Opportunities for microbial control of pulse crop pests
USDA-ARS?s Scientific Manuscript database
The insect pest complex in U.S. pulse crops is almost an “orphan” in terms of developed microbial control agents that the grower can use. There are almost no registered microbial pest control agents (MPCA) for the different pulse pests. In some cases a microbial is registered for use against specifi...
Natural products for pest control: an analysis of their role, value and future.
Gerwick, B Clifford; Sparks, Thomas C
2014-08-01
Natural products (NPs) have long been used as pesticides and have broadly served as a source of inspiration for a great many commercial synthetic organic fungicides, herbicides and insecticides that are in the market today. In light of the continuing need for new tools to address an ever-changing array of fungal, weed and insect pests, NPs continue to be a source of models and templates for the development of new pest control agents. Interestingly, an examination of the literature suggests that NP models exist for many of the pest control agents that were discovered by other means, suggesting that, had circumstances been different, these NPs could have served as inspiration for the discovery of a great many more of today's pest control agents. Here, an attempt is made to answer questions regarding the existence of an NP model for existing classes of pesticides and what is needed for the discovery of new NPs and NP models for pest control agents. © 2014 Society of Chemical Industry.
Recombinant entomopathogenic agents: a review of biotechnological approaches to pest insect control.
Karabörklü, Salih; Azizoglu, Ugur; Azizoglu, Zehra Busra
2017-12-18
Although the use of chemical pesticides has decreased in recent years, it is still a common method of pest control. However, chemical use leads to challenging problems. The harm caused by these chemicals and the length of time that they will remain in the environment is of great concern to the future and safety of humans. Therefore, developing new pest control agents that are safer and environmentally compatible, as well as assuring their widespread use is important. Entomopathogenic agents are microorganisms that play an important role in the biological control of pest insects and are eco-friendly alternatives to chemical control. They consist of viruses (non-cellular organisms), bacteria (prokaryotic organisms), fungi and protists (eukaryotic organisms), and nematodes (multicellular organisms). Genetic modification (recombinant technology) provides potential new methods for developing entomopathogens to manage pests. In this review, we focus on the important roles of recombinant entomopathogens in terms of pest insect control, placing them into perspective with other views to discuss, examine and evaluate the use of entomopathogenic agents in biological control.
Impact of Release Rates on the Effectiveness of Augmentative Biological Control Agents
Crowder, David W.
2007-01-01
To access the effect of augmentative biological control agents, 31 articles were reviewed that investigated the impact of release rates of 35 augmentative biological control agents on the control of 42 arthropod pests. In 64% of the cases, the release rate of the biological control agent did not significantly affect the density or mortality of the pest insect. Results where similar when parasitoidsor predators were utilized as the natural enemy. Within any order of natural enemy, there were more cases where release rates did not affect augmentative biological control than cases where release rates were significant. There were more cases in which release rates did not affect augmentative biological control when pests were from the orders Hemiptera, Acari, or Diptera, but not with pests from the order Lepidoptera. In most cases, there was an optimal release rate that produced effective control of a pest species. This was especially true when predators were used as a biological control agent. Increasing the release rate above the optimal rate did not improve control of the pest and thus would be economically detrimental. Lower release rates were of ten optimal when biological control was used in conjunction with insecticides. In many cases, the timing and method of biological control applications were more significant factors impacting the effectiveness of biological control than the release rate. Additional factors that may limit the relative impact of release rates include natural enemy fecundity, establishment rates, prey availability, dispersal, and cannibalism. PMID:20307240
Microbial control of arthropod pests of tropical tree fruits.
Dolinski, Claudia; Lacey, Lawrence A
2007-01-01
A multitude of insects and mites attack fruit crops throughout the tropics. The traditional method for controlling most of these pests is the application of chemical pesticides. Growing concern on the negative environmental effects has encouraged the development of alternatives. Inundatively and inoculatively applied microbial control agents (virus, bacteria, fungi, and entomopathogenic nematodes) have been developed as alternative control methods of a wide variety of arthropods including tropical fruit pests. The majority of the research and applications in tropical fruit agroecosystems has been conducted in citrus, banana, coconut, and mango. Successful microbial control initiatives of citrus pests and mites have been reported. Microbial control of arthropod pests of banana includes banana weevil, Cosmopolites sordidus Germar (Coleoptera: Curculionidae) (with EPNs and fungi) among others Oryctes rhinoceros (L.) is one of the most important pests of coconut and one of the most successful uses of non-occluded virus for classical biological control. Key pests of mango that have been controlled with microbial control agents include fruit flies (Diptera: Tephritidae) (with EPNs and fungi), and other pests. Also successful is the microbial control of arthropod pests of guava, papaya and pineapple. The challenge towards a broader application of entomopathogens is the development of successful combinations of entomopathogens, predators, and parasitoids along with other interventions to produce effective and sustainable pest management.
USDA-ARS?s Scientific Manuscript database
The braconid wasp Fopius arisanus (Sonan) is an important biological control agent of tropical and subtropical pest fruit flies including two important global pests, the Mediterranean fruit fly (Ceratitis capitata), and the oriental fruit fly (Bactrocera dorsalis}). The goal of this study was to dev...
J.D. Podgwaite; H.M. Mazzone
1981-01-01
Biological control, one component of integrated pest management, encompasses the use of several types of biological agents to control insect pest populations. Of these biological control agents, the insect viruses appear to offer one logical alternative to the chemical insecticides. One such virus, the nucleopolyhedrosis virus of the gypsy moth, Lymantria...
Biological Control beneath the Feet: A Review of Crop Protection against Insect Root Herbivores.
Kergunteuil, Alan; Bakhtiari, Moe; Formenti, Ludovico; Xiao, Zhenggao; Defossez, Emmanuel; Rasmann, Sergio
2016-11-29
Sustainable agriculture is certainly one of the most important challenges at present, considering both human population demography and evidence showing that crop productivity based on chemical control is plateauing. While the environmental and health threats of conventional agriculture are increasing, ecological research is offering promising solutions for crop protection against herbivore pests. While most research has focused on aboveground systems, several major crop pests are uniquely feeding on roots. We here aim at documenting the current and potential use of several biological control agents, including micro-organisms (viruses, bacteria, fungi, and nematodes) and invertebrates included among the macrofauna of soils (arthropods and annelids) that are used against root herbivores. In addition, we discuss the synergistic action of different bio-control agents when co-inoculated in soil and how the induction and priming of plant chemical defense could be synergized with the use of the bio-control agents described above to optimize root pest control. Finally, we highlight the gaps in the research for optimizing a more sustainable management of root pests.
Biological Control beneath the Feet: A Review of Crop Protection against Insect Root Herbivores
Kergunteuil, Alan; Bakhtiari, Moe; Formenti, Ludovico; Xiao, Zhenggao; Defossez, Emmanuel; Rasmann, Sergio
2016-01-01
Sustainable agriculture is certainly one of the most important challenges at present, considering both human population demography and evidence showing that crop productivity based on chemical control is plateauing. While the environmental and health threats of conventional agriculture are increasing, ecological research is offering promising solutions for crop protection against herbivore pests. While most research has focused on aboveground systems, several major crop pests are uniquely feeding on roots. We here aim at documenting the current and potential use of several biological control agents, including micro-organisms (viruses, bacteria, fungi, and nematodes) and invertebrates included among the macrofauna of soils (arthropods and annelids) that are used against root herbivores. In addition, we discuss the synergistic action of different bio-control agents when co-inoculated in soil and how the induction and priming of plant chemical defense could be synergized with the use of the bio-control agents described above to optimize root pest control. Finally, we highlight the gaps in the research for optimizing a more sustainable management of root pests. PMID:27916820
1976 Commercial Vegetable Pest Control Guide.
ERIC Educational Resources Information Center
MacNab, A. A.; And Others
This guide contains pest control information for commercial vegetable production. It was prepared for agricultural supply dealers, extension agents, fieldmen, and growers. It gives general precautions, information on seed treatment, growing disease-free seedlings and transplants, general soil insect control, general weed control, and spraying…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-03
... data on plant pests, noxious weeds, and biological control agents, which may be used to control plant..., eradicate, suppress, control, prevent, or retard the spread of plant pests and noxious weeds that are new to...
Rueckert, Sonja; Devetak, Dušan
2017-08-01
Gregarine apicomplexans are unicellular organisms that infect invertebrate hosts in marine, freshwater and terrestrial habitats. The largest group of invertebrates infested on land is the insects. The insect order Psocoptera (booklice) has recently gained wider interest due to specimens occurring in stored food products and therefore being considered pest organisms. Biological control agents are often used to eliminate pest organisms. In this study we examined the psocid Dorypteryx domestica, an invasive psocid species that is spreading all over the world. We were able to isolate and describe a new gregarine species (Enterocystis dorypterygis sp. n.) infecting D. domestica. The trophozoites are panduri- or pyriform and their association/syzygy is caudo-frontal. The surface is inscribed by longitudinal epicytic folds covering the complete cell. Phylogenetic analyses of the SSU rDNA gene revealed an only weakly supported relationship with two Gregarina species G. ormieri and G. basiconstrictonea, both from tenebrionid beetles. Gregarines have been proposed to have some potential as biological control agents for several insects. Identifying the gregarine species infecting pest organisms like psocids is a first step and prerequisite for the probable utilization of these parasites as biological control agents in the future. Copyright © 2017 Elsevier GmbH. All rights reserved.
Dutka, Alexandrea; McNulty, Alison; Williamson, Sally M
2015-01-01
There is currently a great deal of concern about population declines in pollinating insects. Many potential threats have been identified which may adversely affect the behaviour and health of both honey bees and bumble bees: these include pesticide exposure, and parasites and pathogens. Whether biological pest control agents adversely affect bees has been much less well studied: it is generally assumed that biological agents are safer for wildlife than chemical pesticides. The aim of this study was to test whether entomopathogenic nematodes sold as biological pest control products could potentially have adverse effects on the bumble bee Bombus terrestris. One product was a broad spectrum pest control agent containing both Heterorhabditis sp. and Steinernema sp., the other product was specifically for weevil control and contained only Steinernema kraussei. Both nematode products caused ≥80% mortality within the 96 h test period when bees were exposed to soil containing entomopathogenic nematodes at the recommended field concentration of 50 nematodes per cm(2) soil. Of particular concern is the fact that nematodes from the broad spectrum product could proliferate in the carcasses of dead bees, and therefore potentially infect a whole bee colony or spread to the wider environment.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-24
... pests, noxious weeds, and biological control agents, which may be used to control plant pests or noxious... detect, in collaboration with the National Plant Diagnostic Network and the U.S. Department of...
Bardin, Marc; Ajouz, Sakhr; Comby, Morgane; Lopez-Ferber, Miguel; Graillot, Benoît; Siegwart, Myriam; Nicot, Philippe C.
2015-01-01
The durability of a control method for plant protection is defined as the persistence of its efficacy in space and time. It depends on (i) the selection pressure exerted by it on populations of plant pathogens and (ii) on the capacity of these pathogens to adapt to the control method. Erosion of effectiveness of conventional plant protection methods has been widely studied in the past. For example, apparition of resistance to chemical pesticides in plant pathogens or pests has been extensively documented. The durability of biological control has often been assumed to be higher than that of chemical control. Results concerning pest management in agricultural systems have shown that this assumption may not always be justified. Resistance of various pests to one or several toxins of Bacillus thuringiensis and apparition of resistance of the codling moth Cydia pomonella to the C. pomonella granulovirus have, for example, been described. In contrast with the situation for pests, the durability of biological control of plant diseases has hardly been studied and no scientific reports proving the loss of efficiency of biological control agents against plant pathogens in practice has been published so far. Knowledge concerning the possible erosion of effectiveness of biological control is essential to ensure a durable efficacy of biological control agents on target plant pathogens. This knowledge will result in identifying risk factors that can foster the selection of strains of plant pathogens resistant to biological control agents. It will also result in identifying types of biological control agents with lower risk of efficacy loss, i.e., modes of action of biological control agents that does not favor the selection of resistant isolates in natural populations of plant pathogens. An analysis of the scientific literature was then conducted to assess the potential for plant pathogens to become resistant to biological control agents. PMID:26284088
USDA-ARS?s Scientific Manuscript database
An integrated pest control program requires an in-depth understanding of the compatibility of all control strategies used. In Wisconsin commercial cranberry production, early-season control strategies may include either a broad-spectrum insecticide application or a corresponding spring flood, along ...
Bagny Beilhe, Leïla; Piou, Cyril; Tadu, Zéphirin; Babin, Régis
2018-06-06
The use of ants for biological control of insect pests was the first reported case of conservation biological control. Direct and indirect community interactions between ants and pests lead to differential spatial pattern. We investigated spatial interactions between mirids, the major cocoa pest in West Africa and numerically dominant ant species, using bivariate point pattern analysis to identify potential biological control agents. We assume that potential biological control agents should display negative spatial interactions with mirids considering their niche overlap. The mirid/ant data were collected in complex cacao-based agroforestry systems sampled in three agroecological areas over a forest-savannah gradient in Cameroon. Three species, Crematogaster striatula Emery (Hymenoptera: Formicidae), Crematogaster clariventris Mayr (Hymenoptera: Formicidae), and Oecophylla longinoda Latreille (Hymenoptera: Formicidae) with high predator and aggressive behaviors were identified as dominant and showed negative spatial relationships with mirids. The weaver ant, O. longinoda was identified as the only potential biological control agent, considering its ubiquity in the plots, the similarity in niche requirements, and the spatial segregation with mirids resulting probably from exclusion mechanisms. Combining bivariate point pattern analysis to good knowledge of insect ecology was an effective method to identify a potentially good biological control agent.
Mode of Infection of Metarhizium spp. Fungus and Their Potential as Biological Control Agents
Aw, Kimberly Moon San; Hue, Seow Mun
2017-01-01
Chemical insecticides have been commonly used to control agricultural pests, termites, and biological vectors such as mosquitoes and ticks. However, the harmful impacts of toxic chemical insecticides on the environment, the development of resistance in pests and vectors towards chemical insecticides, and public concern have driven extensive research for alternatives, especially biological control agents such as fungus and bacteria. In this review, the mode of infection of Metarhizium fungus on both terrestrial and aquatic insect larvae and how these interactions have been widely employed will be outlined. The potential uses of Metarhizium anisopliae and Metarhizium acridum biological control agents and molecular approaches to increase their virulence will be discussed. PMID:29371548
Biocontrol of fouling pests: Effect of diversity, identity and density of control agents.
Atalah, Javier; Newcombe, Emma M; Zaiko, Anastasija
2016-04-01
Augmentative biocontrol, using native natural enemies, has been suggested as a promising tool to control marine biofouling pests on artificial structures. However, there are still important knowledge gaps to be addressed before biocontrol can be considered as a management tool. In a field experiment on floating marine structures we examined intra- and interspecific consumer interactions among biocontrol agents on different surface orientations. We tested the effect of identity, density and diversity of three invertebrates (the 11-arm seastar Coscinasterias muricata, the sea urchin Evechinus chloroticus and the gastropod Cook's turban Cookia sulcata) to reduce established biofouling and to prevent fouling growth on defouled surfaces. High densities of biocontrol agents were not more effective at fouling control (cover and biomass) than low densities. Nor did multi-species treatments function more effectively than mono-specific ones. However, biocontrol agent identity was important, with the 11-arm seastar and Cook's turban being the most effective at fouling reduction and prevention, respectively. Surface orientation had a strong effect on the effectiveness of control agents, with the best results obtained on vertical compared to diagonal and underside surfaces. This study confirmed the potential of biocontrol as a management tool for marine pest, indicating that identity is more important than richness and density of control agents. It also highlighted the limitations of this approach on diagonal and underside surfaces, where control agents have limited retention ability. Copyright © 2016 Elsevier Ltd. All rights reserved.
21 CFR 110.35 - Sanitary operations.
Code of Federal Regulations, 2014 CFR
2014-04-01
... holding of these products should be followed. (c) Pest control. No pests shall be allowed in any area of a..., sanitizing agents, and pesticide chemicals shall be identified, held, and stored in a manner that protects... measures shall be taken to exclude pests from the processing areas and to protect against the contamination...
21 CFR 110.35 - Sanitary operations.
Code of Federal Regulations, 2013 CFR
2013-04-01
... holding of these products should be followed. (c) Pest control. No pests shall be allowed in any area of a..., sanitizing agents, and pesticide chemicals shall be identified, held, and stored in a manner that protects... measures shall be taken to exclude pests from the processing areas and to protect against the contamination...
21 CFR 110.35 - Sanitary operations.
Code of Federal Regulations, 2011 CFR
2011-04-01
... holding of these products should be followed. (c) Pest control. No pests shall be allowed in any area of a..., sanitizing agents, and pesticide chemicals shall be identified, held, and stored in a manner that protects... measures shall be taken to exclude pests from the processing areas and to protect against the contamination...
21 CFR 110.35 - Sanitary operations.
Code of Federal Regulations, 2012 CFR
2012-04-01
... holding of these products should be followed. (c) Pest control. No pests shall be allowed in any area of a..., sanitizing agents, and pesticide chemicals shall be identified, held, and stored in a manner that protects... measures shall be taken to exclude pests from the processing areas and to protect against the contamination...
USDA-ARS?s Scientific Manuscript database
The establishment of biocontrol agents is critical for success of biological control strategies. Predator-In-First (PIF) is a prophylactic control strategy that aims to establish predators before the appearance of pests in an agro-ecosystem. Predator-In-First uses the characteristics of generalist p...
Ornamental and Turfgrass Pest Control. Sale Publication 4074.
ERIC Educational Resources Information Center
Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.
This guide gives information for recognition and control of ornamental and turf pests. Included are disease agents, insects and mites, weeds, and vertebrates. Symptoms and causes of phytotoxicity are given, and a discussion is presented of environmental concerns. Application methods and area measurement are also discussed. (BB)
Applied research and implementation of microbial control agents for pest control: greenhouse crops
USDA-ARS?s Scientific Manuscript database
Greenhouse crop production has experienced strong growth in recent decades, reaching nearly 4 million hectare in 2010. Due to favorable environmental conditions and constant availability of host plants, arthropod pests are a major production constraint that has elicited parallel increases in pestici...
Opportunity to use native nematodes for pest control
USDA-ARS?s Scientific Manuscript database
We have surveyed wild cranberry bogs in WI and found three isolates of native nematodes. We have been testing these nematodes as potential biological control agents in for cranberry insect pests including sparganothis fruitworm and flea beetle. The nematodes seem to be effective at finding and killi...
Allee effects in tritrophic food chains: some insights in pest biological control.
Costa, Michel Iskin da S; Dos Anjos, Lucas
2016-12-01
Release of natural enemies to control pest populations is a common strategy in biological control. However, its effectiveness is supposed to be impaired, among other factors, by Allee effects in the biological control agent and by the fact that introduced pest natural enemies interact with some native species of the ecosystem. In this work, we devise a tritrophic food chain model where the assumptions previously raised are proved correct when a hyperpredator attacks the introduced pest natural enemy by a functional response type 2 or 3. Moreover, success of pest control is shown to be related to the release of large amounts (i.e., inundative releases) of natural enemies. © The authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
Furlan, Lorenzo; Kreutzweiser, David
2015-01-01
Neonicotinoid insecticides are widely used for control of insect pests around the world and are especially pervasive in agricultural pest management. There is a growing body of evidence indicating that the broad-scale and prophylactic uses of neonicotinoids pose serious risks of harm to beneficial organisms and their ecological function. This provides the impetus for exploring alternatives to neonicotinoid insecticides for controlling insect pests. We draw from examples of alternative pest control options in Italian maize production and Canadian forestry to illustrate the principles of applying alternatives to neonicotinoids under an integrated pest management (IPM) strategy. An IPM approach considers all relevant and available information to make informed management decisions, providing pest control options based on actual need. We explore the benefits and challenges of several options for management of three insect pests in maize crops and an invasive insect pest in forests, including diversifying crop rotations, altering the timing of planting, tillage and irrigation, using less sensitive crops in infested areas, applying biological control agents, and turning to alternative reduced risk insecticides. Continued research into alternatives is warranted, but equally pressing is the need for information transfer and training for farmers and pest managers and the need for policies and regulations to encourage the adoption of IPM strategies and their alternative pest control options.
Greco, Nancy M; Sánchez, Norma E; Liljesthröm, Gerardo G
2005-01-01
Neoseiulus californicus (McGregor) is a promising agent for successful Tetranychus urticae Koch control through conservation techniques, in strawberry crops in La Plata (Buenos Aires, Argentina). In prey-predator interaction, initial relative densities have an important effect on system dynamics. The economic threshold level (ETL) used for this pest in the present study was 50 active mites per leaflet. In our laboratory experiments, initial T. urticae to N. californicus ratio had a significant effect on the population abundance of T. urticae at a 7-day period. When pest/predator ratio was 5/1 (at initial pest densities from 5 to 15 females/leaflet) the final number of active T. urticae/leaflet was significantly lower than the ETL, while at 20 females/leaflet this number did not differ from the ETL. At 7.5/1 ratio, the final number of active T. urticae/leaflet, at initial pest densities from 5 to 15 females/leaflet, reached the ETL without surpassing it. At 10/1 and 15/1 ratios, pest densities exceeded the ETL only at 15 initial T. urticae/leaflet. Most greenhouse and field observations were consistent with the predictions of a graphical model based on experimental results. This predator was very effective in limiting pest densities at a 7-day period and within the range of pest-predator ratios and absolute densities used in this study. Conservation of N. californicus promoting favorable pest/predator ratios may result in early control of T. urticae.
House fly (Musca domestica): a review of control strategies for a challenging pest.
Malik, Anushree; Singh, Neena; Satya, Santosh
2007-05-01
Musca domestica L. (Diptera: Muscidae), commonly called the house fly, is a major domestic, medical and veterinary pest that causes irritation, spoils food and acts as a vector for many pathogenic organisms. In this paper, the social and health problems related to housefly are introduced with the associated need to control its population. Physical and chemical methods of house fly control are briefly discussed. The main focus of this review is on the biological control methods for house fly control, that comprise botanical, fungal, bacterial and parasitoid agents. Although several biocontrol agents are still in the nascent stage, some of them (especially fungal and parasitoid agents) have shown reliable field performance and seem to be suitable candidates for commercialization. However, the majority of these laboratory and field studies have been conducted in the temperate region. It remains to be seen whether the application of biocontrol agents would be feasible in tropical environments. The integrated pest management practices, which can provide more reliable field performance, have also been discussed. A multi-dimensional approach that exerts control on all the life stages of house fly, but simultaneously preserves the fly's natural enemies could be an ecologically sustainable way of maintaining the fly populations below maximally acceptable limits.
Thrips biocontrol: opportunities for use of natural enemies against the pear thrips
Nick J. Mills
1991-01-01
Thrips have been considered as both target pests and control agents in biological control. The main emphasis of this paper concerns the natural enemies of thrips and an appraisal of the potential for biological control of the pear thrips on sugar maple in the northeastern United States. Previous attempts at biological control of thrips pests have been confined to the...
USDA-ARS?s Scientific Manuscript database
The newly invasive pest stink bug, Bagrada hilaris, threatens the cole crop industry and certain ornamentals in the U.S. Without its co-evolved natural enemies, it is likely to spread from the Southwest U.S. to the east coast, requiring millions more dollars to control it. If key biological control ...
NASA Technical Reports Server (NTRS)
Slavicek, James M.
1991-01-01
Research and development efforts in our research group are focused on the generation of more efficacious biological control agents through the techniques of biotechnology for use against forest insect pests and diseases. Effective biological controls for the gypsy moth and for tree fungal wilt pathogens are under development. The successful use of Gypchek, a formulation of the Lymantria dispar nuclear polyhedrosis virus (LdNPV), in gypsy moth control programs has generated considerable interest in that agent. As a consequence of its specificity, LdPNV has negligible adverse ecological impacts compared to most gypsy moth control agents. However, LdNPV is not competitive with other control agents in terms of cost and efficacy. We are investigating several parameters of LdNPV replication and polyhedra production in order to enhance viral potency and efficacy thus mitigating the current disadvantages of LdNPV for gypsy moth control, and have identified LdNPV variants that will facilitate these efforts. Tree endophytic bacteria that synthesize antifungal compounds were identified and an antibiotic compound from one of these bacteria was characterized. The feasibility of developing tree endophytes as biological control agents for tree vascular fungal pathogens is being investigated.
Microbial Pest Control Agents: Are they a Specific And Safe Tool for Insect Pest Management?
Deshayes, Caroline; Siegwart, Myriam; Pauron, David; Froger, Josy-Anne; Lapied, Bruno; Apaire-Marchais, Véronique
2017-01-01
Microorganisms (viruses, bacteria and fungi) or their bioactive agents can be used as active substances and therefore are referred as Microbial Pest Control Agents (MPCA). They are used as alternative strategies to chemical insecticides to counteract the development of resistances and to reduce adverse effects on both environment and human health. These natural entomopathogenic agents, which have specific modes of action, are generally considered safer as compared to conventional chemical insecticides. Baculoviruses are the only viruses being used as the safest biological control agents. They infect insects and have narrow host ranges. Bacillus thuringiensis (Bt) is the most widely and successfully used bioinsecticide in the integrated pest management programs in the world. Bt mainly produces crystal delta-endotoxins and secreted toxins. However, the Bt toxins are not stable for a very long time and are highly sensitive to solar UV. So genetically modified plants that express toxins have been developed and represent a large part of the phytosanitary biological products. Finally, entomopathogenic fungi and particularly, Beauveria bassiana and Metarhizium anisopliae, are also used for their insecticidal properties. Most studies on various aspects of the safety of MPCA to human, non-target organisms and environment have only reported acute but not chronic toxicity. This paper reviews the modes of action of MPCA, their toxicological risks to human health and ecotoxicological profiles together with their environmental persistence. This review is part of the special issue "Insecticide Mode of Action: From Insect to Mammalian Toxicity". Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
House fly management with viral and botanical agents
USDA-ARS?s Scientific Manuscript database
House flies are major pests of human and animal health throughout the world and are among the most difficult to control because of resistance to every insecticide that has been developed for their control. A promising microbial agent for fly control is salivary gland hypertrophy virus (MdSGHV), a m...
Complementarity among natural enemies enhances pest suppression.
Dainese, Matteo; Schneider, Gudrun; Krauss, Jochen; Steffan-Dewenter, Ingolf
2017-08-15
Natural enemies have been shown to be effective agents for controlling insect pests in crops. However, it remains unclear how different natural enemy guilds contribute to the regulation of pests and how this might be modulated by landscape context. In a field exclusion experiment in oilseed rape (OSR), we found that parasitoids and ground-dwelling predators acted in a complementary way to suppress pollen beetles, suggesting that pest control by multiple enemies attacking a pest during different periods of its occurrence in the field improves biological control efficacy. The density of pollen beetle significantly decreased with an increased proportion of non-crop habitats in the landscape. Parasitism had a strong effect on pollen beetle numbers in landscapes with a low or intermediate proportion of non-crop habitats, but not in complex landscapes. Our results underline the importance of different natural enemy guilds to pest regulation in crops, and demonstrate how biological control can be strengthened by complementarity among natural enemies. The optimization of natural pest control by adoption of specific management practices at local and landscape scales, such as establishing non-crop areas, low-impact tillage, and temporal crop rotation, could significantly reduce dependence on pesticides and foster yield stability through ecological intensification in agriculture.
Immune Response of Mormon Crickets to Infection by Beauveria bassiana.
USDA-ARS?s Scientific Manuscript database
The Mormon cricket (Anabrus simplex), a tettigoniid, is a major pest of crops and rangeland in the western United States. Beauveria bassiana is an entomopathogenic fungi that serves as a biological control agent of this pest and other grasshoppers. Adult Mormon crickets were drawn from a topical bio...
USDA-ARS?s Scientific Manuscript database
The tarnished plant bug Lygus lineolaris is an important pest of cotton and many other crops in North America. Since the 1970s prevalence of insecticide resistant populations coupled with environmental concerns have raised interest in classical biological control of this pest. Peristenus digoneutis,...
Prediction of a peptidome for the western tarnished plant bug Lygus hesperus
USDA-ARS?s Scientific Manuscript database
Many strategies for controlling insect pests require an understanding of their hormonal signaling agents, peptides being the largest and most diverse single class of these molecules. Lygus hesperus is a pest species of particular concern; it responsible for millions of dollars of damage to cotton, ...
Pest control agents, such as juvenile hormone analogues (JHA), have been developed to limit effects on non-target organisms that co-inhabit insect pest habitats. Rhithropanopeus harrisii, an estuarine xanthid crab, was used to observe the impacts of the JHA, fenoxycarb, on the pa...
Spatial variability in ecosystem services: simple rules for predator-mediated pest suppression.
Bianchi, F J J A; Schellhorn, N A; Buckley, Y M; Possingham, H P
2010-12-01
Agricultural pest control often relies on the ecosystem services provided by the predators of pests. Appropriate landscape and habitat management for pest control services requires an understanding of insect dispersal abilities and the spatial arrangement of source habitats for pests and their predators. Here we explore how dispersal and habitat configuration determine the locations where management actions are likely to have the biggest impact on natural pest control. The study focuses on the early colonization phase before predator reproduction takes place and when pest populations in crops are still relatively low. We developed a spatially explicit simulation model in which pest populations grow exponentially in pest patches and predators disperse across the landscape from predator patches. We generated 1000 computer-simulated landscapes in which the performance of four typical but different predator groups as biological control agents was evaluated. Predator groups represented trait combinations of poor and good dispersal ability and density-independent and density-dependent aggregation responses toward pests. Case studies from the literature were used to inform the parameterization of predator groups. Landscapes with a small nearest-neighbor distance between pest and predator patches had the lowest mean pest density at the landscape scale for all predator groups, but there can be high variation in pest density between the patches within these landscapes. Mobile and strongly aggregating predators provide the best pest suppression in the majority of landscape types. Ironically, this result is true except in landscapes with small nearest-neighbor distances between pest and predator patches. The pest control potential of mobile predators can best be explained by the mean distance between a pest patch and all predator patches in the landscape, whereas for poorly dispersing predators the distance between a pest patch and the nearest predator patch is the best explanatory variable. In conclusion, the spatial arrangement of source habitats for natural enemies of agricultural pest species can have profound effects on their potential to colonize crops and suppress pest populations.
USDA-ARS?s Scientific Manuscript database
The incorporation of living microbial biological control agents into integrated pest management programs is highly desirable because it reduces the use of chemical insecticides harmful to livestock, humans and the environment. In addition, it provides an alternative means to combat resistance to che...
Model of two infectious diseases in nettle caterpillar population
NASA Astrophysics Data System (ADS)
Firdausi, F. Z.; Nuraini, N.
2016-04-01
Palm oil is a vital commodity to the economy of Indonesia. The area of oil palm plantations in Indonesia has increased from year to year. However, the effectiveness of palm oil production is reduced by pest infestation. One of the pest which often infests oil palm plantations is nettle caterpillar. The pest control used in this study is biological control, viz. biological agents given to oil palm trees. This paper describes a mathematical model of two infectious diseases in nettle caterpillar population. The two infectious diseases arise due to two biological agents, namely Bacillus thuringiensis bacterium and parasite which usually attack nettle caterpillars. The derivation of the model constructed in this paper is obtained from ordinary differential equations without time delay. The equilibrium points are analyzed. Two of three equilibrium points are stable if the Routh-Hurwitz criteria are fulfilled. In addition, this paper also presents the numerical simulation of the model which has been constructed.
Mansoor, Muhammad Mudassir; Afzal, Muhammad; Raza, Abu Bakar M.; Akram, Zeeshan; Waqar, Adil; Afzal, Muhammad Babar Shahzad
2014-01-01
Chrysoperla carnea (Stephens) is an important biological control agent currently being used in many integrated pest management (IPM) programs to control insect pests. The effect of post-treatment temperature on insecticide toxicity of a spinosyn (spinosad), pyrethroid (lambda cyhalothrin), organophosphate (chlorpyrifos) and new chemistry (acetamiprid) to C. carnea larvae was investigated under laboratory conditions. Temperature coefficients of each insecticide tested were evaluated. From 20 to 40 °C, toxicity of lambda cyhalothrin and spinosad decreased by 2.15- and 1.87-fold while toxicity of acetamiprid and chlorpyrifos increased by 2.00 and 1.79-fold, respectively. The study demonstrates that pesticide effectiveness may vary according to environmental conditions. In cropping systems where multiple insecticide products are used, attention should be given to temperature variation as a key factor in making pest management strategies safer for biological control agents. Insecticides with a negative temperature coefficient may play a constructive role to conserve C. carnea populations. PMID:25972753
Mansoor, Muhammad Mudassir; Afzal, Muhammad; Raza, Abu Bakar M; Akram, Zeeshan; Waqar, Adil; Afzal, Muhammad Babar Shahzad
2015-05-01
Chrysoperla carnea (Stephens) is an important biological control agent currently being used in many integrated pest management (IPM) programs to control insect pests. The effect of post-treatment temperature on insecticide toxicity of a spinosyn (spinosad), pyrethroid (lambda cyhalothrin), organophosphate (chlorpyrifos) and new chemistry (acetamiprid) to C. carnea larvae was investigated under laboratory conditions. Temperature coefficients of each insecticide tested were evaluated. From 20 to 40 °C, toxicity of lambda cyhalothrin and spinosad decreased by 2.15- and 1.87-fold while toxicity of acetamiprid and chlorpyrifos increased by 2.00 and 1.79-fold, respectively. The study demonstrates that pesticide effectiveness may vary according to environmental conditions. In cropping systems where multiple insecticide products are used, attention should be given to temperature variation as a key factor in making pest management strategies safer for biological control agents. Insecticides with a negative temperature coefficient may play a constructive role to conserve C. carnea populations.
USDA-ARS?s Scientific Manuscript database
Larger black flour beetles (LBFB), Cynaeus angustus, feed on saprophytic fungi found in gin trash piles, and become nuisance pests in homes and businesses. We examined the dose-response of three entomopathogenic nematode species (Steinernema carpocapsae, S. feltiae, and Heterorhabditis bacteriophora...
Alexander M. Gaffke; Sharlene E. Sing; Tom L. Dudley; Daniel W. Bean; Justin A. Russak; Agenor Mafra-Neto; Paul A. Grieco; Robert K. D. Peterson; David K. Weaver
2018-01-01
BACKGROUND: Semiochemicals formonitoring, attracting or repelling pest and beneficial organisms are increasingly deployed in agricultural and forest systems for pest management. However, the use of aggregation pheromones and host-plant attractants for the express purpose of increasing the efficacy of classical biological control agents of weeds has not been widely...
Elan Margulies; Leah Bauer; Inés Ibáñez
2017-01-01
Introduced forest pests have become one of the major threats to forests, and biological control is one of the few environmentally acceptable management practices. Assessing the impacts of a biocontrol program includes evaluating the establishment of biocontrol agents, the control of target pest, the impact on the affected organism, and the indirect impacts that the...
Golden, Gilad; Quinn, Elazar; Shaaya, Eli; Kostyukovsky, Moshe; Poverenov, Elena
2018-04-01
One of the most significant contributors to the global food crisis is grain loss during storage, mainly caused by pest insects. Currently, there are two main methods used for insect pest control: fumigation and grain protection using contact insecticides. As some chemical insecticides can harm humans and the environment, there is a global tendency to reduce their use by finding alternative eco-friendly approaches. In this study, the natural pest-managing agent pulegone was encapsulated into coarse and nano emulsions. The emulsions were characterized using spectroscopic and microscopic methods and their stability and pulegone release ability were examined. The insecticidal activity of the prepared formulations against two stored product insects, rice weevil (Sitophilus oryzae L.) and red flour beetle (Tribolium castaneum Herbst), was demonstrated. The nano emulsion-based formulation offered significant advantages and provided powerful bioactivity, with high (> 90%) mortality rates for as long as 5 weeks for both insects, whereas coarse emulsions showed high efficacy for only 1 week. The developed pulegone-based nano emulsions could serve as a model for an effective alternative method for pest control. Although pulegone is from a natural source, toxicological studies should be performed before the widespread application of pulegone or pulegone-containing essential oils to dry food products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Microbial Control News - November 2011
USDA-ARS?s Scientific Manuscript database
This is the first of a column in the Society for Invertebrate Pathology Newsletter. Entitled "Microbial Control News" this article summarizes regulatory actions in the U.S. and Canada regarding microbial insect pest control agents....
USDA-ARS?s Scientific Manuscript database
Trichogramma parasitoids have long been recognized as important and viable biological control agents against lepidopteran pests of rice, corn and sugarcane in the Philippines. We describe the history of research and use of Trichogramma spp. in the Philippines in three main areas: 1) field surveys – ...
Emergence of Laricobius nigrinus (Fender) (Coleoptera: Derodontidae) in the North Georgia mountains.
C.E. Jones; James Hanula; S.K. Braman
2014-01-01
Hemlock woolly adelgid, Adelges tsugae Annand, is currently found throughout most of the range of eastern hemlock, Tsuga Canadensis (L.) Carriere. Biological control agents have been released in attempts to control this pest, but how different climates influence the efficacy and survival of these agents has not been studied.
Use of pupal parasitoids as biological control agents of filth flies on equine facilities
USDA-ARS?s Scientific Manuscript database
House flies, Musca domestica L., and stable flies, Stomoxys calcitrans (L.), (Diptera: Muscidae), are common pests on horse farms. The use of pupal parasitoids as biological control agents for filth flies is becoming more popular on equine facilities; however, there is a lack of information on the e...
Jacobsen, B J; Zidack, N K; Larson, B J
2004-11-01
ABSTRACT Bacillus-based biological control agents (BCAs) have great potential in integrated pest management (IPM) systems; however, relatively little work has been published on integration with other IPM management tools. Unfortunately, most research has focused on BCAs as alternatives to synthetic chemical fungicides or bactericides and not as part of an integrated management system. IPM has had many definitions and this review will use the national coalition for IPM definition: "A sustainable approach to managing pests by combining biological, cultural, physical and chemical tools in a way that minimizes economic, health and environmental risks." This review will examine the integrated use of Bacillus-based BCAs with disease management tools, including resistant cultivars, fungicides or bactericides, or other BCAs. This integration is important because the consistency and degree of disease control by Bacillus-based BCAs is rarely equal to the control afforded by the best fungicides or bactericides. In theory, integration of several tools brings stability to disease management programs. Integration of BCAs with other disease management tools often provides broader crop adaptation and both more efficacious and consistent levels of disease control. This review will also discuss the use of Bacillus-based BCAs in fungicide resistance management. Work with Bacillus thuringiensis and insect pest management is the exception to the relative paucity of reports but will not be the focus of this review.
Peck, Steven L
2014-10-01
It is becoming clear that handling the inherent complexity found in ecological systems is an essential task for finding ways to control insect pests of tropical livestock such as tsetse flies, and old and new world screwworms. In particular, challenging multivalent management programs, such as Area Wide Integrated Pest Management (AW-IPM), face daunting problems of complexity at multiple spatial scales, ranging from landscape level processes to those of smaller scales such as the parasite loads of individual animals. Daunting temporal challenges also await resolution, such as matching management time frames to those found on ecological and even evolutionary temporal scales. How does one deal with representing processes with models that involve multiple spatial and temporal scales? Agent-based models (ABM), combined with geographic information systems (GIS), may allow for understanding, predicting and managing pest control efforts in livestock pests. This paper argues that by incorporating digital ecologies in our management efforts clearer and more informed decisions can be made. I also point out the power of these models in making better predictions in order to anticipate the range of outcomes possible or likely. Copyright © 2014 International Atomic Energy Agency 2014. Published by Elsevier B.V. All rights reserved.
Erica Nystrom Santacruz; Robert C. Venette; Christine Dieckhoff; Kim Hoelmer; Robert L. Koch
2017-01-01
Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) is native to Asia and has become a severe agricultural and nuisance pest in the U.S. Therefore, foreign exploration was conducted in Asia to identify potential classical biological control agents. Several Trissolcus spp. (Hymenoptera: Scelionidae) parasitize H. halys...
USDA-ARS?s Scientific Manuscript database
The ambrosia beetle Xylosandrus germanus is an invasive pest with a wide host range and is a serious pest of orchards and nurseries in the eastern US. In this study we evaluated the potential of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae as control agents against this beet...
Holderman, Christopher J.; Wood, Lois A.; Geden, Christopher J.
2017-01-01
The horn fly, Haematobia irritans (L.) is an important cattle pest and traditionally has been managed using insecticides; however, many horn fly populations are insecticide-resistant in United States. Use of alternative control techniques has been limited because of the challenges of managing a fly pest on pastured cattle. After the discovery of a wild horn fly infected with Beauveria bassiana in Florida, the fungus was cultured and evaluated for efficacy against laboratory-reared horn flies. This fungal strain was selected for increased virulence by passage through laboratory-reared horn fly hosts to shorten interval from infection to fly death and subsequent conidia formation, properties important to future use of the fungus as a biological control agent against horn flies. After seven passages through horn fly hosts, fly mortality was not significantly accelerated as evaluated through LT50 values, but conidia were readily produced from these killed flies. Although further development is needed to improve fungal efficacy, this fungal strain holds promise as a biological control agent for inclusion in horn fly integrated pest management programs. PMID:28423414
Goane, L; Casmuz, A; Salas, H; Willink, E; Mangeaud, A; Valladares, G
2015-12-01
Studies on insect natural enemies and their effects on host populations are of immense practical value in pest management. Predation and parasitism on a citrus pest, the leafminer Phyllocnistis citrella Stainton, were evaluated by sampling over 3 years in four locations within a world leading lemon producing area in Northwest Argentina. Both mortality factors showed seasonal trends consistent across locations, with predation exerting earlier and more sustained pressure than parasitism, which showed wider seasonal variations. The dominant parasitoids, native Cirrospilus neotropicus and introduced Ageniaspis citricola, showed different seasonal trends: C. neotropicus was dominant in spring whereas A. citricola superseded it in autumn and winter. Although parasitism rates were relatively low, the native C. neotropicus revealed favourable features as potential control agent, by showing density-dependence, parasitism rates comparable with those of the specific A. citricola during part of the cycle, and earlier synchronization with the host. The study provides highly relevant information for a sustainable management of this worldwide pest, for which biological control is considered the best long-term option.
USDA-ARS?s Scientific Manuscript database
From a pest management perspective, limited knowledge on the genetics of released biocontrol agents has been repeatedly considered as one possible cause of failures in classical biological control. Introduced biocontrol agents are expected to experience a loss in genetic diversity as the result of s...
Basic and applied research: Entomopathogenic nematodes
USDA-ARS?s Scientific Manuscript database
Entomopathogenic nematodes in the genera Heterorhabditis and Steinernema kill arthropods with the aid of their bacterial symbionts. These nematodes are potent microbial control agents that have been widely commercialized for control of economically important insect pests. Biocontrol efficacy relies...
Kristopher J. Abell; Leah S. Bauer; Jian J. Duan; Roy Van Driesche
2014-01-01
Emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is a serious invasive pest of ash trees (Fraxinus spp.) in North America from China. The egg parasitoid Oobius agrili Zhang and Huang (Hymenoptera: Encyrtidae) was introduced from China as a biological control agent for this pest in...
USDA-ARS?s Scientific Manuscript database
Emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is a serious invasive pest of ash trees (Fraxinus spp.) in North America. The egg parasitoid Oobius agrili Zhang and Huang (Hymenoptera: Encyrtidae) was introduced as a biological control agent of this pest in Michiga...
Environmental Impacts of Arthropod Biological Control: An Ecological Perspective
USDA-ARS?s Scientific Manuscript database
Arthropod biological control has long been used against insect and mite pests in agriculture production systems, forests, and other natural ecosystems. Depending on the methods of deploying natural enemies and the type of control agents (herbivores, parasitoids, and/or predators), potential environ...
Valles, Steven M.; Oi, David H.; Yu, Fahong; Tan, Xin-Xing; Buss, Eileen A.
2012-01-01
Background Nylanderia pubens (Forel) is an invasive ant species that in recent years has developed into a serious nuisance problem in the Caribbean and United States. A rapidly expanding range, explosive localized population growth, and control difficulties have elevated this ant to pest status. Professional entomologists and the pest control industry in the United States are urgently trying to understand its biology and develop effective control methods. Currently, no known biological-based control agents are available for use in controlling N. pubens. Methodology and Principal Findings Metagenomics and pyrosequencing techniques were employed to examine the transcriptome of field-collected N. pubens colonies in an effort to identify virus infections with potential to serve as control agents against this pest ant. Pyrosequencing (454-platform) of a non-normalized N. pubens expression library generated 1,306,177 raw sequence reads comprising 450 Mbp. Assembly resulted in generation of 59,017 non-redundant sequences, including 27,348 contigs and 31,669 singlets. BLAST analysis of these non-redundant sequences identified 51 of potential viral origin. Additional analyses winnowed this list of potential viruses to three that appear to replicate in N. pubens. Conclusions Pyrosequencing the transcriptome of field-collected samples of N. pubens has identified at least three sequences that are likely of viral origin and, in which, N. pubens serves as host. In addition, the N. pubens transcriptome provides a genetic resource for the scientific community which is especially important at this early stage of developing a knowledgebase for this new pest. PMID:22384082
Mitsuhashi, Wataru; Asano, Shoji; Miyamoto, Kazuhisa; Wada, Sanae
2014-01-01
Entomopoxviruses (EVs) form two types of inclusion body: spheroids, which contain virions, and spindles, which do not. The authors tested whether the spindles from a coleopteran EV, Anomala cuprea EV (ACEV), enhanced the insecticidal activity of a commercial Bacillus thuringiensis (Bt) formulation and the susceptibility of scarabaeid pest species in Japan to the virus's spheroids, to assess whether ACEV inclusion bodies are potential biological control agents for pest insects. Peroral inoculation with both ACEV spindles and the Bt toxin only or the complete Bt formulation shortened the survival and increased the mortality of treated insects compared with those of insects inoculated with Bt without the spindles (8-38 h of decrease in LT50 values among assays). ACEV showed high infectivity to a major scarabaeid pest species in Japanese sugar cane fields. The results suggest that spindles or the constituent protein fusolin can be used as a coagent with Bt formulations, and that fusolin coexpression with a Bt toxin in crops might improve the insecticidal efficacy. In addition, the spheroids are potential biocontrol agents for some scarabaeid pests that are not easy to control because of their underground habitation. © 2013 Society of Chemical Industry.
Intensified agriculture favors evolved resistance to biological control.
Tomasetto, Federico; Tylianakis, Jason M; Reale, Marco; Wratten, Steve; Goldson, Stephen L
2017-04-11
Increased regulation of chemical pesticides and rapid evolution of pesticide resistance have increased calls for sustainable pest management. Biological control offers sustainable pest suppression, partly because evolution of resistance to predators and parasitoids is prevented by several factors (e.g., spatial or temporal refuges from attacks, reciprocal evolution by control agents, and contrasting selection pressures from other enemy species). However, evolution of resistance may become more probable as agricultural intensification reduces the availability of refuges and diversity of enemy species, or if control agents have genetic barriers to evolution. Here we use 21 y of field data from 196 sites across New Zealand to show that parasitism of a key pasture pest ( Listronotus bonariensis ; Argentine stem weevil) by an introduced parasitoid ( Microctonus hyperodae ) was initially nationally successful but then declined by 44% (leading to pasture damage of c. 160 million New Zealand dollars per annum). This decline was not attributable to parasitoid numbers released, elevation, or local climatic variables at sample locations. Rather, in all locations the decline began 7 y (14 host generations) following parasitoid introduction, despite releases being staggered across locations in different years. Finally, we demonstrate experimentally that declining parasitism rates occurred in ryegrass Lolium perenne , which is grown nationwide in high-intensity was significantly less than in adjacent plots of a less-common pasture grass ( Lolium multiflorum ), indicating that resistance to parasitism is host plant-dependent. We conclude that low plant and enemy biodiversity in intensive large-scale agriculture may facilitate the evolution of host resistance by pests and threaten the long-term viability of biological control.
Development of Baits for Insect Control
USDA-ARS?s Scientific Manuscript database
This article outlines the importance of baits. Baits are formulations that can be used to deliver a toxic chemical or a pathogen (active agent) via ingestion to an insect pest with the goal of killing it. A bait formulations consist of a bait matrix which is the carrier for an active agent. The bait...
El control biologico de plagas(Biological control of pests)
USDA-ARS?s Scientific Manuscript database
In this work some ecological principles that drive applied biocontrol and agent selection are discussed. Subjects such as specificity evaluations, host shifts and species invasiveness are analyzed under the light of ecological theory. The main assertions are: 1. biological control is a safe and bene...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The bibliography contains citations concerning the use of biological agents to control insects and pests. Radiation, genetic breeding, bacteria, fungi, viruses, and pheromones are discussed as alternatives to pesticidal management. Methods for monitoring the effectiveness and environmental impact of these agents are reviewed. Population control of fruit flies, spruce sawflies, flies, mosquitoes, cockroaches, gypsy moths, and other agriculturally-important insects is also discussed. (Contains a minimum of 190 citations and includes a subject term index and title list.)
A review of recent patents on macroorganisms as biological control agents.
Sáenz-de-Cabezón, Francisco Javier; Zalom, Frank G; López-Olguín, Jesús Francisco
2010-01-01
The indiscriminate use of synthetic pesticides has brought undesired problems to human health, agriculture, and the environment. Integrated Pest Management (IPM) and Biological Control (BC) programs, which are based on minimum use of pesticides, are seen as alternative, more ecological solutions to the unintended problems associated with pesticide use. These programs combine the introduction, augmentation, and/or conservation of pest natural enemies, with other protection tools. Although patents and the process of commercialization of microorganisms has been the subject of various reviews, macroorganisms used for pest and disease control have stimulated less comprehensive analyses. From our review of patents, there has been an enormous increase in the number of macroorganism-related patents registered in the last two decades. Private companies own 65% of all these patents. Rearing methods and crop protection strategies are the main intellectual property patented, with parasitoid wasps and predatory mites being the primary Biological Control Agent (BCA) focus of patents. Among countries, Japan was the first country with these types of patents, followed by the United States, Canada and China. Increasing concern for pesticide risks by governments and the public is seen as the main impetus for change in "traditional" crop protection practices and for investment in other more ecological products like BCAs.
Sobhy, Islam S.; Erb, Matthias; Lou, Yonggen; Turlings, Ted C. J.
2014-01-01
An imminent food crisis reinforces the need for novel strategies to increase crop yields worldwide. Effective control of pest insects should be part of such strategies, preferentially with reduced negative impact on the environment and optimal protection and utilization of existing biodiversity. Enhancing the presence and efficacy of native biological control agents could be one such strategy. Plant strengthener is a generic term for several commercially available compounds or mixtures of compounds that can be applied to cultivated plants in order to ‘boost their vigour, resilience and performance’. Studies into the consequences of boosting plant resistance against pests and diseases on plant volatiles have found a surprising and dramatic increase in the plants' attractiveness to parasitic wasps. Here, we summarize the results from these studies and present new results from assays that illustrate the great potential of two commercially available resistance elicitors. We argue that plant strengtheners may currently be the best option to enhance the attractiveness of cultivated plants to biological control agents. Other options, such as the genetic manipulation of the release of specific volatiles may offer future solutions, but in most systems, we still miss fundamental knowledge on which key attractants should be targeted for this approach. PMID:24535390
de Carvalho Barbosa Negrisoli, Carla Ruth; Negrisoli Júnior, Aldomario Santo; Bernardi, Daniel; Garcia, Mauro Silveira
2013-07-01
Stored product pests are responsible for losses that can amount 10% during cereal storage in the world. Aiming to find an alternative method to the chemicals used for the stored-product pests, eight strains of entomopathogenic nematodes (EPNs) were tested against five species of stored product pests. The bioassays were conducted in microtubes containing paper, inoculated with EPNs and insect diet. All the insect species were susceptible to the EPNs strains. Anagasta kuehniella and Tenebrio molitor larvae and Acanthoscelides obtectus adults were highly sensitive to the higher doses with most species and/or strains of EPNs. Adults of Sitophilus oryzae and Sitophilus zeamais were relatively less sensitive to all EPNs. Therefore, EPNs show as potential control agents for stored products pests in prophylactic applications in warehouses. Copyright © 2013 Elsevier Inc. All rights reserved.
Aristizábal, Luis F; Bustillo, Alex E; Arthurs, Steven P
2016-02-03
The coffee berry borer (CBB), Hypothenemus hampei Ferrari (Coleoptera: Curculionidae: Scolytinae) is the primary arthropod pest of coffee plantations worldwide. Since its detection in Hawaii (September 2010), coffee growers are facing financial losses due to reduced quality of coffee yields. Several control strategies that include cultural practices, biological control agents (parasitoids), chemical and microbial insecticides (entomopathogenic fungi), and a range of post-harvest sanitation practices have been conducted to manage CBB around the world. In addition, sampling methods including the use of alcohol based traps for monitoring CBB populations have been implemented in some coffee producing countries in Latin America. It is currently unclear which combination of CBB control strategies is optimal under economical, environmental, and sociocultural conditions of Hawaii. This review discusses components of an integrated pest management program for CBB. We focus on practical approaches to provide guidance to coffee farmers in Hawaii. Experiences of integrated pest management (IPM) of CBB learned from Latin America over the past 25 years may be relevant for establishing strategies of control that may fit under Hawaiian coffee farmers' conditions.
Genes involved in virulence of the entomopathogenic fungus Beauveria bassiana.
Valero-Jiménez, Claudio A; Wiegers, Harm; Zwaan, Bas J; Koenraadt, Constantianus J M; van Kan, Jan A L
2016-01-01
Pest insects cause severe damage to global crop production and pose a threat to human health by transmitting diseases. Traditionally, chemical pesticides (insecticides) have been used to control such pests and have proven to be effective only for a limited amount of time because of the rapid spread of genetic insecticide resistance. The basis of this resistance is mostly caused by (co)dominant mutations in single genes, which explains why insecticide use alone is an unsustainable solution. Therefore, robust solutions for insect pest control need to be sought in alternative methods such as biological control agents for which single-gene resistance is less likely to evolve. The entomopathogenic fungus Beauveria bassiana has shown potential as a biological control agent of insects, and insight into the mechanisms of virulence is essential to show the robustness of its use. With the recent availability of the whole genome sequence of B. bassiana, progress in understanding the genetics that constitute virulence toward insects can be made more quickly. In this review we divide the infection process into distinct steps and provide an overview of what is currently known about genes and mechanisms influencing virulence in B. bassiana. We also discuss the need for novel strategies and experimental methods to better understand the infection mechanisms deployed by entomopathogenic fungi. Such knowledge can help improve biocontrol agents, not only by selecting the most virulent genotypes, but also by selecting the genotypes that use combinations of virulence mechanisms for which resistance in the insect host is least likely to develop. Copyright © 2015 Elsevier Inc. All rights reserved.
Main predators of insect pests: screening and evaluation through comprehensive indices.
Yang, Tingbang; Liu, Jie; Yuan, Longyu; Zhang, Yang; Peng, Yu; Li, Daiqin; Chen, Jian
2017-11-01
Predatory natural enemies play key functional roles in integrated pest management. However, the screening and evaluation of the main predators of insect pests has seldom been reported in the field. Here, we employed comprehensive indices for evaluating the predation of a common pest (Ectropis obliqua) by nine common spider species in Chinese tea plantations. We established the relative dominance of the spider species and their phenological overlap with the pest species, and analyzed DNA from the nine spider species using targeted real-time quantitative polymerase chain reaction to identify the residual DNA of E. obliqua. The predation rates and predation numbers per predator were estimated by the positive rates of target fragments and the residual minimum number of E. obliqua in predators' guts, respectively. The results showed that only four spider species preyed on E. obliqua, and the order of potential of the spiders to control E. obliqua from greatest to smallest was Neoscona mellotteei, Xysticus ephippiatus, Evarcha albaria and Coleosoma octomaculatum by the Z-score method. The orb-weaving spider N. mellotteei has the maximum potential as a biological control agent of E. obliqua in an integrated pest management strategy. An approach of screening and evaluating main predators of insect pests through comprehensive indices was preliminarily established. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The bibliography contains citations concerning the use of biological agents to control insects and pests. Radiation, genetic breeding, bacteria, fungi, viruses, and pheromones are discussed as alternatives to pesticidal management. Methods for monitoring the effectiveness and environmental impact of these agents are reviewed. Population control of fruit flies, spruce sawflies, flies, mosquitoes, cockroaches, gypsy moths, and other agriculturally-important insects is also discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)
Molnár, Sándor; López, Inmaculada; Gámez, Manuel; Garay, József
2016-03-01
The paper is aimed at a methodological development in biological pest control. The considered one pest two-agent system is modelled as a verticum-type system. Originally, linear verticum-type systems were introduced by one of the authors for modelling certain industrial systems. These systems are hierarchically composed of linear subsystems such that a part of the state variables of each subsystem affect the dynamics of the next subsystem. Recently, verticum-type system models have been applied to population ecology as well, which required the extension of the concept a verticum-type system to the nonlinear case. In the present paper the general concepts and technics of nonlinear verticum-type control systems are used to obtain biological control strategies in a two-agent system. For the illustration of this verticum-type control, these tools of mathematical systems theory are applied to a dynamic model of interactions between the egg and larvae populations of the sugarcane borer (Diatraea saccharalis) and its parasitoids: the egg parasitoid Trichogramma galloi and the larvae parasitoid Cotesia flavipes. In this application a key role is played by the concept of controllability, which means that it is possible to steer the system to an equilibrium in given time. In addition to a usual linearization, the basic idea is a decomposition of the control of the whole system into the control of the subsystems, making use of the verticum structure of the population system. The main aim of this study is to show several advantages of the verticum (or decomposition) approach over the classical control theoretical model (without decomposition). For example, in the case of verticum control the pest larval density decreases below the critical threshold value much quicker than without decomposition. Furthermore, it is also shown that the verticum approach may be better even in terms of cost effectiveness. The presented optimal control methodology also turned out to be an efficient tool for the "in silico" analysis of the cost-effectiveness of different biocontrol strategies, e.g. by answering the question how far it is cost-effective to speed up the reduction of the pest larvae density, or along which trajectory this reduction should be carried out. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control.
Zabalou, Sofia; Riegler, Markus; Theodorakopoulou, Marianna; Stauffer, Christian; Savakis, Charalambos; Bourtzis, Kostas
2004-10-19
Biological control is the purposeful introduction of parasites, predators, and pathogens to reduce or suppress pest populations. Wolbachia are inherited bacteria of arthropods that have recently attracted attention for their potential as new biocontrol agents. Wolbachia manipulate host reproduction by using several strategies, one of which is cytoplasmic incompatibility (CI) [Stouthamer, R., Breeuwer, J. A. J. & Hurst, G. D. D. (1999) Annu. Rev. Microbiol. 53, 71-102]. We established Wolbachia-infected lines of the medfly Ceratitis capitata using the infected cherry fruit fly Rhagoletis cerasi as donor. Wolbachia induced complete CI in the novel host. Laboratory cage populations were completely suppressed by single releases of infected males, suggesting that Wolbachia-induced CI could be used as a novel environmentally friendly tool for the control of medfly populations. The results also encourage the introduction of Wolbachia into pest and vector species of economic and hygenic relevance to suppress or modify natural populations.
Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control
Zabalou, Sofia; Riegler, Markus; Theodorakopoulou, Marianna; Stauffer, Christian; Savakis, Charalambos; Bourtzis, Kostas
2004-01-01
Biological control is the purposeful introduction of parasites, predators, and pathogens to reduce or suppress pest populations. Wolbachia are inherited bacteria of arthropods that have recently attracted attention for their potential as new biocontrol agents. Wolbachia manipulate host reproduction by using several strategies, one of which is cytoplasmic incompatibility (CI) [Stouthamer, R., Breeuwer, J. A. J. & Hurst, G. D. D. (1999) Annu. Rev. Microbiol. 53, 71–102]. We established Wolbachia-infected lines of the medfly Ceratitis capitata using the infected cherry fruit fly Rhagoletis cerasi as donor. Wolbachia induced complete CI in the novel host. Laboratory cage populations were completely suppressed by single releases of infected males, suggesting that Wolbachia-induced CI could be used as a novel environmentally friendly tool for the control of medfly populations. The results also encourage the introduction of Wolbachia into pest and vector species of economic and hygenic relevance to suppress or modify natural populations. PMID:15469918
N.P. Havill; Gina Davis; David Mausel; Joanne Klein; Richard McDonald; Cera Jones; Melissa Fischer; Scott Salom; Adelgisa Caccone
2012-01-01
Hybridization between introduced biological control agents and native species has the potential to impact native biodiversity and pest control efforts. This study reports progress towards predicting the outcome of hybridization between two beetle species, the introduced Laricobius nigrinus Fender and the native L. rubidus LeConte...
Code of Federal Regulations, 2014 CFR
2014-01-01
... AGRICULTURE PROCEDURES FOR IMPLEMENTING NATIONAL ENVIRONMENTAL POLICY ACT § 520.2 Definition. Control Agents mean biological material or chemicals which are intended to enhance the production efficiency of an agricultural crop or animal such as through elimination of a pest. ...
Code of Federal Regulations, 2012 CFR
2012-01-01
... AGRICULTURE PROCEDURES FOR IMPLEMENTING NATIONAL ENVIRONMENTAL POLICY ACT § 520.2 Definition. Control Agents mean biological material or chemicals which are intended to enhance the production efficiency of an agricultural crop or animal such as through elimination of a pest. ...
Code of Federal Regulations, 2011 CFR
2011-01-01
... AGRICULTURE PROCEDURES FOR IMPLEMENTING NATIONAL ENVIRONMENTAL POLICY ACT § 520.2 Definition. Control Agents mean biological material or chemicals which are intended to enhance the production efficiency of an agricultural crop or animal such as through elimination of a pest. ...
Code of Federal Regulations, 2013 CFR
2013-01-01
... AGRICULTURE PROCEDURES FOR IMPLEMENTING NATIONAL ENVIRONMENTAL POLICY ACT § 520.2 Definition. Control Agents mean biological material or chemicals which are intended to enhance the production efficiency of an agricultural crop or animal such as through elimination of a pest. ...
Code of Federal Regulations, 2010 CFR
2010-01-01
... AGRICULTURE PROCEDURES FOR IMPLEMENTING NATIONAL ENVIRONMENTAL POLICY ACT § 520.2 Definition. Control Agents mean biological material or chemicals which are intended to enhance the production efficiency of an agricultural crop or animal such as through elimination of a pest. ...
Susceptibility of non-target invertebrates to Brazilian microbial pest control agents.
Oliveira-Filho, Eduardo Cyrino; Muniz, Daphne Heloisa Freitas; Freire, Ingrid Souza; Ramos, Felipe Rosa; Alves, Roberto Teixeira; Jonsson, Claudio Martin; Grisolia, Cesar Koppe; Monnerat, Rose Gomes
2011-08-01
Microbial pest control agents or entomopathogens have been considered an interesting alternative to use instead of chemical insecticides. Knowledge of ecotoxicity data is very important to predict the hazard of any product released in the environment and subsidize the regulation of these products by governmental agencies. In the present study four new Brazilian strains of Bacillus and one fungus were tested to evaluate their acute toxicity to the microcrustacean Daphnia similis, the snail Biomphalaria glabrata and the dung beetle Digitonthophagus gazella. The microcrustaceans and the snails were exposed to entomopathogens in synthetic softwater and the beetles were exposed directly in cattle dung. Obtained data reveal low susceptibility of the non-target species to tested microorganisms, with lethal concentrations being observed only at much higher concentrations than that effective against target insects. These results show that the tested strains are selective in their action mode and seem to be non-hazardous to non-target species.
Improving mycoinsecticides for insect biological control.
Ortiz-Urquiza, Almudena; Luo, Zhibing; Keyhani, Nemat O
2015-02-01
The desire for decreased reliance on chemical pesticides continues to fuel interest in alternative means for pest control including the use of naturally occurring microbial insect pathogens. Insects, as vectors of disease causing agents or as agricultural pests, are responsible for millions of deaths and significant economic losses worldwide, placing stresses on productivity (GDP) and human health and welfare. In addition, alterations in climate change are likely to affect insect ranges, expanding their access to previously constrained geographic areas, a potentially worrisome outcome. Metarhizium anisopliae and Beauveria bassiana, two cosmopolitan fungal pathogens of insects found in almost all ecosystems, are the most commonly applied mycoinsecticides for a variety of insect control purposes. The availability of the complete genomes for both organisms coupled to robust technologies for their transformation has led to several advances in engineering these fungi for greater efficacy and/or utility in pest control applications. Here, we will provide an overview of the fungal-insect and fungal-plant interactions that occur and highlight recent advances in the genetic engineering of these fungi. The latter work has resulted in the development of strains displaying (1) increased resistance to abiotic stress, (2) increased cuticular targeting and degradation, (3) increased virulence via expression of insecticidal protein/peptide toxins, (4) the ability to block transmission of disease causing agents, and (5) the ability to target specific insect hosts, decrease host fecundity, and/or alter insect behaviors.
USDA-ARS?s Scientific Manuscript database
Biological control is an important and environmentally preferred management option for invasive insect pests and weeds. Implementation of new international regulations governing exchange of genetic materials impacts the availability of candidate biocontrol agents, and exchange policies need to be ca...
Aristizábal, Luis F.; Bustillo, Alex E.; Arthurs, Steven P.
2016-01-01
The coffee berry borer (CBB), Hypothenemus hampei Ferrari (Coleoptera: Curculionidae: Scolytinae) is the primary arthropod pest of coffee plantations worldwide. Since its detection in Hawaii (September 2010), coffee growers are facing financial losses due to reduced quality of coffee yields. Several control strategies that include cultural practices, biological control agents (parasitoids), chemical and microbial insecticides (entomopathogenic fungi), and a range of post-harvest sanitation practices have been conducted to manage CBB around the world. In addition, sampling methods including the use of alcohol based traps for monitoring CBB populations have been implemented in some coffee producing countries in Latin America. It is currently unclear which combination of CBB control strategies is optimal under economical, environmental, and sociocultural conditions of Hawaii. This review discusses components of an integrated pest management program for CBB. We focus on practical approaches to provide guidance to coffee farmers in Hawaii. Experiences of integrated pest management (IPM) of CBB learned from Latin America over the past 25 years may be relevant for establishing strategies of control that may fit under Hawaiian coffee farmers’ conditions. PMID:26848690
Nematodes for the biological control of the woodwasp, Sirex noctilio
Robin A. Bedding
2007-01-01
The tylenchid nematode Beddingia (Deladenus) siricidicola (Bedding) is by far the most important control agent of Sirex noctilio F., a major pest of pine plantations. It sterilizes female sirex, is density dependent, can achieve nearly 100 percent parasitism and, as a result of its complicated biology can be readily manipulated for sirex control. Bedding and Iede (2005...
USDA-ARS?s Scientific Manuscript database
Classical biological control using specialist parasitoids, predators and/or nematodes from the native ranges of cattle fever ticks could complement existing control strategies for this livestock pest in the transboundary region between Mexico and Texas. DNA fingerprinting tools were used to compare ...
Supplemental food for Amblyseius swirskii in the control of thrips: feeding friend or foe?
Vangansbeke, Dominiek; Nguyen, Duc Tung; Audenaert, Joachim; Verhoeven, Ruth; Gobin, Bruno; Tirry, Luc; De Clercq, Patrick
2016-03-01
In integrated pest management systems in greenhouse crops, the predatory mite Amblyseius swirskii is becoming increasingly important as a biological control agent of various pests, especially thrips and whiteflies. An emerging strategy to promote the predator's establishment and retention in the crop consists in providing food supplements. However, when faced with omnivorous pests, such as the western flower thrips, Frankliniella occidentalis, food supplements need to be applied with extreme care, in order not to boost population growth of the pest. This laboratory study was conducted to evaluate the impact of commercial products of Typha angustifolia pollen and decapsulated brine shrimp cysts (Artemia sp.) on populations of both pest and predator and on predator-prey interactions. Pollen was highly supportive for both F. occidentalis and A. swirskii, whereas Artemia cysts supported thrips populations to a lesser extent than those of the predator. Furthermore, a less pronounced reduction in thrips consumption by A. swirskii was observed in the presence of Artemia cysts as compared with T. angustifolia pollen. Artemia might be a valuable alternative to pollen for supporting populations of A. swirskii in order to improve thrips management, as they are less beneficial for the pest but do support population growth of A. swirskii. © 2015 Society of Chemical Industry.
IPM for fresh-market lettuce production in the desert southwest: the produce paradox.
Palumbo, John C; Castle, Steven J
2009-12-01
In the 'Integrated Control Concept', Stern et al. emphasized that, although insecticides are necessary for agricultural production, they should only be used as a last resort and as a complement to biological control. They argued that selective insecticide use should only be attempted after it has been determined that insect control with naturally occurring biotic agents is not capable of preventing economic damage. However, they concluded their seminal paper by emphasizing that integrated control will not work where natural enemies are inadequate or where economic thresholds are too low to rely on biological control. Thus, it is no surprise that insect control in high-value, fresh-market lettuce crops grown in the desert southwest have relied almost exclusively on insecticides to control a complex of mobile, polyphagous pests. Because lettuce and leafy greens are short-season annual crops with little or no tolerance for insect damage or contamination, biological control is generally considered unacceptable. High expectations from consumers for aesthetically appealing produce free of pesticide residues further forces vegetable growers to use chemical control tactics that are not only effective but safe. Consequently, scientists have been developing integrated pest management (IPM) programs for lettuce that are aimed at reducing the economic, occupational and dietary risks associated with chemical controls of the past. Most of these programs have drawn upon the integrated control concept and promote the importance of understanding the agroecosystem, and the need to sample for pest status and use action thresholds for cost-effective insect control. More recently, pest management programs have implemented newly developed, reduced-risk chemistries that are selectively efficacious against key pests. This paper discusses the influence that the integrated control concept, relative to zero-tolerance market standards and other constraints, has had on the adoption of pest management in desert lettuce crops. (c) 2009 Society of Chemical Industry.
Gurr, Geoff M.; You, Minsheng
2016-01-01
Biological control has long been considered a potential alternative to pesticidal strategies for pest management but its impact and level of use globally remain modest and inconsistent. A rapidly expanding range of molecular – particularly DNA-related – techniques is currently revolutionizing many life sciences. This review identifies a series of constraints on the development and uptake of conservation biological control and considers the contemporary and likely future influence of molecular methods on these constraints. Molecular approaches are now often used to complement morphological taxonomic methods for the identification and study of biological control agents including microbes. A succession of molecular techniques has been applied to ‘who eats whom’ questions in food-web ecology. Polymerase chain reaction (PCR) approaches have largely superseded immunological approaches such as enzyme-linked immunosorbent assay (ELISA) and now – in turn – are being overtaken by next generation sequencing (NGS)-based approaches that offer unparalleled power at a rapidly diminishing cost. There is scope also to use molecular techniques to manipulate biological control agents, which will be accelerated with the advent of gene editing tools, the CRISPR/Cas9 system in particular. Gene editing tools also offer unparalleled power to both elucidate and manipulate plant defense mechanisms including those that involve natural enemy attraction to attacked plants. Rapid advances in technology will allow the development of still more novel pest management options for which uptake is likely to be limited chiefly by regulatory hurdles. PMID:26793225
Prabhukarthikeyan, Rathinam; Saravanakumar, Duraisamy; Raguchander, Thiruvengadam
2014-11-01
Most of the approaches for biocontrol of pests and diseases have used a single biocontrol agent as antagonist to a single pest or pathogen. This accounts for the inconsistency in the performance of biocontrol agents. The development of a bioformulation possessing a mixture of bioagents could be a viable option for the management of major pests and diseases in crop plants. A bioformulation containing a mixture of Beauveria bassiana (B2) and Bacillus subtilis (EPC8) was tested against Fusarium wilt and fruit borer in tomato under glasshouse and field conditions. The bioformulation with B2 and EPC8 isolates effectively reduced the incidence of Fusarium wilt (Fusarium oxysporum f. sp. lycopersici) and fruit borer (Helicoverpa armigera) under glasshouse and field conditions compared with the individual application of B2 and EPC8 isolates and control treatments. In vitro studies showed a higher larval mortality of H. armigera when fed with B2 + EPC8-treated leaves. Further, plants treated with the B2 + EPC8 combination showed a greater accumulation of defence enzymes such as lipoxygenase, peroxidase and polyphenol oxidase against wilt pathogen and fruit borer pest than the other treatments. Moreover, a significant increase in growth parameters and yield was observed in tomato plants treated with B2 + EPC8 compared with the individual bioformulations and untreated control. The combined application of Beauveria and Bacillus isolates B2 and EPC8 effectively reduced wilt disease and fruit borer attack in tomato plants. Results show the possibility of synchronous management of tomato fruit borer pest and wilt disease in a sustainable manner. © 2013 Society of Chemical Industry.
Benelli, Giovanni
2015-07-01
Aggression plays a key role all across the animal kingdom, as it allows the acquisition and/or defence of limited resources (food, mates and territories) in a huge number of species. A large part of our knowledge on aggressive behaviour has been developed on insects of economic importance. How can this knowledge be exploited to enhance integrated pest management? Here, I highlight how knowledge on intraspecific aggression can help IPM both in terms of insect pests (with a focus on the enhancement of the sterile insect technique) and in terms of biological control agents (with a focus on mass-rearing optimisation). Then, I examine what implications for IPM can be outlined from knowledge about interspecific aggressive behaviour. Besides predator-pest aggressive interactions predicted by classic biological control, I focus on what IPM can learn from (i) interspecific aggression among pest species (with special reference to competitive displacement), (ii) defensive behaviour exhibited by prey against predaceous insects and (iii) conflicts among predaceous arthropods sharing the same trophic niche (with special reference to learning/sensitisation practices and artificial manipulation of chemically mediated interactions). © 2015 Society of Chemical Industry.
Geib, Scott M.; Liang, Guang Hong; Murphy, Terence D.; Sim, Sheina B.
2017-01-01
The braconid wasp Fopius arisanus (Sonan) is an important biological control agent of tropical and subtropical pest fruit flies, including two important global pests, the Mediterranean fruit fly (Ceratitis capitata), and the oriental fruit fly (Bactrocera dorsalis). The goal of this study was to develop foundational genomic resources for this species to provide tools that can be used to answer questions exploring the multitrophic interactions between the host and parasitoid in this important research system. Here, we present a whole genome assembly of F. arisanus, derived from a pool of haploid offspring from a single unmated female. The genome is ∼154 Mb in size, with a N50 contig and scaffold size of 51,867 bp and 0.98 Mb, respectively. Utilizing existing RNA-Seq data for this species, as well as publicly available peptide sequences from related Hymenoptera, a high quality gene annotation set, which includes 10,991 protein coding genes, was generated. Prior to this assembly submission, no RefSeq proteins were present for this species. Parasitic wasps play an important role in a diverse ecosystem as well as a role in biological control of agricultural pests. This whole genome assembly and annotation data represents the first genome-scale assembly for this species or any closely related Opiine, and are publicly available in the National Center for Biotechnology Information Genome and RefSeq databases, providing a much needed genomic resource for this hymenopteran group. PMID:28584080
Biological control agents elevate hantavirus by subsidizing deer mouse populations.
Pearson, Dean E; Callaway, Ragan M
2006-04-01
Biological control of exotic invasive plants using exotic insects is practiced under the assumption that biological control agents are safe if they do not directly attack non-target species. We tested this assumption by evaluating the potential for two host-specific biological control agents (Urophora spp.), widely established in North America for spotted knapweed (Centaurea maculosa) control, to indirectly elevate Sin Nombre hantavirus by providing food subsidies to populations of deer mice (Peromyscus maniculatus), the primary reservoir for the virus. We show that seropositive deer mice (mice testing positive for hantavirus) were over three times more abundant in the presence of the biocontrol food subsidy. Elevating densities of seropositive mice may increase risk of hantavirus infection in humans and significantly alter hantavirus ecology. Host specificity alone does not ensure safe biological control. To minimize indirect risks to non-target species, biological control agents must suppress pest populations enough to reduce their own numbers.
Evaluation of recovery and monitoring methods for parasitoids released against emerald ash borer
Michael S. Parisio; Juli R. Gould; John D. Vandenberg; Leah S. Bauer; Melissa K. Fierke
2017-01-01
Emerald ash borer (Agrilus planipennis Fairmaire, EAB) is an invasive forest pest and the target of an extensive biological control program designed to mitigate EAB-caused ash (Fraxinus spp.) mortality. Since 2007, hymenopteran parasitoids of EAB from northeastern Asia have been released as biological control agents in North...
USDA-ARS?s Scientific Manuscript database
The generalist entomopathogenic fungus, Isaria fumosorosea (Wize) Brown and Smith (Hypocreales: Cordycipitaceae) strain Apopka-97 has exhibited significant potential as a biological control agent of several important pests both in the field and greenhouse. Although this fungus has never been tested ...
Pelizza, Sebastian A; Schalamuk, Santiago; Simón, María R; Stenglein, Sebastian A; Pacheco-Marino, Suani G; Scorsetti, Ana C
Rachiplusia nu (Guenée) (Lepidoptera: Noctuidae) is one of the major lepidopteran pests defoliating soybeans (Glycine max Merrill) in Argentina. The combined use of chemical insecticides and entomopathogenic fungi is a promising pest-control option to minimize adverse chemical effects. In this work, we evaluated the interactions between five insecticides-two being considered biorational-and five fungal entomopathogenic strains under laboratory conditions in order to determine the possible usefulness of combinations of these agents against R. nu. The insecticides were tested for compatibility at four doses by in vitro bioassay and for the lethality of R. nu by inoculations at three doses. Fungal strains were applied at 1×10 8 , 1×10 6 , and 1×10 4 conidia/ml. The combinations of those insecticides with Beauveria bassiana (LPSc 1067, LPSc 1082, LPSc 1098), Metarhizium anisopliae (LPSc 907), and Metarhizium robertsii (LPSc 963) caused higher R. nu-larval mortalities than any of the individual agents alone. We observed significant differences in the in vitro conidial viability, vegetative growth, and conidia production of the five strains of entomopathogenic fungi exposed to different doses of the chemical insecticides. The combination gamma-cyhalothrin-LPSc-1067 caused the highest percent mortality of R. nu larvae, with synergism occurring between the two agents at 50% and 25% of the maximum field doses. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Asymmetric public goods game cooperation through pest control.
Reeves, T; Ohtsuki, H; Fukui, S
2017-12-21
Cooperation in a public goods game has been studied extensively to find the conditions for sustaining the commons, yet the effect of asymmetry between agents has been explored very little. Here we study a game theoretic model of cooperation for pest control among farmers. In our simple model, each farmer has a paddy of the same size arranged adjacently on a line. A pest outbreak occurs at an abandoned paddy at one end of the line, directly threatening the frontier farmer adjacent to it. Each farmer pays a cost of his or her choice to an agricultural collective, and the total sum held by the collective is used for pest control, with success probability increasing with the sum. Because the farmers' incentives depend on their distance from the pest outbreak, our model is an asymmetric public goods game. We derive each farmer's cost strategy at the Nash equilibrium. We find that asymmetry among farmers leads to a few unexpected outcomes. The individual costs at the equilibrium do not necessarily increase with how much the future is valued but rather show threshold behavior. Moreover, an increase in the number of farmers can sometimes paradoxically undermine pest prevention. A comparison with a symmetric public goods game model reveals that the farmer at the greatest risk pays a disproportionate amount of cost in the asymmetric game, making the use of agricultural lands less sustainable. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Ambrosia beetles Xylosandrus crassiusculus and X. germanus are among the most important exotic pests of orchards and nurseries in the US and are difficult to control using conventional insecticides because of their cryptic habits. The use of biological control agents may prove effective by targetin...
Natural Products in the Discovery of Agrochemicals.
Loiseleur, Olivier
2017-12-01
Natural products have a long history of being used as, or serving as inspiration for, novel crop protection agents. Many of the discoveries in agrochemical research in the last decades have their origin in a wide range of natural products from a variety of sources. In light of the continuing need for new tools to address an ever-changing array of fungal, weed and insect pests, new agricultural practices and evolving regulatory requirements, the needs for new agrochemical tools remains as critical as ever. In that respect, nature continues to be an important source for novel chemical structures and biological mechanisms to be applied for the development of pest control agents. Here we review several of the natural products and their derivatives which contributed to shape crop protection research in past and present.
Hopper, Keith R
2003-01-01
During 1999-2001, ARS scientists published over 100 papers on more than 30 species of insect pest and 60 species of predator and parasitoid. These papers address issues crucial to the three strategies of biological control: conservation, augmentation and introduction. Conservation biological control includes both conserving extant populations of natural enemies by using relatively non-toxic pesticides and increasing the abundance of natural enemies in crops by providing or improving refuges for population growth and dispersal into crops. ARS scientists have been very active in determining the effects of pesticides on beneficial arthropods and in studying movement of natural enemies from refuges into crops. Augmentation involves repeated releases of natural enemies in the field, which can be inoculative or inundative. Inoculative releases are used to initiate self-propagating populations at times or in places where they would be slow to colonize. ARS scientists have studied augmentative biological control of a variety of pest insects. The targets are mostly pests in annual crops or other ephemeral habitats, where self-reproducing populations of natural enemies are not sufficiently abundant early enough to keep pest populations in check. ARS research in augmentative biological control centers on methods for rearing large numbers of healthy, effective natural enemies and for releasing them where and when they are needed at a cost less than the value of the reduction in damage to the crop. ARS scientists have researched various aspects of introductions of exotic biological control agents against a diversity of pest insects. The major issues in biological control introductions are accurate identification and adequate systematics of both natural enemies and target pests, exploration for natural enemies, predicting the success of candidates for introduction and the likelihood of non-target impacts, quarantine and rearing methods, and post-introduction evaluation of establishment, control and non-target impacts. ARS scientists have published research on several general issues in biological control. Among the most important are the mechanisms affecting mate- and host-finding and host specificity.
Biological control and nutrition: food for thought
USDA-ARS?s Scientific Manuscript database
Chemical pesticides are used frequently to combat arthropod pests that plague crops; however, these compounds come with potential risks to the environment and human health. Research efforts have focused on using natural agents as an alternative to these chemical insecticides. These biological contro...
40 CFR 158.120 - Determining data requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirements for biochemical and microbial pest control agents are contained and are described separately...; PAIRA = pure active ingredient, radiolabeled; Choice = choice of several test substances depending on... down the appropriate general use pattern column in the table and note which tests are required (R...
40 CFR 158.120 - Determining data requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for biochemical and microbial pest control agents are contained and are described separately...; PAIRA = pure active ingredient, radiolabeled; Choice = choice of several test substances depending on... down the appropriate general use pattern column in the table and note which tests are required (R...
40 CFR 158.120 - Determining data requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... requirements for biochemical and microbial pest control agents are contained and are described separately...; PAIRA = pure active ingredient, radiolabeled; Choice = choice of several test substances depending on... down the appropriate general use pattern column in the table and note which tests are required (R...
40 CFR 158.120 - Determining data requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... requirements for biochemical and microbial pest control agents are contained and are described separately...; PAIRA = pure active ingredient, radiolabeled; Choice = choice of several test substances depending on... down the appropriate general use pattern column in the table and note which tests are required (R...
40 CFR 158.120 - Determining data requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... requirements for biochemical and microbial pest control agents are contained and are described separately...; PAIRA = pure active ingredient, radiolabeled; Choice = choice of several test substances depending on... down the appropriate general use pattern column in the table and note which tests are required (R...
Ingegno, B L; Candian, V; Psomadelis, I; Bodino, N; Tavella, L
2017-06-01
Dicyphus errans (Wolff) has been shown to be a suitable biocontrol agent for Tuta absoluta (Meyrick). This generalist predator shares various host plants with the exotic pest, and these interactions could be exploited to enhance pest control. Therefore, host preference, survival rate and development times of the predator and prey were investigated on crop and non-crop plant species. Among the tested plants, the favourite hosts were Solanum species for T. absoluta, and herb Robert, European black nightshade, courgette and tomato for D. errans. Tuta absoluta accepted the same plant species as hosts for oviposition, but it never developed on herb Robert and courgette in all the experiments. Based on our results, we would suggest the use of courgette and herb Robert in consociation with tomato and as a companion plant, respectively, which may keep pest densities below the economic threshold. Moreover, the omnivorous and widespread D. errans could be a key predator of this exotic pest, allowing a high encounter probability on several cultivated and non-cultivated plant species.
Weaver ant role in cashew orchards in Vietnam.
Peng, Renkang; Lan, La Pham; Christian, Keith
2014-08-01
Cashew (Anacardium occidentale L.) is a very important source of income for more than 200,000 farmer households in Vietnam. The present cashew productivity in Vietnam is low and unstable, and pest damage is partly responsible for this. Cashew farmers rely on pesticides to minimize the damage, resulting in adverse impacts on farm environment and farmers' health. Weaver ants (Oecophylla spp) are effective biocontrol agents of a range of cashew insect pests in several cashew-growing countries, and these ants are widely distributed in Vietnam. The aim of this study is to evaluate the potential of weaver ants in cashew orchards in Vietnam. Field surveys and field experiment were conducted in five cashew orchards from July 2006 to January 2008 in Binh Phuoc, Dong Nai, and Ba Ria Vung Tau provinces, Vietnam. Based on the field surveys, the most important pests that damage flushing foliar and floral shoots and young cashew fruits and nuts were mosquito bugs, brown shoot borers, blue shoot borers, and fruit-nut borers. The damage caused by each of these pests was significantly lower on trees with weaver ants compared with trees without the ants, showing that the ants were able to keep these pest damages under the control threshold. Regular monitoring of the field experiment showed that weaver ants were similar to insecticides for controlling mosquito bugs, blue shoot borers, fruit-nut borers, leaf rollers, and leaf miners. Aphids did not become major pests in plot with weaver ants. To manage insect pest assemblage in cashew orchards, an integrated pest management using weaver ants as a major component is discussed.
Rebaudo, François; Dangles, Olivier
2011-10-01
Worldwide, the theory and practice of agricultural extension system have been dominated for almost half a century by Rogers' "diffusion of innovation theory". In particular, the success of integrated pest management (IPM) extension programs depends on the effectiveness of IPM information diffusion from trained farmers to other farmers, an important assumption which underpins funding from development organizations. Here we developed an innovative approach through an agent-based model (ABM) combining social (diffusion theory) and biological (pest population dynamics) models to study the role of cooperation among small-scale farmers to share IPM information for controlling an invasive pest. The model was implemented with field data, including learning processes and control efficiency, from large scale surveys in the Ecuadorian Andes. Our results predict that although cooperation had short-term costs for individual farmers, it paid in the long run as it decreased pest infestation at the community scale. However, the slow learning process placed restrictions on the knowledge that could be generated within farmer communities over time, giving rise to natural lags in IPM diffusion and applications. We further showed that if individuals learn from others about the benefits of early prevention of new pests, then educational effort may have a sustainable long-run impact. Consistent with models of information diffusion theory, our results demonstrate how an integrated approach combining ecological and social systems would help better predict the success of IPM programs. This approach has potential beyond pest management as it could be applied to any resource management program seeking to spread innovations across populations.
USDA-ARS?s Scientific Manuscript database
Historically, two of the most destructive insect pests in Wisconsin have been the Cranberry Fruitworm (CFW) and the Sparganothis Fruitworm (SFW). Once they’ve hatched, controlling them is a lot like “trench warfare,” where we throw various weapons at the enemy, but most of them miss. Many Wisconsin ...
After biocontrol: assessing indirect effects of insect releases
Julie S. Denslow; Carla M. D' Antonio
2005-01-01
Development of biological control agents for weeds has been motivated by the need to reduce the abundance and distribution of a pest plant where chemical and mechanical control were not cost effective. Primary objectives have been direct reduction in abundance of the target and, secondarily, the increase of desirable species. Recently, wildland weeds have become a...
Joao A. N. Filipe; Richard C. Cobb; Ross K. Meentemeyer; Christopher A. Lee; Yana S. Valachovic; Alex R. Cook; David M. Rizzo; Christopher A. Gilligan
2012-01-01
Exotic pathogens and pests threaten ecosystem service, biodiversity, and crop security globally. If an invasive agent can disperse asymptomatically over long distances, multiple spatial and temporal scales interplay, making identification of effective strategies to regulate, monitor, and control disease extremely difficult. The management of outbreaks is also...
Khandelwal, Neha; Barbole, Ranjit S; Banerjee, Shashwat S; Chate, Govind P; Biradar, Ankush V; Khandare, Jayant J; Giri, Ashok P
2016-12-15
One of the most vital supports to sustain human life on the planet earth is the agriculture system that has been constantly challenged in terms of yield. Crop losses due to insect pest attack even after excessive use of chemical pesticides, are major concerns for humanity and environment protection. By the virtue of unique properties possessed by micro and nano-structures, their implementation in Agri-biotechnology is largely anticipated. Hence, traditional pest management strategies are now forestalling the potential of micro and nanotechnology as an effective and viable approach to alleviate problems pertaining to pest control. These technological innovations hold promise to contribute enhanced productivity by providing novel agrochemical agents and delivery systems. Application of these systems engages to achieve: i) control release of agrochemicals, ii) site-targeted delivery of active ingredients to manage specific pests, iii) reduced pesticide use, iv) detection of chemical residues, v) pesticide degradation, vi) nucleic acid delivery and vii) to mitigate post-harvest damage. Applications of micro and nano-technology are still marginal owing to the perception of low economic returns, stringent regulatory issues involving safety assessment and public awareness over their uses. In this review, we highlight the potential application of micro and nano-materials with a major focus on effective pest management strategies including safe handling of pesticides. Copyright © 2016 Elsevier Ltd. All rights reserved.
Richards, Stephanie L; Pompei, Victoria C; Anderson, Alice
2014-01-01
New construction of biosafety level 3 (BSL-3) laboratories in the United States has increased in the past decade to facilitate research on potential bioterrorism agents. The Centers for Disease Control and Prevention inspect BSL-3 facilities and review commissioning documentation, but no single agency has oversight over all BSL-3 facilities. This article explores the extent to which standard operating procedures in US BSL-3 facilities vary between laboratories with select agent or non-select agent status. Comparisons are made for the following variables: personnel training, decontamination, personal protective equipment (PPE), medical surveillance, security access, laboratory structure and maintenance, funding, and pest management. Facilities working with select agents had more complex training programs and decontamination procedures than non-select agent facilities. Personnel working in select agent laboratories were likely to use powered air purifying respirators, while non-select agent laboratories primarily used N95 respirators. More rigorous medical surveillance was carried out in select agent workers (although not required by the select agent program) and a higher level of restrictive access to laboratories was found. Most select agent and non-select agent laboratories reported adequate structural integrity in facilities; however, differences were observed in personnel perception of funding for repairs. Pest management was carried out by select agent personnel more frequently than non-select agent personnel. Our findings support the need to promote high quality biosafety training and standard operating procedures in both select agent and non-select agent laboratories to improve occupational health and safety.
Pompei, Victoria C.; Anderson, Alice
2014-01-01
New construction of biosafety level 3 (BSL-3) laboratories in the United States has increased in the past decade to facilitate research on potential bioterrorism agents. The Centers for Disease Control and Prevention inspect BSL-3 facilities and review commissioning documentation, but no single agency has oversight over all BSL-3 facilities. This article explores the extent to which standard operating procedures in US BSL-3 facilities vary between laboratories with select agent or non–select agent status. Comparisons are made for the following variables: personnel training, decontamination, personal protective equipment (PPE), medical surveillance, security access, laboratory structure and maintenance, funding, and pest management. Facilities working with select agents had more complex training programs and decontamination procedures than non–select agent facilities. Personnel working in select agent laboratories were likely to use powered air purifying respirators, while non–select agent laboratories primarily used N95 respirators. More rigorous medical surveillance was carried out in select agent workers (although not required by the select agent program) and a higher level of restrictive access to laboratories was found. Most select agent and non–select agent laboratories reported adequate structural integrity in facilities; however, differences were observed in personnel perception of funding for repairs. Pest management was carried out by select agent personnel more frequently than non–select agent personnel. Our findings support the need to promote high quality biosafety training and standard operating procedures in both select agent and non–select agent laboratories to improve occupational health and safety. PMID:24552359
An overview of arthropod-associated fungi from Argentina and Brazil
USDA-ARS?s Scientific Manuscript database
Arthropod pests in forest and agricultural systems are afflicted by a plethora of pathogenic organisms. Among them, entomopathogenic fungi are the most common control agents that regulate their populations. This review compiles the information available from Argentina and Brazil about the entomopath...
Analysis of virus susceptibility in the invasive insect pest Drosophila suzukii.
Lee, Kwang-Zin; Vilcinskas, Andreas
2017-09-01
The invasive insect pest Drosophila suzukii infests ripening fruits and causes massive agricultural damage in North America and Europe (Cini et al., 2012). Environmentally sustainable strategies are urgently needed to control the spread of this species, and entomopathogenic viruses offer one potential solution for global crop protection. Here we report the status of intrinsic and extrinsic factors that influence the susceptibility of D. suzukii to three model insect viruses: Drosophila C virus, Cricket paralysis virus and Flock house virus. Our work provides the basis for further studies using D. suzukii as a host system to develop viruses as biological control agents. Copyright © 2017 Elsevier Inc. All rights reserved.
Tran, Tung Thanh; Hinds, Lyn A
2013-03-01
Plant extracts can inhibit fertility by adversely affecting, directly or indirectly, reproductive processes ranging from gonadal function and development to gestation. This review focuses on plant extracts that disrupt ovarian function in rodents. Extracts from at least 40 plant species exert some of their disruptive reproductive effects at the ovarian level. Of those, 13 plants induce a reduction in the number and type of ovarian follicles and also cause disruption to the oestrous cycle. Their effects are short term and reversible once treatment ceases. Protection of plant extracts to prevent their degradation before uptake in the gastrointestinal tract could enhance short-term efficacy but would not enhance the longevity of their effects. Identification and further testing of the specific chemicals responsible for reproductive effects would be beneficial. The adoption of a standard protocol for treatment and assessment of the inhibitory effects of potential control agents on reproductive function in rodents is essential. Treatment with higher concentrations of extracts in conjunction with other extracts or with other chemosterilants could have potential complementary effects and lead to more rapid and permanent changes in ovarian function. An orally delivered agent(s) that causes major depletion of all follicle types, and particularly of non-regenerating primordial follicles, could be an ideal fertility control product and serve as an additional tool for population control of pest rodents. Copyright © 2012 Society of Chemical Industry.
Impacts of 2 species of predatory Reduviidae on bagworms in oil palm plantations.
Jamian, Syari; Norhisham, Ahmad; Ghazali, Amal; Zakaria, Azlina; Azhar, Badrul
2017-04-01
Integrated pest management (IPM) is widely practiced in commercial oil palm agriculture. This management system is intended to minimize the number of attacks by pest insects such as bagworms on crops, as well as curb economic loss with less dependency on chemical pesticides. One practice in IPM is the use of biological control agents such as predatory insects. In this study, we assessed the response of predatory natural enemies to pest outbreak and water stress, and document the habitat associations of potential pest predators. The abundances of 2 predatory insect species, namely Sycanus dichotomus and Cosmolestes picticeps (Hemiptera: Reduviidae), were compared bagworm outbreak sites and nonoutbreak sites within oil palm plantations. We also examined habitat characteristics that influence the abundances of both predatory species. We found that the abundance of C. picticeps was significantly higher in bagworm outbreak sites than in nonoutbreak sites. There were no significant differences in the abundance of S. dichotomus among outbreak and non-outbreak sites. Both species responded negatively to water stress in oil palm plantations. Concerning the relationship between predatory insect abundance and in situ habitat quality characteristics, our models explained 46.36% of variation for C. picticeps and 23.17% of variation for S. dichotomus. Both species of predatory insects thrived from the planting of multiple beneficial plants in oil palm plantations. The results suggest that C. picticeps can be used as a biological agent to control bagworm populations in oil palm plantations, but S. dichotomus has no or little potential for such ecosystem service. © 2015 Institute of Zoology, Chinese Academy of Sciences.
Insect pathogens as biological control agents: Back to the future.
Lacey, L A; Grzywacz, D; Shapiro-Ilan, D I; Frutos, R; Brownbridge, M; Goettel, M S
2015-11-01
The development and use of entomopathogens as classical, conservation and augmentative biological control agents have included a number of successes and some setbacks in the past 1years. In this forum paper we present current information on development, use and future directions of insect-specific viruses, bacteria, fungi and nematodes as components of integrated pest management strategies for control of arthropod pests of crops, forests, urban habitats, and insects of medical and veterinary importance. Insect pathogenic viruses are a fruitful source of microbial control agents (MCAs), particularly for the control of lepidopteran pests. Most research is focused on the baculoviruses, important pathogens of some globally important pests for which control has become difficult due to either pesticide resistance or pressure to reduce pesticide residues. Baculoviruses are accepted as safe, readily mass produced, highly pathogenic and easily formulated and applied control agents. New baculovirus products are appearing in many countries and gaining an increased market share. However, the absence of a practical in vitro mass production system, generally higher production costs, limited post application persistence, slow rate of kill and high host specificity currently contribute to restricted use in pest control. Overcoming these limitations are key research areas for which progress could open up use of insect viruses to much larger markets. A small number of entomopathogenic bacteria have been commercially developed for control of insect pests. These include several Bacillus thuringiensis sub-species, Lysinibacillus (Bacillus) sphaericus, Paenibacillus spp. and Serratia entomophila. B. thuringiensis sub-species kurstaki is the most widely used for control of pest insects of crops and forests, and B. thuringiensis sub-species israelensis and L. sphaericus are the primary pathogens used for control of medically important pests including dipteran vectors. These pathogens combine the advantages of chemical pesticides and MCAs: they are fast acting, easy to produce at a relatively low cost, easy to formulate, have a long shelf life and allow delivery using conventional application equipment and systemics (i.e. in transgenic plants). Unlike broad spectrum chemical pesticides, B. thuringiensis toxins are selective and negative environmental impact is very limited. Of the several commercially produced MCAs, B. thuringiensis (Bt) has more than 50% of market share. Extensive research, particularly on the molecular mode of action of Bt toxins, has been conducted over the past two decades. The Bt genes used in insect-resistant transgenic crops belong to the Cry and vegetative insecticidal protein families of toxins. Bt has been highly efficacious in pest management of corn and cotton, drastically reducing the amount of broad spectrum chemical insecticides used while being safe for consumers and non-target organisms. Despite successes, the adoption of Bt crops has not been without controversy. Although there is a lack of scientific evidence regarding their detrimental effects, this controversy has created the widespread perception in some quarters that Bt crops are dangerous for the environment. In addition to discovery of more efficacious isolates and toxins, an increase in the use of Bt products and transgenes will rely on innovations in formulation, better delivery systems and ultimately, wider public acceptance of transgenic plants expressing insect-specific Bt toxins. Fungi are ubiquitous natural entomopathogens that often cause epizootics in host insects and possess many desirable traits that favor their development as MCAs. Presently, commercialized microbial pesticides based on entomopathogenic fungi largely occupy niche markets. A variety of molecular tools and technologies have recently allowed reclassification of numerous species based on phylogeny, as well as matching anamorphs (asexual forms) and teleomorphs (sexual forms) of several entomopathogenic taxa in the Phylum Ascomycota. Although these fungi have been traditionally regarded exclusively as pathogens of arthropods, recent studies have demonstrated that they occupy a great diversity of ecological niches. Entomopathogenic fungi are now known to be plant endophytes, plant disease antagonists, rhizosphere colonizers, and plant growth promoters. These newly understood attributes provide possibilities to use fungi in multiple roles. In addition to arthropod pest control, some fungal species could simultaneously suppress plant pathogens and plant parasitic nematodes as well as promote plant growth. A greater understanding of fungal ecology is needed to define their roles in nature and evaluate their limitations in biological control. More efficient mass production, formulation and delivery systems must be devised to supply an ever increasing market. More testing under field conditions is required to identify effects of biotic and abiotic factors on efficacy and persistence. Lastly, greater attention must be paid to their use within integrated pest management programs; in particular, strategies that incorporate fungi in combination with arthropod predators and parasitoids need to be defined to ensure compatibility and maximize efficacy. Entomopathogenic nematodes (EPNs) in the genera Steinernema and Heterorhabditis are potent MCAs. Substantial progress in research and application of EPNs has been made in the past decade. The number of target pests shown to be susceptible to EPNs has continued to increase. Advancements in this regard primarily have been made in soil habitats where EPNs are shielded from environmental extremes, but progress has also been made in use of nematodes in above-ground habitats owing to the development of improved protective formulations. Progress has also resulted from advancements in nematode production technology using both in vivo and in vitro systems; novel application methods such as distribution of infected host cadavers; and nematode strain improvement via enhancement and stabilization of beneficial traits. Innovative research has also yielded insights into the fundamentals of EPN biology including major advances in genomics, nematode-bacterial symbiont interactions, ecological relationships, and foraging behavior. Additional research is needed to leverage these basic findings toward direct improvements in microbial control. Copyright © 2015 Elsevier Inc. All rights reserved.
Immune Response of Mormon Crickets that Survived Infection by Beauveria Bassiana
USDA-ARS?s Scientific Manuscript database
Beauveria bassiana is an entomopathogenic Ascomycete fungus that serves as a biological control agent of Mormon crickets (Anabrus simplex Haldeman) and other grasshopper pests. To measure the dose dependent response of Mormon crickets to fungal attack, we applied B. bassiana strain GHA topically to...
INSTAR: simulating the biological cycle of a forest pest in Mediterranean pine stands
NASA Astrophysics Data System (ADS)
Suárez-Muñoz, María; Bonet García, Francisco J.; Hódar, José A.
2017-04-01
The pine processionary moth (Thaumetopoea pityocampa) is a typically Mediterranean forest pest feeding on pine needles during its larval stages. The outbreaks of this pest cause important landscape impacts and public health problems (i.e. larvae are very urticant). Larvae feed during winter months and cold temperature is the main limiting factor in their development. Therefore, rising temperatures are thought to benefit this species. Indeed, observations suggest that outbreaks are becoming more frequent and populations are shifting uphill. The objective of this work is to simulate the biological cycle of T. pityocampa to make predictions about where and when outbreaks will occur. Thus, we have created a model called INSTAR that will help to identify hotspots and foresee massive defoliation episodes. This will enhance the information available for the control of this pest. INSTAR is an Agent-Based Model, which allows the inclusion of important characteristics of the system: emergence, feedback (i.e. interaction between agents and their environment), adaptation (i.e. decision based on the mentioned interactions) and path dependence (i.e. possibilities at one time point are determined by past conditions). These characteristics arise from a set of functions simulating pine growth, processionary development, mortality and movement. These functions are easily extrapolable to other similar biological processes and therefore INSTAR aims at serving of example for other forest pest models. INSTAR is the first comprehensive approach to simulate the biological cycle of T pityocampa. It simulates the pest development in a given area, from which elevation and pine trees are considered. Moreover, it is also a good example of integrating environmental information into a population dynamic model: meteorological variables and soil moisture are obtained from a hydrological model (WiMMed, Herrero et al. 2009) executed for the area of interest. These variables are the inputs of the model, which feed the functions that simulate the processionary life cycle. Model's executions in two different areas and for relatively long time frames (1993-2014 and 2000-2014) yield relevant information about the biological cycle of the forest pest: the simulated peaks of larvae are followed by minimal values of pine biomass and pine infections are more abundant at the edge of the stands. Moreover, emerging patterns such as denso-dependency can be observed. To sum up, INSTAR is a promising tool for modeling T. pityocampa population dynamics. The obtained model will help to improve the decision making process regarding the control of the forest pest. Moreover, its simple structure of functions will facilitate the design of new models simulating other forest pests.
Wilby, Andrew; Sutton, Peter; Wäckers, Felix
2017-01-01
Flower strips are commonly recommended to boost biodiversity and multiple ecosystem services (e.g., pollination and pest control) on farmland. However, significant knowledge gaps remain regards the extent to which they deliver on these aims. Here, we tested the efficacy of flower strips that targeted different subsets of beneficial arthropods (pollinators and natural enemies) and their ecosystem services in cider apple orchards. Treatments included mixes that specifically targeted: (1) pollinators (‘concealed-nectar plants’); (2) natural enemies (‘open-nectar plants’); or (3) both groups concurrently (i.e., ‘multi-functional’ mix). Flower strips were established in alleyways of four orchards and compared to control alleyways (no flowers). Pollinator (e.g., bees) and natural enemy (e.g., parasitoid wasps, predatory flies and beetles) visitation to flower strips, alongside measures of pest control (aphid colony densities, sentinel prey predation), and fruit production, were monitored in orchards over two consecutive growing seasons. Targeted flower strips attracted either pollinators or natural enemies, whereas mixed flower strips attracted both groups in similar abundance to targeted mixes. Natural enemy densities on apple trees were higher in plots containing open-nectar plants compared to other treatments, but effects were stronger for non-aphidophagous taxa. Predation of sentinel prey was enhanced in all flowering plots compared to controls but pest aphid densities and fruit yield were unaffected by flower strips. We conclude that ‘multi-functional’ flower strips that contain flowering plant species with opposing floral traits can provide nectar and pollen for both pollinators and natural enemies, but further work is required to understand their potential for improving pest control services and yield in cider apple orchards. PMID:28930157
Campbell, Alistair John; Wilby, Andrew; Sutton, Peter; Wäckers, Felix
2017-09-20
Flower strips are commonly recommended to boost biodiversity and multiple ecosystem services (e.g., pollination and pest control) on farmland. However, significant knowledge gaps remain regards the extent to which they deliver on these aims. Here, we tested the efficacy of flower strips that targeted different subsets of beneficial arthropods (pollinators and natural enemies) and their ecosystem services in cider apple orchards. Treatments included mixes that specifically targeted: (1) pollinators ('concealed-nectar plants'); (2) natural enemies ('open-nectar plants'); or (3) both groups concurrently (i.e., 'multi-functional' mix). Flower strips were established in alleyways of four orchards and compared to control alleyways (no flowers). Pollinator (e.g., bees) and natural enemy (e.g., parasitoid wasps, predatory flies and beetles) visitation to flower strips, alongside measures of pest control (aphid colony densities, sentinel prey predation), and fruit production, were monitored in orchards over two consecutive growing seasons. Targeted flower strips attracted either pollinators or natural enemies, whereas mixed flower strips attracted both groups in similar abundance to targeted mixes. Natural enemy densities on apple trees were higher in plots containing open-nectar plants compared to other treatments, but effects were stronger for non-aphidophagous taxa. Predation of sentinel prey was enhanced in all flowering plots compared to controls but pest aphid densities and fruit yield were unaffected by flower strips. We conclude that 'multi-functional' flower strips that contain flowering plant species with opposing floral traits can provide nectar and pollen for both pollinators and natural enemies, but further work is required to understand their potential for improving pest control services and yield in cider apple orchards.
Biopesticides can be effective in controlling their target pest. However, research regarding mammalian health impacts of these agents has focused on toxicity and pathogenicity, with limited research regarding allergenicity and asthma development. We compared the ability of funga...
Plant seeds as sources of potential industrial chemicals, pharmaceuticals and pest control agents
USDA-ARS?s Scientific Manuscript database
Investigations of natural products isolated from seeds have resulted in a remarkable variety of compounds having unusual structures and properties. Seeds of many species contained uncommon fatty acids and lipids, some of which have found uses in the cosmetic industry or as renewable (non-petroleum ...
The assessment of genetic variability among spined soldier bug (Pentatomidae: Hemiptera) populations
USDA-ARS?s Scientific Manuscript database
Spined soldier bug Podisus maculiventris (Say) is a predatory hemipteran found in North America. It is an important biological control agent for agricultural and forest pests. This polyphagous predator mainly preys upon the eggs and larvae of the lepidopteran and coleopteran species. To assess th...
A weevil sex pheromone serves as an attractant for its entomopathogenic nematode predators
USDA-ARS?s Scientific Manuscript database
Diaprepes abbreviatus is an invasive pest of citrus in the United States originating from the Caribbean. Entomopathogenic nematodes (EPNs) are used as biological control agents in the citrus agroecosystems against D. abbreviatus. EPNs respond to herbivore-induced volatiles from citrus roots to assis...
40 CFR 152.403 - Definitions of fee categories.
Code of Federal Regulations, 2014 CFR
2014-07-01
... small-scale field testing of microbial pest control agents (40 CFR 172.3). [53 FR 19114, May 26, 1988... categories. (a) New chemical registration review means review of an application for registration of a pesticide product containing a chemical active ingredient which is not contained as an active ingredient in...
40 CFR 152.403 - Definitions of fee categories.
Code of Federal Regulations, 2010 CFR
2010-07-01
... small-scale field testing of microbial pest control agents (40 CFR 172.3). [53 FR 19114, May 26, 1988... categories. (a) New chemical registration review means review of an application for registration of a pesticide product containing a chemical active ingredient which is not contained as an active ingredient in...
40 CFR 152.403 - Definitions of fee categories.
Code of Federal Regulations, 2013 CFR
2013-07-01
... small-scale field testing of microbial pest control agents (40 CFR 172.3). [53 FR 19114, May 26, 1988... categories. (a) New chemical registration review means review of an application for registration of a pesticide product containing a chemical active ingredient which is not contained as an active ingredient in...
40 CFR 152.403 - Definitions of fee categories.
Code of Federal Regulations, 2011 CFR
2011-07-01
... small-scale field testing of microbial pest control agents (40 CFR 172.3). [53 FR 19114, May 26, 1988... categories. (a) New chemical registration review means review of an application for registration of a pesticide product containing a chemical active ingredient which is not contained as an active ingredient in...
40 CFR 152.403 - Definitions of fee categories.
Code of Federal Regulations, 2012 CFR
2012-07-01
... small-scale field testing of microbial pest control agents (40 CFR 172.3). [53 FR 19114, May 26, 1988... categories. (a) New chemical registration review means review of an application for registration of a pesticide product containing a chemical active ingredient which is not contained as an active ingredient in...
Bacterial elicitation of transcriptional response of female squash bug, Anasa tristis (De Geer)
USDA-ARS?s Scientific Manuscript database
The Squash bug, Anasa tristis (De Geer), is a major pest of squash, pumpkin, and other cucurbits throughout North America. A. tristis is a piercing/sucking feeder which causes extensive foliar wilting, fruit scarring, and in addition transmits plant pathogens. Current biological control agents ava...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubicek, Christian P.; Herrera-Estrella, Alfredo; Seidl, Verena
2011-04-29
Mycoparasitism, a lifestyle where one fungus is parasitic on another fungus has special relevance when the prey is a plant pathogen, providing a strategy for biological control of pests for plant protection. Probably, the most studied biocontrol agents are species of the genus Hypocrea/Trichoderma.
USDA-ARS?s Scientific Manuscript database
Linalool is a natural plant product used in perfumes, cosmetics, and flavoring agents. Linalool has proven antimicrobial and insect repellant properties which indicate it might be useful for control of enteropathogens or insect pests in poultry production. However, there are no published reports t...
Natural-product-based chromenes as a novel class of potential termiticides.
Meepagala, Kumudini M; Osbrink, Weste; Burandt, Charles; Lax, Alan; Duke, Stephen O
2011-11-01
Among the termite infestations in the United States, the Formosan subterranean termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae), is considered to be the most devastating termite pest. This pest most likely invaded North America as a result of the disembarkation of wooden military cargo at the port of New Orleans that arrived from Asia during and after World War II. It has now spread over other states, including Texas, Florida, South Carolina and California. Devastation caused by C. formosanus in North America has been estimated to cost $ US 1 billion a year. Over the past decades, organochlorines and organophosphates, the two prominent classes of termite control agents, have been banned owing to environmental and human health concerns. At the present time, phenylpyrazoles, pyrethroids, chloronicotinyls and pyrroles are being used as termite control agents. Mammalian toxicity and seeping of these compounds into groundwater are some of the drawbacks associated with these treatments. The instruction for the application of these termiticides indicate ground water advisory. Hence, with the increasing spread of termite infestation there is an increased need to discover effective, environmentally friendly and safe termite control agents with minimal mammalian toxicity. Chromene analogs derived from a natural-product-based chromene amide isolated from Amyris texana were tested in a collaborative discovery program for effective, environmentally friendly termite control agents. Several chromene derivatives were synthesized and characterized as a novel class of potential termiticides, followed by bioassays. These compounds exhibited significantly higher mortalities compared with untreated controls in laboratory bioassays. Chromene derivatives have been shown to be a potential novel class of termiticides against Formosan subterranean termites. Copyright © 2011 Society of Chemical Industry.
Fisher, P; O'Connor, C E; Morriss, G
2008-07-01
Development of p-aminopropiophenone (PAPP) as a toxicant for pest predator management in New Zealand and Australia prompted investigation of its toxicity to potential nontarget species. Acute oral toxicity of PAPP in brushtail possums (Trichosurus vulpecula), dama wallabies (Macropus eugenii), and Mallards (Anas platyrhynchos) was estimated in pen trials, carried out between February 2000 and September 2001. The susceptibility of possums (LD50>or=500 mg kg(-1)) and wallabies (LD50 89 mg kg(-1)) to PAPP was low in comparison to noncarnivorous placental mammal species, but ducks (LD50 38 mg kg(-1)) were more susceptible than other bird species. These results suggest that the nontarget hazard to possums and wallabies from PAPP bait applied for pest predator control would be low. However, future development of PAPP as a vertebrate pest control agent should include rigorous assessments of the hazard posed by bait formulations to bird species and provision for delivery techniques that could mitigate exposure of nontarget birds.
Gabriella Zilahi-Balogh; Scott M. Salom; L. T. Kok
2000-01-01
Laricobius nigrinus (Coleoptera: Derodontidae) is being evaluated as a potential biological control agent of hemlock woolly adelgid (HWA), Adelges tsugae (Homoptera: Adelgidae) Annand in eastern North America. HWA is not considered a pest on western species of hemlock (McClure et al. 1996). A combination of natural enemies and host...
Lima, Debora B; Melo, José Wagner S; Guedes, Nelsa Maria P; Gontijo, Lessando M; Guedes, Raul Narciso C; Gondim, Manoel Guedes C
2015-01-01
Synthetic pesticide use has been the dominant form of pest control since the 1940s. However, biopesticides are emerging as sustainable pest control alternatives, with prevailing use in organic agricultural production systems. Foremost among botanical biopesticides is the limonoid azadirachtin, whose perceived environmental safety has come under debate and scrutiny in recent years. Coconut production, particularly organic coconut production, is one of the agricultural systems in which azadirachtin is used as a primary method of pest control for the management of the invasive coconut mite, Aceria guerreronis Keifer (Acari: Eriophyidae). The management of this mite species also greatly benefits from predation by Neoseiulus baraki (Athias-Henriot) (Acari: Phytoseiidae). Here, we assessed the potential behavioral impacts of azadirachtin on the coconut mite predator, N. baraki. We explored the effects of this biopesticide on overall predator activity, female searching time, and mating behavior and fecundity. Azadirachtin impairs the overall activity of the predator, reducing it to nearly half; however, female searching was not affected. In contrast, mating behavior was compromised by azadirachtin exposure particularly when male predators were exposed to the biopesticide. Consequently, predator fecundity was also compromised by azadirachtin, furthering doubts about its environmental safety and selectivity towards biological control agents.
Orłowski, Grzegorz; Karg, Jerzy; Karg, Grzegorz
2014-01-01
Farming activity severely impacts the invertebrate food resources of farmland birds, with direct mortality to populations of above-ground arthropods thorough mechanical damage during crop harvests. In this study we assessed the effects of phenological periods, including the timing of harvest, on the composition and biomass of prey consumed by three species of aerial insectivorous birds. Common Swifts Apus apus, Barn Swallows Hirundo rustica and House Martins Delichon urbica breed sympatrically and most of their diet is obtained from agricultural sources of invertebrate prey, especially from oil-seed rape crops. We categorized invertebrate prey into six functional groups, including oil-seed rape pests; pests of other arable crops; other crop-provisioned taxa; coprophilous taxa; and taxa living in non-crop and mixed crop/non-crop habitats. Seasonality impacted functional groups differently, but the general direction of change (increase/decrease) of all groups was consistent as indexed by prey composition of the three aerial insectivores studied here. After the oil-seed rape crop harvest (mid July), all three species exhibited a dietary shift from oil-seed rape insect pests to other aerial invertebrate prey groups. However, Common Switfts also consumed a relative large quantity of oil-seed rape insect pests in the late summer (August), suggesting that they could reduce pest insect emigration beyond the host plant/crop. Since these aerially foraging insectivorous birds operate in specific conditions and feed on specific pest resources unavailable to foliage/ground foraging avian predators, our results suggest that in some crops like oil-seed rape cultivations, the potential integration of the insectivory of aerial foraging birds into pest management schemes might provide economic benefits. We advise further research into the origin of airborne insects and the role of aerial insectivores as agents of the biological control of crop insect pests, especially the determination of depredation rates and the cascading effects of insectivory on crop damage and yield.
Can we forecast the effects of climate change on entomophagous biological control agents?
Aguilar-Fenollosa, Ernestina; Jacas, Josep A
2014-06-01
The worldwide climate has been changing rapidly over the past decades. Air temperatures have been increasing in most regions and will probably continue to rise for most of the present century, regardless of any mitigation policy put in place. Although increased herbivory from enhanced biomass production and changes in plant quality are generally accepted as a consequence of global warming, the eventual status of any pest species will mostly depend on the relative effects of climate change on its own versus its natural enemies' complex. Because a bottom-up amplification effect often occurs in trophic webs subjected to any kind of disturbance, natural enemies are expected to suffer the effects of climate change to a greater extent than their phytophagous hosts/preys. A deeper understanding of the genotypic diversity of the populations of natural enemies and their target pests will allow an informed reaction to climate change. New strategies for the selection of exotic natural enemies and their release and establishment will have to be adopted. Conservation biological control will probably become the keystone for the successful management of these biological control agents. © 2013 Society of Chemical Industry.
USDA-ARS?s Scientific Manuscript database
The spined soldier bug, Podisus maculiventris (Say), is an important biological control agent for agricultural and forest pests that preys on eggs and larvae of lepidopteran and coleopteran species. Genetic variability among field collected samples from Michigan, Mississippi, Missouri, and Florida, ...
USDA-ARS?s Scientific Manuscript database
Cactoblastis cactorum is renowned for its role as a highly successful biological control agent for weedy Opuntia cactus, but more recently it is notorious as an invasive pest in North America. Interestingly, historical accounts of the geographical expansion of C. cactorum when deployed as a biologi...
40 CFR 180.1148 - Occlusion Bodies of the Granulosis Virus of Cydia pomenella; tolerance exemption.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Virus of Cydia pomenella; tolerance exemption. 180.1148 Section 180.1148 Protection of Environment... RESIDUES IN FOOD Exemptions From Tolerances § 180.1148 Occlusion Bodies of the Granulosis Virus of Cydia... of the microbial pest control agent Occlusion Bodies of the Granulosis Virus of Cydia pomonella...
Code of Federal Regulations, 2012 CFR
2012-07-01
... virus; exemption from the requirement of a tolerance. 180.1118 Section 180.1118 Protection of... polyhedrosis virus; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for the microbial pest control agent Spodoptera exigua nuclear polyhedrosis virus...
Code of Federal Regulations, 2014 CFR
2014-07-01
... virus; exemption from the requirement of a tolerance. 180.1118 Section 180.1118 Protection of... polyhedrosis virus; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for the microbial pest control agent Spodoptera exigua nuclear polyhedrosis virus...
Code of Federal Regulations, 2010 CFR
2010-07-01
... virus; exemption from the requirement of a tolerance. 180.1118 Section 180.1118 Protection of... polyhedrosis virus; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for the microbial pest control agent Spodoptera exigua nuclear polyhedrosis virus...
Code of Federal Regulations, 2013 CFR
2013-07-01
... virus; exemption from the requirement of a tolerance. 180.1118 Section 180.1118 Protection of... polyhedrosis virus; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for the microbial pest control agent Spodoptera exigua nuclear polyhedrosis virus...
40 CFR 180.1148 - Occlusion Bodies of the Granulosis Virus of Cydia pomenella; tolerance exemption.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Virus of Cydia pomenella; tolerance exemption. 180.1148 Section 180.1148 Protection of Environment... RESIDUES IN FOOD Exemptions From Tolerances § 180.1148 Occlusion Bodies of the Granulosis Virus of Cydia... of the microbial pest control agent Occlusion Bodies of the Granulosis Virus of Cydia pomonella...
40 CFR 180.1148 - Occlusion Bodies of the Granulosis Virus of Cydia pomenella; tolerance exemption.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Virus of Cydia pomenella; tolerance exemption. 180.1148 Section 180.1148 Protection of Environment... RESIDUES IN FOOD Exemptions From Tolerances § 180.1148 Occlusion Bodies of the Granulosis Virus of Cydia... of the microbial pest control agent Occlusion Bodies of the Granulosis Virus of Cydia pomonella...
Code of Federal Regulations, 2011 CFR
2011-07-01
... virus; exemption from the requirement of a tolerance. 180.1118 Section 180.1118 Protection of... polyhedrosis virus; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for the microbial pest control agent Spodoptera exigua nuclear polyhedrosis virus...
40 CFR 180.1148 - Occlusion Bodies of the Granulosis Virus of Cydia pomenella; tolerance exemption.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Virus of Cydia pomenella; tolerance exemption. 180.1148 Section 180.1148 Protection of Environment... RESIDUES IN FOOD Exemptions From Tolerances § 180.1148 Occlusion Bodies of the Granulosis Virus of Cydia... of the microbial pest control agent Occlusion Bodies of the Granulosis Virus of Cydia pomonella...
40 CFR 180.1148 - Occlusion Bodies of the Granulosis Virus of Cydia pomenella; tolerance exemption.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Virus of Cydia pomenella; tolerance exemption. 180.1148 Section 180.1148 Protection of Environment... RESIDUES IN FOOD Exemptions From Tolerances § 180.1148 Occlusion Bodies of the Granulosis Virus of Cydia... of the microbial pest control agent Occlusion Bodies of the Granulosis Virus of Cydia pomonella...
Orius insidiosus (Say) and entomopathogens as possible biological control agents for thrips
Ronald D. Oetting; Ramona J. Beshear
1991-01-01
The entomology program in ornamental floriculture at the University of Georgia places primary emphasis on commercial production of flowering and foliage plants under greenhouse conditions. Thrips management is a major part of that program. Several species of foliage and flower inhabiting species are pests on greenhouse crops. The western flower thrips, ...
Response to Thomas et al.: Biocontrol and indirect effects
Dean E. Pearson; Ragan M. Callaway
2004-01-01
In a recent TREE article [1], we identified three categories of unintended indirect effects that can arise from host-specific biological control agents: (i) ecological replacement; (ii) compensatory responses; and (iii) food-web interactions. Although our review focused on the biocontrol of plant pests, we suggested these concepts also apply to the biocontrol...
USDA Forest Service; Maine Forest Service; National Park Service
2002-01-01
The browntail moth, Euproctis chrysorrhoea, a native of Europe, was first found in North America in Somerville, Massachusetts, in the spring of 1897. The lack of natural control agents contributed to its rapid spread throughout the Northeast. By 1915, the moth's range included most of the area east of the Connecticut River and as far north as Nova Scotia....
USDA-ARS?s Scientific Manuscript database
Background: Oriental fruit flies are important agricultural pests worldwide and their larval parasitoid, Diachasmimorph longicaudata is one of their most effective biological control agents. How a parasitoid interacts with its host as an endo-parasitoid is very important while it is rarely studied a...
USDA-ARS?s Scientific Manuscript database
Ontsira mellipes Ashmead (Hymenoptera: Braconidae) is a North American parasitoid that develops on the invasive pest, Anoplophora glabripennis (Moltschulsky) (Coleoptera: Cerambycidae) under laboratory conditions, and is currently being considered as a potential new-association biocontrol agent. In ...
Potential of Biological Agents in Decontamination of Agricultural Soil
Javaid, Muhammad Kashif; Ashiq, Mehrban; Tahir, Muhammad
2016-01-01
Pesticides are widely used for the control of weeds, diseases, and pests of cultivated plants all over the world, mainly since the period after the Second World War. The use of pesticides is very extensive to control harm of pests all over the globe. Persistent nature of most of the synthetic pesticides causes serious environmental concerns. Decontamination of these hazardous chemicals is very essential. This review paper elaborates the potential of various biological agents in decontamination of agricultural soils. The agricultural crop fields are contaminated by the periodic applications of pesticides. Biodegradation is an ecofriendly, cost-effective, highly efficient approach compared to the physical and chemical methods which are expensive as well as unfriendly towards environment. Biodegradation is sensitive to the concentration levels of hydrogen peroxide and nitrogen along with microbial community, temperature, and pH changes. Experimental work for optimum conditions at lab scale can provide very fruitful results about specific bacterial, fungal strains. This study revealed an upper hand of bioremediation over physicochemical approaches. Further studies should be carried out to understand mechanisms of biotransformation. PMID:27293964
Potential of Biological Agents in Decontamination of Agricultural Soil.
Javaid, Muhammad Kashif; Ashiq, Mehrban; Tahir, Muhammad
2016-01-01
Pesticides are widely used for the control of weeds, diseases, and pests of cultivated plants all over the world, mainly since the period after the Second World War. The use of pesticides is very extensive to control harm of pests all over the globe. Persistent nature of most of the synthetic pesticides causes serious environmental concerns. Decontamination of these hazardous chemicals is very essential. This review paper elaborates the potential of various biological agents in decontamination of agricultural soils. The agricultural crop fields are contaminated by the periodic applications of pesticides. Biodegradation is an ecofriendly, cost-effective, highly efficient approach compared to the physical and chemical methods which are expensive as well as unfriendly towards environment. Biodegradation is sensitive to the concentration levels of hydrogen peroxide and nitrogen along with microbial community, temperature, and pH changes. Experimental work for optimum conditions at lab scale can provide very fruitful results about specific bacterial, fungal strains. This study revealed an upper hand of bioremediation over physicochemical approaches. Further studies should be carried out to understand mechanisms of biotransformation.
García, Liseth; Bulnes, Carlos; Melchor, Gleiby; Vega, Ernesto; Ileana, Miranda; de Oca, Nivian Montes; Hidalgo, Leopoldo; Marrero, Eva
2004-10-01
The nematophagous fungus, Pochonia chlamydosporia var. catenulata (Kamyschlco ex Barron & Onions) Zare & W-Gams, was investigated as a potential biocontrol agent in integrated pest management strategy for Meloidogyne incognita (Kofoid and White) Chitwood in vegetable crops in Cuba. An acute oral and dermal toxicity/patogenicity study was performed to determine the safety of this fungus in non-target organisms. In the first study, a 1-dose level of 5 x 10(8) units of the microbial pest control agent/treated rat was used. Mortality or clinical signs were not evident and no adverse effects on body weight, hematology, microbiology and gross or microscopic pathology were observed. Food and water consumption was not significantly different between control and treated groups. In the acute dermal toxicity study, there was neither mortality nor clinical signs of toxicity, and no toxic effects in gross and microscopic pathology were detected. Thus, Pochonia chlamydosporia var. catenulate (Vcc-108, IMI SD 187), administered oral and dermally to rats and rabbits respectively, was safe in toxicity/pathogenicity studies.
ERIC Educational Resources Information Center
Florida Univ., Gainesville. Inst. of Food and Agricultural Sciences.
This unit of instruction on integrated pest management was designed for use by agribusiness and natural resources teachers in Florida high schools and by agricultural extension agents as they work with adults and students. It is one of a series of 11 instructional units (see note) written to help teachers and agents to educate their students and…
Jenner, W H; Mason, P G; Cappuccino, N; Kuhlmann, U
2010-08-01
Diadromus pulchellus Wesmael (Hymenoptera: Ichneumonidae) is a pupal parasitoid under consideration for introduction into Canada for the control of the invasive leek moth, Acrolepiopsis assectella (Zeller) (Lepidoptera: Acrolepiidae). Since study of the parasitoid outside of quarantine was not permitted in Canada at the time of this project, we assessed its efficacy via field trials in its native range in central Europe. This was done by simulating introductory releases that would eventually take place in Canada when a permit for release is obtained. In 2007 and 2008, experimental leek plots were artificially infested with pest larvae to mimic the higher pest densities common in Canada. Based on a preliminary experiment showing that leek moth pupae were suitable for parasitism up to 5-6 days after pupation, D. pulchellus adults were mass-released into the field plots when the first host cocoons were observed. The laboratory-reared agents reproduced successfully in all trials and radically reduced leek moth survival. Taking into account background parasitism caused by naturally occurring D. pulchellus, the released agents parasitized at least 15.8%, 43.9%, 48.1% and 58.8% of the available hosts in the four release trials. When this significant contribution to leek moth mortality is added to previously published life tables, in which pupal parasitism was absent, the total pupal mortality increases from 60.1% to 76.7%. This study demonstrates how field trials involving environmental manipulation in an agent's native range can yield predictions of the agent's field efficacy once introduced into a novel area.
Knipling, E F
1976-01-01
Insects produce pheromones as a chemical communication system to facilitate reproduction. These highly active chemical attractants have been synthesized for some of the most important insect pests, including the boll weevil, gypsy moth, codling moth, tobacco budworm, European corn borer, and several bark beetles. While none of the synthetic sex attractants have yet been developed for use in insect control, they offer opportunities for the future both as control agents and to greatly improved insect detection. Investigations are underway on insect trapping systems employing the phermones and on air permeation techniques to disrupt insect reproduction. The pheromones are generally highly species-specific and are not likely to pose hazards to nontarget organisms in the environment. Toxicological studies indicate that they are low in toxicity to mammals, birds, and fish, but adequate toxicological data are necessary before they can be registered for use in insect control. Another new class of compounds called kaironomes has been discovered. These chemicals are involved in the detection of hosts or prey by insect parasites and predators. Kairomones may prove useful in manipulating natural or released biological agents for more effective biological control of insect pests. No information is yet available on the toxicology of these chemicals. PMID:789061
Integration of microbial biopesticides in greenhouse floriculture: The Canadian experience.
Brownbridge, Michael; Buitenhuis, Rose
2017-11-28
Historically, greenhouse floriculture has relied on synthetic insecticides to meet its pest control needs. But, growers are increasingly faced with the loss or failure of synthetic chemical pesticides, declining access to new chemistries, stricter environmental/health and safety regulations, and the need to produce plants in a manner that meets the 'sustainability' demands of a consumer driven market. In Canada, reports of thrips resistance to spinosad (Success™) within 6-12 months of its registration prompted a radical change in pest management philosophy and approach. Faced with a lack of registered chemical alternatives, growers turned to biological control out of necessity. Biological control now forms the foundation for pest management programs in Canadian floriculture greenhouses. Success in a biocontrol program is rarely achieved through the use of a single agent, though. Rather, it is realized through the concurrent use of biological, cultural and other strategies within an integrated plant production system. Microbial insecticides can play a critical supporting role in biologically-based integrated pest management (IPM) programs. They have unique modes of action and are active against a range of challenging pests. As commercial microbial insecticides have come to market, research to generate efficacy data has assisted their registration in Canada, and the development and adaptation of integrated programs has promoted uptake by floriculture growers. This review documents some of the work done to integrate microbial insecticides into chrysanthemum and poinsettia production systems, outlines current use practices, and identifies opportunities to improve efficacy in Canadian floriculture crops. Copyright © 2017 Elsevier Inc. All rights reserved.
Biddinger, David J; Leslie, Timothy W; Joshi, Neelendra K
2014-06-01
We developed new integrated pest management programs for eastern U.S. peaches with minimal use of organophosphates. From 2002-2005, we assessed the ecological impacts of these reduced-risk programs versus grower standard conventional programs that still relied primarily on the use of organophosphorous and carbamate insecticides. Using a split-plot design replicated at four commercial Pennsylvania peach orchards, we quantified pesticide rates, environmental impact, and arthropod community response. We used Environmental Impact Quotient (EIQ) analysis based on the growers' pesticide records from each orchard to calculate seasonal cumulative EIQ field ratings for all years. Ecological effects of the reduced-risk and conventional program were also measured as the abundance and diversity of nontarget arthropod predators, parasitoids, and selected pest taxa. Pesticide inputs and EIQ values were substantially lower in reduced-risk programs compared with conventional spray programs. Arthropod arrays differed significantly between pest management programs: most beneficial predator and parasitoid taxa were positively associated with the reduced-risk program and negatively associated with the standard grower program. Regardless of the pest management program, we observed significant differences in species arrays in the peach tree canopy compared with the ground cover of the orchards, but the arthropod community did not differ among the field sites or based on distance from the edge of the orchard. We conclude that reduced-risk programs not only provide control comparable with that of conventional programs, but they also reduce negative environmental effects while conserving key arthropod biological control agents within eastern U.S. peach orchards.
Faulde, M; Freise, J
2014-05-01
Globally, infectious diseases pose the most important cause of death. Among known human pathogenic diseases, approximately 50 % are zoonoses. When considering emerging infectious diseases separately 73 % currently belong to the group of zoonoses. In Central Europe, hard ticks show by far the biggest potential as vectors of agents of human disease. Lyme borreliosis, showing an estimated annual incidence between 60,000 and 214,000 cases is by far the most frequent tick-borne disease in Germany. Continually, formerly unknown disease agents could be discovered in endemic vector species. Additionally, introduction of new arthropod vectors and/or agents of disease occur constantly. Recently, five mosquito species of the genus Aedes have been newly introduced to Europe where they are currently spreading in different regions. Uncommon autochthonous transmission of dengue and chikungunya fever viruses in Southern Europe could be directly linked to these vector species and of these Ae. albopictus and Ae. japonicus are currently reported to occur in Germany. The German Protection against Infection Act only covers the control of public health pests which are either active hematophagous vectors or mechanical transmitters of agents of diseases. Use of officially recommended biocidal products aiming to interrupt transmission cycles of vector-borne diseases, is confined to infested buildings only, including sewage systems in the case of Norway rat control. Outdoor vectors, such as hard ticks and mosquitoes, are currently not taken into consideration. Additionally, adjustments of national public health regulations, detailed arthropod vector and rodent reservoir mapping, including surveillance of vector-borne disease agents, are necessary in order to mitigate future disease risks.
The potential and prospects of proximal remote sensing of arthropod pests.
Nansen, Christian
2016-04-01
Bench-top or proximal remote sensing applications are widely used as part of quality control and machine vision systems in commercial operations. In addition, these technologies are becoming increasingly important in insect systematics and studies of insect physiology and pest management. This paper provides a review and discussion of how proximal remote sensing may contribute valuable quantitative information regarding identification of species, assessment of insect responses to insecticides, insect host responses to parasitoids and performance of biological control agents. The future role of proximal remote sensing is discussed as an exciting path for novel paths of multidisciplinary research among entomologists and scientists from a wide range of other disciplines, including image processing engineers, medical engineers, research pharmacists and computer scientists. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Code of Federal Regulations, 2010 CFR
2010-07-01
... pesticidal purpose. A product that is not intended to prevent, destroy, repel, or mitigate a pest, or to... cleaning agents; (b) Products not containing toxicants, intended only to attract pests for survey or detection purposes, and labeled accordingly; (c) Products that are intended to exclude pests only by...
Denholm, I.
1998-01-01
For many key agricultural pests, successful management of insecticide resistance depends not only on modifying the way that insecticides are deployed, but also on reducing the total number of treatments applied. Both approaches benefit from a knowledge of the biological characteristics of pests that promote or may retard the development of resistance. For the whitefly Bemisia tabaci (Gennadius), these factors include a haplodiploid breeding system that encourages the rapid selection and fixation of resistance genes, its breeding cycle on a succession of treated or untreated hosts, and its occurrence on and dispersal from high-value crops in greenhouses and glasshouses. These factors, in conjunction with often intensive insecticide use, have led to severe and widespread resistance that now affects several novel as well as conventional control agents. Resistance-management strategies implemented on cotton in Israel, and subsequently in south-western USA, have nonetheless so far succeeded in arresting the resistance treadmill in B. tabaci through a combination of increased chemical diversity, voluntary or mandatory restrictions on the use of key insecticides, and careful integration of chemical control with other pest-management options. In both countries, the most significant achievement has been a dramatic reduction in the number of insecticide treatments applied against whiteflies on cotton, increasing the prospect of sustained use of existing and future insecticides.
USDA-ARS?s Scientific Manuscript database
The brown marmorated stink bug, Halyomorpha halys, is a highly polyphagous species native to Asia that has become a serious invasive agricultural and nuisance pest across North America. Its ability to feed on over 120 plant species, ranging from field crops and orchard fruit to ornamentals and nativ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Inclusion bodies of the multi-nuclear... Inclusion bodies of the multi-nuclear polyhedrosis virus of Anagrapha falcifera; exemption from the requirement of a tolerance. The microbial pest control agent inclusion bodies of the multi-nuclear...
USDA-ARS?s Scientific Manuscript database
The entomopathogenic fungus Isaria fumosoroseus (formerly Paecilomyces fumosoroseus) is capable of dimorphic growth (hyphal or yeast-like) in submerged culture. For use in spray applications as a biological control agent against insect pests, the yeast-like (blastospore) mode of growth is preferred....
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirajuddin, Nur Tasmiah, E-mail: nurtasmiah@yahoo.com; Anggraeni, Tjandra, E-mail: nurtasmiah@yahoo.com
Crocidolomia pavonana is one of the most prominent pest that cause damage to vegetables especially Brassicaceae such us cabbage, broccoli, mustard greens and turnips, these vegetable have been widely consumed and cultivated in Indonesia. The invation of this pest might created high risk of cultivated failure. Enviromentally pest control efforts by utilizing biological control agents such us biopesticides of plants and entomopathogenic fungi have been carried out, but the work was relatively long and strongly influenced by environmental factors. The purpose of this study was to combine biopesticide of Mirabilis jalapa and entomopathogenic fungi Beauveria bassiana to look at mortalitymore » of C. pavonana larvae observing by histological incision and scanning electron microscope. Concentration treatments of extracts M. jalapa was (control; 0,1; 0,2; 0,4 and 0,8 gr/ml) and the result showed that the effective concentration was 0,8 g/ml which affect significantly (P<0,05) in reduce pupa weight, improve pupasi time, lowering percentage of emergence imago and improve the long phase of pupa which differ significantly with control. The combination of biopesticides proved to accelerate the mortality of larvae. Histological incision observed at hour 24, 48, 72 and 96, where the biggest damage occurred at hour 96. Observation by scanning electron microscope showed fungus spores that attach to the body surface of larvae subsequently penetrate into the body. Thus the combination use of biopesticides M. jalapa and fungi B. bassiana, can be used as an alternative pest control C. pavonana.« less
NASA Astrophysics Data System (ADS)
Sirajuddin, Nur Tasmiah; Anggraeni, Tjandra
2014-03-01
Crocidolomia pavonana is one of the most prominent pest that cause damage to vegetables especially Brassicaceae such us cabbage, broccoli, mustard greens and turnips, these vegetable have been widely consumed and cultivated in Indonesia. The invation of this pest might created high risk of cultivated failure. Enviromentally pest control efforts by utilizing biological control agents such us biopesticides of plants and entomopathogenic fungi have been carried out, but the work was relatively long and strongly influenced by environmental factors. The purpose of this study was to combine biopesticide of Mirabilis jalapa and entomopathogenic fungi Beauveria bassiana to look at mortality of C. pavonana larvae observing by histological incision and scanning electron microscope. Concentration treatments of extracts M. jalapa was (control; 0,1; 0,2; 0,4 and 0,8 gr/ml) and the result showed that the effective concentration was 0,8 g/ml which affect significantly (P<0,05) in reduce pupa weight, improve pupasi time, lowering percentage of emergence imago and improve the long phase of pupa which differ significantly with control. The combination of biopesticides proved to accelerate the mortality of larvae. Histological incision observed at hour 24, 48, 72 and 96, where the biggest damage occurred at hour 96. Observation by scanning electron microscope showed fungus spores that attach to the body surface of larvae subsequently penetrate into the body. Thus the combination use of biopesticides M. jalapa and fungi B. bassiana, can be used as an alternative pest control C. pavonana.
Host-pathogen dynamics under sterilizing pathogens and fecundity-longevity trade-off in hosts.
Janoušková, Eva; Berec, Luděk
2018-08-07
Infectious diseases are known to regulate population dynamics, an observation that underlies the use of pathogens as control agents of unwanted populations. Sterilizing rather than lethal pathogens are often suggested so as to avoid unnecessary suffering of the infected hosts. Until recently, models used to assess plausibility of pathogens as potential pest control agents have not included a possibility that reduced fecundity of the infected individuals may save their energy expenditure on reproduction and thus increase their longevity relative to the susceptible ones. Here, we develop a model of host-pathogen interaction that builds on this idea. We analyze the model for a variety of infection transmission functions, revealing that the indirect effect of sterilizing pathogens on mortality of the infected hosts, mediated by a fecundity-longevity trade-off, may cause hosts at endemic equilibria to attain densities higher than when there is no effect of pathogens on host mortality. On the other hand, an opposite outcome occurs when the fecundity-longevity trade-off is concave or when the degree of fecundity reduction by the pathogen is high enough. This points to a possibility that using sterilizing pathogens as agents of pest control may actually be less effective than previously thought, the more so since we also suggest that if sexual selection acts on the host species then the presence of sterilizing pathogens may even enhance host densities above the levels achieved without infection. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tetramethylenedisulfotetramine: pest control gone awry.
Shakarjian, Michael P; Laukova, Marcela; Velíšková, Jana; Stanton, Patric K; Heck, Diane E; Velíšek, Libor
2016-08-01
Incidences of pesticide poisonings are a significant cause of morbidity and mortality worldwide. The seizure-inducing rodenticide tetramethylenedisulfotetramine is one of the most toxic of these agents. Although banned, it has been responsible for thousands of accidental, intentional, and mass poisonings in mainland China and elsewhere. An optimal regimen for treatment of poisoning has not been established. Its facile synthesis from easily obtained starting materials, extreme potency, and lack of odor, color, or taste make it a potential chemical threat agent. This review describes the toxicologic properties of this agent, more recent advances in our understanding of its properties, and recommendations for future research. © 2016 New York Academy of Sciences.
Pest Pest-specific Information (by name) Pest Control Tips Integrated Pest Management (IPM) Fact Sheets National Pesticide Information Center 1.800.858.7378 npic@ace.orst.edu We're open from 8:00AM to 12 Plants Pest Control Identify Your Pest Learn About Your Pest Control Your Pest Integrated Pest Management
Bell, H A; Marris, G C; Bell, J; Edwards, J P
2000-08-01
There is a need to identify potential biological control agents for use against lepidopterous pests in greenhouses. The solitary endoparasitoid Meteorus gyrator (Thunberg) attacks a range of macrolepidopterous larvae, including those of some important horticultural pest species. Laboratory trials designed to investigate the biology of M. gyrator on larvae of the tomato moth, Lacanobia oleracea Linnaeus, reveal that this parasitoid is capable of parasitizing all larval stages of its host, third instars being parasitized most frequently. Each female parasitoid lives for up to 40 days (at 25 degrees C), ovipositing into an average of 78 hosts. Preadult development is rapid ( approximately 2 weeks), and the sex ratio of offspring is 1:1. Parasitism by M. gyrator suppresses the growth of both early and late host instars, and there is a concomitant reduction in the amount of food consumed (overall feeding reduction over a 12 day period is 68%). Our results indicate that inoculative releases of M. gyrator could provide effective biological control of L. oleracea and other noctuid pests of greenhouses.
Kraiss, Heidi; Cullen, Eileen M
2008-06-01
Aphis glycines Matsumura, an invasive insect pest in North American soybeans, is fed upon by a key biological control agent, Harmonia axyridis Pallas. Although biological control is preferentially relied upon to suppress insect pests in organic agriculture, approved insecticides, such as neem, are periodically utilized to reduce damaging pest populations. The authors evaluated direct spray treatments of two neem formulations, azadirachtin and neem seed oil, under controlled conditions for effects on survivorship, development time and fecundity in A. glycines and H. axyridis. Both azadirachtin and neem seed oil significantly increased aphid nymphal mortality (80 and 77% respectively) while significantly increasing development time of those surviving to adulthood. First-instar H. axyridis survival to adulthood was also significantly reduced by both neem formulations, while only azadirachtin reduced third-instar survivorship. Azadirachtin increased H. axyridis development time to adult when applied to both instars, while neem oil only increased time to adult when applied to first instar. Neither neem formulation affected the fecundity of either insect. Results are discussed within the context of future laboratory and field studies aimed at clarifying if neem-derived insecticides can be effectively integrated with biological control for soybean aphid management in organic soybeans. Copyright (c) 2008 Society of Chemical Industry.
Lima, Debora B.; Melo, José Wagner S.; Guedes, Nelsa Maria P.; Gontijo, Lessando M.; Guedes, Raul Narciso C.; Gondim, Manoel Guedes C.
2015-01-01
Synthetic pesticide use has been the dominant form of pest control since the 1940s. However, biopesticides are emerging as sustainable pest control alternatives, with prevailing use in organic agricultural production systems. Foremost among botanical biopesticides is the limonoid azadirachtin, whose perceived environmental safety has come under debate and scrutiny in recent years. Coconut production, particularly organic coconut production, is one of the agricultural systems in which azadirachtin is used as a primary method of pest control for the management of the invasive coconut mite, Aceria guerreronis Keifer (Acari: Eriophyidae). The management of this mite species also greatly benefits from predation by Neoseiulus baraki (Athias-Henriot) (Acari: Phytoseiidae). Here, we assessed the potential behavioral impacts of azadirachtin on the coconut mite predator, N. baraki. We explored the effects of this biopesticide on overall predator activity, female searching time, and mating behavior and fecundity. Azadirachtin impairs the overall activity of the predator, reducing it to nearly half; however, female searching was not affected. In contrast, mating behavior was compromised by azadirachtin exposure particularly when male predators were exposed to the biopesticide. Consequently, predator fecundity was also compromised by azadirachtin, furthering doubts about its environmental safety and selectivity towards biological control agents. PMID:25679393
Integrated Pest Management (IPM)
National Pesticide Information Center 1.800.858.7378 npic@ace.orst.edu We're open from 8:00AM to 12 Plants Pest Control Identify Your Pest Learn About Your Pest Control Your Pest Integrated Pest Management Home Page Pest Control Integrated Pest Management (IPM) Related Topics: Using Pesticides Around Pets
USDA-ARS?s Scientific Manuscript database
Rhodomyrtus tomentosa (RT) a native plant to Southeastern Asia, commonly known as downy rose myrtle, is invasive to the regions of Central and South Florida. Introduced in the early 1920’s, this weed is currently considered a Category I invasive species by the Florida Exotic Pest Plant Council. RT...
USDA-ARS?s Scientific Manuscript database
Integrated pest management (IPM) is the best available approach for reducing Fusarium head blight (FHB; caused by Fusarium graminearum) and the mycotoxin deoxynivalenol (DON) in wheat grain. Utilizing FHB biological control agent Cryptococcus flavescens OH 182.9 (NRRL Y-30216) as part ...
Roni, Mathath; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Subramaniam, Jayapal; Nicoletti, Marcello; Madhiyazhagan, Pari; Dinesh, Devakumar; Suresh, Udaiyan; Khater, Hanem F; Wei, Hui; Canale, Angelo; Alarfaj, Abdullah A; Munusamy, Murugan A; Higuchi, Akon; Benelli, Giovanni
2015-11-01
Two of the most important challenges facing humanity in the 21st century comprise food production and disease control. Eco-friendly control tools against mosquito vectors and agricultural pests are urgently needed. Insecticidal products of marine origin have a huge potential to control these pests. In this research, we reported a single-step method to synthesize silver nanoparticles (AgNP) using the aqueous leaf extract of the seaweed Hypnea musciformis, a cheap, nontoxic and eco-friendly material, that worked as reducing and stabilizing agent during the biosynthesis. The formation of AgNP was confirmed by surface plasmon resonance band illustrated in UV-vis spectrophotometer. AgNP were characterized by FTIR, SEM, EDX and XRD analyses. AgNP were mostly spherical in shape, crystalline in nature, with face-centered cubic geometry, and their mean size was 40-65nm. Low doses of H. musciformis aqueous extract and seaweed-synthesized AgNP showed larvicidal and pupicidal toxicity against the dengue vector Aedes aegypti and the cabbage pest Plutella xylostella. The LC50 value of AgNP ranged from 18.14 to 38.23ppm for 1st instar larvae (L1) and pupae of A. aegypti, and from 24.5 to 38.23ppm for L1 and pupae of P. xylostella. Both H. musciformis extract and AgNP strongly reduced longevity and fecundity of A. aegypti and P. xylostella adults. This study adds knowledge on the toxicity of seaweed borne insecticides and green-synthesized AgNP against arthropods of medical and agricultural importance, allowing us to propose the tested products as effective candidates to develop newer and cheap pest control tools. Copyright © 2015 Elsevier Inc. All rights reserved.
Vector ecology and integrated control procedures
Laird, Marshall
1963-01-01
The elucidation of population regulatory mechanisms calls for exhaustive biological and ecological studies of whole ecosystems. Until lately, little effort was made to relate insect control activities to such a background, and the use of non-selective pesticides has often resulted in biotic equilibria being disrupted to the ultimate advantage of the organism under attack or of some other undesirable species. However, there is a growing realization in the field of economic entomology at large that biotic control agents usually constitute the major portion of the environmental resistance to increases in pest numbers and that insecticides should be fitted into the ecosystem, and not imposed upon it—in fact, that integrated control procedures are called for. The author considers such integrated procedures from the standpoint of vector control. His paper points out their potentialities in helping to solve resistance problems and in increasing the selectivity of control operations. It further suggests that they offer the means of achieving economical and lasting reductions of vector populations to levels at which human disease transmission is interrupted and pest problems lose much of their importance. PMID:20604165
A Dynamical Analysis of a Piecewise Smooth Pest Control SI Model
NASA Astrophysics Data System (ADS)
Liu, Bing; Liu, Wanbo; Tao, Fennmei; Kang, Baolin; Cong, Jiguang
In this paper, we propose a piecewise smooth SI pest control system to model the process of spraying pesticides and releasing infectious pests. We assume that the pest population consists of susceptible pests and infectious pests, and that the disease spreads horizontally between pests. We take the susceptible pest as the control index on whether to implement chemical control and biological control strategies. Based on the theory of Filippov system, the sliding-mode domain and conditions for the existence of real equilibria, virtual equilibria, pseudo-equilibrium and boundary equilibria are given. Further, we show the global stability of real equilibria (or boundary equilibria) and pseudo-equilibrium. Our results can provide theoretical guidance for the problem of pest control.
Harvey-Samuel, Tim; Morrison, Neil I; Walker, Adam S; Marubbi, Thea; Yao, Ju; Collins, Hilda L; Gorman, Kevin; Davies, T G Emyr; Alphey, Nina; Warner, Simon; Shelton, Anthony M; Alphey, Luke
2015-07-16
Development and evaluation of new insect pest management tools is critical for overcoming over-reliance upon, and growing resistance to, synthetic, biological and plant-expressed insecticides. For transgenic crops expressing insecticidal proteins from the bacterium Bacillus thuringiensis ('Bt crops') emergence of resistance is slowed by maintaining a proportion of the crop as non-Bt varieties, which produce pest insects unselected for resistance. While this strategy has been largely successful, multiple cases of Bt resistance have now been reported. One new approach to pest management is the use of genetically engineered insects to suppress populations of their own species. Models suggest that released insects carrying male-selecting (MS) transgenes would be effective agents of direct, species-specific pest management by preventing survival of female progeny, and simultaneously provide an alternative insecticide resistance management strategy by introgression of susceptibility alleles into target populations. We developed a MS strain of the diamondback moth, Plutella xylostella, a serious global pest of crucifers. MS-strain larvae are reared as normal with dietary tetracycline, but, when reared without tetracycline or on host plants, only males will survive to adulthood. We used this strain in glasshouse-cages to study the effect of MS male P. xylostella releases on target pest population size and spread of Bt resistance in these populations. Introductions of MS-engineered P. xylostella males into wild-type populations led to rapid pest population decline, and then elimination. In separate experiments on broccoli plants, relatively low-level releases of MS males in combination with broccoli expressing Cry1Ac (Bt broccoli) suppressed population growth and delayed the spread of Bt resistance. Higher rates of MS male releases in the absence of Bt broccoli were also able to suppress P. xylostella populations, whereas either low-level MS male releases or Bt broccoli alone did not. These results support theoretical modeling, indicating that MS-engineered insects can provide a powerful pest population suppressing effect, and could effectively augment current Bt resistance management strategies. We conclude that, subject to field confirmation, MS insects offer an effective and versatile control option against P. xylostella and potentially other pests, and may reduce reliance on and protect insecticide-based approaches, including Bt crops.
Folgarait, Patricia; Gorosito, Norma; Poulsen, Michael; Currie, Cameron R
2011-09-01
Leaf-cutting ants are one of the main herbivores of the Neotropics, where they represent an important agricultural pest. These ants are particularly difficult to control because of the complex network of microbial symbionts. Leaf-cutting ants have traditionally been controlled through pesticide application, but there is a need for alternative, more environmentally friendly, control methods such as biological control. Potential promising biocontrol candidates include the microfungi Escovopsis spp. (anamorphic Hypocreales), which are specialized pathogens of the fungi the ants cultivate for food. These pathogens are suppressed through ant behaviors and ant-associated antibiotic-producing Actinobacteria. In order to be an effective biocontrol agent, Escovopsis has to overcome these defenses. Here, we evaluate, using microbial in vitro assays, whether defenses in the ant-cultivated fungus strain (Leucoagaricus sp.) and Actinobacteria from the ant pest Acromyrmex lundii have the potential to limit the use of Escovopsis in biocontrol. We also explore, for the first time, possible synergistic biocontrol between Escovopsis and the entomopathogenic fungus Lecanicillium lecanii. All strains of Escovopsis proved to overgrow A. lundii cultivar in less than 7 days, with the Escovopsis strain isolated from a different leaf-cutting ant species being the most efficient. Escovopsis challenged with a Streptomyces strain isolated from A. lundii did not exhibit significant growth inhibition. Both results are encouraging for the use of Escovopsis as a biocontrol agent. Although we found that L. lecanii can suppress the growth of the cultivar, it also had a negative impact on Escovopsis, making the success of simultaneous use of these two fungi for biocontrol of A. lundii questionable.
Myths, models and mitigation of resistance to pesticides.
Hoy, M A
1998-01-01
Resistance to pesticides in arthropod pests is a significant economic, ecological and public health problem. Although extensive research has been conducted on diverse aspects of pesticide resistance and we have learned a great deal during the past 50 years, to some degree the discussion about 'resistance management' has been based on 'myths'. One myth involves the belief that we can manage resistance. I will maintain that we can only attempt to mitigate resistance because resistance is a natural evolutionary response to environmental stresses. As such, resistance will remain an ongoing dilemma in pest management and we can only delay the onset of resistance to pesticides. 'Resistance management' models and tactics have been much discussed but have been tested and deployed in practical pest management programmes with only limited success. Yet the myth persists that better models will provide a 'solution' to the problem. The reality is that success in using mitigation models is limited because these models are applied to inappropriate situations in which the critical genetic, ecological, biological or logistic assumptions cannot be met. It is difficult to predict in advance which model is appropriate to a particular situation; if the model assumptions cannot be met, applying the model sometimes can increase the rate of resistance development rather than slow it down. Are there any solutions? I believe we already have one. Unfortunately, it is not a simple or easy one to deploy. It involves employing effective agronomic practices to develop and maintain a healthy crop, monitoring pest densities, evaluating economic injury levels so that pesticides are applied only when necessary, deploying and conserving biological control agents, using host-plant resistance, cultural controls of the pest, biorational pest controls, and genetic control methods. As a part of a truly multi-tactic strategy, it is crucial to evaluate the effect of pesticides on natural enemies in order to preserve them in the cropping system. Sometimes, pesticide-resistant natural enemies are effective components of this resistance mitigation programme. Another name for this resistance mitigation model is integrated pest management (IPM). This complex model was outlined in some detail nearly 40 years ago by V. M. Stern and colleagues. To deploy the IPM resistance mitigation model, we must admit that pest management and resistance mitigation programmes are not sustainable if based on a single-tactic strategy. Delaying resistance, whether to traditional pesticides or to transgenic plants containing toxin genes from Bacillus thuringiensis, will require that we develop multi-tactic pest management programmes that incorporate all appropriate pest management approaches. Because pesticides are limited resources, and their loss can result in significant social and economic costs, they should be reserved for situations where they are truly needed--as tools to subdue an unexpected pest population outbreak. Effective multi-tactic IPM programmes delay resistance (= mitigation) because the number and rates of pesticide applications will be reduced. PMID:10021775
USDA-ARS?s Scientific Manuscript database
Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), is native to Asia and has invaded the USA, including the north central states. It is a pest of over 100 species of plants and is also a nuisance household invader. The ability of native arthropods to suppress populations of H. halys has been variab...
Elizabeth Butin; Joseph Elkinton; Nathan Havill; Michael Montgomery
2003-01-01
The hemlock woolly adelgid (Adelges tsugae Annand) is an introduced pest thought to be native to Asia. Damage to eastern hemlock and Carolina hemlock can be serious (Salom et al. 1996), but western and Asian hemlocks are seldom damaged. Potential biological control agents have been observed in Japan and China (Sasaji and McClure 1997, Yu et al. 2000...
USDA-ARS?s Scientific Manuscript database
Codling moth (CM), Cydia pomonella L. is the most serious pest of apple and other pome fruit worldwide. In temperate climate, diapausing cocooned larvae make up 100% of the population. Control of this stage would reduce or eliminate damage by first generation CM in late spring and early summer. Ento...
Isolation and characterization of a chitinase gene from entomopathogenic fungus Verticillium lecanii
Zhu, Yanping; Pan, Jieru; Qiu, Junzhi; Guan, Xiong
2008-01-01
Entomopathogenic fungus Verticillium lecanii is a promising whitefly and aphid control agent. Chitinases secreted by this insect pathogen have considerable importance in the biological control of some insect pests. An endochitinase gene Vlchit1 from the fungus was cloned and overexpressed in Escherichia coli. The Vlchit1 gene not only contains an open reading frame (ORF) which encodes a protein of 423 amino acids (aa), but also is interrupted by three short introns. Vlchit1 protein showed that the chitinase Vlchit1 has a (a/b)8 TIM barrel structure. Overexpression test and Enzymatic activity assay indicated that the Vlchit1 is a functional enzyme that can hydrolyze the chitin substrate, so the Vlchit1 gene can service as a useful gene source for genetic manipulation leading to strain improvement of entomopathogenic fungi or constructing new transgenic plants with resistance to various fungal and insects pests. PMID:24031223
Camargo, L F; Brito, R A; Penteado-Dias, A M
2015-11-01
The fall armyworm Spodoptera frugiperda (Lepidoptera; Noctuidae) is a voracious pest of numerous crops of economic importance throughout the New World. In Brazil, its larvae are attacked by several species of parasitoid wasps, making them potential candidate as biological control agents against this pest. A survey of the parasitoid fauna on S. frugiperda in maize crops throughout Brazil reveals two species of Campoletis, which are morphologicaly very similar species. In this paper we combine these data with pictures from the type material of C. sonorensis and C. flavicincta, as well as their descriptions to provide a redescription to Campoletis sonorensis (Cameron, 1886) using for this both morphological characters and DNA Barcoding (Hebert et al., 2003) information, in an attempt to help with the correct identification of the taxa to improve biological control studies.
Towards integrated pest management in red clover seed production.
Lundin, Ola; Rundlöf, Maj; Smith, Henrik G; Bommarco, Riccardo
2012-10-01
The development of integrated pest management is hampered by lack of information on how insect pest abundances relate to yield losses, and how pests are affected by control measures. In this study, we develop integrated pest management tactics for Apion spp. weevils (Coleoptera: Brentidae) in seed production of red clover, Trifolium pratense L. We tested a method to forecast pest damage, quantified the relationship between pest abundance and yield, and evaluated chemical and biological pest control in 29 Swedish red clover fields in 2008 and 2011. Pest inflorescence abundance, which had a highly negative effect on yield, could be predicted with pan trap catches of adult pests. In 2008, chemical control with typically one application of pyrethroids was ineffective both in decreasing pest abundances and in increasing yields. In 2011, when chemical control included applications of the neonicotinoid thiacloprid, pest abundances decreased and yields increased considerably in treated field zones. A post hoc analysis indicated that using pyrethroids in addition to thiacloprid was largely redundant. Infestation rates by parasitoids was higher and reached average levels of around 40% in insecticide treated field zones in 2011, which is a level of interest for biological pest control. Based on the data presented, an economic threshold for chemical control is developed, and guidelines are provided on minimum effective chemical pest control.
Entomopathogenic nematodes in agricultural areas in Brazil.
de Brida, Andressa Lima; Rosa, Juliana Magrinelli Osório; Oliveira, Cláudio Marcelo Gonçalves de; Castro, Bárbara Monteiro de Castro E; Serrão, José Eduardo; Zanuncio, José Cola; Leite, Luis Garrigós; Wilcken, Silvia Renata Siciliano
2017-04-06
Entomopathogenic nematodes (EPNs) (Steinernematidae and Heterorhabditidae) can control pests due to the mutualistic association with bacteria that kill the host by septicemia and make the environment favorable for EPNs development and reproduction. The diversity of EPNs in Brazilian soils requires further study. The identification of EPNs, adapted to environmental and climatic conditions of cultivated areas is important for sustainable pest suppression in integrated management programs in agricultural areas of Brazil. The objective was to identify EPNs isolated from agricultural soils with annual, fruit and forest crops in Brazil. Soil samples were collected and stored in 250 ml glass vials. The nematodes were isolated from these samples with live bait traps ([Galleria mellonella L. (Lepidoptera: Pyralidae) larvae]. Infective juveniles were collected with White traps and identified by DNA barcoding procedures by sequencing the D2/D3 expansion of the 28S rDNA region by PCR. EPNs identified in agricultural areas in Brazil were Heterorhabditis amazonensis, Metarhabditis rainai, Oscheios tipulae and Steinernema rarum. These species should be considered pest biocontrol agents in Brazilian agricultural areas.
Lipman, Stefan A; Burt, Sara A
2017-01-01
Pests in the home are a health risk because they can be vectors for infectious disease, contribute to allergies and cause damage to buildings. The aims of this study were to record which categories of pests were reported in homes and to use a social cognition model, the health belief model, to investigate which psychological factors influence householders' intentions to control pests. An online questionnaire was completed by 413 respondents between 11 September and 31 November 2015. A large majority of respondents reported pests in or around their home within the previous year. The prevalences were: flying insects 98%, crawling insects 85%, rodents 62%, birds 58%, and moles 20%. Regression analysis for the health belief model revealed that perceiving greater benefits and fewer barriers to pest control and expecting severe consequences of zoonotic infections predicted higher intention to control pests. Intentions towards pest control were not influenced by perceiving oneself as susceptible to catching a disease from pests or health motivation (striving towards a healthy lifestyle). Intentions to engage in pest control were lower for households reporting bird prevalence. The findings suggest that interventions aimed at improving the effectiveness of domestic pest control should focus on increasing the benefits that individuals associate with effective pest control, lowering barriers, and on underlining the severity of the diseases that pests may carry.
Lipman, Stefan A.
2017-01-01
Pests in the home are a health risk because they can be vectors for infectious disease, contribute to allergies and cause damage to buildings. The aims of this study were to record which categories of pests were reported in homes and to use a social cognition model, the health belief model, to investigate which psychological factors influence householders’ intentions to control pests. An online questionnaire was completed by 413 respondents between 11 September and 31 November 2015. A large majority of respondents reported pests in or around their home within the previous year. The prevalences were: flying insects 98%, crawling insects 85%, rodents 62%, birds 58%, and moles 20%. Regression analysis for the health belief model revealed that perceiving greater benefits and fewer barriers to pest control and expecting severe consequences of zoonotic infections predicted higher intention to control pests. Intentions towards pest control were not influenced by perceiving oneself as susceptible to catching a disease from pests or health motivation (striving towards a healthy lifestyle). Intentions to engage in pest control were lower for households reporting bird prevalence. The findings suggest that interventions aimed at improving the effectiveness of domestic pest control should focus on increasing the benefits that individuals associate with effective pest control, lowering barriers, and on underlining the severity of the diseases that pests may carry. PMID:29284047
Summary Factsheets for Pesticide Permittees
Summaries of the 2016 Pesticide General Permit (PGP) requirements and provisions covering mosquito and other flying insect pest control; weed and algae pest control; animal pest control; and forest canopy pest control.
ERIC Educational Resources Information Center
Stockdale, Harold J., Ed.; And Others
This manual provides information needed to meet specific standards for certification as a pesticide applicator. The first section discusses general and household pest control and is concerned with parasitic pests and man, stored product pests, and irritating vertebrates. Section two is devoted to identifying and controlling structural pests such…
USDA-ARS?s Scientific Manuscript database
Pyrokinin (FXPRLamide) neuropeptides regulate a variety of critical processes and behaviors in insects, though they are unsuitable as tools to arthropod endocrinologists and/or as pest management agents due to sub-optimal biostability and/or bioavailability characteristics. Peptidomimetic analogs c...
Roubos, Craig R; Rodriguez-Saona, Cesar; Holdcraft, Robert; Mason, Keith S; Isaacs, Rufus
2014-02-01
A series of bioassays were conducted to determine the relative toxicities and residual activities of insecticides labeled for use in blueberry (Vaccinium corymbosum L.) on natural enemies, to identify products with low toxicity or short duration effects on biological control agents. In total, 14 insecticides were evaluated using treated petri dishes and four commercially available natural enemies (Aphidius colemani Viereck, Orius insidiosus [Say], Chrysoperla rufilabris [Burmeister], and Hippodamia convergens [Guérin-Menéville]). Dishes were aged under greenhouse conditions for 0, 3, 7, or 14 d before introducing insects to test residual activity. Acute effects (combined mortality and knockdown) varied by insecticide, residue age, and natural enemy species. Broad-spectrum insecticides caused high mortality to all biocontrol agents, whereas products approved for use in organic agriculture had little effect. The reduced-risk insecticide acetamiprid consistently caused significant acute effects, even after aging for 14 d. Methoxyfenozide, novaluron, and chlorantraniliprole, which also are classified as reduced-risk insecticides, had low toxicity, and along with the organic products could be compatible with biological control. This study provides information to guide blueberry growers in their selection of insecticides. Further research will be needed to determine whether adoption of a pest management program based on the use of more selective insecticides will result in higher levels of biological control in blueberry.
Fernandes, Éverton K K; Rangel, Drauzio E N; Braga, Gilberto U L; Roberts, Donald W
2015-08-01
Ultraviolet radiation from sunlight is probably the most detrimental environmental factor affecting the viability of entomopathogenic fungi applied to solar-exposed sites (e.g., leaves) for pest control. Most entomopathogenic fungi are sensitive to UV radiation, but there is great inter- and intraspecies variability in susceptibility to UV. This variability may reflect natural adaptations of isolates to their different environmental conditions. Selecting strains with outstanding natural tolerance to UV is considered as an important step to identify promising biological control agents. However, reports on tolerance among the isolates used to date must be analyzed carefully due to considerable variations in the methods used to garner the data. The current review presents tables listing many studies in which different methods were applied to check natural and enhanced tolerance to UV stress of numerous entomopathogenic fungi, including several well-known isolates of these fungi. The assessment of UV tolerance is usually conducted with conidia using dose-response methods, wherein the UV dose is calculated simply by multiplying the total irradiance by the period (time) of exposure. Although irradiation from lamps seldom presents an environmentally realistic spectral distribution, laboratory tests circumvent the uncontrollable circumstances associated with field assays. Most attempts to increase field persistence of microbial agents have included formulating conidia with UV protectants; however, in many cases, field efficacy of formulated fungi is still not fully adequate for dependable pest control.
Richards, Elaine H; Wontner-Smith, Tim; Bradish, Hannah; Dani, M Paulina; Cotterill, Jane V
2015-09-01
The objective was to develop an environmentally favourable microcapsule suitable for delivery of proteinaceous bioactive agents ('bioinsecticides') to pest insects. Utilising feeding bioassays, we determined that microspheres made of alginate can be produced in a variety of sizes and are palatable and non-toxic to larvae of the lepidopteran pest Lacanobia oleracea. Dehydrated microspheres were also readily ingested by larvae. Using a novel feeding bioassay and alginate microspheres containing a fluorescent marker material (coumarin 7 encapsulated in styrene maleic anhydride beads), we determined that the microspheres successfully deliver the marker to the insect gut. Moreover, the alginate microspheres rapidly break down in the alkaline conditions of the insect gut and release their contents, the beads passing through the gut in 2-3 h. Using bovine serum albumin as a test protein and western blotting, it was determined that alginate can successfully encapsulate protein, and that the microspheres can be stored in a CaCl2 solution for up to 24 days without extensive leakage. Importantly, it was also determined that alginate and the microsphere-making procedure developed do not inactivate rVPr1 (an insect immunosuppressive protein and potential bioinsecticide). An alginate-based microsphere has potential to deliver the proteinaceous bioactive rVPr1 to pest insects. © 2014 Crown copyright. Pest Management Science © 2014 Society of Chemical Industry.
Meyer, Susan L F; Roberts, Daniel P
2002-03-01
Numerous microbes are antagonistic to plant-parasitic nematodes and soilborne plant-pathogenic fungi, but few of these organisms are commercially available for management of these pathogens. Inconsistent performance of applied biocontrol agents has proven to be a primary obstacle to the development of successful commercial products. One of the strategies for overcoming inconsistent performance is to combine the disease-suppressive activity of two (or more) beneficial microbes in a biocontrol preparation. Such combinations have potential for more extensive colonization of the rhizosphere, more consistent expression of beneficial traits under a broad range of soil conditions, and antagonism to a larger number of plant pests or pathogens than strains applied individually. Conversely, microbes applied in combination also may have antagonistic interactions with each other. Increased, decreased, and unaltered suppression of the target pathogen or pest has been observed when biocontrol microbes have been applied in combination. Unfortunately, the ecological basis for increased or decreased suppression has not been determined in many cases and needs further consideration. The complexity of interactions involved in the application of multiple organisms for biological control has slowed progress toward development of successful formulations. However, this approach has potential for overcoming some of the efficacy problems that occur with application of individual biocontrol agents.
Yun, Hwi-Geon; Kim, Dong-Jun; Gwak, Won-Seok; Shin, Tae-Young
2017-01-01
The green peach aphid (Myzus persicae), a plant pest, and gray mold disease, caused by Botrytis cinerea, affect vegetables and fruit crops all over the world. To control this aphid and mold, farmers typically rely on the use of chemical insecticides or fungicides. However, intensive use of these chemicals over many years has led to the development of resistance. To overcome this problem, there is a need to develop alternative control methods to suppress populations of this plant pest and pathogen. Recently, potential roles have been demonstrated for entomopathogenic fungi in endophytism, phytopathogen antagonism, plant growth promotion, and rhizosphere colonization. Here, the antifungal activities of selected fungi with high virulence against green peach aphids were tested to explore their potential for the dual control of B. cinerea and M. persicae. Antifungal activities against B. cinerea were evaluated by dual culture assays using both aerial conidia and cultural filtrates of entomopathogenic fungi. Two fungal isolates, Beauveria bassiana SD15 and Metarhizium anisopliae SD3, were identified as having both virulence against aphids and antifungal activity. The virulence of these isolates against aphids was further tested using cultural filtrates, blastospores, and aerial conidia. The most virulence was observed in the simultaneous treatment with blastospores and cultural filtrate. These results suggest that the two fungal isolates selected in this study could be used effectively for the dual control of green peach aphids and gray mold for crop protection. PMID:29138624
Yun, Hwi-Geon; Kim, Dong-Jun; Gwak, Won-Seok; Shin, Tae-Young; Woo, Soo-Dong
2017-09-01
The green peach aphid ( Myzus persicae ), a plant pest, and gray mold disease, caused by Botrytis cinerea , affect vegetables and fruit crops all over the world. To control this aphid and mold, farmers typically rely on the use of chemical insecticides or fungicides. However, intensive use of these chemicals over many years has led to the development of resistance. To overcome this problem, there is a need to develop alternative control methods to suppress populations of this plant pest and pathogen. Recently, potential roles have been demonstrated for entomopathogenic fungi in endophytism, phytopathogen antagonism, plant growth promotion, and rhizosphere colonization. Here, the antifungal activities of selected fungi with high virulence against green peach aphids were tested to explore their potential for the dual control of B. cinerea and M. persicae . Antifungal activities against B. cinerea were evaluated by dual culture assays using both aerial conidia and cultural filtrates of entomopathogenic fungi. Two fungal isolates, Beauveria bassiana SD15 and Metarhizium anisopliae SD3, were identified as having both virulence against aphids and antifungal activity. The virulence of these isolates against aphids was further tested using cultural filtrates, blastospores, and aerial conidia. The most virulence was observed in the simultaneous treatment with blastospores and cultural filtrate. These results suggest that the two fungal isolates selected in this study could be used effectively for the dual control of green peach aphids and gray mold for crop protection.
40 CFR 158.220 - Experimental use permit data requirements for product performance.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Note No. Efficacy of antimicrobial agents 91-8 Products for treating water systems NR NR CR NR NR NR NR... reproductive inhibitors R R NR NR NR NR NR R R NR EP 1 95-17 Mammalian predacides R R NR NR NR NR NR R NR NR EP... pesticide product bears a claim to control pest microorganisms that pose a threat to human health and whose...
Laboratory evaluation of predation on mosquito larvae by Australian mangrove fish.
Griffin, Lachlan
2014-06-01
A series of laboratory experiments compared predation rates of three native eastern Australian mangrove fish species (Psuedomugil signifer, Hyseleotris galii, Pseudogobius sp.) and the exotic Gambusia holbrooki on 2nd and 4th instar Aedes vigilax larvae, in order to determine their potential as mosquito control agents in mangrove forests. All four species preyed on significant numbers of both 2nd and 4th instar larvae. All showed a similar pattern of larval consumption, gorging on larvae in the first hour of each experiment, before reducing to a relatively constant background feeding rate. Gambusia holbrooki showed the highest larval consumption rates, but is unsuitable as a mosquito control agent due to it being an exotic pest species in Australia. Of the three native species, P. signifer showed the greatest potential as a mosquito control agent, having consumption rates comparable to G. holbrooki, and was the only species that did not show a significant reduction in larval consumption in the night experiments. © 2014 The Society for Vector Ecology.
[Dynamic model of seasonal breeding rodent pest population controlled with short-acting sterilant].
Liu, Han-wu; Jin, Zhen; Zhang, Feng-qin; Li, Qiu-ying
2013-04-01
Rodent pests bring great damage to human beings, while rodenticide and sterilant can be used to control the pests. After ingesting sterilant, rodent pests lose their fertility, but in some cases, the sterile individuals may gain their fertility again, produce offspring, and enlarge population size. In this paper, the dynamic models of rodent pest population under lethal control and shortacting contraception control were formulated, and, with the prerequisite of the seasonal breeding of rodent pest population, the models were used to regularly analyze their behaviors and the effects of the contraception rate, lethal rate, control interval, and sterilant valid period on the dynamics of the pest population. The results showed that larger contraception rate and lethal rate and shorter control interval could have better control effect, making the controlled population become smaller and even died out. Short-acting sterilant limited the control effect. At the later period of breeding season, the rodent pest population controlled with short-acting sterilant would have a weak recovery.
Optimizing Crops for Biocontrol of Pests and Disease.
Stenberg, Johan A; Heil, Martin; Åhman, Inger; Björkman, Christer
2015-11-01
Volatile compounds and extrafloral nectar are common defenses of wild plants; however, in crops they bear an as-yet underused potential for biological control of pests and diseases. Odor emission and nectar secretion are multigene traits in wild plants, and thus form difficult targets for breeding. Furthermore, domestication has changed the capacity of crops to express these traits. We propose that breeding crops for an enhanced capacity for tritrophic interactions and volatile-mediated direct resistance to herbivores and pathogens can contribute to environmentally-friendly and sustainable agriculture. Natural plant volatiles with antifungal or repellent properties can serve as direct resistance agents. In addition, volatiles mediating tritrophic interactions can be combined with nectar-based food rewards for carnivores to boost indirect plant defense. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Mensah, Robert K.; Young, Alison; Rood-England, Leah
2015-01-01
Entomopathogenic fungi, when used as a microbial control agent against cotton pests, such as Helicoverpa spp., may have the potential to establish and spread in the environment and to have an impact on both pests and beneficial insects. Information on the effect of entomopathogenic fungi on pests and beneficial insects is crucial for a product to be registered as a biopesticide. The effect of the entomopathogenic fungus BC 639 (Aspergillus sp.) against Helicoverpa spp. and beneficial insects (mostly predatory insects) was studied in the laboratory and in cotton field trials. The results show that when Helicoverpa spp. second instar larvae were exposed to increasing concentrations (from 102 to 109) of the entomopathogenic fungus BC 639, the optimum dose required to kill over 50% of the insects was 1.0 × 107 spores/mL. In the field trials, the number of Helicoverpa spp. per metre on plots treated with 1.0 or 0.50 L/ha of BC 639 was the same as on plots treated with the recommended rate of the commercial insecticide, Indoxacarb. However, when plots were treated with 0.25 L/ha of BC 639, this was not as effective at controlling Helicoverpa spp. as 1.0 or 0.5 L/ha BC 639 or Indoxacarb. BC 639 had less effect on predatory insects when applied at lower rates (0.50 and 0.25 L/ha) than at higher rates (1.0 L/ha). Thus, BC 639 was more selective against predators when applied at lower rates than at the higher rate, but was also more selective than Indoxacarb. Thus, the ability of BC 639 to control Helicoverpa spp. effectively with a minimal effect on predatory insects indicates its potential for enhancing integrated pest management programs and to sustain cotton production. PMID:26463189
Industrial and Institutional Pest Control. Sale Publication 4073.
ERIC Educational Resources Information Center
Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.
This guide gives information needed to meet Environmental Protection Agency standards on industrial and institutional pest control, and to help prepare for certification. It gives descriptions and pictures of general insect pests, parasitic pests of man, occasional invaders, wood-destroying pests, stored product pests, vertebrates, and weeds. The…
Pest control of aphids depends on landscape complexity and natural enemy interactions
Reineking, Björn; Seo, Bumsuk; Steffan-Dewenter, Ingolf
2015-01-01
Aphids are a major concern in agricultural crops worldwide, and control by natural enemies is an essential component of the ecological intensification of agriculture. Although the complexity of agricultural landscapes is known to influence natural enemies of pests, few studies have measured the degree of pest control by different enemy guilds across gradients in landscape complexity. Here, we use multiple natural-enemy exclosures replicated in 18 fields across a gradient in landscape complexity to investigate (1) the strength of natural pest control across landscapes, measured as the difference between pest pressure in the presence and in the absence of natural enemies; (2) the differential contributions of natural enemy guilds to pest control, and the nature of their interactions across landscapes. We show that natural pest control of aphids increased up to six-fold from simple to complex landscapes. In the absence of pest control, aphid population growth was higher in complex than simple landscapes, but was reduced by natural enemies to similar growth rates across all landscapes. The effects of enemy guilds were landscape-dependent. Particularly in complex landscapes, total pest control was supplied by the combined contribution of flying insects and ground-dwellers. Birds had little overall impact on aphid control. Despite evidence for intraguild predation of flying insects by ground-dwellers and birds, the overall effect of enemy guilds on aphid control was complementary. Understanding pest control services at large spatial scales is critical to increase the success of ecological intensification schemes. Our results suggest that, where aphids are the main pest of concern, interactions between natural enemies are largely complementary and lead to a strongly positive effect of landscape complexity on pest control. Increasing the availability of seminatural habitats in agricultural landscapes may thus benefit not only natural enemies, but also the effectiveness of aphid natural pest control. PMID:26734497
Pest control of aphids depends on landscape complexity and natural enemy interactions.
Martin, Emily A; Reineking, Björn; Seo, Bumsuk; Steffan-Dewenter, Ingolf
2015-01-01
Aphids are a major concern in agricultural crops worldwide, and control by natural enemies is an essential component of the ecological intensification of agriculture. Although the complexity of agricultural landscapes is known to influence natural enemies of pests, few studies have measured the degree of pest control by different enemy guilds across gradients in landscape complexity. Here, we use multiple natural-enemy exclosures replicated in 18 fields across a gradient in landscape complexity to investigate (1) the strength of natural pest control across landscapes, measured as the difference between pest pressure in the presence and in the absence of natural enemies; (2) the differential contributions of natural enemy guilds to pest control, and the nature of their interactions across landscapes. We show that natural pest control of aphids increased up to six-fold from simple to complex landscapes. In the absence of pest control, aphid population growth was higher in complex than simple landscapes, but was reduced by natural enemies to similar growth rates across all landscapes. The effects of enemy guilds were landscape-dependent. Particularly in complex landscapes, total pest control was supplied by the combined contribution of flying insects and ground-dwellers. Birds had little overall impact on aphid control. Despite evidence for intraguild predation of flying insects by ground-dwellers and birds, the overall effect of enemy guilds on aphid control was complementary. Understanding pest control services at large spatial scales is critical to increase the success of ecological intensification schemes. Our results suggest that, where aphids are the main pest of concern, interactions between natural enemies are largely complementary and lead to a strongly positive effect of landscape complexity on pest control. Increasing the availability of seminatural habitats in agricultural landscapes may thus benefit not only natural enemies, but also the effectiveness of aphid natural pest control.
Integrated Pest Management of the Southern Pine Beetle
Robert N. Coulson; Hannu Saarenmaa
2011-01-01
Integrated pest management (IPM) is the maintenance of destructive agents, including insects, at tolerable levels by the planned use of a variety of preventive, suppressive, or regulatory tactics and strategies that are ecologically and economically efficient and socially and politically acceptable. It is explicit that the actions taken are fully integrated into the...
Comparative study of cocoa black ants temporal population distribution utilizing geospatial analysis
NASA Astrophysics Data System (ADS)
Adnan, N. A.; Bakar, S.; Mazlan, A. H.; Yusoff, Z. Mohd; Rasam, A. R. Abdul
2018-02-01
Cocoa plantation also subjected to diseases and pests infestation. Some pests not only reduced the yield but also inhibit the growth of trees. Therefore, the Malaysia Cocoa Board (MCB) has explored Cocoa Black Ants (CBA) as one of their biological control mechanism to reduce the pest infestation of the Cocoa Pod Borer (CPB). CPB is capable to cause damage to cocoa beans, and later on will reduce the quality of dried cocoa beans. This study tries to integrate the use of geospatial analysis in understanding population distribution pattern of CBA to enhance its capability in controlling CPB infestation. Two objectives of the study are i) to generate temporal CBA distribution of cocoa plantation for two different blocks, and ii) to compare visually the CBA population distribution pattern with the aid of geospatial technique. This study managed to find the CBA population pattern which indicated spatially modest amount of low pattern distribution in February of 2007 until reaching the highest levels of ant populations in September 2007 and decreasing by the end of the year in 2009 for two different blocks (i.e 10B and 18A). Therefore, the usage of GIS is important to explain the CBA pattern population in the mature cocoa field. This finding might to be used as an indicator to examine the optimum distribution of CBA, which needed as a biological control agent against the CPB in the future.
An analysis of using entomopathogenic nematodes against above-ground pests.
Arthurs, S; Heinz, K M; Prasifka, J R
2004-08-01
Applications of entomopathogenic nematodes in the families Steinernematidae and Heterorhabditidae have traditionally been targeted against soil insects. Nonetheless, research over the last two decades highlights the potential of such agents against above-ground pests under certain circumstances. A general linear model was used to test for patterns in efficacy among 136 published trials with Steinernema carpocapsae Weiser, the most common species applied against foliar and other above-ground pests. The focus was on field and greenhouse assessments, rather than laboratory assays where relevant ecological barriers to infection are typically removed. The model showed differences in nematode treatment efficacy depending on the pests' target habitat (bore holes > cryptic foliage > exposed foliage) and trial location (greenhouse > field studies). Relative humidity and temperature during and up to 8 h post-application were also predicted to influence rates of nematode infection obtained. Conversely, spray adjuvants (both wetting agents and anti-desiccants) and nematode dosage applied (both concentration and use of consecutive applications 3-4 days apart) did not explain a significant amount of variance in nematode performance. With reference to case studies the model is used to discuss the relative importance of different factors on nematode efficacy and highlight priorities for workers considering using entomopathogenic nematodes to target pests in novel environments.
Wang, Zinan; Moshman, Lori; Kraus, Emily C; Wilson, Blake E; Acharya, Namoona; Diaz, Rodrigo
2016-12-15
The tawny crazy ant, Nylanderia fulva (Mayr) (Hymenoptera: Formicidae), has invaded states of the U.S. including Texas, Louisiana, Mississippi, Alabama, Florida, and Georgia. Native to South America, N. fulva is considered a pest in the U.S. capable of annoying homeowners and farmers, as well as displacing native ant species. As it continues to expand its range, there is a growing need to develop novel management techniques to control the pest and prevent further spread. Current management efforts rely heavily on chemical control, but these methods have not been successful. A review of the biology, taxonomy, ecology, and distribution of N. fulva , including discussion of ecological and economic consequences of this invasive species, is presented. Options for future management are suggested focusing on biological control, including parasitoid flies in the genus Pseudacteon , the microsporidian parasite Myrmecomorba nylanderiae , and a novel polynucleotide virus as potential biological control agents. We suggest further investigation of natural enemies present in the adventive range, as well as foreign exploration undertaken in the native range including Paraguay, Brazil, and Argentina. We conclude that N. fulva may be a suitable candidate for biological control.
Wang, Zinan; Moshman, Lori; Kraus, Emily C.; Wilson, Blake E.; Acharya, Namoona; Diaz, Rodrigo
2016-01-01
The tawny crazy ant, Nylanderia fulva (Mayr) (Hymenoptera: Formicidae), has invaded states of the U.S. including Texas, Louisiana, Mississippi, Alabama, Florida, and Georgia. Native to South America, N. fulva is considered a pest in the U.S. capable of annoying homeowners and farmers, as well as displacing native ant species. As it continues to expand its range, there is a growing need to develop novel management techniques to control the pest and prevent further spread. Current management efforts rely heavily on chemical control, but these methods have not been successful. A review of the biology, taxonomy, ecology, and distribution of N. fulva, including discussion of ecological and economic consequences of this invasive species, is presented. Options for future management are suggested focusing on biological control, including parasitoid flies in the genus Pseudacteon, the microsporidian parasite Myrmecomorba nylanderiae, and a novel polynucleotide virus as potential biological control agents. We suggest further investigation of natural enemies present in the adventive range, as well as foreign exploration undertaken in the native range including Paraguay, Brazil, and Argentina. We conclude that N. fulva may be a suitable candidate for biological control. PMID:27983690
Dynamic complexities in a pest control model with birth pulse and harvesting
NASA Astrophysics Data System (ADS)
Goel, A.; Gakkhar, S.
2016-04-01
In this paper, an impulsive model is discussed for an integrated pest management approach comprising of chemical and mechanical controls. The pesticides and harvesting are used to control the stage-structured pest population. The mature pest give birth to immature pest in pulses at regular intervals. The pest is controlled by spraying chemical pesticides affecting immature as well as mature pest. The harvesting of both immature and mature pest further reduce the pest population. The discrete dynamical system obtained from stroboscopic map is analyzed. The threshold conditions for stability of pest-free state as well as non-trivial period-1 solution is obtained. The effect of pesticide spray timing and harvesting on immature as well as mature pest are shown. Finally, by numerical simulation with MATLAB, the dynamical behaviors of the model is found to be complex. Above the threshold level there is a characteristic sequence of bifurcations leading to chaotic dynamics. Route to chaos is found to be period-doubling. Period halving bifurcations are also observed.
ERIC Educational Resources Information Center
Extension Service (USDA), Washington, DC.
This manual is designed to assist pest control operators to prepare for certification under the Michigan Pesticide Control Act of 1976. The primary focus of this publication is on home, institutional, and structural pest control. The ten sections included describe: (1) Insect control; (2) Rodent control; (3) Special situation pest control; (4)…
Frew, Adam; Barnett, Kirk; Nielsen, Uffe N.; Riegler, Markus; Johnson, Scott N.
2016-01-01
Many scarab beetles spend the majority of their lives belowground as larvae, feeding on grass roots. Many of these larvae are significant pests, causing damage to crops and grasslands. Damage by larvae of the greyback cane beetle (Dermolepida albohirtum), for example, can cause financial losses of up to AU$40 million annually to the Australian sugarcane industry. We review the ecology of some scarab larvae in Australasia, focusing on three subfamilies; Dynastinae, Rutelinae, and Melolonthinae, containing key pest species. Although considerable research on the control of some scarab pests has been carried out in Australasia, for some species, the basic biology and ecology remains largely unexplored. We synthesize what is known about these scarab larvae and outline key knowledge gaps to highlight future research directions with a view to improve pest management. We do this by presenting an overview of the scarab larval host plants and feeding behavior; the impacts of abiotic (temperature, moisture, and fertilization) and biotic (pathogens, natural enemies, and microbial symbionts) factors on scarab larvae and conclude with how abiotic and biotic factors can be applied in agriculture for improved pest management, suggesting future research directions. Several host plant microbial symbionts, such as arbuscular mycorrhizal fungi and endophytes, can improve plant tolerance to scarabs and reduce larval performance, which have shown promise for use in pest management. In addition to this, several microbial scarab pathogens have been isolated for commercial use in pest management with particularly promising results. The entomopathogenic fungus Metarhizium anisopliae caused a 50% reduction in cane beetle larvae while natural enemies such as entomopathogenic nematodes have also shown potential as a biocontrol. Key abiotic factors, such as soil water, play an important role in affecting both scarab larvae and these control agents and should therefore feature in future multi-factorial experiments. Continued research should focus on filling knowledge gaps including host plant preferences, attractive trap crops, and naturally occurring pathogens that are locally adapted, to achieve high efficacy in the field. PMID:27047506
33 CFR 274.6 - Division/district pest control programs.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Division/district pest control..., DEPARTMENT OF DEFENSE PEST CONTROL PROGRAM FOR CIVIL WORKS PROJECTS Project Operation § 274.6 Division/district pest control programs. (a) Guides. Referenced technical manuals, and Engineer Circulars issued...
33 CFR 274.6 - Division/district pest control programs.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Division/district pest control..., DEPARTMENT OF DEFENSE PEST CONTROL PROGRAM FOR CIVIL WORKS PROJECTS Project Operation § 274.6 Division/district pest control programs. (a) Guides. Referenced technical manuals, and Engineer Circulars issued...
33 CFR 274.6 - Division/district pest control programs.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Division/district pest control..., DEPARTMENT OF DEFENSE PEST CONTROL PROGRAM FOR CIVIL WORKS PROJECTS Project Operation § 274.6 Division/district pest control programs. (a) Guides. Referenced technical manuals, and Engineer Circulars issued...
33 CFR 274.6 - Division/district pest control programs.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Division/district pest control..., DEPARTMENT OF DEFENSE PEST CONTROL PROGRAM FOR CIVIL WORKS PROJECTS Project Operation § 274.6 Division/district pest control programs. (a) Guides. Referenced technical manuals, and Engineer Circulars issued...
Connecting scales: achieving in-field pest control from areawide and landscape ecology studies.
Schellhorn, Nancy A; Parry, Hazel R; Macfadyen, Sarina; Wang, Yongmo; Zalucki, Myron P
2015-02-01
Areawide management has a long history of achieving solutions that target pests, however, there has been little focus on the areawide management of arthropod natural enemies. Landscape ecology studies that show a positive relationship between natural enemy abundance and habitat diversity demonstrate landscape-dependent pest suppression, but have not yet clearly linked their findings to pest management or to the suite of pests associated with crops that require control. Instead the focus has often been on model systems of single pest species and their natural enemies. We suggest that management actions to capture pest control from natural enemies may be forth coming if: (i) the suite of response and predictor variables focus on pest complexes and specific management actions; (ii) the contribution of "the landscape" is identified by assessing the timing and numbers of natural enemies immigrating and emigrating to and from the target crop, as well as pests; and (iii) pest control thresholds aligned with crop development stages are the benchmark to measure impact of natural enemies on pests, in turn allowing for comparison between study regions, and generalizations. To achieve pest control we will need to incorporate what has been learned from an ecological understanding of model pest and natural enemy systems and integrate areawide landscape management with in-field pest management. © 2014 Institute of Zoology, Chinese Academy of Sciences.
Vertebrate Pest Control. Sale Publication 4077.
ERIC Educational Resources Information Center
Stimmann, M. W.; Clark, Dell O.
This guide gives descriptions of common vertebrate pests and guidelines for using some common pesticides. The pests discussed are rats, mice, bats, moles, muskrats, ground squirrels, and gophers. Information is given for each pest on the type of damage the pest can do, the habitat and biology of the pest, and the most effective control methods.…
Lax, Alan R; Osbrink, Weste L A
2003-01-01
The Formosan subterranean termite, Coptotermes formosanus Shiraki is currently one of the most destructive pests in the USA. It is estimated to cost consumers over US dollars 1 billion annually for preventative and remedial treatment and to repair damage caused by this insect. The mission of the Formosan Subterranean Termite Research Unit of the Agricultural Research Service is to demonstrate the most effective existing termite management technologies, integrate them into effective management systems, and provide fundamental problem-solving research for long-term, safe, effective and environmentally friendly new technologies. This article describes the epidemiology of the pest and highlights the research accomplished by the Agricultural Research Service on area-wide management of the termite and fundamental research on its biology that might provide the basis for future management technologies. Fundamental areas that are receiving attention are termite detection, termite colony development, nutrition and foraging, and the search for biological control agents. Other fertile areas include understanding termite symbionts that may provide an additional target for control. Area-wide management of the termite by using population suppression rather than protection of individual structures has been successful; however, much remains to be done to provide long-term sustainable population control. An educational component of the program has provided reliable information to homeowners and pest-control operators that should help slow the spread of this organism and allow rapid intervention in those areas which it infests.
Gopal, Murali; Gupta, Alka; Thomas, George V
2006-10-01
During vermicomposting of coconut leaves by the earthworm Eudrilus sp., Oryctes rhinoceros L. (rhinoceros beetle), an insect pest of palms, was found to breed in the decomposing organic material. Metarhizium anisopliae var. major was tried as a biocontrol agent for management of this pest. The effect of pathogen at spore loads of 10(3), 10(4) and 10(5) per 10 g of substrate was tested in laboratory on Eudrilus sp. kept with O. rhinoceros grubs and on Eudrilus sp. alone for the pathogenic capability of the fungus on the pest and its possible toxicity towards the vermin. The efficacy of the entomopathogen was also tested in the field in vermicomposting tanks. In laboratory bioassay, 100% mycosis of O. rhinoceros grubs could be obtained while the entomopathogen had no toxic effect on the earthworms. There was a positive change in the number and weight of the earthworms on treatment with M. anisopliae. In the field, application of M. anisopliae reduced O. rhinoceros grubs in the vermicomposting tanks upto an extent of 72%. In conclusion, M. anisopliae could effectively control O. rhinoceros in vermicomposting sites and was non-hazardous to the vermicomposting process as well as the Eudrilus sp.
NASA Astrophysics Data System (ADS)
Bayu, M. S. Y. I.; Prayogo, Y.
2018-01-01
In order to reduce the use of insecticide, the application of Beauveria bassiana may be an alternative control. The objective of this study was to evaluate the efficacy of B. bassiana for controlling mungbean pest. The experiment was conducted in Ngale Research Station from February to May 2017, using randomized block design, seven treatments, four replicates. The treatments were frequency of application; P1= six times, P2= five times, P3= four times, P4= three times, P5= once, P6= full protection using chemical insecticide, and P7= no protection. Application of B. bassiana four to six times can suppress the population of Empoasca sp., Riptortus linearis, and Maruca testulalis, but did not significantly different with the application of chemical insecticide. Based on the seed weight, application of B. bassiana six times (659.7 g/plot) led to significantly high as compare with the application of chemical insecticide (374 g/plot). Application of B. bassiana tended to be secure to natural enemies, especially Coccinella sp., Oxyopes javanus, and Paederus fuscipes. Both of those predators were not found on the application of chemical insecticide. Hence, B. bassiana can be recommended as a biological agent in integrated pest management component on mungbean because of effective and environmentally friendly.
ERIC Educational Resources Information Center
Craig, W. S., Comp.; And Others
This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides in the ornamental and turf pest control category. The text discusses pest control of ornamental plants, lawn diseases, and lawn weeds and their control. (CS)
Dynamic complexities in a pest control model with birth pulse and harvesting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goel, A., E-mail: goelanju23@gmail.com; Gakkhar, S., E-mail: sungkfma@iitr.ernet.in
In this paper, an impulsive model is discussed for an integrated pest management approach comprising of chemical and mechanical controls. The pesticides and harvesting are used to control the stage-structured pest population. The mature pest give birth to immature pest in pulses at regular intervals. The pest is controlled by spraying chemical pesticides affecting immature as well as mature pest. The harvesting of both immature and mature pest further reduce the pest population. The discrete dynamical system obtained from stroboscopic map is analyzed. The threshold conditions for stability of pest-free state as well as non-trivial period-1 solution is obtained. Themore » effect of pesticide spray timing and harvesting on immature as well as mature pest are shown. Finally, by numerical simulation with MATLAB, the dynamical behaviors of the model is found to be complex. Above the threshold level there is a characteristic sequence of bifurcations leading to chaotic dynamics. Route to chaos is found to be period-doubling. Period halving bifurcations are also observed.« less
Castle, Steven; Naranjo, Steven E
2009-12-01
Integrated Pest Management (IPM) is considered the central paradigm of insect pest management and is often characterized as a comprehensive use of multiple control tactics to reduce pest status while minimizing economic and environmental costs. As the principal precursor of IPM, the integrated control concept formulated the economic theory behind pest management decisions and specified an applied methodology for carrying out pest control. Sampling, economic thresholds and selective insecticides were three of the critical elements of that methodology and are now considered indispensable to the goals of IPM. We examine each of these elements in the context of contemporaneous information as well as accumulated experience and knowledge required for their skillful implementation in an IPM program. We conclude that while IPM is principally about integrating control tactics into an effective and sustainable approach to pest control, this overarching goal can only be achieved through well-trained practitioners, knowledgeable of the tenets conceived in the integrated control concept that ultimately yield informed pest management. (c) 2009 Society of Chemical Industry.
Syrett, P; Smith, L A; Bourner, T C; Fowler, S V; Wilcox, A
2000-04-01
Heather, Calluna vulgaris (L.) Hull, is a serious invasive weed in the central North Island of New Zealand, especially in Tongariro National Park, a World Heritage Area. Heather beetle, Lochmaea suturalis (Thomson), is a foliage-feeding pest of Calluna in Europe, that was selected as the most promising biological control agent for introduction into New Zealand, because it causes high levels of damage to Calluna in Europe. Host-range tests indicated that L. suturalis poses a negligible threat to native New Zealand plants. Cultivars of Calluna grown as ornamentals are suitable food plants, but are unlikely to be severely affected because L. suturalis requires a damp understorey of moss or litter for successful oviposition and pupation, which is rarely present in gardens. However, mosses and litter occurring under Calluna stands in Tongariro National Park are suitable substrates for eggs and pupae. Lochmaea suturalis released in New Zealand has been freed of parasitoids and a microsporidian disease that attack the beetles in Europe.
Introduction to 2009 Symposium on Alternative Methods of Controlling Pests and Diseases
USDA-ARS?s Scientific Manuscript database
Numerous pests and diseases limit potato productivity, and control of weeds, insects and pathogens remains a costly part of potato production. Although conventional agrichemical pest control is amazingly effective, interest in non-synthetic chemical and integrated methods of pest management is drive...
A theoretical approach on controlling agricultural pest by biological controls.
Mondal, Prasanta Kumar; Jana, Soovoojeet; Kar, T K
2014-03-01
In this paper we propose and analyze a prey-predator type dynamical system for pest control where prey population is treated as the pest. We consider two classes for the pest namely susceptible pest and infected pest and the predator population is the natural enemy of the pest. We also consider average delay for both the predation rate i.e. predation to the susceptible pest and infected pest. Considering a subsystem of original system in the absence of infection, we analyze the existence of all possible non-negative equilibria and their stability criteria for both the subsystem as well as the original system. We present the conditions for transcritical bifurcation and Hopf bifurcation in the disease free system. The theoretical evaluations are demonstrated through numerical simulations.
National Pesticide Information Center 1.800.858.7378 npic@ace.orst.edu We're open from 8:00AM to 12 Plants Pest Control Identify Your Pest Learn About Your Pest Control Your Pest Integrated Pest Management Home Page Emergency Resources Related Topics: Pesticide Incidents Recognition and Management of
Safe, Effective Use of Pesticides, A Manual for Commercial Applicators: Aquatic Pest Control.
ERIC Educational Resources Information Center
Extension Service (USDA), Washington, DC.
This manual is intended to assist pesticide applicators in the area of aquatic pest control meet the requirements of the Michigan Department of Agriculture for certification. The Environmental Protection Agency (EPA) Aquatic Pest Control Guide served as a basis for this manual. The six sections presented describe: (1) Aquatic pest control; (2)…
Ortega-Iturriaga, Adrián; del-Val, Ek
2017-01-01
The use of biological control agents to control pests is an alternative to pesticides and a tool to manage invasive alien species. However, biocontrol agents can themselves become invasive species under certain conditions. The harlequin ladybird (Harmonia axyridis) is a native Asian biocontrol agent that has become a successful invader. We reviewed articles containing “Harmonia axyridis” to gather information on its presence and surveyed entomologists researching Coccinellidae around the world to investigate further insights about the current distribution, vectors of introduction, habitat use and threats this species pose. The harlequin ladybird has established populations in at least 59 countries outside its native range. Twenty six percent of the surveyed scientists considered it a potential threat to native Coccinellidae. Published studies and scientists suggest Adalia bipunctata, native to Europe, is under the highest risk of population declines. Strict policies should be incorporated to prevent its arrival to non-invaded areas and to prevent further expansion range. Managing invasive species is a key priority to prevent biodiversity loss and promote ecosystem services. PMID:28533958
Camacho-Cervantes, Morelia; Ortega-Iturriaga, Adrián; Del-Val, Ek
2017-01-01
The use of biological control agents to control pests is an alternative to pesticides and a tool to manage invasive alien species. However, biocontrol agents can themselves become invasive species under certain conditions. The harlequin ladybird ( Harmonia axyridis ) is a native Asian biocontrol agent that has become a successful invader. We reviewed articles containing " Harmonia axyridis " to gather information on its presence and surveyed entomologists researching Coccinellidae around the world to investigate further insights about the current distribution, vectors of introduction, habitat use and threats this species pose. The harlequin ladybird has established populations in at least 59 countries outside its native range. Twenty six percent of the surveyed scientists considered it a potential threat to native Coccinellidae. Published studies and scientists suggest Adalia bipunctata , native to Europe, is under the highest risk of population declines. Strict policies should be incorporated to prevent its arrival to non-invaded areas and to prevent further expansion range. Managing invasive species is a key priority to prevent biodiversity loss and promote ecosystem services.
Bt maize and integrated pest management--a European perspective.
Meissle, Michael; Romeis, Jörg; Bigler, Franz
2011-09-01
The European corn borer (Ostrinia nubilalis), the Mediterranean corn borer (Sesamia nonagrioides) and the western corn rootworm (Diabrotica virgifera virgifera) are the main arthropod pests in European maize production. Practised pest control includes chemical control, biological control and cultural control such as ploughing and crop rotation. A pest control option that is available since 1996 is maize varieties that are genetically engineered (GE) to produce insecticidal compounds. GE maize varieties available today express one or several genes from Bacillus thuringiensis (Bt) that target corn borers or corn rootworms. Incentives to growing Bt maize are simplified farm operations, high pest control efficiency, improved grain quality and ecological benefits. Limitations include the risk of resistance evolution in target pest populations, risk of secondary pest outbreaks and increased administration to comply with licence agreements. Growers willing to plant Bt maize in the European Union (EU) often face the problem that authorisation is denied. Only one Bt maize transformation event (MON810) is currently authorised for commercial cultivation, and some national authorities have banned cultivation. Spain is the only EU member state where Bt maize adoption levels are currently delivering farm income gains near full potential levels. In an integrated pest management (IPM) context, Bt maize can be regarded as a preventive (host plant resistance) or a responsive pest control measure. In any case, Bt maize is a highly specific tool that efficiently controls the main pests and allows combination with other preventive or responsive measures to solve other agricultural problems including those with secondary pests. Copyright © 2011 Society of Chemical Industry.
Strategies for Enhanced Crop Resistance to Insect Pests.
Douglas, Angela E
2018-04-29
Insect pests are responsible for substantial crop losses worldwide through direct damage and transmission of plant diseases, and novel approaches that complement or replace broad-spectrum chemical insecticides will facilitate the sustainable intensification of food production in the coming decades. Multiple strategies for improved crop resistance to insect pests, especially strategies relating to plant secondary metabolism and immunity and microbiome science, are becoming available. Recent advances in metabolic engineering of plant secondary chemistry offer the promise of specific toxicity or deterrence to insect pests; improved understanding of plant immunity against insects provides routes to optimize plant defenses against insects; and the microbiomes of insect pests can be exploited, either as a target or as a vehicle for delivery of insecticidal agents. Implementation of these advances will be facilitated by ongoing advances in plant breeding and genetic technologies.
NASA Astrophysics Data System (ADS)
Maulina, Dina; Anggraeni, Tjandra
2014-03-01
Biological control provides a safer alternative to reduce the population of agricultural pest. Mirabilis jalapa is one of many promising biopesticides which contains chemical substances that have a feeding deterrent property against insects. This biopesticide may not kill insect directly but will weaken their overall physiological condition. In this study, we investigated the immune response of common pestSpodoptera litura after exposure of M. jalapa extract. We also used Bacillus thuringiensis (Bt) delta endotoxin (LC50) on 3 hours after exposure of M. jalapa extract to see the synergism properties of both biopesticide agents. Microscopic observation revealed that at least 5 types of haemocyte were found in S. litura. In control group, plasmatocyte were found at 59.98%, prohaemocyte 20.73%, granullar cell 12.74%, oenocytoid 3.33% and spherule cell 3.20%. These proportion was differ significantly in the treatment group. Exposure to 0.1% and 0.2%(w/v) of M. jalapa extract increased the total number of haemocytes as much as 38.08% and 64.15% respectively. In contrast, exposure to 0.4% and 0.8%(w/v) reduced the number of haemocytes to 37.02% and 51.04% respectively. In term of phagocytic activity, the proportion of phagocytosing cells were 47.62% in control group, and in 0.1% and 0.2% (w/v) M. jalapa treatment group the proportion decreased to 28% and 26.88% respectively. In the concentration of 0.4% and 0.8%, phagocytic activity did not occur. Addition of biological agents Bt (LC50 concentration) to see mortality 3 hours after M. jalapa application did not show significant differences. S. litura mortality rate were found only 50%; this suggests that the combination of M. jalapa and Bt biopesticides in 3-hour intervals within 24 hours showed no increase in mortality.
ERIC Educational Resources Information Center
Kahn, M. S.; Hoffman, W. M.
This manual is designed for those who seek certification as pesticide applicators for industrial, institutional, structural, and health-related pest control. It is divided into six sections covering general pest control, wood-destroying organisms, bird control, fumigation, rodent control, and industrial weed control. The manual gives information…
Biological control of Ixodes ricinus larvae and nymphs with Metarhizium anisopliae blastospores.
Wassermann, Marion; Selzer, Philipp; Steidle, Johannes L M; Mackenstedt, Ute
2016-07-01
The entomopathogenic fungus Metarhizium anisopliae is used as a biological pest control agent against various arthropod species, including ticks. However, the efficacy depends on tick species, tick stage and fungus strain. We studied the effect of M. anisopliae on engorged larvae and nymphs of Ixodes ricinus, the most abundant tick species in Europe, under laboratory and semi-field conditions. A significant reduction of engorged larvae and nymphs could be shown under laboratory as well as under semi-field conditions. Only 3.5% of the larvae treated in the lab and only 18.5% kept under semi-field conditions were able to develop into nymphs compared to the recovered nymphs of the control groups, which were regarded as 100%. Only 7.1% of nymphs were recovered as adult ticks after fungal treatment under semi-field conditions compared to the control (100%). The efficacy of blastospores of M. anisopliae against engorged larvae and nymphs of I. ricinus under semi-field conditions was demonstrated in this study, showing their high potential as a biological control agent of ticks. Further studies will have to investigate the effect of this agent against other stages of I. ricinus as well as other tick species before its value as a biological control agent against ticks can be fully assessed. Copyright © 2016 Elsevier GmbH. All rights reserved.
Is the Insect World Overcoming the Efficacy of Bacillus thuringiensis?
Peralta, Cecilia; Palma, Leopoldo
2017-01-18
The use of chemical pesticides revolutionized agriculture with the introduction of DDT (Dichlorodiphenyltrichloroethane) as the first modern chemical insecticide. However, the effectiveness of DDT and other synthetic pesticides, together with their low cost and ease of use, have led to the generation of undesirable side effects, such as pollution of water and food sources, harm to non-target organisms and the generation of insect resistance. The alternative comes from biological control agents, which have taken an expanding share in the pesticide market over the last decades mainly promoted by the necessity to move towards more sustainable agriculture. Among such biological control agents, the bacterium Bacillus thuringiensis (Bt) and its insecticidal toxins have been the most studied and commercially used biological control agents over the last 40 years. However, some insect pests have acquired field-evolved resistance to the most commonly used Bt-based pesticides, threatening their efficacy, which necessitates the immediate search for novel strains and toxins exhibiting different modes of action and specificities in order to perpetuate the insecticidal potential of this bacterium.
Enhancing Integrated Pest Management in GM Cotton Systems Using Host Plant Resistance
Trapero, Carlos; Wilson, Iain W.; Stiller, Warwick N.; Wilson, Lewis J.
2016-01-01
Cotton has lost many ancestral defensive traits against key invertebrate pests. This is suggested by the levels of resistance to some pests found in wild cotton genotypes as well as in cultivated landraces and is a result of domestication and a long history of targeted breeding for yield and fiber quality, along with the capacity to control pests with pesticides. Genetic modification (GM) allowed integration of toxins from a bacteria into cotton to control key Lepidopteran pests. Since the mid-1990s, use of GM cotton cultivars has greatly reduced the amount of pesticides used in many cotton systems. However, pests not controlled by the GM traits have usually emerged as problems, especially the sucking bug complex. Control of this complex with pesticides often causes a reduction in beneficial invertebrate populations, allowing other secondary pests to increase rapidly and require control. Control of both sucking bug complex and secondary pests is problematic due to the cost of pesticides and/or high risk of selecting for pesticide resistance. Deployment of host plant resistance (HPR) provides an opportunity to manage these issues in GM cotton systems. Cotton cultivars resistant to the sucking bug complex and/or secondary pests would require fewer pesticide applications, reducing costs and risks to beneficial invertebrate populations and pesticide resistance. Incorporation of HPR traits into elite cotton cultivars with high yield and fiber quality offers the potential to further reduce pesticide use and increase the durability of pest management in GM cotton systems. We review the challenges that the identification and use of HPR against invertebrate pests brings to cotton breeding. We explore sources of resistance to the sucking bug complex and secondary pests, the mechanisms that control them and the approaches to incorporate these defense traits to commercial cultivars. PMID:27148323
Pest Control and Related Orchard Practices in Commercial Fruit Plantings. Circular 1151.
ERIC Educational Resources Information Center
Ries, S. M.; And Others
This circular brings together suggestions from the Illinois Agricultural Experiment Station and the Illinois State Natural History Survey relating to orchard practices and pest control. It provides some basic steps in pest control and discusses some specific orchard pests such as grasshoppers, mites, mice, and rabbits. In addition, it gives some…
Pest Control in the School Environment: Adopting Integrated Pest Management.
ERIC Educational Resources Information Center
Environmental Protection Agency, Washington, DC. Office of Pesticide Programs.
As the public becomes more aware of the health and environmental risks pesticides may pose, its interest in seeking the use of equally effective alternative pest control methods increases. School administrators and other persons who have pest control decision-making responsibilities for school buildings and grounds can use this guide to become…
Malaikozhundan, Balasubramanian; Vinodhini, Jayaraj
2018-01-01
In the present study, we reported the biological control of stored product insect pest, Callosobruchus maculatus using the entomopathogenic bacteria, Bacillus thuringiensis. A significant delay in the larval, pupal and total development period of C. maculatus was observed after treatment with B. thuringiensis at 4 × 10 8 cells/mL. Furthermore, B. thuringiensis are highly effective in the control of C. maculatus and produced 100% mortality at 4 × 10 8 cells/mL. The LC 50 value was estimated to be 3 × 10 7 cells/mL. In addition, a significant decrease in the activity of mid-gut α-amylase, cysteine protease, α & β-glucosidases, lipase, glutathione S-transferase (GST) and lactate dehydrogenase (LDH) was observed after treatment with B. thuringiensis at 4 × 10 8 cells/mL. This study concludes that B. thuringiensis are more effective against C. maculatus and could be used as a potential biological control agent in the management of stored product insect pests in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.
Campos-Herrera, Raquel; Gutiérrez, Carmen
2009-02-01
Entomopathogenic nematodes (EPNs) are one of the best non-chemical alternatives for insect pest control, with native EPN strains that are adapted to local conditions considered to be ideal candidates for regional biological control programs. Virulence screening of 17 native Mediterranean EPN strains was performed to select the most promising strain for regional insect pest control. Steinernema feltiae (Filipjev) (Rhabditida: Steinernematidae) Rioja strain produced 7%, 91% and 33% larval mortality for the insects Agriotes sordidus (Illiger) (Coleoptera: Elateridae), Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae) and Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), respectively, and was selected as the most promising strain. The S. feltiae Rioja strain-S. littoralis combination was considered the most suitable to develop the Rioja strain as a biocontrol agent for soil applications. The effect of soil texture on the virulence of the Rioja strain against S. littoralis was determined through dose-response experiments. The estimated LC(90) to kill larvae in two days was 220, 753 and 4178 IJs/cm(2) for soils with a clay content of 5%, 14% and 24%, respectively, which indicates that heavy soils produced negative effects on the virulence of the Rioja strain. The nematode dose corresponding to the LC(90) for soils with a 5% and 14% clay content reduced insect damage to Capsicum annuum Linnaeus (Solanales: Solanaceae) plants under greenhouse microcosm conditions. The results of this research suggest that an accurate characterization of new EPN strains to select the most suitable combination of insect, nematode and soil texture might provide valuable data to obtain successful biological control under different ecological scenarios in future field applications.
Human exposures to pesticides in the United States.
Langley, Ricky L; Mort, Sandra Amiss
2012-01-01
Pesticides are used in most homes, businesses, and farms to control a variety of pests, including insects, weeds, fungi, rodents, and even microbial organisms. Inappropriate use of pesticides can lead to adverse effects to humans and the environment. This study provides updated information on the magnitude of adverse pesticide exposures in the United States. Data on pesticide exposure were obtained from calls to poison control centers (PCCs) reported by the American Association of Poison Control Centers. Estimates of emergency department visits, hospitalizations, and health care costs were reported by the Agency for Healthcare Research and Quality (AHRQ), and deaths from pesticide poisonings reported by the Centers for Disease Control and Prevention (CDC) WONDER (Wide-ranging Online Data for Epidemiologic Research). An average of 23 deaths occur each year with pesticides as the underlying cause of death, most due to suicidal ingestions. An average of 130,136 calls to poison control centers were reported from 2006 to 2010, with an average of 20,116 cases (17.8%) treated in health care facilities annually. AHQR reported an annual average of 7385 emergency room visits during 2006 to 2008, and 1419 annual hospitalizations during 2005 to 2009. Excluding cost from lost work time, hospital physician fees, and pesticide-induced cancers, the annual national cost associated with pesticide exposures was estimated as nearly $200 million USD based on data from emergency department visits, hospitalizations, and for deaths. Pesticide exposures remain a significant public health issue. Health care providers, cooperative extension agents, and pesticide manufactures can help prevent exposures by increasing education of parents and workers, encourage use of less toxic agents, and encourage the practice of integrated pest management.
Bouagga, Sarra; Urbaneja, Alberto; Rambla, José L; Flors, Víctor; Granell, Antonio; Jaques, Josep A; Pérez-Hedo, Meritxell
2018-06-01
In addition to their services as predators, mirid predators are able to induce plant defences by phytophagy. However, whether this induction occurs in sweet pepper and whether it could be an additional benefit to their role as a biological control agent in this crop remain unknown. Here, these questions were investigated in two model insects, the mirids Nesidiocoris tenuis and Macrolophus pygmaeus. Plant feeding behaviour was observed in both N. tenuis and M. pygmaeus on sweet pepper and occupied 33% and 14% of total time spent on the plant, respectively. The punctures caused by mirid plant feeding induced the release of a blend of volatile organic compounds (VOCs) which repelled the herbivore pests Frankliniella occidentalis and Bemisia tabaci and attracted the whitefly parasitoid Encarsia formosa. The repellent effect on B. tabaci was observed for at least 7 days after initial exposure of the plant to N. tenuis, and attraction of E. formosa remained functional for 14 days. Plant defences induced by the feeding of mirid predators, their subsequent effects on the behaviour of both pests and natural enemies, and the persistence of these observed effects open the door to new control strategies in the sweet pepper crop. Further application of this research is discussed, such as the vaccination of plants by zoophytophagous mirids in the nursery before transplantation. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Forest Pest Control. Sale Publication 4072.
ERIC Educational Resources Information Center
Stimmann, M. W., Ed.
The forest pests discussed in this guide are weeds, insects, diseases, and vertebrates. The guide gives information about types of forests, characteristics of common forest pests, pest control methods, pesticides and application equipment used in forestry, and environmental and human hazards. (Author/BB)
ERIC Educational Resources Information Center
Grady County Board of Education, Cairo, GA.
This curriculum guide presents methods to disseminate information to students interested in dealing with pests, or who have concerns about the environmental impacts of modern pest control methods. Options are encouraged for pest control methods using a combination of natural, biological, cultural, and chemical means of control. Specifically…
Citizen's Guide to Pest Control and Pesticide Safety
Teaches consumers how to control pests, choose, use, store, and dispose pesticides safely, reduce exposure when others use pesticides, prevent pesticide poisoning, handle an emergency, and how to choose a pest control company.
Chirosurveillance: The use of native bats to detect invasive agricultural pests.
Maslo, Brooke; Valentin, Rafael; Leu, Karen; Kerwin, Kathleen; Hamilton, George C; Bevan, Amanda; Fefferman, Nina H; Fonseca, Dina M
2017-01-01
Invasive insect pests cost the agricultural industry billions of dollars annually in crop losses. Timely detection of pests is critical for management efficiency. Innovative pest detection strategies, such as environmental DNA (eDNA) techniques, combined with efficient predators, maximize sampling resolution across space and time and may improve surveillance. We tested the hypothesis that temperate insectivorous bats can be important sentinels of agricultural insect pest surveillance. Specifically, we used a new high-sensitivity molecular assay for invasive brown marmorated stink bugs (Halyomorpha halys) to examine the extent to which big brown bats (Eptesicus fuscus) detect agricultural pests in the landscape. We documented consistent seasonal predation of stink bugs by big brown bats. Importantly, bats detected brown marmorated stink bugs 3-4 weeks earlier than the current standard monitoring tool, blacklight traps, across all sites. We highlight here the previously unrecognized potential ecosystem service of bats as agents of pest surveillance (or chirosurveillance). Additional studies examining interactions between other bat and insect pest species, coupled with comparisons of detectability among various conventional monitoring methods, are needed to verify the patterns extracted from this study. Ultimately, robust economic analyses will be needed to assess the cost-effectiveness of chirosurveillance as a standard strategy for integrated pest management.
Apple orchard pest control strategies affect bird communities in southeastern France.
Bouvier, Jean-Charles; Ricci, Benoît; Agerberg, Julia; Lavigne, Claire
2011-01-01
Birds are regarded as appropriate biological indicators of how changes in agricultural practices affect the environment. They are also involved in the biocontrol of pests. In the present study, we provide an assessment of the impact of pest control strategies on bird communities in apple orchards in southeastern France. We compared the structure (abundance, species richness, and diversity) of breeding bird communities in 15 orchards under conventional or organic pest control over a three-year period (2003-2005). Pest control strategies and their evolution over time were characterized by analyzing farmers' treatment schedules. The landscape surrounding the orchards was characterized using a Geographic Information System. We observed 30 bird species overall. Bird abundance, species richness, and diversity were all affected by pest control strategies, and were highest in organic orchards and lowest in conventional orchards during the three study years. The pest control strategy affected insectivores more than granivores. We further observed a tendency for bird communities in integrated pest management orchards to change over time and become increasingly different from communities in organic orchards, which also corresponded to changes in treatment schedules. These findings indicate that within-orchard bird communities may respond quickly to changes in pesticide use and may, in turn, influence biocontrol of pests by birds. © 2010 SETAC.
Information on Pests in Schools and Their Control
Pests such as insects, rodents, fungi, and weeds can affect the school environment and the people who work and learn there. These pests can cause human health problems, and structural and plant damage. Know what pests you face before deciding on control.
Wieck, Stefanie; Olsson, Oliver; Kümmerer, Klaus
2016-09-01
The aim of this study was to investigate the role of household products as possible sources of biocidal active substances in municipal wastewater and their regulation under the Biocidal Products Regulation (EU) 528/2012. In 131 households, we investigated the prevalence of products used to control pests, washing and cleaning agents and select personal care products with high release to wastewater. Inventories of these products were established with the help of barcode scanning. All uses of biocidal active substances were evaluated regarding their assessment under the Biocidal Products Regulation. 2963 products were scanned in total, with 48% being washing and cleaning agents, 43% personal care products and 9% products used to control pests. Biocidal active substances were found in each household. These were observed primarily in washing and cleaning agents and personal care products (90%), while only a small percentage of the observations of biocidal active substances was in biocidal products. 64% of the observations of biocidal active substances were in applications that do not fall under the Biocidal Products Regulation and are thus not subject to its environmental risk assessment. This study shows clearly that risks for the environment are underestimated because unregulated emissions to wastewater occur. It demonstrates that there are gaps in the current chemical legislation that lead to a release of substances into wastewater that were not subject to environmental risk assessment under the Biocidal Products Regulation. This is one example of the limitations of scientific risk assessment of chemicals - its complexity is immense. From our point of view, the results underline the importance of a sustainable use of the substances as this is the only way to decrease yet unidentified risks. Copyright © 2016 Elsevier Ltd. All rights reserved.
Biological Warfare Agents, Toxins, Vectors and Pests as Biological Terrorism Agents
2003-07-01
number of positive answers. According to criterion, no effective prophylaxis or therapy, positive answer signifies the absence of effective ...likelihood that the agent will be used. There are not effective prophylaxis and therapy against for the bulk of enlisted agents and toxins if used as...difficult to imagine how it would be looked like mass- vaccination often maybe simultaneously against more than one disease. Toxins are effective and
Development and Evaluation of an Expert System for Diagnosing Pest Damage of Red Pine
Daniel L Schmoldt; George L. Martin
1989-01-01
An expert system for diagnosing pest damage of red pine stands in Wisconsin, PREDICT, runs on IBM or compatible microcomputers and is designed to be useful for field foresters with no advanced training in forest pathology or entomology. PREDICT recognizes 28 damaging agents including species of mammals, insects, and pathogens, as well as two types of abiotic damage....
Evaluation of Animal and Plant Pathogens as Terrorism and Warfare Agents, Vectors and Pests
2001-09-01
fever virus Bluetongue virus African horse sickness virus Nipah swine encephalitis virus Lumpy skin disease virus Camel pox virus Bacteria Bacillus...anthracis Bulkholderia (Pseudomonas) mallei Brucella spp. Mycoplasmas Contagious bovine (pleuropneum.) (M. mycoides var. mycoides type SC) (CBPP...virus Newcastle disease virus Rinderpest virus Pest des petits ruminants virus Bluetongue virus Teschen disease virus (Porcine enterovirus type 1) Rift
Nonrandom extinction patterns can modulate pest control service decline.
Karp, Daniel S; Moeller, Holly V; Frishkoff, Luke O
2013-06-01
Changes in biodiversity will mediate the consequences of agricultural intensification and expansion for ecosystem services. Regulating services, like pollination and pest control, generally decline with species loss. In nature, however, relationships between service provision and species richness are not always strong, partially because anthropogenic disturbances purge species from communities in nonrandom orders. The same traits that make for effective service providers may also confer resistance or sensitivity to anthropogenic disturbances, which may either temper or accelerate declines in service provision with species loss. We modeled a community of predators interacting with insect pest prey, and identified the contexts in which pest control provision was most sensitive to species loss. We found pest populations increased rapidly when functionally unique and dietary-generalist predators were lost first, with up to 20% lower pest control provision than random loss. In general, pest abundance increased most in the scenarios that freed more pest species from predation. Species loss also decreased the likelihood that the most effective service providers were present. In communities composed of species with identical traits, predators were equally effective service providers and, when competing predators went extinct, remaining community members assumed their functional roles. In more realistic trait-diverse communities, predators differed in pest control efficacy, and remaining predators could not fully compensate for the loss of their competitors, causing steeper declines in pest control provision with predator species loss. These results highlight diet breadth in particular as a key predictor of service provision, as it affects both the way species respond to and alter their environments. More generally, our model provides testable hypotheses for predicting how nonrandom species loss alters relationships between biodiversity and pest control provision.
The ABCs of Non-Toxic Pest Control.
ERIC Educational Resources Information Center
Cooper, Susan
1990-01-01
Although chemical-intensive pest control methods have proven reasonably effective, a growing awareness of health and environmental risks associated with pesticides has sharpened public interest in safer alternatives. An integrated pest management approach reduces risks from pests while minimizing human exposure and reducing the toxicity of applied…
Incidence of insects, diseases, and other damaging agents in Oregon forests.
Paul A. Dunham
2008-01-01
This report uses data from a network of forest inventory plots sampled at two points in time, annual aerial insect and disease surveys, and specialized pest damage surveys to quantify the incidence and impact of insects, diseases, and other damaging agents on Oregon's forests. The number and volume of trees damaged or killed by various agents is summarized....
9 CFR 416.2 - Establishment grounds and facilities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... ACT SANITATION § 416.2 Establishment grounds and facilities. (a) Grounds and pest control. The grounds... place a pest management program to prevent the harborage and breeding of pests on the grounds and within establishment facilities. Pest control substances used must be safe and effective under the conditions of use...
9 CFR 416.2 - Establishment grounds and facilities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... ACT SANITATION § 416.2 Establishment grounds and facilities. (a) Grounds and pest control. The grounds... place a pest management program to prevent the harborage and breeding of pests on the grounds and within establishment facilities. Pest control substances used must be safe and effective under the conditions of use...
9 CFR 416.2 - Establishment grounds and facilities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... ACT SANITATION § 416.2 Establishment grounds and facilities. (a) Grounds and pest control. The grounds... place a pest management program to prevent the harborage and breeding of pests on the grounds and within establishment facilities. Pest control substances used must be safe and effective under the conditions of use...
General Pest Control - Industrial. Manual 95.
ERIC Educational Resources Information Center
Missouri Univ., Columbia. Agricultural Experiment Station.
This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides in the general pest control category. The text discusses general, parasitic and miscellaneous pests such as ants, ticks, and spiders; fabric, wood-destroying, and grain pests such as beetles, termites, and…
A meta-analysis of crop pest and natural enemy response to landscape complexity.
Chaplin-Kramer, Rebecca; O'Rourke, Megan E; Blitzer, Eleanor J; Kremen, Claire
2011-09-01
Many studies in recent years have investigated the relationship between landscape complexity and pests, natural enemies and/or pest control. However, no quantitative synthesis of this literature beyond simple vote-count methods yet exists. We conducted a meta-analysis of 46 landscape-level studies, and found that natural enemies have a strong positive response to landscape complexity. Generalist enemies show consistent positive responses to landscape complexity across all scales measured, while specialist enemies respond more strongly to landscape complexity at smaller scales. Generalist enemy response to natural habitat also tends to occur at larger spatial scales than for specialist enemies, suggesting that land management strategies to enhance natural pest control should differ depending on whether the dominant enemies are generalists or specialists. The positive response of natural enemies does not necessarily translate into pest control, since pest abundances show no significant response to landscape complexity. Very few landscape-scale studies have estimated enemy impact on pest populations, however, limiting our understanding of the effects of landscape on pest control. We suggest focusing future research efforts on measuring population dynamics rather than static counts to better characterise the relationship between landscape complexity and pest control services from natural enemies. © 2011 Blackwell Publishing Ltd/CNRS.
Zhang, Wei; Swinton, Scott M
2012-04-15
By suppressing pest populations, natural enemies provide an important ecosystem service that maintains the stability of agricultural ecosystems systems and potentially mitigates producers' pest control costs. Integrating natural control services into decisions about pesticide-based control has the potential to significantly improve the economic efficiency of pesticide use, with socially desirable outcomes. Two gaps have hindered the incorporation of natural enemies into pest management decision rules: (1) insufficient knowledge of pest and predator population dynamics and (2) lack of a decision framework for the economic tradeoffs among pest control options. Using a new intra-seasonal, dynamic bioeconomic optimization model, this study assesses how predation by natural enemies contributes to profit-maximizing pest management strategies. The model is applied to the management of the invasive soybean aphid, the most significant serious insect threat to soybean production in North America. The resulting lower bound estimate of the value of natural pest control ecosystem services was estimated at $84 million for the states of Illinois, Indiana, Iowa, Michigan and Minnesota in 2005. Copyright © 2011 Elsevier Ltd. All rights reserved.
Training for Certification: Ornamental & Turf Pest Control.
ERIC Educational Resources Information Center
Mississippi State Univ., State College. Cooperative Extension Service.
This Cooperative Extension Service publication from Mississippi State University is a training guide for commercial pesticide applicators. Focusing on ornamental and turf plant pest control, this publication examines the control of plant diseases, insects, and weeds. The contents are divided into a section on ornamental pest control and one on…
Zhao, ZiHua; Shi, PeiJian; Men, XingYuan; Ouyang, Fang; Ge, Feng
2013-08-01
The relationship between crop richness and predator-prey interactions as they relate to pest-natural enemy systems is a very important topic in ecology and greatly affects biological control services. The effects of crop arrangement on predator-prey interactions have received much attention as the basis for pest population management. To explore the internal mechanisms and factors driving the relationship between crop richness and pest population management, we designed an experimental model system of a microlandscape that included 50 plots and five treatments. Each treatment had 10 repetitions in each year from 2007 to 2010. The results showed that the biomass of pests and their natural enemies increased with increasing crop biomass and decreased with decreasing crop biomass; however, the effects of plant biomass on the pest and natural enemy biomass were not significant. The relationship between adjacent trophic levels was significant (such as pests and their natural enemies or crops and pests), whereas non-adjacent trophic levels (crops and natural enemies) did not significantly interact with each other. The ratio of natural enemy/pest biomass was the highest in the areas of four crop species that had the best biological control service. Having either low or high crop species richness did not enhance the pest population management service and lead to loss of biological control. Although the resource concentration hypothesis was not well supported by our results, high crop species richness could suppress the pest population, indicating that crop species richness could enhance biological control services. These results could be applied in habitat management aimed at biological control, provide the theoretical basis for agricultural landscape design, and also suggest new methods for integrated pest management.
Dynamics of a Subterranean Trophic Cascade in Space and Time
Ram, Karthik; Gruner, Daniel S.; McLaughlin, John P.; Preisser, Evan L.; Strong, Donald R.
2008-01-01
Trophic cascades, whereby predators indirectly benefit plant biomass by reducing herbivore pressure, form the mechanistic basis for classical biological control of pest insects. Entomopathogenic nematodes (EPN) are lethal to a variety of insect hosts with soil-dwelling stages, making them promising biocontrol agents. EPN biological control programs, however, typically fail because nematodes do not establish, persist and/or recycle over multiple host generations in the field. A variety of factors such as local abiotic conditions, host quantity and quality, and rates of movement affect the probability of persistence. Here, we review results from 13 years of study on the biology and ecology of an endemic population of Heterorhabditis marelatus (Rhabditida: Heterorhabditidae) in a California coastal prairie. In a highly seasonal abiotic environment with intrinsic variation in soils, vegetation structure, and host availability, natural populations of H. marelatus persisted at high incidence at some but not all sites within our study area. Through a set of field and lab experiments, we describe mechanisms and hypotheses to understand the persistence of H. marelatus. We suggest that further ecological study of naturally occurring EPN populations can yield significant insight to improve the practice and management of biological control of soil-dwelling insect pests. PMID:19259524
Microbial Secondary Metabolite, Phlegmacin B1, as a Novel Inhibitor of Insect Chitinolytic Enzymes.
Chen, Lei; Liu, Tian; Duan, Yanwei; Lu, Xinhua; Yang, Qing
2017-05-17
Periodic chitin remodeling during insect growth and development requires a synergistic action of two glycosyl hydrolase (GH) family enzymes, GH18 chitinase and GH20 β-N-acetylhexosaminidase (Hex). Inhibiting either or both of these enzymes is a promising strategy for pest control and management. In this study, OfChi-h (a GH18 chitinase) and OfHex1 (a GH20 Hex) from Ostrinia furnacalis were used to screen a library of microbial secondary metabolites. Phlegmacin B 1 was found to be the inhibitor of both OfChi-h and OfHex1 with K i values of 5.5 μM and 26 μM, respectively. Injection and feeding experiments demonstrated that phlegmacin B 1 has insecticidal effect on O. furnacalis's larvae. Phlegmacin B 1 was predicted to bind to the active pockets of both OfChi-h and OfHex1. Phlegmacin B 1 also showed moderate inhibitory activities against other bacterial and insect GH18 enzymes. This work provides an example of exploiting microbial secondary metabolites as potential pest control and management agents.
Nussenbaum, A L; Lecuona, R E
2012-05-01
The boll weevil (Anthonomus grandis) is the main pest of cotton in the Americas. The aim of this work was to evaluate isolates of the entomopathogenic fungi Beauveria bassiana sensu lato and Metarhizium anisopliae sensu lato virulent against A. grandis. Screening was performed to evaluate the pathogenicity of 28 isolates of M. anisopliae s.l. and 66 isolates of B. bassiana s.l. against boll weevil adults. To select the isolates, LC(50) values of the most virulent isolates were calculated, and compatibility between the fungi and insecticides was studied. In addition, the effects of these isolates on the feeding behavior of the adults were evaluated. Isolates Ma 50 and Ma 20 were the most virulent against A. grandis and their LC(50) values were 1.13×10(7) and 1.20×10(7) conidia/ml, respectively. In addition, these isolates were compatible with pyrethroid insecticides, but none with endosulfan. On the other hand, infected females reduced the damage caused by feeding on the cotton squares and their weight gain. This shows that entomopathogenic fungi cause mortality in the insects, but also these fungi could influence the feeding behavior of the females. In summary, these results indicate the possibility of the use of M. anisopliae s.l. as a microbiological control agent against boll weevils. Also, this species could be included in an Integrated Pest Management program. Copyright © 2012 Elsevier Inc. All rights reserved.
Identification and Control of Common Insect Pests of Ornamental Shrubs and Trees.
ERIC Educational Resources Information Center
Gesell, Stanley G.
This agriculture extension service publication from Pennsylvania State University introduces the identification and control of common ornamental insect pests. For each of the insects or insect groups (i.e. aphids) identified in this publication, information on host plants, pest description, and damage caused by the pest is given. Also a calendar…
Peptidergic control of a fruit crop pest: the spotted-wing drosophila, Drosophila suzukii
USDA-ARS?s Scientific Manuscript database
Neuropeptides play an important role in the regulation of feeding in insects and offer potential targets for the development of new chemicals to control insect pests. A pest that has attracted much recent attention is the highly invasive Drosophila suzukii, a polyphagous pest that can cause serious...
Dutto, Moreno; Rubbiani, Maristella
2011-01-01
Pest control in urban settings is a public health issue that is often overlooked and left to the discretion of those who participate in pest control operations. In this article the authors aim to analyse and provide guidelines regarding liability in the use of pesticides and safety standards that must be adopted during pest control operations in confined areas or open spaces in urban or domestic settings.
NASA Astrophysics Data System (ADS)
Liang, Juhua; Tang, Sanyi; Cheke, Robert A.
2016-07-01
Pest resistance to pesticides is usually managed by switching between different types of pesticides. The optimal switching time, which depends on the dynamics of the pest population and on the evolution of the pesticide resistance, is critical. Here we address how the dynamic complexity of the pest population, the development of resistance and the spraying frequency of pulsed chemical control affect optimal switching strategies given different control aims. To do this, we developed novel discrete pest population growth models with both impulsive chemical control and the evolution of pesticide resistance. Strong and weak threshold conditions which guarantee the extinction of the pest population, based on the threshold values of the analytical formula for the optimal switching time, were derived. Further, we addressed switching strategies in the light of chosen economic injury levels. Moreover, the effects of the complex dynamical behaviour of the pest population on the pesticide switching times were also studied. The pesticide application period, the evolution of pesticide resistance and the dynamic complexity of the pest population may result in complex outbreak patterns, with consequent effects on the pesticide switching strategies.
Dragonflies are biocontrol agents in Wisconsin cranberry marshes
USDA-ARS?s Scientific Manuscript database
Dragonflies (Order Odonata) are abundant predators that emerge in large hatch events each summer in Wisconsin cranberry marshes. They seem to be a potential group of biocontrol agents for pest management that may be influenced by the diversity found on the marsh. In fact, our evidence shows that dra...
Cuthbertson, Andrew G. S.
2013-01-01
The sweetpotato whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) continues to be a serious threat to crops worldwide. The UK holds Protected Zone status against this pest and, as a result, B. tabaci entering on plant material is subjected to a policy of eradication. Both B and Q Bemisia biotypes are now regularly intercepted entering the UK. With increasing reports of neonicotinoid resistance in both these biotypes, it is becoming more problematic to control/eradicate. Therefore, alternative means of control are necessary. Entomopathogenic fungi (Lecanicilllium muscarium and Beauveria bassiana) offer much potential as control agents of B. tabaci within eradication programmes in the UK. PMID:26464385
ERIC Educational Resources Information Center
Schulze, Terry L.; Kriner, Ray R.
This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides in the public health pest control category. The text discusses invertebrate pests such as cockroaches, lice, fleas, and mites, vertebrate pests; and plant pests such as poison ivy and ragweed. A study guide…
The development, regulation and use of biopesticides for integrated pest management
Chandler, David; Bailey, Alastair S.; Tatchell, G. Mark; Davidson, Gill; Greaves, Justin; Grant, Wyn P.
2011-01-01
Over the past 50 years, crop protection has relied heavily on synthetic chemical pesticides, but their availability is now declining as a result of new legislation and the evolution of resistance in pest populations. Therefore, alternative pest management tactics are needed. Biopesticides are pest management agents based on living micro-organisms or natural products. They have proven potential for pest management and they are being used across the world. However, they are regulated by systems designed originally for chemical pesticides that have created market entry barriers by imposing burdensome costs on the biopesticide industry. There are also significant technical barriers to making biopesticides more effective. In the European Union, a greater emphasis on Integrated Pest Management (IPM) as part of agricultural policy may lead to innovations in the way that biopesticides are regulated. There are also new opportunities for developing biopesticides in IPM by combining ecological science with post-genomics technologies. The new biopesticide products that will result from this research will bring with them new regulatory and economic challenges that must be addressed through joint working between social and natural scientists, policy makers and industry. PMID:21624919
Training for Certification: Forest Pest Control.
ERIC Educational Resources Information Center
Parker, Robert C., Comp.
This Cooperative Extension Service publication from Mississippi State University is a training guide for commercial pesticide applicators. Focusing on forest pest control, this publication examines plant and animal pest control practices for southern tree species. Contents include: (1) identification of insects, diseases, and weed tree species;…
7 CFR 301.1 - Purpose and scope.
Code of Federal Regulations, 2011 CFR
2011-01-01
... articles, means of conveyance, plants, plant products, biological control organisms, plant pests, or... biological control organism, plant pest, or noxious weed within the United States. The only exceptions to..., plant products, biological control organisms, plant pests, or noxious weeds that are in addition to the...
7 CFR 301.1 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... articles, means of conveyance, plants, plant products, biological control organisms, plant pests, or... biological control organism, plant pest, or noxious weed within the United States. The only exceptions to..., plant products, biological control organisms, plant pests, or noxious weeds that are in addition to the...
USDA-ARS?s Scientific Manuscript database
If appropriately applied, biological control offers one of the most promising, environmentally sound, and sustainable control tactics for arthropod pests and weeds for application as part of an integrated pest management (IPM) approach. Public support for biological control as one of the preferred m...
Construction of a Hypervirulent and Specific Mycoinsecticide for Locust Control
Fang, Weiguo; Lu, Hsiao-Ling; King, Glenn F.; St. Leger, Raymond J.
2014-01-01
Locusts and grasshoppers (acridids) are among the worst pests of crops and grasslands worldwide. Metarhizium acridum, a fungal pathogen that specifically infects acridids, has been developed as a control agent but its utility is limited by slow kill time and greater expense than chemical insecticides. We found that expression of four insect specific neurotoxins improved the efficacy of M. acridum against acridids by reducing lethal dose, time to kill and food consumption. Coinoculating recombinant strains expressing AaIT1(a sodium channel blocker) and hybrid-toxin (a blocker of both potassium and calcium channels), produced synergistic effects, including an 11.5-fold reduction in LC50, 43% reduction in LT50 and a 78% reduction in food consumption. However, specificity was retained as the recombinant strains did not cause disease in non-acridids. Our results identify a repertoire of toxins with different modes of action that improve the utility of fungi as specific control agents of insects. PMID:25475694
Extension Has Key Role in "Pest" Management
ERIC Educational Resources Information Center
Bay, Ovid
1972-01-01
This article describes the Department of Agriculture's new program which provides a combination of biological and cultural pest control techniques in combination with chemicals, as well as long-range pest control research. (Author/JB)
A Framework for Identifying Selective Chemical Applications for IPM in Dryland Agriculture
Umina, Paul A.; Jenkins, Sommer; McColl, Stuart; Arthur, Aston; Hoffmann, Ary A.
2015-01-01
Shifts to Integrated Pest Management (IPM) in agriculture are assisted by the identification of chemical applications that provide effective control of pests relative to broad-spectrum pesticides but have fewer negative effects on natural enemy (beneficial) groups that assist in pest control. Here, we outline a framework for identifying such applications and apply this framework to field trials involving the crop establishment phase of Australian dryland cropping systems. Several chemicals, which are not presently available to farmers in Australia, were identified as providing moderate levels of pest control and seedling protection, with the potential to be less harmful to beneficial groups including predatory mites, predatory beetles and ants. This framework highlights the challenges involved in chemically controlling pests while maintaining non-target populations when pest species are present at damaging levels. PMID:26694469
Pessoa, R; Rossi, G D; Busoli, A C
2016-02-01
Cotton cultivars expressing Cry proteins are widely used to control lepidopteran pests. The effects of transgenic plants containing insecticidal Cry proteins on non-target species must be comprehended for a better and rational use of this technology for pest management. We investigated the influence of the Bt cotton cultivars NuOPAL and FM 975 on biological parameters of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), a non-target pest of Bt cotton cultivars and on its parasitoid Encarsia desantisi Viggiani (Hymenoptera: Aphelinidae). The experiments were conducted in a climatized room, and the non-transgenic near isolines were used for rearing whiteflies as control hosts. The effects of the Bt cotton cultivars on the period of embryonic and larval development and the percentage of adult emergence of B. tabaci were assessed. The period required for embryonic, larval, and pupal development and the percentage of emergence and longevity of E. desantisi females were determined using Bt cotton-fed and non-Bt cotton-fed B. tabaci as hosts. Both Bt cotton cultivars resulted in a decrease of approximately 20% of adult emergence of B. tabaci. Differently, an increase of approximately 10% of adult emergence of E. desantisi was observed for parasitoids that used hosts fed with both Bt cotton cultivars. However, female parasitoid longevity decreased when their hosts were fed on Bt cotton cultivars. Our data suggest that the use of Bt cotton cultivars in association with the biological control agent E. desantisi could be functional for the management of B. tabaci in Bt cotton crops.
Samish, M.; Ginsberg, H.; Glazer, I.; Bowman, A.S.; Nuttall, P.
2004-01-01
Ticks have numerous natural enemies, but only a few species have been evaluated as tick biocontrol agents (BCAs). Some laboratory results suggest that several bacteria are pathogenic to ticks, but their mode of action and their potential value as biocontrol agents remain to be determined. The most promising entomopathogenic fungi appear to be Metarhizium anisopliae and Beauveria bassiana, strains of which are already commercially available for the control of some pests. Development of effective formulations is critical for tick management. Entomopathogenic nematodes that are pathogenic to ticks can potentially control ticks, but improved formulations and selection of novel nematode strains are needed. Parasitoid wasps of the genus Ixodiphagus do not typically control ticks under natural conditions, but inundative releases show potential value. Most predators of ticks are generalists, with a limited potential for tick management (one possible exception is oxpeckers in Africa). Biological control is likely to play a substantial role in future IPM programmes for ticks because of the diversity of taxa that show high potential as tick BCAs. Considerable research is required to select appropriate strains, develop them as BCAs, establish their effectiveness, and devise production strategies to bring them to practical use.
RNA interference technology in crop protection against arthropod pests, pathogens and nematodes.
Zotti, Moises; Dos Santos, Ericmar Avila; Cagliari, Deise; Christiaens, Olivier; Taning, Clauvis Nji Tizi; Smagghe, Guy
2018-06-01
Scientists have made significant progress in understanding and unraveling several aspects of double-stranded RNA (dsRNA)-mediated gene silencing during the last two decades. Now that the RNA interference (RNAi) mechanism is well understood, it is time to consider how to apply the acquired knowledge to agriculture and crop protection. Some RNAi-based products are already available for farmers and more are expected to reach the market soon. Tailor-made dsRNA as an active ingredient for biopesticide formulations is considered a raw material that can be used for diverse purposes, from pest control and bee protection against viruses to pesticide resistance management. The RNAi mechanism works at the messenger RNA (mRNA) level, exploiting a sequence-dependent mode of action, which makes it unique in potency and selectivity compared with conventional agrochemicals. Furthermore, the use of RNAi in crop protection can be achieved by employing plant-incorporated protectants through plant transformation, but also by non-transformative strategies such as the use of formulations of sprayable RNAs as direct control agents, resistance factor repressors or developmental disruptors. In this review, RNAi is presented in an agricultural context (discussing products that have been launched on the market or will soon be available), and we go beyond the classical presentation of successful examples of RNAi in pest-insect control and comprehensively explore its potential for the control of plant pathogens, nematodes and mites, and to fight against diseases and parasites in beneficial insects. Moreover, we also discuss its use as a repressor for the management of pesticide-resistant weeds and insects. Finally, this review reports on the advances in non-transformative dsRNA delivery and the production costs of dsRNA, and discusses environmental considerations. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Zhao, Zi-Hua; Zhang, Rong; He, Da-Han; Wang, Fang; Zhang, Ting-Ting; Zhang, Zong-Shan
2009-04-01
In the risk assessment of pests, both the community structure and the environmental factors should be considered at the same time, because of their mutual effects on the outbreak of disaster pests. This paper established a comprehensive assessment system, including 2 sub-systems, 5 respects, and 14 indices. In the meanwhile, risk assessment indices and experience formula were used to analyze the risk degree of pests in Lycium barbarum fields under different managements. It was found that using risk assessment indices and experience formula could obtain similar results. In abandoned field, Aceria palida, Aphis sp., and Paratrioza sinica were the frequent disaster pests, Lema decempunctata, Neoceratitis asiatica, Jaapiella sp., and Phthorimaea sp. were the incidental disaster pests, and Psylliodes obscurofaciata and Phthorimaea sp. were general pests. In organic field, the frequent disaster pests were the same species as those in abandoned field, while P. indicus, Jaapiella sp. and Phthorimaea sp. were the incidental disaster pests. In chemical control field, A. palida, Aphis sp., P. sinica, and P. indicus were the frequent disaster pests, while Jaapiella sp. and Phthorimaea sp. were the incidental disaster pests. Optimal 5 separations most fitted the division of pest sub-communities in L. barbarum fields, which were infancy period (from March 28 to April 15), outbreak I period (from April 15 to July 18), dormancy period (from July 18 to September 8), outbreak II period (from September 8 to October 15), and recession period (after October 15). The matrix of correlation coefficient showed that the dynamics of pests in L. barbarum fields under different managements were significantly correlated with each other, suggesting that the dynamics of pest populations was similar in different L. barbarum fields, which had two population establishment stages and one exponential growth stage in every year. The optimal controlling stages were from late infancy period to early and middle outbreak I periods, and from late dormancy period to early outbreak II period, which were very critical for pest control.
Shapiro-Ilan, David I; Cottrell, Ted E; Wood, Bruce W
2011-02-01
The pecan weevil, Curculio caryae (Horn), is a key pest of pecan [Carya illinoinensis (Wangenh.) K. Koch]. Current control recommendations are based on chemical insecticide applications. Microbial control agents such as the entomopathogenic nematode, Steinernema carpocapsae (Weiser) and the fungus Beauveria bassiana (Balsamo) Vuillemin occur naturally in southeastern U.S. pecan orchards and have shown promise as alternative control agents for C. caryjae. Conceivably, the chemical and microbial agents occur simultaneously within pecan orchards or might be applied concurrently. The objective of this study was to determine the interactions between two chemical insecticides that are used in commercial C. caryae control (i.e., carbaryl and cypermethrin applied below field rates) and the microbial agents B. bassiana and S. carpocapsae. In laboratory experiments, pecan weevil larval or adult mortality was assessed after application of microbial or chemical treatments applied singly or in combination (microbial + chemical agent). The nature of interactions (antagonism, additivity, or synergy) in terms of weevil mortality was evaluated over 9 d (larvae) or 5 d (adults). Results for B. bassiana indicated synergistic activity with carbaryl and antagonism with cypermethrin in C. caryae larvae and adults. For S. carpocapsae, synergy was detected with both chemicals in C. caryae larvae, but only additive effects were detected in adult weevils. Our results indicate that the chemical-microbial combinations tested are compatible with the exception of B. bassiana and cypermethrin. In addition, combinations that exhibited synergistic interactions may provide enhanced C. caryae control in commercial field applications; thus, their potential merits further exploration.
Souza, Cleiton Martins; Davidson, Dominique; Rhee, Inmoo; Gratton, Jean-Philippe; Davis, Elaine C.; Veillette, André
2012-01-01
Protein-tyrosine phosphatase (PTP)-PEST (PTPN12) is ubiquitously expressed. It is essential for normal embryonic development and embryonic viability in mice. Herein we addressed the involvement of PTP-PEST in endothelial cell functions using a combination of genetic and biochemical approaches. By generating primary endothelial cells from an inducible PTP-PEST-deficient mouse, we found that PTP-PEST is not needed for endothelial cell differentiation and proliferation or for the control of endothelial cell permeability. Nevertheless, it is required for integrin-mediated adhesion and migration of endothelial cells. PTP-PEST-deficient endothelial cells displayed increased tyrosine phosphorylation of Cas, paxillin, and Pyk2, which were previously also implicated in integrin functions. By eliminating PTP-PEST in endothelial cells in vivo, we obtained evidence that expression of PTP-PEST in endothelial cells is required for normal vascular development and embryonic viability. Therefore, PTP-PEST is a key regulator of integrin-mediated functions in endothelial cells seemingly through its capacity to control Cas, paxillin, and Pyk2. This function explains at least in part the essential role of PTP-PEST in embryonic development and viability. PMID:23105101
Safe, Effective Use of Pesticides, A Manual for Commercial Applicators: Vegetable Pests.
ERIC Educational Resources Information Center
Cress, D.; And Others
This manual is intended to assist pesticide applicators in vegetable crops prepare for certification under the Michigan Pesticide Control Act of 1976. The primary focus of this publication is on vegetable pest control. The three sections presented describe: (1) Insect pests of vegetable crops; (2) Weed pests of vegetable crops; and (3) Causes of…
Control of Vertebrate Pests of Forest Trees, Ornamentals, and Turf. Revised Copy.
ERIC Educational Resources Information Center
Wingard, Robert G.; Studholme, Clinton R.
This agriculture extension service publication from Pennsylvania State University discusses the control of vertebrate pests of urban and suburban ornamentals and turf. Specific pests described are blackbirds, chipmunks, moles, rabbits, and European starlings. Identification, habits, economic importance, and control methods ranging from poisoning…
Memari, Zahra; Karimi, Javad; Kamali, Shokoofeh; Goldansaz, Seyed Hossein; Hosseini, Mojtaba
2016-01-01
The carob moth (Ectomyelois ceratoniae) is the key pest of pomegranate, which causes a significant percentage of losses in pomegranate orchards and warehouses of Iran annually. The pest larvae are characterized by displaying a cryptic behavior within the fruit, which avoids most routine control techniques, especially chemical method. The low efficiency of traditional measurements and also the rich species diversity of natural enemies within the infested fruits highlight the necessity of exploring effective control methods, especially environmental friendly approaches. Entomopathogenic nematodes (EPNs) are a group of biological control agents that actively search for the host, including those in a cryptic habitat like the carob moth larvae within infested fruits. Here, we assumed that treatment of the infested and dropped fruits with EPNs may provide new insight into the management of the carob moth. Three species of EPNs, Steinernema feltiae, S. carpocapsae, and Heterorhabditis bacteriophora were selected and used in a series of in vitro and in vivo experiments. In preliminary assays, the EPNs species were used with different concentrations of infective juveniles (IJs) (0, 1, 5, 10, 25, and 50 IJ/larvae) in 2-cm diam. plates. The mortality rates of the laboratory tests were 79.75% and 76.5% for S. feltiae and S. carpocapsae, corresponded to LC50 value of 2.02 IJ/larva for S. feltiae and 2.05 IJ/larva for S. carpocapsae. On the contrary, H. bacteriophora demonstrated low virulence on the pest larvae in petri tests with a LC50 = 426.92 IJ/larva. Hence, both Steinernema species were selected for subsequent experiments. The penetration rate for S. feltiae and S. carpocapsae into the hemocoel of the pest was 43% and 31%, respectively, and the corresponding reproduction rate was 15,452 IJ/larva for S. feltiae and 18,456 IJ/larva for S. carpocapsae. The gathered data from those in vitro tests were used for a field assay. Different concentrations (5, 10, 50, 100, and 160 IJ/cm2 of the arena) of S. feltiae and S. carpocapsae were applied in the field test. The mean mortality results from the last test were 10.89% and 26.65% for S. feltiae and S. carpocapsae, respectively. Finally, we found that these low virulence rates of the nematodes were attributed to inhibitory/repellency effects of saprophytic fungi within the infested pomegranates, a usual status of the infested fruits in autumn or winter seasons. Future work on additional EPN populations more adapted to the extreme conditions of the pomegranate production area in Iran may provide sufficient evidence to continue the further investigation on the best EPN species populations and advanced formulations with high durability. PMID:28154432
Guan, Yi; Wang, Ding-Yi; Ying, Sheng-Hua; Feng, Ming-Guang
2016-08-01
Miro homologues are small mitochondrial Rho GTPases belonging to the Ras superfamily across organisms and are generally unexplored in filamentous fungi. Here we identified a Miro orthologue (bMiro) in Beauveria bassiana, a filamentous fungal insect pathogen as a classic biological control agent of insect pests. This orthologue was proven to anchor on mitochondrial outer membrane in a manner depending completely upon a short C-terminal transmembrane domain. As a result of bmiro deletion, mitochondria in hyphal cells were largely aggregated, and their mass and mobility were reduced, accompanied with a remarkable decrease in ATP content but little change in mitochondrial morphology. The deletion mutant became 42%, 37%, 19% and 10% more tolerant to Ca(2+), Mn(2+), Zn(2+) and Mg(2+) than wild-type, respectively, during cultivation in a minimal medium under normal conditions. The deletion mutant also showed mild defects in conidial germination, vegetative growth, thermotolerance, UV-B resistance and virulence despite null response to oxidative and osmotic stresses. All these phenotypic changes were restored by targeted gene complementation. Our results indicate that bMiro can control mitochondrial distribution and movement required for the transport of ATP-form energy and metal ions and contributes significantly to the fungal potential against insect pests through the control. Copyright © 2016 Elsevier Inc. All rights reserved.
Fungal Endophytes: Beyond Herbivore Management
Bamisile, Bamisope S.; Dash, Chandra K.; Akutse, Komivi S.; Keppanan, Ravindran; Wang, Liande
2018-01-01
The incorporation of entomopathogenic fungi as biocontrol agents into Integrated Pest Management (IPM) programs without doubt, has been highly effective. The ability of these fungal pathogens such as Beauveria bassiana and Metarhizium anisopliae to exist as endophytes in plants and protect their colonized host plants against the primary herbivore pests has widely been reported. Aside this sole role of pest management that has been traditionally ascribed to fungal endophytes, recent findings provided evidence of other possible functions as plant yield promoter, soil nutrient distributor, abiotic stress and drought tolerance enhancer in plants. However, reports on these additional important effects of fungal endophytes on the colonized plants remain scanty. In this review, we discussed the various beneficial effects of endophytic fungi on the host plants and their primary herbivore pests; as well as some negative effects that are relatively unknown. We also highlighted the prospects of our findings in further increasing the acceptance of fungal endophytes as an integral part of pest management programs for optimized crop production. PMID:29628919
[A New Pest of Amomum villosum in Xishuangbanna].
Peng, Jian-min; Wang, Yan-fang; Zhang, Li-xia; Li, Rong-ying; Ma, Xiao-jun
2015-11-01
To report a new pest of Amomum villosum and its distribution, occurrence regularity and damage situation, in order to provide reference for its control. Reared the pest larvae, observed the morphological characters, and made a preliminary investigation on its distribution, occurrence regularity and damage situation. Through macroscopic examination, the pest was identified as Anisodera rugulosa, which distributed in the main producing areas of Amomum villosum in Xishuangbanna, the pest larvae ate the inside of Amomum villosum fruit, which made the fruit formed holes, more seriously, it made the whole fruit rot black. The pest causes the fruit yield reduction of Amomum villosum. Pest control work needs to be carry out as soon as possible.
ERIC Educational Resources Information Center
Extension Service (USDA), Washington, DC.
This manual is intended to assist pesticide applicators in the area of ornamental and turf pest control prepare for certification under the Michigan Pesticide Control Act of 1976. The three sections presented describe: (1) Ornamentals; (2) Turfgrass; and (3) Pest Control. Section one discusses the diagnostic chart for plant problems, non-pest…
Training for Certification: Demonstration & Research Pest Control.
ERIC Educational Resources Information Center
Mississippi State Univ., State College. Cooperative Extension Service.
This Cooperative Extension Service publication from Mississippi State University is a training guide for commercial pesticide applicators. Focusing on agricultural pest control, this publication includes a full range of topics from uses of pesticides for agricultural animal pest control to the toxicity of common pesticides to fish and bees.…
7 CFR 623.13 - Wetlands reserve plan of operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... program, including, but not limited to: (i) measures to control noxious weeds and insect pests in order to comply with applicable Federal, or State noxious weed and pest control laws; and (ii) measures to control other specified species of weeds, insects or pests; (3) Specify compatible land uses for personal...
7 CFR 623.13 - Wetlands reserve plan of operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... program, including, but not limited to: (i) Measures to control noxious weeds and insect pests in order to comply with applicable Federal, or State noxious weed and pest control laws; and (ii) Measures to control other specified species of weeds, insects or pests; (3) Specify compatible land uses for personal...
7 CFR 623.13 - Wetlands reserve plan of operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... program, including, but not limited to: (i) measures to control noxious weeds and insect pests in order to comply with applicable Federal, or State noxious weed and pest control laws; and (ii) measures to control other specified species of weeds, insects or pests; (3) Specify compatible land uses for personal...
Apply Pesticides Correctly, A Guide for Commercial Applicators: Aquatic Pest Control.
ERIC Educational Resources Information Center
Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.
This guide presents information needed to meet the requirements for pesticide applicator certification. The first part deals with recognition and control of aquatic pests such as aquatic weeds, fish and other vertebrates. Environmental concerns in aquatic pest control are discussed in the second section. (CS)
Code of Federal Regulations, 2013 CFR
2013-07-01
... pest control program at all civil works projects. It also presents guidance for the preparation and submission of an annual pest control summary report. ... Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE PEST...
Code of Federal Regulations, 2010 CFR
2010-07-01
... pest control program at all civil works projects. It also presents guidance for the preparation and submission of an annual pest control summary report. ... Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE PEST...
Code of Federal Regulations, 2012 CFR
2012-07-01
... pest control program at all civil works projects. It also presents guidance for the preparation and submission of an annual pest control summary report. ... Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE PEST...
Code of Federal Regulations, 2011 CFR
2011-07-01
... pest control program at all civil works projects. It also presents guidance for the preparation and submission of an annual pest control summary report. ... Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE PEST...
Code of Federal Regulations, 2014 CFR
2014-07-01
... pest control program at all civil works projects. It also presents guidance for the preparation and submission of an annual pest control summary report. ... Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE PEST...
Pest and Disease Management: Why We Shouldn't Go against the Grain
Skelsey, Peter; With, Kimberly A.; Garrett, Karen A.
2013-01-01
Given the wide range of scales and mechanisms by which pest or disease agents disperse, it is unclear whether there might exist a general relationship between scale of host heterogeneity and spatial spread that could be exploited by available management options. In this model-based study, we investigate the interaction between host distributions and the spread of pests and diseases using an array of models that encompass the dispersal and spread of a diverse range of economically important species: a major insect pest of coniferous forests in western North America, the mountain pine beetle (Dendroctonus ponderosae); the bacterium Pseudomonas syringae, one of the most-widespread and best-studied bacterial plant pathogens; the mosquito Culex erraticus, an important vector for many human and animal pathogens, including West Nile Virus; and the oomycete Phytophthora infestans, the causal agent of potato late blight. Our model results reveal an interesting general phenomenon: a unimodal (‘humpbacked’) relationship in the magnitude of infestation (an index of dispersal or population spread) with increasing grain size (i.e., the finest scale of patchiness) in the host distribution. Pest and disease management strategies targeting different aspects of host pattern (e.g., abundance, aggregation, isolation, quality) modified the shape of this relationship, but not the general unimodal form. This is a previously unreported effect that provides insight into the spatial scale at which management interventions are most likely to be successful, which, notably, do not always match the scale corresponding to maximum infestation. Our findings could provide a new basis for explaining historical outbreak events, and have implications for biosecurity and public health preparedness. PMID:24098739
Pest and disease management: why we shouldn't go against the grain.
Skelsey, Peter; With, Kimberly A; Garrett, Karen A
2013-01-01
Given the wide range of scales and mechanisms by which pest or disease agents disperse, it is unclear whether there might exist a general relationship between scale of host heterogeneity and spatial spread that could be exploited by available management options. In this model-based study, we investigate the interaction between host distributions and the spread of pests and diseases using an array of models that encompass the dispersal and spread of a diverse range of economically important species: a major insect pest of coniferous forests in western North America, the mountain pine beetle (Dendroctonus ponderosae); the bacterium Pseudomonas syringae, one of the most-widespread and best-studied bacterial plant pathogens; the mosquito Culex erraticus, an important vector for many human and animal pathogens, including West Nile Virus; and the oomycete Phytophthora infestans, the causal agent of potato late blight. Our model results reveal an interesting general phenomenon: a unimodal ('humpbacked') relationship in the magnitude of infestation (an index of dispersal or population spread) with increasing grain size (i.e., the finest scale of patchiness) in the host distribution. Pest and disease management strategies targeting different aspects of host pattern (e.g., abundance, aggregation, isolation, quality) modified the shape of this relationship, but not the general unimodal form. This is a previously unreported effect that provides insight into the spatial scale at which management interventions are most likely to be successful, which, notably, do not always match the scale corresponding to maximum infestation. Our findings could provide a new basis for explaining historical outbreak events, and have implications for biosecurity and public health preparedness.
A Guide to Major Insects, Diseases, Air Pollution, Injury, and Chemical Injury of Sycamore
J.D. Solomon; A. Dan Wilson; N.M. Schiff
1999-01-01
This booklet will help nurserymen, forest woodland managers, pest control operators, and homeowners to identify and control pest problems on sycamore trees. The major insect and disease pests of sycamores in the Eastern United Stats are emphasized. Descriptions and illustrations of the pests and the damage they cause are provided to aid in identification. Brief notes...
Jandricic, S E; Filotas, M; Sanderson, J P; Wraight, S P
2014-05-01
Seeking new isolates of entomopathogenic fungi with greater virulence against greenhouse aphid pests than those currently registered in North America for control of these insects, single-dose screening assays of 44 selected fungal isolates and 4 commercially available strains were conducted against first-instar nymphs of Myzus persicae and Aphis gossypii. The assays identified a number of Beauveria and Metarhizium isolates with virulence equal to or greater than that of the commercial strains against the nymphal aphids, but none exhibited exceptionally high virulence. Virulence of Isaria isolates was unexpectedly low (<31% mortality at doses>1000conidia/mm(2)). In dose-response assays, Beauveria ARSEF 5493 proved most virulent against M. persicae and A. gossypii; however, LC50s of this isolate did not differ significantly from those of B. bassiana commercial strain JW-1. Dose-response assays were also conducted with Aulacorthum solani, the first reported evaluations of Beauveria and Metarhizium against this pest. The novel isolate Metarhizium 5471 showed virulence⩾that of Beauveria 5493 in terms of LC25 and LC50, but 5493 produced a steeper dose response (slope). Additional tests showed that adult aphids are more susceptible than nymphs to fungal infection but confirmed that infection has a limited pre-mortem effect on aphid reproduction. Effects of assay techniques and the potential of fungal pathogens as aphid-control agents are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.
Controlling Household Pests. Home and Garden Bulletin No. 96.
ERIC Educational Resources Information Center
Department of Agriculture, Washington, DC.
Reviewed are good housekeeping practices for eliminating and preventing the return of common household pests. Each category of pest is described individually including a description of their habits, the damage they do, and approved methods of control. (SL)
Tang, Sanyi; Tang, Guangyao; Cheke, Robert A
2010-05-21
Many factors including pest natural enemy ratios, starting densities, timings of natural enemy releases, dosages and timings of insecticide applications and instantaneous killing rates of pesticides on both pests and natural enemies can affect the success of IPM control programmes. To address how such factors influence successful pest control, hybrid impulsive pest-natural enemy models with different frequencies of pesticide sprays and natural enemy releases were proposed and analyzed. With releasing both more or less frequent than the sprays, a stability threshold condition for a pest eradication periodic solution is provided. Moreover, the effects of times of spraying pesticides (or releasing natural enemies) and control tactics on the threshold condition were investigated with regard to the extent of depression or resurgence resulting from pulses of pesticide applications. Multiple attractors from which the pest population oscillates with different amplitudes can coexist for a wide range of parameters and the switch-like transitions among these attractors showed that varying dosages and frequencies of insecticide applications and the numbers of natural enemies released are crucial. To see how the pesticide applications could be reduced, we developed a model involving periodic releases of natural enemies with chemical control applied only when the densities of the pest reached the given Economic Threshold. The results indicate that the pest outbreak period or frequency largely depends on the initial densities and the control tactics. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Yang, Chunxiao; Pan, Huipeng; Noland, Jeffrey Edward; Zhang, Deyong; Zhang, Zhanhong; Liu, Yong; Zhou, Xuguo
2015-12-10
Reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) is a reliable technique for quantifying gene expression across various biological processes, of which requires a set of suited reference genes to normalize the expression data. Coleomegilla maculata (Coleoptera: Coccinellidae), is one of the most extensively used biological control agents in the field to manage arthropod pest species. In this study, expression profiles of 16 housekeeping genes selected from C. maculata were cloned and investigated. The performance of these candidates as endogenous controls under specific experimental conditions was evaluated by dedicated algorithms, including geNorm, Normfinder, BestKeeper, and ΔCt method. In addition, RefFinder, a comprehensive platform integrating all the above-mentioned algorithms, ranked the overall stability of these candidate genes. As a result, various sets of suitable reference genes were recommended specifically for experiments involving different tissues, developmental stages, sex, and C. maculate larvae treated with dietary double stranded RNA. This study represents the critical first step to establish a standardized RT-qPCR protocol for the functional genomics research in a ladybeetle C. maculate. Furthermore, it lays the foundation for conducting ecological risk assessment of RNAi-based gene silencing biotechnologies on non-target organisms; in this case, a key predatory biological control agent.
Hoddle, Mark S.; Warner, Keith; Steggall, John; Jetter, Karen M.
2014-01-01
Advances in scientific disciplines that support classical biological control have provided “new tools” that could have important applications for biocontrol programs for some long-established invasive arthropod pests. We suggest that these previously unavailable tools should be used in biological control programs targeting “legacy pests”, even if they have been targets of previously unsuccessful biocontrol projects. Examples of “new tools” include molecular analyses to verify species identities and likely geographic area of origin, climate matching and ecological niche modeling, preservation of natural enemy genetic diversity in quarantine, the use of theory from invasion biology to maximize establishment likelihoods for natural enemies, and improved understanding of the interactions between natural enemy and target pest microbiomes. This review suggests that opportunities exist for revisiting old pest problems and funding research programs using “new tools” for developing biological control programs for “legacy pests” could provide permanent suppression of some seemingly intractable pest problems. As a case study, we use citricola scale, Coccus pseudomagnoliarum, an invasive legacy pest of California citrus, to demonstrate the potential of new tools to support a new classical biological control program targeting this insect. PMID:26463063
50 CFR 35.7 - Control of wildfires, insects, pest plants, and disease.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., and disease. 35.7 Section 35.7 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE... MANAGEMENT General Rules § 35.7 Control of wildfires, insects, pest plants, and disease. To the extent necessary, the Director shall prescribe measures to control wildfires, insects, pest plants, and disease to...
50 CFR 35.7 - Control of wildfires, insects, pest plants, and disease.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., and disease. 35.7 Section 35.7 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE... MANAGEMENT General Rules § 35.7 Control of wildfires, insects, pest plants, and disease. To the extent necessary, the Director shall prescribe measures to control wildfires, insects, pest plants, and disease to...
50 CFR 35.7 - Control of wildfires, insects, pest plants, and disease.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., and disease. 35.7 Section 35.7 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE... MANAGEMENT General Rules § 35.7 Control of wildfires, insects, pest plants, and disease. To the extent necessary, the Director shall prescribe measures to control wildfires, insects, pest plants, and disease to...
50 CFR 35.7 - Control of wildfires, insects, pest plants, and disease.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., and disease. 35.7 Section 35.7 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE... MANAGEMENT General Rules § 35.7 Control of wildfires, insects, pest plants, and disease. To the extent necessary, the Director shall prescribe measures to control wildfires, insects, pest plants, and disease to...
50 CFR 35.7 - Control of wildfires, insects, pest plants, and disease.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., and disease. 35.7 Section 35.7 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE... MANAGEMENT General Rules § 35.7 Control of wildfires, insects, pest plants, and disease. To the extent necessary, the Director shall prescribe measures to control wildfires, insects, pest plants, and disease to...
33 CFR 274.6 - Division/district pest control programs.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., DEPARTMENT OF DEFENSE PEST CONTROL PROGRAM FOR CIVIL WORKS PROJECTS Project Operation § 274.6 Division... from time to time, will be used as guides in selecting the type of chemicals and the method of application in the control of vegetation and pests at civil works projects. (b) Responsibilities and reports...
Transport and fate of methyl iodide a its pest control in soils
USDA-ARS?s Scientific Manuscript database
For fumigants, information on transport and fate, as well as pest control, is needed to develop management practices with the fewest human and environmental health risks while offering sufficient pest control efficacy. For this purpose, a 2-D soil chamber (60 cm wide, 60 cm long, and 6 cm thick) wit...
Ibarra-Cortés, K H; Guzmán-Franco, A W; González-Hernández, H; Ortega-Arenas, L D; Villanueva-Jiménez, J A; Robles-Bermúdez, A
2018-02-01
Diaphorina citri (Kuwayama) is a global pest of citrus that transmits the bacteria associated with the disease, Huanglongbing. Entomopathogenic fungi and the parasitoid Tamarixia radiata (Waterston) are important biological control agents of this pest and likely to interact in D. citri populations. As a basis for interaction studies, we determined the susceptibility of nymphs and adults of D. citri and adults of the parasitoid T. radiata to six fungal isolates from the species Beauveria bassiana s.l. (Bals.-Criv.) Vuill. (isolates B1 and B3), Metarhizium anisopliae s.s. (Metsch.) (Ma129 and Ma65) and Isaria fumosorosea Wize (I2 and Pae). We conducted experiments evaluating infection levels in all three insect groups following inoculation with a series of conidial concentrations (1 × 10 4 -1 × 10 8 conidia mL -1 ). Results showed that D. citri nymphs and T. radiata were more susceptible to fungal isolates than D. citri adults. Overall, B. bassiana and M. anisopliae isolates caused the greatest infection compared with I. fumosorosea isolates in all three groups of insects. Isolates B1 (B. bassiana) and Ma129 (M. anisopliae) infected a greater proportion of adults and nymphs of D. citri, respectively. Both isolates of B. bassiana caused greater infection in T. radiata compared with isolates of the other fungal species. We propose that isolates B1 and Ma129 are the strongest candidates for control of D. citri. Our results represent the first report of entomopathogenic fungi infecting T. radiata, and the basis for future studies to design a biological control programme that uses both agents more efficiently against D. citri populations.
Fahmy, M A; Abdalla, E F
1998-01-01
The two pest control agents, buprofezin and petroleum oil (Super Royal), were tested to evaluate their potential mutagenicity, in comparison with the organophosphorus insecticide profenofos. Chromosomal aberration analysis was used in both somatic and germ cells of male mice. Single oral treatment at three different dose levels (1/16, 1/8 and 1/4 LD50) for each insecticide induced an increase in the percentage of chromosomal aberrations in bone-marrow cells 24 h post-treatment, indicating a dose-dependent relationship. The percentage of chromosomal aberrations reached 23 +/- 0.73, 10.5 +/- 0.64 and 15 +/- 1.4 after treatment with the highest tested dose of profenofos, buprofezin and Super Royal, respectively. Such percentages did not exceed the corresponding value of the positive control, mitomycin C (29.2 +/- 0.69). The percentage of chromosomal aberrations induced by the different doses of profenofos was still highly significant even after excluding gaps. The same trend of results was noticed only at the highest tested dose of buprofezin and Super Royal. With respect to germ cells, profenofos is also a potent inducer of chromosomal aberrations in 1ry spermatocytes, giving percentages of 14 +/- 1.3 and 19 +/- 1.6 at the two higher doses of 4.25 and 8.5 mg kg(-1) body wt., respectively. Buprofezin and Super Royal had no significant effect on mouse spermatocytes at the tested concentrations. The various types of induced aberrations were examined and recorded in both somatic and germ cells. In conclusion, the present investigation indicates that the two pest control agents buprofezin and Super Royal are relatively much safer compounds than the conventional organophosphorus insecticides.
NASA Astrophysics Data System (ADS)
Petrovskii, Sergei; Petrovskaya, Natalia; Bearup, Daniel
2014-09-01
Pest insects pose a significant threat to food production worldwide resulting in annual losses worth hundreds of billions of dollars. Pest control attempts to prevent pest outbreaks that could otherwise destroy a sward. It is good practice in integrated pest management to recommend control actions (usually pesticides application) only when the pest density exceeds a certain threshold. Accurate estimation of pest population density in ecosystems, especially in agro-ecosystems, is therefore very important, and this is the overall goal of the pest insect monitoring. However, this is a complex and challenging task; providing accurate information about pest abundance is hardly possible without taking into account the complexity of ecosystems' dynamics, in particular, the existence of multiple scales. In the case of pest insects, monitoring has three different spatial scales, each of them having their own scale-specific goal and their own approaches to data collection and interpretation. In this paper, we review recent progress in mathematical models and methods applied at each of these scales and show how it helps to improve the accuracy and robustness of pest population density estimation.
Williams, Wyatt I.; Friedman, Jonathan M.; Gaskin, John F.; Norton, Andrew P.
2014-01-01
Evolution has contributed to the successful invasion of exotic plant species in their introduced ranges, but how evolution affects particular control strategies is still under evaluation. For instance, classical biological control, a common strategy involving the utilization of highly specific natural enemies to control exotic pests, may be negatively affected by host hybridization because of shifts in plant traits, such as root allocation or chemical constituents. We investigated introgression between two parent species of the invasive shrub tamarisk (Tamarix spp.) in the western United States, and how differences in plant traits affect interactions with a biological control agent. Introgression varied strongly with latitude of origin and was highly correlated with plant performance. Increased levels of T. ramosissima introgression resulted in both higher investment in roots and tolerance to defoliation and less resistance to insect attack. Because tamarisk hybridization occurs predictably on the western U.S. landscape, managers may be able to exploit this information to maximize control efforts. Genetic differentiation in plant traits in this system underpins the importance of plant hybridization and may explain why some biological control releases are more successful than others.
Weinberg, Justine Lew; Bunin, Lisa J; Das, Rupali
2009-01-01
In 2005, the California Department of Public Health, Occupational Health Branch (OHB) investigated an incident of pesticide exposure and identified 27 vineyard workers who became ill due to drift of cyfluthrin, a pesticide being applied to a neighboring orange field to control katydids. Another pest, citrus thrips, was also present in the field. We investigated safer alternatives for katydid and thrips control to prevent illness due to pesticide exposure and used the industrial hygiene hierarchy of controls to prioritize the control methods. OHB evaluated factors that contributed to pesticide exposure and identified safer alternatives by conducting literature reviews on katydid and thrips control, drift prevention technology, and other relevant topics, and by interviewing integrated pest management advisors, conventional and organic growers, equipment manufacturers, county agricultural commissioners, pest control advisors, regulatory agencies, and others. We prioritized methods using the industrial hygiene hierarchy of controls. We identified safer pest control practices that incorporated hazard elimination, chemical substitution, engineering controls, and administrative controls, including employer policies and government regulations.
Chidawanyika, Frank; Mudavanhu, Pride; Nyamukondiwa, Casper
2012-11-09
The current changes in global climatic regimes present a significant societal challenge, affecting in all likelihood insect physiology, biochemistry, biogeography and population dynamics. With the increasing resistance of many insect pest species to chemical insecticides and an increasing organic food market, pest control strategies are slowly shifting towards more sustainable, ecologically sound and economically viable options. Biologically based pest management strategies present such opportunities through predation or parasitism of pests and plant direct or indirect defense mechanisms that can all be important components of sustainable integrated pest management programs. Inevitably, the efficacy of biological control systems is highly dependent on natural enemy-prey interactions, which will likely be modified by changing climates. Therefore, knowledge of how insect pests and their natural enemies respond to climate variation is of fundamental importance in understanding biological insect pest management under global climate change. Here, we discuss biological control, its challenges under climate change scenarios and how increased global temperatures will require adaptive management strategies to cope with changing status of insects and their natural enemies.
Tsetse flies: their biology and control using area-wide integrated pest management approaches.
Vreysen, Marc J B; Seck, Momar Talla; Sall, Baba; Bouyer, Jérémy
2013-03-01
Tsetse flies are the cyclical vectors of trypanosomes, the causative agents of 'sleeping sickness' or human African trypanosomosis (HAT) in humans and 'nagana' or African animal trypanosomosis (AAT) in livestock in Sub-saharan Africa. Many consider HAT as one of the major neglected tropical diseases and AAT as the single greatest health constraint to increased livestock production. This review provides some background information on the taxonomy of tsetse flies, their unique way of reproduction (adenotrophic viviparity) making the adult stage the only one easily accessible for control, and how their ecological affinities, their distribution and population dynamics influence and dictate control efforts. The paper likewise reviews four control tactics (sequential aerosol technique, stationary attractive devices, live bait technique and the sterile insect technique) that are currently accepted as friendly to the environment, and describes their limitations and advantages and how they can best be put to practise in an IPM context. The paper discusses the different strategies for tsetse control i.e. localised versus area-wide and focusses thereafter on the principles of area-wide integrated pest management (AW-IPM) and the phased-conditional approach with the tsetse project in Senegal as a recent example. We argue that sustainable tsetse-free zones can be created on Africa mainland provided certain managerial and technical prerequisites are in place. Copyright © 2012 International Atomic Energy Agency. Published by Elsevier Inc. All rights reserved.
Wiederholt, Ruscena; Bagstad, Kenneth J.; McCracken, Gary F.; Diffendorfer, Jay E.; Loomis, John B.; Semmens, Darius J.; Russell, Amy L.; Sansone, Chris; LaSharr, Kelsie; Cryan, Paul; Reynoso, Claudia; Medellin, Rodrigo A.; Lopez-Hoffman, Laura
2017-01-01
Given rapid changes in agricultural practice, it is critical to understand how alterations in ecological, technological, and economic conditions over time and space impact ecosystem services in agroecosystems. Here, we present a benefit transfer approach to quantify cotton pest-control services provided by a generalist predator, the Mexican free-tailed bat (Tadarida brasiliensis mexicana), in the southwestern United States. We show that pest-control estimates derived using (1) a compound spatial–temporal model – which incorporates spatial and temporal variability in crop pest-control service values – are likely to exhibit less error than those derived using (2) a simple-spatial model (i.e., a model that extrapolates values derived for one area directly, without adjustment, to other areas) or (3) a simple-temporal model (i.e., a model that extrapolates data from a few points in time over longer time periods). Using our compound spatial–temporal approach, the annualized pest-control value was \\$12.2 million, in contrast to an estimate of \\$70.1 million (5.7 times greater), obtained from the simple-spatial approach. Using estimates from one year (simple-temporal approach) revealed large value differences (0.4 times smaller to 2 times greater). Finally, we present a detailed protocol for valuing pest-control services, which can be used to develop robust pest-control transfer functions for generalist predators in agroecosystems.
In-Field Habitat Management to Optimize Pest Control of Novel Soil Communities in Agroecosystems
Pearsons, Kirsten A.
2017-01-01
The challenge of managing agroecosystems on a landscape scale and the novel structure of soil communities in agroecosystems both provide reason to focus on in-field management practices, including cover crop adoption, reduced tillage, and judicial pesticide use, to promote soil community diversity. Belowground and epigeal arthropods, especially exotic generalist predators, play a significant role in controlling insect pests, weeds, and pathogens in agroecosystems. However, the preventative pest management tactics that dominate field-crop production in the United States do not promote biological control. In this review, we argue that by reducing disturbance, mitigating the effects of necessary field activities, and controlling pests within an Integrated Pest Management framework, farmers can facilitate the diversity and activity of native and exotic arthropod predators. PMID:28783074
In-Field Habitat Management to Optimize Pest Control of Novel Soil Communities in Agroecosystems.
Pearsons, Kirsten A; Tooker, John F
2017-08-05
The challenge of managing agroecosystems on a landscape scale and the novel structure of soil communities in agroecosystems both provide reason to focus on in-field management practices, including cover crop adoption, reduced tillage, and judicial pesticide use, to promote soil community diversity. Belowground and epigeal arthropods, especially exotic generalist predators, play a significant role in controlling insect pests, weeds, and pathogens in agroecosystems. However, the preventative pest management tactics that dominate field-crop production in the United States do not promote biological control. In this review, we argue that by reducing disturbance, mitigating the effects of necessary field activities, and controlling pests within an Integrated Pest Management framework, farmers can facilitate the diversity and activity of native and exotic arthropod predators.
1978 Insect Pest Management Guide: Field and Forage Crops. Circular 899.
ERIC Educational Resources Information Center
Illinois Univ., Urbana. Cooperative Extension Service.
This circular lists suggested uses of insecticides for the control of field crop pests. Suggestions are given for selection, dosage and application of insecticides to control pests in field corn, alfalfa and clover, small grains, soybeans and grain sorghum. (CS)
Termite Pest Control - Industrial. Manual 96.
ERIC Educational Resources Information Center
Missouri Univ., Columbia. Agricultural Experiment Station.
This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides in the termite pest control category. The text discusses general pests, especially ants, and wood-destroying organisms such as termites, beetles, and fungi. (CS)
Public Health Pest Control Category Manual.
ERIC Educational Resources Information Center
Bowman, James S.; Turmel, Jon P.
This manual provides information needed to meet the standards for pesticide applicator certification. It presents pest control guidelines for those organisms of public health significance. Fact sheets with line drawings discuss pests such as cockroaches, bedbugs, lice, ants, beetles, bats, birds, and rodents. (CS)
Behavior-based control of insect crop pests
USDA-ARS?s Scientific Manuscript database
Manipulation of insect behaviour can provide the foundation for effective strategies for control of insect crop pests. A detailed understanding of life cycles and the behavioural repertoires of insect pests is essential for development of this approach. A variety of strategies have been developed ...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-27
... application of the pesticide is made directly to waters of the United States to control pests that are present in the water, and when the application of the pesticide is made to control pests that are over... irrigation ditches requiring pest control. 113110 Timber Tract The operation of Operations. timber tracts for...
Safe, Effective Use of Pesticides, A Manual for Commercial Applicators: Fruit Pest Control.
ERIC Educational Resources Information Center
Brunner, J.; And Others
This manual is intended to assist pesticide applicators prepare for certification under the Michigan Pesticide Control Act of 1976. The primary focus of this publication is on fruit pest control. Sections included are: (1) Causes of fruit diseases; (2) Fruit fungicides and bactericides; (3) Insect and mite pests; (4) Insecticides and miticides;…
Aerial sketchmapping for monitoring forest conditions in Southern Brazil
Y. M. Malheiros de Oliveira; M. A. Doetzer Rosot; N. B. da Luz; W. M. Ciesla; E.W. Johnson; R. Rhea; J.F. Jr. Penteado
2006-01-01
Aerial sketchmapping is a simple, low cost remote sensing method used for detection and mapping of forest damage caused by biotic agents (insects, pathogens and other pests) and abiotic agents (wind, fire, storms, hurricane, ice storms) in North America. This method was introduced to Brazil in 2001/2002 via a USDA Forest Service/EMBRAPA technical exchange program,...
Vargas, Roger I.; Piñero, Jaime C.; Leblanc, Luc
2015-01-01
Fruit flies (Diptera: Tephritidae) are among the most economically important pest species in the world, attacking a wide range of fruits and fleshy vegetables throughout tropical and sub-tropical areas. These species are such devastating crop pests that major control and eradication programs have been developed in various parts of the world to combat them. The array of control methods includes insecticide sprays to foliage and soil, bait-sprays, male annihilation techniques, releases of sterilized flies and parasitoids, and cultural controls. During the twenty first century there has been a trend to move away from control with organophosphate insecticides (e.g., malathion, diazinon, and naled) and towards reduced risk insecticide treatments. In this article we present an overview of 73 pest species in the genus Bactrocera, examine recent developments of reduced risk technologies for their control and explore Integrated Pest Management (IPM) Programs that integrate multiple components to manage these pests in tropical and sub-tropical areas. PMID:26463186
Biology and genomics of viruses within the genus Gammabaculovirus.
Arif, Basil; Escasa, Shannon; Pavlik, Lillian
2011-11-01
Hymenoptera is a very large and ancient insect order encompassing bees, wasps, ants and sawflies. Fossil records indicate that they existed over 200 million years ago and about 100 million years before the appearance of Lepidoptera. Sawflies have been major pests in many parts of the world and some have caused serious forest defoliation in North America. All baculoviruses isolated from sawflies are of the single nucleocapsids phenotype and appear to replicate in midgut cells only. This group of viruses has been shown to be excellent pest control agents and three have been registered in Canada and Britain for this purpose. Sawfly baculoviruses contain the smallest genome of all baculoviruses sequenced so far. Gene orders among sequenced sawfly baculoviruses are co-linear but this is not shared with the genomes of lepidopteran baculoviruses. One distinguishing feature among all sequenced sawfly viruses is the lack of a gene encoding a membrane fusion protein, which brought into question the role of the budded virus phenotype in Gammabaculovirus biology.
Mansoor, Muhammad Mudassir; Abbas, Naeem; Shad, Sarfraz Ali; Pathan, Attaullah Khan; Razaq, Muhammad
2013-10-01
The common green lacewing Chrysoperla carnea is a key biological control agent employed in integrated pest management (IPM) programs for managing various insect pests. A field collected population of C. carnea was selected for emamectin benzoate resistance in the laboratory and fitness costs and realized heritability were investigated. After five generations of selection with emamectin benzoate, C. carnea developed a 318-fold resistance to the insecticide. The resistant population had a relative fitness of 1.49, with substantially higher emergence rate of healthy adults, fecundity and hatchability and shorter larval duration, pupal duration, and development time compared to the susceptible population. Mean population growth rates; such as the intrinsic rate of natural population increase and biotic potential were higher for the emamectin benzoate selected population compared to the susceptible population. The realized heritability (h(2)) value of emamectin benzoate resistance was 0.34 in emamectin benzoate selected population of C. carnea. Chrysoperla species which show resistance to insecticides makes them compatible with those IPM systems where emamectin benzoate is employed.
Haramboure, M; Smagghe, G; Niu, J; Christiaens, O; Spanoghe, P; Alzogaray, R A
2017-06-01
Resistance to pesticides has been studied in several insect pests, but information on the natural enemies of pests-including the Neotropical predator Chrysoperla externa Hagen (Neuroptera: Chrysopidae), a major biological control agent in South America-is lacking. We report here a comparative study between a field-collected strain of C. externa subjected to monthly sprayings of pyrethroids and neonicotinoids and a laboratory strain without exposure to pesticides. The tolerance of both strains against zeta-cypermethrin was similar, and addition of the synergist piperonyl butoxide increased the toxicity by 30% in both strains. Gas-chromatography analyses and mixed-function-oxidase measurements indicated similar values in both strains and also confirmed the key role of oxidative metabolism in this species. Because C. externa has maintained a tolerance to zeta-cypermethrin without previous pesticide exposure, this species could potentially be mass-reared and released in fields in the presence of pesticide pressure.
Tsukamoto, Yumiko; Maeda, Yumi; Tamura, Toshiki; Mukai, Tetsu; Mitarai, Satoshi; Yamamoto, Saburo; Makino, Masahiko
2016-12-07
Enhancement of the T cell-stimulating ability of Mycobacterium bovis BCG (BCG) is necessary to develop an effective tuberculosis vaccine. For this purpose, we introduced the PEST-HSP70-major membrane protein-II (MMPII)-PEST fusion gene into ureC-gene depleted recombinant (r) BCG to produce BCG-PEST. The PEST sequence is involved in the proteasomal processing of antigens. BCG-PEST secreted the PEST-HSP70-MMPII-PEST fusion protein and more efficiently activated human monocyte-derived dendritic cells (DCs) in terms of phenotypic changes and cytokine productions than an empty-vector-introduced BCG or HSP70-MMPII gene-introduced ureC gene-depleted BCG (BCG-DHTM). Autologous human naïve CD8 + T cells and naïve CD4 + T cells were effectively activated by BCG-PEST and produced IFN-γ in an antigen-specific manner through DCs. These T cell activations were closely associated with phagosomal maturation and intraproteasomal protein degradation in antigen-presenting cells. Furthermore, BCG-PEST produced long-lasting memory-type T cells in C57BL/6 mice more efficiently than control rBCGs. Moreover, a single subcutaneous injection of BCG-PEST more effectively reduced the multiplication of subsequent aerosol-challenged Mycobacterium tuberculosis of the standard H37Rv strain and clinically isolated Beijing strain in the lungs than control rBCGs. The vaccination effect of BCG-PEST lasted for at least 6months. These results indicate that BCG-PEST may be able to efficiently control the spread of tuberculosis in human. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mayerhofer, Johanna; Eckard, Sonja; Hartmann, Martin; Grabenweger, Giselher; Widmer, Franco; Leuchtmann, Adrian; Enkerli, Jürg
2017-10-01
The release of large quantities of microorganisms to soil for purposes such as pest control or plant growth promotion may affect the indigenous soil microbial communities. In our study, we investigated potential effects of Metarhizium brunneum ART2825 on soil fungi and prokaryota in bulk soil using high-throughput sequencing of ribosomal markers. Different formulations of this strain, and combinations of the fungus with garlic as efficacy-enhancing agent, were tested over 4 months in a pot and a field experiment carried out for biological control of Agriotes spp. in potatoes. A biocontrol effect was observed only in the pot experiment, i.e. the application of FCBK resulted in 77% efficacy. Colony counts combined with genotyping and marker sequence abundance confirmed the successful establishment of the applied strain. Only the formulated applied strain caused small shifts in fungal communities in the pot experiment. Treatment effects were in the same range as the effects caused by barley kernels, the carrier of the FCBK formulation and temporal effects. Garlic treatments and time affected prokaryotic communities. In the field experiment, only spatial differences affected fungal and prokaryotic communities. Our findings suggest that M. brunneum may not adversely affect soil microbial communities. © FEMS 2017.
Petrovskii, Sergei; Petrovskaya, Natalia; Bearup, Daniel
2014-09-01
Pest insects pose a significant threat to food production worldwide resulting in annual losses worth hundreds of billions of dollars. Pest control attempts to prevent pest outbreaks that could otherwise destroy a sward. It is good practice in integrated pest management to recommend control actions (usually pesticides application) only when the pest density exceeds a certain threshold. Accurate estimation of pest population density in ecosystems, especially in agro-ecosystems, is therefore very important, and this is the overall goal of the pest insect monitoring. However, this is a complex and challenging task; providing accurate information about pest abundance is hardly possible without taking into account the complexity of ecosystems' dynamics, in particular, the existence of multiple scales. In the case of pest insects, monitoring has three different spatial scales, each of them having their own scale-specific goal and their own approaches to data collection and interpretation. In this paper, we review recent progress in mathematical models and methods applied at each of these scales and show how it helps to improve the accuracy and robustness of pest population density estimation. Copyright © 2014 Elsevier B.V. All rights reserved.
Apply Pesticides Correctly, A Guide for Commercial Applicators: Agricultural Pest Control -- Animal.
ERIC Educational Resources Information Center
Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.
This guide contains basic information to meet specific standards for pesticide applicators. The text is concerned with the common pests of agricultural animals such as flies, ticks, bots, lice and mites. Methods for controlling these pests and appropriate pesticides are discussed. (CS)
The Pesticide Problem: Is Any Amount Safe?
ERIC Educational Resources Information Center
Cooper, Susan
1991-01-01
Discusses the use of integrated pest management to foster a safe school environment free from pesticides. This effective, environmentally sound system minimizes human exposure and reduces the toxicity of materials used to control pests. Parents, teachers, and students can educate themselves to improve school pest control practices. (SM)
Companion and refuge plants to control insect pests
USDA-ARS?s Scientific Manuscript database
Introduction: The sweetpotato whitefly, Bemisia tabaci and aphids are major pests of crops in the southeast USA. An environmentally-friendly management strategy is “push-pull” technology which combines the use of repellent (“push”) and trap crops (“pull”) for insect pest control. The repellent crop,...
Prospects for repellent in pest control: current developments and future challenges
USDA-ARS?s Scientific Manuscript database
The overall interest for environmentally safe pest control methods and the increased frequency of insecticide resistance in pest populations have stimulated research on insect repellents in the recent decades in medical and agricultural entomology. However, there remains a great deal of work to be ...
Agricultural Plant Pest Control. Manual 93.
ERIC Educational Resources Information Center
Missouri Univ., Columbia. Agricultural Experiment Station.
This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides for the agricultural plant pest control category. The text discusses the insect pests including caterpillars, beetles, and soil inhabiting insects; diseases and nematodes; and weeds. Consideration is given…
Development of Semiochemical Based Control Programs for Arthropod Pests of Honeybees
USDA-ARS?s Scientific Manuscript database
In recent years the apiculture industry has experienced serious problems from serious invasions by exotic pests including Varroa destructor and the Small hive beetle, Aethina tumida. Control of these pests is difficult and problematic because Honey bees are extremely sensitive to pesticides and the...
Crop pests and predators exhibit inconsistent responses to surrounding landscape composition
USDA-ARS?s Scientific Manuscript database
Ecosystem-service models are increasingly implemented in diverse decision-making contexts, from land-use planning to corporate risk management. Though widely valued, biological control of crop pests is rarely considered in such decisions in part because suitable pest-control models do not exist. Her...
Analysis of sustainable pest control using a pesticide and a screened refuge.
Ringland, John; George, Prasanth
2011-05-01
We describe and analyze a 'screened refuge' technique for indefinitely sustaining control of insect pests using transgenic pesticidal crops or an applied pesticide, even when resistance is not recessive. The screen is a physical barrier that restricts pest movement. In a deterministic discrete-time model of the use of this technique, we obtain asymptotic analytical formulas for the two important equilibria of the system in terms of the refuge size and the pest fitnesses, mutation rates, and mobility out of and into the refuge. One of the equilibria is stable and is the point at which the pest population is controlled. The other is a saddle whose stable manifold bounds the basin of attraction of the former: its location provides a measure of the tolerance of the control mechanism to perturbations in the resistant allele density.
McColl, K A; Sunarto, A; Slater, J; Bell, K; Asmus, M; Fulton, W; Hall, K; Brown, P; Gilligan, D; Hoad, J; Williams, L M; Crane, M St J
2017-09-01
Carp (Cyprinus carpio L.) is a pest species in Australian waterways, and cyprinid herpesvirus 3 (CyHV-3) is being considered as a potential biological control (biocontrol) agent. An important consideration for any such agent is its target specificity. In this study, the susceptibility to CyHV-3 of a range of non-target species (NTS) was tested. The NTS were as follows: 13 native Australian, and one introduced, fish species; a lamprey species; a crustacean; two native amphibian species (tadpole and mature stages); two native reptilian species; chickens; and laboratory mice. Animals were exposed to 100-1000 times the approximate minimum amount of CyHV-3 required to cause disease in carp by intraperitoneal and/or bath challenge, and then examined clinically each day over the course of 28 days post-challenge. There were no clinical signs, mortalities or histological evidence consistent with a viral infection in a wide taxonomic range of NTS. Furthermore, there was no molecular evidence of infection with CyHV-3, and, in particular, all RT-PCRs for viral mRNA were negative. As a consequence, the results encourage further investigation of CyHV-3 as a potential biocontrol agent that is specific for carp. © 2016 John Wiley & Sons Ltd.
Integrated Pest Management in a Predator-Prey System with Allee Effects.
Costa, M I S; dos Anjos, L
2015-08-01
A commonly used biocontrol strategy to control invasive pests with Allee effects consists of the deliberate introduction of natural enemies. To enhance the effectiveness of this strategy, several tactics of control of invasive species (e.g., mass-trapping, manual removal of individuals, and pesticide spraying) are combined so as to impair pest outbreaks. This combination of strategies to control pest species dynamics are usually named integrated pest management (IPM). In this work, we devise a predator-prey dynamical model in order to assess the influence of the intensity of chemical killing on the success of an IPM. The biological and mathematical framework presented in this study can also be analyzed in the light of species conservation and food web dynamics theory.
Economic and physical determinants of the global distributions of crop pests and pathogens
Bebber, Daniel P; Holmes, Timothy; Smith, David; Gurr, Sarah J
2014-01-01
Crop pests and pathogens pose a significant and growing threat to food security, but their geographical distributions are poorly understood. We present a global analysis of pest and pathogen distributions, to determine the roles of socioeconomic and biophysical factors in determining pest diversity, controlling for variation in observational capacity among countries. Known distributions of 1901 pests and pathogens were obtained from CABI. Linear models were used to partition the variation in pest species per country amongst predictors. Reported pest numbers increased with per capita gross domestic product (GDP), research expenditure and research capacity, and the influence of economics was greater in micro-organisms than in arthropods. Total crop production and crop diversity were the strongest physical predictors of pest numbers per country, but trade and tourism were insignificant once other factors were controlled. Islands reported more pests than mainland countries, but no latitudinal gradient in species richness was evident. Country wealth is likely to be a strong indicator of observational capacity, not just trade flow, as has been interpreted in invasive species studies. If every country had US levels of per capita GDP, then 205 ± 9 additional pests per country would be reported, suggesting that enhanced investment in pest observations will reveal the hidden threat of crop pests and pathogens. PMID:24517626
The Trojan female technique: a novel, effective and humane approach for pest population control.
Gemmell, Neil J; Jalilzadeh, Aidin; Didham, Raphael K; Soboleva, Tanya; Tompkins, Daniel M
2013-12-22
Humankind's ongoing battle with pest species spans millennia. Pests cause or carry disease, damage or consume food crops and other resources, and drive global environmental change. Conventional approaches to pest management usually involve lethal control, but such approaches are costly, of varying efficiency and often have ethical issues. Thus, pest management via control of reproductive output is increasingly considered an optimal solution. One of the most successful such 'fertility control' strategies developed to date is the sterile male technique (SMT), in which large numbers of sterile males are released into a population each generation. However, this approach is time-consuming, labour-intensive and costly. We use mathematical models to test a new twist on the SMT, using maternally inherited mitochondrial (mtDNA) mutations that affect male, but not female reproductive fitness. 'Trojan females' carrying such mutations, and their female descendants, produce 'sterile-male'-equivalents under natural conditions over multiple generations. We find that the Trojan female technique (TFT) has the potential to be a novel humane approach for pest control. Single large releases and relatively few small repeat releases of Trojan females both provided effective and persistent control within relatively few generations. Although greatest efficacy was predicted for high-turnover species, the additive nature of multiple releases made the TFT applicable to the full range of life histories modelled. The extensive conservation of mtDNA among eukaryotes suggests this approach could have broad utility for pest control.
Pheromone-based pest management in china: past, present and future prospects
USDA-ARS?s Scientific Manuscript database
Semiochemical-based pest management technology has been widely used to monitor and control insect pests in agricultural, forestry, and public health sectors in the western world. It became a popular tool in the early 1970s with tremendous efforts in developing environment-friendly control technologi...
New developments in bait stations for control of pest Tephritids
USDA-ARS?s Scientific Manuscript database
Bait stations are being developed and tested as alternatives to broadcast pesticide application for control of a number of pest insects. This is an attract-and-kill pest management approach. With the development of female-targeted food-based synthetic attractants for tephritid fruit flies, a numbe...
Apply Pesticides Correctly, A Guide for Commercial Applicators: Food Processing Pest Control.
ERIC Educational Resources Information Center
Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.
This guide contains basic information to meet specific standards for pesticide applicators. Characteristics, life cycles and habits of pests such as roaches, beetles, flies, ants and rodents are discussed. Additionally, pest control measures, especially by application of aerosols, dusts, baits, fumigants or vapors, is presented. (CS)
NASA Technical Reports Server (NTRS)
Spruce, Joseph; Hargrove, William; Norman Steve; Christie, William
2014-01-01
Near real time forest disturbance detection maps from MODIS NDVI phenology data have been produced since 2010 for the conterminous U.S., as part of the on-line ForWarn national forest threat early warning system. The latter has been used by the forest health community to identify and track many regional forest disturbances caused by multiple biotic and abiotic damage agents. Attribution of causal agents for detected disturbances has been a goal since project initiation in 2006. Combined with detailed cover type maps, geospatial pest phenology data offer a potential means for narrowing the candidate causal agents responsible for a given biotic disturbance. U.S. Aerial Detection Surveys (ADS) employ such phenology data. Historic ADS products provide general locational data on recent insect-induced forest type specific disturbances that may help in determining candidate causal agents for MODIS-based disturbance maps, especially when combined with other historic geospatial disturbance data (e.g., wildfire burn scars and drought maps). Historic ADS disturbance detection polygons can show severe and extensive regional forest disturbances, though they also can show polygons with sparsely scattered or infrequent disturbances. Examples will be discussed that use various historic disturbance data to help determine potential causes of MODIS-detected regional forest disturbance anomalies.
Insecticides for suppression of Nylanderia fulva
USDA-ARS?s Scientific Manuscript database
Nylanderia fulva (Mayr) is an invasive ant that is a serious pest in the southern United States. Pest control operators and homeowners are challenged to manage pest populations below acceptable thresholds. Contact and bait insecticides are key components of an Integrated Pest Management (IPM) strate...
Galdeano, Diogo Manzano; Breton, Michèle Claire; Lopes, João Roberto Spotti; Falk, Bryce W; Machado, Marcos Antonio
2017-01-01
The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is one of the most important citrus pests. ACP is the vector of the phloem-limited bacteria Candidatus Liberibacter americanus and Candidatus Liberibacter asiaticus, the causal agents of the devastating citrus disease huanglongbing (HLB). The management of HLB is based on the use of healthy young plants, eradication of infected plants and chemical control of the vector. RNA interference (RNAi) has proven to be a promising tool to control pests and explore gene functions. Recently, studies have reported that target mRNA knockdown in many insects can be induced through feeding with double-stranded RNA (dsRNA). In the current study, we targeted the cathepsin D, chitin synthase and inhibitor of apoptosis genes of adult and nymph ACP by feeding artificial diets mixed with dsRNAs and Murraya paniculata leaves placed in dsRNAs solutions, respectively. Adult ACP mortality was positively correlated with the amount of dsRNA used. Both nymphs and adult ACP fed dsRNAs exhibited significantly increased mortality over time compared with that of the controls. Moreover, qRT-PCR analysis confirmed the dsRNA-mediated RNAi effects on target mRNAs. These results showed that RNAi can be a powerful tool for gene function studies in ACP and perhaps for HLB control.
Palaniappan, Karuppuchamy; Manickavasagam Pillai, Kalyanasundaram; Subbarayalu, Mohankumar; Madhaiyan, Ravi
2013-01-01
Biological control using entomopathogenic fungi could be a promising alternative to chemical control. Entomopathogenic fungi, Beauveria bassiana (Balsamo) Vuillemin, Metarhizium anisopliae (Metschnikoff) Sorokin, Lecanicillium lecanii (Zimmerm.) Zare and Gams, and Paecilomyces fumosoroseus (Wize) Brown and Smith, were tested for their pathogenicity, ovicidal effect, and median lethal concentrations (LC50) against exotic spiralling whitefly, Aleurodicus dispersus Russell. The applications were made at the rate of 2 × 109 conidia mL−1 for evaluating the pathogenicity and ovicidal effect of entomopathogenic fungi against A. dispersus. The results of pathogenicity test showed that P. fumosoroseus (P1 strain) was highly pathogenic to A. dispersus recording 100% mortality at 15 days after treatment (DAT). M. anisopliae (M2 strain) had more ovicidal effect causing 37.3% egg mortality at 8 DAT. However, L. lecanii (L1 strain) caused minimum egg hatchability (23.2%) at 10 DAT as compared to control (92.6%). The lowest LC50 produced by P. fumosoroseus (P1 strain) as 8.189 × 107 conidia mL−1 indicated higher virulence against A. dispersus. Hence, there is potential for use of entomopathogenic fungi in the field conditions as an alternate control method in combating the insect pests and other arthropod pests since they are considered natural mortality agents and are environmentally safe. PMID:24455279
Kumar, Vivek; Avery, Pasco B; Ahmed, Juthi; Cave, Ronald D; McKenzie, Cindy L; Osborne, Lance S
2017-10-31
Horticultural oils are an important component of integrated management programs of several phytophagous arthropods and pathogens affecting fruit, ornamentals and vegetables in greenhouse and field production systems. Although effective against the target pest, their incompatibility with biological control agents can compromise efforts to develop eco-friendly management programs for important agricultural pests. In this study, we assessed the in vitro effect of selected refined petroleum oils used in citrus and other horticultural crops with a biopesticide containing the entomopathogenic fungi, Isaria fumosorosea (PFR-97) under laboratory conditions. Further, we used leaf disk bioassays to evaluate the combined efficacy of petroleum oils and I. fumosorosea against the Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae), a major pest of citrus in the United States. All five petroleum oil treatments (Orchex, Sun Pure, Conoco Blend -1, Conoco Blend -2, and JMS) were compatible with I. fumosorosea blastospores, as none of them were found to affect I. fumosorosea colony-forming units and radial fungal growth measured at 3, 6, 9, and 12 days post-inoculation. All mixed treatments performed better than I. fumosorosea alone against D. citri , where the highest mean survival time of D. citri was 12.5 ± 0.7 days. No significant differences in D. citri survival time and I. fumosorosea growth (fungal development index) on dead cadavers, which is important for determining their horizontal transmission, were observed when mixed with Orchex, Sun Pure, Conoco Blend -2, and JMS. Results indicated that horticultural oils in combination with I. fumosorosea could offer citrus growers an alternative treatment for integrating into their current management programs while battling against D. citri in citrus production systems. Due to their eco-friendly, broad-spectrum effect, it could provide control against various citrus pests, while also encouraging the retention of effective chemistries for a longer period in the marketplace. However promising, these combination treatments need to be tested further with I. fumosorosea under grove conditions to confirm their field efficacy.
Effect of non-crop vegetation types on conservation biological control of pests in olive groves
Cayuela, Luis; Gurr, Geoff M.; Campos, Mercedes
2013-01-01
Conservation biological control (CBC) is an environmentally sound potential alternative to the use of chemical insecticides. It involves modifications of the environment to promote natural enemy activity on pests. Despite many CBC studies increasing abundance of natural enemies, there are far fewer demonstrations of reduced pest density and very little work has been conducted in olive crops. In this study we investigated the effects of four forms of non-crop vegetation on the abundance of two important pests: the olive psyllid (Euphyllura olivina) and the olive moth (Prays oleae). Areas of herbaceous vegetation and areas of woody vegetation near olive crops, and smaller patches of woody vegetation within olive groves, decreased pest abundance in the crop. Inter-row ground covers that are known to increase the abundance of some predators and parasitoids had no effect on the pests, possibly as a result of lack of synchrony between pests and natural enemies, lack of specificity or intra-guild predation. This study identifies examples of the right types of diversity for use in conservation biological control in olive production systems. PMID:23904994
ERIC Educational Resources Information Center
Cowles, Kathleen Letcher
Integrated Pest Management (IPM), a decision-making approach to pest control, is designed to help individuals decide if pest suppression treatments are necessary, when they should be initiated, where they should be applied, and what strategy/mix of tatics to use. IPM combines a variety of approaches with which to manage pests, including human…
Unusual case of choking due to assassin bug ( Cydnocoris gilvus).
Sonar, Vaibhav; Patil, Sachin
2018-01-01
Choking is a form of asphyxia which is caused by an obstruction within the air passages. Here, we report a case of obstruction of the upper respiratory tract due to assassin bug ( Cydnocoris gilvus) where allegations of medical negligence were made by relatives of the deceased. Autopsy findings demonstrated that an insect was present inside the larynx, lodged at the epiglottis. Multiple haemorrhagic patches were present at the base of the tongue, larynx, epiglottis, vocal cords and tracheal bifurcation. As Reduviidae can be successfully used as a biological pest-control agents, they should be used with due precaution.
Justice-Allen, Anne; Loyd, Kerrie Anne
2017-01-01
Western Burrowing Owls ( Athene cunicularia hypugaea) frequently occupy periurban areas, where they may be exposed to pest control agents. This short communication describes necropsy findings and detected brodifacoum rodenticide levels for four Western Burrowing Owls in Lake Havasu City, Arizona, US, 2013-15. Levels detected ranged from 0.077 mg/kg to 0.497 mg/kg. Brodifacoum, one of several second-generation anticoagulant rodenticides recently removed from the general consumer market, is still available for use by licensed pesticide applicators. Despite recent regulatory actions, second-generation anticoagulant pesticides continue to threaten predatory species in periurban areas.
High levels of genetic diversity in Spodoptera exempta NPV from Tanzania.
Redman, Elizabeth M; Wilson, Kenneth; Grzywacz, David; Cory, Jenny S
2010-10-01
The African armyworm, Spodoptera exempta, is a major pest in sub-Saharan Africa. A nucleopolyhedrovirus (NPV) is often recorded in later population outbreaks and can cause very high levels of mortality. Research has been addressing whether this NPV can be developed into a strategic biological control agent. As part of this study, the variation in natural populations of NPV is being studied. An isolate of S. exempta NPV was cloned in vivo and found to contain at least 17 genetically-distinct genotypes. These genotypes varied in size from approximately 115 to 153 kb. Copyright 2010 Elsevier Inc. All rights reserved.
33 CFR 274.7 - Authorization of pesticide use.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., DEPARTMENT OF DEFENSE PEST CONTROL PROGRAM FOR CIVIL WORKS PROJECTS Project Operation § 274.7 Authorization... unexpected outbreak of a pest requires control measures which are not according to the registered use, such... Engineer. An emergency will be deemed to exist when: (1) A pest outbreak has or is about to occur and no...
ERIC Educational Resources Information Center
Illinois Univ., Urbana. Cooperative Extension Service.
This circular lists suggested uses of insecticides for the control of pests by commercial vegetable farmers. Suggestions are given for selection, dosage and application of insecticides to control pests of cabbage and related crops, beans, cucumbers and other vine crops, tomatoes, potatoes, peppers, corn, and onions. (CS)
Understanding and controlling nonnative forest pests in the South
Donald A. Duerr; James H. Miller
2005-01-01
lnvasive nonnative forest pests are multiplying and spreading in every forest type in the Southern United States, The costs of controlling these pests have become extremely high, and the damage they cause to ecosystem composition, structure, and function continues to increase. Plants imported for potential release for forage, crops, soil reclamation, and ornamental...
USDA-ARS?s Scientific Manuscript database
Insect pests and food-borne fungi and their associated toxic metabolites cause significant losses in stored food products. Plant-derived essential oils (EOs) can control the growth and proliferation of insect and fungal pests. Plant EOs are environmentally friendly and non-toxic, and their applicati...
Ornamental and Turf Pest Control. Bulletin 764.
ERIC Educational Resources Information Center
Bowyer, Timothy H.; And Others
This manual gives descriptions of and methods for control of diseases and insect pests of ornamental plants, weeds, and diseases and insect pests of turf plants. Included are diseases caused by fungi such as cankers, leaf galls, and rust; diseases caused by bacteria such as bacterial blight and crown gall; and diseases caused by nematodes and…
Koshel, E. I.; Aleshin, V. V.; Eroshenko, G. A.; Kutyrev, V. V.
2014-01-01
Entomoparasitic nematodes are natural control agents for many insect pests, including fleas that transmit Yersinia pestis, a causative agent of plague, in the natural foci of this extremely dangerous zoonosis. We examined the flea samples from the Volga-Ural natural focus of plague for their infestation with nematodes. Among the six flea species feeding on different rodent hosts (Citellus pygmaeus, Microtus socialis, and Allactaga major), the rate of infestation varied from 0 to 21%. The propagation rate of parasitic nematodes in the haemocoel of infected fleas was very high; in some cases, we observed up to 1,000 juveniles per flea specimen. Our study of morphology, life cycle, and rDNA sequences of these parasites revealed that they belong to three distinct species differing in the host specificity. On SSU and LSU rRNA phylogenies, these species representing three genera (Rubzovinema, Psyllotylenchus, and Spilotylenchus), constitute a monophyletic group close to Allantonema and Parasitylenchus, the type genera of the families Allantonematidae and Parasitylenchidae (Nematoda: Tylenchida). We discuss the SSU-ITS1-5.8S-LSU rDNA phylogeny of the Tylenchida with a special emphasis on the suborder Hexatylina. PMID:24804197
Aketarawong, Nidchaya; Chinvinijkul, Suksom; Orankanok, Watchreeporn; Guglielmino, Carmela Rosalba; Franz, Gerald; Malacrida, Anna Rodolfa; Thanaphum, Sujinda
2011-01-01
The oriental fruit fly, Bactrocera dorsalis (Hendel), is a key pest that causes reduction of the crop yield within the international fruit market. Fruit flies have been suppressed by two Area-Wide Integrated Pest Management programs in Thailand using Sterile Insect Technique (AW-IPM-SIT) since the late 1980s and the early 2000s. The projects' planning and evaluation usually rely on information from pest status, distribution, and fruit infestation. However, the collected data sometimes does not provide enough detail to answer management queries and public concerns, such as the long term sterilization efficacy of the released fruit fly, skepticism about insect migration or gene flow across the buffer zone, and the re-colonisation possibility of the fruit fly population within the core area. Established microsatellite DNA markers were used to generate population genetic data for the analysis of the fruit fly sampling from several control areas, and non-target areas, as well as the mass-rearing facility. The results suggested limited gene flow (m < 0.100) across the buffer zones between the flies in the control areas and flies captured outside. In addition, no genetic admixture was revealed from the mass-reared colony flies from the flies within the control area, which supports the effectiveness of SIT. The control pests were suppressed to low density and showed weak bottleneck footprints although they still acquired a high degree of genetic variation. Potential pest resurgence from fragmented micro-habitats in mixed fruit orchards rather than pest incursion across the buffer zone has been proposed. Therefore, a suitable pest control effort, such as the SIT program, should concentrate on the hidden refuges within the target area.
Ikegawa, Yusuke; Himuro, Chihiro
2017-05-21
The sterile insect technique (SIT) is a genetic pest control method wherein mass-reared sterile insects are periodically released into the wild, thereby impeding the successful reproduction of fertile pests. In Okinawa Prefecture, Japan, the SIT has been implemented to eradicate the West Indian sweet potato weevil Euscepes postfasciatus (Fairmaire), which is a flightless agricultural pest of sweet potatoes. It is known that E. postfasciatus is much less mobile than other insects to which the SIT has been applied. However, previous theoretical studies have rarely examined effects of low mobility of target pests and variation in the spatiotemporal evenness of sterile insect releases. To theoretically examine the effects of spatiotemporal evenness on the regional eradication of less mobile pests, we constructed a simple two-patch population model comprised of a pest and sterile insect moving between two habitats, and numerically simulated different release strategies (varying the number of released sterile insects and release intervals). We found that spatially biased releases allowed the pest to spatially escape from the sterile insect, and thus intensively lowered its controllability. However, we showed that the temporally counterbalancing spatially biased releases by swapping the number of released insects in the two habitats at every release (called temporal balancing) could greatly mitigate this negative effect and promote the controllability. We also showed that the negative effect of spatiotemporally biased releases was a result of the limited mobility of the target insect. Although directed dispersal of the insects in response to habitats of differing quality could lower the controllability in the more productive habitat, the temporal balancing could promote and eventually maximize the controllability as released insects increased. Copyright © 2017 Elsevier Ltd. All rights reserved.
Economic and physical determinants of the global distributions of crop pests and pathogens.
Bebber, Daniel P; Holmes, Timothy; Smith, David; Gurr, Sarah J
2014-05-01
Crop pests and pathogens pose a significant and growing threat to food security, but their geographical distributions are poorly understood. We present a global analysis of pest and pathogen distributions, to determine the roles of socioeconomic and biophysical factors in determining pest diversity, controlling for variation in observational capacity among countries. Known distributions of 1901 pests and pathogens were obtained from CABI. Linear models were used to partition the variation in pest species per country amongst predictors. Reported pest numbers increased with per capita gross domestic product (GDP), research expenditure and research capacity, and the influence of economics was greater in micro-organisms than in arthropods. Total crop production and crop diversity were the strongest physical predictors of pest numbers per country, but trade and tourism were insignificant once other factors were controlled. Islands reported more pests than mainland countries, but no latitudinal gradient in species richness was evident. Country wealth is likely to be a strong indicator of observational capacity, not just trade flow, as has been interpreted in invasive species studies. If every country had US levels of per capita GDP, then 205 ± 9 additional pests per country would be reported, suggesting that enhanced investment in pest observations will reveal the hidden threat of crop pests and pathogens. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Options for pest and disease control in organic pecan
USDA-ARS?s Scientific Manuscript database
Although organic pecans typically command a higher wholesale and retail price, their production presents a unique set of challenges. Among these are issues of pest and disease management - it is not simply a modification of the conventional, pest and disease management paradigm. Despite these pest ...
Vegetable Crop Pests. MEP 311.
ERIC Educational Resources Information Center
Kantzes, James G.; And Others
As part of a cooperative extension service series by the University of Maryland, this publication introduces the identification and control of common agricultural pests of vegetable crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the categories of insects,…
Economic value of biological control in integrated pest management of managed plant systems.
Naranjo, Steven E; Ellsworth, Peter C; Frisvold, George B
2015-01-07
Biological control is an underlying pillar of integrated pest management, yet little focus has been placed on assigning economic value to this key ecosystem service. Setting biological control on a firm economic foundation would help to broaden its utility and adoption for sustainable crop protection. Here we discuss approaches and methods available for valuation of biological control of arthropod pests by arthropod natural enemies and summarize economic evaluations in classical, augmentative, and conservation biological control. Emphasis is placed on valuation of conservation biological control, which has received little attention. We identify some of the challenges of and opportunities for applying economics to biological control to advance integrated pest management. Interaction among diverse scientists and stakeholders will be required to measure the direct and indirect costs and benefits of biological control that will allow farmers and others to internalize the benefits that incentivize and accelerate adoption for private and public good.
Lourenço, Adriano M; Haddi, Khalid; Ribeiro, Bergman M; Corrêia, Roberto F T; Tomé, Hudson V V; Santos-Amaya, Oscar; Pereira, Eliseu J G; Guedes, Raul N C; Santos, Gil R; Oliveira, Eugênio E; Aguiar, Raimundo W S
2018-05-08
Although the cultivation of transgenic plants expressing toxins of Bacillus thuringiensis (Bt) represents a successful pest management strategy, the rapid evolution of resistance to Bt plants in several lepidopteran pests has threatened the sustainability of this practice. By exhibiting a favorable safety profile and allowing integration with pest management initiatives, plant essential oils have become relevant pest control alternatives. Here, we assessed the potential of essential oils extracted from a Neotropical plant, Siparuna guianensis Aublet, for improving the control and resistance management of key lepidopteran pests (i.e., Spodoptera frugiperda and Anticarsia gemmatalis). The essential oil exhibited high toxicity against both lepidopteran pest species (including an S. frugiperda strain resistant to Cry1A.105 and Cry2Ab Bt toxins). This high insecticidal activity was associated with necrotic and apoptotic effects revealed by in vitro assays with lepidopteran (but not human) cell lines. Furthermore, deficits in reproduction (e.g., egg-laying deterrence and decreased egg viability), larval development (e.g., feeding inhibition) and locomotion (e.g., individual and grouped larvae walking activities) were recorded for lepidopterans sublethally exposed to the essential oil. Thus, by similarly and efficiently controlling lepidopteran strains susceptible and resistant to Bt toxins, the S. guianensis essential oil represents a promising management tool against key lepidopteran pests.
Impacts of biological control and invasive species on a non-target native Hawaiian insect.
Johnson, M Tracy; Follett, Peter A; Taylor, Andrew D; Jones, Vincent P
2005-02-01
The potential for classical biological control to cause unintended harm to native species was evaluated in the case of the endemic Hawaiian koa bug, Coleotichus blackburniae White (Hemiptera: Scutelleridae), and parasitoids introduced to Hawaii for control of an agricultural pest, the southern green stink bug, Nezara viridula (L.) (Hemiptera: Pentatomidae). Parasitism of C. blackburniae eggs, nymphs and adults by biocontrol agents was quantified across a wide range of habitats and compared to other sources of mortality. Egg mortality due to the biocontrol agent Trissolcus basalis Wollaston (Hymenoptera: Scelionidae) was low (maximum 26%) and confined to elevations below 500 m on a single host plant. Predation, mainly by alien spiders and ants, was the greatest source of egg mortality (maximum 87%). Parasitism of adult C. blackburniae by the biocontrol agent Trichopoda pilipes (F.) (Diptera: Tachinidae) was near zero at 21 of 24 sites surveyed. Three sites with high bug density had higher levels of T. pilipes parasitism, reaching maxima of 70% among adult female bugs, 100% among males and 50% among fifth instars. Male-biased parasitism indicated that T. pilipes is adapted to using male aggregation pheromone for finding C. blackburniae hosts. The relative impacts of biocontrol agents and other sources of mortality were compared using life tables. Invasive species, particularly generalist egg predators, had the greatest impacts on C. blackburniae populations. Effects of intentionally introduced parasitoids were relatively minor, although the tachinid T. pilipes showed potential for large impacts at individual sites. In retrospect, non-target attacks by biological control agents on C. blackburniae were predictable, but the environmental range and magnitude of impacts would have been difficult to foresee.
Adaptive release of natural enemies in a pest-natural enemy system with pesticide resistance.
Liang, Juhua; Tang, Sanyi; Cheke, Robert A; Wu, Jianhong
2013-11-01
Integrated pest management options such as combining chemical and biological control are optimal for combating pesticide resistance, but pose questions if a pest is to be controlled to extinction. These questions include (i) what is the relationship between the evolution of pesticide resistance and the number of natural enemies released? (ii) How does the cumulative number of natural enemies dying affect the number of natural enemies to be released? To address these questions, we developed two novel pest-natural enemy interaction models incorporating the evolution of pesticide resistance. We investigated the number of natural enemies to be released when threshold conditions for the extinction of the pest population in two different control tactics are reached. Our results show that the number of natural enemies to be released to ensure pest eradication in the presence of increasing pesticide resistance can be determined analytically and depends on the cumulative number of dead natural enemies before the next scheduled release time.
ERIC Educational Resources Information Center
Cowles, Kathleen Letcher
Integrated Pest Management (IPM), a decision-making approach to pest control, is designed to help individuals decide if pest suppression treatments are necessary, when they should be initiated, where they should be applied, and what strategy and mix of tactics to use. IPM combines a variety of approaches with which to manage pests. These include…
Assessing the integrated pest management practices of southeastern US ornamental nursery operations.
LeBude, Anthony V; White, Sarah A; Fulcher, Amy F; Frank, Steve; Klingeman Iii, William E; Chong, Juang-Horng; Chappell, Matthew R; Windham, Alan; Braman, Kris; Hale, Frank; Dunwell, Winston; Williams-Woodward, Jean; Ivors, Kelly; Adkins, Craig; Neal, Joe
2012-09-01
The Southern Nursery Integrated Pest Management (SNIPM) working group surveyed ornamental nursery crop growers in the southeastern United States to determine their pest management practices. Respondents answered questions about monitoring practices for insects, diseases and weeds, prevention techniques, intervention decisions, concerns about IPM and educational opportunities. Survey respondents were categorized into three groups based on IPM knowledge and pest management practices adopted. The three groups differed in the use of standardized sampling plans for scouting pests, in monitoring techniques, e.g. sticky cards, phenology and growing degree days, in record-keeping, in the use of spot-spraying and in the number of samples sent to a diagnostic clinic for identification and management recommendation. Stronger emphasis is needed on deliberate scouting techniques and tools to monitor pest populations to provide earlier pest detection and greater flexibility of management options. Most respondents thought that IPM was effective and beneficial for both the environment and employees, but had concerns about the ability of natural enemies to control insect pests, and about the availability and effectiveness of alternatives to chemical controls. Research and field demonstration is needed for selecting appropriate natural enemies for augmentative biological control. Two groups utilized cooperative extension almost exclusively, which would be an avenue for educating those respondents. Copyright © 2012 Society of Chemical Industry.
Roubinet, Eve; Birkhofer, Klaus; Malsher, Gerard; Staudacher, Karin; Ekbom, Barbara; Traugott, Michael; Jonsson, Mattias
2017-06-01
The suppression of agricultural pests by natural enemies, including generalist arthropod predators, is an economically important regulating ecosystem service. Besides pests, generalist predators may also consume non-pest extraguild and intraguild prey, which can affect their impact on pest populations. This may either reduce the impact of generalist predators on pest populations, because they are diverted from pest predation, or increase it, as it helps them survive periods of low pest availability. However, the availability of pest prey and alternative, non-pest prey can vary over the crop growing season and between farming systems, potentially affecting predator-prey interactions and the levels of biological control. We have limited information about how farming systems and environmental variation over the crop growing season influence predator diets. This limits our ability to predict the importance of generalist predators as natural enemies of agricultural pests. Here we utilize molecular gut content analyses to assess detection frequencies of extra- and intraguild prey DNA in generalist predator communities in replicated organically and conventionally managed cereal fields at two key periods of the cropping season for aphid biological control. This is done in order to understand how farming system, crop season, prey availability and predator community composition determine the composition of predator diets. Aphid pests and decomposers (springtails) were equally important prey for generalist predators early in the growing season. Later in the season, the importance of aphid prey increased with increasing aphid densities while springtail predation rates were positively correlated to abundance of this prey at both early and late crop growth stages. Intraguild predation was unidirectional: carabids fed on spiders, whereas spiders rarely fed on carabids. Carabids had higher detection frequencies for the two most common spider families in organically compared to conventionally managed fields. Our study documents that predation by generalist predator communities on aphid pests increases with pest numbers independently of their generally widespread consumption of alternative, non-pest prey. Therefore, conservation strategies in agricultural fields could promote biological control services by promoting high levels of alternative non-pest prey for generalist predator communities. © 2017 by the Ecological Society of America.
Citizen's Guide to Pesticides.
ERIC Educational Resources Information Center
Environmental Protection Agency, Washington, DC. Office of Pesticide Programs.
This guide provides suggestions on pest control and safety rules for pesticide use at home. Pest prevention may be possible by modification of pest habitat: removal of food and water sources, removal or destruction of pest shelter and breeding sites, and good horticultural practices that reduce plant stress. Nonchemical alternatives to pesticides…
ERIC Educational Resources Information Center
Weaver, Leslie O.; And Others
As part of a cooperative extension service series by the University of Maryland this publication introduces the identification and control of common agricultural pests of fruit crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the categories of insects, weeds,…
78 FR 70257 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-25
... introduction of a pest. The International Plant Protection Convention (IPPC) defines ``official control'' as... management of regulated non-quarantine pests. Need and Use of the Information: To obtain a program's...' management of pests in the plants for planting where the pest is maintained below a level that can affect...
Field and Forage Crop Pests. MEP 310.
ERIC Educational Resources Information Center
Morgan, Omar, D.; And Others
As part of a cooperative extension service series by the University of Maryland, this publication introduces the identification and control of common agricultural pests that can be found in field and forage crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the…
Urban Pest Management. Selected Readings.
ERIC Educational Resources Information Center
Cowles, Kathleen Letcher, Comp.; And Others
These readings provide basic background information on urban integrated pest management and the development of Integrated Pest Management (IPM) programs for the control of rodents, cockroaches, and head lice. IPM is a decision-making process for deciding if pest supprssion treatments are needed, when they should be initiated, where they should be…
Pesticide Applicator Certification Training, Manual No. 1a: Agricultural Pest Control. a. Plant.
ERIC Educational Resources Information Center
Allen, W. A.; And Others
This manual provides information needed to meet the minimum standards for certification as an applicator of pesticides in the agricultural plant pest control category. Adapted for the State of Virginia, the text discusses: (1) the basics of insecticides; (2) insect pests; (3) selection and calibration of applicator equipment; and (4) the proper…
USDA-ARS?s Scientific Manuscript database
Invasion of the Americas by the horn fly, H. irritans, has resulted in control issues throughout the continent. Insecticide resistance is a major complicating factor with efforts to manage this pest. Stakeholder focus groups identified the horn fly as the top priority arthropod pest affecting cattle...
NASA Astrophysics Data System (ADS)
Parshad, Rana D.; Bhowmick, Suman; Quansah, Emmanuel; Basheer, Aladeen; Upadhyay, Ranjit Kumar
2016-10-01
An interesting conundrum in biological control questions the efficiency of generalist predators as biological control agents. Theory suggests, generalist predators are poor agents for biological control, primarily due to mutual interference. However field evidence shows they are actually quite effective in regulating pest densities. In this work we provide a plausible answer to this paradox. We analyze a three species model, where a generalist top predator is introduced into an ecosystem as a biological control, to check the population of a middle predator, that in turn is depredating on a prey species. We show that the inclusion of predator interference alone, can cause the solution of the top predator equation to blow-up in finite time, while there is global existence in the no interference case. This result shows that interference could actually cause a population explosion of the top predator, enabling it to control the target species, thus corroborating recent field evidence. Our results might also partially explain the population explosion of certain species, introduced originally for biological control purposes, such as the cane toad (Bufo marinus) in Australia, which now functions as a generalist top predator. We also show both Turing instability and spatio-temporal chaos in the model. Lastly we investigate time delay effects.
Sun, Kaibiao; Zhang, Tonghua; Tian, Yuan
2016-09-01
This work presents a pest control predator-prey model, where rate of change in prey density follows a scaling law with exponent less than one and the control is by an integrated management strategy. The aim is to investigate the change in system dynamics and determine a pest control level with minimum control price. First, the dynamics of the proposed model without control is investigated by taking the exponent as an index parameter. And then, to determine the frequency of spraying chemical pesticide and yield releases of the predator, the existence of the order-1 periodic orbit of the control system is discussed in cases. Furthermore, to ensure a certain robustness of the adopted control, i.e., for an inaccurately detected species density or a deviation, the control system could be stabilized at the order-1 periodic orbit, the stability of the order-1 periodic orbit is verified by an stability criterion for a general semi-continuous dynamical system. In addition, to minimize the total cost input in pest control, an optimization problem is formulated and the optimum pest control level is obtained. At last, the numerical simulations with a specific model are carried out to complement the theoretical results. Copyright © 2016 Elsevier Inc. All rights reserved.
Avelino, Jacques; Romero-Gurdián, Alí; Cruz-Cuellar, Héctor F; Declerck, Fabrice A J
2012-03-01
Crop pest and disease incidences at plot scale vary as a result of landscape effects. Two main effects can be distinguished. First, landscape context provides habitats of variable quality for pests, pathogens, and beneficial and vector organisms. Second, the movements of these organisms are dependent on the connectivity status of the landscape. Most of the studies focus on indirect effects of landscape context on pest abundance through their predators and parasitoids, and only a few on direct effects on pests and pathogens. Here we studied three coffee pests and pathogens, with limited or no pressure from host-specific natural enemies, and with widely varying life histories, to test their relationships with landscape context: a fungus, Hemileia vastatrix, causal agent of coffee leaf rust; an insect, the coffee berry borer, Hypothenemus hampei (Coleoptera: Curculionidae); and root-knot nematodes, Meloidogyne spp. Their incidence was assessed in 29 coffee plots from Turrialba, Costa Rica. In addition, we characterized the landscape context around these coffee plots in 12 nested circular sectors ranging from 50 to 1500 m in radius. We then performed correlation analysis between proportions of different land uses at different scales and coffee pest and disease incidences. We obtained significant positive correlations, peaking at the 150 m radius, between coffee berry borer abundance and proportion of coffee in the landscape. We also found significant positive correlations between coffee leaf rust incidence and proportion of pasture, peaking at the 200 m radius. Even after accounting for plot level predictors of coffee leaf rust and coffee berry borer through covariance analysis, the significance of landscape structure was maintained. We hypothesized that connected coffee plots favored coffee berry borer movements and improved its survival. We also hypothesized that wind turbulence, produced by low-wind-resistance land uses such as pasture, favored removal of coffee leaf rust spore clusters from host surfaces, resulting in increased epidemics. In contrast, root-knot nematode population density was not correlated to landscape context, possibly because nematodes are almost immobile in the soil. We propose fragmenting coffee plots with forest corridors to control coffee berry borer movements between coffee plots without favoring coffee leaf rust dispersal.
Patil, Nilambari S; Jadhav, Jyoti P
2015-06-01
Penicillium ochrochloron chitinase purified by DEAE-cellulose ion exchange chromatography was evaluated for its antifeedant and growth inhibitory activities against Helicoverpa armigera at different concentrations of 2000, 1000, 500, 250 and 100 U mL(-1). It reduced the successful pupation and increased larval and pupal mortality, adult emergence in a dosage-dependent manner when applied topically. The highest mortalities were recorded for groups treated with 2000 U mL(-1) chitinase activity. The studies showed P.ochrochloron chitinase can affect the growth of H.armigera larvae. Since this insect pest species has developed resistance and resurgence to chemical insecticides, only alternate is the usage of enzyme-based pesticide formulations as an environmentally friendly pest management tool. Copyright © 2015 Elsevier Ltd. All rights reserved.
Training for Certification: Aquatic Pest Control.
ERIC Educational Resources Information Center
Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.
This Cooperative Extension Service publication from Mississippi State University is a training guide for commercial applicators. Weed control, vertebrate pest control, and environmental considerations and restrictions are the three major parts of the document. The weed control section discusses non-pesticide, mechanical, and biological control as…
Reddy, Gadi V P
2011-08-01
Studies were conducted on experimental cabbage plantings in 2009 and on experimental and commercial plantings in 2010, comparing farmers' current chemical standard pesticide practices with an integrated pest management (IPM) program based on the use of neem (Aza-Direct) and DiPel (Bacillus thuringiensis). In experimental plantings, the IPM program used six or eight applications of neem and DiPel on a rotational basis. The standard-practice treatments consisted of six or eight applications of carbaryl and malathion or control treatment. The IPM treatments reduced pest populations and damage, resulting in a better yield than with the standard chemical or control treatment. When IPM treatment included three applications of neem plus three applications of DiPel (on a rotational basis in experimental fields), it again reduced the pest population and damage and produced a better yield than the standard practice. The lower input costs of the IPM program resulted in better economic returns in both trials. The IPM components neem and DiPel are suitable for use in an IPM program for managing insect pests on cabbage (Brassica spp.). Copyright © 2011 Society of Chemical Industry.
Tang, Sanyi; Liang, Juhua; Tan, Yuanshun; Cheke, Robert A
2013-01-01
Impulsive differential equations (hybrid dynamical systems) can provide a natural description of pulse-like actions such as when a pesticide kills a pest instantly. However, pesticides may have long-term residual effects, with some remaining active against pests for several weeks, months or years. Therefore, a more realistic method for modelling chemical control in such cases is to use continuous or piecewise-continuous periodic functions which affect growth rates. How to evaluate the effects of the duration of the pesticide residual effectiveness on successful pest control is key to the implementation of integrated pest management (IPM) in practice. To address these questions in detail, we have modelled IPM including residual effects of pesticides in terms of fixed pulse-type actions. The stability threshold conditions for pest eradication are given. Moreover, effects of the killing efficiency rate and the decay rate of the pesticide on the pest and on its natural enemies, the duration of residual effectiveness, the number of pesticide applications and the number of natural enemy releases on the threshold conditions are investigated with regard to the extent of depression or resurgence resulting from pulses of pesticide applications and predator releases. Latin Hypercube Sampling/Partial Rank Correlation uncertainty and sensitivity analysis techniques are employed to investigate the key control parameters which are most significantly related to threshold values. The findings combined with Volterra's principle confirm that when the pesticide has a strong effect on the natural enemies, repeated use of the same pesticide can result in target pest resurgence. The results also indicate that there exists an optimal number of pesticide applications which can suppress the pest most effectively, and this may help in the design of an optimal control strategy.
Genome Studies on Nematophagous and Entomogenous Fungi in China
Zhang, Weiwei; Cheng, Xiaoli; Liu, Xingzhong; Xiang, Meichun
2016-01-01
The nematophagous and entomogenous fungi are natural enemies of nematodes and insects and have been utilized by humans to control agricultural and forestry pests. Some of these fungi have been or are being developed as biological control agents in China and worldwide. Several important nematophagous and entomogenous fungi, including nematode-trapping fungi (Arthrobotrys oligospora and Drechslerella stenobrocha), nematode endoparasite (Hirsutella minnesotensis), insect pathogens (Beauveria bassiana and Metarhizium spp.) and Chinese medicinal fungi (Ophiocordyceps sinensis and Cordyceps militaris), have been genome sequenced and extensively analyzed in China. The biology, evolution, and pharmaceutical application of these fungi and their interacting with host nematodes and insects revealed by genomes, comparing genomes coupled with transcriptomes are summarized and reviewed in this paper. PMID:29376926
Provides basic information on integrated pest management in schools, including information on the components of an IPM program and guidance on how to get started. Includes identification and control of pests, educational resources, and contact information
The Effect of Farmers' Decisions on Pest Control with Bt Crops: A Billion Dollar Game of Strategy.
Milne, Alice E; Bell, James R; Hutchison, William D; van den Bosch, Frank; Mitchell, Paul D; Crowder, David; Parnell, Stephen; Whitmore, Andrew P
2015-12-01
A farmer's decision on whether to control a pest is usually based on the perceived threat of the pest locally and the guidance of commercial advisors. Therefore, farmers in a region are often influenced by similar circumstances, and this can create a coordinated response for pest control that is effective at a landscape scale. This coordinated response is not intentional, but is an emergent property of the system. We propose a framework for understanding the intrinsic feedback mechanisms between the actions of humans and the dynamics of pest populations and demonstrate this framework using the European corn borer, a serious pest in maize crops. We link a model of the European corn borer and a parasite in a landscape with a model that simulates the decisions of individual farmers on what type of maize to grow. Farmers chose whether to grow Bt-maize, which is toxic to the corn borer, or conventional maize for which the seed is cheaper. The problem is akin to the snow-drift problem in game theory; that is to say, if enough farmers choose to grow Bt maize then because the pest is suppressed an individual may benefit from growing conventional maize. We show that the communication network between farmers' and their perceptions of profit and loss affects landscape scale patterns in pest dynamics. We found that although adoption of Bt maize often brings increased financial returns, these rewards oscillate in response to the prevalence of pests.
The Effect of Farmers’ Decisions on Pest Control with Bt Crops: A Billion Dollar Game of Strategy
Hutchison, William D.; van den Bosch, Frank; Mitchell, Paul D.; Crowder, David; Parnell, Stephen; Whitmore, Andrew P.
2015-01-01
A farmer’s decision on whether to control a pest is usually based on the perceived threat of the pest locally and the guidance of commercial advisors. Therefore, farmers in a region are often influenced by similar circumstances, and this can create a coordinated response for pest control that is effective at a landscape scale. This coordinated response is not intentional, but is an emergent property of the system. We propose a framework for understanding the intrinsic feedback mechanisms between the actions of humans and the dynamics of pest populations and demonstrate this framework using the European corn borer, a serious pest in maize crops. We link a model of the European corn borer and a parasite in a landscape with a model that simulates the decisions of individual farmers on what type of maize to grow. Farmers chose whether to grow Bt-maize, which is toxic to the corn borer, or conventional maize for which the seed is cheaper. The problem is akin to the snow-drift problem in game theory; that is to say, if enough farmers choose to grow Bt maize then because the pest is suppressed an individual may benefit from growing conventional maize. We show that the communication network between farmers’ and their perceptions of profit and loss affects landscape scale patterns in pest dynamics. We found that although adoption of Bt maize often brings increased financial returns, these rewards oscillate in response to the prevalence of pests. PMID:26720851
Ornamental, Turf and Nursery Pests. MEP 308.
ERIC Educational Resources Information Center
Morgan, Omar D.; And Others
As part of a cooperative extension service series by the University of Maryland, this publication introduces the identification and control of common turf and plant pests that can be found in the urban environment. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests such as…
Dowling, Damian K; Tompkins, Daniel M; Gemmell, Neil J
2015-10-01
Pest species represent a major ongoing threat to global biodiversity. Effective management approaches are required that regulate pest numbers, while minimizing collateral damage to nontarget species. The Trojan Female Technique (TFT) was recently proposed as a prospective approach to biological pest control. The TFT draws on the evolutionary hypothesis that maternally inherited mitochondrial genomes are prone to the accumulation of male, but not female, harming mutations. These mutations could be harnessed to provide trans-generational fertility-based control of pest species. A candidate TFT mutation was recently described in the fruit fly, Drosophila melanogaster, which confers male-only sterility in the specific isogenic nuclear background in which it is maintained. However, applicability of the TFT relies on mitochondrial mutations whose male-sterilizing effects are general across nuclear genomic contexts. We test this assumption, expressing the candidate TFT-mutation bearing haplotype alongside a range of nuclear backgrounds and comparing its fertility in males, relative to that of control haplotypes. We document consistently lower fertility for males harbouring the TFT mutation, in both competitive and noncompetitive mating contexts, across all nuclear backgrounds screened. This indicates that TFT mutations conferring reduced male fertility can segregate within populations and could be harnessed to facilitate this novel form of pest control.
Dowling, Damian K; Tompkins, Daniel M; Gemmell, Neil J
2015-01-01
Pest species represent a major ongoing threat to global biodiversity. Effective management approaches are required that regulate pest numbers, while minimizing collateral damage to nontarget species. The Trojan Female Technique (TFT) was recently proposed as a prospective approach to biological pest control. The TFT draws on the evolutionary hypothesis that maternally inherited mitochondrial genomes are prone to the accumulation of male, but not female, harming mutations. These mutations could be harnessed to provide trans-generational fertility-based control of pest species. A candidate TFT mutation was recently described in the fruit fly, Drosophila melanogaster, which confers male-only sterility in the specific isogenic nuclear background in which it is maintained. However, applicability of the TFT relies on mitochondrial mutations whose male-sterilizing effects are general across nuclear genomic contexts. We test this assumption, expressing the candidate TFT-mutation bearing haplotype alongside a range of nuclear backgrounds and comparing its fertility in males, relative to that of control haplotypes. We document consistently lower fertility for males harbouring the TFT mutation, in both competitive and noncompetitive mating contexts, across all nuclear backgrounds screened. This indicates that TFT mutations conferring reduced male fertility can segregate within populations and could be harnessed to facilitate this novel form of pest control. PMID:26495040
Entomopathogenic nematodes in the European biocontrol market.
Ehlers, R U
2003-01-01
In Europe total revenues in the biocontrol market have reached approximately 200 million Euros. The sector with the highest turn-over is the market for beneficial invertebrates with a 55% share, followed by microbial agents with approximately 25%. Annual growth rates of up to 20% have been estimated. Besides microbial plant protection products that are currently in the process of re-registration, several microbial products have been registered or are in the process of registration, following the EU directive 91/414. Entomopathogenic nematodes (EPN) are exceptionally safe biocontrol agents. Until today, they are exempted from registration in most European countries, the reason why SMEs were able to offer economically reasonable nematode-based products. The development of technology for mass production in liquid media significantly reduced the product costs and accelerated the introduction of nematode products in tree nurseries, ornamentals, strawberries, mushrooms, citrus and turf. Progress in storage and formulation technology has resulted in high quality products which are more resistant to environmental extremes occurring during transportation to the user. The cooperation between science, industry and extension within the EU COST Action 819 has supported the development of quality control methods. Today four companies produce EPN in liquid culture, offering 8 different nematode species. Problems with soil insects are increasing. Grubs, like Melolontha melolontha and other scarabaeidae cause damage in orchards and turf. Since the introduction of the Western Corn Rootworm Diabrotica virgifera into Serbia in 1992, this pests as spread all over the Balkan Region and has reached Italy, France and Austria. These soil insect pests are potential targets for EPN. The development of insecticide resistance has opened another sector for EPN. Novel adjuvants used to improve formulation of EPN have enabled the foliar application against Western Flower Thrips and Plutella xylostella. To reach these markets, the product costs for EPN will have to further decrease in the future. One possibility to reduce application costs related with the use of EPN is the inoculative application to cause long term effects on pest populations.
ERIC Educational Resources Information Center
Cowles, Kathleen Letcher; And Others
Integrated Pest Management (IPM) is a decision-making approach to pest control that has been used successfully on farms, city parks, offices, homes, and schools. IPM programs help individuals decide when treatments are necessary, where treatment would be most helpful, and what combinations of tactics would be most effective, safe, and inexpensive…
ERIC Educational Resources Information Center
Gentile, A. G.; Scanlon, D. T.
This manual is designed by the Massachusetts Cooperative Extension Service as a guide for the control of the most common insects and related pests of floricultural crops grown commercially in glass and plastic houses in Massachusetts. The publication consists of two sections. The first section presents a description of the major pests of…
Insect management in deciduous orchard ecosystems: Habitat manipulation
NASA Astrophysics Data System (ADS)
Tedders, W. L.
1983-01-01
Current literature pertaining to habitat manipulation of deciduous fruit and nut orchards for pest control is reviewed. The hypothesis of pesticide-induced pest problems in deciduous orchards as well as the changing pest population dynamics of deciduous orchards is discussed An experimental habitat manipulation program for pecans, utilizing vetch cover crops to enhance lady beetle populations for pecan aphid control is presented
Sycamore Pests: A Guide to Major Insects, Diseases, and Air Pollution
T. H. Filer; J. D. Solomon; F. I. McCracken; F. L. Oliveria; R. Lewis; M. J. Weiss; T. J. Rogers
1977-01-01
This booklet will help nurserymen, forest woodland managers and homeowners to identify and control pest problems. Major insects and diseases are illustrated. Brief mention is made of other pests of local or sporadic concern. A list of registered chemical controls is included. This list is subject to change as new chemicals are approved. Revisions will be made available...
USDA-ARS?s Scientific Manuscript database
Pest control managers can benefit from using mathematical approaches, particularly models, when implementing area-wide pest control programs that include sterile insect technique (SIT), especially when these are used to calculate required rates of sterile releases to result in suppression or eradica...
Romeis, Jörg; Raybould, Alan; Bigler, Franz; Candolfi, Marco P; Hellmich, Richard L; Huesing, Joseph E; Shelton, Anthony M
2013-01-01
Arthropods form a major part of the biodiversity in agricultural landscapes. Many species are valued because they provide ecosystem services, including biological control, pollination and decomposition, or because they are of conservation interest. Some arthropods reduce crop yield and quality, and conventional chemical pesticides, biological control agents and genetically engineered (GE) crops are used to control them. A common concern addressed in the ecological risk assessment (ERA) that precedes regulatory approval of these pest control methods is their potential to adversely affect valued non-target arthropods (NTAs). A key concept of ERA is early-tier testing using worst-case exposure conditions in the laboratory and surrogate test species that are most likely to reveal an adverse effect. If no adverse effects are observed in those species at high exposures, confidence of negligible ecological risk from the use of the pest control method is increased. From experience with chemical pesticides and biological control agents, an approach is proposed for selecting test species for early-tier ERA of GE arthropod-resistant crops. Surrogate species should be selected that most closely meet three criteria: (i) Potential sensitivity: species should be the most likely to be sensitive to the arthropod-active compound based on the known spectrum of activity of the active ingredient, its mode of action, and the phylogenetic relatedness of the test and target species; (ii) species should be representative of valued taxa or functional groups that are most likely to be exposed to the arthropod-active compound in the field; and (iii) Availability and reliability: suitable life-stages of the test species must be obtainable in sufficient quantity and quality, and validated test protocols must be available that allow consistent detection of adverse effects on ecologically relevant parameters. Our proposed approach ensures that the most suitable species are selected for testing and that the resulting data provide the most rigorous test of the risk hypothesis of no adverse effect in order to increase the quality and efficiency of ERAs for cultivation of GE crops. Copyright © 2012 Elsevier Ltd. All rights reserved.
Complex Dynamics of an Impulsive Control System in which Predator Species Share a Common Prey
NASA Astrophysics Data System (ADS)
Pei, Yongzhen; Liu, Shaoying; Li, Changguo
2009-06-01
In an ecosystem, multiple predator species often share a common prey and the interactions between the predators are neutral. In view of this fact, we propose a three-species prey-predator system with the functional responses and impulsive controls to model the process of pest management. It is proved that the system has a locally stable pest-eradication periodic solution under the assumption that the impulsive period is less than some critical value. In particular, two single control strategies (biological control alone or chemical control alone) are proposed. Finally, we compare three pest control strategies and find that if we choose narrow-spectrum pesticides that are targeted to a specific pest’s life cycle to kill the pest, then the combined strategy is preferable. Numerical results show that our system has complex dynamics including period-doubling bifurcation, quasi-periodic oscillation, chaos, intermittency and crises.
Pest Control in the School Environment:Adopting Integrated Pest Management
Learn about establishing a school IPM program, including developing an official IPM policy statement, setting roles for participants and pest management objectives, inspecting sites, setting action threshold, applying IPM strategies and evaluating results.
Zhou, Xiang; Su, Xiu; Liu, Hongbo
2016-01-01
The brown planthopper (BPH), Nilaparvata lugens (Staparvata luera: Delphacidae), is a serious rice pest that easily develops resistance to chemical insecticides and resistant rice varieties. This study evaluated the infectivity of the BPH fungal pathogen, Pandora delphacis, and developed a novel formulation as an alternative means of BPH control. In a multiconidial concentration bioassay, P. delphacis-infected BPH cadavers were observed on day 4, but most occurred between days 5 and 8. BPH mortality depended on the inoculated conidial concentration. The cumulative mortality of adult BPHs reached 81.7% at 192 conidia mm(-2) in 8 days. Inoculation with 40.9 conidia mm(-2) was sufficient to induce 50% BPH death, based on analysis of a time-concentration-mortality model. A floatable P. delphacis-based formulation was made for use in paddy fields; mycelium-containing pellets mimicking mycosed cadavers could produce 7-15.7 × 10(4) infectious conidia pellet(-1) at 11-28 °C. In the laboratory bioassay, three floating pellets in a BPH-rearing jar caused 75.5% BPH mortality within 8 days, similar to the mortality level caused by direct conidial inoculation. P. delphacis is a potential biocontrol agent of BPHs for further research, and the novel floatable formulation holds promise as a method for BPH control. © 2015 Society of Chemical Industry.
Peterson, Julie A.; Ode, Paul J.; Oliveira-Hofman, Camila; Harwood, James D.
2016-01-01
Crop plants exhibit a wide diversity of defensive traits and strategies to protect themselves from damage by herbivorous pests and disease. These defensive traits may be naturally occurring or artificially selected through crop breeding, including introduction via genetic engineering. While these traits can have obvious and direct impacts on herbivorous pests, many have profound effects on higher trophic levels, including the natural enemies of herbivores. Multi-trophic effects of host plant resistance have the potential to influence, both positively and negatively, biological control. Plant defense traits can influence both the numerical and functional responses of natural enemies; these interactions can be semiochemically, plant toxin-, plant nutrient-, and/or physically mediated. Case studies involving predators, parasitoids, and pathogens of crop pests will be presented and discussed. These diverse groups of natural enemies may respond differently to crop plant traits based on their own unique biology and the ecological niches they fill. Genetically modified crop plants that have been engineered to express transgenic products affecting herbivorous pests are an additional consideration. For the most part, transgenic plant incorporated protectant (PIP) traits are compatible with biological control due to their selective toxicity to targeted pests and relatively low non-target impacts, although transgenic crops may have indirect effects on higher trophic levels and arthropod communities mediated by lower host or prey number and/or quality. Host plant resistance and biological control are two of the key pillars of integrated pest management; their potential interactions, whether they are synergistic, complementary, or disruptive, are key in understanding and achieving sustainable and effective pest management. PMID:27965695
Peterson, Julie A; Ode, Paul J; Oliveira-Hofman, Camila; Harwood, James D
2016-01-01
Crop plants exhibit a wide diversity of defensive traits and strategies to protect themselves from damage by herbivorous pests and disease. These defensive traits may be naturally occurring or artificially selected through crop breeding, including introduction via genetic engineering. While these traits can have obvious and direct impacts on herbivorous pests, many have profound effects on higher trophic levels, including the natural enemies of herbivores. Multi-trophic effects of host plant resistance have the potential to influence, both positively and negatively, biological control. Plant defense traits can influence both the numerical and functional responses of natural enemies; these interactions can be semiochemically, plant toxin-, plant nutrient-, and/or physically mediated. Case studies involving predators, parasitoids, and pathogens of crop pests will be presented and discussed. These diverse groups of natural enemies may respond differently to crop plant traits based on their own unique biology and the ecological niches they fill. Genetically modified crop plants that have been engineered to express transgenic products affecting herbivorous pests are an additional consideration. For the most part, transgenic plant incorporated protectant (PIP) traits are compatible with biological control due to their selective toxicity to targeted pests and relatively low non-target impacts, although transgenic crops may have indirect effects on higher trophic levels and arthropod communities mediated by lower host or prey number and/or quality. Host plant resistance and biological control are two of the key pillars of integrated pest management; their potential interactions, whether they are synergistic, complementary, or disruptive, are key in understanding and achieving sustainable and effective pest management.
From Metchnikoff to Monsanto and beyond: the path of microbial control.
Lord, Jeffrey C
2005-05-01
In 125 years since Metchnikoff proposed the use of Metarhizium anisopliae to control the wheat cockchafer and brought about the first field trials, microbial control has progressed from the application of naturalists' observations to biotechnology and precision delivery. This review highlights major milestones in its evolution and presents a perspective on its current direction. Fungal pathogens, the most eye-catching agents, dominated the early period, but major mycological control efforts for chinch bugs and citrus pests in the US had questionable success, and interest waned. The discoveries of Bacillus popilliae and Bacillus thuringiensis began the era of practical and commercially viable microbial control. A program to control the Japanese beetle in the US led to the discovery of both B. popilliae and Steinernema glaseri, the first nematode used as a microbial control agent. Viral insect control became practical in the latter half of the 20th century, and the first registration was obtained with the Heliothis nuclear polyhedrosis virus in 1975. Now strategies are shifting for microbial control. While Bt transgenic crops are now planted on millions of hectares, the successes of more narrowly defined microbial control are mainly in small niches. Commercial enthusiasm for traditional microbial control agents has been unsteady in recent years. The prospects of microbial insecticide use on vast areas of major crops are now viewed more realistically. Regulatory constraints, activist resistance, benign and efficacious chemicals, and limited research funding all drive changes in focus. Emphasis is shifting to monitoring, conservation, integration with chemical pesticides, and selection of favorable venues such as organic agriculture and countries that have low costs, mild regulatory climates, modest chemical inputs, and small scale farming.
Bug Off: A Guide for Integrated Pest Management in Granville Schools.
ERIC Educational Resources Information Center
2001
This guide describes options for the Granville schools when dealing with pests. It is based on Integrated Pest Management (IPM), a philosophy that employs safe and practical pest control methods. The guide can be used to incorporate IPM philosophy into the school systems. The first section provides the environmental context for an interest in…
[Neoliberalism, pesticide consumption and food sovereignty crisis in Brazil].
de Miranda, Ary Carvalho; Moreira, Josino Costa; de Carvalho, René; Peres, Frederico
2007-01-01
The adoption of neo-liberal economic models in Latin American countries between the late 1980's and early 1990's has led to, among other impacts, a significant change in the rural production model, with a clear incentive to exportation-oriented agribusiness, especially that based on extensive monoculture (soy-bean, corn, cotton etc.). This change, primarily focused on rural production increment, was supported by the implementation of new production technologies, especially the use of chemical agents for crop protection and pest control. The impacts of the indiscriminate and extensive use of these chemical agents for actual and future generations of rural workers are indeterminate. Furthermore, it is hard to estimate the dimension of correlated environmental damages. In the present article, the role of pesticides use in rural production is discussed, contextualizing the local and regional rural production panorama and the impacts - economic, social, environmental and sanitary - of neo-liberal rural production policies.
John. E. Lundquist; James. P. Jr. Ward
2004-01-01
Part of the diversity of a forest is the variety of agents that can kill trees. These agents differ in the nature, magnitude, and patterns of their impacts on forest resources. Diseases, insect pests, and other small-scale disturbances are commonly assessed on the basis of their impacts on timber production. Tree mortality usually means reduced volume of living stems....
Integrated pest management in western flower thrips: past, present and future.
Mouden, Sanae; Sarmiento, Kryss Facun; Klinkhamer, Peter Gl; Leiss, Kirsten A
2017-05-01
Western flower thrips (WFT) is one of the most economically important pest insects of many crops worldwide. Recent EU legislation has caused a dramatic shift in pest management strategies, pushing for tactics that are less reliable on chemicals. The development of alternative strategies is therefore an issue of increasing urgency. This paper reviews the main control tactics in integrated pest management (IPM) of WFT, with the focus on biological control and host plant resistance as areas of major progress. Knowledge gaps are identified and innovative approaches emphasised, highlighting the advances in 'omics' technologies. Successful programmes are most likely generated when preventive and therapeutic strategies with mutually beneficial, cost-effective and environmentally sound foundations are incorporated. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Fowler, Harold G.; Pagani, Maria Inez; da Silva, Osvaldo Aulino; Forti, Luis Carlos; da Silva, Virgilio Pereira; de Vasconcelos, Heraldo Luis
1989-11-01
Leaf-cutting ants of the genera Acromyrmex and Atta are considered the principal polyphagous pests of the Neotropics Although some members of these genera are of economic importance, have a broad geographic distribution, and are extremely good colonizers, others are endemic and closely interact with native ecosystems. Control is generally practiced against any colony, irrespective of its taxonomic status. Indiscriminate control coupled with habitat destruction threatens endemic species with extinction, and, through habitat simplification, favors other pest species. As nests of Atta are large, having several square meters of nest surface, the endemic taxa can be easily used as environmental indicators for natural ecosystems Likewise, the pest species can be used to detect environmental disturbance As these ants are keystone species and easily identified by nonspecialists, efforts should be made to integrate these into viable conservation programs
Sreerag, Ravikumar Sreekala; Jayaprakas, C. A.; Ragesh, L.; Kumar, Sasidharan Nishanth
2014-01-01
The mealy bug, Rhizoecus amorphophalli, is a menace to the aroid farmers due to the intensive infestation on stored tubers. Spraying of pesticides was able to control this pest but it always left a chance for fungal growth. Bacterial endosymbionts associated with the insects provide several benefits to their host. Since such endosymbionts play a vital role even in the physiology of their host, revealing the types of bacteria associated with mealy bug will give basic information, which may throw light on the management of this noxious pest. The present study is the first to identify bacterial endosymbionts associated with R. amorphophalli employing phenotypic characterization and 16S rDNA sequencing. Three culturable bacteria, namely, Bacillus subtilis, Staphylococcus gallinarum, and Staphylococcus saprophyticus, were isolated from R. amorphophalli. Moreover, the antibiotic susceptibility tests against the isolated bacteria showed that all the isolates were susceptible to the three antibiotics tested, except cephalexin. Recently, endosymbionts are used as effective biocontrol agents (BCAs) and the present study will stand as a connecting link in identification and effective utilization of these endosymbionts as BCAs for management of R. amorphophalli. PMID:27355014
Decaleside: a new class of natural insecticide targeting tarsal gustatory sites
NASA Astrophysics Data System (ADS)
Rajashekar, Yallappa; Rao, Lingamallu J. M.; Shivanandappa, Thimmappa
2012-10-01
Natural sources for novel insecticide molecules hold promise in view of their eco-friendly nature, selectivity, and mammalian safety. Recent progress in understanding the biology of insect olfaction and taste offers new strategies for developing selective pest control agents. We have isolated two natural insecticidal molecules from edible roots of Decalepis hamiltonii named Decalesides I and II, which are novel trisaccharides, highly toxic to household insect pests and stored-product insects. We have experimentally shown that insecticidal activity requires contact with tarsi on the legs but is not toxic orally. The insecticidal activity of molecules is lost by hydrolysis, and various sugars modify toxic response, showing that the insecticidal activity is via gustatory sites on the tarsi. Selective toxicity to insects by virtue of their gustatory site of action and the mammalian safety of the new insecticides is inherent in their chemical structure with 1-4 or 1-1 α linkage that is easily hydrolyzed by digestive enzymes of mammals. Decalesides represent a new chemical class of natural insecticides with a unique mode of action targeting tarsal chemosensory/gustatory system of insects.
Sarwar, Zahid Mahmood; Ijaz, Mamuna; Sabri, Muhammad Altaf; Yousaf, Hasnain; Mohsan, Muhammad
2018-06-01
Red cotton bug, Dysdercus koenigii (Hemiptera: Pyrrhocoridae), has become the major insect pest of various crops, including cotton, and thereby reducing the yield qualitatively and quantitatively and synthetic insecticides belonging to different groups are the major control agents for such insect pests. A laboratory experiment was carried out to evaluate the effect of different conventional insecticides, i.e., imidacloprid, deltamethrin, lambda cyhalothrin, gamma cyhalothrin and cyfluthirn on haemocytes of D. koenigii. The individuals were exposed to insecticides separately and data was recorded after 30 and 60 min of the exposure. The findings of current study depicted chlorpyrifos to be more effective and significant alterations in total haemocyte counts and differential haemocyte counts were observed in the cyfluthirn treated D. koenigii. In addition to this, cell structure was also disrupted as an immune response. Similar studies would also be helpful to understand the defence mechanisms of insects against the xenobiotics which will help to device efficient management tools for D. koenigii.
Aquatic Pest Control. Sale Publication 4071.
ERIC Educational Resources Information Center
Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.
The information in this manual applies to control of aquatic pests in recreational waters, agricultural reservoirs, ornamental ponds, coastal bays, estuaries and channels, and drinking water reservoirs. Mechanical, cultural, biological, and chemical control methods are discussed. The majority of the material is devoted to weed control in static…
Linking human behavior to environmental effects using a case study of urban rodent control
Pest control is common practice in many land use activities worldwide. Although often inadvertent, pest control can affect non-target species, sometimes fatally. Using social survey data about residential rodent control behavior in two areas in California, we applied a framewor...
Carrington, Lauren B; Hoffmann, Ary A; Weeks, Andrew R
2010-07-07
Wolbachia may act as a biological control agent for pest management; in particular, the Wolbachia variant wMelPop (popcorn) shortens host longevity and may be useful for dengue suppression. However, long-term changes in the host and Wolbachia genomes can alter Wolbachia spread and/or host effects that suppress disease. Here, we investigate the phenotypic effects of wMelPop in a non-native host, Drosophila simulans, following artificial transinfection approximately 200 generations ago. Long-term rearing and maintenance of the bacteria were at 19 degrees C in the original I-102 genetic background that was transinfected with the popcorn strain. The bacteria were then introgressed into three massbred backgrounds, and tetracycline was used to create uninfected sublines. The effect of wMelPop on longevity in this species appears to have changed; longevity was no longer reduced at 25 degrees C in some nuclear backgrounds, reflecting different geographical origin, selection or drift, although the reduction was still evident for flies held at 30 degrees C. Wolbachia influenced productivity and viability, and development time in some host backgrounds. These findings suggest that long-term attenuation of Wolbachia effects may compromise the effectiveness of this bacterium in pest control. They also emphasize the importance of host nuclear background on Wolbachia phenotypic effects.
Chattopadhyay, Pritam; Banerjee, Goutam
2018-04-01
Bacillus thuringiensis ( Bt ) is a Gram-positive, spore-forming, soil bacterium, which is very popular bio-control agent in agricultural and forestry. In general, B. thuringiensis secretes an array of insecticidal proteins including toxins produced during vegetative growth phase (such as secreted insecticidal protein, Sip; vegetative insecticidal proteins, Vip), parasporal crystalline δ-endotoxins produced during vegetative stationary phase (such as cytolytic toxin, Cyt; and crystal toxin, Cry), and β-exotoxins. Till date, a wide spectrum of Cry proteins has been reported and most of them belong to three-domain-Cry toxins, Bin-like toxin, and Etx_Mtx2-like toxins. To the best of our knowledge, neither Bt insecticidal toxins are exclusive to Bt nor all the strains of Bt are capable of producing insecticidal Bt toxins. The lacuna in their latest classification has also been discussed. In this review, the updated information regarding the insecticidal Bt toxins and their different mode of actions were summarized. Before applying the Bt toxins on agricultural field, the non-specific effects of toxins should be investigated. We also have summarized the problem of insect resistance and the strategies to combat with this problem. We strongly believe that this information will help a lot to the budding researchers in the field of modern pest control biotechnology.
2008-05-29
Plant Health Inspection Service / Animal Damage Control Memorandum of Agreement on Animal Damage Control, April 19905 (am) Army Regulation 40-905...Services shall manage vertebrate pests in accordance with the DoD-USDA/Animal and Plant Health Inspection Service / Animal Damage Control MOA (Reference
Schmidt-Jeffris, Rebecca A; Nault, Brian A
2016-12-01
Many vegetable insect pests are managed using neonicotinoid and pyrethroid insecticides. Unfortunately, these insecticides are toxic to many bees and natural enemies and no longer control some pests that have developed resistance. Anthranilic diamide insecticides provide systemic control of many herbivorous arthropod pests, but exhibit low toxicity to beneficial arthropods and mammals, and may be a promising alternative to neonicotinoids and pyrethroids. Anthranilic diamides may be delivered to vegetable crops via seed, in-furrow, or foliar treatments; therefore, it would be desirable to identify which application method provides high levels of pest control while minimizing the amount of active ingredient. As a case study, chlorantraniliprole and cyantraniliprole applied via the methods listed above were evaluated for managing seedcorn maggot, Delia platura (Meigen) (Diptera: Anthomyiidae), and European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), in snap bean. Chlorantraniliprole and cyantraniliprole delivered as seed and in-furrow treatments reduced D. platura damage to the same level as the standard neonicotinoid seed treatment. Both diamides applied via all three methods significantly reduced O. nubilalis damage, but only the foliar application provided similar control as the standard pyrethroid spray. Results from laboratory bioassays revealed that both diamides applied as seed and in-furrow treatments caused high O. nubilalis neonate mortality up to 44 d after application. While the diamides provided equivalent control of these pests as the neonicotinoid and pyrethroid standards when applied in the same manner, chlorantraniliprole delivered as a seed treatment showed the most promise for managing both pests. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Elleuch, Jihen; Jaoua, Samir; Ginibre, Carole; Chandre, Fabrice; Tounsi, Slim; Zghal, Raida Z
2016-12-01
Bacillus thuringiensis δ-endotoxins are the most widely used biopesticides for controlling economically important crop pests and disease vectors. Improving their efficacy is of great benefit. Here, an improvement in Cry2Aa δ-endotoxin toxicity was attempted via a cry gene over expression system using P20 from B. thuringiensis israelensis. The coexpression of Cry2Aa with P20 resulted in a seven fold increase in its production yield in B. thuringiensis. Generated crystals proved to be significantly more toxic (505.207 µg g -1 , 1.99 mg L -1 and 1.49 mg L -1 ) than the P20-lacking control (720.78 µg g -1 , 705.69 mg L -1 and 508.51 mg L -1 ) against Ephestia kuehniella, Aedes aegypti and Culex pipiens larvae respectively. In vitro, processing experiments revealed a P20-mediated protection of Cry2Aa against degradation under larval gut conditions. Thus, P20 could promote the maintenance of a tightly packaged conformation of Cry2Aa toxins in the larval midgut upon correct activation and binding to its membrane receptors. Based on their resistance against excessive proteolysis, Cry2Aa δ-endotoxins, produced in the presence of P20, could be considered as a successful control agent for E. kuehniella and an effective alternative for mosquito control, implying its possible exploitation in pest management programmes. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Zhang, Xiaona; Jin, Daochao; Zou, Xiao; Guo, Jianjun
2016-05-01
The two-spotted mite, Tetranychus urticae Koch, is one of the most serious mite pests of crops throughout the world. Biocontrol of the mite with fungal agents has long been paid much attention because of the development of insecticide resistance and the severe restriction of chemical pesticides. In this study, the efficacy of submerged conidia of the entomopathogenic fungus Isaria cateniannulata strain 08XS-1 against T. urticae eggs, larvae and female adults was evaluated at different temperatures and humidity in the laboratory and under field conditions. The results showed that a suspension of 2 × 10(7) submerged conidia mL(-1) caused the highest mortalities of mite eggs, larvae and females (100, 100 and 70% respectively) at 100% relative humidity and 25 °C in the laboratory. In the field experiments against the mites, a suspension of 2 × 10(8) submerged conidia mL(-1) achieved significant efficiency - the relative control effects were 88.6, 83.8 and 83%, respectively, in cucumber, eggplant and bean fields after 10 days of treatment. The results suggest that the I. cateniannulata strain 08XS-1 is a potential fungal agent, with acceptable production cost of conidia, against T. urticae in the field in an area such as southwestern China with higher air humidity. © 2016 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Holt, J; Leach, A W; Johnson, S; Tu, D M; Nhu, D T; Anh, N T; Quinlan, M M; Whittle, P J L; Mengersen, K; Mumford, J D
2018-02-01
The production of an agricultural commodity involves a sequence of processes: planting/growing, harvesting, sorting/grading, postharvest treatment, packing, and exporting. A Bayesian network has been developed to represent the level of potential infestation of an agricultural commodity by a specified pest along an agricultural production chain. It reflects the dependency of this infestation on the predicted level of pest challenge, the anticipated susceptibility of the commodity to the pest, the level of impact from pest control measures as designed, and any variation from that due to uncertainty in measure efficacy. The objective of this Bayesian network is to facilitate agreement between national governments of the exporters and importers on a set of phytosanitary measures to meet specific phytosanitary measure requirements to achieve target levels of protection against regulated pests. The model can be used to compare the performance of different combinations of measures under different scenarios of pest challenge, making use of available measure performance data. A case study is presented using a model developed for a fruit fly pest on dragon fruit in Vietnam; the model parameters and results are illustrative and do not imply a particular level of fruit fly infestation of these exports; rather, they provide the most likely, alternative, or worst-case scenarios of the impact of measures. As a means to facilitate agreement for trade, the model provides a framework to support communication between exporters and importers about any differences in perceptions of the risk reduction achieved by pest control measures deployed during the commodity production chain. © 2017 Society for Risk Analysis.
Overuse or underuse? An observation of pesticide use in China.
Zhang, Chao; Hu, Ruifa; Shi, Guanming; Jin, Yanhong; Robson, Mark G; Huang, Xusheng
2015-12-15
Pesticide use has experienced a dramatic increase worldwide, especially in China, where a wide variety of pesticides are used in large amounts by farmers to control crop pests. While Chinese farmers are often criticized for pesticide overuse, this study shows the coexistence of overuse and underuse of pesticide based on the survey data of pesticide use in rice, cotton, maize, and wheat production in three provinces in China. A novel index amount approach is proposed to convert the amount of multiple pesticides used to control the same pest into an index amount of a referenced pesticide. We compare the summed index amount with the recommended dosage range of the referenced pesticide to classify whether pesticides are overused or underused. Using this new approach, the following main results were obtained. Pesticide overuse and underuse coexist after examining a total of 107 pesticides used to control up to 54 crop pests in rice, cotton, maize, and wheat production. In particular, pesticide overuse in more than half of the total cases for 9 crop pest species is detected. In contrast, pesticide underuse accounts for more than 20% of the total cases for 11 pests. We further indicate that the lack of knowledge and information on pesticide use and pest control among Chinese farmers may cause the coexistence of pesticide overuse and underuse. Our analysis provides indirect evidence that the commercialized agricultural extension system in China probably contributes to the coexistence of overuse and underuse. To improve pesticide use, it is urgent to reestablish the monitoring and forecasting system regarding pest control in China. Copyright © 2015 Elsevier B.V. All rights reserved.
Rezaei, Nastaran; Karimi, Javad; Hosseini, Mojtaba; Goldani, Morteza; Campos-Herrera, Raquel
2015-03-01
The greenhouse whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) is a polyphagous pest in greenhouse crops. The efficacy of two entomopathogenic nematodes (EPN), Steinernema feltiae and Heterorhabditis bacteriophora, as biological control agents against T. vaporariorum was evaluated using two model crops typical of vegetable greenhouse productions: cucumber and pepper. Laboratory tests evaluated adults and second nymphal instars for pest susceptibility to different EPN species at different concentrations of infective juveniles (IJ; 0, 25, 50, 100, 150, 200, and 250 IJ per cm(2)); subsequent greenhouse trials against second nymphal instars on cucumber and pepper plants evaluated more natural conditions. Concentrations were applied in combination with Triton X-100 (0.1% v/v), an adjuvant for increasing nematode activity. In laboratory studies, both life stages were susceptible to infection by the two nematode species, but S. feltiae recorded a lower LC50 than H. bacteriophora for both insect stages. Similarly, in greenhouse experiments, S. feltiae required lower concentrations of IJ than H. bacteriophora to reach the same mortality in nymphs. In greenhouse trials, a significant difference was observed in the triple interaction among nematode species × concentration × plant. Furthermore, the highest mortality rate of the second nymphal instars of the T. vaporariorum was obtained from the application of S. feltiae concentrated to 250 IJ/cm(2) on cucumber (49 ± 1.23%). The general mortality caused by nematodes was significantly higher in cucumber than in pepper. These promising results support further investigation for the optimization of the best EPN species/concentration in combination with insecticides or adjuvants to reach a profitable control of this greenhouse pest.
Meng, Xiang; Hu, Junjie; Ouyang, Gecheng
2017-01-01
Litchi stink-bug, Tessaratoma papillosa Drury (Hemiptera: Tessaratomidae), is one of the most widespread and destructive pest species on Litchi chinensis Sonn and Dimocarpus longan Lour in Southern China. Inappropriate use of chemical pesticides has resulted in serious environmental problems and food pollution. Generating an improved Integrated Pest Management (IPM) strategy for litchi stink-bug in orchard farming requires development of an effective biological control agent. Entomopathogenic fungi are regarded as a vital ecological factor in the suppression of pest populations under field conditions. With few effective fungi and pathogenic strains available to control litchi stink-bug, exploration of natural resources for promising entomopathogenic fungi is warranted. In this study, two pathogenic fungi were isolated from cadavers of adult T. papillosa . They were identified as Paecilomyces lilacinus and Beauveria bassiana by morphological identification and rDNA-ITS homogeneous analysis. Infection of T. papillosa with B. bassiana and P. lilacinus occurred initially from the antennae, metameres, and inter-segmental membranes. Biological tests showed that the two entomopathogenic fungi induced high mortality in 2 nd and 5 th instar nymphs of T. papillosa . B. bassiana was highly virulent on 2 nd instar nymphs of T. papillosa , with values for cadaver rate, LC 50 and LT 50 of 88.89%, 1.92 × 10 7 conidia/mL and 4.34 days respectively. This study provides two valuable entomopathogenic fungi from T. papillosa . This finding suggests that the highly virulent P. lilacinus and B. bassiana play an important role in the biocontrol of T. papillosa in China. These pathogenic fungi had no pollution or residue risk, and could provide an alternative option for IPM of litchi stink-bug.
Deng, Xi-le; Kai, Zhen-Peng; Chamberlin, Mary E; Horodyski, Frank M; Yang, Xin-Ling
2016-11-01
The midgut is an important site for both nutrient absorption and ionic regulation in lepidopteran larvae, major pests in agriculture. The larval lepidopteran midgut has become a potent insecticide target over the past few decades. Recent studies have shown that an insect neuropeptide, Manduca sexta allatotropin (Manse-AT), exhibits inhibition of active ion transport (AIT) across the larval midgut epithelium. The full characteristic of the AIT inhibition capacity of Manse-AT is essential to assay. In this study, AIT inhibition across the M. sexta midgut by Manse-AT and its analogues in a range of concentrations was assayed. The structure-activity relationship of Manse-AT was also studied by truncated and alanine-replacement strategies. Our results identified three residues, Thr4, Arg6 and Phe8, as the most important components for activity on the midgut. Replacement of Glu1, Met2 and Met3 reduced the potency of the analogues. The conservative substitution of Gly7 with alanine had little effect on the potency of the analogues. We demonstrated for the first time that Manse-AT (10-13) behaves as a potent antagonist in vitro on active ion transport across the epithelium of the posterior midgut in M. sexta. Structure-activity studies of Manse-AT are useful in developing lead compounds for the design and testing of synthetic antagonists, ultimately to develop potent and specific pest control strategies. Manse-AT (10-13) has been discovered as the first Manse-AT antagonist, with a significant effect and a short sequence compared with other insect neuropeptides. It may be a new potential pest control agent in the future. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
APHIS (PPQ) exotic pest detection
David R. Lance
2003-01-01
The legally mandated responsibilities of APHIS Plant Protection and Quarantine (PPQ) include: (1) Protect American agriculture from foreign plant pest introduction and establishment, (2) facilitate export of American agricultural products, and (3) control or eradicate pests as authorized by legislation and regulation.
Slowing and Combating Pest Resistance to Pesticides
Pesticides can be used to control a variety of pests, such as insects, weeds, rodents, bacteria, fungi, etc. Over time many pesticides have gradually lost effectiveness because pests develop resistance. Learn what EPA is doing to address resistance issues.
Hussain, Abid
2018-01-01
Metarhizium species are the leading bio-control agents well characterized regarding pathogenicity to agricultural, forest, public health, stored grains and urban insect pests. They infect the target host through the tight conidial adherence with the insect cuticle. Conidial binding to the insect cuticle drive the systematic integrated disease development events in target host to impart pathogenesis. However, there is growing evidence that virulence of the pathogen is directly related with proteolytic enzymes including metalloproteinases, chymotrypsin-like proteinases and subtilisin-like proteinases. Successful host pathogenesis is the selection of right set of virulence-related proteinases, which evolved as a result of host-pathogen coevolution.
Steenberg, Tove; Kilpinen, Ole
2014-04-01
The poultry red mite, Dermanyssus gallinae, is a major pest in egg production, feeding on laying hens. Widely used non-chemical control methods include desiccant dusts, although their persistence under field conditions is often short. Entomopathogenic fungi may also hold potential for mite control, but these fungi often take several days to kill mites. Laboratory experiments were carried out to study the efficacy of 3 types of desiccant dusts, the fungus Beauveria bassiana and combinations of the two control agents against D. gallinae. There was significant synergistic interaction between each of the desiccant dusts and the fungus, with observed levels of mite mortality significantly higher than those expected for an additive effect (up to 38 % higher). Synergistic interaction between desiccant dust and fungus was found also when different application methods were used for the fungus and at different levels of relative humidity. Although increased levels of mortality were reached due to the synergistic interaction, the speed of lethal action was not influenced by combining the two components. The persistence of the control agents applied separately or in combination did not change over a period of 4 weeks. Overall, combinations of desiccant dusts and fungus conidia seem to hold considerable promise for future non-chemical control of poultry red mites.
Roy, Lise; Bouvier, Jean-Charles; Lavigne, Claire; Galès, Mathieu; Buronfosse, Thierry
2013-08-01
Pesticide applications have a strong impact on biodiversity in agroecosystems. The present study aimed to assess the impact of pest control strategies on the arthropodofauna of Parus major nests built within nestboxes installed in orchards. Unlike many studied groups, these arthropod communities are not in direct contact with pesticide sprays (on account of their being sheltered by nestboxes) and are also unable to move away from the treated area. In this pilot study, we estimated the prevalence and the taxonomic and ecological diversities of arthropodofauna sampled in the nests and assessed the extent to which the whole and nest-specific arthropodofauna were affected by pest control strategies. Sixteen different insect and arachnid Primary Taxonomic Groups (PTGs, order level or below) were found in nests. The best represented PTGs (≥10% occurrence in years 2007 and 2008) were Psocoptera (Insecta, detritivorous/saprophagous), detritivorous/saprophagous Astigmata (Acari) and hematophagous Mesostigmata (Acari). Pest control strategies had a large impact on the prevalence of arthropods in nests, with higher proportions of nests hosting arthropods in organic orchards than in conventional orchards and with intermediate proportions in nests in Integrated Pest Management orchards. In contrast, pest control strategies had no significant effect on the composition of the arthropod communities when only nests hosting nidicolous arthropods were considered.
Prevention methods for pest control and their use in Poland.
Matyjaszczyk, Ewa
2015-04-01
Prevention methods can still be a cost-effective and efficient tool for pest control. Rational use of prevention methods is a feasible way to reduce dependency on chemical protection in agriculture. Costs, workload and farmers' awareness are key issues, however. In Poland, crop rotation is used as a method for pest control only to a limited extent owing to the high share of cereals in the crop structure. The choice of resistant varieties is satisfactory, but farmers should make use of qualified seed material more often. Liming is recommended on the majority of farms on account of widespread soil acidity. Favourable aspects as regards the prevention of pest development are biodiversity and the popularity of prevention cultivation techniques. © 2014 Society of Chemical Industry.
Plant parasite control and soil fauna diversity.
Lavelle, Patrick; Blouin, Manuel; Boyer, Johnny; Cadet, Patrice; Laffray, Daniel; Pham-Thi, Anh-Thu; Reversat, Georges; Settle, William; Zuily, Yasmine
2004-07-01
The use of pesticides to control plant parasites and diseases has generated serious problems of public health and environmental quality, leading to the promotion of alternative Integrated Pest Management strategies that tend to rely more on natural processes and the active participation of farmers as observers and experimenters in their own fields. We present three case studies that point at different options provided by locally available populations of soil organisms, the maintenance of diverse populations of pests or increased resistance of plants to pest attacks by their interactions with earthworms and other useful soil organisms. These examples demonstrate the diversity of options offered by the non-planned agro-ecosystem diversity in pest control and the need to identify management options that maintain this biodiversity.
A Practical Guide to Management of Common Pests in Schools. Integrated Pest Management.
ERIC Educational Resources Information Center
Illinois State Dept. of Public Health, Springfield.
This 3-part manual is designed to assist school officials understand the principles of Integrated Pest Management and aid them in implementing those principles into a comprehensive pest control program in their facilities. Developed for Illinois, this guide can be applied in part or in total to other areas of the country. Part 1 explains what an…
Ribonucleic acid interference (RNAi) and control of citrus pests
USDA-ARS?s Scientific Manuscript database
Ribonucleic acid interference, RNAi, applications and function are described for the non-scientist to bring a better understanding of how this emerging technology is providing environmentally friendly, non-transgenic, insect pest control. ...
Biological control of livestock pests : Parasitoids
USDA-ARS?s Scientific Manuscript database
House flies, Musca domestica L., and stable flies, Stomoxys calcitrans (L.), are common pests on livestock, poultry, and equine facilities. Biological control of filth flies with pupal parasitoids can be used in conjunction with other control methods as part of an integrated fly management program. ...
Microbial control of structural insect pests
USDA-ARS?s Scientific Manuscript database
Three major pest groups affecting urban structures, ants, termites, and peridomestic cockroaches, are potentially the most amenable for the development of microbial controls. It is not only because of their economic importance, but their biology and ecology make them more susceptible to control by e...
The insect ecdysone receptor is a good potential target for RNAi-based pest control.
Yu, Rong; Xu, Xinping; Liang, Yongkang; Tian, Honggang; Pan, Zhanqing; Jin, Shouheng; Wang, Na; Zhang, Wenqing
2014-01-01
RNA interference (RNAi) has great potential for use in insect pest control. However, some significant challenges must be overcome before RNAi-based pest control can become a reality. One challenge is the proper selection of a good target gene for RNAi. Here, we report that the insect ecdysone receptor (EcR) is a good potential target for RNAi-based pest control in the brown planthopper Nilaparvata lugens, a serious insect pest of rice plants. We demonstrated that the use of a 360 bp fragment (NlEcR-c) that is common between NlEcR-A and NlEcR-B for feeding RNAi experiments significantly decreased the relative mRNA expression levels of NlEcR compared with those in the dsGFP control. Feeding RNAi also resulted in a significant reduction in the number of offspring per pair of N. lugens. Consequently, a transgenic rice line expressing NlEcR dsRNA was constructed by Agrobacterium- mediated transformation. The results of qRT-PCR showed that the total copy number of the target gene in all transgenic rice lines was 2. Northern blot analysis showed that the small RNA of the hairpin dsNlEcR-c was successfully expressed in the transgenic rice lines. After newly hatched nymphs of N. lugens fed on the transgenic rice lines, effective RNAi was observed. The NlEcR expression levels in all lines examined were decreased significantly compared with the control. In all lines, the survival rate of the nymphs was nearly 90%, and the average number of offspring per pair in the treated groups was significantly less than that observed in the control, with a decrease of 44.18-66.27%. These findings support an RNAi-based pest control strategy and are also important for the management of rice insect pests.
Keeping NCI at Frederick Pest-Free—Doug Vaughn | Poster
Nuisance critters and creepy crawlers aren’t a problem at the National Cancer Institute (NCI) at Frederick, and that’s largely thanks to the efforts of Douglas Vaughn, the institution’s pest controller. Endearingly known to some staff as “Doug the Bug Guy,” Vaughn has been doing pest control for 39 years, 22 of which have been at NCI at Frederick. However, he doesn’t just
7 CFR 330.202 - Consideration of applications for permits to move plant pests.
Code of Federal Regulations, 2011 CFR
2011-01-01
...; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY PRODUCTS; GARBAGE Movement of Plant Pests § 330.202... Budget under control number 0579-0054) [24 FR 10825, Dec. 29, 1959, as amended at 48 FR 57466, Dec. 30...
Possible impact of radar on pest management operations
NASA Technical Reports Server (NTRS)
Rainey, R. C.
1979-01-01
Radar in making and maintaining contact with the most important populations of major pests in different stages of flight is presented. The desert locust and the African armyworm are discussed in understanding problems and developing a more effective control of pests.
Demirozer, Ozan; Tyler-Julian, Kara; Funderburk, Joe; Leppla, Norm; Reitz, Stuart
2012-12-01
The spread of the western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), resulted in the worldwide destabilization of established integrated pest management programs for many crops. Efforts to control the pest and the thrips-vectored tospoviruses with calendar applications of broad-spectrum insecticides have been unsuccessful. The result has been a classic '3-R' situation: resistance to numerous insecticides; resurgence of the western flower thrips populations as a result of natural predators and native competitor thrips being eliminated; replacement by various other pests. This paper reports on integrated pest management programs for fruiting vegetables that are effective, economical, ecologically sound and sustainable. The components include the following: define pest status (economic thresholds); increase biotic resistance (natural enemies and competition); integrate preventive and therapeutic tactics (scouting, ultraviolet-reflective technologies, biological control, compatible insecticides, companion plants and fertility); vertically integrate the programs with other pests; continually communicate latest science-based management tactics with end-users. These programs have been widely implemented in Florida and have significantly improved the management of western flower thrips and thrips-transmitted viruses. Copyright © 2012 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Bande, L. O. S.; Mariadi; Gusnawaty, HS; Nuriadi; Trisulpa, L.; Rahmania
2018-02-01
A shell of cashew nut (Anacardium occidentanle) has contained Cashew Nut Shell Liquid (CNSL) that is used as botanical pesticides. CNSL oil consists of active substance such as anacardat acid, cardol and cardanol. Utilization of the pesticides from shells of cashew nut to control pests and diseases of plants would be affected on biological agents. The objective of this research was to investigate pesticides inhibition on the increase of mycelium Trichoderma sp. and Gliocladium sp. by in vitro method. The tested concentration sample consisted of 0.0% (control), 2.5%, 7.5% and 10.0% in PDA media. The results of this research showed that 2.5% botanical pesticides concentration could minimize mycelium of Trichoderma sp. and Gliocladium sp. 22.73% and 21.04% respectively and also the increase shells of cashew extract could be affected the increase of mycelium inhibition. The extract with 2.5% concentration was the recommended concentration to control of fruit rot diseases and if concentration was 10.0% then its inhibition become 54.98% and 49.35%, respectively. The results proved that uncontrolled utilization of the pesticides could be affected on decrease of Trichoderma sp. and Gliocladium sp. growth.
Mall, David; Larsen, Ashley E; Martin, Emily A
2018-01-05
Transforming modern agriculture towards both higher yields and greater sustainability is critical for preserving biodiversity in an increasingly populous and variable world. However, the intensity of agricultural practices varies strongly between crop systems. Given limited research capacity, it is crucial to focus efforts to increase sustainability in the crop systems that need it most. In this study, we investigate the match (or mismatch) between the intensity of pesticide use and the availability of knowledge on the ecosystem service of natural pest control across various crop systems. Using a systematic literature search on pest control and publicly available pesticide data, we find that pest control literature is not more abundant in crops where insecticide input per hectare is highest. Instead, pest control literature is most abundant, with the highest number of studies published, in crops with comparatively low insecticide input per hectare but with high world harvested area. These results suggest that a major increase of interest in agroecological research towards crops with high insecticide input, particularly cotton and horticultural crops such as citrus and high value-added vegetables, would help meet knowledge needs for a timely ecointensification of agriculture.
Larsen, Ashley E.
2018-01-01
Transforming modern agriculture towards both higher yields and greater sustainability is critical for preserving biodiversity in an increasingly populous and variable world. However, the intensity of agricultural practices varies strongly between crop systems. Given limited research capacity, it is crucial to focus efforts to increase sustainability in the crop systems that need it most. In this study, we investigate the match (or mismatch) between the intensity of pesticide use and the availability of knowledge on the ecosystem service of natural pest control across various crop systems. Using a systematic literature search on pest control and publicly available pesticide data, we find that pest control literature is not more abundant in crops where insecticide input per hectare is highest. Instead, pest control literature is most abundant, with the highest number of studies published, in crops with comparatively low insecticide input per hectare but with high world harvested area. These results suggest that a major increase of interest in agroecological research towards crops with high insecticide input, particularly cotton and horticultural crops such as citrus and high value-added vegetables, would help meet knowledge needs for a timely ecointensification of agriculture. PMID:29304005
Aquatic Pest Control. Manual 99.
ERIC Educational Resources Information Center
Missouri Univ., Columbia. Agricultural Experiment Station.
This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides in the aquatic pest control category. The text discusses various water use situations; aquatic weed identification; herbicide use and effects; and aquatic insects and their control. (CS)
RNAi at work: Targeting invertebrate pests and beneficial organisms' diseases
USDA-ARS?s Scientific Manuscript database
Invertebrates present two types of large scale RNAi application opportunities: pest control and beneficial insect health. The former involves the introduction of sustainable applications to keep pest populations low, and the latter represents the challenge of keeping beneficial organisms healthy. RN...
USDA-ARS?s Scientific Manuscript database
The spread of the western flower thrips Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) resulted in the worldwide destabilization of established integrated pest management programs for many crops. Efforts to control the pest and the thrips-vectored tospoviruses with calendar applicat...
Bueno-Pallero, Francisco Ángel; Blanco-Pérez, Rubén; Dionísio, Lídia; Campos-Herrera, Raquel
2018-05-01
Entomopathogenic nematodes (EPNs) and fungi (EPF) are well known biological control agents (BCAs) against insect pests. Similarly, the nematophagous fungi (NF) are considered good BCA candidates for controlling plant parasitic nematodes. Because NF can employ EPNs as food and interact with EPF, we speculate that the simultaneous application of EPNs and EPF might result in higher insect mortality, whereas the triple species combination with NF will reduce the EPN and EPF activity by predation or inhibition. Here we evaluated single, dual (EPN + EPF, EPF + NF, EPN + NF) and triple (EPN + EPF + NF) combinations of one EPN, Steinernema feltiae (Rhabditida: Steinernematidae), one EPF, Beauveria bassiana (Hypocreales: Clavicipitaceae), and two NF, Arthrobotrys musiformis (Orbiliales: Orbiliaceae) and Purpureocillium lilacinum (Hypocreales: Ophiocordycipitaceae) under laboratory conditions. First, we showed that EPF reduced the growth rate of NF and vice versa when combined in both rich and limiting media, suggesting a negative interaction when combining both fungi. Three different fungal applications (contact with mycelia-conidia, immersion in conidial suspension, and injection of conidial suspension) were tested in single, dual and triple species combinations, evaluating Galleria mellonella (Lepidoptera: Pyralidae) larval mortality and time to kill. When mycelia was presented, the EPF appeared to be the dominant in combined treatments, whereas in immersion exposure was the EPN. In both types of exposure, NF alone did not produce any effect on larvae. However, when A. musiformis was injected, it produced larval mortalities >70% in the same time span as EPN. Overall, additive effects dominated the dual and triple combinations, with the exception of injection method, where synergisms occurred for both NF species combined with EPN + EPF. This study illustrates how differences in species combination and timing of fungal arrival can modulate the action of BCAs when augmented in the soil. Further studies are required to fine-tune these multitrophic interactions to provide successful, sustainable and resilient pest management in agroecosystems. Copyright © 2018 Elsevier Inc. All rights reserved.
Tsetse-Wolbachia symbiosis: Comes of age and has great potential for pest and disease control
Doudoumis, Vangelis; Alam, Uzma; Aksoy, Emre; Abd-Alla, Adly M.M.; Tsiamis, George; Brelsfoard, Corey; Aksoy, Serap; Bourtzis, Kostas
2013-01-01
Tsetse flies (Diptera: Glossinidae) are the sole vectors of African trypanosomes, the causative agent of sleeping sickness in human and nagana in animals. Like most eukaryotic organisms, Glossina species have established symbiotic associations with bacteria. Three main symbiotic bacteria have been found in tsetse flies: Wigglesworthia glossinidia, an obligate symbiotic bacterium, the secondary endosymbiont Sodalis glossinidius and the reproductive symbiont Wolbachia pipientis. In the present review, we discuss recent studies on the detection and characterization of Wolbachia infections in Glossina species, the horizontal transfer of Wolbachia genes to tsetse chromosomes, the ability of this symbiont to induce cytoplasmic incompatibility in Glossina morsitans morsitans and also how new environment-friendly tools for disease control could be developed by harnessing Wolbachia symbiosis. PMID:22835476
Flight Synchrony among the Major Moth Pests of Cranberries in the Upper Midwest, USA.
Steffan, Shawn A; Singleton, Merritt E; Sojka, Jayne; Chasen, Elissa M; Deutsch, Annie E; Zalapa, Juan E; Guédot, Christelle
2017-02-26
The cranberry fruitworm ( Acrobasis vaccinii Riley), sparganothis fruitworm ( Sparganothis sulfureana Clemens), and blackheaded fireworm ( Rhopobota naevana Hübner) are historically significant pests of cranberries ( Vaccinium macrocarpon Aiton) in the Upper Midwest (Wisconsin), USA. Their respective natural histories are well documented but correlations between developmental benchmarks (e.g., larval eclosion) and degree-day accruals are not yet known. Treatment timings are critical to the optimization of any given control tactic, and degree-day accrual facilitates optimization by quantifying the developmental status of pest populations. When key developmental benchmarks in the pest life cycle are linked to degree-days, real-time weather data can be used to predict precise treatment timings. Here, we provide the degree-day accumulations associated with discrete biological events (i.e., initiation of flight and peak flight) for the three most consistent moth pests of cranberries in Wisconsin. Moths were trapped each spring and summer from 2003 to 2011. To characterize flight dynamics and average timing of flight initiation, pheromone-baited trap-catch data were tallied for all three pest species within each of seven growing seasons. These flight dynamics were then associated with the corresponding degree-day accumulations generated using the cranberry plant's developmental thresholds. Finally, models were fit to the data in order to determine the peak flight of each species. The initiation of the spring flight among all three moth species was highly synchronous, aiding in the timing of control tactics; however, there were substantial differences in the timing of peak flight among the moth species. Characterization of the relationship between temperature and pest development allows pest management professionals to target specific life stages, improving the efficacy of any given pest control tactic.
Okonya, Joshua Sikhu; Mwanga, Robert Om; Syndikus, Katja; Kroschel, Jürgen
2014-01-01
Insect pests are among the most important constraints limiting sweetpotato (Ipomoea batatas) production in Africa. However, there is inadequate information about farmers' knowledge, perceptions and practices in the management of key insect pests. This has hindered development of effective pest management approaches for smallholder farmers. A standard questionnaire was used to interview individual sweetpotato farmers (n = 192) about their perception and management practices regarding insect pests in six major sweetpotato producing districts of Uganda. The majority (93%) of farmers perceived insect pests to be a very serious problem. With the exception of Masindi and Wakiso districts where the sweetpotato butterfly (Acraea acerata) was the number one constraint, sweetpotato weevils (Cylas puncticollis and C. brunneus) were ranked as the most important insect pests. Insecticide use in sweetpotato fields was very low being highest (28-38% of households) in districts where A. acerata infestation is the biggest problem. On average, 65% and 87% of the farmers took no action to control A. acerata and Cylas spp., respectively. Farmers were more conversant with the presence of and damage by A. acerata than of Cylas spp. as they thought that Cylas spp. root damage was brought about by a prolonged dry season. Different levels of field resistance (ability of a variety to tolerate damage) of sweetpotato landraces to A. acerata (eight landraces) and Cylas spp. (six landraces) were reported by farmers in all the six districts. This perceived level of resistance to insect damage by landraces needs to be investigated. To improve farmers' capabilities for sweetpotato insect pest management, it is crucial to train them in the basic knowledge of insect pest biology and control.
Native intra- and inter-specific reactions may cause the paradox of pest control with harvesting.
Seno, Hiromi
2010-05-01
We analyse a general time-discrete mathematical model of host-parasite population dynamics with harvesting, in which the host can be regarded as a pest. We harvest a portion of the host population at a moment in each year. Our model involves the density effect on the host population. We investigate the condition in which the harvesting of the host results in a paradoxical increase of its equilibrium population size. Our results imply that for a family of pest-enemy systems, the paradox of pest control could be caused essentially by the interspecific relationship and the intraspecific density effect.
Thrips advisor: exploiting thrips-induced defences to combat pests on crops.
Steenbergen, Merel; Abd-El-Haliem, Ahmed; Bleeker, Petra; Dicke, Marcel; Escobar-Bravo, Rocio; Cheng, Gang; Haring, Michel A; Kant, Merijn R; Kappers, Iris; Klinkhamer, Peter G L; Leiss, Kirsten A; Legarrea, Saioa; Macel, Mirka; Mouden, Sanae; Pieterse, Corné M J; Sarde, Sandeep J; Schuurink, Robert C; De Vos, Martin; Van Wees, Saskia C M; Broekgaarden, Colette
2018-04-09
Plants have developed diverse defence mechanisms to ward off herbivorous pests. However, agriculture still faces estimated crop yield losses ranging from 25% to 40% annually. These losses arise not only because of direct feeding damage, but also because many pests serve as vectors of plant viruses. Herbivorous thrips (Thysanoptera) are important pests of vegetable and ornamental crops worldwide, and encompass virtually all general problems of pests: they are highly polyphagous, hard to control because of their complex lifestyle, and they are vectors of destructive viruses. Currently, control management of thrips mainly relies on the use of chemical pesticides. However, thrips rapidly develop resistance to these pesticides. With the rising demand for more sustainable, safer, and healthier food production systems, we urgently need to pinpoint the gaps in knowledge of plant defences against thrips to enable the future development of novel control methods. In this review, we summarize the current, rather scarce, knowledge of thrips-induced plant responses and the role of phytohormonal signalling and chemical defences in these responses. We describe concrete opportunities for breeding resistance against pests such as thrips as a prototype approach for next-generation resistance breeding.
Calvo, F J; Torres-Ruiz, A; Velázquez-González, J; Rodríguez-Leyva, E; Lomeli-Flores, J R
2018-04-02
Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) and Bactericera cockerelli Sulcer (Hemiptera: Psyllidae) are important pests in tomato, and the mirid Dicyphus hesperus Knight (Heteroptera: Miridae) has been shown as an effective predator of both pests. Although the predator was able to suppress populations of both pests, the remaining levels could still exceed tolerable levels. Thus, we here hypothesized whether the combination of D. hesperus with the specialist parasitoids Eretmocerus eremicus Rose y Zolnerowich (Hymenoptera: Aphelinidae) (whitefly) and Tamarixia triozae (Burks) (Hymenoptera: Eulophidae) (psyllid) would result in better pest control on a greenhouse scale. For that, we conducted a trial in which we compared the results against B. tabaci and B. cockerelli in greenhouses treated with D. hesperus alone or the predator in combination with the specialist parasitoids. The results showed that the predator was able to establish and suppress B. tabaci and B. cockerelli in tomato, but the addition of the specialist parasitoids resulted in better and more cost-effective pest control. Implementation of this method would therefore increase the robustness and reliability of biocontrol-based integrated pest management programmes for tomato crops, over methods based exclusively on D. hesperus release.
Current situation of pests targeted by Bt crops in Latin America.
Blanco, C A; Chiaravalle, W; Dalla-Rizza, M; Farias, J R; García-Degano, M F; Gastaminza, G; Mota-Sánchez, D; Murúa, M G; Omoto, C; Pieralisi, B K; Rodríguez, J; Rodríguez-Maciel, J C; Terán-Santofimio, H; Terán-Vargas, A P; Valencia, S J; Willink, E
2016-06-01
Transgenic crops producing Bacillus thuringiensis- (Bt) insecticidal proteins (Bt crops) have provided useful pest management tools to growers for the past 20 years. Planting Bt crops has reduced the use of synthetic insecticides on cotton, maize and soybean fields in 11 countries throughout Latin America. One of the threats that could jeopardize the sustainability of Bt crops is the development of resistance by targeted pests. Governments of many countries require vigilance in measuring changes in Bt-susceptibility in order to proactively implement corrective measures before Bt-resistance is widespread, thus prolonging the usefulness of Bt crops. A pragmatic approach to obtain information on the effectiveness of Bt-crops is directly asking growers, crop consultants and academics about Bt-resistance problems in agricultural fields, first-hand information that not necessarily relies on susceptibility screens performed in laboratories. This type of information is presented in this report. Problematic pests of cotton and soybeans in five Latin American countries currently are effectively controlled by Bt crops. Growers that plant conventional (non-Bt) cotton or soybeans have to spray synthetic insecticides against multiple pests that otherwise are controlled by these Bt crops. A similar situation has been observed in six Latin American countries where Bt maize is planted. No synthetic insecticide applications are used to control corn pests because they are controlled by Bt maize, with the exception of Spodoptera frugiperda. While this insect in some countries is still effectively controlled by Bt maize, in others resistance has evolved and necessitates supplemental insecticide applications and/or the use of Bt maize cultivars that express multiple Bt proteins. Partial control of S. frugiperda in certain countries is due to its natural tolerance to the Bt bacterium. Of the 31 pests targeted and controlled by Bt crops in Latin America, only S. frugiperda has shown tolerance to certain Bt proteins in growers' fields, the most reliable indication of the status of Bt-susceptibility in most of the American continent. Copyright © 2016 Elsevier Inc. All rights reserved.
Control of Vertebrate Pests of Agricultural Crops.
ERIC Educational Resources Information Center
Wingard, Robert G.; Studholme, Clinton R.
This agriculture extension service publication of Pennsylvania State University discusses the damage from and control of vertebrate pests. Specific discussions describe the habits, habitat, and various control measures for blackbirds and crows, deer, meadow and pine mice, European starlings, and woodchucks. Where confusion with non-harmful species…
Sublethal effects in pest management: a surrogate species perspective on fruit fly control
USDA-ARS?s Scientific Manuscript database
Tephritid fruit flies are economically important orchard pests globally. While much effort has focused on controlling individual species with a combination of pesticides and biological control, less attention has been paid to managing assemblages of species. Although several tephritid species may co...
USDA-ARS?s Scientific Manuscript database
Conservation biological control can be an effective tactic for minimizing insect-induced damage to agricultural production. The most effective manner of applying CBC is through an Integrated Pest Management (IPM) strategy, combining many tactics including cultural controls, pest sampling, the use of...
ERIC Educational Resources Information Center
Arizona Univ., Tucson. Cooperative Extension Service.
This manual supplies information helpful to individuals wishing to become certified in public health pest control. It is designed as a technical reference for vector control workers and as preparatory material for structural applicators of restricted use pesticides to meet the General Standards of Competency required of commercial applicators. The…
Control of Pecan Weevil With Microbial Biopesticides.
Shapiro-Ilan, David I; Cottrell, Ted E; Bock, Clive; Mai, Kim; Boykin, Debbie; Wells, Lenny; Hudson, William G; Mizell, Russell F
2017-12-08
The pecan weevil, Curculio caryae (Horn) (Coleoptera: Curculionidae), is a key pest of pecans Carya illinoinensis ([Wangenh.] K. Koch) (Fagales: Juglandaceae). Control recommendations rely on broad spectrum chemical insecticides. Due to regulatory and environmental concerns, effective alternatives for C. caryae control must be sought for pecan production in conventional and organic systems. We explored the use of microbial biopesticides for control of C. caryae in Georgia pecan orchards. Three experiments were conducted. The first investigated an integrated microbial control approach in an organic system at two locations. Three microbial agents, Grandevo (based on byproducts of the bacterium Chromobacterium subtsugae Martin, Gundersen-Rindal, Blackburn & Buyer), the entomopathogenic nematode Steinernema carpocapsae (Weiser), and entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin, were applied to each treatment plot (0.6 ha) at different times during the season. A second experiment compared the effects of S. carpocapsae and B. bassiana applied as single treatments relative to application of both agents (at different times); survival of C. caryae was assessed approximately 11 mo after larvae were added to pots sunk in an organic pecan orchard. In a conventional orchard (with 1.0 ha plots), the third experiment compared Grandevo applications to a commonly used regime of chemical insecticides (carbaryl alternated with a pyrethroid). All experiments were repeated in consecutive years. The combined pest management tactic (experiment 1) reduced C. caryae infestation relative to non-treated control plots in both locations in 2014 and one of the two locations in 2015 (the other location had less than 1% infestation). In experiment 2, no differences among combined microbial treatments, single-applied microbial treatments or different numbers of application were observed, yet all microbial treatments reduced C. caryae survival relative to the control. In the third experiment, both Grandevo and standard chemical insecticide applications resulted in lower weevil infestation than the control (both years) and there was no difference between the insecticide treatments in 2014 although the chemical insecticide regime had slightly lower infestation in 2015. These results provide evidence that microbial biopesticides can substantially reduce pecan weevil infestations in organic and nonorganic systems. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Effects of protein tyrosine phosphatase-PEST are reversed by Akt in T cells.
Arimura, Yutaka; Shimizu, Kazuhiko; Koyanagi, Madoka; Yagi, Junji
2014-12-01
T cell activation is regulated by a balance between phosphorylation and dephosphorylation that is under the control of kinases and phosphatases. Here, we examined the role of a non-receptor-type protein tyrosine phosphatase, PTP-PEST, using retrovirus-mediated gene transduction into murine T cells. Based on observations of vector markers (GFP or Thy1.1), exogenous PTP-PEST-positive CD4(+) T cells appeared within 2 days after gene transduction; the percentage of PTP-PEST-positive cells tended to decrease during a resting period in the presence of IL-2 over the next 2 days. These vector markers also showed much lower expression intensities, compared with control cells, suggesting a correlation between the percent reduction and the low marker expression intensity. A catalytically inactive PTP-PEST mutant also showed the same tendency, and stepwise deletion mutants gradually lost their ability to induce the above phenomenon. On the other hand, these PTP-PEST-transduced cells did not have an apoptotic phenotype. No difference in the total cell numbers was found in the wells of a culture plate containing VEC- and PTP-PEST-transduced T cells. Moreover, serine/threonine kinase Akt, but not the anti-apoptotic molecules Bcl-2 and Bcl-XL, reversed the phenotype induced by PTP-PEST. We discuss the novel mechanism by which Akt interferes with PTP-PEST. Copyright © 2014 Elsevier Inc. All rights reserved.
Choosing a Pest Control Company
If you have a pest control problem that you do not want to handle on your own, you may decide to turn to a professional applicator. Before you choose a company, get answers to the questions in this fact sheet.