Science.gov

Sample records for pet cyclotron room

  1. Spectra and Neutron Dosimetry Inside a PET Cyclotron Vault Room

    SciTech Connect

    Vega-Carrillo, Hector Rene; Mendez, Roberto; Iniguez, Maria Pilar; Marti-Climent, Joseph; Penuelas, Ivan; Barquero, Raquel

    2006-09-08

    The neutron field around a PET cyclotron was investigated during 18F radioisotope production with an 18 MeV proton beam. Pairs of thermoluminescent dosemeters, TLD600 and TLD700, were used as thermal neutron detector inside a Bonner Spheres Spectrometer to measure the neutron spectra at three different positions inside the cyclotron's vault room. Neutron spectra were also determined by Monte Carlo calculations. The hardest spectrum was observed in front of cyclotron target and the softest was noticed at the antipode of target. Neutron doses derived from the measured spectra vary between 11 and 377 mSv/{mu}A-h of proton integrated current, Doses were also measured with a single-moderator remmeter, with an active thermal neutron detector, whose response in affected by the radiation field in the vault room.

  2. Monte Carlo neutron doses estimations inside a PET cyclotron vault room.

    PubMed

    Barquero, R; Méndez, R; Martí-Climent, J M; Quincoces, G

    2007-01-01

    Neutron organ equivalent doses, effective doses and dose equivalents received inside a positron emission tomography vault room in a maximum credible accident have been estimated with the Monte Carlo code MCNPX. While an operator was inside the vault room of a Cyclone 18/9 IBA cyclotron, this was producing (18)F with 30 muA proton current in the target and the operator had to activate a stopped emergency device placed on the wall. MC simulation of the cyclotron vault were carried out to estimate the organ and tissue equivalent doses in a mathematical male mannequin simulating the operator facing the wall on which the emergency device is placed. Doses were calculated at two emergency devices for each one of the two targets of the cyclotron, which were able to produce (18)F. The maximum effective dose in the mannequin was 6.70 Sv/h and the maximum organ equivalent dose was 18.47 Sv/h in spleen.

  3. Prediction of neutron induced radioactivity in the concrete walls of a PET cyclotron vault room with MCNPX.

    PubMed

    Martínez-Serrano, J Javier; Díez de los Ríos, Antonio

    2010-11-01

    The authors want to assess the relevance of the neutron activation of the concrete vault of the PET cyclotron at CIMES (Universidad de Malaga) by predicting specific activities of the main activation products in the vault and their variation profiles as a function of penetration depth into concrete at present and after 10 yr of cyclotron operation. The dual proton cyclotron is used for PET isotopes production, mainly 18F. During the years 2006 and 2008, the using rate has been 1 h/day at single beam (40 microA). From January 2008, using rate is 4 h/day at dual beam (80 microA). The energy of the cyclotron proton beam is 18 MeV. Four point locations were chosen on the walls of the cyclotron room to assess neutron induced activity concentrations. In each wall point location, neutron induced radionuclide specific activity was assessed from the wall surface to a depth of 120 cm within concrete. Simulations were carried out with the Monte Carlo based radiation transport code MCNPX (v2.6.0). According to MCNPX calculations, activity depth profiles of activation products studied, except 54Mn, have a maximum at variable depths from the wall surface never beyond 12 cm. 54Mn activity decreases exponentially in all the studied depth ranges within wall concrete. The activity of 152Eu, 154Eu, 60CO, 134Cs, 46Sc, and 65Zn decreases exponentially beyond a 30 cm depth into concrete. 54Mn activity presents the faster decrease within a concrete vault with an attenuation length of 21 cm. According to MCNPX estimations, present activity in the cyclotron vault is mostly due to 46Sc and 60Co, with highest specific activity near the vault surface of 146 +/- 16 and 50 +/- 4.6 Bq/kg, respectively. 46Sc and 60Co activity measurements near the surface wall present an acceptable match with the estimation within the uncertainties, but measured activities of the other radionuclides are quite over the MCNPX estimations. The calculations after 10 yr of cyclotron operation predict a slight increase

  4. Distribution of thermal neutron flux around a PET cyclotron.

    PubMed

    Ogata, Yoshimune; Ishigure, Nobuhito; Mochizuki, Shingo; Ito, Kengo; Hatano, Kentaro; Abe, Junichiro; Miyahara, Hiroshi; Masumoto, Kazuyoshi; Nakamura, Hajime

    2011-05-01

    The number of positron emission tomography (PET) examinations has greatly increased world-wide. Since positron emission nuclides for the PET examinations have short half-lives, they are mainly produced using on-site cyclotrons. During the production of the nuclides, significant quantities of neutrons are generated from the cyclotrons. Neutrons have potential to activate the materials around the cyclotrons and cause exposure to the staff. To investigate quantities and distribution of the thermal neutrons, thermal neutron fluxes were measured around a PET cyclotron in a laboratory associating with a hospital. The cyclotron accelerates protons up to 18 MeV, and the mean particle current is 20 μA. The neutron fluxes were measured during both 18F production and C production. Gold foils and thermoluminescent dosimeter (TLD) badges were used to measure the neutron fluxes. The neutron fluxes in the target box averaged 9.3 × 10(6) cm(-2) s(-1) and 1.7 × 10(6) cm(-2) s(-1) during 18F and 11C production, respectively. Those in the cyclotron room averaged 4.1 × 10(5) cm(-2) s(-1) and 1.2 × 10(5) cm(-2) s(-1), respectively. Those outside the concrete wall shielding were estimated as being equal to or less than ∼3 cm s, which corresponded to 0.1 μSv h(-1) in effective dose. The neutron fluxes outside the concrete shielding were confirmed to be quite low compared to the legal limit.

  5. Neutron spectra due (13)N production in a PET cyclotron.

    PubMed

    Benavente, J A; Vega-Carrillo, H R; Lacerda, M A S; Fonseca, T C F; Faria, F P; da Silva, T A

    2015-05-01

    Monte Carlo and experimental methods have been used to characterize the neutron radiation field around PET (Positron Emission Tomography) cyclotrons. In this work, the Monte Carlo code MCNPX was used to estimate the neutron spectra, the neutron fluence rates and the ambient dose equivalent (H*(10)) in seven locations around a PET cyclotron during (13)N production. In order to validate these calculations, H*(10) was measured in three sites and were compared with the calculated doses. All the spectra have two peaks, one above 0.1MeV due to the evaporation neutrons and another in the thermal region due to the room-return effects. Despite the relatively large difference between the measured and calculated H*(10) for one point, the agreement was considered good, compared with that obtained for (18)F production in a previous work.

  6. Laboratory and cyclotron requirements for PET research

    SciTech Connect

    Schlyer, D.J.

    1993-06-01

    This report describes four types of PET facilities: Clinical PET with no radionuclide production; clinical PET with a small accelerator; clinical PET with research support; and research PET facilities. General facility considerations are also discussed.

  7. PET computer programs for use with the 88-inch cyclotron

    SciTech Connect

    Gough, R.A.; Chlosta, L.

    1981-06-01

    This report describes in detail several offline programs written for the PET computer which provide an efficient data management system to assist with the operation of the 88-Inch Cyclotron. This function includes the capability to predict settings for all cyclotron and beam line parameters for all beams within the present operating domain of the facility. The establishment of a data base for operational records is also described from which various aspects of the operating history can be projected.

  8. Commercial and PET radioisotope manufacturing with a medical cyclotron

    NASA Astrophysics Data System (ADS)

    Boothe, T. E.; McLeod, T. F.; Plitnikas, M.; Kinney, D.; Tavano, E.; Feijoo, Y.; Smith, P.; Szelecsényi, F.

    1993-06-01

    Mount Sinai has extensive experience in producing radionuclides for commercial sales and for incorporation into radiopharmaceuticals, including PET. Currently, an attempt is being made to supply radiochemicals to radiopharmaceutical manufacturers outside the hospital, to prepare radiopharmaceuticals for in-house use, and to prepare PET radiopharmaceuticals, such as 2-[F-18] FDG, for outside sales. This use for both commercial and PET manufacturing is atypical for a hospital-based cyclotron. To accomplish PET radiopharmaceutical sales, the hospital operates a nuclear pharmacy. A review of operational details for the past several years shows a continuing dependence on commercial sales which is reflected in research and developmental aspects and in staffing. Developmental efforts have centered primarily on radionuclide production, target development, and radiochemical processing optimization.

  9. Study of the neutron field in the vicinity of an unshielded PET cyclotron.

    PubMed

    Méndez, R; Iñiguez, M P; Martí-Climent, J M; Peñuelas, I; Vega-Carrillo, H R; Barquero, R

    2005-11-07

    The neutron field in the proximity of an unshielded PET cyclotron was investigated during 18F radioisotope production with an 18 MeV proton beam. Thermoluminescent detector (TLD) models TLD600 and TLD700 as well as Bonner moderating spheres were irradiated at different positions inside the vault room where the cyclotron is located to determine the thermal neutron flux, neutron spectrum and dose equivalent. Furthermore, from a combination of measurements and Monte Carlo simulations the neutron source intensity at the target was estimated. The resulting intensity is in good agreement with the IAEA recommendations. Neutron doses derived from the measured spectra were found to vary between 7 and 320 mSv per 1 microA h of proton-integrated current. Finally, gamma doses were determined from TLD700 readings and amounted to around 10% of the neutron doses.

  10. Five Years of Cyclotron Radioisotope Production Experiences at the First PET-CT in Venezuela

    SciTech Connect

    Colmenter, L.; Coelho, D.; Esteves, L. M.; Ruiz, N.; Morales, L.; Lugo, I.; Sajo-Bohus, L.; Liendo, J. A.; Greaves, E. D.; Barros, H.; Castillo, J.

    2007-10-26

    Five years operation of a compact cyclotron installed at PET-CT facility in Caracas, Venezuela is given. Production rate of {sup 18}F labeled FDG, operation and radiation monitoring experience are included. We conclude that {sup 18}FDG CT-PET is the most effective technique for patient diagnosis.

  11. Neutron measurements in the vicinity of a self-shielded PET cyclotron.

    PubMed

    Hertel, N E; Shannon, M P; Wang, Z-L; Valenzano, M P; Mengesha, W; Crowe, Ronald J

    2004-01-01

    The radionuclides used in positron emission tomography (PET) are short-lived and generally must be produced on site using a cyclotron. A common end product of the nuclear reactions used to produce the PET radionuclides is neutron radiation. These neutrons could potentially contribute to the annual effective dose received by hospital personnel. A Bonner sphere spectrometer was used to measure neutron energy spectra at three locations near a self-shielded PET cyclotron. This cyclotron accelerates protons to 11 MeV. The neutron measurements reported were made during the production of 18F via the 18O(p,n)18F reaction (Q = -2.4 MeV). Neutron spectra were obtained with the BUMS unfolding code and converted to dose equivalent rates.

  12. A room temperature electron cyclotron resonance ion source for the DC-110 cyclotron

    SciTech Connect

    Efremov, A. Bogomolov, S.; Lebedev, A.; Loginov, V.; Yazvitsky, N.

    2014-02-15

    The project of the DC-110 cyclotron facility to provide applied research in the nanotechnologies (track pore membranes, surface modification of materials, etc.) has been designed by the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research (Dubna). The facility includes the isochronous cyclotron DC-110 for accelerating the intensive Ar, Kr, Xe ion beams with 2.5 MeV/nucleon fixed energy. The cyclotron is equipped with system of axial injection and ECR ion source DECRIS-5, operating at the frequency of 18 GHz. This article reviews the design and construction of DECRIS-5 ion source along with some initial commissioning results.

  13. Cyclotrons for clinical and biomedical research with PET

    SciTech Connect

    Wolf, A.P.

    1987-01-01

    The purpose of this commentary is to present some background material on cyclotrons and other particle accelerators particularly with a view toward the considerations behind acquiring and installing such a machine for purely clinical and/or biomedical research use.

  14. Monitoring proton radiation therapy with in-room PET imaging.

    PubMed

    Zhu, Xuping; España, Samuel; Daartz, Juliane; Liebsch, Norbert; Ouyang, Jinsong; Paganetti, Harald; Bortfeld, Thomas R; El Fakhri, Georges

    2011-07-07

    We used a mobile positron emission tomography (PET) scanner positioned within the proton therapy treatment room to study the feasibility of proton range verification with an in-room, stand-alone PET system, and compared with off-line equivalent studies. Two subjects with adenoid cystic carcinoma were enrolled into a pilot study in which in-room PET scans were acquired in list-mode after a routine fractionated treatment session. The list-mode PET data were reconstructed with different time schemes to generate in-room short, in-room long and off-line equivalent (by skipping coincidences from the first 15 min during the list-mode reconstruction) PET images for comparison in activity distribution patterns. A phantom study was followed to evaluate the accuracy of range verification for different reconstruction time schemes quantitatively. The in-room PET has a higher sensitivity compared to the off-line modality so that the PET acquisition time can be greatly reduced from 30 to <5 min. Features in deep-site, soft-tissue regions were better retained with in-room short PET acquisitions because of the collection of (15)O component and lower biological washout. For soft tissue-equivalent material, the distal fall-off edge of an in-room short acquisition is deeper compared to an off-line equivalent scan, indicating a better coverage of the high-dose end of the beam. In-room PET is a promising low cost, high sensitivity modality for the in vivo verification of proton therapy. Better accuracy in Monte Carlo predictions, especially for biological decay modeling, is necessary.

  15. 68Ga-PET: a powerful generator-based alternative to cyclotron-based PET radiopharmaceuticals.

    PubMed

    Fani, Melpomeni; André, João P; Maecke, Helmut R

    2008-01-01

    PET (positron emission tomography) is a powerful diagnostic and imaging technique which requires short-lived positron emitting isotopes. The most commonly used are accelerator-produced (11)C and (18)F. An alternative is the use of metallic positron emitters. Among them (68)Ga deserves special attention because of its availability from long-lived (68)Ge/(68)Ga generator systems which render (68)Ga radiopharmacy independent of an onsite cyclotron. The coordination chemistry of Ga(3+) is dominated by its hard acid character. A variety of mono- and bifunctional chelators have been developed which allow the formation of stable (68)Ga(3+)complexes and convenient coupling to biomolecules. (68)Ga coupling to small biomolecules is potentially an alternative to (18)F- and (11)C-based radiopharmacy. In particular, peptides targeting G-protein coupled receptors overexpressed on human tumour cells have shown preclinically and clinically high and specific tumour uptake. Kit-formulated precursors along with the generator may be provided, similar to the (99)Mo/(99m)Tc-based radiopharmacy, still the mainstay of nuclear medicine.

  16. Evaluation of Radiation Exposure to Staff and Environment Dose from [18F]-FDG in PET/CT and Cyclotron Center using Thermoluminescent Dosimetry.

    PubMed

    Zargan, S; Ghafarian, P; Shabestani Monfared, A; Sharafi, A A; Bakhshayeshkaram, M; Ay, M R

    2017-03-01

    PET/CT imaging using [18F]-FDG is utilized in clinical oncology for tumor detecting, staging and responding to therapy procedures. Essential consideration must be taken for radiation staff due to high gamma radiation in PET/CT and cyclotron center. The aim of this study was to assess the staff exposure regarding whole body and organ dose and to evaluate environment dose in PET/CT and cyclotron center. 80 patients participated in this study. Thermoluminescence, electronic personal dosimeter and Geiger-Muller dosimeter were also utilized for measurement purpose. The mean annual equivalent organ dose for scanning operator with regard to lens of eyes, thyroid, breast and finger according to mean±SD value, were 0.262±0.044, 0.256±0.046, 0.257±0.040 and 0.316±0.118, respectively. The maximum and minimum estimated annual whole body doses were observed for injector and the chemist group with values of (3.98±0.021) mSv/yr and (1.64±0.014) mSv/yr, respectively. The observed dose rates were 5.67 µSv/h in uptake room at the distance of 0.5 meter from the patient whereas the value 4.94 and 3.08 µSv/h were recorded close to patient's head in PET/CT room and 3.5 meter from the reception desk. In this study, the injector staff and scanning operator received the first high level and second high level of radiation. This study confirmed that low levels of radiation dose were received by all radiation staff during PET/CT procedure using 18F-FDG due to efficient shielding and using trained radiation staff in PET/CT and cyclotron center of Masih Daneshvari hospital.

  17. Evaluation of Radiation Exposure to Staff and Environment Dose from [18F]-FDG in PET/CT and Cyclotron Center using Thermoluminescent Dosimetry

    PubMed Central

    Zargan, S.; Ghafarian, P.; Shabestani Monfared, A.; Sharafi, A.A.; Bakhshayeshkaram, M.; Ay, M.R.

    2017-01-01

    Background: PET/CT imaging using [18F]-FDG is utilized in clinical oncology for tumor detecting, staging and responding to therapy procedures. Essential consideration must be taken for radiation staff due to high gamma radiation in PET/CT and cyclotron center. The aim of this study was to assess the staff exposure regarding whole body and organ dose and to evaluate environment dose in PET/CT and cyclotron center. Materials and Methods: 80 patients participated in this study. Thermoluminescence, electronic personal dosimeter and Geiger-Muller dosimeter were also utilized for measurement purpose. Results: The mean annual equivalent organ dose for scanning operator with regard to lens of eyes, thyroid, breast and finger according to mean±SD value, were 0.262±0.044, 0.256±0.046, 0.257±0.040 and 0.316±0.118, respectively. The maximum and minimum estimated annual whole body doses were observed for injector and the chemist group with values of (3.98±0.021) mSv/yr and (1.64±0.014) mSv/yr, respectively. The observed dose rates were 5.67 µSv/h in uptake room at the distance of 0.5 meter from the patient whereas the value 4.94 and 3.08 µSv/h were recorded close to patient’s head in PET/CT room and 3.5 meter from the reception desk. Conclusion: In this study, the injector staff and scanning operator received the first high level and second high level of radiation. This study confirmed that low levels of radiation dose were received by all radiation staff during PET/CT procedure using 18F-FDG due to efficient shielding and using trained radiation staff in PET/CT and cyclotron center of Masih Daneshvari hospital. PMID:28451574

  18. Neutron transport calculation for Activation Evaluation for Decommissioning of PET cyclotron Facility

    NASA Astrophysics Data System (ADS)

    Nobuhara, Fumiyoshi; Kuroyanagi, Makoto; Masumoto, Kazuyoshi; Nakamura, Hajime; Toyoda, Akihiro; Takahashi, Katsuhiko

    2017-09-01

    In order to evaluate the state of activation in a cyclotron facility used for the radioisotope production of PET diagnostics, we measured the neutron flux by using gold foils and TLDs. Then, the spatial distribution of neutrons and induced activity inside the cyclotron vault were simulated with the Monte Calro calculation code for neutron transport and DCHAIN-SP for activation calculation. The calculated results are in good agreement with measured values within factor 3. Therefore, the adaption of the advanced evaluation procedure for activation level is proved to be important for the planning of decommissioning of these facilities.

  19. Neutron spectrometry in a PET cyclotron with a Bonner sphere system.

    PubMed

    Fernández, F; Amgarou, K; Domingo, C; García, M J; Quincoces, G; Martí-Climent, J M; Méndez, R; Barquero, R

    2007-01-01

    Positron emission tomography (PET) is a non-invasive medical imaging technique normally used for diagnostic purposes to determine the location and concentration of physiologically active compounds in a human body. An unshielded cyclotron is used for PET at the Clinica Universitaria de Navarra to produce short-lived positron emitting radionuclides ((15)O, (13)N, (11)C and (18)F) by bombarding appropriate target material with proton or deuteron beams with energies up to 18 and 9 MeV, respectively. Subsequent nuclear reactions may generate undesirable neutrons that should be evaluated and controlled. In this study, the neutron measurements performed with an active and a passive Bonner sphere systems at different locations outside and inside the cyclotron vault during operation have been presented. The neutron spectrum at each location was determined with an unfolding code developed by the authors.

  20. Design study of a 9 MeV compact cyclotron system for PET

    NASA Astrophysics Data System (ADS)

    Lee, Byeong-No; Shin, Seung-Wook; Song, Hoseung; Kim, Hyun-Wook; Chai, Jong-Seo

    2013-06-01

    A cyclotron is an accelerator which can be applied to both cancer diagnosis and treatment. Among commercially sold cyclotrons, the major energy is used for positron emission tomography (PET) ranges from 10 to 20 MeV. In this research, 9 MeV compact cyclotron for PET was designed. The research was conducted on the response cross section and the yield for the energy distribution to decide the design features. Also, it was determined the specifications on the basis of the fluoro-deoxy-glucose (FDG) maximum dose. The machine, which has a 20 uA beam current, is designed to be installed in small-to-medium-sized hospitals in local cities because of its relatively light weight (6 tons). This compact cyclotron, which provides 9-MeV proton beams, is composed of a azimuthally varying field (AVF) electromagnet, 83-MHz RF systems with a 20 kW amplifier, a panning ion gauge (PIG) type ion-source for negative hydrogen, and a double-stage high-vacuum system. The basic model design was done by using 3-D CAD program, CATIA and all the field calculations were performed using commercial electromagnetic field analysis code, OPERA-3D TOSCA. From this research, we expect a time reduction for FDG production, a decrease of radioactive exposure for workers, and an equipment cost reduction.

  1. Effective dose to immuno-PET patients due to metastable impurities in cyclotron produced zirconium-89

    NASA Astrophysics Data System (ADS)

    Alfuraih, Abdulrahman; Alzimami, Khalid; Ma, Andy K.; Alghamdi, Ali; Al Jammaz, Ibrahim

    2014-11-01

    Immuno-PET is a nuclear medicine technique that combines positron emission tommography (PET) with radio-labeled monoclonal antibodies (mAbs) for tumor characterization and therapy. Zirconium-89 (89Zr) is an emerging radionuclide for immuno-PET imaging. Its long half-life (78.4 h) gives ample time for the production, the administering and the patient uptake of the tagged radiopharmaceutical. Furthermore, the nuclides will remain in the tumor cells after the mAbs are catabolized so that time series studies are possible without incurring further administration of radiopharmarceuticals. 89Zr can be produced in medical cyclotrons by bombarding an yttrium-89 (89Y) target with a proton beam through the 89Y(p,n)89Zr reaction. In this study, we estimated the effective dose to the head and neck cancer patients undergoing 89Zr-based immune-PET procedures. The production of 89Zr and the impurities from proton irradiation of the 89Y target in a cyclotron was calculated with the Monte Carlo code MCNPX and the nuclear reaction code TALYS. The cumulated activities of the Zr isotopes were derived from real patient data in literature and the effective doses were estimated using the MIRD specific absorbed fraction formalism. The estimated effective dose from 89Zr is 0.5±0.2 mSv/MBq. The highest organ dose is 1.8±0.2 mSv/MBq in the liver. These values are in agreement with those reported in literature. The effective dose from 89mZr is about 0.2-0.3% of the 89Zr dose in the worst case. Since the ratio of 89mZr to 89Zr depends on the cooling time as well as the irradiation details, contaminant dose estimation is an important aspect in optimizing the cyclotron irradiation geometry, energy and time.

  2. Analysis and improvement of cyclotron thallium target room shield.

    PubMed

    Hajiloo, N; Raisali, G; Aslani, G

    2008-01-01

    Because of high neutron and gamma-ray intensities generated during bombardment of a thallium-203 target, a thallium target-room shield and different ways of improving it have been investigated. Leakage of neutron and gamma ray dose rates at various points behind the shield are calculated by simulating the transport of neutrons and photons using the Monte Carlo N Particle transport computer code. By considering target-room geometry, its associated shield and neutron and gamma ray source strengths and spectra, three designs for enhancing shield performance have been analysed: a shielding door at the maze entrance, covering maze walls with layers of some effective materials and adding a shadow-shield in the target room in front of the radiation source. Dose calculations were carried out separately for different materials and dimensions for all the shielding scenarios considered. The shadow-shield has been demonstrated to be one suitable for neutron and gamma dose equivalent reduction. A 7.5-cm thick polyethylene shadow-shield reduces both dose equivalent rate at maze entrance door and leakage from the shield by a factor of 3.

  3. Characterization of 41Ar production in air at a PET cyclotron facility

    NASA Astrophysics Data System (ADS)

    Cicoria, Gianfranco; Cesarini, Francesco; Infantino, Angelo; Vichi, Sara; Zagni, Federico; Marengo, Mario

    2017-06-01

    In the production of Positron Emission Tomography (PET) nuclides at a medical cyclotron facility 41Ar (T1/2 = 109.34 m) is produced by the activation of air due to the neutron flux, according to the 40Ar(n, γ)41Ar reaction. In this work, we describe a relatively inexpensive and readily reproducible methodology of air sampling that can be used for quantification of 41Ar during the routine production of PET nuclides. We report the results of an extensive measurement campaign in the cyclotron bunker and in the ducts of the ventilation system, before and after final filtering of the extracted air. Air Samples were analyzed using a gamma-ray spectrometry system equipped with HPGe detector, with proper correction of the efficiency calibration to account for the samples density. The results of measurement were then used to evaluate the Total Effective Dose (TED) to the population living in the surrounding areas, due to routine emissions in the operation of the cyclotron. The average 41Ar saturation yield per one liter of air emitted in the environment resulted to be (0.044 ± 0.007) Bq/(μA ṡ dm3). The maximum value of TED for the critical group of the population, even considering an overestimated workload, was less than 0.19 μSv/year, well below the level of radiological relevance.

  4. Low energy cyclotron production of multivalent transition metals for PET imaging and therapy

    NASA Astrophysics Data System (ADS)

    Avila-Rodriguez, Miguel Angel

    Recent advances in high-resolution tomographs for small animals require the production of nonconventional long-lived positron emitters to label novel radiopharmaceuticals for PET-based molecular imaging. Radioisotopes with an appropriate half life to match the kinetics of slow biological processes will allow to researchers to study the phamacokinetics of PET ligands over several hours, or even days, on the same animal, with the injection of a single dose. In addition, radionuclides with a suitable half life can potentially be distributed from a central production site making them available in PET facilities that lack an in-house cyclotron. In the last few years there has been a growing interest in the use of PET ligands labeled with radiometals, particularly isotopes of copper, yttrium and zirconium. Future clinical applications of these tracers will require them to be produced reliably and efficiently. This thesis work deals with implementing and optimizing the production of the multivalent transition metals 61,64Cu, 86Y and 89Zr for molecular PET imaging and therapy. Our findings in the production of these radionuclides at high specific activity on an 11 MeV proton-only cyclotron are presented. Local applications of these tracers, including Cu-ATSM for in vivo quantification of hypoxia, synthesis of targeted radiopharmaceuticals using activated esters of DOTA, and a novel development of positron emitting resin microspheres, are also be discussed. As a result of this thesis work, metallic radionuclides are now efficiently produced on a weekly basis in sufficient quality and quantity for collaborating scientists at UW-Madison and external users in other Universities across the country.

  5. Experimental measurement and Monte Carlo assessment of Argon-41 production in a PET cyclotron facility.

    PubMed

    Infantino, Angelo; Valtieri, Lorenzo; Cicoria, Gianfranco; Pancaldi, Davide; Mostacci, Domiziano; Marengo, Mario

    2015-12-01

    In a medical cyclotron facility, (41)Ar (t1/2 = 109.34 m) is produced by the activation of air due to the neutron flux during irradiation, according to the (40)Ar(n,γ)(41)Ar reaction; this is particularly relevant in widely diffused high beam current cyclotrons for the production of PET radionuclides. While theoretical estimations of the (41)Ar production have been published, no data are available on direct experimental measurements for a biomedical cyclotron. In this work, we describe a sampling methodology and report the results of an extensive measurement campaign. Furthermore, the experimental results are compared with Monte Carlo simulations performed with the FLUKA code. To measure (41)Ar activity, air samples were taken inside the cyclotron bunker in sealed Marinelli beakers, during the routine production of (18)F with a 16.5 MeV GE-PETtrace cyclotron; this sampling thus reproduces a situation of absence of air changes. Samples analysis was performed in a gamma-ray spectrometry system equipped with HPGe detector. Monte Carlo assessment of the (41)Ar saturation yield was performed directly using the standard FLUKA score RESNUCLE, and off-line by the convolution of neutron fluence with cross section data. The average (41)Ar saturation yield per one liter of air of (41)Ar, measured in gamma-ray spectrometry, resulted to be 3.0 ± 0.6 Bq/µA*dm(3) while simulations gave a result of 6.9 ± 0.3 Bq/µA*dm(3) in the direct assessment and 6.92 ± 0.22 Bq/µA*dm(3) by the convolution neutron fluence-to-cross section. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  6. A solid target system with remote handling of irradiated targets for PET cyclotrons.

    PubMed

    Siikanen, J; Tran, T A; Olsson, T G; Strand, S-E; Sandell, A

    2014-12-01

    A solid target system was developed for a PET cyclotron. The system is compatible with many different target materials in the form of foils and electroplated/sputtered targets which makes it useful for production of a wide variety of different PET radionuclides. The target material is manually loaded into the system. Remote handling of irradiated target material is managed with a pneumatic piston and a vacuum technique which allows the targets to be dropped into a shielded transport container. To test the target performance, proton irradiations (12.8 MeV, 45 μA) of monoisotopic yttrium foils (0.64 mm, direct water cooling) were performed to produce 89Zr. The yields were 2200±200 MBq (1 h, n=13) and 6300±65 MBq (3 h, n=3).

  7. Beam tracking simulation in the central region of a 13 MeV PET cyclotron

    NASA Astrophysics Data System (ADS)

    Anggraita, Pramudita; Santosa, Budi; Taufik, Mulyani, Emy; Diah, Frida Iswinning

    2012-06-01

    This paper reports the trajectories simulation of proton beam in the central region of a 13 MeV PET cyclotron, operating with negative proton beam (for easier beam extraction using a stripper foil), 40 kV peak accelerating dee voltage at fourth harmonic frequency of 77.88 MHz, and average magnetic field of 1.275 T. The central region covers fields of 240mm × 240mm × 30mm size at 1mm resolution. The calculation was also done at finer 0.25mm resolution covering fields of 30mm × 30mm × 4mm size to see the effects of 0.55mm horizontal width of the ion source window and the halted trajectories of positive proton beam. The simulations show up to 7 turns of orbital trajectories, reaching about 1 MeV of beam energy. The distribution of accelerating electric fields and magnetic fields inside the cyclotron were calculated in 3 dimension using Opera3D code and Tosca modules for static magnetic and electric fields. The trajectory simulation was carried out using Scilab 5.3.3 code.

  8. Development of a PET cyclotron based irradiation setup for proton radiobiology

    NASA Astrophysics Data System (ADS)

    Ghithan, Sharif; Crespo, Paulo; do Carmo, S. J. C.; Ferreira Marques, Rui; Fraga, F. A. F.; Simões, Hugo; Alves, Francisco; Rachinhas, P. J. B. M.

    2015-02-01

    An out-of-yoke irradiation setup using the proton beam from a cyclotron that ordinary produces radioisotopes for positron emission tomography (PET) has been developed, characterized, calibrated and validated. The current from a 20 μm thick aluminum transmission foil is readout by home-made transimpedance electronics, providing online dose information. The main monitoring variables, delivered in real-time, include beam current, integrated charge and dose rate. Hence the dose and integrated current delivered at a given instant to an experimental setup can be computer-controlled with a shutter. In this work, we report on experimental results and Geant4 simulations of a setup which exploits for the first time the 18 MeV proton beam from a PET cyclotron to irradiate a selected region of a target using the developed irradiation system. By using this system, we are able to deliver a homogeneous beam on targets with 18 mm diameter, allowing to achieve the controlled irradiation of cell cultures located in biological multi-well dishes of 16 mm diameter. We found that the magnetic field applied inside the cyclotron plays a major role for achieving the referred to homogeneity. The quasi-Gaussian curve obtained by scanning the magnet current and measuring the corresponding dose rate must be measured before any irradiation procedure, with the shutter closed. At the optimum magnet current, which corresponds to the center of the Gaussian, a homogenous dose is observed over the whole target area. Making use of a rotating disk with a slit of 0.5 mm at a radius of 150 mm, we could measure dose rates on target ranging from 500 mGy/s down to 5 mGy/s. For validating the developed irradiation setup, several Gafchromic® EBT2 films were exposed to different values of dose. The absolute dose in the irradiated films were assessed in the 2D film dosimetry system of the Department of Radiotherapy of Coimbra University Hospital Center with a precision better than 2%. In the future, we plan

  9. Characterisation of the secondary neutron field generated by a compact PET cyclotron with MCNP6 and experimental measurements.

    PubMed

    Alloni, D; Prata, M

    2017-10-01

    The production of the most common used PET radioisotope Fluorine-18 with commercial cyclotrons is obtained from the (18)O(p,n)(18)F nuclear reaction when (18)O-enriched water is bombarded with a proton beam. We present the characterization of the secondary neutron field spectra produced by this reaction in different locations around the cyclotron, through a comparison between MCNP6 Monte Carlo simulation results and experimental data obtained with Neutron Activation Analysis (NAA) of thin target foils of different materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. ARTEMIS-B: A room-temperature test electron cyclotron resonance ion source for the National Superconducting Cyclotron Laboratory at Michigan State University

    SciTech Connect

    Machicoane, G.; Cole, D.; Ottarson, J.; Stetson, J.; Zavodszky, P.

    2006-03-15

    The current scheme for ion-beam injection into the coupled cyclotron accelerator at the NSCL involves the use of two electron cyclotron resonance (ECR) ion sources. The first one is a 6.4 GHz fully superconducting that will be replaced within two years by SUSI, a third generation 18 GHz superconducting ECR ion source. The other source, ARTEMIS, is a room-temperature source based on the AECR-U design and built in collaboration with the University of Jyvaeskylae in 1999. Due to cyclotron operation constraint, very little time can be allowed to ion source development and optics studies of the cyclotron injection beam line. In this context, NSCL has decided to build ARTEMIS-B an exact replica of its room-temperature ECR ion source. The goal of this project is threefold. One is to improve the overall reliability of cyclotron operation through tests and studies of various ion source parameters that could benefit beam stability, tuning reproducibility, and of course overall extracted currents performance. Second is to implement and test modifications or upgrade made to the ion source: extraction geometry, new resistive or rf oven design, dual frequency use, liner, etc. Finally, this test source will be used to study various ion optics schemes such as electrostatic quadrupole doublet or triplet at the source extraction or the use of a correction sextupole and assess their effect on the ion beam through the use of an emittance scanner and imaging viewer that will be incorporated into ARTEMIS-B beam line. This article reviews the design and construction of ARTEMIS-B along with some initial commissioning results.

  11. Distribution of residual long-lived radioactivity in the inner concrete walls of a compact medical cyclotron vault room.

    PubMed

    Fujibuchi, Toshioh; Nohtomi, Akihiro; Baba, Shingo; Sasaki, Masayuki; Komiya, Isao; Umedzu, Yoshiyuki; Honda, Hiroshi

    2015-01-01

    Compact medical cyclotrons have been set up to generate the nuclides necessary for positron emission tomography. In accelerator facilities, neutrons activate the concrete used to construct the vault room; this activation increases with the use of an accelerator. The activation causes a substantial radioactive waste management problem when facilities are decommissioned. In the present study, several concrete cores from the walls, ceiling and floor of a compact medical cyclotron vault room were samples 2 years after the termination of operations, and the radioactivity concentrations of radionuclides were estimated. Cylindrical concrete cores 5 cm in diameter and 10 cm in length were bored from the concrete wall, ceiling and floor. Core boring was performed at 18 points. The gamma-ray spectrum of each sample was measured using a high-purity germanium detector. The degree of activation of the concrete in the cyclotron vault room was analyzed, and the range and tendency toward activation in the vault room were examined. (60)Co and (152)Eu were identified by gamma-ray spectrometry of the concrete samples. (152)Eu and (60)Co are produced principally from the stable isotopes of europium and cobalt by neutron capture reactions. The radioactivity concentration did not vary much between the surface of the concrete and at a depth of 10 cm. Although the radioactivity concentration near the target was higher than the clearance level for radioactive waste indicated in IAEA RS-G-1.7, the mean radioactivity concentration in the walls and floor was lower than the clearance level. The radioactivity concentration of the inner concrete wall of the medical cyclotron vault room was not uniform. The areas exceeding the clearance level were in the vicinity of the target, but most of the building did not exceed the clearance levels.

  12. Management of radioactive waste gases from PET radiopharmaceutical synthesis using cost effective capture systems integrated with a cyclotron safety system.

    PubMed

    Stimson, D H R; Pringle, A J; Maillet, D; King, A R; Nevin, S T; Venkatachalam, T K; Reutens, D C; Bhalla, R

    2016-09-01

    The emphasis on the reduction of gaseous radioactive effluent associated with PET radiochemistry laboratories has increased. Various radioactive gas capture strategies have been employed historically including expensive automated compression systems. We have implemented a new cost-effective strategy employing gas capture bags with electronic feedback that are integrated with the cyclotron safety system. Our strategy is suitable for multiple automated (18)F radiosynthesis modules and individual automated (11)C radiosynthesis modules. We describe novel gas capture systems that minimize the risk of human error and are routinely used in our facility.

  13. On-line measurements of proton beam current from a PET cyclotron using a thin aluminum foil

    NASA Astrophysics Data System (ADS)

    Ghithan, S.; do Carmo, S. J. C.; Ferreira Marques, R.; Fraga, F. A. F.; Simões, H.; Alves, F.; Crespo, P.

    2013-07-01

    The number of cyclotrons capable of accelerating protons to about 20 MeV is increasing throughout the world. Originally aiming at the production of positron emission tomography (PET) radionuclides, some of these facilities are equipped with several beam lines suitable for scientific research. Radiobiology, radiophysiology, and other dosimetric studies can be performed using these beam lines. In this work, we measured the Bragg peak of the protons from a PET cyclotron using a stacked target consisting of several aluminum foils interleaved with polyethylene sheets, readout by in-house made transimpedance electronics. The measured Bragg peak is consistent with simulations performed using the SRIM/TRIM simulation toolkit. Furthermore, we report on experimental results aiming at measuring proton beam currents down to 10 pA using a thin aluminum foil (20-μm-thick). The aluminum was chosen for this task because it is radiation hard, it has low density and low radiation activity, and finally because it is easily available at negligible cost. This method allows for calculating the dose delivered to a target during an irradiation with high efficiency, and with minimal proton energy loss and scattering.

  14. The new bern PET cyclotron, its research beam line, and the development of an innovative beam monitor detector

    NASA Astrophysics Data System (ADS)

    Braccini, Saverio

    2013-04-01

    The new Bern cyclotron laboratory aims at industrial radioisotope production for PET diagnostics and multidisciplinary research by means of a specifically conceived beam transfer line, terminated in a separate bunker. In this framework, an innovative beam monitor detector based on doped silica and optical fibres has been designed, constructed, and tested. Scintillation light produced by Ce and Sb doped silica fibres moving across the beam is measured, giving information on beam position, shape, and intensity. The doped fibres are coupled to commercial optical fibres, allowing the read-out of the signal far away from the radiation source. This general-purpose device can be easily adapted for any accelerator used in medical applications and is suitable either for low currents used in hadrontherapy or for currents up to a few μA for radioisotope production, as well as for both pulsed and continuous beams.

  15. A real-time beam-profile monitor for a PET cyclotron

    SciTech Connect

    Hoehr, C.; Uittenbosch, T.; Verzilov, V.; English, W.; Buckley, K.; Gray, D.; Kellog, S.; Cameron, D.; Schaffer, P.

    2012-12-19

    Beam profiles in medical cyclotrons are traditionally measured using techniques that do not provide any information about short-term fluctuations of the beam shape or beam intensity. To overcome this, we have developed a real-time harp beam profile monitor which can withstand beam power in excess of 300 W. The monitor and electronics were constructed and applied toward a 13 MeV proton beam with current of up to 25 {mu}A. Herein are reported preliminary beam-profile measurement results.

  16. A real-time beam-profile monitor for a PET cyclotron

    NASA Astrophysics Data System (ADS)

    Hoehr, C.; Uittenbosch, T.; Verzilov, V.; English, W.; Buckley, K.; Gray, D.; Kellog, S.; Cameron, D.; Schaffer, P.

    2012-12-01

    Beam profiles in medical cyclotrons are traditionally measured using techniques that do not provide any information about short-term fluctuations of the beam shape or beam intensity. To overcome this, we have developed a real-time harp beam profile monitor which can withstand beam power in excess of 300 W. The monitor and electronics were constructed and applied toward a 13 MeV proton beam with current of up to 25 μA. Herein are reported preliminary beam-profile measurement results.

  17. Progress of a room temperature electron cyclotron resonance ion source using evaporative cooling technology at Institute of Modern Physics

    SciTech Connect

    Lu, W.; Xiong, B.; Guo, S. Q.; Cao, R.; Ruan, L.; Zhang, X. Z.; Sun, L. T.; Feng, Y. C.; Ma, B. H.; Zhao, H. W.

    2014-02-15

    A new room temperature ECR ion source, Lanzhou Electron Cyclotron Resonance ion source No. 4 (LECR4, previously named DRAGON), is under intense construction at Institute of Modern Physics. LECR4 is designed to operate with 18 GHz microwave frequency. The maximum axial magnetic fields are 2.3 T at injection and 1.3 T at extraction, and the radial field at the plasma chamber wall of 76 mm inner diameter is 1.0–1.2 T. One of the unique features for LECR4 is that its axial solenoids are winded with solid square copper wires which are immersed in a kind of special evaporative cooling medium for cooling purpose. Till now, a prototype of the cooling system has been successfully constructed and tested, which has demonstrated that the cooling efficiency of the designed system could meet the requirements of LECR4 under the routine operation conditions. All the main components of the ion source have been completed. Assembly and commissioning is ongoing. The latest developments and test results will be presented in this paper.

  18. Progress of a room temperature electron cyclotron resonance ion source using evaporative cooling technology at Institute of Modern Physics.

    PubMed

    Lu, W; Xiong, B; Zhang, X Z; Sun, L T; Feng, Y C; Ma, B H; Guo, S Q; Cao, R; Ruan, L; Zhao, H W

    2014-02-01

    A new room temperature ECR ion source, Lanzhou Electron Cyclotron Resonance ion source No. 4 (LECR4, previously named DRAGON), is under intense construction at Institute of Modern Physics. LECR4 is designed to operate with 18 GHz microwave frequency. The maximum axial magnetic fields are 2.3 T at injection and 1.3 T at extraction, and the radial field at the plasma chamber wall of 76 mm inner diameter is 1.0-1.2 T. One of the unique features for LECR4 is that its axial solenoids are winded with solid square copper wires which are immersed in a kind of special evaporative cooling medium for cooling purpose. Till now, a prototype of the cooling system has been successfully constructed and tested, which has demonstrated that the cooling efficiency of the designed system could meet the requirements of LECR4 under the routine operation conditions. All the main components of the ion source have been completed. Assembly and commissioning is ongoing. The latest developments and test results will be presented in this paper.

  19. Convenient preparation of 68Ga-based PET-radiopharmaceuticals at room temperature.

    PubMed

    Velikyan, I; Maecke, H; Langstrom, B

    2008-02-01

    A straightforward labeling using generator produced positron emitting (68)Ga, which provides high quality images, may result in kit type production of PET radiopharmaceuticals and make PET examinations possible also at centers lacking accelerators. The introduction of macrocyclic bifunctional chelators that would provide fast (68)Ga-complexation at room temperature would simplify even further tracer preparation and open wide possibilities for (68)Ga-labeling of fragile and potent macromolecules. Gallium-68 has the potential to facilitate development of clinically practical PET and to promote PET technique for individualized medicine. The macrocyclic chelator, 1,4,7-triazacyclononanetriacetic acid (NOTA), and its derivative coupled to an eight amino acid residue peptide (NODAGA-TATE, [NODAGA (0), Tyr(3)]Octreotate) were labeled with (68)Ge/(68)Ga-generator produced positron emitting (68)Ga. Formation kinetics of (68)Ga-NOTA was studied as a function of pH and formation kinetics of (68)Ga-NODAGA-TATE was studied as a function of the bioconjugate concentration. The nearly quantitative radioactivity incorporation (RAI>95%) for (68)Ga-NOTA was achieved within less than 10 min at room temperature and pH 3.5. The concentrations of NODAGA-TATE required for RAI of >90% and >95% were, respectively, 2-5 and 10 microM. In both cases the purification of the (68)Ga-labeled products was not necessary since the radiochemical purity was >95% and the preparation buffer, 4-(2-hydroxyethyl) piperazine-1-ethanesulfonic acid (HEPES) is suitable for human use. In order to confirm the identity of the products, complexes comprising (nat)Ga were synthesized and analyzed by mass spectrometry. The complex was found to be stable in the reaction mixture, phosphate buffer, and human plasma during 4.5 h incubation. Free and peptide conjugated NOTA formed stable complexes with (68)Ga at room temperature within 10 min. This might be of special interest for the labeling of fragile and potent

  20. Optimization of radiation doses received by personnel in PET uptake rooms.

    PubMed

    Perez, Maria E; Verde, José M; Montes, Carlos; Ramos, Julio A; García, Sofía; Hernandez, Jorge

    2014-11-01

    Reduction of dose to exposed personnel during positron emission tomography (PET) installation usually relies on physical shielding. While the major contribution of shielding is unquestioned, it is usually the only method applied. Other methods of reduction, such as working procedure optimization, the position of the furniture, and rooms are usually disregarded in these installations. This paper presents a design and work optimization procedure used in a particular institution. The influence on the dose received by personnel due to the positioning of injection chairs, injection room configuration, and working procedures is studied. Using this optimization strategy, it is possible to reduce the technician dose due to patients by a factor of 0.59. Injection room design is much more important for optimizing the received dose than is work-flow management. The influence of the order of patient entrance on received dose was the aspect that produced the smallest variation in received doses. It is recommended that the optimization be carried out for the installation proposed in the design phase, when no additional cost is required, because the position of the doors of the injection rooms depends on the where the injection chairs are situated.

  1. Design of the shielding wall of a cyclotron room and the activation interpretation using the Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Jang, D. G.; Kim, J. M.; Kim, J. H.

    2017-01-01

    Medical cyclotron is mainly a facility used for producing radiopharmaceutical products, which secondarily generate high energy radiation when producing a radiopharmaceutical product. In this study, the intention is that the reductions in spatial dose rate for the radiation generated when cyclotron is operated and the absorbed dose rate, according to the width of shielding wall, will be analyzed. The simulation planned targetry and protons of 16.5 MeV, 60μA through a Monte Carlo simulation, and as a result of the simulation, it has been found through an analysis that a concrete shielding wall of 200 cm is needed, according to the absorbed dose rate of the shielding wall thickness of cyclotron, and the concrete gives an external exposure level of 1 μSv/hr after 19 years of cyclotron operation as it is activated by the nuclear reaction of cyclotron. When taking into account the mechanical life span of cyclotron, it is deemed necessary to develop additional shielding and a low activation material.

  2. The development of a room temperature electron cyclotron resonance ion source (Lanzhou electron cyclotron resonance ion source No. 4) with evaporative cooling technology at Institute of Modern Physics

    SciTech Connect

    Lu, W. Sun, L. T.; Qian, C.; Feng, Y. C.; Ma, H. Y.; Zhang, X. Z.; Ma, B. H.; Zhao, H. W.; Guo, J. W.; Fang, X.; Yang, Y.; Xiong, B.; Guo, S. Q.; Ruan, L.

    2015-04-15

    LECR4 (Lanzhou electron cyclotron resonance ion source No. 4) has been successfully constructed at IMP and has also been connected with the Low Energy Beam Transport (LEBT) and Radio Frequency Quadrupole (RFQ) systems. These source magnet coils are cooled through evaporative cooling technology, which is the first attempt with an ECR ion source in the world. The maximum mirror field is 2.5 T (with iron plug) and the effective plasma chamber volume is 1.2 l. It was designed to be operated at 18 GHz and aimed to produce intense multiple charge state heavy ion beams for the linear injector project SSC-Linac at IMP. In February 2014, the first analyzed beam at 18 GHz was extracted. During about three months’ commissioning, some outstanding results have been achieved, such as 1.97 emA of O{sup 6+}, 1.7 emA of Ar{sup 8+}, 1.07 emA of Ar{sup 9+}, and 118 euA of Bi{sup 28+}. The source has also successfully delivered O{sup 5+} and Ar{sup 8+} ion beams for RFQ commissioning in April 2014. This paper will give a brief overview of the design of LECR4. Then, the latest results of this source at 18 GHz will be presented.

  3. The development of a room temperature electron cyclotron resonance ion source (Lanzhou electron cyclotron resonance ion source No. 4) with evaporative cooling technology at Institute of Modern Physics

    NASA Astrophysics Data System (ADS)

    Lu, W.; Sun, L. T.; Qian, C.; Guo, J. W.; Fang, X.; Feng, Y. C.; Yang, Y.; Ma, H. Y.; Zhang, X. Z.; Ma, B. H.; Xiong, B.; Guo, S. Q.; Ruan, L.; Zhao, H. W.

    2015-04-01

    LECR4 (Lanzhou electron cyclotron resonance ion source No. 4) has been successfully constructed at IMP and has also been connected with the Low Energy Beam Transport (LEBT) and Radio Frequency Quadrupole (RFQ) systems. These source magnet coils are cooled through evaporative cooling technology, which is the first attempt with an ECR ion source in the world. The maximum mirror field is 2.5 T (with iron plug) and the effective plasma chamber volume is 1.2 l. It was designed to be operated at 18 GHz and aimed to produce intense multiple charge state heavy ion beams for the linear injector project SSC-Linac at IMP. In February 2014, the first analyzed beam at 18 GHz was extracted. During about three months' commissioning, some outstanding results have been achieved, such as 1.97 emA of O6+, 1.7 emA of Ar8+, 1.07 emA of Ar9+, and 118 euA of Bi28+. The source has also successfully delivered O5+ and Ar8+ ion beams for RFQ commissioning in April 2014. This paper will give a brief overview of the design of LECR4. Then, the latest results of this source at 18 GHz will be presented.

  4. The development of a room temperature electron cyclotron resonance ion source (Lanzhou electron cyclotron resonance ion source No. 4) with evaporative cooling technology at Institute of Modern Physics.

    PubMed

    Lu, W; Sun, L T; Qian, C; Guo, J W; Fang, X; Feng, Y C; Yang, Y; Ma, H Y; Zhang, X Z; Ma, B H; Xiong, B; Guo, S Q; Ruan, L; Zhao, H W

    2015-04-01

    LECR4 (Lanzhou electron cyclotron resonance ion source No. 4) has been successfully constructed at IMP and has also been connected with the Low Energy Beam Transport (LEBT) and Radio Frequency Quadrupole (RFQ) systems. These source magnet coils are cooled through evaporative cooling technology, which is the first attempt with an ECR ion source in the world. The maximum mirror field is 2.5 T (with iron plug) and the effective plasma chamber volume is 1.2 l. It was designed to be operated at 18 GHz and aimed to produce intense multiple charge state heavy ion beams for the linear injector project SSC-Linac at IMP. In February 2014, the first analyzed beam at 18 GHz was extracted. During about three months' commissioning, some outstanding results have been achieved, such as 1.97 emA of O(6+), 1.7 emA of Ar(8+), 1.07 emA of Ar(9+), and 118 euA of Bi(28+). The source has also successfully delivered O(5+) and Ar(8+) ion beams for RFQ commissioning in April 2014. This paper will give a brief overview of the design of LECR4. Then, the latest results of this source at 18 GHz will be presented.

  5. Implementation and workflow for PET monitoring of therapeutic ion irradiation: a comparison of in-beam, in-room, and off-line techniques

    NASA Astrophysics Data System (ADS)

    Shakirin, Georgy; Braess, Henning; Fiedler, Fine; Kunath, Daniela; Laube, Kristin; Parodi, Katia; Priegnitz, Marlen; Enghardt, Wolfgang

    2011-03-01

    An independent assessment of the dose delivery in ion therapy can be performed using positron emission tomography (PET). For that a distribution of positron emitters which appear as the result of interaction between ions of the therapeutic beam and the irradiated tissue is measured during or after the irradiation. Three concepts for PET monitoring implemented in various therapy facilities are considered in this paper. The in-beam PET concept relies on the PET measurement performed simultaneously to the irradiation by means of a PET scanner which is completely integrated into the irradiation site. The in-room PET concept allows measurement immediately after irradiation by a standalone PET scanner which is installed very close to the irradiation site. In the off-line PET scenario the measurement is performed by means of a standalone PET/CT scanner 10-30 min after the irradiation. These three concepts were evaluated according to image quality criteria, integration costs, and their influence onto the workflow of radiotherapy. In-beam PET showed the best performance. However, the integration costs were estimated as very high for this modality. Moreover, the performance of in-beam PET depends heavily on type and duty cycle of the accelerator. The in-room PET is proposed for planned therapy facilities as a good compromise between the quality of measured data and integration efforts. For facilities which are close to the nuclear medicine departments off-line PET can be suggested under several circumstances.

  6. Implementation and workflow for PET monitoring of therapeutic ion irradiation: a comparison of in-beam, in-room, and off-line techniques.

    PubMed

    Shakirin, Georgy; Braess, Henning; Fiedler, Fine; Kunath, Daniela; Laube, Kristin; Parodi, Katia; Priegnitz, Marlen; Enghardt, Wolfgang

    2011-03-07

    An independent assessment of the dose delivery in ion therapy can be performed using positron emission tomography (PET). For that a distribution of positron emitters which appear as the result of interaction between ions of the therapeutic beam and the irradiated tissue is measured during or after the irradiation. Three concepts for PET monitoring implemented in various therapy facilities are considered in this paper. The in-beam PET concept relies on the PET measurement performed simultaneously to the irradiation by means of a PET scanner which is completely integrated into the irradiation site. The in-room PET concept allows measurement immediately after irradiation by a standalone PET scanner which is installed very close to the irradiation site. In the off-line PET scenario the measurement is performed by means of a standalone PET/CT scanner 10-30 min after the irradiation. These three concepts were evaluated according to image quality criteria, integration costs, and their influence onto the workflow of radiotherapy. In-beam PET showed the best performance. However, the integration costs were estimated as very high for this modality. Moreover, the performance of in-beam PET depends heavily on type and duty cycle of the accelerator. The in-room PET is proposed for planned therapy facilities as a good compromise between the quality of measured data and integration efforts. For facilities which are close to the nuclear medicine departments off-line PET can be suggested under several circumstances.

  7. Cyclotrons and positron emitting radiopharmaceuticals

    SciTech Connect

    Wolf, A.P.; Fowler, J.S.

    1984-01-01

    The state of the art of Positron Emission Tomography (PET) technology as related to cyclotron use and radiopharmaceutical production is reviewed. The paper discusses available small cyclotrons, the positron emitters which can be produced and the yields possible, target design, and radiopharmaceutical development and application. 97 refs., 12 tabs. (ACR)

  8. Measurement of (43)Sc and (44)Sc production cross-section with an 18MeV medical PET cyclotron.

    PubMed

    Carzaniga, Tommaso Stefano; Auger, Martin; Braccini, Saverio; Bunka, Maruta; Ereditato, Antonio; Nesteruk, Konrad Pawel; Scampoli, Paola; Türler, Andreas; van der Meulen, Nicholas

    2017-11-01

    (43)Sc and (44)Sc are positron emitter radionuclides that, in conjunction with the β(-) emitter (47)Sc, represent one of the most promising possibilities for theranostics in nuclear medicine. Their availability in suitable quantity and quality for medical applications is an open issue and their production with medical cyclotrons represents a scientific and technological challenge. For this purpose, an accurate knowledge of the production cross sections is mandatory. In this paper, we report on the cross section measurement of the reactions (43)Ca(p,n)(43)Sc, (44)Ca(p,2n) (43)Sc, (46)Ti(p,α)(43)Sc, and (44)Ca(p,n)(44)Sc at the Bern University Hospital cyclotron. A study of the production yield and purity performed by using commercially available enriched target materials is also presented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A simulation study of a dual-plate in-room PET system for dose verification in carbon ion therapy

    NASA Astrophysics Data System (ADS)

    Chen, Ze; Hu, Zheng-Guo; Chen, Jin-Da; Zhang, Xiu-Ling; Guo, Zhong-Yan; Xiao, Guo-Qing; Sun, Zhi-Yu; Huang, Wen-Xue; Wang, Jian-Song

    2014-08-01

    During carbon ion therapy, lots of positron emitters such as 11C, 15O, 10C are generated in irradiated tissues by nuclear reactions, and can be used to track the carbon beam in the tissue by a positron emission tomography (PET) scanner. In this study, an dual-plate in-room PET scanner has been designed and evaluated based on the GATE simulation platform to monitor patient dose in carbon ion therapy. The dual-plate PET is designed to avoid interference with the carbon beamline and with patient positioning. Its performance was compared with that of four-head and full-ring PET scanners. The dual-plate, four-head and full-ring PET scanners consisted of 30, 60, 60 detector modules, respectively, with a 36 cm distance between directly opposite detector modules for dose deposition measurements. Each detector module consisted of a 24×24 array of 2 mm×2 mm×18 mm LYSO pixels coupled to a Hamamatsu H8500 PMT. To estimate the production yield of positron emitters, a 10 cm×15 cm×15 cm cuboid PMMA phantom was irradiated with 172, 200, 250 MeV/u 12C beams. 3D images of the activity distribution measured by the three types of scanner are produced by an iterative reconstruction algorithm. By comparing the longitudinal profile of positron emitters along the carbon beam path, it is indicated that use of the dual-plate PET scanner is feasible for monitoring the dose distribution in carbon ion therapy.

  10. Cyclotron Production of Medical Radioisotopes

    SciTech Connect

    Avila-Rodriguez, M. A.; Zarate-Morales, A.; Flores-Moreno, A.

    2010-08-04

    The cyclotron production of radioisotopes for medical applications is gaining increased significance in diagnostic molecular imaging techniques such as PET and SPECT. In this regard, radioisotope production has never been easier or more convenient until de introduction of compact medical cyclotrons in the last few decades, which allowed the use of short-lived radioisotopes in in vivo nuclear medicine studies on a routine basis. This review outlines some general considerations about the production of radioisotopes using charged particle accelerators.

  11. BEST medical radioisotope production cyclotrons

    SciTech Connect

    Sabaiduc, Vasile; Milton, Bruce; Suthanthiran, Krishnan; Johnson, Richard R.; Gelbart, W. Z.

    2013-04-19

    Best Cyclotron Systems Inc (BCSI) is currently developing 14 MeV, 25 MeV, 35MeV and 70MeV cyclotrons for radioisotope production and research applications as well as the entire spectrum of targets and nuclear synthesis modules for the production of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and radiation therapy isotopes. The company is a subsidiary of Best Medical International, renowned in the field of medical instrumentation and radiation therapy. All cyclotrons have external negative hydrogen ion sources, four radial sectors with two dees in opposite valleys, cryogenic vacuum system and simultaneous beam extraction on opposite lines. The beam intensity ranges from 400 {mu}A to 1000 {mu}A, depending on the cyclotron energy and application.

  12. BEST medical radioisotope production cyclotrons

    NASA Astrophysics Data System (ADS)

    Sabaiduc, Vasile; Milton, Bruce; Suthanthiran, Krishnan; Gelbart, W. Z.; Johnson, Richard R.

    2013-04-01

    Best Cyclotron Systems Inc (BCSI) is currently developing 14 MeV, 25 MeV, 35MeV and 70MeV cyclotrons for radioisotope production and research applications as well as the entire spectrum of targets and nuclear synthesis modules for the production of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and radiation therapy isotopes. The company is a subsidiary of Best Medical International, renowned in the field of medical instrumentation and radiation therapy. All cyclotrons have external negative hydrogen ion sources, four radial sectors with two dees in opposite valleys, cryogenic vacuum system and simultaneous beam extraction on opposite lines. The beam intensity ranges from 400 μA to 1000 μA, depending on the cyclotron energy and application [1].

  13. Use of a TLD-based multisphere spectrometry system to measure the neutron spectra around a not-self-shielded PET cyclotron: Preliminary results.

    PubMed

    Guimarães, A M; Lacerda, M A S; Santos, J A L; Maletta, P G M; Rodrigues, S L M; Andrade, R S; Vilela, E C; da Silva, T A

    2012-12-01

    In the present work, we utilized the BSS system with TLD-600 and TLD-700 to measure the neutron spectra around the GE-PETtrace 8 cyclotron of the Development Centre of Nuclear Technology (CDTN/CNEN) in Belo Horizonte, Brazil. The cyclotron is capable of accelerating protons up to 16.5 MeV, to production of fluorine-18. Four points inside the bunker of the cyclotron were studied. Two points in front of the primary radiation beam and other two opposed to the primary radiation beam. The measurements were unfolded with the BUMS and the NSDUAZ computer codes. The dosimetric quantities obtained were in agreement with the other published data and were coherent with the expected from theoretical estimates obtained from source term informed by the manufacturer of the cyclotron.

  14. Pet in the therapy room: an attachment perspective on Animal-Assisted Therapy.

    PubMed

    Zilcha-Mano, Sigal; Mikulincer, Mario; Shaver, Phillip R

    2011-11-01

    John Bowlby's ( 1973, 1980, 1982) attachment theory is one of the most influential theories in personality and developmental psychology and provides insights into adjustment and psychopathology across the lifespan. The theory is also helpful in defining the target of change in psychotherapy, understanding the processes by which change occurs, and conceptualizing cases and planning treatment (Daniel, 2006; Obegi & Berant, 2008; Sable, 2004 ; Wallin, 2007). Here, we propose a model of Animal-Assisted Therapy (AAT) based on attachment theory and on the unique characteristics of human-pet relationships. The model includes clients' unmet attachment needs, individual differences in attachment insecurity, coping, and responsiveness to therapy. It also suggests ways to foster the development of more adaptive patterns of attachment and healthier modes of relating to others.

  15. A room temperature LSO/PIN photodiode PET detector module that measures depth of interaction

    SciTech Connect

    Moses, W.W.; Derenzo, S.E.; Melcher, C.L.; Manente, R.A.

    1994-11-01

    We present measurements of a 4 element PET detector module that uses a 2{times}2 array of 3 mm square PIN photodiodes to both measure the depth of interaction (DOI) and identify the crystal of interaction. Each photodiode is coupled to one end of a 3{times}3{times}25 mm LSO crystal, with the opposite ends of all 4 crystals attached to a single PMT that provides a timing signal and initial energy discrimination. Each LSO crystal is coated with a {open_quotes}lossy{close_quotes} reflector, so the ratio of light detected in the photodiode and PMT depends on the position of interaction in the crystal, and is used to determine this position on an event by event basis. This module is operated at +25{degrees}C with a photodiode amplifier peaking time of 2 {mu}s. When excited by a collimated beam of 511 keV photons at the photodiode end of the module (i.e. closest to the patient), the DOI resolution is 4 mm fwhm and the crystal of interaction is identified correctly 95% of the time. When excited at the opposite end of the module, the DOI resolution is 13 mm fwhm and the crystal of interaction is identified correctly 73% of the time. The channel to channel variations in performance are minimal.

  16. Cyclotrons and positron emission tomography radiopharmaceuticals for clinical imaging.

    PubMed

    Saha, G B; MacIntyre, W J; Go, R T

    1992-07-01

    Positron emission tomography (PET) requires positron-emitting radionuclides that emit 511-keV photons detectable by PET imagers. Positron-emitting radionuclides are commonly produced in charged particle accelerators, eg, linear accelerators or cyclotrons. The most widely available radiopharmaceuticals for PET imaging are carbon-11-, nitrogen-13-, and oxygen-15-labeled compounds, many of which, either in their normal state or incorporated in other compounds, serve as physiological tracers. Other useful PET radiopharmaceuticals include fluorine-18-, bromine-75-, gallium-68 (68Ga)-, rubidium-82 (82Rb)-, and copper-62 (62Cu)-labeled compounds. Many positron emitters have short half-lives and thus require on-site cyclotrons for application, and others (68Ga, 82Rb, and 62Cu) are available from radionuclides generators using relatively long-lived parent radionuclides. This review is divided into two sections: cyclotrons and PET radiopharmaceuticals for clinical imaging. In the cyclotron section, the principle of operation of the cyclotron, types of cyclotrons, medical cyclotrons, and production of radionuclides are discussed. In the section on PET radiopharmaceuticals, the synthesis and clinical use of PET radiopharmaceuticals are described.

  17. Imaging human brown adipose tissue under room temperature conditions with 11C-MRB, a selective norepinephrine transporter PET ligand

    PubMed Central

    Hwang, Janice J.; Yeckel, Catherine W.; Gallezot, Jean-Dominique; Aguiar, Renata Belfort-De; Ersahin, Devrim; Gao, Hong; Kapinos, Michael; Nabulsi, Nabeel; Huang, Yiyun; Cheng, David; Carson, Richard E.; Sherwin, Robert; Ding, Yu-Shin

    2015-01-01

    Introduction Brown adipose tissue (BAT) plays a critical role in adaptive thermogenesis and is tightly regulated by the sympathetic nervous system (SNS). However, current BAT imaging modalities require cold stimulation and are often unreliable to detect BAT in the basal state, at room temperature (RT). We have shown previously that BAT can be detected in rodents under both RT and cold conditions with 11C-MRB ((S,S)-11C-O-methylreboxetine), a highly selective ligand for the norepinephrine transporter (NET). Here, we evaluate this novel approach for BAT detection in adult humans under RT conditions. Methods Ten healthy, Caucasian subjects (5 M: age 24.6±2.6, BMI 21.6±2.7 kg/m2; 5 F: age 25.4±2.1, BMI 22.1±1.0 kg/m2) underwent 11C-MRB PET-CT imaging for cervical/supraclavicular BAT under RT and cold-stimulated conditions (RPCM Cool vest; enthalpy 15°C) compared to 18F-FDG PET-CT imaging. Uptake of 11C-MRB, was quantified as the distribution volume ratio (DVR) using the occipital cortex as a low NET density reference region. Total body fat and lean body mass were assessed via bioelectrical impedance analysis. Results As expected, 18F-FDG uptake in BAT was difficult to identify at RT but easily detected with cold stimulation (p=0.01). In contrast, BAT 11C-MRB uptake (also normalized for muscle) was equally evident under both RT and cold conditions (BAT DVR: RT 1.0±0.3 vs. cold 1.1±0.3, p=0.31; BAT/muscle DVR: RT 2.3±0.7 vs. cold 2.5±0.5, p=0.61). Importantly, BAT DVR and BAT/muscle DVR of 11C-MRB at RT correlated positively with core body temperature (r=0.76, p=0.05 and r=0.92, p=0.004, respectively), a relationship not observed with 18F-FDG (p=0.63). Furthermore, there were gender differences in 11C-MRB uptake in response to cold (p=0.03), which reflected significant differences in the change in 11C-MRB as a function of both body composition and body temperature. Conclusions Unlike 18F-FDG, the uptake of 11C-MRB in BAT offers a unique opportunity to

  18. Imaging human brown adipose tissue under room temperature conditions with (11)C-MRB, a selective norepinephrine transporter PET ligand.

    PubMed

    Hwang, Janice J; Yeckel, Catherine W; Gallezot, Jean-Dominique; Aguiar, Renata Belfort-De; Ersahin, Devrim; Gao, Hong; Kapinos, Michael; Nabulsi, Nabeel; Huang, Yiyun; Cheng, David; Carson, Richard E; Sherwin, Robert; Ding, Yu-Shin

    2015-06-01

    Brown adipose tissue (BAT) plays a critical role in adaptive thermogenesis and is tightly regulated by the sympathetic nervous system (SNS). However, current BAT imaging modalities require cold stimulation and are often unreliable to detect BAT in the basal state, at room temperature (RT). We have shown previously that BAT can be detected in rodents under both RT and cold conditions with (11)C-MRB ((S,S)-(11)C-O-methylreboxetine), a highly selective ligand for the norepinephrine transporter (NET). Here, we evaluate this novel approach for BAT detection in adult humans under RT conditions. Ten healthy, Caucasian subjects (5 M: age 24.6±2.6, BMI 21.6±2.7kg/m(2); 5 F: age 25.4±2.1, BMI 22.1±1.0kg/m(2)) underwent (11)C-MRB PET-CT imaging for cervical/supraclavicular BAT under RT and cold-stimulated conditions (RPCM Cool vest; enthalpy 15°C) compared to (18)F-FDG PET-CT imaging. Uptake of (11)C-MRB, was quantified as the distribution volume ratio (DVR) using the occipital cortex as a low NET density reference region. Total body fat and lean body mass were assessed via bioelectrical impedance analysis. As expected, (18)F-FDG uptake in BAT was difficult to identify at RT but easily detected with cold stimulation (p=0.01). In contrast, BAT (11)C-MRB uptake (also normalized for muscle) was equally evident under both RT and cold conditions (BAT DVR: RT 1.0±0.3 vs. cold 1.1±0.3, p=0.31; BAT/muscle DVR: RT 2.3±0.7 vs. cold 2.5±0.5, p=0.61). Importantly, BAT DVR and BAT/muscle DVR of (11)C-MRB at RT correlated positively with core body temperature (r=0.76, p=0.05 and r=0.92, p=0.004, respectively), a relationship not observed with (18)F-FDG (p=0.63). Furthermore, there were gender differences in (11)C-MRB uptake in response to cold (p=0.03), which reflected significant differences in the change in (11)C-MRB as a function of both body composition and body temperature. Unlike (18)F-FDG, the uptake of (11)C-MRB in BAT offers a unique opportunity to investigate the role of

  19. Radiation levels in cyclotron-radiochemistry facility measured by a novel comprehensive computerized monitoring system

    NASA Astrophysics Data System (ADS)

    Mishani, E.; Lifshits, N.; Osavistky, A.; Kaufman, J.; Ankry, N.; Tal, N.; Chisin, R.

    1999-04-01

    Radiation levels in a cyclotron-radiochemistry facility were measured during the production of commonly used PET radiopharmaceuticals by a comprehensive computerized monitoring system. The system consists of three major components: on-line radiation monitoring channels, an area control unit, and a gas waste management unit. During production the radiation levels were measured in the cyclotron vault, inside automatic chemistry production and research shielded cells, in the radiochemistry room, in the gas waste decay tank, in the chimney filters, and at the top of the cells chimney. Each detector was calibrated in a known radiation field, and a special detector dead time correction was performed in order to achieve detected signal-to-radiation linearity for the Geiger tubes located in the radiochemistry production and research cells. During production of C-11 and O-15 PET radiopharmaceuticals, high radiation levels were measured in the gas waste decay tank (240 and 80 mR/h, respectively). In contrast, the radiation levels at the chimney filters and at the top of the cells chimney did not exceed the International Atomic Energy Agency (IAEA) Drive Air Concentration (DAC) recommended for C-11 or O-15. During production of FDG, high radiation levels were measured at the chimney filters, however the radiation level at the top of the chimney (3.7 μCi/m 3) did not exceed the F-18 DAC recommendation (27 μCi/m 3). Low radiation levels of approximately 0.5-1 mR/h were measured in the radiochemistry room during production of PET radiopharmaceuticals. In the cyclotron vault, 2 min after bombardment the radiation levels at 2 m from the cyclotron decreased to 1-2 mR/h. The addition of a gas waste decay system to computerized monitoring channels located near each strategic point of the site allows for a comprehensive survey of the radiochemical processes.

  20. The planning and design of a new PET radiochemistry facility.

    PubMed

    Jacobson, Mark S; Hung, Joseph C; Mays, Trenton L; Mullan, Brian P

    2002-03-01

    The objectives of the Mayo positron emission tomography (PET) radiochemistry facility are the production of PET drugs for clinical service of our in-house patients, commercial distribution of PET drug products, and development of new PET drugs. The factors foremost in the planning and design phases were the current regulatory climate for PET drug production, radiation safety issues, and effective production flow. A medium-energy cyclotron was preferred for its small footprint to allow a compact vault, its high-proton energy to offer a higher product radioactivity; and its research capabilities. A vault installation was chosen instead of a self-shielded machine for improved access and ease of maintenance. Adjacent to the cyclotron is an area that houses the support equipment and a large dedicated workshop to support machine maintenance and targetry development. The total floor area of the PET radiochemistry facility is 344.2 m(2) (3,705.5 ft(2)), of which the radiochemistry laboratory occupies 130.7 m(2) (1,407 ft(2)). To reduce environmental contamination of PET drug products, the laboratory contains a controlled-air environment class 10,000 (M5.5) clean room with access via an interlocking entry change area. A fully shielded isolator (class 100 [M3.5]) is located in the clean room. The PET drugs are delivered via shielded tubing between the synthesizer and isolator. Inside the isolator, there is an automated device for dispensing the PET drug into either a bulk-activity vial or a unit-dose syringe. The dispensed PET radiopharmaceutical then passes through a hatch to a dedicated area where it is packaged for in-house use or commercial distribution. Unit doses for in-house patients are transported via pneumatic tube to the PET imaging area 76.2 m (250 ft) away. There is extensive radiation area monitoring throughout the facility that continuously measures radiation levels. We believe that our new PET radiochemistry facility not only meets overall objectives, but

  1. Thermal Improvement and Stability of Si3N4/GeNx/p- and n-Ge Structures Prepared by Electron-Cyclotron-Resonance Plasma Nitridation and Sputtering at Room Temperature

    NASA Astrophysics Data System (ADS)

    Fukuda, Yukio; Okamoto, Hiroshi; Iwasaki, Takuro; Izumi, Kohei; Otani, Yohei; Ishizaki, Hiroki; Ono, Toshiro

    2012-09-01

    This paper reports on the thermal improvement of Si3N4/GeNx/Ge structures. After the Si3N4 (5 nm)/GeNx (2 nm) stacks were prepared on Ge substrates by electron-cyclotron-resonance plasma nitridation and sputtering at room temperature, they were thermally annealed in atmospheric N2 + 10% H2 ambient at temperatures from 400 to 600 °C. It was demonstrated that the electronic properties of the GeNx/Ge interfaces were thermally improved at temperatures of up to 500 °C with a minimum interface trap density (Dit) of ˜1×1011 cm-2 eV-1 near the Ge midgap, whereas the interface properties were slightly degraded after annealing at 600 °C with a minimum Dit value of ˜4×1011 cm-2 eV-1.

  2. Development of a Medical Cyclotron Production Facility

    SciTech Connect

    Allen, Danny R.

    2003-08-26

    Development of a Cyclotron manufacturing facility begins with a business plan. Geographics, the size and activity of the medical community, the growth potential of the modality being served, and other business connections are all considered. This business used the customer base established by NuTech, Inc., an independent centralized nuclear pharmacy founded by Danny Allen. With two pharmacies in operation in Tyler and College Station and a customer base of 47 hospitals and clinics the existing delivery system and pharmacist staff is used for the cyclotron facility. We then added cyclotron products to contracts with these customers to guarantee a supply. We partnered with a company in the process of developing PET imaging centers. We then built an independent imaging center attached to the cyclotron facility to allow for the use of short-lived isotopes.

  3. Development of a Medical Cyclotron Production Facility

    NASA Astrophysics Data System (ADS)

    Allen, Danny R.

    2003-08-01

    Development of a Cyclotron manufacturing facility begins with a business plan. Geographics, the size and activity of the medical community, the growth potential of the modality being served, and other business connections are all considered. This business used the customer base established by NuTech, Inc., an independent centralized nuclear pharmacy founded by Danny Allen. With two pharmacies in operation in Tyler and College Station and a customer base of 47 hospitals and clinics the existing delivery system and pharmacist staff is used for the cyclotron facility. We then added cyclotron products to contracts with these customers to guarantee a supply. We partnered with a company in the process of developing PET imaging centers. We then built an independent imaging center attached to the cyclotron facility to allow for the use of short-lived isotopes.

  4. CLOVERLEAF CYCLOTRON

    DOEpatents

    McMillan, E.M.; Judd, D.L.

    1959-02-01

    A cyclotron is presented embodying a unique magnetic field configuration, which configuration increases in intensity with radius and therefore compensates for the reltivistic mass effect, the field having further convolutions productive of axial stability in the particle beam. By reconciling the seemingly opposed requirements of mass increase compensation on one hand and anial stability on the other, the production of extremely high current particle beams in the relativistie energy range is made feasible. Certain further advantages inhere in the invention, notably an increase in the usable magnet gap, simplified and more efficient extraction of the beam from the accelerator, and ready adaptation to the use of multiply phased excitation as contrasted with the single phased systems herstofore utilized. General

  5. Production of the PET bone agent (18)F-fluoride ion, simultaneously with (18)F-FDG by a single run of the medical cyclotron with minimal radiation exposure- a novel technique.

    PubMed

    Kumar, Rajeev; Sonkawade, Rajendra G; Tripathi, Madhavi; Sharma, Punit; Gupta, Priyanka; Kumar, Praveen; Pandey, Anil K; Bal, Chandrasekhar; Damle, Nishikant Avinash; Bandopadhayaya, Gurupad

    2014-01-01

    Our aim was to establish an easy and convenient procedure for the preparation of fluorine-18-sodium fluoride ((18)F-NaF) for bone positron emission tomography (PET) during routine (18)F-FDG production using the Explora FDG4 radiochemistry module (EFRM) by single run of Cyclotron with negligible radiation exposure. We compared three techniques for (18)F-NaF production during routine PET radiochemistry at our setup. In one method we used synthesis module and in other two methods we did not. In the first and third method, F-18 was directly extracted from the V-vial and in the second method, (18)F-NaF was extracted by post processing from the EFRM. In the first method, F-18 was extracted directly from V-vial manually by opening the V-vial cap. In the second method, Explora FDG-4 Module was used. First, F-18 was transferred from the V-vial. Then, after post processing in EFRM, pure F-18 was obtained in the product vial. In the third method, pure F-18 was obtained in the product vial with the help of a mechanical robotic arm. The above were followed by routine quality control of (18)F-NaF produced by each method. Results of quality control of the (18)F-NaF obtained by all three methods satisfied all parameters prescribed by the United States Pharmacopeia (USP) and the British Pharmacopeia (BP) including biological, physical and chemical specifications. The radiochemical purity was 98.5±1.5% with Rf 0.006. The level of Kryptofix-222 (K222) in (18)F-NaF was within the prescribed limit. Mean pH of (18)F-NaF was 6.0±1.5. The exposure rate around the hot cell was negligible. In conclusion, from the results it was obvious that by our method number three (18)F-NaF was directly obtained from the V-vial using mechanical robotic arms. This method was the most appropriate with minimized radiation exposure to the handling Radiochemist and was also saving time as compared to the other two methods.

  6. (68)Ga-THP-PSMA: A PET Imaging Agent for Prostate Cancer Offering Rapid, Room-Temperature, 1-Step Kit-Based Radiolabeling.

    PubMed

    Young, Jennifer D; Abbate, Vincenzo; Imberti, Cinzia; Meszaros, Levente K; Ma, Michelle T; Terry, Samantha Y A; Hider, Robert C; Mullen, Greg E; Blower, Philip J

    2017-08-01

    The clinical impact and accessibility of (68)Ga tracers for the prostate-specific membrane antigen (PSMA) and other targets would be greatly enhanced by the availability of a simple, 1-step kit-based labeling process. Radiopharmacy staff are accustomed to such procedures in the daily preparation of (99m)Tc radiopharmaceuticals. Currently, chelating agents used in (68)Ga radiopharmaceuticals do not meet this ideal. The aim of this study was to develop and evaluate preclinically a (68)Ga radiotracer for imaging PSMA expression that could be radiolabeled simply by addition of (68)Ga generator eluate to a cold kit. Methods: A conjugate of a tris(hydroxypyridinone) (THP) chelator with the established urea-based PSMA inhibitor was synthesized and radiolabeled with (68)Ga by adding generator eluate directly to a vial containing the cold precursors THP-PSMA and sodium bicarbonate, with no further manipulation. It was analyzed after 5 min by instant thin-layer chromatography and high-performance liquid chromatography. The product was subjected to in vitro studies to determine PSMA affinity using PSMA-expressing DU145-PSMA cells, with their nonexpressing analog DU145 as a control. In vivo PET imaging and ex vivo biodistribution studies were performed in mice bearing xenografts of the same cell lines, comparing (68)Ga-THP-PSMA with (68)Ga-HBED-CC-PSMA. Results: Radiolabeling was complete (>95%) within 5 min at room temperature, showing a single radioactive species by high-performance liquid chromatography that was stable in human serum for more than 6 h and showed specific binding to PSMA-expressing cells (concentration giving 50% inhibition of 361 ± 60 nM). In vivo PET imaging showed specific uptake in PSMA-expressing tumors, reaching 5.6 ± 1.2 percentage injected dose per cubic centimeter at 40-60 min and rapid clearance from blood to kidney and bladder. The tumor uptake, biodistribution, and pharmacokinetics were not significantly different from those of (68)Ga

  7. Restoration of accelerator facilities damaged by Great East Japan Earthquake at Cyclotron and Radioisotope Center, Tohoku University.

    PubMed

    Wakui, Takashi; Itoh, Masatoshi; Shimada, Kenzi; Yoshida, Hidetomo P; Shinozuka, Tsutomu; Sakemi, Yasuhiro

    2014-01-01

    The Cyclotron and Radioisotope Center (CYRIC) of Tohoku University is a joint-use institution for education and research in a wide variety of fields ranging from physics to medicine. Accelerator facilities at the CYRIC provide opportunities for implementing a broad research program, including medical research using positron emission tomography (PET), with accelerated ions and radioisotopes. At the Great East Japan Earthquake on March 11, 2011, no human injuries occurred and a smooth evacuation was made in the CYRIC, thanks to the anti-earthquake measures such as the renovation of the cyclotron building in 2009 mainly to provide seismic strengthening, fixation of shelves to prevent the falling of objects, and securement of the width of the evacuation route. The preparation of an emergency response manual was also helpful. However, the accelerator facilities were damaged because of strong shaking that continued for a few minutes. For example, two columns on which a 930 cyclotron was placed were damaged, and thereby the 930 cyclotron was inclined. All the elements of beam transport lines were deviated from the beam axis. Some peripheral devices in a HM12 cyclotron were broken. Two shielding doors fell from the carriage onto the floor and blocked the entrances to the rooms. The repair work on the accelerator facilities was started at the end of July 2011. During the repair work, the joint use of the accelerator facilities was suspended. After the repair work was completed, the joint use was re-started at October 2012, one and a half years after the earthquake.

  8. Design Study Of Cyclotron Magnet With Permanent Magnet

    SciTech Connect

    Kim, Hyun Wook; Chai, Jong Seo

    2011-06-01

    Low energy cyclotrons for Positron emission tomography (PET) have been wanted for the production of radio-isotopes after 2002. In the low energy cyclotron magnet design, increase of magnetic field between the poles is needed to make a smaller size of magnet and decrease power consumption. The Permanent magnet can support this work without additional electric power consumption in the cyclotron. In this paper the study of cyclotron magnet design using permanent magnet is shown and also the comparison between normal magnet and the magnet which is designed with permanent magnet is shown. Maximum energy of proton is 8 MeV and RF frequency is 79.3 MHz. 3D CAD design was done by CATIA P3 V5 R18 and the All field calculations had been performed by OPERA-3D TOSCA. The self-made beam dynamics program OPTICY is used for making isochronous field and other calculations.

  9. Design Study Of Cyclotron Magnet With Permanent Magnet

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Wook; Chai, Jong Seo

    2011-06-01

    Low energy cyclotrons for Positron emission tomography (PET) have been wanted for the production of radio-isotopes after 2002. In the low energy cyclotron magnet design, increase of magnetic field between the poles is needed to make a smaller size of magnet and decrease power consumption. The Permanent magnet can support this work without additional electric power consumption in the cyclotron. In this paper the study of cyclotron magnet design using permanent magnet is shown and also the comparison between normal magnet and the magnet which is designed with permanent magnet is shown. Maximum energy of proton is 8 MeV and RF frequency is 79.3 MHz. 3D CAD design was done by CATIA P3 V5 R18 [1] and the All field calculations had been performed by OPERA-3D TOSCA [2]. The self-made beam dynamics program OPTICY [3] is used for making isochronous field and other calculations.

  10. Accelerators for hadrontherapy: From Lawrence cyclotrons to linacs

    NASA Astrophysics Data System (ADS)

    Amaldi, U.; Bonomi, R.; Braccini, S.; Crescenti, M.; Degiovanni, A.; Garlasché, M.; Garonna, A.; Magrin, G.; Mellace, C.; Pearce, P.; Pittà, G.; Puggioni, P.; Rosso, E.; Verdú Andrés, S.; Wegner, R.; Weiss, M.; Zennaro, R.

    2010-08-01

    Hadrontherapy with protons and carbon ions is a fast developing methodology in radiation oncology. The accelerators used and planned for this purpose are reviewed starting from the cyclotrons used in the thirties. As discussed in the first part of this paper, normal and superconducting cyclotrons are still employed, together with synchrotrons, for proton therapy while for carbon ion therapy synchrotrons have been till now the only option. The latest developments concern a superconducting cyclotron for carbon ion therapy, fast-cycling high frequency linacs and 'single room' proton therapy facilities. These issues are discussed in the second part of the paper by underlining the present challenges, in particular the treatment of moving organs.

  11. 88-Inch Cyclotron newsletter

    SciTech Connect

    Stokstad, R.

    1987-02-01

    Activities at the 88-Inch Cyclotron are discussed. Increased beam time demand and operation of the ECR source and cyclotron are reported. Experimental facility improvements are reported, including improvements to the High Energy Resolution Array and to the Recoil Atom Mass Analyzer, a new capture beamline, development of a low background counting facility. Other general improvements are reported that relate to the facility computer network and electronics pool. Approved heavy nuclei research is briefly highlighted. Also listed are the beams accelerated by the cyclotron. (LEW)

  12. Cyclotron Institute Upgrade Project

    SciTech Connect

    Clark, Henry; Yennello, Sherry; Tribble, Robert

    2014-08-26

    The Cyclotron Institute at Texas A&M University has upgraded its accelerator facilities to extend research capabilities with both stable and radioactive beams. The upgrade is divided into three major tasks: (1) re-commission the K-150 (88”) cyclotron, couple it to existing beam lines to provide intense stable beams into the K-500 experimental areas and use it as a driver to produce radioactive beams; (2) develop light ion and heavy ion guides for stopping radioactive ions created with the K-150 beams; and (3) transport 1+ ions from the ion guides into a charge-breeding electron-cyclotron-resonance ion source (CB-ECR) to produce highly-charged radioactive ions for acceleration in the K-500 cyclotron. When completed, the upgraded facility will provide high-quality re-accelerated secondary beams in a unique energy range in the world.

  13. PET with radiolabeled aminoacid.

    PubMed

    Crippa, F; Alessi, A; Serafini, G L

    2012-04-01

    Since the clinical introduction of FDG, neuroimaging has been the first area of PET application in oncology. Later, while FDG-PET became progressively a key imaging modality in the management of the majority of malignancies outside the brain, its neuro-oncologic indications faced some limitations because of the unfavourable characteristics of FDG as brain tumor-seeking agent. PET applications in neuro-oncology have received new effectiveness by the advent of positron-emission labelled amino acids, so that it has been coined the term "Amino acid PET" to differentiate this imaging tool from FDG-PET. Radiolabeled amino acids are a very interesting class of PET tracers with great diagnostic potential in neuro-oncology because of their low uptake in normal brain and, conversely, high uptake in most brain tumors including low-grade gliomas. The present article surveys the results obtained using L-[methyl-11C]Methionine (MET), that has been the ancestor of PET amino acid tracers and is still the most popular amino acid imaging modality in oncology, and stresses the important role that this diagnostic modality can play in the evaluation of brain tumors. However, the use of MET is restricted to PET centers with an in-house cyclotron and radiochemistry facility, because of the short half-life (20 min) of 11C. The promising results of MET have stimulated the development of 18F-labelled aminoacid tracers, particularly O-(2-18F-fluoeoethyl1)-L-tyrosine (FET), that has the same properties of MET and, thanks to the longer half-life of 18F (about 110 min), allows a distribution strategy from a production tracer site to user satellite PET centers. Considering a more widespread use of Amino acid PET, together with the recent development of integrated PET-MRI imaging systems, and the oncoming clinical validation of other interesting PET tracers, i.e. FMISO or 18F-FAZA for hypoxia imaging and FLT for tumor proliferation imaging, it can be reasonably expected that metabolic imaging

  14. Spatial cyclotron damping

    NASA Technical Reports Server (NTRS)

    Olson, C. L.

    1970-01-01

    To examine spatial electron cyclotron damping in a uniform Vlasov plasma, it is noted that the plasma response to a steady-state transverse excitation consists of several terms (dielectric-pole, free-streaming, and branch-cut), but that the cyclotron-damped pole term is the dominant term for z l = c/w sub ce provided (w sub pe/w sub ce) squared (c/a) is much greater than 1. If the latter inequality does not hold, then the free-streaming and branch-cut terms persist well past z = c/w sub ce as w sub 1 approaches w sub ce, making experimental measurement of cyclotron damping essentially impossible. Considering only (w sub pe/w sub ce) squared (c/a) is much greater than 1, it is shown how collisional effects should be estimated and how a finite-width excitation usually has little effect on the cyclotron-damped part of the response. Criteria is established concerning collisional damping, measurable damping length sizes, and allowed uncertainty in the magnetic field Beta. Results of numerical calculations, showing the regions in the appropriate parameter spaces that meet these criteria, are presented. From these results, one can determine the feasibility of, or propose parameter values for, an experiment designed to measure spatial cyclotron damping. It is concluded that the electron temperature T sub e should be at least 1 ev., and preferably 10 ev. or higher, for a successful experiment.

  15. Improving cancer treatment with cyclotron produced radionuclides

    SciTech Connect

    Larson, S.M.; Finn, R.D.

    1992-08-04

    Our goal is to improve the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The grant includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology; and Immunology. The radiochemistry group seeks to develop innovative cyclotron targetry, radiopharmaceuticals, and radiolabeled antibodies, which are then used to assess important unanswered questions in tumor pharmacology and immunology. Examples include selected positron emitting radionuclides, such as Iodine-124, and Ga-66; I-124, I-123, I-131 labeled iododeoxyuridine, C-11 colchicine, and antimetabolites, like C-11 methotrexate; and radiolabeled antibodies, 3F8, M195, A33, and MRK16 for application in the pharmacology and immunology projects. The pharmacology program studies tumor resistance to chemotherapy, particularly the phenomenon of multidrug resistance and the relationship between tumor uptake and retention and the tumor response for anti-metabolite drugs. The immunology program studies the physiology of antibody localization at the tissue level as the basis for novel approaches to improving tumor localization such as through the use of an artificial lymphatic system which mechanically reduces intratumoral pressures in tumors in vivo. Quantitative imaging approaches based on PET and SPECT in radioimmunotherapy are studied to give greater insight into the physiology of tumor localization and dosimetry.

  16. Vacuum Control Systems of the Cyclotrons in VECC, Kolkata

    NASA Astrophysics Data System (ADS)

    Roy, Anindya; Akhtar, Javed; Yadav, R. C.; Bhole, R. B.; Pal, Sarbajit; Sarkar, D.; Bhandari, R. K.

    2012-11-01

    VECC has undertaken the modernization of the K-130 Room Temperature Cyclotron (RTC) (operational since 1978) and commissioning of K-500 Superconducting Cyclotron (SCC) at present. The control system of RTC vacuum system has been upgraded to Programmable Logic Controller (PLC) based automated system from relay based manual system. A distributed PLC based system is under installation for SCC vacuum system. The requirement of high vacuum in both the cyclotrons (1×10-6 mbar for RTC and 5 × 10-8 mbar SCC) imposes the reliable local and remote operation of all vacuum components and instrumentation. The design and development of the vacuum control system of two cyclotrons using the Experimental Physics and Industrial Control System (EPICS) distributed real-time software tools are presented.

  17. Inflation and cyclotron motion

    NASA Astrophysics Data System (ADS)

    Greensite, Jeff

    2017-01-01

    We consider, in the context of a braneworld cosmology, the motion of the Universe coupled to a four-form gauge field, with constant field strength, defined in higher dimensions. It is found, under rather general initial conditions, that in this situation there is a period of exponential inflation combined with cyclotron motion in the inflaton field space. The main effect of the cyclotron motion is that slow roll conditions on the inflaton potential, which are typically necessary for exponential inflation, can be evaded. There are Landau levels associated with the four-form gauge field, and these correspond to quantum excitations of the inflaton field satisfying unconventional dispersion relations.

  18. Review of Cyclotrons for the Production of Radioactive Isotopes for Medical and Industrial Applications

    NASA Astrophysics Data System (ADS)

    Schmor, Paul

    2011-02-01

    Radioactive isotopes are used in a wide range of medical, biological, environmental and industrial applications. Cyclotrons are the primary tool for producing the shorter-lived, proton-rich radioisotopes currently used in a variety of medical applications. Although the primary use of the cyclotron-produced short-lived radioisotopes is in PET/CT (positron emission tomography/computed tomography) and SPECT (single photon emission computed tomography) diagnostic medical procedures, cyclotrons are also producing longer-lived isotopes for therapeutic procedures as well as for other industrial and applied science applications. Commercial suppliers of cyclotrons are responding by providing a range of cyclotrons in the energy range of 3-70MeV for the differing needs of the various applications. These cyclotrons generally have multiple beams servicing multiple targets. This review article presents some of the applications of the radioisotopes and provides a comparison of some of the capabilities of the various current cyclotrons. The use of nuclear medicine and the number of cyclotrons supplying the needed isotopes are increasing. It is expected that there will soon be a new generation of small "tabletop" cyclotrons providing patient doses on demand.

  19. Cyclotron Research and Applications

    SciTech Connect

    Mach, Rostislav

    2010-01-05

    The twenty years old cyclotron U-120M was upgraded for R and D and Production of Radiopharmaceuticals. R and D on short-lived Radiopharmaceuticals production is done at this accelerator. These Radiopharmaceuticals are eventually delivered to nearby hospitals. Development of new diagnostic radiopharmaceuticals is also pursued at the facility. your paper.

  20. [A report on clinical PET activities in Germany].

    PubMed

    Tashiro, M; Kubota, K; Itoh, M; Sasaki, H; Moser, E

    1999-09-01

    Clinical diagnostic procedure using positron emission tomography (PET) requires high costs. To promote clinical use of PET, sociomedical evaluation is necessary. In this paper, sociomedical situations concerning clinical use of PET in Germany is reported. Some comparisons are made between Japan and this country putting emphases on several points such as 1) number of cyclotron and PET facilities, 2) social restriction to transportation of radioisotopes, 3) activities of satellite PET facilities, and 4) clinical indications for PET studies. Number of cyclotron was larger in Japan (29) than in Germany (17), but number of PET facilities was larger in Germany (47) than in Japan (29). The reason seems that in Germany transportation and buying of radioisotopes is less restricted. Hence, more than half of PET facilities in Germany are "satellite facilities" which do not have their own cyclotrons. Radioisotope distribution seems to serve as a backbone of "satellite concept." Additionally in Germany, list of clinical indications for PET study is almost completed and now is widely in applied to most cases. To promote clinical use of PET in Japan, the German system might serve as an important socioeconomic model in Europe instead of the United States.

  1. Intelligent low-level RF system by non-destructive beam monitoring device for cyclotrons

    NASA Astrophysics Data System (ADS)

    Sharifi Asadi Malafeh, M. S.; Ghergherehchi, M.; Afarideh, H.; Chai, J. S.; Yoon, Sang Kim

    2016-04-01

    The project of a 10 MeV PET cyclotron accelerator for medical diagnosis and treatment was started at Amirkabir University of Technology in 2012. The low-level RF system of the cyclotron accelerator is designed to stabilize acceleration voltage and control the resonance frequency of the cavity. In this work an Intelligent Low Level Radio Frequency Circuit or ILLRF, suitable for most AVF cyclotron accelerators, is designed using a beam monitoring device and narrow band tunable band-pass filter. In this design, the RF phase detection does not need signal processing by a microcontroller.

  2. Cyclotron targets and production technologies used for radiopharmaceuticals in NPI

    NASA Astrophysics Data System (ADS)

    Fišer, M.; Kopička, K.; Hradilek, P.; Hanč, P.; Lebeda, O.; Pánek, J.; Vognar, M.

    2003-01-01

    This paper deals with some technical aspects of the development and production of cyclotronmade radiopharmaceuticals (excluding PET). In this field, nuclear chemistry and pharmacy are in a close contact; therefore, requirements of the both should be taken into account. The principles of cyclotron targetry, separation/recovery of materials and synthesis of active substances are given, as well as issues connected with formulation of pharmaceutical forms. As the radiopharmaceuticals should fulfil the requirements on in vivo preparations, there exist a variety of demands pertaining to Good Manufacturing Practice (GMP) concept, which is also briefly discussed. A typical production chain is presented and practical examples of real technologies based on cyclotron-made radionuclides are given as they have been used in Nuclear Physics Institute of CAS (NPI). Special attention is devoted to the technology of enriched cyclotron targets. Frequently used medicinal products employing cyclotron-produced active substances are characterised (Rb/Kr generators, 123I-labelled MIBG, OIH and MAB's). The cyclotron produced radioactive implants for transluminal coronary angioplasty (radioactive stents) are introduced as an example of a medical device developed for therapeutic application.

  3. Optimization of production yields, radionuclidic purity and hotcell shielding of SPECT and PET radionuclides produced by proton irradiation in variable energy 30 MeV cyclotrons--Part 67Ga.

    PubMed

    Adam-Rebeles, R; Van den Winkel, P; De Vis, L

    2007-09-01

    Optimization of the production parameters (incident and exit proton energy, thickness of the (68)Zn target layer, decay time to start chemical processing of an irradiated target after the end of bombardment) and of the thickness of the lead shield of the processing hotcell for the cyclotron production of (67)Ga by the (68)Zn(p,2n) threshold reaction are accomplished by powerful divide et impera and binary search algorithms with the Pharmacopoeia radionuclidic purity of the (67)Ga-citrate radiopharmaceutical at a reference time and the locally accepted dose rate level for the controlled area as boundary conditions. Two sets of equations are presented (one associated with the maximum production rate, the other with the use of a minimum target layer thickness) that allow the expression of the optimized production parameters, the radionuclide yields satisfying the Pharmacopoeia requirements at the start of distribution and the necessary shielding as a function of the required activity at the start of distribution and of the maximum allowable beam current on target.

  4. Measurement of thermal neutron fluence distribution with use of 23Na radioactivation around a medical compact cyclotron.

    PubMed

    Fujibuchi, Toshioh; Yamaguchi, Ichiro; Kasahara, Tetsuharu; Iimori, Takashi; Masuda, Yoshitada; Kimura, Ken-ichi; Watanabe, Hiroshi; Isobe, Tomonori; Sakae, Takeji

    2009-07-01

    A medical compact cyclotron produces about 10(15) neutrons per day along with 100 GBq of (18)F. Therefore, it is important to establish radiation safety guidelines on residual radioactivity for routine operation, maintenance work, and decommissioning. Thus, we developed a simple method for measuring the thermal neutrons in a cyclotron room. In order to verify the feasibility of our proposed method, we measured the thermal neutron distribution around a cyclotron by using the activation of (23)Na in salt. We installed 78 salt dosimeters in the cyclotron room with a 50 cm mesh. The photopeak of (24)Na was measured, and the neutron flux distribution was estimated. Monitoring the neutron flux distribution in a cyclotron room appears to be useful for not only obtaining an accurate estimate of the distribution of induced radioactivity, but also optimizing the shield design for radiation safety in preparation for the decommissioning process.

  5. [Business administration of PET facilities: a nationwide survey for prices of PET screening and a cost analysis of three facilities].

    PubMed

    Mitsutake, Naohiro; Fujii, Ryo; Oku, Shinya; Furui, Yuji; Yasunaga, Hideo

    2007-05-01

    The purpose of this study is to analyze the business administration of PET facilities based on the survey of the price of PET cancer screening and cost analysis of PET examination. The questionnaire survey of the price of PET cancer screening was implemented for all PET facilities in Japan. Cost data of PET examination, including fixed costs and variable costs, were obtained from three different medical institutions. The marked price of the PET cancer screening was 111,499 yen in average, and the most popular range of prices was between 80,000 yen and 90,000 yen. Costs of PET per examination were accounted for 110,675 yen, 79,158 yen and Y11,644 yen in facility A, B and C, respectively. The results suggested that facilities with two or more PET/CT per a cyclotron could only secure profits. In Japan, the boom in PET facility construction could not continue in accordance with increasing number of PET facilities. It would become more essential to analyze the appropriate distribution of PET facilities and the adequate amount of PET procedures from the perspective of efficient utilization of the PET equipments and supply of PET-related healthcare.

  6. Design study of an ultra-compact superconducting cyclotron for isotope production

    NASA Astrophysics Data System (ADS)

    Smirnov, V.; Vorozhtsov, S.; Vincent, J.

    2014-11-01

    A 12.5 MeV, 25 μA, proton compact superconducting cyclotron for medical isotope production has been designed and is currently in fabrication. The machine is initially aimed at producing 13N ammonia for Positron Emission Tomography (PET) cardiology applications. With an ultra-compact size and cost-effective price point, this system will offer clinicians unprecedented access to the preferred radiopharmaceutical isotope for cardiac PET imaging. A systems approach that carefully balanced the subsystem requirements coupled to precise beam dynamics calculations was followed. The system is designed to irradiate a liquid target internal to the cyclotron and to minimize the need for radiation shielding. The main parameters of the cyclotron, its design, and principal steps of the development work are presented here.

  7. Ion cyclotron resonance cell

    DOEpatents

    Weller, R.R.

    1995-02-14

    An ion cyclotron resonance cell is disclosed having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions. 5 figs.

  8. Ion cyclotron resonance cell

    DOEpatents

    Weller, Robert R.

    1995-01-01

    An ion cyclotron resonance cell having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions.

  9. Target foil rupture scenario and provision for handling different models of medical cyclotrons used in India

    PubMed Central

    Shaiju, V. S.; Sharma, S. D.; Kumar, Rajesh; Sarin, B.

    2009-01-01

    Medical cyclotron is a particle accelerator used in producing short lived radiotracers such as 18F, 11C, 15O, 13N etc. These radiotracers are labeled with suitable pharmaceuticals for use to gather information related to metabolic activity of the cell using Positron Emission Tomography (PET) scan. Target foil rupture is considered one of the major emergency situations during medical cyclotron operations because there is a potential of over exposure to the working personnel. Radiation protection survey of a self-shielded medical cyclotron installation was carried out during normal and emergency conditions. It is found that the induced activity in the target foil increases with its successive usages. As a case study, we have evaluated the emergency handling procedures of GE PETtrace-6 medical cyclotron. Recommendations have also been made to reduce personal exposure while handling the target foil rupture condition such as the use of L-Bench near the target area and participation of experienced personnel. PMID:20098564

  10. Target foil rupture scenario and provision for handling different models of medical cyclotrons used in India.

    PubMed

    Shaiju, V S; Sharma, S D; Kumar, Rajesh; Sarin, B

    2009-07-01

    Medical cyclotron is a particle accelerator used in producing short lived radiotracers such as (18)F, (11)C, (15)O, (13)N etc. These radiotracers are labeled with suitable pharmaceuticals for use to gather information related to metabolic activity of the cell using Positron Emission Tomography (PET) scan. Target foil rupture is considered one of the major emergency situations during medical cyclotron operations because there is a potential of over exposure to the working personnel. Radiation protection survey of a self-shielded medical cyclotron installation was carried out during normal and emergency conditions. It is found that the induced activity in the target foil increases with its successive usages. As a case study, we have evaluated the emergency handling procedures of GE PETtrace-6 medical cyclotron. Recommendations have also been made to reduce personal exposure while handling the target foil rupture condition such as the use of L-Bench near the target area and participation of experienced personnel.

  11. MR/PET or PET/MRI: does it matter?

    PubMed

    Beyer, Thomas; Moser, Ewald

    2013-02-01

    After the very successful clinical introduction of combined PET/CT imaging a decade ago, a hardware combination of PET and MR is following suit. Today, three different approaches towards integrated PET/MR have been proposed: (1) a triple-modality system with a 3T MRI and a time-of-flight PET/CT installed in adjacent rooms, (2) a tandem system with a 3T MRI and a time-of-flight PET/CT in a co-planar installation with a joint patient handling system, and (3) a fully-integrated system with a whole-body PET system mounted inside a 3T MRI system. This special issue of MAGMA brings together contributions from key experts in the field of PET/MR, PET/CT and CT. The various papers share the author's perspectives on the state-of-the-art PET/MR imaging with any of the three approaches mentioned above. In addition to several reviews discussing advantages and challenges of combining PET and MRI for clinical diagnostics, first clinical data are also presented. We expect this special issue to nurture future improvements in hardware, clinical protocols, and efficient post-processing strategies to further assess the diagnostic value of combined PET/MR imaging. It remains to be seen whether a so-called "killer application" for PET/MRI will surface. In that case PET/MR is likely to excel in pre-clinical and selected research applications for now. This special issue helps the readers to stay on track of this exciting development.

  12. Cyclotron production of (44)Sc: From bench to bedside.

    PubMed

    van der Meulen, Nicholas P; Bunka, Maruta; Domnanich, Katharina A; Müller, Cristina; Haller, Stephanie; Vermeulen, Christiaan; Türler, Andreas; Schibli, Roger

    2015-09-01

    (44)Sc, a PET radionuclide, has promising decay characteristics (T1/2 = 3.97 h, Eβ(+)av = 632 keV) for nuclear imaging and is an attractive alternative to the short-lived (68)Ga (T1/2 = 68 min, Eβ(+)av = 830 keV). The aim of this study was the optimization of the (44)Sc production process at an accelerator, allowing its use for preclinical and clinical PET imaging. (44)CaCO3 targets were prepared and irradiated with protons (~11 MeV) at a beam current of 50 μA for 90 min. (44)Sc was separated from its target material using DGA extraction resin and concentrated using SCX cation exchange resin. Radiolabeling experiments at activities up to 500 MBq and stability tests were performed with DOTANOC by investigating different scavengers, including gentisic acid. Dynamic PET of an AR42J tumor-bearing mouse was performed after injection of (44)Sc-DOTANOC. The optimized chemical separation method yielded up to 2 GBq (44)Sc of high radionuclidic purity. In the presence of gentisic acid, radiolabeling of (44)Sc with DOTANOC was achieved with a radiochemical yield of ~99% at high specific activity (10 MBq/nmol) and quantities which would allow clinical application. The dynamic PET images visualized increasing uptake of (44)Sc-DOTANOC into AR42J tumors and excretion of radioactivity through the kidneys of the investigated mouse. The concept "from-bench-to-bedside" was clearly demonstrated in this extended study using cyclotron-produced (44)Sc. Sufficiently high activities of (44)Sc of excellent radionuclidic purity are obtainable for clinical application, by irradiation of enriched calcium at a cyclotron. This work demonstrates a promising basis for introducing (44)Sc to clinical routine of nuclear imaging using PET. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Helium cyclotron resonance within the earth's magnetosphere

    SciTech Connect

    Mauk, B.H.; McIlwain, C.E.; McPherron, R.L.

    1981-01-01

    A histogram of electromagnetic Alfven/ion cyclotron wave frequencies, sampled within the geostationary enviroment and normalized by the equatorial proton cyclotron frequency, shows a dramatic gap centered near the helium (He/sup +/) cyclotron frequency. Also, strongly cyclotron phase bunched helium ions (20--200 eV) have been observed directly within the vicinity of wave environments. These observations are interpreted as resulting from the absorption of the waves through cyclotron resonance by cool ambient populations of helium ions.

  14. Pet Health

    MedlinePlus

    ... Before getting a pet, think carefully about which animal is best for your family. What is each ... Does anyone have pet allergies? What type of animal suits your lifestyle and budget? Once you own ...

  15. ECR (Electron Cyclotron Resonance) ion sources for cyclotrons

    SciTech Connect

    Lyneis, C.M.

    1986-10-01

    In the last decade ECR (Electron Cyclotron Resonance) ion sources have evolved from a single large, power consuming, complex prototype into a variety of compact, simple, reliable, efficient, high performance sources of high charge state ions for accelerators and atomic physics. The coupling of ECR sources to cyclotrons has resulted in significant performance gains in energy, intensity, reliability, and variety of ion species. Seven ECR sources are in regular operation with cyclotrons and numerous other projects are under development or in the planning stag. At least four laboratories have ECR sources dedicated for atomic physics research and other atomic physics programs share ECR sources with cyclotrons. An ECR source is now installed on the injector for the CERN SPS synchrotron to accelerate O/sup 8 +/ to relativistic energies. A project is underway at Argonne to couple an ECR source to a superconducting heavy-ion linac. Although tremendous progress has been made, the field of ECR sources is still a relatively young technology and there is still the potential for further advances both in source development and understanding of the plasma physics. The development of ECR sources is reviewed. The important physics mechanisms which come into play in the operation of ECR Sources are discussed, along with various models for charge state distributions (CSD). The design and performance of several ECR sources are compared. The 88-Inch Cyclotron and the LBL ECR is used as an example of cyclotron+ECR operation. The future of ECR sources is considered.

  16. EC-5 fifth international workshop on electron cyclotron emission and electron cyclotron heating

    SciTech Connect

    Prater, R.; Lohr, J.

    1985-12-31

    This report contains papers on the following topics: electron cyclotron emission measurements; electron cyclotron emission theory; electron cyclotron heating; gyrotron development; and ECH systems and waveguide development. These paper have been indexed separately elsewhere. (LSP).

  17. FEL on slow cyclotron wave

    SciTech Connect

    Silivra, A.

    1995-12-31

    A physical mechanism of interaction of fast electromagnetic wave with slow cyclotron wave of relativistic electron beam in a FEL with helical wiggler field is described. It is shown that: (1) interaction is possible for both group of steady state electron trajectories (2) positive gain is achieved within certain interval of guide field strength (3) operation wavelength for group 1 trajectories ({Omega}{sub 0}/{gamma} < k{omega}{upsilon}{parallel}) is shorter than for the conventional FEL synchronism. A nonlinear analysis shows that efficiency of slow cyclotron FEL is restricted mainly by a breakdown of a single electron synchronism due to dependence of (modified) electron cyclotron frequency on an energy of electron. Nevertheless, as numerical simulation shows, typical efficiency of 15 % order is achieved in millimeter wavelength band for the midrelativistic ({gamma}= 3 {divided_by} 4) slow cyclotron wave FEL. Tapering of magnetic field results in a substantial increase of efficiency.

  18. PET imaging in endocrine tumours.

    PubMed

    Khan, S; Lloyd, C; Szyszko, T; Win, Z; Rubello, D; Al-Nahhas, A

    2008-06-01

    The role of PET in the assessment of endocrine tumours has been, until recently, restricted to the use of (18)F-fluoro-deoxy-D-glucose ((18)F-FDG). Being a marker of metabolically active lesions that show high grading and low differentiation, FDG is not ideal for this purpose since the majority of endocrine tumours are slow growing and highly differentiated. It is however useful when dedifferentiation takes place and provides excellent prognostic information. A number of hormone precursors and amino acids are labelled with (11)C and used successfully in the management of parathyroid, adrenal and pituitary tumours. However, the short half-life of (11)C radiopharmaceuticals restricts their use to centres with access to an on-site cyclotron, while the high cost of production may limit their use to research purposes. A promising new positron-emission tomography (PET) tracer is Gallium-68 obtained by elution from a long shelf-life generator that makes it economic and cyclotron-independent. Its short half-life and flexible labelling ability to a wide range of peptides and antibodies makes it ideal for PET imaging. In addition to imaging GEP-NETs and phaeochromocytoma, it has the potential to be used in a wider range of endocrine tumours.

  19. Calculation of cyclotron rf systems

    NASA Astrophysics Data System (ADS)

    Van Genderen, W.; Van Der Heide, J. A.; Bräutigam, W.

    1987-08-01

    An approximate calculation of the characteristic properties of resonators for cyclotron rf systems is described. Formulas for the characteristic impedence of line segments are evaluated and an approximation for a dee-dummy dee system is given. A computer program has been written which also takes into account the capacity due to line discontinuities. The computed resonance frequency for cyclotrons in Eindhoven and Jülich agrees within 5% with experimental data. The power consumption is also computed and analyzed.

  20. Technical Note: Building a combined cyclotron and MRI facility: Implications for interference

    SciTech Connect

    Hofman, Mark B. M.; Kuijer, Joost P. A.; Ridder, Jan Willem de; Perk, Lars R.; Verdaasdonk, Rudolf M.

    2013-01-15

    Purpose: With the introduction of hybrid PET/MRI systems, it has become more likely that the cyclotron and MRI systems will be located close to each other. This study considered the interference between a cyclotron and a superconducting MRI system. Methods: Interactions between cyclotrons and MRIs are theoretically considered. The main interference is expected to be the perturbation of the magnetic field in the MRI due to switching on or off the magnetic field of the cyclotron. MR imaging is distorted by a dynamic spatial gradient of an external inplane magnetic field larger than 0.5-0.04 {mu}T/m, depending on the specific MR application. From the design of a cyclotron, it is expected that the magnetic fringe field at large distances behaves as a magnetic dipolar field. This allows estimation of the full dipolar field and its spatial gradients from a single measurement. Around an 18 MeV cyclotron (Cyclone, IBA), magnetic field measurements were performed on 5 locations and compared with calculations based upon a dipolar field model. Results: At the measurement locations the estimated and measured values of the magnetic field component and its spatial gradients of the inplane component were compared, and found to agree within a factor 1.1 for the magnetic field and within a factor of 1.5 for the spatial gradients of the field. In the specific case of the 18 MeV cyclotron with a vertical magnetic field and a 3T superconducting whole body MR system, a minimum distance of 20 m has to be considered to prevent interference. Conclusions: This study showed that a dipole model is sufficiently accurate to predict the interference of a cyclotron on a MRI scanner, for site planning purposes. The cyclotron and a whole body MRI system considered in this study need to be placed more than 20 m apart, or magnetic shielding should be utilized.

  1. Client services for geriatric pets.

    PubMed

    Hancock, G; Yates, J

    1989-01-01

    Some veterinarians have been reluctant to discuss the prospect of the death of a pet because of a sense of discomfort and a lack of understanding about how to respond to the client's grief reaction. It is essential to take the time for this important communication and help clients deal with fears about the process, any feelings of guilt and helplessness, and judgments about the medical aspects of a case. Clients must be encouraged to express grief over the loss of a pet, particularly a geriatric pet that has lived with them many years and to which they are deeply bonded. Veterinarians need to counsel clients about obtaining additional pets or another pet. The phrase "replacement pet" must be stricken from the veterinarian's vocabulary. One does not "replace" a deceased spouse, mother, father, or child. It is possible to have another child or find another spouse, but it is not possible to replace a person. Neither can a pet be "replaced," because each pet is a unique living being. It is disrespectful to the memory of deceased pets to belittle their uniqueness by suggesting that they can be replaced. Instead, the veterinarian has the capability and responsibility to help pet owners maintain fond and happy memories of an irreplacable pet, while finding room in their hearts for another new pet to create happiness for the future. Once the grief is resolved, clients will be thankful for having had the privilege of sharing their life with an animal and experiencing the joy of the bond between two unique individuals.

  2. New Cyclotron Targetry to Enhance F-18 clinical Position Emission Tomography

    SciTech Connect

    J. Michael Doster

    2008-12-19

    This project proposes to develop cyclotron targets that produce F-18 for clinical Positron Emission Tomography (PET) at significantly higher rates than that available from current targetry. This production rate of 18F is directly proportional to the beam current. Higher beam currents would result in increased 18F production but would be accompanied by higher heat loads to the target. The beam power available in most commercial cyclotrons exceeds the heat removal capacity of current target technology by a factor of two to four, significantly limiting the production rate of Fluorine-18.

  3. PET Radiopharmaceuticals for Personalized Medicine.

    PubMed

    Sharma, Sushil

    2016-01-01

    Recent advances in the self-shielded cyclotrons, improved targets, videomonitored hot cells design, and automated PET radiopharmaceutical (RPs) synthesis modules, utilizing computer-controlled graphic user interphase (GUI) has revolutionized PET molecular imaging technology for basic biomedical research and theranostics to accomplish the ultimate goal of evidence-based personalized medicine. Particularly, [18F]HX4: (3-[18F]fluoro-2-(4-((2-nitro-1Himidazol-1-yl)methyl)-1H-1,2,3,-triazol-1- yl)-propan-1-ol), 18F-FAZA: 1-(5-[18F]Fluoro-5-deoxy-α-D-arabinofuranosyl)-2- nitroimidazole, and 18F-FMSIO: 18F-Ffluoromisonidazole to assess tumor hypoxia, [18F]FB-VAD-FMK: [18F]4-fluorobenzylcarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone to determine in vivo apoptosis, 64Cu-PTSM: 64Cu-Pyrualdehyde Bis-NMethylthiosemicarbazone for brain and myocardial perfusion imaging, and 68Ga-DOTATOC: 68Ga- DOTAD-Phy1-Tyr3-octreotide and 68Ga-DOTANOC: 68Ga-(1,4,7,10-tetraazacyclododecane- N,N',N'',N'''-tetraacetic acid)-1-NaI3-octreotide for neuroendocrine and neural crest tumors have demonstrated great promise in personalized theranostics. Furthermore, multimodality imaging with 124IPET/ CT and 18FDG-PET/CT rationalizes 131I treatment in thyroid cancer patients to prevent cost and morbid toxicity. In addition to 18F-labeled PET-RPs used in clinical practice, novel discoveries of chemical reactions including transition metal-mediated cross-coupling of carbon-carbon, carbonheterocarbon, and click chemistry at ambient temperature with significantly reduced synthesis times, labeled even with short-lived radionuclides such as 11C, has facilitated development of novel PET-RPs. These innovative approaches to synthesize PET-RPs and efficient image acquisition capabilities have improved the resolution of multimodality imaging and significantly reduced the radiation exposure to patients as well as healthcare professionals. Future developments in novel PET-RPs, utilizing automated microfluidic synthesis

  4. [82 Rubidium PET to replace myocardial scintigraphy].

    PubMed

    Hasbak, Philip; Kjær, Andreas

    2011-02-21

    Since the 1970's nuclear cardiology has mainly been based on the use of gamma camera technology. While gamma cameras have undergone a rapid development, the number of perfusion tracers has been limited. In parallel, cardiac positron emission tomography (PET) has only been performed with short-lived isotopes at centres with access to a cyclotron, and only including a very limited number of patients. The number of PET scanners has increased markedly in Denmark and with the introduction of generator-produced 82-Rubidium, this modality may replace the traditional cardial single photon emission computed tomography (SPECT).

  5. The cyclotron laboratory and the RFQ accelerator in Bern

    SciTech Connect

    Braccini, S.; Ereditato, A.; Kreslo, I.; Nirkko, M.; Weber, M.; Scampoli, P.; Bremen, K. von

    2013-07-18

    Two proton accelerators have been recently put in operation in Bern: an 18 MeV cyclotron and a 2 MeV RFQ linac. The commercial IBA 18/18 cyclotron, equipped with a specifically conceived 6 m long external beam line ending in a separate bunker, will provide beams for routine 18-F and other PET radioisotope production as well as for novel detector, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. The accelerator is embedded into a complex building hosting two physics laboratories and four Good Manufacturing Practice (GMP) laboratories. This project is the result of a successful collaboration between the Inselspital, the University of Bern and private investors, aiming at the constitution of a combined medical and research centre able to provide the most cutting-edge technologies in medical imaging and cancer radiation therapy. The cyclotron is complemented by the RFQ with the primary goals of elemental analysis via Particle Induced Gamma Emission (PIGE), and the detection of potentially dangerous materials with high nitrogen content using the Gamma-Resonant Nuclear Absorption (GRNA) technique. In this context, beam instrumentation devices have been developed, in particular an innovative beam profile monitor based on doped silica fibres and a setup for emittance measurements using the pepper-pot technique. On this basis, the establishment of a proton therapy centre on the campus of the Inselspital is in the phase of advanced study.

  6. Improving cancer treatment with cyclotron produced radionuclides. Progress report

    SciTech Connect

    Larson, S.M.; Finn, R.D.

    1992-08-04

    Our goal is to improve the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The grant includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology; and Immunology. The radiochemistry group seeks to develop innovative cyclotron targetry, radiopharmaceuticals, and radiolabeled antibodies, which are then used to assess important unanswered questions in tumor pharmacology and immunology. Examples include selected positron emitting radionuclides, such as Iodine-124, and Ga-66; I-124, I-123, I-131 labeled iododeoxyuridine, C-11 colchicine, and antimetabolites, like C-11 methotrexate; and radiolabeled antibodies, 3F8, M195, A33, and MRK16 for application in the pharmacology and immunology projects. The pharmacology program studies tumor resistance to chemotherapy, particularly the phenomenon of multidrug resistance and the relationship between tumor uptake and retention and the tumor response for anti-metabolite drugs. The immunology program studies the physiology of antibody localization at the tissue level as the basis for novel approaches to improving tumor localization such as through the use of an artificial lymphatic system which mechanically reduces intratumoral pressures in tumors in vivo. Quantitative imaging approaches based on PET and SPECT in radioimmunotherapy are studied to give greater insight into the physiology of tumor localization and dosimetry.

  7. The cyclotron laboratory and the RFQ accelerator in Bern

    NASA Astrophysics Data System (ADS)

    Braccini, S.; Ereditato, A.; Kreslo, I.; Nirkko, M.; Scampoli, P.; von Bremen, K.; Weber, M.

    2013-07-01

    Two proton accelerators have been recently put in operation in Bern: an 18 MeV cyclotron and a 2 MeV RFQ linac. The commercial IBA 18/18 cyclotron, equipped with a specifically conceived 6 m long external beam line ending in a separate bunker, will provide beams for routine 18-F and other PET radioisotope production as well as for novel detector, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. The accelerator is embedded into a complex building hosting two physics laboratories and four Good Manufacturing Practice (GMP) laboratories. This project is the result of a successful collaboration between the Inselspital, the University of Bern and private investors, aiming at the constitution of a combined medical and research centre able to provide the most cutting-edge technologies in medical imaging and cancer radiation therapy. The cyclotron is complemented by the RFQ with the primary goals of elemental analysis via Particle Induced Gamma Emission (PIGE), and the detection of potentially dangerous materials with high nitrogen content using the Gamma-Resonant Nuclear Absorption (GRNA) technique. In this context, beam instrumentation devices have been developed, in particular an innovative beam profile monitor based on doped silica fibres and a setup for emittance measurements using the pepper-pot technique. On this basis, the establishment of a proton therapy centre on the campus of the Inselspital is in the phase of advanced study.

  8. Rapid production of positron emitting labeled compounds for use in cardiology PET studies

    NASA Astrophysics Data System (ADS)

    Bolomey, Leonard

    1985-05-01

    Large scale clinical application of positron emission tomography requires a variety of short-lived positron emitting radionuclides to be produced in Curie quantities up to 20 times per day. Rapid routine production of these radiopharmaceuticals requires the collaboration of engineers and chemists to achieve production targetry compatible with high beam current (up to 100 μA) and radionuclide production in a chemical form compatible with the rapid radiochemical synthesis. Chemical processing is further complicated by the need to repeat the procedures several times per day and maintain sterility within the shielded area. At our cyclotron facility primary production targets for 11C, 13N, 15O, and 18F (half lives from 2 min to 2 h) are mounted on a vertical gantr that indexes to position the required target on the beam line. Target changes are handled under microprocessor control remotely from the control room such that all valves, cooling, evacuation of target manifold, and testing of interlocks are handled automatically. This system enables us to change targets, energy and particles in less than five minutes. Since the installation of the cyclotron up to fifteen batches of routine radiopharmaceuticals have been produced per day with very low radiation doses to all personnel involved. These radiopharmaceuticals will be used to measure perfusion, metabolism and other biochemical functions in man non invasively with PET.

  9. Electron cyclotron harmonic wave acceleration

    NASA Technical Reports Server (NTRS)

    Karimabadi, H.; Menyuk, C. R.; Sprangle, P.; Vlahos, L.

    1987-01-01

    A nonlinear analysis of particle acceleration in a finite bandwidth, obliquely propagating electromagnetic cyclotron wave is presented. It has been suggested by Sprangle and Vlahos in 1983 that the narrow bandwidth cyclotron radiation emitted by the unstable electron distribution inside a flaring solar loop can accelerate electrons outside the loop by the interaction of a monochromatic wave propagating along the ambient magnetic field with the ambient electrons. It is shown here that electrons gyrating and streaming along a uniform, static magnetic field can be accelerated by interacting with the fundamental or second harmonic of a monochromatic, obliquely propagating cyclotron wave. It is also shown that the acceleration is virtually unchanged when a wave with finite bandwidth is considered. This acceleration mechanism can explain the observed high-energy electrons in type III bursts.

  10. Electron cyclotron harmonic wave acceleration

    NASA Technical Reports Server (NTRS)

    Karimabadi, H.; Menyuk, C. R.; Sprangle, P.; Vlahos, L.

    1987-01-01

    A nonlinear analysis of particle acceleration in a finite bandwidth, obliquely propagating electromagnetic cyclotron wave is presented. It has been suggested by Sprangle and Vlahos in 1983 that the narrow bandwidth cyclotron radiation emitted by the unstable electron distribution inside a flaring solar loop can accelerate electrons outside the loop by the interaction of a monochromatic wave propagating along the ambient magnetic field with the ambient electrons. It is shown here that electrons gyrating and streaming along a uniform, static magnetic field can be accelerated by interacting with the fundamental or second harmonic of a monochromatic, obliquely propagating cyclotron wave. It is also shown that the acceleration is virtually unchanged when a wave with finite bandwidth is considered. This acceleration mechanism can explain the observed high-energy electrons in type III bursts.

  11. Use of cyclotrons in medicine

    NASA Astrophysics Data System (ADS)

    Qaim, S. M.

    2004-10-01

    Cyclotrons are versatile ion-accelerating machines which find many applications in medicine. In this short review their use in hadron therapy is briefly discussed. Proton therapy is gaining significance because of its capability to treat deep-lying tumours. A strong area of application of cyclotrons involves the production of short-lived neutron deficient radiotracers for use in emission tomography, especially positron emission tomography. This fast and quantitative in vivo diagnostic technique is being increasingly used in neurology, cardiology and oncology. Besides routine patient care, considerable interdisciplinary work on development of new positron emitters is under way. A short account of those efforts is given. The use of cyclotrons in the production of radionuclides for internal radiotherapy is also briefly described.

  12. Proton Therapy Verification with PET Imaging

    PubMed Central

    Zhu, Xuping; Fakhri, Georges El

    2013-01-01

    Proton therapy is very sensitive to uncertainties introduced during treatment planning and dose delivery. PET imaging of proton induced positron emitter distributions is the only practical approach for in vivo, in situ verification of proton therapy. This article reviews the current status of proton therapy verification with PET imaging. The different data detecting systems (in-beam, in-room and off-line PET), calculation methods for the prediction of proton induced PET activity distributions, and approaches for data evaluation are discussed. PMID:24312147

  13. NACA Researcher Examines the Cyclotron

    NASA Image and Video Library

    1951-02-21

    Researcher James Blue examines the new cyclotron at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. Researchers at NACA Lewis began postulating about the use of atomic power for propulsion immediately after World War II. The NACA concentrated its efforts on the study of high temperature materials and heat transfer since it did not have access to the top secret fission information. The military studied the plausibility of nuclear propulsion for aircraft in the late 1940s. The military program was cancelled after four years without any breakthroughs, but the Atomic Energy Commission took on the effort in 1951. The NACA Lewis laboratory was expanding its nuclear-related research during this period. In 1948, Lewis engineers were assigned to the Oak Ridge National Laboratory to obtain expertise in high temperature heat transfer and advanced materials technology. The following year a new 80-person Nuclear Reactor Division was created, and an in-house nuclear school was established to train these researchers. The cyclotron was built behind the Materials and Structures Laboratory to support thermodynamic and materials research for both nuclear aircraft and nuclear rockets. The original NACA Lewis cyclotron was used to accelerate two kinds of particles. To better match the space radiation environment, the cyclotron was later modified to accelerate particles of the newly-discovered Van Allen radiation belts.

  14. Low current performance of the Bern medical cyclotron down to the pA range

    NASA Astrophysics Data System (ADS)

    Auger, M.; Braccini, S.; Ereditato, A.; Nesteruk, K. P.; Scampoli, P.

    2015-09-01

    A medical cyclotron accelerating H- ions to 18 MeV is in operation at the Bern University Hospital (Inselspital). It is the commercial IBA 18/18 cyclotron equipped with a specifically conceived 6 m long external beam line ending in a separate bunker. This feature is unique for a hospital-based facility and makes it possible to conduct routine radioisotope production for PET diagnostics in parallel with multidisciplinary research activities, among which are novel particle detectors, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. Several of these activities, such as radiobiology experiments for example, require low current beams down to the pA range, while medical cyclotrons are designed for high current operation above 10 μA. In this paper, we present the first results on the low current performance of a PET medical cyclotron obtained by ion source, radio-frequency and main coil tuning. With this method, stable beam currents down to (1.5+/- 0.5 ) pA were obtained and measured with a high-sensitivity Faraday cup located at the end of the beam transport line.

  15. PET in the management of urologic malignancies.

    PubMed

    Kumar, Rakesh; Zhuang, Hongming; Alavi, Abass

    2004-11-01

    FDG-PET has a limited role in diagnosis of prostate cancer mainly because of the low uptake of FDG in the tumor and normal excretion of FDG through urine. FDG-PET has shown some promise in the assessment of lymph nodes and bone metastases. There is a large degree of variability when FDG-PET is compared with bone scintigraphy. New C11-labeled radiotracers (acetate, choline, and methionine) have shown promising initial results but further studies are required to determine their role in such settings. These radiotracers provide a unique opportunity for dynamic, multitracer, and quantitative studies, which improve the sensitivity and specificity on PET in this population. Short half-lives and of C-11, however with the limits to their use requires an on-site cyclotron. Recent synthesis schemes with [18F]-labeling, however, may overcome this limitation. FDG-PET has a significant potential to assist with the diagnosis and management of testicular cancer. PET has been most useful in defining the presence or absence of disease in patients with residual masses. PET has shown promising results for the initial diagnosis of this cancer, but further for studies ar required to determine its role in the management of this malignancy. PET can be used in conjunction with conventional imaging techniques to diagnose retroperitoneal masses in patients with primary testicular cancer. FDG-PET has shown very encouraging results in a limited number of studies, and has also demonstrated a good sensitivity for initial staging. FDG-PET seems to be superior to conventional imaging modalities for detecting local disease and recurrence, and distant metastases.

  16. Imaging quality of (44)Sc in comparison with five other PET radionuclides using Derenzo phantoms and preclinical PET.

    PubMed

    Bunka, Maruta; Müller, Cristina; Vermeulen, Christiaan; Haller, Stephanie; Türler, Andreas; Schibli, Roger; van der Meulen, Nicholas P

    2016-04-01

    PET is the favored nuclear imaging technique because of the high sensitivity and resolution it provides, as well as the possibility for quantification of accumulated radioactivity. (44)Sc (T1/2=3.97h, Eβ(+)=632keV) was recently proposed as a potentially interesting radionuclide for PET. The aim of this study was to investigate the image quality, which can be obtained with (44)Sc, and compare it with five other, frequently employed PET nuclides using Derenzo phantoms and a small-animal PET scanner. The radionuclides were produced at the medical cyclotron at CRS, ETH Zurich ((11)C, (18)F), at the Injector II research cyclotron at CRS, PSI ((64)Cu, (89)Zr, (44)Sc), as well as via a generator system ((68)Ga). Derenzo phantoms, containing solutions of each of these radionuclides, were scanned using a GE Healthcare eXplore VISTA small-animal PET scanner. The image resolution was determined for each nuclide by analysis of the intensity signal using the reconstructed PET data of a hole diameter of 1.3mm. The image quality of (44)Sc was compared to five frequently-used PET radionuclides. In agreement with the positron range, an increasing relative resolution was determined in the sequence of (68)Ga<(44)Sc<(89)Zr<(11)C<(64)Cu<(18)F. The performance of (44)Sc was in agreement with the theoretical expectations based on the energy of the emitted positrons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. mA beam acceleration efforts on 100 MeV H- cyclotron at CIAE

    NASA Astrophysics Data System (ADS)

    Zhang, Tianjue; An, Shizhong; Lv, Yinlong; Ge, Tao; Jia, Xianlu; Ji, Bin; Yin, Zhiguo; Pan, Gaofeng; Cao, Lei; Guan, Fengping; Yang, Jianjun; Li, Zhenguo; Zhao, Zhenlu; Wu, Longcheng; Zhang, He; Wang, Jingfeng; Zhang, Yiwang; Liu, Jingyuan; Li, Shiqiang; Lu, Xiaotong; Liu, Zhenwei; Li, Yaoqian; Guo, Juanjuan; Cao, Xuelong; Guan, Leilei; Wang, Fei; Wang, Yang; Yang, Guang; Zhang, Suping; Hou, Shigang; Wang, Feng

    2017-09-01

    Various technologies for high current compact H- cyclotron have been developed at CIAE since 1990s. A 375 μA proton beam was extracted from a 30 MeV compact H- cyclotron CYCIAE-30 at the end of 1994. A central region model cyclotron CYCIAE-CRM was developed for the design verification of a 100 MeV high current compact H- cyclotron CYCIAE-100. It is also a 10 MeV proton machine as a prototype for PET application. A 430 μA beam was achieved in 2009. The first beam was extracted from the CYCIAE-100 cyclotron on July 4, 2014, the operation stability has been improved and beam current has been increased gradually. A 1.1 mA proton beam was measured on the internal target in July 2016. The effort for an increasing of proton beam has continued till now. In this paper, the effort on several aspects for mA beam development will be presented, including the multi-cusp source, buncher, matching from the energy of the injected beam, vertical beam line and central region, beam loading of the RF system and instrumentation for beam diagnostics etc.

  18. SU-E-T-387: Achieving Optimal Patient Setup Imaging and Treatment Workflow Configurations in Multi-Room Proton Centers

    SciTech Connect

    Zhang, H; Prado, K; Langen, K; Yi, B; Mehta, M; Regine, W; D'Souza, W

    2014-06-01

    Purpose: To simulate patient flow in proton treatment center under uncertainty and to explore the feasibility of treatment preparation rooms to improve patient throughput and cyclotron utilization. Methods: Three center layout scenarios were modeled: (S1: In-Tx room imaging) patient setup and imaging (planar/volumetric) performed in treatment room, (S2: Patient setup in preparation room) each treatment room was assigned with preparation room(s) that was equipped with lasers only for patient setup and gross patient alignment, and (S3: Patient setup and imaging in preparation room) preparation room(s) was equipped with laser and volumetric imaging for patient setup, gross and fine patient alignment. A 'snap' imaging was performed in treatment room. For each scenario, the number of treatment rooms and the number of preparation rooms serving each treatment room were varied. We examined our results (average of 100 16-hour (two shifts) working days) by evaluating patient throughput and cyclotron utilization. Results: When the number of treatment rooms increased ([from, to]) [1, 5], daily patient throughput increased [32, 161], [29, 184] and [27, 184] and cyclotron utilization increased [13%, 85%], [12%, 98%], and [11%, 98%] for scenarios S1, S2 and S3 respectively. However, both measures plateaued after 4 rooms. With the preparation rooms, the throughput and the cyclotron utilization increased by 14% and 15%, respectively. Three preparation rooms were optimal to serve 1-3 treatment rooms and two preparation rooms were optimal to serve 4 or 5 treatment rooms. Conclusion: Patient preparation rooms for patient setup may increase throughput and decrease the need for additional treatment rooms (cost effective). Optimal number of preparation rooms serving each gantry room varies as a function of treatment rooms and patient setup scenarios. A 5th treatment room may not be justified by throughput or utilization.

  19. PET Designated Flouride-18 Production and Chemistry

    PubMed Central

    Jacobson, Orit; Chen, Xiaoyuan

    2013-01-01

    Positron emission tomography (PET) is a nuclear medicine imaging technology which allows for four-dimensional, quantitative determination of the distribution of labeled biological compounds within the human body. PET is becoming an increasingly important tool for the measurement of physiological, biochemical and pharmacological functions at the molecular level in healthy and pathological conditions. This review will focus on Flouride-18, one of the common isotopes used for PET imaging, which has a half life of 109.8 minutes. This isotope can be produced with an efficient yield in a cyclotron as a nucleophile or as an electrophile. Flouride-18 can be thereafter introduced into small molecules or biomolecules using various chemical synthetic routes, to give the desired imaging agent. PMID:20388116

  20. PET designated flouride-18 production and chemistry.

    PubMed

    Jacobson, Orit; Chen, Xiaoyuan

    2010-01-01

    Positron emission tomography (PET) is a nuclear medicine imaging technology which allows for four-dimensional, quantitative determination of the distribution of labeled biological compounds within the human body. PET is becoming an increasingly important tool for the measurement of physiological, biochemical and pharmacological functions at the molecular level in healthy and pathological conditions. This review will focus on Flouride-18, one of the common isotopes used for PET imaging, which has a half life of 109.8 minutes. This isotope can be produced with an efficient yield in a cyclotron as a nucleophile or as an electrophile. Flouride-18 can be thereafter introduced into small molecules or biomolecules using various chemical synthetic routes, to give the desired imaging agent.

  1. PET scan

    MedlinePlus

    ... The PET detects signals from the tracer. A computer changes the signals into 3D pictures. The images ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  2. Senior Pets

    MedlinePlus

    ... does a pet become “old”? It varies, but cats and small dogs are generally considered “senior” at ... at roughly the same rate as humans, while cats have a somewhat lower rate. Contrary to popular ...

  3. Pet rabbits.

    PubMed

    Hillyer, E V

    1994-01-01

    Pet rabbits are becoming more common, and rabbit owners are demanding quality veterinary care. This article provides a broad overview of pet rabbit medicine, which is a relatively new field compared to laboratory and farm rabbit medicine. The most common differential diagnoses for presenting complaints are summarized in table form. Disease conditions are reviewed individually in the text. Sources of further information on veterinary care of rabbits are listed throughout the text, in an appendix, and in the references.

  4. TRIUMF cyclotron vacuum system refurbishing

    NASA Astrophysics Data System (ADS)

    Sekachev, I.

    2008-03-01

    The cyclotron at TRIUMF was commissioned to full energy in 1974. The volume of the cyclotron vacuum tank is about 100 m3 and it operates at 5×10-8 Torr pressure during beam production. The pumping is mainly based on a Phillips B-20 cryogenerator (Stirling cycle 4-cylinder engine). The cryogenerator supplies helium gas at 16 K and 70 K to cryopanels in the tank. The decreasing reliability of the B-20 and demanding maintenance requirements triggered the decision to completely overhaul or replace the cryogenerator. Replacement with the LINDE-1630 helium refrigerator was found to be the most attractive (technically and economically) option. The details of the proposal with installation of the helium refrigerator and with a continuous flow liquid nitrogen shield cooling system are presented.

  5. Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain

    SciTech Connect

    Jung, Jin Ho; Choi, Yong Jung, Jiwoong; Kim, Sangsu; Lim, Hyun Keong; Im, Ki Chun; Oh, Chang Hyun; Park, Hyun-wook; Kim, Kyung Min; Kim, Jong Guk

    2015-05-15

    Purpose: The purpose of this study was to develop a dual-modality positron emission tomography (PET)/magnetic resonance imaging (MRI) with insertable PET for simultaneous PET and MR imaging of the human brain. Methods: The PET detector block was composed of a 4 × 4 matrix of detector modules, each consisting of a 4 × 4 array LYSO coupled to a 4 × 4 Geiger-mode avalanche photodiode (GAPD) array. The PET insert consisted of 18 detector blocks, circularly mounted on a custom-made plastic base to form a ring with an inner diameter of 390 mm and axial length of 60 mm. The PET gantry was shielded with gold-plated conductive fabric tapes with a thickness of 0.1 mm. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuit. The flat cables were shielded with a mesh-type aluminum sheet with a thickness of 0.24 mm. The position decoder circuit and field programmable gate array-embedded DAQ modules were enclosed in an aluminum box with a thickness of 10 mm and located at the rear of the MR bore inside the MRI room. A 3-T human MRI system with a Larmor frequency of 123.7 MHz and inner bore diameter of 60 cm was used as the PET/MRI hybrid system. A custom-made radio frequency (RF) coil with an inner diameter of 25 cm was fabricated. The PET was positioned between gradient and the RF coils. PET performance was measured outside and inside the MRI scanner using echo planar imaging, spin echo, turbo spin echo, and gradient echo sequences. MRI performance was also evaluated with and without the PET insert. The stability of the newly developed PET insert was evaluated and simultaneous PET and MR images of a brain phantom were acquired. Results: No significant degradation of the PET performance caused by MR was observed when the PET was operated using various MR imaging sequences. The signal-to-noise ratio of MR images was slightly degraded due to the PET insert installed inside the MR bore while the homogeneity was

  6. Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain.

    PubMed

    Jung, Jin Ho; Choi, Yong; Jung, Jiwoong; Kim, Sangsu; Lim, Hyun Keong; Im, Ki Chun; Oh, Chang Hyun; Park, Hyun-wook; Kim, Kyung Min; Kim, Jong Guk

    2015-05-01

    The purpose of this study was to develop a dual-modality positron emission tomography (PET)/magnetic resonance imaging (MRI) with insertable PET for simultaneous PET and MR imaging of the human brain. The PET detector block was composed of a 4 × 4 matrix of detector modules, each consisting of a 4 × 4 array LYSO coupled to a 4 × 4 Geiger-mode avalanche photodiode (GAPD) array. The PET insert consisted of 18 detector blocks, circularly mounted on a custom-made plastic base to form a ring with an inner diameter of 390 mm and axial length of 60 mm. The PET gantry was shielded with gold-plated conductive fabric tapes with a thickness of 0.1 mm. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuit. The flat cables were shielded with a mesh-type aluminum sheet with a thickness of 0.24 mm. The position decoder circuit and field programmable gate array-embedded DAQ modules were enclosed in an aluminum box with a thickness of 10 mm and located at the rear of the MR bore inside the MRI room. A 3-T human MRI system with a Larmor frequency of 123.7 MHz and inner bore diameter of 60 cm was used as the PET/MRI hybrid system. A custom-made radio frequency (RF) coil with an inner diameter of 25 cm was fabricated. The PET was positioned between gradient and the RF coils. PET performance was measured outside and inside the MRI scanner using echo planar imaging, spin echo, turbo spin echo, and gradient echo sequences. MRI performance was also evaluated with and without the PET insert. The stability of the newly developed PET insert was evaluated and simultaneous PET and MR images of a brain phantom were acquired. No significant degradation of the PET performance caused by MR was observed when the PET was operated using various MR imaging sequences. The signal-to-noise ratio of MR images was slightly degraded due to the PET insert installed inside the MR bore while the homogeneity was maintained. The change of gain of

  7. Environmental Assessment: UCLA biomedical research CS-22 cyclotron replacement, University of California at Los Angeles

    SciTech Connect

    Not Available

    1992-05-01

    DOE proposes to participate in the joint funding, along with the National Institutes of Health (NIH) and private donors, of a new biomedical cyclotron research instrument for UCLA. DOE proposes to provide funding in the amount of $500,000 to UCLA for removal and disposal of the existing 19 year old CS-22 cyclotron and refitting of the existing room, plus $900,000 (of the $1.5 million total cost) for installation of a new generation Cyclone 18/9 biomedical isotope compact cyclotron. The remaining $600,000 for the new instrument would be provided by NIH and private donors. The total cost for the entire project is $2,0000,000. Operation and use of the instrument would be entirely by UCLA. The Biomedical Cyclotron Facility is a line item included on UCLA`s Broad Scope A License. The CS-22 cyclotron was turned over to UCLA`s jurisdiction by DOE in 1989 when the Laboratory of Biomedical and Environmental Sciences General Contract with DOE was changed to a Cooperative Agreement, and ``Clause B`` involving safety responsibility was terminated. In support of this, a large closeout survey was performed, licensing actions were completed, and it was agreed that environmental, health and safety compliance would be UCLA`s responsibility. Since the CS022 cyclotron was DOE property prior to the above changes, DOE proposes to provide this entire funding for its removal and disposal, and to provide partial funding for its replacement. This report describes the removal of the existing cyclotron, and the operation and installation of a new cyclotron as well as any associated environmental impacts.

  8. Environmental Assessment: UCLA biomedical research CS-22 cyclotron replacement, University of California at Los Angeles

    SciTech Connect

    Not Available

    1992-01-01

    DOE proposes to participate in the joint funding, along with the National Institutes of Health (NIH) and private donors, of a new biomedical cyclotron research instrument for UCLA. DOE proposes to provide funding in the amount of $500,000 to UCLA for removal and disposal of the existing 19 year old CS-22 cyclotron and refitting of the existing room, plus $900,000 (of the $1.5 million total cost) for installation of a new generation Cyclone 18/9 biomedical isotope compact cyclotron. The remaining $600,000 for the new instrument would be provided by NIH and private donors. The total cost for the entire project is $2,0000,000. Operation and use of the instrument would be entirely by UCLA. The Biomedical Cyclotron Facility is a line item included on UCLA's Broad Scope A License. The CS-22 cyclotron was turned over to UCLA's jurisdiction by DOE in 1989 when the Laboratory of Biomedical and Environmental Sciences General Contract with DOE was changed to a Cooperative Agreement, and Clause B'' involving safety responsibility was terminated. In support of this, a large closeout survey was performed, licensing actions were completed, and it was agreed that environmental, health and safety compliance would be UCLA's responsibility. Since the CS022 cyclotron was DOE property prior to the above changes, DOE proposes to provide this entire funding for its removal and disposal, and to provide partial funding for its replacement. This report describes the removal of the existing cyclotron, and the operation and installation of a new cyclotron as well as any associated environmental impacts.

  9. Positron Emission Tomography (PET)

    SciTech Connect

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs.

  10. Positron Emission Tomography (PET)

    DOE R&D Accomplishments Database

    Welch, M. J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  11. Method and apparatus for ion cyclotron spectrometry

    DOEpatents

    Dahl, David A [Idaho Falls, ID; Scott, Jill R [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2010-08-17

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber that includes at least a first section that induces a first magnetron effect that increases a cyclotron frequency of an ion and at least a second section that induces a second magnetron effect that decreases the cyclotron frequency of an ion. The cyclotron frequency changes induced by the first and second magnetron effects substantially cancel one another so that an ion traversing the at least first and second sections will experience no net change in cyclotron frequency.

  12. Future cyclotron systems: An industrial perspective

    SciTech Connect

    Stevenson, N.R.; Dickie, W.J.

    1995-09-01

    The use of commercial cyclotron systems for the production of radioisotopes continues to grow on a world-wide scale. Improvements in technology have significantly increased the production capabilities of modern cyclotron-based isotope production facilities. In particular, the change to negative ion acceleration and new high power systems have resulted in dramatic improvements in reliability, increases in capacity, and decreases in personnel radiation dose. As more and more older machines are retired, decisions regarding their replacement are made based on several factors including the market`s potential and the cyclotron system`s abilities. Taking the case of the recently upgraded TR30 cyclotron at TRIUMF/Nordion, the authors investigate the requirements industrial/medical users are likely to impose on future commercial cyclotron systems and the impact this will have on cyclotron technology by the end of the century.

  13. Commercial compact cyclotrons in the 90`s

    SciTech Connect

    Milton, B.F.

    1995-09-01

    Cyclotrons continue to be efficient accelerators for radio-isotope production. In recent years, developments in the accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicate a strong future for commercial cyclotrons. In this paper the authors will survey recent developments in the areas of cyclotron technology, as they relate to the new generation of commercial cyclotrons. Design criteria for the different types of commercial cyclotrons will be presented, with reference to those demands that differ from those in a research oriented cyclotron project. The authors also discuss the possibility of systems designed for higher energies and capable of extracted beam currents of up to 2.0 mA.

  14. The untapped potential of Gallium 68-PET: the next wave of ⁶⁸Ga-agents.

    PubMed

    Smith, Daniel L; Breeman, Wouter A P; Sims-Mourtada, Jennifer

    2013-06-01

    (68)Gallium-PET ((68)Ga-PET) agents have significant clinical promise. The radionuclide can be produced from a (68)Ge/(68)Ga generator on site and is a convenient alternative to cyclotron-based PET isotopes. The short half-life of (68)Ga permits imaging applications with sufficient radioactivity while maintaining patient dose to an acceptable level. Furthermore, due to superior resolution, (68)Ga-PET agents have the ability to replace current SPECT agents in many applications. This article outlines the upcoming agents and challenges faced during the translational development of (68)Ga agents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Initial experience with an 11 MeV self-shielded medical cyclotron on operation and radiation safety

    PubMed Central

    Pant, G. S.; Senthamizhchelvan, S.

    2007-01-01

    A self-shielded medical cyclotron (11 MeV) was commissioned at our center, to produce positron emitters, namely, 18F, 15O, 13N and 11C for positron emission tomography (PET) imaging. Presently the cyclotron has been exclusively used for the production of 18F- for 18F-FDG imaging. The operational parameters which influence the yield of 18F- production were monitored. The radiation levels in the cyclotron and radiochemistry laboratory were also monitored to assess the radiation safety status in the facility. The target material, 18O water, is bombarded with proton beam from the cyclotron to produce 18F- ion that is used for the synthesis of 18F-FDG. The operational parameters which influence the yield of 18F- were observed during 292 production runs out of a total of more than 400 runs. The radiation dose levels were also measured in the facility at various locations during cyclotron production runs and in the radiochemistry laboratory during 18F-FDG syntheses. It was observed that rinsing the target after delivery increased the number of production runs in a given target, as well as resulted in a better correlation between the duration of bombardment and the end of bombardment 18F- activity with absolutely clean target after being rebuilt. The radiation levels in the cyclotron and radiochemistry laboratory were observed to be well within prescribed limits with safe work practice. PMID:21157531

  16. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  17. Cyclotron Line Measurements with INTEGRAL

    NASA Technical Reports Server (NTRS)

    Pottschmidt, K.; Kreykenbohm, I.; Caballero, I.; Fritz, S.; Schoenherr, G.; Kretschmar, P.; Wilms, J.; McBride, V. A.; Suchy, S.; Rothschild, R. E.

    2008-01-01

    Due to its broadband energy coverage, INTEGRAL has made important contributions to observing and interpreting cyclotron lines, which are present in the 10-100 keV range of a sample of accreting pulsars. In these systems photons with energies fulfilling the resonance condition inelastically Compton scatter off electrons quantized in the accretion column above the neutron star's magnetic pole(s). This process gives rise to the broad, absorption-like lines or 'cyclotron resonant scattering features' (CRSF). The observed lines allow to directly measure the B-fields of these sources, resulting in values of a few times 1E12G. In this overview I will present recent highlights regarding CRSF observations as well as discuss current ideas and models for the physical conditions in the accretion column. Among the former are the stability of the spectrum of Vela X-1 during giant flares in 2003, the observation of three cyclotron lines during the 2004 outburst of V0332+53, the confirmation of the fundamental line at approximately 45 keV during a 2005 normal outburst of A0535-26, and the simultaneous detection of the two lines in the dipping source 4U 1907+09 (for which also a torque reversal was detected for the first time). Through these and other observations it has become increasingly apparent that two types of observations can potentially be used to constrain the accretion column geometry: the determination of energy ratios for multiple harmonic lines (only two sources with greater than 2 lines are known), was well as the evolution of the fundamental line centroid, which, for different sources, may or may not be correlated with flux. Furthermore, first steps have been taken away from the usual phenomenological description of the lines, towards a physical approach based on self-consistent CRSF modeling. Initial applications are presented.

  18. Cyclotron Line Measurements with INTEGRAL

    NASA Technical Reports Server (NTRS)

    Pottschmidt, K.; Kreykenbohm, I.; Caballero, I.; Fritz, S.; Schoenherr, G.; Kretschmar, P.; Wilms, J.; McBride, V. A.; Suchy, S.; Rothschild, R. E.

    2008-01-01

    Due to its broadband energy coverage, INTEGRAL has made important contributions to observing and interpreting cyclotron lines, which are present in the 10-100 keV range of a sample of accreting pulsars. In these systems photons with energies fulfilling the resonance condition inelastically Compton scatter off electrons quantized in the accretion column above the neutron star's magnetic pole(s). This process gives rise to the broad, absorption-like lines or 'cyclotron resonant scattering features' (CRSF). The observed lines allow to directly measure the B-fields of these sources, resulting in values of a few times 1E12G. In this overview I will present recent highlights regarding CRSF observations as well as discuss current ideas and models for the physical conditions in the accretion column. Among the former are the stability of the spectrum of Vela X-1 during giant flares in 2003, the observation of three cyclotron lines during the 2004 outburst of V0332+53, the confirmation of the fundamental line at approximately 45 keV during a 2005 normal outburst of A0535-26, and the simultaneous detection of the two lines in the dipping source 4U 1907+09 (for which also a torque reversal was detected for the first time). Through these and other observations it has become increasingly apparent that two types of observations can potentially be used to constrain the accretion column geometry: the determination of energy ratios for multiple harmonic lines (only two sources with greater than 2 lines are known), was well as the evolution of the fundamental line centroid, which, for different sources, may or may not be correlated with flux. Furthermore, first steps have been taken away from the usual phenomenological description of the lines, towards a physical approach based on self-consistent CRSF modeling. Initial applications are presented.

  19. Lawrence's Legacy : Seaborg's Cyclotron - The 88-Inch Cyclotron turns 40

    NASA Astrophysics Data System (ADS)

    McMahan, Margaret; Clark, David

    2003-04-01

    In 1958, Sputnik had recently been launched by the Russians, leading to worry in Congress and increased funding for science and technology. Ernest Lawrence was director of the "Rad Lab" at Berkeley. Another Nobel Prize winner, Glenn Seaborg, was Associate Laboratory Director and Director of the Nuclear Chemistry Division. In this atmosphere, Lawrence was phoned by commissioners of the Atomic Energy Commission and asked what they could do for Seaborg, "because he did such a fine job of setting up the chemistry for extracting plutonium from spent reactor fuel" [1]. In this informal way, the 90-Inch (eventually 88-Inch) Cyclotron became a line item in the federal budget at a cost of 3M (later increased to 5M). The 88-Inch Cyclotron achieved first internal beam on Dec. 12, 1961 and first external beam in May 1962. Forty years later it is still going strong. Pieced together from interviews with the retirees who built it, Rad Lab reports and archives from the Seaborg and Lawrence collections, the story of its design and construction - on-time and under-budget - provides a glimpse into the early days of big science. [1] remarks made by Elmer Kelly, "Physicist-in-charge' of the project on the occasion of the 40th anniversary celebration.

  20. Simultaneous PET/MR imaging with a radio frequency-penetrable PET insert.

    PubMed

    Grant, Alexander M; Lee, Brian J; Chang, Chen-Ming; Levin, Craig S

    2017-01-01

    A brain sized radio frequency (RF)-penetrable PET insert has been designed for simultaneous operation with MRI systems. This system takes advantage of electro-optical coupling and battery power to electrically float the PET insert relative to the MRI ground, permitting RF signals to be transmitted through small gaps between the modules that form the PET ring. This design facilitates the use of the built-in body coil for RF transmission and thus could be inserted into any existing MR site wishing to achieve simultaneous PET/MR imaging. The PET detectors employ nonmagnetic silicon photomultipliers in conjunction with a compressed sensing signal multiplexing scheme, and optical fibers to transmit analog PET detector signals out of the MRI room for decoding, processing, and image reconstruction. The PET insert was first constructed and tested in a laboratory benchtop setting, where tomographic images of a custom resolution phantom were successfully acquired. The PET insert was then placed within a 3T body MRI system, and tomographic resolution/contrast phantom images were acquired both with only the B0 field present, and under continuous pulsing from different MR imaging sequences. The resulting PET images have comparable contrast-to-noise ratios (CNR) under all MR pulsing conditions: The maximum percent CNR relative difference for each rod type among all four PET images acquired in the MRI system has a mean of 14.0 ± 7.7%. MR images were successfully acquired through the RF-penetrable PET shielding using only the built-in MR body coil, suggesting that simultaneous imaging is possible without significant mutual interference. These results show promise for this technology as an alternative to costly integrated PET/MR scanners; a PET insert that is compatible with any existing clinical MRI system could greatly increase the availability, accessibility, and dissemination of PET/MR. © 2016 American Association of Physicists in Medicine.

  1. The Warsaw K=160 cyclotron

    NASA Astrophysics Data System (ADS)

    Choinski, J.; Miszczak, J.; Sura, J.

    2001-12-01

    The overview of the Warsaw cyclotron facility is presented. The facility consists of K=160 cyclotron, 10 GHz ECR ion source, and several experimental stations. The cyclotron is of compact design with 2 straight dees. A yearly operation time is about 2900 hours on an average for the past few years. The cyclotron can deliver beams up to Ar with energy up to 10 MeV/amu to the experimental area. Experimental stations are: 1) The multidetector OSIRIS II, allows the study of exotic nuclei in the double magic 100Sn region. The experimental set-up consists of 8 HPGe detectors equipped with charged particle 4π multiplicity filter SiBall, 50 elements BGO γ-rays multiplicity filter, 4 sector polarimeter and electron conversion detector system. 2) CUDAC-Coulomb Universal Detector Scattering Chamber-an array of PIN-diodes in connection with HPGe detectors and the computer data analysis package GOSIA, maintained by the Laboratory allows investigation the Coulomb Excitation (COULEX) reactions. 3) IGISOL or Helium-jet transport system opened investigation of the reaction products by means of the online mass separator with ion-guide system. The system uses the Scandinavian-type mass separator built in INR Świerk, Poland. 4) Giant Dipole Resonance studies using experimental set-up JANOSIK developed for the detection of high-energy photons emitted in heavy-ion collisions. The set-up consists of a large NaI(Tl) detector (25 cm×29 cm) surrounded by shields: passive lead shield, active anticoincidence plastic shield and LiH shield to absorb neutrons, and a multiplicity filter of 32 small scintillator detectors (BaF2 and NaI(Tl)). 5) Laser spectroscopy stand now in test phase. The laser spectroscopy group at HIL has completed an equipment consisting of Argon ion Laser Innova 400-25W in all lines and coherent Ring Laser 669-21 as well as atomic beam apparatus.

  2. Cyclotron in the Materials and Stresses Building

    NASA Image and Video Library

    1976-11-21

    Researchers check the cyclotron in the Materials and Stresses Building at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Materials and Stresses Building, built in 1949, contained a number of laboratories to test the strength, diffusion, and other facets of materials. The materials could be subjected to high temperatures, high stresses, corrosion, irradiation, and hot gasses. The Physics of Solids Laboratory included a cyclotron, cloud chamber, helium cryostat, and metallurgy cave. The cyclotron was built in the early 1950s to test the effects of radiation on different materials so that the proper materials could be used to construct a nuclear aircraft engine and other components. By the late 1950s, the focus had shifted to similar studies for rockets. NASA cancelled its entire nuclear program in January 1973, and the cyclotron was mothballed. In 1975 the Cleveland Clinic Foundation partnered with NASA Lewis to use the cyclotron to treat cancer patients with a new type of radiation therapy. The cyclotron split beryllium atoms which caused neutrons to be released. The neutrons were streamed directly at the patient’s tumor. Over the course of five years, the cyclotron was used to treat 1200 patients. The program was terminated in 1980 as the Clinic shifted its efforts to concentrate on non-radiation treatments. The Lewis cyclotron was mothballed for a number of years before being demolished.

  3. Recent development and progress of IBA cyclotrons

    NASA Astrophysics Data System (ADS)

    Kleeven, W.; Abs, M.; Delvaux, J. L.; Forton, E.; Jongen, Y.; Medeiros Romao, L.; Nactergal, B.; Nuttens, V.; Servais, T.; Vanderlinden, T.; Zaremba, S.

    2011-12-01

    Several cyclotron development projects were recently realized by Ion Beam Applications S.A. (IBA). This contribution presents three of them: (i) the intensity enhancement of the Cyclone 30 cyclotron, a machine mainly used for the production of SPECT isotopes. This project is related with the increased demand for 201Tl because of the shortage of Mo/Tc generators from nuclear reactors, (ii) development of a new versatile multiple-particle K = 30 isotope-production cyclotron (the Cyclone 30XP) being able to accelerate H -, D - and also α-particles. The α-beam of this cyclotron will allow the production of new therapeutic isotopes (e.g. 211At) and (iii) commissioning of the Cyclone 70 cyclotron installed for Arronax in France. This machine is similar to the C30XP but provides higher energy ( K = 70) and allows research on new types of medical isotopes.

  4. Pet Therapy.

    ERIC Educational Resources Information Center

    Kavanagh, Kim

    1994-01-01

    This resource guide presents information on a variety of ways that animals can be used as a therapeutic modality with people having disabilities. Aspects addressed include: pet ownership and selection criteria; dogs (including service dogs, hearing/signal dogs, seeing leader dogs, and social/specialty dogs); horseriding for both therapy and fun;…

  5. K-130 Cyclotron vacuum system

    NASA Astrophysics Data System (ADS)

    Yadav, R. C.; Bhattacharya, S.; Bhole, R. B.; Roy, Anindya; Pal, Sarbajit; Mallik, C.; Bhandari, R. K.

    2012-11-01

    The vacuum system for K-130 cyclotron has been operational since 1977. It consists of two sub-systems, main vacuum system and beam line vacuum system. The main vacuum system is designed to achieve and maintain vacuum of about 1 × 10-6 mbar inside the 23 m3 volume of acceleration chamber comprising the Resonator tank and the Dee tank. The beam line vacuum system is required for transporting the extracted beam with minimum loss. These vacuum systems consist of diffusion pumps backed by mechanical pumps like roots and rotary pumps. The large vacuum pumps and valves of the cyclotron vacuum system were operational for more than twenty five years. In recent times, problems of frequent failures and maintenance were occurring due to aging and lack of appropriate spares. Hence, modernisation of the vacuum systems was taken up in order to ensure a stable high voltage for radio frequency system and the extraction system. This is required for efficient acceleration and transportation of high intensity ion beam. The vacuum systems have been upgraded by replacing several pumps, valves, gauges and freon units. The relay based control system for main vacuum system has also been replaced by PLC based state of the art control system. The upgraded control system enables inclusion of additional operational logics and safety interlocks into the system. The paper presents the details of the vacuum system and describes the modifications carried out for improving the performance and reliability of the vacuum system.

  6. Status of the cyclotron/P.E.T. facility at the State University of New York at Buffalo

    SciTech Connect

    Toorongian, S.A.; Haka, M.S.

    1994-12-31

    A new P.E.T./Cyclotron facility has been constructed on the Main St. campus of the State University of New York at Buffalo to service the needs of Nuclear Medicine departments in Buffalo and throughout the Western New York area. This facility is jointly funded and operated by S.U.N.Y. and the Veterans Administration. The cyclotron, as well as the research labs and a nuclear pharmacy to prepare non-positron emitting radiopharmaceuticals, are located in a newly constructed facility on campus. The P.E.T. scanner is located in the Veterans Administration Hospital adjacent to the campus. The two annexes are connected by a pneumatic transport {open_quotes}rabbit{close_quotes} system. The cyclotron and all radiopharmaceutical synthesis apparatus have been purchased from Ion Beam Applications s.a. of Lovain-la-Neuve Belgium.

  7. Cyclotron laboratory of the Institute for Nuclear Research and Nuclear Energy

    NASA Astrophysics Data System (ADS)

    Tonev, D.; Goutev, N.; Georgiev, L. S.

    2016-06-01

    An accelerator laboratory is presently under construction in Sofia at the Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences. The laboratory will use a TR24 type of cyclotron, which provides a possibility to accelerate a proton beam with an energy of 15 to 24 MeV and current of up to 0.4 mA. An accelerator with such parameters allows to produce a large variety of radioisotopes for development of radiopharmaceuticals. The most common radioisotopes that could be produced with such a cyclotron are PET isotopes like: 11C, 13N, 15O, 18F, 124I, 64Cu, 68Ge/68Ga, and SPECT isotopes like: 123I, 111In, 67Ga, 57Co, 99m Tc. Our aim is to use the cyclotron facility for research in the fields of radiopharmacy, radiochemistry, radiobiology, nuclear physics, solid state physics, applied research, new materials and for education in all these fields including nuclear energy. The building of the laboratory will be constructed nearby the Institute for Nuclear Research and Nuclear Energy and the cyclotron together with all the equipment needed will be installed there.

  8. Pet Allergy Quiz

    MedlinePlus

    ... triggered by allergens such as pet dander or dust mites. Question 7 Which of these will not necessarily help minimize symptoms if you are allergic to pets? Try not to hug or kiss pets Keep your pets out of bedrooms Use a double or micro-filter bag in your vacuum cleaner Keep your pets ...

  9. The Basic Principles of FDG-PET/CT Imaging.

    PubMed

    Basu, Sandip; Hess, Søren; Nielsen Braad, Poul-Erik; Olsen, Birgitte Brinkmann; Inglev, Signe; Høilund-Carlsen, Poul Flemming

    2014-10-01

    Positron emission tomography (PET) imaging with 2-[(18)F]fluoro-2-deoxy-D-glucose (FDG) forms the basis of molecular imaging. FDG-PET imaging is a multidisciplinary undertaking that requires close interdisciplinary collaboration in a broad team comprising physicians, technologists, secretaries, radio-chemists, hospital physicists, molecular biologists, engineers, and cyclotron technicians. The aim of this review is to provide a brief overview of important basic issues and considerations pivotal to successful patient examinations, including basic physics, instrumentation, radiochemistry, molecular and cell biology, patient preparation, normal distribution of tracer, and potential interpretive pitfalls. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Cyclotrons: From Science to Human Health

    NASA Astrophysics Data System (ADS)

    Craddock, Michael

    2011-04-01

    Lawrence's invention of the cyclotron, whose 80th anniversary we have just celebrated, not only revolutionized nuclear physics, but proved the starting point for a whole variety of recirculating accelerators, from the smallest microtron to the largest synchrotron, that have had an enormous impact in almost every branch of science and in several areas of medicine and industry. Cyclotrons themselves have proved remarkably adaptable, incorporating a variety of new ideas and technologies over the years: frequency modulation, edge focusing, AG focusing, separate magnet sectors, axial and azimuthal injection, ring geometries, stripping extraction, superconducting magnets and rf...... Even FFAGs, those most complex members of the cyclotron (fixed-magnetic-field) family, are making a comeback. Currently there are more than 50 medium or large cyclotrons around the world devoted to research. These provide intense primary beams of protons or stable ions, and correspondingly intense secondary beams of neutrons, pions, muons and radioactive ions, for experiments in nuclear, particle and condensed-matter physics, and in the materials and life sciences. Far outnumbering these, however, are the 800 or so small and medium cyclotrons used to produce radioisotopes for medical and other purposes. In addition, a rapidly growing number of 230-MeV proton cyclotrons are being built for cancer therapy -12 brought into operation since 1998 and as many more in the works. Altogether, cyclotrons are flourishing!

  11. Electron cyclotron resonance plasma photosa)

    NASA Astrophysics Data System (ADS)

    Rácz, R.; Biri, S.; Pálinkás, J.

    2010-02-01

    In order to observe and study systematically the plasma of electron cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light plasma photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open ECR plasma device, temporarily. An 8MP digital camera was used to record photos of plasmas made from Ne, Ar, and Kr gases and from their mixtures. We studied and recorded the effect of ion source setting parameters (gas pressure, gas composition, magnetic field, and microwave power) to the shape, color, and structure of the plasma. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR plasmas.

  12. Electron cyclotron resonance plasma photos.

    PubMed

    Rácz, R; Biri, S; Pálinkás, J

    2010-02-01

    In order to observe and study systematically the plasma of electron cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light plasma photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open ECR plasma device, temporarily. An 8MP digital camera was used to record photos of plasmas made from Ne, Ar, and Kr gases and from their mixtures. We studied and recorded the effect of ion source setting parameters (gas pressure, gas composition, magnetic field, and microwave power) to the shape, color, and structure of the plasma. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR plasmas.

  13. Electron cyclotron resonance plasma photos

    SciTech Connect

    Racz, R.; Palinkas, J.; Biri, S.

    2010-02-15

    In order to observe and study systematically the plasma of electron cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light plasma photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open ECR plasma device, temporarily. An 8MP digital camera was used to record photos of plasmas made from Ne, Ar, and Kr gases and from their mixtures. We studied and recorded the effect of ion source setting parameters (gas pressure, gas composition, magnetic field, and microwave power) to the shape, color, and structure of the plasma. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR plasmas.

  14. Cyclotron resonance absorption in ionospheric plasma

    NASA Astrophysics Data System (ADS)

    Villalon, Elena

    1991-04-01

    The mode conversion of ordinary polarized electromagnetic waves into electrostatic cyclotron waves in the inhomogeneous ionospheric plasma is investigated. Near resonance the warm plasma dispersion relation is a function of the angle theta between the geomagnetic field and the density gradient and of the wave frequency omega, which lies between the electron cyclotron frequency and its doubling. The differential equations describing the electric field amplitudes near the plasma resonance are studied, including damping at the second gyroharmonic. The energy transmission coefficients and power absorbed by the cyclotron waves are calculated. The vertical penetration of the plasma wave amplitudes is estimated using a WKB analysis of the wave equation.

  15. Gamma ray facilities at the University of Maryland cyclotron. [data acquisition and radiation measurement

    NASA Technical Reports Server (NTRS)

    Hornyak, W. F.

    1978-01-01

    A special beam line was set up in a separate shielded experimental room to provide a low background station for gamma-ray measurements at the University of Maryland cyclotron. The transmitted beam leaving the target is gathered in by a magnetic quadrupole lens located 1.8 m further downstream and focused on a Faraday cup located on the far side of the 2.5 m thick concrete shielding wall of the experimental room. A software computer program permits timing information ot be obtained using the cyclotron beam fine structure as a time reference for the observed gamma-ray events. Measurements indicate a beam fine structure width of less than 1.2 nanoseconds repeated, for example, in the case of 140 MeV alpha particles every 90 nanoseconds. Twelve contiguous time channels of adjustable width may be set as desired with reference to the RF signal. This allows the creation of 12 separate 8192 channel analyzers.

  16. Gamma ray facilities at the University of Maryland cyclotron. [data acquisition and radiation measurement

    NASA Technical Reports Server (NTRS)

    Hornyak, W. F.

    1978-01-01

    A special beam line was set up in a separate shielded experimental room to provide a low background station for gamma-ray measurements at the University of Maryland cyclotron. The transmitted beam leaving the target is gathered in by a magnetic quadrupole lens located 1.8 m further downstream and focused on a Faraday cup located on the far side of the 2.5 m thick concrete shielding wall of the experimental room. A software computer program permits timing information ot be obtained using the cyclotron beam fine structure as a time reference for the observed gamma-ray events. Measurements indicate a beam fine structure width of less than 1.2 nanoseconds repeated, for example, in the case of 140 MeV alpha particles every 90 nanoseconds. Twelve contiguous time channels of adjustable width may be set as desired with reference to the RF signal. This allows the creation of 12 separate 8192 channel analyzers.

  17. First full-beam PET acquisitions in proton therapy with a modular dual-head dedicated system.

    PubMed

    Sportelli, G; Belcari, N; Camarlinghi, N; Cirrone, G A P; Cuttone, G; Ferretti, S; Kraan, A; Ortuño, J E; Romano, F; Santos, A; Straub, K; Tramontana, A; Guerra, A Del; Rosso, V

    2014-01-06

    During particle therapy irradiation, positron emitters with half-lives ranging from 2 to 20 min are generated from nuclear processes. The half-lives are such that it is possible either to detect the positron signal in the treatment room using an in-beam positron emission tomography (PET) system, right after the irradiation, or to quickly transfer the patient to a close PET/CT scanner. Since the activity distribution is spatially correlated with the dose, it is possible to use PET imaging as an indirect method to assure the quality of the dose delivery. In this work, we present a new dedicated PET system able to operate in-beam. The PET apparatus consists in two 10 cm × 10 cm detector heads. Each detector is composed of four scintillating matrices of 23 × 23 LYSO crystals. The crystal size is 1.9 mm × 1.9 mm × 16 mm. Each scintillation matrix is read out independently with a modularized acquisition system. The distance between the two opposing detector heads was set to 20 cm. The system has very low dead time per detector area and a 3 ns coincidence window, which is capable to sustain high single count rates and to keep the random counts relatively low. This allows a new full-beam monitoring modality that includes data acquisition also while the beam is on. The PET system was tested during the irradiation at the CATANA (INFN, Catania, Italy) cyclotron-based proton therapy facility. Four acquisitions with different doses and dose rates were analysed. In all cases the random to total coincidences ratio was equal or less than 25%. For each measurement we estimated the accuracy and precision of the activity range on a set of voxel lines within an irradiated PMMA phantom. Results show that the inclusion of data acquired during the irradiation, referred to as beam-on data, improves both the precision and accuracy of the range measurement with respect to data acquired only after irradiation. Beam-on data alone are enough to give precisions better than 1

  18. First full-beam PET acquisitions in proton therapy with a modular dual-head dedicated system

    NASA Astrophysics Data System (ADS)

    Sportelli, G.; Belcari, N.; Camarlinghi, N.; Cirrone, G. A. P.; Cuttone, G.; Ferretti, S.; Kraan, A.; Ortuño, J. E.; Romano, F.; Santos, A.; Straub, K.; Tramontana, A.; Del Guerra, A.; Rosso, V.

    2014-01-01

    During particle therapy irradiation, positron emitters with half-lives ranging from 2 to 20 min are generated from nuclear processes. The half-lives are such that it is possible either to detect the positron signal in the treatment room using an in-beam positron emission tomography (PET) system, right after the irradiation, or to quickly transfer the patient to a close PET/CT scanner. Since the activity distribution is spatially correlated with the dose, it is possible to use PET imaging as an indirect method to assure the quality of the dose delivery. In this work, we present a new dedicated PET system able to operate in-beam. The PET apparatus consists in two 10 cm × 10 cm detector heads. Each detector is composed of four scintillating matrices of 23 × 23 LYSO crystals. The crystal size is 1.9 mm × 1.9 mm × 16 mm. Each scintillation matrix is read out independently with a modularized acquisition system. The distance between the two opposing detector heads was set to 20 cm. The system has very low dead time per detector area and a 3 ns coincidence window, which is capable to sustain high single count rates and to keep the random counts relatively low. This allows a new full-beam monitoring modality that includes data acquisition also while the beam is on. The PET system was tested during the irradiation at the CATANA (INFN, Catania, Italy) cyclotron-based proton therapy facility. Four acquisitions with different doses and dose rates were analysed. In all cases the random to total coincidences ratio was equal or less than 25%. For each measurement we estimated the accuracy and precision of the activity range on a set of voxel lines within an irradiated PMMA phantom. Results show that the inclusion of data acquired during the irradiation, referred to as beam-on data, improves both the precision and accuracy of the range measurement with respect to data acquired only after irradiation. Beam-on data alone are enough to give precisions better than 1 mm

  19. All-magnetic extraction for cyclotron beam reacceleration

    DOEpatents

    Hudson, E.D.; Mallory, M.L.

    1975-07-22

    An isochronous cyclotron can be modified to provide an initial electron stripping stage, a complete acceleration of the stripped ions through the cyclotron to a first energy state, means for returning the ions to an intermediate cyclotron orbit through a second stripping stage, further acceleration of the now higher energy stripped ions through the cyclotron to their final energy, and final extraction of the ions from the cyclotron. (auth)

  20. Hospital based superconducting cyclotron for neutron therapy: Medical physics perspective

    NASA Astrophysics Data System (ADS)

    Yudelev, M.; Burmeister, J.; Blosser, E.; Maughan, R. L.; Kota, C.

    2001-12-01

    The neutron therapy facility at the Gershenson Radiation Oncology Center, Harper University Hospital in Detroit has been operational since September 1991. The d(48.5)+Be beam is produced in a gantry mounted superconducting cyclotron designed and built at the National Superconducting Cyclotron Laboratory (NSCL). Measurements were performed in order to obtain the physical characteristics of the neutron beam and to collect the data necessary for treatment planning. This included profiles of the dose distribution in a water phantom, relative output factors and the design of various beam modifiers, i.e., wedges and tissue compensators. The beam was calibrated in accordance with international protocol for fast neutron dosimetry. Dosimetry and radiobiology intercomparions with three neutron therapy facilities were performed prior to clinical use. The radiation safety program was established in order to monitor and reduce the exposure levels of the personnel. The activation products were identified and the exposure in the treatment room was mapped. A comprehensive quality assurance (QA) program was developed to sustain safe and reliable operation of the unit at treatment standards comparable to those for conventional photon radiation. The program can be divided into three major parts: maintenance of the cyclotron and related hardware; QA of the neutron beam dosimetry and treatment delivery; safety and radiation protection. In addition the neutron beam is used in various non-clinical applications. Among these are the microdosimetric characterization of the beam, the effects of tissue heterogeneity on dose distribution, the development of boron neutron capture enhanced fast neutron therapy and variety of radiobiology experiments.

  1. Method and apparatuses for ion cyclotron spectrometry

    DOEpatents

    Dahl, David A [Idaho Falls, ID; Scott, Jill R [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2012-03-06

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber. The trapping electric field may comprise a field potential that, when taken in cross-section along the z-axis, includes at least one section that is concave down and at least one section that is concave up so that ions traversing the field potential experience a net magnetron effect on a cyclotron frequency of the ions that is substantially equal to zero. Other apparatuses and a method for performing ion cyclotron spectrometry are also disclosed herein.

  2. Low energy cyclotron for radiocarbon dating

    SciTech Connect

    Welch, J.J.

    1985-01-01

    The author built and tested a low energy cyclotron for radiocarbon dating similar to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. The author found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. The author shows how a conventional carbon negative ion source located outside the cyclotron magnet, would produce sufficient beam and provide for quick sample changing to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.

  3. The superconducting separated orbit cyclotron tritron

    SciTech Connect

    Trinks, U.; Assmann, W.; Dietl, L.; Hinderer, H.J.; Korner, A; Platzer, A.; Rehm, B.; Rieger, K.; Riess, C.; Savoy, R.

    1985-10-01

    At the Munich Accelerator Laboratory a booster for the existing MP-tandem-the Tritron - is under construction for acceleration of heavy ions to specific energies up to 21 MeV/u. The Tritron/sup +/ is a separated orbit cyclotron similar to the SOC but with the magnets and cavities both superconducting. The Tritron fits well into the existing laboratory. It is projected to be a prototype to demonstrate the feasibility of this type of cyclotron, which may be suited to overcome the limits of the conventional cyclotron concept. First, there are no axial focusing problems. Secondly, there is no crossing of resonances in the betatron frequency diagram, and thirdly, there are no injection and extraction problems. Thus continuous ion beams of high intensity and high quality with energies up to about 1 GeV/u seem within reach by connecting several separated orbit cyclotrons with increasing radii in series.

  4. Building 211 cyclotron characterization survey report

    SciTech Connect

    1998-03-30

    The Building 211 Cyclotron Characterization Survey includes an assessment of the radioactive and chemical inventory of materials stored within the facility; an evaluation of the relative distribution of accelerator-produced activation products within various cyclotron components and adjacent structures; measurement of the radiation fields throughout the facility; measurement and assessment of internal and external radioactive surface contamination on various equipment, facility structures, and air-handling systems; and an assessment of lead (Pb) paint and asbestos hazards within the facility.

  5. Vacuum system of the cyclotrons in VECC, Kolkata

    SciTech Connect

    Roy, Anindya; Bhole, R.B.; Akhtar, J.; Yadav, R.C.; Pal, Sarbajit; Sarkar, D.; Bhandari, R.K. E-mail: rbb@vecc.gov.in E-mail: yadav@vecc.gov.in E-mail: dsarkar@vecc.gov.in

    2011-07-01

    The vacuum system of the K=130 Room Temperature Cyclotron (RTC) (operational since 1978) has been recently modernized and the same of the K{sub bend}=520 Superconducting Cyclotron (SCC), currently under commissioning, is being deployed for remote monitoring and control. The vacuum system of RTC is designed to achieve and maintain vacuum level of 2 X 10{sup -6} mbar inside 23 m{sup 3} volume of Resonator tank and DEE tank. This has been upgraded by replacing several valves, Freon units, gauges and pumps. The relay based manual control system has been replaced by PLC based automated system. The SCC vacuum system also has an elaborate arrangement comprising of turbo molecular pumping modules with associated isolation valves and characteristic gauges. This paper describes essential elements, typically used to obtain high (1X10{sup -7} mbar) vacuum using rotary pumps, diffusion pumps and cold traps/turbo-molecular pumps and other system components such as valves, gauges and baffles. The supervisory control methodology/scheme of both the vacuum systems, developed in-house using EPICS (Experimental Physics and Industrial Control System), a standard open-source software tool for designing distributed control system, is also elaborated here. (author)

  6. The development, past achievements, and future directions of brain PET

    PubMed Central

    Jones, Terry; Rabiner, Eugenii A

    2012-01-01

    The early developments of brain positron emission tomography (PET), including the methodological advances that have driven progress, are outlined. The considerable past achievements of brain PET have been summarized in collaboration with contributing experts in specific clinical applications including cerebrovascular disease, movement disorders, dementia, epilepsy, schizophrenia, addiction, depression and anxiety, brain tumors, drug development, and the normal healthy brain. Despite a history of improving methodology and considerable achievements, brain PET research activity is not growing and appears to have diminished. Assessments of the reasons for decline are presented and strategies proposed for reinvigorating brain PET research. Central to this is widening the access to advanced PET procedures through the introduction of lower cost cyclotron and radiochemistry technologies. The support and expertize of the existing major PET centers, and the recruitment of new biologists, bio-mathematicians and chemists to the field would be important for such a revival. New future applications need to be identified, the scope of targets imaged broadened, and the developed expertize exploited in other areas of medical research. Such reinvigoration of the field would enable PET to continue making significant contributions to advance the understanding of the normal and diseased brain and support the development of advanced treatments. PMID:22434067

  7. Rotatable superconducting cyclotron adapted for medical use

    DOEpatents

    Blosser, Henry G.; Johnson, David A.; Riedel, Jack; Burleigh, Richard J.

    1985-01-01

    A superconducting cyclotron (10) rotatable on a support structure (11) in an arc of about 180.degree. around a pivot axis (A--A) and particularly adapted for medical use is described. The rotatable support structure (13, 15) is balanced by being counterweighted (14) so as to allow rotation of the cyclotron and a beam (12), such as a subparticle (neutron) or atomic particle beam, from the cyclotron in the arc around a patient. Flexible hose (25) is moveably attached to the support structure for providing a liquified gas which is supercooled to near 0.degree. K. to an inlet means (122) to a chamber (105) around superconducting coils (101, 102). The liquid (34) level in the cyclotron is maintained approximately half full so that rotation of the support structure and cyclotron through the 180.degree. can be accomplished without spilling the liquid from the cyclotron. With the coils vertically oriented, each turn of the winding is approximately half immersed in liquid (34) and half exposed to cold gas and adequate cooling to maintain superconducting temperatures in the section of coil above the liquid level is provided by the combination of cold gas/vapor and by the conductive flow of heat along each turn of the winding from the half above the liquid to the half below.

  8. Pet Bonding and Pet Bereavement among Adolescents.

    ERIC Educational Resources Information Center

    Brown, Brenda H.; And Others

    1996-01-01

    Studied adolescent-pet bonding and bereavement following pet loss (n=55). Hypothesized that highly-bonded adolescents experience more intense grief when a pet dies than do those less bonded; degree of bonding is greater for girls than for boys; and intensity of bereavement is greater for girls than for boys. Results supported the hypotheses. (RB)

  9. PRODUCTION CONSIDERATIONS FOR THE CLASSICAL PET NUCLIDES.

    SciTech Connect

    FINN,R.; SCHLYER,D.

    2001-06-25

    Nuclear Medicine is the specialty of medical imaging, which utilizes a variety of radionuclides incorporated into specific compounds for diagnostic imaging and therapeutic applications. During recent years, research efforts associated with this discipline have concentrated on the decay characteristics of particular radionuclides and the design of unique radiolabeled tracers necessary to achieve time-dependent molecular images. The specialty is expanding with specific Positron emission tomography (PET) and SPECT radiopharmaceuticals allowing for an extension from functional process imaging in tissue to pathologic processes and nuclide directed treatments. PET is an example of a technique that has been shown to yield the physiologic information necessary for clinical oncology diagnoses based upon altered tissue metabolism. Most PET drugs are currently produced using a cyclotron at locations that are in close proximity to the hospital or academic center at which the radiopharmaceutical will be administered. In November 1997, a law was enacted called the Food and Drug Administration Modernization Act of 1997 which directed the Food and Drug Administration (FDA) to establish appropriate procedures for the approval of PET drugs in accordance with section 505 of the Federal Food, Drug, and Cosmetic Act and to establish current good manufacturing practice requirements for such drugs. At this time the FDA is considering adopting special approval procedures and cGMP requirements for PET drugs. The evolution of PET radiopharmaceuticals has introduced a new class of ''drugs'' requiring production facilities and product formulations that must be closely aligned with the scheduled clinical utilization. The production of the radionuclide in the appropriate synthetic form is but one critical component in the manufacture of the finished radiopharmaceutical.

  10. Pet Problems at Home: Pet Problems in the Community.

    ERIC Educational Resources Information Center

    Soltow, Willow

    1984-01-01

    Discusses problems of pets in the community, examining the community's role related to disruptive pets and pet overpopulation. Also discusses pet problems at home, offering advice on selecting a pet, meeting a pet's needs, and disciplining pets. Includes a list of books, films/filmstrips, teaching materials, and various instructional strategies.…

  11. Pet Problems at Home: Pet Problems in the Community.

    ERIC Educational Resources Information Center

    Soltow, Willow

    1984-01-01

    Discusses problems of pets in the community, examining the community's role related to disruptive pets and pet overpopulation. Also discusses pet problems at home, offering advice on selecting a pet, meeting a pet's needs, and disciplining pets. Includes a list of books, films/filmstrips, teaching materials, and various instructional strategies.…

  12. Memory's Room.

    ERIC Educational Resources Information Center

    Carruthers, Mary

    1999-01-01

    Describes the Liberal Arts Studiolo from the Ducal Palace at Guibbio, Italy. Discusses how the room's design and decoration mirrors its educational uses. Notes that the object of education was to provide the young person with a kind of mental library of materials that could be drawn upon quickly. (RS)

  13. Memory's Room.

    ERIC Educational Resources Information Center

    Carruthers, Mary

    1999-01-01

    Describes the Liberal Arts Studiolo from the Ducal Palace at Guibbio, Italy. Discusses how the room's design and decoration mirrors its educational uses. Notes that the object of education was to provide the young person with a kind of mental library of materials that could be drawn upon quickly. (RS)

  14. Development of DRAGON electron cyclotron resonance ion source at Institute of Modern Physics

    SciTech Connect

    Lu, W.; Lin, S. H.; Xie, D. Z.; Zhang, X. Z.; Sha, S.; Zhang, W. H.; Cao, Y.; Guo, J. W.; Fang, X.; Guo, X. H.; Li, X. X.; Ma, H. Y.; Wu, Q.; Zhao, H. Y.; Ma, B. H.; Wang, H.; Zhu, Y. H.; Feng, Y. C.; Li, J. Y.; Li, J. Q.; and others

    2012-02-15

    A new room temperature electron cyclotron resonance (ECR) ion source, DRAGON, is under construction at IMP. DRAGON is designed to operate at microwaves of frequencies of 14.5-18 GHz. Its axial solenoid coils are cooled with evaporative medium to provide an axial magnetic mirror field of 2.5 T at the injection and 1.4 T at the extraction, respectively. In comparison to other conventional room temperature ECR ion sources, DRAGON has so far the largest bore plasma chamber of inner diameter of 126 mm with maximum radial fields of 1.4-1.5 T produced by a non-Halbach permanent sextupole magnet.

  15. Development of DRAGON electron cyclotron resonance ion source at Institute of Modern Physics.

    PubMed

    Lu, W; Xie, D Z; Zhang, X Z; Xiong, B; Ruan, L; Sha, S; Zhang, W H; Cao, Y; Lin, S H; Guo, J W; Fang, X; Guo, X H; Li, X X; Ma, H Y; Yang, Y; Wu, Q; Zhao, H Y; Ma, B H; Wang, H; Zhu, Y H; Feng, Y C; Li, J Y; Li, J Q; Sun, L T; Zhao, H W

    2012-02-01

    A new room temperature electron cyclotron resonance (ECR) ion source, DRAGON, is under construction at IMP. DRAGON is designed to operate at microwaves of frequencies of 14.5-18 GHz. Its axial solenoid coils are cooled with evaporative medium to provide an axial magnetic mirror field of 2.5 T at the injection and 1.4 T at the extraction, respectively. In comparison to other conventional room temperature ECR ion sources, DRAGON has so far the largest bore plasma chamber of inner diameter of 126 mm with maximum radial fields of 1.4-1.5 T produced by a non-Halbach permanent sextupole magnet.

  16. The Cyclotron radionuclide program at King Faisal Specialist Hospital and Research Centre

    NASA Astrophysics Data System (ADS)

    Hupf, Homer B.; Tischer, Stephen D.; Al-Watban, Farouk

    1985-05-01

    The King Faisal Specialist Hospital and Research Centre Cyclotron is being used to produce radionuclides for nuclear medicine, short-lived positron emitters for positron emission tomography (PET) studies, neutrons for therapy and biological research. Radiopharmaceuticals for planar imaging at King Faisal Specialist Hospital and other hospitals in Saudi Arabia include thallous-201 chloride, gallium-67 citrate, sodium iodide 123I capsules, 123I orthoiodohippurate and 81mKr generators. Products from short-lived positron emitters such as 18F fluordeoxyglucose, 11C methionine, 15O carbon dioxide and 63Zn hematoporphyrin are prepared and used on site for physiological studies in a PET program. Several patients have been treated with neutron therapy and a program for studying neutron radiation effects on cells is underway. Radiopharmaceutical products under development include 111In-labelled monoclonal antibodies for specific tumor detection, 11C methylglucose for metabolic studies and 11C putrescine for tumor localization.

  17. Pets for Handicapped Children.

    ERIC Educational Resources Information Center

    Frith, Greg H.

    1982-01-01

    Pets can provide valuable learning for handicapped children, but selection of a type of pet should consider cost, availability and care, parents' attitudes, locality, the animal's susceptibility to training, pet's life expectancy, and the child's handicap and emotional maturity. Suggested pet-related activities are listed. (CL)

  18. Accurate Monte Carlo modeling of cyclotrons for optimization of shielding and activation calculations in the biomedical field

    NASA Astrophysics Data System (ADS)

    Infantino, Angelo; Marengo, Mario; Baschetti, Serafina; Cicoria, Gianfranco; Longo Vaschetto, Vittorio; Lucconi, Giulia; Massucci, Piera; Vichi, Sara; Zagni, Federico; Mostacci, Domiziano

    2015-11-01

    Biomedical cyclotrons for production of Positron Emission Tomography (PET) radionuclides and radiotherapy with hadrons or ions are widely diffused and established in hospitals as well as in industrial facilities and research sites. Guidelines for site planning and installation, as well as for radiation protection assessment, are given in a number of international documents; however, these well-established guides typically offer analytic methods of calculation of both shielding and materials activation, in approximate or idealized geometry set up. The availability of Monte Carlo codes with accurate and up-to-date libraries for transport and interactions of neutrons and charged particles at energies below 250 MeV, together with the continuously increasing power of nowadays computers, makes systematic use of simulations with realistic geometries possible, yielding equipment and site specific evaluation of the source terms, shielding requirements and all quantities relevant to radiation protection. In this work, the well-known Monte Carlo code FLUKA was used to simulate two representative models of cyclotron for PET radionuclides production, including their targetry; and one type of proton therapy cyclotron including the energy selection system. Simulations yield estimates of various quantities of radiological interest, including the effective dose distribution around the equipment, the effective number of neutron produced per incident proton and the activation of target materials, the structure of the cyclotron, the energy degrader, the vault walls and the soil. The model was validated against experimental measurements and comparison with well-established reference data. Neutron ambient dose equivalent H*(10) was measured around a GE PETtrace cyclotron: an average ratio between experimental measurement and simulations of 0.99±0.07 was found. Saturation yield of 18F, produced by the well-known 18O(p,n)18F reaction, was calculated and compared with the IAEA recommended

  19. Dual-Modality Prostate Imaging with PET and Transrectal Ultrasound

    DTIC Science & Technology

    2009-04-01

    concentrations than the “pelvis.” Both TMMs were hardened at room temperature. These PET- TRUS-CT-MRI phantoms are stored with a thin layer of safflower ...hardened at room temperature. Theses phantoms are stored with a thin layer of safflower oil on top to minimize dehydration and shrinkage. Fig. 2

  20. [Business administration of PET facilities: a cost analysis of three facilities utilizing delivery FDG].

    PubMed

    Mitsutake, Naohiro; Oku, Shinya; Fujii, Ryo; Furui, Yuji; Yasunaga, Hideo

    2008-05-01

    PET (positron emission tomography) has been proved to be a powerful imaging tool in clinical oncology. The number of PET facilities in Japan has remarkably increased over the last decade. Furthermore, the approval of delivery FDG in 2005 resulted in a tremendous expansion of the PET institutions without a cyclotron facility. The aim of this study was to conduct a cost analysis of PET institutions that utilized delivery FDG. Three PET facilities using delivery FDG were investigated about the costs for PET service. Fixed costs included depreciation costs for construction and medical equipments such as positron camera. Variable costs consisted of costs for medical materials including delivery FDG. The break-even point was analyzed in each of three institutions. In the three hospitals (A, B and C), the annual number of PET scan was 1,591, 1,637 and 914, while cost per scan was accounted as yen 110,262, yen 111,091, and yen 134,192, respectively. The break-even point was calculated to be 2,583, 2,679 and 2,081, respectively. PET facilities utilizing delivery FDG seemed to have difficulty in business administration. Such a situation suggests the possibility that the current supply of PET facilities might exceed actual demand for the service. The efficiency of resource allocation should be taken into consideration in the future health service researches on PET.

  1. Electroplated targets for production of unique PET radionuclides

    NASA Astrophysics Data System (ADS)

    Bui, V.; Sheh, Y.; Finn, R.; Francesconi, L.; Cai, S.; Schlyer, D.; Wieland, B.

    1995-12-01

    The past decade has witnessed the applications of positron emission tomography (PET) evolving from a purely research endeavor to a procedure which has specific clinical applications in the areas of cardiology, neurology and oncology. The growth of PET has been facilitated by developments in both medical instrumentation and radiopharmaceutical chemistry efforts. Included in this latter effort has been the low energy accelerator production and processing of unique PET radionuclides appropriate for the radiolabeling of biomolecules, i.e. monoclonal antibodies and peptides. The development and application of electroplated targets of antimony and copper for the production of iodine-124 and gallium-66 respectively, utilizing the Memorial Sloan-Kettering Cancer Center (MSKCC) cyclotron are examples of target design and development applicable to many medical accelerators.

  2. Electroplating targets for production of unique PET radionuclides

    SciTech Connect

    Bui, V.; Sheh, Y.; Finn, R.

    1994-12-31

    The past decade has witnessed the applications of Positron Emission Tomography (PET) evolving from a purely research endeavour to a procedure which has specific clinical applications in the areas of cardiology, neurology and oncology. The growth of PET has been facilitated by developments in medical instrumentation and radiopharmaceutical chemistry efforts. Included in this latter effort has been the low energy accelerator production and processing of unique PET radionuclides appropriate for the radiolabeling of biomolecules i.e. monoclonal antibodies and pepetides. The development and application of electroplated targets of antimony and copper for the production of iodine-124 and gallium-66 respectively, utilizing the Memorial Sloan-Kettering Cancer Center cyclotron are examples of target design and development applicable to many medical accelerators.

  3. Low energy cyclotron for radiocarbon dating

    SciTech Connect

    Welch, J.J.

    1984-12-01

    The measurement of naturally occurring radioisotopes whose half lives are less than a few hundred million years but more than a few years provides information about the temporal behavior of geologic and climatic processes, the temporal history of meteoritic bodies as well as the production mechanisms of these radioisotopes. A new extremely sensitive technique for measuring these radioisotopes at tandem Van de Graaff and cyclotron facilities has been very successful though the high cost and limited availability have been discouraging. We have built and tested a low energy cyclotron for radiocarbon dating similar in size to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. We found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. We show how a conventional carbon negative ion source, located outside the cyclotron magnet, would produce sufficient beam and provide for quick sampling to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.

  4. Recycling and recommissioning a used biomedical cyclotron

    NASA Astrophysics Data System (ADS)

    Carroll, L. R.; Ramsey, F.; Armbruster, J.; Montenero, M.

    2001-07-01

    Biomedical Cyclotrons have a very long life, but there eventually comes a time when any piece of equipment has to be retired from service. From time to time, we have the opportunity to help find new homes for used cyclotrons which, with relatively modest overhaul and refurbishment, can have many additional years of productive service, and thus represent a very valuable asset. The reasons for retiring a cyclotron vary, of course, but in our experience it is often due to an institution's changing priorities or changing needs, rather than the due to any fundamental age-related deficiency in the cyclotron itself. In this paper we will report on the relocation and successful restoration of a used TCC CP-42 cyclotron, which was moved from M.D. Anderson Hospital in Houston to Denton, Texas in early 1998, where it is presently being used for R&D and commercial production of biomedical isotopes. Ownership of the machine has been transferred to the University of North Texas; facility, manpower, and operational resources are provided by International Isotopes, Inc.

  5. Cyclotron Provides Neutron Therapy for Cancer Patients

    NASA Image and Video Library

    1978-01-21

    A cancer patient undergoes treatment in the Neutron Therapy Treatment Facility, or Cylotron, at the National Aeronautics and Space Administration (NASA) Lewis Research Center. After World War II Lewis researchers became interested in nuclear energy for propulsion. The focused their efforts on thermodynamics and strength of materials after radiation. In 1950 an 80-person Nuclear Reactor Division was created, and a cyclotron was built behind the Materials and Structures Laboratory. An in-house nuclear school was established to train these researchers in their new field. NASA cancelled its entire nuclear program in January 1973, just as the cyclotron was about to resume operations after a major upgrade. In 1975 the Cleveland Clinic Foundation partnered with NASA Lewis to use the cyclotron for a new type of radiation treatment for cancer patients. The cyclotron split beryllium atoms which caused neutrons to be released. The neutrons were streamed directly at the patient’s tumor. The facility had a dual-beam system that could target the tumor both vertically and horizontally. Over the course of five years, the cyclotron was used to treat 1200 patients. It was found to be particularly effective on salivary gland, prostrate, and other tumors. It was not as successful with tumors of the central nervous system. The program was terminated in 1980 as the Clinic began concentrating on non-radiation treatments.

  6. Development of the RF cavity for the SKKUCY-9 compact cyclotron

    NASA Astrophysics Data System (ADS)

    Shin, Seungwook; Lee, Jongchul; LEE, Byeong-No; Ha, Donghyup; Namgoong, Ho; Chai, Jongseo

    2015-09-01

    A 9 MeV compact cyclotron, named SKKUCY-9, for a radiopharmaceutical compound especially fludeoxyglucose (FDG) production for a positron emission tomography (PET) machine was developed at Sungkyunkwan University. H- ions which are produced from a Penning Ionization Gauge(PIG) ion source, travel through a normal conducting radio frequency (RF) cavity which operates at 83.2 MHz for an acceleration and electro-magnet for a beam focusing until the ions acquire energy of about 9 MeV. For installation at a small local hospital, our SKKUCY-9 cyclotron is developed to be compact and light-weight, comparable to conventional medical purpose cyclotrons. For compactness, we adapted a deep valley and large angle hill type for the electro-magnet design. Normally a RF cavity is installed inside of the empty space of the magnet valley region, which is extremely small in our case. We faced problems such as difficulties of installing the RF cavity, low Q-value. Despite of those difficulties, a compact RF cavity and its system including a RF power coupler to feed amplified RF power to the RF cavity and a fine tuner to compensate RF frequency variations was successfully developed and tested.

  7. Advances in intense beams, beam delivery, targetry, and radiochemistry at advanced cyclotron systems

    NASA Astrophysics Data System (ADS)

    Johnson, R. R.; Watt, R.; Kovac, B.; Zyuzin, A.; Van Lier, E.; Erdman, K. L.; Gyles, Wm.; Sabaiduc, V.; McQuarrie, S. A.; Wilson, J.; Backhouse, C.; Gelbart, Wm.; Kuo, T.

    2007-08-01

    The increasing demand for radionuclides for PET and SPECT has resulted in ACSI system improvements starting from the cyclotron and proceeding to the Radiochemistry Modules. With more TR30 cyclotrons installed and operating at full capacity, emphasis has been placed on improving the operational components to reduce both the incidence of failure and subsequent maintenance time. A cyclotron system has been developed that meets the needs of a regional radiopharmacy that supplies both positron and single photon emitters that would not otherwise be available. This new system has been named the TR24. In order to deal with some of the challenges of high currents, a method has been developed for passivating the entrance window foil during high current irradiation of a water target used to produce F-18. A method has been developed for passivating the entrance window foil to reduce unwanted chemical species that interfere with radiopharmaceutical production. Preliminary results for novel radioiodine production technique using the TR19/9 are also discussed.

  8. Optical imaging of irradiated cyclotron target window foils using Cerenkov and radioluminescence imaging

    NASA Astrophysics Data System (ADS)

    Spinelli, A. E.; Boschi, F.; Calandrino, R.

    2017-05-01

    Radioisotopes production for PET radiopharmaceuticals is performed using cyclotrons resulting in radio activation of different cyclotron components. It is thus necessary to measure the level of radiation exposure and, if possible, to image the areas where most of the radiations are emitted in particular during maintenance or decommissioning procedures. In this work we present a novel optical imaging approach using Cerenkov luminescence imaging (CLI) and radioluminescence imaging (RLI). CLI was performed by placing a glass Cerenkov radiator on a target window (Havar foils) and RLI data were obtained by covering the Havar foils with an intensifying screen. CLI or RLI were acquired using a small animal optical imaging system used in bioluminescence mode without the use of any optical filters. The analysis of the normalized radiance line profiles of both CLI and RLI images showed a similar pattern, however the absolute radiance of the RLI signal is several order of magnitude higher with respect to CLI. We conclude that optical imaging with CLI and RLI can be considered a novel method to detect and image activation areas in irradiated samples from a medical cyclotron.

  9. Improving cancer treatment with cyclotron produced radionuclides

    SciTech Connect

    Larson, S.M. Finn, R.D.

    1992-08-04

    This report describes the author's continuing long term goal of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The program has 3 interactive components: Radiochemistry /Cyclotron; Pharmacology; and Immunology. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Cyclotron section under the DOE grant during the 1989--1992 grant period, will be employed in the Pharmacology and Immunology sections of the DOE grant during the 1992--1995 grant period. The development of novel radionuclides and tracers is of course useful in and of itself, but their utility is greatly enhanced by the interaction with the immunology and pharmacology components of the program.

  10. The electromagnetic ion cyclotron beam anisotropy instability

    NASA Technical Reports Server (NTRS)

    Peter Gary, S.; Schriver, David

    1987-01-01

    Electromagnetic instabilities driven by an anisotropic, relatively cool ion beam are studied for the case in which both the beam and the instabilities propagate parallel or antiparallel to a uniform magnetic field. At modest beam-core relative drift speeds, sufficiently large perpendicular-to-parallel beam temperature ratios and sufficiently large plasma beta, the mode of fastest growth rate is the ion cyclotron beam anisotropy instability. Because the right-hand polarized waves observed upstream of slow shocks in the earth's magnetotail can lead to the appropriate beam anisotropy, the ion cyclotron instability may be present and account for the left-hand polarized magnetic waves observed there. Also, because of its relatively low phase speed, the ion cyclotron beam anisotropy instability may provide the scattering necessary for ion Fermi acceleration at slow shocks of sufficiently high plasma beta.

  11. Combined PET/CT with iodine-124 in diagnosis of spread metastatic thyroid carcinoma: a case report.

    PubMed

    Freudenberg, L S; Antoch, G; Görges, R; Knust, J; Pink, R; Jentzen, W; Debatin, J F; Brandau, W; Bockisch, A; Stattaus, J

    2003-12-01

    Iodine-124 positron emission tomography (PET) is a useful 3D imaging technique for diagnosis and management of thyroid diseases. The difficulty in interpretation of the PET scans with highly selective tracers, such as iodine-124, is the lack of identifiable anatomical structures, so an accurate anatomical localization of foci presenting abnormal uptake is problematic. Consequently, a combined PET/CT scanner can resolve these difficulties by co-registering PET and CT data in a single session allowing a correlation of functional and morphologic imaging. A case is presented where iodine-124 produced by a clinical cyclotron and FDG were used to acquire images with a combined PET/CT scanner for clinical staging. On the basis of the PET/CT exams the treatment of the patient was modified.

  12. Cyclotron Lines in Accreting Neutron Star Spectra

    NASA Astrophysics Data System (ADS)

    Wilms, Jörn; Schönherr, Gabriele; Schmid, Julia; Dauser, Thomas; Kreykenbohm, Ingo

    2009-05-01

    Cyclotron lines are formed through transitions of electrons between discrete Landau levels in the accretion columns of accreting neutron stars with strong (1012 G) magnetic fields. We summarize recent results on the formation of the spectral continuum of such systems, describe recent advances in the modeling of the lines based on a modification of the commonly used Monte Carlo approach, and discuss new results on the dependence of the measured cyclotron line energy from the luminosity of transient neutron star systems. Finally, we show that Simbol-X will be ideally suited to build and improve the observational database of accreting and strongly magnetized neutron stars.

  13. Basement utility room (room 24; air handling room), near the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Basement utility room (room 24; air handling room), near the west end of the combat operations center, looking southwest towards fan system one, air ducts, and walk-in filter rooms. The exterior equipment well is visible at the left - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  14. Trends in PET imaging

    SciTech Connect

    Moses, William W.

    2000-11-01

    Positron Emission Tomography (PET) imaging is a well established method for obtaining information on the status of certain organs within the human body or in animals. This paper presents an overview of recent trends PET instrumentation. Significant effort is being expended to develop new PET detector modules, especially those capable of measuring depth of interaction. This is aided by recent advances in scintillator and pixellated photodetector technology. The other significant area of effort is development of special purpose PET cameras (such as for imaging breast cancer or small animals) or cameras that have the ability to image in more than one modality (such as PET / SPECT or PET / X-Ray CT).

  15. Introduction to PET instrumentation.

    PubMed

    Turkington, T G

    2001-03-01

    The purpose of this paper is to introduce technologists to the basic principles of PET imaging and to the instrumentation used to acquire PET data. PET imaging is currently being done on a variety of imaging system types, and the technologist will be introduced to these systems and learn about the basic physical image-degrading factors in PET. After reading this article, the technologist should be able to describe the basics of coincidence imaging, identify at least 3 physical degrading factors in PET, and describe 2 different types of PET scanning systems.

  16. Clinical PET with a large area multiwire proportional chamber PET camera

    NASA Astrophysics Data System (ADS)

    Ott, R. J.; Marsden, P. K.; Flower, M. A.; Webb, S.; Cherry, S.; McCready, V. R.; Bateman, J. E.

    1988-06-01

    A large-area multiwire proportional chamber positron camera (MUP-PET) is under evaluation for clinical nuclear medicine use remote from a medical cyclotron. A preliminary physical evaluation shows that the detector has a sensitivity 5-10 times that of a conventional gamma camera but one tenth that of a multicrystal, multiring PET system. The spatial resolution is 6 mm throughout an imaging volume 40 cm diameter by 20 cm axially. The electronic readout presently limits the data acquisition rates to ˜ 2-3 kcps. The system has potential to acquire data at 50 kcps with a further increase in sensitivity of 5-10 and an improved resolution of 3 mm. The camera is under evaluation for clinical use in oncological studies using radiopharmaceuticals labelled with 68Ga from an in-house generator plus longer-lived radionuclides ( 18F, 124I, 55Co, 68Ga) from off-site cyclotrons. In particular quantitative measurements of dosimetry in both chemotherapy and radiotherapy will be an important part of the work.

  17. Cyclotron Production of Radionuclides for Nuclear Medicine at Academic Centers

    NASA Astrophysics Data System (ADS)

    Lapi, Suzanne

    2016-09-01

    The increase in use of radioisotopes for medical imaging has led to the development of new accelerator targetry and separation techniques for isotope production. For example, the development of longer-lived position emitting radionuclides has been explored to allow for nuclear imaging agents based on peptides, antibodies and nanoparticles. These isotopes (64Cu, 89Zr, 86Y) are typically produced via irradiation of solid targets on smaller cyclotrons (10-25 MeV) at academic or hospital based facilities. Recent research has further expanded the toolbox of PET tracers to include additional isotopes such as 52Mn, 55Co, 76Br and others. The smaller scale of these types of facilities can enable the straightforward involvement of students, thus adding to the next generation of nuclear science leaders. Research pertaining to development of robust and larger scale production technologies including solid target systems and remote systems for transport and purification of these isotopes has enabled both preclinical and clinical imaging research for many diseases. In particular, our group has focused on the use of radiolabeled antibodies for imaging of receptor expression in preclinical models and in a clinical trial of metastatic breast cancer patients.

  18. Optimization of zirconium-89 production in IBA Cyclone 18/9 cyclotron with COSTIS solid target system

    NASA Astrophysics Data System (ADS)

    Dabkowski, A. M.; Paisey, S. J.; Spezi, E.; Chester, J.; Marshall, C.

    2017-05-01

    Zirconium-89 is a promising radionuclide in the development of new immuno-PET agents for in vivo imaging of cancerous tumours and radioimmunotherapy (RIT) planning. Besides the convenient half-life of 78.4 h, 89Zr has a beta plus emission rate of 23% and a low maximum energy of 0.9 MeV, delivering good spatial resolution as a result of short positron range in tissue (around 1 mm). Cyclotron production for the radiometal of 89Zr was investigated to find optimal conditions according to results of FLUKA code Monte Carlo modelling of irradiation processes, nuclear reactions and target design. This was followed by reasonably detailed experimental validation (making cyclotron productions for expected high product yield and low impurities levels followed by activity measurements, spectra acquisitions and chemical separation procedures), in which the strategies developed by computer models were carried out in the IBA Cyclone 18/9 cyclotron, permitting a comparison of the predicted and actual yields of 89Zr and isotopic by-products (impurities). Once the in silica model was validated experimentally, then optimal method of the radiometal production in the cyclotron was developed.

  19. Healthy Pets and People

    MedlinePlus

    ... Keep Your Pet Healthy Whether you have a dog, cat, horse, parakeet, gerbil, or bearded dragon, providing ... Good Pet Hygiene Make sure to remove your dog’s feces (poop) from your yard or public places ...

  20. Leptospirosis and Pets

    MedlinePlus

    ... Bacterial Special Pathogens Branch (BSPB) BSPB Laboratory Submissions Pets Recommend on Facebook Tweet Share Compartir Leptospirosis is ... that can affect human and animals, including your pets. All animals can potentially become infected with Leptospirosis. ...

  1. Pet Disaster Preparedness

    MedlinePlus

    ... behavior problems persist. Download the Pet First Aid App Get critical first aid info for your pet at your fingertips. Find it in the Apple App Store , Google Play , or Amazon Marketplace Download your ...

  2. Evaluating secondary neutron doses of a refined shielded design for a medical cyclotron using the TLD approach

    NASA Astrophysics Data System (ADS)

    Lin, Jye-Bin; Tseng, Hsien-Chun; Liu, Wen-Shan; Lin, Ding-Bang; Hsieh, Teng-San; Chen, Chien-Yi

    2013-11-01

    An increasing number of cyclotrons at medical centers in Taiwan have been installed to generate radiopharmaceutical products. An operating cyclotron generates immense amounts of secondary neutrons from reactions such the 18O(p, n)18F, used in the production of FDG. This intense radiation can be hazardous to public health, particularly to medical personnel. To increase the yield of 18F-FDG from 4200 GBq in 2005 to 48,600 GBq in 2011, Chung Shan Medical University Hospital (CSMUH) has prolonged irradiation time without changing the target or target current to meet requirements regarding the production 18F. The CSMUH has redesigned the CTI Radioisotope Delivery System shield. The lack of data for a possible secondary neutron doses has increased due to newly designed cyclotron rooms. This work aims to evaluate secondary neutron doses at a CTI cyclotron center using a thermoluminescent dosimeter (TLD-600). Two-dimensional neutron doses were mapped and indicated that neutron doses were high as neutrons leaked through self-shielded blocks and through the L-shaped concrete shield in vault rooms. These neutron doses varied markedly among locations close to the H218O target. The Monte Carlo simulation and minimum detectable dose are also discussed and demonstrated the reliability of using the TLD-600 approach. Findings can be adopted by medical centers to identify radioactive hot spots and develop radiation protection.

  3. Physics of Cyclotron Resonance Scattering Features

    NASA Astrophysics Data System (ADS)

    Sschoenherr, Gabriele; Schwarm, Fritz-Walter; Falkner, Sebastian; Dauser, Thomas; Pottschmidt, Katja; Kretschmar, Peter; Klochkov, Dmitry; Ferrigno, Carlo; Britton Hemphill, Paul; Wilms, Joern

    2016-04-01

    Cyclotron resonant scattering features (short: cyclotron lines) are sensitive tracers of the physics of the accretion columns and mounds of X-ray pulsars. They form by interaction of X-ray photons with magnetically quantized electrons in the accreted plasma close to the neutron star. Such lines have been observed as absorption-like features for about 20 X-ray pulsars. Their energies provide a direct measure of the magnetic field strength in the line-forming region. By detailed modelling of the lines and of their parameter dependencies we can further decipher the physical conditions in the accretion column. For instance the fact that the complex scattering cross sections have a strong angle-dependence relates the phase-resolved cyclotron line shapes to parameters that constrain the systems’ still poorly understood geometry. Modelling the physics of cyclotron lines to a degree that allows for detailed and solid comparison to data therefore provides a unique access also to a better understanding of the overall picture of magnetically accreting neutron star systems.

  4. Electron-cyclotron-resonance ion sources (review)

    SciTech Connect

    Golovanivskii, K.S.; Dougar-Jabon, V.D.

    1992-01-01

    The physical principles are described and a brief survey of the present state is given of ion sources based on electron-cyclotron heating of plasma in a mirror trap. The characteristics of ECR sources of positive and negative ions used chiefly in accelerator technology are presented. 20 refs., 10 figs., 3 tabs.

  5. Tokamak startup with electron cyclotron heating

    SciTech Connect

    Holly, D J; Prager, S C; Shepard, D A; Sprott, J C

    1980-04-01

    Experiments are described in which the startup voltage in a tokamak is reduced by approx. 60% by the use of a modest amount of electron cyclotron resonance heating power for preionization. A 50% reduction in volt-second requirement and impurity reflux are also observed.

  6. Ion-cyclotron instability in magnetic mirrors

    SciTech Connect

    Pearlstein, L.D.

    1987-02-02

    This report reviews the role of ion-cyclotron frequency instability in magnetic mirrors. The modes discussed here are loss-cone or anisotropy driven. The discussion includes quasilinear theory, explosive instabilities of 3-wave interaction and non-linear Landau damping, and saturation due to non-linear orbits. (JDH)

  7. Cyclotron-based neutron source for BNCT

    SciTech Connect

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K.; Tanaka, H.; Sakurai, Y.; Maruhashi, A.

    2013-04-19

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation and treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8 Multiplication-Sign 109 neutrons/cm{sup 2}/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with {sup 10}B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  8. Stability of the Electron Cyclotron Resonance

    NASA Astrophysics Data System (ADS)

    Asch, Joachim; Bourget, Olivier; Meresse, Cédric

    2015-12-01

    We consider the magnetic AC Stark effect for the quantum dynamics of a single particle in the plane under the influence of an oscillating homogeneous electric and a constant perpendicular magnetic field. We prove that the electron cyclotron resonance is insensitive to impurity potentials.

  9. Currents driven by electron cyclotron waves

    SciTech Connect

    Karney, C.F.F.; Fisch, N.J.

    1981-07-01

    Certain aspects of the generation of steady-state currents by electron cyclotron waves are explored. A numerical solution of the Fokker-Planck equation is used to verify the theory of Fisch and Boozer and to extend their results into the nonlinear regime. Relativistic effects on the current generated are discussed. Applications to steady-state tokamak reactors are considered.

  10. Measurements and evaluation of the risks due to external radiation exposures and to intake of activated elements for operational staff engaged in the maintenance of medical cyclotrons.

    PubMed

    Calandrino, R; del Vecchio, A; Parisi, R; Todde, S; De Felice, P; Savi, A; Pepe, A; Mrskova, A

    2010-06-01

    The aim of this paper is to assess the activation phenomena and to evaluate the risk of external exposure and intake doses for the maintenance staff of two medical cyclotrons. Two self-shielded cyclotrons are currently operating in the facility for the routine production of (11)C and (18)F. Four radiochemistry laboratories are linked to the cyclotrons by means of shielded radioisotope delivery lines. Radiopharmaceuticals are prepared both for the PET Diagnostic Department, where four CT-PET scanners are operating with a mean patient workload of 40 d(-1) and for [(18)F]FDG external distribution, to provide radiopharmaceuticals for other institutions. In spite of the fact that air contamination inside the radiochemistry laboratories during the synthesis represents the largest 'slice of the pie' in the evaluation of annual intake dose, potential contamination due to the activated particulate, generated during cyclotron irradiation by micro-corrosion of targets and other components potentially struck by the proton beam and generated neutrons, should be considered. In this regard, the most plausible long-lived (T(1/2) > 30 d) radioisotopes formed are: (97)Tc, (56)Co, (57)Co, (58)Co, (60)Co, (49)V, (55)Fe, (109)Cd, (65)Zn and (22)Na. The results for the operating personnel survey has revealed only low-level contamination for (65)Zn in one test, together with minor (18)F intake, probably due to the environmental dispersion of the radioisotope during the [(18)F]FDG synthesis.

  11. Pets and Parasites

    MedlinePlus

    ... in Children and TeensRead MoreBMI Calculator Cat and Dog BitesApril 2017September 2000Pets and Animalsfamilydoctor.org editorial staffCat- ... and Parasites Share Print Pets and Parasites A dog may be man’s best friend. However, household pets ...

  12. Cyclotron resonance cooling by strong laser field

    SciTech Connect

    Tagcuhi, Toshihiro; Mima, Kunioka

    1995-12-31

    Reduction of energy spread of electron beam is very important to increase a total output radiation power in free electron lasers. Although several cooling systems of particle beams such as a stochastic cooling are successfully operated in the accelerator physics, these cooling mechanisms are very slow and they are only applicable to high energy charged particle beams of ring accelerators. We propose here a new concept of laser cooling system by means of cyclotron resonance. Electrons being in cyclotron motion under a strong magnetic field can resonate with circular polarized electromagnetic field, and the resonance take place selectively depending on the velocity of the electrons. If cyclotron frequency of electrons is equal to the frequency of the electromagnetic field, they absorb the electromagnetic field energy strongly, but the other electrons remain unchanged. The absorbed energy will be converted to transverse kinetic energy, and the energy will be dumped into the radiation energy through bremastrahlung. To build a cooling system, we must use two laser beams, where one of them is counter-propagating and the other is co-propagating with electron beam. When the frequency of the counter-propagating laser is tuned with the cyclotron frequency of fast electrons and the co-propagating laser is tuned with the cyclotron frequency of slow electrons, the energy of two groups will approach and the cooling will be achieved. We solve relativistic motions of electrons with relativistic radiation dumping force, and estimate the cooling rate of this mechanism. We will report optimum parameters for the electron beam cooling system for free electron lasers.

  13. Gallium-68: a new trend in PET radiopharmacy.

    PubMed

    Prata, M Isabel M

    2012-04-01

    The most common PET radioisotopes, both in the literature and in clinical practice, are the cyclotron produced 11C and 18F, giving rise to tracers with minimal chemical changes with respect to the original biological molecule. However, the short half-life of these two radioisotopes and the relatively complex chemistry of their incorporation into the molecules of interest limits the number of molecules that really can be labelled in a suitable length of time. 68Ga is a positron emitter, produced by a 68Ge/68Ga generator rending the production of its radiopharmaceuticals independent of an onsite cyclotron. This paper covers the main aspects of the Ga3+ coordination chemistry together with the state of art of its radiopharmacy.

  14. Microfluidics: a groundbreaking technology for PET tracer production?

    PubMed

    Rensch, Christian; Jackson, Alexander; Lindner, Simon; Salvamoser, Ruben; Samper, Victor; Riese, Stefan; Bartenstein, Peter; Wängler, Carmen; Wängler, Björn

    2013-07-05

    Application of microfluidics to Positron Emission Tomography (PET) tracer synthesis has attracted increasing interest within the last decade. The technical advantages of microfluidics, in particular the high surface to volume ratio and resulting fast thermal heating and cooling rates of reagents can lead to reduced reaction times, increased synthesis yields and reduced by-products. In addition automated reaction optimization, reduced consumption of expensive reagents and a path towards a reduced system footprint have been successfully demonstrated. The processing of radioactivity levels required for routine production, use of microfluidic-produced PET tracer doses in preclinical and clinical imaging as well as feasibility studies on autoradiolytic decomposition have all given promising results. However, the number of microfluidic synthesizers utilized for commercial routine production of PET tracers is very limited. This study reviews the state of the art in microfluidic PET tracer synthesis, highlighting critical design aspects, strengths, weaknesses and presenting several characteristics of the diverse PET market space which are thought to have a significant impact on research, development and engineering of microfluidic devices in this field. Furthermore, the topics of batch- and single-dose production, cyclotron to quality control integration as well as centralized versus de-centralized market distribution models are addressed.

  15. [Positron-emission tomography (PET)--basic considerations].

    PubMed

    von Schulthess, G K; Westera, G; Schubiger, P A

    1993-08-24

    A PET installation is a technically complex system composed essentially of two parts. The first consists in isotope production and synthesis of labeled biochemical compounds, the second in measuring the distribution of radioactivity in the body with the PET camera and the generation of image data. The specific advantage of PET lies on one hand in the use of positron emitters that are isotopes of ubiquitous elements in biologic matter, i.e. exact analogs of biomolecules can be produced and utilized and on the other hand quantification is possible. (= enable quantitative...?) Theoretically there are no limits for the synthesis of radioactive compounds and the method therefore provides unlimited test designs. The short half-life of the employed isotopes is advantageous for radioprotection reasons but the production of labeled compounds necessitates a cyclotron accelerator and a special laboratory for the handling of radioactive compounds rendering the production of the test substances relatively expensive. Measurements take place in a PET camera with a large number of coincidence detectors. The best available cameras have a spatial resolution of 5 mm in all three axes with an axial window of about 15 cm diameter. Evaluation of PET images is done in a qualitative way by superposition on anatomic images (CT, MRI) by image fusion. Quantitative determinations require elaborate computer modeling.

  16. AAPM Task Group 108: PET and PET/CT shielding requirements.

    PubMed

    Madsen, Mark T; Anderson, Jon A; Halama, James R; Kleck, Jeff; Simpkin, Douglas J; Votaw, John R; Wendt, Richard E; Williams, Lawrence E; Yester, Michael V

    2006-01-01

    The shielding of positron emission tomography (PET) and PET/CT (computed tomography) facilities presents special challenges. The 0.511 MeV annihilation photons associated with positron decay are much higher energy than other diagnostic radiations. As a result, barrier shielding may be required in floors and ceilings as well as adjacent walls. Since the patient becomes the radioactive source after the radiopharmaceutical has been administered, one has to consider the entire time that the subject remains in the clinic. In this report we present methods for estimating the shielding requirements for PET and PET/CT facilities. Information about the physical properties of the most commonly used clinical PET radionuclides is summarized, although the report primarily refers to fluorine-18. Typical PET imaging protocols are reviewed and exposure rates from patients are estimated including self-attenuation by body tissues and physical decay of the radionuclide. Examples of barrier calculations are presented for controlled and noncontrolled areas. Shielding for adjacent rooms with scintillation cameras is also discussed. Tables and graphs of estimated transmission factors for lead, steel, and concrete at 0.511 MeV are also included. Meeting the regulatory limits for uncontrolled areas can be an expensive proposition. Careful planning with the equipment vendor, facility architect, and a qualified medical physicist is necessary to produce a cost effective design while maintaining radiation safety standards.

  17. Application of terahertz quantum-cascade lasers to semiconductor cyclotron resonance.

    PubMed

    Larrabee, Diane C; Khodaparast, Giti A; Tittel, Frank K; Kono, Jun; Scalari, Giacomo; Ajili, Lassaad; Faist, Jerome; Beere, Harvey; Davies, Giles; Linfield, Edmund; Ritchie, David; Nakajima, Yoji; Nakai, Masato; Sasa, Shigehiko; Inoue, Masataka; Chung, Seokjae; Santos, Michael B

    2004-01-01

    Quantum-cascade lasers operating at 4.7, 3.5, and 2.3 THz have been used to achieve cyclotron resonance in InAs and InSb quantum wells from liquid-helium temperatures to room temperature. This represents one of the first spectroscopic applications of terahertz quantum-cascade lasers. Results show that these compact lasers are convenient and reliable sources with adequate power and stability for this type of far-infrared magneto-optical study of solids. Their compactness promises interesting future applications in solid-state spectroscopy.

  18. Transmission improvement options via local energy degradation at a cyclotron driven ocular tumor treatment facility

    NASA Astrophysics Data System (ADS)

    Gerbershagen, Alexander; Hrbacek, Jan; Ijpes, Dennis; Schippers, Jacobus Maarten

    2017-06-01

    The goal of this work is to increase the beam transmission from the cyclotron to the patient location of ocular tumor treatment facility Optis 2 at the Paul Scherrer Institute and thus to reduce the patient treatment times. The examined options for such transmission increase were the installation of local degraders in the patient treatment room and modification of the energy selection collimator settings. The experiments have shown that an improvement of the beam transmission is possible to achieve, however on a cost of an increase in lateral or distal penumbra of the beam. The benefits and drawbacks of the examined options are discussed.

  19. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry at the Cyclotron Frequency

    NASA Astrophysics Data System (ADS)

    Nagornov, Konstantin O.; Kozhinov, Anton N.; Tsybin, Yury O.

    2017-02-01

    The phenomenon of ion cyclotron resonance allows for determining mass-to-charge ratio, m/z, of an ensemble of ions by means of measurements of their cyclotron frequency, ω c . In Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), the ω c quantity is usually unavailable for direct measurements: the resonant state is located close to the reduced cyclotron frequency (ω+), whereas the ω c and the corresponding m/z values may be calculated via theoretical derivation from an experimental estimate of the ω+ quantity. Here, we describe an experimental observation of a new resonant state, which is located close to the ω c frequency and is established because of azimuthally-dependent trapping electric fields of the recently developed ICR cells with narrow aperture detection electrodes. We show that in mass spectra, peaks close to ω+ frequencies can be reduced to negligible levels relative to peaks close to ω c frequencies. Due to reduced errors with which the ω c quantity is obtained, the new resonance provides a means of cyclotron frequency measurements with precision greater than that achieved when ω+ frequency peaks are employed. The described phenomenon may be considered for a development into an FT-ICR MS technology with increased mass accuracy for applications in basic research, life, and environmental sciences.

  20. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry at the Cyclotron Frequency.

    PubMed

    Nagornov, Konstantin O; Kozhinov, Anton N; Tsybin, Yury O

    2017-04-01

    The phenomenon of ion cyclotron resonance allows for determining mass-to-charge ratio, m/z, of an ensemble of ions by means of measurements of their cyclotron frequency, ω c . In Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), the ω c quantity is usually unavailable for direct measurements: the resonant state is located close to the reduced cyclotron frequency (ω+), whereas the ω c and the corresponding m/z values may be calculated via theoretical derivation from an experimental estimate of the ω+ quantity. Here, we describe an experimental observation of a new resonant state, which is located close to the ω c frequency and is established because of azimuthally-dependent trapping electric fields of the recently developed ICR cells with narrow aperture detection electrodes. We show that in mass spectra, peaks close to ω+ frequencies can be reduced to negligible levels relative to peaks close to ω c frequencies. Due to reduced errors with which the ω c quantity is obtained, the new resonance provides a means of cyclotron frequency measurements with precision greater than that achieved when ω+ frequency peaks are employed. The described phenomenon may be considered for a development into an FT-ICR MS technology with increased mass accuracy for applications in basic research, life, and environmental sciences. Graphical Abstract ᅟ.

  1. The mirror and ion cyclotron anisotropy instabilities

    NASA Technical Reports Server (NTRS)

    Gary, S. P.

    1992-01-01

    The linear dispersion equation for fully electromagnetic waves and instabilities at arbitrary directions of propagation relative to a background magnetic field B(0) in a homogeneous Vlasov plasma is solved numerically for bi-Maxwellian particle distributions. For isotropic plasmas the dispersion and damping of the three modes below the proton cyclotron frequency are studied as functions of Beta(i) and T(e)/T(i). The transport ratios of helicity, cross-helicity, Alfven ratio, compressibility, and parallel compressibility are defined. Under the condition that the proton temperature perpendicular to B(0) is greater than the parallel temperature, the growth rates and transport ratios of the mirror instability and the ion cyclotron anisotropy instability are examined and compared. Both the proton parallel compressibility and the proton Alfven ratio are significantly different for the two growing modes.

  2. New magnet pole shape for isochronous cyclotrons

    SciTech Connect

    Thorn, C.E.; Chasman, C.; Baltz, A.J.

    1981-06-01

    A new design has been developed for shaping pole tips to produce the radially increasing fields required for isochronous cyclotrons. The conventional solid hillpoles are replaced by poles mounted over a small secondary gap which tapers radially from maximum at the magnet edge to zero near the center. Field measurements with a model magnet and calculations with the code TRIM show an increase in field at the edge of the magnet without the usual corresponding large increase in fringing, and a radial field shape more nearly field independent than for conventional hills. The flying hills have several advantages for variable energy multiparticle cyclotrons: (1) a large reduction in the power dissipated by isochronizing trim coils; (2) a more constant shape and magnitude flutter factor, eliminating flutter coils and increasing the operating range; and (3) a sharper fall-off of the fringe field, simplifying beam extraction. 6 figures.

  3. New magnet pole shape for isochronous cyclotrons

    SciTech Connect

    Thorn, C.E.; Chasman, C.; Baltz, A.J.

    1981-01-01

    A new design has been developed for shaping pole tips to produce the radially increasing fields required for isochronous cyclotrons. The conventional solid hill poles are replaced by poles mounted over a small secondary gap which tapers radially from maximum at the magnet edge to zero near the center. Field measurements with a model magnet and calculations with the code TRIM show an increase in field at the edge of the magnet without the usual corresponding large increase in fringing, and a radial field shape more nearly field independent than for conventional hills. The flying hills have several advantages for variable energy multiparticle cyclotrons: (1) a large reduction in the power dissipated by isochronizing trim coils; (2) a more constant shape and magnitude flutter factor, eliminating flutter coils and increasing the operating range; and (3) a sharper fall-off of the fringe field, simplifying beam extraction.

  4. Electrostatic ion cyclotron velocity shear instability

    NASA Technical Reports Server (NTRS)

    Lemons, D. S.; Winske, D.; Gary, S. P.

    1992-01-01

    A local electrostatic dispersion equation is derived for a shear flow perpendicular to an ambient magnetic field, which includes all kinetic effects and involves only one important parameter. The dispersion equation is cast in the form of Gordeyev integrals and is solved numerically. Numerical solutions indicate that an ion cyclotron instability is excited. The instability occurs roughly at multiples of the ion cyclotron frequency (modified by the shear), with the growth rate or the individual harmonics overlapping in the wavenumber. At large values of the shear parameter, the instability is confined to long wavelengths, but at smaller shear, a second distinct branch at shorter wavelengths also appears. The properties of the instability obtained are compared with those obtained in the nonlocal limit by Ganguli et al. (1985, 1988).

  5. Ion cyclotron waves observed near the plasmapause

    NASA Technical Reports Server (NTRS)

    Fraser, B. J.; Samson, J. C.; Mcpherron, R. L.; Russell, C. T.

    1986-01-01

    Pc2 electromagnetic ion cyclotron waves at 0.1 Hz, near the oxygen cyclotron frequency, have been observed by ISEE-1 and -2 between L = 7.6 - 5.8 on an inbound near equatorial pass in the dusk sector. The waves occurred in a thick plasmapause of width about 1 earth radius and penetrated about 1 earth radius into the plasmasphere. Wave onset was accompanied by significant increases in the thermal (0-100 eV) He(+) and the warm (0.1-16 keV/e) O(+) and He(+) heavy ion populations. Wave polarization is predominantly left-handed with propagation almost parallel to the ambient magnetic field, and the spectral slot and polarization reversal predicted by multicomponent cold plasma propagation theory are identified in the wave data. The results are considered as an example of wave-particle interactions occurring during the outer plasmasphere refilling process at the time of the substorm recovery phase.

  6. Xe/+/ -induced ion-cyclotron harmonic waves

    NASA Astrophysics Data System (ADS)

    Jones, D.

    Xenon ion sources on an ejectable package separated from the main payload during the flights of Porcupine rockets F3 and F4 which were launched from Kiruna, Sweden on March 19 and 31, 1979, respectively. The effects of the xenon ion beam, detected by the LF (f less than 16 kHz) wideband electric field experiment and analyzed by using a sonograph, are discussed. Particular attention is given to the stimulation of the ion-cyclotron harmonic waves which are usually linked to the local proton gyro-frequency, but are sometimes related to half that frequency. It was found that in a plasma dominated by O(+) ions, a small amount (1-10%) of protons could cause an effect such that the O(+) cyclotron harmonic waves are set up by the hydrogen ions, the net result being the observation of harmonic emissions separated by the hydrogen ion gyro frequency.

  7. Radiation Sources at Electron Cyclotron Harmonic Frequencies.

    DTIC Science & Technology

    1983-01-28

    KEY WORDS (Continue on reverse side it necesear and Identify by block number) Radiation source, electron cyclotron frequency, gyrotron, travelling ...investigation of gyrotron devices operating in cylindrical geometry. Specific topics include an analysis of oscillations in a gyrotron travelling wave...amplifier, the study of the effects of velocity spread and wall resistivity on gain and bandwidth in a gyrotron travell - ing wave amplifier, an

  8. Cyclotron Wave Electrostatic and Parametric Amplifiers.

    DTIC Science & Technology

    2008-02-15

    Plasma Physics Division GEORGE EwEI.• Georgia Tech Research Institute Atlanta, Georgia, 30332 February 28, 1997 Approved for public release...and transmitted to the external circuit load. Thus, as far as the input resonator is concerned, noises of the electron gun on the fast cyclotron wave...characteristics of CWESA. Engineering the permanent magnet system is often the most challenging part CWESA design at ISTOK. The plane cathode electron gun

  9. Pet-Related Infections.

    PubMed

    Day, Michael J

    2016-11-15

    Physicians and veterinarians have many opportunities to partner in promoting the well-being of people and their pets, especially by addressing zoonotic diseases that may be transmitted between a pet and a human family member. Common cutaneous pet-acquired zoonoses are dermatophytosis (ringworm) and sarcoptic mange (scabies), which are both readily treated. Toxoplasmosis can be acquired from exposure to cat feces, but appropriate hygienic measures can minimize the risk to pregnant women. Persons who work with animals are at increased risk of acquiring bartonellosis (e.g., cat-scratch disease); control of cat fleas is essential to minimize the risk of these infections. People and their pets share a range of tick-borne diseases, and exposure risk can be minimized with use of tick repellent, prompt tick removal, and appropriate tick control measures for pets. Pets such as reptiles, amphibians, and backyard poultry pose a risk of transmitting Salmonella species and are becoming more popular. Personal hygiene after interacting with these pets is crucial to prevent Salmonella infections. Leptospirosis is more often acquired from wildlife than infected dogs, but at-risk dogs can be protected with vaccination. The clinical history in the primary care office should routinely include questions about pets and occupational or other exposure to pet animals. Control and prevention of zoonoses are best achieved by enhancing communication between physicians and veterinarians to ensure patients know the risks of and how to prevent zoonoses in themselves, their pets, and other people.

  10. Review: comparison of PET rubidium-82 with conventional SPECT myocardial perfusion imaging

    PubMed Central

    Ghotbi, Adam A; Kjær, Andreas; Hasbak, Philip

    2014-01-01

    Nuclear cardiology has for many years been focused on gamma camera technology. With ever improving cameras and software applications, this modality has developed into an important assessment tool for ischaemic heart disease. However, the development of new perfusion tracers has been scarce. While cardiac positron emission tomography (PET) so far largely has been limited to centres with on-site cyclotron, recent developments with generator produced perfusion tracers such as rubidium-82, as well as an increasing number of PET scanners installed, may enable a larger patient flow that may supersede that of gamma camera myocardial perfusion imaging. PMID:24028171

  11. Cyclotron Requirements for Multi-disciplinary Programs

    NASA Astrophysics Data System (ADS)

    Armbruster, John M.

    2009-03-01

    As time has passed, the various Cyclotron programs have changed over the years. In the "early" times of Cyclotron operations, the emphasis was on a more single sided approach such as Clinical or Research or Production. However, as time passed, the disciplines became more interconnected until today, it is unusual to have a Cyclotron and only have a single program unless it is pure production. More and more, especially in public areas such as Universities or Health Centers, you are seeing programs that do all three types of disciplines: Production; Clinical or Patient Diagnostics and/or Treatment; and Research, either in the development and manufacture of new Radio-Isotopes, new Diagnostic or Therapeutic Compound Development, or Clinical Research involving subject testing. While all three of these disciplines have some common requirements, they also have some very different requirements that may be completely counterproductive to other requirements. For a program where all three disciplines are required to be successful, it is necessary come up with some sort of compromise that meets all the various requirements. During this talk, we will try to identify some of these different requirements for the various disciplines and how these could impact the other disciplines. We will also discuss ideas for some possible compromises that might reduce the conflict between the various disciplines.

  12. Transparency of Magnetized Plasma at Cyclotron Frequency

    SciTech Connect

    G. Shvets; J.S. Wurtele

    2002-03-14

    Electromagnetic radiation is strongly absorbed by a magnetized plasma if the radiation frequency equals the cyclotron frequency of plasma electrons. It is demonstrated that absorption can be completely canceled in the presence of a magnetostatic field of an undulator or a second radiation beam, resulting in plasma transparency at the cyclotron frequency. This effect is reminiscent of the electromagnetically induced transparency (EIT) of the three-level atomic systems, except that it occurs in a completely classical plasma. Unlike the atomic systems, where all the excited levels required for EIT exist in each atom, this classical EIT requires the excitation of the nonlocal plasma oscillation. The complexity of the plasma system results in an index of refraction at the cyclotron frequency that differs from unity. Lagrangian description was used to elucidate the physics and enable numerical simulation of the plasma transparency and control of group and phase velocity. This control naturally leads to applications for electromagnetic pulse compression in the plasma and electron/ion acceleration.

  13. Ion Cyclotron Heating on Proto-MPEX

    NASA Astrophysics Data System (ADS)

    Goulding, R. H.; Caughman, J. B. O.; Rapp, J.; Biewer, T. M.; Campbell, I. H.; Caneses, J. F.; Kafle, N.; Ray, H. B.; Showers, M. A.; Piotrowicz, P. A.

    2016-10-01

    Ion cyclotron heating will be used on Proto-MPEX (Prototype Material Plasma Exposure eXperiment) to increase heat flux to the target, to produce varying ion energies without substrate biasing, and to vary the extent of the magnetic pre-sheath for the case of a tilted target. A 25 cm long, 9 cm diameter dual half-turn helical ion cyclotron antenna has been installed in the device located at the magnetic field maximum. It couples power to ions via single pass damping of the slow wave at the fundamental resonance, and operates with ω 0.8ωci at the antenna location. It is designed to operate at power levels up to 30 kW, with a later 200 kW upgrade planned. Near term experiments include measuring RF loading at low power as a function of frequency and antenna gap. The plasma is generated by a helicon plasma source that has achieved ne > 5 ×1019m-3 operating with deuterium, as measured downstream from the ion cyclotron antenna location. Measurements will be compared with 1-D and 2-D models of RF coupling. The latest results will be presented. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  14. Simulations of ion cyclotron anisotropy instabilities in the terrestrial magnetosheath

    NASA Technical Reports Server (NTRS)

    Gary, S. P.; Winske, Dan

    1993-01-01

    Enhanced transverse magnetic fluctuations observed below the proton cyclotron frequency in the terrestrial magnetosheath have been identified as due to the proton cyclotron and helium cyclotron instabilities driven by the T-perpendicular greater than T-parallel condition of the sheath ions. One-dimensional hybrid computer simulations are used here to examine the nonlinear properties of these two growing modes at relatively weak fluctuation energies and for wave vectors parallel to the background magnetic field. Second-order theory predicts fluctuating magnetic field energies at saturation of the proton cyclotron anisotropy instability in semiquantitative agreement with the simulation results. Introduction of the helium component enhances the wave-particle exchange rate for proton anisotropy reduction by that instability, thereby reducing the saturation energy of that mode. The simulations demonstrate that wave-particle interactions by the proton cyclotron and helium cyclotron instabilities lead to the anticorrelation observed by Anderson and Fuselier (1993).

  15. Parametric Instabilities of Electron Cyclotron Waves in Plasmas.

    DTIC Science & Technology

    1980-03-01

    tokamaks eg. PLT. In the EBT, the electron cyclotron pump of finite wavenumber 1% decays into two Bernstein modes at the second harmonic cyclotron...convective threshold with finite k, is -200 W/ . For large tokamaks , the convective threshold for various decay channels turns out to be >200 KW/cu 2...efforts on the electron cyclotron heating of large devices, eg., Elmo bumpy torus, tokamak and mirrors. In the Elmo 1bumpy torus (EBT) the microwaves

  16. Initial results of simultaneous PET/MRI experiments with an MRI-compatible silicon photomultiplier PET scanner.

    PubMed

    Yoon, Hyun Suk; Ko, Guen Bae; Kwon, Sun Il; Lee, Chan Mi; Ito, Mikiko; Chan Song, In; Lee, Dong Soo; Hong, Seong Jong; Lee, Jae Sung

    2012-04-01

    The most investigated semiconductor photosensor for MRI-compatible PET detectors is the avalanche photodiode (APD). However, the silicon photomultiplier (SiPM), also called the Geiger-mode APD, is gaining attention in the development of the next generation of PET/MRI systems because the SiPM has much better performance than the APD. We have developed an MRI-compatible PET system based on multichannel SiPM arrays to allow simultaneous PET/MRI. The SiPM PET scanner consists of 12 detector modules with a ring diameter of 13.6 cm and an axial extent of 3.2 cm. In each detector module, 4 multichannel SiPM arrays (with 4 × 4 channels arranged in a 2 × 2 array to yield 8 × 8 channels) were coupled with 20 × 18 Lu(1.9)Gd(0.1)SiO(5):Ce crystals (each crystal is 1.5 × 1.5 × 7 mm) and mounted on a charge division network for multiplexing 64 signals into 4 position signals. Each detector module was enclosed in a shielding box to reduce interference between the PET and MRI scanners, and the temperature inside the box was monitored for correction of the temperature-dependent gain variation of the SiPM. The PET detector signal was routed to the outside of the MRI room and processed with a field programmable gate array-based data acquisition system. MRI compatibility tests and simultaneous PET/MRI acquisitions were performed inside a 3-T clinical MRI system with 4-cm loop receiver coils that were built into the SiPM PET scanner. Interference between the imaging systems was investigated, and phantom and mouse experiments were performed. No radiofrequency interference on the PET signal or degradation in the energy spectrum and flood map was shown during simultaneous PET/MRI. The quality of the MRI scans acquired with and without the operating PET showed only slight degradation. The results of phantom and mouse experiments confirmed the feasibility of this system for simultaneous PET/MRI. Simultaneous PET/MRI was possible with a multichannel SiPM-based PET scanner, with no

  17. Sensory analysis of pet foods.

    PubMed

    Koppel, Kadri

    2014-08-01

    Pet food palatability depends first and foremost on the pet and is related to the pet food sensory properties such as aroma, texture and flavor. Sensory analysis of pet foods may be conducted by humans via descriptive or hedonic analysis, pets via acceptance or preference tests, and through a number of instrumental analysis methods. Sensory analysis of pet foods provides additional information on reasons behind palatable and unpalatable foods as pets lack linguistic capabilities. Furthermore, sensory analysis may be combined with other types of information such as personality and environment factors to increase understanding of acceptable pet foods. Most pet food flavor research is proprietary and, thus, there are a limited number of publications available. Funding opportunities for pet food studies would increase research and publications and this would help raise public awareness of pet food related issues. This mini-review addresses current pet food sensory analysis literature and discusses future challenges and possibilities.

  18. The Michigan State University Cyclotron Laboratory: Its Early Years

    NASA Astrophysics Data System (ADS)

    Austin, Sam M.

    2016-01-01

    The Michigan State University Cyclotron Laboratory was founded in 1958 and over the years grew in stature, becoming the highest-ranked university-based program in nuclear science. Its K50 cyclotron had unmatched capability as a light-ion accelerator and helped to define what a modern cyclotron could do to advance our understanding of nuclei. This paper describes the first twenty years of the Cyclotron Laboratory's evolution and gives some insight into the cultural characteristics of the laboratory, and of its early members, that led it to thrive.

  19. Broadband terahertz-power extracting by using electron cyclotron maser.

    PubMed

    Pan, Shi; Du, Chao-Hai; Qi, Xiang-Bo; Liu, Pu-Kun

    2017-08-04

    Terahertz applications urgently require high performance and room temperature terahertz sources. The gyrotron based on the principle of electron cyclotron maser is able to generate watt-to-megawatt level terahertz radiation, and becomes an exceptional role in the frontiers of energy, security and biomedicine. However, in normal conditions, a terahertz gyrotron could generate terahertz radiation with high efficiency on a single frequency or with low efficiency in a relatively narrow tuning band. Here a frequency tuning scheme for the terahertz gyrotron utilizing sequentially switching among several whispering-gallery modes is proposed to reach high performance with broadband, coherence and high power simultaneously. Such mode-switching gyrotron has the potential of generating broadband radiation with 100-GHz-level bandwidth. Even wider bandwidth is limited by the frequency-dependent effective electrical length of the cavity. Preliminary investigation applies a pre-bunched circuit to the single-mode wide-band tuning. Then, more broadband sweeping is produced by mode switching in great-range magnetic tuning. The effect of mode competition, as well as critical engineering techniques on frequency tuning is discussed to confirm the feasibility for the case close to reality. This multi-mode-switching scheme could make gyrotron a promising device towards bridging the so-called terahertz gap.

  20. Observations of multiharmonic ion cyclotron waves due to inverse ion cyclotron damping in the northern magnetospheric cusp

    NASA Astrophysics Data System (ADS)

    Slapak, R.; Gunell, H.; Hamrin, M.

    2017-01-01

    We present a case study of inverse ion cyclotron damping taking place in the northern terrestrial magnetospheric cusp, exciting waves at the ion cyclotron frequency and its harmonics. The ion cyclotron waves are primarily seen as peaks in the magnetic-field spectral densities. The corresponding peaks in the electric-field spectral densities are not as profound, suggesting a background electric field noise or other processes of wave generation causing the electric spectral densities to smoothen out more compared to the magnetic counterpart. The required condition for inverse ion cyclotron damping is a velocity shear in the magnetic field-aligned ion bulk flow, and this condition is often naturally met for magnetosheath influx in the northern magnetospheric cusp, just as in the presented case. We note that some ion cyclotron wave activity is present in a few similar shear events in the southern cusp, which indicates that other mechanisms generating ion cyclotron waves may also be present during such conditions.

  1. Status of the Cyclotron Institute Upgrade Project

    NASA Astrophysics Data System (ADS)

    Melconian, Dan

    2016-09-01

    The Texas A&M University Re-accelerated EXotics (T-REX) project, an upgrade to the Cyclotron Institute, will provide high-quality re-accelerated secondary beams of a unique energy range and the ability to provide primary beams to two experiments concurrently. The upgrade is nearing completion of its three major tasks: re-commissioning of the existing K150 cyclotron; construction of light- and heavy-ion guide transport systems; and charge-boosting the K150 RIB for re-acceleration using the K500 cyclotron. The light-ion guide transport system will utilize the high intensity (>= 10 μ A) proton beam from the K150 to produce rare ions via fusion-evapouration reactions or proton-induced fission fragments. These ions will be transported to an ECR charge breeder prior to injection in the K500. The heavy-ion guide will use deep inelastic, transfer and fragmentation reactions using the up to 25 MeV/u primary beams from the K150. The products will be separated by a superconducting solenoid and collected in a large gas-catcher, after which a multi-RFQ system will transport the RIB to any of: the charge-breeder and K500; the TAMU Penning Trap beamline; or an MR-TOF for beam analysis. The status of the T-REX upgrade and an overview of its capabilities will be presented Supported by DOE Grant Number DE-FG03-93ER40773 and the Robert A. Welch Foundation Grant Number H-A-0098.

  2. Electron cyclotron emission diagnostics on KSTAR tokamak

    SciTech Connect

    Jeong, S. H.; Lee, K. D.; Kwon, M.; Kogi, Y.; Kawahata, K.; Nagayama, Y.; Mase, A.

    2010-10-15

    A new electron cyclotron emission (ECE) diagnostics system was installed for the Second Korea Superconducting Tokamak Advanced Research (KSTAR) campaign. The new ECE system consists of an ECE collecting optics system, an overmode circular corrugated waveguide system, and 48 channel heterodyne radiometer with the frequency range of 110-162 GHz. During the 2 T operation of the KSTAR tokamak, the electron temperatures as well as its radial profiles at the high field side were measured and sawtooth phenomena were also observed. We also discuss the effect of a window on in situ calibration.

  3. Initial Operation of CIAE medically used cyclotron

    NASA Astrophysics Data System (ADS)

    Fan, Mingwu; Zhang, Tainjue

    1997-05-01

    CIAE medically used cyclotron is a 30 MeV fixed, isochronous field and fixed RF frequency machine with high -H beam intensity. -H beams with energy variable were obtained in December 1994 up to 0.4 mA. Two years operation has proved the design and manufacture successfully. The mapping results of magnetic field has shown the magnet perfect that would ensure the high intensity beam accelerated to the final energy. Now 7 medically useful isotopes were produced, e. g. thallium-201, cobalt-57, gallium-67, iodine-123 have been supplied for hospitals.

  4. Electron Cyclotron Heating on DIII-D

    SciTech Connect

    Prater, R.; Petty, C.C.

    2005-10-15

    Electron cyclotron heating (ECH) has proved to be a very flexible system for heating applications in DIII-D. The outstanding characteristics of ECH - controllable heating location, a high degree of localization of the power, ability to heat without introducing particles, and ability to heat only the electron fluid - have been used in a wide variety of experiments to study wave physics and transport, to control magnetohydrodynamic activity, and to improve discharges. These characteristics along with relatively easy coupling to the plasma make ECH a valuable resource for both heating and instability control in burning plasmas.

  5. [Electron cyclotron resonance (ECR) plasma film deposition

    SciTech Connect

    1999-04-01

    During the third quarter of 1995, an electron cyclotron resonance (ECR) plasma film deposition facility was constructed at the University of New Mexico. This work was conducted in support of the Los Alamos/Tycom CRADA agreement to pursue methods of improving drill bit lifetime. Work in the fourth quarter will center on the coating of drill bits and the treating and testing of various test samples. New material systems as well as treatment techniques will be attempted during this period. The following is a brief description of the various subsystems of the film deposition facility. Particular emphasis is placed on the slotted waveguide system as requested.

  6. Electron cyclotron heating in TMX-Upgrade

    SciTech Connect

    Stallard, B.W.; Hooper, E.B. Jr.

    1981-01-01

    TMX-Upgrade, an improved tandem mirror experiment under construction at LLNL, will use electron cyclotron resonance heating (ECRH) to create thermal barriers and to increase the center cell ion confining potential. Gyrotron oscillators (200 kW, 28 GHz) supply the heating power for the potential confined electron (fundamental heating) and the mirror-confined electrons (harmonic heating) in the thermal barriers. Important issues are temperature limitation and microstability for the hot electrons. Off-midplane heating can control anisotropy-driven microstability. Spacially restricting heating offers the possibility of temperature control by limiting the energy for resonant interaction.

  7. Method of enhancing cyclotron beam intensity

    DOEpatents

    Hudson, Ed D.; Mallory, Merrit L.

    1977-01-01

    When an easily ionized support gas such as xenon is added to the cold cathode in sources of the Oak Ridge Isochronous Cyclotron, large beam enhancements are produced. For example, .sup.20 Ne.sup.7+ is increased from 0.05 enA to 27 enA, and .sup.16 O.sup.5+ intensities in excess of 35 e.mu.A have been extracted for periods up to 30 minutes. Approximately 0.15 cc/min of the easily ionized support gas is supplied to the ion source through a separate gas feed line and the primary gas flow is reduced by about 30%.

  8. Cavity QED of the graphene cyclotron transition.

    PubMed

    Hagenmüller, David; Ciuti, Cristiano

    2012-12-28

    We investigate theoretically the cavity quantum electrodynamics of the cyclotron transition for Dirac fermions in graphene. We show that the ultrastrong coupling regime characterized by a vacuum Rabi frequency comparable or even larger than the transition frequency can be obtained for high enough filling factors of the graphene Landau levels. Important qualitative differences occur with respect to the corresponding physics of massive electrons in a semiconductor quantum well. In particular, an instability for the ground state analogous to the one occurring in the Dicke model is predicted for an increasing value of the electron density.

  9. My Pet Rock

    ERIC Educational Resources Information Center

    Lark, Adam; Kramp, Robyne; Nurnberger-Haag, Julie

    2008-01-01

    Many teachers and students have experienced the classic pet rock experiment in conjunction with a geology unit. A teacher has students bring in a "pet" rock found outside of school, and the students run geologic tests on the rock. The tests include determining relative hardness using Mohs scale, checking for magnetization, and assessing luster.…

  10. Mobile PET Center Project

    NASA Astrophysics Data System (ADS)

    Ryzhikova, O.; Naumov, N.; Sergienko, V.; Kostylev, V.

    2017-01-01

    Positron emission tomography is the most promising technology to monitor cancer and heart disease treatment. Stationary PET center requires substantial financial resources and time for construction and equipping. The developed mobile solution will allow introducing PET technology quickly without major investments.

  11. Improving Instruction through PET.

    ERIC Educational Resources Information Center

    Evans, Pamela Roland

    1982-01-01

    Outlines the content and training methods used in the Program for Effective Teaching (PET), the successful staff development program of Newport News (Virginia). PET promotes application of five instructional skills: selecting learning objectives, teaching to the objectives, establishing learner focus, monitoring learner progress, and enhancing…

  12. My Pet Rock

    ERIC Educational Resources Information Center

    Lark, Adam; Kramp, Robyne; Nurnberger-Haag, Julie

    2008-01-01

    Many teachers and students have experienced the classic pet rock experiment in conjunction with a geology unit. A teacher has students bring in a "pet" rock found outside of school, and the students run geologic tests on the rock. The tests include determining relative hardness using Mohs scale, checking for magnetization, and assessing luster.…

  13. Birds Kept as Pets

    MedlinePlus

    ... lighting and is close to activity in the household. Be aware that pet birds can shed germs in their droppings. Plan to wear gloves when cleaning bird cages, and wash your hands thoroughly after any contact with the birds or their environment. Top of Page Importing pet birds into the ...

  14. Profits from precious pets.

    PubMed

    Pennisi, E

    2000-06-09

    In 1998, an anonymous millionaire, hoping to clone his pet dog Missy, awarded a Texas A&M University animal scientist $2.3 million to develop the necessary techniques. Now several companies are cashing in on the boom in frozen-tissue storage of pets for future cloning.

  15. Clinical Application of In-Room Positron Emission Tomography for In Vivo Treatment Monitoring in Proton Radiation Therapy

    SciTech Connect

    Min, Chul Hee; Zhu, Xuping; Winey, Brian A.; Grogg, Kira; Testa, Mauro; El Fakhri, Georges; Bortfeld, Thomas R.; Paganetti, Harald; Shih, Helen A.

    2013-05-01

    Purpose: The purpose of this study is to evaluate the potential of using in-room positron emission tomography (PET) for treatment verification in proton therapy and for deriving suitable PET scan times. Methods and Materials: Nine patients undergoing passive scattering proton therapy underwent scanning immediately after treatment with an in-room PET scanner. The scanner was positioned next to the treatment head after treatment. The Monte Carlo (MC) method was used to reproduce PET activities for each patient. To assess the proton beam range uncertainty, we designed a novel concept in which the measured PET activity surface distal to the target at the end of range was compared with MC predictions. The repositioning of patients for the PET scan took, on average, approximately 2 minutes. The PET images were reconstructed considering varying scan times to test the scan time dependency of the method. Results: The measured PET images show overall good spatial correlations with MC predictions. Some discrepancies could be attributed to uncertainties in the local elemental composition and biological washout. For 8 patients treated with a single field, the average range differences between PET measurements and computed tomography (CT) image-based MC results were <5 mm (<3 mm for 6 of 8 patients) and root-mean-square deviations were 4 to 11 mm with PET-CT image co-registration errors of approximately 2 mm. Our results also show that a short-length PET scan of 5 minutes can yield results similar to those of a 20-minute PET scan. Conclusions: Our first clinical trials in 9 patients using an in-room PET system demonstrated its potential for in vivo treatment monitoring in proton therapy. For a quantitative range prediction with arbitrary shape of target volume, we suggest using the distal PET activity surface.

  16. Locker Room Talk.

    ERIC Educational Resources Information Center

    Fickes, Michael

    1999-01-01

    Examines the trends in college and university sports and recreation center locker rooms as envisioned by a specialist. Features of the modern locker room and the different levels of locker room design are explained. Final comments discuss whether college and university facility managers are inclined to move to high-end locker rooms. (GR)

  17. Unit Cost Analysis of PET-CT at an Apex Public Sector Health Care Institute in India.

    PubMed

    Gajuryal, S H; Daga, A; Siddharth, V; Bal, C S; Satpathy, S

    2017-01-01

    PET/CT scan service is one of the capital intensive and revenue-generating centres of a tertiary care hospital. The cost associated with the provisioning of PET services is dependent upon the unit costs of the resources consumed. The study aims to determine the cost of providing PET/CT Scan services in a hospital. This descriptive and observational study was conducted in the Department of Nuclear Medicine at a tertiary apex teaching hospital in New Delhi, India in the year 2014-15. Traditional costing methodology was used for calculating the unit cost of PET/CT scan service. The cost was calculated under two heads that is capital and operating cost. Annualized cost of capital assets was calculated using methodology prescribed by WHO and operating costs was taken on an actual basis. Average number of PET/CT scan performed in a day is 30. The annual cost of providing PET/CT scan services was calculated to be 65,311,719 Indian Rupees (INR) (US$ 1,020,496), while the unit cost of PET scan was calculated to be 9625.92 INR (US$ 150). 3/4th cost was spent on machinery and equipment (75.3%) followed by healthcare personnel (11.37%), electricity (5%), consumables and supplies (4%) engineering maintenance (3.24%), building, furniture and HVAC capital cost (0.76%), and manifold cost (0.05%). Of the total cost, 76% was capital cost while the remaining was operating cost. Total cost for establishing PET/CT scan facility with cyclotron and chemistry module and PET/CT scan without cyclotron and chemistry module was calculated to be INR 610,873,517 (US$9944899) and 226,745,158 (US$3542893), respectively. (US$ 1=INR 64).

  18. Unit Cost Analysis of PET-CT at an Apex Public Sector Health Care Institute in India

    PubMed Central

    Gajuryal, SH; Daga, A; Siddharth, V; Bal, CS; Satpathy, S

    2017-01-01

    Context: PET/CT scan service is one of the capital intensive and revenue-generating centres of a tertiary care hospital. The cost associated with the provisioning of PET services is dependent upon the unit costs of the resources consumed. Aims: The study aims to determine the cost of providing PET/CT Scan services in a hospital. Methods and Material: This descriptive and observational study was conducted in the Department of Nuclear Medicine at a tertiary apex teaching hospital in New Delhi, India in the year 2014-15. Traditional costing methodology was used for calculating the unit cost of PET/CT scan service. The cost was calculated under two heads that is capital and operating cost. Annualized cost of capital assets was calculated using methodology prescribed by WHO and operating costs was taken on an actual basis. Results: Average number of PET/CT scan performed in a day is 30. The annual cost of providing PET/CT scan services was calculated to be 65,311,719 Indian Rupees (INR) (US$ 1,020,496), while the unit cost of PET scan was calculated to be 9625.92 INR (US$ 150). 3/4th cost was spent on machinery and equipment (75.3%) followed by healthcare personnel (11.37%), electricity (5%), consumables and supplies (4%) engineering maintenance (3.24%), building, furniture and HVAC capital cost (0.76%), and manifold cost (0.05%). Of the total cost, 76% was capital cost while the remaining was operating cost. Conclusions: Total cost for establishing PET/CT scan facility with cyclotron and chemistry module and PET/CT scan without cyclotron and chemistry module was calculated to be INR 610,873,517 (US$9944899) and 226,745,158 (US$3542893), respectively. (US$ 1=INR 64) PMID:28242974

  19. Cyclotrons and FFAG Accelerators as Drivers for ADS

    DOE PAGES

    Calabretta, Luciano; Méot, François

    2015-01-01

    Our review summarizes projects and studies on circular accelerators proposed for driving subcritical reactors. The early isochronous cyclotron cascades, proposed about 20 years ago, and the evolution of these layouts up to the most recent solutions or designs based on cyclotrons and fixed field alternating gradient accelerators, are reported. Additionally, the newest ideas and their prospects for development are discussed.

  20. Cyclotrons and FFAG Accelerators as Drivers for ADS

    SciTech Connect

    Calabretta, Luciano; Méot, François

    2015-01-01

    Our review summarizes projects and studies on circular accelerators proposed for driving subcritical reactors. The early isochronous cyclotron cascades, proposed about 20 years ago, and the evolution of these layouts up to the most recent solutions or designs based on cyclotrons and fixed field alternating gradient accelerators, are reported. Additionally, the newest ideas and their prospects for development are discussed.

  1. New superconducting cyclotron driven scanning proton therapy systems

    NASA Astrophysics Data System (ADS)

    Klein, Hans-Udo; Baumgarten, Christian; Geisler, Andreas; Heese, Jürgen; Hobl, Achim; Krischel, Detlef; Schillo, Michael; Schmidt, Stefan; Timmer, Jan

    2005-12-01

    Since one and a half decades ACCEL is investing in development and engineering of state of the art particle-therapy systems. A new medical superconducting 250 MeV proton cyclotron with special focus on the present and future beam requirements of fast scanning treatment systems has been designed. The first new ACCEL medical proton cyclotron is under commissioning at PSI for their PROSCAN proton therapy facility having undergone successful factory tests especially of the closed loop cryomagnetic system. The second cyclotron is part of ACCEL's integrated proton therapy system for Europe's first clinical center, RPTC in Munich. The cyclotron, the energy selection system, the beamline as well as the four gantries and patient positioners have been installed. The scanning system and major parts of the control software have already been tested. We will report on the concept of ACCEL's superconducting cyclotron driven scanning proton therapy systems and the current status of the commissioning work at PSI and RPTC.

  2. Cyclotron resonance effects on stochastic acceleration of light ionospheric ions

    NASA Technical Reports Server (NTRS)

    Singh, N.; Schunk, R. W.; Sojka, J. J.

    1982-01-01

    The production of energetic ions with conical pitch angle distributions along the auroral field lines is a subject of considerable current interest. There are several theoretical treatments showing the acceleration (heating) of the ions by ion cyclotron waves. The quasi-linear theory predicts no acceleration when the ions are nonresonant. In the present investigation, it is demonstrated that the cyclotron resonances are not crucial for the transverse acceleration of ions by ion cyclotron waves. It is found that transverse energization of ionospheric ions, such as He(+), He(++), O(++), and O(+), is possible by an Electrostatic Hydrogen Cyclotron (EHC) wave even in the absence of cyclotron resonance. The mechanism of acceleration is the nonresonant stochastic heating. However, when there are resonant ions both the total energy gain and the number of accelerated ions increase with increasing parallel wave number.

  3. Ion cyclotron emission studies: Retrospects and prospects

    NASA Astrophysics Data System (ADS)

    Gorelenkov, N. N.

    2016-05-01

    Ion cyclotron emission (ICE) studies emerged in part from the papers by A.B. Mikhailovskii published in the 1970s. Among the discussed subjects were electromagnetic compressional Alfvénic cyclotron instabilities with the linear growth rate √ {n_α /n_e } driven by fusion products, -particles which draw a lot of attention to energetic particle physics. The theory of ICE excited by energetic particles was significantly advanced at the end of the 20th century motivated by first DT experiments on TFTR and subsequent JET experimental studies which we highlight. More recently ICE theory was advanced by detailed theoretical and experimental studies on spherical torus (ST) fusion devices where the instability signals previously indistinguishable in high aspect ratio tokamaks due to high toroidal magnetic field became the subjects of experiments. We discuss further prospects of ICE theory applications for future burning plasma (BP) experiments such as those to be conducted in ITER device in France, where neutron and gamma rays escaping the plasma create extremely challenging conditions fusion alpha particle diagnostics.

  4. Ion cyclotron emission studies: Retrospects and prospects

    SciTech Connect

    Gorelenkov, N. N.

    2016-06-05

    Ion cyclotron emission (ICE) studies emerged in part from the papers by A.B. Mikhailovskii published in the 1970s. Among the discussed subjects were electromagnetic compressional Alfv,nic cyclotron instabilities with the linear growth rate similar ~ √(nα/ne) driven by fusion products, -particles which draw a lot of attention to energetic particle physics. The theory of ICE excited by energetic particles was significantly advanced at the end of the 20th century motivated by first DT experiments on TFTR and subsequent JET experimental studies which we highlight. Recently ICE theory was advanced by detailed theoretical and experimental studies on spherical torus (ST) fusion devices where the instability signals previously indistinguishable in high aspect ratio tokamaks due to high toroidal magnetic field became the subjects of experiments. Finally, we discuss prospects of ICE theory applications for future burning plasma (BP) experiments such as those to be conducted in ITER device in France, where neutron and gamma rays escaping the plasma create extremely challenging conditions fusion alpha particle diagnostics.

  5. Ion cyclotron emission studies: Retrospects and prospects

    SciTech Connect

    Gorelenkov, N. N.

    2016-06-05

    Ion cyclotron emission (ICE) studies emerged in part from the papers by A.B. Mikhailovskii published in the 1970s. Among the discussed subjects were electromagnetic compressional Alfv,nic cyclotron instabilities with the linear growth rate similar ~ √(nα/ne) driven by fusion products, -particles which draw a lot of attention to energetic particle physics. The theory of ICE excited by energetic particles was significantly advanced at the end of the 20th century motivated by first DT experiments on TFTR and subsequent JET experimental studies which we highlight. Recently ICE theory was advanced by detailed theoretical and experimental studies on spherical torus (ST) fusion devices where the instability signals previously indistinguishable in high aspect ratio tokamaks due to high toroidal magnetic field became the subjects of experiments. Finally, we discuss prospects of ICE theory applications for future burning plasma (BP) experiments such as those to be conducted in ITER device in France, where neutron and gamma rays escaping the plasma create extremely challenging conditions fusion alpha particle diagnostics.

  6. Ion cyclotron emission studies: Retrospects and prospects

    DOE PAGES

    Gorelenkov, N. N.

    2016-06-05

    Ion cyclotron emission (ICE) studies emerged in part from the papers by A.B. Mikhailovskii published in the 1970s. Among the discussed subjects were electromagnetic compressional Alfv,nic cyclotron instabilities with the linear growth rate similar ~ √(nα/ne) driven by fusion products, -particles which draw a lot of attention to energetic particle physics. The theory of ICE excited by energetic particles was significantly advanced at the end of the 20th century motivated by first DT experiments on TFTR and subsequent JET experimental studies which we highlight. Recently ICE theory was advanced by detailed theoretical and experimental studies on spherical torus (ST) fusionmore » devices where the instability signals previously indistinguishable in high aspect ratio tokamaks due to high toroidal magnetic field became the subjects of experiments. Finally, we discuss prospects of ICE theory applications for future burning plasma (BP) experiments such as those to be conducted in ITER device in France, where neutron and gamma rays escaping the plasma create extremely challenging conditions fusion alpha particle diagnostics.« less

  7. Cyclotron Resonances in Electron Cloud Dynamics

    SciTech Connect

    Celata, C M; Furman, M A; Vay, J L; Grote, D P; Ng, J T; Pivi, M F; Wang, L F

    2009-05-05

    A new set of resonances for electron cloud dynamics in the presence of a magnetic field has been found. For short beam bunch lengths and low magnetic fields where l{sub b} << 2{pi}{omega}{sub c}, (l{sub b} = bunch duration, {omega}{sub c} = non-relativistic cyclotron frequency) resonances between the bunch frequency and harmonics of the cyclotron frequency cause an increase in the electron cloud density in narrow ranges of magnetic field near the resonances. For ILC parameters the increase in the density is up to a factor {approx} 3, and the spatial distribution of the electrons is broader near resonances, lacking the well-defined density 'stripes' of multipactoring found for non-resonant cases. Simulations with the 2D computer code POSINST, as well as a single-particle tracking code, were used to elucidate the physics of the dynamics. The resonances are expected to affect the electron cloud dynamics in the fringe fields of conventional lattice magnets and in wigglers, where the magnetic fields are low. Results of the simulations, the reason for the bunch-length dependence, and details of the dynamics will be discussed.

  8. Cyclotron Resonances in Electron Cloud Dynamics

    SciTech Connect

    Celata, C. M.; Furman, Miguel A.; Vay, J.-L.; Ng, J. S.T.; Grote, D. P.; Pivi, M. T. F.; Wang, L. F.

    2009-04-29

    A new set of resonances for electron cloud dynamics in the presence of a magnetic field has been found. For short beam bunch lengths and low magnetic fields where lb<< 2pi c/omega c (with lb = bunch length, omega c = non-relativistic cyclotron frequency) resonances between the bunch frequency and harmonics of the electron cyclotron frequency cause an increase in the electron cloud density in narrow ranges of magnetic field near the resonances. For ILC parameters the increase in the density is up to a factor ~;;3, and the spatial distribution of the electrons is broader near resonances, lacking the well-defined vertical density"stripes" found for non-resonant cases. Simulations with the 2D computer code POSINST, as well as a single-particle tracking code, were used to elucidate the physics of the dynamics. The existence of the resonances has been confirmed in experiments at PEP-II. The resonances are expected to affect the electron cloud dynamics in the fringe fields of conventional lattice magnets and in wigglers, where the magnetic fields are low. Results of the simulations and experimental observations, the reason for the bunch-length dependence, and details of the dynamics are discussed here.

  9. Ion Cyclotron Waves in the VASIMR

    NASA Astrophysics Data System (ADS)

    Brukardt, M. S.; Bering, E. A.; Chang-Diaz, F. R.; Squire, J. P.; Longmier, B.

    2008-12-01

    The Variable Specific Impulse Magnetoplasma Rocket is an electric propulsion system under development at Ad Astra Rocket Company that utilizes several processes of ion acceleration and heating that occur in the Birkeland currents of an auroral arc system. Among these processes are parallel electric field acceleration, lower hybrid resonance heating, and ion cyclotron resonance heating. The VASIMR is capable of laboratory simulation of electromagnetic ion cyclotron wave heating during a single pass of the plasma through the resonance region. The plasma is generated by a helicon discharge of about 25 kW then passes through an RF booster stage that shoots left hand polarized slow mode waves from the high field side of the resonance. This paper will focus on the upgrades to the VX-200 test model over the last year. After summarizing the VX- 50 and VX-100 results, the new data from the VX-200 model will be presented. Lastly, the changes to the VASIMR experiment due to Ad Astra Rocket Company's new facility in Webster, Texas will also be discussed, including the possibility of collaborative experiments at the new facility.

  10. Loss cone-driven cyclotron maser instability

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Yun; Yi, Sibaek; Lim, Dayeh; Kim, Hee-Eun; Seough, Jungjoon; Yoon, Peter H.

    2013-11-01

    The weakly (or mildly) relativistic cyclotron maser instability has been successfully applied to explain the Earth's auroral kilometric radiation and other radio sources in nature and laboratory. Among the most important physical parameters that determine the instability criteria is the ratio of plasma-to-electron cyclotron frequencies, ωp/Ω. It is therefore instructive to consider how the normalized maximum growth rate, γmax/Ω, varies as a function of ωp/Ω. Although many authors have already discussed this problem, in order to complete the analysis, one must also understand how the radiation emission angle corresponding to the maximum growth, θmax, scales with ωp/Ω, since the propagation angle determines the radiation beaming pattern. Also, the behavior of the frequency corresponding to the maximum growth rate at each harmonic, (ωmax-sΩ)/Ω, where s=1,2,3,ċ , as a function of ωp/Ωis of importance for a complete understanding of the maser excitation. The present paper computes these additional quantities for the first time, making use of a model loss cone electron distribution function.

  11. Electrostatic ion cyclotron velocity shear instability

    SciTech Connect

    Lemons, D.S.; Winske, D.; Gary, S.P. )

    1992-12-01

    An electrostatic ion cyclotron instability driven by sheared velocity flow perpendicular to a uniform magnetic field is investigated in the local approximation. The dispersion equation, which includes all kinetic effects and involves only one important parameter, is cast in the form of Gordeyev integrals and solved numerically. The instability occurs roughly at multiples of the ion cyclotron frequency (but modified by the shear) with the growth rate of the individual harmonics overlapping in wavenumber. At small values of the shear parameter, the instability exists in two branches, one at long wavelength, [kappa][rho][sub i] [approximately] 0.5, and one at short wavelength, [kappa][rho][sub i] > 1.5 ([kappa][rho][sub i] is the wavenumber normalized to the ion gyroradius). At larger values of the shear parameter only the longer wavelength branch persists. The growth rate of the long wavelength mode, maximized over wavenumber and frequency, increases monotonically with the shear parameter. Properties of the instability are compared to those of Ganguli et al. obtained in the nonlocal limit.

  12. Cyclotron Production of Technetium-99m

    NASA Astrophysics Data System (ADS)

    Gagnon, Katherine M.

    Technetium-99m (99mTc) has emerged as the most widely used radionuclide in medicine and is currently obtained from a 99Mo/ 99mTc generator system. At present, there are only a handful of ageing reactors worldwide capable of producing large quantities of the parent isotope, 99Mo, and owing to the ever growing shutdown periods for maintenance and repair of these ageing reactors, the reliable supply 99mTc has been compromised in recent years. With an interest in alternative strategies for producing this key medical isotope, this thesis focuses on several technical challenges related to the direct cyclotron production of 99mTc via the 100Mo(p,2n)99mTc reaction. In addition to evaluating the 100Mo(p,2n)99mTc and 100Mo(p,x)99Mo reactions, this work presented the first experimental evaluation of the 100Mo(p,2n) 99gTc excitation function in the range of 8-18 MeV. Thick target calculations suggested that large quantities of cyclotron-produced 99mTc may be possible. For example, a 6 hr irradiation at 500 μA with an energy window of 18→10 MeV is expected to yield 1.15 TBq of 99mTc. The level of coproduced 99gTc contaminant was found to be on par with the current 99Mo/99mTc generator standard eluted with a 24 hr frequency. Highly enriched 100Mo was required as the target material for 99mTc production and a process for recycling of this expensive material is presented. An 87% recovery yield is reported, including metallic target preparation, irradiation, 99mTc extraction, molybdate isolation, and finally hydrogen reduction to the metal. Further improvements are expected with additional optimization experiments. A method for forming structurally stable metallic molybdenum targets has also been developed. These targets are capable of withstanding more than a kilowatt of beam power and the reliable production and extraction of Curie quantities of 99mTc has been demonstrated. With the end-goal of using the cyclotron-produced 99mTc clinically, the quality of the cyclotron

  13. Cherenkov TOF PET with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Dolenec, R.; Korpar, S.; Križan, P.; Pestotnik, R.

    2015-12-01

    As previously demonstrated, an excellent timing resolution below 100 ps FWHM is possible in time-of-flight positron emission tomography (TOF PET) if the detection method is based on the principle of detecting photons of Cherenkov light, produced in a suitable material and detected by microchannel plate photomultipliers (MCP PMTs). In this work, the silicon photomultipliers (SiPMs) were tested for the first time as the photodetectors in Cherenkov TOF PET. The high photon detection efficiency (PDE) of SiPMs led to a large improvement in detection efficiency. On the other hand, the time response of currently available SiPMs is not as good as that of MCP PMTs. The SiPM dark counts introduce a new source of random coincidences in Cherenkov method, which would be overwhelming with present SiPM technology at room temperature. When the apparatus was cooled, its performance significantly improved.

  14. Virtual-Pinhole PET

    PubMed Central

    Tai, Yuan-Chuan; Wu, Heyu; Pal, Debashish; O’Sullivan, Joseph A.

    2011-01-01

    We proposed and tested a novel geometry for PET system design analogous to pinhole SPECT called the virtual-pinhole PET (VP-PET) geometry to determine whether it could provide high-resolution images. Methods We analyzed the effects of photon acolinearity and detector sizes on system resolution and extended the empiric formula for reconstructed image resolution of conventional PET proposed earlier to predict the resolutions of VP-PET. To measure the system resolution of VP-PET, we recorded coincidence events as a 22Na point source was stepped across the coincidence line of response between 2 detectors made from identical arrays of 12 × 12 lutetium oxyorthosilicate crystals (each measuring 1.51 × 1.51 × 10 mm3) separated by 565 mm. To measure reconstructed image resolution, we built 4 VP-PET systems using 4 types of detectors (width, 1.51–6.4mm) and imaged 4 point sources of 64Cu (half-life = 12.7 h to allow a long acquisition time). Tangential and radial resolutions were measured and averaged for each source and each system. We then imaged a polystyrene plastic phantom representing a 2.5-cm-thick cross-section of isolated breast volume. The phantom was filled with an aqueous solution of 64Cu (713 kBq/mL) in which the following were imbedded: 4 spheric tumors ranging from 1.8 to 12.6 mm in inner diameter (ID), 6 micropipettes (0.7- or 1.1-mm ID filled with 64Cu at 5×, 20×, or 50× background), and a 10.0-mm outer-diameter cold lesion. Results The shape and measured full width at half maximum of the line spread functions agree well with the predicted values. Measured reconstructed image resolution (2.40–3.24 mm) was ±6% of the predicted value for 3 of the 4 systems. In one case, the difference was 12.6%, possibly due to underestimation of the block effect from the low-resolution detector. In phantom experiments, all spheric tumors were detected. Small line sources were detected if the activity concentration is at least 20× background. Conclusion We have

  15. Improving operating room safety

    PubMed Central

    2009-01-01

    Despite the introduction of the Universal Protocol, patient safety in surgery remains a daily challenge in the operating room. This present study describes one community health system's efforts to improve operating room safety through human factors training and ultimately the development of a surgical checklist. Using a combination of formal training, local studies documenting operating room safety issues and peer to peer mentoring we were able to substantially change the culture of our operating room. Our efforts have prepared us for successfully implementing a standardized checklist to improve operating room safety throughout our entire system. Based on these findings we recommend a multimodal approach to improving operating room safety. PMID:19930577

  16. Electromagnetic ion cyclotron waves observed near the oxygen cyclotron frequency by ISEE 1 and 2

    NASA Technical Reports Server (NTRS)

    Fraser, B. J.; Samson, J. C.; Hu, Y. D.; Mcpherron, R. L.; Russell, C. T.

    1992-01-01

    The first results of observations of ion cyclotron waves by the elliptically orbiting ISEE 1 and 2 pair of spacecraft are reported. The most intense waves (8 nT) were observed in the outer plasmasphere where convection drift velocities were largest and the Alfven velocity was a minimum. Wave polarization is predominantly left-handed with propagation almost parallel to the ambient magnetic field, and the spectral slot and polarization reversal predicted by cold plasma propagation theory are identified in the wave data. Computations of the experimental wave spectra during the passage through the plasmapause show that the spectral slots relate to the local plasma parameters, possibly suggesting an ion cyclotron wave growth source near the spacecraft. A regular wave packet structure seen over the first 30 min of the event is attributed to the modulation of this energy source by the Pc 5 waves seen at the same time.

  17. Performance of Variable Energy Cyclotron Centre superconducting cyclotron liquid nitrogen distribution system

    NASA Astrophysics Data System (ADS)

    Pal, Gautam; Nandi, Chinmay; Bhattacharyya, Tamal Kumar; Chakrabarti, Alok

    2014-01-01

    The liquid nitrogen distribution at Variable Energy Cyclotron Centre, Kolkata, India K500 superconducting cyclotron uses parallel branches to cool the thermal shield of helium vessel housing the superconducting coil and the cryopanels. Liquid nitrogen is supplied to the thermal shields from a pressurised liquid nitrogen dewar. Direct measurement of flow is quite difficult and seldom used in an operational cryogenic system. The total flow and heat load of the liquid nitrogen system was estimated indirectly by continuous measurement of level in the liquid nitrogen tanks. A mathematical model was developed to evaluate liquid nitrogen flow in the parallel branches. The model was used to generate flow distribution for different settings and the total flow was compared with measured data.

  18. Terahertz Imaging of cyclotron emission from quantum Hall conductors

    NASA Astrophysics Data System (ADS)

    Komiyama, Susumu

    2006-03-01

    Microscopy of extremely weak terahertz (THz) waves via photon-counting method is reported. A quantum-dot photon detector [1] is incorporated into a scanning terahertz microscope [2]. By using a quantum Hall detector [3] as well, measurements cover the intensity dynamic range more than five orders of magnitude. The minimum intensity reaches as lo as 10̂-21^ watt (one photon per one second). Applying the measurement system to the study of semiconductor quantum Hall (QH) devices, we image cyclotron radiation emitted by non-equilibrium electrons generated in QH electron systems. Owing to the unprecedented sensitivity, a variety of new features of electron kinetics are unveiled [4]. It is stressed that the present approach is in marked contrast to the THz- wave applications recently discussed extensively in a wide variety of fields including clinic, security, and environment. In the vast majority of those applications, room-temperature operation is implicit. The intensity of treated THz radiation is hence well beyond the level of 300K black body radiation (roughly 10̂-7 watts or 10̂14 photons/s per square centimeter in a 1/10 relative band width). From the scientific viewpoint, however, detecting extremely weak THz waves from an object without external illumination such as applied in the present work is of strong importance, because the microscopic kinetics of an object can be probed only in such a passive method. Besides semiconductor electric devices studied here, we will also discuss possible applications of the present method for molecular dynamics, micro thermography, and cell activities.. [1] S. Komiyama et al., Nature 403, 405 (2000). [2] K. Ikushima et al.,. Rev. Sci. Instrum. 74, 4209 (2003). [3] Y.Kawano et al., J. Appl. Phys. 89, 4037 (2001). [4] K.Ikushima et al., Phys. Rev. Lett. 93, 146804 (2004).

  19. Heart PET scan

    MedlinePlus

    Heart nuclear medicine scan; Heart positron emission tomography; Myocardial PET scan ... Udelson JE, Dilsizian V, Bonow RO. Nuclear cardiology. In: Mann DL, ... A Textbook of Cardiovascular Medicine . 10th ed. Philadelphia, ...

  20. Appropriate and Inappropriate Pets.

    ERIC Educational Resources Information Center

    Soltow, Willow

    1985-01-01

    Presents an 11-lesson mini unit overview on wild and domestic pets. Lessons contain teacher preparation information and student activities. Skills, discipline orientation, and the humane concept associated with each lesson are also outlined. (ML)

  1. Electron Cyclotron Resonances in Electron Cloud Dynamics

    SciTech Connect

    Celata, Christine; Celata, C.M.; Furman, Miguel A.; Vay, J.-L.; Yu, Jennifer W.

    2008-06-25

    We report a previously unknown resonance for electron cloud dynamics. The 2D simulation code"POSINST" was used to study the electron cloud buildup at different z positions in the International Linear Collider positron damping ring wiggler. An electron equilibrium density enhancement of up to a factor of 3 was found at magnetic field values for which the bunch frequency is an integral multiple of the electron cyclotron frequency. At low magnetic fields the effects of the resonance are prominent, but when B exceeds ~;;(2 pi mec/(elb)), with lb = bunch length, effects of the resonance disappear. Thus short bunches and low B fields are required for observing the effect. The reason for the B field dependence, an explanation of the dynamics, and the results of the 2D simulations and of a single-particle tracking code used to elucidate details of the dynamics are discussed.

  2. Electron Cyclotron Emission Diagnostics on ITER

    NASA Astrophysics Data System (ADS)

    Ellis, Richard; Austin, Max; Phillips, Perry; Rowan, William; Beno, Joseph; Auroua, Abelhamid; Feder, Russell; Patel, Ashish; Hubbard, Amanda; Pandya, Hitesh

    2010-11-01

    Electron cyclotron emission (ECE) will be employed on ITER to measure the radial profile of electron temperature and non thermal features of the electron distribution as well as measurements of ELMs, magnetic islands, high frequency instabilities, and turbulence. There are two quasioptical systems, designed with Gaussian beam analysis. One view is radial, primarily for temperature profile measurement, the other views at a small angle to radial for measuring non-thermal emission. Radiation is conducted to by a long corrugated waveguide to a multichannel Michelson interferometer which provides wide wavelength coverage but limited time response as well as two microwave radiometers which cover the fundamental and second harmonic ECE and provide excellent time response. Measurements will be made in both X and O mode. In-situ calibration is provided by a novel hot calibration source. We discuss spatial resolution and the implications for physics studies.

  3. Cyclotron maser using the anomalous Doppler effect

    NASA Astrophysics Data System (ADS)

    Didenko, A. N.; Borisov, A. R.; Fomenko, G. P.; Shlapakovskii, A. S.; Shtein, Iu. G.

    1983-11-01

    The operation of an anomalous-Doppler-effect cyclotron-resonance maser using a waveguide partially filled with dielectric as the slow-wave system is reported. The device investigated is similar to that of Didenko et al. (1983) and comprises a 300-mm-long 50-mm-o.d. 30-mm-i.d. waveguide with fabric-laminate dielectric, located 150 mm from the cathode in a 500-mm-long region of uniform 0-20-kG magnetic field, and a coaxial magnetic-insulation gun producing a 13-mm-i.d. 25-mm-o.d. hollow electron beam. Radiation at 12 + or - 1 mm wavelength and optimum power 20 MW is observed using hot-carrier detectors, with a clear peak in the power-versus-magnetic-field curve at about 6.4 kG.

  4. A simple electron cyclotron resonance ion sourcea)

    NASA Astrophysics Data System (ADS)

    Welton, R. F.; Moran, T. F.; Feeney, R. K.; Thomas, E. W.

    1996-04-01

    A simple, all permanent magnet, 2.45 GHz electron cyclotron resonance ion source has been developed for the production of stable beams of low charge state ions from gaseous feed materials. The source can produce ˜1 mA of low energy (3 kV) singly charged ion current in the 10-4 Torr pressure range. The source can also be operated in a more efficient low-pressure mode at an order of magnitude lower pressure. In this latter range, for example, the ionization efficiency of Ar is estimated to be 1% with charge states up to Ar8+ present. Operation in the low-pressure mode requires low power input (˜20 W). These features make the source especially suited for use with small accelerator systems for a number of applications including ion implantation, mass spectrometry, and atomic collision experiments where multiply charged ions are desirable. Design details and performance characteristics of the source are presented.

  5. Folded waveguide coupler for ion cyclotron heating

    SciTech Connect

    Owens, T.L.; Chen, G.L.

    1986-01-01

    A new type of waveguide coupler for plasma heating in the ion cyclotron range of frequencies is described. The coupler consists of a series of interleaved metallic vanes within a rectangular enclosure analogous to a wide rectangular waveguide that has been ''folded'' several times. At the mouth of the coupler, a plate is attached which contains coupling apertures in each fold or every other fold of the waveguide, depending upon the wavenumber spectrum desired. This plate serves primarily as a wave field polarizer that converts coupler fields to the polarization of the fast magnetosonic wave within the plasma. Theoretical estimates indicate that the folded waveguide is capable of high-efficiency, multimegawatt operation into a plasma. Bench tests have verified the predicted field structure within the waveguide in preparation for high-power tests on the Radio Frequency Test Facility at the Oak Ridge National Laboratory.

  6. Electron cyclotron resonance (ECR) ion sources

    SciTech Connect

    Jongen, Y.

    1984-05-01

    Starting with the pioneering work of R. Geller and his group in Grenoble (France), at least 14 ECR sources have been built and tested during the last five years. Most of those sources have been extremely successful, providing intense, stable and reliable beams of highly charged ions for cyclotron injection or atomic physics research. However, some of the operational features of those sources disagreed with commonly accepted theories on ECR source operation. To explain the observed behavior of actual sources, it was found necessary to refine some of the crude ideas we had about ECR sources. Some of those new propositions are explained, and used to make some extrapolations on the possible future developments in ECR sources.

  7. PET studies in epilepsy.

    PubMed

    Sarikaya, Ismet

    2015-01-01

    Various PET studies, such as measurements of glucose, serotonin and oxygen metabolism, cerebral blood flow and receptor bindings are availabe for epilepsy. (18)Fluoro-2-deoxyglucose ((18)F-FDG) PET imaging of brain glucose metabolism is a well established and widely available technique. Studies have demonstrated that the sensitivity of interictal FDG-PET is higher than interictal SPECT and similar to ictal SPECT for the lateralization and localization of epileptogenic foci in presurgical patients refractory to medical treatments who have noncontributory EEG and MRI. In addition to localizing epileptogenic focus, FDG-PET provide additional important information on the functional status of the rest of the brain. The main limitation of interictal FDG-PET is that it cannot precisely define the surgical margin as the area of hypometabolism usually extends beyond the epileptogenic zone. Various neurotransmitters (GABA, glutamate, opiates, serotonin, dopamine, acethylcholine, and adenosine) and receptor subtypes are involved in epilepsy. PET receptor imaging studies performed in limited centers help to understand the role of neurotransmitters in epileptogenesis, identify epileptic foci and investigate new treatment approaches. PET receptor imaging studies have demonstrated reduced (11)C-flumazenil (GABAA-cBDZ) and (18)F-MPPF (5-HT1A serotonin) and increased (11)C-cerfentanil (mu opiate) and (11)C-MeNTI (delta opiate) bindings in the area of seizure. (11)C-flumazenil has been reported to be more sensitive than FDG-PET for identifying epileptic foci. The area of abnormality on GABAAcBDZ and opiate receptor images is usually smaller and more circumscribed than the area of hypometabolism on FDG images. Studies have demonstrated that (11)C-alpha-methyl-L-tryptophan PET (to study synthesis of serotonin) can detect the epileptic focus within malformations of cortical development and helps in differentiating epileptogenic from non-epileptogenic tubers in patients with tuberous

  8. PET studies in epilepsy

    PubMed Central

    Sarikaya, Ismet

    2015-01-01

    Various PET studies, such as measurements of glucose, serotonin and oxygen metabolism, cerebral blood flow and receptor bindings are availabe for epilepsy. 18Fluoro-2-deoxyglucose (18F-FDG) PET imaging of brain glucose metabolism is a well established and widely available technique. Studies have demonstrated that the sensitivity of interictal FDG-PET is higher than interictal SPECT and similar to ictal SPECT for the lateralization and localization of epileptogenic foci in presurgical patients refractory to medical treatments who have noncontributory EEG and MRI. In addition to localizing epileptogenic focus, FDG-PET provide additional important information on the functional status of the rest of the brain. The main limitation of interictal FDG-PET is that it cannot precisely define the surgical margin as the area of hypometabolism usually extends beyond the epileptogenic zone. Various neurotransmitters (GABA, glutamate, opiates, serotonin, dopamine, acethylcholine, and adenosine) and receptor subtypes are involved in epilepsy. PET receptor imaging studies performed in limited centers help to understand the role of neurotransmitters in epileptogenesis, identify epileptic foci and investigate new treatment approaches. PET receptor imaging studies have demonstrated reduced 11C-flumazenil (GABAA-cBDZ) and 18F-MPPF (5-HT1A serotonin) and increased 11C-cerfentanil (mu opiate) and 11C-MeNTI (delta opiate) bindings in the area of seizure. 11C-flumazenil has been reported to be more sensitive than FDG-PET for identifying epileptic foci. The area of abnormality on GABAAcBDZ and opiate receptor images is usually smaller and more circumscribed than the area of hypometabolism on FDG images. Studies have demonstrated that 11C-alpha-methyl-L-tryptophan PET (to study synthesis of serotonin) can detect the epileptic focus within malformations of cortical development and helps in differentiating epileptogenic from non-epileptogenic tubers in patients with tuberous sclerosis complex

  9. Shielding design of the Mayo Clinic Scottsdale cyclotron vault

    NASA Astrophysics Data System (ADS)

    Riper, Kenneth A. Van; Metzger, Robert L.; Nelson, Kevin

    2017-09-01

    Mayo Clinic Scottsdale (Scottsdale, Arizona) is building a cyclotron vault containing a cyclotron with adjacent targets and a beam line leading to an external target. The targets are irradiated by high energy (15 to 16.5 MeV) protons for the production of radioisotopes. We performed Monte Carlo radiation transport simulations to calculate the radiation dose outside of the vault during irradiation of the cyclotron and external targets. We present the Monte Carlo model including the geometry, sources, and variance reduction methods. Mesh tallies surrounding the vault show the external dose rate is within acceptable limits.

  10. Ionospheric modification at twice the electron cyclotron frequency.

    PubMed

    Djuth, F T; Pedersen, T R; Gerken, E A; Bernhardt, P A; Selcher, C A; Bristow, W A; Kosch, M J

    2005-04-01

    In 2004, a new transmission band was added to the HAARP high-frequency ionospheric modification facility that encompasses the second electron cyclotron harmonic at altitudes between approximately 220 and 330 km. Initial observations indicate that greatly enhanced airglow occurs whenever the transmission frequency approximately matches the second electron cyclotron harmonic at the height of the upper hybrid resonance. This is the reverse of what happens at higher electron cyclotron harmonics. The measured optical emissions confirm the presence of accelerated electrons in the plasma.

  11. ECR Ion Source for a High-Brightness Cyclotron

    NASA Astrophysics Data System (ADS)

    Comeaux, Justin; McIntyre, Peter; Assadi, Saeed

    2011-10-01

    New technology is being developed for high-brightness, high-current cyclotrons with performance benefits for accelerator-driven subcritical fission power, medical isotope production, and proton beam cancer therapy. This paper describes the design for a 65 kV electron cyclotron resonance (ECR) ion source that will provide high-brightness beam for injection into the cyclotron. The ion source is modeled closely upon the one that is used at the Paul Scherrer Institute. Modifications are being made to provide enhanced brightness and compatibility for higher-current operation.

  12. Improving cancer treatment with cyclotron produced radionuclides. Progress report

    SciTech Connect

    Larson, S.M.; Finn, R.D.

    1993-11-01

    This report describes our continuing long term goal of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The program includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology; and Immunology. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Cyclotron section will be employed in the Pharmacology and Immunology sections during the next year. The development of novel radionuclides and tracers is of course useful in and of itself, but their utility is greatly enhanced by the interaction with the immunology and pharmacology components of the program.

  13. Radiation Monitoring System of 30 MeV Cyclotron

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Woo; Hur, Min-Goo; Jeong, Gyosung; Kim, Jongil

    2017-09-01

    A state-of-the-art radiation monitoring system was implemented at KAERI for a 30-MeV cyclotron. This system consists of several types of radiation measuring systems for ambient dose equivalent rate measurements of outside photon and neutron areas as well as inside the cyclotron, and monitors the alpha and beta particulates released from a stack, as well as the results of worker contamination at the portal of the cyclotron. In addition, an automatic alarm system is also mounted if there are alarms in the measuring systems.

  14. Cyclotron Maser Emission - Stars, Planets and Laboratory

    NASA Astrophysics Data System (ADS)

    Vorgul, Irena

    2010-11-01

    X-ray and radio observations of active stars over many years have shown that they frequently generate X-ray bursts that are quickly followed by radio bursts. In many cases the radio bursts are highly polarised. More recently, the star CU Virginis has been found to exhibit pulsar-like behaviour. In both these situations we believe that the radio emission can be best explained by a cyclotron maser type instability initiated by electron beams funnelling down converging magnetic field configurations typical of a dipole magnetic topology. Just such a geometry also exists in the Earth's auroral zone and so our model can explain the Earth's auroral kilometric radiation (AKR). Via a similar process, all the gas giant/magnetised planets in the solar system also emit radio emission. We have established a laboratory-based facility that has verified many of the details of our original theoretical description. The experiment has demonstrated, for example, that an electron beam entering a strongly converging magnetic field geometry does indeed produce a ``horse-shoe'' (or crescent-shaped) distribution in velocity space. It is the generation of this horse-shoe distribution, also observed in the Earth's auroral zone, which is vital for our theoretical model. It leads to a population inversion in the perpendicular velocity distribution and generation of electromagnetic waves close to the cyclotron frequency. We will discuss recent developments in the theory and simulation of the instability and relate these to the laboratory, space and astrophysical observations. The research was supported by UK Engineering and Physical Sciences Research Council. The input of R.A. Cairns, R. Bingham, B.J. Kellett and the experimental and computer modelling team at Strathclyde University, Glasgow is gratefully acknowledged.

  15. Global Simulation of Electromagnetic Ion Cyclotron Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K.; Gallagher, D. L.; Kozyra, J. U.

    2007-01-01

    It is well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. [2002 - 2007]. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis

  16. Global Simulation of Electromagnetic Ion Cyclotron Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.; Gallagher, D. L.; Kozyra, J. U.

    2007-01-01

    It is very well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis of modern

  17. Global Simulation of Electromagnetic Ion Cyclotron Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K.; Gallagher, D. L.; Kozyra, J. U.

    2007-01-01

    It is well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. [2002 - 2007]. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis

  18. The NSCL cyclotron gas stopper - Entering commissioning

    NASA Astrophysics Data System (ADS)

    Schwarz, S.; Bollen, G.; Chouhan, S.; Das, J. J.; Green, M.; Magsig, C.; Morrissey, D. J.; Ottarson, J.; Sumithrarachchi, C.; Villari, A. C. C.; Zeller, A.

    2016-06-01

    Linear gas stopping cells have been used successfully at NSCL to slow down ions produced by projectile fragmentation from the 100 MeV/u to the keV energy range. These 'stopped beams' have first been used for low-energy high precision experiments and more recently for NSCLs re-accelerator ReA. A gas-filled reverse cyclotron is currently under construction by the NSCL to complement the existing stopping cells: Due to its extended stopping length, efficient stopping and fast extraction is expected even for light and medium-mass ions, which are difficult to thermalize in linear gas cells. The device is based on a 2.6 T maximum-field cyclotron-type magnet to confine the injected beam while it is slowed down in ≈100 mbar of LN2-temperature helium gas. Once thermalized, the beam will be transported to the center of the device by a traveling-wave RF-carpet system, extracted along the symmetry axis with an ion conveyor and miniature RF-carpets, and accelerated to a few tens of keV of energy for delivery to the users. The superconducting magnet has been constructed on a 60 kV platform and energized to its nominal field strength. The magnet's two cryostats use 3 cryo-refrigerators each and liquid-nitrogen cooled thermal shields to cool the coil pair to superconductivity. This concept, chosen not to have to rely on external liquid helium, has been working well. Measurements of axial and radial field profiles confirm the field calculations. The individual RF-ion guiding components for low-energy ion transport through the device have been tested successfully. The beam stopping chamber with its 0.9 m-diameter RF carpet system and the ion extraction system are being prepared for installation inside the magnet for low-energy ion transport tests.

  19. Global Simulation of Electromagnetic Ion Cyclotron Waves

    NASA Astrophysics Data System (ADS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.

    2007-12-01

    It is well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. [2002 - 2007]. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis

  20. Locker Room Design Trends.

    ERIC Educational Resources Information Center

    Wiens, Janet

    2001-01-01

    Examines how today's college and university athletic locker rooms have become sophisticated recruiting tools that rival many professional facilities. Locker room design and location and their level of furniture, finishes, and equipment are discussed as is the trend for more environmentally friendly locker rooms. (GR)

  1. Locker Room Design Trends.

    ERIC Educational Resources Information Center

    Wiens, Janet

    2001-01-01

    Examines how today's college and university athletic locker rooms have become sophisticated recruiting tools that rival many professional facilities. Locker room design and location and their level of furniture, finishes, and equipment are discussed as is the trend for more environmentally friendly locker rooms. (GR)

  2. Cardiac PET/CT for the Evaluation of Known or Suspected Coronary Artery Disease

    PubMed Central

    Murthy, Venkatesh L.

    2011-01-01

    Positron emission tomography (PET) is increasingly being applied in the evaluation of myocardial perfusion. Cardiac PET can be performed with an increasing variety of cyclotron- and generator-produced radiotracers. Compared with single photon emission computed tomography, PET offers lower radiation exposure, fewer artifacts, improved spatial resolution, and, most important, improved diagnostic performance. With its capacity to quantify rest–peak stress left ventricular systolic function as well as coronary flow reserve, PET is superior to other methods for the detection of multivessel coronary artery disease and, potentially, for risk stratification. Coronary artery calcium scoring may be included for further risk stratification in patients with normal perfusion imaging findings. Furthermore, PET allows quantification of absolute myocardial perfusion, which also carries substantial prognostic value. Hybrid PET–computed tomography scanners allow functional evaluation of myocardial perfusion combined with anatomic characterization of the epicardial coronary arteries, thereby offering great potential for both diagnosis and management. Additional studies to further validate the prognostic value and cost effectiveness of PET are warranted. © RSNA, 2011 PMID:21918042

  3. Preparation, storage stability and palatability of spent hen meal based pet food.

    PubMed

    Karthik, P; Kulkarni, V V; Sivakumar, K

    2010-06-01

    Extruded pet foods were prepared by extrusion process incorporating dry rendered spent hen meal (SHM) at 10 and 20% levels, and packed in LDPE bags before storage at room temperature (35 ± 2°C) up to 45 days. The colour of the pet foods was uniformly brown with pleasant meaty odour. The thiobarbituric acid, tyrosine values, free fatty acid content and acid value and total bacterial counts increased gradually during storage but E.coli, Salmonella spp, Clostridium spp, Staphylococci spp and fungi were not detected during storage. The pet owners rated the pet foods as good. The body weight of the adult pet dogs did not decrease during the feeding trial of one month and the health condition of pets was good. The cost of production per kg of pet food containing 10 and 20% SHM was Rs 18.00 and Rs 22.75, respectively. It was concluded that a pet food (whole meal) with good nutritive quality and palatability to dogs can be prepared by incorporating 10-20% of spent hen meal which can be safely stored up to 45 days at room temperature.

  4. A line-of-sight electron cyclotron emission receiver for electron cyclotron resonance heating feedback control of tearing modes

    SciTech Connect

    Oosterbeek, J. W.; Buerger, A.; Westerhof, E.; Baar, M. R. de; Berg, M. A. van den; Bongers, W. A.; Graswinckel, M. F.; Hennen, B. A.; Kruijt, O. G.; Thoen, J.; Heidinger, R.; Korsholm, S. B.; Leipold, F.; Nielsen, S. K.

    2008-09-15

    An electron cyclotron emission (ECE) receiver inside the electron cyclotron resonance heating (ECRH) transmission line has been brought into operation. The ECE is extracted by placing a quartz plate acting as a Fabry-Perot interferometer under an angle inside the electron cyclotron wave (ECW) beam. ECE measurements are obtained during high power ECRH operation. This demonstrates the successful operation of the diagnostic and, in particular, a sufficient suppression of the gyrotron component preventing it from interfering with ECE measurements. When integrated into a feedback system for the control of plasma instabilities this line-of-sight ECE diagnostic removes the need to localize the instabilities in absolute coordinates.

  5. Modelling PET radionuclide production in tissue and external targets using Geant4

    NASA Astrophysics Data System (ADS)

    Amin, T.; Infantino, A.; Lindsay, C.; Barlow, R.; Hoehr, C.

    2017-07-01

    The Proton Therapy Facility in TRIUMF provides 74 MeV protons extracted from a 500 MeV H- cyclotron for ocular melanoma treatments. During treatment, positron emitting radionuclides such as 1C, 15O and 13N are produced in patient tissue. Using PET scanners, the isotopic activity distribution can be measured for in-vivo range verification. A second cyclotron, the TR13, provides 13 MeV protons onto liquid targets for the production of PET radionuclides such as 18F, 13N or 68Ga, for medical applications. The aim of this work was to validate Geant4 against FLUKA and experimental measurements for production of the above-mentioned isotopes using the two cyclotrons. The results show variable degrees of agreement. For proton therapy, the proton-range agreement was within 2 mm for 11C activity, whereas 13N disagreed. For liquid targets at the TR13 the average absolute deviation ratio between FLUKA and experiment was 1.9±2.7, whereas the average absolute deviation ratio between Geant4 and experiment was 0. 6±0.4. This is due to the uncertainties present in experimentally determined reaction cross sections.

  6. Single-electron detection and spectroscopy via relativistic cyclotron radiation

    SciTech Connect

    Asner, D. M.; Bradley, R. F.; de Viveiros, L.; Doe, P. J.; Fernandes, J. L.; Fertl, M.; Finn, E. C.; Formaggio, J. A.; Furse, D.; Jones, A. M.; Kofron, J. N.; LaRoque, B. H.; Leber, M.; McBride, E. L.; Miller, M. L.; Mohanmurthy, P.; Monreal, B.; Oblath, N. S.; Robertson, R. G. H.; Rosenberg, L. J.; Rybka, G.; Rysewyk, D.; Sternberg, M. G.; Tedeschi, J. R.; Thummler, T.; VanDevender, B. A.; Woods, N. L.

    2015-04-20

    Since 1897, we've understood that accelerating charges must emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. We demonstrate single-electron detection in a novel radiofrequency spec- trometer. Here, we observe the cyclotron radiation emitted by individual magnetically-trapped electrons that are produced with mildly-relativistic energies by a gaseous radioactive source. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.

  7. Single-electron detection and spectroscopy via relativistic cyclotron radiation

    SciTech Connect

    Asner, David M.; Bradley, Rich; De Viveiros Souza Filho, Luiz A.; Doe, Peter J.; Fernandes, Justin L.; Fertl, M.; Finn, Erin C.; Formaggio, Joseph; Furse, Daniel L.; Jones, Anthony M.; Kofron, Jared N.; LaRoque, Benjamin; Leber, Michelle; MCBride, Lisa; Miller, M. L.; Mohanmurthy, Prajwal T.; Monreal, Ben; Oblath, Noah S.; Robertson, R. G. H.; Rosenberg, Leslie; Rybka, Gray; Rysewyk, Devyn M.; Sternberg, Michael G.; Tedeschi, Jonathan R.; Thummler, Thomas; VanDevender, Brent A.; Woods, N. L.

    2015-04-01

    It has been understood since 1897 that accelerating charges should emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. Here we demonstrate single-electron detection in a novel radiofrequency spectrometer. We observe the cyclotron radiation emitted by individual electrons that are produced with mildly-relativistic energies by a gaseous radioactive source and are magnetically trapped. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work is a proof-of-concept for future neutrino mass experiments using this technique.

  8. Single-electron detection and spectroscopy via relativistic cyclotron radiation

    DOE PAGES

    Asner, D. M.; Bradley, R. F.; de Viveiros, L.; ...

    2015-04-20

    Since 1897, we've understood that accelerating charges must emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. We demonstrate single-electron detection in a novel radiofrequency spec- trometer. Here, we observe the cyclotron radiation emitted by individual magnetically-trapped electrons that are produced with mildly-relativistic energies by a gaseous radioactive source. The relativistic shift in the cyclotron frequency permits a precisemore » electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.« less

  9. Intensity limitations in compact H{sup minus} cyclotrons

    SciTech Connect

    Baartman, R.A.

    1995-12-31

    At TRIUMF, we have demonstrated 2.5 mA in a compact H{sup -} cyclotron. It is worthwhile to explore possibility of going to even higher intensity. In small cyclotrons, vertical focusing vanishes at the center. The space charge tune shift further reduces vertical focusing, thus determining an upper limit on instantaneous current. Limit on average current is of course also dependent upon phase acceptance, but this can be made quite large in an H{sup -} cyclotron. Longitudinal space charge on the first turn can reduce the phase acceptance as well. For finite ion source brightness, another limit comes from bunching efficiency in presence of space charge forces. We present methods of calculating and optimizing these limits. In particular, we show that it is possible to achieve 10mA in a 50 MeV compact H{sup -} cyclotron.

  10. Undergraduate Education with the Rutgers 12-Inch Cyclotron

    NASA Astrophysics Data System (ADS)

    Koeth, Timothy W.

    The Rutgers 12-Inch Cyclotron is a research grade accelerator dedicated to undergraduate education. From its inception, it has been intended for instruction and has been designed to demonstrate classic beam physics phenomena and provides students hands on experience with accelerator technology. The cyclotron is easily reconfigured, allowing experiments to be designed and performed within one academic semester. Our cyclotron offers students the opportunity to operate an accelerator and directly observe many fundamental beam physics concepts, including axial and radial betatron motion, destructive resonances, weak and azimuthally varying field (AVF) focusing schemes, RF and DEE voltage effects, diagnostic techniques, and perform low energy nuclear reactions. This paper emphasizes the unique beam physics measurements and beam manipulations capable at the Rutgers 12-Inch Cyclotron.

  11. Some calculations of the resonator in INR cyclotron

    SciTech Connect

    Zhang, J.; Liu, X.L.

    1985-10-01

    Some calculation methods of the resonator parameters with single dee and two coaxial transmission lines in INR variable-energy cyclotron were described. Also calculated and experimental results have been compared with the original one (two dee system).

  12. Microfluidics for Positron Emission Tomography (PET) Imaging Probe Development

    PubMed Central

    Wang, Ming-Wei; Lin, Wei-Yu; Liu, Kan; Masterman-Smith, Michael; Shen, Clifton Kwang-Fu

    2012-01-01

    Due to increased needs for Positron Emission Tomography (PET) scanning, high demands for a wide variety of radiolabeled compounds will have to be met by exploiting novel radiochemistry and engineering technologies to improve the production and development of PET probes. The application of microfluidic reactors to perform radiosyntheses is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional labeling systems. Microfluidic-based radiochemistry can lead to the use of smaller quantities of precursors, accelerated reaction rates and easier purification processes with greater yield and higher specific activity of desired probes. Several ‘proof-of-principle’ examples, along with basics of device architecture and operation, and potential limitations of each design are discussed here. Along with the concept of radioisotope distribution from centralized cyclotron facilities to individual imaging centers and laboratories (“decentralized model”), an easy-to-use, standalone, flexible, fully-automated radiochemical microfluidic platform can open up to simpler and more cost-effective procedures for molecular imaging using PET. PMID:20643021

  13. Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata.

    PubMed

    Roy, Anindya; Bhole, R B; Nandy, Partha P; Yadav, R C; Pal, Sarbajit; Roy, Amitava

    2015-03-01

    The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A set of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.

  14. Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata

    NASA Astrophysics Data System (ADS)

    Roy, Anindya; Bhole, R. B.; Nandy, Partha P.; Yadav, R. C.; Pal, Sarbajit; Roy, Amitava

    2015-03-01

    The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A set of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.

  15. Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata

    SciTech Connect

    Roy, Anindya Bhole, R. B.; Nandy, Partha P.; Yadav, R. C.; Pal, Sarbajit; Roy, Amitava

    2015-03-15

    The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A set of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.

  16. Lifetime measurement of a collision complex using ion cyclotron double resonance - H2C6N2(+)

    NASA Technical Reports Server (NTRS)

    Anicich, Vincent G.; Sen, Atish D.; Huntress, Wesley T., Jr.; Mcewan, Murray J.

    1991-01-01

    In the ion-molecule reaction between HC3N(+) and HC3N, the lifetime of the collision complex (H2C6N2+)-asterisk was long enough that ion cyclotron double-resonance techniques could be used to probe the distribution of the lifetimes of the collision complex. The mean lifetime of the collision complex at room temperature was measured as 180 microsec with a distribution ranging from 60 to 260 microsec as measured at the half-heights in the distribution. Lifetimes of this magnitude with respect to unimolecular dissociation allow for some stabilization of the collision complex by the slower process of infrared photon emission.

  17. Ion source and injection line for high intensity medical cyclotron

    SciTech Connect

    Jia, XianLu Guan, Fengping; Yao, Hongjuan; Zhang, TianJue; Yang, Jianjun; Song, Guofang; Ge, Tao; Qin, Jiuchang

    2014-02-15

    A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H− ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H− ion source (CIAE-CH-I type) and a short injection line, which the H− ion source of 3 mA/25 keV H− beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from the extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.

  18. The ADNI PET Core: 2015

    PubMed Central

    Jagust, William J.; Landau, Susan M.; Koeppe, Robert A.; Reiman, Eric M.; Chen, Kewei; Mathis, Chester A.; Price, Julie C.; Foster, Norman L.; Wang, Angela Y.

    2015-01-01

    INTRODUCTION This paper reviews the work done in the ADNI PET core over the past 5 years, largely concerning techniques, methods, and results related to amyloid imaging in ADNI. METHODS The PET Core has utilized [18F]florbetapir routinely on ADNI participants, with over 1600 scans available for download. Four different laboratories are involved in data analysis, and have examined factors such as longitudinal florbetapir analysis, use of FDG-PET in clinical trials, and relationships between different biomarkers and cognition. RESULTS Converging evidence from the PET Core has indicated that cross-sectional and longitudinal florbetapir analyses require different reference regions. Studies have also examined the relationship between florbetapir data obtained immediately after injection, which reflects perfusion, and FDG-PET results. Finally, standardization has included the translation of florbetapir PET data to a centiloid scale. CONCLUSION The PET Core has demonstrated a variety of methods for standardization of biomarkers such as florbetapir PET in a multicenter setting. PMID:26194311

  19. Electron cyclotron resonance plasma deposition of silicon nitride: Effect of very low rf substrate bias

    NASA Astrophysics Data System (ADS)

    Buckle, K. A.; Rodgers, J.; Pastor, K.; Constantine, C.; Johnson, D.

    1992-05-01

    Plasma deposition of SiN on silicon substrates in a microwave (2.45 GHz) electron cyclotron resonance SiH4/N2/He, in the ratio 4/10/10, discharge has been investigated as a function of rf (40 MHz) self-biasing of the sample. Low levels of rf bias (0-10 W) were investigated and are reported in this letter. The effect of bias was measured for the deposited films with respect to refractive index, etch rate in BHF, Si—H bonding, and the intrinsic film stress. All depositions were conducted at or near room temperature to evaluate the effect of the applied rf bias on film density. All parameters examined indicated that low levels of rf bias help prepare a high quality, dense film at very low substrate temperatures.

  20. Impurity cyclotron resonance in InGaAs/AlAs superlattice under ultra high magnetic fields

    NASA Astrophysics Data System (ADS)

    Momose, H.; Deguchi, H.; Okai, H.; Mori, N.; Takeyama, S.

    2005-11-01

    We have carried out cyclotron resonance (CR) measurements of (InGaAs) 8/(AlAs) 8 superlattice (SL) to investigate electronic properties of the SL under pulsed ultra-high magnetic fields. The magnetic fields up to 160 T were generated by using the single-turn-coil technique. Clear CR signals were obtained in the transmission of far-infrared laser through the SL at room temperature and lower temperature. We observed a shift of CR peak to lower magnetic field caused by transition from free-electron CR to impurity CR below ∼90 K. Compared with the previous works of GaAs/AlAs SL, the peak shift was small and the transition temperature was low. This result suggests that a binding energy of the impurity in the InGaAs/AlAs SL is smaller than the GaAs/AlAs SL.

  1. Preparation of ZnO nanorods on conductive PET-ITO-Ag fibers

    NASA Astrophysics Data System (ADS)

    Li, Yiwen; Ji, Shuai; Chen, Yuanyu; Zhang, Hong; Gong, Yumei; Guo, Jing

    2016-12-01

    We studied the vertical ZnO nanorods grown on conductive conventional polyethylene terephthalate (PET) fibers which are prepared by electroless silver depositing on tin-doped indium oxide (ITO) coated PET fibers through an efficient and low-cost green approach. The PET fibers were firstly functionalized with a layer of ITO gel synthesized through a sol-gel process at rather low temperature, simply by immersing the fibers into ITO sol for several minutes followed by gelation at 120 °C. Once the ITO gel layer surface was activated by SnCl2, a continuous, uniform, and compact layer of silver was carried out on the surface of the PET-ITO fibers through electroless plating operation at room temperature. The as-prepared PET-ITO-Ag fibers had good electrical conductivity, with surface resistivity as low as 0.23 mΩ cm. The overall procedure is simple, efficient, nontoxic, and controllable. The conductive PET-ITO-Ag fiber was used successfully as a flexible basal material to plant vertical ZnO nanorods through controlling the seeding and growth processes. The morphology of the PET-ITO, PET-ITO-Ag, and PET-ITO-Ag-ZnO fibers were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Undergone the whole process, although the tensile strength of the fiber decreased slightly, they may still exert their applications in flexible electronic such as photovoltaic and piezoelectric devices.

  2. An Educational PET Camera Model

    ERIC Educational Resources Information Center

    Johansson, K. E.; Nilsson, Ch.; Tegner, P. E.

    2006-01-01

    Positron emission tomography (PET) cameras are now in widespread use in hospitals. A model of a PET camera has been installed in Stockholm House of Science and is used to explain the principles of PET to school pupils as described here.

  3. Cognitive dysfunction in senior pets.

    PubMed

    Crowell-Davis, Sharon L

    2008-02-01

    Aging pets can experience declines in memory, learning, perception, and awareness. These pets may be disoriented, forget previously learned behaviors, develop new fears and anxiety, or change their interactions with people. When these changes are due to cognitive dysfunction, behavioral and environmental adjustments along with medical therapy can slow the progression and keep pets active longer.

  4. PET scan for breast cancer

    MedlinePlus

    ... CT scan. This combination scan is called a PET/CT. ... A PET scan is most often used when other tests, such as MRI scan or CT scan, DO NOT provide enough information. A breast PET scan is used only after a woman has ...

  5. An Educational PET Camera Model

    ERIC Educational Resources Information Center

    Johansson, K. E.; Nilsson, Ch.; Tegner, P. E.

    2006-01-01

    Positron emission tomography (PET) cameras are now in widespread use in hospitals. A model of a PET camera has been installed in Stockholm House of Science and is used to explain the principles of PET to school pupils as described here.

  6. Fast and cost-effective cyclotron production of (61)Cu using a (nat)Zn liquid target: an opportunity for radiopharmaceutical production and R&D.

    PubMed

    do Carmo, S J C; Alves, V H P; Alves, F; Abrunhosa, A J

    2017-07-13

    Following our previous work on the production of radiometals, such as (64)Cu and (68)Ga, through the irradiation of liquid targets using a medical cyclotron, we describe in this paper a technique to produce (61)Cu through the irradiation of natural zinc using a liquid target. The proposed method is very cost-effective, as it avoids the use of expensive enriched material, and is fast, as a purified solution of (61)CuCl2 is obtained in less than 30 min after the end of beam. Considering its moderate half-life of 3.33 h and favourable decay properties as a positron emitter, (61)Cu is a very attractive nuclide for the labelling of PET tracers for pre-clinical and clinical use with PET as well as to support the intense R&D programmes being carried out worldwide by taking advantage of the rich and versatile chemistry of copper.

  7. Correlation electron cyclotron emission diagnostic in TCV

    NASA Astrophysics Data System (ADS)

    Fontana, M.; Porte, L.; Molina Cabrera, P.

    2017-08-01

    The correlation electron cyclotron emission diagnostic of tokamak à configuration variable has recently been upgraded. It now has the choice of three lines of sight: two horizontal lines placed on the low field side of the vessel, perpendicular to the magnetic field, and a dual-axis steerable antenna. The polarization of the radiation collected by the latter can be rotated using a universal polarizer situated in the transmission line. This line is also shared with a reflectometry system, allowing simultaneous measurements of temperature and density fluctuations in the same plasma volumes. When using this line, it is possible to choose between two dedicated front ends characterized by different local oscillator frequencies, adding flexibility in the choice of the plasma region to be studied. The intermediate frequency section is now equipped with six frequency tunable YIG filters allowing the study of turbulence properties in a wide range of radial positions. When studying fluctuations over the whole video bandwidth, the minimum detectable fluctuation level is δ Te/Te˜0.5 % . The new system has been used to measure electron temperature fluctuations over a large fraction of the plasma profiles in a series of plasmas with triangularity varying from 0.6 to -0.6 but comparable collisionality profiles.

  8. A storage ring for the JULIC cyclotron

    NASA Astrophysics Data System (ADS)

    Martin, S. A.; Prasuhn, D.; Schott, W.; Wiedner, C. A.

    1985-05-01

    The storage ring COSY is planned to provide higher intensity and resolution for nuclear structure experiments using the light heavy ion beams (p, d, τ, α) of the JULIC cyclotron and the magnet spectrograph BIG KARL. The ring contains the measuring target of BIG KARL as an internal target, two rf cavities for compensating the mean energy loss in the target and providing additional acceleration of the stored beam and an e --cooling section. In the recirculator mode, i.e., without e --cooling, a luminosity of L = 3.64 × 10 30 particles/(cm 2 s) is obtained for an experiment with 41 MeV protons and a 50 μg/cm 212C target at a spectrograph resolution p/d p = 10 4 and 100% duty factor. This corresponds to a gain in L of 546.5 in comparison with the same experiment without a storage ring. In the recirculator mode with acceleration L = 1.17 × 10 32 p/(cm 2 s) and 98.8% duty factor results for 1500 MeV protons on the same target at the same resolution. Using e --cooling L and the feasible p/d p can be enhanced, however, at a reduced duty factor.

  9. 30-cm electron cyclotron plasma generator

    NASA Technical Reports Server (NTRS)

    Goede, Hank

    1987-01-01

    Experimental results on the development of a 30-cm-diam electron cyclotron resonance plasma generator are presented. This plasma source utilizes samarium-cobalt magnets and microwave power at a frequency of 4.9 GHz to produce a uniform plasma with densities of up to 3 x 10 to the 11th/cu cm in a continuous fashion. The plasma generator contains no internal structures, and is thus inherently simple in construction and operation and inherently durable. The generator was operated with two different magnetic geometries. One used the rare-earth magnets arranged in an axial line cusp configuration, which directly showed plasma production taking place near the walls of the generator where the electron temperature was highest but with the plasma density peaking in the central low B-field regions. The second configuration had magnets arranged to form azimuthal line cusps with approximately closed electron drift surfaces; this configuration showed an improved electrical efficiency of about 135 eV/ion.

  10. Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Marshall, Alan G.

    1998-06-01

    As for Fourier transform infrared (FT-IR) interferometry and nuclear magnetic resonance (NMR) spectroscopy, the introduction of pulsed Fourier transform techniques revolutionized ion cyclotron resonance mass spectrometry: increased speed (factor of 10,000), increased sensitivity (factor of 100), increased mass resolution (factor of 10,000-an improvement not shared by the introduction of FT techniques to IR or NMR spectroscopy), increased mass range (factor of 500), and automated operation. FT-ICR mass spectrometry is the most versatile technique for unscrambling and quantifying ion-molecule reaction kinetics and equilibria in the absence of solvent (i.e., the gas phase). In addition, FT-ICR MS has the following analytically important features: speed (~1 second per spectrum); ultrahigh mass resolution and ultrahigh mass accuracy for analysis of mixtures and polymers; attomole sensitivity; MSn with one spectrometer, including two-dimensional FT/FT-ICR/MS; positive and/or negative ions; multiple ion sources (especially MALDI and electrospray); biomolecular molecular weight and sequencing; LC/MS; and single-molecule detection up to 108 Dalton. Here, some basic features and recent developments of FT-ICR mass spectrometry are reviewed, with applications ranging from crude oil to molecular biology.

  11. Two Dimensional Synthetic Electron Cyclotron Emission Imaging

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Valeo, Ernest J.; Tobias, Benjamin J.; Kramer, Gerrit J.; Liu, Chang; Tang, William M.

    2016-10-01

    Electron Cyclotron Emission (ECE) has been widely used as a measurement of the electron temperature profile in magnetically confined plasmas. The ECE Imaging (ECEI) system provides additional vertical resolutions, and is used to measure the electron temperature fluctuations. The vertical resolution is typically a few centi-meters which is sometimes comparable to the vertical wave length of the underlying fluctuations. The ray-tracing technique used in most synthetic ECE codes to determine the origin and spatial extent of the ECE radiations is not accurate when the refraction and diffraction due to the fluctuations are important. In this presentation, we introduce a new synthetic ECEI code which solves the wave propagation up to the 2nd order of the WKB approximation, and provides full 2D information of the ECE source. We'll show that when the ECE frequency is near the cutoff, the refraction due to the fluctuations is important. A ``trapping'' of the ECE source by the density fluctuations is identified, and is potentially useful for determining the cross phase between electron temperature and density fluctuations. The new formalism is also used to study the Runaway Electrons contribution to the ECE signal, and provides insights to the measured ECE spectrum on DIII-D. This work has been funded by the US Department of Energy under Contract Number DE-AC02-09CH11466.

  12. Fourth generation electron cyclotron resonance ion sources.

    PubMed

    Lyneis, Claude M; Leitner, D; Todd, D S; Sabbi, G; Prestemon, S; Caspi, S; Ferracin, P

    2008-02-01

    The concepts and technical challenges related to developing a fourth generation electron cyclotron resonance (ECR) ion source with a rf frequency greater than 40 GHz and magnetic confinement fields greater than twice B(ECR) will be explored in this article. Based on the semiempirical frequency scaling of ECR plasma density with the square of operating frequency, there should be significant gains in performance over current third generation ECR ion sources, which operate at rf frequencies between 20 and 30 GHz. While the third generation ECR ion sources use NbTi superconducting solenoid and sextupole coils, the new sources will need to use different superconducting materials, such as Nb(3)Sn, to reach the required magnetic confinement, which scales linearly with rf frequency. Additional technical challenges include increased bremsstrahlung production, which may increase faster than the plasma density, bremsstrahlung heating of the cold mass, and the availability of high power continuous wave microwave sources at these frequencies. With each generation of ECR ion sources, there are new challenges to be mastered, but the potential for higher performance and reduced cost of the associated accelerator continues to make this a promising avenue for development.

  13. Cyclotron-based effects on plant gravitropism

    NASA Astrophysics Data System (ADS)

    Kordyum, E.; Sobol, M.; Kalinina, Ia.; Bogatina, N.; Kondrachuk, A.

    Primary roots exhibit positive gravitropism and grow in the direction of the gravitational vector, while shoots respond negatively and grow opposite to the gravitational vector. We first demonstrated that the use of a weak combined magnetic field (CMF), which is comprised of a permanent magnetic field and an alternating magnetic field with the frequency resonance of the cyclotron frequency of calcium ions, can change root gravitropism from a positive direction to negative direction. Two-day-old cress seedlings were gravistimulated in a chamber that was placed into a μ-metal shield where this CMF was created. Using this "new model" of a root gravitropic response, we have studied some of its components including the movement of amyloplasts-statoliths in root cap statocytes and the distribution of Ca 2+ ions in the distal elongation zone during gravistimulation. Unlike results from the control, amyloplasts did not sediment in the distal part of a statocyte, and more Ca 2+ accumulation was observed in the upper side of a gravistimulated root for seedlings treated with the CMF. For plants treated with the CMF, it appears that a root gravitropic reaction occurs by a normal physiological process resulting in root bending although in the opposite direction. These results support the hypothesis that both the amyloplasts in the root cap statocytes and calcium are important signaling components in plant gravitropism.

  14. Fullerenes in electron cyclotron resonance ion sources

    SciTech Connect

    Biri, S.; Fekete, E.; Kitagawa, A.; Muramatsu, M.; Janossy, A.; Palinkas, J.

    2006-03-15

    Fullerene plasmas and beams have been produced in our electron cyclotron resonance ion sources (ECRIS) originally designed for other purposes. The ATOMKI-ECRIS is a traditional ion source with solenoid mirror coils to generate highly charged ions. The variable frequencies NIRS-KEI-1 and NIRS-KEI-2 are ECR ion sources built from permanent magnets and specialized for the production of carbon beams. The paper summarizes the experiments and results obtained by these facilities with fullerenes. Continuous effort has been made to get the highest C{sub 60} beam intensities. Surprisingly, the best result was obtained by moving the C{sub 60} oven deep inside the plasma chamber, very close to the resonance zone. Record intensity singly and doubly charged fullerene beams were obtained (600 and 1600 nA, respectively) at lower C{sub 60} material consumption. Fullerene derivatives were also produced. We mixed fullerenes with other plasmas (N, Fe) with the aim of making new materials. Nitrogen encapsulated fullerenes (mass: 720+14=734) were successfully produced. In the case of iron, two methods (ferrocene, oven) were tested. Molecules with mass of 720+56=776 were detected in the extracted beam spectra.

  15. Characterization of electron cyclotron resonance hydrogen plasmas

    SciTech Connect

    Outten, C.A. . Dept. of Nuclear Engineering); Barbour, J.C.; Wampler, W.R. )

    1990-01-01

    Electron cyclotron resonance (ECR) plasmas yield low energy and high ion density plasmas. The characteristics downstream of an ECR hydrogen plasma were investigated as a function of microwave power and magnetic field. A fast-injection Langmuir probe and a carbon resistance probe were used to determine plasma potential (V{sub p}), electron density (N{sub e}), electron temperature (T{sub e}), ion energy (T{sub i}), and ion fluence. Langmuir probe results showed that at 17 cm downstream from the ECR chamber the plasma characteristics are approximately constant across the center 7 cm of the plasma for 50 Watts of absorbed power. These results gave V{sub p} = 30 {plus minus} 5 eV, N{sub e} = 1 {times} 10{sup 8} cm{sup {minus}3}, and T{sub e} = 10--13 eV. In good agreement with the Langmuir probe results, carbon resistance probes have shown that T{sub i} {le} 50 eV. Also, based on hydrogen chemical sputtering of carbon, the hydrogen (ion and energetic neutrals) fluence rate was determined to be 1 {times} 10{sup 16}/cm{sup 2}-sec. at a pressure of 1 {times} 10{sup {minus}4} Torr and for 50 Watts of absorbed power. 19 refs.

  16. Cyclotron autoresonance maser in the millimeter region

    NASA Astrophysics Data System (ADS)

    Nikolov, N. A.; Spasovski, I. P.; Kostov, K. G.; Velichkov, J. N.; Spasov, V. A.

    1990-06-01

    This paper investigates the optimal experimental conditions for a cyclotron autoresonance maser (CARM) regime realized by a nonadiabatic magnetic beam pumping in the millimeter wavelength region. In the experiment, a Blumline-type accelerator with a voltage up to 650 kV and maximal current up to 10 kA is used to generate a hollow beam with a pulse duration of 30 ns. The electron beam, emitted from a graphite cathode with a 10-mm diameter, propagates in a cylindrical drift tube of 56 mm diam and a length of 500 mm. The external magnetic field B, provided by a solenoidal magnet, is homogeneous along the drift tube up to a distance of 300 mm from the cathode. The experiment demonstrated the generation of microwave radiation in the time interval from 0.0016 to 0.0023 sec after the switch-on of the external magnetic field. Two maxima of the output microwave power (8 and 10 MW) at a wavelength of 5 and 5.5 mm, respectively, were observed.

  17. The Oak Ridge Isochronous Cyclotron Refurbishment Project

    SciTech Connect

    Mendez, II, Anthony J; Ball, James B; Dowling, Darryl T; Mosko, Sigmund W; Tatum, B Alan

    2011-01-01

    The Oak Ridge Isochronous Cyclotron (ORIC) has been in operation for nearly fifty years at the Oak Ridge National Laboratory (ORNL). Presently, it serves as the driver accelerator for the ORNL Holifield Radioactive Ion Beam Facility (HRIBF), where radioactive ion beams are produced using the Isotope Separation Online (ISOL) technique for post-acceleration by the 25URC tandem electrostatic accelerator. Operability and reliability of ORIC are critical issues for the success of HRIBF and have presented increasingly difficult operational challenges for the facility in recent years. In February 2010, a trim coil failure rendered ORIC inoperable for several months. This presented HRIBF with the opportunity to undertake various repairs and maintenance upgrades aimed at restoring the full functionality of ORIC and improving the reliability to a level better than what had been typical over the previous decade. In this paper, we present details of these efforts, including the replacement of the entire trim coil set and measurements of their radial field profile. Comparison of measurements and operating tune parameters with setup code predictions will also be presented.

  18. PET in Cerebrovascular Disease

    PubMed Central

    Powers, William J.; Zazulia, Allyson R.

    2010-01-01

    SYNOPSIS Investigation of the interplay between the cerebral circulation and brain cellular function is fundamental to understanding both the pathophysiology and treatment of stroke. Currently, PET is the only technique that provides accurate, quantitative in vivo regional measurements of both cerebral circulation and cellular metabolism in human subjects. We review normal human cerebral blood flow and metabolism and human PET studies of ischemic stroke, carotid artery disease, vascular dementia, intracerebral hemorrhage and aneurysmal subarachnoid hemorrhage and discuss how these studies have added to our understanding of the pathophysiology of human cerebrovascular disease. PMID:20543975

  19. The Upstairs Room - Room for Controversy?

    ERIC Educational Resources Information Center

    Poole, Mary F.

    1973-01-01

    Doubtless everyone is tired of the subject of censorship; but I do have to give vent to my feelings when they are as intense as they are over the selection of a book as full of profanity as a Newbery honor book ( The Upstairs Room''). (Author/SM)

  20. A small low energy cyclotron for radioisotope measurements

    SciTech Connect

    Bertsche, K.J.

    1989-11-01

    Direct detection of {sup 14}C by accelerator mass spectrometry has proved to be a much more sensitive method for radiocarbon dating than the decay counting method invented earlier by Libby. A small cyclotron (the cyclotrino'') was proposed for direct detection of radiocarbon in 1980. This combined the suppression of background through the use of negative ions, which had been used effectively in tandem accelerators, with the high intrinsic mass resolution of a cyclotron. Development of a small electrostatically-focused cyclotron for use as a mass spectrometer was previously reported but the sensitivity needed for detection of {sup 14}C at natural abundance was not achieved. The major contributions of this work are the integration of a high current external ion source with a small flat-field, electrostatically-focused cyclotron to comprise a system capable of measuring {sup 14}C at natural levels, and the analysis of ion motion in such a cyclotron, including a detailed analysis of phase bunching and its effect on mass resolution. A high current cesium sputter negative ion source generates a beam of carbon ions which is pre-separated with a Wien filter and is transported to the cyclotron via a series of electrostatic lenses. Beam is injected radially into the cyclotron using electrostatic deflectors and an electrostatic mirror. Axial focusing is entirely electrostatic. A microchannel plate detector is used with a phase-grated output. In its present form the system is capable of improving the sensitivity of detecting {sup 14}C in some biomedical experiments by a factor of 10{sup 4}. Modifications are discussed which could bring about an additional factor of 100 in sensitivity, which is important for archaeological and geological applications. Possibilities for measurements of other isotopes, such as {sup 3}H, and {sup 10}Be, and {sup 26}Al, are discussed. 70 refs.

  1. Electron cyclotron emissions from an electron cyclotron heated discharge in ISX-B

    SciTech Connect

    Elder, G.B.

    1983-01-01

    Observation of the electron cyclotron emissions (ECE) is especially effective when studying the effects of electron cyclotron heating (ECH). Two detectors were built to observe the optically thin third harmonic radiation from ISX B during the recent 28 GHz ECH experiments carried on at Oak Ridge National Laboratory. These detectors supplemented existing detectors at the fundamental frequency and at the second harmonic frequency. Observations of the three frequencies during and after the ECH was pulsed into the plasma showed an unexpected rise in their intensity, occurring after the ECH pulse was over. This rise lasted for many tens of milliseconds, well beyond estimates of the electron energy confinement time. The rise in the third harmonic intensity was frequently to an intensity 100 times greater than the pre-ECH intensity. The fundamental frequency and the second harmonic had a much milder change in their intensities. The rises were seen to depend critically on the density of the plasma and the length of the ECH pulse but only weakly on the pre-ECH temperature. A computer code that predicts the ECE from an electron distribution in ISX-B, taking into a account the effect of the plasma's dielectric response to the emissions from a single electron, was developed.

  2. Alpha Cyclotron Production Studies of the Alpha Emitter 211AT/211gPO for High-Let Metabolic Radiotherapy

    NASA Astrophysics Data System (ADS)

    Morzenti, S.; Bonardi, M. L.; Groppi, F.; Zona, C.; Canella, L.; Menapace, E.; Alfassi, Z. B.; Abbas, K.; Holzwarth, U.

    2006-04-01

    A series of high specific activity accelerator-produced radionuclides in no-carrier-added (NCA) form, for uses in metabolic radiotherapy and for PET, has been investigated and produced at JRC-Ispra Cyclotron Laboratory. In this study we present, in particular, the NCA 211At/211gPo (LET = 130 eV.nm-1, t1/2= 7.214 h), produced by 209Bi(α,2n) reaction, with internal spike of gamma emitter 210At (e.g. negligible amount of 210Po as radiotoxic long-lived impurity), for high-LET targeted radiotherapy and immunoradiotherapy. A selective radiochemical separation, based on liquid/liquid extraction, of At radionuclides from Bi target and Po impurities has been developed. High resolution gamma, X and alpha spectrometric techniques have been adopted for quality controls of different radiochemical fractions.

  3. First results of the INSIDE in-beam PET scanner for the on-line monitoring of particle therapy treatments

    NASA Astrophysics Data System (ADS)

    Piliero, M. A.; Belcari, N.; Bisogni, M. G.; Camarlinghi, N.; Cerello, P.; Coli, S.; Del Guerra, A.; Ferrero, V.; Fiorina, E.; Giraudo, G.; Kostara, E.; Morrocchi, M.; Pennazio, F.; Peroni, C.; Pirrone, G.; Rivetti, A.; Rolo, M. D.; Rosso, V.; Sportelli, G.; Wheadon, R.

    2016-12-01

    Quality assessment of particle therapy treatments by means of PET systems has been carried out since late `90 and it is one of the most promising in-vivo non invasive monitoring techniques employed clinically. It can be performed with a diagnostic PET scanners installed outside the treatment room (off-line monitoring) or inside the treatment room (in-room monitoring). However the most efficient way is by integrating a PET scanner with the treatment delivery system (on-line monitoring) so that the biological wash out and the patient repositioning errors are minimized. In this work we present the performance of the in-beam PET scanner developed within the INSIDE project. The INSIDE PET scanner is made of two planar heads, 10 cm wide (transaxially) and 25 cm long (axially), composed of pixellated LFS crystals coupled to Hamamatsu MPPCs. Custom designed Front-End Electronics (FE) and Data AcQuisition (DAQ) systems allow an on-line reconstruction of PET images from separated in-spill and inter-spill data sets. The INSIDE PET scanner has been recently delivered at the CNAO (Pavia, Italy) hadrontherapy facility and the first experimental measurements have been carried out. Homogeneous PMMA phantoms and PMMA phantoms with small air and bone inserts were irradiated with monoenergetic clinical proton beams. The activity range was evaluated at various benchmark positions within the field of view to assess the homogeneity of response of the PET system. Repeated irradiations of PMMA phantoms with clinical spread out Bragg peak proton beams were performed to evaluate the reproducibility of the PET signal. The results found in this work show that the response of the INSIDE PET scanner is independent of the position within the radiation field. Results also show the capability of the INSIDE PET scanner to distinguish variations of the activity range due to small tissue inhomogeneities. Finally, the reproducibility of the activity range measurement was within 1 mm.

  4. 11CO2 fixation: a renaissance in PET radiochemistry.

    PubMed

    Rotstein, Benjamin H; Liang, Steven H; Holland, Jason P; Collier, Thomas Lee; Hooker, Jacob M; Wilson, Alan A; Vasdev, Neil

    2013-06-25

    Carbon-11 labelled carbon dioxide is the cyclotron-generated feedstock reagent for most positron emission tomography (PET) tracers using this radionuclide. Most carbon-11 labels, however, are installed using derivative reagents generated from [(11)C]CO2. In recent years, [(11)C]CO2 has seen a revival in applications for the direct incorporation of carbon-11 into functional groups such as ureas, carbamates, oxazolidinones, carboxylic acids, esters, and amides. This review summarizes classical [(11)C]CO2 fixation strategies using organometallic reagents and then focuses on newly developed methods that employ strong organic bases to reversibly capture [(11)C]CO2 into solution, thereby enabling highly functionalized labelled compounds to be prepared. Labelled compounds and radiopharmaceuticals that have been translated to the clinic are highlighted.

  5. (68)Ga-BPAMD: PET-imaging of bone metastases with a generator based positron emitter.

    PubMed

    Fellner, M; Biesalski, B; Bausbacher, N; Kubícek, V; Hermann, P; Rösch, F; Thews, O

    2012-10-01

    Bone metastases are a serious aggravation for patients suffering from cancer. Therefore, early recognition of bone metastases is of great interest for further treatment of patients. Bisphosphonates are widely used for scintigraphy of bone lesions with (99m)Tc. Using the (68)Ge/(68)Ga generator together with a macroyclic bisphosphonate a comparable PET-tracer comes into focus. The bisphosphonate DOTA-conjugated ligand BPAMD was labelled with (68)Ga. [(68)Ga]BPAMD was evaluated in vitro concerning binding to hydroxyapatite and stability. The tracer's in vivo accumulation was determined on healthy rats and bone metastases bearing animals by μ-PET. BPAMD was labelled efficiently with (68)Ga after 10 min at 100°C. [(68)Ga]BPAMD showed high in vitro stability within 3h and high binding to hydroxyapatite. Consequently, μ-PET experiments revealed high accumulation of [(68)Ga]BPAMD in regions of pronounced remodelling activity like bone metastases. (68)Ga BPAMD reveals great potential for diagnosis of bone metastases via PET/CT. The straight forward (68)Ga-labelling could be transferred to a kit-preparation of a cyclotron-independent PET tracer instantaneously available in many clinical sites using the (68)Ge/(68)Ga generator. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. (68)Ga PET Ventilation and Perfusion Lung Imaging-Current Status and Future Challenges.

    PubMed

    Bailey, Dale L; Eslick, Enid M; Schembri, Geoffrey P; Roach, Paul J

    2016-09-01

    Gallium-68 ((68)Ga) is a positron-emitting radionuclide suitable for positron emission tomography (PET) imaging that has a number of convenient features-it has a physical half life of 68 minutes, it is generator produced at the PET facility and needs no local cyclotron, and being a radiometal is able to be chelated to a number of useful molecules for diagnostic imaging with PET. (68)Ga has recently been investigated as a radiotracer for ventilation and perfusion (V/Q) lung imaging. It is relatively easy to produce both V/Q radiopharmaceuticals labeled with (68)Ga for PET studies, it offers higher spatial resolution than equivalent SPECT studies, the short half life allows for multiple (repeated) scans on the same day, and low amounts of radiotracer can be used thus limiting the radiation dose to the subject. In the usual clinical setting requiring a V/Q scan, that of suspected pulmonary embolism, the role of (68)Ga V/Q PET may be limited from a logistical perspective, however, in nonacute applications such as lung function evaluation, radiotherapy treatment planning, and respiratory physiology investigations it would appear to be an ideal modality to employ. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. [Pets, veterinarians, and multicultural society].

    PubMed

    Klumpers, M; Endenburg, N

    2009-01-15

    Dutch society comprises a growing percentage of non-Western ethnic minority groups. Little is known about pet ownership among these groups. This study explores some aspects of pet ownership, and the position of veterinarians, among the four largest non-Western ethnic minority groups in the Netherlands. Information was gathered through street interviews with people from a Moroccan, Turkish, Surinamese, or Antillean (including Aruban) background. Five hundred people where interviewed, including 41 pet owners. Results showed that people from non-Western ethnic minorities kept pets less often than Dutch people, with fish and birds being the most frequently kept pets. The number of visits to the veterinary clinic was comparable to that of Dutch pet owners; however, reasons given for the last visit were different. People from non-Western ethnic minorities mostly visited a veterinarian if their pet was ill whereas Dutch people visited the veterinarian if their pet needed to be vaccinated. People from non-Western ethnic minorities were positive about veterinarians, considering that they had sufficient knowledge about and concern for their pets. Moreover, veterinarians were trusted and provided understandable information--the respondents felt that they could go to their veterinarian with any question or problem regarding their pets. Although most respondents considered a visit to the veterinarian expensive, they were more than willing to invest in their pet's health.

  8. Strengthening Weight Rooms.

    ERIC Educational Resources Information Center

    Sherman, Rachel M.

    1997-01-01

    Examines ways of giving an existing weight-training room new life without spending a lot of time and money. Tips include adding rubber floor coverings; using indirect lighting; adding windows, art work, or mirrors to open up the room; using more aesthetically pleasing ceiling tiles; upgrading ventilation; repadding or painting the equipment; and…

  9. Computer Room Water Protection.

    ERIC Educational Resources Information Center

    Price, Bennett J.

    1990-01-01

    Addresses the protection of computer rooms from water. Sources of water and potentially vulnerable areas in computer rooms are described. Water detection is then discussed, and several detection systems are detailed. Prices and manufacturers' telephone numbers for some of the systems are included. Water cleanup is also briefly considered. (MES)

  10. Strengthening Weight Rooms.

    ERIC Educational Resources Information Center

    Sherman, Rachel M.

    1997-01-01

    Examines ways of giving an existing weight-training room new life without spending a lot of time and money. Tips include adding rubber floor coverings; using indirect lighting; adding windows, art work, or mirrors to open up the room; using more aesthetically pleasing ceiling tiles; upgrading ventilation; repadding or painting the equipment; and…

  11. Unlocking the Locker Room.

    ERIC Educational Resources Information Center

    St. Clair, Dean

    1996-01-01

    Discusses locker-room design standards and common challenges when complying with the Americans with Disabilities Act. Accessibility and safety considerations for shower, toilet, and locker areas are addressed, as are entrance vestibules, drying and grooming areas, and private dressing rooms. (GR)

  12. Clean room wiping liquids

    SciTech Connect

    Harding, W.B.

    1991-12-01

    A water-based liquid containing isopropyl alcohol, ammonium hydroxide, and surfactants was developed to replace 1,1,2-trichlorotrifluoroethane for the dampening of clean room wiping cloths used to wipe clean benches, clean room equipment, and latex finger cots and gloves.

  13. Pets and Parenting.

    ERIC Educational Resources Information Center

    Mullis, Ann K.; And Others

    1987-01-01

    The authors describe a method for teaching parenting skills and helping students decide whether they want children by having them adopt a puppy or kitten for a 6-10 week period. They discuss how to use the pet adoption project in a family life education unit. (CH)

  14. Inverse ion-cyclotron damping and excitation of multiharmonic ion-cyclotron waves in the northern magnetospheric cusp

    NASA Astrophysics Data System (ADS)

    Slapak, Rikard; Gunell, Herbert; Hamrin, Maria

    2017-04-01

    We have investigated a case of inverse ion-cyclotron damping taking place in the northern terrestrial magnetospheric cusp, exciting waves at the ion-cyclotron frequency and its harmonics. Magnetosheath influx in the cusps and the effect of convection and magnetic mirroring give rise to parallel velocity shears, dvallel/dx\\perp, often associated with instabilities in the plasma and corresponding ion-cyclotron waves, whose evolution is described by a damping factor. This damping factor depends on, for example, the wave numbers and the velocity shear itself and can under certain conditions be negative, hence describing inverse damping (or wave growth). However, an additional required condition for inverse ion-cyclotron damping is a velocity shear in the magnetic field-aligned ion-bulk flow, and this condition is only met for magnetosheath influx in the northern cusp, as oppose to the southern cusp. The ion-cyclotron waves are primarily seen as peaks in the magnetic-field spectral densities, as presented by Slapak et al., [GRL (2016), doi:10.1002/2016GL071680]. The corresponding peaks in the electric-field spectral densities are not as profound, suggesting a background electric field noise or other processes of wave generation causing the electric spectral densities to smoothen out more compared to the magnetic counterpart. We note that some ion-cyclotron wave activity is present in a few similar shear events in the southern cusp, which indicates that other mechanisms generating ion-cyclotron waves may also be present during such conditions.

  15. Design of RF system for CYCIAE-230 superconducting cyclotron

    NASA Astrophysics Data System (ADS)

    Yin, Zhiguo; Ji, Bin; Fu, Xiaoliang; Cao, Xuelong; Zhao, Zhenlu; Zhang, Tinajue

    2017-05-01

    The CYCIAE230 is a low-current, compact superconducting cyclotron designed for proton therapy. The Radio Frequency system consists of four RF cavities and applies second harmonic to accelerate beams. The driving power for the cavity system is estimated to be approximately 150 kW. The LLRF controller is a self-made device developed and tested at low power using a small-scale cavity model. In this paper, the resonator systems of an S.C. cyclotron in history are reviewed. Contrary to those RF systems, the cavities of the CYCIAE230 cyclotron connect two opposite dees. Two high-power RF windows are included in the system. Each window carries approximately 75 kW RF power from the driver to the cavities. Thus, the RF system for the CY-CIAE230 cyclotron is operated in driven push-pull mode. The two-way amplifier-coupler-cavity systems are operated with approximately the same amount of RF power but 180° out of phase compared with each other. The design, as well as the technical advantage and limitations of this operating mode, of the CYCIAE230 cyclotron RF system is analyzed.

  16. Heavy ion cocktail beams at the 88 inch Cyclotron

    SciTech Connect

    Leitner, Daniela; McMahan, Margaret A.; Argento, David; Gimpel, Thomas; Guy, Aran; Morel, James; Siero, Christine; Thatcher, Ray; Lyneis, Claude M.

    2002-09-03

    Cyclotrons in combination with ECR ion sources provide the ability to accelerate ''cocktails'' of ions. A cocktail is a mixture of ions of near-identical mass-to-charge (m/q) ratio. The different ions cannot be separated by the injector mass-analyzing magnet and are tuned out of the ion source together. The cyclotron then is utilized as a mass analyzer by shifting the accelerating frequency. This concept was developed soon after the first ECR ion source became operational at the 88-Inch Cyclotron and has since become a powerful tool in the field of heavy ion radiation effects testing. Several different ''cocktails'' at various energies are available at the 88-Inch cyclotron for radiation effect testing, covering a broad range of linear energy transfer and penetration depth. Two standard heavy ion cocktails at 4.5 MeV/nucleon and 10 MeV/nucleon have been developed over the years containing ions from boron to bismuth. Recently, following requests for higher penetration depths, a 15MeV/nucleon heavy ion cocktail has been developed. Up to nine different metal and gaseous ion beams at low to very high charge states are tuned out of the ion source simultaneously and injected together into the cyclotron. It is therefore crucial to balance the ion source very carefully to provide sufficient intensities throughout the cocktail. The paper describes the set-up and tuning of the ion source for the various heavy ion cocktails.

  17. Potential of cyclotron based accelerators for energy production and transmutation

    SciTech Connect

    Stammbach, T.; Adam, S.; Fitze, H.R.

    1995-10-01

    PSI operates a 590 MeV-cyclotron facility for high intensity proton beams for the production of intense beams of pions and muons. The facility, commissioned in 1974, has been partially upgraded and is now operated routinely at a beam current of 1 mA, which corresponds to a beam power of 0.6 MW. At this current, the beam losses in the cyclotron are about 0.02%. By the end of 1995 the authors expect to have 1.5 mA of protons. Extensive theoretical investigations on beam current limitations in isochronous cyclotrons were undertaken. They show that the longitudinal space charge effects dominate. Based on their experience the authors present a preliminary design of a cyclotron scheme that could produce a 10 MW beam as a driver for an {open_quotes}energy amplifier{close_quotes} as proposed by C. Rubbia and his collaborators. The expected efficiency for the conversion of AC into beam power would be about 50% (for the RF-systems only). The beam losses in the cyclotron are expected to be a few {mu}A, leading to a tolerable activation level.

  18. Cyclotron-based of plant gravisensing

    NASA Astrophysics Data System (ADS)

    Kordyum, E.; Kalinina, Ia.; Bogatina, N.; Kondrachuk, A.

    Roots exhibit positive gravitropism they grow in the direction of a gravitational vector while shoots respond negatively and grow opposite to a gravitational vector We first demonstrated the inversion of roots gravitropism from positive to negative one under gravistimulation in the weak combined magnetic field WCMF consisted of permanent magnetic field PMF with the magnitude of order of 50 mu T and altering magnetic field AMF with the 6 mu T magnitude and a frequency of 32 Hz It was found that the effect of inversion has a resonance nature It means that in the interval of frequencies 1-45 Hz inversion of root gravitropism occurs only at frequency 32 Hz 2-3-day old cress seedlings were gravistimulated in moist chambers which are placed in mu -metal shields Inside mu -metal shields combined magnetic fields have been created The magnitude of magnetic fields was measured by a flux-gate magnetometer Experiments were performed in darkness at temperature 20 pm 1 0 C We measured the divergence angle of a growing root from its horizontal position After 1 h of gravistimulation in the WCMF we observed negative gravitropism of cress roots i e they grow in the opposite direction to a gravitational vector Frequency of 32 Hz for the magnitude of the PMF applied formally corresponds to cyclotron frequency of Ca 2 ions This indicates possible participation of calcium ions in root gravitropism There are many evidences of resonance effects of the WCMF on the biological processes that involve Ca 2 but the nature of

  19. Electrostatic electron cyclotron harmonic instability near Ganymede

    NASA Astrophysics Data System (ADS)

    Tripathi, A. K.; Singhal, R. P.; Singh, K. P.; Singh, O. N.

    2014-08-01

    Jupiter's moon—Ganymede—is the largest satellite in our solar system. Galileo spacecraft made six close flybys to explore Ganymede. More information was acquired about particle population, magnetic field and plasma waves during these encounters. In this paper, our aim is to study the generation of electrostatic electron cyclotron harmonic (ECH) emissions in the vicinity of Ganymede using the observed particle data. The calculated ECH wave's growth rates are analyzed in the light of observations of plasma waves along the path of Galileo near Ganymede. Dispersion relation for electrostatic mode is solved to obtain the temporal growth rates. A new electron distribution function, fitted to distribution observed near Ganymede, is used in the calculations. A parametric study is performed to evaluate the effect of loss-cone angle and the ratio of plasma to gyro-frequency on growth rates. It is found that ECH waves growth rates generally decrease as the loss-cone angle is increased. However, the ratio plasma to gyro-frequency has almost no effect on the growth rates. These parameters vary considerably along the Galileo trajectory near Ganymede. This is the first study which relates the occurrence of ECH waves with the particle and magnetic field data in the vicinity of Ganymede. The study of ECH wave growth rate near Ganymede is important for the calculation of pitch angle scattering rates of low-energy electrons and their subsequent precipitation into the thin atmosphere of Ganymede producing ultraviolet emissions. Results of the present study may also be relevant for the upcoming JUNO and JUICE missions to Jupiter.

  20. Preparation of ⁶⁸Ga-labelled DOTA-peptides using a manual labelling approach for small-animal PET imaging.

    PubMed

    Romero, Eduardo; Martínez, Alfonso; Oteo, Marta; García, Angel; Morcillo, Miguel Angel

    2016-01-01

    (68)Ga-DOTA-peptides are a promising PET radiotracers used in the detection of different tumours types due to their ability for binding specifically receptors overexpressed in these. Furthermore, (68)Ga can be produced by a (68)Ge/(68)Ga generator on site which is a very good alternative to cyclotron-based PET isotopes. Here, we describe a manual labelling approach for the synthesis of (68)Ga-labelled DOTA-peptides based on concentration and purification of the commercial (68)Ga/(68)Ga generator eluate using an anion exchange-cartridge. (68)Ga-DOTA-TATE was used to image a pheochromocytoma xenograft mouse model by a microPET/CT scanner. The method described provides satisfactory results, allowing the subsequent (68)Ga use to label DOTA-peptides. The simplicity of the method along with its implementation reduced cost, makes it useful in preclinical PET studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Improving cancer treatment with cyclotron produced radionuclides. [Multiple Drug Resistance (MDR)

    SciTech Connect

    Larson, S.M.; Finn, R.D.

    1990-10-15

    The overall objective of this work was to promote nuclear medicine applications in oncology. This is being done by improving the scientific basis of diagnosis, treatment and treatment follow-up with cyclotron-produced tracers. For diagnostic use, positron-emitting isotopes such as Ga-66 and I-124 are being used. Initial studies on the characterization of He-4 particle energies required for Ga-66 production have been completed. Parameters for I-124 radiolabelling of monoclonal antibodies have been determined; the labelled antibodies have been used in animal studies using positron emission tomography (PET) to quantify antibody concentration within tumors in vivo. Imaging physics studies have demonstrated that I-124 can be quantitatively imaged by PET, even in the presence of 100-told greater concentrations of I-131. Measurement of concentrations of label in vivo has been accomplished in nuclei mice bearing neuroblastoma tumors and nude rats bearing human ovarian cancer cells. These studies have major implications for both the quantification of dosimetry and quantification kinetic assessment of anti-tumor antibody localization in vivo. For treatment of tumors, F-18 has been incorporated in 2-fluoro-2-deoxy glucose and 5-fluoro uridine, and O-15 labelled water has been produced. Reagents incorporating C-11 and N-13 are under development. In a related area, C-14 labelled colchicine is being studied as a means of assaying cells for multiple drug resistance (MDR). Cells expressing MDR are shown to retain significantly less C-14 colchiene. This suggest that colchiene retention may be of useful probe in modelling and studying MDR development in human tumors. The precursor required for producing C-11 colchicine has also been synthesized. 11 refs. (MHB)

  2. Issues in the analysis and interpretation of cyclotron lines in gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Lamb, D. Q.

    1992-01-01

    The Bayesian approach is discussed to establishing the existence of lines, the importance of observing multiple cyclotron harmonics in determining physical parameters from the lines, and evidence from cyclotron lines of neutron star rotation.

  3. 75 FR 48939 - National Superconducting Cyclotron Laboratory of Michigan State University; Notice of Decision on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-12

    ... International Trade Administration National Superconducting Cyclotron Laboratory of Michigan State University... pursuant to Section 6(c) of the Educational, Scientific, and Cultural Materials Importation Act of 1966...., NW., Washington, DC. Docket Number: 10-043. Applicant: National Superconducting Cyclotron Laboratory...

  4. Precision phase control for the radio frequency system of K500 superconducting cyclotron at Variable Energy Cyclotron Centre, Kolkata

    SciTech Connect

    Som, Sumit; Ghosh, Surajit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Roy, Suprakash

    2013-11-15

    Variable Energy Cyclotron Centre (VECC) has commissioned K500 Superconducting cyclotron (SCC) based on MSU and Texas A and M university cyclotrons. The radio frequency (RF) system of SCC has been commissioned with the stringent requirement of various RF parameters. The three-phase RF system of Superconducting cyclotron has been developed in the frequency range 9–27 MHz with amplitude and phase stability of 100 ppm and ±0.1°, respectively. The phase control system has the option to change the relative phase difference between any two RF cavities and maintain the phase stability within ±0.1° during round-the-clock cyclotron operation. The said precision phase loop consists of both analogue In-phase/Quadrature modulator to achieve faster response and also Direct Digital Synthesis based phase shifter to achieve wide dynamic range as well. This paper discusses detail insights into the various issues of phase control for the K500 SCC at VECC, Kolkata.

  5. Simultaneous observations of electrostatic oxygen cyclotron waves and ion conics

    NASA Technical Reports Server (NTRS)

    Kintner, P. M.; Scales, W.; Vago, J.; Arnoldy, R.; Garbe, G.; Moore, T.

    1989-01-01

    A sounding rocket launched to 927 km apogee during an auroral substorm encountered regions of large quasi-static electric fields (not greater than 400 mV/m), ion conics (up to 700 eV maximum observed energy), and fluctuating electric fields near the oxygen cyclotron frequency. Since the fluctuating electric fields frequently exhibited spectral peaks just above the local oxygen cyclotron frequency, and since the fluctuating electric fields were linearly polarized, they are positively identified as electrostatic oxygen cyclotron waves (EOCW). The maximum amplitude of the EOCW was about 5 mV/m rms. The EOCW closely correlated with the presence of ion conics. Because of the relatively low amplitude of the EOCW and their relatively low coherence, it cannot be concluded that they are solely responsible for the production of the ion conics.

  6. Radiation effects testing at the 88-inch cyclotron at LBNL

    SciTech Connect

    McMahan, Margaret A.; Koga, Rokotura

    2001-10-09

    The effects of ionizing particles on sensitive microelectronics is an important component of the design of systems as diverse as satellites and space probes, detectors for high energy physics experiments and even internet server farms. Understanding the effects of radiation on human cells is an equally important endeavor directed towards future manned missions in space and towards cancer therapy. At the 88-Inch Cyclotron at the Berkeley Laboratory, facilities are available for radiation effects testing (RET) with heavy ions and with protons. The techniques for doing these measurements and the advantages of using a cyclotron will be discussed, and the Cyclotron facilities will be compared with other facilities worldwide. RET of the same part at several facilities of varying beam energy can provide tests of the simple models used in this field and elucidate the relative importance of atomic and nuclear effects. The results and implications of such measurements will be discussed.

  7. Design study of the KIRAMS-430 superconducting cyclotron magnet

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Wook; Kang, Joonsun; Hong, Bong Hwan; Jung, In Su

    2016-07-01

    Design study of superconducting cyclotron magnet for the carbon therapy was performed at the Korea Institute of Radiological and Medical Science (KIRAMS). The name of this project is The Korea Heavy Ion Medical Accelerator (KHIMA) project and a fixed frequency cyclotron with four spiral sector magnet was one of the candidate for the accelerator type. Basic parameters of the cyclotron magnet and its characteristics were studied. The isochronous magnetic field which can guide the 12C6+ ions up to 430 MeV/u was designed and used for the single particle tracking simulation. The isochronous condition of magnetic field was achieved by optimization of sector gap and width along the radius. Operating range of superconducting coil current was calculated and changing of the magnetic field caused by mechanical deformations of yokes was considered. From the result of magnetic field design, structure of the magnet yoke was planned.

  8. Alfven ion-cyclotron heating of ionospheric O(+) ions

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Sydora, R. D.; Ashour-Abdalla, M.

    1988-01-01

    Transversely heated ionospheric ions, in particular O(+) ions, are often observed flowing upward along auroral field lines. Currents observed in association with the transversely heated ions can drive shear Alfven waves and electrostatic ion-cyclotron waves unstable which can, in turn, be resonantly absorbed by the ions to produce the heating. Particle simulations are used to examine self-consistently the excitation of these waves and the associated heating. It is shown that the growth of the electrostatic ion-cyclotron waves quickly becomes suppressed as the ions become heated and the dominant wave fields are those of the shear Alfven wave. The resultant transverse ion heating is larger and faster than that produced by solely electrostatic ion-cyclotron wave heating. Due to trapping of ions by the shear Alfven wave, the temperature of the O(+) ions remains comparable to that of the H(+) ions.

  9. The electron-cyclotron maser for astrophysical application

    NASA Astrophysics Data System (ADS)

    Treumann, Rudolf A.

    2006-08-01

    The electron-cyclotron maser is a process that generates coherent radiation from plasma. In the last two decades, it has gained increasing attention as a dominant mechanism of producing high-power radiation in natural high-temperature magnetized plasmas. Originally proposed as a somewhat exotic idea and subsequently applied to include non-relativistic plasmas, the electron-cyclotron maser was considered as an alternative to turbulent though coherent wave-wave interaction which results in radio emission. However, when it was recognized that weak relativistic corrections had to be taken into account in the radiation process, the importance of the electron-cyclotron maser rose to the recognition it deserves. Here we review the theory and application of the electron-cyclotron maser to the directly accessible plasmas in our immediate terrestrial and planetary environments. In situ access to the radiating plasmas has turned out to be crucial in identifying the conditions under which the electron-cyclotron maser mechanism is working. Under extreme astrophysical conditions, radiation from plasmas may provide a major energy loss; however, for generating the powerful radiation in which the electron-cyclotron maser mechanism is capable, the plasma must be in a state where release of susceptible amounts of energy in the form of radiation is favorable. Such conditions are realized when the plasma is unable to digest the available free energy that is imposed from outside and stored in its particle distribution. The lack of dissipative processes is a common property of collisionless plasmas. When, in addition, the plasma density becomes so low that the amount of free energy per particle is large, direct emission becomes favorable. This can be expressed as negative absorption of the plasma which, like in conventional masers, leads to coherent emission even though no quantum correlations are involved. The physical basis of this formal analogy between a quantum maser and the

  10. Cyclotron motion of a charged particle with anisotropic mass

    NASA Astrophysics Data System (ADS)

    Ciftja, Orion; Livingston, Victoria; Thomas, Elsa

    2017-05-01

    The cyclotron motion of a charged particle subject to a uniform magnetic field is thoroughly described in many classical physics textbooks. Although the assumption of a particle with isotropic mass is taken for granted in classical physics, a key concept in condensed matter physics is that of particles with an effective anisotropic mass, such as electrons in the context of band structure studies of solids. Since some exposure to the concept of anisotropic mass is important within the framework of classical physics, here we consider the cyclotron motion of a charged particle with anisotropic mass in the presence of a uniform magnetic field. The exact solution of this problem exposes a broad audience of readers to concepts in condensed matter physics that are rarely mentioned within the framework of classical physics. Key ideas on the topic are illustrated in a pedagogical way by considering specific examples that show how an anisotropic mass modifies the cyclotron motion of a charged particle.

  11. The next generation of electron cyclotron emission imaging diagnostics (invited).

    PubMed

    Zhang, P; Domier, C W; Liang, T; Kong, X; Tobias, B; Shen, Z; Luhmann, N C; Park, H; Classen, I G J; van de Pol, M J; Donné, A J H; Jaspers, R

    2008-10-01

    A 128 channel two-dimensional electron cyclotron emission imaging system collects time-resolved 16x8 images of T(e) profiles and fluctuations on the TEXTOR tokamak. Electron cyclotron emission imaging (ECEI) is undergoing significant changes which promise to revolutionize and extend its capabilities far beyond what has been achieved to date. These include the development of a minilens array configuration with increased sensitivity antennas, a new local oscillator pumping scheme, enhanced electron cyclotron resonance heating shielding, and a highly flexible optical design with vertical zoom capability. Horizontal zoom and spot size (rf bandwidth) capabilities are also being developed with new ECEI electronics. An interface module is under development to remotely control all key features of the new ECEI instrument, many of which can be changed during a plasma discharge for maximum flexibility.

  12. The next generation of electron cyclotron emission imaging diagnostics (invited)

    SciTech Connect

    Zhang, P.; Domier, C. W.; Liang, T.; Kong, X.; Tobias, B.; Shen, Z.; Luhmann, N. C. Jr.; Park, H.; Classen, I. G. J.; Pol, M. J. van de; Donne, A. J. H.; Jaspers, R.

    2008-10-15

    A 128 channel two-dimensional electron cyclotron emission imaging system collects time-resolved 16x8 images of T{sub e} profiles and fluctuations on the TEXTOR tokamak. Electron cyclotron emission imaging (ECEI) is undergoing significant changes which promise to revolutionize and extend its capabilities far beyond what has been achieved to date. These include the development of a minilens array configuration with increased sensitivity antennas, a new local oscillator pumping scheme, enhanced electron cyclotron resonance heating shielding, and a highly flexible optical design with vertical zoom capability. Horizontal zoom and spot size (rf bandwidth) capabilities are also being developed with new ECEI electronics. An interface module is under development to remotely control all key features of the new ECEI instrument, many of which can be changed during a plasma discharge for maximum flexibility.

  13. Proton and helium cyclotron anisotropy instability thresholds in the magnetosheath

    NASA Technical Reports Server (NTRS)

    Gary, S. Peter; Convery, Patrick D.; Denton, Richard E.; Fuselier, Stephen A.; Anderson, Brian J.

    1994-01-01

    Both the protons and the helium ions of the terrestrial magnetosheath typically display T (sub perpendicular) greater than T (sub parallel), where perpendicular to and parallel to denote directions perpendicular and parallel to the background magnetic field. Observations of the highly compressed magnetosheath show an inverse correlation between these ion temperature anisotropies and the parallel proton beta. Computer simulations have demonstrated that these correlations are due to wave-particle scattering by electromagnetic ion cyclotron anisotropy instabilities. These correlations correspond to linear theory thresholds of the proton cyclotron and the helium cyclotron instabilities. This paper uses linear Vlasov theory and the assumption of a constant maximum growth rate to obtain closed-form expressions for these thresholds as a function of the relative helium density and the parallel proton beta in a parameter model of the magnetosheath.

  14. Talking with Children about Furry Classroom Pets.

    ERIC Educational Resources Information Center

    Texas Child Care, 1994

    1994-01-01

    Notes that rodents and rabbits share many characteristics that make them suitable classroom pets and gives background information on rabbits, guinea pigs, hamsters, and gerbils. Offers advice on buying a classroom pet, the pet's home, feeding, helping the children handle the pet, and pet health and family planning. (TJQ)

  15. Talking with Children about Furry Classroom Pets.

    ERIC Educational Resources Information Center

    Texas Child Care, 1994

    1994-01-01

    Notes that rodents and rabbits share many characteristics that make them suitable classroom pets and gives background information on rabbits, guinea pigs, hamsters, and gerbils. Offers advice on buying a classroom pet, the pet's home, feeding, helping the children handle the pet, and pet health and family planning. (TJQ)

  16. Operating Room Fire Safety

    PubMed Central

    Hart, Stuart R.; Yajnik, Amit; Ashford, Jeffrey; Springer, Randy; Harvey, Sherry

    2011-01-01

    Operating room fires are a rare but preventable danger in modern healthcare operating rooms. Optimal outcomes depend on all operating room personnel being familiar with their roles in fire prevention and fire management. Despite the recommendations of major safety institutes, this familiarity is not the current practice in many healthcare facilities. Members of the anesthesiology and the surgery departments are commonly not actively involved in fire safety programs, fire drills, and fire simulations that could lead to potential delays in prevention and management of intraoperative fires. PMID:21603334

  17. [Single-patient rooms].

    PubMed

    Jensen, Elisabeth Brøgger

    2009-05-18

    The Danish government has allocated funding to achieve the goal of replacing 50% of all existing hospital buildings by new facilities. Facing such a building boom, the debate for and against single-patient rooms is in progress. A review of the literature shows that single-patient rooms have a direct impact on patient safety. Patient Safety Leadership Walkrounds and failure modes and effects analysis can be used for identifying risks before designing single rooms in future hospitals. The acuity adaptability model needs to be revised.

  18. Transformer room fire tests

    NASA Astrophysics Data System (ADS)

    Fustich, C. D.

    1980-03-01

    A series of transformer room fire tests are reported to demonstate the shock hazard present when automatic sprinklers operate over energized electrical equipment. Fire protection was provided by standard 0.5 inch pendent automatic sprinklers temperature rated at 135 F and installed to give approximately 150 sq ft per head coverage. A 480 v dry transformer was used in the room to provide a three phase, four wire distribution system. It is shown that the induced currents in the test room during the various tests are relatively small and pose no appreciable personnel shock hazard.

  19. The Origin of Narrow Band Cyclotron Wave Emissions Called Chorus

    NASA Astrophysics Data System (ADS)

    Skoug, Ruth Marie

    1995-01-01

    On May 6, 1993, a sounding rocket experiment designed to study microburst electron precipitation was launched from Poker Flat, Alaska, into a morningside auroral event. This was the first sounding rocket to simultaneously detect microburst electrons and associated very low frequency (VLF) waves. Both microbursts and narrow band VLF chorus (risers) were observed throughout the flight. Waves and electron bursts were observed in association with each other, but no one-to-one correlations were seen between the two phenomena. The association between waves and particles suggests that both phenomena may be produced by a wave -particle interaction. This dissertation discusses the design of the VLF wave antenna, a magnetic search coil, and the analysis of data from this instrument. The data are compared to chorus production theories to determine the source location and mechanism of the observed waves. In this work, the observed chorus emissions are interpreted in terms of a cyclotron resonance interaction. This is the first comprehensive test of the cyclotron resonance theory applied to chorus associated with microburst precipitation. The frequency range of the risers and the observed electron energy range agree with those required to satisfy the cyclotron resonance condition. Using a criterion derived from the conservation of energy during an interaction, it is determined that a cold plasma cyclotron resonance interaction could have produced only the lower frequency portions of the observed chorus risers. We present an extension of the cyclotron resonance theory which uses a warm plasma model of the wave-particle interaction. This model assumes a two-component plasma, with an isotropic cold component and a bi-Maxwellian warm component. The addition of the warm component produces sufficient changes in the wave dispersion relation that the interaction can produce the highest frequencies observed in our data set. As predicted by theory, an anisotropic plasma is required to

  20. Electron Cyclotron Emissions from AN Electron Cyclotron Heated Discharge in Isx-B

    NASA Astrophysics Data System (ADS)

    Elder, Gerald Blaine

    1983-09-01

    Observation of the electron cyclotron emissions (ECE) at both optically thick and optically thin frequencies can be a very useful tool in studying the behavior of the electron distribution. It is especially effective when studying the effects of electron cyclotron heating (ECH). Two detectors were built to observe the optically thin third harmonic radiation from ISX-B during the recent 28 GHz ECH experiments carried on at Oak Ridge National Laboratory. These detectors supplemented existing detectors at the fundamental frequency and at the second harmonic frequency. Observations of the three frequencies during and after the ECH was pulsed into the plasma showed an unexpected rise in their intensity, occurring after the ECH pulse was over. This rise lasted for many tens of milliseconds, well beyond estimates of the electron energy confinement time. The rise in the third harmonic intensity was frequently to an intensity 100 times greater than the pre-ECH intensity. The fundamental frequency and the second harmonic had a much milder change in their intensities. The rises were seen to depend critically on the density of the plasma and the length of the ECH pulse but only weakly on the pre-ECH temperature. A computer code which predicts the ECE from an electron distribution in ISX-B, taking into account the effect of the plasma's dielectric response to the emissions from a single electron, is developed. This code is the result of combining a ray tracing technique with the emissions from a single dressed test particle and summing over the electron distribution. The code confirms the sensitivity of the third harmonic emissions to small changes in the electron distribution. A Fokker-Planck code is combined with the emission code to predict the evolution of the ECE from a perturbed electron distribution. The codes clearly show that the rises in the emissions observed by the three detectors can be reasonably explained by consideration of the effect of pitch angle scattering

  1. Central room (delivery room on plan) between the east and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Central room (delivery room on plan) between the east and west reading rooms, showing built-in card catalog drawers. View to south. - Sacramento Junior College, Library, 3835 Freeport Boulevard, Sacramento, Sacramento County, CA

  2. Men's toilet (room 207, representing rooms 306, 406, and 506; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Men's toilet (room 207, representing rooms 306, 406, and 506; also women's toilets, rooms 102, 104, 204, 204A, 303, 403, and 503), looking north. - California State Office Building No. 1, 915 Capitol Mall, Sacramento, Sacramento County, CA

  3. Interior. Balance room for chemistry laboratory. Storage room for glassware ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior. Balance room for chemistry laboratory. Storage room for glassware and reference room with frequently used chemistry and chemical engineering texts. - Thomas A. Edison Laboratories, Building No. 2, Main Street & Lakeside Avenue, West Orange, Essex County, NJ

  4. QUARTERS B, DINING ROOM. LIVING ROOM ON LEFT AND KITCHEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    QUARTERS B, DINING ROOM. LIVING ROOM ON LEFT AND KITCHEN TO RIGHT SHOWING DOORS TO LIVING ROOM. - Naval Magazine Lualualei, West Loch Branch, Warrant Officers & Civilian Quarters, B Avenue, Pearl City, Honolulu County, HI

  5. Interior. Balance room for chemistry laboratory. Storage room for glassware ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior. Balance room for chemistry laboratory. Storage room for glassware and reference room with frequently used chemistry and chemical engineering texts. - Thomas A. Edison Laboratories, Building No. 2, Main Street & Lakeside Avenue, West Orange, Essex County, NJ

  6. Backward wave cyclotron-maser emission in the auroral magnetosphere.

    PubMed

    Speirs, D C; Bingham, R; Cairns, R A; Vorgul, I; Kellett, B J; Phelps, A D R; Ronald, K

    2014-10-10

    In this Letter, we present theory and particle-in-cell simulations describing cyclotron radio emission from Earth's auroral region and similar phenomena in other astrophysical environments. In particular, we find that the radiation, generated by a down-going electron horseshoe distribution is due to a backward-wave cyclotron-maser emission process. The backward wave nature of the radiation contributes to upward refraction of the radiation that is also enhanced by a density inhomogeneity. We also show that the radiation is preferentially amplified along the auroral oval rather than transversely. The results are in agreement with recent Cluster observations.

  7. A 600 MeV cyclotron for radioactive beam production

    SciTech Connect

    Clark, D.J.

    1993-05-17

    The magnetic field design for a 600 MeV proton cyclotron is described. The cyclotron has a single stage, a normal conducting magnet coil and a 9.8 m outside yoke diameter. It has 8 sectors, with a transition to 4 sectors in the center region. The magnetic field design was done using 1958 Harwell rectangular ridge system measurements and was compared with recent 3-dimensional field calculations with the program TOSCA at NSCL. The center region 4--8 sector transition focussing was also checked with TOSCA.

  8. N-bursty emission from Uranus: A cyclotron maser source?

    NASA Technical Reports Server (NTRS)

    Curran, D. B.; Menietti, J. D.

    1993-01-01

    Ray tracing studies of RX-mode emission from the north polar regions of Uranus indicate that the n-bursty radio emission may have a source along field lines with footprints near the northern magnetic pole (perhaps in the cusp), but not necessarily associated with regions of strong UV emission. This is in contrast with similar studies for the Uranus nightside smooth radio emission, which are believed to be due to the cyclotron maser instability. Source regions can be found for both hollow and filled emission cones and for frequencies well above the local gyrofreuquency implying that mechanisms other than the cyclotron maser mechanism may be operating.

  9. RF cavity design for KIRAMS-430 superconducting cyclotron

    NASA Astrophysics Data System (ADS)

    Jung, In Su; Hong, Bong Hwan; Kang, Joonsun; Kim, Hyun Wook; Kim, Chang Hyeuk; Kwon, Key Ho

    2015-03-01

    The Korea Heavy Ion Medical Accelerator (KHIMA) has developed a superconducting cyclotron for the carbon therapy, which is called KIRAMS-430. The cyclotron is designed to accelerate only 12C6+ ions up to the energy of 430 MeV/u. It uses two normal conducting RF cavities. The RF frequency is about 70.76 MHz. The nominal dee voltage is 70 kV at the center and 160 kV at the extraction. The RF cavity was designed with 4 stems by using CST microwave studio (MWS). In this paper, we represent the simulation results and the optimized design of the RF cavity for the KIRAMS-430.

  10. Electron cyclotron emission diagnostics on the large helical device

    NASA Astrophysics Data System (ADS)

    Nagayama, Y.; Kawahata, K.; England, A.; Ito, Y.; Bretz, N.; McCarthy, M.; Taylor, G.; Doane, J.; Ikezi, H.; Edlington, T.; Tomas, J.

    1999-01-01

    The electron cyclotron emission (ECE) diagnostic system is installed on the large helical device (LHD). The system includes the following instruments: a heterodyne radiometer, a Michelson spectrometer, and a grating polychromator. A 63.5 mm corrugated waveguide system is fully utilized. Large collection optics and notch filters at the frequency of the LHD electron cyclotron heating (ECH) were developed for this system. In addition to these filters, the rectangular waveguide notch filters, the ECE measurement with the radiometer has been successfully performed during the ECH.

  11. Fluid equations in the presence of electron cyclotron current drive

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Kruger, Scott E.

    2012-12-01

    Two-fluid equations, which include the physics imparted by an externally applied radiofrequency source near electron cyclotron resonance, are derived in their extended magnetohydrodynamic forms using the formalism of Hegna and Callen [Phys. Plasmas 16, 112501 (2009)]. The equations are compatible with the closed fluid/drift-kinetic model developed by Ramos [Phys. Plasmas 17, 082502 (2010); 18, 102506 (2011)] for fusion-relevant regimes with low collisionality and slow dynamics, and they facilitate the development of advanced computational models for electron cyclotron current drive-induced suppression of neoclassical tearing modes.

  12. Single-Electron Detection and Spectroscopy via Relativistic Cyclotron Radiation.

    PubMed

    Asner, D M; Bradley, R F; de Viveiros, L; Doe, P J; Fernandes, J L; Fertl, M; Finn, E C; Formaggio, J A; Furse, D; Jones, A M; Kofron, J N; LaRoque, B H; Leber, M; McBride, E L; Miller, M L; Mohanmurthy, P; Monreal, B; Oblath, N S; Robertson, R G H; Rosenberg, L J; Rybka, G; Rysewyk, D; Sternberg, M G; Tedeschi, J R; Thümmler, T; VanDevender, B A; Woods, N L

    2015-04-24

    It has been understood since 1897 that accelerating charges must emit electromagnetic radiation. Although first derived in 1904, cyclotron radiation from a single electron orbiting in a magnetic field has never been observed directly. We demonstrate single-electron detection in a novel radio-frequency spectrometer. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay end point, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.

  13. Analysis of gamma-ray burst spectra with cyclotron lines

    NASA Technical Reports Server (NTRS)

    Kargatis, Vincent; Liang, Edison P.

    1992-01-01

    Motivated by the recent developments in the cyclotron resonance upscattering of soft photons or CUSP model of Gamma Ray Burst (GBR) continuum spectra, we revisit a select database of GRBs with credible cyclotron absorption features. We measure the break energy of the continuum, the slope below the break and deduce the soft photon energy or the electron beam Lorentz factor cutoff. We study the correlation (or lack of) between various parameters in the context of the CUSP model. One surprise result is that there appears to be marginal correlation between the break energy and the spectral index below the break.

  14. Cyclotron modes of a multi-species ion plasma

    SciTech Connect

    Sarid, E.; Anderegg, F.; Driscoll, C. F.

    1995-04-15

    Cyclotron modes varying as exp(il{theta}), with l=1, 2 and 3, have been observed in an unneutralized Mg ion plasma. The l=1 mode is observed to be down-shifted from the corresponding cyclotron frequency, while the l{>=}2 modes are found to be up-shifted. Good agreement is found between the observed down-shifts of the l=1 modes of Mg{sup +} and Mg{sup ++} and the predictions of a multi-species cold plasma theory. The down-shifts depend on the composition and size of the plasma, and the relative abundance of each ion can thus be determined.

  15. Electron cyclotron heating experiments on the DIII-D tokamak

    SciTech Connect

    Prater, R.; Austin, M.E.; Bernabei, S.

    1998-01-01

    Initial experiments on heating and current drive using second harmonic electron cyclotron heating (ECH) are being performed on the DIII-D tokamak using the new 110 GHz ECH system. Modulation of the ECH power in the frequency range 50 to 300 Hz and detection of the temperature perturbation by ECE diagnostics is used to validate the location of the heating. This technique also determines an upper bound on the width of the deposition profile. Analysis of electron cyclotron current drive indicates that up to 0.17 MA of central current is driven, resulting in a negative loop voltage near the axis.

  16. Fluid equations in the presence of electron cyclotron current drive

    SciTech Connect

    Jenkins, Thomas G.; Kruger, Scott E.

    2012-12-15

    Two-fluid equations, which include the physics imparted by an externally applied radiofrequency source near electron cyclotron resonance, are derived in their extended magnetohydrodynamic forms using the formalism of Hegna and Callen [Phys. Plasmas 16, 112501 (2009)]. The equations are compatible with the closed fluid/drift-kinetic model developed by Ramos [Phys. Plasmas 17, 082502 (2010); 18, 102506 (2011)] for fusion-relevant regimes with low collisionality and slow dynamics, and they facilitate the development of advanced computational models for electron cyclotron current drive-induced suppression of neoclassical tearing modes.

  17. Electron cyclotron current drive efficiency in general tokamak geometry

    SciTech Connect

    Lin-Liu, Y. R.; Chan, V. S.; Prater, R.

    2003-01-01

    Green's-function techniques are used to calculate electron cyclotron current drive (ECCD) efficiency in general tokamak geometry in the low-collisionality regime. Fully relativistic electron dynamics is employed in the theoretical formulation. The high-velocity collision model is used to model Coulomb collisions and a simplified quasi-linear rf diffusion operator describes wave-particle interactions. The approximate analytic solutions which are benchmarked with a widely used ECCD model, facilitate time-dependent simulations of tokamak operational scenarios using the non-inductive current drive of electron cyclotron waves.

  18. Carpenter in White Room

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Inside Hangar S at the White Room Facility at Cape Canaveral, Florida, Mercury astronaut M. Scott Carpenter examines the honeycomb protective material on the main pressure bulkhead (heat shield) of his Mercury capsule nicknamed 'Aurora 7.'

  19. Review: comparison of PET rubidium-82 with conventional SPECT myocardial perfusion imaging.

    PubMed

    Ghotbi, Adam A; Kjaer, Andreas; Hasbak, Philip

    2014-05-01

    Nuclear cardiology has for many years been focused on gamma camera technology. With ever improving cameras and software applications, this modality has developed into an important assessment tool for ischaemic heart disease. However, the development of new perfusion tracers has been scarce. While cardiac positron emission tomography (PET) so far largely has been limited to centres with on-site cyclotron, recent developments with generator produced perfusion tracers such as rubidium-82, as well as an increasing number of PET scanners installed, may enable a larger patient flow that may supersede that of gamma camera myocardial perfusion imaging. © 2013 The Authors. Clinical Physiology and Functional Imaging published by John Wiley & Sons Ltd on behalf of the Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  20. Ingredients: where pet food starts.

    PubMed

    Thompson, Angele

    2008-08-01

    Every clinician is asked "What should I feed my pet?" Understanding the ingredients in pet food is an important part of making the best recommendation. Pet food can be as simple as one ingredient or as complicated as containing more than 60 ingredients. Pet food and its ingredients are regulated by the Food and Drug Administration and state feed officials. Part of that regulation is the review and definition of ingredients. Existing ingredients change and new ingredients become available so the need for ingredient definitions grows. Ingredients for product formulations are chosen based on their nutrient content, digestibility, palatability, functionality, availability, and cost. As an example, a typical, nutritionally complete dry dog food with 42 ingredients is examined and the ingredients are discussed here. Safe, healthy pet food starts with safe ingredients sourced from well-monitored suppliers. The ultimate goal of both veterinarians and pet food manufacturers is the same--long healthy lives for dogs and cats.

  1. Progress reported in PET recycling

    SciTech Connect

    Not Available

    1989-06-01

    The Goodyear Polyester Division has demonstrated its ability to break down polyethylene terephthalate (PET) from recycled plastic soft drink bottles and remanufacture the material into PET suitable for containers. Most people are familiar with PET in the form of lightweight, shatter resistant beverage bottles. About 20 percent of these beverage containers currently are being recycled. The recycled PET is currently used in many applications such as carpeting, pillow stuffing, sleeping bag filling, insulation for water heaters and non-food containers. This is the first step of Goodyear's increased efforts to recycle PET from containers into a material suitable for food packing. The project is extremely complex, involving sophisticated understanding of the chemical reactions involved, PET production and the technology testing protocols necessary to design a process that addresses all the technical, safety, and regulatory concerns. The research conducted so far indicated that additional processing beyond simply cleaning the shredded material, called flake, will be required to assure a quality polymer.

  2. Read the Label First: Protect Your Pets

    EPA Pesticide Factsheets

    Learn about the importance of reading pet products labels before purchasing and using any product to insure the safety of your pets. Find tips for ways to reduce the changes of pets accessing potentially dangerous products.

  3. Performance of the beam chamber vacuum system of K = 500 cyclotron at Variable Energy Cyclotron Centre Kolkata.

    PubMed

    Pal, Gautam; DuttaGupta, Anjan; Chakrabarti, Alok

    2014-07-01

    The beam chamber of Variable Energy Cyclotron Centre, Kolkata's K = 500 superconducting cyclotron is pumped by liquid helium cooled cryopanel with liquid nitrogen cooled radiation shield. Performance of the vacuum system was evaluated by cooling the cryopanel assembly with liquid nitrogen and liquid helium. Direct measurement of beam chamber pressure is quite difficult because of space restrictions and the presence of high magnetic field. Pressure gauges were placed away from the beam chamber. The beam chamber pressure was evaluated using a Monte Carlo simulation software for vacuum system and compared with measurements. The details of the vacuum system, measurements, and estimation of pressure of the beam chamber are described in this paper.

  4. Extended suicide with a pet.

    PubMed

    Cooke, Brian K

    2013-01-01

    The combination of the killing of a pet and a suicide is a perplexing scenario that is largely unexplored in the literature. Many forensic psychiatrists and psychologists may be unaccustomed to considering the significance of the killing of a pet. The subject is important, however, because many people regard their pets as members of their family. A case is presented of a woman who killed her pet dog and herself by carbon monoxide poisoning. The purpose of this article is to provide an initial exploration of the topic of extended suicide with a pet. Forensic mental health evaluations may have a role in understanding the etiology of this event and in opining as to the culpability of individuals who attempt to or successfully kill a pet and then commit suicide. Because the scientific literature is lacking, there is a need to understand this act from a variety of perspectives. First, a social and anthropological perspective will be presented that summarizes the history of the practice of killing of one's pet, with a focus on the ancient Egyptians. A clinical context will examine what relationship animals have to mental illness. A vast body of existing scientific data showing the relevance of human attachment to pets suggests that conclusions from the phenomena of homicide-suicide and filicide-suicide are applicable to extended suicide with a pet. Finally, recommendations will be proposed for both clinical and forensic psychiatrists faced with similar cases.

  5. Comparison of short-lived medical isotopes activation by laser thin target induced protons and conventional cyclotron proton beams

    NASA Astrophysics Data System (ADS)

    Murray, Joseph; Dudnikova, Galina; Liu, Tung-Chang; Papadopoulos, Dennis; Sagdeev, Roald; Su, J. J.; UMD MicroPET Team

    2014-10-01

    Production diagnostic or therapeutic nuclear medicines are either by nuclear reactors or by ion accelerators. In general, diagnostic nuclear radioisotopes have a very short half-life varying from tens of minutes for PET tracers and few hours for SPECT tracers. Thus supplies of PET and SPECT radiotracers are limited by regional production facilities. For example 18F-fluorodeoxyglucose (FDG) is the most desired tracer for positron emission tomography because its 110 minutes half-life is sufficient long for transport from production facilities to nearby users. From nuclear activation to completing image taking must be done within 4 hours. Decentralized production of diagnostic radioisotopes will be idea to make high specific activity radiotracers available to researches and clinicians. 11 C, 13 N, 15 O and 18 F can be produced in the energy range from 10-20 MeV by protons. Protons of energies up to tens of MeV generated by intense laser interacting with hydrogen containing targets have been demonstrated by many groups in the past decade. We use 2D PIC code for proton acceleration, Geant4 Monte Carlo code for nuclei activation to compare the yields and specific activities of short-lived isotopes produced by cyclotron proton beams and laser driven protons.

  6. PET/CT-guided Interventions: Personnel Radiation Dose

    SciTech Connect

    Ryan, E. Ronan Thornton, Raymond; Sofocleous, Constantinos T.; Erinjeri, Joseph P.; Hsu, Meier; Quinn, Brian; Dauer, Lawrence T.; Solomon, Stephen B.

    2013-08-01

    PurposeTo quantify radiation exposure to the primary operator and staff during PET/CT-guided interventional procedures.MethodsIn this prospective study, 12 patients underwent PET/CT-guided interventions over a 6 month period. Radiation exposure was measured for the primary operator, the radiology technologist, and the nurse anesthetist by means of optically stimulated luminescence dosimeters. Radiation exposure was correlated with the procedure time and the use of in-room image guidance (CT fluoroscopy or ultrasound).ResultsThe median effective dose was 0.02 (range 0-0.13) mSv for the primary operator, 0.01 (range 0-0.05) mSv for the nurse anesthetist, and 0.02 (range 0-0.05) mSv for the radiology technologist. The median extremity dose equivalent for the operator was 0.05 (range 0-0.62) mSv. Radiation exposure correlated with procedure duration and with the use of in-room image guidance. The median operator effective dose for the procedure was 0.015 mSv when conventional biopsy mode CT was used, compared to 0.06 mSv for in-room image guidance, although this did not achieve statistical significance as a result of the small sample size (p = 0.06).ConclusionThe operator dose from PET/CT-guided procedures is not significantly different than typical doses from fluoroscopically guided procedures. The major determinant of radiation exposure to the operator from PET/CT-guided interventional procedures is time spent in close proximity to the patient.

  7. PET/CT-guided interventions: personnel radiation dose.

    PubMed

    Ryan, E Ronan; Thornton, Raymond; Sofocleous, Constantinos T; Erinjeri, Joseph P; Hsu, Meier; Quinn, Brian; Dauer, Lawrence T; Solomon, Stephen B

    2013-08-01

    To quantify radiation exposure to the primary operator and staff during PET/CT-guided interventional procedures. In this prospective study, 12 patients underwent PET/CT-guided interventions over a 6 month period. Radiation exposure was measured for the primary operator, the radiology technologist, and the nurse anesthetist by means of optically stimulated luminescence dosimeters. Radiation exposure was correlated with the procedure time and the use of in-room image guidance (CT fluoroscopy or ultrasound). The median effective dose was 0.02 (range 0-0.13) mSv for the primary operator, 0.01 (range 0-0.05) mSv for the nurse anesthetist, and 0.02 (range 0-0.05) mSv for the radiology technologist. The median extremity dose equivalent for the operator was 0.05 (range 0-0.62) mSv. Radiation exposure correlated with procedure duration and with the use of in-room image guidance. The median operator effective dose for the procedure was 0.015 mSv when conventional biopsy mode CT was used, compared to 0.06 mSv for in-room image guidance, although this did not achieve statistical significance as a result of the small sample size (p = 0.06). The operator dose from PET/CT-guided procedures is not significantly different than typical doses from fluoroscopically guided procedures. The major determinant of radiation exposure to the operator from PET/CT-guided interventional procedures is time spent in close proximity to the patient.

  8. Electron-cyclotron-heating experiments in tokamaks and stellarators

    SciTech Connect

    England, A.C.

    1983-01-01

    This paper reviews the application of high-frequency microwave radiation to plasma heating near the electron-cyclotron frequency in tokamaks and stellarators. Successful plasma heating by microwave power has been demonstrated in numerous experiments. Predicted future technological developments and current theoretical understanding suggest that a vigorous program in plasma heating will continue to yield promising results.

  9. Cyclotron Resonance of Electrons Trapped in a Microwave Cavity

    ERIC Educational Resources Information Center

    Elmore, W. C.

    1975-01-01

    Describes an experiment in which the free-electron cyclotron resonance of electrons trapped in a microwave cavity by a Penning trap is observed. The experiment constitutes an attractive alternative to one of the Gardner-Purcell variety. (Author/GS)

  10. Cyclotron maser emission of auroral Z mode radiation

    NASA Technical Reports Server (NTRS)

    Melrose, D. B.; Hewitt, R. G.; Dulk, G. A.

    1983-01-01

    Results are presented suggesting that loss cone driven cyclotron maser emission by upgoing electrons, closely analogous to auroral kilometric radiation (AKR), may be the mechanism behind the observed Z mode radiation. With this hypothesis, the lack of a strong correlation between the Z mode radiation and AKR is not surprising; the ray paths for the X mode and the Z mode are markedly different, with the former directed upward and the latter downward. In addition, it is expected that the generation of the Z mode will be favored only in regions where the ratio of the plasma frequency to the electron cyclotron frequency is greater than or approximately equal to 0.3, that is, where the X mode radiation is suppressed. If the fraction of the radiation generated that crosses the cyclotron layer is large, then the argument in favor of the loss cone driven cyclotron maser as the source of the observed Z mode radiation is a strong one. The spatial growth rates are fairly large in comparison with those for the X mode, and there seems to be little doubt that Z mode radiation should be generated under conditions that differ only slightly from those for the generation of X mode radiation in AKR.

  11. Digital control in LLRF system for CYCIAE-100 cyclotron

    NASA Astrophysics Data System (ADS)

    Yin, Zhiguo; Fu, Xiaoliang; Ji, Bin; Zhang, Tianjue; Wang, Chuan

    2016-05-01

    As a driven accelerator, the CYCIAE-100 cyclotron is designed by China Institute of Atomic Energy for the Beijing Radio Ion-beam Facility project. The cyclotron RF system is designed to use two RF power sources of 100 kW to drive two half-wavelength cavities respectively. Two Dee accelerating electrodes are kept separately from each other inside the cyclotron, while their accelerating voltages are maintained in phase by the efforts of LLRF control. An analog-digital hybrid LLRF system has been developed to achieve cavity tuning control, dee voltage amplitude and phase stabilization etc. The analog subsystems designs are focused on RF signal up/down conversion, tuning control, and dee voltage regulation. The digital system provides an RF signal source, aligns the cavity phases and maintains a Finite State Machine. The digital parts combine with the analog functions to provide the LLRF control. A brief system hardware introduction will be given in this paper, followed by the review of several major characteristics of the digital control in the 100 MeV cyclotron LLRF system. The commissioning is also introduced, and most of the optimization during the process was done by changing the digital parts.

  12. Nonlinear analysis of a relativistic beam-plasma cyclotron instability

    NASA Technical Reports Server (NTRS)

    Sprangle, P.; Vlahos, L.

    1986-01-01

    A self-consistent set of nonlinear and relativistic wave-particle equations are derived for a magnetized beam-plasma system interacting with electromagnetic cyclotron waves. In particular, the high-frequency cyclotron mode interacting with a streaming and gyrating electron beam within a background plasma is considered in some detail. This interaction mode may possibly find application as a high-power source of coherent short-wavelength radiation for laboratory devices. The background plasma, although passive, plays a central role in this mechanism by modifying the dielectric properties in which the magnetized electron beam propagates. For a particular choice of the transverse beam velocity (i.e., the speed of light divided by the relativistic mass factor), the interaction frequency equals the nonrelativistic electron cyclotron frequency times the relativistic mass factor. For this choice of transverse beam velocity the detrimental effects of a longitudinal beam velocity spread is virtually removed. Power conversion efficiencies in excess of 18 percent are both analytically calculated and obtained through numerical simulations of the wave-particle equations. The quality of the electron beam, degree of energy and pitch angle spread, and its effect on the beam-plasma cyclotron instability is studied.

  13. Parametric decay of an electromagnetic wave near electron cyclotron harmonics

    SciTech Connect

    Istomin, Y.N.; Leyser, T.B.

    1995-06-01

    A system of equations describing the nonlinear coupling of high frequency electron Bernstein (EB) and upper hybrid (UH) waves near harmonics of the electron cyclotron frequency with low frequency lower hybrid (LH) waves in a homogeneous, weakly magnetized, and weakly collisional plasma is derived. The EB and UH modes are described by a single second order equation, taking into account the interaction with low frequency density fluctuations. The ponderomotive force of the high frequency oscillations increases near the cyclotron harmonics due to the resonance with the electron motion. The obtained equations are used to study the parametric decay of an infinite wavelength electromagnetic pump wave into EB or UH waves and LH waves. The threshold electric fields are sufficiently low to be exceeded in high frequency ionospheric modification experiments. However, the instability cannot be excited for pump frequencies near the cyclotron harmonics. For the decay into EB waves, the resulting forbidden frequency range depends on the harmonic number in a power law manner, consistent with observations of stimulated electromagnetic emissions in ionospheric modification experiments. Further, for sufficiently high pump electric fields the instability is also suppressed, when the frequency mismatch around the eigenfrequencies at which the interaction can occur is of the order of the frequency separation between the EB and UH modes near the cyclotron harmonics. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  14. Cyclotron targetry for production of short-lived positron emitters

    SciTech Connect

    Schlyer, D.J.

    1989-01-01

    The basic concepts of cyclotron target design are presented along with the relevant practical experience gained by workers in this field over the years. Results are presented from several recent studies on the temperature and density distribution inside gas and liquid targets. 5 refs., 3 figs.

  15. An intense alpha ion source for INRS cyclotron

    SciTech Connect

    Chen Ling,-xing; Chen Mao-bei

    1985-10-01

    An intense PIG alpha source for INRS has been developed with low arc power and low gas flow. Generally, the alpha yield of the new source is twice as much as the old one. The structure and character of the source and its experimental results both on the bench and cyclotron are described in this paper.

  16. Electron cyclotron thruster new modeling results preparation for initial experiments

    NASA Technical Reports Server (NTRS)

    Hooper, E. Bickford

    1993-01-01

    The following topics are discussed: a whistler-based electron cyclotron resonance heating (ECRH) thruster; cross-field coupling in the helicon approximation; wave propagation; wave structure; plasma density; wave absorption; the electron distribution function; isothermal and adiabatic plasma flow; ECRH thruster modeling; a PIC code model; electron temperature; electron energy; and initial experimental tests. The discussion is presented in vugraph form.

  17. Maryland University sectored isochronous cyclotron (MUSIC): Progress report No. 35

    SciTech Connect

    Not Available

    1986-10-29

    Efforts are reported on the installation and checkout of cyclotron components which had been previously fabricated. Final integration of subsystems and major systems leading to internal beam tests is reported near completion. Progress is reported in relation to control system components, focus and steering magnet design, and rf system testing. (LEW)

  18. Cyclotron waves in a non-neutral plasma column

    SciTech Connect

    Dubin, Daniel H. E.

    2013-04-15

    A kinetic theory of linear electrostatic plasma waves with frequencies near the cyclotron frequency {Omega}{sub c{sub s}} of a given plasma species s is developed for a multispecies non-neutral plasma column with general radial density and electric field profiles. Terms in the perturbed distribution function up to O(1/{Omega}{sub c{sub s}{sup 2}}) are kept, as are the effects of finite cyclotron radius r{sub c} up to O(r{sub c}{sup 2}). At this order, the equilibrium distribution is not Maxwellian if the plasma temperature or rotation frequency is not uniform. For r{sub c}{yields}0, the theory reproduces cold-fluid theory and predicts surface cyclotron waves propagating azimuthally. For finite r{sub c}, the wave equation predicts that the surface wave couples to radially and azimuthally propagating Bernstein waves, at locations where the wave frequency equals the local upper hybrid frequency. The equation also predicts a second set of Bernstein waves that do not couple to the surface wave, and therefore have no effect on the external potential. The wave equation is solved both numerically and analytically in the WKB approximation, and analytic dispersion relations for the waves are obtained. The theory predicts that both types of Bernstein wave are damped at resonances, which are locations where the Doppler-shifted wave frequency matches the local cyclotron frequency as seen in the rotating frame.

  19. Ion cyclotron waves below the proton gyrofrequency in the magnetosphere

    SciTech Connect

    Gomberoff, L.; Molina, M.

    1985-02-01

    A numerical comparison between the linear theory of ion-cyclotron waves below the proton gyrofrequency and the data recorded on board the GEOS satellites is made. It is shown that the experimental data are in good agreement with the theory.

  20. Status of ECR (Electron Cyclotron Resonance) source technology

    SciTech Connect

    Lyneis, C.M.

    1987-03-01

    ECR (Electron Cyclotron Resonance) ion sources are now in widespread use for the production of high quality multiply charged ion beams for accelerators and atomic physics experiments, and industrial applications are being explored. Several general characteristics of ECR sources explain their widespread acceptance. For use with cyclotrons which require CW multiply charged ion beams, the ECR source has many advantages over heavy-ion PIG sources. Most important is the ability to produce higher charge states at useful intensities for nuclear physics experiments. Since the maximum energy set by the bending limit of a cyclotron scales with the square of the charge state, the installation of ECR sources on cyclotrons has provided an economical path to raise the energy. Another characteristic of ECR sources is that the discharge is produced without cathodes, so that only the source material injected into an ECR source is consumed. As a result, ECR sources can be operated continuously for periods of weeks without interruption. Techniques have been developed in the last few years, which allow these sources to produce beams from solid materials. The beam emittance from ECR sources is in the range of 50 to 200 ..pi.. mm-mrad at 10 kV. The principles of ECR ion sources are discussed, and present and future ECR sources are reviewed.

  1. Silicon meets cyclotron: muon spin resonance of organosilicon radicals.

    PubMed

    West, Robert; Samedov, Kerim; Percival, Paul W

    2014-07-21

    Muons, generated at a high-powered cyclotron, can capture electrons to form muonium atoms. Muon spin resonance spectra can be recorded for organosilyl radicals obtained by addition of muonium atoms to silylenes and silenes. We present a brief summary of progress in this new area since the first such experiments were reported in 2008.

  2. Axial injection and phase selection studies of the MSU K1200 cyclotron

    SciTech Connect

    Bailey, J.D. |

    1995-12-31

    Axial injection into a cyclotron through its iron yoke, a spiral inflector, and the central region electrodes couples the transverse coordinates of motion together, as well as with the longitudinal coordinates. The phase slits in the K1200 cyclotron use the r - {phi} correlations inherent in acceleration of ions in a cyclotron. Computer simulations of injection into and acceleration within the K1200 cyclotron encompassing the four transverse dimensions together with time were used to determine beam matching requirements for injection and phase selection in the K1200 cyclotron. The simulations were compared with measurements using an external timing detector.

  3. Progress in research, April 1, 1991--March 31, 1992, Texas A and M University Cyclotron Institute

    SciTech Connect

    1992-06-01

    Reports on research activities, facility operation, and facility development of the Texas A and M Cyclotron Institute for the period 1 April 1991--31 March 1992 are presented in this document. During the report period, the ECR-K500 Cyclotron Combination operated 4,377 hours. Of this time, 832 hours was used for beam development, 942 hours was used for tuning and optics, and the beam was available for experiments 2,603 hours. This time was used in a variety of studies including elastic and inelastic scattering, projectile break-up, the production and decay of giant resonances, fusion and fission dynamics, intermediate mass fragment emission, e{sup +}e{sup {minus}} production and molecular dissociation. In addition, studies of surfaces and metastable states in highly charged ions were carried out using the ECR source. Completion of two 19-element BaF{sub 2} arrays, of the focal plane detector for the proton spectrometer and installation of the HiLi multidetector have provided significant new experimental capabilities which have been further enhanced by major additions to the computer network. Progress on the Mass Achromat Recoil Spectrometer (MARS) is such that first operation of that device should occur this summer. Funding for installation of the MDM spectrometer was obtained at the beginning of this year. As this report is being completed, the Enge Split Pole Spectrometer is being disassembled and removed to make room for the MDM spectrometer. The split-pole will be shipped to CEBAF for use in experiments there. Installation of the MDM should be completed within the next year. Also expected in the next year is a 92 element plastic-CsI ball.

  4. VASIMR Simulation Studies of Auroral Ion Cyclotron Heating

    NASA Astrophysics Data System (ADS)

    Brukardt, M.; Bering, E. A.; Chang-Diaz, F. R.; Squire, J. P.; Glover, T. W.; Jacobs0n, V. T.; McCaskill, G. E.; Cassady, L. D.; Bengtson, R. D.

    2006-12-01

    Plasma physics has found an increasing range of practical industrial applications, including the development of electric spacecraft propulsion systems. One of these systems, the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) engine, both applies and can be used to simulate several important physical processes occurring in the magnetosphere. These processes include the mechanisms involved in the ion acceleration and heating that occur in the Birkeland currents of an auroral arc system. Auroral current region processes that are simulated in VASIMR include lower hybrid heating, parallel electric field acceleration and ion cyclotron acceleration. This paper will focus on using a physics demonstration model VASIMR to study ion cyclotron heating (ICRH) similar to auroral zone processes. The production of upward moving `ion conics' and ion heating are significant features in auroral processes. It is believed that ion cyclotron heating plays a role in these processes, but laboratory simulation of these auroral effects is difficult owing to the fact that the ions involved only pass through the acceleration region once. In the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) we have successfully simulated these effects. The current configuration of the VASIMR uses a helicon antenna with up to 20 kW of power to generate plasma then uses an RF booster stage that uses left hand polarized slow mode waves launched from the high field side of the resonance. The current setup for the booster uses 2 to 4 MHz waves with up to 20 kW of power. This is similar to the ion cyclotron heating in tokamaks, but in the VASIMR the ions only pass through the resonance region once. The rapid absorption of ion cyclotron waves has been predicted in recent theoretical studies. These theoretical predictions have been confirmed with several independent measurements. The ion cyclotron resonance heating (ICRH) shows a substantial increase in ion velocity. Pitch angle distribution studies

  5. Wash room, bunkhouse, first floor interior. This room is a ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Wash room, bunkhouse, first floor interior. This room is a screened porch with the original sinks extant. Light and ventilation was borrowed from the wash room into the toilets and bathing rooms. - Sespe Ranch, Bunkhouse, 2896 Telegraph Road, Fillmore, Ventura County, CA

  6. Staff corridor (room 206, representing rooms 301, 305, 401, 405, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Staff corridor (room 206, representing rooms 301, 305, 401, 405, 501, and 505), looking south towards the staff corridor vestibule (room 206A, representing rooms 305A, 405A, and 505A). - California State Office Building No. 1, 915 Capitol Mall, Sacramento, Sacramento County, CA

  7. Use of cyclotrons in medical research: Past, present, future

    NASA Astrophysics Data System (ADS)

    Smathers, James B.; Myers, Lee T.

    1985-05-01

    The use of cyclotrons in medical research started in the late 1930s with the most prominent use being neutron irradiation in cancer therapy. Due to a lack of understanding of the biological effect of neutrons, the results were less than encouraging. In the 1940s and 1950s, small cyclotrons were used for isotope production and in the mid 60s, the biological effect of neutrons was more thoroughly studied, with the result that a second trial of neutron therapy was initiated at Hammersmith Hospital, England. Concurrent with this, work on the use of high energy charged particles, initially protons and alphas, was initiated in Sweden and Russia and at Harvard and Berkeley. The English success in neutron therapy led to some pilot studies in the USA using physics cyclotrons of various energies and targets. These results in turn lead to the present series of machines presently being installed at M.D. Anderson Hospital (42 MeV), Seattle (50 MeV) and UCLA (46 MeV). The future probably bodes well for cyclotrons at the two extremes of the energy range. For nuclear medicine the shift is away from the use of multiple isotopes, which requires a large range of particles and energies to 11C, 13N, 15O, and 18F, which can be incorporated in metabolic specific compounds and be made with small 8-10 MeV p+ "table top" cyclotrons. For tumor therapy machines of 60 MeV or so will probably be the choice for the future, as they allow the treatment of deep seated tumors with neutrons and the charged particles have sufficient range to allow the treatment of ocular tumors.

  8. Dynamic regimes of cyclotron instability in the afterglow mode of minimum-B electron cyclotron resonance ion source plasma

    NASA Astrophysics Data System (ADS)

    Mansfeld, D.; Izotov, I.; Skalyga, V.; Tarvainen, O.; Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.

    2016-04-01

    The paper is concerned with the dynamic regimes of cyclotron instabilities in non-equilibrium plasma of a minimum-B electron cyclotron resonance ion source operated in pulsed mode. The instability appears in decaying ion source plasma shortly (1-10 ms) after switching off the microwave radiation of the klystron, and manifests itself in the form of powerful pulses of electromagnetic emission associated with precipitation of high-energy electrons along the magnetic field lines. Recently it was shown that this plasma instability causes perturbations of the extracted ion current, which limits the performance of the ion source and generates strong bursts of bremsstrahlung emission. In this article we present time-resolved diagnostics of electromagnetic emission bursts related to cyclotron instability in the decaying plasma. The temporal resolution is sufficient to study the fine structure of the dynamic spectra of the electromagnetic emission at different operating regimes of the ion source. It was found that at different values of magnetic field and heating power the dynamic spectra demonstrate common features: Decreasing frequency from burst to burst and an always falling tone during a single burst of instability. The analysis has shown that the instability is driven by the resonant interaction of hot electrons, distributed between the electron cyclotron resonance (ECR) zone and the trap center, with slow extraordinary wave propagation quasi-parallel with respect to the external magnetic field.

  9. Positron emission tomography (PET) and macromolecular delivery in vivo.

    PubMed

    Strauss, Ludwig G; Dimitrakopoulou-Strauss, Antonia

    2009-01-01

    Positron emission tomography (PET) examinations with F-18-fluorodeoxyglucose (FDG) provide detailed information about the glucose-like metabolism in tissue. It is generally accepted that FDG reflects the viability of tumour cells. The kinetics of FDG is modulated by several genes, besides the glucose transporters and hexokinases. Additional specific information can be obtained non-invasively by using other tracers specific for cell membrane receptors. PET studies with radiolabelled peptides have emerged as a new diagnostic tool for imaging of certain tumour entities, like neuroendocrine tumours (NETs) and gastrointestinal stromal tumours (GISTs). This application is based on certain properties of these tumours, like the overexpression of somatostatin receptors, which can be visualised by somatostatin analogues, like 1,4,7,10-tetraazacyclododecane-N, N', N'', N'''-tetraacetic-acid-D: -Phe1-Tyr3 octreotide (DOTATOC) in NET. The overexpression of gastrin-releasing peptide (GRP) receptors can be visualised in GIST by using bombesin analogues. These peptides can be labelled by (68)Ga, which is a generator product and therefore more cost-effective than cyclotron products. (68)Ga-DOTATOC is a peptide that binds primarily to somatostatin receptor subtype 2 (SSTR2). PET studies with (68)Ga-DOTATOC are performed in patients with NET and some other tumours. (68)Ga-BZH3 ((68)Ga-Bombesin) is a peptide that binds to at least three bombesin receptor subtypes: the BB1 (also known as neuromedin B), the BB2 (also known as GRP), and the BB3 (bombesin receptor subtype 3). This bombesin analogue, (68)Ga-BZH3, is used in patients with GIST.

  10. Get Set for a Pet.

    ERIC Educational Resources Information Center

    DeRosa, Bill

    1987-01-01

    Describes a game in which students deal with some of the factors involved in being a responsible pet owner. Includes a list of the materials needed for the game and provides the game board and the game pieces, along with a fold-out poster about neutering and spaying pets. (TW)

  11. Meet the Alpha-Pets.

    ERIC Educational Resources Information Center

    Zitlaw, Jo Ann Bruce; Frank, Cheryl Standish

    1985-01-01

    "Alpha-Pets" are the focal point of an integrated, multidisciplinary curriculum. Each pet is featured for a week in a vocabulary-rich story and introduces related activities beginning with the featured letter, such as the four food groups during Freddie Fish's week or universe during Ulysses Unicorn's week. (MT)

  12. In situ synthesis of manganese oxides on polyester fiber for formaldehyde decomposition at room temperature

    NASA Astrophysics Data System (ADS)

    Wang, Jinlong; Yunus, Rizwangul; Li, Jinge; Li, Peilin; Zhang, Pengyi; Kim, Jeonghyun

    2015-12-01

    Removal of low-level formaldehyde (HCHO) is of great interest for indoor air quality improvement. Supported materials especially those with low air pressure drop are of necessity for air purification. Manganese oxides (MnOx) was in situ deposited on the surface of fibers of a non-woven fabric made of polyethylene terephthalate (PET). As-synthesized MnOx/PET were characterized by SEM, XRD, TEM, ATR-FTIR and XPS analysis. The growth of MnOx layer on PET is thought to start with partial hydrolysis of PET, followed by surface oxidation by KMnO4 and then surface-deposition of MnOx particles from the bulk phase. The MnOx particles assembled with nanosheets were uniformly coated on the PET fibers. MnOx/PET showed good activity for HCHO decomposition at room temperature which followed the Mars-van Krevelen mechanism. The removal of HCHO was kept over 94% after 10 h continuous reaction under the conditions of inlet HCHO concentration ∼0.6 mg/m3, space velocity ∼17,000 h-1 and relative humidity∼50%. This research provides a facile method to deposit active MnOx onto polymers with low air resistance, and composite MnOx/PET material is promising for indoor air purification.

  13. Respiratory motion correction of PET using MR-constrained PET-PET registration.

    PubMed

    Balfour, Daniel R; Marsden, Paul K; Polycarpou, Irene; Kolbitsch, Christoph; King, Andrew P

    2015-09-18

    Respiratory motion in positron emission tomography (PET) is an unavoidable source of error in the measurement of tracer uptake, lesion position and lesion size. The introduction of PET-MR dual modality scanners opens a new avenue for addressing this issue. Motion models offer a way to estimate motion using a reduced number of parameters. This can be beneficial for estimating motion from PET, which can otherwise be difficult due to the high level of noise of the data. We propose a novel technique that makes use of a respiratory motion model, formed from initial MR scan data. The motion model is used to constrain PET-PET registrations between a reference PET gate and the gates to be corrected. For evaluation, PET with added FDG-avid lesions was simulated from real, segmented, ultrashort echo time MR data obtained from four volunteers. Respiratory motion was included in the simulations using motion fields derived from real dynamic 3D MR volumes obtained from the same volunteers. Performance was compared to an MR-derived motion model driven method (which requires constant use of the MR scanner) and to unconstrained PET-PET registration of the PET gates. Without motion correction, a median drop in uncorrected lesion [Formula: see text] intensity to [Formula: see text] and an increase in median head-foot lesion width, specified by a minimum bounding box, to [Formula: see text] was observed relative to the corresponding measures in motion-free simulations. The proposed method corrected these values to [Formula: see text] ([Formula: see text]) and [Formula: see text] ([Formula: see text]) respectively, with notably improved performance close to the diaphragm and in the liver. Median lesion displacement across all lesions was observed to be [Formula: see text] without motion correction, which was reduced to [Formula: see text] ([Formula: see text]) with motion correction. This paper presents a novel technique for respiratory motion correction of PET data in PET-MR imaging

  14. Supplements for exotic pets.

    PubMed

    Mejia-Fava, Johanna; Colitz, Carmen M H

    2014-09-01

    The use of supplements has become commonplace in an effort to complement traditional therapy and as part of long-term preventive health plans. This article discusses historical and present uses of antioxidants, vitamins, and herbs. By complementing traditional medicine with holistic and alternative nutrition and supplements, the overall health and wellness of exotic pets can be enhanced and balanced. Further research is needed for understanding the strengths and uses of supplements in exotic species. Going back to the animals' origin and roots bring clinicians closer to nature and its healing powers. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Caution: Reptile pets shuttle grasshopper allergy and asthma into homes.

    PubMed

    Jensen-Jarolim, Erika; Pali-Schöll, Isabella; Jensen, Sebastian A F; Robibaro, Bruno; Kinaciyan, Tamar

    2015-01-01

    The numbers of reptiles in homes has at least doubled in the last decade in Europe and the USA. Reptile purchases are increasingly triggered by the attempt to avoid potentially allergenic fur pets like dogs and cats. Consequently, reptiles are today regarded as surrogate pets initiating a closer relationship with the owner than ever previously observed. Reptile pets are mostly fed with insects, especially grasshoppers and/or locusts, which are sources for aggressive airborne allergens, best known from occupational insect breeder allergies. Exposure in homes thus introduces a new form of domestic allergy to grasshoppers and related insects. Accordingly, an 8-year old boy developed severe bronchial hypersensitivity and asthma within 4 months after purchase of a bearded dragon. The reptile was held in the living room and regularly fed with living grasshoppers. In the absence of a serological allergy diagnosis test, an IgE immunoblot on grasshopper extract and prick-to-prick test confirmed specific sensitization to grasshoppers. After 4 years of allergen avoidance, a single respiratory exposure was sufficient to trigger a severe asthma attack again in the patient. Based on literature review and the clinical example we conclude that reptile keeping is associated with introducing potent insect allergens into home environments. Patient interviews during diagnostic procedure should therefore by default include the question about reptile pets in homes.

  16. Recent development in PET instrumentation.

    PubMed

    Peng, By Hao; Levin, Craig S

    2010-09-01

    Positron emission tomography (PET) is used in the clinic and in vivo small animal research to study molecular processes associated with diseases such as cancer, heart disease, and neurological disorders, and to guide the discovery and development of new treatments. This paper reviews current challenges of advancing PET technology and some of newly developed PET detectors and systems. The paper focuses on four aspects of PET instrumentation: high photon detection sensitivity; improved spatial resolution; depth-of-interaction (DOI) resolution and time-of-flight (TOF). Improved system geometry, novel non-scintillator based detectors, and tapered scintillation crystal arrays are able to enhance the photon detection sensitivity of a PET system. Several challenges for achieving high resolution with standard scintillator-based PET detectors are discussed. Novel detectors with 3-D positioning capability have great potential to be deployed in PET for achieving spatial resolution better than 1 mm, such as cadmium-zinc-telluride (CZT) and position-sensitive avalanche photodiodes (PSAPDs). DOI capability enables a PET system to mitigate parallax error and achieve uniform spatial resolution across the field-of-view (FOV). Six common DOI designs, as well as advantages and limitations of each design, are discussed. The availability of fast scintillation crystals such as LaBr(3), and the silicon photomultiplier (SiPM) greatly advances TOF-PET development. Recent instrumentation and initial results of clinical trials are briefly presented. If successful, these technology advances, together with new probe molecules, will substantially enhance the molecular sensitivity of PET and thus increase its role in preclinical and clinical research as well as evaluating and managing disease in the clinic.

  17. Recent Developments in PET Instrumentation

    PubMed Central

    Peng, Hao; Levin, Craig S.

    2013-01-01

    Positron emission tomography (PET) is used in the clinic and in vivo small animal research to study molecular processes associated with diseases such as cancer, heart disease, and neurological disorders, and to guide the discovery and development of new treatments. This paper reviews current challenges of advancing PET technology and some of newly developed PET detectors and systems. The paper focuses on four aspects of PET instrumentation: high photon detection sensitivity; improved spatial resolution; depth-of-interaction (DOI) resolution and time-of-flight (TOF). Improved system geometry, novel non-scintillator based detectors, and tapered scintillation crystal arrays are able to enhance the photon detection sensitivity of a PET system. Several challenges for achieving high resolution with standard scintillator-based PET detectors are discussed. Novel detectors with 3-D positioning capability have great potential to be deployed in PET for achieving spatial resolution better than 1 mm, such as cadmium-zinc-telluride (CZT) and position-sensitive avalanche photodiodes (PSAPDs). DOI capability enables a PET system to mitigate parallax error and achieve uniform spatial resolution across the field-of-view (FOV). Six common DOI designs, as well as advantages and limitations of each design, are discussed. The availability of fast scintillation crystals such as LaBr3, and the silicon photomultiplier (SiPM) greatly advances TOF-PET development. Recent instrumentation and initial results of clinical trials are briefly presented. If successful, these technology advances, together with new probe molecules, will substantially enhance the molecular sensitivity of PET and thus increase its role in preclinical and clinical research as well as evaluating and managing disease in the clinic. PMID:20497121

  18. Computer Room Fire Protection.

    ERIC Educational Resources Information Center

    Price, Bennett J.

    1990-01-01

    Notes that economic and service factors may dictate that special fire protection measures be given to computer rooms. The discussion covers emergency planning, various types of fire detection and suppression systems, and future options, with particular attention to halon and possible halon replacements. A list of suggested readings is provided.…

  19. Romper Room: An Analysis.

    ERIC Educational Resources Information Center

    Barcus, F. Earle

    Video-tape recordings of the Romper Room program carried by TV station WEMT, Bangor, Maine were examined in an attempt to classify and describe various program elements. Tapes were monitored to obtain descriptions of program activities and to focus on some of the commercial announcements. For the total week studied, more than one-third (36%) of…

  20. Visiting Room 501

    ERIC Educational Resources Information Center

    Curwen, Margaret Sauceda

    2009-01-01

    Students in Room 501 were exploring and negotiating their lives as transnational citizens. In a globalized world of instantaneous information and communication, Latino students are shaping, morphing, and evolving into a new generation. This study highlights one group of students who were aspiring toward middle class, which is not the typical…

  1. Locker-Room Talk.

    ERIC Educational Resources Information Center

    Lowe, Jason; Noyes, Brad

    1999-01-01

    Explains how proper athletic facility locker-room design can save time and money. Design factors that address who will be using the facility are discussed as are user requirements, such as preparation areas, total storage area per user, grooming area, and security areas. Final comments address maintenance and operations issues. (GR)

  2. Technology Equipment Rooms.

    ERIC Educational Resources Information Center

    Day, C. William

    2001-01-01

    Examines telecommunications equipment room design features that allow for growth and can accommodate numerous equipment replacements and upgrades with minimal service disruption and with minimal cost. Considerations involving the central hub, power and lighting needs, air conditioning, and fire protection are discussed. (GR)

  3. Rooms with a View

    ERIC Educational Resources Information Center

    Hourihan, Peter; Berry, Millard, III

    2006-01-01

    When well-designed and integrated into a campus living or learning space, an atrium can function as the heart and spirit of a building, connecting interior rooms and public spaces with the outside environment. However, schools and universities should seek technological and HVAC solutions that maximize energy efficiency. This article discusses how…

  4. Rooms with a View

    ERIC Educational Resources Information Center

    Hourihan, Peter; Berry, Millard, III

    2006-01-01

    When well-designed and integrated into a campus living or learning space, an atrium can function as the heart and spirit of a building, connecting interior rooms and public spaces with the outside environment. However, schools and universities should seek technological and HVAC solutions that maximize energy efficiency. This article discusses how…

  5. Technology Equipment Rooms.

    ERIC Educational Resources Information Center

    Day, C. William

    2001-01-01

    Examines telecommunications equipment room design features that allow for growth and can accommodate numerous equipment replacements and upgrades with minimal service disruption and with minimal cost. Considerations involving the central hub, power and lighting needs, air conditioning, and fire protection are discussed. (GR)

  6. High Power Cyclotrons for Accelerator Driven System (ADS)

    NASA Astrophysics Data System (ADS)

    Calabretta, Luciano

    2012-03-01

    We present an accelerator module based on a injector cyclotron and a Superconducting Ring Cyclotron (SRC) able to accelerate H2+ molecules. H2+ molecules are extracted from the SRC stripping the binding electron by a thin carbon foil. The SRC will be able to deliver proton beam with maximum energy of 800 MeV and a maximum power of 8 MW. This module is forecasted for the DAEdALUS (Decay At rest Experiment for δcp At Laboratory for Underground Science) experiment, which is a neutrino experiment proposed by groups of MIT and Columbia University. Extensive beam dynamics studies have been carrying out in the last two years and proved the feasibility of the design. The use of H2+ molecules beam has three main advantages: 1) it reduces the space charge effects, 2) because of stripping extraction, it simplifies the extraction process w.r.t. single turn extraction and 3) we can extract more than one beam out of one SRC. A suitable upgraded version of the cyclotron module able to deliver up to 10MW beam is proposed to drive ADS. The accelerator system which is presented, consists of having three accelerators modules. Each SRC is equipped with two extraction systems delivering two beams each one with a power up to 5 MW. Each accelerator module, feeds both the two reactors at the same time. The three accelerators modules assure to maintain continuity in functioning of the two reactors. In normal operation, all the three accelerators module will deliver 6.6 MW each one, just in case one of the three accelerator module will be off, due to a fault or maintenance, the other two modules are pushed at maximum power of 10 MW. The superconducting magnetic sector of the SRC, as well as the normal conducting sector of the injector cyclotron, is calculated with the TOSCA module of OPERA3D. Here the main features of the injector cyclotron, of the SRC and the beam dynamic along the cyclotrons are presented.

  7. Electromagnetic ion cyclotron resonance heating in the VASIMR

    NASA Astrophysics Data System (ADS)

    Bering, E. A.; Chang-Díaz, F. R.; Squire, J. P.; Brukardt, M.; Glover, T. W.; Bengtson, R. D.; Jacobson, V. T.; McCaskill, G. E.; Cassady, L.

    2008-07-01

    Plasma physics has found an increasing range of practical industrial applications, including the development of electric spacecraft propulsion systems. One of these systems, the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) engine, both applies several important physical processes occurring in the magnetosphere. These processes include the mechanisms involved in the ion acceleration and heating that occur in the Birkeland currents of an auroral arc system. Auroral current region processes that are simulated in VASIMR include lower hybrid heating, parallel electric field acceleration and ion cyclotron acceleration. This paper will focus on using a physics demonstration model VASIMR to study ion cyclotron resonance heating (ICRH). The major purpose is to provide a VASIMR status report to the COSPAR community. The VASIMR uses a helicon antenna with up to 20 kW of power to generate plasma. This plasma is energized by an RF booster stage that uses left hand polarized slow mode waves launched from the high field side of the ion cyclotron resonance. The present setup for the booster uses 2 4 MHz waves with up to 20 kW of power. This process is similar to the ion cyclotron heating in tokamaks, but in the VASIMR the ions only pass through the resonance region once. The rapid absorption of ion cyclotron waves has been predicted in recent theoretical studies. These theoretical predictions have been supported with several independent measurements in this paper. The ICRH produced a substantial increase in ion velocity. Pitch angle distribution studies show that this increase takes place in the resonance region where the ion cyclotron frequency is equal to the frequency on the injected RF waves. Downstream of the resonance region the perpendicular velocity boost should be converted to axial flow velocity through the conservation of the first adiabatic invariant as the magnetic field decreases in the exhaust region of the VASIMR. In deuterium plasma, 80% efficient

  8. PET Imaging of Angiogenesis

    PubMed Central

    Niu, Gang; Chen, Xiaoyuan

    2009-01-01

    Synopsis Angiogenesis is a highly-controlled process that is dependent on the intricate balance of both promoting and inhibiting factors, involved in various physiological and pathological processes. A comprehensive understanding of the molecular mechanisms that regulate angiogenesis has resulted in the design of new and more effective therapeutic strategies. Due to insufficient sensitivity to detect therapeutic effects by using standard clinical endpoints or by looking for physiological improvement, a multitude of imaging techniques have been developed to assess tissue vasculature on the structural, functional and molecular level. Imaging is expected to provide a novel approach to noninvasively monitor angiogenesis, to optimize the dose of new antiangiogenic agents and to assess the efficacy of therapies directed at modulation of the angiogenic process. All these methods have been successfully used preclinically and will hopefully aid in antiangiogenic drug development in animal studies. In this review article, the application of PET in angiogenesis imaging at both functional and molecular level will be discussed. For PET imaging of angiogenesis related molecular markers, we emphasize integrin αvβ3, VEGF/VEGFR, and MMPs. PMID:20046926

  9. 7 CFR 502.11 - Pets.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Pets. 502.11 Section 502.11 Agriculture Regulations of... CONDUCT ON BELTSVILLE AGRICULTURE RESEARCH CENTER PROPERTY, BELTSVILLE, MARYLAND § 502.11 Pets. Pets... vaccinations. Pets that are the property of employees residing on BARC must be up to date on their vaccinations...

  10. 36 CFR § 1002.15 - Pets.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Pets. § 1002.15 Section Â... RECREATION § 1002.15 Pets. (a) The following are prohibited: (1) Possessing a pet in a public building... closed to the possession of pets by the Board. This paragraph shall not apply to guide dogs accompanying...

  11. 7 CFR 502.11 - Pets.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Pets. 502.11 Section 502.11 Agriculture Regulations of... CONDUCT ON BELTSVILLE AGRICULTURE RESEARCH CENTER PROPERTY, BELTSVILLE, MARYLAND § 502.11 Pets. Pets... vaccinations. Pets that are the property of employees residing on BARC must be up to date on their vaccinations...

  12. 7 CFR 502.11 - Pets.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Pets. 502.11 Section 502.11 Agriculture Regulations of... CONDUCT ON BELTSVILLE AGRICULTURE RESEARCH CENTER PROPERTY, BELTSVILLE, MARYLAND § 502.11 Pets. Pets... vaccinations. Pets that are the property of employees residing on BARC must be up to date on their vaccinations...

  13. 36 CFR 1002.15 - Pets.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Pets. 1002.15 Section 1002.15....15 Pets. (a) The following are prohibited: (1) Possessing a pet in a public building, public... possession of pets by the Board. This paragraph shall not apply to guide dogs accompanying visually impaired...

  14. 36 CFR 1002.15 - Pets.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Pets. 1002.15 Section 1002.15....15 Pets. (a) The following are prohibited: (1) Possessing a pet in a public building, public... possession of pets by the Board. This paragraph shall not apply to guide dogs accompanying visually impaired...

  15. 36 CFR 2.15 - Pets.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Pets. 2.15 Section 2.15 Parks... USE AND RECREATION § 2.15 Pets. (a) The following are prohibited: (1) Possessing a pet in a public... area closed to the possession of pets by the superintendent. This subparagraph shall not apply to guide...

  16. 7 CFR 502.11 - Pets.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Pets. 502.11 Section 502.11 Agriculture Regulations of... CONDUCT ON BELTSVILLE AGRICULTURE RESEARCH CENTER PROPERTY, BELTSVILLE, MARYLAND § 502.11 Pets. Pets... vaccinations. Pets that are the property of employees residing on BARC must be up to date on their vaccinations...

  17. 7 CFR 502.11 - Pets.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Pets. 502.11 Section 502.11 Agriculture Regulations of... CONDUCT ON BELTSVILLE AGRICULTURE RESEARCH CENTER PROPERTY, BELTSVILLE, MARYLAND § 502.11 Pets. Pets... vaccinations. Pets that are the property of employees residing on BARC must be up to date on their vaccinations...

  18. Pet food recalls and pet food contaminants in small animals.

    PubMed

    Bischoff, Karyn; Rumbeiha, Wilson K

    2012-03-01

    Most pet foods are safe, but incidents of chemical contamination occur and lead to illness and recalls. There were 11 major pet food recalls in the United States between 1996 and 2010 that were due to chemical contaminants or misformulations: 3 aflatoxin, 3 excess vitamin D3, 1 excess methionine, 3 inadequate thiamine, and 1 adulteration with melamine and related compounds and an additional 2 warnings concerning a Fanconilike renal syndrome in dogs after ingesting large amounts of chicken jerky treat products. This article describes clinical findings and treatment of animals exposed to the most common pet food contaminants.

  19. Positron emission tomography (PET) for cholangiocarcinoma

    PubMed Central

    Breitenstein, S.; Apestegui, C.

    2008-01-01

    The combination of positron emission tomography (PET) with computed tomography (PET-CT) provides simultaneous metabolic and anatomic information on tumors in the same imaging session. Sensitivity of PET/PET-CT is higher for intrahepatic (>90%) than for extrahepatic cholangiocarcinoma (CCA) (about 60%). The detection rate of distant metastasis is 100%. PET, and particularly PET-CT, improves the results and impacts on the oncological management in CCA compared with other imaging modalities. Therefore, PET-CT is recommended in the preoperative staging of intrahepatic (strength of recommendation: moderate) and extrahepatic (strength of recommendation: low) CCA. PMID:18773069

  20. [Application of the PET for Radiation Therapy].

    PubMed

    Mitsumoto, Takuya; Tohyama, Naoki; Koyama, Kazuya; Kodama, Takashi; Kotaka, Kikuo; Hatano, Kazuo

    2015-01-01

    Because radiotherapy is local treatment, it is very important to define target volume and critical organs based on accurate lesion area. The PET using an index such as the SUV is quantifiable noninvasively with information of the molecular biology for individual case/lesion. In particular, PET with 18F-fluorodeoxyglucose (FDG-PET) has been used for the diagnosis and treatment evaluation of various tumors. The radiation therapy based on PET enables the treatment planning that reflected metabolic activity of the lesion. The PET produce an error by various factors, therefore, we must handle the PET image in consideration of this error when apply PET to radiotherapy.

  1. PET-Based Thoracic Radiation Oncology.

    PubMed

    Simone, Charles B; Houshmand, Sina; Kalbasi, Anusha; Salavati, Ali; Alavi, Abass

    2016-07-01

    Fluorodeoxyglucose-PET is increasingly being integrated into multiple aspects of oncology. PET/computed tomography (PET/CT) has become especially important in radiation oncology. With the increasing use of advanced techniques like intensity-modulated radiation therapy and proton therapy, PET/CT scans have played critical roles in the target delineation of tumors for radiation oncologists delivering conformal treatment techniques. Use of PET/CT is well established in lung cancer and several other thoracic malignancies. This article details the current uses of PET/CT in thoracic radiation oncology with a focus on lung cancer and describes expected future roles of PET/CT for thoracic tumors.

  2. Understanding regulations affecting pet foods.

    PubMed

    Dzanis, David A

    2008-08-01

    In the United States, pet foods are subject to regulation at both the federal and the state levels. The US Food and Drug Administration has jurisdiction over all animal feeds (including pet foods, treats, chews, supplements, and ingredients) in interstate commerce, which includes imported products. Many states adopt and enforce at least in part the Association of American Feed Control Officials Model Bill and Model Regulations for Pet Food and Specialty Pet Food. Thus, all pet foods in multi-state distribution are subject to a host of labeling requirements covering aspects such as product names, ingredient lists, nutrient content guarantees, and nutritional adequacy statements. Ingredients must be GRAS (generally recognized as safe) substances, approved food additives, or defined by Association of American Feed Control Officials for their intended use. Pet food labels may not bear claims that are false or misleading or that state or imply use for the treatment or prevention of disease. Pet foods that are found to be adulterated or misbranded may be subject to seizure or other enforcement actions.

  3. Pet ownership and physical health.

    PubMed

    Matchock, Robert L

    2015-09-01

    Pet ownership and brief human-animal interactions can serve as a form of social support and convey a host of beneficial psychological and physiological health benefits. This article critically examines recent relevant literature on the pet-health connection. Cross-sectional studies indicate correlations between pet ownership and numerous aspects of positive health outcomes, including improvements on cardiovascular measures and decreases in loneliness. Quasi-experimental studies and better controlled experimental studies corroborate these associations and suggest that owning and/or interacting with a pet may be causally related to some positive health outcomes. The value of pet ownership and animal-assisted therapy (AAT), as a nonpharmacological treatment modality, augmentation to traditional treatment, and healthy preventive behavior (in the case of pet ownership), is starting to be realized. However, more investigations that employ randomized controlled trials with larger sample sizes and investigations that more closely examine the underlying mechanism of the pet-health effect, such as oxytocin, are needed.

  4. ITO DBR electrodes fabricated on PET substrate for organic electronics.

    PubMed

    Tien, W C; Chu, A K

    2014-02-24

    A conductive distributed Bragg reflector (DBR) fabricated on PET substrate using the single indium tin oxide (ITO) material is proposed. The large index contrast of the DBRs was obtained by depositing alternating layers of dense and porous ITO films. The high refractive index of the dense ITO films was achieved by long-throw radio-frequency magnetron sputtering technique at room temperature. On the other hand, the porous ITO films with low refractive index were fabricated by supercritical CO2 (SCCO2) treatment at 60 °C. The index contrast of the dense and porous ITO films as larger as 0.59 at blue spectral range was obtained. For the 4.5-period ITO DBR fabricated on PET substrate, the reflectance and sheet resistance of 85.1% and 47 Ω/◻ were achieved at 475 nm.

  5. Ion cyclotron heating experiments in magnetosphere plasma device RT-1

    SciTech Connect

    Nishiura, M. Yoshida, Z.; Yano, Y.; Kawazura, Y.; Saitoh, H.; Yamasaki, M.; Mushiake, T.; Kashyap, A.; Takahashi, N.; Nakatsuka, M.; Fukuyama, A.

    2015-12-10

    The ion cyclotron range of frequencies (ICRF) heating with 3 MHz and ∼10 kW is being prepared in RT-1. The operation regime for electron cyclotron resonance (ECR) heating is surveyed as the target plasmas. ECRH with 8.2 GHz and ∼50 kW produces the plasmas with high energy electrons in the range of a few ten keV, but the ions still remain cold at a few ten eV. Ion heating is expected to access high ion beta state and to change the aspect of plasma confinement theoretically. The ICRF heating is applied to the target plasma as an auxiliary heating. The preliminary result of ICRF heating is reported.

  6. Kinetic friction attributed to enhanced radiation by cyclotron maser instability

    NASA Technical Reports Server (NTRS)

    Yoon, Peter H.; Wu, C. S.

    1991-01-01

    Along the auroral field lines, a fraction of the energetic electrons injected from the magnetotail is reflected by the earth's convergent geomagnetic field. The reflected loss-cone electrons are unstable with respect to the cyclotron maser instability, resulting in the auroral kilometric radiation. This paper investigates the kinetic friction force exerted on the energetic electrons by the enhanced radiation field. It is found that the enhanced radiation results in a deceleration of reflected electrons, thereby providing an effective resistivity. In addition, the rate of decrease (increase) of effective perpendicular (parallel) kinetic temperatures is also evaluated. The analysis is carried out over various physical parameters such as the degree of loss cone, average particle energy, and the ratio of plasma frequency to cyclotron frequency.

  7. PHYSICS OF ELCTRON CYCLOTRON CURRENT DRIVE ON DIII-D

    SciTech Connect

    PETTY,CC; PRATER,R; LUCE,TC; ELLIS,RA; HARVEY,RW; KINSEY,JE; LAO,LL; LOHR,J; MAKOWSKI,MA

    2002-09-01

    OAK A271 PHYSICS OF ELCTRON CYCLOTRON CURRENT DRIVE ON DIII-D. Recent experiments on the DIII-D tokamak have focused on determining the effect of trapped particles on the electron cyclotron current drive (ECCD) efficiency. The measured ECCD efficiency increases as the deposition location is moved towards the inboard midplane or towards smaller minor radius for both co and counter injection. The measured ECCD efficiency also increases with increasing electron density and/or temperature. The experimental ECCD is compared to both the linear theory (Toray-GA) as well as a quasilinear Fokker-Planck model (CQL3D). The experimental ECCD is found to be in better agreement with the more complete Fokker-Planck calculation, especially for cases of high rf power density and/or loop voltage. The narrow width of the measured ECCD profile is consistent with only low levels of radial transport for the current carrying electrons.

  8. Nonlinear particle simulation of ion cyclotron waves in toroidal geometry

    SciTech Connect

    Kuley, A. Lin, Z.; Bao, J.; Wei, X. S.; Xiao, Y.

    2015-12-10

    Global particle simulation model has been developed in this work to provide a first-principles tool for studying the nonlinear interactions of radio frequency (RF) waves with plasmas in tokamak. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic equation with realistic electron-to-ion mass ratio. Boris push scheme for the ion motion has been developed in the toroidal geometry using magnetic coordinates and successfully verified for the ion cyclotron and ion Bernstein waves in global gyrokinetic toroidal code (GTC). The nonlinear simulation capability is applied to study the parametric decay instability of a pump wave into an ion Bernstein wave side band and a low frequency ion cyclotron quasi mode.

  9. Nonlinear particle simulation of ion cyclotron waves in toroidal geometry

    NASA Astrophysics Data System (ADS)

    Kuley, A.; Bao, J.; Lin, Z.; Wei, X. S.; Xiao, Y.

    2015-12-01

    Global particle simulation model has been developed in this work to provide a first-principles tool for studying the nonlinear interactions of radio frequency (RF) waves with plasmas in tokamak. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic equation with realistic electron-to-ion mass ratio. Boris push scheme for the ion motion has been developed in the toroidal geometry using magnetic coordinates and successfully verified for the ion cyclotron and ion Bernstein waves in global gyrokinetic toroidal code (GTC). The nonlinear simulation capability is applied to study the parametric decay instability of a pump wave into an ion Bernstein wave side band and a low frequency ion cyclotron quasi mode.

  10. Ion cyclotron instability of drifting plasma clouds. [in magnetosphere

    NASA Technical Reports Server (NTRS)

    Lin, C. S.; Parks, G. K.

    1976-01-01

    The paper is concerned with a quantitative study of the frequency dispersion characteristics of the ion cyclotron mode in a realistic dipole magnetosphere where the particles are allowed to drift azimuthally. The adopted model assumes that the particles are injected at a constant L shell in an extended region around local midnight. A drift-convoluted distribution function is used to study the spatial and temporal characteristics of the ion cyclotron instability. Two cases are examined: one in which the cold plasma density is constant and the other in which the cold particle density is allowed to vary. The resulting growth rates are presented in both the frequency versus coordinate space and the frequency versus time space. Possible inferences regarding wave emissions such as IPDP (intervals of pulsations of diminishing period) events are discussed. It is shown that the frequency dispersive effects can be produced by either the drift effects or changing the cold plasma density.

  11. Electrostatic ion-cyclotron waves in magnetospheric plasmas Nonlocal aspects

    NASA Technical Reports Server (NTRS)

    Ganguli, G.; Bakshi, P.; Palmadesso, P.

    1984-01-01

    The importance of the effect of the magnetic shear and the finite size of current channel on the electrostatic ion-cyclotron instability for the space plasmas is illustrated. A non-local treatment is used. When the channel width Lc, is larger than the shear length Ls, there is a large reduction in the growth rate along with a noteworthy reduction of the band of the unstable perpendicular wavelengths. For Lc less than or = Ls/10 the growth rate is not much altered from its local value, however for Lc/pi i less than or = 10 to the second power the growth rate starts falling below the local value and vanishes for Lc pi i. The non-local effects lead to enhanced coherence in the ion cyclotron waves. Previously announced in STAR as N84-14917

  12. Examination of the plasma located in PSI Ring Cyclotron

    NASA Astrophysics Data System (ADS)

    Pogue, N. J.; Adelmann, A.; Schneider, M.; Stingelin, L.

    2016-06-01

    A plasma has been observed inside the vacuum chamber of the PSI Ring Cyclotron. This ionized gas cloud may be a substantial contributor to several interior components having reduced lifetimes. The plasma's generation has been directly linked to the voltage that is applied to the Flat Top cavity through visual confirmation using CCD cameras. A spectrometer was used to correlate the plasma's intensity and ignition to the Flat Top cavity voltage as well as to determine the composition of the plasma. This paper reports on the analysis of the plasma using spectroscopy. The spectrometer data was analyzed to determine the composition of the plasma and that the plasma intensity (luminosity) directly corresponds to the Flat Top voltage. The results show that the plasma is comprised of elements consistent with the cyclotrons vacuum interior.

  13. Research on the high power cyclotron-wave rectifier

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoyun; Tuo, Xianguo; Ge, Qing; Peng, Ying

    2017-07-01

    As a key component of a Wireless Power Transmission System, a cyclotron-wave rectifier, a high power microwave to DC converter, has received more attention from scholars. This paper comprehensively analyzes various limiting factors of the output voltage and current. The results show that high frequency breakdown, the external magnetic field, and engineering realization limit the output voltage, and the space charge force limits the beam current. On this basis, by using the equivalent circuit and particle simulation, we design a cyclotron-wave rectifier with high power. The simulation results demonstrate that working at 2.45 GHz, the rectifier can obtain an output voltage of 113 kV and an output power of 791 kW. These conclusions can provide guidance for designing and application of this device.

  14. Approach to increase beam intensity extracted from a cyclotron

    NASA Astrophysics Data System (ADS)

    Nakao, M.; Hojo, S.; Katagiri, K.; Miyahara, N.; Noda, A.; Noda, K.; Sugiura, A.; Wakui, T.; Smirnov, V.; Vorozhtsov, S.; Goto, A.

    2017-09-01

    To increase the beam intensity of cyclotrons used for producing radionuclides, beam loss during extraction must be reduced. Extraction efficiency is limited by the beam parameters in front of the deflector, especially angular distribution. Computer simulation of the second harmonic mode for 18 MeV protons, which is frequently used, has been carried out to understand beam behavior in a cyclotron. The extraction efficiency is determined by the width of the angular distribution of particles in the phase space plot at the deflector. An effective method to reduce the width is to shorten the bunch at injection. The simulation shows that the bunch phase length at injection must be ⩽30° to realize a 30 μA extraction beam current and satisfy the deflector heat limit of 200 W.

  15. Electrostatic ion-cyclotron waves in magnetospheric plasmas Nonlocal aspects

    NASA Technical Reports Server (NTRS)

    Ganguli, G.; Bakshi, P.; Palmadesso, P.

    1984-01-01

    The importance of the effect of the magnetic shear and the finite size of current channel on the electrostatic ion-cyclotron instability for the space plasmas is illustrated. A non-local treatment is used. When the channel width Lc, is larger than the shear length Ls, there is a large reduction in the growth rate along with a noteworthy reduction of the band of the unstable perpendicular wavelengths. For Lc less than or = Ls/10 the growth rate is not much altered from its local value, however for Lc/pi i less than or = 10 to the second power the growth rate starts falling below the local value and vanishes for Lc pi i. The non-local effects lead to enhanced coherence in the ion cyclotron waves. Previously announced in STAR as N84-14917

  16. Ion cyclotron heating experiments in magnetosphere plasma device RT-1

    NASA Astrophysics Data System (ADS)

    Nishiura, M.; Yoshida, Z.; Yano, Y.; Kawazura, Y.; Saitoh, H.; Yamasaki, M.; Mushiake, T.; Kashyap, A.; Takahashi, N.; Nakatsuka, M.; Fukuyama, A.

    2015-12-01

    The ion cyclotron range of frequencies (ICRF) heating with 3 MHz and ˜10 kW is being prepared in RT-1. The operation regime for electron cyclotron resonance (ECR) heating is surveyed as the target plasmas. ECRH with 8.2 GHz and ˜50 kW produces the plasmas with high energy electrons in the range of a few ten keV, but the ions still remain cold at a few ten eV. Ion heating is expected to access high ion beta state and to change the aspect of plasma confinement theoretically. The ICRF heating is applied to the target plasma as an auxiliary heating. The preliminary result of ICRF heating is reported.

  17. Kinetic friction attributed to enhanced radiation by cyclotron maser instability

    NASA Technical Reports Server (NTRS)

    Yoon, Peter H.; Wu, C. S.

    1991-01-01

    Along the auroral field lines, a fraction of the energetic electrons injected from the magnetotail is reflected by the earth's convergent geomagnetic field. The reflected loss-cone electrons are unstable with respect to the cyclotron maser instability, resulting in the auroral kilometric radiation. This paper investigates the kinetic friction force exerted on the energetic electrons by the enhanced radiation field. It is found that the enhanced radiation results in a deceleration of reflected electrons, thereby providing an effective resistivity. In addition, the rate of decrease (increase) of effective perpendicular (parallel) kinetic temperatures is also evaluated. The analysis is carried out over various physical parameters such as the degree of loss cone, average particle energy, and the ratio of plasma frequency to cyclotron frequency.

  18. Permanent magnet electron cyclotron resonance plasma source with remote window

    SciTech Connect

    Berry, L.A.; Gorbatkin, S.M. )

    1995-03-01

    An electron cyclotron resonance (ECR) plasma has been used in conjunction with a solid metal sputter target for Cu deposition over 200 mm diameters. The goal is to develop a deposition system and process suitable for filling submicron, high-aspect ratio ULSI features. The system uses a permanent magnet for creation of the magnetic field necessary for ECR, and is significantly more compact than systems equipped with electromagnets. A custom launcher design allows remote microwave injection with the microwave entrance window shielded from the copper flux. When microwaves are introduced at an angle with respect to the plasma, high electron densities can be produced with a plasma frequency significantly greater than the electron cyclotron frequency. Copper deposition rates of 1000 A/min have been achieved.

  19. Evidence for proton cyclotron waves near Comet Giacobini-Zinner

    NASA Astrophysics Data System (ADS)

    Tan, L. C.; Mason, G. M.; Tsurutani, B. T.

    1993-02-01

    We have computed frequency spectra of power density and polarization parameters of magnetohydrodynamic waves from observations on board the ICE spacecraft as it flew past Comet Giacobini-Zinner on September 11, 1985. Since the spectral parameters are frequency dependent, we find that the analysis is best carried out in a 'wave' reference frame where one of the major axes is along the wave normal direction for each frequency component. The power density along the wave normal direction shows a systematic peak structure which we identify as belonging to cyclotron wave harmonics of pickup ions near the comet. The fundamental harmonics of the cyclotron waves are also consistent with the gyrofrequencies calculated from the magnetic field data.

  20. Heating by waves in the ion cyclotron frequency range

    SciTech Connect

    Koch, R.

    1996-03-01

    The main aspects of heating with the fast wave in the ion cyclotron range of frequencies (ICRF) are reviewed. First, the ion cyclotron resonance mechanism, fundamental and harmonics, is examined. Then the properties of fast wave dispersion are reviewed, and the principles of minority and higher cylcotron harmonic heating are discussed. An elementary coupling model is worked out in order to outline the computation of the electrical properties of ICRF antennas. Using the simple model, the antenna radiation pattern inside the plasma is computed and the effect of phasing on the k spectrum and on the antenna radiation properties is illustrated. The quasi linear-Fokker-Planck computation of the deformation of distribution functions due to Radio-Frequency (RF) and tail formation are briefly discussed. 11 refs., 5 figs.

  1. Ernest Orlando Lawrence (1901-1958), Cyclotron and Medicine

    SciTech Connect

    Chu, William T.

    2005-09-01

    On August 8, 2001, Lawrence Berkeley National Laboratory celebrated the centennial of the birth of its founder (and namesake), Ernest Orlando Lawrence. For the occasion, many speeches were given and old speeches were remembered. We recall the words of the late Luis Alvarez, a Nobel Laureate and one of the Lawrence's closest colleagues: ''Lawrence will always be remembered as the inventor of the cyclotron, but more importantly, he should be remembered as the inventor of the modern way of doing science''. J. L. Heilbron and R. W. Seidel, in the introduction of their book, ''Lawrence and His Laboratory'' stated, ''The motives and mechanisms that shaped the growth of the Laboratory helped to force deep changes in the scientific estate and in the wider society. In the entrepreneurship of its founder, Ernest Orlando Lawrence, these motives, mechanisms, and changes came together in a tight focus. He mobilized great and small philanthropists, state and local governments, corporations, and plutocrats, volunteers and virtuosos. The work they supported, from astrophysics and atomic bombs, from radiochemistry to nuclear medicine, shaped the way we observe, control, and manipulate our environment.'' Indeed, all over the civilized world, the ways we do science changed forever after Lawrence built his famed Radiation Laboratory. In this editorial, we epitomize his legacy of changing the way we do medicine, thereby affecting the health and well being of all humanity. This year marks the 75th anniversary of the invention of the cyclotron by Ernest Orlando Lawrence at the University of California at Berkeley. Lawrence conceived the idea of the cyclotron early in 1929 after reading an article by Rolf Wideroe on high-energy accelerators. In the spring of 1930 one of his students, Nels Edlefsen, constructed two crude models of a cyclotron. Later in the fall of the same year, another student, M. Stanley Livingston, constructed a 13-cm diameter model that had all the features of early

  2. Cyclotron resonance in topological insulators: non-relativistic effects

    NASA Astrophysics Data System (ADS)

    Tabert, C. J.; Carbotte, J. P.

    2015-09-01

    The low-energy Hamiltonian used to describe the dynamics of the helical Dirac fermions on the surface of a topological insulator contains a subdominant non-relativistic (Schrödinger) contribution. This term can have an important effect on some properties while having no effect on others. The Hall plateaus retain the same relativistic quantization as the pure Dirac case. The height of the universal interband background conductivity is unaltered, but its onset is changed. However, the non-relativistic term leads directly to particle-hole asymmetry. It also splits the interband magneto-optical lines into doublets. Here, we find that, while the shape of the semiclassical cyclotron resonance line is unaltered, the cyclotron frequency and its optical spectral weight are changed. There are significant differences in both of these quantities for a fixed value of chemical potential or fixed doping away from charge neutrality depending on whether the Fermi energy lies in the valence or conduction band.

  3. Radiation protection aspects of the operation in a cyclotron facility

    NASA Astrophysics Data System (ADS)

    Silva, P. P. N.; Carneiro, J. C. G. G.

    2014-02-01

    The activated accelerator cyclotron components and the radioisotope production may impact on the personnel radiation exposure of the workers during the routine maintenance and emergency repair procedures and any modification of the equipment. Since the adherence of the principle of ALARA (as low as reasonable achievable) constitutes a major objective of the cyclotron management, it has become imperative to investigate the radiation levels at the workplace and the probable health effects to the worker caused by radiation exposure. The data analysis in this study was based on the individual monitoring records during the period from 2007 to 2011. Monitoring of the workplace was also performed using gamma and neutron detectors to determine the dose rate in various predetermined spots. The results of occupational radiation exposures were analysed and compared with the values established in national standards and international recommendations. Important guidelines have been developed to reduce the individual dose.

  4. LH wave absorption by mode conversion near ion cyclotron harmonics

    SciTech Connect

    Ko, K.; Bers, A.; Fuchs, V.

    1981-02-01

    Numerical studies of the dispersion relation near the lower-hybrid frequency in an inhomogeneous plasma (..delta.. n, ..delta.. T, ..delta.. B) show that portions of an incident lower-hybrid wave spectrum undergo successive but partial mode conversions to warm-plasma waves in the presence of ion cyclotron harmonics. Wave absorption beyond the first mode conversion occurs near an ion cyclotron harmonic where ion Landau damping is enhanced. A second-order dispersion relation numerically in good agreement with the full dispersion relation in the mode conversion region is derived using the condition par. delta D/par. delta k = 0. The mode conversion efficiency at each confluence is evaluated by solving the corresponding differential equation.

  5. Cyclotron Auto-Resonance Accelerator for environmental applications

    NASA Astrophysics Data System (ADS)

    Jiang, Yong; Shchelkunov, Sergey V.; Hirshfield, Jay L.

    2017-03-01

    A MW-level CW electron beam source for environmental remediation based on extensions of the scientifically-proven Cyclotron Auto-Resonance Accelerator, dubbed CARA, is described here. CARA is distinguished by its exceptionally high RF-to-beam efficiency, by its production of a self-scanning beam, and by its proportionately lower specific power loading on a beam output window. Its environmental applications include sterilization, flue gas and waste water treatment.

  6. Converting an AEG Cyclotron to H- Acceleration and Extraction

    NASA Astrophysics Data System (ADS)

    Ramsey, Fred; Carroll, Lewis; Rathmann, Tom; Huenges, Ernst; Bechtold, Matthias Mentler Volker

    2009-03-01

    Clinical Trials are under way to evaluate agents labeled with the nuclide 225Ac and its decay product 213Bi, in targeted alpha-immuno-therapy [1]. 225Ac can be produced on a medium-energy cyclotron via the nuclear reaction 226Ra(p,n)225Ac. To demonstrate proof-of-principle, a vintage AEG cyclotron, Model E33 [2], with an internal target, had been employed in a pilot production program at the Technical University of Munich (TUM). To enhance production capability and further support the clinical studies, the TUM facility has recently been refurbished and upgraded, adding a new external beam-line, automated target irradiation and transport systems, new laboratories, hot cells, etc. [3]. An improved high-power rotating target has been built and installed [4]. The AEG cyclotron itself has also been modified and upgraded to accelerate and extract H- ions. We have designed, built, and tested a new axial Penning-type ion source which is optimized for the production of H- ions. The ion source has continued to evolve through experiment and experience. Steady improvements in materials and mechanics have led to enhanced source stability, life-time, and H- production. We have also designed and built a precision H- charge-exchange beam-extraction system which is equipped with a vacuum lock. To fit within the tight mechanical constraint imposed by the narrow magnet gap, the system incorporates a novel chain-drive foil holder and foil-changer mechanism. The reconfigured cyclotron system has now been in operation for more than 1 year. Three long-duration target irradiations have been conducted. The most recent bombardment ran 160 continuous hours at a beam on target of ˜80 microamperes for a total yield of ˜70 milli-curies of 225Ac.

  7. Mode converter for electron cyclotron resonance heating of toroidal plasmas

    SciTech Connect

    Motley, R.W.; Hsuan, H.; Glanz, J.

    1980-09-01

    A method is proposed for improving the efficiency of cyclotron resonance heating of a toroidal plasma by ordinary mode radiation from the outside of the torus. Radiation not absorbed in the first pass is reflected from the inside of the torus by a corrugated surface which rotates the polarization by 90/sup 0/, so that a secondary source of extraordinary waves is created in the high field, accessible region of the plasma.

  8. Design options for an ITER ion cyclotron system

    NASA Astrophysics Data System (ADS)

    Swain, D. W.; Baity, F. W.; Bigelow, T. S.; Ryan, P. M.; Goulding, R. H.; Carter, M. D.; Stallings, D. C.; Batchelor, D. B.; Hoffman, D. J.

    1996-02-01

    Recent changes have occurred in the design requirements for the ITER ion cyclotron system, requiring in-port launchers in four main horizontal ports to deliver 50 MW of power to the plasma. The design is complicated by the comparatively large antenna-separatrix distance of 10-20 cm. Designs of a conventional strap launcher and a folded waveguide launcher that can meet the new requirements are presented.

  9. Formation of cyclotron lines in gamma-ray burst spectra

    NASA Technical Reports Server (NTRS)

    Alexander, S. G.; Meszaros, P.

    1989-01-01

    A transmission model of gamma-ray burst sources is studied using the relativistic QED magnetic-resonant opacities including multiple photon scattering, incorporated into a discrete-ordinate radiative-transport scheme. The physics of the cyclotron line-producing region is discussed in general, and the expected line profiles, relative harmonic strengths, and polarizations are indicated under various conditions. The calculated spectra for these models show good agreement with the spectra reported from Ginga for GB 880205 and GB 870303.

  10. Design options for an ITER ion cyclotron system

    SciTech Connect

    Swain, D.W.; Baity, F.W.; Bigelow, T.S.; Ryan, P.M.; Goulding, R.H.; Carter, M.D.; Stallings, D.C.; Batchelor, D.B.; Hoffman, D.J.

    1995-09-01

    Recent changes have occurred in the design requirements for the ITER ion cyclotron system, requiring in-port launchers in four main horizontal ports to deliver 50 MW of power to the plasma. The design is complicated by the comparatively large antenna-separatrix distance of 10--20 cm. Designs of a conventional strap launcher and a folded waveguide launcher than can meet the new requirements are presented.

  11. Pencil Beam Scanning System Based On A Cyclotron

    SciTech Connect

    Tachikawa, Toshiki; Nonaka, Hideki; Kumata, Yukio; Nishio, Teiji; Ogino, Takashi

    2011-06-01

    Sumitomo Heavy Industries, Ltd. (SHI) has developed a new pencil beam scanning system (PBS) for proton therapy in collaboration with National Cancer Center Hospital East (NCCHE). Taking advantage of the continuous beam from the cyclotron P235, the line scanning method is employed in order to realize continuous irradiation with high dose rate. 3D uniform and sphere field was irradiated and compared with the simulation.

  12. Electromagnetic ion beam instabilities - Growth at cyclotron harmonic wave numbers

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.; Gary, S. Peter

    1987-01-01

    The linear theory of electromagnetic ion beam instabilities for arbitrary angles of propagation is studied, with an emphasis on the conditions necessary to generate unstable modes at low harmonics of the ion cyclotron resonance condition. The present results extend the analysis of Smith et al. (1985). That paper considered only the plasma parameters at a time during which harmonic wave modes were observed in the earth's foreshock. The parameters of that paper are used as the basis of parametric variations here to establish the range of beam properties which may give rise to observable harmonic spectra. It is shown that the growth rates of both left-hand and right-hand cyclotron harmonic instabilities are enhanced by an increase in the beam temperature anisotropy and/or the beam speed. Decreases in the beam density and/or the core-ion beta reduce the overall growth of the cyclotron harmonic instabilities but favor the growth of these modes over the growth of the nonresonant instability and thereby enhance the observability of the harmonics.

  13. Electrostatic ion-cyclotron waves in a nonuniform magnetic field

    NASA Technical Reports Server (NTRS)

    Cartier, S. L.; Dangelo, N.; Merlino, R. L.

    1985-01-01

    The properties of electrostatic ion-cyclotron waves excited in a single-ended cesium Q machine with a nonuniform magnetic field are described. The electrostatic ion-cyclotron waves are generated in the usual manner by drawing an electron current to a small exciter disk immersed in the plasma column. The parallel and perpendicular (to B) wavelengths and phase velocities are determined by mapping out two-dimensional wave phase contours. The wave frequency f depends on the location of the exciter disk in the nonuniform magnetic field, and propagating waves are only observed in the region where f is approximately greater than fci, where fci is the local ion-cyclotron frequency. The parallel phase velocity is in the direction of the electron drift. From measurements of the plasma properties along the axis, it is inferred that the electron drift velocity is not uniform along the entire current channel. The evidence suggests that the waves begin being excited at that axial position where the critical drift velocity is first exceeded, consistent with a current-driven excitation mechanism.

  14. Electromagnetic ion beam instabilities - Growth at cyclotron harmonic wave numbers

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.; Gary, S. Peter

    1987-01-01

    The linear theory of electromagnetic ion beam instabilities for arbitrary angles of propagation is studied, with an emphasis on the conditions necessary to generate unstable modes at low harmonics of the ion cyclotron resonance condition. The present results extend the analysis of Smith et al. (1985). That paper considered only the plasma parameters at a time during which harmonic wave modes were observed in the earth's foreshock. The parameters of that paper are used as the basis of parametric variations here to establish the range of beam properties which may give rise to observable harmonic spectra. It is shown that the growth rates of both left-hand and right-hand cyclotron harmonic instabilities are enhanced by an increase in the beam temperature anisotropy and/or the beam speed. Decreases in the beam density and/or the core-ion beta reduce the overall growth of the cyclotron harmonic instabilities but favor the growth of these modes over the growth of the nonresonant instability and thereby enhance the observability of the harmonics.

  15. Cluster Observation Of Ion And Electron Cyclotron Waves Near Magnetopause

    NASA Astrophysics Data System (ADS)

    Silin, I.; Panov, E. V.

    2012-12-01

    We examine observations of electromagnetic ion cyclotron (EMIC) and electron cyclotron waves by Cluster spacecraft during a magnetopause transition near polar cusp region. The waves appear to be generated locally, on the magnetospheric side of the magnetopause current layer, due to large particle temperature anisotropy (T⊥}/T{∥ >3 for all ions and T⊥}/T{∥ ˜ 1.3 for electrons) and large plasma beta (0.5 < β < 10). The compact configuration of Cluster spacecraft and high-resolution electromagnetic field data allowed us to measure the wave vectors k by two independent methods: the wave-telescope and the polarization methods. Such measurements are essential for estimation of minimum energies of particles scattered by EMIC waves via cyclotron resonance. The results show good agreement with linear dispersion theory. The EMIC waves propagate along the magnetic field with frequencies near 1 Hz, wavelength of 260 km at speeds of ˜ 500 km/s. We discuss the implications of these results for the particle diffusion coefficients and minimum resonant scattering energies.

  16. Modern compact accelerators of cyclotron type for medical applications

    NASA Astrophysics Data System (ADS)

    Smirnov, V.; Vorozhtsov, S.

    2016-09-01

    Ion beam therapy and hadron therapy are types of external beam radiotherapy. Recently, the vast majority of patients have been treated with protons and carbon ions. Typically, the types of accelerators used for therapy were cyclotrons and synchrocyclotrons. It is intuitively clear that a compact facility fits best to a hospital environment intended for particle therapy and medical diagnostics. Another criterion for selection of accelerators to be mentioned in this article is application of superconducting technology to the magnetic system design of the facility. Compact isochronous cyclotrons, which accelerate protons in the energy range 9-30 MeV, have been widely used for production of radionuclides. Energy of 230 MeV has become canonical for all proton therapy accelerators. Similar application of a carbon beam requires ion energy of 430 MeV/u. Due to application of superconducting coils the magnetic field in these machines can reach 4-5 T and even 9 T in some cases. Medical cyclotrons with an ironless or nearly ironless magnetic system that have a number of advantages over the classical accelerators are in the development stage. In this work an attempt is made to describe some conceptual and technical features of modern accelerators under consideration. The emphasis is placed on the magnetic and acceleration systems along with the beam extraction unit, which are very important from the point of view of the facility compactness and compliance with the strict medical requirements.

  17. RF control hardware design for CYCIAE-100 cyclotron

    NASA Astrophysics Data System (ADS)

    Yin, Zhiguo; Fu, Xiaoliang; Ji, Bin; Zhao, Zhenlu; Zhang, Tianjue; Li, Pengzhan; Wei, Junyi; Xing, Jiansheng; Wang, Chuan

    2015-11-01

    The Beijing Radioactive Ion-beam Facility project is being constructed by BRIF division of China Institute of Atomic Energy. In this project, a 100 MeV high intensity compact proton cyclotron is built for multiple applications. The first successful beam extraction of CYCIAE-100 cyclotron was done in the middle of 2014. The extracted proton beam energy is 100 MeV and the beam current is more than 20 μA. The RF system of the CYCIAE-100 cyclotron includes two half-wavelength cavities, two 100 kW tetrode amplifiers and power transmission line systems (all above are independent from each other) and two sets of Low Level RF control crates. Each set of LLRF control includes an amplitude control unit, a tuning control unit, a phase control unit, a local Digital Signal Process control unit and an Advanced RISC Machines based EPICS IOC unit. These two identical LLRF control crates share one common reference clock and take advantages of modern digital technologies (e.g. DSP and Direct Digital Synthesizer) to achieve closed loop voltage and phase regulations of the dee-voltage. In the beam commission, the measured dee-voltage stability of RF system is better than 0.1% and phase stability is better than 0.03°. The hardware design of the LLRF system will be reviewed in this paper.

  18. Nonlinear heating of ions by electron cyclotron frequency waves

    NASA Astrophysics Data System (ADS)

    Zestanakis, P. A.; Hizanidis, K.; Ram, A. K.; Kominis, Y.

    2010-11-01

    We study the nonlinear interaction of ions with electron cyclotron (EC) wave packets in a magnetized plasma. Previous studies have shown that such interactions with high frequency electrostatic lower hybrid waves can lead to coherent energization of ions. It requires the frequency bandwidth of the wave packet to be broader than the ion cyclotron frequency [1,2]. For the electromagnetic high frequency EC waves we have developed a more general theory, based on the Lie transform canonical perturbation method [3,4]. We apply the theory to the case of two overlapping EC beams. The wave frequency of each beam is assumed to be frequency modulated with a modulation bandwidth comparable to the ion cyclotron frequency. We present results for both X-mode and O-mode and illustrate the conditions for ion energization. [4pt] [1] D. Benisti, A. K. Ram, and A. Bers, Phys. Plasmas 5, 3224 (1998). [0pt] [2] A. K. Ram, A. Bers, and D. Benisti , J. Geophys. Res. 103, 9431 (1998). [0pt] [3] J.R. Cary and A.N. Kaufman, Phys. Fluids 24, 1238 (1981). [0pt] [4] R.L. Dewar, J. Phys A-Math. Gen 9, 2043 (1976).

  19. Quench analysis of a novel compact superconducting cyclotron

    NASA Astrophysics Data System (ADS)

    Ghosh, Sundeep; Dutta Gupta, Anjan; Kanti Dey, Malay; Pal, Gautam

    2017-02-01

    Design and analysis of a compact superconducting cyclotron dedicated for medical applications in the fields of nuclear medicine and therapy is presently being pursued in our organization. The novelty of this cyclotron lies in the fact that it does not consist of any iron-pole. The cyclotron magnet will be made of a set of NbTi coils comprising of solenoid and sector coils which are housed in two halves on either sides of the median plane. The average magnetic field is 1.74 T and the maximum extraction energy is 25 MeV, which is sufficient for production of 99mTc from Mo. In this paper, quench analyses of the coils have been discussed in details considering adiabatic condition. The entire cryostat magnet along with coils, formers and support links were modelled for the quench simulation. Self and mutual inductances of all the coils were obtained from a separate magnetic analysis and used in the simulation. Parametric analyses were carried out with different quench initiation energy at various critical locations on the coil surface. The corresponding quench behaviour, i.e. maximum temperature rise, maximum voltage and current decay in each of the coils have been studied.

  20. High Power Ion Cyclotron Heating in the VASIMR

    NASA Astrophysics Data System (ADS)

    Longmier, B. W.; Brukardt, M. S.; Bering, E. A.; Chang Diaz, F.; Squire, J.

    2009-12-01

    The Variable Specific Impulse Magnetoplasma Rocket (VASIMR®) is an electric propulsion system under development at Ad Astra Rocket Company that utilizes several processes of ion acceleration and heating that occur in the Birkeland currents of an auroral arc system. Among these processes are parallel electric field acceleration, lower hybrid resonance heating, and ion cyclotron resonance heating. The VASIMR® is capable of laboratory simulation of electromagnetic ion cyclotron wave heating during a single pass of ions through the resonance region. The plasma is generated by a helicon discharge of 35 kW then passes through a 176 kW RF booster stage that couples left hand polarized slow mode waves from the high field side of the resonance. VX-200 auroral simulation results from the past year are discussed. Ambipolar acceleration has been shown to produce 35eV argon ions in the helicon exhaust. The effects on the ion exhaust with an addition of 150-200 kW of ion cyclotron heating are presented. The changes to the VASIMR® experiment at Ad Astra Rocket Company's new facility in Webster, Texas will also be discussed, including the possibility of collaborative experiments.