angles larger than 75{sup o} in center-of-mass (c.m.) frame. The data extend the polarization measurements data base for neutral pion photoproduction up to E γ = 5.6 GeV. The results show non-zero induced polarization above themore » resonance region. The polarization transfer components vary rapidly with the photon energy and π 0 scattering angle in the center-of-mass frame. This indicates that HHC does not hold and that the pQCD limit is still not reached in the energy regime of this experiment.« less
Bodwin, Geoffrey T.; Braaten, Eric
2017-03-22
In the cross section for single-inclusive jet production in electron nucleon collisions, the distribution of a quark in an electron appears at next-to-next-to-leading order. The numerical calculations in Ref. [1] were carried out using a perturbative approximation for the distribution of a quark in an electron. We point out that that distribution receives nonperturbative QCD contributions that invalidate the perturbative approximation. Here, those nonperturbative effects enter into cross sections for hard-scattering processes through resolved-electron contributions and can be taken into account by determining the distribution of a quark in an electron phenomenologically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodwin, Geoffrey T.; Braaten, Eric
In the cross section for single-inclusive jet production in electron nucleon collisions, the distribution of a quark in an electron appears at next-to-next-to-leading order. The numerical calculations in Ref. [1] were carried out using a perturbative approximation for the distribution of a quark in an electron. We point out that that distribution receives nonperturbative QCD contributions that invalidate the perturbative approximation. Here, those nonperturbative effects enter into cross sections for hard-scattering processes through resolved-electron contributions and can be taken into account by determining the distribution of a quark in an electron phenomenologically.
Charmless hadronic B →(f1(1285 ),f1(1420 ))P decays in the perturbative QCD approach
NASA Astrophysics Data System (ADS)
Liu, Xin; Xiao, Zhen-Jun; Li, Jing-Wu; Zou, Zhi-Tian
2015-01-01
We study 20 charmless hadronic B →f1P decays in the perturbative QCD (pQCD) formalism with B denoting Bu, Bd, and Bs mesons; P standing for the light pseudoscalar mesons; and f1 representing axial-vector mesons f1(1285 ) and f1(1420 ) that result from a mixing of quark-flavor f1 q[u/u ¯ +d d ¯ √{2 } ] and f1 s[s s ¯ ] states with the angle ϕf1.The estimations of C P -averaged branching ratios and C P asymmetries of the considered B →f1P decays, in which the Bs→f1P modes are investigated for the first time, are presented in the pQCD approach with ϕf 1˜24 ° from recently measured Bd /s→J /ψ f1(1285 ) decays. It is found that (a) the tree (penguin) dominant B+→f1π+(K+) decays with large branching ratios [O (10-6) ] and large direct C P violations (around 14%-28% in magnitude) simultaneously are believed to be clearly measurable at the LHCb and Belle II experiments; (b) the Bd→f1KS0 and Bs→f1(η ,η') decays with nearly pure penguin contributions and safely negligible tree pollution also have large decay rates in the order of 10-6- 10-5 , which can be confronted with the experimental measurements in the near future; (c) as the alternative channels, the B+→f1(π+,K+) and Bd→f1KS0 decays have the supplementary power in providing more effective constraints on the Cabibbo-Kobayashi-Maskawa weak phases α , γ , and β , correspondingly, which are explicitly analyzed through the large decay rates and the direct and mixing-induced C P asymmetries in the pQCD approach and are expected to be stringently examined by the measurements with high precision; (d) the weak annihilation amplitudes play important roles in the B+→f1(1420 )K+ , Bd→f1(1420 )KS0 , Bs→f1(1420 )η' decays, and so on, which would offer more evidence, once they are confirmed by the experiments, to identify the soft-collinear effective theory and the pQCD approach on the evaluations of annihilation diagrams and to help further understand the annihilation mechanism in the heavy B meson decays; (e) combined with the future precise tests, the considered decays can provide more information to further understand the mixing angle ϕf 1 and the nature of the f1 mesons in depth after the confirmations on the reliability of the pQCD calculations in the present work.
NASA Astrophysics Data System (ADS)
Li, Hsiang-Nan; Mishima, Satoshi; Sanda, A. I.
2005-12-01
We calculate the important next-to-leading-order contributions to the B→πK, ππ decays from the vertex corrections, the quark loops, and the magnetic penguins in the perturbative QCD approach. It is found that the latter two reduce the leading-order penguin amplitudes by about 10% and modify only the B→πK branching ratios. The main effect of the vertex corrections is to increase the small color-suppressed tree amplitude by a factor of 3, which then resolves the large difference between the direct CP asymmetries of the B0→π∓K± and B±→π0K± modes. The puzzle from the large B0→π0π0 branching ratio still remains.
NASA Astrophysics Data System (ADS)
Xu, Jian-Feng; Luo, Yan-An; Li, Lei; Peng, Guang-Xiong
The properties of dense quark matter are investigated in the perturbation theory with a rapidly convergent matching-invariant running coupling. The fast convergence is mainly due to the resummation of an infinite number of known logarithmic terms in a compact form. The only parameter in this model, the ratio of the renormalization subtraction point to the chemical potential, is restricted to be about 2.64 according to the Witten-Bodmer conjecture, which gives the maximum mass and the biggest radius of quark stars to be, respectively, two times the solar mass and 11.7km.
(Investigations in guage theories, topological solitons and string theories)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, L.N.; Tze, C.H.
1989-01-01
This report discusses the following topics: Phases and conservation laws in parametrized systems; Time reversal symmetry in 2 + 1 dimemsional systems; Chiral symmetry breaking in QCD at high temperatures; Solitons at Tev energies; Self-Duality, conformal symmetries and hypercomplex analyticity; Hopf phase entanglements, exotic membranes and division algebras; and Non-perturbative methods. 58 refs. (JSP)
Higher order corrections to mixed QCD-EW contributions to Higgs boson production in gluon fusion
NASA Astrophysics Data System (ADS)
Bonetti, Marco; Melnikov, Kirill; Tancredi, Lorenzo
2018-03-01
We present an estimate of the next-to-leading-order (NLO) QCD corrections to mixed QCD-electroweak contributions to the Higgs boson production cross section in gluon fusion, combining the recently computed three-loop virtual corrections and the approximate treatment of real emission in the soft approximation. We find that the NLO QCD corrections to the mixed QCD-electroweak contributions are nearly identical to NLO QCD corrections to QCD Higgs production. Our result confirms an earlier estimate of these O (α αs2) effects by Anastasiou et al. [J. High Energy Phys. 04 (2009) 003, 10.1088/1126-6708/2009/04/003] and provides further support for the factorization approximation of QCD and electroweak corrections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boz, Tamer; Skullerud, Jon-Ivar; Centre for the Subatomic Structure of Matter, Adelaide University, Adelaide, SA 5005
2016-01-22
QCD at high chemical potential has interesting properties such as deconfinement of quarks. Two-color QCD, which enables numerical simulations on the lattice, constitutes a laboratory to study QCD at high chemical potential. Among the interesting properties of two-color QCD at high density is the diquark condensation, for which we present recent results obtained on a finer lattice compared to previous studies. The quark propagator in two-color QCD at non-zero chemical potential is referred to as the Gor’kov propagator. We express the Gor’kov propagator in terms of form factors and present recent lattice simulation results.
Chiral extrapolations of the ρ ( 770 ) meson in N f = 2 + 1 lattice QCD simulations
Hu, B.; Molina, R.; Döring, M.; ...
2017-08-24
Recentmore » $$N_f=2+1$$ lattice data for meson-meson scattering in $p$-wave and isospin $I=1$ are analyzed using a unitarized model inspired by Chiral Perturbation Theory in the inverse-amplitude formulation for two and three flavors. We perform chiral extrapolations that postdict phase shifts extracted from experiment quite well. Additionally, the low-energy constants are compared to the ones from a recent analysis of $$N_f=2$$ lattice QCD simulations to check for the consistency of the hadronic model used here. Some inconsistencies are detected in the fits to $$N_f=2+1$$ data, in contrast to the previous analysis of $$N_f=2$$ data.« less
QCD Coupling from a Nonperturbative Determination of the Three-Flavor Λ Parameter.
Bruno, Mattia; Brida, Mattia Dalla; Fritzsch, Patrick; Korzec, Tomasz; Ramos, Alberto; Schaefer, Stefan; Simma, Hubert; Sint, Stefan; Sommer, Rainer
2017-09-08
We present a lattice determination of the Λ parameter in three-flavor QCD and the strong coupling at the Z pole mass. Computing the nonperturbative running of the coupling in the range from 0.2 to 70 GeV, and using experimental input values for the masses and decay constants of the pion and the kaon, we obtain Λ_{MS[over ¯]}^{(3)}=341(12) MeV. The nonperturbative running up to very high energies guarantees that systematic effects associated with perturbation theory are well under control. Using the four-loop prediction for Λ_{MS[over ¯]}^{(5)}/Λ_{MS[over ¯]}^{(3)} yields α_{MS[over ¯]}^{(5)}(m_{Z})=0.11852(84).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sturm, C.; Soni, A.; Aoki, Y.
2009-07-01
We extend the Rome-Southampton regularization independent momentum-subtraction renormalization scheme (RI/MOM) for bilinear operators to one with a nonexceptional, symmetric subtraction point. Two-point Green's functions with the insertion of quark bilinear operators are computed with scalar, pseudoscalar, vector, axial-vector and tensor operators at one-loop order in perturbative QCD. We call this new scheme RI/SMOM, where the S stands for 'symmetric'. Conversion factors are derived, which connect the RI/SMOM scheme and the MS scheme and can be used to convert results obtained in lattice calculations into the MS scheme. Such a symmetric subtraction point involves nonexceptional momenta implying a lattice calculation withmore » substantially suppressed contamination from infrared effects. Further, we find that the size of the one-loop corrections for these infrared improved kinematics is substantially decreased in the case of the pseudoscalar and scalar operator, suggesting a much better behaved perturbative series. Therefore it should allow us to reduce the error in the determination of the quark mass appreciably.« less
Domain walls and the C P anomaly in softly broken supersymmetric QCD
NASA Astrophysics Data System (ADS)
Draper, Patrick
2018-04-01
In ordinary QCD with light, degenerate, fundamental flavors, C P symmetry is spontaneously broken at θ =π , and domain wall solutions connecting the vacua can be constructed in chiral perturbation theory. In some cases the breaking of C P saturates a 't Hooft anomaly, and anomaly inflow requires nontrivial massless excitations on the domain walls. Analogously, C P can be spontaneously broken in supersymmetric QCD (SQCD) with light flavors and small soft breaking parameters. We study C P breaking and domain walls in softly broken SQCD with Nf
NASA Astrophysics Data System (ADS)
Modarres, M.; Masouminia, M. R.; Aminzadeh Nik, R.; Hosseinkhani, H.; Olanj, N.
2017-09-01
The present work is devoted to study the high-energy QCD events, such as the di-jet productions from proton-proton inelastic collisions at the LHC in the forward-center and the forward-forward configurations. This provides us with much valuable case study, since such phenomena can provide a direct glimpse into the partonic behavior of a hadron in a dominant gluonic region. We use the unintegrated parton distribution functions (UPDF) in the kt-factorization framework. The UPDF of Kimber et al. (KMR) and Martin et al. (MRW) are generated in the leading order (LO) and next-to-leading order (NLO), using the Harland-Lang et al. (MMHT2014) PDF libraries. While working in the forward-center and the forward-forward rapidity sectors, one can probe the parton densities at very low longitudinal momentum fractions (x). Such a model computation can provide simpler analytic description of data with respect to existing formalisms such as perturbative QCD. The differential cross-section calculations are performed at the center of mass energy of 7 TeV corresponding to CMS collaboration measurement. It is shown that the gluonic jet productions are dominant and a good description of data as well as other theoretical attempts (i.e. KS-linear, KS-nonlinear and rcBK) is obtained. The uncertainty of the calculations is derived by manipulating the hard scale of the processes by a factor of two. This conclusion is achieved, due to the particular visualization of the angular ordering constraint (AOC), that is incorporated in the definition of these UPDF.
Renormalization, conformal ward identities and the origin of a conformal anomaly pole
NASA Astrophysics Data System (ADS)
Corianò, Claudio; Maglio, Matteo Maria
2018-06-01
We investigate the emergence of a conformal anomaly pole in conformal field theories in the case of the TJJ correlator. We show how it comes to be generated in dimensional renormalization, using a basis of 13 form factors (the F-basis), where only one of them requires renormalization (F13), extending previous studies. We then combine recent results on the structure of the non-perturbative solutions of the conformal Ward identities (CWI's) for the TJJ in momentum space, expressed in terms of a minimal set of 4 form factors (A-basis), with the properties of the F-basis, and show how the singular behaviour of the corresponding form factors in both basis can be related. The result proves the centrality of such massless effective interactions induced by the anomaly, which have recently found realization in solid state, in the theory of topological insulators and of Weyl semimetals. This pattern is confirmed in massless abelian and nonabelian theories (QED and QCD) investigated at one-loop.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, S. J.
A fundamental problem in hadron physics is to obtain a relativistic color-confining, first approximation to QCD which can predict both hadron spectroscopy and the frame-independent light-front (LF) wavefunctions underlying hadron dynamics. The QCD Lagrangian with zero quark mass has no explicit mass scale; the classical theory is conformally invariant. Thus, a fundamental problem is to understand how the mass gap and ratios of masses – such as mρ/mp – can arise in chiral QCD. De Alfaro, Fubini, and Furlan have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator and rescales the time variable. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to themore » $$q\\bar{q}$$ invariant mass squared. The same result, including spin terms, is obtained using light-front holography – the duality between light-front dynamics and AdS 5, the space of isometries of the conformal group if one modifies the action of AdS 5 by the dilaton e $κ^2$ z$^2$ in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ $$\\overline{MS}$$ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α s(Q 2) defined at all momenta. Lastly, the matching of the high and low momentum transfer regimes also determines a scale Q 0 which sets the interface between perturbative and nonperturbative hadron dynamics.« less
Brodsky, S. J.
2017-07-11
A fundamental problem in hadron physics is to obtain a relativistic color-confining, first approximation to QCD which can predict both hadron spectroscopy and the frame-independent light-front (LF) wavefunctions underlying hadron dynamics. The QCD Lagrangian with zero quark mass has no explicit mass scale; the classical theory is conformally invariant. Thus, a fundamental problem is to understand how the mass gap and ratios of masses – such as mρ/mp – can arise in chiral QCD. De Alfaro, Fubini, and Furlan have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator and rescales the time variable. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to themore » $$q\\bar{q}$$ invariant mass squared. The same result, including spin terms, is obtained using light-front holography – the duality between light-front dynamics and AdS 5, the space of isometries of the conformal group if one modifies the action of AdS 5 by the dilaton e $κ^2$ z$^2$ in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ $$\\overline{MS}$$ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α s(Q 2) defined at all momenta. Lastly, the matching of the high and low momentum transfer regimes also determines a scale Q 0 which sets the interface between perturbative and nonperturbative hadron dynamics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckley, Andy; /Edinburgh U.; Butterworth, Jonathan
We review the physics basis, main features and use of general-purpose Monte Carlo event generators for the simulation of proton-proton collisions at the Large Hadron Collider. Topics included are: the generation of hard-scattering matrix elements for processes of interest, at both leading and next-to-leading QCD perturbative order; their matching to approximate treatments of higher orders based on the showering approximation; the parton and dipole shower formulations; parton distribution functions for event generators; non-perturbative aspects such as soft QCD collisions, the underlying event and diffractive processes; the string and cluster models for hadron formation; the treatment of hadron and tau decays;more » the inclusion of QED radiation and beyond-Standard-Model processes. We describe the principal features of the Ariadne, Herwig++, Pythia 8 and Sherpa generators, together with the Rivet and Professor validation and tuning tools, and discuss the physics philosophy behind the proper use of these generators and tools. This review is aimed at phenomenologists wishing to understand better how parton-level predictions are translated into hadron-level events as well as experimentalists wanting a deeper insight into the tools available for signal and background simulation at the LHC.« less
Hyper-scaling relations in the conformal window from dynamic AdS/QCD
NASA Astrophysics Data System (ADS)
Evans, Nick; Scott, Marc
2014-09-01
Dynamic AdS/QCD is a holographic model of strongly coupled gauge theories with the dynamics included through the running anomalous dimension of the quark bilinear, γ. We apply it to describe the physics of massive quarks in the conformal window of SU(Nc) gauge theories with Nf fundamental flavors, assuming the perturbative two-loop running for γ. We show that to find regular, holographic renormalization group flows in the infrared, the decoupling of the quark flavors at the scale of the mass is important, and enact it through suitable boundary conditions when the flavors become on shell. We can then compute the quark condensate and the mesonic spectrum (Mρ,Mπ,Mσ) and decay constants. We compute their scaling dependence on the quark mass for a number of examples. The model matches perturbative expectations for large quark mass and naïve dimensional analysis (including the anomalous dimensions) for small quark mass. The model allows study of the intermediate regime where there is an additional scale from the running of the coupling, and we present results for the deviation of scalings from assuming only the single scale of the mass.
Center vortices in confinement
NASA Astrophysics Data System (ADS)
Alexandru, Viorel-Andrei
2001-11-01
The confinement property of quarks is still one of the puzzles of today's physics. Although QCD is believed to accurately describe the interaction between quarks, due to the peculiar nature of the theory we are still unable to prove that it confines the quarks. Most analytical efforts in QCD are based on perturbative techniques which are useless in studying confinement. Lattice gauge theory enables us to get non-perturbative results. We use lattice techniques to investigate one of the proposed mechanisms of quark confinement, namely the center vortex idea. We first present a cursory introduction to lattice theory and the methods used to detect confinement on the lattices. We then show how the center vortices are suppose to produce confinement using center vortices to study Z2 lattice gauge theory. A review of the current studies regarding the idea of center vortices follows. The last chapter is dedicated to studying a particular definition of center vortices due to Tomboulis. We show how to implement this definition of vortices in numerical simulations and use numerical simulations to check the assumptions underlying the formalism. We also compare Tomboulis definition with other methods used to identify vortices on lattice.
Aspects of Chiral Symmetry Breaking in Lattice QCD
NASA Astrophysics Data System (ADS)
Horkel, Derek P.
In this thesis we describe two studies concerting lattice quantum chromodynamics (LQCD): first, an analysis of the phase structure of Wilson and twisted-mass fermions with isospin breaking effects, second a computational study measuring non-perturbative Greens functions. We open with a brief overview of the formalism of QCD and LQCD, focusing on the aspects necessary for understanding how a lattice computation is performed and how discretization effects can be understood. Our work in Wilson and twisted-mass fermions investigates an increasingly relevant regime where lattice simulations are performed with quarks at or near their physical masses and both the mass difference of the up and down quarks and their differing electric charges are included. Our computation of a non-perturbative Greens functions on the lattice serves as a first attempt to validate recent work by Dine et. al. [24] in which they calculate Greens functions which vanish in perturbation theory, yet have a contribution from the one instanton background. In chapter 2, we determine the phase diagram and pion spectrum for Wilson and twisted-mass fermions in the presence of non-degeneracy between the up and down quark and discretization errors, using Wilson and twisted-mass chiral perturbation theory. We find that the CP-violating phase of the continuum theory (which occurs for sufficiently large non-degeneracy) is continuously connected to the Aoki phase of the lattice theory with degenerate quarks. We show that discretization effects can, in some cases, push simulations with physical masses closer to either the CP-violating phase or another phase not present in the continuum, so that at sufficiently large lattice spacings physical-point simulations could lie in one of these phases. In chapter 3, we extend the work in chapter 2 to include the effects of electromagnetism, so that it is applicable to recent simulations incorporating all sources of isospin breaking. For Wilson fermions, we find that the phase diagram is unaffected by the inclusion of electromagnetism--the only effect is to raise the charged pion masses. For maximally twisted fermions, we previously took the twist and isospin-breaking directions to be different, in order that the fermion determinant is real and positive. However, this is incompatible with electromagnetic gauge invariance, and so here we take the twist to be in the isospin-breaking direction, following the RM123 collaboration. We map out the phase diagram in this case, which has not previously been studied. The results differ from those obtained with different twist and isospin directions. One practical issue when including electromagnetism is that the critical masses for up and down quarks differ. We show that one of the criteria suggested to determine these critical masses does not work, and propose an alternative. In chapter 4, we delve deeper into the technical details of the analysis in chapter 3. We determine the phase diagram and chiral condensate for lattice QCD with two flavors of twisted-mass fermions in the presence of nondegenerate up and down quarks, discretization errors and a nonzero value of thetaQCD. We find that, in general, the only phase structure is a first-order transition of finite length. Pion masses are nonvanishing throughout the phase plane except at the endpoints of the first-order line. Only for extremal values of the twist angle and thetaQCD (o = 0 or pi/2 and thetaQCD = 0 or pi) are there second-order transitions. In chapter 5 we move on to a new topic, working to make a first measurement of non-perturbative Greens functions which vanish in perturbation theory but have a non-vanishing one-instanton contribution, as suggested in recent work by Dine et. al. [24] using a semi- classical approach. This measurement was done using 163 x 48 configurations generated by the MILC collaboration, with coupling beta = 6.572, light quark mass m la = 0.0097, strange quark mass msa = 0.0484, lattice spacing a ≈ 0.14 fm and pion mass mpia = 0.2456. The analysis was done by separating the Green function of interest into pseudoscalar and scalar components. These are separately calculated on 440 configurations, using the Chroma software package. To improve statistics, we used the various reduction technique suggested in Ref. [13]. We subtracted out the long distance contributions from the pion, excited pion and a0 from the Green function, in the hope of obtaining the short distance form predicted by Ref. [24]. Unfortunately, after subtraction of the a0 and pion states only noise remained. While the results are not in themselves useful, we believe this approach will be worth repeating in the future with finer lattices with a fermion action with better chiral symmetry.
The asymptotic form of non-global logarithms, black disc saturation, and gluonic deserts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neill, Duff
Here, we develop an asymptotic perturbation theory for the large logarithmic behavior of the non-linear integro-differential equation describing the soft correlations of QCD jet measurements, the Banfi-Marchesini-Smye (BMS) equation. Furthermore, this equation captures the late-time evolution of radiating color dipoles after a hard collision. This allows us to prove that at large values of the control variable (the non-global logarithm, a function of the infra-red energy scales associated with distinct hard jets in an event), the distribution has a gaussian tail. We also compute the decay width analytically, giving a closed form expression, and find it to be jet geometrymore » independent, up to the number of legs of the dipole in the active jet. By enabling the asymptotic expansion we find that the perturbative seed is correct; we perturb around an anzats encoding formally no real emissions, an intuition motivated by the buffer region found in jet dynamics. This must be supplemented with the correct application of the BFKL approximation to the BMS equation in collinear limits. Comparing to the asymptotics of the conformally related evolution equation encountered in small-x physics, the Balitisky-Kovchegov (BK) equation, we find that the asymptotic form of the non-global logarithms directly maps to the black-disc unitarity limit of the BK equation, despite the contrasting physical pictures. Indeed, we recover the equations of saturation physics in the final state dynamics of QCD.« less
The asymptotic form of non-global logarithms, black disc saturation, and gluonic deserts
Neill, Duff
2017-01-25
Here, we develop an asymptotic perturbation theory for the large logarithmic behavior of the non-linear integro-differential equation describing the soft correlations of QCD jet measurements, the Banfi-Marchesini-Smye (BMS) equation. Furthermore, this equation captures the late-time evolution of radiating color dipoles after a hard collision. This allows us to prove that at large values of the control variable (the non-global logarithm, a function of the infra-red energy scales associated with distinct hard jets in an event), the distribution has a gaussian tail. We also compute the decay width analytically, giving a closed form expression, and find it to be jet geometrymore » independent, up to the number of legs of the dipole in the active jet. By enabling the asymptotic expansion we find that the perturbative seed is correct; we perturb around an anzats encoding formally no real emissions, an intuition motivated by the buffer region found in jet dynamics. This must be supplemented with the correct application of the BFKL approximation to the BMS equation in collinear limits. Comparing to the asymptotics of the conformally related evolution equation encountered in small-x physics, the Balitisky-Kovchegov (BK) equation, we find that the asymptotic form of the non-global logarithms directly maps to the black-disc unitarity limit of the BK equation, despite the contrasting physical pictures. Indeed, we recover the equations of saturation physics in the final state dynamics of QCD.« less
Aad, G; Abajyan, T; Abbott, B; Abdallah, J; Abdel Khalek, S; Abdelalim, A A; Abdinov, O; Aben, R; Abi, B; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Acharya, B S; Adamczyk, L; Adams, D L; Addy, T N; Adelman, J; Adomeit, S; Adragna, P; Adye, T; Aefsky, S; Aguilar-Saavedra, J A; Agustoni, M; Aharrouche, M; Ahlen, S P; Ahles, F; Ahmad, A; Ahsan, M; Aielli, G; Åkesson, T P A; Akimoto, G; Akimov, A V; Alam, M S; Alam, M A; Albert, J; Albrand, S; Aleksa, M; Aleksandrov, I N; Alessandria, F; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alison, J; Allbrooke, B M M; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alonso, F; Altheimer, A; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amelung, C; Ammosov, V V; Amor Dos Santos, S P; Amorim, A; Amram, N; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Andrieux, M-L; Anduaga, X S; Angelidakis, S; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aoun, S; Aperio Bella, L; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Arfaoui, S; Arguin, J-F; Argyropoulos, S; Arik, E; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnault, C; Artamonov, A; Artoni, G; Arutinov, D; Asai, S; Ask, S; Åsman, B; Asquith, L; Assamagan, K; Astbury, A; Atkinson, M; Aubert, B; Auge, E; Augsten, K; Aurousseau, M; Avolio, G; Avramidou, R; Axen, D; Azuelos, G; Azuma, Y; Baak, M A; Baccaglioni, G; Bacci, C; Bach, A M; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Backus Mayes, J; Badescu, E; Bagnaia, P; Bahinipati, S; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, M D; Baker, S; Balek, P; Banas, E; Banerjee, P; Banerjee, Sw; Banfi, D; Bangert, A; Bansal, V; Bansil, H S; Barak, L; Baranov, S P; Barbaro Galtieri, A; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Bardin, D Y; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Barrillon, P; Bartoldus, R; Barton, A E; Bartsch, V; Basye, A; Bates, R L; Batkova, L; Batley, J R; Battaglia, A; Battistin, M; Bauer, F; Bawa, H S; Beale, S; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, S; Beckingham, M; Becks, K H; Beddall, A J; Beddall, A; Bedikian, S; Bednyakov, V A; Bee, C P; Beemster, L J; Begel, M; Behar Harpaz, S; Behera, P K; Beimforde, M; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellomo, M; Belloni, A; Beloborodova, O L; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Benoit, M; Bensinger, J R; Benslama, K; Bentvelsen, S; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernat, P; Bernhard, R; Bernius, C; Berry, T; Bertella, C; Bertin, A; Bertolucci, F; Besana, M I; Besjes, G J; Besson, N; Bethke, S; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Bieniek, S P; Bierwagen, K; Biesiada, J; Biglietti, M; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Bittner, B; Black, C W; Black, K M; Blair, R E; Blanchard, J-B; Blanchot, G; Blazek, T; Bloch, I; Blocker, C; Blocki, J; Blondel, A; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Boddy, C R; Boehler, M; Boek, J; Boek, T T; Boelaert, N; Bogaerts, J A; Bogdanchikov, A G; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Bolnet, N M; Bomben, M; Bona, M; Bondioli, M; Boonekamp, M; Bordoni, S; Borer, C; Borisov, A; Borissov, G; Borjanovic, I; Borri, M; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boveia, A; Boyd, J; Boyko, I R; Bozovic-Jelisavcic, I; Bracinik, J; Branchini, P; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brelier, B; Bremer, J; Brendlinger, K; Brenner, R; Bressler, S; Britton, D; Brochu, F M; Brock, I; Brock, R; Broggi, F; Bromberg, C; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brown, G; Brown, H; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Buanes, T; Buat, Q; Bucci, F; Buchanan, J; Buchholz, P; Buckingham, R M; Buckley, A G; Buda, S I; Budagov, I A; Budick, B; Bugge, L; Bulekov, O; Bundock, A C; Bunse, M; Buran, T; Burckhart, H; Burdin, S; Burgess, T; Burke, S; Busato, E; Büscher, V; Bussey, P; Buszello, C P; Butler, B; Butler, J M; Buttar, C M; Butterworth, J M; Buttinger, W; Byszewski, M; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Calvet, S; Camacho Toro, R; Camarri, P; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Canale, V; Canelli, F; Canepa, A; Cantero, J; Cantrill, R; Capasso, L; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capriotti, D; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, B; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, A A; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Cascella, M; Caso, C; Castaneda Hernandez, A M; Castaneda-Miranda, E; Castillo Gimenez, V; Castro, N F; Cataldi, G; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chan, K; Chang, P; Chapleau, B; Chapman, J D; Chapman, J W; Chareyre, E; Charlton, D G; Chavda, V; Chavez Barajas, C A; Cheatham, S; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, S; Chen, X; Chen, Y; Cheng, Y; Cheplakov, A; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Cheung, S L; Chevalier, L; Chiefari, G; Chikovani, L; Childers, J T; Chilingarov, A; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Choudalakis, G; Chouridou, S; Christidi, I A; Christov, A; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciocio, A; Cirilli, M; Cirkovic, P; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, P J; Clarke, R N; Cleland, W; Clemens, J C; Clement, B; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coelli, S; Coffey, L; Cogan, J G; Coggeshall, J; Cogneras, E; Colas, J; Cole, S; Colijn, A P; Collins, N J; Collins-Tooth, C; Collot, J; Colombo, T; Colon, G; Compostella, G; Conde Muiño, P; Coniavitis, E; Conidi, M C; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Courneyea, L; Cowan, G; Cowden, C; Cox, B E; Cranmer, K; Crépé-Renaudin, S; Crescioli, F; Cristinziani, M; Crosetti, G; Cuciuc, C-M; Cuenca Almenar, C; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Curtis, C J; Cuthbert, C; Cwetanski, P; Czirr, H; Czodrowski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; D'Orazio, A; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dallapiccola, C; Dam, M; Dameri, M; Damiani, D S; Danielsson, H O; Dao, V; Darbo, G; Darlea, G L; Dassoulas, J A; Davey, W; Davidek, T; Davidson, N; Davidson, R; Davies, E; Davies, M; Davignon, O; Davison, A R; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Taille, C; De la Torre, H; De Lorenzi, F; de Mora, L; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dearnaley, W J; Debbe, R; Debenedetti, C; Dechenaux, B; Dedovich, D V; Degenhardt, J; Del Peso, J; Del Prete, T; Delemontex, T; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demirkoz, B; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Devetak, E; Deviveiros, P O; Dewhurst, A; DeWilde, B; Dhaliwal, S; Dhullipudi, R; Di Ciaccio, A; Di Ciaccio, L; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M A; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dindar Yagci, K; Dingfelder, J; Dinut, F; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Doan, T K O; Dobbs, M; Dobos, D; Dobson, E; Dodd, J; Doglioni, C; Doherty, T; Dohmae, T; Doi, Y; Dolejsi, J; Dolenc, I; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donini, J; Dopke, J; Doria, A; Dos Anjos, A; Dotti, A; Dova, M T; Doxiadis, A D; Doyle, A T; Dressnandt, N; Dris, M; Dubbert, J; Dube, S; Duchovni, E; Duckeck, G; Duda, D; Dudarev, A; Dudziak, F; Duerdoth, I P; Duflot, L; Dufour, M-A; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Dwuznik, M; Ebke, J; Eckweiler, S; Edmonds, K; Edson, W; Edwards, C A; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Eisenhandler, E; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, K; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Engelmann, R; Engl, A; Erdmann, J; Ereditato, A; Eriksson, D; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Espinal Curull, X; Esposito, B; Etienne, F; Etienvre, A I; Etzion, E; Evangelakou, D; Evans, H; Fabbri, L; Fabre, C; Fakhrutdinov, R M; Falciano, S; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farley, J; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Fatholahzadeh, B; Favareto, A; Fayard, L; Fazio, S; Febbraro, R; Federic, P; Fedin, O L; Fedorko, W; Fehling-Kaschek, M; Feligioni, L; Feng, C; Feng, E J; Fenyuk, A B; Ferencei, J; Fernando, W; Ferrag, S; Ferrando, J; Ferrara, V; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filthaut, F; Fincke-Keeler, M; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, G; Fisher, M J; Flechl, M; Fleck, I; Fleckner, J; Fleischmann, P; Fleischmann, S; Flick, T; Floderus, A; Flores Castillo, L R; Flowerdew, M J; Fonseca Martin, T; Formica, A; Forti, A; Fortin, D; Fournier, D; Fox, H; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Frank, T; Franklin, M; Franz, S; Fraternali, M; Fratina, S; French, S T; Friedrich, C; Friedrich, F; Froeschl, R; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gadfort, T; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallo, V; Gallop, B J; Gallus, P; Gan, K K; Gao, Y S; Gaponenko, A; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Gemmell, A; Genest, M H; Gentile, S; George, M; George, S; Gershon, A; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giakoumopoulou, V; Giangiobbe, V; Gianotti, F; Gibbard, B; Gibson, A; Gibson, S M; Gilchriese, M; Gillberg, D; Gillman, A R; Gingrich, D M; Giokaris, N; Giordani, M P; Giordano, R; Giorgi, F M; Giovannini, P; Giraud, P F; Giugni, D; Giunta, M; Gjelsten, B K; Gladilin, L K; Glasman, C; Glatzer, J; Glazov, A; Glitza, K W; Glonti, G L; Goddard, J R; Godfrey, J; Godlewski, J; Goebel, M; Goeringer, C; Goldfarb, S; Golling, T; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez Silva, M L; Gonzalez-Sevilla, S; Goodson, J J; Goossens, L; Göpfert, T; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorfine, G; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gosselink, M; Gössling, C; Gostkin, M I; Gough Eschrich, I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Gozpinar, S; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramstad, E; Grancagnolo, F; Grancagnolo, S; Grassi, V; Gratchev, V; Grau, N; Gray, H M; Gray, J A; Graziani, E; Grebenyuk, O G; Greenshaw, T; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grigalashvili, N; Grillo, A A; Grinstein, S; Gris, Ph; Grishkevich, Y V; Grivaz, J-F; Gross, E; Grosse-Knetter, J; Groth-Jensen, J; Grybel, K; Guest, D; Guicheney, C; Guido, E; Guindon, S; Gul, U; Gunther, J; Guo, B; Guo, J; Gutierrez, P; Guttman, N; Gutzwiller, O; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haas, S; Haber, C; Hadavand, H K; Hadley, D R; Haefner, P; Hahn, F; Hajduk, Z; Hakobyan, H; Hall, D; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamilton, S; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Handel, C; Hanke, P; Hansen, J R; Hansen, J B; Hansen, J D; Hansen, P H; Hansson, P; Hara, K; Harenberg, T; Harkusha, S; Harper, D; Harrington, R D; Harris, O M; Hartert, J; Hartjes, F; Haruyama, T; Harvey, A; Hasegawa, S; Hasegawa, Y; Hassani, S; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayakawa, T; Hayashi, T; Hayden, D; Hays, C P; Hayward, H S; Haywood, S J; Head, S J; Hedberg, V; Heelan, L; Heim, S; Heinemann, B; Heisterkamp, S; Helary, L; Heller, C; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, R C W; Henke, M; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Hensel, C; Henß, T; Hernandez, C M; Hernández Jiménez, Y; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Higón-Rodriguez, E; Hill, J C; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirsch, F; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hofmann, J I; Hohlfeld, M; Holder, M; Holmgren, S O; Holy, T; Holzbauer, J L; Hong, T M; Hooft van Huysduynen, L; Horner, S; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hristova, I; Hrivnac, J; Hryn'ova, T; Hsu, P J; Hsu, S-C; Hu, D; Hubacek, Z; Hubaut, F; Huegging, F; Huettmann, A; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hurwitz, M; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibbotson, M; Ibragimov, I; Iconomidou-Fayard, L; Idarraga, J; Iengo, P; Igonkina, O; Ikegami, Y; Ikeno, M; Iliadis, D; Ilic, N; Ince, T; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ivashin, A V; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, J N; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansen, H; Janssen, J; Jantsch, A; Janus, M; Jared, R C; Jarlskog, G; Jeanty, L; Jen-La Plante, I; Jennens, D; Jenni, P; Jež, P; Jézéquel, S; Jha, M K; Ji, H; Ji, W; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, S; Jinnouchi, O; Joergensen, M D; Joffe, D; Johansen, M; Johansson, K E; Johansson, P; Johnert, S; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jorge, P M; Joshi, K D; Jovicevic, J; Jovin, T; Ju, X; Jung, C A; Jungst, R M; Juranek, V; Jussel, P; Juste Rozas, A; Kabana, S; Kaci, M; Kaczmarska, A; Kadlecik, P; Kado, M; Kagan, H; Kagan, M; Kajomovitz, E; Kalinin, S; Kalinovskaya, L V; Kama, S; Kanaya, N; Kaneda, M; Kaneti, S; Kanno, T; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kaplon, J; Kar, D; Karagounis, M; Karakostas, K; Karnevskiy, M; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasieczka, G; Kass, R D; Kastanas, A; Kataoka, Y; Katsoufis, E; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kayl, M S; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Keener, P T; Kehoe, R; Keil, M; Kekelidze, G D; Keller, J S; Kenyon, M; Kepka, O; Kerschen, N; Kerševan, B P; Kersten, S; Kessoku, K; Keung, J; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharchenko, D; Khodinov, A; Khomich, A; Khoo, T J; Khoriauli, G; Khoroshilov, A; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kitamura, T; Kittelmann, T; Kiuchi, K; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klemetti, M; Klier, A; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klinkby, E B; Klioutchnikova, T; Klok, P F; Klous, S; Kluge, E-E; Kluge, T; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Ko, B R; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koenig, S; Koetsveld, F; Koevesarki, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohn, F; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Kolesnikov, V; Koletsou, I; Koll, J; Komar, A A; Komori, Y; Kondo, T; Köneke, K; König, A C; Kono, T; Kononov, A I; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kortner, S; Kostyukhin, V V; Kotov, S; Kotov, V M; Kotwal, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kreiss, S; Krejci, F; Kretzschmar, J; Krieger, N; Krieger, P; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Kruker, T; Krumnack, N; Krumshteyn, Z V; Kruse, M K; Kubota, T; Kuday, S; Kuehn, S; Kugel, A; Kuhl, T; Kuhn, D; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kummer, C; Kuna, M; Kunkle, J; Kupco, A; Kurashige, H; Kurata, M; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwee, R; La Rosa, A; La Rotonda, L; Labarga, L; Labbe, J; Lablak, S; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Laisne, E; Lambourne, L; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Larner, A; Lassnig, M; Laurelli, P; Lavorini, V; Lavrijsen, W; Laycock, P; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeCompte, T; Ledroit-Guillon, F; Lee, H; Lee, J S H; Lee, S C; Lee, L; Lefebvre, M; Legendre, M; Legger, F; Leggett, C; Lehmacher, M; Lehmann Miotto, G; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Lendermann, V; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leonhardt, K; Leontsinis, S; Lepold, F; Leroy, C; Lessard, J-R; Lester, C G; Lester, C M; Levêque, J; Levin, D; Levinson, L J; Lewis, A; Lewis, G H; Leyko, A M; Leyton, M; Li, B; Li, B; Li, H; Li, H L; Li, S; Li, X; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lichtnecker, M; Lie, K; Liebig, W; Limbach, C; Limosani, A; Limper, M; Lin, S C; Linde, F; Linnemann, J T; Lipeles, E; Lipniacka, A; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, C; Liu, D; Liu, H; Liu, J B; Liu, L; Liu, M; Liu, Y; Livan, M; Livermore, S S A; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loddenkoetter, T; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Loh, C W; Lohse, T; Lohwasser, K; Lokajicek, M; Lombardo, V P; Long, R E; Lopes, L; Lopez Mateos, D; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Losty, M J; Lou, X; Lounis, A; Loureiro, K F; Love, J; Love, P A; Lowe, A J; Lu, F; Lubatti, H J; Luci, C; Lucotte, A; Ludwig, A; Ludwig, D; Ludwig, I; Ludwig, J; Luehring, F; Luijckx, G; Lukas, W; Luminari, L; Lund, E; Lundberg, B; Lundberg, J; Lundberg, O; Lund-Jensen, B; Lundquist, J; Lungwitz, M; Lynn, D; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Maček, B; Machado Miguens, J; Macina, D; Mackeprang, R; Madaras, R J; Maddocks, H J; Mader, W F; Maenner, R; Maeno, M; Maeno, T; Magnoni, L; Magradze, E; Mahboubi, K; Mahlstedt, J; Mahmoud, S; Mahout, G; Maiani, C; Maidantchik, C; Maio, A; Majewski, S; Makida, Y; Makovec, N; Mal, P; Malaescu, B; Malecki, Pa; Malecki, P; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mameghani, R; Mamuzic, J; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J A; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mapelli, A; Mapelli, L; March, L; Marchand, J F; Marchese, F; Marchiori, G; Marcisovsky, M; Marino, C P; Marques, C N; Marroquim, F; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, B; Martin, J P; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, M; Martinez Outschoorn, V; Martin-Haugh, S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massaro, G; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Matricon, P; Matsunaga, H; Matsushita, T; Mättig, P; Mättig, S; Mattravers, C; Maurer, J; Maxfield, S J; Maximov, D A; Mayne, A; Mazini, R; Mazur, M; Mazzaferro, L; Mazzanti, M; Mc Donald, J; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; Mclaughlan, T; McMahon, S J; McPherson, R A; Meade, A; Mechnich, J; Mechtel, M; Medinnis, M; Meehan, S; Meera-Lebbai, R; Meguro, T; Mehlhase, S; Mehta, A; Meier, K; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Meloni, F; Mendoza Navas, L; Meng, Z; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Merritt, H; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Meyer, J; Michal, S; Middleton, R P; Migas, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Miller, D W; Miller, R J; Mills, W J; Mills, C; Milov, A; Milstead, D A; Milstein, D; Minaenko, A A; Miñano Moya, M; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Mitrevski, J; Mitsou, V A; Mitsui, S; Miyagawa, P S; Mjörnmark, J U; Moa, T; Moeller, V; Mohapatra, S; Mohr, W; Moles-Valls, R; Molfetas, A; Mönig, K; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Moorhead, G F; Mora Herrera, C; Moraes, A; Morange, N; Morel, J; Morello, G; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Möser, N; Moser, H G; Mosidze, M; Moss, J; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Mueller, F; Mueller, J; Mueller, K; Mueller, T; Muenstermann, D; Müller, T A; Munwes, Y; Murray, W J; Mussche, I; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagel, M; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Nanava, G; Napier, A; Narayan, R; Nash, M; Nattermann, T; Naumann, T; Navarro, G; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negri, G; Negrini, M; Nektarijevic, S; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neusiedl, A; Neves, R M; Nevski, P; Newcomer, F M; Newman, P R; Nguyen Thi Hong, V; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Niedercorn, F; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolics, K; Nikolopoulos, K; Nilsen, H; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Norberg, S; Nordberg, M; Norton, P R; Novakova, J; Nozaki, M; Nozka, L; Nugent, I M; Nuncio-Quiroz, A-E; Nunes Hanninger, G; Nunnemann, T; Nurse, E; O'Brien, B J; O'Neil, D C; O'Shea, V; Oakes, L B; Oakham, F G; Oberlack, H; Ocariz, J; Ochi, A; Oda, S; Odaka, S; Odier, J; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohshima, T; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olchevski, A G; Olivares Pino, S A; Oliveira, M; Oliveira Damazio, D; Oliver Garcia, E; Olivito, D; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Orlov, I O; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Osuna, C; Otero Y Garzon, G; Ottersbach, J P; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Ouyang, Q; Ovcharova, A; Owen, M; Owen, S; Ozcan, V E; Ozturk, N; Pacheco Pages, A; Padilla Aranda, C; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Paleari, C P; Palestini, S; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panduro Vazquez, J G; Pani, P; Panikashvili, N; Panitkin, S; Pantea, D; Papadelis, A; Papadopoulou, Th D; Paramonov, A; Paredes Hernandez, D; Park, W; Parker, M A; Parodi, F; Parsons, J A; Parzefall, U; Pashapour, S; Pasqualucci, E; Passaggio, S; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Patricelli, S; Pauly, T; Pecsy, M; Pedraza Lopez, S; Pedraza Morales, M I; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penson, A; Penwell, J; Perantoni, M; Perepelitsa, D V; Perez, K; Perez Cavalcanti, T; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Perrodo, P; Peshekhonov, V D; Peters, K; Petersen, B A; Petersen, J; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Petschull, D; Petteni, M; Pezoa, R; Phan, A; Phillips, P W; Piacquadio, G; Picazio, A; Piccaro, E; Piccinini, M; Piec, S M; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinder, A; Pinfold, J L; Pinto, B; Pizio, C; Plamondon, M; Pleier, M-A; Plotnikova, E; Poblaguev, A; Poddar, S; Podlyski, F; Poggioli, L; Pohl, D; Pohl, M; Polesello, G; Policicchio, A; Polini, A; Poll, J; Polychronakos, V; Pomeroy, D; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Portell Bueso, X; Pospelov, G E; Pospisil, S; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Prabhu, R; Pralavorio, P; Pranko, A; Prasad, S; Pravahan, R; Prell, S; Pretzl, K; Price, D; Price, J; Price, L E; Prieur, D; Primavera, M; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Prudent, X; Przybycien, M; Przysiezniak, H; Psoroulas, S; Ptacek, E; Pueschel, E; Purdham, J; Purohit, M; Puzo, P; Pylypchenko, Y; Qian, J; Quadt, A; Quarrie, D R; Quayle, W B; Quinonez, F; Raas, M; Radeka, V; Radescu, V; Radloff, P; Ragusa, F; Rahal, G; Rahimi, A M; Rahm, D; Rajagopalan, S; Rammensee, M; Rammes, M; Randle-Conde, A S; Randrianarivony, K; Rauscher, F; Rave, T C; Raymond, M; Read, A L; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Reinsch, A; Reisinger, I; Rembser, C; Ren, Z L; Renaud, A; Rescigno, M; Resconi, S; Resende, B; Reznicek, P; Rezvani, R; Richter, R; Richter-Was, E; Ridel, M; Rijpstra, M; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Rios, R R; Riu, I; Rivoltella, G; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Rocha de Lima, J G; Roda, C; Roda Dos Santos, D; Roe, A; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romeo, G; Romero Adam, E; Rompotis, N; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, A; Rose, M; Rosenbaum, G A; Rosenberg, E I; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Ruckstuhl, N; Rud, V I; Rudolph, C; Rudolph, G; Rühr, F; Ruiz-Martinez, A; Rumyantsev, L; Rurikova, Z; Rusakovich, N A; Ruschke, A; Rutherfoord, J P; Ruzicka, P; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sadeh, I; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Salihagic, D; Salnikov, A; Salt, J; Salvachua Ferrando, B M; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Samset, B H; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, T; Sandoval, C; Sandstroem, R; Sankey, D P C; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Saraiva, J G; Sarangi, T; Sarkisyan-Grinbaum, E; Sarrazin, B; Sarri, F; Sartisohn, G; Sasaki, O; Sasaki, Y; Sasao, N; Satsounkevitch, I; Sauvage, G; Sauvan, E; Sauvan, J B; Savard, P; Savinov, V; Savu, D O; Sawyer, L; Saxon, D H; Saxon, J; Sbarra, C; Sbrizzi, A; Scannicchio, D A; Scarcella, M; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaelicke, A; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, S; Schneider, B; Schnoor, U; Schoeffel, L; Schoening, A; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schram, M; Schroeder, C; Schroer, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwartzman, A; Schwegler, Ph; Schwemling, Ph; Schwienhorst, R; Schwierz, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciacca, F G; Sciolla, G; Scott, W G; Searcy, J; Sedov, G; Sedykh, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekula, S J; Selbach, K E; Seliverstov, D M; Sellers, G; Seman, M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Seuster, R; Severini, H; Sfyrla, A; Shabalina, E; Shamim, M; Shamov, A G; Shan, L Y; Shank, J T; Shao, Q T; Shapiro, M; Shatalov, P B; Shaw, K; Sherman, D; Sherwood, P; Shimizu, S; Shimojima, M; Shin, T; Shiyakova, M; Shmeleva, A; Shochet, M J; Short, D; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sidoti, A; Siegert, F; Sijacki, Dj; Silbert, O; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simoniello, R; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinnari, L A; Skottowe, H P; Skovpen, K Yu; Skubic, P; Slater, M; Slavicek, T; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, B C; Smith, D; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snow, J; Snyder, S; Sobie, R; Sodomka, J; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solfaroli Camillocci, E; Solodkov, A A; Solovyanov, O V; Solovyev, V; Soni, N; Sood, A; Sopko, V; Sopko, B; Sosebee, M; Soualah, R; Soukharev, A M; Spagnolo, S; Spanò, F; Spighi, R; Spigo, G; Spiwoks, R; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Stahlman, J; Stamen, R; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Staude, A; Stavina, P; Steele, G; Steinbach, P; Steinberg, P; Stekl, I; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoerig, K; Stoicea, G; Stonjek, S; Strachota, P; Stradling, A R; Straessner, A; Strandberg, J; Strandberg, S; Strandlie, A; Strang, M; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Strong, J A; Stroynowski, R; Stugu, B; Stumer, I; Stupak, J; Sturm, P; Styles, N A; Su, D; Subramania, Hs; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, Y; Suzuki, Y; Svatos, M; Swedish, S; Sykora, I; Sykora, T; Ta, D; Tackmann, K; Taffard, A; Tafirout, R; Taiblum, N; Takahashi, Y; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tamsett, M C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanasijczuk, A J; Tani, K; Tannoury, N; Tapprogge, S; Tardif, D; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tassi, E; Tayalati, Y; Taylor, C; Taylor, F E; Taylor, G N; Taylor, W; Teinturier, M; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Terada, S; Terashi, K; Terron, J; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thoma, S; Thomas, J P; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thong, W M; Thun, R P; Tian, F; Tibbetts, M J; Tic, T; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tomoto, M; Tompkins, L; Toms, K; Tonoyan, A; Topfel, C; Topilin, N D; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Triplett, N; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; True, P; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiakiris, M; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsung, J-W; Tsuno, S; Tsybychev, D; Tua, A; Tudorache, A; Tudorache, V; Tuggle, J M; Turala, M; Turecek, D; Turk Cakir, I; Turlay, E; Turra, R; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Uchida, K; Ueda, I; Ueno, R; Ugland, M; Uhlenbrock, M; Uhrmacher, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Unno, Y; Urbaniec, D; Urquijo, P; Usai, G; Uslenghi, M; Vacavant, L; Vacek, V; Vachon, B; Vahsen, S; Valenta, J; Valentinetti, S; Valero, A; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Berg, R; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van der Poel, E; van der Ster, D; van Eldik, N; van Gemmeren, P; van Vulpen, I; Vanadia, M; Vandelli, W; Vaniachine, A; Vankov, P; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vassilakopoulos, V I; Vazeille, F; Vazquez Schroeder, T; Vegni, G; Veillet, J J; Veloso, F; Veness, R; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinek, E; Vinogradov, V B; Virchaux, M; Virzi, J; Vitells, O; Viti, M; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, A; Vokac, P; Volpi, G; Volpi, M; Volpini, G; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorwerk, V; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vuillermet, R; Vukotic, I; Wagner, W; Wagner, P; Wahrmund, S; Wakabayashi, J; Walch, S; Walder, J; Walker, R; Walkowiak, W; Wall, R; Waller, P; Walsh, B; Wang, C; Wang, H; Wang, H; Wang, J; Wang, J; Wang, R; Wang, S M; Wang, T; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watanabe, I; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, A T; Waugh, B M; Weber, M S; Webster, J S; Weidberg, A R; Weigell, P; Weingarten, J; Weiser, C; Wells, P S; Wenaus, T; Wendland, D; Weng, Z; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Werth, M; Wessels, M; Wetter, J; Weydert, C; Whalen, K; White, A; White, M J; White, S; Whitehead, S R; Whiteson, D; Whittington, D; Wicek, F; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wijeratne, P A; Wildauer, A; Wildt, M A; Wilhelm, I; Wilkens, H G; Will, J Z; Williams, E; Williams, H H; Willis, W; Willocq, S; Wilson, J A; Wilson, M G; Wilson, A; Wingerter-Seez, I; Winkelmann, S; Winklmeier, F; Wittgen, M; Wollstadt, S J; Wolter, M W; Wolters, H; Wong, W C; Wooden, G; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wraight, K; Wright, M; Wrona, B; Wu, S L; Wu, X; Wu, Y; Wulf, E; Wynne, B M; Xella, S; Xiao, M; Xie, S; Xu, C; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yamada, M; Yamaguchi, H; Yamamoto, A; Yamamoto, K; Yamamoto, S; Yamamura, T; Yamanaka, T; Yamazaki, T; Yamazaki, Y; Yan, Z; Yang, H; Yang, U K; Yang, Y; Yang, Z; Yanush, S; Yao, L; Yao, Y; Yasu, Y; Ybeles Smit, G V; Ye, J; Ye, S; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D; Yu, D R; Yu, J; Yu, J; Yuan, L; Yurkewicz, A; Zabinski, B; Zaidan, R; Zaitsev, A M; Zajacova, Z; Zanello, L; Zanzi, D; Zaytsev, A; Zeitnitz, C; Zeman, M; Zemla, A; Zendler, C; Zenin, O; Ženiš, T; Zerwas, D; Zevi Della Porta, G; Zhang, D; Zhang, H; Zhang, J; Zhang, X; Zhang, Z; Zhao, L; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, N; Zhou, Y; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhuravlov, V; Zibell, A; Zieminska, D; Zimin, N I; Zimmermann, R; Zimmermann, S; Zimmermann, S; Zinonos, Z; Ziolkowski, M; Zitoun, R; Živković, L; Zmouchko, V V; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zutshi, V; Zwalinski, L
The inclusive jet cross-section has been measured in proton-proton collisions at [Formula: see text] in a dataset corresponding to an integrated luminosity of [Formula: see text] collected with the ATLAS detector at the Large Hadron Collider in 2011. Jets are identified using the anti- k t algorithm with two radius parameters of 0.4 and 0.6. The inclusive jet double-differential cross-section is presented as a function of the jet transverse momentum p T and jet rapidity y , covering a range of 20≤ p T <430 GeV and | y |<4.4. The ratio of the cross-section to the inclusive jet cross-section measurement at [Formula: see text], published by the ATLAS Collaboration, is calculated as a function of both transverse momentum and the dimensionless quantity [Formula: see text], in bins of jet rapidity. The systematic uncertainties on the ratios are significantly reduced due to the cancellation of correlated uncertainties in the two measurements. Results are compared to the prediction from next-to-leading order perturbative QCD calculations corrected for non-perturbative effects, and next-to-leading order Monte Carlo simulation. Furthermore, the ATLAS jet cross-section measurements at [Formula: see text] and [Formula: see text] are analysed within a framework of next-to-leading order perturbative QCD calculations to determine parton distribution functions of the proton, taking into account the correlations between the measurements.
Experimental access to Transition Distribution Amplitudes with the P¯ANDA experiment at FAIR
NASA Astrophysics Data System (ADS)
Singh, B. P.; Erni, W.; Keshelashvili, I.; Krusche, B.; Steinacher, M.; Liu, B.; Liu, H.; Liu, Z.; Shen, X.; Wang, C.; Zhao, J.; Albrecht, M.; Fink, M.; Heinsius, F. H.; Held, T.; Holtmann, T.; Koch, H.; Kopf, B.; Kümmel, M.; Kuhl, G.; Kuhlmann, M.; Leyhe, M.; Mikirtychyants, M.; Musiol, P.; Mustafa, A.; Pelizäus, M.; Pychy, J.; Richter, M.; Schnier, C.; Schröder, T.; Sowa, C.; Steinke, M.; Triffterer, T.; Wiedner, U.; Beck, R.; Hammann, C.; Kaiser, D.; Ketzer, B.; Kube, M.; Mahlberg, P.; Rossbach, M.; Schmidt, C.; Schmitz, R.; Thoma, U.; Walther, D.; Wendel, C.; Wilson, A.; Bianconi, A.; Bragadireanu, M.; Caprini, M.; Pantea, D.; Pietreanu, D.; Vasile, M. E.; Patel, B.; Kaplan, D.; Brandys, P.; Czyzewski, T.; Czyzycki, W.; Domagala, M.; Hawryluk, M.; Filo, G.; Krawczyk, M.; Kwiatkowski, D.; Lisowski, E.; Lisowski, F.; Fiutowski, T.; Idzik, M.; Mindur, B.; Przyborowski, D.; Swientek, K.; Czech, B.; Kliczewski, S.; Korcyl, K.; Kozela, A.; Kulessa, P.; Lebiedowicz, P.; Malgorzata, K.; Pysz, K.; Schäfer, W.; Siudak, R.; Szczurek, A.; Biernat, J.; Jowzaee, S.; Kamys, B.; Kistryn, S.; Korcyl, G.; Krzemien, W.; Magiera, A.; Moskal, P.; Palka, M.; Psyzniak, A.; Rudy, Z.; Salabura, P.; Smyrski, J.; Strzempek, P.; Wrońska, A.; Augustin, I.; Lehmann, I.; Nicmorus, D.; Schepers, G.; Schmitt, L.; Al-Turany, M.; Cahit, U.; Capozza, L.; Dbeyssi, A.; Deppe, H.; Dzhygadlo, R.; Ehret, A.; Flemming, H.; Gerhardt, A.; Götzen, K.; Karabowicz, R.; Kliemt, R.; Kunkel, J.; Kurilla, U.; Lehmann, D.; Lühning, J.; Maas, F.; Morales Morales, C.; Mora Espí, M. C.; Nerling, F.; Orth, H.; Peters, K.; Rodríguez Piñeiro, D.; Saito, N.; Saito, T.; Sánchez Lorente, A.; Schmidt, C. J.; Schwarz, C.; Schwiening, J.; Traxler, M.; Valente, R.; Voss, B.; Wieczorek, P.; Wilms, A.; Zühlsdorf, M.; Abazov, V. M.; Alexeev, G.; Arefiev, A.; Astakhov, V. I.; Barabanov, M. Yu.; Batyunya, B. V.; Davydov, Yu. I.; Dodokhov, V. Kh.; Efremov, A. A.; Fedunov, A. G.; Festchenko, A. A.; Galoyan, A. S.; Grigoryan, S.; Karmokov, A.; Koshurnikov, E. K.; Lobanov, V. I.; Lobanov, Yu. Yu.; Makarov, A. F.; Malinina, L. V.; Malyshev, V. L.; Mustafaev, G. A.; Olshevskiy, A.; Pasyuk, M. A.; Perevalova, E. A.; Piskun, A. A.; Pocheptsov, T. A.; Pontecorvo, G.; Rodionov, V. K.; Rogov, Yu. N.; Salmin, R. A.; Samartsev, A. G.; Sapozhnikov, M. G.; Shabratova, G. S.; Skachkov, N. B.; Skachkova, A. N.; Strokovsky, E. A.; Suleimanov, M. K.; Teshev, R. Sh.; Tokmenin, V. V.; Uzhinsky, V. V.; Vodopyanov, A. S.; Zaporozhets, S. A.; Zhuravlev, N. I.; Zorin, A. G.; Branford, D.; Glazier, D.; Watts, D.; Woods, P.; Britting, A.; Eyrich, W.; Lehmann, A.; Uhlig, F.; Dobbs, S.; Seth, K.; Tomaradze, A.; Xiao, T.; Bettoni, D.; Carassiti, V.; Cotta Ramusino, A.; Dalpiaz, P.; Drago, A.; Fioravanti, E.; Garzia, I.; Savriè, M.; Stancari, G.; Akishina, V.; Kisel, I.; Kulakov, I.; Zyzak, M.; Arora, R.; Bel, T.; Gromliuk, A.; Kalicy, G.; Krebs, M.; Patsyuk, M.; Zuehlsdorf, M.; Bianchi, N.; Gianotti, P.; Guaraldo, C.; Lucherini, V.; Pace, E.; Bersani, A.; Bracco, G.; Macri, M.; Parodi, R. F.; Bianco, S.; Bremer, D.; Brinkmann, K. T.; Diehl, S.; Dormenev, V.; Drexler, P.; Düren, M.; Eissner, T.; Etzelmüller, E.; Föhl, K.; Galuska, M.; Gessler, T.; Gutz, E.; Hayrapetyan, A.; Hu, J.; Kröck, B.; Kühn, W.; Kuske, T.; Lange, S.; Liang, Y.; Merle, O.; Metag, V.; Mülhheim, D.; Münchow, D.; Nanova, M.; Novotny, R.; Pitka, A.; Quagli, T.; Rieke, J.; Rosenbaum, C.; Schnell, R.; Spruck, B.; Stenzel, H.; Thöring, U.; Ullrich, M.; Wasem, T.; Werner, M.; Zaunick, H. G.; Ireland, D.; Rosner, G.; Seitz, B.; Deepak, P. N.; Kulkarni, A. V.; Apostolou, A.; Babai, M.; Kavatsyuk, M.; Lemmens, P.; Lindemulder, M.; Löhner, H.; Messchendorp, J.; Schakel, P.; Smit, H.; van der Weele, J. C.; Tiemens, M.; Veenstra, R.; Vejdani, S.; Kalita, K.; Mohanta, D. P.; Kumar, A.; Roy, A.; Sahoo, R.; Sohlbach, H.; Büscher, M.; Cao, L.; Cebulla, A.; Deermann, D.; Dosdall, R.; Esch, S.; Georgadze, I.; Gillitzer, A.; Goerres, A.; Goldenbaum, F.; Grunwald, D.; Herten, A.; Hu, Q.; Kemmerling, G.; Kleines, H.; Kozlov, V.; Lehrach, A.; Leiber, S.; Maier, R.; Nellen, R.; Ohm, H.; Orfanitski, S.; Prasuhn, D.; Prencipe, E.; Ritman, J.; Schadmand, S.; Schumann, J.; Sefzick, T.; Serdyuk, V.; Sterzenbach, G.; Stockmanns, T.; Wintz, P.; Wüstner, P.; Xu, H.; Li, S.; Li, Z.; Sun, Z.; Xu, H.; Rigato, V.; Fissum, S.; Hansen, K.; Isaksson, L.; Lundin, M.; Schröder, B.; Achenbach, P.; Bleser, S.; Cardinali, M.; Corell, O.; Deiseroth, M.; Denig, A.; Distler, M.; Feldbauer, F.; Fritsch, M.; Jasinski, P.; Hoek, M.; Kangh, D.; Karavdina, A.; Lauth, W.; Leithoff, H.; Merkel, H.; Michel, M.; Motzko, C.; Müller, U.; Noll, O.; Plueger, S.; Pochodzalla, J.; Sanchez, S.; Schlimme, S.; Sfienti, C.; Steinen, M.; Thiel, M.; Weber, T.; Zambrana, M.; Dormenev, V. I.; Fedorov, A. A.; Korzihik, M. V.; Missevitch, O. V.; Balanutsa, P.; Balanutsa, V.; Chernetsky, V.; Demekhin, A.; Dolgolenko, A.; Fedorets, P.; Gerasimov, A.; Goryachev, V.; Varentsov, V.; Boukharov, A.; Malyshev, O.; Marishev, I.; Semenov, A.; Konorov, I.; Paul, S.; Grieser, S.; Hergemöller, A. K.; Khoukaz, A.; Köhler, E.; Täschner, A.; Wessels, J.; Dash, S.; Jadhav, M.; Kumar, S.; Sarin, P.; Varma, R.; Chandratre, V. B.; Datar, V.; Dutta, D.; Jha, V.; Kumawat, H.; Mohanty, A. K.; Roy, B.; Yan, Y.; Chinorat, K.; Khanchai, K.; Ayut, L.; Pornrad, S.; Barnyakov, A. Y.; Blinov, A. E.; Blinov, V. E.; Bobrovnikov, V. S.; Kononov, S. A.; Kravchenko, E. A.; Kuyanov, I. A.; Onuchin, A. P.; Sokolov, A. A.; Tikhonov, Y. A.; Atomssa, E.; Hennino, T.; Imre, M.; Kunne, R.; Le Galliard, C.; Ma, B.; Marchand, D.; Ong, S.; Ramstein, B.; Rosier, P.; Tomasi-Gustafsson, E.; Van de Wiele, J.; Boca, G.; Costanza, S.; Genova, P.; Lavezzi, L.; Montagna, P.; Rotondi, A.; Abramov, V.; Belikov, N.; Bukreeva, S.; Davidenko, A.; Derevschikov, A.; Goncharenko, Y.; Grishin, V.; Kachanov, V.; Kormilitsin, V.; Melnik, Y.; Levin, A.; Minaev, N.; Mochalov, V.; Morozov, D.; Nogach, L.; Poslavskiy, S.; Ryazantsev, A.; Ryzhikov, S.; Semenov, P.; Shein, I.; Uzunian, A.; Vasiliev, A.; Yakutin, A.; Yabsley, B.; Bäck, T.; Cederwall, B.; Makónyi, K.; Tegnér, P. E.; von Würtemberg, K. M.; Belostotski, S.; Gavrilov, G.; Izotov, A.; Kashchuk, A.; Levitskaya, O.; Manaenkov, S.; Miklukho, O.; Naryshkin, Y.; Suvorov, K.; Veretennikov, D.; Zhadanov, A.; Rai, A. K.; Godre, S. S.; Duchat, R.; Amoroso, A.; Bussa, M. P.; Busso, L.; De Mori, F.; Destefanis, M.; Fava, L.; Ferrero, L.; Greco, M.; Maggiora, M.; Maniscalco, G.; Marcello, S.; Sosio, S.; Spataro, S.; Zotti, L.; Calvo, D.; Coli, S.; De Remigis, P.; Filippi, A.; Giraudo, G.; Lusso, S.; Mazza, G.; Mingnore, M.; Rivetti, A.; Wheadon, R.; Balestra, F.; Iazzi, F.; Introzzi, R.; Lavagno, A.; Younis, H.; Birsa, R.; Bradamante, F.; Bressan, A.; Martin, A.; Clement, H.; Gålnander, B.; Caldeira Balkeståhl, L.; Calén, H.; Fransson, K.; Johansson, T.; Kupsc, A.; Marciniewski, P.; Pettersson, J.; Schönning, K.; Wolke, M.; Zlomanczuk, J.; Díaz, J.; Ortiz, A.; Vinodkumar, P. C.; Parmar, A.; Chlopik, A.; Melnychuk, D.; Slowinski, B.; Trzcinski, A.; Wojciechowski, M.; Wronka, S.; Zwieglinski, B.; Bühler, P.; Marton, J.; Suzuki, K.; Widmann, E.; Zmeskal, J.; Fröhlich, B.; Khaneft, D.; Lin, D.; Zimmermann, I.; Semenov-Tian-Shansky, K.
2015-08-01
Baryon-to-meson Transition Distribution Amplitudes (TDAs) encoding valuable new information on hadron structure appear as building blocks in the collinear factorized description for several types of hard exclusive reactions. In this paper, we address the possibility of accessing nucleon-to-pion ( πN) TDAs from reaction with the future P¯ANDA detector at the FAIR facility. At high center-of-mass energy and high invariant mass squared of the lepton pair q 2, the amplitude of the signal channel admits a QCD factorized description in terms of πN TDAs and nucleon Distribution Amplitudes (DAs) in the forward and backward kinematic regimes. Assuming the validity of this factorized description, we perform feasibility studies for measuring with the P¯ANDA detector. Detailed simulations on signal reconstruction efficiency as well as on rejection of the most severe background channel, i.e. were performed for the center-of-mass energy squared s = 5 GeV2 and s = 10 GeV2, in the kinematic regions 3.0 < q 2 < 4.3 GeV2 and 5 < q 2 GeV2, respectively, with a neutral pion scattered in the forward or backward cone in the proton-antiproton center-of-mass frame. Results of the simulation show that the particle identification capabilities of the P¯ANDA detector will allow to achieve a background rejection factor of 5 · 107 (1 · 107) at low (high) q 2 for s = 5 GeV2, and of 1 · 108 (6 · 106) at low (high) q 2 for s = 10 GeV2, while keeping the signal reconstruction efficiency at around 40%. At both energies, a clean lepton signal can be reconstructed with the expected statistics corresponding to 2 fb-1 of integrated luminosity. The cross sections obtained from the simulations are used to show that a test of QCD collinear factorization can be done at the lowest order by measuring scaling laws and angular distributions. The future measurement of the signal channel cross section with P¯ANDA will provide a new test of the perturbative QCD description of a novel class of hard exclusive reactions and will open the possibility of experimentally accessing π TDAs.
FAPT: A Mathematica package for calculations in QCD Fractional Analytic Perturbation Theory
NASA Astrophysics Data System (ADS)
Bakulev, Alexander P.; Khandramai, Vyacheslav L.
2013-01-01
We provide here all the procedures in Mathematica which are needed for the computation of the analytic images of the strong coupling constant powers in Minkowski (A(s;nf) and Aνglob(s)) and Euclidean (A(Q2;nf) and Aνglob(Q2)) domains at arbitrary energy scales (s and Q2, correspondingly) for both schemes — with fixed number of active flavours nf=3,4,5,6 and the global one with taking into account all heavy-quark thresholds. These singularity-free couplings are inevitable elements of Analytic Perturbation Theory (APT) in QCD, proposed in [10,69,70], and its generalization — Fractional APT, suggested in [42,46,43], needed to apply the APT imperative for renormalization-group improved hadronic observables. Program summaryProgram title: FAPT Catalogue identifier: AENJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1985 No. of bytes in distributed program, including test data, etc.: 1895776 Distribution format: tar.gz Programming language: Mathematica. Computer: Any work-station or PC where Mathematica is running. Operating system: Windows XP, Mathematica (versions 5 and 7). Classification: 11.5. Nature of problem: The values of analytic images A(Q2) and A(s) of the QCD running coupling powers αsν(Q2) in Euclidean and Minkowski regions, correspondingly, are determined through the spectral representation in the QCD Analytic Perturbation Theory (APT). In the program FAPT we collect all relevant formulas and various procedures which allow for a convenient evaluation of A(Q2) and A(s) using numerical integrations of the relevant spectral densities. Solution method: FAPT uses Mathematica functions to calculate different spectral densities and then performs numerical integration of these spectral integrals to obtain analytic images of different objects. Restrictions: It could be that for an unphysical choice of the input parameters the results are without any meaning. Running time: For all operations the run time does not exceed a few seconds. Usually numerical integration is not fast, so that we advise the use of arrays of precalculated data and then to apply the routine Interpolate(as shown in supplied example of the program usage, namely in the notebook FAPT_Interp.nb).
Examining the Crossover from the Hadronic to Partonic Phase in QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu Mingmei; Yu Meiling; Liu Lianshou
2008-03-07
A mechanism, consistent with color confinement, for the transition between perturbative and physical vacua during the gradual crossover from the hadronic to partonic phase is proposed. The essence of this mechanism is the appearance and growing up of a kind of grape-shape perturbative vacuum inside the physical one. A percolation model based on simple dynamics for parton delocalization is constructed to exhibit this mechanism. The crossover from hadronic matter to sQGP (strongly coupled quark-gluon plasma) as well as the transition from sQGP to weakly coupled quark-gluon plasma with increasing temperature is successfully described by using this model.
Two-loop hard-thermal-loop thermodynamics with quarks
NASA Astrophysics Data System (ADS)
Andersen, Jens O.; Petitgirard, Emmanuel; Strickland, Michael
2004-08-01
We calculate the quark contribution to the free energy of a hot quark-gluon plasma to two-loop order using hard-thermal-loop (HTL) perturbation theory. All ultraviolet divergences can be absorbed into renormalizations of the vacuum energy and the HTL quark and gluon mass parameters. The quark and gluon HTL mass parameters are determined self-consistently by a variational prescription. Combining the quark contribution with the two-loop HTL perturbation theory free energy for pure glue we obtain the total two-loop QCD free energy. Comparisons are made with lattice estimates of the free energy for Nf=2 and with exact numerical results obtained in the large-Nf limit.
On high-order perturbative calculations at finite density
Ghisoiu, Ioan; Gorda, Tyler; Kurkela, Aleksi; ...
2016-12-01
We discuss the prospects of performing high-order perturbative calculations in systems characterized by a vanishing temperature but finite density. In particular, we show that the determination of generic Feynman integrals containing fermionic chemical potentials can be reduced to the evaluation of three-dimensional phase space integrals over vacuum on-shell amplitudes — aresult reminiscent of a previously proposed “naive real-time formalism” for vacuum diagrams. Applications of these rules are discussed in the context of the thermodynamics of cold and dense QCD, where it is argued that they facilitate an extension of the Equation of State of cold quark matter to higher perturbativemore » orders.« less
Baryon chiral perturbation theory combined with the 1 / N c expansion in SU(3): Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernando, I. P.; Goity, J. L.
Baryon Chiral Perturbation Theory combined with themore » $$1/N_c$$ expansion is implemented for three flavors. Here, Baryon masses, vector charges and axial vector couplings are studied to one-loop and organized according to the $$\\xi$$-expansion, in which the $$1/N_c$$ and the low energy power countings are linked according to $$1/N_c={\\cal{O}}(\\xi)={\\cal{O}}(p)$$. The renormalization to $${\\cal{O}}(\\xi^3)$$ necessary for the mentioned observables is provided, along with applications to the baryon masses and axial couplings as obtained in lattice QCD calculations.« less
Baryon chiral perturbation theory combined with the 1 / N c expansion in SU(3): Framework
Fernando, I. P.; Goity, J. L.
2018-03-14
Baryon Chiral Perturbation Theory combined with themore » $$1/N_c$$ expansion is implemented for three flavors. Here, Baryon masses, vector charges and axial vector couplings are studied to one-loop and organized according to the $$\\xi$$-expansion, in which the $$1/N_c$$ and the low energy power countings are linked according to $$1/N_c={\\cal{O}}(\\xi)={\\cal{O}}(p)$$. The renormalization to $${\\cal{O}}(\\xi^3)$$ necessary for the mentioned observables is provided, along with applications to the baryon masses and axial couplings as obtained in lattice QCD calculations.« less
Non-perturbative determination of improvement b-coefficients in Nf = 3
NASA Astrophysics Data System (ADS)
Giulia Maria de Divitiis1, 2**, Maurizio Firrotta1, 2, Jochen Heitger3, Carl Christian Köster3; Anastassios Vladikas2
2018-03-01
We present our preliminary results of the non-perturbative determination of the valence mass dependent coefficients bA - bP and bm as well as the ratio ZPZm=ZA entering the flavour non-singlet PCAC relation in lattice QCD with Nf = 3 dynamical flavours. We apply the method proposed in the past for quenched approximation and Nf = 2 cases, employing a set of finite-volume ALPHA configurations with Schrödinger functional boundary conditions, generated with O(a) improved Wilson fermions and the tree-level Symanzik-improved gauge action for a range of couplings relevant for simulations at lattice spacings of about 0.09 fm and below.
Absence of even-integer ζ-function values in Euclidean physical quantities in QCD
NASA Astrophysics Data System (ADS)
Jamin, Matthias; Miravitllas, Ramon
2018-04-01
At order αs4 in perturbative quantum chromodynamics, even-integer ζ-function values are present in Euclidean physical correlation functions like the scalar quark correlation function or the scalar gluonium correlator. We demonstrate that these contributions cancel when the perturbative expansion is expressed in terms of the so-called C-scheme coupling αˆs which has recently been introduced in Ref. [1]. It is furthermore conjectured that a ζ4 term should arise in the Adler function at order αs5 in the MS ‾-scheme, and that this term is expected to disappear in the C-scheme as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elekina, E. N.; Martynenko, A. P.
2010-03-01
On the basis of perturbative QCD and the relativistic quark model we calculate relativistic and bound state corrections in the pair production of S-wave and P-wave charmonium states. Relativistic factors in the production amplitude connected with the relative motion of heavy quarks and the transformation law of the bound state wave function to the reference frame of the moving S- and P-wave mesons are taken into account. For the gluon and quark propagators entering the production vertex function we use a truncated expansion in the ratio of the relative quark momenta to the center-of-mass energy {radical}(s) up to the secondmore » order. The relativistic treatment of the wave functions makes all such second order terms convergent, thus allowing the reliable calculation of their contributions to the production cross section. Relativistic corrections to the quark bound state wave functions in the rest frame are considered by means of the QCD generalization of the standard Breit potential. It turns out that the examined effects change essentially the nonrelativistic results of the cross section for the reaction e{sup +}+e{sup -{yields}}J/{Psi}({eta}{sub c})+{chi}{sub cJ}(h{sub c}) at the center-of-mass energy {radical}(s)=10.6 GeV.« less
Global analysis of charmless B decays into two vector mesons in soft-collinear effective theory
NASA Astrophysics Data System (ADS)
Wang, Chao; Zhou, Si-Hong; Li, Ying; Lü, Cai-Dian
2017-10-01
Under the framework of soft-collinear effective theory, we analyze the charmless B →V V decays in a global way at leading power in 1 /mb and leading order in αs with V denoting a light vector meson. In the flavor SU(3) symmetry, decay amplitudes for the 28 decay modes are expressed in terms of eight nonperturbative parameters. We fit these eight nonperturbative parameters with 35 experimental results. Annihilation contributions are neglected due to power suppression in the mb→∞ limit, so we include in the fit the nonperturbative charm penguins, which will play an important role in understanding the direct C P asymmetries. Charming penguins are also responsible for the large transverse polarizations of penguin-dominated and color-suppressed decays. With the best-fitted parameters, we calculate all possible physical observables of 28 decay modes, including branching fractions, direct C P asymmetries, and the complete set of polarization observables. Most of our results are compatible with the present experimental data when available, while others can be examined on the ongoing LHCb experiment and the forthcoming Belle II experiment. Moreover, the agreements and differences with results in QCD factorization and perturbative QCD approach are also discussed. A few observables are suggested to discriminate between these different approaches.
NASA Astrophysics Data System (ADS)
Brodsky, Stanley J.; Deur, Alexandre; de Téramond, Guy F.; Dosch, Hans Günter
2015-11-01
A primary question in hadron physics is how the mass scale for hadrons consisting of light quarks, such as the proton, emerges from the QCD Lagrangian even in the limit of zero quark mass. If one requires the effective action which underlies the QCD Lagrangian to remain conformally invariant and extends the formalism of de Alfaro, Fubini and Furlan to light-front Hamiltonian theory, then a unique, color-confining potential with a mass parameter κ emerges. The actual value of the parameter κ is not set by the model - only ratios of hadron masses and other hadronic mass scales are predicted. The result is a nonperturbative, relativistic light-front quantum mechanical wave equation, the Light-Front Schrödinger Equation which incorporates color confinement and other essential spectroscopic and dynamical features of hadron physics, including a massless pion for zero quark mass and linear Regge trajectories with the identical slope in the radial quantum number n and orbital angular momentum L. The same light-front equations for mesons with spin J also can be derived from the holographic mapping to QCD (3+1) at fixed light-front time from the soft-wall model modification of AdS5 space with a specific dilaton profile. Light-front holography thus provides a precise relation between the bound-state amplitudes in the fifth dimension of AdS space and the boost-invariant light-front wavefunctions describing the internal structure of hadrons in physical space-time. One can also extend the analysis to baryons using superconformal algebra - 2 × 2 supersymmetric representations of the conformal group. The resulting fermionic LF bound-state equations predict striking similarities between the meson and baryon spectra. In fact, the holographic QCD light-front Hamiltonians for the states on the meson and baryon trajectories are identical if one shifts the internal angular momenta of the meson (LM) and baryon (LB) by one unit: LM = LB + 1. We also show how the mass scale κ underlying confinement and the masses of light-quark hadrons determines the scale ΛMS¯ controlling the evolution of the perturbative QCD coupling. The relation between scales is obtained by matching the nonperturbative dynamics, as described by an effective conformal theory mapped to the light-front and its embedding in AdS space, to the perturbative QCD regime. The data for the effective coupling defined from the Bjorken sum rule αg1(Q2) are remarkably consistent with the Gaussian form predicted by LF holographic QCD. The result is an effective coupling defined at all momenta. The predicted value ΛMS¯(NF=3)=0.440mρ=0.341±0.024GeV is in agreement with the world average 0.339±0.010GeV. We thus can connect ΛMS¯ to hadron masses. The analysis applies to any renormalization scheme.
Lattice QCD spectroscopy for hadronic CP violation
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Vries, Jordy; Mereghetti, Emanuele; Seng, Chien -Yeah
Here, the interpretation of nuclear electric dipole moment (EDM) experiments is clouded by large theoretical uncertainties associated with nonperturbative matrix elements. In various beyond-the-Standard Model scenarios nuclear and diamagnetic atomic EDMs are expected to be dominated by CP-violating pion–nucleon interactions that arise from quark chromo-electric dipole moments. The corresponding CP-violating pion–nucleon coupling strengths are, however, poorly known. In this work we propose a strategy to calculate these couplings by using spectroscopic lattice QCD techniques. Instead of directly calculating the pion–nucleon coupling constants, a challenging task, we use chiral symmetry relations that link the pion–nucleon couplings to nucleon sigma terms andmore » mass splittings that are significantly easier to calculate. In this work, we show that these relations are reliable up to next-to-next-to-leading order in the chiral expansion in both SU(2) and SU(3) chiral perturbation theory. We conclude with a brief discussion about practical details regarding the required lattice QCD calculations and the phenomenological impact of an improved understanding of CP-violating matrix elements.« less
Lattice QCD spectroscopy for hadronic CP violation
de Vries, Jordy; Mereghetti, Emanuele; Seng, Chien -Yeah; ...
2017-01-16
Here, the interpretation of nuclear electric dipole moment (EDM) experiments is clouded by large theoretical uncertainties associated with nonperturbative matrix elements. In various beyond-the-Standard Model scenarios nuclear and diamagnetic atomic EDMs are expected to be dominated by CP-violating pion–nucleon interactions that arise from quark chromo-electric dipole moments. The corresponding CP-violating pion–nucleon coupling strengths are, however, poorly known. In this work we propose a strategy to calculate these couplings by using spectroscopic lattice QCD techniques. Instead of directly calculating the pion–nucleon coupling constants, a challenging task, we use chiral symmetry relations that link the pion–nucleon couplings to nucleon sigma terms andmore » mass splittings that are significantly easier to calculate. In this work, we show that these relations are reliable up to next-to-next-to-leading order in the chiral expansion in both SU(2) and SU(3) chiral perturbation theory. We conclude with a brief discussion about practical details regarding the required lattice QCD calculations and the phenomenological impact of an improved understanding of CP-violating matrix elements.« less
NASA Astrophysics Data System (ADS)
Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G. J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; da Silva, T.; Da Silva, W.; Della Ricca, G.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Maria, N.; De Min, A.; de Paula, L.; Di Ciaccio, L.; Di Simone, A.; Doroba, K.; Drees, J.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kerzel, U.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nemecek, S.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; Van Dam, P.; Van Eldik, J.; van Remortel, N.; Van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimin, N. I.; Zintchenko, A.; Zupan, M.
2011-02-01
The nature of b-quark jet hadronisation has been investigated using data taken at the Z peak by the DELPHI detector at LEP. Two complementary methods are used to reconstruct the energy of weakly decaying b-hadrons, EB^{weak}. The average value of x^{weak}B = EB^{weak}/E_{beam} is measured to be 0.699±0.011. The resulting x^{weak}B distribution is then analysed in the framework of two choices for the perturbative contribution (parton shower and Next to Leading Log QCD calculation) in order to extract measurements of the non-perturbative contribution to be used in studies of b-hadron production in other experimental environments than LEP. In the parton shower framework, data favour the Lund model ansatz and corresponding values of its parameters have been determined within PYTHIA 6.156 from DELPHI data: a= 1.84^{+0.23}_{-0.21}quadandquad b=0.642^{+0.073}_{-0.063} GeV^{-2}, with a correlation factor ρ=92.2%. Combining the data on the b-quark fragmentation distributions with those obtained at the Z peak by ALEPH, OPAL and SLD, the average value of x^{weak}B is found to be 0.7092±0.0025 and the non-perturbative fragmentation component is extracted. Using the combined distribution, a better determination of the Lund parameters is also obtained: a= 1.48^{+0.11}_{-0.10}quadandquad b=0.509^{+0.024}_{-0.023} GeV^{-2}, with a correlation factor ρ=92.6%.
Zenaiev, O.; Geiser, A.; Lipka, K.; ...
2015-08-01
The impact of recent measurements of heavy-flavour production in deep inelastic ep scattering and in pp collisions on parton distribution functions is studied in a QCD analysis in the fixed-flavour number scheme at next-to-leading order. Differential cross sections of charm- and beauty-hadron production measured by LHCb are used together with inclusive and heavy-flavour production cross sections in deep inelastic scattering at HERA. The heavy-flavour data of the LHCb experiment impose additional constraints on the gluon and the sea-quark distributions at low partonic fractions x of the proton momentum, down to x~5×10 -6. This kinematic range is currently not covered bymore » other experimental data in perturbative QCD fits.« less
Charm and the rise of the pp-bar total cross section
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, S.T.; Dash, J.W.
We give a detailed description of the pp-bar forward amplitude through CERN SPS collider energies, using the flavored Pomeron model as an effective parametrization of nonperturbative QCD. We show that the rise in the total cross section between CERN ISR and SPS collider energies is consistent with the onset of charmed-particle production up to the level of a few millibarns, along with other processes, and in agreement with available data. In contrast with our estimates of charm production, perturbative QCD charm-production calculations are well below the data. We give estimates of the p-bar and K/sup +- / multiplicities at SPSmore » collider energies. We also present a simplified version of the flavoring model in order to facilitate comparisons between it and other parametrizations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaltonen, Timo Antero; et al.
A measurement of the inclusive production cross section of isolated prompt photons in proton-antiproton collisions at center-of-mass energymore » $$\\sqrt{s}$$=1.96TeV is presented. The results are obtained using the full Run II data sample collected with the Collider Detector at the Fermilab Tevatron, which corresponds to an integrated luminosity of 9.5fb$$^{-1}$$. The cross section is measured as a function of photon transverse energy, $$E_T^{\\gamma}$$, in the range 30$$ < E_T^{\\gamma} <$$500GeV and in the pseudorapidity region $$|\\eta^{\\gamma}|<$$1.0. The results are compared with predictions from parton-shower Monte Carlo models at leading order in quantum chromodynamics (QCD) and from next-to-leading order perturbative QCD calculations. The latter show good agreement with the measured cross section.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molina, Raquel; Hu, Bitao; Doering, Michael
Several lattice QCD simulations of meson-meson scattering in p-wave and Isospin = 1 in Nf = 2 + 1 flavours have been carried out recently. Unitarized Chiral Perturbation Theory is used to perform extrapolations to the physical point. In contrast to previous findings on the analyses of Nf = 2 lattice data, where most of the data seems to be in agreement, some discrepancies are detected in the Nf = 2 + 1 lattice data analyses, which could be due to different masses of the strange quark, meson decay constants, initial constraints in the simulation, or other lattice artifacts. Inmore » addition, the low-energy constants are compared to the ones from a recent analysis of Nf = 2 lattice data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zenaiev, O.; Geiser, A.; Lipka, K.
The impact of recent measurements of heavy-flavour production in deep inelastic ep scattering and in pp collisions on parton distribution functions is studied in a QCD analysis in the fixed-flavour number scheme at next-to-leading order. Differential cross sections of charm- and beauty-hadron production measured by LHCb are used together with inclusive and heavy-flavour production cross sections in deep inelastic scattering at HERA. The heavy-flavour data of the LHCb experiment impose additional constraints on the gluon and the sea-quark distributions at low partonic fractions x of the proton momentum, down to x~5×10 -6. This kinematic range is currently not covered bymore » other experimental data in perturbative QCD fits.« less
JEWEL 2.0.0: directions for use
NASA Astrophysics Data System (ADS)
Zapp, Korinna
2014-02-01
In this publication the first official release of the Jewel 2.0.0 code [The first version Jewel 1 (Zapp et al. in Eur Phys J C 60:617, 2009) could only treat elastic scattering explicitly and the code was never published, The code can be downloaded from the official Jewel homepage http://jewel.hepforge.org] is presented. Jewel is a Monte Carlo event generator simulating QCD jet evolution in heavy-ion collisions. It treats the interplay of QCD radiation and re-scattering in a medium with fully microscopic dynamics in a consistent perturbative framework with minimal assumptions. After a qualitative introduction into the physics of Jewel detailed information about the practical aspects of using the code is given. The code is available from the official Jewel homepage http://jewel.hepforge.org.
Pole structure of the Λ ( 1405 ) in a recent QCD simulation
Molina, R.; Doring, M.
2016-09-27
The Λ(1405) baryon is difficult to detect in experiment, absent in many quark model calculations, and supposedly manifested through a two-pole structure. Its uncommon properties made it subject to numerous experimental and theoretical studies in recent years. Lattice-QCD eigenvalues for different quark masses were recently reported by the Adelaide group. We compare these eigenvalues to predictions of a model based on Unitary Chiral Perturbation Theory. The UχPT calculation predicts the quark mass dependence remarkably well. It also explains the overlap pattern with different meson-baryon components, mainly πΣ and K¯N, at different quark masses. As a result, more accurate lattice QCDmore » data are required to draw definite conclusions on the nature of the Λ(1405).« less
Inclusive rare B decays using effective field theories
NASA Astrophysics Data System (ADS)
Bauer, Christian
In this thesis we will discuss several properties of rare decays of B mesons. First we discuss properties of the inclusive radiative decay B¯ --> Xsγ, where Xs stands for any hadronic state containing an s quark. We extend previous studies of this decay, which included perturbative corrections to order αs and nonperturbative contributions up to order (ΛQCD/ mb)2 and calculate the O (ΛQCD/mb)3 contributions to this decay. The values of the nonperturbative parameters entering at this order are unknown, leading to uncertainties in the standard model prediction of this decay. We estimate the size of these nonperturbative uncertainties by varying these parameters in the range suggested by dimensional analysis. We also estimate uncertainties arising from a cut on the photon energy which is required experimentally. Another decay mode investigated is B¯ --> Xsl+l-. We study the O (ΛQCD/mb)3 contributions to the leptonic invariant mass spectrum, the forward-backward asymmetry and hadronic invariant mass moments and estimate the resulting uncertainties. We calculate how the size of these uncertainties depend on the value of an experimental cut that has to be applied to eliminate the large background from other B decays. A model independent way to determinate the CKM matrix element | Vub| from the dilepton invariant mass spectrum of the inclusive decay B-->Xul+ n is presented next. We show that cuts required to eliminate the charm background still allow for a theoretically clean way to determine the CKM matrix element |Vub|. We also discuss the utility of the B¯ --> Xsl +l- decay rate above the y (2S) resonance to reduce the resulting uncertainties. Finally, we introduce a novel effective theory valid for highly energetic particles. In decays where the phase space is sufficiently restricted such that final state particles have very high energies compared to their mass, the perturbative as well as nonperturbative series diverge. The effective theory presented allows to sum perturbative Sudakov logarithms in a framework that also incorporates the nonperturbative physics in such limits of phase space.
Measurements of the vector boson production with the ATLAS detector
NASA Astrophysics Data System (ADS)
Lapertosa, A.
2018-01-01
Measurements of the Drell-Yan production of W and Z bosons at the LHC provide a benchmark of our understanding of perturbative QCD and probe the proton structure in a unique way. The ATLAS collaboration has performed new high precision measurements at a center-of-mass energy of 7 TeV. The measurements are performed for W+, W- and Z bosons integrated and as a function of the boson or lepton rapidity and the Z mass. Unprecedented precision is reached and strong constraints on Parton Distribution Functions, in particular the strange density are found. Z boson cross sections are also measured at center-of-mass energies of 8 TeV and 13 TeV, and cross-section ratios to the top-quark pair production have been derived. This ratio measurement leads to a cancellation of systematic effects and allows for a high precision comparison to the theory predictions. The production of jets in association with vector bosons is a further important process to study perturbative QCD in a multi-scale environment. The ATLAS collaboration has performed new measurements of Z boson plus jets cross sections, differential in several kinematic variables, in proton-proton collision data taken at a center-of-mass energy of 13 TeV. The measurements are compared to state-of-the art theory predictions. They are sensitive to higher-order pQCD effects, probe flavour and mass schemes and can be used to constrain the proton structure. In addition, a new measurement of the splitting scales of the kt jet-clustering algorithm for final states containing a Z boson candidate at a center-of-mass energy of 8 TeV is presented.
Confinement with Perturbation Theory, After All?
NASA Astrophysics Data System (ADS)
Hoyer, Paul
2015-09-01
I call attention to the possibility that QCD bound states (hadrons) could be derived using rigorous Hamiltonian, perturbative methods. Solving Gauss' law for A 0 with a non-vanishing boundary condition at spatial infinity gives an linear potential for color singlet and qqq states. These states are Poincaré and gauge covariant and thus can serve as initial states of a perturbative expansion, replacing the conventional free in and out states. The coupling freezes at , allowing reasonable convergence. The bound states have a sea of pairs, while transverse gluons contribute only at . Pair creation in the linear A 0 potential leads to string breaking and hadron loop corrections. These corrections give finite widths to excited states, as required by unitarity. Several of these features have been verified analytically in D = 1 + 1 dimensions, and some in D = 3 + 1.
Power counting to better jet observables
NASA Astrophysics Data System (ADS)
Larkoski, Andrew J.; Moult, Ian; Neill, Duff
2014-12-01
Optimized jet substructure observables for identifying boosted topologies will play an essential role in maximizing the physics reach of the Large Hadron Collider. Ideally, the design of discriminating variables would be informed by analytic calculations in perturbative QCD. Unfortunately, explicit calculations are often not feasible due to the complexity of the observables used for discrimination, and so many validation studies rely heavily, and solely, on Monte Carlo. In this paper we show how methods based on the parametric power counting of the dynamics of QCD, familiar from effective theory analyses, can be used to design, understand, and make robust predictions for the behavior of jet substructure variables. As a concrete example, we apply power counting for discriminating boosted Z bosons from massive QCD jets using observables formed from the n-point energy correlation functions. We show that power counting alone gives a definite prediction for the observable that optimally separates the background-rich from the signal-rich regions of phase space. Power counting can also be used to understand effects of phase space cuts and the effect of contamination from pile-up, which we discuss. As these arguments rely only on the parametric scaling of QCD, the predictions from power counting must be reproduced by any Monte Carlo, which we verify using Pythia 8 and Herwig++. We also use the example of quark versus gluon discrimination to demonstrate the limits of the power counting technique.
NASA Astrophysics Data System (ADS)
Chakravarthula, Kiran
In a collision experiment involving highly energetic particles such as hadrons, processes at high momentum transfers can provide information useful for many studies involving Quantum Chromodynamics (QCD). One way of analyzing these interactions is through angular distributions. In hadron-hadron collisions, the angular distribution between the two leading jets with the largest transverse momentum (pT) is affected by the production of additional jets. While soft radiation causes small differences in the azimuthal angular distribution of the two leading jets produced in a collision event, additional hard jets produced in the event have more pronounced influence on the distribution of the two leading jets produced in the collision. Thus, the dijet azimuthal angular distribution can serve as a variable that can be used to study the transition from soft to hard QCD processes in a collision event. This dissertation presents a triple-differential study involving the azimuthal angular distribution and the jet transverse momenta, and jet rapidities of the first two leading jets. The data used for this research are obtained from proton-antiproton (pp¯) collisions occurring at a center of mass energy of 1.96 TeV, using the DØ detector in Run II of the Tevatron Collider at the Fermi National Accelerator Laboratory (FNAL) in Illinois, USA. Comparisons are made to perturbative QCD (pQCD) predictions at next-to-leading order (NLO).
Searching for the QCD Axion with Gravitational Microlensing
NASA Astrophysics Data System (ADS)
Fairbairn, Malcolm; Marsh, David J. E.; Quevillon, Jérémie
2017-07-01
The phase transition responsible for axion dark matter (DM) production can create large amplitude isocurvature perturbations, which collapse into dense objects known as axion miniclusters. We use microlensing data from the EROS survey and from recent observations with the Subaru Hyper Suprime Cam to place constraints on the minicluster scenario. We compute the microlensing event rate for miniclusters, treating them as spatially extended objects. Using the published bounds on the number of microlensing events, we bound the fraction of DM collapsed into miniclusters fMC. For an axion with temperature-dependent mass consistent with the QCD axion, we find fMC<0.083 (ma/100 μ eV )0.12 , which represents the first observational constraint on the minicluster fraction. We forecast that a high-efficiency observation of around ten nights with Subaru would be sufficient to constrain fMC≲0.004 over the entire QCD axion mass range. We make various approximations to derive these constraints, and dedicated analyses by the observing teams of EROS and Subaru are necessary to confirm our results. If accurate theoretical predictions for fMC can be made in the future, then microlensing can be used to exclude or discover the QCD axion. Further details of our computations are presented in a companion paper [M. Fairbairn, D. J. E. Marsh, J. Quevillon, and S. Rozier (to be published)].
Determination of electric dipole transitions in heavy quarkonia using potential non-relativistic QCD
NASA Astrophysics Data System (ADS)
Segovia, Jorge; Steinbeißer, Sebastian
2018-05-01
The electric dipole transitions {χ }bJ(1P)\\to γ \\Upsilon (1S) with J = 0, 1, 2 and {h}b(1P)\\to γ {η }b(1S) are computed using the weak-coupling version of a low-energy effective field theory named potential non-relativistic QCD (pNRQCD). In order to improve convergence and thus give firm predictions for the studied reactions, the full static potential is incorporated into the leading order Hamiltonian; moreover, we must handle properly renormalon effects and re-summation of large logarithms. The precision we reach is {k}γ 3/{(mv)}2× O({v}2), where kγ is the photon energy, m is the mass of the heavy quark and v its velocity. Our analysis separates those relativistic contributions that account for the electromagnetic interaction terms in the pNRQCD Lagrangian which are v 2 suppressed and those that account for wave function corrections of relative order v 2. Among the last ones, corrections from 1/m and 1/m2 potentials are computed, but not those coming from higher Fock states since they demand non-perturbative input and are {{{Λ }}}{{QCD}}2/{(mv)}2 or {{{Λ }}}{{QCD}}3/({m}3{v}4) suppressed, at least, in the strict weak coupling regime. These proceedings are based on the forthcoming publication [1].
Curvaton as dark matter with secondary inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Jinn-Ouk; Kitajima, Naoya; Terada, Takahiro, E-mail: jinn-ouk.gong@apctp.org, E-mail: naoya.kitajima@apctp.org, E-mail: terada@kias.re.kr
2017-03-01
We consider a novel cosmological scenario in which a curvaton is long-lived and plays the role of cold dark matter (CDM) in the presence of a short, secondary inflation. Non-trivial evolution of the large scale cosmological perturbation in the curvaton scenario can affect the duration of the short term inflation, resulting in the inhomogeneous end of inflation. Non-linear parameters of the curvature perturbation are predicted to be f {sub NL} ≈ 5/4 and g {sub NL} ≈ 0. The curvaton abundance can be well diluted by the short-term inflation and accordingly, it does not have to decay into the Standardmore » Model particles. Then the curvaton can account for the present CDM with the isocurvature perturbation being sufficiently suppressed because both the adiabatic and CDM isocurvature perturbations have the same origin. As an explicit example, we consider the thermal inflation scenario and a string axion as a candidate for this curvaton-dark matter. We further discuss possibilities to identify the curvaton-dark matter with the QCD axion.« less
Precise Predictions for Dijet Production at the LHC
NASA Astrophysics Data System (ADS)
Currie, J.; Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, E. W. N.; Huss, A.; Pires, J.
2017-10-01
We present the calculation of dijet production, doubly differential in dijet mass mj j and rapidity difference |y*|, at leading color in all partonic channels at next-to-next-to-leading order (NNLO) in perturbative QCD. We consider the long-standing problems associated with scale choice for dijet production at next-to-leading order (NLO) and investigate the impact of including the NNLO contribution. We find that the NNLO theory provides reliable predictions, even when using scale choices that display pathological behavior at NLO. We choose the dijet invariant mass as the theoretical scale on the grounds of perturbative convergence and residual scale variation and compare the predictions to the ATLAS 7 TeV 4.5 fb-1 data.
Axial charges of octet and decuplet baryons in a perturbative chiral quark model
NASA Astrophysics Data System (ADS)
Liu, X. Y.; Samart, D.; Khosonthongkee, K.; Limphirat, A.; Xu, K.; Yan, Y.
2018-05-01
Using the perturbative chiral quark model (PCQM), we investigate and predict in this work axial charges gAB of octet and decuplet N , Σ , Ξ , Δ , Σ*, and Ξ* baryons, considering both the ground and excited states in the quark propagator. The PCQM predictions are in good agreement with the experimental data, lattice-QCD values, and other approaches. In addition, the study reveals that the meson cloud is influential in the PCQM, contributing around 30% to the total values of gAB, and the meson cloud contribution to gAB stems mainly from the diagrams with the ground-state quark propagator while the excited intermediate quark states reduce gAB by 10-20%.
Δ(1232) axial charge and form factors from lattice QCD.
Alexandrou, Constantia; Gregory, Eric B; Korzec, Tomasz; Koutsou, Giannis; Negele, John W; Sato, Toru; Tsapalis, Antonios
2011-09-30
We present the first calculation on the Δ axial vector and pseudoscalar form factors using lattice QCD. Two Goldberger-Treiman relations are derived and examined. A combined chiral fit is performed to the nucleon axial charge, N to Δ axial transition coupling constant and Δ axial charge.
Results from {gamma}{gamma} collisions in OPAL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patt, Jochen
The production of charged hadrons and jets is measured in collisions of quasi-real photons. The data were taken with the OPAL detector at LEP at e{sup +}e{sup -} centre-of-mass energies {radical}(s{sub ee})=161 and 172 GeV. The measured cross-sections are compared to perturbative next-to-leading order QCD calculations. The separation of the direct and the resolved component of the photon is demonstrated.
Höche, Stefan; Krauss, Frank; Maierhöfer, Philipp; ...
2015-06-26
We present differential cross sections for the production of top-quark pairs in conjunction with up to two jets, computed at next-to-leading order in perturbative QCD and consistently merged with a parton shower in the SHERPA+OPENLOOPS framework. Top quark decays including spin correlation effects are taken into account at leading order accuracy. The calculation yields a unified description of top-pair plus multi-jet production, and detailed results are presented for various key observables at the Large Hadron Collider. As a result, a large improvement with respect to the multi-jet merging approach at leading order is found for the total transverse energy spectrum,more » which plays a prominent role in searches for physics beyond the Standard Model.« less
NASA Astrophysics Data System (ADS)
Piscicchia, K.; Curceanu, C.; Cargnelli, M.; Del Grande, R.; Fabbietti, L.; Marton, J.; Scordo, A.; Sirghi, D.; Tucakovic, I.; Vazquez Doce, O.; Wycech, S.; Zmeskal, J.; Mandaglio, G.; Martini, M.; Moskal, P.
2018-01-01
The AMADEUS collaboration aims to provide unique quality results from K- hadronic interactions in light nuclear targets, in order to solve fundamental open questions in the non-perturbative strangeness QCD sector, like the controversial nature of the Λ(1405) state, the yield of hyperon formation below threshold, the yield and shape of multi-nucleon K- absorption, processes which are intimately connected to the possible existence of exotic antikaon multi-nucleon clusters and to the role of strangeness in neutron stars. AMADEUS takes advantage of the DAΦNE collider, which provides a unique source of monochromatic low-momentum kaons and exploits the KLOE detector as an active target, in order to obtain excellent acceptance and resolution data for K- nuclear capture on H, 4He, 9Be and 12C, both at-rest and in-flight.
An analysis of the nucleon spectrum from lattice partially-quenched QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
W. Armour; Allton, C. R.; Leinweber, Derek B.
2010-09-01
The chiral extrapolation of the nucleon mass, Mn, is investigated using data coming from 2-flavour partially-quenched lattice simulations. The leading one-loop corrections to the nucleon mass are derived for partially-quenched QCD. A large sample of lattice results from the CP-PACS Collaboration is analysed, with explicit corrections for finite lattice spacing artifacts. The extrapolation is studied using finite range regularised chiral perturbation theory. The analysis also provides a quantitative estimate of the leading finite volume corrections. It is found that the discretisation, finite-volume and partial quenching effects can all be very well described in this framework, producing an extrapolated value ofmore » Mn in agreement with experiment. This procedure is also compared with extrapolations based on polynomial forms, where the results are less encouraging.« less
J/ψ production and suppression in high-energy proton-nucleus collisions
Ma, Yan -Qing; Venugopalan, Raju; Zhang, Hong -Fei
2015-10-02
In this study, we apply a color glass condensate+nonrelativistic QCD (CGC+NRQCD) framework to compute J/ψ production in deuteron-nucleus collisions at RHIC and proton-nucleus collisions at the LHC. Our results match smoothly at high p⊥ to a next-to-leading order perturbative QCD+NRQCD computation. Excellent agreement is obtained for p⊥ spectra at the RHIC and LHC for central and forward rapidities, as well as for the normalized ratio R pA of these results to spectra in proton-proton collisions. In particular, we observe that the R pA data are strongly bounded by our computations of the same for each of the individual NRQCD channels;more » this result provides strong evidence that our description is robust against uncertainties in initial conditions and hadronization mechanisms.« less
NASA Astrophysics Data System (ADS)
Aaltonen, T.; Albrow, M. G.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grosso-Pilcher, C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sinervo, P.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.; CDF Collaboration
2017-11-01
A measurement of the inclusive production cross section of isolated prompt photons in proton-antiproton collisions at center-of-mass energy √{s }=1.96 TeV is presented. The results are obtained using the full Run II data sample collected with the Collider Detector at the Fermilab Tevatron, which corresponds to an integrated luminosity of 9.5 fb-1 . The cross section is measured as a function of photon transverse energy, ETγ, in the range 30
Connected and disconnected contractions in pion-pion scattering
NASA Astrophysics Data System (ADS)
Acharya, Neramballi Ripunjay; Guo, Feng-Kun; Meißner, Ulf-G.; Seng, Chien-Yeah
2017-09-01
We show that the interplay of chiral effective field theory and lattice QCD can be used in the evaluation of so-called disconnected diagrams, which appear in the study of the isoscalar and isovector channels of pion-pion scattering and have long been a major challenge for the lattice community. By means of partially-quenched chiral perturbation theory, we distinguish and analyze the effects from different types of contraction diagrams to the pion-pion scattering amplitude, including its scattering lengths and the energy-dependence of its imaginary part. Our results may be used to test the current degree of accuracy of lattice calculation in the handling of disconnected diagrams, as well as to set criteria for the future improvement of relevant lattice computational techniques that may play a critical role in the study of other interesting QCD matrix elements.
What Can We Learn from Hadronic and Radiative Decays of Light Mesons?
NASA Astrophysics Data System (ADS)
Kubis, Bastian
2013-04-01
Chiral perturbation theory offers a powerful tool for the investigation of light pseudoscalar mesons. It incorporates the fundamental symmetries of QCD, interrelates various processes, and allows to link these to the light quark masses. Its shortcomings lie in a limited energy range: the radius of convergence of the chiral expansion is confined to below resonance scales. Furthermore, the strongest consequences of chiral symmetry are manifest for pseudoscalars (pions, kaons, eta) only: vector mesons, e.g., have a severe impact in particular for reactions involving photons. In this talk, I advocate dispersions relations as another model-independent tool to extend the applicability range of chiral perturbation theory. They even allow to tackle the physics of vector mesons in a rigorous way. It will be shown how dispersive methods can be used to resum large rescattering effects, and to provide model-independent links between hadronic and radiative decay modes. Examples to be discussed will include decays of the eta meson, giving access to light-quark-mass ratios or allowing to test the chiral anomaly; and meson transition form factors, which have an important impact on the hadronic light-by-light-scattering contribution to the anomalous magnetic moment of the muon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aad, G.; Abbott, B.; Abdallah, J.
2015-09-01
We found that the non-perturbative corrections calculated using Pythia with the Perugia 2011 tune did not include the effect of the underlying event. The affected correction factors were recomputed using the Pythia 6.427 generator. These corrections are applied as baseline to the NLO pQCD calculations and thus the central values of the theoretical predictions have changed by a few percent with the new corrections. This has a minor impact on the agreement between the data and the theoretical predictions. Figures 2 and 6 to 13, and all the tables have been updated with the new values. A few sentences inmore » the discussion in sections 5.2 and 9 were altered or removed.« less
Suppression of high pT hadrons in Pb + Pb collisions at \\sqrt{s} = 2.76 TeV
NASA Astrophysics Data System (ADS)
Zhang, Hanzhong; Chen, Xiao-Fang; Hirano, Tetsufumi; Wang, Enke; Wang, Xin-Nian
2011-12-01
The nuclear modification factor RAA(pT) for large pT hadrons in central Pb + Pb collisions at \\sqrt{s}=2.76 TeV/n is calculated within the next-to-leading order perturbative QCD parton model with medium-modified fragmentation functions and agree well with the new data. The jet transport parameter that controls medium modification is assumed to be proportional to the initial parton density and the coefficient is fixed by the RHIC data. The charged hadron multiplicity dNch/dη = 1584 ± 80 in central Pb + Pb collisions from the ALICE experiment at the LHC is used to determine both the jet transport parameter and the initial condition for (3+1)D ideal hydrodynamic evolution of the bulk matter that is employed for the calculation of RAA(pT).
The decay of Λ _b→ p~K^- in QCD factorization approach
NASA Astrophysics Data System (ADS)
Zhu, Jie; Ke, Hong-Wei; Wei, Zheng-Tao
2016-05-01
With only the tree-level operator, the decay of Λ _b→ pK is predicted to be one order smaller than the experimental data. The QCD penguin effects should be taken into account. In this paper, we explore the one-loop QCD corrections to the decay of Λ _b→ pK within the framework of QCD factorization approach. For the baryon system, the diquark approximation is adopted. The transition hadronic matrix elements between Λ _b and p are calculated in the light-front quark model. The branching ratio of Λ _b→ pK is predicted to be about 4.85× 10^{-6}, which is consistent with experimental data (4.9± 0.9)× 10^{-6}. The CP violation is about 5 % in theory.
Modelling exclusive meson pair production at hadron colliders
NASA Astrophysics Data System (ADS)
Harland-Lang, L. A.; Khoze, V. A.; Ryskin, M. G.
2014-04-01
We present a study of the central exclusive production of light meson pairs, concentrating on the region of lower invariant masses of the central system and/or meson transverse momentum, where perturbative QCD cannot be reliably applied. We describe in detail a phenomenological model, using the tools of Regge theory, that may be applied with some success in this regime, and we present the new, publicly available, Dime Monte Carlo (MC) implementation of this for , and production. The MC implementation includes a fully differential treatment of the survival factor, which in general depends on all kinematic variables, as well as allows for the so far reasonably unconstrained model parameters to be set by the user. We present predictions for the Tevatron and LHC, discuss and estimate the size of the proton-dissociative background, and show how future measurements may further test this Regge-based approach, as well as the soft hadronic model required to calculate the survival factor, in particular in the presence of tagged protons.
Nuclear modification factor of D 0 mesons in PbPb collisions at s NN = 5.02 TeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirunyan, A. M.; Tumasyan, A.; Adam, W.
Here, the transverse momentum (p T) spectrum of prompt D 0 mesons and their antiparticles has been measured via the hadronic decay channels D 0 → K -π + and D¯ 0 → K +π - in and PbPb collisions at a centre-of-mass energy of 5.02 TeV per nucleon pair with the CMS detector at the LHC. The measurement is performed in the D 0 p T meson range of 2–100 and in the rapidity range of |y| < 1. The (PbPb) dataset used for this analysis corresponds to an integrated luminosity of 27.4 pb –1 (530 μb –1). Themore » measured D 0 meson spectrum in pp collisions is well described by perturbative QCD calculations. The nuclear modification factor, comparing D 0 meson yields in PbPb and collisions, was extracted for both minimum-bias and the 10% most central PbPb interactions.« less
Nuclear modification factor of D 0 mesons in PbPb collisions at s NN = 5.02 TeV
Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...
2018-05-31
Here, the transverse momentum (p T) spectrum of prompt D 0 mesons and their antiparticles has been measured via the hadronic decay channels D 0 → K -π + and D¯ 0 → K +π - in and PbPb collisions at a centre-of-mass energy of 5.02 TeV per nucleon pair with the CMS detector at the LHC. The measurement is performed in the D 0 p T meson range of 2–100 and in the rapidity range of |y| < 1. The (PbPb) dataset used for this analysis corresponds to an integrated luminosity of 27.4 pb –1 (530 μb –1). Themore » measured D 0 meson spectrum in pp collisions is well described by perturbative QCD calculations. The nuclear modification factor, comparing D 0 meson yields in PbPb and collisions, was extracted for both minimum-bias and the 10% most central PbPb interactions.« less
B{sub K} with two flavors of dynamical overlap fermions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoki, S.; Riken BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973; Fukaya, H.
2008-05-01
We present a two-flavor QCD calculation of B{sub K} on a 16{sup 3}x32 lattice at a{approx}0.12 fm (or equivalently a{sup -1}=1.67 GeV). Both valence and sea quarks are described by the overlap fermion formulation. The matching factor is calculated nonperturbatively with the so-called RI/MOM scheme. We find that the lattice data are well described by the next-to-leading order (NLO) partially quenched chiral perturbation theory (PQChPT) up to around a half of the strange quark mass (m{sub s}{sup phys}/2). The data at quark masses heavier than m{sub s}{sup phys}/2 are fitted including a part of next-to-next-to-leading order terms. We obtain B{submore » K}{sup MS}(2 GeV)=0.537(4)(40), where the first error is statistical and the second is an estimate of systematic uncertainties from finite volume, fixing topology, the matching factor, and the scale setting.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins
2011-08-12
I review a number of topics where conventional wisdom in hadron physics has been challenged. For example, hadrons can be produced at large transverse momentum directly within a hard higher-twist QCD subprocess, rather than from jet fragmentation. Such 'direct' processes can explain the deviations from perturbative QCD predictions in measurements of inclusive hadron cross sections at fixed x{sub T} = 2p{sub T}/{radical}s, as well as the 'baryon anomaly', the anomalously large proton-to-pion ratio seen in high centrality heavy ion collisions. Initial-state and final-state interactions of the struck quark, the soft-gluon rescattering associated with its Wilson line, lead to Bjorken-scaling single-spinmore » asymmetries, diffractive deep inelastic scattering, the breakdown of the Lam-Tung relation in Drell-Yan reactions, as well as nuclear shadowing and antishadowing. The Gribov-Glauber theory predicts that antishadowing of nuclear structure functions is not universal, but instead depends on the flavor quantum numbers of each quark and antiquark, thus explaining the anomalous nuclear dependence measured in deep-inelastic neutrino scattering. Since shadowing and antishadowing arise from the physics of leading-twist diffractive deep inelastic scattering, one cannot attribute such phenomena to the structure of the nucleus itself. It is thus important to distinguish 'static' structure functions, the probability distributions computed from the square of the target light-front wavefunctions, versus 'dynamical' structure functions which include the effects of the final-state rescattering of the struck quark. The importance of the J = 0 photon-quark QCD contact interaction in deeply virtual Compton scattering is also emphasized. The scheme-independent BLM method for setting the renormalization scale is discussed. Eliminating the renormalization scale ambiguity greatly improves the precision of QCD predictions and increases the sensitivity of searches for new physics at the LHC. Other novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates.« less
Renormalizable Quantum Field Theories in the Large -n Limit
NASA Astrophysics Data System (ADS)
Guruswamy, Sathya
1995-01-01
In this thesis, we study two examples of renormalizable quantum field theories in the large-N limit. Chapter one is a general introduction describing physical motivations for studying such theories. In chapter two, we describe the large-N method in field theory and discuss the pioneering work of 't Hooft in large-N two-dimensional Quantum Chromodynamics (QCD). In chapter three we study a spherically symmetric approximation to four-dimensional QCD ('spherical QCD'). We recast spherical QCD into a bilocal (constrained) theory of hadrons which in the large-N limit is equivalent to large-N spherical QCD for all energy scales. The linear approximation to this theory gives an eigenvalue equation which is the analogue of the well-known 't Hooft's integral equation in two dimensions. This eigenvalue equation is a scale invariant one and therefore leads to divergences in the theory. We give a non-perturbative renormalization prescription to cure this and obtain a beta function which shows that large-N spherical QCD is asymptotically free. In chapter four, we review the essentials of conformal field theories in two and higher dimensions, particularly in the context of critical phenomena. In chapter five, we study the O(N) non-linear sigma model on three-dimensional curved spaces in the large-N limit and show that there is a non-trivial ultraviolet stable critical point at which it becomes conformally invariant. We study this model at this critical point on examples of spaces of constant curvature and compute the mass gap in the theory, the free energy density (which turns out to be a universal function of the information contained in the geometry of the manifold) and the two-point correlation functions. The results we get give an indication that this model is an example of a three-dimensional analogue of a rational conformal field theory. A conclusion with a brief summary and remarks follows at the end.
Charmless two-body B decays: A global analysis with QCD factorization
NASA Astrophysics Data System (ADS)
Du, Dongsheng; Sun, Junfeng; Yang, Deshan; Zhu, Guohuai
2003-01-01
In this paper, we perform a global analysis of B→PP and PV decays with the QCD factorization approach. It is encouraging to observe that the predictions of QCD factorization are in good agreement with experiment. The best fit γ is around 79 °. The penguin-diagram to tree-diagram ratio |Pππ/Tππ| of π+π- decays is preferred to be larger than 0.3. We also show the confidence levels for some interesting channels: B0→π0π0, K+K-, and B+→ωπ+, ωK+. For B→πK* decays, they are expected to have smaller branching ratios with more precise measurements.
Christ, Norman H.; Flynn, Jonathan M.; Izubuchi, Taku; ...
2015-03-10
We calculate the B-meson decay constants f B, f Bs, and their ratio in unquenched lattice QCD using domain-wall light quarks and relativistic b quarks. We use gauge-field ensembles generated by the RBC and UKQCD collaborations using the domain-wall fermion action and Iwasaki gauge action with three flavors of light dynamical quarks. We analyze data at two lattice spacings of a ≈ 0.11, 0.086 fm with unitary pion masses as light as M π ≈ 290 MeV; this enables us to control the extrapolation to the physical light-quark masses and continuum. For the b quarks we use the anisotropic clovermore » action with the relativistic heavy-quark interpretation, such that discretization errors from the heavy-quark action are of the same size as from the light-quark sector. We renormalize the lattice heavy-light axial-vector current using a mostly nonperturbative method in which we compute the bulk of the matching factor nonperturbatively, with a small correction, that is close to unity, in lattice perturbation theory. We also improve the lattice heavy-light current through O(α sa). We extrapolate our results to the physical light-quark masses and continuum using SU(2) heavy-meson chiral perturbation theory, and provide a complete systematic error budget. We obtain f B0 = 199.5(12.6) MeV, f B+=195.6(14.9) MeV, f Bs=235.4(12.2) MeV, f Bs/f B0=1.197(50), and f Bs/f B+=1.223(71), where the errors are statistical and total systematic added in quadrature. Finally, these results are in good agreement with other published results and provide an important independent cross-check of other three-flavor determinations of B-meson decay constants using staggered light quarks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christ, Norman H.; Flynn, Jonathan M.; Izubuchi, Taku
2015-03-10
We calculate the B-meson decay constants f B, f Bs, and their ratio in unquenched lattice QCD using domain-wall light quarks and relativistic b-quarks. We use gauge-field ensembles generated by the RBC and UKQCD collaborations using the domain-wall fermion action and Iwasaki gauge action with three flavors of light dynamical quarks. We analyze data at two lattice spacings of a ≈ 0.11, 0.086 fm with unitary pion masses as light as M π ≈ 290 MeV; this enables us to control the extrapolation to the physical light-quark masses and continuum. For the b-quarks we use the anisotropic clover action withmore » the relativistic heavy-quark interpretation, such that discretization errors from the heavy-quark action are of the same size as from the light-quark sector. We renormalize the lattice heavy-light axial-vector current using a mostly nonperturbative method in which we compute the bulk of the matching factor nonperturbatively, with a small correction, that is close to unity, in lattice perturbation theory. We also improve the lattice heavy-light current through O(α sa). We extrapolate our results to the physical light-quark masses and continuum using SU(2) heavy-meson chiral perturbation theory, and provide a complete systematic error budget. We obtain f B0 = 196.2(15.7) MeV, f B+ = 195.4(15.8) MeV, f Bs = 235.4(12.2) MeV, f Bs/f B0 = 1.193(59), and f Bs/f B+ = 1.220(82), where the errors are statistical and total systematic added in quadrature. In addition, these results are in good agreement with other published results and provide an important independent cross check of other three-flavor determinations of B-meson decay constants using staggered light quarks.« less
$$B\\to Kl^+l^-$$ decay form factors from three-flavor lattice QCD
Bailey, Jon A.
2016-01-27
We compute the form factors for the B → Kl +l - semileptonic decay process in lattice QCD using gauge-field ensembles with 2+1 flavors of sea quark, generated by the MILC Collaboration. The ensembles span lattice spacings from 0.12 to 0.045 fm and have multiple sea-quark masses to help control the chiral extrapolation. The asqtad improved staggered action is used for the light valence and sea quarks, and the clover action with the Fermilab interpretation is used for the heavy b quark. We present results for the form factors f+(q 2), f 0(q 2), and f T(q 2), where q 2more » is the momentum transfer, together with a comprehensive examination of systematic errors. Lattice QCD determines the form factors for a limited range of q 2, and we use the model-independent z expansion to cover the whole kinematically allowed range. We present our final form-factor results as coefficients of the z expansion and the correlations between them, where the errors on the coefficients include statistical and all systematic uncertainties. Lastly, we use this complete description of the form factors to test QCD predictions of the form factors at high and low q 2.« less
NASA Astrophysics Data System (ADS)
Wang, Xiaoyu; Lu, Zhun
2018-03-01
We investigate the Sivers asymmetry in the pion-induced single polarized Drell-Yan process in the theoretical framework of the transverse momentum dependent factorization up to next-to-leading logarithmic order of QCD. Within the TMD evolution formalism of parton distribution functions, the recently extracted nonperturbative Sudakov form factor for the pion distribution functions as well as the one for the Sivers function of the proton are applied to numerically estimate the Sivers asymmetry in the π-p Drell-Yan at the kinematics of the COMPASS at CERN. In the low b region, the Sivers function in b -space can be expressed as the convolution of the perturbatively calculable hard coefficients and the corresponding collinear correlation function, of which the Qiu-Sterman function is the most relevant one. The effect of the energy-scale dependence of the Qiu-Sterman function to the asymmetry is also studied. We find that our prediction on the Sivers asymmetries as functions of xp, xπ, xF and q⊥ is consistent with the recent COMPASS measurement.
Form factors and differential branching ratio of B →K μ+μ- in AdS/QCD
NASA Astrophysics Data System (ADS)
Momeni, S.; Khosravi, R.
2018-03-01
The holographic distribution amplitudes (DAs) for the K pseudoscalar meson are derived. For this aim, the light-front wave function (LFWF) of the K meson is extracted within the framework of the anti-de Sitter/quantum chromodynamics (AdS/QCD) correspondence. We consider a momentum-dependent (dynamical) helicity wave function that contains the dynamical spin effects. We use the LFWF to predict the radius and the electromagnetic form factor of the kaon and compare them with the experimental values. Then, the holographic twist-2 DA of K meson ϕK(α ,μ ) is investigated and compared with the result of the light-cone sum rules (LCSR). The transition form factors of the semileptonic B →K ℓ+ℓ- decays are derived from the holographic DAs of the kaon. With the help of these form factors, the differential branching ratio of the B →K μ+μ- on q2 is plotted. A comparison is made between our prediction in AdS/QCD and the results obtained from two models including the LCSR and the lattice QCD as well as the experimental values.
NASA Astrophysics Data System (ADS)
Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Andreev, V.; Antonelli, S.; Aushev, V.; Baghdasaryan, A.; Begzsuren, K.; Behnke, O.; Behrens, U.; Belousov, A.; Bertolin, A.; Bloch, I.; Bolz, A.; Boudry, V.; Brandt, G.; Brisson, V.; Britzger, D.; Brock, I.; Brook, N. H.; Brugnera, R.; Bruni, A.; Buniatyan, A.; Bussey, P. J.; Bylinkin, A.; Bystritskaya, L.; Caldwell, A.; Campbell, A. J.; Avila, K. B. Cantun; Capua, M.; Catterall, C. D.; Cerny, K.; Chekelian, V.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Contreras, J. G.; Cooper-Sarkar, A. M.; Corradi, M.; Cvach, J.; Dainton, J. B.; Daum, K.; Dementiev, R. K.; Devenish, R. C. E.; Diaconu, C.; Dobre, M.; Dusini, S.; Eckerlin, G.; Egli, S.; Elsen, E.; Favart, L.; Fedotov, A.; Feltesse, J.; Fleischer, M.; Fomenko, A.; Foster, B.; Gallo, E.; Garfagnini, A.; Gayler, J.; Geiser, A.; Gizhko, A.; Gladilin, L. K.; Goerlich, L.; Gogitidze, N.; Golubkov, Yu. A.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grindhammer, G.; Grzelak, G.; Gwenlan, C.; Haidt, D.; Henderson, R. C. W.; Hladkỳ, J.; Hlushchenko, O.; Hochman, D.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Ibrahim, Z. A.; Iga, Y.; Jacquet, M.; Janssen, X.; Jomhari, N. Z.; Jung, A. W.; Jung, H.; Kadenko, I.; Kananov, S.; Kapichine, M.; Karshon, U.; Katzy, J.; Kaur, P.; Kiesling, C.; Kisielewska, D.; Klanner, R.; Klein, M.; Klein, U.; Kleinwort, C.; Kogler, R.; Korzhavina, I. A.; Kostka, P.; Kotański, A.; Kovalchuk, N.; Kowalski, H.; Kretzschmar, J.; Krücker, D.; Krüger, K.; Krupa, B.; Kuprash, O.; Kuze, M.; Landon, M. P. J.; Lange, W.; Laycock, P.; Lebedev, A.; Levchenko, B. B.; Levonian, S.; Levy, A.; Libov, V.; Lipka, K.; Lisovyi, M.; List, B.; List, J.; Lobodzinski, B.; Löhr, B.; Lohrmann, E.; Longhin, A.; Lukina, O. Yu.; Makarenko, I.; Malinovski, E.; Malka, J.; Martyn, H.-U.; Masciocchi, S.; Maxfield, S. J.; Mehta, A.; Meyer, A. B.; Meyer, H.; Meyer, J.; Mikocki, S.; Idris, F. Mohamad; Mohammad Nasir, N.; Morozov, A.; Müller, K.; Myronenko, V.; Nagano, K.; Nam, J. D.; Naumann, Th.; Newman, P. R.; Nicassio, M.; Niebuhr, C.; Nowak, G.; Olsson, J. E.; Onderwaater, J.; Onishchuk, Yu.; Ozerov, D.; Pascaud, C.; Patel, G. D.; Paul, E.; Perez, E.; Perlański, W.; Petrukhin, A.; Picuric, I.; Pirumov, H.; Pitzl, D.; Pokrovskiy, N. S.; Polifka, R.; Polini, A.; Przybycień, M.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruspa, M.; Šálek, D.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Saxon, D. H.; Schioppa, M.; Schmitt, S.; Schneekloth, U.; Schoeffel, L.; Schöning, A.; Schörner-Sadenius, T.; Sefkow, F.; Selyuzhenkov, I.; Shcheglova, L. M.; Shushkevich, S.; Shyrma, Yu.; Skillicorn, I. O.; Słomiński, W.; Solano, A.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Stanco, L.; Steder, M.; Stefaniuk, N.; Stella, B.; Stern, A.; Stopa, P.; Straumann, U.; Surrow, B.; Sykora, T.; Sztuk-Dambietz, J.; Tassi, E.; Thompson, P. D.; Tokushuku, K.; Tomaszewska, J.; Traynor, D.; Truöl, P.; Tsakov, I.; Tseepeldorj, B.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Valkárová, A.; Vallée, C.; Van Mechelen, P.; Vazdik, Y.; Verbytskyi, A.; Abdullah, W. A. T. Wan; Wegener, D.; Wichmann, K.; Wing, M.; Wünsch, E.; Yamada, S.; Yamazaki, Y.; Žáček, J.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zhang, Z.; Zhautykov, B. O.; Žlebčík, R.; Zohrabyan, H.; Zomer, F.
2018-06-01
Measurements of open charm and beauty production cross sections in deep inelastic ep scattering at HERA from the H1 and ZEUS Collaborations are combined. Reduced cross sections are obtained in the kinematic range of negative four-momentum transfer squared of the photon 2.5 GeV^2≤Q^2 ≤2000 GeV^2 and Bjorken scaling variable 3 \\cdot 10^{-5} ≤ x_Bj ≤ 5 \\cdot 10^{-2}. The combination method accounts for the correlations of the statistical and systematic uncertainties among the different datasets. Perturbative QCD calculations are compared to the combined data. A next-to-leading order QCD analysis is performed using these data together with the combined inclusive deep inelastic scattering cross sections from HERA. The running charm- and beauty-quark masses are determined as m_c(m_c) = 1.290^{+0.046}_{-0.041} (exp/fit) {}^{+0.062}_{-0.014} (model) {}^{+0.003}_{-0.031} (parameterisation) GeV and m_b(m_b) = 4.049^{+0.104}_{-0.109} (exp/fit) {}^{+0.090}_{-0.032} (model) {}^{+0.001}_{-0.031} (parameterisation) GeV.
Aad, G.; Abbott, B.; Abdallah, J.; ...
2016-03-28
In this study, prompt photon production in √s NN = 2.76-TeV Pb+Pb collisions has been measured by the ATLAS experiment at the Large Hadron Collider using data collected in 2011 with an integrated luminosity of 0.14 nb -1. Inclusive photon yields, scaled by the mean nuclear thickness function, are presented as a function of collision centrality and transverse momentum in two pseudorapidity intervals, |η| < 1.37 and 1.52 ≤ |η| < 2.37. The scaled yields in the two pseudorapidity intervals, as well as the ratios of the forward yields to those at midrapidity, are compared to the expectations from next-to-leading-ordermore » perturbative QCD (pQCD) calculations. The measured cross sections agree well with the predictions for proton-proton collisions within statistical and systematic uncertainties. Both the yields and the ratios are also compared to two other pQCD calculations, one which uses the isospin content appropriate to colliding lead nuclei and another which includes nuclear modifications to the nucleon parton distribution functions.« less
A model for pion-pion scattering in large- N QCD
NASA Astrophysics Data System (ADS)
Veneziano, G.; Yankielowicz, S.; Onofri, E.
2017-04-01
Following up on recent work by Caron-Huot et al. we consider a generalization of the old Lovelace-Shapiro model as a toy model for ππ scattering satisfying (most of) the properties expected to hold in ('t Hooft's) large- N limit of massless QCD. In particular, the model has asymptotically linear and parallel Regge trajectories at positive t, a positive leading Regge intercept α 0 < 1, and an effective bending of the trajectories in the negative- t region producing a fixed branch point at J = 0 for t < t 0 < 0. Fixed (physical) angle scattering can be tuned to match the power-like behavior (including logarithmic corrections) predicted by perturbative QCD: A( s, t) ˜ s - β log( s)-γ F ( θ). Tree-level unitarity (i.e. positivity of residues for all values of s and J ) imposes strong constraints on the allowed region in the α0- β-γ parameter space, which nicely includes a physically interesting region around α 0 = 0 .5, β = 2 and γ = 3. The full consistency of the model would require an extension to multi-pion processes, a program we do not undertake in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiller, Britta
Higher order QCD corrections to W and Z boson production do not only manifest themselves in the generation of high transverse momenta of the weak bosons, but these QCD effects become directly visible in the production of jets in association with the weak bosons. Studying these processes is not only interesting from the perspective of testing perturbative QCD, but also to constrain a major background to many Standard Model (SM) of non-SM physics signals, e.g. top pair and single top production, searchers for the Higgs boson, leptoquarks and supersymmetric particles. This thesis describes a measurement of Z/γ* + jets production in pmore » $$\\bar{p}$$ collisions at √s = 1.96 TeV in the decay channel Z/γ* → μ +μ -. An integrated luminosity of L≈ 1fb -1 collected by the D0 detector at the Tevatron between August 2002 and February 2006 has been used. Differential production cross sections as function of the transverse energy of the first, second and third leading jet are measured. The distributions are corrected for acceptance and migration effects back to hadron level using an iterative unfolding method. Comparison of the measured cross sections to event generators, which include part of the higher order corrections are presented.« less
A systematic approach to sketch Bethe-Salpeter equation
NASA Astrophysics Data System (ADS)
Qin, Si-xue
2016-03-01
To study meson properties, one needs to solve the gap equation for the quark propagator and the Bethe-Salpeter (BS) equation for the meson wavefunction, self-consistently. The gluon propagator, the quark-gluon vertex, and the quark-anti-quark scattering kernel are key pieces to solve those equations. Predicted by lattice-QCD and Dyson-Schwinger analyses of QCD's gauge sector, gluons are non-perturbatively massive. In the matter sector, the modeled gluon propagator which can produce a veracious description of meson properties needs to possess a mass scale, accordingly. Solving the well-known longitudinal Ward-Green-Takahashi identities (WGTIs) and the less-known transverse counterparts together, one obtains a nontrivial solution which can shed light on the structure of the quark-gluon vertex. It is highlighted that the phenomenologically proposed anomalous chromomagnetic moment (ACM) vertex originates from the QCD Lagrangian symmetries and its strength is proportional to the magnitude of dynamical chiral symmetry breaking (DCSB). The color-singlet vector and axial-vector WGTIs can relate the BS kernel and the dressed quark-gluon vertex to each other. Using the relation, one can truncate the gap equation and the BS equation, systematically, without violating crucial symmetries, e.g., gauge symmetry and chiral symmetry.
NASA Astrophysics Data System (ADS)
O'Donnell, Patrick J.; Smith, Brian Hendee
1996-11-01
The Table of Contents for the full book PDF is as follows: * Preface * Roberto Mendel, An Appreciaton * The Infamous Coulomb Gauge * Renormalized Path Integral in Quantum Mechanics * New Analysis of the Divergence of Perturbation Theory * The Last of the Soluble Two Dimensional Field Theories? * Rb and Heavy Quark Mixing * Rb Problem: Loop Contributions and Supersymmetry * QCD Radiative Effects in Inclusive Hadronic B Decays * CP-Violating Dipole Moments of Quarks in the Kobayashi-Maskawa Model * Hints of Dynamical Symmetry Breaking? * Pi Pi Scattering in an Effective Chiral Lagrangian * Pion-Resonance Parameters from QCD Sum Rules * Higgs Theorem, Effective Action, and its Gauge Invariance * SUSY and the Decay H_2^0 to gg * Effective Higgs-to-Light Quark Coupling Induced by Heavy Quark Loops * Heavy Charged Lepton Production in Superstring Inspired E6 Models * The Elastic Properties of a Flat Crystalline Membrane * Gauge Dependence of Topological Observables in Chern-Simons Theory * Entanglement Entropy From Edge States * A Simple General Treatment of Flavor Oscillations * From Schrödinger to Maupertuis: Least Action Principles from Quantum Mechanics * The Matrix Method for Multi-Loop Feynman Integrals * Simplification in QCD and Electroweak Calculations * Programme * List of Participants
Hot QCD equations of state and relativistic heavy ion collisions
NASA Astrophysics Data System (ADS)
Chandra, Vinod; Kumar, Ravindra; Ravishankar, V.
2007-11-01
We study two recently proposed equations of state obtained from high-temperature QCD and show how they can be adapted to use them for making predictions for relativistic heavy ion collisions. The method involves extracting equilibrium distribution functions for quarks and gluons from the equation of state (EOS), which in turn will allow a determination of the transport and other bulk properties of the quark gluon-plasma. Simultaneously, the method also yields a quasiparticle description of interacting quarks and gluons. The first EOS is perturbative in the QCD coupling constant and has contributions of O(g5). The second EOS is an improvement over the first, with contributions up to O[g6ln(1/g)]; it incorporates the nonperturbative hard thermal contributions. The interaction effects are shown to be captured entirely by the effective chemical potentials for the gluons and the quarks, in both cases. The chemical potential is seen to be highly sensitive to the EOS. As an application, we determine the screening lengths, which are, indeed, the most important diagnostics for QGP. The screening lengths are seen to behave drastically differently depending on the EOS considered and therefore yield a way to distinguish the two equations of state in heavy ion collisions.
Brodsky, Stanley J.
2018-01-01
Tmore » he QCD light-front Hamiltonian equation H L F Ψ = M 2 Ψ derived from quantization at fixed LF time τ = t + z / c provides a causal, frame-independent method for computing hadron spectroscopy as well as dynamical observables such as structure functions, transverse momentum distributions, and distribution amplitudes. he QCD Lagrangian with zero quark mass has no explicit mass scale. de Alfaro, Fubini, and Furlan (dAFF) have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the dAFF procedure to the QCD light-front Hamiltonian, it leads to a color-confining potential κ 4 ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to the q q ¯ invariant mass squared. he same result, including spin terms, is obtained using light-front holography, the duality between light-front dynamics and A d S 5 , if one modifies the A d S 5 action by the dilaton e κ 2 z 2 in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions provide a unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons and a universal Regge slope. he pion q q ¯ eigenstate has zero mass at m q = 0 . he superconformal relations also can be extended to heavy-light quark mesons and baryons. his approach also leads to insights into the physics underlying hadronization at the amplitude level. I will also discuss the remarkable features of the Poincaré invariant, causal vacuum defined by light-front quantization and its impact on the interpretation of the cosmological constant. AdS/QCD also predicts the analytic form of the nonperturbative running coupling α s ( Q 2 ) ∝ e - Q 2 / 4 κ 2 . he mass scale κ underlying hadron masses can be connected to the parameter Λ M S ¯ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. he result is an effective coupling α s ( Q 2 ) defined at all momenta. One obtains empirically viable predictions for spacelike and timelike hadronic form factors, structure functions, distribution amplitudes, and transverse momentum distributions. Finally, I address the interesting question of whether the momentum sum rule is valid for nuclear structure functions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.
Tmore » he QCD light-front Hamiltonian equation H L F Ψ = M 2 Ψ derived from quantization at fixed LF time τ = t + z / c provides a causal, frame-independent method for computing hadron spectroscopy as well as dynamical observables such as structure functions, transverse momentum distributions, and distribution amplitudes. he QCD Lagrangian with zero quark mass has no explicit mass scale. de Alfaro, Fubini, and Furlan (dAFF) have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the dAFF procedure to the QCD light-front Hamiltonian, it leads to a color-confining potential κ 4 ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to the q q ¯ invariant mass squared. he same result, including spin terms, is obtained using light-front holography, the duality between light-front dynamics and A d S 5 , if one modifies the A d S 5 action by the dilaton e κ 2 z 2 in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions provide a unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons and a universal Regge slope. he pion q q ¯ eigenstate has zero mass at m q = 0 . he superconformal relations also can be extended to heavy-light quark mesons and baryons. his approach also leads to insights into the physics underlying hadronization at the amplitude level. I will also discuss the remarkable features of the Poincaré invariant, causal vacuum defined by light-front quantization and its impact on the interpretation of the cosmological constant. AdS/QCD also predicts the analytic form of the nonperturbative running coupling α s ( Q 2 ) ∝ e - Q 2 / 4 κ 2 . he mass scale κ underlying hadron masses can be connected to the parameter Λ M S ¯ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. he result is an effective coupling α s ( Q 2 ) defined at all momenta. One obtains empirically viable predictions for spacelike and timelike hadronic form factors, structure functions, distribution amplitudes, and transverse momentum distributions. Finally, I address the interesting question of whether the momentum sum rule is valid for nuclear structure functions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pisano, Cristian; Bacchetta, Alessandro; Delcarro, Filippo
We present a first attempt at a global fit of unpolarized quark transverse momentum dependent distribution and fragmentation functions from available data on semi-inclusive deep-inelastic scattering, Drell-Yan and $Z$ boson production processes. This analysis is performed in the low transverse momentum region, at leading order in perturbative QCD and with the inclusion of energy scale evolution effects at the next-to-leading logarithmic accuracy.
Pqcd Analysis of Atmospheric Tau Neutrino
NASA Astrophysics Data System (ADS)
Yeh, Tsung-Wen
2003-03-01
We calculate the flux of ντ produced in the atmosphere by cosmic ray-air collisions. The production channels of ντ from the process pA -> X -> ν τ (bar ν τ )Y with X = Ds ,W±, Z, hb, tbar t , are considered. The calculations are performed by employing perturbative QCD (PQCD). The predicted ντ flux ϕ
Further Comments on a Vanishing Singlet Axial Vector Charge
NASA Astrophysics Data System (ADS)
Cheng, T. P.; Kochelev, N. I.; Vento, Vicente
The recent suggestion of a vanishing flavor-singlet axial-charge of nucleon due to a nontrivial vacuum structure is further amplified. A perturbative QCD discussion, applicable for the heavy quark contributions, relates it to the physics of the decoupling theorem. It is also shown that gA0˜= 0 leads to a negative η‧-meson-quark coupling, which has been found to be compatible with the chiral quark model phenomenology.
Beauty and charm production at fixed-target experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erik E. Gottschalk
Fixed-target experiments continue to provide insights into the physics of particle production in strong interactions. The experiments are performed with different types of beam particles of varying energies, and many different target materials. Studies of beauty and charm production are of particular interest, since experimental results can be compared to perturbative QCD calculations. It is in this context that recent results from fixed-target experiments on beauty and charm production will be reviewed.
Jet production in the CoLoRFulNNLO method: Event shapes in electron-positron collisions
NASA Astrophysics Data System (ADS)
Del Duca, Vittorio; Duhr, Claude; Kardos, Adam; Somogyi, Gábor; Szőr, Zoltán; Trócsányi, Zoltán; Tulipánt, Zoltán
2016-10-01
We present the CoLoRFulNNLO method to compute higher order radiative corrections to jet cross sections in perturbative QCD. We apply our method to the computation of event shape observables in electron-positron collisions at NNLO accuracy and validate our code by comparing our predictions to previous results in the literature. We also calculate for the first time jet cone energy fraction at NNLO.
Quenching parameter in a holographic thermal QCD
NASA Astrophysics Data System (ADS)
Patra, Binoy Krishna; Arya, Bhaskar
2017-01-01
We have calculated the quenching parameter, q ˆ in a model-independent way using the gauge-gravity duality. In earlier calculations, the geometry in the gravity side at finite temperature was usually taken as the pure AdS black hole metric for which the dual gauge theory becomes conformally invariant unlike QCD. Therefore we use a metric which incorporates the fundamental quarks by embedding the coincident D7 branes in the Klebanov-Tseytlin background and a finite temperature is switched on by inserting a black hole into the background, known as OKS-BH metric. Further inclusion of an additional UV cap to the metric prepares the dual gauge theory to run similar to thermal QCD. Moreover q ˆ is usually defined in the literature from the Glauber model perturbative QCD evaluation of the Wilson loop, which has no reasons to hold if the coupling is large and is thus against the main idea of gauge-gravity duality. Thus we use an appropriate definition of q ˆ : q ˆ L- = 1 /L2, where L is the separation for which the Wilson loop is equal to some specific value. The above two refinements cause q ˆ to vary with the temperature as T4 always and to depend linearly on the light-cone time L- with an additional (1 /L-) correction term in the short-distance limit whereas in the long-distance limit, q ˆ depends only linearly on L- with no correction term. These observations agree with other holographic calculations directly or indirectly.
Transverse Quark Spin Effects in SIDIS and Drell Yan Scattering
NASA Astrophysics Data System (ADS)
Gamberg, Leonard
2006-10-01
The connection between quark orbital angular momentum and final state interactions for transversely polarized quarks in unpolarized hadrons suggests significant azimuthal asymmetries in pion production in semi-inclusive deep inelastic scattering (SIDIS) (e p->e^'X π) as well as in di- lepton production in Drell Yan (p p->&+circ;&-circ;X and &-circ;p->&+circ;&-circ;X) scattering. When transverse momentum of the reaction, PT is on the order of or less than λqcd, that is PT˜kT where kT is intrinsic transverse quark momentum, these effects are characterized in term of naive time reversal odd (so called T-odd) transverse momentum dependent (TMD) parton distribution and fragmentation functions. At these moderate transverse momentum scales we estimate the size of the 2φ azimuthal asymmetry in SIDIS and Drell Yan scattering in the parton spectator framework. In the former case we consider this so called ``Boer-Mulders'' effect for a proposed experiment at the upgraded CLAS-12 GeV detector at Jefferson LAB. In the latter case we consider this asymmetry for proton anti-proton collider, as well as π nucleon fixed target experiments. We also consider competing contributions to these asymmetries from perturbative QCD (pQCD) contributions which emerge when PT> λqcd. Evidence of a strong dependence on transverse momentum would indicate the presence of T-odd structures in unpolarized SIDIS and Drell Yan scattering, implying that transversity properties of the nucleon can be accessed without invoking beam or target polarization.
Light flavor-singlet scalars and walking signals in N f = 8 QCD on the lattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoki, Yasumichi; Aoyama, Tatsumi; Bennett, Ed
Based on the highly improved staggered quark action, we perform in this paper lattice simulations of N f = 8 QCD and confirm our previous observations, both of a flavor-singlet scalar meson (denoted as σ) as light as the pion and of various “walking signals” through the low-lying spectra, with higher statistics, smaller fermion masses m f, and larger volumes. We measure M π, F π, M ρ, M a0, M a1, M b1, M N, M σ, F σ, (φφ) (both directly and through the Gell-Mann-Oakes-Renner relation), and the string tension. The data are consistent with the spontaneously brokenmore » phase of the chiral symmetry, in agreement with the previous results: Ratios of the quantities to M π monotonically increase in the smaller m f region towards the chiral limit similarly to N f = 4 QCD, in sharp contrast to N f = 12 QCD where the ratios become flattened. We perform fits to chiral perturbation theory, with the value of F π found in the chiral limit extrapolation reduced dramatically to roughly 2/3 of the previous result, suggesting the theory is much closer to the conformal window. In fact, each quantity obeys the respective hyperscaling relation throughout a more extensive m f region compared with earlier works. The hyperscaling relation holds with roughly a universal value of the anomalous dimension, γ m ≃ 1, with the notable exception of M π with γ m ≃ 0.6 as in the previous results, which reflects the above growing up of the ratios towards the chiral limit. This is a salient feature (walking signal) of N f = 8, unlike either N f = 4, which has no hyperscaling relation at all, or N f = 12 QCD, which exhibits universal hyperscaling. The effective γ m Ξ γ m(m f) of M π defined for each m f region has a tendency to grow towards unity near the chiral limit, in conformity with the Nambu-Goldstone boson nature, as opposed to the case of N f = 12 QCD where it is almost constant. We further confirm the previous observation of the light σ with mass comparable to the pion in the studied m f region. In a chiral limit extrapolation of the σ mass using the dilaton chiral perturbation theory and also using the simple linear fit, we find the value consistent with the 125 GeV Higgs boson within errors. Finally, our results suggest that the theory could be a good candidate for walking technicolor model, having anomalous dimension γ m ≃ 1 and a light flavor-singlet scalar meson as a technidilaton, which can be identified with the 125 GeV composite Higgs in the N f = 8 one-family model.« less
Light flavor-singlet scalars and walking signals in N f = 8 QCD on the lattice
Aoki, Yasumichi; Aoyama, Tatsumi; Bennett, Ed; ...
2017-07-18
Based on the highly improved staggered quark action, we perform in this paper lattice simulations of N f = 8 QCD and confirm our previous observations, both of a flavor-singlet scalar meson (denoted as σ) as light as the pion and of various “walking signals” through the low-lying spectra, with higher statistics, smaller fermion masses m f, and larger volumes. We measure M π, F π, M ρ, M a0, M a1, M b1, M N, M σ, F σ, (φφ) (both directly and through the Gell-Mann-Oakes-Renner relation), and the string tension. The data are consistent with the spontaneously brokenmore » phase of the chiral symmetry, in agreement with the previous results: Ratios of the quantities to M π monotonically increase in the smaller m f region towards the chiral limit similarly to N f = 4 QCD, in sharp contrast to N f = 12 QCD where the ratios become flattened. We perform fits to chiral perturbation theory, with the value of F π found in the chiral limit extrapolation reduced dramatically to roughly 2/3 of the previous result, suggesting the theory is much closer to the conformal window. In fact, each quantity obeys the respective hyperscaling relation throughout a more extensive m f region compared with earlier works. The hyperscaling relation holds with roughly a universal value of the anomalous dimension, γ m ≃ 1, with the notable exception of M π with γ m ≃ 0.6 as in the previous results, which reflects the above growing up of the ratios towards the chiral limit. This is a salient feature (walking signal) of N f = 8, unlike either N f = 4, which has no hyperscaling relation at all, or N f = 12 QCD, which exhibits universal hyperscaling. The effective γ m Ξ γ m(m f) of M π defined for each m f region has a tendency to grow towards unity near the chiral limit, in conformity with the Nambu-Goldstone boson nature, as opposed to the case of N f = 12 QCD where it is almost constant. We further confirm the previous observation of the light σ with mass comparable to the pion in the studied m f region. In a chiral limit extrapolation of the σ mass using the dilaton chiral perturbation theory and also using the simple linear fit, we find the value consistent with the 125 GeV Higgs boson within errors. Finally, our results suggest that the theory could be a good candidate for walking technicolor model, having anomalous dimension γ m ≃ 1 and a light flavor-singlet scalar meson as a technidilaton, which can be identified with the 125 GeV composite Higgs in the N f = 8 one-family model.« less
D → Klv semileptonic decay using lattice QCD with HISQ at physical pion masses
NASA Astrophysics Data System (ADS)
Chakraborty, Bipasha; Davies, Christine; Koponen, Jonna; Lepage, G. Peter
2018-03-01
he quark flavor sector of the Standard Model is a fertile ground to look for new physics effects through a unitarity test of the Cabbibo-Kobayashi-Maskawa (CKM) matrix. We present a lattice QCD calculation of the scalar and the vector form factors (over a large q2 region including q2 = 0) associated with the D→ Klv semi-leptonic decay. This calculation will then allow us to determine the central CKM matrix element, Vcs in the Standard Model, by comparing the lattice QCD results for the form factors and the experimental decay rate. This form factor calculation has been performed on the Nf = 2 + 1 + 1 MILC HISQ ensembles with the physical light quark masses.
Exclusive, hard diffraction in QCD
NASA Astrophysics Data System (ADS)
Freund, Andreas
In the first chapter we give an introduction to hard diffractive scattering in QCD to introduce basic concepts and terminology, thus setting the stage for the following chapters. In the second chapter we make predictions for nondiagonal parton distributions in a proton in the LLA. We calculate the DGLAP-type evolution kernels in the LLA, solve the nondiagonal GLAP evolution equations with a modified version of the CTEQ-package and comment on the range of applicability of the LLA in the asymmetric regime. We show that the nondiagonal gluon distribution g(x1,x2,t,μ2) can be well approximated at small x by the conventional gluon density xG(x,μ2). In the third chapter, we discuss the algorithms used in the LO evolution program for nondiagonal parton distributions in the DGLAP region and discuss the stability of the code. Furthermore, we demonstrate that we can reproduce the case of the LO diagonal evolution within less than 0.5% of the original code as developed by the CTEQ-collaboration. In chapter 4, we show that factorization holds for the deeply virtual Compton scattering amplitude in QCD, up to power suppressed terms, to all orders in perturbation theory. Furthermore, we show that the virtuality of the produced photon does not influence the general theorem. In chapter 5, we demonstrate that perturbative QCD allows one to calculate the absolute cross section of diffractive exclusive production of photons at large Q2 at HERA, while the aligned jet model allows one to estimate the cross section for intermediate Q2~2GeV2. Furthermore, we find that the imaginary part of the amplitude for the production of real photons is larger than the imaginary part of the corresponding DIS amplitude, leading to predictions of a significant counting rate for the current generation of experiments at HERA. We also find a large azimuthal angle asymmetry in ep scattering for HERA kinematics which allows one to directly measure the real part of the DVCS amplitude and hence the nondiagonal parton distributions. In the last chapter, we propose a new methodology of gaining shape fits to nondiagonal parton distributions and, for the first time, to determine the ratio η of the real to imaginary part of the DIS amplitude. We do this by using several recent fits to F2(x,Q2) to compute the asymmetry A for the combined DVCS and Bethe- Heitler cross section. The asymmetry A, isolates the interference term of DVCS and Bethe-Heitler in the total cross section, in other words, by isolating the real part of the DVCS amplitude through this asymmetry one has access to the nondiagonal parton distributions for the first time. Comparing the predictions for A against experiment would allow one to make a prediction of the shape, though not absolute value, of nondiagonal parton distributions. In the appendix, to illustrate an application of distributional methods as discussed in chapter 4, we will show, with the aid of simple examples, how to make simple estimates of the sizes of higher-order Feynman graphs. Our methods enable appropriate values of renormalization and factorization scales to be made. They allow the diagnosis of the source of unusually large corrections that are in need of resummation.
Measurement of the Generalized Forward Spin Polarizabilities of the Neutron
NASA Astrophysics Data System (ADS)
Amarian, M.; Auerbach, L.; Averett, T.; Berthot, J.; Bertin, P.; Bertozzi, W.; Black, T.; Brash, E.; Brown, D.; Burtin, E.; Calarco, J.; Cates, G.; Chai, Z.; Chen, J.-P.; Choi, Seonho; Chudakov, E.; Cisbani, E.; de Jager, C. W.; Deur, A.; Disalvo, R.; Dieterich, S.; Djawotho, P.; Finn, J. M.; Fissum, K.; Fonvieille, H.; Frullani, S.; Gao, H.; Gao, J.; Garibaldi, F.; Gasparian, A.; Gilad, S.; Gilman, R.; Glamazdin, A.; Glashausser, C.; Goldberg, E.; Gomez, J.; Gorbenko, V.; Hansen, J.-O.; Hersman, B.; Holmes, R.; Huber, G. M.; Hughes, E.; Humensky, B.; Incerti, S.; Iodice, M.; Jensen, S.; Jiang, X.; Jones, C.; Jones, G.; Jones, M.; Jutier, C.; Ketikyan, A.; Kominis, I.; Korsch, W.; Kramer, K.; Kumar, K.; Kumbartzki, G.; Kuss, M.; Lakuriqi, E.; Laveissiere, G.; Lerose, J.; Liang, M.; Liyanage, N.; Lolos, G.; Malov, S.; Marroncle, J.; McCormick, K.; McKeown, R.; Meziani, Z.-E.; Michaels, R.; Mitchell, J.; Papandreou, Z.; Pavlin, T.; Petratos, G. G.; Pripstein, D.; Prout, D.; Ransome, R.; Roblin, Y.; Rowntree, D.; Rvachev, M.; Sabatie, F.; Saha, A.; Slifer, K.; Souder, P.; Saito, T.; Strauch, S.; Suleiman, R.; Takahashi, K.; Teijiro, S.; Todor, L.; Tsubota, H.; Ueno, H.; Urciuoli, G.; der Meer, R. Van; Vernin, P.; Voskanian, H.; Wojtsekhowski, B.; Xiong, F.; Xu, W.; Yang, J.-C.; Zhang, B.; Żołnierczuk, P. A.
2004-10-01
The generalized forward spin polarizabilities γ0 and δLT of the neutron have been extracted for the first time in a Q2 range from 0.1 to 0.9 GeV2. Since γ0 is sensitive to nucleon resonances and δLT is insensitive to the Δ resonance, it is expected that the pair of forward spin polarizabilities should provide benchmark tests of the current understanding of the chiral dynamics of QCD. The new results on δLT show significant disagreement with chiral perturbation theory calculations, while the data for γ0 at low Q2 are in good agreement with a next-to-leading-order relativistic baryon chiral perturbation theory calculation. The data show good agreement with the phenomenological MAID model.
NASA Astrophysics Data System (ADS)
Bijnens, Johan; Relefors, Johan
2017-12-01
We calculate vector-vector correlation functions at two loops using partially quenched chiral perturbation theory including finite volume effects and twisted boundary conditions. We present expressions for the flavor neutral cases and the flavor charged case with equal masses. Using these expressions we give an estimate for the ratio of disconnected to connected contributions for the strange part of the electromagnetic current. We give numerical examples for the effects of partial quenching, finite volume and twisting and suggest the use of different twists to check the size of finite volume effects. The main use of this work is expected to be for lattice QCD calculations of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment.
NASA Astrophysics Data System (ADS)
Zachariou, N.; Ilieva, Y.; Berman, B. L.; Ivanov, N. Ya.; Sargsian, M. M.; Avakian, R.; Feldman, G.; Nadel-Turonski, P.; Adhikari, K. P.; Adikaram, D.; Anderson, M. D.; Pereira, S. Anefalos; Avakian, H.; Badui, R. A.; Baltzell, N. A.; Battaglieri, M.; Baturin, V.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; Alaoui, A. El; Fassi, L. El; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Fradi, A.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Glazier, D. I.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Hafidi, K.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Hughes, S. M.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mattione, P. T.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeeev, V. I.; Montgomery, R. A.; Moutarde, H.; Camacho, C. Munoz; Net, L. A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Phelps, W.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Senderovich, I.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D.; Wei, X.; Wood, M. H.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration
2015-05-01
The beam-spin asymmetry, Σ , for the reaction γ d →p n has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (JLab) for six photon-energy bins, between 1.1 and 2.3 GeV, and proton angles in the center-of-mass frame, θc .m ., between 25∘ and 160∘. These are the first measurements of beam-spin asymmetries at θc .m .=90∘ for photon-beam energies above 1.6 GeV, and the first measurements for angles other than θc .m .=90∘ . The angular and energy dependence of Σ is expected to aid in the development of QCD-based models to understand the mechanisms of deuteron photodisintegration in the transition region between hadronic and partonic degrees of freedom, where both effective field theories and perturbative QCD cannot make reliable predictions.
Heavy and light flavor jet quenching at RHIC and LHC energies
NASA Astrophysics Data System (ADS)
Cao, Shanshan; Luo, Tan; Qin, Guang-You; Wang, Xin-Nian
2018-02-01
The Linear Boltzmann Transport (LBT) model coupled to hydrodynamical background is extended to include transport of both light partons and heavy quarks through the quark-gluon plasma (QGP) in high-energy heavy-ion collisions. The LBT model includes both elastic and inelastic medium-interaction of both primary jet shower partons and thermal recoil partons within perturbative QCD (pQCD). It is shown to simultaneously describe the experimental data on heavy and light flavor hadron suppression in high-energy heavy-ion collisions for different centralities at RHIC and LHC energies. More detailed investigations within the LBT model illustrate the importance of both initial parton spectra and the shapes of fragmentation functions on the difference between the nuclear modifications of light and heavy flavor hadrons. The dependence of the jet quenching parameter q ˆ on medium temperature and jet flavor is quantitatively extracted.
Axions, Inflation and String Theory
NASA Astrophysics Data System (ADS)
Mack, Katherine J.; Steinhardt, P. J.
2009-01-01
The QCD axion is the leading contender to rid the standard model of the strong-CP problem. If the Peccei-Quinn symmetry breaking occurs before inflation, which is likely in string theory models, axions manifest themselves cosmologically as a form of cold dark matter with a density determined by the axion's initial conditions and by the energy scale of inflation. Constraints on the dark matter density and on the amplitude of CMB isocurvature perturbations currently demand an exponential degree of fine-tuning of both axion and inflationary parameters beyond what is required for particle physics. String theory models generally produce large numbers of axion-like fields; the prospect that any of these fields exist at scales close to that of the QCD axion makes the problem drastically worse. I will discuss the challenge of accommodating string-theoretic axions in standard inflationary cosmology and show that the fine-tuning problems cannot be fully addressed by anthropic principle arguments.
An automated subtraction of NLO EW infrared divergences
NASA Astrophysics Data System (ADS)
Schönherr, Marek
2018-02-01
In this paper a generalisation of the Catani-Seymour dipole subtraction method to next-to-leading order electroweak calculations is presented. All singularities due to photon and gluon radiation off both massless and massive partons in the presence of both massless and massive spectators are accounted for. Particular attention is paid to the simultaneous subtraction of singularities of both QCD and electroweak origin which are present in the next-to-leading order corrections to processes with more than one perturbative order contributing at Born level. Similarly, embedding non-dipole-like photon splittings in the dipole subtraction scheme discussed. The implementation of the formulated subtraction scheme in the framework of the Sherpa Monte-Carlo event generator, including the restriction of the dipole phase space through the α -parameters and expanding its existing subtraction for NLO QCD calculations, is detailed and numerous internal consistency checks validating the obtained results are presented.
Heavy and light flavor jet quenching at RHIC and LHC energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Shanshan; Luo, Tan; Qin, Guang-You
The Linear Boltzmann Transport (LBT) model coupled to hydrodynamical background is extended to include transport of both light partons and heavy quarks through the quark–gluon plasma (QGP) in high-energy heavy-ion collisions. The LBT model includes both elastic and inelastic medium-interaction of both primary jet shower partons and thermal recoil partons within perturbative QCD (pQCD). It is shown to simultaneously describe the experimental data on heavy and light flavor hadron suppression in high-energy heavy-ion collisions for different centralities at RHIC and LHC energies. More detailed investigations within the LBT model illustrate the importance of both initial parton spectra and the shapes of fragmentation functions on the difference between the nuclear modifications of light and heavy flavor hadrons. Finally, the dependence of the jet quenching parametermore » $$\\hat{q}$$ on medium temperature and jet flavor is quantitatively extracted.« less
Measurement of αs from jet rates in deep inelastic scattering at HERA
NASA Astrophysics Data System (ADS)
Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Repond, J.; Stanek, R.; Talaga, R. L.; Zhang, H.; Ayad, R.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Polini, A.; Sartorelli, G.; Timellini, R.; Zamora Garcia, Y.; Zichichi, A.; Bargende, A.; Bornheim, A.; Crittenden, J.; Desch, K.; Diekmann, B.; Doeker, T.; Eckert, M.; Feld, L.; Frey, A.; Geerts, M.; Grothe, M.; Hartmann, H.; Heinloth, K.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mengel, S.; Mollen, J.; Paul, E.; Pfeiffer, M.; Rembser, Ch.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Cottingham, W. N.; Dyce, N.; Foster, B.; George, S.; Hayes, M. E.; Heath, G. P.; Heath, H. F.; Morgado, C. J. S.; O'Mara, J. A.; Piccioni, D.; Roff, D. G.; Tapper, R. J.; Yoshida, R.; Rau, R. R.; Arneodo, M.; Capua, M.; Garfagnini, A.; Iannotti, L.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Cartiglia, N.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Zajaç, J.; Kotański, A.; Przybycień, M.; Bauerdick, L. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Coldewey, C.; Deppe, O.; Desler, K.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Große-Knetter, J.; Gutjahr, B.; Haas, T.; Hain, W.; Hasell, D.; Heßling, H.; Iga, Y.; Johnson, K. F.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Köpke, L.; Kötz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mainusch, J.; Mańczak, O.; Monteiro, T.; Ng, J. S. T.; Nickel, S.; Notz, D.; Ohrenberg, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schulz, W.; Selonke, F.; Stiliaris, E.; Surrow, B.; Voß, T.; Westphal, D.; Wolf, G.; Youngman, C.; Zeuner, W.; Zhou, J. F.; Grabosch, H. J.; Kharchilava, A.; Leich, A.; Mattingly, M. C. K.; Mari, S. M.; Meyer, A.; Schlenstedt, S.; Wulff, N.; Barbagli, G.; Pelfer, P.; Anzivino, G.; Maccarrone, G.; De Pasquale, S.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Freidhof, A.; Söldner-Rembold, S.; Schroeder, J.; Trefzger, T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Saxon, D. H.; Utley, M. L.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Neumann, T.; Sinkus, R.; Wick, K.; Badura, E.; Burow, B. D.; Hagge, L.; Lohrmann, E.; Milewski, J.; Nakahata, M.; Pavel, N.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Bruemmer, N.; Butterworth, I.; Gallo, E.; Harris, V. L.; Hung, B. Y. H.; Long, K. R.; Miller, D. B.; Morawitz, P. P. O.; Prinias, A.; Sedgbeer, J. K.; Whitfield, A. F.; Mallik, U.; McCliment, E.; Wang, M. Z.; Wang, S. M.; Wu, J. T.; Cloth, P.; Filges, D.; An, S. H.; Hong, S. M.; Nam, S. W.; Park, S. K.; Suh, M. H.; Yon, S. H.; Imlay, R.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Cases, G.; Fernandez, J. P.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Martinez, M.; del Peso, J.; Puga, J.; Terron, J.; de Trocóniz, J. F.; Smith, G. R.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Patel, P. M.; Sinclair, L. E.; Stairs, D. G.; St. Laurent, M.; Ullmann, R.; Zacek, G.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Kobrin, V. D.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Yu.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Botje, M.; Chlebana, F.; Dake, A.; Engelen, J.; de Kamps, M.; Kooijman, P.; Kruse, A.; Tiecke, H.; Verkerke, W.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Honscheid, K.; Li, C.; Ling, T. Y.; McLean, K. W.; Murray, W. N.; Nylander, P.; Park, I. H.; Romanowski, T. A.; Seidlein, R.; Bailey, D. S.; Byrne, A.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Harnew, N.; Lancaster, M.; Lindemann, L.; McFall, J. D.; Nath, C.; Noyes, V. A.; Quadt, A.; Tickner, J. R.; Uijterwaal, H.; Walczak, R.; Waters, D. S.; Wilson, F. F.; Yip, T.; Abbiendi, G.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; De Giorgi, M.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Butterworth, J. M.; Feild, R. G.; Oh, B. Y.; Okrasinski, J. R.; Whitmore, J. J.; D'Agostini, G.; Marini, G.; Nigro, A.; Tassi, E.; Hart, J. C.; McCubbin, N. A.; Prytz, K.; Shah, T. P.; Short, T. L.; Barberis, E.; Dubbs, T.; Heusch, C.; Van Hook, M.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Williams, D. C.; Biltzinger, J.; Seifert, R. J.; Schwarzer, O.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Briskin, G.; Dagan, S.; Händel-Pikielny, C.; Levy, A.; Fleck, J. I.; Hasegawa, T.; Hazumi, M.; Ishii, T.; Kuze, M.; Mine, S.; Nagasawa, Y.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Nakamitsu, Y.; Yamauchi, K.; Cirio, R.; Costa, M.; Ferrero, M. I.; Lamberti, L.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Bandyopadhyay, D.; Benard, F.; Brkic, M.; Gingrich, D. M.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Polenz, S.; Sampson, C. R.; Teuscher, R. J.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Blankenship, K.; Lu, B.; Mo, L. W.; Bogusz, W.; Charchuła, K.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Eisenberg, Y.; Karshon, U.; Revel, D.; Zer-Zion, D.; Ali, I.; Badgett, W. F.; Behrens, B.; Dasu, S.; Fordham, C.; Foudas, C.; Goussiou, A.; Loveless, R. J.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Tsurugai, T.; Bhadra, S.; Cardy, M. L.; Fagerstroem, C.-P.; Frisken, W. R.; Furutani, K. M.; Khakzad, M.; Schmidke, W. B.; ZEUS Collaboration
1995-02-01
Jet production in deep inelastic scattering for 120 < Q2 < 3600 GeV 2 has been studied using data from an integrated luminosity of 3.2 pb -1 collected with the ZEUS detector at HERA. Jets are identified with the JADE algorithm. A cut on the angular distribution of parton emission in the γ ∗- parton centre-of-mass system minimises the experimental and theoretical uncertainties in the determination of the jet rates. The jet rates, when compared to O( αs2) perturbative QCD calculations, allow a precise determination of αs( Q) in three Q2-intervals. The values are consistent with a running of ifαs( Q), as expected from QCD. Extrapolating to Q = M Z 0αs( MZ0) = 0.117 ± 0.005 (stat) -0.005+0.004 (syst exp) ± 0.007 (syst theory).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adare, A.; Aidala, C.; Ajitanand, N. N.
2015-02-02
We present midrapidity charged-pion invariant cross sections, the ratio of the π⁻ to π⁺ cross sections and the charge-separated double-spin asymmetries in polarized p+p collisions at √s = 200 GeV. While the cross section measurements are consistent within the errors of next-to-leadingorder (NLO) perturbative quantum chromodynamics predictions (pQCD), the same calculations over estimate the ratio of the charged-pion cross sections. This discrepancy arises from the cancellation of the substantial systematic errors associated with the NLO-pQCD predictions in the ratio and highlights the constraints these data will place on flavor dependent pion fragmentation functions. Thus, the charge-separated pion asymmetries presented heremore » sample an x range of ~0.03–0.16 and provide unique information on the sign of the gluon-helicity distribution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolton, Daniel R.; Briceno, Raul A.; Wilson, David J.
Here, we present a determination of the isovector,more » $P$-wave $$\\pi\\pi$$ scattering phase shift obtained by extrapolating recent lattice QCD results from the Hadron Spectrum Collaboration using $$m_\\pi =236$$ MeV. The finite volume spectra are described using extensions of L\\"uscher's method to determine the infinite volume Unitarized Chiral Perturbation Theory scattering amplitude. We exploit the pion mass dependence of this effective theory to obtain the scattering amplitude at $$m_\\pi= 140$$ MeV. The scattering phase shift is found to be in good agreement with experiment up to center of mass energies of 1.2 GeV. The analytic continuation of the scattering amplitude to the complex plane yields a $$\\rho$$-resonance pole at $$E_\\rho= \\left[755(2)(1)(^{20}_{02})-\\frac{i}{2}\\,129(3)(1)(^{7}_{1})\\right]~{\\rm MeV}$$. The techniques presented illustrate a possible pathway towards connecting lattice QCD observables of few-body, strongly interacting systems to experimentally accessible quantities.« less
Hadron electric polarizability from lattice QCD
NASA Astrophysics Data System (ADS)
Alexandru, Andrei
2017-09-01
Electromagnetic polarizabilities are important parameters for hadron structure, describing the response of the charge and current distributions inside the hadron to an external electromagnetic field. For most hadrons these quantities are poorly constrained experimentally since they can only be measured indirectly. Lattice QCD can be used to compute these quantities directly in terms of quark and gluons degrees of freedom, using the background field method. We present results for the neutron electric polarizability for two different quark masses, light enough to connect to chiral perturbation theory. These are currently the lightest quark masses used in polarizability studies. For each pion mass we compute the polarizability at four different volumes and perform an infinite volume extrapolation. We also discuss the effect of turning on the coupling between the background field and the sea quarks. A.A. is supported in part by the National Science Foundation CAREER Grant PHY-1151648 and by U.S. DOE Grant No. DE-FG02-95ER40907.
Bottomonium suppression using a lattice QCD vetted potential
NASA Astrophysics Data System (ADS)
Krouppa, Brandon; Rothkopf, Alexander; Strickland, Michael
2018-01-01
We estimate bottomonium yields in relativistic heavy-ion collisions using a lattice QCD vetted, complex-valued, heavy-quark potential embedded in a realistic, hydrodynamically evolving medium background. We find that the lattice-vetted functional form and temperature dependence of the proper heavy-quark potential dramatically reduces the dependence of the yields on parameters other than the temperature evolution, strengthening the picture of bottomonium as QGP thermometer. Our results also show improved agreement between computed yields and experimental data produced in RHIC 200 GeV /nucleon collisions. For LHC 2.76 TeV /nucleon collisions, the excited states, whose suppression has been used as a vital sign for quark-gluon-plasma production in a heavy-ion collision, are reproduced better than previous perturbatively-motivated potential models; however, at the highest LHC energies our estimates for bottomonium suppression begin to underestimate the data. Possible paths to remedy this situation are discussed.
NASA Astrophysics Data System (ADS)
Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Ta'Ani, H.; Alexander, J.; Andrews, K. R.; Angerami, A.; Aoki, K.; Apadula, N.; Appelt, E.; Aramaki, Y.; Armendariz, R.; Aschenauer, E. C.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Baublis, V.; Baumann, C.; Bazilevsky, A.; Belmont, R.; Ben-Benjamin, J.; Bennett, R.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Broxmeyer, D.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Campbell, S.; Castera, P.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Conesa Del Valle, Z.; Connors, M.; Csanád, M.; Csörgő, T.; Dairaku, S.; Datta, A.; David, G.; Dayananda, M. K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Dion, A.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; D'Orazio, L.; Efremenko, Y. V.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Fusayasu, T.; Gal, C.; Garishvili, I.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Guo, L.; Gustafsson, H.-Å.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Han, R.; Hanks, J.; Harper, C.; Hashimoto, K.; Haslum, E.; Hayano, R.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Huang, S.; Ichihara, T.; Ichimiya, R.; Iinuma, H.; Ikeda, Y.; Imai, K.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ishihara, M.; Issah, M.; Ivanischev, D.; Iwanaga, Y.; Jacak, B. V.; Jia, J.; Jiang, X.; John, D.; Johnson, B. M.; Jones, T.; Joo, K. S.; Jouan, D.; Kamin, J.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kazantsev, A. V.; Kempel, T.; Khanzadeev, A.; Kijima, K. M.; Kim, B. I.; Kim, D. J.; Kim, E.-J.; Kim, Y.-J.; Kim, Y. K.; Kinney, E.; Kiss, Á.; Kistenev, E.; Kleinjan, D.; Kline, P.; Kochenda, L.; Komkov, B.; Konno, M.; Koster, J.; Kotov, D.; Král, A.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S. H.; Lee, S. R.; Leitch, M. J.; Leite, M. A. L.; Li, X.; Lim, S. H.; Linden Levy, L. A.; Liu, H.; Liu, M. X.; Love, B.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Masui, H.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Miki, K.; Milov, A.; Mitchell, J. T.; Miyachi, Y.; Mohanty, A. K.; Moon, H. J.; Morino, Y.; Morreale, A.; Morrison, D. P.; Motschwiller, S.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Nagamiya, S.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Newby, J.; Nguyen, M.; Nihashi, M.; Nouicer, R.; Nyanin, A. S.; Oakley, C.; O'Brien, E.; Ogilvie, C. A.; Oka, M.; Okada, K.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, S. K.; Pate, S. F.; Patel, L.; Pei, H.; Peng, J.-C.; Pereira, H.; Peressounko, D. Yu.; Petti, R.; Pinkenburg, C.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Qu, H.; Rak, J.; Ravinovich, I.; Read, K. F.; Reygers, K.; Riabov, V.; Riabov, Y.; Richardson, E.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rosendahl, S. S. E.; Rubin, J. G.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Samsonov, V.; Sano, S.; Sarsour, M.; Sato, T.; Savastio, M.; Sawada, S.; Sedgwick, K.; Seidl, R.; Seto, R.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shim, H. H.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Sodre, T.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Stenlund, E.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sun, J.; Sziklai, J.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Themann, H.; Thomas, D.; Togawa, M.; Tomášek, L.; Tomášek, M.; Torii, H.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Utsunomiya, K.; Vale, C.; van Hecke, H. W.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; White, S. N.; Winter, D.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Yamaguchi, Y. L.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; Yoo, J. S.; You, Z.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhou, S.; Phenix Collaboration
2015-02-01
We present midrapidity charged-pion invariant cross sections, the ratio of the π- to π+ cross sections and the charge-separated double-spin asymmetries in polarized p +p collisions at √{s }=200 GeV . While the cross section measurements are consistent within the errors of next-to-leading-order (NLO) perturbative quantum chromodynamics predictions (pQCD), the same calculations overestimate the ratio of the charged-pion cross sections. This discrepancy arises from the cancellation of the substantial systematic errors associated with the NLO-pQCD predictions in the ratio and highlights the constraints these data will place on flavor-dependent pion fragmentation functions. The charge-separated pion asymmetries presented here sample an x range of ˜0.03 - 0.16 and provide unique information on the sign of the gluon-helicity distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torok, Aaron
The {pi}{sup +}{Sigma}{sup +} and {pi}{sup +}{Xi}{sup 0} scattering lengths were calculated in mixed-action Lattice QCD with domain-wall valence quarks on the asqtad-improved coarse MILC configurations at four light-quark masses, and at two light-quark masses on the fine MILC configurations. Heavy Baryon Chiral Perturbation Theory with two and three flavors of light quarks was used to perform the chiral extrapolations. To NNLO in the three-flavor chiral expansion, the kaon-baryon processes that were investigated show no signs of convergence. Using the two-flavor chiral expansion for extrapolation, the pion-hyperon scattering lengths are found to be a{sub {pi}}{sup +}{sub {Sigma}}{sup +} = -0.197{+-}0.017more » fm, and a{sub {pi}}{sup +}{sub {Xi}}{sup 0} = -0.098{+-}0.017 fm, where the comprehensive error includes statistical and systematic uncertainties.« less
Heavy and light flavor jet quenching at RHIC and LHC energies
Cao, Shanshan; Luo, Tan; Qin, Guang-You; ...
2017-12-14
The Linear Boltzmann Transport (LBT) model coupled to hydrodynamical background is extended to include transport of both light partons and heavy quarks through the quark–gluon plasma (QGP) in high-energy heavy-ion collisions. The LBT model includes both elastic and inelastic medium-interaction of both primary jet shower partons and thermal recoil partons within perturbative QCD (pQCD). It is shown to simultaneously describe the experimental data on heavy and light flavor hadron suppression in high-energy heavy-ion collisions for different centralities at RHIC and LHC energies. More detailed investigations within the LBT model illustrate the importance of both initial parton spectra and the shapes of fragmentation functions on the difference between the nuclear modifications of light and heavy flavor hadrons. Finally, the dependence of the jet quenching parametermore » $$\\hat{q}$$ on medium temperature and jet flavor is quantitatively extracted.« less
Primordial gravitational waves, precisely: the role of thermodynamics in the Standard Model
NASA Astrophysics Data System (ADS)
Saikawa, Ken'ichi; Shirai, Satoshi
2018-05-01
In this paper, we revisit the estimation of the spectrum of primordial gravitational waves originated from inflation, particularly focusing on the effect of thermodynamics in the Standard Model of particle physics. By collecting recent results of perturbative and non-perturbative analysis of thermodynamic quantities in the Standard Model, we obtain the effective degrees of freedom including the corrections due to non-trivial interaction properties of particles in the Standard Model for a wide temperature interval. The impact of such corrections on the spectrum of primordial gravitational waves as well as the damping effect due to free-streaming particles is investigated by numerically solving the evolution equation of tensor perturbations in the expanding universe. It is shown that the reevaluation of the effects of free-streaming photons and neutrinos gives rise to some additional damping features overlooked in previous studies. We also observe that the continuous nature of the QCD crossover results in a smooth spectrum for modes that reenter the horizon at around the epoch of the QCD phase transition. Furthermore, we explicitly show that the values of the effective degrees of freedom remain smaller than the commonly used value 106.75 even at temperature much higher than the critical temperature of the electroweak crossover, and that the amplitude of primordial gravitational waves at a frequency range relevant to direct detection experiments becomes Script O(1) % larger than previous estimates that do not include such corrections. This effect can be relevant to future high-sensitivity gravitational wave experiments such as ultimate DECIGO. Our results on the temperature evolution of the effective degrees of freedom are made available as tabulated data and fitting functions, which can also be used in the analysis of other cosmological relics.
Aad, G.; Abajyan, T.; Abbott, B.; ...
2013-08-03
The inclusive jet cross-section has been measured in proton–proton collisions atmore » $$\\sqrt{s}=2.76\\ \\mbox{TeV}$$ in a dataset corresponding to an integrated luminosity of 0.20 pb -1 collected with the ATLAS detector at the Large Hadron Collider in 2011. Jets are identified using the anti-k t algorithm with two radius parameters of 0.4 and 0.6. The inclusive jet double-differential cross-section is presented as a function of the jet transverse momentum p T and jet rapidity y, covering a range of 20 ≤ p T < 430 GeV and |y| < 4.4. The ratio of the cross-section to the inclusive jet cross-section measurement at $$\\sqrt{s} =7\\ \\mbox{TeV}$$, published by the ATLAS Collaboration, is calculated as a function of both transverse momentum and the dimensionless quantity x T = 2p T / √s, in bins of jet rapidity. The systematic uncertainties on the ratios are significantly reduced due to the cancellation of correlated uncertainties in the two measurements. Results are compared to the prediction from next-to-leading order perturbative QCD calculations corrected for non-perturbative effects, and next-to-leading order Monte Carlo simulation. Furthermore, the ATLAS jet cross-section measurements at $$\\sqrt{s}=2.76\\ \\mbox{TeV}$$ and $$\\sqrt{s} =7\\ \\mbox{TeV}$$ are analysed within a framework of next-to-leading order perturbative QCD calculations to determine parton distribution functions of the proton, taking into account the correlations between the measurements.« less
Measurement of D-meson production at mid-rapidity in pp collisions at {√{s}=7} TeV
NASA Astrophysics Data System (ADS)
Acharya, S.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altsybeev, I.; Alves Garcia Prado, C.; An, M.; Andrei, C.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonomi, G.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buitron, S. A. I.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Concas, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovská, J.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Grull, F. R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hladky, J.; Hohlweger, B.; Horak, D.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Islam, M. S.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jaelani, S.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Ketzer, B.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, D.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Mathis, A. M.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D. L.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Montes, E.; Moreira De Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao De Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Park, W. J.; Parmar, S.; Passfeld, A.; Pathak, S. P.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira Da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Rokita, P. S.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rueda, O. V.; Rui, R.; Russo, R.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, S.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Doce, O. Vázquez; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Windelband, B.; Witt, W. E.; Yalcin, S.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zimmermann, S.; Zinovjev, G.; Zmeskal, J.
2017-08-01
The production cross sections for prompt charmed mesons D^0, D^+, D^{*+} and D_s^+ were measured at mid-rapidity in proton-proton collisions at a centre-of-mass energy √{s}=7 {TeV} with the ALICE detector at the Large Hadron Collider (LHC). D mesons were reconstructed from their decays D^0 → K^-π ^+, D^+→ K^-π ^+π ^+, D^{*+} → D^0 π ^+, D_s^{+→ φ π ^+→ K^-K^+π ^+}, and their charge conjugates.With respect to previous measurements in the same rapidity region, the coverage in transverse momentum (p_T) is extended and the uncertainties are reduced by a factor of about two. The accuracy on the estimated total c{\\overline{c}} production cross section is likewise improved. The measured p_T-differential cross sections are compared with the results of three perturbative QCD calculations.
Aad, G.; Abbott, B.; Abdallah, J.; ...
2015-09-01
It was found that the non-perturbative corrections calculated using Pythia with the Perugia 2011 tune did not include the effect of the underlying event. The affected correction factors were recomputed using the Pythia 6.427 generator. These corrections are applied as baseline to the NLO pQCD calculations and thus the central values of the theoretical predictions have changed by a few percent with the new corrections. This has a minor impact on the agreement between the data and the theoretical predictions. Figures 2 and 6 to 13, and all the tables have been updated with the new values. A few sentencesmore » in the discussion in sections 5.2 and 9 were altered or removed.[Figure not available: see fulltext.]« less
NASA Astrophysics Data System (ADS)
Aad, G.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.; Almond, J.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baas, A.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Backus Mayes, J.; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Balek, P.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Bartsch, V.; Bassalat, A.; Basye, A.; Bates, R. L.; Batley, J. R.; Battaglia, M.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, K.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernat, P.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boddy, C. R.; Boehler, M.; Boek, T. T.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borri, M.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Brendlinger, K.; Brennan, A. J.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Bucci, F.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bundock, A. C.; Burckhart, H.; Burdin, S.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Byszewski, M.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chang, P.; Chapleau, B.; Chapman, J. D.; Charfeddine, D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiefari, G.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Chouridou, S.; Chow, B. K. B.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocio, A.; Cirkovic, P.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clemens, J. C.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Coggeshall, J.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Colon, G.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Connell, S. H.; Connelly, I. A.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuciuc, C.-M.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Daniells, A. C.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J. A.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; do Vale, M. A. B.; Do Valle Wemans, A.; Dobos, D.; Doglioni, C.; Doherty, T.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Dris, M.; Dubbert, J.; Dube, S.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudziak, F.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Dwuznik, M.; Dyndal, M.; Ebke, J.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Engelmann, R.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernis, G.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Fernandez Perez, S.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, J.; Fisher, W. C.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Florez Bustos, A. C.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Franz, S.; Fraternali, M.; French, S. T.; Friedrich, C.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gianotti, F.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Glonti, G. L.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goeringer, C.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Graziani, E.; Grebenyuk, O. G.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Groth-Jensen, J.; Grout, Z. J.; Guan, L.; Guescini, F.; Guest, D.; Gueta, O.; Guicheney, C.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Gunther, J.; Guo, J.; Gupta, S.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guttman, N.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Hall, D.; Halladjian, G.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, S.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Hensel, C.; Herbert, G. H.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hoffman, J.; Hoffmann, D.; Hofmann, J. I.; Hohlfeld, M.; Holmes, T. R.; Hong, T. M.; Hooft van Huysduynen, L.; Hopkins, W. H.; Horii, Y.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Hurwitz, M.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansen, H.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, K. E.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jungst, R. M.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Kehoe, R.; Keil, M.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H. Y.; Kim, H.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kittelmann, T.; Kiuchi, K.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Klok, P. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Koll, J.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; König, S.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; La Rosa, A.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laier, H.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Lester, C. M.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, B. A.; Long, J. D.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lungwitz, M.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeno, M.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Mahmoud, S.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J. A.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mapelli, L.; March, L.; Marchand, J. F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marques, C. N.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, H.; Martinez, M.; Martin-Haugh, S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazzaferro, L.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Mechnich, J.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Meric, N.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, T.; Mueller, T.; Muenstermann, D.; Munwes, Y.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Nanava, G.; Narayan, R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negri, G.; Negrini, M.; Nektarijevic, S.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, M. I.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver Garcia, E.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panduro Vazquez, J. G.; Pani, P.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pearce, J.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrella, S.; Perrino, R.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pires, S.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Poddar, S.; Podlyski, F.; Poettgen, R.; Poggioli, L.; Pohl, D.; Pohl, M.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Price, D.; Price, J.; Price, L. E.; Prieur, D.; Primavera, M.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Przysiezniak, H.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Qureshi, A.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Randle-Conde, A. S.; Rangel-Smith, C.; Rao, K.; Rauscher, F.; Rave, T. C.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reisin, H.; Relich, M.; Rembser, C.; Ren, H.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Ridel, M.; Rieck, P.; Rieger, J.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodrigues, L.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, M.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sacerdoti, S.; Saddique, A.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sartisohn, G.; Sasaki, O.; Sasaki, Y.; Sauvage, G.; Sauvan, E.; Savard, P.; Savu, D. O.; Sawyer, C.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scott, W. G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Sellers, G.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simoniello, R.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skottowe, H. P.; Skovpen, K. Yu.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosebee, M.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo, S.; Spanò, F.; Spearman, W. R.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Stavina, P.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Struebig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tannenwald, B. B.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong, W. M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Topilin, N. D.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tran, H. L.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urbaniec, D.; Urquijo, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Virzi, J.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, A.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Anh, T. Vu; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Walsh, B.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weigell, P.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wendland, D.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilkens, H. G.; Will, J. Z.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittig, T.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wright, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xiao, M.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, U. K.; Yang, Y.; Yanush, S.; Yao, L.; Yao, W.-M.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zevi della Porta, G.; Zhang, D.; Zhang, F.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, X.; Zhang, Z.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Zinonos, Z.; Ziolkowski, M.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zutshi, V.; Zwalinski, L.
2015-09-01
It was found that the non-perturbative corrections calculated using Pythia with the Perugia 2011 tune did not include the effect of the underlying event. The affected correction factors were recomputed using the Pythia 6.427 generator. These corrections are applied as baseline to the NLO pQCD calculations and thus the central values of the theoretical predictions have changed by a few percent with the new corrections. This has a minor impact on the agreement between the data and the theoretical predictions. Figures 2 and 6 to 13, and all the tables have been updated with the new values. A few sentences in the discussion in sections 5.2 and 9 were altered or removed. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Banerjee, Pulak; Dhani, Prasanna K.; Kumar, M. C.; Mathews, Prakash; Ravindran, V.
2018-05-01
We study the phenomenological impact of the interaction of spin-2 fields with those of the Standard Model in a model independent framework up to next-to-next-to-leading order in perturbative quantum chromodynamics. We use the invariant mass distribution of the pair of leptons produced at the Large Hadron Collider to demonstrate this. A minimal scenario where the spin-2 fields couple to two gauge invariant operators with different coupling strengths has been considered. These operators not being conserved show very different ultraviolet behavior increasing the searches options of spin-2 particles at the colliders. We find that our results using the higher order quantum corrections stabilize the predictions with respect to renormalization and factorization scales. We also find that corrections are appreciable which need to be taken into account in such searches at the colliders.
Measurement of D-meson production at mid-rapidity in pp collisions at $${\\sqrt{s}=7}$$ TeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acharya, S.; Adamová, D.; Aggarwal, M. M.
The production cross sections for prompt charmed mesons D 0 , D + , D * + and Ds+ were measured at mid-rapidity in proton–proton collisions at a centre-of-mass energy s=7TeV with the ALICE detector at the Large Hadron Collider (LHC). D mesons were reconstructed from their decays D 0 → K - π + , D + → K - π + π + , D * + → D 0 π + , Dmore » $$+\\atop{s}$$→K -K +π +, and their charge conjugates.With respect to previous measurements in the same rapidity region, the coverage in transverse momentum (p T ) is extended and the uncertainties are reduced by a factor of about two. The accuracy on the estimated total c$$\\bar{c}$$ production cross section is likewise improved. The measured p T -differential cross sections are compared with the results of three perturbative QCD calculations.« less
Measurement of D-meson production at mid-rapidity in pp collisions at $${\\sqrt{s}=7}$$ TeV
Acharya, S.; Adamová, D.; Aggarwal, M. M.; ...
2017-08-17
The production cross sections for prompt charmed mesons D 0 , D + , D * + and Ds+ were measured at mid-rapidity in proton–proton collisions at a centre-of-mass energy s=7TeV with the ALICE detector at the Large Hadron Collider (LHC). D mesons were reconstructed from their decays D 0 → K - π + , D + → K - π + π + , D * + → D 0 π + , Dmore » $$+\\atop{s}$$→K -K +π +, and their charge conjugates.With respect to previous measurements in the same rapidity region, the coverage in transverse momentum (p T ) is extended and the uncertainties are reduced by a factor of about two. The accuracy on the estimated total c$$\\bar{c}$$ production cross section is likewise improved. The measured p T -differential cross sections are compared with the results of three perturbative QCD calculations.« less
Deep inelastic scattering of leptons from nuclear targets and the BFKL Pomeron
NASA Astrophysics Data System (ADS)
Bialas, Andrzej; Czyz, Wieslaw; Florkowski, Wojciech
1997-06-01
We calculate shadowing in the process of deep inelastic interactions of leptons with nuclei in the perturbative regime of QCD. We find appreciable shadowing for heavy nuclei (e.g., Pb) in the region of a small Bjorken scaling variable 10-5<=x<=10-3. This shadowing depends weakly on Q2, but it may be strongly influenced, especially at x>=10-3, by the existence of real parts of the forward scattering amplitudes.
NASA Astrophysics Data System (ADS)
Yao, De-Liang
2018-02-01
We calculate the masses and sigma terms of the doubly charmed baryons up to next-to-next-to-next-to-leading order [i.e., O (p4) ] in a covariant baryon chiral perturbation theory by using the extended-on-mass-shell renormalization scheme. Their expressions both in infinite and finite volumes are provided for chiral extrapolation in lattice QCD. As a first application, our chiral results of the masses are confronted with the existing lattice QCD data in the presence of finite-volume corrections. Up to O (p3) , all relevant low-energy constants can be well determined. As a consequence, we obtain the physical values for the masses of Ξc c and Ωc c baryons by extrapolating to the physical limit. Our determination of the Ξc c mass is consistent with the recent experimental value by LHCb Collaboration, however, larger than the one by SELEX Collaboration. In addition, we predict the pion-baryon and strangeness-baryon sigma terms, as well as the mass splitting between the Ξc c and Ωc c states. Their quark mass dependences are also discussed. The numerical procedure can be applied to the chiral results of O (p4) order, where more unknown constants are involved, when more data are available for unphysical pion masses.
NASA Astrophysics Data System (ADS)
Bertone, Valerio; Carrazza, Stefano; Hartland, Nathan P.; Nocera, Emanuele R.; Rojo, Juan
2017-08-01
We present NNFF1.0, a new determination of the fragmentation functions (FFs) of charged pions, charged kaons, and protons/antiprotons from an analysis of single-inclusive hadron production data in electron-positron annihilation. This determination, performed at leading, next-to-leading, and next-to-next-to-leading order in perturbative QCD, is based on the NNPDF methodology, a fitting framework designed to provide a statistically sound representation of FF uncertainties and to minimise any procedural bias. We discuss novel aspects of the methodology used in this analysis, namely an optimised parametrisation of FFs and a more efficient χ ^2 minimisation strategy, and validate the FF fitting procedure by means of closure tests. We then present the NNFF1.0 sets, and discuss their fit quality, their perturbative convergence, and their stability upon variations of the kinematic cuts and the fitted dataset. We find that the systematic inclusion of higher-order QCD corrections significantly improves the description of the data, especially in the small- z region. We compare the NNFF1.0 sets to other recent sets of FFs, finding in general a reasonable agreement, but also important differences. Together with existing sets of unpolarised and polarised parton distribution functions (PDFs), FFs and PDFs are now available from a common fitting framework for the first time.
B- and D-meson decay constants from three-flavor lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazavov, A.; et al.
2012-06-01
We calculate the leptonic decay constants of B_{(s)} and D_{(s)} mesons in lattice QCD using staggered light quarks and Fermilab bottom and charm quarks. We compute the heavy-light meson correlation functions on the MILC asqtad-improved staggered gauge configurations which include the effects of three light dynamical sea quarks. We simulate with several values of the light valence- and sea-quark masses (down to ~m_s/10) and at three lattice spacings (a ~ 0.15, 0.12, and 0.09 fm) and extrapolate to the physical up and down quark masses and the continuum using expressions derived in heavy-light meson staggered chiral perturbation theory. We renormalizemore » the heavy-light axial current using a mostly nonperturbative method such that only a small correction to unity must be computed in lattice perturbation theory and higher-order terms are expected to be small. We obtain f_{B^+} = 196.9(8.9) MeV, f_{B_s} = 242.0(9.5) MeV, f_{D^+} = 218.9(11.3) MeV, f_{D_s} = 260.1(10.8) MeV, and the SU(3) flavor-breaking ratios f_{B_s}/f_{B} = 1.229(26) and f_{D_s}/f_{D} = 1.188(25), where the numbers in parentheses are the total statistical and systematic uncertainties added in quadrature.« less
NASA Astrophysics Data System (ADS)
Sarcevic, Ina; Tan, Chung-I.
2000-07-01
The Table of Contents for the full book PDF is as follows: * Preface * Monday morning session: Hadronic Final States - Conveners: E. de Wolf and J. W. Gary * Session Chairman: J. W. Gary * Inclusive Jets at the Tevatron * Forward Jets, Dijets, and Subjets at the Tevatron * Inclusive Hadron Production and Dijets at HERA * Recent Opal Results on Photon Structure and Interactions * Review of Two-Photon Physics at LEP * Session Chairman: E. de Wolf * An Intriguing Area-Law-Based Hadron Production Scheme in e+e- Annihilation and Its Possible Extensions * Hyperfine Splitting in Hadron Production at High Energies * Event Selection Effects on Multiplicities in Quark and Gluon Jets * Quark and Gluon Jet Properties at LEP * Rapidity Gaps in Quark and Gluon Jets -- A Perturbative Approach * Monday afternoon session: Diffractive and Small-x - Conveners: M. Derrick and A. White * Session Chairman: A. White * Structure Functions: Low x, High y, Low Q2 * The Next-to-Leading Dynamics of the BFKL Pomeron * Renormalization Group Improved BFKL Equation * Session Chairman: G. Briskin * New Experimental Results on Diffraction at HERA * Diffractive Parton Distributions in Light-Cone QCD * The Logarithmic Derivative of the F2 Structure Function and Saturation * Spin Dependence of Diffractive DIS * Monday evening session * Session Chairman: M. Braun * Tests of QCD with Particle Production at HERA: Review and Outlook * Double Parton Scattering and Hadron Structure in Transverse Space * The High Density Parton Dynamics from Eikonal and Dipole Pictures * Hints of Higher Twist Effects in the Slope of the Proton Structure Function * Tuesday morning session: Correlations and Fluctuations - Conveners: R. Hwa and M. Tannenbaum * Session Chairman: A. Giovannini -- Fluctuations and Correlations * Bose-Einstein Results from L3 * Short-Range and Long-Range Correlations in DIS at HERA * Coior Mutation Model, Intermittency, and Erraticity * QCD Queuing and Hadron Multiplicity * Soft and Semi-hard Components in Multiplicity Distributions in the TeV Region * Qualitative Difference Between Particle Production Dynamics in Soft and Hard Processes * Session Chairman: M. Tannenbaum -- Bose-Einstein Correlations * Questions in Bose-Einstein Correlations * The Source Size Dependence on the mhadron Applying Fermi and Bose Statistics and I-Spin Invariance * Signal of Partial UA(1) Symmetry Restoration from Two-Pion Bose-Einstein Correlations * Multiparticle Bose-Einstein Correlations in Heavy-Ion Collisions * Tuesday afternoon session: Heavy Ion Collisions - Conveners: B. Müller and J. Statchel * Session Chairman: J. Stachel * Probing Baryon Freeze-out Density at the AGS with Proton Correlations * Centrality Dependence of Hadronic Observables at CERN SPS * Study of Transverse Momentum Spectra in pp Collisions with a Statistical Model of Hadronisation * Session Chairman: B. Brower * Production of Light (Anti-)Nuclei with E864 at the AGS * QCD Critical Point in Heavy-Ion Collision Experiments * Tuesday evening session * Session Chairman: H. M. Fried * Oscillating Hq, Event Shapes, and QCD * Critical Behavior of Quark-Hadron Phase Transition * Shadowing of Gluons at RHIC and LHC * Parton Distributions in Nuclei at Small x * Wednesday morning session: Diffraction and Small x - Conveners: M. Derrick and A. White * Session Chairman: C. Pajares * High-Energy Effective Action from Scattering of Shock Waves in QCD * The Triangle Anomaly in the Triple-Regge Limit * CDF Results on Hard Diffraction and Rapidity Gap Physics * DØ Results on Hard Diffraction * Interjet Rapidity Gaps in Perturbative QCD * Pomeron: Beyond the Standard Approach * Factorization and Diffractive Production at Collider Energies * Thursday morning session: Heavy Ion Collisions - Conveners: B. Müller and J. B. Stachel * Session Chairman: N. Schmitz * Summary of J/ψ Suppression Data and Preliminary Results on Multiplicity Distributions in PB-PB Collisions from the NA50 Experiment * Duality and Chiral Restoration from Dilepton Production in Relativistic Heavy-Ion Collisions * Session Chairman: I. Sarcevic * Transport-Theoretical Analysis of Reaction Dynamics, Particle Production and Freeze-out at RHIC * Inclusive Particle Spectra and Exotic Particle Searches Using STAR * The First Fermi in a High Energy Nuclear Collision * Probing the Space-Time Evolution of Heavy Ion Collisions with Bremsstrahlung * Thursday afternoon session: Hadronic Final States - Conveners: E. de Wolf and J. Gary * Session Chairman: F. Verbeure * QCD with SLD * QCD at LEP II * Multidimensional Analysis of the Bose-Einstein Correlations at DELPHI * Study of Color Singlet with Gluonic Subsinglet by Color Effective Hamiltonian * Correlations and Fluctuations - Conveners: R. Hwa and M. Tannenbaum * Session Chairman: R. C. Hwa -- Fluctuations in Heavy-Ion Collisions * Scale-Local Statistical Measures and the Multiparticle Final State * Centrality and ET Fluctuations from p + Be to Au + Au at AGS Energies * Order Parameter of Single Event * Multiplicities, Transverse Momenta and Their Correlations from Percolating Colour Strings * Probing the QCD Critical Point in Nuclear Collisions * Event-by-Event Fluctuations in Pb + Pb Collisions at the CERN SPS * Friday morning session: High Energy Collisions and Cosmic-Ray/Astrophysics - Conveners: F. Halzen and T. Stanev * Session Chairman: U. Sukhatme * Rethinking the Eikonal Approximation * QCD and Total Cross-Sections * The Role of Multiple Parton Collisions in Hadron Collisions * Effective Cross Sections and Spatial Structure of the Hadrons * Looking for the Odderon * QCD in Embedded Coordinates * Session Chairman: F. Bopp * Extensive Air Sbowers and Hadronic Interaction Models * Penetration of the Earth by Ultrahigh Energy Neutrinos and the Parton Distributions Inside the Nucleon * Comparison of Prompt Muon Observations to Charm Expectations * Friday afternoon session: Recent Developments - Conveners: R. Brower and I. Sarcevic * Session Chairman: G. Guralnik * The Relation Between Gauge Theories and Gravity * From Black Holes to Pomeron: Tensor Glueball and Pomeron Intercept at Strong Coupling * Summary Talks * Summary of Results of the Ultrarelativistic Heavy Ion Fixed Target Program * Review of Theory Talks * Summary of Experimental Talks * List of Participants
Brodsky, Stanley J.
2018-03-06
Here, light-front holography, together with superconformal algebra, have provided new insights into the physics of color confinement and the spectroscopy and dynamics of hadrons. As shown by de Alfaro, Fubini and Furlan, a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the procedure of de Alfaro et al. to the frame-independent light-front Hamiltonian, it leads uniquely to a confining qq¯ potential κ 4ζ 2, where ζ 2 is the light-frontmore » radial variable related in momentum space to the qq¯ invariant mass. The same result, including spin terms, is obtained using light-front holography—the duality between the front form and AdS 5, the space of isometries of the conformal group—if one modifies the action of AdS 5 by the dilaton e κ2 z2 in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions lead to a a unified Regge spectroscopy of meson, baryon, and tetraquarks, including supersymmetric relations between their masses and their wavefunctions. One also predicts hadronic light-front wavefunctions and observables such as structure functions, transverse momentum distributions, and the distribution amplitudes. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ MS¯ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α s(Q 2) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale Q 0 which sets the interface between perturbative and nonperturbative hadron dynamics. I also discuss a number of applications of light-front phenomenology.« less
NASA Astrophysics Data System (ADS)
Brodsky, Stanley J.
2018-05-01
Light-front holography, together with superconformal algebra, have provided new insights into the physics of color confinement and the spectroscopy and dynamics of hadrons. As shown by de Alfaro, Fubini and Furlan, a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the procedure of de Alfaro et al. to the frame-independent light-front Hamiltonian, it leads uniquely to a confining q \\bar{q} potential κ ^4 ζ ^2, where ζ ^2 is the light-front radial variable related in momentum space to the q \\bar{q} invariant mass. The same result, including spin terms, is obtained using light-front holography—the duality between the front form and AdS_5, the space of isometries of the conformal group—if one modifies the action of AdS_5 by the dilaton e^{κ ^2 z^2} in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions lead to a a unified Regge spectroscopy of meson, baryon, and tetraquarks, including supersymmetric relations between their masses and their wavefunctions. One also predicts hadronic light-front wavefunctions and observables such as structure functions, transverse momentum distributions, and the distribution amplitudes. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ_{\\overline{MS}} in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α _s(Q^2) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale Q_0 which sets the interface between perturbative and nonperturbative hadron dynamics. I also discuss a number of applications of light-front phenomenology.
The decays B → Ψ(2S)π(K),ηc(2S)π(K) in the pQCD approach beyond the leading-order
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Qing
2017-09-01
Two body B meson decays involving the radially excited meson ψ (2 S) /ηc (2 S) in the final states are studied by using the perturbative QCD (pQCD) approach. We find that: (a) The branching ratios for the decays involving a K meson are predicted as Br (B+ → ψ (2 S)K+) = (5.37-2.22+1.85) ×10-4, Br (B0 → ψ (2 S)K0) = (4.98-2.06+1.71) ×10-4, Br (B+ →ηc (2 S)K+) = (3.54-3.09+3.18) ×10-4, which are consistent with the present data when the next-to-leading-order (NLO) effects are included. Here the NLO effects are from the vertex corrections and the NLO Wilson coefficients. The large errors in the decay B+ →ηc (2 S)K+ are mainly induced by using the decay constant f ηc (2 S) =0.243-0.111+0.079 GeV with large uncertainties. (b) While there seems to be some room left for other higher order corrections or the non-perturbative long distance contributions in the decays involving a π meson, Br (B+ → ψ (2 S)π+) = (1.17-0.50+0.42) ×10-5, Br (B0 → ψ (2 S)π0) =0.54-0.23+0.20 ×10-5, which are smaller than the present data. The results for other decays can be tested via running LHCb and forthcoming Super-B experiments. (c) There is no obvious evidence of the direct CP violation being seen in the decays B → ψ (2 S) π (K) ,ηc (2 S) π (K) in the present experiments, which is supported by our calculations. If a few percent value is confirmed in the future, this would definitely indicate the existence of new physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.
Here, light-front holography, together with superconformal algebra, have provided new insights into the physics of color confinement and the spectroscopy and dynamics of hadrons. As shown by de Alfaro, Fubini and Furlan, a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the procedure of de Alfaro et al. to the frame-independent light-front Hamiltonian, it leads uniquely to a confining qq¯ potential κ 4ζ 2, where ζ 2 is the light-frontmore » radial variable related in momentum space to the qq¯ invariant mass. The same result, including spin terms, is obtained using light-front holography—the duality between the front form and AdS 5, the space of isometries of the conformal group—if one modifies the action of AdS 5 by the dilaton e κ2 z2 in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions lead to a a unified Regge spectroscopy of meson, baryon, and tetraquarks, including supersymmetric relations between their masses and their wavefunctions. One also predicts hadronic light-front wavefunctions and observables such as structure functions, transverse momentum distributions, and the distribution amplitudes. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ MS¯ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α s(Q 2) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale Q 0 which sets the interface between perturbative and nonperturbative hadron dynamics. I also discuss a number of applications of light-front phenomenology.« less
Parton distributions and lattice QCD calculations: A community white paper
NASA Astrophysics Data System (ADS)
Lin, Huey-Wen; Nocera, Emanuele R.; Olness, Fred; Orginos, Kostas; Rojo, Juan; Accardi, Alberto; Alexandrou, Constantia; Bacchetta, Alessandro; Bozzi, Giuseppe; Chen, Jiunn-Wei; Collins, Sara; Cooper-Sarkar, Amanda; Constantinou, Martha; Del Debbio, Luigi; Engelhardt, Michael; Green, Jeremy; Gupta, Rajan; Harland-Lang, Lucian A.; Ishikawa, Tomomi; Kusina, Aleksander; Liu, Keh-Fei; Liuti, Simonetta; Monahan, Christopher; Nadolsky, Pavel; Qiu, Jian-Wei; Schienbein, Ingo; Schierholz, Gerrit; Thorne, Robert S.; Vogelsang, Werner; Wittig, Hartmut; Yuan, C.-P.; Zanotti, James
2018-05-01
In the framework of quantum chromodynamics (QCD), parton distribution functions (PDFs) quantify how the momentum and spin of a hadron are divided among its quark and gluon constituents. Two main approaches exist to determine PDFs. The first approach, based on QCD factorization theorems, realizes a QCD analysis of a suitable set of hard-scattering measurements, often using a variety of hadronic observables. The second approach, based on first-principle operator definitions of PDFs, uses lattice QCD to compute directly some PDF-related quantities, such as their moments. Motivated by recent progress in both approaches, in this document we present an overview of lattice-QCD and global-analysis techniques used to determine unpolarized and polarized proton PDFs and their moments. We provide benchmark numbers to validate present and future lattice-QCD calculations and we illustrate how they could be used to reduce the PDF uncertainties in current unpolarized and polarized global analyses. This document represents a first step towards establishing a common language between the two communities, to foster dialogue and to further improve our knowledge of PDFs.
PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ENTITLED "ODDERON SEARCHES AT RHIC" (VOLUME 76)
DOE Office of Scientific and Technical Information (OSTI.GOV)
ORGANIZERS: GURYN, W.; KOVCHEGOV, Y.; VOGELSANG, W.
The Odderon, a charge-conjugation-odd partner of the Pomeron, has been a puzzle ever since its introduction in 1973. The Pomeron describes a colorless exchange with vacuum quantum numbers in the t-channel of hadronic scattering at high energies. The concept was originally formulated for the non-perturbative regime of Quantum Chromodynamics (QCD). In perturbation theory, the simplest picture of the Poineron is that of a two-gluon exchange process, whereas an Odderon can be thought of as an exchange of three gluons. Both the Pomeron and the Odderon are expected in QCD. However, while there exists plenty of experimental data that could bemore » successfully described by Pomeron exchanges (for example in electron-proton and hadron-hadron scattering at high energies), no experimental sign of the Odderon has been observed. One of the very few hints so far is the difference in the diffractive minima of elastic proton-proton and proton-antiproton scattering measured at the ISR. The Odderon has recently received renewed attention by QCD researchers, mainly for the following two reasons. First of all, RHIC has entered the scene, offering exciting unique new opportunities for Odderon searches. RHIC provides collisions of nuclei at center-of-mass energies far exceeding those at all previous experiments. RHIC also provides collisions of protons of the highest center-of-mass energy, and in the interval, which has not been explored previously in p {bar p} collisions. In addition, it also has the unique feature of polarization for the proton beams, promising to become a crucial tool in Odderon searches. Indeed, theorists have proposed possible signatures of the Odderon in some spin asymmetries measurable at RHIC. Qualitatively unique signals should be seen in these observables if the Odderon coupling is large. Secondly, the Odderon has recently been shown to naturally emerge from the Color Glass Condensate (CGC), a theory for the high-energy asymptotics of QCD. It has been argued that saturation/CGC effects tend to decrease the Odderon intercept, possibly providing an explanation for the lack of experimental evidence for the Odderon so far. This has added further motivation for pursuing searches for the Odderon. During the workshop the status of the Odderon in QCD and its phenomenology were reviewed. The participants also agreed on the most promising observables for the Odderon search at RHIC, which we list. The conclusion of the workshop is that the best available setup to address experimental questions related to the search for the Odderon at RHIC is the proposed combination of STAR experiment and Roman pots of pp2pp experiment, described in the proposal ''Physics with Tagged Forward Protons with the STAR detector at RHIC''.« less
Branching ratios, CP asymmetries and polarizations of B→ ψ (2S) V decays
NASA Astrophysics Data System (ADS)
Rui, Zhou; Li, Ya; Xiao, Zhen-Jun
2017-09-01
We analyze the non-leptonic decays B/B_s→ ψ (2S) V with V=(ρ , ω , K^{*}, φ ) by employing the perturbative QCD (pQCD) factorization approach. Here the branching ratios, the CP asymmetries and the complete set of polarization observables are investigated systematically. Besides the traditional contributions from the factorizable and non-factorizable diagrams at the leading order, the next-to-leading order (NLO) vertex corrections could also provide considerable contributions. The pQCD predictions for the branching ratios of the B_{(s)}→ ψ (2S)K^{*}, ψ (2S)φ decays are consistent with the measured values within errors. As for B→ ψ (2S) ρ , ψ (2S) ω decays, the branching ratios can reach the order of 10^{-5} and could be measured in the LHCb and Belle-II experiments. The numerical results show that the direct CP asymmetries of the considered decays are very small. Thus the observation of any large direct CP asymmetry for these decays will be a signal for new physics. The mixing-induced CP asymmetries in the neutral modes are very close to sin 2β _{(s)}, which suggests that these channels can give a cross-check on the measurement of the Cabbibo-Kobayashi-Maskawa (CKM) angle β and β _s. We find that the longitudinal polarization fractions f_0 are suppressed to ˜ 50% due to the large non-factorizable contributions. The magnitudes and phases of the two transverse amplitudes A_{allel } and A_{\\perp } are roughly equal, which is an indication for the approximate light-quark helicity conservation in these decays. The overall polarization observables of B→ ψ (2S) K^{*0} and B_s→ ψ (2S) φ channels are also in good agreement with the experimental measurements as reported by LHCb and BaBar. Other results can also be tested by the LHCb and Belle-II experiments.
Branching ratios, CP asymmetries and polarizations of $$B\\rightarrow \\psi (2S) V$$ decays
Rui, Zhou; Li, Ya; Xiao, Zhen -Jun
2017-09-14
We analyze the non-leptonic decays B/B s→ψ(2S)V with V=(ρ,ω,K*,Φ) by employing the perturbative QCD (pQCD) factorization approach. Here the branching ratios, the CP asymmetries and the complete set of polarization observables are investigated systematically. Besides the traditional contributions from the factorizable and non-factorizable diagrams at the leading order, the next-to-leading order (NLO) vertex corrections could also provide considerable contributions. The pQCD predictions for the branching ratios of the B (s)→ψ(2S)K*,ψ(2S) decays are consistent with the measured values within errors. As for B→ψ(2S)ρ,ψ(2S)ω decays, the branching ratios can reach the order of 10 –5 and could be measured in the LHCbmore » and Belle-II experiments. The numerical results show that the direct CP asymmetries of the considered decays are very small. Thus the observation of any large direct CP asymmetry for these decays will be a signal for new physics. The mixing-induced CP asymmetries in the neutral modes are very close to sin2β (s), which suggests that these channels can give a cross-check on the measurement of the Cabbibo–Kobayashi–Maskawa (CKM) angle β and β s. We find that the longitudinal polarization fractions f 0 are suppressed to ~50% due to the large non-factorizable contributions. The magnitudes and phases of the two transverse amplitudes A∥ and A⊥ are roughly equal, which is an indication for the approximate light-quark helicity conservation in these decays. The overall polarization observables of B→ψ(2S)K* 0 and B s→ψ(2S)Φ channels are also in good agreement with the experimental measurements as reported by LHCb and BaBar. In conclusion, other results can also be tested by the LHCb and Belle-II experiments.« less
Branching ratios, CP asymmetries and polarizations of $$B\\rightarrow \\psi (2S) V$$ decays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rui, Zhou; Li, Ya; Xiao, Zhen -Jun
We analyze the non-leptonic decays B/B s→ψ(2S)V with V=(ρ,ω,K*,Φ) by employing the perturbative QCD (pQCD) factorization approach. Here the branching ratios, the CP asymmetries and the complete set of polarization observables are investigated systematically. Besides the traditional contributions from the factorizable and non-factorizable diagrams at the leading order, the next-to-leading order (NLO) vertex corrections could also provide considerable contributions. The pQCD predictions for the branching ratios of the B (s)→ψ(2S)K*,ψ(2S) decays are consistent with the measured values within errors. As for B→ψ(2S)ρ,ψ(2S)ω decays, the branching ratios can reach the order of 10 –5 and could be measured in the LHCbmore » and Belle-II experiments. The numerical results show that the direct CP asymmetries of the considered decays are very small. Thus the observation of any large direct CP asymmetry for these decays will be a signal for new physics. The mixing-induced CP asymmetries in the neutral modes are very close to sin2β (s), which suggests that these channels can give a cross-check on the measurement of the Cabbibo–Kobayashi–Maskawa (CKM) angle β and β s. We find that the longitudinal polarization fractions f 0 are suppressed to ~50% due to the large non-factorizable contributions. The magnitudes and phases of the two transverse amplitudes A∥ and A⊥ are roughly equal, which is an indication for the approximate light-quark helicity conservation in these decays. The overall polarization observables of B→ψ(2S)K* 0 and B s→ψ(2S)Φ channels are also in good agreement with the experimental measurements as reported by LHCb and BaBar. In conclusion, other results can also be tested by the LHCb and Belle-II experiments.« less
High energy scattering in QCD and in quantum gravity
NASA Astrophysics Data System (ADS)
Lipatov, L. N.
2014-06-01
The theory of the high energy scattering in QCD is based on the BFKL equation for the Pomeron wave function and on its generalization for composite multi-gluon states in the crossing channel. At a large number of colors the equations for the gluon composite states have remarkable mathematical properties including their Möbius invariance, holomorphic separability, duality symmetry and integrability. High energy QCD interactions local in the particle rapidities are formulated in the form of the gauge invariant effective action. In the maximally extended N = 4 super-symmetry the Pomeron turns out to be dual to the reggeized graviton in the 10-dimensional anti-de-Sitter space. As a result, the Gribov calculus for the Pomeron interactions should be reformulated here as a generally covariant effective field theory for the reggeized gravitons. We construct the corresponding effective action, which gives a possibility to calculate their trajectory and couplings. The graviton trajectory in the leading order contains an ultraviolet divergency meaning the presence of the double-logarithmic (DL) terms. We sum the DL contributions in all orders of the perturbation theory in the Einstein-Hilbert gravity and in its super-symmetric generalizations. In the N = 8 super gravity the ratio of the scattering amplitude in the DL approximation to the Born expression tends to zero at large energies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, W.H.
1997-06-01
These lectures describe QCD physics studies over the period 1992--1996 from data taken with collisions of 27 GeV electrons and positrons with 820 GeV protons at the HERA collider at DESY by the two general-purpose detectors H1 and ZEUS. The focus of these lectures is on structure functions and jet production in deep inelastic scattering, photoproduction, and diffraction. The topics covered start with a general introduction to HERA and ep scattering. Structure functions are discussed. This includes the parton model, scaling violation, and the extraction of F{sub 2}, which is used to determine the gluon momentum distribution. Both low andmore » high Q{sup 2} regimes are discussed. The low Q{sup 2} transition from perturbative QCD to soft hadronic physics is examined. Jet production in deep inelastic scattering to measure {alpha}{sub s}, and in photoproduction to study resolved and direct photoproduction, is also presented. This is followed by a discussion of diffraction that begins with a general introduction to diffraction in hadronic collisions and its relation to ep collisions, and moves on to deep inelastic scattering, where the structure of diffractive exchange is studied, and in photoproduction, where dijet production provides insights into the structure of the Pomeron. 95 refs., 39 figs.« less
Constraining the physics of jet quenching
NASA Astrophysics Data System (ADS)
Renk, Thorsten
2012-04-01
Hard probes in the context of ultrarelativistic heavy-ion collisions represent a key class of observables studied to gain information about the QCD medium created in such collisions. However, in practice, the so-called jet tomography has turned out to be more difficult than expected initially. One of the major obstacles in extracting reliable tomographic information from the data is that neither the parton-medium interaction nor the medium geometry are known with great precision, and thus a difference in model assumptions in the hard perturbative Quantum Choromdynamics (pQCD) modeling can usually be compensated by a corresponding change of assumptions in the soft bulk medium sector and vice versa. The only way to overcome this problem is to study the full systematics of combinations of parton-medium interaction and bulk medium evolution models. This work presents a meta-analysis summarizing results from a number of such systematical studies and discusses in detail how certain data sets provide specific constraints for models. Combining all available information, only a small group of models exhibiting certain characteristic features consistent with a pQCD picture of parton-medium interaction is found to be viable given the data. In this picture, the dominant mechanism is medium-induced radiation combined with a surprisingly small component of elastic energy transfer into the medium.
The scalar glueball operator, the a-theorem, and the onset of conformality
NASA Astrophysics Data System (ADS)
Nunes da Silva, T.; Pallante, E.; Robroek, L.
2018-03-01
We show that the anomalous dimension γG of the scalar glueball operator contains information on the mechanism that leads to the onset of conformality at the lower edge of the conformal window in a non-Abelian gauge theory. In particular, it distinguishes whether the merging of an UV and an IR fixed point - the simplest mechanism associated to a conformal phase transition and preconformal scaling - does or does not occur. At the same time, we shed light on new analogies between QCD and its supersymmetric version. In SQCD, we derive an exact relation between γG and the mass anomalous dimension γm, and we prove that the SQCD exact beta function is incompatible with merging as a consequence of the a-theorem; we also derive the general conditions that the latter imposes on the existence of fixed points, and prove the absence of an UV fixed point at nonzero coupling above the conformal window of SQCD. Perhaps not surprisingly, we then show that an exact relation between γG and γm, fully analogous to SQCD, holds for the massless Veneziano limit of large-N QCD. We argue, based on the latter relation, the a-theorem, perturbation theory and physical arguments, that the incompatibility with merging may extend to QCD.
Thermalization and confinement in strongly coupled gauge theories
NASA Astrophysics Data System (ADS)
Ishii, Takaaki; Kiritsis, Elias; Rosen, Christopher
2016-11-01
Quantum field theories of strongly interacting matter sometimes have a useful holographic description in terms of the variables of a gravitational theory in higher dimensions. This duality maps time dependent physics in the gauge theory to time dependent solutions of the Einstein equations in the gravity theory. In order to better understand the process by which "real world" theories such as QCD behave out of thermodynamic equilibrium, we study time dependent perturbations to states in a model of a confining, strongly coupled gauge theory via holography. Operationally, this involves solving a set of non-linear Einstein equations supplemented with specific time dependent boundary conditions. The resulting solutions allow one to comment on the timescale by which the perturbed states thermalize, as well as to quantify the properties of the final state as a function of the perturbation parameters. We comment on the influence of the dual gauge theory's confinement scale on these results, as well as the appearance of a previously anticipated universal scaling regime in the "abrupt quench" limit.
Chiral perturbation theory and nucleon-pion-state contaminations in lattice QCD
NASA Astrophysics Data System (ADS)
Bär, Oliver
2017-05-01
Multiparticle states with additional pions are expected to be a non-negligible source of excited-state contamination in lattice simulations at the physical point. It is shown that baryon chiral perturbation theory can be employed to calculate the contamination due to two-particle nucleon-pion-states in various nucleon observables. Leading order results are presented for the nucleon axial, tensor and scalar charge and three Mellin moments of parton distribution functions (quark momentum fraction, helicity and transversity moment). Taking into account phenomenological results for the charges and moments the impact of the nucleon-pion-states on lattice estimates for these observables can be estimated. The nucleon-pion-state contribution results in an overestimation of all charges and moments obtained with the plateau method. The overestimation is at the 5-10% level for source-sink separations of about 2 fm. The source-sink separations accessible in contemporary lattice simulations are found to be too small for chiral perturbation theory to be directly applicable.
Drell-Yan Angular Distributions at the E906 SeaQuest Experiment
NASA Astrophysics Data System (ADS)
Kleinjan, David
2016-09-01
Measurement of Drell-Yan angular distributions in the Collins-Soper frame provide a unique study of QCD. Previous experimental results showed a violation of the Lam-Tung relation (1 - λ ≠ 2 ν). This violation could be described by a range of non-perturbative effects, including the naive T-odd Boer-Mulders TMD, which describes spin-momentum correlations in the nucleon. Presently, E906/SeaQuest experiment at Fermilab can measure Drell-Yan dimuon pairs produced from a 120 GeV unpolarized proton beam directed on various nuclear targets. The Drell-Yan angular distributions will be measured at higher-x than previous experiments, further disentangling the role the Boer-Mulders TMD and other non-perturbative effects play in the structure of the nucleon. SeaQuest.
A formalism for the systematic treatment of rapidity logarithms in Quantum Field Theory
NASA Astrophysics Data System (ADS)
Chiu, Jui-Yu; Jain, Ambar; Neill, Duff; Rothstein, Ira Z.
2012-05-01
Many observables in QCD rely upon the resummation of perturbation theory to retain predictive power. Resummation follows after one factorizes the cross section into the relevant modes. The class of observables which are sensitive to soft recoil effects are particularly challenging to factorize and resum since they involve rapidity logarithms. Such observables include: transverse momentum distributions at p T much less then the high energy scattering scale, jet broadening, exclusive hadroproduction and decay, as well as the Sudakov form factor. In this paper we will present a formalism which allows one to factorize and resum the perturbative series for such observables in a systematic fashion through the notion of a "rapidity renormalization group". That is, a Collin-Soper like equation is realized as a renormalization group equation, but has a more universal applicability to observables beyond the traditional transverse momentum dependent parton distribution functions (TMDPDFs) and the Sudakov form factor. This formalism has the feature that it allows one to track the (non-standard) scheme dependence which is inherent in any sce- nario where one performs a resummation of rapidity divergences. We present a pedagogical introduction to the formalism by applying it to the well-known massive Sudakov form fac- tor. The formalism is then used to study observables of current interest. A factorization theorem for the transverse momentum distribution of Higgs production is presented along with the result for the resummed cross section at NLL. Our formalism allows one to define gauge invariant TMDPDFs which are independent of both the hard scattering amplitude and the soft function, i.e. they are universal. We present details of the factorization and re- summation of the jet broadening cross section including a renormalization in p ⊥ space. We furthermore show how to regulate and renormalize exclusive processes which are plagued by endpoint singularities in such a way as to allow for a consistent resummation.
Polarization Transfer in Proton Compton Scattering at High Momentum Transfer
NASA Astrophysics Data System (ADS)
Hamilton, D. J.; Mamyan, V. H.; Aniol, K. A.; Annand, J. R.; Bertin, P. Y.; Bimbot, L.; Bosted, P.; Calarco, J. R.; Camsonne, A.; Chang, G. C.; Chang, T.-H.; Chen, J.-P.; Choi, Seonho; Chudakov, E.; Danagoulian, A.; Degtyarenko, P.; de Jager, C. W.; Deur, A.; Dutta, D.; Egiyan, K.; Gao, H.; Garibaldi, F.; Gayou, O.; Gilman, R.; Glamazdin, A.; Glashausser, C.; Gomez, J.; Hansen, J.-O.; Hayes, D.; Higinbotham, D.; Hinton, W.; Horn, T.; Howell, C.; Hunyady, T.; Hyde-Wright, C. E.; Jiang, X.; Jones, M. K.; Khandaker, M.; Ketikyan, A.; Kubarovsky, V.; Kramer, K.; Kumbartzki, G.; Laveissière, G.; Lerose, J.; Lindgren, R. A.; Margaziotis, D. J.; Markowitz, P.; McCormick, K.; Meziani, Z.-E.; Michaels, R.; Moussiegt, P.; Nanda, S.; Nathan, A. M.; Nikolenko, D. M.; Nelyubin, V.; Norum, B. E.; Paschke, K.; Pentchev, L.; Perdrisat, C. F.; Piasetzky, E.; Pomatsalyuk, R.; Punjabi, V. A.; Rachek, I.; Radyushkin, A.; Reitz, B.; Roche, R.; Roedelbronn, M.; Ron, G.; Sabatie, F.; Saha, A.; Savvinov, N.; Shahinyan, A.; Shestakov, Y.; Širca, S.; Slifer, K.; Solvignon, P.; Stoler, P.; Tajima, S.; Sulkosky, V.; Todor, L.; Vlahovic, B.; Weinstein, L. B.; Wang, K.; Wojtsekhowski, B.; Voskanyan, H.; Xiang, H.; Zheng, X.; Zhu, L.
2005-06-01
Compton scattering from the proton was investigated at s=6.9 GeV2 and t=-4.0 GeV2 via polarization transfer from circularly polarized incident photons. The longitudinal and transverse components of the recoil proton polarization were measured. The results are in disagreement with a prediction of perturbative QCD based on a two-gluon exchange mechanism, but agree well with a prediction based on a reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, Nathaniel J.; /SLAC /Stanford U., ITP
2008-02-06
Inflation may occur while rolling into the metastable supersymmetry-breaking vacuum of massive supersymmetric QCD. We explore the range of parameters in which slow-roll inflation and long-lived metastable supersymmetry breaking may be simultaneously realized. The end of slow-roll inflation in this context coincides with the spontaneous breaking of a global symmetry, which may give rise to significant curvature perturbations via inhomogeneous preheating. Such spontaneous symmetry breaking at the end of inflation may give rise to observable non-gaussianities, distinguishing this scenario from more conventional models of supersymmetric hybrid inflation.
Jet production in high Q 2 deep-inelastic ep scattering at HERA
NASA Astrophysics Data System (ADS)
Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Repond, J.; Stanek, R.; Talaga, R. L.; Zhang, H.; Avad, R.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Romeo, G. Cara; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, E.; Polini, A.; Sartorelli, G.; Timellini, R.; Garcia, Y. Zamora; Zichichi, A.; Bargende, A.; Crittenden, J.; Desch, K.; Diekmann, B.; Doeker, T.; Eckert, M.; Feld, L.; Frey, A.; Geerts, M.; Geitz, G.; Grothe, M.; Haas, T.; Hartmann, H.; Haun, D.; Heinloth, K.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mari, S. M.; Mass, A.; Mengel, S.; Mollen, J.; Paul, E.; Rembser, Ch.; Schattevoy, R.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Dyce, N.; Foster, B.; George, S.; Gilmore, R.; Heath, G. P.; Heath, H. F.; Llewellyn, T. J.; Morgado, C. J. S.; Norman, D. J. P.; O'Mara, J. A.; Tapper, R. I.; Wilson, S. S.; Yoshida, R.; Rau, R. R.; Arneodo, M.; Iannotti, L.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Eskreys, K.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zarębska, E.; Suszycki, L.; Zając, J.; Kotański, A.; Przybycień, M.; Bauerdick, I. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Coldewey, C.; Deppe, O.; Desler, K.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Große-Knetter, J.; Gutjahr, B.; Hain, W.; Hasell, D.; Heßling, H.; Hultschig, H.; Iga, Y.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Köpke, L.; Kötz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mańczak, O.; Ng, J. S. T.; Nickel, S.; Notz, D.; Ohrenberg, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schulz, W.; Selonke, F.; Stiliaris, E.; Surrow, B.; Voß, T.; Westphal, D.; Wolf, G.; Youngman, C.; Zhou, J. F.; Grabosch, H. J.; Kharchilava, A.; Leich, A.; Mattingly, M.; Meyer, A.; Schlenstedt, S.; Wulff, N.; Barbagli, G.; Pelfer, P.; Anzivino, G.; Maccarrone, G.; de Pasquale, S.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Freidhof, A.; Söldner-Rembold, S.; Schroeder, J.; Trefzger, T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Fleck, I.; Saxon, D. H.; Utley, M. L.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Neumann, T.; Sinkus, R.; Wick, K.; Badura, E.; Burow, B. D.; Hagge, L.; Lohrmann, E.; Mainusch, J.; Milewski, J.; Nakahata, M.; Pavel, N.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Butterworth, I.; Gallo, E.; Harris, V. L.; Hung, B. Y. H.; Long, K. R.; Miller, D. B.; Morawitz, P. P. O.; Prinias, A.; Sedgbeer, J. K.; Whitfield, A. F.; Mallik, U.; McCliment, E.; Wang, M. Z.; Wang, S. M.; Wu, J. T.; Zhang, Y.; Cloth, P.; Filges, D.; An, S. H.; Hong, S. M.; Nam, S. W.; Park, S. K.; Suh, M. H.; Yon, S. H.; Imlay, R.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Cases, G.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Del Peso, J.; Puga, J.; Terron, J.; de Trocóniz, J. F.; Smith, G. R.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Patel, P. M.; Sinclair, L. E.; Stairs, D. G.; Laurent, M. St.; Ullmann, R.; Zacek, G.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Y. A.; Kobrin, V. D.; Kuzmin, V. A.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Botje, M.; Chlebana, F.; Dake, A.; Engelen, J.; de Kamps, M.; Kooijman, P.; Kruse, A.; Tiecke, H.; Verkerke, W.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Honscheid, K.; Li, C.; Ling, T. Y.; McLean, K. W.; Murray, W. N.; Park, I. H.; Romanowski, T. A.; Seidlein, R.; Bailey, D. S.; Blair, G. A.; Byrne, A.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Daniels, D.; Devenish, R. C. E.; Harnew, N.; Lancaster, M.; Luffman, P. E.; Lindemann, L.; McFall, J. D.; Nath, C.; Noyes, V. A.; Quadt, A.; Uijterwaal, H.; Walczak, R.; Wilson, F. F.; Yip, T.; Abbiendi, G.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; de Giorgi, M.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Butterworth, J. M.; Feild, R. G.; Oh, B. Y.; Whitmore, J. J.; D'Agostini, G.; Marini, G.; Nigro, A.; Tassi, E.; Hart, J. C.; McCubbin, N. A.; Prytz, K.; Shah, T. P.; Short, T. L.; Barberis, L.; Cartiglia, N.; Dubbs, T.; Heusch, C.; van Hook, M.; Hubbard, B.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Biltzinger, J.; Seifert, R. J.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Briskin, G.; Dagan, S.; Levy, A.; Hasegawa, T.; Hazumi, M.; Ishii, T.; Kuze, M.; Mine, S.; Nagasawa, Y.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Nakamitsu, Y.; Yamauchi, K.; Cirio, R.; Costa, M.; Ferrero, M. I.; Lamberti, L.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Bandyopadhyay, D.; Benard, F.; Brkic, M.; Crombie, M. B.; Gingrich, D. M.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Sampson, C. R.; Teuscher, R. J.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Blankenship, K.; Kochocki, J.; Lu, B.; Mo, L. W.; Bogusz, W.; Charchula, K.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Eisenberg, Y.; Karshon, U.; Revel, D.; Zer-Zion, D.; Ali, I.; Badgett, W. F.; Behrens, B.; Dasu, S.; Fordham, C.; Foudas, C.; Goussiou, A.; Loveless, R. J.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Tsurugai, T.; Bhadra, S.; Cardy, M. L.; Fagerstroem, C.-P.; Frisken, W. R.; Furutani, K. M.; Khakzad, M.; Schmidke, W. B.
1995-03-01
Two-jet production in deep-inelastic electron-proton scattering has been studied for 160< Q 2<1280 GeV2, 0.01< x<0.1 and 0.04< y<0.95 with the ZEUS detector at HERA. The kinematic properties of the jets and the jet production rates are presented. The partonic scaling variables of the two-jet system and the rate of two-jet production are compared to perturbative next-to-leading order QCD calculations.
Electromagnetic effects on the light hadron spectrum
Basak, S.; Bazavov, A.; Bernard, C.; ...
2015-09-28
Calculations studying electromagnetic effects on light mesons are reported. The calculations use fully dynamical QCD, but only quenched photons, which suffices to NLO in χPT; that is, the sea quarks are electrically neutral, while the valence quarks carry charge. The non-compact formalism is used for photons. New results are obtained with lattice spacing as small as 0.045 fm and a large range of volumes. The success of chiral perturbation theory in describing these results and the implications for light quark masses are considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaboud, M.; Aad, G.; Abbott, B.
Here, inclusive isolated-photon production in pp collisions at a centre-of-mass energy of 13TeV is studied with the ATLAS detector at the LHC using a data set with an integrated luminosity of 3.2fb -1. The cross section is measured as a function of the photon transverse energy above 125GeV in different regions of photon pseudorapidity. Next-to-leading-order perturbative QCD and Monte Carlo event-generator predictions are compared to the cross-section measurements and provide an adequate description of the data.
Midrapidity Neutral-Pion Production in Proton-Proton Collisions at √(s)=200 GeV
NASA Astrophysics Data System (ADS)
Adler, S. S.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Alexander, J.; Amirikas, R.; Aphecetche, L.; Aronson, S. H.; Averbeck, R.; Awes, T. C.; Azmoun, R.; Babintsev, V.; Baldisseri, A.; Barish, K. N.; Barnes, P. D.; Bassalleck, B.; Bathe, S.; Batsouli, S.; Baublis, V.; Bazilevsky, A.; Belikov, S.; Berdnikov, Y.; Bhagavatula, S.; Boissevain, J. G.; Borel, H.; Borenstein, S.; Brooks, M. L.; Brown, D. S.; Bruner, N.; Bucher, D.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Burward-Hoy, J. M.; Butsyk, S.; Camard, X.; Chai, J.-S.; Chand, P.; Chang, W. C.; Chernichenko, S.; Chi, C. Y.; Chiba, J.; Chiu, M.; Choi, I. J.; Choi, J.; Choudhury, R. K.; Chujo, T.; Cianciolo, V.; Cobigo, Y.; Cole, B. A.; Constantin, P.; D'Enterria, D. G.; David, G.; Delagrange, H.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dietzsch, O.; Drapier, O.; Drees, A.; Drees, K. A.; Du Rietz, R.; Durum, A.; Dutta, D.; Efremenko, Y. V.; El Chenawi, K.; Enokizono, A.; En'yo, H.; Esumi, S.; Ewell, L.; Fields, D. E.; Fleuret, F.; Fokin, S. L.; Fox, B. D.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fung, S.-Y.; Garpman, S.; Ghosh, T. K.; Glenn, A.; Gogiberidze, G.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Guryn, W.; Gustafsson, H.-Å.; Hachiya, T.; Haggerty, J. S.; Hamagaki, H.; Hansen, A. G.; Hartouni, E. P.; Harvey, M.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Heuser, J. M.; Hibino, M.; Hill, J. C.; Holzmann, W.; Homma, K.; Hong, B.; Hoover, A.; Ichihara, T.; Ikonnikov, V. V.; Imai, K.; Isenhower, D.; Ishihara, M.; Issah, M.; Isupov, A.; Jacak, B. V.; Jang, W. Y.; Jeong, Y.; Jia, J.; Jinnouchi, O.; Johnson, B. M.; Johnson, S. C.; Joo, K. S.; Jouan, D.; Kametani, S.; Kamihara, N.; Kang, J. H.; Kapoor, S. S.; Katou, K.; Kelly, S.; Khachaturov, B.; Khanzadeev, A.; Kikuchi, J.; Kim, D. H.; Kim, D. J.; Kim, D. W.; Kim, E.; Kim, G.-B.; Kim, H. J.; Kistenev, E.; Kiyomichi, A.; Kiyoyama, K.; Klein-Boesing, C.; Kobayashi, H.; Kochenda, L.; Kochetkov, V.; Koehler, D.; Kohama, T.; Kopytine, M.; Kotchetkov, D.; Kozlov, A.; Kroon, P. J.; Kuberg, C. H.; Kurita, K.; Kuroki, Y.; Kweon, M. J.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Ladygin, V.; Lajoie, J. G.; Lebedev, A.; Leckey, S.; Lee, D. M.; Lee, S.; Leitch, M. J.; Li, X. H.; Lim, H.; Litvinenko, A.; Liu, M. X.; Liu, Y.; Maguire, C. F.; Makdisi, Y. I.; Malakhov, A.; Manko, V. I.; Mao, Y.; Martinez, G.; Marx, M. D.; Masui, H.; Matathias, F.; Matsumoto, T.; McGaughey, P. L.; Melnikov, E.; Messer, F.; Miake, Y.; Milan, J.; Miller, T. E.; Milov, A.; Mioduszewski, S.; Mischke, R. E.; Mishra, G. C.; Mitchell, J. T.; Mohanty, A. K.; Morrison, D. P.; Moss, J. M.; Mühlbacher, F.; Mukhopadhyay, D.; Muniruzzaman, M.; Murata, J.; Nagamiya, S.; Nagle, J. L.; Nakamura, T.; Nandi, B. K.; Nara, M.; Newby, J.; Nilsson, P.; Nyanin, A. S.; Nystrand, J.; O'Brien, E.; Ogilvie, C. A.; Ohnishi, H.; Ojha, I. D.; Okada, K.; Ono, M.; Onuchin, V.; Oskarsson, A.; Otterlund, I.; Oyama, K.; Ozawa, K.; Pal, D.; Palounek, A. P.; Pantuev, V. S.; Papavassiliou, V.; Park, J.; Parmar, A.; Pate, S. F.; Peitzmann, T.; Peng, J.-C.; Peresedov, V.; Pinkenburg, C.; Pisani, R. P.; Plasil, F.; Purschke, M. L.; Purwar, A. K.; Rak, J.; Ravinovich, I.; Read, K. F.; Reuter, M.; Reygers, K.; Riabov, V.; Riabov, Y.; Roche, G.; Romana, A.; Rosati, M.; Rosnet, P.; Ryu, S. S.; Sadler, M. E.; Saito, N.; Sakaguchi, T.; Sakai, M.; Sakai, S.; Samsonov, V.; Sanfratello, L.; Santo, R.; Sato, H. D.; Sato, S.; Sawada, S.; Schutz, Y.; Semenov, V.; Seto, R.; Shaw, M. R.; Shea, T. K.; Shibata, T.-A.; Shigaki, K.; Shiina, T.; Silva, C. L.; Silvermyr, D.; Sim, K. S.; Singh, C. P.; Singh, V.; Sivertz, M.; Soldatov, A.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Staley, F.; Stankus, P. W.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Sullivan, J. P.; Takagui, E. M.; Taketani, A.; Tamai, M.; Tanaka, K. H.; Tanaka, Y.; Tanida, K.; Tannenbaum, M. J.; Tarján, P.; Tepe, J. D.; Thomas, T. L.; Tojo, J.; Torii, H.; Towell, R. S.; Tserruya, I.; Tsuruoka, H.; Tuli, S. K.; Tydesjö, H.; Tyurin, N.; van Hecke, H. W.; Velkovska, J.; Velkovsky, M.; Villatte, L.; Vinogradov, A. A.; Volkov, M. A.; Vznuzdaev, E.; Wang, X. R.; Watanabe, Y.; White, S. N.; Wohn, F. K.; Woody, C. L.; Xie, W.; Yang, Y.; Yanovich, A.; Yokkaichi, S.; Young, G. R.; Yushmanov, I. E.; Zajc, W. A.; Zhang, C.; Zhou, S.; Zolin, L.
2003-12-01
The invariant differential cross section for inclusive neutral-pion production in p+p collisions at √(s)=200 GeV has been measured at midrapidity (|η|<0.35) over the range 1
Quark Hadron Duality - Recent Jefferson Lab Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niculescu, Maria Ioana
2016-08-01
The duality between the partonic and hadronic descriptions of electron--nucleon scattering is a remarkable feature of nuclear interactions. When averaged over appropriate energy intervals the cross section at low energy which is dominated by nucleon resonances resembles the smooth behavior expected from perturbative QCD. Recent Jefferson Lab results indicate that quark-hadron duality is present in a variety of observables, not just the proton F2 structure function. An overview of recent results, especially local quark-hadron duality on the neutron, are presented here.
NASA Astrophysics Data System (ADS)
Nayak, Gouranga C.
2017-12-01
Recently we have proved the factorization of NRQCD S-wave heavy quarkonium production at all orders in coupling constant. In this paper we extend this to prove the factorization of infrared divergences in χ _{cJ} production from color singlet c{\\bar{c}} pair in non-equilibrium QCD at RHIC and LHC at all orders in coupling constant. This can be relevant to study the quark-gluon plasma at RHIC and LHC.
The singular behavior of massive QCD amplitudes
NASA Astrophysics Data System (ADS)
Mitov, Alexander; Moch, Sven-Olaf
2007-05-01
We discuss the structure of infrared singularities in on-shell QCD amplitudes with massive partons and present a general factorization formula in the limit of small parton masses. The factorization formula gives rise to an all-order exponentiation of both, the soft poles in dimensional regularization and the large collinear logarithms of the parton masses. Moreover, it provides a universal relation between any on-shell amplitude with massive external partons and its corresponding massless amplitude. For the form factor of a heavy quark we present explicit results including the fixed-order expansion up to three loops in the small mass limit. For general scattering processes we show how our constructive method applies to the computation of all singularities as well as the constant (mass-independent) terms of a generic massive n-parton QCD amplitude up to the next-to-next-to-leading order corrections.
PREFACE: Focus section on Hadronic Physics
NASA Astrophysics Data System (ADS)
Roberts, Craig; Swanson, Eric
2007-07-01
Hadronic physics is the study of strongly interacting matter and its underlying theory, Quantum Chromodynamics (QCD). The field had its beginnings after World War Two, when hadrons were discovered in ever increasing numbers. Today, it encompasses topics like the quark-gluon structure of hadrons at varying scales, the quark-gluon plasma and hadronic matter at extreme temperature and density; it also underpins nuclear physics and has significant impact on particle physics, astrophysics, and cosmology. Among the goals of hadronic physics are to determine the parameters of QCD, understand the origin and characteristics of confinement, understand the dynamics and consequences of dynamical chiral symmetry breaking, explore the role of quarks and gluons in nuclei and in matter under extreme conditions and understand the quark and gluon structure of hadrons. In general, the process is one of discerning the relevant degrees of freedom and relating these to the fundamental fields of QCD. The emphasis is on understanding QCD, rather than testing it. The papers gathered in this special focus section of Journal of Physics G: Nuclear and Particle Physics attempt to cover this broad range of subjects. Alkofer and Greensite examine the issue of quark and gluon confinement with the focus on models of the QCD vacuum, lattice gauge theory investigations, and the relationship to the AdS/CFT correspondence postulate. Arrington et al. review nucleon form factors and their role in determining quark orbital momentum, the strangeness content of the nucleon, meson cloud effects, and the transition from nonperturbative to perturbative QCD dynamics. The physics associated with hadronic matter at high temperature and density and at low Bjorken-x at the Relativistic Heavy Ion Collider (RHIC), the SPS at CERN, and at the future LHC is summarized by d'Enterria. The article of Lee and Smith examines experiment and theory associated with electromagnetic meson production from nucleons and illustrates how the structure of the nucleon is revealed. Reimer reviews how the Drell--Yan process can be used to explore the sea quark structure of nucleons, thereby probing such phenomena as flavour asymmetry in the nucleon and nuclear medium modification of nucleon properties. The exploitation of the B factories has led to a resurgence of interest in heavy quark spectroscopy. Concurrently, interest in light quark spectroscopy and gluonic excitations remains high, with several new experimental efforts in the planning or building stages. The current status of all of this is reviewed by Rosner. Finally, Vogelsang summarizes the status of polarized deep inelastic lepton-nucleon scattering experiments at RHIC and their impact on the theoretical understanding of nucleon helicity structure, gluon polarization in the nucleus, and transverse spin asymmetries. Of course, hadronic physics is a much broader subject than can be conveyed in this special focus section; advances in effective field theory, lattice gauge theory, generalised parton distributions and many other subfields are not covered here. Nevertheless, we hope that this focus section will help the reader appreciate the vitality, breadth of endeavour, and the phenomenological richness of hadronic physics.
Calculation of the Nucleon Axial Form Factor Using Staggered Lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Aaron S.; Hill, Richard J.; Kronfeld, Andreas S.
The nucleon axial form factor is a dominant contribution to errors in neutrino oscillation studies. Lattice QCD calculations can help control theory errors by providing first-principles information on nucleon form factors. In these proceedings, we present preliminary results on a blinded calculation ofmore » $$g_A$$ and the axial form factor using HISQ staggered baryons with 2+1+1 flavors of sea quarks. Calculations are done using physical light quark masses and are absolutely normalized. We discuss fitting form factor data with the model-independent $z$ expansion parametrization.« less
NASA Astrophysics Data System (ADS)
Carlomagno, J. P.
2018-05-01
We study the features of a nonlocal SU(3) Polyakov-Nambu-Jona-Lasinio model that includes wave-function renormalization. Model parameters are determined from vacuum phenomenology considering lattice-QCD-inspired nonlocal form factors. Within this framework, we analyze the properties of light scalar and pseudoscalar mesons at finite temperature and chemical potential determining characteristics of deconfinement and chiral restoration transitions.
Analytic boosted boson discrimination
Larkoski, Andrew J.; Moult, Ian; Neill, Duff
2016-05-20
Observables which discriminate boosted topologies from massive QCD jets are of great importance for the success of the jet substructure program at the Large Hadron Collider. Such observables, while both widely and successfully used, have been studied almost exclusively with Monte Carlo simulations. In this paper we present the first all-orders factorization theorem for a two-prong discriminant based on a jet shape variable, D 2, valid for both signal and background jets. Our factorization theorem simultaneously describes the production of both collinear and soft subjets, and we introduce a novel zero-bin procedure to correctly describe the transition region between thesemore » limits. By proving an all orders factorization theorem, we enable a systematically improvable description, and allow for precision comparisons between data, Monte Carlo, and first principles QCD calculations for jet substructure observables. Using our factorization theorem, we present numerical results for the discrimination of a boosted Z boson from massive QCD background jets. We compare our results with Monte Carlo predictions which allows for a detailed understanding of the extent to which these generators accurately describe the formation of two-prong QCD jets, and informs their usage in substructure analyses. In conclusion, our calculation also provides considerable insight into the discrimination power and calculability of jet substructure observables in general.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larkoski, Andrew J.; Moult, Ian; Neill, Duff
Observables which discriminate boosted topologies from massive QCD jets are of great importance for the success of the jet substructure program at the Large Hadron Collider. Such observables, while both widely and successfully used, have been studied almost exclusively with Monte Carlo simulations. In this paper we present the first all-orders factorization theorem for a two-prong discriminant based on a jet shape variable, D 2, valid for both signal and background jets. Our factorization theorem simultaneously describes the production of both collinear and soft subjets, and we introduce a novel zero-bin procedure to correctly describe the transition region between thesemore » limits. By proving an all orders factorization theorem, we enable a systematically improvable description, and allow for precision comparisons between data, Monte Carlo, and first principles QCD calculations for jet substructure observables. Using our factorization theorem, we present numerical results for the discrimination of a boosted Z boson from massive QCD background jets. We compare our results with Monte Carlo predictions which allows for a detailed understanding of the extent to which these generators accurately describe the formation of two-prong QCD jets, and informs their usage in substructure analyses. In conclusion, our calculation also provides considerable insight into the discrimination power and calculability of jet substructure observables in general.« less
A subleading operator basis and matching for gg → H
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moult, Ian; Stewart, Iain W.; Vita, Gherardo
The Soft Collinear Effective Theory (SCET) is a powerful framework for studying factorization of amplitudes and cross sections in QCD. While factorization at leading power has been well studied, much less is known at subleading powers in the λ << 1 expansion. In SCET subleading soft and collinear corrections to a hard scattering process are described by power suppressed operators, which must be fixed case by case, and by well established power suppressed Lagrangians, which correct the leading power dynamics of soft and collinear radiation. Here we present a complete basis of power suppressed operators for gg → H, classifyingmore » all operators which contribute to the cross section at O(λ 2), and showing how helicity selection rules significantly simplify the construction of the operator basis. We perform matching calculations to determine the tree level Wilson coefficients of our operators. These results are useful for studies of power corrections in both resummed and fixed order perturbation theory, and for understanding the factorization properties of gauge theory amplitudes and cross sections at subleading power. As one example, our basis of operators can be used to analytically compute power corrections for N -jettiness subtractions for gg induced color singlet production at the LHC.« less
A subleading operator basis and matching for gg → H
Moult, Ian; Stewart, Iain W.; Vita, Gherardo
2017-07-01
The Soft Collinear Effective Theory (SCET) is a powerful framework for studying factorization of amplitudes and cross sections in QCD. While factorization at leading power has been well studied, much less is known at subleading powers in the λ << 1 expansion. In SCET subleading soft and collinear corrections to a hard scattering process are described by power suppressed operators, which must be fixed case by case, and by well established power suppressed Lagrangians, which correct the leading power dynamics of soft and collinear radiation. Here we present a complete basis of power suppressed operators for gg → H, classifyingmore » all operators which contribute to the cross section at O(λ 2), and showing how helicity selection rules significantly simplify the construction of the operator basis. We perform matching calculations to determine the tree level Wilson coefficients of our operators. These results are useful for studies of power corrections in both resummed and fixed order perturbation theory, and for understanding the factorization properties of gauge theory amplitudes and cross sections at subleading power. As one example, our basis of operators can be used to analytically compute power corrections for N -jettiness subtractions for gg induced color singlet production at the LHC.« less
New methods for B meson decay constants and form factors from lattice NRQCD
NASA Astrophysics Data System (ADS)
Hughes, C.; Davies, C. T. H.; Monahan, C. J.; Hpqcd Collaboration
2018-03-01
We determine the normalization of scalar and pseudoscalar current operators made from nonrelativistic b quarks and highly improved staggered light quarks in lattice quantum chromodynamics (QCD) through O (αs) and ΛQCD/mb. We use matrix elements of these operators to extract B meson decay constants and form factors, and then compare to those obtained using the standard vector and axial-vector operators. This provides a test of systematic errors in the lattice QCD determination of the B meson decay constants and form factors. We provide a new value for the B and Bs meson decay constants from lattice QCD calculations on ensembles that include u , d , s , and c quarks in the sea and those that have the u /d quark mass going down to its physical value. Our results are fB=0.196 (6 ) GeV , fBs=0.236(7 ) GeV , and fB s/fB=1.207 (7 ), agreeing well with earlier results using the temporal axial current. By combining with these previous results, we provide updated values of fB=0.190 (4 ) GeV , fBs=0.229(5 ) GeV , and fB s/fB=1.206 (5 ).
Exclusive processes and the fundamental structure of hadrons
Brodsky, Stanley J.
2015-01-20
I review the historical development of QCD predictions for exclusive hadronic processes, beginning with constituent counting rules and the quark interchange mechanism, phenomena which gave early validation for the quark structure of hadrons. The subsequent development of pQCD factorization theorems for hard exclusive amplitudes and the development of evolution equations for the hadron distribution amplitudes provided a rigorous framework for calculating hadronic form factors and hard scattering exclusive scattering processes at high momentum transfer. I also give a brief introduction to the field of "light-front holography" and the insights it brings to quark confinement, the behavior of the QCD couplingmore » in the nonperturbative domain, as well as hadron spectroscopy and the dynamics of exclusive processes.« less
Exclusive processes and the fundamental structure of hadrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.
I review the historical development of QCD predictions for exclusive hadronic processes, beginning with constituent counting rules and the quark interchange mechanism, phenomena which gave early validation for the quark structure of hadrons. The subsequent development of pQCD factorization theorems for hard exclusive amplitudes and the development of evolution equations for the hadron distribution amplitudes provided a rigorous framework for calculating hadronic form factors and hard scattering exclusive scattering processes at high momentum transfer. I also give a brief introduction to the field of "light-front holography" and the insights it brings to quark confinement, the behavior of the QCD couplingmore » in the nonperturbative domain, as well as hadron spectroscopy and the dynamics of exclusive processes.« less
QCD Resummation for Single Spin Asymmetries
NASA Astrophysics Data System (ADS)
Kang, Zhong-Bo; Xiao, Bo-Wen; Yuan, Feng
2011-10-01
We study the transverse momentum dependent factorization for single spin asymmetries in Drell-Yan and semi-inclusive deep inelastic scattering processes at one-loop order. The next-to-leading order hard factors are calculated in the Ji-Ma-Yuan factorization scheme. We further derive the QCD resummation formalisms for these observables following the Collins-Soper-Sterman method. The results are expressed in terms of the collinear correlation functions from initial and/or final state hadrons coupled with the Sudakov form factor containing all order soft-gluon resummation effects. The scheme-independent coefficients are calculated up to one-loop order.
QCD Resummation for Single Spin Asymmetries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang Z.; Xiao, Bo-Wen; Yuan, Feng
We study the transverse momentum dependent factorization for single spin asymmetries in Drell-Yan and semi-inclusive deep inelastic scattering processes at one-loop order. The next-to-leading order hard factors are calculated in the Ji-Ma-Yuan factorization scheme. We further derive the QCD resummation formalisms for these observables following the Collins-Soper-Sterman method. The results are expressed in terms of the collinear correlation functions from initial and/or final state hadrons coupled with the Sudakov form factor containing all order soft-gluon resummation effects. The scheme-independent coefficients are calculated up to one-loop order.
Khachatryan, Vardan
2015-04-24
Our search is presented for quark contact interactions and extra spatial dimensions in proton–proton collisions at √s=8TeVusing dijet angular distributions. The search is based on a data set corresponding to an integrated luminosity of 19.7fb -1collected by the CMS detector at the CERN LHC. Dijet angular distributions are found to be in agreement with the perturbative QCD predictions that include electroweak corrections. Limits on the contact interaction scale from a variety of models at next-to-leading order in QCD corrections are obtained. A benchmark model in which only left-handed quarks participate is excluded up to a scale of 9.0 (11.7)TeV formore » destructive (constructive) interference at 95% confidence level. Finally, lower limits between 5.9 and 8.4TeV on the scale of virtual graviton exchange are extracted for the Arkani-Hamed–Dimopoulos–Dvali model of extra spatial dimensions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, J.; DePorcel, L.; Dixon, L.
1997-06-01
This conference explored the role of the strong interaction in the physics of hadrons and partons. The Institute attracted 239 physicists from 16 countries to hear lectures on the underlying theory of Quantum Chromodynamics, modern theoretical calculational techniques, and experimental investigation of the strong interaction as it appears in various phenomena. Different regimes in which one can calculate reliably in QCD were addressed in series of lectures on perturbation theory, lattice gauge theories, and heavy quark expansions. Studies of QCD in hadron-hadron collisions, electron-positron annihilation, and electron-proton collisions all give differing perspectives on the strong interaction--from low-x to high-Q{sup 2}.more » Experimental understanding of the production and decay of heavy quarks as well as the lighter meson states has continued to evolve over the past years, and these topics were also covered at the School. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less
K - bar K mixing in a low energy effective QCD
NASA Astrophysics Data System (ADS)
Bergan, A. E.; Eeg, J. O.
1994-09-01
We consider the contribution from the siamese penguin diagram toK - bar K mixing. Combining some previous results, this contribution could be numerically significant, which is the motivation for the present calculation. For the siamese penguin, the effective lagrangian obtained from the perturbative region above ≈1 GeV is highly non-local. We account for such non-local effects by using an effective low-energy QCD, advocated by many authors, where the quarks are coupled to the pseudoscalar mesons π, K, η. Taking into account the momentum variation of the effective penguin interaction, it is found that the matrix element of the siamese penguin is finite in the limitΛ _χ to infty , the CP-conserving part being about 50% of the well known box contribution. However, taking into account the finiteness of the cut-off, a numerical integration shows that the siamese penguin contribution is drastically reduced, and is only 0.2 0.3% of the box result.
NASA Astrophysics Data System (ADS)
Ahmed, Chaara El Mouez
Nous avons etudie les relations de dispersion et la diffusion des glueballs et des mesons dans le modele U(1)_{2+1} compact. Ce modele a ete souvent utilise comme un simple modele de la chromodynamique quantique (QCD), parce qu'il possede le confinement ainsi que les etats de glueballs. Par contre, sa structure mathematique est beaucoup plus simple que la QCD. Notre methode consiste a diagonaliser l'Hamiltonien de ce modele dans une base appropriee de graphes et sur reseau impulsion, afin de generer les relations de dispersion des glueballs et des mesons. Pour la diffusion, nous avons utilise la methode dependante du temps pour calculer la matrice S et la section efficace de diffusion des glueballs et des mesons. Les divers resultats obtenus semblent etre en accord avec les travaux anterieurs de Hakim, Alessandrini et al., Irving et al., qui eux, utilisent plutot la theorie des perturbations en couplage fort, et travaillent sur un reseau espace-temps.
Emerging lattice approach to the K-unitarity triangle
Lehner, Christoph; Lunghi, Enrico; Soni, Amarjit
2016-05-04
In this study, it has been clear for the past several years that new physics in the quark sector can only appear, in low energy observables, as a perturbation. Therefore precise theoretical predictions and precise experimental measurements have become mandatory. Here we draw attention to the significant advances that have been made in lattice QCD simulations in recent years in K→ππ, in the long-distance contribution to indirect CP violation in the Kaon system (ε) and in rare K-decays. Thus, in conjunction with experiments, the construction of a unitarity triangle purely from Kaon physics should soon become feasible. We want tomore » emphasize that in our approach to the K -unitarity triangle, the ability of lattice QCD methods to systematically improve the calculation of the direct CP-violation parameter (ε') plays a pivotal role. Along with the B-unitarity triangle, this could allow, depending on the pattern of new physics, for more stringent tests of the Standard Model and tighter constraints on new physics.« less
The effective hyper-Kähler potential in the N = 2 supersymmetric QCD
NASA Astrophysics Data System (ADS)
Ketov, Sergei V.
1997-02-01
The effective low-energy hyper-Kähler potential for a massive N = 2 matter in N = 2 super-QCD is investigated. TheN = 2 extended supersymmetry severely restricts the N = 2 matter self-couplings so that their exact form can be fixed by a few parameters, which is apparent in the N = 2 harmonic superspace. In the N = 2 QED with a single matter hypermultiplet, the one-loop perturbative calculations lead to the Taub-NUT hyper-Kähler metric in the massive case, and a free metric in the massless case. It is remarkable that the naive non-renormalization `theorem' does not apply. There exists a manifestly N = 2 supersymmetric duality transformation converting the low-energy effective action for the N = 2 QED hypermultiplet into a sum of the quadratic and the improved (non-polynomial) actions for an N = 2 tensor multiplet. The duality transformation also gives a simple connection between the low-energy effective action in the N = 2 harmonic superspace and the component results.
One-loop calculations in Supersymmetric Lattice QCD
NASA Astrophysics Data System (ADS)
Costa, M.; Panagopoulos, H.
2017-03-01
We study the self energies of all particles which appear in a lattice regularization of supersymmetric QCD (N = 1). We compute, perturbatively to one-loop, the relevant two-point Green's functions using both the dimensional and the lattice regularizations. Our lattice formulation employs the Wilson fermion acrion for the gluino and quark fields. The gauge group that we consider is SU(Nc) while the number of colors, Nc and the number of flavors, Nf , are kept as generic parameters. We have also searched for relations among the propagators which are computed from our one-loop results. We have obtained analytic expressions for the renormalization functions of the quark field (Zψ), gluon field (Zu), gluino field (Zλ) and squark field (ZA±). We present here results from dimensional regularization, relegating to a forthcoming publication [1] our results along with a more complete list of references. Part of the lattice study regards also the renormalization of quark bilinear operators which, unlike the nonsupersymmetric case, exhibit a rich pattern of operator mixing at the quantum level.
Finite-width Laplacian sum rules for 2++ tensor glueball in the instanton vacuum model
NASA Astrophysics Data System (ADS)
Chen, Junlong; Liu, Jueping
2017-01-01
The more carefully defined and more appropriate 2++ tensor glueball current is a S Uc(3 ) gauge-invariant, symmetric, traceless, and conserved Lorentz-irreducible tensor. After Lorentz decomposition, the invariant amplitude of the correlation function is abstracted and calculated based on the semiclassical expansion for quantum chromodynamics (QCD) in the instanton liquid background. In addition to taking the perturbative contribution into account, we calculate the contribution arising from the interaction (or the interference) between instantons and the quantum gluon fields, which is infrared free. Instead of the usual zero-width approximation for the resonances, the Breit-Wigner form with a correct threshold behavior for the spectral function of the finite-width three resonances is adopted. The properties of the 2++ tensor glueball are investigated via a family of the QCD Laplacian sum rules for the invariant amplitude. The values of the mass, decay width, and coupling constants for the 2++ resonance in which the glueball fraction is dominant are obtained.
NASA Astrophysics Data System (ADS)
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Mora Herrera, C.; Pol, M. E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Tao, J.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zou, W.; Avila, C.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Bouvier, E.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Heister, A.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Raupach, F.; Sammet, J.; Schael, S.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Weber, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.; Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garay Garcia, J.; Geiser, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Horton, D.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Novgorodova, O.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Ribeiro Cipriano, P. M.; Roland, B.; Ron, E.; Sahin, M. Ö.; Salfeld-Nebgen, J.; Saxena, P.; Schmidt, R.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Vargas Trevino, A. D. R.; Walsh, R.; Wissing, C.; Aldaya Martin, M.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Poehlsen, T.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Lobelle Pardo, P.; Mozer, M. U.; Müller, Th.; Nürnberg, A.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Röcker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Swain, S. K.; Beri, S. B.; Bhatnagar, V.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, M.; Kumar, R.; Mittal, M.; Nishu, N.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Ferretti, R.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fiori, F.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kim, T. J.; Kim, J. Y.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.; Choi, M.; Kim, J. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Seo, H.; Yu, I.; Juodagalvis, A.; Komaragiri, J. R.; Md Ali, M. A. B.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Wolszczak, W.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Savrin, V.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Musella, P.; Orsini, L.; Pape, L.; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Wollny, H.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Chanon, N.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Hits, D.; Hoss, J.; Lustermann, W.; Mangano, B.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meister, D.; Mohr, N.; Nägeli, C.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Millan Mejias, B.; Ngadiuba, J.; Robmann, P.; Ronga, F. J.; Taroni, S.; Verzetti, M.; Yang, Y.; Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Kao, K. Y.; Lei, Y. J.; Liu, Y. F.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Tzeng, Y. M.; Wilken, R.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Isildak, B.; Karapinar, G.; Ocalan, K.; Sekmen, S.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Albayrak, E. A.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.; Cankocak, K.; Vardarlı, F. I.; Levchuk, L.; Sorokin, P.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Senkin, S.; Smith, V. J.; Williams, T.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Dunne, P.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mathias, B.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Lawson, P.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Alimena, J.; Berry, E.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Miceli, T.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Rikova, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Sumowidagdo, S.; Wimpenny, S.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Welke, C.; Würthwein, F.; Yagil, A.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Incandela, J.; Justus, C.; Mccoll, N.; Richman, J.; Stuart, D.; To, W.; West, C.; Yoo, J.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Vlimant, J. R.; Wilkinson, R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Krohn, M.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kreis, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carver, M.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Snowball, M.; Sperka, D.; Yelton, J.; Zakaria, M.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Turner, P.; Varelas, N.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Haytmyradov, M.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P., III; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Skhirtladze, N.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Belloni, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.; Dahmes, B.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Gonzalez Suarez, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Snow, G. R.; Zvada, M.; Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.; Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Pearson, T.; Planer, M.; Ruchti, R.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Hunt, A.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Brownson, E.; Mendez, H.; Ramirez Vargas, J. E.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; De Mattia, M.; Gutay, L.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Lopes Pegna, D.; Maroussov, V.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Khukhunaishvili, A.; Korjenevski, S.; Petrillo, G.; Vishnevskiy, D.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Kaplan, S.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Salur, S.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Suarez, I.; Tatarinov, A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Taylor, D.; Verwilligen, P.; Vuosalo, C.; Woods, N.
2015-06-01
A search is presented for quark contact interactions and extra spatial dimensions in proton-proton collisions at √{ s} = 8 TeV using dijet angular distributions. The search is based on a data set corresponding to an integrated luminosity of 19.7 fb-1 collected by the CMS detector at the CERN LHC. Dijet angular distributions are found to be in agreement with the perturbative QCD predictions that include electroweak corrections. Limits on the contact interaction scale from a variety of models at next-to-leading order in QCD corrections are obtained. A benchmark model in which only left-handed quarks participate is excluded up to a scale of 9.0 (11.7) TeV for destructive (constructive) interference at 95% confidence level. Lower limits between 5.9 and 8.4 TeV on the scale of virtual graviton exchange are extracted for the Arkani-Hamed-Dimopoulos-Dvali model of extra spatial dimensions.
Event shapes and azimuthal correlations in Z +jets events in pp collisions at √{ s} = 7 TeV
NASA Astrophysics Data System (ADS)
Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rabady, D.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Vilela Pereira, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Carrillo Montoya, C. A.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Tikvica, L.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Mahmoud, M. A.; Mahrous, A.; Radi, A.; Kadastik, M.; Müntel, M.; Murumaa, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Brochet, S.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Calpas, B.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Thüer, S.; Weber, M.; Bontenackels, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.; Aldaya Martin, M.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Castro, E.; Costanza, F.; Dammann, D.; Diez Pardos, C.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Krämer, M.; Krücker, D.; Kuznetsova, E.; Lange, W.; Leonard, J.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Nowak, F.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Ribeiro Cipriano, P. M.; Riedl, C.; Ron, E.; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Walsh, R.; Wissing, C.; Blobel, V.; Enderle, H.; Erfle, J.; Gebbert, U.; Görner, M.; Gosselink, M.; Haller, J.; Hermanns, T.; Höing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schröder, M.; Schum, T.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Thomsen, J.; Vanelderen, L.; Barth, C.; Berger, J.; Böser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Lobelle Pardo, P.; Martschei, D.; Mueller, S.; Müller, Th.; Niegel, M.; Nürnberg, A.; Oberst, O.; Oehler, A.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Röcker, S.; Schilling, F.-P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Ntomari, E.; Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Mittal, M.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Aziz, T.; Chatterjee, R. M.; Ganguly, S.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Banerjee, S.; Dugad, S.; Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Paktinat Mehdiabadi, S.; Safarzadeh, B.; Zeinali, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.; Fabbricatore, P.; Musenich, R.; Tosi, S.; Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bellato, M.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Gasparini, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Taroni, S.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foà, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Soffi, L.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Kim, T. Y.; Nam, S. K.; Chang, S.; Kim, D. H.; Kim, G. N.; Kong, D. J.; Park, H.; Son, D. C.; Son, T.; Kim, J. Y.; Kim, Zero J.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Roh, Y.; Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.; Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Juodagalvis, A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Martínez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.; Carrillo Moreno, S.; Vazquez Valencia, F.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.; Krofcheck, D.; Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.; Ahmad, M.; Asghar, M. I.; Butt, J.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Seixas, J.; Varela, J.; Vischia, P.; Belotelov, I.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.; Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Shreyber, I.; Stolin, V.; Vlasov, E.; Zhokin, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Popov, A.; Sarycheva, L.; Savrin, V.; Snigirev, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.; Albajar, C.; Codispoti, G.; de Trocóniz, J. F.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Coarasa Perez, J. A.; D'Enterria, D.; Dabrowski, A.; De Roeck, A.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Gomez-Reino Garrido, R.; Govoni, P.; Gowdy, S.; Guida, R.; Gundacker, S.; Hammer, J.; Hansen, M.; Harris, P.; Hartl, C.; Harvey, J.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Lecoq, P.; Lee, Y.-J.; Lenzi, P.; Lourenço, C.; Magini, N.; Mäki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mulders, M.; Musella, P.; Nesvold, E.; Orsini, L.; Palencia Cortezon, E.; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Rodrigues Antunes, J.; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schäfer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wöhri, H. K.; Worm, S. D.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Bäni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Eugster, J.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Mohr, N.; Moortgat, F.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Wehrli, L.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Ivova Rikova, M.; Kilminster, B.; Millan Mejias, B.; Otiougova, P.; Robmann, P.; Snoek, H.; Tupputi, S.; Verzetti, M.; Chang, Y. H.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Lu, Y. J.; Singh, A. P.; Volpe, R.; Yu, S. S.; Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.; Asavapibhop, B.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Karapinar, G.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, L. N.; Vergili, M.; Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Bahtiyar, H.; Barlas, E.; Cankocak, K.; Günaydin, Y. O.; Vardarlı, F. I.; Yücel, M.; Levchuk, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Guneratne Bryer, A.; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; Magnan, A.-M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Sparrow, A.; Stoye, M.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Hatakeyama, K.; Liu, H.; Scarborough, T.; Charaf, O.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; St. John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.; Alimena, J.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Mall, O.; Miceli, T.; Pellett, D.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Vasquez Sierra, R.; Yohay, R.; Andreev, V.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Traczyk, P.; Valuev, V.; Weber, M.; Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; George, C.; Golf, F.; Incandela, J.; Justus, C.; Kalavase, P.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Magaña Villalba, R.; Mccoll, N.; Pavlunin, V.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Luiggi Lopez, E.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Park, M.; Remington, R.; Rinkevicius, A.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.; Yumiceva, F.; Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; O'Brien, C.; Silkworth, C.; Strom, D.; Turner, P.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Griffiths, S.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Onel, Y.; Ozok, F.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Swartz, M.; Whitbeck, A.; Baringer, P.; Bean, A.; Benelli, G.; Kenny, R. P.; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.; Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Peterman, A.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Gomez Ceballos, G.; Goncharov, M.; Kim, Y.; Klute, M.; Krajczar, K.; Levin, A.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Zhukova, V.; Cooper, S. I.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Snow, G. R.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Wan, Z.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.; Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.; Berry, D.; Brinkerhoff, A.; Chan, K. M.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Vuosalo, C.; Williams, G.; Winer, B. L.; Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Koay, S. A.; Lopes Pegna, D.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.; Brownson, E.; Lopez, A.; Mendez, H.; Ramirez Vargas, J. E.; Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Vidal Marono, M.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Guragain, S.; Parashar, N.; Adair, A.; Akgun, B.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Vishnevskiy, D.; Zielinski, M.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Walker, M.; Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.; Akchurin, N.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Florez, C.; Greene, S.; Gurrola, A.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sakharov, A.; Anderson, M.; Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Loveless, R.; Mohapatra, A.; Mozer, M. U.; Ojalvo, I.; Palmonari, F.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.
2013-05-01
Measurements of event shapes and azimuthal correlations are presented for events where a Z boson is produced in association with jets in proton-proton collisions. The data collected with the CMS detector at the CERN LHC at √{ s} = 7 TeV correspond to an integrated luminosity of 5.0 fb-1. The analysis provides a test of predictions from perturbative QCD for a process that represents a substantial background to many physics channels. Results are presented as a function of jet multiplicity, for inclusive Z boson production and for Z bosons with transverse momenta greater than 150 GeV, and compared to predictions from Monte Carlo event generators that include leading-order multiparton matrix-element (with up to four hard partons in the final state) and next-to-leading-order simulations of Z +1-jet events. The experimental results are corrected for detector effects, and can be compared directly with other QCD models.
Zachariou, N.; Ilieva, Y.; Ivanov, N. Ya.; ...
2015-05-01
The beam-spin asymmetry, Σ, for the reaction γd→ΣΣpn has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (JLab) for six photon-energy bins, between 1.1 and 2.3 GeV, and proton angles in the center-of-mass frame, Θ c.m., between 25° and 160°. These are the first measurements of beam-spin asymmetries at Θ c.m.=90° for photon-beam energies above 1.6 GeV, and the first measurements for angles other than Θ c.m.=90°. The angular and energy dependence of Σ is expected to aid in the development of QCD-based models to understand the mechanisms of deuteron photodisintegration inmore » the transition region between hadronic and partonic degrees of freedom, where both effective field theories and perturbative QCD cannot make reliable predictions.« less
Event shapes and azimuthal correlations in Z + jets events in pp collisions at s = 7 TeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.
Measurements of event shapes and azimuthal correlations are presented for events where a Z boson is produced in association with jets in proton-proton collisions. The data collected with the CMS detector at the CERN LHC at sqrt(s) = 7 TeV correspond to an integrated luminosity of 5.0 inverse femtobarns. The analysis provides a test of predictions from perturbative QCD for a process that represents a substantial background to many physics channels. Results are presented as a function of jet multiplicity, for inclusive Z boson production and for Z bosons with transverse momenta greater than 150 GeV, and compared to predictionsmore » from Monte Carlo event generators that include leading-order multiparton matrix-element (with up to four hard partons in the final state) and next-to-leading-order simulations of Z + 1-jet events. The experimental results are corrected for detector effects, and can be compared directly with other QCD models.« less
Scattering processes and resonances from lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briceno, Raul A.; Dudek, Jozef J.; Young, Ross D.
The vast majority of hadrons observed in nature are not stable under the strong interaction; rather they are resonances whose existence is deduced from enhancements in the energy dependence of scattering amplitudes. The study of hadron resonances offers a window into the workings of quantum chromodynamics (QCD) in the low-energy nonperturbative region, and in addition many probes of the limits of the electroweak sector of the standard model consider processes which feature hadron resonances. From a theoretical standpoint, this is a challenging field: the same dynamics that binds quarks and gluons into hadron resonances also controls their decay into lightermore » hadrons, so a complete approach to QCD is required. Presently, lattice QCD is the only available tool that provides the required nonperturbative evaluation of hadron observables. This paper reviews progress in the study of few-hadron reactions in which resonances and bound states appear using lattice QCD techniques. The leading approach is described that takes advantage of the periodic finite spatial volume used in lattice QCD calculations to extract scattering amplitudes from the discrete spectrum of QCD eigenstates in a box. An explanation is given of how from explicit lattice QCD calculations one can rigorously garner information about a variety of resonance properties, including their masses, widths, decay couplings, and form factors. Finally, the challenges which currently limit the field are discussed along with the steps being taken to resolve them.« less
Scattering processes and resonances from lattice QCD
NASA Astrophysics Data System (ADS)
Briceño, Raúl A.; Dudek, Jozef J.; Young, Ross D.
2018-04-01
The vast majority of hadrons observed in nature are not stable under the strong interaction; rather they are resonances whose existence is deduced from enhancements in the energy dependence of scattering amplitudes. The study of hadron resonances offers a window into the workings of quantum chromodynamics (QCD) in the low-energy nonperturbative region, and in addition many probes of the limits of the electroweak sector of the standard model consider processes which feature hadron resonances. From a theoretical standpoint, this is a challenging field: the same dynamics that binds quarks and gluons into hadron resonances also controls their decay into lighter hadrons, so a complete approach to QCD is required. Presently, lattice QCD is the only available tool that provides the required nonperturbative evaluation of hadron observables. This article reviews progress in the study of few-hadron reactions in which resonances and bound states appear using lattice QCD techniques. The leading approach is described that takes advantage of the periodic finite spatial volume used in lattice QCD calculations to extract scattering amplitudes from the discrete spectrum of QCD eigenstates in a box. An explanation is given of how from explicit lattice QCD calculations one can rigorously garner information about a variety of resonance properties, including their masses, widths, decay couplings, and form factors. The challenges which currently limit the field are discussed along with the steps being taken to resolve them.
Scattering processes and resonances from lattice QCD
Briceno, Raul A.; Dudek, Jozef J.; Young, Ross D.
2018-04-18
The vast majority of hadrons observed in nature are not stable under the strong interaction; rather they are resonances whose existence is deduced from enhancements in the energy dependence of scattering amplitudes. The study of hadron resonances offers a window into the workings of quantum chromodynamics (QCD) in the low-energy nonperturbative region, and in addition many probes of the limits of the electroweak sector of the standard model consider processes which feature hadron resonances. From a theoretical standpoint, this is a challenging field: the same dynamics that binds quarks and gluons into hadron resonances also controls their decay into lightermore » hadrons, so a complete approach to QCD is required. Presently, lattice QCD is the only available tool that provides the required nonperturbative evaluation of hadron observables. This paper reviews progress in the study of few-hadron reactions in which resonances and bound states appear using lattice QCD techniques. The leading approach is described that takes advantage of the periodic finite spatial volume used in lattice QCD calculations to extract scattering amplitudes from the discrete spectrum of QCD eigenstates in a box. An explanation is given of how from explicit lattice QCD calculations one can rigorously garner information about a variety of resonance properties, including their masses, widths, decay couplings, and form factors. Finally, the challenges which currently limit the field are discussed along with the steps being taken to resolve them.« less
Parton distributions and lattice QCD calculations: A community white paper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Huey-Wen; Nocera, Emanuele R.; Olness, Fred
In the framework of quantum chromodynamics (QCD), parton distribution functions (PDFs) quantify how the momentum and spin of a hadron are divided among its quark and gluon constituents. Two main approaches exist to determine PDFs. The first approach, based on QCD factorization theorems, realizes a QCD analysis of a suitable set of hard-scattering measurements, often using a variety of hadronic observables. The second approach, based on first-principle operator definitions of PDFs, uses lattice QCD to compute directly some PDF-related quantities, such as their moments. Motivated by recent progress in both approaches, in this paper we present an overview of lattice-QCDmore » and global-analysis techniques used to determine unpolarized and polarized proton PDFs and their moments. We provide benchmark numbers to validate present and future lattice-QCD calculations and we illustrate how they could be used to reduce the PDF uncertainties in current unpolarized and polarized global analyses. Finally, this document represents a first step towards establishing a common language between the two communities, to foster dialogue and to further improve our knowledge of PDFs.« less
Twin Higgs Asymmetric Dark Matter.
García García, Isabel; Lasenby, Robert; March-Russell, John
2015-09-18
We study asymmetric dark matter (ADM) in the context of the minimal (fraternal) twin Higgs solution to the little hierarchy problem, with a twin sector with gauged SU(3)^{'}×SU(2)^{'}, a twin Higgs doublet, and only third-generation twin fermions. Naturalness requires the QCD^{'} scale Λ_{QCD}^{'}≃0.5-20 GeV, and that t^{'} is heavy. We focus on the light b^{'} quark regime, m_{b^{'}}≲Λ_{QCD}^{'}, where QCD^{'} is characterized by a single scale Λ_{QCD}^{'} with no light pions. A twin baryon number asymmetry leads to a successful dark matter (DM) candidate: the spin-3/2 twin baryon, Δ^{'}∼b^{'}b^{'}b^{'}, with a dynamically determined mass (∼5Λ_{QCD}^{'}) in the preferred range for the DM-to-baryon ratio Ω_{DM}/Ω_{baryon}≃5. Gauging the U(1)^{'} group leads to twin atoms (Δ^{'}-τ^{'}[over ¯] bound states) that are successful ADM candidates in significant regions of parameter space, sometimes with observable changes to DM halo properties. Direct detection signatures satisfy current bounds, at times modified by dark form factors.
Parton distributions and lattice QCD calculations: A community white paper
Lin, Huey-Wen; Nocera, Emanuele R.; Olness, Fred; ...
2018-01-31
In the framework of quantum chromodynamics (QCD), parton distribution functions (PDFs) quantify how the momentum and spin of a hadron are divided among its quark and gluon constituents. Two main approaches exist to determine PDFs. The first approach, based on QCD factorization theorems, realizes a QCD analysis of a suitable set of hard-scattering measurements, often using a variety of hadronic observables. The second approach, based on first-principle operator definitions of PDFs, uses lattice QCD to compute directly some PDF-related quantities, such as their moments. Motivated by recent progress in both approaches, in this paper we present an overview of lattice-QCDmore » and global-analysis techniques used to determine unpolarized and polarized proton PDFs and their moments. We provide benchmark numbers to validate present and future lattice-QCD calculations and we illustrate how they could be used to reduce the PDF uncertainties in current unpolarized and polarized global analyses. Finally, this document represents a first step towards establishing a common language between the two communities, to foster dialogue and to further improve our knowledge of PDFs.« less
D meson semileptonic form factors in Nf = 3 QCD with Möbius domain-wall quarks
NASA Astrophysics Data System (ADS)
Kaneko, Takashi; Colquhoun, Brian; Fukaya, Hidenori; Hashimoto, Shoji
2018-03-01
e present our calculation of D → π and D → K semileptonic form factors in Nf = 2 + 1 lattice QCD. We simulate three lattice cutoffs a-1 ≃ 2.5, 3.6 and 4.5 GeV with pion masses as low as 230 MeV. The Möbius domain-wall action is employed for both light and charm quarks. We present our results for the vector and scalar form factors and discuss their dependence on the lattice spacing, light quark masses and momentum transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karsch, F.; Kojo, T.; Mukherjee, S.
Most of our visible universe is made up of hadronic matter. Quantum Chromodynamics (QCD) is the theory of strong interaction that describes the hadronic matter. However, QCD predicts that at high enough temperatures and/or densities ordinary hadronic matter ceases to exist and a new form of matter is created, the so-called Quark Gluon Plasma (QGP). Non-perturbative lattice QCD simulations shows that for high temperature and small densities the transition from the hadronic to the QCD matter is not an actual phase transition, rather it takes place via a rapid crossover. On the other hand, it is generally believed that atmore » zero temperature and high densities such a transition is an actual first order phase transition. Thus, in the temperature-density phase diagram of QCD, the first order phase transition line emanating from the zero temperature high density region ends at some higher temperature where the transition becomes a crossover. The point at which the first order transition line turns into a crossover is a second order phase transition point belonging to three dimensional Ising universality class. This point is known as the QCD Critical End Point (CEP). For the last couple of years the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been performing experiments at lower energies in search of the elusive QCD CEP. In general critical behaviors are manifested through appearance of long range correlations and increasing fluctuations associated with the presence of mass-less modes in the vicinity of a second order phase transition. Experimental signatures of the CEP are likely to be found in observables related to fluctuations and correlations. Thus, one of the major focuses of the RHIC low energy scan program is to measure various experimental observables connected to fluctuations and correlations. On the other hand, with the start of the RHIC low energy scan program, a flurry of activities are taking place to provide solid theoretical background for the search of the CEP using observables related to fluctuations and correlations. While new data are pouring in from the RHIC low energy scan program, many recent advances have also been made in the phenomenological and lattice gauge theory sides in order to have a better theoretical understanding of the wealth of new data. This workshop tried to create a synergy between the experimental, phenomenological and lattice QCD aspects of the fluctuation and correlation related studies of the RHIC low energy scan program. The workshop brought together all the leading experts from related fields under the same forum to share new ideas among themselves in order to streamline the continuing search of CEP in the RHIC low energy scan program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almeida, Leandro G.; Physics Department, Brookhaven National Laboratory, Upton, New York 11973; Sturm, Christian
2010-09-01
Light quark masses can be determined through lattice simulations in regularization invariant momentum-subtraction (RI/MOM) schemes. Subsequently, matching factors, computed in continuum perturbation theory, are used in order to convert these quark masses from a RI/MOM scheme to the MS scheme. We calculate the two-loop corrections in QCD to these matching factors as well as the three-loop mass anomalous dimensions for the RI/SMOM and RI/SMOM{sub {gamma}{sub {mu}} }schemes. These two schemes are characterized by a symmetric subtraction point. Providing the conversion factors in the two different schemes allows for a better understanding of the systematic uncertainties. The two-loop expansion coefficients ofmore » the matching factors for both schemes turn out to be small compared to the traditional RI/MOM schemes. For n{sub f}=3 quark flavors they are about 0.6%-0.7% and 2%, respectively, of the leading order result at scales of about 2 GeV. Therefore, they will allow for a significant reduction of the systematic uncertainty of light quark mass determinations obtained through this approach. The determination of these matching factors requires the computation of amputated Green's functions with the insertions of quark bilinear operators. As a by-product of our calculation we also provide the corresponding results for the tensor operator.« less