Automated movement correction for dynamic PET/CT images: evaluation with phantom and patient data.
Ye, Hu; Wong, Koon-Pong; Wardak, Mirwais; Dahlbom, Magnus; Kepe, Vladimir; Barrio, Jorge R; Nelson, Linda D; Small, Gary W; Huang, Sung-Cheng
2014-01-01
Head movement during a dynamic brain PET/CT imaging results in mismatch between CT and dynamic PET images. It can cause artifacts in CT-based attenuation corrected PET images, thus affecting both the qualitative and quantitative aspects of the dynamic PET images and the derived parametric images. In this study, we developed an automated retrospective image-based movement correction (MC) procedure. The MC method first registered the CT image to each dynamic PET frames, then re-reconstructed the PET frames with CT-based attenuation correction, and finally re-aligned all the PET frames to the same position. We evaluated the MC method's performance on the Hoffman phantom and dynamic FDDNP and FDG PET/CT images of patients with neurodegenerative disease or with poor compliance. Dynamic FDDNP PET/CT images (65 min) were obtained from 12 patients and dynamic FDG PET/CT images (60 min) were obtained from 6 patients. Logan analysis with cerebellum as the reference region was used to generate regional distribution volume ratio (DVR) for FDDNP scan before and after MC. For FDG studies, the image derived input function was used to generate parametric image of FDG uptake constant (Ki) before and after MC. Phantom study showed high accuracy of registration between PET and CT and improved PET images after MC. In patient study, head movement was observed in all subjects, especially in late PET frames with an average displacement of 6.92 mm. The z-direction translation (average maximum = 5.32 mm) and x-axis rotation (average maximum = 5.19 degrees) occurred most frequently. Image artifacts were significantly diminished after MC. There were significant differences (P<0.05) in the FDDNP DVR and FDG Ki values in the parietal and temporal regions after MC. In conclusion, MC applied to dynamic brain FDDNP and FDG PET/CT scans could improve the qualitative and quantitative aspects of images of both tracers.
Automated Movement Correction for Dynamic PET/CT Images: Evaluation with Phantom and Patient Data
Ye, Hu; Wong, Koon-Pong; Wardak, Mirwais; Dahlbom, Magnus; Kepe, Vladimir; Barrio, Jorge R.; Nelson, Linda D.; Small, Gary W.; Huang, Sung-Cheng
2014-01-01
Head movement during a dynamic brain PET/CT imaging results in mismatch between CT and dynamic PET images. It can cause artifacts in CT-based attenuation corrected PET images, thus affecting both the qualitative and quantitative aspects of the dynamic PET images and the derived parametric images. In this study, we developed an automated retrospective image-based movement correction (MC) procedure. The MC method first registered the CT image to each dynamic PET frames, then re-reconstructed the PET frames with CT-based attenuation correction, and finally re-aligned all the PET frames to the same position. We evaluated the MC method's performance on the Hoffman phantom and dynamic FDDNP and FDG PET/CT images of patients with neurodegenerative disease or with poor compliance. Dynamic FDDNP PET/CT images (65 min) were obtained from 12 patients and dynamic FDG PET/CT images (60 min) were obtained from 6 patients. Logan analysis with cerebellum as the reference region was used to generate regional distribution volume ratio (DVR) for FDDNP scan before and after MC. For FDG studies, the image derived input function was used to generate parametric image of FDG uptake constant (Ki) before and after MC. Phantom study showed high accuracy of registration between PET and CT and improved PET images after MC. In patient study, head movement was observed in all subjects, especially in late PET frames with an average displacement of 6.92 mm. The z-direction translation (average maximum = 5.32 mm) and x-axis rotation (average maximum = 5.19 degrees) occurred most frequently. Image artifacts were significantly diminished after MC. There were significant differences (P<0.05) in the FDDNP DVR and FDG Ki values in the parietal and temporal regions after MC. In conclusion, MC applied to dynamic brain FDDNP and FDG PET/CT scans could improve the qualitative and quantitative aspects of images of both tracers. PMID:25111700
Magnetic Resonance-based Motion Correction for Quantitative PET in Simultaneous PET-MR Imaging.
Rakvongthai, Yothin; El Fakhri, Georges
2017-07-01
Motion degrades image quality and quantitation of PET images, and is an obstacle to quantitative PET imaging. Simultaneous PET-MR offers a tool that can be used for correcting the motion in PET images by using anatomic information from MR imaging acquired concurrently. Motion correction can be performed by transforming a set of reconstructed PET images into the same frame or by incorporating the transformation into the system model and reconstructing the motion-corrected image. Several phantom and patient studies have validated that MR-based motion correction strategies have great promise for quantitative PET imaging in simultaneous PET-MR. Copyright © 2017 Elsevier Inc. All rights reserved.
Gatidis, Sergios; Würslin, Christian; Seith, Ferdinand; Schäfer, Jürgen F; la Fougère, Christian; Nikolaou, Konstantin; Schwenzer, Nina F; Schmidt, Holger
2016-01-01
Optimization of tracer dose regimes in positron emission tomography (PET) imaging is a trade-off between diagnostic image quality and radiation exposure. The challenge lies in defining minimal tracer doses that still result in sufficient diagnostic image quality. In order to find such minimal doses, it would be useful to simulate tracer dose reduction as this would enable to study the effects of tracer dose reduction on image quality in single patients without repeated injections of different amounts of tracer. The aim of our study was to introduce and validate a method for simulation of low-dose PET images enabling direct comparison of different tracer doses in single patients and under constant influencing factors. (18)F-fluoride PET data were acquired on a combined PET/magnetic resonance imaging (MRI) scanner. PET data were stored together with the temporal information of the occurrence of single events (list-mode format). A predefined proportion of PET events were then randomly deleted resulting in undersampled PET data. These data sets were subsequently reconstructed resulting in simulated low-dose PET images (retrospective undersampling of list-mode data). This approach was validated in phantom experiments by visual inspection and by comparison of PET quality metrics contrast recovery coefficient (CRC), background-variability (BV) and signal-to-noise ratio (SNR) of measured and simulated PET images for different activity concentrations. In addition, reduced-dose PET images of a clinical (18)F-FDG PET dataset were simulated using the proposed approach. (18)F-PET image quality degraded with decreasing activity concentrations with comparable visual image characteristics in measured and in corresponding simulated PET images. This result was confirmed by quantification of image quality metrics. CRC, SNR and BV showed concordant behavior with decreasing activity concentrations for measured and for corresponding simulated PET images. Simulation of dose-reduced datasets based on clinical (18)F-FDG PET data demonstrated the clinical applicability of the proposed data. Simulation of PET tracer dose reduction is possible with retrospective undersampling of list-mode data. Resulting simulated low-dose images have equivalent characteristics with PET images actually measured at lower doses and can be used to derive optimal tracer dose regimes.
Investigation of optimization-based reconstruction with an image-total-variation constraint in PET
NASA Astrophysics Data System (ADS)
Zhang, Zheng; Ye, Jinghan; Chen, Buxin; Perkins, Amy E.; Rose, Sean; Sidky, Emil Y.; Kao, Chien-Min; Xia, Dan; Tung, Chi-Hua; Pan, Xiaochuan
2016-08-01
Interest remains in reconstruction-algorithm research and development for possible improvement of image quality in current PET imaging and for enabling innovative PET systems to enhance existing, and facilitate new, preclinical and clinical applications. Optimization-based image reconstruction has been demonstrated in recent years of potential utility for CT imaging applications. In this work, we investigate tailoring the optimization-based techniques to image reconstruction for PET systems with standard and non-standard scan configurations. Specifically, given an image-total-variation (TV) constraint, we investigated how the selection of different data divergences and associated parameters impacts the optimization-based reconstruction of PET images. The reconstruction robustness was explored also with respect to different data conditions and activity up-takes of practical relevance. A study was conducted particularly for image reconstruction from data collected by use of a PET configuration with sparsely populated detectors. Overall, the study demonstrates the robustness of the TV-constrained, optimization-based reconstruction for considerably different data conditions in PET imaging, as well as its potential to enable PET configurations with reduced numbers of detectors. Insights gained in the study may be exploited for developing algorithms for PET-image reconstruction and for enabling PET-configuration design of practical usefulness in preclinical and clinical applications.
Towards integration of PET/MR hybrid imaging into radiation therapy treatment planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulus, Daniel H., E-mail: daniel.paulus@imp.uni-erlangen.de; Thorwath, Daniela; Schmidt, Holger
2014-07-15
Purpose: Multimodality imaging has become an important adjunct of state-of-the-art radiation therapy (RT) treatment planning. Recently, simultaneous PET/MR hybrid imaging has become clinically available and may also contribute to target volume delineation and biological individualization in RT planning. For integration of PET/MR hybrid imaging into RT treatment planning, compatible dedicated RT devices are required for accurate patient positioning. In this study, prototype RT positioning devices intended for PET/MR hybrid imaging are introduced and tested toward PET/MR compatibility and image quality. Methods: A prototype flat RT table overlay and two radiofrequency (RF) coil holders that each fix one flexible body matrixmore » RF coil for RT head/neck imaging have been evaluated within this study. MR image quality with the RT head setup was compared to the actual PET/MR setup with a dedicated head RF coil. PET photon attenuation and CT-based attenuation correction (AC) of the hardware components has been quantitatively evaluated by phantom scans. Clinical application of the new RT setup in PET/MR imaging was evaluated in anin vivo study. Results: The RT table overlay and RF coil holders are fully PET/MR compatible. MR phantom and volunteer imaging with the RT head setup revealed high image quality, comparable to images acquired with the dedicated PET/MR head RF coil, albeit with 25% reduced SNR. Repositioning accuracy of the RF coil holders was below 1 mm. PET photon attenuation of the RT table overlay was calculated to be 3.8% and 13.8% for the RF coil holders. With CT-based AC of the devices, the underestimation error was reduced to 0.6% and 0.8%, respectively. Comparable results were found within the patient study. Conclusions: The newly designed RT devices for hybrid PET/MR imaging are PET and MR compatible. The mechanically rigid design and the reproducible positioning allow for straightforward CT-based AC. The systematic evaluation within this study provides the technical basis for the clinical integration of PET/MR hybrid imaging into RT treatment planning.« less
Comparison of PET/CT with Sequential PET/MRI Using an MR-Compatible Mobile PET System.
Nakamoto, Ryusuke; Nakamoto, Yuji; Ishimori, Takayoshi; Fushimi, Yasutaka; Kido, Aki; Togashi, Kaori
2018-05-01
The current study tested a newly developed flexible PET (fxPET) scanner prototype. This fxPET system involves dual arc-shaped detectors based on silicon photomultipliers that are designed to fit existing MRI devices, allowing us to obtain fused PET and MR images by sequential PET and MR scanning. This prospective study sought to evaluate the image quality, lesion detection rate, and quantitative values of fxPET in comparison with conventional whole-body (WB) PET and to assess the accuracy of registration. Methods: Seventeen patients with suspected or known malignant tumors were analyzed. Approximately 1 h after intravenous injection of 18 F-FDG, WB PET/CT was performed, followed by fxPET and MRI. For reconstruction of fxPET images, MRI-based attenuation correction was applied. The quality of fxPET images was visually assessed, and the number of detected lesions was compared between the 2 imaging methods. SUV max and maximum average SUV within a 1 cm 3 spheric volume (SUV peak ) of lesions were also compared. In addition, the magnitude of misregistration between fxPET and MR images was evaluated. Results: The image quality of fxPET was acceptable for diagnosis of malignant tumors. There was no significant difference in detectability of malignant lesions between fxPET and WB PET ( P > 0.05). However, the fxPET system did not exhibit superior performance to the WB PET system. There were strong positive correlations between the 2 imaging modalities in SUV max (ρ = 0.88) and SUV peak (ρ = 0.81). SUV max and SUV peak measured with fxPET were approximately 1.1-fold greater than measured with WB PET. The average misregistration between fxPET and MR images was 5.5 ± 3.4 mm. Conclusion: Our preliminary data indicate that running an fxPET scanner near an existing MRI system provides visually and quantitatively acceptable fused PET/MR images for diagnosis of malignant lesions. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
Porcel, José M; Hernández, Paula; Martínez-Alonso, Montserrat; Bielsa, Silvia; Salud, Antonieta
2015-02-01
The role of fluorodeoxyglucose (FDG)-PET imaging for diagnosing malignant pleural effusions is not well defined. The aim of this study was to summarize the evidence for its use in ruling in or out the malignant origin of a pleural effusion or thickening. A meta-analysis was conducted of diagnostic accuracy studies published in the Cochrane Library, PubMed, and Embase (inception to June 2013) without language restrictions. Two investigators selected studies that had evaluated the performance of FDG-PET imaging in patients with pleural effusions or thickening, using pleural cytopathology or histopathology as the reference standard for malignancy. Subgroup analyses were conducted according to FDG-PET imaging interpretation (qualitative or semiquantitative), PET imaging equipment (PET vs integrated PET-CT imaging), and/or target population (known lung cancer or malignant pleural mesothelioma). Study quality was assessed using Quality Assessment of Diagnostic Accuracy Studies-2. We used a bivariate random-effects model for the analysis and pooling of diagnostic performance measures across studies. Fourteen non-high risk of bias studies, comprising 407 patients with malignant and 232 with benign pleural conditions, met the inclusion criteria. Semiquantitative PET imaging readings had a significantly lower sensitivity for diagnosing malignant effusions than visual assessments (82% vs 91%; P = .026). The pooled test characteristics of integrated PET-CT imaging systems using semiquantitative interpretations for identifying malignant effusions were: sensitivity, 81%; specificity, 74%; positive likelihood ratio (LR), 3.22; negative LR, 0.26; and area under the curve, 0.838. Resultant data were heterogeneous, and spectrum bias should be considered when appraising FDG-PET imaging operating characteristics. The moderate accuracy of PET-CT imaging using semiquantitative readings precludes its routine recommendation for discriminating malignant from benign pleural effusions.
Effects of Regularisation Priors and Anatomical Partial Volume Correction on Dynamic PET Data
NASA Astrophysics Data System (ADS)
Caldeira, Liliana L.; Silva, Nuno da; Scheins, Jürgen J.; Gaens, Michaela E.; Shah, N. Jon
2015-08-01
Dynamic PET provides temporal information about the tracer uptake. However, each PET frame has usually low statistics, resulting in noisy images. Furthermore, PET images suffer from partial volume effects. The goal of this study is to understand the effects of prior regularisation on dynamic PET data and subsequent anatomical partial volume correction. The Median Root Prior (MRP) regularisation method was used in this work during reconstruction. The quantification and noise in image-domain and time-domain (time-activity curves) as well as the impact on parametric images is assessed and compared with Ordinary Poisson Ordered Subset Expectation Maximisation (OP-OSEM) reconstruction with and without Gaussian filter. This study shows the improvement in PET images and time-activity curves (TAC) in terms of noise as well as in the parametric images when using prior regularisation in dynamic PET data. Anatomical partial volume correction improves the TAC and consequently, parametric images. Therefore, the use of MRP with anatomical partial volume correction is of interest for dynamic PET studies.
Sun, Yajuan; Yu, Hongjuan; Ma, Jingquan; Lu, Peiou
2016-01-01
The aim of our study was to evaluate the role of 18F-FDG PET/CT integrated imaging in differentiating malignant from benign pleural effusion. A total of 176 patients with pleural effusion who underwent 18F-FDG PET/CT examination to differentiate malignancy from benignancy were retrospectively researched. The images of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were visually analyzed. The suspected malignant effusion was characterized by the presence of nodular or irregular pleural thickening on CT imaging. Whereas on PET imaging, pleural 18F-FDG uptake higher than mediastinal activity was interpreted as malignant effusion. Images of 18F-FDG PET/CT integrated imaging were interpreted by combining the morphologic feature of pleura on CT imaging with the degree and form of pleural 18F-FDG uptake on PET imaging. One hundred and eight patients had malignant effusion, including 86 with pleural metastasis and 22 with pleural mesothelioma, whereas 68 patients had benign effusion. The sensitivities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging in detecting malignant effusion were 75.0%, 91.7% and 93.5%, respectively, which were 69.8%, 91.9% and 93.0% in distinguishing metastatic effusion. The sensitivity of 18F-FDG PET/CT integrated imaging in detecting malignant effusion was higher than that of CT imaging (p = 0.000). For metastatic effusion, 18F-FDG PET imaging had higher sensitivity (p = 0.000) and better diagnostic consistency with 18F-FDG PET/CT integrated imaging compared with CT imaging (Kappa = 0.917 and Kappa = 0.295, respectively). The specificities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were 94.1%, 63.2% and 92.6% in detecting benign effusion. The specificities of CT imaging and 18F-FDG PET/CT integrated imaging were higher than that of 18F-FDG PET imaging (p = 0.000 and p = 0.000, respectively), and CT imaging had better diagnostic consistency with 18F-FDG PET/CT integrated imaging compared with 18F-FDG PET imaging (Kappa = 0.881 and Kappa = 0.240, respectively). 18F-FDG PET/CT integrated imaging is a more reliable modality in distinguishing malignant from benign pleural effusion than 18F-FDG PET imaging and CT imaging alone. For image interpretation of 18F-FDG PET/CT integrated imaging, the PET and CT portions play a major diagnostic role in identifying metastatic effusion and benign effusion, respectively.
Sandiego, Christine M.; Weinzimmer, David; Carson, Richard E.
2012-01-01
An important step in PET brain kinetic analysis is the registration of functional data to an anatomical MR image. Typically, PET-MR registrations in nonhuman primate neuroreceptor studies used PET images acquired early post-injection, (e.g., 0–10 min) to closely resemble the subject’s MR image. However, a substantial fraction of these registrations (~25%) fail due to the differences in kinetics and distribution for various radiotracer studies and conditions (e.g., blocking studies). The Multi-Transform Method (MTM) was developed to improve the success of registrations between PET and MR images. Two algorithms were evaluated, MTM-I and MTM-II. The approach involves creating multiple transformations by registering PET images of different time intervals, from a dynamic study, to a single reference (i.e., MR image) (MTM-I) or to multiple reference images (i.e., MR and PET images pre-registered to the MR) (MTM-II). Normalized mutual information was used to compute similarity between the transformed PET images and the reference image(s) to choose the optimal transformation. This final transformation is used to map the dynamic dataset into the animal’s anatomical MR space, required for kinetic analysis. The chosen transformed from MTM-I and MTM-II were evaluated using visual rating scores to assess the quality of spatial alignment between the resliced PET and reference. One hundred twenty PET datasets involving eleven different tracers from 3 different scanners were used to evaluate the MTM algorithms. Studies were performed with baboons and rhesus monkeys on the HR+, HRRT, and Focus-220. Successful transformations increased from 77.5%, 85.8%, to 96.7% using the 0–10 min method, MTM-I, and MTM-II, respectively, based on visual rating scores. The Multi-Transform Methods proved to be a robust technique for PET-MR registrations for a wide range of PET studies. PMID:22926293
2013-10-01
AD_________________ Award Number: W81XWH-12-1-0597 TITLE: Parametric PET /MR Fusion Imaging to...Parametric PET /MR Fusion Imaging to Differentiate Aggressive from Indolent Primary Prostate Cancer with Application for Image-Guided Prostate Cancer Biopsies...The study investigates whether fusion PET /MRI imaging with 18F-choline PET /CT and diffusion-weighted MRI can be successfully applied to target prostate
Bagci, Ulas; Udupa, Jayaram K.; Mendhiratta, Neil; Foster, Brent; Xu, Ziyue; Yao, Jianhua; Chen, Xinjian; Mollura, Daniel J.
2013-01-01
We present a novel method for the joint segmentation of anatomical and functional images. Our proposed methodology unifies the domains of anatomical and functional images, represents them in a product lattice, and performs simultaneous delineation of regions based on random walk image segmentation. Furthermore, we also propose a simple yet effective object/background seed localization method to make the proposed segmentation process fully automatic. Our study uses PET, PET-CT, MRI-PET, and fused MRI-PET-CT scans (77 studies in all) from 56 patients who had various lesions in different body regions. We validated the effectiveness of the proposed method on different PET phantoms as well as on clinical images with respect to the ground truth segmentation provided by clinicians. Experimental results indicate that the presented method is superior to threshold and Bayesian methods commonly used in PET image segmentation, is more accurate and robust compared to the other PET-CT segmentation methods recently published in the literature, and also it is general in the sense of simultaneously segmenting multiple scans in real-time with high accuracy needed in routine clinical use. PMID:23837967
Sun, Hongzan; Xin, Jun; Zhou, Jinyuan; Lu, Zaiming; Guo, Qiyong
2018-06-01
The purpose of this study is to evaluate the diagnostic concordance and metric correlations of amide proton transfer (APT) imaging with gadolinium-enhanced magnetic resonance imaging (MRI) and 2-deoxy-2-[ 18 F-]fluoro-D-glucose ([ 18 F]FDG) positron emission tomography (PET), using hybrid brain PET/MRI. Twenty-one subjects underwent brain gadolinium-enhanced [ 18 F]FDG PET/MRI prospectively. Imaging accuracy was compared between unenhanced MRI, MRI with enhancement, APT-weighted (APTW) images, and PET based on six diagnostic criteria. Among tumors, the McNemar test was further used for concordance assessment between gadolinium-enhanced imaging, APT imaging, and [ 18 F]FDG PET. As well, the relation of metrics between APT imaging and PET was analyzed by the Pearson correlation analysis. APT imaging and gadolinium-enhanced MRI showed superior and similar diagnostic accuracy. APTW signal intensity and gadolinium enhancement were concordant in 19 tumors (100 %), while high [ 18 F]FDG avidity was shown in only 12 (63.2 %). For the metrics from APT imaging and PET, there was significant correlation for 13 hypermetabolic tumors (P < 0.05) and no correlation for the remaining six [ 18 F]FDG-avid tumors. APT imaging can be used to increase diagnostic accuracy with no need to administer gadolinium chelates. APT imaging may provide an added value to [ 18 F]FDG PET in the evaluation of tumor metabolic activity during brain PET/MR studies.
Sun, Yajuan; Yu, Hongjuan; Ma, Jingquan
2016-01-01
Objective The aim of our study was to evaluate the role of 18F-FDG PET/CT integrated imaging in differentiating malignant from benign pleural effusion. Methods A total of 176 patients with pleural effusion who underwent 18F-FDG PET/CT examination to differentiate malignancy from benignancy were retrospectively researched. The images of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were visually analyzed. The suspected malignant effusion was characterized by the presence of nodular or irregular pleural thickening on CT imaging. Whereas on PET imaging, pleural 18F-FDG uptake higher than mediastinal activity was interpreted as malignant effusion. Images of 18F-FDG PET/CT integrated imaging were interpreted by combining the morphologic feature of pleura on CT imaging with the degree and form of pleural 18F-FDG uptake on PET imaging. Results One hundred and eight patients had malignant effusion, including 86 with pleural metastasis and 22 with pleural mesothelioma, whereas 68 patients had benign effusion. The sensitivities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging in detecting malignant effusion were 75.0%, 91.7% and 93.5%, respectively, which were 69.8%, 91.9% and 93.0% in distinguishing metastatic effusion. The sensitivity of 18F-FDG PET/CT integrated imaging in detecting malignant effusion was higher than that of CT imaging (p = 0.000). For metastatic effusion, 18F-FDG PET imaging had higher sensitivity (p = 0.000) and better diagnostic consistency with 18F-FDG PET/CT integrated imaging compared with CT imaging (Kappa = 0.917 and Kappa = 0.295, respectively). The specificities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were 94.1%, 63.2% and 92.6% in detecting benign effusion. The specificities of CT imaging and 18F-FDG PET/CT integrated imaging were higher than that of 18F-FDG PET imaging (p = 0.000 and p = 0.000, respectively), and CT imaging had better diagnostic consistency with 18F-FDG PET/CT integrated imaging compared with 18F-FDG PET imaging (Kappa = 0.881 and Kappa = 0.240, respectively). Conclusion 18F-FDG PET/CT integrated imaging is a more reliable modality in distinguishing malignant from benign pleural effusion than 18F-FDG PET imaging and CT imaging alone. For image interpretation of 18F-FDG PET/CT integrated imaging, the PET and CT portions play a major diagnostic role in identifying metastatic effusion and benign effusion, respectively. PMID:27560933
Prediction of standard-dose brain PET image by using MRI and low-dose brain [18F]FDG PET images.
Kang, Jiayin; Gao, Yaozong; Shi, Feng; Lalush, David S; Lin, Weili; Shen, Dinggang
2015-09-01
Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient's exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. As yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain [(18)F]FDG PET image by using a low-dose brain [(18)F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. The authors employ a regression forest for predicting the standard-dose brain [(18)F]FDG PET image by low-dose brain [(18)F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain [(18)F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain [(18)F]FDG PET image and substantially enhanced image quality of low-dose brain [(18)F]FDG PET image. In this paper, the authors propose a framework to generate standard-dose brain [(18)F]FDG PET image using low-dose brain [(18)F]FDG PET and MRI images. Both the visual and quantitative results indicate that the standard-dose brain [(18)F]FDG PET can be well-predicted using MRI and low-dose brain [(18)F]FDG PET.
Prediction of standard-dose brain PET image by using MRI and low-dose brain [18F]FDG PET images
Kang, Jiayin; Gao, Yaozong; Shi, Feng; Lalush, David S.; Lin, Weili; Shen, Dinggang
2015-01-01
Purpose: Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient’s exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. As yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain [18F]FDG PET image by using a low-dose brain [18F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. Methods: The authors employ a regression forest for predicting the standard-dose brain [18F]FDG PET image by low-dose brain [18F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain [18F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. Results: The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain [18F]FDG PET image and substantially enhanced image quality of low-dose brain [18F]FDG PET image. Conclusions: In this paper, the authors propose a framework to generate standard-dose brain [18F]FDG PET image using low-dose brain [18F]FDG PET and MRI images. Both the visual and quantitative results indicate that the standard-dose brain [18F]FDG PET can be well-predicted using MRI and low-dose brain [18F]FDG PET. PMID:26328979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Jiayin; Gao, Yaozong; Shi, Feng
Purpose: Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient’s exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. Asmore » yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain [{sup 18}F]FDG PET image by using a low-dose brain [{sup 18}F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. Methods: The authors employ a regression forest for predicting the standard-dose brain [{sup 18}F]FDG PET image by low-dose brain [{sup 18}F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain [{sup 18}F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. Results: The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain [{sup 18}F]FDG PET image and substantially enhanced image quality of low-dose brain [{sup 18}F]FDG PET image. Conclusions: In this paper, the authors propose a framework to generate standard-dose brain [{sup 18}F]FDG PET image using low-dose brain [{sup 18}F]FDG PET and MRI images. Both the visual and quantitative results indicate that the standard-dose brain [{sup 18}F]FDG PET can be well-predicted using MRI and low-dose brain [{sup 18}F]FDG PET.« less
Miwa, Kenta; Umeda, Takuro; Murata, Taisuke; Wagatsuma, Kei; Miyaji, Noriaki; Terauchi, Takashi; Koizumi, Mitsuru; Sasaki, Masayuki
2016-02-01
Overcorrection of scatter caused by patient motion during whole-body PET/computed tomography (CT) imaging can induce the appearance of photopenic artifacts in the PET images. The present study aimed to quantify the accuracy of scatter limitation correction (SLC) for eliminating photopenic artifacts. This study analyzed photopenic artifacts in (18)F-fluorodeoxyglucose ((18)F-FDG) PET/CT images acquired from 12 patients and from a National Electrical Manufacturers Association phantom with two peripheral plastic bottles that simulated the human body and arms, respectively. The phantom comprised a sphere (diameter, 10 or 37 mm) containing fluorine-18 solutions with target-to-background ratios of 2, 4, and 8. The plastic bottles were moved 10 cm posteriorly between CT and PET acquisitions. All PET data were reconstructed using model-based scatter correction (SC), no scatter correction (NSC), and SLC, and the presence or absence of artifacts on the PET images was visually evaluated. The SC and SLC images were also semiquantitatively evaluated using standardized uptake values (SUVs). Photopenic artifacts were not recognizable in any NSC and SLC image from all 12 patients in the clinical study. The SUVmax of mismatched SLC PET/CT images were almost equal to those of matched SC and SLC PET/CT images. Applying NSC and SLC substantially eliminated the photopenic artifacts on SC PET images in the phantom study. SLC improved the activity concentration of the sphere for all target-to-background ratios. The highest %errors of the 10 and 37-mm spheres were 93.3 and 58.3%, respectively, for mismatched SC, and 73.2 and 22.0%, respectively, for mismatched SLC. Photopenic artifacts caused by SC error induced by CT and PET image misalignment were corrected using SLC, indicating that this method is useful and practical for clinical qualitative and quantitative PET/CT assessment.
Simultaneous trimodal PET-MR-EEG imaging: Do EEG caps generate artefacts in PET images?
Rajkumar, Ravichandran; Rota Kops, Elena; Mauler, Jörg; Tellmann, Lutz; Lerche, Christoph; Herzog, Hans; Shah, N Jon; Neuner, Irene
2017-01-01
Trimodal simultaneous acquisition of positron emission tomography (PET), magnetic resonance imaging (MRI), and electroencephalography (EEG) has become feasible due to the development of hybrid PET-MR scanners. To capture the temporal dynamics of neuronal activation on a millisecond-by-millisecond basis, an EEG system is appended to the quantitative high resolution PET-MR imaging modality already established in our institute. One of the major difficulties associated with the development of simultaneous trimodal acquisition is that the components traditionally used in each modality can cause interferences in its counterpart. The mutual interferences of MRI components and PET components on PET and MR images, and the influence of EEG electrodes on functional MRI images have been studied and reported on. Building on this, this study aims to investigate the influence of the EEG cap on the quality and quantification of PET images acquired during simultaneous PET-MR measurements. A preliminary transmission scan study on the ECAT HR+ scanner, using an Iida phantom, showed visible attenuation effect due to the EEG cap. The BrainPET-MR emission images of the Iida phantom with [18F]Fluordeoxyglucose, as well as of human subjects with the EEG cap, did not show significant effects of the EEG cap, even though the applied attenuation correction did not take into account the attenuation of the EEG cap itself.
Antonica, Filippo; Asabella, Artor Niccoli; Ferrari, Cristina; Rubini, Domenico; Notaristefano, Antonio; Nicoletti, Adriano; Altini, Corinna; Merenda, Nunzio; Mossa, Emilio; Guarini, Attilio; Rubini, Giuseppe
2014-01-01
In the last decade numerous attempts were considered to co-register and integrate different imaging data. Like PET/CT the integration of PET to MR showed great interest. PET/MR scanners are recently tested on different distrectual or systemic pathologies. Unfortunately PET/MR scanners are expensive and diagnostic protocols are still under studies and investigations. Nuclear Medicine imaging highlights functional and biometabolic information but has poor anatomic details. The aim of this study is to integrate MR and PET data to produce distrectual or whole body fused images acquired from different scanners even in different days. We propose an offline method to fuse PET with MR data using an open-source software that has to be inexpensive, reproducible and capable to exchange data over the network. We also evaluate global quality, alignment quality, and diagnostic confidence of fused PET-MR images. We selected PET/CT studies performed in our Nuclear Medicine unit, MR studies provided by patients on DICOM CD media or network received. We used Osirix 5.7 open source version. We aligned CT slices with the first MR slice, pointed and marked for co-registration using MR-T1 sequence and CT as reference and fused with PET to produce a PET-MR image. A total of 100 PET/CT studies were fused with the following MR studies: 20 head, 15 thorax, 24 abdomen, 31 pelvis, 10 whole body. An interval of no more than 15 days between PET and MR was the inclusion criteria. PET/CT, MR and fused studies were evaluated by two experienced radiologist and two experienced nuclear medicine physicians. Each one filled a five point based evaluation scoring scheme based on image quality, image artifacts, segmentation errors, fusion misalignment and diagnostic confidence. Our fusion method showed best results for head, thorax and pelvic districts in terms of global quality, alignment quality and diagnostic confidence,while for the abdomen and pelvis alignement quality and global quality resulted poor due to internal organs filling variation and time shifting beetwen examinations. PET/CT images with time of flight reconstruction and real attenuation correction were combined with anatomical detailed MRI images. We used Osirix, an image processing Open Source Software dedicated to DICOM images. No additional costs, to buy and upgrade proprietary software are required for combining data. No high technology or very expensive PET/MR scanner, that requires dedicated shielded room spaces and personnel to be employed or to be trained, are needed. Our method allows to share patient PET/MR fused data with different medical staff using dedicated networks. The proposed method may be applied to every MR sequence (MR-DWI and MR-STIR, magnet enhanced sequences) to characterize soft tissue alterations and improve discrimination diseases. It can be applied not only to PET with MR but virtually to every DICOM study.
Practical Considerations for Clinical PET/MR Imaging.
Galgano, Samuel; Viets, Zachary; Fowler, Kathryn; Gore, Lael; Thomas, John V; McNamara, Michelle; McConathy, Jonathan
2018-01-01
Clinical PET/MR imaging is currently performed at a number of centers around the world as part of routine standard of care. This article focuses on issues and considerations for a clinical PET/MR imaging program, focusing on routine standard-of-care studies. Although local factors influence how clinical PET/MR imaging is implemented, the approaches and considerations described here intend to apply to most clinical programs. PET/MR imaging provides many more options than PET/computed tomography with diagnostic advantages for certain clinical applications but with added complexity. A recurring theme is matching the PET/MR imaging protocol to the clinical application to balance diagnostic accuracy with efficiency. Copyright © 2017 Elsevier Inc. All rights reserved.
Practical Considerations for Clinical PET/MR Imaging.
Galgano, Samuel; Viets, Zachary; Fowler, Kathryn; Gore, Lael; Thomas, John V; McNamara, Michelle; McConathy, Jonathan
2017-05-01
Clinical PET/MR imaging is currently performed at a number of centers around the world as part of routine standard of care. This article focuses on issues and considerations for a clinical PET/MR imaging program, focusing on routine standard-of-care studies. Although local factors influence how clinical PET/MR imaging is implemented, the approaches and considerations described here intend to apply to most clinical programs. PET/MR imaging provides many more options than PET/computed tomography with diagnostic advantages for certain clinical applications but with added complexity. A recurring theme is matching the PET/MR imaging protocol to the clinical application to balance diagnostic accuracy with efficiency. Copyright © 2016 Elsevier Inc. All rights reserved.
Razifar, Pasha; Sandström, Mattias; Schnieder, Harald; Långström, Bengt; Maripuu, Enn; Bengtsson, Ewert; Bergström, Mats
2005-08-25
Positron Emission Tomography (PET), Computed Tomography (CT), PET/CT and Single Photon Emission Tomography (SPECT) are non-invasive imaging tools used for creating two dimensional (2D) cross section images of three dimensional (3D) objects. PET and SPECT have the potential of providing functional or biochemical information by measuring distribution and kinetics of radiolabelled molecules, whereas CT visualizes X-ray density in tissues in the body. PET/CT provides fused images representing both functional and anatomical information with better precision in localization than PET alone. Images generated by these types of techniques are generally noisy, thereby impairing the imaging potential and affecting the precision in quantitative values derived from the images. It is crucial to explore and understand the properties of noise in these imaging techniques. Here we used autocorrelation function (ACF) specifically to describe noise correlation and its non-isotropic behaviour in experimentally generated images of PET, CT, PET/CT and SPECT. Experiments were performed using phantoms with different shapes. In PET and PET/CT studies, data were acquired in 2D acquisition mode and reconstructed by both analytical filter back projection (FBP) and iterative, ordered subsets expectation maximisation (OSEM) methods. In the PET/CT studies, different magnitudes of X-ray dose in the transmission were employed by using different mA settings for the X-ray tube. In the CT studies, data were acquired using different slice thickness with and without applied dose reduction function and the images were reconstructed by FBP. SPECT studies were performed in 2D, reconstructed using FBP and OSEM, using post 3D filtering. ACF images were generated from the primary images, and profiles across the ACF images were used to describe the noise correlation in different directions. The variance of noise across the images was visualised as images and with profiles across these images. The most important finding was that the pattern of noise correlation is rotation symmetric or isotropic, independent of object shape in PET and PET/CT images reconstructed using the iterative method. This is, however, not the case in FBP images when the shape of phantom is not circular. Also CT images reconstructed using FBP show the same non-isotropic pattern independent of slice thickness and utilization of care dose function. SPECT images show an isotropic correlation of the noise independent of object shape or applied reconstruction algorithm. Noise in PET/CT images was identical independent of the applied X-ray dose in the transmission part (CT), indicating that the noise from transmission with the applied doses does not propagate into the PET images showing that the noise from the emission part is dominant. The results indicate that in human studies it is possible to utilize a low dose in transmission part while maintaining the noise behaviour and the quality of the images. The combined effect of noise correlation for asymmetric objects and a varying noise variance across the image field significantly complicates the interpretation of the images when statistical methods are used, such as with statistical estimates of precision in average values, use of statistical parametric mapping methods and principal component analysis. Hence it is recommended that iterative reconstruction methods are used for such applications. However, it is possible to calculate the noise analytically in images reconstructed by FBP, while it is not possible to do the same calculation in images reconstructed by iterative methods. Therefore for performing statistical methods of analysis which depend on knowing the noise, FBP would be preferred.
Deformation field correction for spatial normalization of PET images
Bilgel, Murat; Carass, Aaron; Resnick, Susan M.; Wong, Dean F.; Prince, Jerry L.
2015-01-01
Spatial normalization of positron emission tomography (PET) images is essential for population studies, yet the current state of the art in PET-to-PET registration is limited to the application of conventional deformable registration methods that were developed for structural images. A method is presented for the spatial normalization of PET images that improves their anatomical alignment over the state of the art. The approach works by correcting the deformable registration result using a model that is learned from training data having both PET and structural images. In particular, viewing the structural registration of training data as ground truth, correction factors are learned by using a generalized ridge regression at each voxel given the PET intensities and voxel locations in a population-based PET template. The trained model can then be used to obtain more accurate registration of PET images to the PET template without the use of a structural image. A cross validation evaluation on 79 subjects shows that the proposed method yields more accurate alignment of the PET images compared to deformable PET-to-PET registration as revealed by 1) a visual examination of the deformed images, 2) a smaller error in the deformation fields, and 3) a greater overlap of the deformed anatomical labels with ground truth segmentations. PMID:26142272
Albert, Nathalie L.; Weller, Michael; Suchorska, Bogdana; Galldiks, Norbert; Soffietti, Riccardo; Kim, Michelle M.; la Fougère, Christian; Pope, Whitney; Law, Ian; Arbizu, Javier; Chamberlain, Marc C.; Vogelbaum, Michael; Ellingson, Ben M.
2016-01-01
This guideline provides recommendations for the use of PET imaging in gliomas. The review examines established clinical benefit in glioma patients of PET using glucose (18F-FDG) and amino acid tracers (11C-MET, 18F-FET, and 18F-FDOPA). An increasing number of studies have been published on PET imaging in the setting of diagnosis, biopsy, and resection as well radiotherapy planning, treatment monitoring, and response assessment. Recommendations are based on evidence generated from studies which validated PET findings by histology or clinical course. This guideline emphasizes the clinical value of PET imaging with superiority of amino acid PET over glucose PET and provides a framework for the use of PET to assist in the management of patients with gliomas. PMID:27106405
Catana, Ciprian; Wu, Yibao; Judenhofer, Martin S; Qi, Jinyi; Pichler, Bernd J; Cherry, Simon R
2006-12-01
PET and MRI are powerful imaging techniques that are largely complementary in the information they provide. We have designed and built a MR-compatible PET scanner based on avalanche photodiode technology that allows simultaneous acquisition of PET and MR images in small animals. The PET scanner insert uses magnetic field-insensitive, position-sensitive avalanche photodiode (PSAPD) detectors coupled, via short lengths of optical fibers, to arrays of lutetium oxyorthosilicate (LSO) scintillator crystals. The optical fibers are used to minimize electromagnetic interference between the radiofrequency and gradient coils and the PET detector system. The PET detector module components and the complete PET insert assembly are described. PET data were acquired with and without MR sequences running, and detector flood histograms were compared with the ones generated from the data acquired outside the magnet. A uniform MR phantom was also imaged to assess the effect of the PET detector on the MR data acquisition. Simultaneous PET and MRI studies of a mouse were performed ex vivo. PSAPDs can be successfully used to read out large numbers of scintillator crystals coupled through optical fibers with acceptable performance in terms of energy and timing resolution and crystal identification. The PSAPD-LSO detector performs well in the 7-T magnet, and no visible artifacts are detected in the MR images using standard pulse sequences. The first images from the complete system have been successfully acquired and reconstructed, demonstrating that simultaneous PET and MRI studies are feasible and opening up interesting possibilities for dual-modality molecular imaging studies.
NASA Astrophysics Data System (ADS)
Magri, Alphonso; Krol, Andrzej; Lipson, Edward; Mandel, James; McGraw, Wendy; Lee, Wei; Tillapaugh-Fay, Gwen; Feiglin, David
2009-02-01
This study was undertaken to register 3D parametric breast images derived from Gd-DTPA MR and F-18-FDG PET/CT dynamic image series. Nonlinear curve fitting (Levenburg-Marquardt algorithm) based on realistic two-compartment models was performed voxel-by-voxel separately for MR (Brix) and PET (Patlak). PET dynamic series consists of 50 frames of 1-minute duration. Each consecutive PET image was nonrigidly registered to the first frame using a finite element method and fiducial skin markers. The 12 post-contrast MR images were nonrigidly registered to the precontrast frame using a free-form deformation (FFD) method. Parametric MR images were registered to parametric PET images via CT using FFD because the first PET time frame was acquired immediately after the CT image on a PET/CT scanner and is considered registered to the CT image. We conclude that nonrigid registration of PET and MR parametric images using CT data acquired during PET/CT scan and the FFD method resulted in their improved spatial coregistration. The success of this procedure was limited due to relatively large target registration error, TRE = 15.1+/-7.7 mm, as compared to spatial resolution of PET (6-7 mm), and swirling image artifacts created in MR parametric images by the FFD. Further refinement of nonrigid registration of PET and MR parametric images is necessary to enhance visualization and integration of complex diagnostic information provided by both modalities that will lead to improved diagnostic performance.
Nagamachi, Shigeki; Nishii, Ryuichi; Wakamatsu, Hideyuki; Mizutani, Youichi; Kiyohara, Shogo; Fujita, Seigo; Futami, Shigemi; Sakae, Tatefumi; Furukoji, Eiji; Tamura, Shozo; Arita, Hideo; Chijiiwa, Kazuo; Kawai, Keiichi
2013-07-01
This study aimed at demonstrating the feasibility of retrospectively fused (18)F FDG-PET and MRI (PET/MRI fusion image) in diagnosing pancreatic tumor, in particular differentiating malignant tumor from benign lesions. In addition, we evaluated additional findings characterizing pancreatic lesions by FDG-PET/MRI fusion image. We analyzed retrospectively 119 patients: 96 cancers and 23 benign lesions. FDG-PET/MRI fusion images (PET/T1 WI or PET/T2WI) were made by dedicated software using 1.5 Tesla (T) MRI image and FDG-PET images. These images were interpreted by two well-trained radiologists without knowledge of clinical information and compared with FDG-PET/CT images. We compared the differential diagnostic capability between PET/CT and FDG-PET/MRI fusion image. In addition, we evaluated additional findings such as tumor structure and tumor invasion. FDG-PET/MRI fusion image significantly improved accuracy compared with that of PET/CT (96.6 vs. 86.6 %). As additional finding, dilatation of main pancreatic duct was noted in 65.9 % of solid types and in 22.6 % of cystic types, on PET/MRI-T2 fusion image. Similarly, encasement of adjacent vessels was noted in 43.1 % of solid types and in 6.5 % of cystic types. Particularly in cystic types, intra-tumor structures such as mural nodule (35.4 %) or intra-cystic septum (74.2 %) were detected additionally. Besides, PET/MRI-T2 fusion image could detect extra benign cystic lesions (9.1 % in solid type and 9.7 % in cystic type) that were not noted by PET/CT. In diagnosing pancreatic lesions, FDG-PET/MRI fusion image was useful in differentiating pancreatic cancer from benign lesions. Furthermore, it was helpful in evaluating relationship between lesions and surrounding tissues as well as in detecting extra benign cysts.
EXPLORER: Changing the molecular imaging paradigm with total-body PET/CT (Conference Presentation)
NASA Astrophysics Data System (ADS)
Cherry, Simon R.; Badawi, Ramsey D.; Jones, Terry
2016-04-01
Positron emission tomography (PET) is the highest sensitivity technique for human whole-body imaging studies. However, current clinical PET scanners do not make full use of the available signal, as they only permit imaging of a 15-25 cm segment of the body at one time. Given the limited sensitive region, whole-body imaging with clinical PET scanners requires relatively long scan times and subjects the patient to higher than necessary radiation doses. The EXPLORER initiative aims to build a 2-meter axial length PET scanner to allow imaging the entire subject at once, capturing nearly the entire available PET signal. EXPLORER will acquire data with ~40-fold greater sensitivity leading to a six-fold increase in reconstructed signal-to-noise ratio for imaging the total body. Alternatively, total-body images with the EXPLORER scanner will be able to be acquired in ~30 seconds or with ~0.15 mSv injected dose, while maintaining current PET image quality. The superior sensitivity will open many new avenues for biomedical research. Specifically for cancer applications, high sensitivity PET will enable detection of smaller lesions. Additionally, greater sensitivity will allow imaging out to 10 half-lives of positron emitting radiotracers. This will enable 1) metabolic ultra-staging with FDG by extending the uptake and clearance time to 3-5 hours to significantly improve contrast and 2) improved kinetic imaging with short-lived radioisotopes such as C-11, crucial for drug development studies. Frequent imaging studies of the same subject to study disease progression or to track response to therapy will be possible with the low dose capabilities of the EXPLORER scanner. The low dose capabilities will also open up new imaging possibilities in pediatrics and adolescents to better study developmental disorders. This talk will review the basis for developing total-body PET, potential applications, and review progress to date in developing EXPLORER, the first total-body PET scanner.
Xia, Yong; Eberl, Stefan; Wen, Lingfeng; Fulham, Michael; Feng, David Dagan
2012-01-01
Dual medical imaging modalities, such as PET-CT, are now a routine component of clinical practice. Medical image segmentation methods, however, have generally only been applied to single modality images. In this paper, we propose the dual-modality image segmentation model to segment brain PET-CT images into gray matter, white matter and cerebrospinal fluid. This model converts PET-CT image segmentation into an optimization process controlled simultaneously by PET and CT voxel values and spatial constraints. It is innovative in the creation and application of the modality discriminatory power (MDP) coefficient as a weighting scheme to adaptively combine the functional (PET) and anatomical (CT) information on a voxel-by-voxel basis. Our approach relies upon allowing the modality with higher discriminatory power to play a more important role in the segmentation process. We compared the proposed approach to three other image segmentation strategies, including PET-only based segmentation, combination of the results of independent PET image segmentation and CT image segmentation, and simultaneous segmentation of joint PET and CT images without an adaptive weighting scheme. Our results in 21 clinical studies showed that our approach provides the most accurate and reliable segmentation for brain PET-CT images. Copyright © 2011 Elsevier Ltd. All rights reserved.
Blanchet, Elise M.; Millo, Corina; Martucci, Victoria; Maass-Moreno, Roberto; Bluemke, David A.; Pacak, Karel
2017-01-01
Purpose Paragangliomas (PGLs) are tumors that can metastasize and recur; therefore, lifelong imaging follow-up is required. Hybrid positron emission tomography (PET)/computed tomography (/CT) is an essential tool to image PGLs. Novel hybrid PET/magnetic resonance (/MR) scanners are currently being studied in clinical oncology. We studied the feasibility of simultaneous whole-body PET/MR imaging to evaluate patients with PGLs. Methods Fifty-three PGLs or PGL-related lesions from eight patients were evaluated. All patients underwent a single-injection, dual-modality imaging protocol consisting of a PET/CT and subsequent PET/MR scan. Four patients were evaluated with 18F-fluorodeoxyglucose (18F-FDG), two with 18F-fluorodihydroxyphenylalanine (18F-FDOPA), and two with 18F-fluorodopamine (18F-FDA). PET/MR data were acquired using a hybrid whole-body 3-Tesla integrated PET/MR scanner. PET and MR data (DIXON images for attenuation correction and T2-weighted sequences for anatomic allocation) were acquired simultaneously. Imaging workflow and imaging times were documented. PET/MR and PET/CT data were visually assessed (blindly) in regards to image quality, lesion detection, and anatomic allocation and delineation of the PET findings. Results With hybrid PET/MR, we obtained high quality images in an acceptable acquisition time (median: 31 min, range: 25–40 min) with good patient compliance. A total of 53 lesions, located in the head-and-neck area (6), mediastinum (2), abdomen and pelvis (13), lungs (2), liver (4), and bone (26) were evaluated. 51 lesions were detected with PET/MR and confirmed by PET/CT. Two bone lesions (L4 body (8 mm) and sacrum (6 mm)) were not detectable on an 18F-FDA scan PET/MR, likely due to washout of the 18F-FDA. Co-registered MR tended to be superior to co-registered CT for head-and-neck, abdomen, pelvis, and liver lesions for anatomic allocation and delineation. Conclusions Clinical PGL evaluation with hybrid PET/MR is feasible with high image-quality and can be obtained in a reasonable time. It could be particularly beneficial for the pediatric population and for precise lesion definition in the head-and-neck, abdomen, pelvis, and liver. PMID:24152658
NASA Astrophysics Data System (ADS)
Bergmann, Helmar; Dobrozemsky, Georg; Minear, Gregory; Nicoletti, Rudolf; Samal, Martin
2005-05-01
An inter-laboratory comparison study was conducted to assess the image quality of PET scanners in Austria. The survey included both dedicated PET scanners (D-PET, n = 8) and coincidence cameras (GC-PET, n = 7). Measurement of image quality was based on the NEMA (National Electrical Manufacturers Association) NU 2-2001 protocol and the IEC (International Electrotechnical Commission) body phantom. The latter contains six fillable spheres ranging in diameter from 37 mm down to 10 mm and a 'lung' insert. The two largest lesions L1-2 simulate cold lesions, the four smaller ones (L3-6) are filled with 18F and activity concentration ratios relative to background of 8:1 and 4:1, respectively. Acquisition and reconstruction in the study employed the participating institutes' standard oncological processing protocol. Calculation of contrast of the spheres was performed with a fully automated procedure. Contrast quality indices (CQIs) reflecting global performance were obtained by summing individual contrast values. Other image quality parameters calculated according to the NEMA protocol were background variability and relative error for correction of attenuation and scatter. Contrast values obtained were 61 ± 16 and 37 ± 14 for L1 (per cent contrast ± SD for D-PET and GC-PET, respectively), 57 ± 16 and 29 ± 16 for L2, 46 ± 10 and 26 ± 6.3 for L3, 37 ± 10 and 15 ± 4.3 for L4, 26 ± 11.5 and 6.1 ± 2.5 for L5, 14 ± 7.1 and 2.6 ± 2.6 for L6, with D-PET systems consistently being superior to GC-PET systems. CQIs permitted ranking of the scanners, also demonstrating a clear distinction between D-PET and GC-PET systems. Background variability was largest for GC-PET systems; the relative error of attenuation and scatter correction was significantly correlated with image quality for D-PET systems only. The study demonstrated considerable differences in image quality not only between GC-PET and D-PET systems but also between individual D-PET systems with possible consequences for clinical interpretation of images and measurement of quantitative indices such as the standardized uptake value. The study provided valuable feedback to the participants as well as baseline data for improving interchangeability of PET images and of quantitative indices between different laboratories.
Enhancement of dynamic myocardial perfusion PET images based on low-rank plus sparse decomposition.
Lu, Lijun; Ma, Xiaomian; Mohy-Ud-Din, Hassan; Ma, Jianhua; Feng, Qianjin; Rahmim, Arman; Chen, Wufan
2018-02-01
The absolute quantification of dynamic myocardial perfusion (MP) PET imaging is challenged by the limited spatial resolution of individual frame images due to division of the data into shorter frames. This study aims to develop a method for restoration and enhancement of dynamic PET images. We propose that the image restoration model should be based on multiple constraints rather than a single constraint, given the fact that the image characteristic is hardly described by a single constraint alone. At the same time, it may be possible, but not optimal, to regularize the image with multiple constraints simultaneously. Fortunately, MP PET images can be decomposed into a superposition of background vs. dynamic components via low-rank plus sparse (L + S) decomposition. Thus, we propose an L + S decomposition based MP PET image restoration model and express it as a convex optimization problem. An iterative soft thresholding algorithm was developed to solve the problem. Using realistic dynamic 82 Rb MP PET scan data, we optimized and compared its performance with other restoration methods. The proposed method resulted in substantial visual as well as quantitative accuracy improvements in terms of noise versus bias performance, as demonstrated in extensive 82 Rb MP PET simulations. In particular, the myocardium defect in the MP PET images had improved visual as well as contrast versus noise tradeoff. The proposed algorithm was also applied on an 8-min clinical cardiac 82 Rb MP PET study performed on the GE Discovery PET/CT, and demonstrated improved quantitative accuracy (CNR and SNR) compared to other algorithms. The proposed method is effective for restoration and enhancement of dynamic PET images. Copyright © 2017 Elsevier B.V. All rights reserved.
Image reconstruction for PET/CT scanners: past achievements and future challenges
Tong, Shan; Alessio, Adam M; Kinahan, Paul E
2011-01-01
PET is a medical imaging modality with proven clinical value for disease diagnosis and treatment monitoring. The integration of PET and CT on modern scanners provides a synergy of the two imaging modalities. Through different mathematical algorithms, PET data can be reconstructed into the spatial distribution of the injected radiotracer. With dynamic imaging, kinetic parameters of specific biological processes can also be determined. Numerous efforts have been devoted to the development of PET image reconstruction methods over the last four decades, encompassing analytic and iterative reconstruction methods. This article provides an overview of the commonly used methods. Current challenges in PET image reconstruction include more accurate quantitation, TOF imaging, system modeling, motion correction and dynamic reconstruction. Advances in these aspects could enhance the use of PET/CT imaging in patient care and in clinical research studies of pathophysiology and therapeutic interventions. PMID:21339831
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kronfeld, Andrea; Müller-Forell, Wibke; Buchholz, Hans-Georg
Purpose: Image registration is one prerequisite for the analysis of brain regions in magnetic-resonance-imaging (MRI) or positron-emission-tomography (PET) studies. Diffeomorphic anatomical registration through exponentiated Lie algebra (DARTEL) is a nonlinear, diffeomorphic algorithm for image registration and construction of image templates. The goal of this small animal study was (1) the evaluation of a MRI and calculation of several cannabinoid type 1 (CB1) receptor PET templates constructed using DARTEL and (2) the analysis of the image registration accuracy of MR and PET images to their DARTEL templates with reference to analytical and iterative PET reconstruction algorithms. Methods: Five male Sprague Dawleymore » rats were investigated for template construction using MRI and [{sup 18}F]MK-9470 PET for CB1 receptor representation. PET images were reconstructed using the algorithms filtered back-projection, ordered subset expectation maximization in 2D, and maximum a posteriori in 3D. Landmarks were defined on each MR image, and templates were constructed under different settings, i.e., based on different tissue class images [gray matter (GM), white matter (WM), and GM + WM] and regularization forms (“linear elastic energy,” “membrane energy,” and “bending energy”). Registration accuracy for MRI and PET templates was evaluated by means of the distance between landmark coordinates. Results: The best MRI template was constructed based on gray and white matter images and the regularization form linear elastic energy. In this case, most distances between landmark coordinates were <1 mm. Accordingly, MRI-based spatial normalization was most accurate, but results of the PET-based spatial normalization were quite comparable. Conclusions: Image registration using DARTEL provides a standardized and automatic framework for small animal brain data analysis. The authors were able to show that this method works with high reliability and validity. Using DARTEL templates together with nonlinear registration algorithms allows for accurate spatial normalization of combined MRI/PET or PET-only studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Chuan, E-mail: chuan.huang@stonybrookmedicine.edu; Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115; Departments of Radiology, Psychiatry, Stony Brook Medicine, Stony Brook, New York 11794
2015-02-15
Purpose: Degradation of image quality caused by cardiac and respiratory motions hampers the diagnostic quality of cardiac PET. It has been shown that improved diagnostic accuracy of myocardial defect can be achieved by tagged MR (tMR) based PET motion correction using simultaneous PET-MR. However, one major hurdle for the adoption of tMR-based PET motion correction in the PET-MR routine is the long acquisition time needed for the collection of fully sampled tMR data. In this work, the authors propose an accelerated tMR acquisition strategy using parallel imaging and/or compressed sensing and assess the impact on the tMR-based motion corrected PETmore » using phantom and patient data. Methods: Fully sampled tMR data were acquired simultaneously with PET list-mode data on two simultaneous PET-MR scanners for a cardiac phantom and a patient. Parallel imaging and compressed sensing were retrospectively performed by GRAPPA and kt-FOCUSS algorithms with various acceleration factors. Motion fields were estimated using nonrigid B-spline image registration from both the accelerated and fully sampled tMR images. The motion fields were incorporated into a motion corrected ordered subset expectation maximization reconstruction algorithm with motion-dependent attenuation correction. Results: Although tMR acceleration introduced image artifacts into the tMR images for both phantom and patient data, motion corrected PET images yielded similar image quality as those obtained using the fully sampled tMR images for low to moderate acceleration factors (<4). Quantitative analysis of myocardial defect contrast over ten independent noise realizations showed similar results. It was further observed that although the image quality of the motion corrected PET images deteriorates for high acceleration factors, the images were still superior to the images reconstructed without motion correction. Conclusions: Accelerated tMR images obtained with more than 4 times acceleration can still provide relatively accurate motion fields and yield tMR-based motion corrected PET images with similar image quality as those reconstructed using fully sampled tMR data. The reduction of tMR acquisition time makes it more compatible with routine clinical cardiac PET-MR studies.« less
Comparison of 18F SPECT with PET in myocardial imaging: a realistic thorax-cardiac phantom study.
Knešaurek, Karin; Machac, Josef
2006-10-31
Positron emission tomography (PET) imaging with fluorine-18 (18F) Fluorodeoxyglucose (FDG) and flow tracer such as Rubidium-82 (82Rb) is an established method for evaluating an ischemic but viable myocardium. However, the high cost of PET imaging restricts its wider clinical use. Therefore, less expensive 18F FDG single photon emission computed tomography (SPECT) imaging has been considered as an alternative to 18F FDG PET imaging. The purpose of the work is to compare SPECT with PET in myocardial perfusion/viability imaging. A nonuniform RH-2 thorax-heart phantom was used in the SPECT and PET acquisitions. Three inserts, 3 cm, 2 cm and 1 cm in diameter, were placed in the left ventricular (LV) wall to simulate infarcts. The phantom acquisition was performed sequentially with 7.4 MBq of 18F and 22.2 MBq of Technetium-99m (99mTc) in the SPECT study and with 7.4 MBq of 18F and 370 MBq of 82Rb in the PET study. SPECT and PET data were processed using standard reconstruction software provided by vendors. Circumferential profiles of the short-axis slices, the contrast and viability of the inserts were used to evaluate the SPECT and PET images. The contrast for 3 cm, 2 cm and 1 cm inserts were for 18F PET data, 1.0 +/- 0.01, 0.67 +/- 0.02 and 0.25 +/- 0.01, respectively. For 82Rb PET data, the corresponding contrast values were 0.61 +/- 0.02, 0.37 +/- 0.02 and 0.19 +/- 0.01, respectively. For 18F SPECT the contrast values were, 0.31 +/- 0.03 and 0.20 +/- 0.05 for 3 cm and 2 cm inserts, respectively. For 99mTc SPECT the contrast values were, 0.63 +/- 0.04 and 0.24 +/- 0.05 for 3 cm and 2 cm inserts respectively. In SPECT, the 1 cm insert was not detectable. In the SPECT study, all three inserts were falsely diagnosed as "viable", while in the PET study, only the 1 cm insert was diagnosed falsely "viable". For smaller defects the 99mTc/18F SPECT imaging cannot entirely replace the more expensive 82Rb/18F PET for myocardial perfusion/viability imaging, due to poorer image spatial resolution and poorer defect contrast.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oehmigen, Mark, E-mail: mark.oehmigen@uni-due.de
Purpose: This study aims to develop, implement, and evaluate a 16-channel radiofrequency (RF) coil for integrated positron emission tomography/magnetic resonance (PET/MR) imaging of breast cancer. The RF coil is designed for optimized MR imaging performance and PET transparency and attenuation correction (AC) is applied for accurate PET quantification. Methods: A 16-channel breast array RF coil was designed for integrated PET/MR hybrid imaging of breast cancer lesions. The RF coil features a lightweight rigid design and is positioned with a spacer at a defined position on the patient table of an integrated PET/MR system. Attenuation correction is performed by generating andmore » applying a dedicated 3D CT-based template attenuation map. Reposition accuracy of the RF coil on the system patient table while using the positioning frame was tested in repeated measurements using MR-visible markers. The MR, PET, and PET/MR imaging performances were systematically evaluated using modular breast phantoms. Attenuation correction of the RF coil was evaluated with difference measurements of the active breast phantoms filled with radiotracer in the PET detector with and without the RF coil in place, serving as a standard of reference measurement. The overall PET/MR imaging performance and PET quantification accuracy of the new 16-channel RF coil and its AC were then evaluated in first clinical examinations on ten patients with local breast cancer. Results: The RF breast array coil provides excellent signal-to-noise ratio and signal homogeneity across the volume of the breast phantoms in MR imaging and visualizes small structures in the phantoms down to 0.4 mm in plane. Difference measurements with PET revealed a global loss and thus attenuation of counts by 13% (mean value across the whole phantom volume) when the RF coil is placed in the PET detector. Local attenuation ranging from 0% in the middle of the phantoms up to 24% was detected in the peripheral regions of the phantoms at positions closer to attenuating hardware structures of the RF coil. The position accuracy of the RF coil on the patient table when using the positioning frame was determined well below 1 mm for all three spatial dimensions. This ensures perfect position match between the RF coil and its three-dimensional attenuation template during the PET data reconstruction process. When applying the CT-based AC of the RF coil, the global attenuation bias was mostly compensated to ±0.5% across the entire breast imaging volume. The patient study revealed high quality MR, PET, and combined PET/MR imaging of breast cancer. Quantitative activity measurements in all 11 breast cancer lesions of the ten patients resulted in increased mean difference values of SUV{sub max} 11.8% (minimum 3.2%; maximum 23.2%) between nonAC images and images when AC of the RF breast coil was applied. This supports the quantitative results of the phantom study as well as successful attenuation correction of the RF coil. Conclusions: A 16-channel breast RF coil was designed for optimized MR imaging performance and PET transparency and was successfully integrated with its dedicated attenuation correction template into a whole-body PET/MR system. Systematic PET/MR imaging evaluation with phantoms and an initial study on patients with breast cancer provided excellent MR and PET image quality and accurate PET quantification.« less
Competitive Advantage of PET/MRI
Jadvar, Hossein; Colletti, Patrick M.
2013-01-01
Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved. PMID:23791129
Competitive advantage of PET/MRI.
Jadvar, Hossein; Colletti, Patrick M
2014-01-01
Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Heusch, Philipp; Buchbender, Christian; Köhler, Jens; Nensa, Felix; Gauler, Thomas; Gomez, Benedikt; Reis, Henning; Stamatis, Georgios; Kühl, Hilmar; Hartung, Verena; Heusner, Till A
2014-03-01
Therapeutic decisions in non-small cell lung cancer (NSCLC) patients depend on the tumor stage. PET/CT with (18)F-FDG is widely accepted as the diagnostic standard of care. The purpose of this study was to compare a dedicated pulmonary (18)F-FDG PET/MR imaging protocol with (18)F-FDG PET/CT for primary and locoregional lymph node staging in NSCLC patients using histopathology as the reference. Twenty-two patients (12 men, 10 women; mean age ± SD, 65.1 ± 9.1 y) with histopathologically confirmed NSCLC underwent (18)F-FDG PET/CT, followed by (18)F-FDG PET/MR imaging, including a dedicated pulmonary MR imaging protocol. T and N staging according to the seventh edition of the American Joint Committee on Cancer staging manual was performed by 2 readers in separate sessions for (18)F-FDG PET/CT and PET/MR imaging, respectively. Results from histopathology were used as the standard of reference. The mean and maximum standardized uptake value (SUV(mean) and SUV(max), respectively) and maximum diameter of the primary tumor was measured and compared in (18)F-FDG PET/CT and PET/MR imaging. PET/MR imaging and (18)F-FDG PET/CT agreed on T stages in 16 of 16 of patients (100%). All patients were correctly staged by (18)F-FDG PET/CT and PET/MR (100%), compared with histopathology. There was no statistically significant difference between (18)F-FDG PET/CT and (18)F-FDG PET/MR imaging for lymph node metastases detection (P = 0.48). For definition of thoracic N stages, PET/MR imaging and (18)F-FDG PET/CT were concordant in 20 of 22 patients (91%). PET/MR imaging determined the N stage correctly in 20 of 22 patients (91%). (18)F-FDG PET/CT determined the N stage correctly in 18 of 22 patients (82%). The mean differences for SUV(mean) and SUV(max) of NSCLC in (18)F-FDG PET/MR imaging and (18)F-FDG PET/CT were 0.21 and -5.06. These differences were not statistically significant (P > 0.05). The SUV(mean) and SUV(max) measurements derived from (18)F-FDG PET/CT and (18)F-FDG PET/MR imaging exhibited a high correlation (R = 0.74 and 0.86, respectively; P < 0.0001). Size measurements showed an excellent correlation between (18)F-FDG PET/MR imaging and (18)F-FDG PET/CT (R = 0.99; P < 0.0001). The lower and upper limits of agreement between (18)F-FDG PET/CT and (18)F-FDG PET/MR imaging using Bland-Altman analysis were -2.34 to 3.89 for SUV(mean), -7.42 to 4.40 for SUV(max), and -0.59 to 0.83 for the tumor size, respectively. (18)F-FDG PET/MR imaging using a dedicated pulmonary MR imaging protocol, compared with (18)F-FDG PET/CT, does not provide advantages in thoracic staging in NSCLC patients.
Application of oral contrast media in coregistered positron emission tomography-CT.
Dizendorf, Elena V; Treyer, Valerie; Von Schulthess, Gustav K; Hany, Thomas F
2002-08-01
Coregistration of positron emission tomography (PET) and CT images results in significantly improved localization of abnormal FDG uptake compared with PET images alone. For delineation of intestinal structures, application of oral contrast media is a standard procedure in CT. The influence of oral contrast agents in PET imaging using CT data for attenuation correction was evaluated in a comparative study on an in-line PET-CT system. Sixty patients referred for PET-CT were evaluated in two groups. One group of 30 patients received oral Gastrografin 45 min before data acquisition. The second group received no contrast medium. PET images were reconstructed, using CT data for attenuation correction. Image analysis was performed by two reviewers in consensus, using a 4-point scale comparing FDG-uptake in the gastrointestinal tract in PET images of both groups. Furthermore, correlation of FDG uptake and localization of contrast media in the intestinal tract in CT images were determined. No significant difference in FDG uptake in PET images in all regions of the gastrointestinal tract except the ascending colon was seen in both groups. No correlation was found in the location of increased FDG uptake and contrast media in the CT images. An oral contrast agent can be used for coregistered PET-CT without the introduction of artifacts in PET.
A prototype MR insertable brain PET using tileable GAPD arrays.
Hong, Key Jo; Choi, Yong; Jung, Jin Ho; Kang, Jihoon; Hu, Wei; Lim, Hyun Keong; Huh, Yoonsuk; Kim, Sangsu; Jung, Ji Woong; Kim, Kyu Bom; Song, Myung Sung; Park, Hyun-Wook
2013-04-01
The aim of this study was to develop a prototype magnetic resonance (MR)-compatible positron emission tomography (PET) that can be inserted into a MR imager and that allows simultaneous PET and MR imaging of the human brain. This paper reports the initial results of the authors' prototype brain PET system operating within a 3-T magnetic resonance imaging (MRI) system using newly developed Geiger-mode avalanche photodiode (GAPD)-based PET detectors, long flexible flat cables, position decoder circuit with high multiplexing ratio, and digital signal processing with field programmable gate array-based analog to digital converter boards. A brain PET with 72 detector modules arranged in a ring was constructed and mounted in a 3-T MRI. Each PET module was composed of cerium-doped lutetium yttrium orthosilicate (LYSO) crystals coupled to a tileable GAPD. The GAPD output charge signals were transferred to preamplifiers using 3 m long flat cables. The LYSO and GAPD were located inside the MR bore and all electronics were positioned outside the MR bore. The PET detector performance was investigated both outside and inside the MRI, and MR image quality was evaluated with and without the PET system. The performance of the PET detector when operated inside the MRI during MR image acquisition showed no significant change in energy resolution and count rates, except for a slight degradation in timing resolution with an increase from 4.2 to 4.6 ns. Simultaneous PET/MR images of a hot-rod and Hoffman brain phantom were acquired in a 3-T MRI. Rods down to a diameter of 3.5 mm were resolved in the hot-rod PET image. The activity distribution patterns between the white and gray matter in the Hoffman brain phantom were well imaged. The hot-rod and Hoffman brain phantoms on the simultaneously acquired MR images obtained with standard sequences were observed without any noticeable artifacts, although MR image quality requires some improvement. These results demonstrate that the simultaneous acquisition of PET and MR images is feasible using the MR insertable PET developed in this study.
Quartuccio, Natale; Treglia, Giorgio; Salsano, Marco; Mattoli, Maria Vittoria; Muoio, Barbara; Piccardo, Arnoldo; Lopci, Egesta; Cistaro, Angelina
2013-06-01
The objective of this study is to systematically review the role of positron emission tomography (PET) and PET/computed tomography (PET/CT) with Fluorine-18-Fluorodeoxyglucose (FDG) in patients with osteosarcoma (OS). A comprehensive literature search of published studies through October 10(th), 2012 in PubMed/MEDLINE, Embase and Scopus databases regarding whole-body FDG-PET and FDG-PET/CT in patients with OS was performed. We identified 13 studies including 289 patients with OS. With regard to the staging and restaging of OS, the diagnostic performance of FDG-PET and PET/CT seem to be high; FDG-PET and PET/CT seem to be superior to bone scintigraphy and conventional imaging methods in detecting bone metastases; conversely, spiral CT seems to be superior to FDG-PET in detecting pulmonary metastases from OS. Metabolic imaging may provide additional information in the evaluation of OS patients. The combination of FDG-PET or FDG-PET/CT with conventional imaging methods seems to be a valuable tool in the staging and restaging of OS and may have a relevant impact on the treatment planning.
Iagaru, Andrei; Mittra, Erik; Minamimoto, Ryogo; Jamali, Mehran; Levin, Craig; Quon, Andrew; Gold, Garry; Herfkens, Robert; Vasanawala, Shreyas; Gambhir, Sanjiv Sam; Zaharchuk, Greg
2015-01-01
The recent introduction of hybrid PET/MRI scanners in clinical practice has shown promising initial results for several clinical scenarios. However, the first generation of combined PET/MRI lacks time-of-flight (TOF) technology. Here we report the results of the first patients to be scanned on a completely novel fully integrated PET/MRI scanner with TOF. We analyzed data from patients who underwent a clinically indicated F FDG PET/CT, followed by PET/MRI. Maximum standardized uptake values (SUVmax) were measured from F FDG PET/MRI and F FDG PET/CT for lesions, cerebellum, salivary glands, lungs, aortic arch, liver, spleen, skeletal muscle, and fat. Two experienced radiologists independently reviewed the MR data for image quality. Thirty-six patients (19 men, 17 women, mean [±standard deviation] age of 61 ± 14 years [range: 27-86 years]) with a total of 69 discrete lesions met the inclusion criteria. PET/CT images were acquired at a mean (±standard deviation) of 74 ± 14 minutes (range: 49-100 minutes) after injection of 10 ± 1 mCi (range: 8-12 mCi) of F FDG. PET/MRI scans started at 161 ± 29 minutes (range: 117 - 286 minutes) after the F FDG injection. All lesions identified on PET from PET/CT were also seen on PET from PET/MRI. The mean SUVmax values were higher from PET/MRI than PET/CT for all lesions. No degradation of MR image quality was observed. The data obtained so far using this investigational PET/MR system have shown that the TOF PET system is capable of excellent performance during simultaneous PET/MR with routine pulse sequences. MR imaging was not compromised. Comparison of the PET images from PET/CT and PET/MRI show no loss of image quality for the latter. These results support further investigation of this novel fully integrated TOF PET/MRI instrument.
Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques.
Hofmann, Matthias; Pichler, Bernd; Schölkopf, Bernhard; Beyer, Thomas
2009-03-01
Positron emission tomography (PET) is a fully quantitative technology for imaging metabolic pathways and dynamic processes in vivo. Attenuation correction of raw PET data is a prerequisite for quantification and is typically based on separate transmission measurements. In PET/CT attenuation correction, however, is performed routinely based on the available CT transmission data. Recently, combined PET/magnetic resonance (MR) has been proposed as a viable alternative to PET/CT. Current concepts of PET/MRI do not include CT-like transmission sources and, therefore, alternative methods of PET attenuation correction must be found. This article reviews existing approaches to MR-based attenuation correction (MR-AC). Most groups have proposed MR-AC algorithms for brain PET studies and more recently also for torso PET/MR imaging. Most MR-AC strategies require the use of complementary MR and transmission images, or morphology templates generated from transmission images. We review and discuss these algorithms and point out challenges for using MR-AC in clinical routine. MR-AC is work-in-progress with potentially promising results from a template-based approach applicable to both brain and torso imaging. While efforts are ongoing in making clinically viable MR-AC fully automatic, further studies are required to realize the potential benefits of MR-based motion compensation and partial volume correction of the PET data.
Respiratory trace feature analysis for the prediction of respiratory-gated PET quantification.
Wang, Shouyi; Bowen, Stephen R; Chaovalitwongse, W Art; Sandison, George A; Grabowski, Thomas J; Kinahan, Paul E
2014-02-21
The benefits of respiratory gating in quantitative PET/CT vary tremendously between individual patients. Respiratory pattern is among many patient-specific characteristics that are thought to play an important role in gating-induced imaging improvements. However, the quantitative relationship between patient-specific characteristics of respiratory pattern and improvements in quantitative accuracy from respiratory-gated PET/CT has not been well established. If such a relationship could be estimated, then patient-specific respiratory patterns could be used to prospectively select appropriate motion compensation during image acquisition on a per-patient basis. This study was undertaken to develop a novel statistical model that predicts quantitative changes in PET/CT imaging due to respiratory gating. Free-breathing static FDG-PET images without gating and respiratory-gated FDG-PET images were collected from 22 lung and liver cancer patients on a PET/CT scanner. PET imaging quality was quantified with peak standardized uptake value (SUV(peak)) over lesions of interest. Relative differences in SUV(peak) between static and gated PET images were calculated to indicate quantitative imaging changes due to gating. A comprehensive multidimensional extraction of the morphological and statistical characteristics of respiratory patterns was conducted, resulting in 16 features that characterize representative patterns of a single respiratory trace. The six most informative features were subsequently extracted using a stepwise feature selection approach. The multiple-regression model was trained and tested based on a leave-one-subject-out cross-validation. The predicted quantitative improvements in PET imaging achieved an accuracy higher than 90% using a criterion with a dynamic error-tolerance range for SUV(peak) values. The results of this study suggest that our prediction framework could be applied to determine which patients would likely benefit from respiratory motion compensation when clinicians quantitatively assess PET/CT for therapy target definition and response assessment.
Respiratory trace feature analysis for the prediction of respiratory-gated PET quantification
NASA Astrophysics Data System (ADS)
Wang, Shouyi; Bowen, Stephen R.; Chaovalitwongse, W. Art; Sandison, George A.; Grabowski, Thomas J.; Kinahan, Paul E.
2014-02-01
The benefits of respiratory gating in quantitative PET/CT vary tremendously between individual patients. Respiratory pattern is among many patient-specific characteristics that are thought to play an important role in gating-induced imaging improvements. However, the quantitative relationship between patient-specific characteristics of respiratory pattern and improvements in quantitative accuracy from respiratory-gated PET/CT has not been well established. If such a relationship could be estimated, then patient-specific respiratory patterns could be used to prospectively select appropriate motion compensation during image acquisition on a per-patient basis. This study was undertaken to develop a novel statistical model that predicts quantitative changes in PET/CT imaging due to respiratory gating. Free-breathing static FDG-PET images without gating and respiratory-gated FDG-PET images were collected from 22 lung and liver cancer patients on a PET/CT scanner. PET imaging quality was quantified with peak standardized uptake value (SUVpeak) over lesions of interest. Relative differences in SUVpeak between static and gated PET images were calculated to indicate quantitative imaging changes due to gating. A comprehensive multidimensional extraction of the morphological and statistical characteristics of respiratory patterns was conducted, resulting in 16 features that characterize representative patterns of a single respiratory trace. The six most informative features were subsequently extracted using a stepwise feature selection approach. The multiple-regression model was trained and tested based on a leave-one-subject-out cross-validation. The predicted quantitative improvements in PET imaging achieved an accuracy higher than 90% using a criterion with a dynamic error-tolerance range for SUVpeak values. The results of this study suggest that our prediction framework could be applied to determine which patients would likely benefit from respiratory motion compensation when clinicians quantitatively assess PET/CT for therapy target definition and response assessment.
Myocardial perfusion imaging with PET
Nakazato, Ryo; Berman, Daniel S; Alexanderson, Erick; Slomka, Piotr
2013-01-01
PET-myocardial perfusion imaging (MPI) allows accurate measurement of myocardial perfusion, absolute myocardial blood flow and function at stress and rest in a single study session performed in approximately 30 min. Various PET tracers are available for MPI, and rubidium-82 or nitrogen-13-ammonia is most commonly used. In addition, a new fluorine-18-based PET-MPI tracer is currently being evaluated. Relative quantification of PET perfusion images shows very high diagnostic accuracy for detection of obstructive coronary artery disease. Dynamic myocardial blood flow analysis has demonstrated additional prognostic value beyond relative perfusion imaging. Patient radiation dose can be reduced and image quality can be improved with latest advances in PET/CT equipment. Simultaneous assessment of both anatomy and perfusion by hybrid PET/CT can result in improved diagnostic accuracy. Compared with SPECT-MPI, PET-MPI provides higher diagnostic accuracy, using lower radiation doses during a shorter examination time period for the detection of coronary artery disease. PMID:23671459
O' Doherty, Jim; Schleyer, Paul
2017-12-01
Simultaneous cardiac perfusion studies are an increasing trend in PET-MR imaging. During dynamic PET imaging, the introduction of gadolinium-based MR contrast agents (GBCA) at high concentrations during a dual injection of GBCA and PET radiotracer may cause increased attenuation effects of the PET signal, and thus errors in quantification of PET images. We thus aimed to calculate the change in linear attenuation coefficient (LAC) of a mixture of PET radiotracer and increasing concentrations of GBCA in solution and furthermore, to investigate if this change in LAC produced a measurable effect on the image-based PET activity concentration when attenuation corrected by three different AC strategies. We performed simultaneous PET-MR imaging of a phantom in a static scenario using a fixed activity of 40 MBq [18 F]-NaF, water, and an increasing GBCA concentration from 0 to 66 mM (based on an assumed maximum possible concentration of GBCA in the left ventricle in a clinical study). This simulated a range of clinical concentrations of GBCA. We investigated two methods to calculate the LAC of the solution mixture at 511 keV: (1) a mathematical mixture rule and (2) CT imaging of each concentration step and subsequent conversion to LAC at 511 keV. This comparison showed that the ranges of LAC produced by both methods are equivalent with an increase in LAC of the mixed solution of approximately 2% over the range of 0-66 mM. We then employed three different attenuation correction methods to the PET data: (1) each PET scan at a specific millimolar concentration of GBCA corrected by its corresponding CT scan, (2) each PET scan corrected by a CT scan with no GBCA present (i.e., at 0 mM GBCA), and (3) a manually generated attenuation map, whereby all CT voxels in the phantom at 0 mM were replaced by LAC = 0.1 cm -1 . All attenuation correction methods (1-3) were accurate to the true measured activity concentration within 5%, and there were no trends in image-based activity concentrations upon increasing the GBCA concentration of the solution. The presence of high GBCA concentration (representing a worst-case scenario in dynamic cardiac studies) in solution with PET radiotracer produces a minimal effect on attenuation-corrected PET quantification.
Martinelli; Townsend; Meltzer; Villemagne
2000-07-01
Purpose: At the University Of Pittsburgh Medical Center, over 100 oncology studies have been performed using a combined PET/CT scanner. The scanner is a prototype, which combines clinical PET and clinical CT imaging in a single unit. The sensitivity achieved using three-dimensional PET imaging as well as the use of the CT for attenuation correction and image fusion make the device ideal for clinical oncology. Clinical indications imaged on the PET/CT scanner include, but are not limited to, tumor staging, solitary pulmonary nodule evaluation, and evaluation of tumor reoccurrence in melanoma, lymphoma, colorectal cancer, lung cancer, pancreatic cancer, head and neck cancer, and renal cancer.Methods: For all studies, seven millicuries of F(18)-fluorodeoxyglucose is injected and a forty-five minute uptake period is allowed prior to positioning the patient in the scanner. A helical CT scan is acquired over the region, or regions of interest followed by a multi-bed whole body PET scan for the same axial extent. The CT scan is used to correct the PET data for attenuation. The entire imaging session lasts 1-1.5 hours depending on the number of beds acquired, and is generally well tolerated by the patient.Results and Conclusion: Based on our experience in over 100 studies, combined PET/CT imaging offers significant advantages, including more accurate localization of focal uptake, distinction of pathology from normal physiological uptake, and improvements in evaluating therapy. These benefits will be illustrated with a number of representative, fully documented studies.
Brianzoni, Ernesto; Rossi, Gloria; Ancidei, Sergio; Berbellini, Alfonso; Capoccetti, Francesca; Cidda, Carla; D'Avenia, Paola; Fattori, Sara; Montini, Gian Carlo; Valentini, Gianluca; Proietti, Alfredo; Algranati, Carlo
2005-12-01
Positron emission tomography is the most advanced scintigraphic imaging technology and can be employed in the planning of radiation therapy (RT). The aim of this study was to evaluate the possible role of fused images (anatomical CT and functional FDG-PET), acquired with a dedicated PET/CT scanner, in delineating gross tumour volume (GTV) and clinical target volume (CTV) in selected patients and thus in facilitating RT planning. Twenty-eight patients were examined, 24 with lung cancer (17 non-small cell and seven small cell) and four with non-Hodgkin's lymphoma in the head and neck region. All patients underwent a whole-body PET scan after a CT scan. The CT images provided morphological volumetric information, and in a second step, the corresponding PET images were overlaid to define the effective target volume. The images were exported off-line via an internal network to an RT simulator. Three patient were excluded from the study owing to change in the disease stage subsequent to the PET/CT study. Among the remaining 25 patients, PET significantly altered the GTV or CTV in 11 (44%) . In five of these 11 cases there was a reduction in GTV or CTV, while in six there was an increase in GTV or CTV. FDG-PET is a highly sensitive imaging modality that offers better visualisation of local and locoregional tumour extension. This study confirmed that co-registration of CT data and FDG-PET images may lead to significant modifications of RT planning and patient management.
An update on technical and methodological aspects for cardiac PET applications.
Presotto, Luca; Busnardo, Elena; Gianolli, Luigi; Bettinardi, Valentino
2016-12-01
Positron emission tomography (PET) is indicated for a large number of cardiac diseases: perfusion and viability studies are commonly used to evaluate coronary artery disease; PET can also be used to assess sarcoidosis and endocarditis, as well as to investigate amyloidosis. Furthermore, a hot topic for research is plaque characterization. Most of these studies are technically very challenging. High count rates and short acquisition times characterize perfusion scans while very small targets have to be imaged in inflammation/infection and plaques examinations. Furthermore, cardiac PET suffers from respiratory and cardiac motion blur. Each type of studies has specific requirements from the technical and methodological point of view, thus PET systems with overall high performances are required. Furthermore, in the era of hybrid PET/computed tomography (CT) and PET/Magnetic Resonance Imaging (MRI) systems, the combination of complementary functional and anatomical information can be used to improve diagnosis and prognosis. Moreover, PET images can be qualitatively and quantitatively improved exploiting information from the other modality, using advanced algorithms. In this review we will report the latest technological and methodological innovations for PET cardiac applications, with particular reference to the state of the art of the hybrid PET/CT and PET/MRI. We will also report the most recent advancements in software, from reconstruction algorithms to image processing and analysis programs.
2014-10-01
Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The study investigates whether fusion PET/MRI imaging with 18F- choline PET/CT and...imaging with 18F- choline PET/CT and diffusion-weighted MRI can be successfully applied to target prostate cancer using image-guided prostate...Completed task. The 18F- choline synthesis was implemented and optimized for routine radiotracer production. RDRC committee approval as part of the IRB
Positron emission tomography molecular imaging of dopaminergic system in drug addiction.
Hou, Haifeng; Tian, Mei; Zhang, Hong
2012-05-01
Dopamine (DA) is involved in drug reinforcement, but its role in drug addiction remains unclear. Positron emission tomography (PET) is the first technology used for the direct measurement of components of the dopaminergic system in the living human brain. In this article, we reviewed the major findings of PET imaging studies on the involvement of DA in drug addiction, especially in heroin addiction. Furthermore, we summarized PET radiotracers that have been used to study the role of DA in drug addiction. To investigate presynaptic function in drug addiction, PET tracers have been developed to measure DA synthesis and transport. For the investigation of postsynaptic function, several radioligands targeting dopamine one (D1) receptor and dopamine two (D2) receptor are extensively used in PET imaging studies. Moreover, we also summarized the PET imaging findings of heroin addiction studies, including heroin-induced DA increases and the reinforcement, role of DA in the long-term effects of heroin abuse, DA and vulnerability to heroin abuse and the treatment implications. PET imaging studies have corroborated the role of DA in drug addiction and increase our understanding the mechanism of drug addiction. Copyright © 2012 Wiley Periodicals, Inc.
Comparison of TOF-PET and Bremsstrahlung SPECT Images of Yttrium-90: A Monte Carlo Simulation Study.
Takahashi, Akihiko; Himuro, Kazuhiko; Baba, Shingo; Yamashita, Yasuo; Sasaki, Masayuki
2018-01-01
Yttrium-90 ( 90 Y) is a beta particle nuclide used in targeted radionuclide therapy which is available to both single-photon emission computed tomography (SPECT) and time-of-flight (TOF) positron emission tomography (PET) imaging. The purpose of this study was to assess the image quality of PET and Bremsstrahlung SPECT by simulating PET and SPECT images of 90 Y using Monte Carlo simulation codes under the same conditions and to compare them. In-house Monte Carlo codes, MCEP-PET and MCEP-SPECT, were employed to simulate images. The phantom was a torso-shaped phantom containing six hot spheres of various sizes. The background concentrations of 90 Y were set to 50, 100, 150, and 200 kBq/mL, and the concentrations of the hot spheres were 10, 20, and 40 times of those of the background concentrations. The acquisition time was set to 30 min, and the simulated sinogram data were reconstructed using the ordered subset expectation maximization method. The contrast recovery coefficient (CRC) and contrast-to-noise ratio (CNR) were employed to evaluate the image qualities. The CRC values of SPECT images were less than 40%, while those of PET images were more than 40% when the hot sphere was larger than 20 mm in diameter. The CNR values of PET images of hot spheres of diameter smaller than 20 mm were larger than those of SPECT images. The CNR values mostly exceeded 4, which is a criterion to evaluate the discernibility of hot areas. In the case of SPECT, hot spheres of diameter smaller than 20 mm were not discernable. On the contrary, the CNR values of PET images decreased to the level of SPECT, in the case of low concentration. In almost all the cases examined in this investigation, the quantitative indexes of TOF-PET 90 Y images were better than those of Bremsstrahlung SPECT images. However, the superiority of PET image became critical in the case of low activity concentrations.
In vivo PET imaging of neuroinflammation in Alzheimer's disease.
Lagarde, Julien; Sarazin, Marie; Bottlaender, Michel
2018-05-01
Increasing evidence suggests that neuroinflammation contributes to the pathophysiology of many neurodegenerative diseases, especially Alzheimer's disease (AD). Molecular imaging by PET may be a useful tool to assess neuroinflammation in vivo, thus helping to decipher the complex role of inflammatory processes in the pathophysiology of neurodegenerative diseases and providing a potential means of monitoring the effect of new therapeutic approaches. For this objective, the main target of PET studies is the 18 kDa translocator protein (TSPO), as it is overexpressed by activated microglia. In the present review, we describe the most widely used PET tracers targeting the TSPO, the methodological issues in tracer quantification and summarize the results obtained by TSPO PET imaging in AD, as well as in neurodegenerative disorders associated with AD, in psychiatric disorders and ageing. We also briefly describe alternative PET targets and imaging modalities to study neuroinflammation. Lastly, we question the meaning of PET imaging data in the context of a highly complex and multifaceted role of neuroinflammation in neurodegenerative diseases. This overview leads to the conclusion that PET imaging of neuroinflammation is a promising way of deciphering the enigma of the pathophysiology of AD and of monitoring the effect of new therapies.
Dynamic PET Image reconstruction for parametric imaging using the HYPR kernel method
NASA Astrophysics Data System (ADS)
Spencer, Benjamin; Qi, Jinyi; Badawi, Ramsey D.; Wang, Guobao
2017-03-01
Dynamic PET image reconstruction is a challenging problem because of the ill-conditioned nature of PET and the lowcounting statistics resulted from short time-frames in dynamic imaging. The kernel method for image reconstruction has been developed to improve image reconstruction of low-count PET data by incorporating prior information derived from high-count composite data. In contrast to most of the existing regularization-based methods, the kernel method embeds image prior information in the forward projection model and does not require an explicit regularization term in the reconstruction formula. Inspired by the existing highly constrained back-projection (HYPR) algorithm for dynamic PET image denoising, we propose in this work a new type of kernel that is simpler to implement and further improves the kernel-based dynamic PET image reconstruction. Our evaluation study using a physical phantom scan with synthetic FDG tracer kinetics has demonstrated that the new HYPR kernel-based reconstruction can achieve a better region-of-interest (ROI) bias versus standard deviation trade-off for dynamic PET parametric imaging than the post-reconstruction HYPR denoising method and the previously used nonlocal-means kernel.
Nensa, Felix; Bamberg, Fabian; Rischpler, Christoph; Menezes, Leon; Poeppel, Thorsten D; la Fougère, Christian; Beitzke, Dietrich; Rasul, Sazan; Loewe, Christian; Nikolaou, Konstantin; Bucerius, Jan; Kjaer, Andreas; Gutberlet, Matthias; Prakken, Niek H; Vliegenthart, Rozemarijn; Slart, Riemer H J A; Nekolla, Stephan G; Lassen, Martin L; Pichler, Bernd J; Schlosser, Thomas; Jacquier, Alexis; Quick, Harald H; Schäfers, Michael; Hacker, Marcus
2018-05-02
Positron emission tomography (PET) and magnetic resonance imaging (MRI) have both been used for decades in cardiovascular imaging. Since 2010, hybrid PET/MRI using sequential and integrated scanner platforms has been available, with hybrid cardiac PET/MR imaging protocols increasingly incorporated into clinical workflows. Given the range of complementary information provided by each method, the use of hybrid PET/MRI may be justified and beneficial in particular clinical settings for the evaluation of different disease entities. In the present joint position statement, we critically review the role and value of integrated PET/MRI in cardiovascular imaging, provide a technical overview of cardiac PET/MRI and practical advice related to the cardiac PET/MRI workflow, identify cardiovascular applications that can potentially benefit from hybrid PET/MRI, and describe the needs for future development and research. In order to encourage its wide dissemination, this article is freely accessible on the European Radiology and European Journal of Hybrid Imaging web sites. • Studies and case-reports indicate that PET/MRI is a feasible and robust technology. • Promising fields of application include a variety of cardiac conditions. • Larger studies are required to demonstrate its incremental and cost-effective value. • The translation of novel radiopharmaceuticals and MR-sequences will provide exciting new opportunities.
PET/MRI in cancer patients: first experiences and vision from Copenhagen.
Kjær, Andreas; Loft, Annika; Law, Ian; Berthelsen, Anne Kiil; Borgwardt, Lise; Löfgren, Johan; Johnbeck, Camilla Bardram; Hansen, Adam Espe; Keller, Sune; Holm, Søren; Højgaard, Liselotte
2013-02-01
Combined PET/MRI systems are now commercially available and are expected to change the medical imaging field by providing combined anato-metabolic image information. We believe this will be of particular relevance in imaging of cancer patients. At the Department of Clinical Physiology, Nuclear Medicine & PET at Rigshospitalet in Copenhagen we installed an integrated PET/MRI in December 2011. Here, we describe our first clinical PET/MR cases and discuss some of the areas within oncology where we envision promising future application of integrated PET/MR imaging in clinical routine. Cases described include brain tumors, pediatric oncology as well as lung, abdominal and pelvic cancer. In general the cases show that PET/MRI performs well in all these types of cancer when compared to PET/CT. However, future large-scale clinical studies are needed to establish when to use PET/MRI. We envision that PET/MRI in oncology will prove to become a valuable addition to PET/CT in diagnosing, tailoring and monitoring cancer therapy in selected patient populations.
Clinical applications with the HIDAC positron camera
NASA Astrophysics Data System (ADS)
Frey, P.; Schaller, G.; Christin, A.; Townsend, D.; Tochon-Danguy, H.; Wensveen, M.; Donath, A.
1988-06-01
A high density avalanche chamber (HIDAC) positron camera has been used for positron emission tomographic (PET) imaging in three different human studies, including patients presenting with: (I) thyroid diseases (124 cases); (II) clinically suspected malignant tumours of the pharynx or larynx (ENT) region (23 cases); and (III) clinically suspected primary malignant and metastatic tumours of the liver (9 cases, 19 PET scans). The positron emitting radiopharmaceuticals used for the three studies were Na 124I (4.2 d half-life) for the thyroid, 55Co-bleomycin (17.5 h half-life) for the ENT-region and 68Ga-colloid (68 min half-life) for the liver. Tomographic imaging was performed: (I) 24 h after oral Na 124I administration to the thyroid patients, (II) 18 h after intraveneous administration of 55Co-bleomycin to the ENT patients and (III) 20 min following the intraveneous injection of 68Ga-colloid to the liver tumour patients. Three different imaging protocols were used with the HIDAC positron camera to perform appropriate tomographic imaging in each patient study. Promising results were obtained in all three studies, particularly in tomographic thyroid imaging, where a significant clinical contribution is made possible for diagnosis and therapy planning by the PET technique. In the other two PET studies encouraging results were obtained for the detection and precise localisation of malignant tumour disease including an estimate of the functional liver volume based on the reticulo-endothelial-system (RES) of the liver, obtained in vivo, and the three-dimensional display of liver PET data using shaded graphics techniques. The clinical significance of the overall results obtained in both the ENT and the liver PET study, however, is still uncertain and the respective role of PET as a new imaging modality in these applications is not yet clearly established. To appreciate the clinical impact made by PET in liver and ENT malignant tumour staging needs further investigation, and more detailed data on a larger number of clinical and experimental PET scans will be necessary for definitive evaluation. Nevertheless, the HIDAC positron camera may be used for clinical PET imaging in well-defined patient cases, particularly in situations where both high spatial resolution is desired in the reconstructed image of the examined pathological condition and at the same time "static" PET imaging may be adequate, as is the case in thyroid-, ENT- and liver tomographic imaging using the HIDAC positron camera.
A six-year longitudinal PET study of (+)-[11C]DTBZ binding to the VMAT2 in monkey brain.
Kilbourn, Michael R; Koeppe, Robert A
2017-12-01
The longitudinal reproducibility of in vivo binding potential measures for [ 11 C]dihydrotetrabenazine ([ 11 C]DTBZ) binding to the vesicular monoamine transporter 2 (VMAT2) site in primate brain was examined using a unique dataset of repeated control PET imaging studies. Forty-one dynamic [ 11 C]DTBZ PET studies were completed in a single rhesus monkey. Imaging equipment (microPET P4), personnel, radiotracer characteristics (injected mass amounts, molar activity) and image data analysis (BP ND-Logan ) were consistent throughout the entire sequence of PET studies. Same day reproducibility of BP ND-Logan estimates of specific binding was very good (-3% and -7% changes) for two control-control sessions. Over the full 74 months, the average BP ND-Logan value for [ 11 C]DTBZ-PET studies was 4.19±0.52, for a variance of 12%. No age-dependent change in binding potentials was observed over the six-year period. If the technical variables associated with PET scanner are consistently maintained, including PET scanner, imaging procedures and radiotracer preparation, in vivo biochemistry can be reproducibly measured in the primate brain over a multi-year period of time. Copyright © 2017 Elsevier Inc. All rights reserved.
Attenuation correction of emission PET images with average CT: Interpolation from breath-hold CT
NASA Astrophysics Data System (ADS)
Huang, Tzung-Chi; Zhang, Geoffrey; Chen, Chih-Hao; Yang, Bang-Hung; Wu, Nien-Yun; Wang, Shyh-Jen; Wu, Tung-Hsin
2011-05-01
Misregistration resulting from the difference of temporal resolution in PET and CT scans occur frequently in PET/CT imaging, which causes distortion in tumor quantification in PET. Respiration cine average CT (CACT) for PET attenuation correction has been reported to improve the misalignment effectively by several papers. However, the radiation dose to the patient from a four-dimensional CT scan is relatively high. In this study, we propose a method to interpolate respiratory CT images over a respiratory cycle from inhalation and exhalation breath-hold CT images, and use the average CT from the generated CT set for PET attenuation correction. The radiation dose to the patient is reduced using this method. Six cancer patients of various lesion sites underwent routine free-breath helical CT (HCT), respiration CACT, interpolated average CT (IACT), and 18F-FDG PET. Deformable image registration was used to interpolate the middle phases of a respiratory cycle based on the end-inspiration and end-expiration breath-hold CT scans. The average CT image was calculated from the eight interpolated CT image sets of middle respiratory phases and the two original inspiration and expiration CT images. Then the PET images were reconstructed by these three methods for attenuation correction using HCT, CACT, and IACT. Misalignment of PET image using either CACT or IACT for attenuation correction in PET/CT was improved. The difference in standard uptake value (SUV) from tumor in PET images was most significant between the use of HCT and CACT, while the least significant between the use of CACT and IACT. Besides the similar improvement in tumor quantification compared to the use of CACT, using IACT for PET attenuation correction reduces the radiation dose to the patient.
PET AND SPECT STUDIES IN CHILDREN WITH HEMISPHERIC LOW-GRADE GLIOMAS
Juhász, Csaba; Bosnyák, Edit
2016-01-01
Molecular imaging is playing an increasing role in the pre-treatment evaluation of low-grade gliomas. While glucose positron emission tomography (PET) can be helpful to differentiate low-grade from high-grade tumors, PET imaging with amino acid radiotracers has several advantages, such as better differentiation between tumors and non-tumorous lesions, optimized biopsy targeting and improved detection of tumor recurrence. This review provides a brief overview of single photon emission computed tomography (SPECT) studies followed by a more detailed review of clinical applications of glucose and amino acid PET imaging in low-grade hemispheric gliomas. We discuss key differences in the performance of the most commonly utilized PET radiotracers and highlight the advantage of PET/MRI fusion to obtain optimal information about tumor extent, heterogeneity and metabolism. Recent data also suggest that simultaneous acquisition of PET/MR images and the combination of advanced MRI techniques with quantitative PET can further improve the pre- and post-treatment evaluation of pediatric brain tumors. PMID:27659825
PET and SPECT studies in children with hemispheric low-grade gliomas.
Juhász, Csaba; Bosnyák, Edit
2016-10-01
Molecular imaging is playing an increasing role in the pretreatment evaluation of low-grade gliomas. While glucose positron emission tomography (PET) can be helpful to differentiate low-grade from high-grade tumors, PET imaging with amino acid radiotracers has several advantages, such as better differentiation between tumors and non-tumorous lesions, optimized biopsy targeting, and improved detection of tumor recurrence. This review provides a brief overview of single-photon emission computed tomography (SPECT) studies followed by a more detailed review of the clinical applications of glucose and amino acid PET imaging in low-grade hemispheric gliomas. We discuss key differences in the performance of the most commonly utilized PET radiotracers and highlight the advantage of PET/MRI fusion to obtain optimal information about tumor extent, heterogeneity, and metabolism. Recent data also suggest that simultaneous acquisition of PET/MR images and the combination of advanced MRI techniques with quantitative PET can further improve the pretreatment and post-treatment evaluation of pediatric brain tumors.
Potential of PET-MRI for imaging of non-oncologic musculoskeletal disease.
Kogan, Feliks; Fan, Audrey P; Gold, Garry E
2016-12-01
Early detection of musculoskeletal disease leads to improved therapies and patient outcomes, and would benefit greatly from imaging at the cellular and molecular level. As it becomes clear that assessment of multiple tissues and functional processes are often necessary to study the complex pathogenesis of musculoskeletal disorders, the role of multi-modality molecular imaging becomes increasingly important. New positron emission tomography-magnetic resonance imaging (PET-MRI) systems offer to combine high-resolution MRI with simultaneous molecular information from PET to study the multifaceted processes involved in numerous musculoskeletal disorders. In this article, we aim to outline the potential clinical utility of hybrid PET-MRI to these non-oncologic musculoskeletal diseases. We summarize current applications of PET molecular imaging in osteoarthritis (OA), rheumatoid arthritis (RA), metabolic bone diseases and neuropathic peripheral pain. Advanced MRI approaches that reveal biochemical and functional information offer complementary assessment in soft tissues. Additionally, we discuss technical considerations for hybrid PET-MR imaging including MR attenuation correction, workflow, radiation dose, and quantification.
Sparsity-constrained PET image reconstruction with learned dictionaries
NASA Astrophysics Data System (ADS)
Tang, Jing; Yang, Bao; Wang, Yanhua; Ying, Leslie
2016-09-01
PET imaging plays an important role in scientific and clinical measurement of biochemical and physiological processes. Model-based PET image reconstruction such as the iterative expectation maximization algorithm seeking the maximum likelihood solution leads to increased noise. The maximum a posteriori (MAP) estimate removes divergence at higher iterations. However, a conventional smoothing prior or a total-variation (TV) prior in a MAP reconstruction algorithm causes over smoothing or blocky artifacts in the reconstructed images. We propose to use dictionary learning (DL) based sparse signal representation in the formation of the prior for MAP PET image reconstruction. The dictionary to sparsify the PET images in the reconstruction process is learned from various training images including the corresponding MR structural image and a self-created hollow sphere. Using simulated and patient brain PET data with corresponding MR images, we study the performance of the DL-MAP algorithm and compare it quantitatively with a conventional MAP algorithm, a TV-MAP algorithm, and a patch-based algorithm. The DL-MAP algorithm achieves improved bias and contrast (or regional mean values) at comparable noise to what the other MAP algorithms acquire. The dictionary learned from the hollow sphere leads to similar results as the dictionary learned from the corresponding MR image. Achieving robust performance in various noise-level simulation and patient studies, the DL-MAP algorithm with a general dictionary demonstrates its potential in quantitative PET imaging.
Colorectal cancer staging: comparison of whole-body PET/CT and PET/MR.
Catalano, Onofrio A; Coutinho, Artur M; Sahani, Dushyant V; Vangel, Mark G; Gee, Michael S; Hahn, Peter F; Witzel, Thomas; Soricelli, Andrea; Salvatore, Marco; Catana, Ciprian; Mahmood, Umar; Rosen, Bruce R; Gervais, Debra
2017-04-01
Correct staging is imperative for colorectal cancer (CRC) since it influences both prognosis and management. Several imaging methods are used for this purpose, with variable performance. Positron emission tomography-magnetic resonance (PET/MR) is an innovative imaging technique recently employed for clinical application. The present study was undertaken to compare the staging accuracy of whole-body positron emission tomography-computed tomography (PET/CT) with whole-body PET/MR in patients with both newly diagnosed and treated colorectal cancer. Twenty-six patients, who underwent same day whole-body (WB) PET/CT and WB-PET/MR, were evaluated. PET/CT and PET/MR studies were interpreted by consensus by a radiologist and a nuclear medicine physician. Correlations with prior imaging and follow-up studies were used as the reference standard. Correct staging was compared between methods using McNemar's Chi square test. The two methods were in agreement and correct for 18/26 (69%) patients, and in agreement and incorrect for one patient (3.8%). PET/MR and PET/CT stages for the remaining 7/26 patients (27%) were discordant, with PET/MR staging being correct in all seven cases. PET/MR significantly outperformed PET/CT overall for accurate staging (P = 0.02). PET/MR outperformed PET/CT in CRC staging. PET/MR might allow accurate local and distant staging of CRC patients during both at the time of diagnosis and during follow-up.
Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain.
Jung, Jin Ho; Choi, Yong; Jung, Jiwoong; Kim, Sangsu; Lim, Hyun Keong; Im, Ki Chun; Oh, Chang Hyun; Park, Hyun-wook; Kim, Kyung Min; Kim, Jong Guk
2015-05-01
The purpose of this study was to develop a dual-modality positron emission tomography (PET)/magnetic resonance imaging (MRI) with insertable PET for simultaneous PET and MR imaging of the human brain. The PET detector block was composed of a 4 × 4 matrix of detector modules, each consisting of a 4 × 4 array LYSO coupled to a 4 × 4 Geiger-mode avalanche photodiode (GAPD) array. The PET insert consisted of 18 detector blocks, circularly mounted on a custom-made plastic base to form a ring with an inner diameter of 390 mm and axial length of 60 mm. The PET gantry was shielded with gold-plated conductive fabric tapes with a thickness of 0.1 mm. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuit. The flat cables were shielded with a mesh-type aluminum sheet with a thickness of 0.24 mm. The position decoder circuit and field programmable gate array-embedded DAQ modules were enclosed in an aluminum box with a thickness of 10 mm and located at the rear of the MR bore inside the MRI room. A 3-T human MRI system with a Larmor frequency of 123.7 MHz and inner bore diameter of 60 cm was used as the PET/MRI hybrid system. A custom-made radio frequency (RF) coil with an inner diameter of 25 cm was fabricated. The PET was positioned between gradient and the RF coils. PET performance was measured outside and inside the MRI scanner using echo planar imaging, spin echo, turbo spin echo, and gradient echo sequences. MRI performance was also evaluated with and without the PET insert. The stability of the newly developed PET insert was evaluated and simultaneous PET and MR images of a brain phantom were acquired. No significant degradation of the PET performance caused by MR was observed when the PET was operated using various MR imaging sequences. The signal-to-noise ratio of MR images was slightly degraded due to the PET insert installed inside the MR bore while the homogeneity was maintained. The change of gain of the 256 GAPD/scintillator elements of a detector block was <3% for 60 min, and simultaneous PET and MR images of a brain phantom were successfully acquired. Experimental results indicate that a compact and lightweight PET insert for hybrid PET/MRI can be developed using GAPD arrays and charge signal transmission method proposed in this study without significant interference.
Body-wide anatomy recognition in PET/CT images
NASA Astrophysics Data System (ADS)
Wang, Huiqian; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Zhao, Liming; Torigian, Drew A.
2015-03-01
With the rapid growth of positron emission tomography/computed tomography (PET/CT)-based medical applications, body-wide anatomy recognition on whole-body PET/CT images becomes crucial for quantifying body-wide disease burden. This, however, is a challenging problem and seldom studied due to unclear anatomy reference frame and low spatial resolution of PET images as well as low contrast and spatial resolution of the associated low-dose CT images. We previously developed an automatic anatomy recognition (AAR) system [15] whose applicability was demonstrated on diagnostic computed tomography (CT) and magnetic resonance (MR) images in different body regions on 35 objects. The aim of the present work is to investigate strategies for adapting the previous AAR system to low-dose CT and PET images toward automated body-wide disease quantification. Our adaptation of the previous AAR methodology to PET/CT images in this paper focuses on 16 objects in three body regions - thorax, abdomen, and pelvis - and consists of the following steps: collecting whole-body PET/CT images from existing patient image databases, delineating all objects in these images, modifying the previous hierarchical models built from diagnostic CT images to account for differences in appearance in low-dose CT and PET images, automatically locating objects in these images following object hierarchy, and evaluating performance. Our preliminary evaluations indicate that the performance of the AAR approach on low-dose CT images achieves object localization accuracy within about 2 voxels, which is comparable to the accuracies achieved on diagnostic contrast-enhanced CT images. Object recognition on low-dose CT images from PET/CT examinations without requiring diagnostic contrast-enhanced CT seems feasible.
Quartuccio, Natale; Treglia, Giorgio; Salsano, Marco; Mattoli, Maria Vittoria; Muoio, Barbara; Piccardo, Arnoldo; Lopci, Egesta; Cistaro, Angelina
2013-01-01
Background The objective of this study is to systematically review the role of positron emission tomography (PET) and PET/computed tomography (PET/CT) with Fluorine-18-Fluorodeoxyglucose (FDG) in patients with osteosarcoma (OS). Methods A comprehensive literature search of published studies through October 10th, 2012 in PubMed/MEDLINE, Embase and Scopus databases regarding whole-body FDG-PET and FDG-PET/CT in patients with OS was performed. Results We identified 13 studies including 289 patients with OS. With regard to the staging and restaging of OS, the diagnostic performance of FDG-PET and PET/CT seem to be high; FDG-PET and PET/CT seem to be superior to bone scintigraphy and conventional imaging methods in detecting bone metastases; conversely, spiral CT seems to be superior to FDG-PET in detecting pulmonary metastases from OS Conclusions Metabolic imaging may provide additional information in the evaluation of OS patients. The combination of FDG-PET or FDG-PET/CT with conventional imaging methods seems to be a valuable tool in the staging and restaging of OS and may have a relevant impact on the treatment planning. PMID:23801904
Chen, Song; Li, Xuena; Chen, Meijie; Yin, Yafu; Li, Na; Li, Yaming
2016-10-01
This study is aimed to compare the diagnostic power of using quantitative analysis or visual analysis with single time point imaging (STPI) PET/CT and dual time point imaging (DTPI) PET/CT for the classification of solitary pulmonary nodules (SPN) lesions in granuloma-endemic regions. SPN patients who received early and delayed (18)F-FDG PET/CT at 60min and 180min post-injection were retrospectively reviewed. Diagnoses are confirmed by pathological results or follow-ups. Three quantitative metrics, early SUVmax, delayed SUVmax and retention index(the percentage changes between the early SUVmax and delayed SUVmax), were measured for each lesion. Three 5-point scale score was given by blinded interpretations performed by physicians based on STPI PET/CT images, DTPI PET/CT images and CT images, respectively. ROC analysis was performed on three quantitative metrics and three visual interpretation scores. One-hundred-forty-nine patients were retrospectively included. The areas under curve (AUC) of the ROC curves of early SUVmax, delayed SUVmax, RI, STPI PET/CT score, DTPI PET/CT score and CT score are 0.73, 0.74, 0.61, 0.77 0.75 and 0.76, respectively. There were no significant differences between the AUCs in visual interpretation of STPI PET/CT images and DTPI PET/CT images, nor in early SUVmax and delayed SUVmax. The differences of sensitivity, specificity and accuracy between STPI PET/CT and DTPI PET/CT were not significantly different in either quantitative analysis or visual interpretation. In granuloma-endemic regions, DTPI PET/CT did not offer significant improvement over STPI PET/CT in differentiating malignant SPNs in both quantitative analysis and visual interpretation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Elschot, Mattijs; Vermolen, Bart J.; Lam, Marnix G. E. H.; de Keizer, Bart; van den Bosch, Maurice A. A. J.; de Jong, Hugo W. A. M.
2013-01-01
Background After yttrium-90 (90Y) microsphere radioembolization (RE), evaluation of extrahepatic activity and liver dosimetry is typically performed on 90Y Bremsstrahlung SPECT images. Since these images demonstrate a low quantitative accuracy, 90Y PET has been suggested as an alternative. The aim of this study is to quantitatively compare SPECT and state-of-the-art PET on the ability to detect small accumulations of 90Y and on the accuracy of liver dosimetry. Methodology/Principal Findings SPECT/CT and PET/CT phantom data were acquired using several acquisition and reconstruction protocols, including resolution recovery and Time-Of-Flight (TOF) PET. Image contrast and noise were compared using a torso-shaped phantom containing six hot spheres of various sizes. The ability to detect extra- and intrahepatic accumulations of activity was tested by quantitative evaluation of the visibility and unique detectability of the phantom hot spheres. Image-based dose estimates of the phantom were compared to the true dose. For clinical illustration, the SPECT and PET-based estimated liver dose distributions of five RE patients were compared. At equal noise level, PET showed higher contrast recovery coefficients than SPECT. The highest contrast recovery coefficients were obtained with TOF PET reconstruction including resolution recovery. All six spheres were consistently visible on SPECT and PET images, but PET was able to uniquely detect smaller spheres than SPECT. TOF PET-based estimates of the dose in the phantom spheres were more accurate than SPECT-based dose estimates, with underestimations ranging from 45% (10-mm sphere) to 11% (37-mm sphere) for PET, and 75% to 58% for SPECT, respectively. The differences between TOF PET and SPECT dose-estimates were supported by the patient data. Conclusions/Significance In this study we quantitatively demonstrated that the image quality of state-of-the-art PET is superior over Bremsstrahlung SPECT for the assessment of the 90Y microsphere distribution after radioembolization. PMID:23405207
Technical Considerations on Scanning and Image Analysis for Amyloid PET in Dementia.
Akamatsu, Go; Ohnishi, Akihito; Aita, Kazuki; Ikari, Yasuhiko; Yamamoto, Yasuji; Senda, Michio
2017-01-01
Brain imaging techniques, such as computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and positron emission tomography (PET), can provide essential and objective information for the early and differential diagnosis of dementia. Amyloid PET is especially useful to evaluate the amyloid-β pathological process as a biomarker of Alzheimer's disease. This article reviews critical points about technical considerations on the scanning and image analysis methods for amyloid PET. Each amyloid PET agent has its own proper administration instructions and recommended uptake time, scan duration, and the method of image display and interpretation. In addition, we have introduced general scanning information, including subject positioning, reconstruction parameters, and quantitative and statistical image analysis. We believe that this article could make amyloid PET a more reliable tool in clinical study and practice.
PET/MRI in Oncological Imaging: State of the Art
Bashir, Usman; Mallia, Andrew; Stirling, James; Joemon, John; MacKewn, Jane; Charles-Edwards, Geoff; Goh, Vicky; Cook, Gary J.
2015-01-01
Positron emission tomography (PET) combined with magnetic resonance imaging (MRI) is a hybrid technology which has recently gained interest as a potential cancer imaging tool. Compared with CT, MRI is advantageous due to its lack of ionizing radiation, superior soft-tissue contrast resolution, and wider range of acquisition sequences. Several studies have shown PET/MRI to be equivalent to PET/CT in most oncological applications, possibly superior in certain body parts, e.g., head and neck, pelvis, and in certain situations, e.g., cancer recurrence. This review will update the readers on recent advances in PET/MRI technology and review key literature, while highlighting the strengths and weaknesses of PET/MRI in cancer imaging. PMID:26854157
Sarikaya, Ismet
2015-01-01
Various PET studies, such as measurements of glucose, serotonin and oxygen metabolism, cerebral blood flow and receptor bindings are availabe for epilepsy. 18Fluoro-2-deoxyglucose (18F-FDG) PET imaging of brain glucose metabolism is a well established and widely available technique. Studies have demonstrated that the sensitivity of interictal FDG-PET is higher than interictal SPECT and similar to ictal SPECT for the lateralization and localization of epileptogenic foci in presurgical patients refractory to medical treatments who have noncontributory EEG and MRI. In addition to localizing epileptogenic focus, FDG-PET provide additional important information on the functional status of the rest of the brain. The main limitation of interictal FDG-PET is that it cannot precisely define the surgical margin as the area of hypometabolism usually extends beyond the epileptogenic zone. Various neurotransmitters (GABA, glutamate, opiates, serotonin, dopamine, acethylcholine, and adenosine) and receptor subtypes are involved in epilepsy. PET receptor imaging studies performed in limited centers help to understand the role of neurotransmitters in epileptogenesis, identify epileptic foci and investigate new treatment approaches. PET receptor imaging studies have demonstrated reduced 11C-flumazenil (GABAA-cBDZ) and 18F-MPPF (5-HT1A serotonin) and increased 11C-cerfentanil (mu opiate) and 11C-MeNTI (delta opiate) bindings in the area of seizure. 11C-flumazenil has been reported to be more sensitive than FDG-PET for identifying epileptic foci. The area of abnormality on GABAAcBDZ and opiate receptor images is usually smaller and more circumscribed than the area of hypometabolism on FDG images. Studies have demonstrated that 11C-alpha-methyl-L-tryptophan PET (to study synthesis of serotonin) can detect the epileptic focus within malformations of cortical development and helps in differentiating epileptogenic from non-epileptogenic tubers in patients with tuberous sclerosis complex. 15O-H2O PET was reported to have a similar sensitivity to FDG-PET in detecting epileptic foci. PMID:26550535
Clinical oncologic applications of PET/MRI: a new horizon
Partovi, Sasan; Kohan, Andres; Rubbert, Christian; Vercher-Conejero, Jose Luis; Gaeta, Chiara; Yuh, Roger; Zipp, Lisa; Herrmann, Karin A; Robbin, Mark R; Lee, Zhenghong; Muzic, Raymond F; Faulhaber, Peter; Ros, Pablo R
2014-01-01
Positron emission tomography/magnetic resonance imaging (PET/MRI) leverages the high soft-tissue contrast and the functional sequences of MR with the molecular information of PET in one single, hybrid imaging technology. This technology, which was recently introduced into the clinical arena in a few medical centers worldwide, provides information about tumor biology and microenvironment. Studies on indirect PET/MRI (use of positron emission tomography/computed tomography (PET/CT) images software fused with MRI images) have already generated interesting preliminary data to pave the ground for potential applications of PET/MRI. These initial data convey that PET/MRI is promising in neuro-oncology and head & neck cancer applications as well as neoplasms in the abdomen and pelvis. The pediatric and young adult oncology population requiring frequent follow-up studies as well as pregnant woman might benefit from PET/MRI due to its lower ionizing radiation dose. The indication and planning of therapeutic interventions and specifically radiation therapy in individual patients could be and to a certain extent are already facilitated by performing PET/MRI. The objective of this article is to discuss potential clinical oncology indications of PET/MRI. PMID:24753986
Bridges, Robert L; Wiley, Chris R; Christian, John C; Strohm, Adam P
2007-06-01
Na(18)F, an early bone scintigraphy agent, is poised to reenter mainstream clinical imaging with the present generations of stand-alone PET and PET/CT hybrid scanners. (18)F PET scans promise improved imaging quality for both benign and malignant bone disease, with significantly improved sensitivity and specificity over conventional planar and SPECT bone scans. In this article, basic acquisition information will be presented along with examples of studies related to oncology, sports medicine, and general orthopedics. The use of image fusion of PET bone scans with CT and MRI will be demonstrated. The objectives of this article are to provide the reader with an understanding of the history of early bone scintigraphy in relation to Na(18)F scanning, a familiarity with basic imaging techniques for PET bone scanning, an appreciation of the extent of disease processes that can be imaged with PET bone scanning, an appreciation for the added value of multimodality image fusion with bone disease, and a recognition of the potential role PET bone scanning may play in clinical imaging.
How to design PET experiments to study neurochemistry: application to alcoholism.
Morris, Evan D; Lucas, Molly V; Petrulli, J Ryan; Cosgrove, Kelly P
2014-03-01
Positron Emission Tomography (PET) (and the related Single Photon Emission Computed Tomography) is a powerful imaging tool with a molecular specificity and sensitivity that are unique among imaging modalities. PET excels in the study of neurochemistry in three ways: 1) It can detect and quantify neuroreceptor molecules; 2) it can detect and quantify changes in neurotransmitters; and 3) it can detect and quantify exogenous drugs delivered to the brain. To carry out any of these applications, the user must harness the power of kinetic modeling. Further, the quality of the information gained is only as good as the soundness of the experimental design. This article reviews the concepts behind the three main uses of PET, the rationale behind kinetic modeling of PET data, and some of the key considerations when planning a PET experiment. Finally, some examples of PET imaging related to the study of alcoholism are discussed and critiqued.
How to Design PET Experiments to Study Neurochemistry: Application to Alcoholism
Morris, Evan D.; Lucas, Molly V.; Petrulli, J. Ryan; Cosgrove, Kelly P.
2014-01-01
Positron Emission Tomography (PET) (and the related Single Photon Emission Computed Tomography) is a powerful imaging tool with a molecular specificity and sensitivity that are unique among imaging modalities. PET excels in the study of neurochemistry in three ways: 1) It can detect and quantify neuroreceptor molecules; 2) it can detect and quantify changes in neurotransmitters; and 3) it can detect and quantify exogenous drugs delivered to the brain. To carry out any of these applications, the user must harness the power of kinetic modeling. Further, the quality of the information gained is only as good as the soundness of the experimental design. This article reviews the concepts behind the three main uses of PET, the rationale behind kinetic modeling of PET data, and some of the key considerations when planning a PET experiment. Finally, some examples of PET imaging related to the study of alcoholism are discussed and critiqued. PMID:24600335
Nonlinear PET parametric image reconstruction with MRI information using kernel method
NASA Astrophysics Data System (ADS)
Gong, Kuang; Wang, Guobao; Chen, Kevin T.; Catana, Ciprian; Qi, Jinyi
2017-03-01
Positron Emission Tomography (PET) is a functional imaging modality widely used in oncology, cardiology, and neurology. It is highly sensitive, but suffers from relatively poor spatial resolution, as compared with anatomical imaging modalities, such as magnetic resonance imaging (MRI). With the recent development of combined PET/MR systems, we can improve the PET image quality by incorporating MR information. Previously we have used kernel learning to embed MR information in static PET reconstruction and direct Patlak reconstruction. Here we extend this method to direct reconstruction of nonlinear parameters in a compartment model by using the alternating direction of multiplier method (ADMM) algorithm. Simulation studies show that the proposed method can produce superior parametric images compared with existing methods.
Dong, Xinzhe; Wu, Peipei; Sun, Xiaorong; Li, Wenwu; Wan, Honglin; Yu, Jinming; Xing, Ligang
2015-06-01
This study aims to explore whether the intra-tumour (18) F-fluorodeoxyglucose (FDG) uptake heterogeneity affects the reliability of target volume definition with FDG positron emission tomography/computed tomography (PET/CT) imaging for nonsmall cell lung cancer (NSCLC) and squamous cell oesophageal cancer (SCEC). Patients with NSCLC (n = 50) or SCEC (n = 50) who received (18)F-FDG PET/CT scanning before treatments were included in this retrospective study. Intra-tumour FDG uptake heterogeneity was assessed by visual scoring, the coefficient of variation (COV) of the standardised uptake value (SUV) and the image texture feature (entropy). Tumour volumes (gross tumour volume (GTV)) were delineated on the CT images (GTV(CT)), the fused PET/CT images (GTV(PET-CT)) and the PET images, using a threshold at 40% SUV(max) (GTV(PET40%)) or the SUV cut-off value of 2.5 (GTV(PET2.5)). The correlation between the FDG uptake heterogeneity parameters and the differences in tumour volumes among GTV(CT), GTV(PET-CT), GTV(PET40%) and GTV(PET2.5) was analysed. For both NSCLC and SCEC, obvious correlations were found between uptake heterogeneity, SUV or tumour volumes. Three types of heterogeneity parameters were consistent and closely related to each other. Substantial differences between the four methods of GTV definition were found. The differences between the GTV correlated significantly with PET heterogeneity defined with the visual score, the COV or the textural feature-entropy for NSCLC and SCEC. In tumours with a high FDG uptake heterogeneity, a larger GTV delineation difference was found. Advance image segmentation algorithms dealing with tracer uptake heterogeneity should be incorporated into the treatment planning system. © 2015 The Royal Australian and New Zealand College of Radiologists.
Partovi, Sasan; Kohan, Andres; Gaeta, Chiara; Rubbert, Christian; Vercher-Conejero, Jose L; Jones, Robert S; O'Donnell, James K; Wojtylak, Patrick; Faulhaber, Peter
2013-01-01
The purpose of this study is to systematically evaluate the usefulness of Positron emission tomography/Magnetic resonance imaging (PET/MRI) images in a clinical setting by assessing the image quality of Positron emission tomography (PET) images using a three-segment MR attenuation correction (MRAC) versus the standard CT attenuation correction (CTAC). We prospectively studied 48 patients who had their clinically scheduled FDG-PET/CT followed by an FDG-PET/MRI. Three nuclear radiologists evaluated the image quality of CTAC vs. MRAC using a Likert scale (five-point scale). A two-sided, paired t-test was performed for comparison purposes. The image quality was further assessed by categorizing it as acceptable (equal to 4 and 5 on the five-point Likert scale) or unacceptable (equal to 1, 2, and 3 on the five-point Likert scale) quality using the McNemar test. When assessing the image quality using the Likert scale, one reader observed a significant difference between CTAC and MRAC (p=0.0015), whereas the other readers did not observe a difference (p=0.8924 and p=0.1880, respectively). When performing the grouping analysis, no significant difference was found between CTAC vs. MRAC for any of the readers (p=0.6137 for reader 1, p=1 for reader 2, and p=0.8137 for reader 3). All three readers more often reported artifacts on the MRAC images than on the CTAC images. There was no clinically significant difference in quality between PET images generated on a PET/MRI system and those from a Positron emission tomography/Computed tomography (PET/CT) system. PET images using the automatic three-segmented MR attenuation method provided diagnostic image quality. However, future research regarding the image quality obtained using different MR attenuation based methods is warranted before PET/MRI can be used clinically.
Gong, Kuang; Yang, Jaewon; Kim, Kyungsang; El Fakhri, Georges; Seo, Youngho; Li, Quanzheng
2018-05-23
Positron Emission Tomography (PET) is a functional imaging modality widely used in neuroscience studies. To obtain meaningful quantitative results from PET images, attenuation correction is necessary during image reconstruction. For PET/MR hybrid systems, PET attenuation is challenging as Magnetic Resonance (MR) images do not reflect attenuation coefficients directly. To address this issue, we present deep neural network methods to derive the continuous attenuation coefficients for brain PET imaging from MR images. With only Dixon MR images as the network input, the existing U-net structure was adopted and analysis using forty patient data sets shows it is superior than other Dixon based methods. When both Dixon and zero echo time (ZTE) images are available, we have proposed a modified U-net structure, named GroupU-net, to efficiently make use of both Dixon and ZTE information through group convolution modules when the network goes deeper. Quantitative analysis based on fourteen real patient data sets demonstrates that both network approaches can perform better than the standard methods, and the proposed network structure can further reduce the PET quantification error compared to the U-net structure. © 2018 Institute of Physics and Engineering in Medicine.
Yamamoto, Seiichi; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Ichikawa, Kazuhiro; Nakao, Motonao; Kato, Katsuhiko; Hatazawa, Jun
2016-10-01
Positron emission tomography (PET) has high sensitivity for imaging radioactive tracer distributions in subjects. However, it is not possible to image free radical distribution in a subject by PET. Since free radicals are quite reactive, they are related to many diseases, including but not limited to cancer, inflammation, strokes, and heart disease. The Overhauser enhanced magnetic resonance imaging (OMRI) is so far the only method that images free radical distribution in vivo. By combining PET and OMRI, a new hybrid imaging modality might be developed that can simultaneously image the radioactive tracer and free radical distributions. For this purpose, the authors developed a PET/OMRI combined system for small animals. The developed PET/OMRI system used an optical fiber-based PET system combined with a permanent magnet-based OMRI system. The optical fiber-based PET system uses flexible optical fiber bundles. Eight optical fiber-based block detectors were arranged in a 56 mm diameter ring to form a PET system. The LGSO blocks were located inside the field-of-view (FOV) of the OMRI, and the position sensitive photomultiplier tubes were positioned behind the OMRI to minimize the interference between the PET and the OMRI. The OMRI system used a 0.0165 T permanent magnet. The system has an electron spin resonance coil to enhance the MRI signal using the Overhauser effect to image the free radical in the FOV of the PET/OMRI system. The spatial resolution and sensitivity of the optical fiber-based PET system were 1.2 mm FWHM and 1.2% at the central FOV, respectively. The OMRI system imaged the distribution of a nitroxyl radical (NXR) solution. The interference between PET and OMRI was small. Simultaneous imaging of the positron radiotracer and the NXR solution was successfully conducted with the developed PET/OMRI system for phantom and small animal studies. The authors developed a PET/OMRI combined system with the potential to provide interesting new results in molecular imaging research, such as in vivo molecular and free radical distributions.
Adaptive template generation for amyloid PET using a deep learning approach.
Kang, Seung Kwan; Seo, Seongho; Shin, Seong A; Byun, Min Soo; Lee, Dong Young; Kim, Yu Kyeong; Lee, Dong Soo; Lee, Jae Sung
2018-05-11
Accurate spatial normalization (SN) of amyloid positron emission tomography (PET) images for Alzheimer's disease assessment without coregistered anatomical magnetic resonance imaging (MRI) of the same individual is technically challenging. In this study, we applied deep neural networks to generate individually adaptive PET templates for robust and accurate SN of amyloid PET without using matched 3D MR images. Using 681 pairs of simultaneously acquired 11 C-PIB PET and T1-weighted 3D MRI scans of AD, MCI, and cognitively normal subjects, we trained and tested two deep neural networks [convolutional auto-encoder (CAE) and generative adversarial network (GAN)] that produce adaptive best PET templates. More specifically, the networks were trained using 685,100 pieces of augmented data generated by rotating 527 randomly selected datasets and validated using 154 datasets. The input to the supervised neural networks was the 3D PET volume in native space and the label was the spatially normalized 3D PET image using the transformation parameters obtained from MRI-based SN. The proposed deep learning approach significantly enhanced the quantitative accuracy of MRI-less amyloid PET assessment by reducing the SN error observed when an average amyloid PET template is used. Given an input image, the trained deep neural networks rapidly provide individually adaptive 3D PET templates without any discontinuity between the slices (in 0.02 s). As the proposed method does not require 3D MRI for the SN of PET images, it has great potential for use in routine analysis of amyloid PET images in clinical practice and research. © 2018 Wiley Periodicals, Inc.
Aukema, T S; Rutgers, E J Th; Vogel, W V; Teertstra, H J; Oldenburg, H S; Vrancken Peeters, M T F D; Wesseling, J; Russell, N S; Valdés Olmos, R A
2010-04-01
The aim of this study was to evaluate the impact of (18)F-fluorodeoxyglucose positron-emission tomography/computed tomography (FDG PET/CT) on clinical management in patients with locoregional breast cancer recurrence amenable for locoregional treatment and to compare the PET/CT results with the conventional imaging data. From January 2006 to August 2008, all patients with locoregional breast cancer recurrence underwent whole-body PET/CT. PET/CT findings were compared with results of the conventional imaging techniques and final pathology. The impact of PET/CT results on clinical management was evaluated based on clinical decisions obtained from patient files. 56 patients were included. In 32 patients (57%) PET/CT revealed additional tumour localisations. Distant metastases were detected in 11 patients on conventional imaging and in 23 patients on PET/CT images (p < 0.01). In 25 patients (45%), PET/CT detected additional lesions not visible on conventional imaging. PET/CT had an impact on clinical management in 27 patients (48%) by detecting more extensive locoregional disease or distant metastases. In 20 patients (36%) extensive surgery was prevented and treatment was changed to palliative treatment. The sensitivity, specificity, accuracy, positive and negative predictive values of FDG PET/CT were respectively 97%, 92%, 95%, 94% and 96%. PET/CT, in addition to conventional imaging techniques, plays an important role in staging patients with locoregional breast cancer recurrence since its result changed the clinical management in almost half of the patients. PET/CT could potentially replace conventional staging imaging in patients with a locoregional breast cancer recurrence. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Positron emission tomography (PET) imaging with 18F-based radiotracers
Alauddin, Mian M
2012-01-01
Positron Emission Tomography (PET) is a nuclear medicine imaging technique that is widely used in early detection and treatment follow up of many diseases, including cancer. This modality requires positron-emitting isotope labeled biomolecules, which are synthesized prior to perform imaging studies. Fluorine-18 is one of the several isotopes of fluorine that is routinely used in radiolabeling of biomolecules for PET; because of its positron emitting property and favorable half-life of 109.8 min. The biologically active molecule most commonly used for PET is 2-deoxy-2-18F-fluoro-β-D-glucose (18F-FDG), an analogue of glucose, for early detection of tumors. The concentrations of tracer accumulation (PET image) demonstrate the metabolic activity of tissues in terms of regional glucose metabolism and accumulation. Other tracers are also used in PET to image the tissue concentration. In this review, information on fluorination and radiofluorination reactions, radiofluorinating agents, and radiolabeling of various compounds and their application in PET imaging is presented. PMID:23133802
Novel Developments in Instrumentation for PET Imaging
NASA Astrophysics Data System (ADS)
Karp, Joel
2013-04-01
Advances in medical imaging, in particular positron emission tomography (PET), have been based on technical developments in physics and instrumentation that have common foundations with detection systems used in other fields of physics. New detector materials are used in PET systems that maximize efficiency, timing characteristics and robustness, and which lead to improved image quality and quantitative accuracy for clinical imaging. Time of flight (TOF) techniques are now routinely used in commercial PET scanners that combine physiological imaging with anatomical imaging provided by x-ray computed tomography. Using new solid-state photo-sensors instead of traditional photo-multiplier tubes makes it possible to combine PET with magnetic resonance imaging which is a significant technical challenge, but one that is creating new opportunities for both research and clinical applications. An overview of recent advances in instrumentation, such as TOF and PET/MR will be presented, along with examples of imaging studies to demonstrate the impact on patient care and basic research of diseases.
Yamashita, Shozo; Yokoyama, Kunihiko; Onoguchi, Masahisa; Yamamoto, Haruki; Hiko, Shigeaki; Horita, Akihiro; Nakajima, Kenichi
2014-01-01
Deep-inspiration breath-hold (DIBH) PET/CT with short-time acquisition and respiratory-gated (RG) PET/CT are performed for pulmonary lesions to reduce the respiratory motion artifacts, and to obtain more accurate standardized uptake value (SUV). DIBH PET/CT demonstrates significant advantages in terms of rapid examination, good quality of CT images and low radiation exposure. On the other hand, the image quality of DIBH PET is generally inferior to that of RG PET because of short-time acquisition resulting in poor signal-to-noise ratio. In this study, RG PET has been regarded as a gold standard, and its detectability between DIBH and RG PET studies was compared using each of the most optimal reconstruction parameters. In the phantom study, the most optimal reconstruction parameters for DIBH and RG PET were determined. In the clinical study, 19 cases were examined using each of the most optimal reconstruction parameters. In the phantom study, the most optimal reconstruction parameters for DIBH and RG PET were different. Reconstruction parameters of DIBH PET could be obtained by reducing the number of subsets for those of RG PET in the state of fixing the number of iterations. In the clinical study, high correlation in the maximum SUV was observed between DIBH and RG PET studies. The clinical result was consistent with that of the phantom study surrounded by air since most of the lesions were located in the low pulmonary radioactivity. DIBH PET/CT may be the most practical method which can be the first choice to reduce respiratory motion artifacts if the detectability of DIBH PET is equivalent with that of RG PET. Although DIBH PET may have limitations in suboptimal signal-to-noise ratio, most of the lesions surrounded by low background radioactivity could provide nearly equivalent image quality between DIBH and RG PET studies when each of the most optimal reconstruction parameters was used.
Value of PET/CT 3D visualization of head and neck squamous cell carcinoma extended to mandible.
Lopez, R; Gantet, P; Julian, A; Hitzel, A; Herbault-Barres, B; Alshehri, S; Payoux, P
2018-05-01
To study an original 3D visualization of head and neck squamous cell carcinoma extending to the mandible by using [18F]-NaF PET/CT and [18F]-FDG PET/CT imaging along with a new innovative FDG and NaF image analysis using dedicated software. The main interest of the 3D evaluation is to have a better visualization of bone extension in such cancers and that could also avoid unsatisfying surgical treatment later on. A prospective study was carried out from November 2016 to September 2017. Twenty patients with head and neck squamous cell carcinoma extending to the mandible (stage 4 in the UICC classification) underwent [18F]-NaF and [18F]-FDG PET/CT. We compared the delineation of 3D quantification obtained with [18F]-NaF and [18F]-FDG PET/CT. In order to carry out this comparison, a method of visualisation and quantification of PET images was developed. This new approach was based on a process of quantification of radioactive activity within the mandibular bone that objectively defined the significant limits of this activity on PET images and on a 3D visualization. Furthermore, the spatial limits obtained by analysis of the PET/CT 3D images were compared to those obtained by histopathological examination of mandibular resection which confirmed intraosseous extension to the mandible. The [18F]-NaF PET/CT imaging confirmed the mandibular extension in 85% of cases and was not shown in [18F]-FDG PET/CT imaging. The [18F]-NaF PET/CT was significantly more accurate than [18F]-FDG PET/CT in 3D assessment of intraosseous extension of head and neck squamous cell carcinoma. This new 3D information shows the importance in the imaging approach of cancers. All cases of mandibular extension suspected on [18F]-NaF PET/CT imaging were confirmed based on histopathological results as a reference. The [18F]-NaF PET/CT 3D visualization should be included in the pre-treatment workups of head and neck cancers. With the use of a dedicated software which enables objective delineation of radioactive activity within the bone, it gives a very encouraging results. The [18F]-FDG PET/CT appears insufficient to confirm mandibular extension. This new 3D simulation management is expected to avoid under treatment of patients with intraosseous mandibular extension of head and neck cancers. However, there is also a need for a further study that will compare the interest of PET/CT and PET/MRI in this indication. Copyright © 2018 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Ikeda, Hidetoshi; Abe, Takehiko; Watanabe, Kazuo
2010-04-01
Fifty to eighty percent of Cushing disease is diagnosed by typical endocrine responses. Recently, the number of diagnoses of Cushing disease without typical Cushing syndrome has been increasing; therefore, improving ways to determine the localization of the adenoma and making an early diagnosis is important. This study was undertaken to determine the present diagnostic accuracy for Cushing microadenoma and to compare the differences in diagnostic accuracy between MR imaging and PET/MR imaging. During the past 3 years the authors analyzed the diagnostic accuracy in a series of 35 patients with Cushing adenoma that was verified by surgical pituitary exploration. All 35 cases of Cushing disease, including 20 cases of "overt" and 15 cases of "preclinical" Cushing disease, were studied. Superconductive MR images (1.5 or 3.0 T) and composite images from FDG-PET or methionine (MET)-PET and 3.0-T MR imaging were compared with the localization of adenomas verified by surgery. The diagnostic accuracy of superconductive MR imaging for detecting the localization of Cushing microadenoma was only 40%. The causes of unsatisfactory results for superconductive MR imaging were false-negative results (10 cases), false-positive results (6 cases), and instances of double pituitary adenomas (3 cases). In contrast, the accuracy of microadenoma localization using MET-PET/3.0-T MR imaging was 100% and that of FDG-PET/3.0-T MR imaging was 73%. Moreover, the adenoma location was better delineated on MET-PET/MR images than on FDG-PET/MR images. There was no significant difference in maximum standard uptake value of adenomas evaluated by MET-PET between preclinical Cushing disease and overt Cushing disease. Composite MET-PET/3.0-T MR imaging is useful for the improvement of the delineation of Cushing microadenoma and offers high-quality detectability for early-stage Cushing adenoma.
Omidvari, Negar; Topping, Geoffrey; Cabello, Jorge; Paul, Stephan; Schwaiger, Markus; Ziegler, Sibylle I
2018-05-01
Compromises in the design of a positron emission tomography (PET) insert for a magnetic resonance imaging (MRI) system should minimize the deterioration of image quality in both modalities, particularly when simultaneous demanding acquisitions are performed. In this work, the advantages of using individually read-out crystals with high-gain silicon photomultipliers (SiPMs) were studied with a small animal PET insert for a 7 T MRI system, in which the SiPM charge was transferred to outside the MRI scanner using coaxial cables. The interferences between the two systems were studied with three radio-frequency (RF) coil configurations. The effects of PET on the static magnetic field, flip angle distribution, RF noise, and image quality of various MRI sequences (gradient echo, spin echo, and echo planar imaging (EPI) at 1 H frequency, and chemical shift imaging at 13 C frequency) were investigated. The effects of fast-switching gradient fields and RF pulses on PET count rate were studied, while the PET insert and the readout electronics were not shielded. Operating the insert inside a 1 H volume coil, used for RF transmission and reception, limited the MRI to T1-weighted imaging, due to coil detuning and RF attenuation, and resulted in significant PET count loss. Using a surface receive coil allowed all tested MR sequences to be used with the insert, with 45-59% signal-to-noise ratio (SNR) degradation, compared to without PET. With a 1 H/ 13 C volume coil inside the insert and shielded by a copper tube, the SNR degradation was limited to 23-30% with all tested sequences. The insert did not introduce any discernible distortions into images of two tested EPI sequences. Use of truncated sinc shaped RF excitation pulses and gradient field switching had negligible effects on PET count rate. However, PET count rate was substantially affected by high-power RF block pulses and temperature variations due to high gradient duty cycles.
Final Report 2007: DOE-FG02-87ER60561
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilbourn, Michael R
2007-04-26
This project involved a multi-faceted approach to the improvement of techniques used in Positron Emission Tomography (PET), from radiochemistry to image processing and data analysis. New methods for radiochemical syntheses were examined, new radiochemicals prepared for evaluation and eventual use in human PET studies, and new pre-clinical methods examined for validation of biochemical parameters in animal studies. The value of small animal PET imaging in measuring small changes of in vivo biochemistry was examined and directly compared to traditional tissue sampling techniques. In human imaging studies, the ability to perform single experimental sessions utilizing two overlapping injections of radiopharmaceuticals wasmore » tested, and it was shown that valid biochemical measures for both radiotracers can be obtained through careful pharmacokinetic modeling of the PET emission data. Finally, improvements in reconstruction algorithms for PET data from small animal PET scanners was realized and these have been implemented in commercial releases. Together, the project represented an integrated effort to improve and extend all basic science aspects of PET imaging at both the animal and human level.« less
MRI-guided brain PET image filtering and partial volume correction
NASA Astrophysics Data System (ADS)
Yan, Jianhua; Chu-Shern Lim, Jason; Townsend, David W.
2015-02-01
Positron emission tomography (PET) image quantification is a challenging problem due to limited spatial resolution of acquired data and the resulting partial volume effects (PVE), which depend on the size of the structure studied in relation to the spatial resolution and which may lead to over or underestimation of the true tissue tracer concentration. In addition, it is usually necessary to perform image smoothing either during image reconstruction or afterwards to achieve a reasonable signal-to-noise ratio. Typically, an isotropic Gaussian filtering (GF) is used for this purpose. However, the noise suppression is at the cost of deteriorating spatial resolution. As hybrid imaging devices such as PET/MRI have become available, the complementary information derived from high definition morphologic images could be used to improve the quality of PET images. In this study, first of all, we propose an MRI-guided PET filtering method by adapting a recently proposed local linear model and then incorporate PVE into the model to get a new partial volume correction (PVC) method without parcellation of MRI. In addition, both the new filtering and PVC are voxel-wise non-iterative methods. The performance of the proposed methods were investigated with simulated dynamic FDG brain dataset and 18F-FDG brain data of a cervical cancer patient acquired with a simultaneous hybrid PET/MR scanner. The initial simulation results demonstrated that MRI-guided PET image filtering can produce less noisy images than traditional GF and bias and coefficient of variation can be further reduced by MRI-guided PET PVC. Moreover, structures can be much better delineated in MRI-guided PET PVC for real brain data.
Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Jin Ho; Choi, Yong, E-mail: ychoi.image@gmail.com; Jung, Jiwoong
2015-05-15
Purpose: The purpose of this study was to develop a dual-modality positron emission tomography (PET)/magnetic resonance imaging (MRI) with insertable PET for simultaneous PET and MR imaging of the human brain. Methods: The PET detector block was composed of a 4 × 4 matrix of detector modules, each consisting of a 4 × 4 array LYSO coupled to a 4 × 4 Geiger-mode avalanche photodiode (GAPD) array. The PET insert consisted of 18 detector blocks, circularly mounted on a custom-made plastic base to form a ring with an inner diameter of 390 mm and axial length of 60 mm. Themore » PET gantry was shielded with gold-plated conductive fabric tapes with a thickness of 0.1 mm. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuit. The flat cables were shielded with a mesh-type aluminum sheet with a thickness of 0.24 mm. The position decoder circuit and field programmable gate array-embedded DAQ modules were enclosed in an aluminum box with a thickness of 10 mm and located at the rear of the MR bore inside the MRI room. A 3-T human MRI system with a Larmor frequency of 123.7 MHz and inner bore diameter of 60 cm was used as the PET/MRI hybrid system. A custom-made radio frequency (RF) coil with an inner diameter of 25 cm was fabricated. The PET was positioned between gradient and the RF coils. PET performance was measured outside and inside the MRI scanner using echo planar imaging, spin echo, turbo spin echo, and gradient echo sequences. MRI performance was also evaluated with and without the PET insert. The stability of the newly developed PET insert was evaluated and simultaneous PET and MR images of a brain phantom were acquired. Results: No significant degradation of the PET performance caused by MR was observed when the PET was operated using various MR imaging sequences. The signal-to-noise ratio of MR images was slightly degraded due to the PET insert installed inside the MR bore while the homogeneity was maintained. The change of gain of the 256 GAPD/scintillator elements of a detector block was <3% for 60 min, and simultaneous PET and MR images of a brain phantom were successfully acquired. Conclusions: Experimental results indicate that a compact and lightweight PET insert for hybrid PET/MRI can be developed using GAPD arrays and charge signal transmission method proposed in this study without significant interference.« less
Katoh, Norio; Yasuda, Koichi; Shiga, Tohru; Hasegawa, Masakazu; Onimaru, Rikiya; Shimizu, Shinichi; Bengua, Gerard; Ishikawa, Masayori; Tamaki, Nagara; Shirato, Hiroki
2012-03-15
We compared two treatment planning methods for stereotactic boost for treating nasopharyngeal carcinoma (NPC): the use of conventional whole-body bismuth germanate (BGO) scintillator positron emission tomography (PET(CONV)WB) versus the new brain (BR) PET system using semiconductor detectors (PET(NEW)BR). Twelve patients with NPC were enrolled in this study. [(18)F]Fluorodeoxyglucose-PET images were acquired using both the PET(NEW)BR and the PET(CONV)WB system on the same day. Computed tomography (CT) and two PET data sets were transferred to a treatment planning system, and the PET(CONV)WB and PET(NEW)BR images were coregistered with the same set of CT images. Window width and level values for all PET images were fixed at 3000 and 300, respectively. The gross tumor volume (GTV) was visually delineated on PET images by using either PET(CONV)WB (GTV(CONV)) images or PET(NEW)BR (GTV(NEW)) images. Assuming a stereotactic radiotherapy boost of 7 ports, the prescribed dose delivered to 95% of the planning target volume (PTV) was set to 2000 cGy in 4 fractions. The average absolute volume (±standard deviation [SD]) of GTV(NEW) was 15.7 ml (±9.9) ml, and that of GTV(CONV) was 34.0 (±20.5) ml. The average GTV(NEW) was significantly smaller than that of GTV(CONV) (p = 0.0006). There was no statistically significant difference between the maximum dose (p = 0.0585) and the mean dose (p = 0.2748) of PTV. The radiotherapy treatment plan based on the new gross tumor volume (PLAN(NEW)) significantly reduced maximum doses to the cerebrum and cerebellum (p = 0.0418) and to brain stem (p = 0.0041). Results of the present study suggest that the new brain PET system using semiconductor detectors can provide more accurate tumor delineation than the conventional whole-body BGO PET system and may be an important tool for functional and molecular radiotherapy treatment planning. Copyright © 2012 Elsevier Inc. All rights reserved.
Algorithm for lung cancer detection based on PET/CT images
NASA Astrophysics Data System (ADS)
Saita, Shinsuke; Ishimatsu, Keita; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Ohtsuka, Hideki; Nishitani, Hiromu; Ohmatsu, Hironobu; Eguchi, Kenji; Kaneko, Masahiro; Moriyama, Noriyuki
2009-02-01
The five year survival rate of the lung cancer is low with about twenty-five percent. In addition it is an obstinate lung cancer wherein three out of four people die within five years. Then, the early stage detection and treatment of the lung cancer are important. Recently, we can obtain CT and PET image at the same time because PET/CT device has been developed. PET/CT is possible for a highly accurate cancer diagnosis because it analyzes quantitative shape information from CT image and FDG distribution from PET image. However, neither benign-malignant classification nor staging intended for lung cancer have been established still enough by using PET/CT images. In this study, we detect lung nodules based on internal organs extracted from CT image, and we also develop algorithm which classifies benignmalignant and metastatic or non metastatic lung cancer using lung structure and FDG distribution(one and two hour after administering FDG). We apply the algorithm to 59 PET/CT images (malignant 43 cases [Ad:31, Sq:9, sm:3], benign 16 cases) and show the effectiveness of this algorithm.
Dual-Modality Optical/PET Imaging of PARP1 in Glioblastoma.
Carlucci, Giuseppe; Carney, Brandon; Brand, Christian; Kossatz, Susanne; Irwin, Christopher P; Carlin, Sean D; Keliher, Edmund J; Weber, Wolfgang; Reiner, Thomas
2015-12-01
The current study presents [(18)F]PARPi-FL as a bimodal fluorescent/positron emission tomography (PET) agent for PARP1 imaging. [(18)F]PARPi-FL was obtained by (19)F/(18)F isotopic exchange and PET experiments, biodistribution studies, surface fluorescence imaging, and autoradiography carried out in a U87 MG glioblastoma mouse model. [(18)F]PARPi-FL showed high tumor uptake in vivo and ex vivo in small xenografts (< 2 mm) with both PET and optical imaging technologies. Uptake of [(18)F]PARPi-FL in blocked U87 MG tumors was reduced by 84 % (0.12 ± 0.02 %injected dose/gram (%ID/g)), showing high specificity of the binding. PET imaging showed accumulation in the tumor (1 h p.i.), which was confirmed by ex vivo phosphor autoradiography. The fluorescent component of [(18)F]PARPi-FL enables cellular resolution optical imaging, while the radiolabeled component of [(18)F]PARPi-FL allows whole-body deep-tissue imaging of malignant growth.
Evaluation of GMI and PMI diffeomorphic‐based demons algorithms for aligning PET and CT Images
Yang, Juan; Zhang, You; Yin, Yong
2015-01-01
Fusion of anatomic information in computed tomography (CT) and functional information in F18‐FDG positron emission tomography (PET) is crucial for accurate differentiation of tumor from benign masses, designing radiotherapy treatment plan and staging of cancer. Although current PET and CT images can be acquired from combined F18‐FDG PET/CT scanner, the two acquisitions are scanned separately and take a long time, which may induce potential positional errors in global and local caused by respiratory motion or organ peristalsis. So registration (alignment) of whole‐body PET and CT images is a prerequisite for their meaningful fusion. The purpose of this study was to assess the performance of two multimodal registration algorithms for aligning PET and CT images. The proposed gradient of mutual information (GMI)‐based demons algorithm, which incorporated the GMI between two images as an external force to facilitate the alignment, was compared with the point‐wise mutual information (PMI) diffeomorphic‐based demons algorithm whose external force was modified by replacing the image intensity difference in diffeomorphic demons algorithm with the PMI to make it appropriate for multimodal image registration. Eight patients with esophageal cancer(s) were enrolled in this IRB‐approved study. Whole‐body PET and CT images were acquired from a combined F18‐FDG PET/CT scanner for each patient. The modified Hausdorff distance (dMH) was used to evaluate the registration accuracy of the two algorithms. Of all patients, the mean values and standard deviations (SDs) of dMH were 6.65 (± 1.90) voxels and 6.01 (± 1.90) after the GMI‐based demons and the PMI diffeomorphic‐based demons registration algorithms respectively. Preliminary results on oncological patients showed that the respiratory motion and organ peristalsis in PET/CT esophageal images could not be neglected, although a combined F18‐FDG PET/CT scanner was used for image acquisition. The PMI diffeomorphic‐based demons algorithm was more accurate than the GMI‐based demons algorithm in registering PET/CT esophageal images. PACS numbers: 87.57.nj, 87.57. Q‐, 87.57.uk PMID:26218993
Evaluation of GMI and PMI diffeomorphic-based demons algorithms for aligning PET and CT Images.
Yang, Juan; Wang, Hongjun; Zhang, You; Yin, Yong
2015-07-08
Fusion of anatomic information in computed tomography (CT) and functional information in 18F-FDG positron emission tomography (PET) is crucial for accurate differentiation of tumor from benign masses, designing radiotherapy treatment plan and staging of cancer. Although current PET and CT images can be acquired from combined 18F-FDG PET/CT scanner, the two acquisitions are scanned separately and take a long time, which may induce potential positional errors in global and local caused by respiratory motion or organ peristalsis. So registration (alignment) of whole-body PET and CT images is a prerequisite for their meaningful fusion. The purpose of this study was to assess the performance of two multimodal registration algorithms for aligning PET and CT images. The proposed gradient of mutual information (GMI)-based demons algorithm, which incorporated the GMI between two images as an external force to facilitate the alignment, was compared with the point-wise mutual information (PMI) diffeomorphic-based demons algorithm whose external force was modified by replacing the image intensity difference in diffeomorphic demons algorithm with the PMI to make it appropriate for multimodal image registration. Eight patients with esophageal cancer(s) were enrolled in this IRB-approved study. Whole-body PET and CT images were acquired from a combined 18F-FDG PET/CT scanner for each patient. The modified Hausdorff distance (d(MH)) was used to evaluate the registration accuracy of the two algorithms. Of all patients, the mean values and standard deviations (SDs) of d(MH) were 6.65 (± 1.90) voxels and 6.01 (± 1.90) after the GMI-based demons and the PMI diffeomorphic-based demons registration algorithms respectively. Preliminary results on oncological patients showed that the respiratory motion and organ peristalsis in PET/CT esophageal images could not be neglected, although a combined 18F-FDG PET/CT scanner was used for image acquisition. The PMI diffeomorphic-based demons algorithm was more accurate than the GMI-based demons algorithm in registering PET/CT esophageal images.
Cho, Hanna; Kim, Jin Su; Choi, Jae Yong; Ryu, Young Hoon; Lyoo, Chul Hyoung
2014-01-01
We developed a new computed tomography (CT)-based spatial normalization method and CT template to demonstrate its usefulness in spatial normalization of positron emission tomography (PET) images with [(18)F] fluorodeoxyglucose (FDG) PET studies in healthy controls. Seventy healthy controls underwent brain CT scan (120 KeV, 180 mAs, and 3 mm of thickness) and [(18)F] FDG PET scans using a PET/CT scanner. T1-weighted magnetic resonance (MR) images were acquired for all subjects. By averaging skull-stripped and spatially-normalized MR and CT images, we created skull-stripped MR and CT templates for spatial normalization. The skull-stripped MR and CT images were spatially normalized to each structural template. PET images were spatially normalized by applying spatial transformation parameters to normalize skull-stripped MR and CT images. A conventional perfusion PET template was used for PET-based spatial normalization. Regional standardized uptake values (SUV) measured by overlaying the template volume of interest (VOI) were compared to those measured with FreeSurfer-generated VOI (FSVOI). All three spatial normalization methods underestimated regional SUV values by 0.3-20% compared to those measured with FSVOI. The CT-based method showed slightly greater underestimation bias. Regional SUV values derived from all three spatial normalization methods were correlated significantly (p < 0.0001) with those measured with FSVOI. CT-based spatial normalization may be an alternative method for structure-based spatial normalization of [(18)F] FDG PET when MR imaging is unavailable. Therefore, it is useful for PET/CT studies with various radiotracers whose uptake is expected to be limited to specific brain regions or highly variable within study population.
Paulus, Daniel H; Oehmigen, Mark; Grüneisen, Johannes; Umutlu, Lale; Quick, Harald H
2016-05-07
Modern radiation therapy (RT) treatment planning is based on multimodality imaging. With the recent availability of whole-body PET/MR hybrid imaging new opportunities arise to improve target volume delineation in RT treatment planning. This, however, requires dedicated RT equipment for reproducible patient positioning on the PET/MR system, which has to be compatible with MR and PET imaging. A prototype flat RT table overlay, radiofrequency (RF) coil holders for head imaging, and RF body bridges for body imaging were developed and tested towards PET/MR system integration. Attenuation correction (AC) of all individual RT components was performed by generating 3D CT-based template models. A custom-built program for μ-map generation assembles all AC templates depending on the presence and position of each RT component. All RT devices were evaluated in phantom experiments with regards to MR and PET imaging compatibility, attenuation correction, PET quantification, and position accuracy. The entire RT setup was then evaluated in a first PET/MR patient study on five patients at different body regions. All tested devices are PET/MR compatible and do not produce visible artifacts or disturb image quality. The RT components showed a repositioning accuracy of better than 2 mm. Photon attenuation of -11.8% in the top part of the phantom was observable, which was reduced to -1.7% with AC using the μ-map generator. Active lesions of 3 subjects were evaluated in terms of SUVmean and an underestimation of -10.0% and -2.4% was calculated without and with AC of the RF body bridges, respectively. The new dedicated RT equipment for hybrid PET/MR imaging enables acquisitions in all body regions. It is compatible with PET/MR imaging and all hardware components can be corrected in hardware AC by using the suggested μ-map generator. These developments provide the technical and methodological basis for integration of PET/MR hybrid imaging into RT planning.
Evaluation of PET Scanner Performance in PET/MR and PET/CT Systems: NEMA Tests.
Demir, Mustafa; Toklu, Türkay; Abuqbeitah, Mohammad; Çetin, Hüseyin; Sezgin, H Sezer; Yeyin, Nami; Sönmezoğlu, Kerim
2018-02-01
The aim of the present study was to compare the performance of positron emission tomography (PET) component of PET/computed tomography (CT) with new emerging PET/magnetic resonance (MR) of the same vendor. According to National Electrical Manufacturers Association NU2-07, five separate experimental tests were performed to evaluate the performance of PET scanner of General Electric GE company; SIGNATM model PET/MR and GE Discovery 710 model PET/CT. The main investigated aspects were spatial resolution, sensitivity, scatter fraction, count rate performance, image quality, count loss and random events correction accuracy. The findings of this study demonstrated superior sensitivity (~ 4 folds) of PET scanner in PET/MR compared to PET/CT system. Image quality test exhibited higher contrast in PET/MR (~ 9%) compared with PET/CT. The scatter fraction of PET/MR was 43.4% at noise equivalent count rate (NECR) peak of 218 kcps and the corresponding activity concentration was 17.7 kBq/cc. Whereas the scatter fraction of PET/CT was found as 39.2% at NECR peak of 72 kcps and activity concentration of 24.3 kBq/cc. The percentage error of the random event correction accuracy was 3.4% and 3.1% in PET/MR and PET/CT, respectively. It was concluded that PET/MR system is about 4 times more sensitive than PET/CT, and the contrast of hot lesions in PET/MR was ~ 9% higher than PET/CT. These outcomes also emphasize the possibility to achieve excellent clinical PET images with low administered dose and/or a short acquisition time in PET/MR.
Imaging Transgene Expression with Radionuclide Imaging Technologies1
Gambhir, SS; Herschman, HR; Cherry, SR; Barrio, JR; Satyamurthy, N; Toyokuni, T; Phelps, ME; Larson, SM; Balaton, J; Finn, R; Sadelain, M; Tjuvajev, J
2000-01-01
Abstract A variety of imaging technologies are being investigated as tools for studying gene expression in living subjects. Noninvasive, repetitive and quantitative imaging of gene expression will help both to facilitate human gene therapy trials and to allow for the study of animal models of molecular and cellular therapy. Radionuclide approaches using single photon emission computed tomography (SPECT) and positron emission tomography (PET) are the most mature of the current imaging technologies and offer many advantages for imaging gene expression compared to optical and magnetic resonance imaging (MRI)-based approaches. These advantages include relatively high sensitivity, full quantitative capability (for PET), and the ability to extend small animal assays directly into clinical human applications. We describe a PET scanner (micro PET) designed specifically for studies of small animals. We review “marker/reporter gene” imaging approaches using the herpes simplex type 1 virus thymidine kinase (HSV1-tk) and the dopamine type 2 receptor (D2R) genes. We describe and contrast several radiolabeled probes that can be used with the HSV1-tk reporter gene both for SPECT and for PET imaging. We also describe the advantages/disadvantages of each of the assays developed and discuss future animal and human applications. PMID:10933072
A small animal PET based on GAPDs and charge signal transmission approach for hybrid PET-MR imaging
NASA Astrophysics Data System (ADS)
Kang, Jihoon; Choi, Yong; Hong, Key Jo; Hu, Wei; Jung, Jin Ho; Huh, Yoonsuk; Kim, Byung-Tae
2011-08-01
Positron emission tomography (PET) employing Geiger-mode avalanche photodiodes (GAPDs) and charge signal transmission approach was developed for small animal imaging. Animal PET contained 16 LYSO and GAPD detector modules that were arranged in a 70 mm diameter ring with an axial field of view of 13 mm. The GAPDs charge output signals were transmitted to a preamplifier located remotely using 300 cm flexible flat cables. The position decoder circuits (PDCs) were used to multiplex the PET signals from 256 to 4 channels. The outputs of the PDCs were digitized and further-processed in the data acquisition unit. The cross-compatibilities of the PET detectors and MRI were assessed outside and inside the MRI. Experimental studies of the developed full ring PET were performed to examine the spatial resolution and sensitivity. Phantom and mouse images were acquired to examine the imaging performance. The mean energy and time resolution of the PET detector were 17.6% and 1.5 ns, respectively. No obvious degradation on PET and MRI was observed during simultaneous PET-MRI data acquisition. The measured spatial resolution and sensitivity at the CFOV were 2.8 mm and 0.7%, respectively. In addition, a 3 mm diameter line source was clearly resolved in the hot-sphere phantom images. The reconstructed transaxial PET images of the mouse brain and tumor displaying the glucose metabolism patterns were imaged well. These results demonstrate GAPD and the charge signal transmission approach can allow the development of high performance small animal PET with improved MR compatibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J; Natwa, M; Hall, NC
Purpose: The longer patient has to remain on the table during PET imaging, the higher the likelihood of motion artifacts due to patient discomfort. This study was to investigate and optimize PET acquisition overlap in 18F-FDG oncology wholebody PET/CT to speed up PET acquisition and improve patient comfort. Methods: Wholebody 18F-FDG PET/CT of phantoms, 8 pre-clinical patients (beagles) and 5 clinical oncology patients were performed in 90s/bed on a time-of-flight Gemini TF 64 system. Imaging of phantoms and beagles was acquired with reduced PET overlaps (40%, 33%, 27%, 20%, 13% and no overlap) in addition to the system default (53%).more » In human studies, 1 or 2 reduced overlaps from the listed options were used to acquire PET/CT sweeps right after the default standard of care imaging. Image quality was blindly reviewed using visual scoring criteria and quantitative SUV assessment. NEMA PET sensitivity was performed under different overlaps. Results: All PET exams demonstrated no significant impact on the visual grades for overlaps >20%. Blinded reviews assigned the best visual scores to PET using overlaps 53%–27%. Reducing overlap to 27% for oncology patients (12-bed) saved an average of ∼40% acquisition time (11min) compared to using the default overlap (18min). No significant SUV variances were found when reducing overlap to half of default for cerebellum, lung, heart, aorta, liver, fat, muscle, bone marrow, thighs and target lesions (p>0.05), except expected variability in urinary system. Conclusion: This study demonstrated by combined phantom, pre-clinical and clinical PET/CT scans that PET acquisition overlap in axial of today’s systems can be reduced and optimized. It showed that a reduction of PET acquisition overlap to 27% (half of system default) can be implemented to reduce table time by ∼40% to improve patient comfort and minimize potential motion artifacts, without prominently degrading image quality or compromising PET quantification.« less
Yang, Li; Wang, Guobao; Qi, Jinyi
2016-04-01
Detecting cancerous lesions is a major clinical application of emission tomography. In a previous work, we studied penalized maximum-likelihood (PML) image reconstruction for lesion detection in static PET. Here we extend our theoretical analysis of static PET reconstruction to dynamic PET. We study both the conventional indirect reconstruction and direct reconstruction for Patlak parametric image estimation. In indirect reconstruction, Patlak parametric images are generated by first reconstructing a sequence of dynamic PET images, and then performing Patlak analysis on the time activity curves (TACs) pixel-by-pixel. In direct reconstruction, Patlak parametric images are estimated directly from raw sinogram data by incorporating the Patlak model into the image reconstruction procedure. PML reconstruction is used in both the indirect and direct reconstruction methods. We use a channelized Hotelling observer (CHO) to assess lesion detectability in Patlak parametric images. Simplified expressions for evaluating the lesion detectability have been derived and applied to the selection of the regularization parameter value to maximize detection performance. The proposed method is validated using computer-based Monte Carlo simulations. Good agreements between the theoretical predictions and the Monte Carlo results are observed. Both theoretical predictions and Monte Carlo simulation results show the benefit of the indirect and direct methods under optimized regularization parameters in dynamic PET reconstruction for lesion detection, when compared with the conventional static PET reconstruction.
Wang, Yan; Ma, Guangkai; An, Le; Shi, Feng; Zhang, Pei; Lalush, David S.; Wu, Xi; Pu, Yifei; Zhou, Jiliu; Shen, Dinggang
2017-01-01
Objective To obtain high-quality positron emission tomography (PET) image with low-dose tracer injection, this study attempts to predict the standard-dose PET (S-PET) image from both its low-dose PET (L-PET) counterpart and corresponding magnetic resonance imaging (MRI). Methods It was achieved by patch-based sparse representation (SR), using the training samples with a complete set of MRI, L-PET and S-PET modalities for dictionary construction. However, the number of training samples with complete modalities is often limited. In practice, many samples generally have incomplete modalities (i.e., with one or two missing modalities) that thus cannot be used in the prediction process. In light of this, we develop a semi-supervised tripled dictionary learning (SSTDL) method for S-PET image prediction, which can utilize not only the samples with complete modalities (called complete samples) but also the samples with incomplete modalities (called incomplete samples), to take advantage of the large number of available training samples and thus further improve the prediction performance. Results Validation was done on a real human brain dataset consisting of 18 subjects, and the results show that our method is superior to the SR and other baseline methods. Conclusion This work proposed a new S-PET prediction method, which can significantly improve the PET image quality with low-dose injection. Significance The proposed method is favorable in clinical application since it can decrease the potential radiation risk for patients. PMID:27187939
64Cu-PSMA-617 PET/CT Imaging of Prostate Adenocarcinoma: First In-Human Studies.
Grubmüller, Bernhard; Baum, Richard P; Capasso, Enza; Singh, Aviral; Ahmadi, Yasaman; Knoll, Peter; Floth, Andreas; Righi, Sergio; Zandieh, Shahin; Meleddu, Carlo; Shariat, Shahrokh F; Klingler, Hans Christoph; Mirzaei, Siroos
2016-10-07
The prostate-specific membrane antigen (PSMA) is a cell surface protein, which is overexpressed in nearly all cases of prostate cancer (PCa). PET imaging with 68 Ga-PSMA-HBED-CC has recently found widespread application in the diagnosis of recurrent PCa. In this study, the diagnostic potential of 64 Cu-labeled PSMA ligand (PSMA-617) PET in patients with PCa has been investigated. The study was conducted simultaneously at two nuclear medicine centers, Austria (Vienna, Center 1) and Germany (Bad Berka, Center 2). The patients (n = 29) included in this study were referred for PET (Center 1, 21 patients) or PET/CT (Center 2, 8 patients) imaging with either a high suspicion of recurrent disease or for possible surgical or PSMA radioligand therapy planning. PET images of the whole body were performed at 1 hour p.i. and additional images of the pelvis at 2 hours p.i. In 23 of 29 patients, at least one focus of pathological tracer uptake suspicious for primary disease in the prostate lobe or recurrent disease was detected. Among healthy organs, the salivary glands, kidneys, and liver showed the highest radiotracer uptake. Lesions suspicious for PCa were detected with excellent contrast as early as 1 hour p.i. with high detection rates even at low prostate-specific antigen (PSA) levels. The preliminary results of this study demonstrate the high potential of 64 Cu-PSMA ligand PET/CT imaging in patients with recurrent disease and in the primary staging of selected patients with progressive local disease. The acquired PET images showed an excellent resolution of the detected lesions with very high lesion-to- background contrast. Furthermore, the long half-life of 64 Cu allows distribution of the tracer to clinical PET centers that lack radiochemistry facilities for the preparation of 68 Ga-PSMA ligand (satellite concept).
PET/MR Imaging in Gynecologic Oncology.
Ohliger, Michael A; Hope, Thomas A; Chapman, Jocelyn S; Chen, Lee-May; Behr, Spencer C; Poder, Liina
2017-08-01
MR imaging and PET using 2-Deoxy-2-[ 18 F]fluoroglucose (FDG) are both useful in the evaluation of gynecologic malignancies. MR imaging is superior for local staging of disease whereas fludeoxyglucose FDG PET is superior for detecting distant metastases. Integrated PET/MR imaging scanners have great promise for gynecologic malignancies by combining the advantages of each modality into a single scan. This article reviews the technology behind PET/MR imaging acquisitions and technical challenges relevant to imaging the pelvis. A dedicated PET/MR imaging protocol; the roles of PET and MR imaging in cervical, endometrial, and ovarian cancers; and future directions for PET/MR imaging are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.
Characterization in humans of 18F-MNI-444, a PET radiotracer for brain adenosine 2A receptors.
Barret, Olivier; Hannestad, Jonas; Vala, Christine; Alagille, David; Tavares, Adriana; Laruelle, Marc; Jennings, Danna; Marek, Ken; Russell, David; Seibyl, John; Tamagnan, Gilles
2015-04-01
PET with selective adenosine 2A receptor (A2A) radiotracers can be used to study a variety of neurodegenerative and neuropsychiatric disorders in vivo and to support drug-discovery studies targeting A2A. The aim of this study was to describe the first in vivo evaluation of (18)F-MNI-444, a novel PET radiotracer for imaging A2A, in healthy human subjects. Ten healthy human volunteers were enrolled in this study; 6 completed the brain PET studies and 4 participated in the whole-body PET studies. Arterial blood was collected for invasive kinetic modeling of the brain PET data. Noninvasive methods of data quantification were also explored. Test-retest reproducibility was evaluated in 5 subjects. Radiotracer distribution and dosimetry was determined using serial whole-body PET images acquired over 6 h post-radiotracer injection. Urine samples were collected to calculate urinary excretion. After intravenous bolus injection, (18)F-MNI-444 rapidly entered the brain and displayed a distribution consistent with known A2A densities in the brain. Binding potentials ranging from 2.6 to 4.9 were measured in A2A-rich regions, with an average test-retest variability of less than 10%. The estimated whole-body radiation effective dose was approximately 0.023 mSv/MBq. (18)F-MNI-444 is a useful PET radiotracer for imaging A2A in the human brain. The superior in vivo brain kinetic properties of (18)F-MNI-444, compared with previously developed A2A radiotracers, provide the opportunity to foster global use of in vivo A2A PET imaging in neuroscience research. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Kroiss, Alexander; Putzer, Daniel; Frech, Andreas; Decristoforo, Clemens; Uprimny, Christian; Gasser, Rudolf Wolfgang; Shulkin, Barry Lynn; Url, Christoph; Widmann, Gerlig; Prommegger, Rupert; Sprinzl, Georg Mathias; Fraedrich, Gustav; Virgolini, Irene Johanna
2013-12-01
(18)F-Fluoro-L-dihydroxyphenylalanine ((18)F-DOPA) PET offers high sensitivity and specificity in the imaging of nonmetastatic extra-adrenal paragangliomas (PGL) but lower sensitivity in metastatic or multifocal disease. These tumours are of neuroendocrine origin and can be detected by (68)Ga-DOTA-Tyr(3)-octreotide ((68)Ga-DOTA-TOC) PET. Therefore, we compared (68)Ga-DOTA-TOC and (18)F-DOPA as radiolabels for PET/CT imaging for the diagnosis and staging of extra-adrenal PGL. Combined cross-sectional imaging was the reference standard. A total of 5 men and 15 women (age range 22 to 73 years) with anatomical and/or histologically proven extra-adrenal PGL were included in this study. Of these patients, 5 had metastatic or multifocal lesions and 15 had single sites of disease. Comparative evaluation included morphological imaging with CT and functional imaging with (68)Ga-DOTA-TOC PET and (18)F-DOPA PET. The imaging results were analysed on a per-patient and a per-lesion basis. The maximum standardized uptake value (SUVmax) of each functional imaging modality in concordant tumour lesions was measured. Compared with anatomical imaging, (68)Ga-DOTA-TOC PET and (18)F-DOPA PET each had a per-patient and per-lesion detection rate of 100% in nonmetastatic extra-adrenal PGL. However, in metastatic or multifocal disease, the per-lesion detection rate of (68)Ga-DOTA-TOC was 100% and that of (18)F-DOPA PET was 56.0%. Overall, (68)Ga-DOTA-TOC PET identified 45 lesions; anatomical imaging identified 43 lesions, and (18)F-DOPA PET identified 32 lesions. The overall per-lesion detection rate of (68)Ga-DOTA-TOC PET was 100% (McNemar, P < 0.5), and that of (18)F-DOPA PET was 71.1% (McNemar, P < 0.001). The SUVmax (mean ± SD) of all 32 concordant lesions was 67.9 ± 61.5 for (68)Ga-DOTA-TOC PET and 11.8 ± 7.9 for (18)F-DOPA PET (Mann-Whitney U test, P < 0.0001). (68)Ga-DOTA-TOC PET may be superior to (18)F-DOPA PET and diagnostic CT in providing valuable information for pretherapeutic staging of extra-adrenal PGL, particularly in surgically inoperable tumours and metastatic or multifocal disease.
Significance of the impact of motion compensation on the variability of PET image features
NASA Astrophysics Data System (ADS)
Carles, M.; Bach, T.; Torres-Espallardo, I.; Baltas, D.; Nestle, U.; Martí-Bonmatí, L.
2018-03-01
In lung cancer, quantification by positron emission tomography/computed tomography (PET/CT) imaging presents challenges due to respiratory movement. Our primary aim was to study the impact of motion compensation implied by retrospectively gated (4D)-PET/CT on the variability of PET quantitative parameters. Its significance was evaluated by comparison with the variability due to (i) the voxel size in image reconstruction and (ii) the voxel size in image post-resampling. The method employed for feature extraction was chosen based on the analysis of (i) the effect of discretization of the standardized uptake value (SUV) on complementarity between texture features (TF) and conventional indices, (ii) the impact of the segmentation method on the variability of image features, and (iii) the variability of image features across the time-frame of 4D-PET. Thirty-one PET-features were involved. Three SUV discretization methods were applied: a constant width (SUV resolution) of the resampling bin (method RW), a constant number of bins (method RN) and RN on the image obtained after histogram equalization (method EqRN). The segmentation approaches evaluated were 40% of SUVmax and the contrast oriented algorithm (COA). Parameters derived from 4D-PET images were compared with values derived from the PET image obtained for (i) the static protocol used in our clinical routine (3D) and (ii) the 3D image post-resampled to the voxel size of the 4D image and PET image derived after modifying the reconstruction of the 3D image to comprise the voxel size of the 4D image. Results showed that TF complementarity with conventional indices was sensitive to the SUV discretization method. In the comparison of COA and 40% contours, despite the values not being interchangeable, all image features showed strong linear correlations (r > 0.91, p\\ll 0.001 ). Across the time-frames of 4D-PET, all image features followed a normal distribution in most patients. For our patient cohort, the compensation of tumor motion did not have a significant impact on the quantitative PET parameters. The variability of PET parameters due to voxel size in image reconstruction was more significant than variability due to voxel size in image post-resampling. In conclusion, most of the parameters (apart from the contrast of neighborhood matrix) were robust to the motion compensation implied by 4D-PET/CT. The impact on parameter variability due to the voxel size in image reconstruction and in image post-resampling could not be assumed to be equivalent.
Performance evaluation of the small-animal PET scanner ClairvivoPET using NEMA NU 4-2008 Standards.
Sato, K; Shidahara, M; Watabe, H; Watanuki, S; Ishikawa, Y; Arakawa, Y; Nai, Y H; Furumoto, S; Tashiro, M; Shoji, T; Yanai, K; Gonda, K
2016-01-21
The aim of this study was to evaluate the performance of ClairvivoPET using NEMA NU4 standards. The ClairvivoPET incorporates a LYSO dual depth-of-interaction detector system with 151 mm axial field of view (FOV). Spatial resolution, sensitivity, counting rate capabilities, and image quality were evaluated using NEMA NU4-2008 standards. Normal mouse imaging was also performed for 10 min after intravenous injection of (18)F(-)-NaF. Data were compared with 19 other preclinical PET scanners. Spatial resolution measured using full width at half maximum on FBP-ramp reconstructed images was 2.16 mm at radial offset 5 mm of the axial centre FOV. The maximum absolute sensitivity for a point source at the FOV centre was 8.72%. Peak noise equivalent counting rate (NECR) was 415 kcps at 14.6 MBq ml(-1). The uniformity with the image-quality phantom was 4.62%. Spillover ratios in the images of air and water filled chambers were 0.19 and 0.06, respectively. Our results were comparable with the 19 other preclinical PET scanners based on NEMA NU4 standards, with excellent sensitivity because of the large FOV. The ClairvivoPET with iterative reconstruction algorithm also provided sufficient visualization of the mouse spine. The high sensitivity and resolution of the ClairvivoPET scanner provided high quality images for preclinical studies.
Performance evaluation of the small-animal PET scanner ClairvivoPET using NEMA NU 4-2008 Standards
NASA Astrophysics Data System (ADS)
Sato, K.; Shidahara, M.; Watabe, H.; Watanuki, S.; Ishikawa, Y.; Arakawa, Y.; Nai, YH; Furumoto, S.; Tashiro, M.; Shoji, T.; Yanai, K.; Gonda, K.
2016-01-01
The aim of this study was to evaluate the performance of ClairvivoPET using NEMA NU4 standards. The ClairvivoPET incorporates a LYSO dual depth-of-interaction detector system with 151 mm axial field of view (FOV). Spatial resolution, sensitivity, counting rate capabilities, and image quality were evaluated using NEMA NU4-2008 standards. Normal mouse imaging was also performed for 10min after intravenous injection of 18F(-)-NaF. Data were compared with 19 other preclinical PET scanners. Spatial resolution measured using full width at half maximum on FBP-ramp reconstructed images was 2.16 mm at radial offset 5 mm of the axial centre FOV. The maximum absolute sensitivity for a point source at the FOV centre was 8.72%. Peak noise equivalent counting rate (NECR) was 415kcps at 14.6MBq ml-1. The uniformity with the image-quality phantom was 4.62%. Spillover ratios in the images of air and water filled chambers were 0.19 and 0.06, respectively. Our results were comparable with the 19 other preclinical PET scanners based on NEMA NU4 standards, with excellent sensitivity because of the large FOV. The ClairvivoPET with iterative reconstruction algorithm also provided sufficient visualization of the mouse spine. The high sensitivity and resolution of the ClairvivoPET scanner provided high quality images for preclinical studies.
NASA Astrophysics Data System (ADS)
Cross, Nathan; Varghai, Davood; Spring-Robinson, Chandra; Sharma, Rahul; Muzic, Raymond F., Jr.; Oleinick, Nancy L.; Dean, D.
2007-02-01
Introduction: Several workers have proposed the use of PET (Positron Emission Tomography) imaging for the outcome assessment of photodynamic therapy (PDT), especially for deep-seated tumors. We report on our study of 18Ffluorodeoxy- glucose (18F-FDG) PET imaging following brain tumor Pc4-PDT. Our working hypothesis was that the tumor's metabolic activity would decline dramatically following Pc 4-PDT owing to tumor necrosis. Methods: Seven days after intraparenchymal implantation of U87 cells, the brains of 12 athymic nude rats were imaged by micro-CT and/or micro-MR. These animals were also 18F-FDG micro-PET (μPET) scanned before and after Pc 4-PDT. 18F-FDG was used to trace metabolic activity that was monitored via μPET. Occurrence of PDT was confirmed on histology. The analysis of 18F-FDG dose and animal weight normalized μPET activity was studied over the 90 minute µPET scan. Results: Currently, μPET data have been studied for: (1) three of the animals that did not indicate tumor necrosis on histology and were assigned to a "Non-PDT" group, and (2) six animals that exhibited tumor necrosis on histology and were assigned to a "PDT" group. The μPET-detected 18F-FDG uptake activity in the tumor region before and after photoirradiation increased in the Non-PDT group an average of 2.28 times, and in the PDT group it increased an average of 1.15 times. Discussion: We are investigating the cause of the increase in 18F-FDG μPET activity that we observed in the PDT group. The methodology used in this study should be useful in determining whether this or other PET, SPECT, or MR functional imaging protocols will detect both the specificity and sensitivity of brain tumor necrosis following Pc 4-PDT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boellaard, Ronald, E-mail: r.boellaard@vumc.nl; European Association of Nuclear Medicine Research Ltd., Vienna 1060; European Association of Nuclear Medicine Physics Committee, Vienna 1060
2015-10-15
Purpose: Integrated positron emission tomography/magnetic resonance (PET/MR) systems derive the PET attenuation correction (AC) from dedicated MR sequences. While MR-AC performs reasonably well in clinical patient imaging, it may fail for phantom-based quality control (QC). The authors assess the applicability of different protocols for PET QC in multicenter PET/MR imaging. Methods: The National Electrical Manufacturers Association NU 2 2007 image quality phantom was imaged on three combined PET/MR systems: a Philips Ingenuity TF PET/MR, a Siemens Biograph mMR, and a GE SIGNA PET/MR (prototype) system. The phantom was filled according to the EANM FDG-PET/CT guideline 1.0 and scanned for 5more » min over 1 bed. Two MR-AC imaging protocols were tested: standard clinical procedures and a dedicated protocol for phantom tests. Depending on the system, the dedicated phantom protocol employs a two-class (water and air) segmentation of the MR data or a CT-based template. Differences in attenuation- and SUV recovery coefficients (RC) are reported. PET/CT-based simulations were performed to simulate the various artifacts seen in the AC maps (μ-map) and their impact on the accuracy of phantom-based QC. Results: Clinical MR-AC protocols caused substantial errors and artifacts in the AC maps, resulting in underestimations of the reconstructed PET activity of up to 27%, depending on the PET/MR system. Using dedicated phantom MR-AC protocols, PET bias was reduced to −8%. Mean and max SUV RC met EARL multicenter PET performance specifications for most contrast objects, but only when using the dedicated phantom protocol. Simulations confirmed the bias in experimental data to be caused by incorrect AC maps resulting from the use of clinical MR-AC protocols. Conclusions: Phantom-based quality control of PET/MR systems in a multicenter, multivendor setting may be performed with sufficient accuracy, but only when dedicated phantom acquisition and processing protocols are used for attenuation correction.« less
Performance evaluation of the Ingenuity TF PET/CT scanner with a focus on high count-rate conditions
NASA Astrophysics Data System (ADS)
Kolthammer, Jeffrey A.; Su, Kuan-Hao; Grover, Anu; Narayanan, Manoj; Jordan, David W.; Muzic, Raymond F.
2014-07-01
This study evaluated the positron emission tomography (PET) imaging performance of the Ingenuity TF 128 PET/computed tomography (CT) scanner which has a PET component that was designed to support a wider radioactivity range than is possible with those of Gemini TF PET/CT and Ingenuity TF PET/MR. Spatial resolution, sensitivity, count rate characteristics and image quality were evaluated according to the NEMA NU 2-2007 standard and ACR phantom accreditation procedures; these were supplemented by additional measurements intended to characterize the system under conditions that would be encountered during quantitative cardiac imaging with 82Rb. Image quality was evaluated using a hot spheres phantom, and various contrast recovery and noise measurements were made from replicated images. Timing and energy resolution, dead time, and the linearity of the image activity concentration, were all measured over a wide range of count rates. Spatial resolution (4.8-5.1 mm FWHM), sensitivity (7.3 cps kBq-1), peak noise-equivalent count rate (124 kcps), and peak trues rate (365 kcps) were similar to those of the Gemini TF PET/CT. Contrast recovery was higher with a 2 mm, body-detail reconstruction than with a 4 mm, body reconstruction, although the precision was reduced. The noise equivalent count rate peak was broad (within 10% of peak from 241-609 MBq). The activity measured in phantom images was within 10% of the true activity for count rates up to those observed in 82Rb cardiac PET studies.
Simultaneous in vivo positron emission tomography and magnetic resonance imaging.
Catana, Ciprian; Procissi, Daniel; Wu, Yibao; Judenhofer, Martin S; Qi, Jinyi; Pichler, Bernd J; Jacobs, Russell E; Cherry, Simon R
2008-03-11
Positron emission tomography (PET) and magnetic resonance imaging (MRI) are widely used in vivo imaging technologies with both clinical and biomedical research applications. The strengths of MRI include high-resolution, high-contrast morphologic imaging of soft tissues; the ability to image physiologic parameters such as diffusion and changes in oxygenation level resulting from neuronal stimulation; and the measurement of metabolites using chemical shift imaging. PET images the distribution of biologically targeted radiotracers with high sensitivity, but images generally lack anatomic context and are of lower spatial resolution. Integration of these technologies permits the acquisition of temporally correlated data showing the distribution of PET radiotracers and MRI contrast agents or MR-detectable metabolites, with registration to the underlying anatomy. An MRI-compatible PET scanner has been built for biomedical research applications that allows data from both modalities to be acquired simultaneously. Experiments demonstrate no effect of the MRI system on the spatial resolution of the PET system and <10% reduction in the fraction of radioactive decay events detected by the PET scanner inside the MRI. The signal-to-noise ratio and uniformity of the MR images, with the exception of one particular pulse sequence, were little affected by the presence of the PET scanner. In vivo simultaneous PET and MRI studies were performed in mice. Proof-of-principle in vivo MR spectroscopy and functional MRI experiments were also demonstrated with the combined scanner.
The impact of FDG-PET/CT in the management of patients with vulvar and vaginal cancer.
Robertson, N L; Hricak, H; Sonoda, Y; Sosa, R E; Benz, M; Lyons, G; Abu-Rustum, N R; Sala, E; Vargas, H A
2016-03-01
To evaluate the changes in prognostic impression and patient management following PET/CT in patients with vulvar and vaginal carcinoma; and to compare PET/CT findings with those of conventional imaging modalities. We summarized prospectively and retrospectively collected data for 50 consecutive patients from our institution that enrolled in the National Oncologic PET Registry and underwent FDG-PET/CT for a suspected or known primary or recurrent vulvar/vaginal cancer. 54/83 (65%) studies included had a diagnosis of vulvar cancer, and the remaining 29/83 (35%), a diagnosis of vaginal cancer. Following FDG-PET/CT, the physician's prognostic impression changed in 51% of cases. A change in patient management, defined as a change to/from a non-interventional strategy (observation or additional imaging), to/from an interventional strategy (biopsy or treatment), was documented in 36% of studies. The electronic records demonstrated that 95% of the management strategies recorded in the physician questionnaires were implemented as planned. MRI and/or CT were performed within one month of the FDG-PET/CT in 20/83 (24%) and 28/83 (34%) cases, respectively. FDG-PET/CT detected nodes suspicious for metastases on 29/83 (35%) studies performed. MRI and CT detected positive nodes on 6 and 11 studies respectively. Distant metastases were identified in 10 cases imaged with FDG-PET and 5 cases that had additional conventional CT imaging. All suspicious lesions seen on CT were positively identified on PET/CT. In 4 cases, an abnormality identified on PET/CT, was not seen on diagnostic CT. FDG-PET/CT may play an important role in the management of vulvar and vaginal carcinoma. Copyright © 2015 Elsevier Inc. All rights reserved.
Development of a small prototype for a proof-of-concept of OpenPET imaging
NASA Astrophysics Data System (ADS)
Yamaya, Taiga; Yoshida, Eiji; Inaniwa, Taku; Sato, Shinji; Nakajima, Yasunori; Wakizaka, Hidekatsu; Kokuryo, Daisuke; Tsuji, Atsushi; Mitsuhashi, Takayuki; Kawai, Hideyuki; Tashima, Hideaki; Nishikido, Fumihiko; Inadama, Naoko; Murayama, Hideo; Haneishi, Hideaki; Suga, Mikio; Kinouchi, Shoko
2011-02-01
The OpenPET geometry is our new idea to visualize a physically opened space between two detector rings. In this paper, we developed the first small prototype to show a proof-of-concept of OpenPET imaging. Two detector rings of 110 mm diameter and 42 mm axial length were placed with a gap of 42 mm. The basic imaging performance was confirmed through phantom studies; the open imaging was realized at the cost of slight loss of axial resolution and 24% loss of sensitivity. For a proof-of-concept of PET image-guided radiation therapy, we carried out the in-beam tests with 11C radioactive beam irradiation in the heavy ion medical accelerator in Chiba to visualize in situ distribution of primary particles stopped in a phantom. We showed that PET images corresponding to dose distribution were obtained. For an initial proof-of-concept of real-time multimodal imaging, we measured a tumor-inoculated mouse with 18F-FDG, and an optical image of the mouse body surface was taken during the PET measurement by inserting a digital camera in the ring gap. We confirmed that the tumor in the gap was clearly visualized. The result also showed the extension effect of an axial field-of-view (FOV); a large axial FOV of 126 mm was obtained with the detectors that originally covered only an 84 mm axial FOV. In conclusion, our initial imaging studies showed promising performance of the OpenPET.
Minamimoto, Ryogo; Mitsumoto, Takuya; Miyata, Yoko; Sunaoka, Fumio; Morooka, Miyako; Okasaki, Momoko; Iagaru, Andrei; Kubota, Kazuo
2016-02-01
This study evaluated the potential of Q.Freeze algorithm for reducing motion artifacts, in comparison with ungated imaging (UG) and respiratory-gated imaging (RG). Twenty-nine patients with 53 lesions who had undergone RG F-FDG PET/CT were included in this study. Using PET list mode data, five series of PET images [UG, RG, and QF images with an acquisition duration of 3 min (QF3), 5 min (QF5), and 10 min (QF10)] were reconstructed retrospectively. The image quality was evaluated first. Next, quantitative metrics [maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), SD, metabolic tumor volume, signal to noise ratio, or lesion to background ratio] were calculated for the liver, background, and each lesion, and the results were compared across the series. QF10 and QF5 showed better image quality compared with all other images. SUVmax in the liver, background, and lesions was lower with QF10 and QF5 than with the others, but there were no statistically significant differences in SUVmean and the lesion to background ratios. The SD with UG and RG was significantly higher than that with QF5 and QF10. The metabolic tumor volume in QF3 and QF5 was significantly lower than that in UG. The Q.Freeze algorithm can improve the quality of PET imaging compared with RG and UG.
Spick, Claudio; Herrmann, Ken; Czernin, Johannes
2016-01-01
18F-FDG PET/CT has become the reference standard in oncologic imaging against which the performance of other imaging modalities is measured. The promise of PET/MRI includes multiparametric imaging to further improve diagnosis and phenotyping of cancer. Rather than focusing on these capabilities, many investigators have examined whether 18F-FDG PET combined with mostly anatomic MRI improves cancer staging and restaging. After a description of PET/MRI scanner designs and a discussion of technical and operational issues, we review the available literature to determine whether cancer assessments are improved with PET/MRI. The available data show that PET/MRI is feasible and performs as well as PET/CT in most types of cancer. Diagnostic advantages may be achievable in prostate cancer and in bone metastases, whereas disadvantages exist in lung nodule assessments. We conclude that 18F-FDG PET/MRI and PET/CT provide comparable diagnostic information when MRI is used simply to provide the anatomic framework. Thus, PET/MRI could be used in lieu of PET/CT if this approach becomes economically viable and if reasonable workflows can be established. Future studies should explore the multiparametric potential of MRI. PMID:26742709
Dose Optimization in TOF-PET/MR Compared to TOF-PET/CT
Queiroz, Marcelo A.; Delso, Gaspar; Wollenweber, Scott; Deller, Timothy; Zeimpekis, Konstantinos; Huellner, Martin; de Galiza Barbosa, Felipe; von Schulthess, Gustav; Veit-Haibach, Patrick
2015-01-01
Purpose To evaluate the possible activity reduction in FDG-imaging in a Time-of-Flight (TOF) PET/MR, based on cross-evaluation of patient-based NECR (noise equivalent count rate) measurements in PET/CT, cross referencing with phantom-based NECR curves as well as initial evaluation of TOF-PET/MR with reduced activity. Materials and Methods A total of 75 consecutive patients were evaluated in this study. PET/CT imaging was performed on a PET/CT (time-of-flight (TOF) Discovery D 690 PET/CT). Initial PET/MR imaging was performed on a newly available simultaneous TOF-PET/MR (Signa PET/MR). An optimal NECR for diagnostic purposes was defined in clinical patients (NECRP) in PET/CT. Subsequent optimal activity concentration at the acquisition time ([A]0) and target NECR (NECRT) were obtained. These data were used to predict the theoretical FDG activity requirement of the new TOF-PET/MR system. Twenty-five initial patients were acquired with (retrospectively reconstructed) different imaging times equivalent for different activities on the simultaneous PET/MR for the evaluation of clinically realistic FDG-activities. Results The obtained values for NECRP, [A]0 and NECRT were 114.6 (± 14.2) kcps (Kilocounts per second), 4.0 (± 0.7) kBq/mL and 45 kcps, respectively. Evaluating the NECRT together with the phantom curve of the TOF-PET/MR device, the theoretical optimal activity concentration was found to be approximately 1.3 kBq/mL, which represents 35% of the activity concentration required by the TOF-PET/CT. Initial evaluation on patients in the simultaneous TOF-PET/MR shows clinically realistic activities of 1.8 kBq/mL, which represent 44% of the required activity. Conclusion The new TOF-PET/MR device requires significantly less activity to generate PET-images with good-to-excellent image quality, due to improvements in detector geometry and detector technologies. The theoretically achievable dose reduction accounts for up to 65% but cannot be fully translated into clinical routine based on the coils within the FOV and MR-sequences applied at the same time. The clinically realistic reduction in activity is slightly more than 50%. Further studies in a larger number of patients are needed to confirm our findings. PMID:26147919
Weinberg, Richard L; Morgenstern, Rachelle; DeLuca, Albert; Chen, Jennifer; Bokhari, Sabahat
2017-12-01
Sarcoidosis is an inflammatory disorder of unknown etiology that can involve the heart. While effective in imaging cardiac sarcoidosis, F-18 fluorodeoxyglucose (FDG) PET/CT often shows non-specific myocardial uptake. F-18 sodium fluoride (NaF) has been used to image inflammation in coronary artery plaques and has low background myocardial uptake. Here, we evaluated whether F-18 NaF can image myocardial inflammation due to clinically suspected cardiac sarcoidosis. We performed a single institution pilot study testing if F-18 NaF PET/CT can detect myocardial inflammation in patients with suspected cardiac sarcoidosis. Patients underwent cardiac PET/CT with F-18 FDG as part of their routine care and subsequently received an F-18 NaF PET/CT scan. Three patients underwent F-18 FDG and F-18 NaF imaging. In all patients, there was F-18 FDG uptake consistent with cardiac sarcoidosis. The F-18 NaF PET/CT scans showed no myocardial uptake. In this small preliminary study, PET/CT scan using F-18 NaF does not appear to detect myocardial inflammation caused by suspected cardiac sarcoidosis.
Evaluation of a silicon photomultiplier PET insert for simultaneous PET and MR imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ko, Guen Bae; Kim, Kyeong Yun; Yoon, Hyun Suk
2016-01-15
Purpose: In this study, the authors present a silicon photomultiplier (SiPM)-based positron emission tomography (PET) insert dedicated to small animal imaging with high system performance and robustness to temperature change. Methods: The insert consists of 64 LYSO-SiPM detector blocks arranged in 4 rings of 16 detector blocks to yield a ring diameter of 64 mm and axial field of view of 55 mm. Each detector block consists of a 9 × 9 array of LYSO crystals (1.2 × 1.2 × 10 mm{sup 3}) and a monolithic 4 × 4 SiPM array. The temperature of each monolithic SiPM is monitored, andmore » the proper bias voltage is applied according to the temperature reading in real time to maintain uniform performance. The performance of this PET insert was characterized using National Electrical Manufacturers Association NU 4-2008 standards, and its feasibility was evaluated through in vivo mouse imaging studies. Results: The PET insert had a peak sensitivity of 3.4% and volumetric spatial resolutions of 1.92 (filtered back projection) and 0.53 (ordered subset expectation maximization) mm{sup 3} at center. The peak noise equivalent count rate and scatter fraction were 42.4 kcps at 15.08 MBq and 16.5%, respectively. By applying the real-time bias voltage adjustment, an energy resolution of 14.2% ± 0.3% was maintained and the count rate varied ≤1.2%, despite severe temperature changes (10–30 °C). The mouse imaging studies demonstrate that this PET insert can produce high-quality images useful for imaging studies on the small animals. Conclusions: The developed MR-compatible PET insert is designed for insertion into a narrow-bore magnetic resonance imaging scanner, and it provides excellent imaging performance for PET/MR preclinical studies.« less
Twelve automated thresholding methods for segmentation of PET images: a phantom study.
Prieto, Elena; Lecumberri, Pablo; Pagola, Miguel; Gómez, Marisol; Bilbao, Izaskun; Ecay, Margarita; Peñuelas, Iván; Martí-Climent, Josep M
2012-06-21
Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical (18)F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.
Twelve automated thresholding methods for segmentation of PET images: a phantom study
NASA Astrophysics Data System (ADS)
Prieto, Elena; Lecumberri, Pablo; Pagola, Miguel; Gómez, Marisol; Bilbao, Izaskun; Ecay, Margarita; Peñuelas, Iván; Martí-Climent, Josep M.
2012-06-01
Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical 18F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.
NASA Astrophysics Data System (ADS)
Maintas, Dimitris; Houzard, Claire; Ksyar, Rachid; Mognetti, Thomas; Maintas, Catherine; Scheiber, Christian; Itti, Roland
2006-12-01
It is considered that one of the great strengths of PET imaging is the ability to correct for body attenuation. This enables better lesion uptake quantification and quality of PET images. The aim of this work is to compare the sensitivity of non-attenuation-corrected (NAC) PET images, the gamma photons (GPAC) and CT attenuation-corrected (CTAC) images in detecting and staging of lung cancer. We have studied 66 patients undergoing PET/CT examinations for detecting and staging NSC lung cancer. The patients were injected with 18-FDG; 5 MBq/kg under fasting conditions and examination was started 60 min later. Transmission data were acquired by a spiral CT X-ray tube and by gamma photons emitting Cs-137l source and were used for the patient body attenuation correction without correction for respiratory motion. In 55 of 66 patients we performed both attenuation correction procedures and in 11 patients only CT attenuation correction. In seven patients with solitary nodules PET was negative and in 59 patients with lung cancer PET/CT was positive for pulmonary or other localization. In the group of 55 patients we found 165 areas of focal increased 18-FDG uptake in NAC, 165 in CTAC and 164 in GPAC PET images.In the patients with only CTAC we found 58 areas of increased 18-FDG uptake on NAC and 58 areas lesions on CTAC. In the patients with positive PET we found 223 areas of focal increased uptake in NAC and 223 areas in CTAC images. The sensitivity of NAC was equal to the sensitivity of CTAC and GPAC images. The visualization of peripheral lesions was better in NAC images and the lesions were better localized in attenuation-corrected images. In three lesions of the thorax the localization was better in GPAC and fused images than in CTAC images.
Vaquero, Juan José; Kinahan, Paul
2015-01-01
Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges.
Vaquero, Juan José; Kinahan, Paul
2017-01-01
Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges. PMID:26643024
Benefit of 18F-fluorocholine PET imaging in parathyroid surgery.
Huber, G F; Hüllner, M; Schmid, C; Brunner, A; Sah, B; Vetter, D; Kaufmann, P A; von Schulthess, G K
2018-06-01
To assess the additional diagnostic value of 18 F-fluorocholine PET imaging in preoperative localization of pathologic parathyroid glands in clinically manifest hyperparathyroidism in case of negative or conflicting ultrasound and scintigraphy results. A retrospective, single-institution study of 26 patients diagnosed with hyperparathyroidism. In cases where ultrasound and scintigraphy failed to detect the location of an adenoma in order to allow a focused surgical approach, an additional 18 F-fluorocholine PET scan was performed and its results were compared with the intraoperative findings. A total of 26 patients underwent 18 F-fluorocholine PET/CT (n = 11) or PET/MRI (n = 15). Adenomas were detected in 25 patients (96.2%). All patients underwent surgery, and the location predicted by PET hybrid imaging was confirmed intraoperatively by frozen section and adequate parathyroid hormone drop after removal. None of the patients needed revision surgery during follow-up. These results demonstrate that 18 F-fluorocholine PET imaging is a highly accurate method to detect parathyroid adenomas even in case of previous localization failure by other imaging examinations. • With 18 F-fluorocholine PET imaging, parathyroid adenomas could be detected in 96.2%. • 18 F-fluorocholine imaging is a highly accurate method to detect parathyroid adenomas. • We encourage its use, where ultrasound fails to detect an adenoma.
Pettinato, C; Nanni, C; Farsad, M; Castellucci, P; Sarnelli, A; Civollani, S; Franchi, R; Fanti, S; Marengo, M; Bergamini, C
2006-01-01
Positron emission tomography (PET) is a non-invasive imaging modality, which is clinically widely used both for diagnosis and accessing therapy response in oncology, cardiology and neurology. Fusing PET and CT images in a single dataset would be useful for physicians who could read the functional and the anatomical aspects of a disease in a single shot. The use of fusion software has been replaced in the last few years by integrated PET/CT systems, which combine a PET and a CT scanner in the same gantry. CT images have the double function to correct PET images for attenuation and can fuse with PET for a better visualization and localization of lesions. The use of CT for attenuation correction yields several advantages in terms of accuracy and patient comfort, but can also introduce several artefacts on PET-corrected images. PET/CT image artefacts are due primarily to metallic implants, respiratory motion, use of contrast media and image truncation. This paper reviews different types artefacts and their correction methods. PET/CT improves image quality and image accuracy. However, to avoid possible pitfalls the simultaneous display of both Computed Tomography Attenuation Corrected (CTAC) and non corrected PET images, side by side with CT images is strongly recommended. PMID:21614340
Do TSH, FT3, and FT4 Impact BAT Visualization of Clinical FDG-PET/CT Images?
Nishii, Ryuichi; Nagamachi, Shigeki; Mizutani, Youichi; Terada, Tamasa; Kiyohara, Syogo; Wakamatsu, Hideyuki; Fujita, Seigo; Higashi, Tatsuya; Yoshinaga, Keiichiro; Saga, Tsuneo; Hirai, Toshinori
2018-01-01
We retrospectively analyzed activated BAT visualization on FDG-PET/CT in patients with various conditions and TH levels to clarify the relationships between visualization of BAT on FDG-PET/CT and the effect of TH. Patients who underwent clinical FDG-PET/CT were reviewed and we categorized patients into 5 groups: (i) thyroid hormone withdrawal (THW) group; (ii) recombinant human thyrotropin (rhTSH) group; (iii) hypothyroidism group; (iv) hyperthyroidism group; and (v) BAT group. A total of sixty-two FDG-PET/CT imaging studies in fifty-nine patients were performed. To compare each group, gender; age; body weight; serum TSH, FT3, and FT4 levels; and outside temperature were evaluated. No significant visualization of BAT was noted in any of the images in the THW, rhTSH, hypothyroidism, and hyperthyroidism groups. All patients in the BAT group were in a euthyroid state. When the BAT-negative and BAT-positive patient groups were compared, it was noted that the minimum and maximum temperature on the day of the PET study and maximum temperature of the one day before the PET study were significantly lower in BAT-positive group than in all those of other groups. Elevated TSH condition before RIT, hyperthyroidism, or hypothyroidism did not significantly impact BAT visualization of clinical FDG-PET/CT images.
NASA Astrophysics Data System (ADS)
Wei, Qingyang; Ma, Tianyu; Wang, Shi; Liu, Yaqiang; Gu, Yu; Dai, Tiantian
2016-11-01
Positron emission tomography/computed tomography (PET/CT) is an important tool for clinical studies and pre-clinical researches which provides both functional and anatomical images. To achieve high quality co-registered PET/CT images, alignment calibration of PET and CT scanner is a critical procedure. The existing methods reported use positron source phantoms imaged both by PET and CT scanner and then derive the transformation matrix from the reconstructed images of the two modalities. In this paper, a novel PET/CT alignment calibration method with a non-radioactive phantom and the intrinsic 176Lu radiation of the PET detector was developed. Firstly, a multi-tungsten-alloy-sphere phantom without positron source was designed and imaged by CT and the PET scanner using intrinsic 176Lu radiation included in LYSO. Secondly, the centroids of the spheres were derived and matched by an automatic program. Lastly, the rotation matrix and the translation vector were calculated by least-square fitting of the centroid data. The proposed method was employed in an animal PET/CT system (InliView-3000) developed in our lab. Experimental results showed that the proposed method achieves high accuracy and is feasible to replace the conventional positron source based methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eslick, E; Kipritidis, J; Keall, P
2014-06-01
Purpose: The purpose of this study was to quantify the lobar lung function using the novel PET Galligas ([68Ga]-carbon nanoparticle) ventilation imaging and the investigational CT ventilation imaging in lung cancer patients pre-treatment. Methods: We present results on our first three lung cancer patients (2 male, mean age 78 years) as part of an ongoing ethics approved study. For each patient a PET Galligas ventilation (PET-V) image and a pair of breath hold CT images (end-exhale and end-inhale tidal volumes) were acquired using a Siemens Biograph PET CT. CT-ventilation (CT-V) images were created from the pair of CT images usingmore » deformable image registration (DIR) algorithms and the Hounsfield Unit (HU) ventilation metric. A comparison of ventilation quantification from each modality was done on the lobar level and the voxel level. A Bland-Altman plot was used to assess the difference in mean percentage contribution of each lobe to the total lung function between the two modalities. For each patient, a voxel-wise Spearmans correlation was calculated for the whole lungs between the two modalities. Results: The Bland-Altman plot demonstrated strong agreement between PET-V and CT-V for assessment of lobar function (r=0.99, p<0.001; range mean difference: −5.5 to 3.0). The correlation between PET-V and CT-V at the voxel level was moderate(r=0.60, p<0.001). Conclusion: This preliminary study on the three patients data sets demonstrated strong agreement between PET and CT ventilation imaging for the assessment of pre-treatment lung function at the lobar level. Agreement was only moderate at the level of voxel correlations. These results indicate that CT ventilation imaging has potential for assessing pre-treatment lobar lung function in lung cancer patients.« less
TH-E-202-02: The Use of Hypoxia PET Imaging for Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humm, J.
2016-06-15
PET/CT is a very important imaging tool in the management of oncology patients. PET/CT has been applied for treatment planning and response evaluation in radiation therapy. This educational session will discuss: Pitfalls and remedies in PET/CT imaging for RT planning The use of hypoxia PET imaging for radiotherapy PET for tumor response evaluation The first presentation will address the issue of mis-registration between the CT and PET images in the thorax and the abdomen. We will discuss the challenges of respiratory gating and introduce an average CT technique to improve the registration for dose calculation and image-guidance in radiation therapy.more » The second presentation will discuss the use of hypoxia PET Imaging for radiation therapy. We will discuss various hypoxia radiotracers, the choice of clinical acquisition protocol (in particular a single late static acquisition versus a dynamic acquisition), and the compartmental modeling with different transfer rate constants explained. We will demonstrate applications of hypoxia imaging for dose escalation/de-escalation in clinical trials. The last presentation will discuss the use of PET/CT for tumor response evaluation. We will discuss anatomic response assessment vs. metabolic response assessment, visual evaluation and semi-quantitative evaluation, and limitations of current PET/CT assessment. We will summarize clinical trials using PET response in guiding adaptive radiotherapy. Finally, we will summarize recent advancements in PET/CT radiomics and non-FDG PET tracers for response assessment. Learning Objectives: Identify the causes of mis-registration of CT and PET images in PET/CT, and review the strategies to remedy the issue. Understand the basics of PET imaging of tumor hypoxia (radiotracers, how PET measures the hypoxia selective uptake, imaging protocols, applications in chemo-radiation therapy). Understand the basics of dynamic PET imaging, compartmental modeling and parametric images. Understand the basics of using FDG PET/CT for tumor response evaluation. Learn about recent advancement in PET/CT radiomics and non-FDG PET tracers for response assessment. This work was supported in part by the National Cancer Institute Grants R01CA172638.; W. Lu, This work was supported in part by the National Cancer Institute Grants R01CA172638.« less
Simultaneous (68)Ga-DOTA-TOC PET/MRI with gadoxetate disodium in patients with neuroendocrine tumor.
Hope, Thomas A; Pampaloni, Miguel Hernandez; Nakakura, Eric; VanBrocklin, Henry; Slater, James; Jivan, Salma; Aparici, Carina Mari; Yee, Judy; Bergsland, Emily
2015-08-01
To evaluate a simultaneous PET/MRI approach to imaging patients with neuroendocrine tumor using a combination of (68)Ga-DOTA-TOC as a PET contrast agent and gadoxetate disodium as a hepatobiliary MRI contrast agent. Ten patients with neuroendocrine tumor with known or suspected hepatic disease were imaged using a (68)Ga-DOTA-TOC PET/CT immediately followed by a 3.0T time-of-flight PET/MRI, using a combined whole body and liver specific imaging. The presence of lesions and DOTA-TOC avidity were assessed on CT, PET from PET/CT, diffusion weighted imaging, hepatobiliary phase imaging (HBP), and PET from PET/MRI. Maximum standardized uptake values (SUVmax) in hepatic lesions and nodal metastases were compared between PET/CT and PET/MRI, as were detection rates using each imaging approach. A total of 101 hepatic lesions were identified, 47 of which were DOTA-TOC avid and able to be individually measured on both PET/CT and PET/MRI. HBP imaging had a higher sensitivity for detection of hepatic lesions compared to CT or PET (99% vs. 46% and 64%, respectively; p values <0.001). There was a strong correlation between SUVmax of liver lesions obtained with PET/CT compared to PET/MR imaging (Pearson's correlation = 0.91). For nodal disease, CT had a higher sensitivity compared to whole body MRI (p = 0.015), although PET acquired from PET/MRI detected slightly more lesions compared to PET from PET/CT. A simultaneous PET/MRI using both (68)Ga-DOTA-TOC and gadoxetate disodium was successful in whole body staging of patients with neuroendocrine tumor. HBP imaging had an increased detection rate for hepatic metastases.
MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner.
Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B; Michel, Christian J; El Fakhri, Georges; Schmand, Matthias; Sorensen, A Gregory
2011-01-01
Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MRI data can be used for motion tracking. In this work, a novel algorithm for data processing and rigid-body motion correction (MC) for the MRI-compatible BrainPET prototype scanner is described, and proof-of-principle phantom and human studies are presented. To account for motion, the PET prompt and random coincidences and sensitivity data for postnormalization were processed in the line-of-response (LOR) space according to the MRI-derived motion estimates. The processing time on the standard BrainPET workstation is approximately 16 s for each motion estimate. After rebinning in the sinogram space, the motion corrected data were summed, and the PET volume was reconstructed using the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed, and motion estimates were obtained using 2 high-temporal-resolution MRI-based motion-tracking techniques. After accounting for the misalignment between the 2 scanners, perfectly coregistered MRI and PET volumes were reproducibly obtained. The MRI output gates inserted into the PET list-mode allow the temporal correlation of the 2 datasets within 0.2 ms. The Hoffman phantom volume reconstructed by processing the PET data in the LOR space was similar to the one obtained by processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the procedure. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 s and 20 ms, respectively. Motion-deblurred PET images, with excellent delineation of specific brain structures, were obtained using these 2 MRI-based estimates. An MRI-based MC algorithm was implemented for an integrated MR-PET scanner. High-temporal-resolution MRI-derived motion estimates (obtained while simultaneously acquiring anatomic or functional MRI data) can be used for PET MC. An MRI-based MC method has the potential to improve PET image quality, increasing its reliability, reproducibility, and quantitative accuracy, and to benefit many neurologic applications.
SU-F-I-59: Quality Assurance Phantom for PET/CT Alignment and Attenuation Correction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, T; Hamacher, K
2016-06-15
Purpose: This study utilizes a commercial PET/CT phantom to investigate two specific properties of a PET/CT system: the alignment accuracy of PET images with those from CT used for attenuation correction and the accuracy of this correction in PET images. Methods: A commercial PET/CT phantom consisting of three aluminum rods, two long central cylinders containing uniform activity, and attenuating materials such as air, water, bone and iodine contrast was scanned using a standard PET/CT protocol. Images reconstructed with 2 mm slice thickness and a 512 by 512 matrix were obtained. The center of each aluminum rod in the PET andmore » CT images was compared to evaluate alignment accuracy. ROIs were drawn on transaxial images of the central rods at each section of attenuating material to determine the corrected activity (in BQML). BQML values were graphed as a function of slice number to provide a visual representation of the attenuation-correction throughout the whole phantom. Results: Alignment accuracy is high between the PET and CT images. The maximum deviation between the two in the axial plane is less than 1.5 mm, which is less than the width of a single pixel. BQML values measured along different sections of the large central rods are similar among the different attenuating materials except iodine contrast. Deviation of BQML values in the air and bone sections from the water section is less than 1%. Conclusion: Accurate alignment of PET and CT images is critical to ensure proper calculation and application of CT-based attenuation correction. This study presents a simple and quick method to evaluate the two with a single acquisition. As the phantom also includes spheres of increasing diameter, this could serve as a straightforward means to annually evaluate the status of a modern PET/CT system.« less
Hofman, Michael S; Murphy, Declan G; Williams, Scott G; Nzenza, Tatenda; Herschtal, Alan; Lourenco, Richard De Abreu; Bailey, Dale L; Budd, Ray; Hicks, Rodney J; Francis, Roslyn J; Lawrentschuk, Nathan
2018-05-03
Accurate staging of patients with prostate cancer (PCa) is important for therapeutic decision-making. Relapse after surgery or radiotherapy of curative intent is not uncommon and, in part, represents a failure of staging with current diagnostic imaging techniques to detect disease spread. Prostate-specific membrane antigen (PSMA) positron-emission tomography (PET)/computed tomography (CT) is a new whole-body scanning technique that enables visualization of PCa with high contrast. The hypotheses of this study are that: (i) PSMA-PET/CT has improved diagnostic performance compared with conventional imaging; (ii) PSMA-PET/CT should be used as a first-line diagnostic test for staging; (iii) the improved diagnostic performance of PSMA-PET/CT will result in significant management impact; and (iv) there are economic benefits if PSMA-PET/CT is incorporated into the management algorithm. The proPSMA trial is a prospective, multicentre study in which patients with untreated high-risk PCa will be randomized to gallium-68-PSMA-11 PET/CT or conventional imaging, consisting of CT of the abdomen/pelvis and bone scintigraphy with single-photon emission CT/CT. Patients eligible for inclusion are those with newly diagnosed PCa with select high-risk features, defined as International Society of Urological Pathology grade group ≥3 (primary Gleason grade 4, or any Gleason grade 5), prostate-specific antigen level ≥20 ng/mL or clinical stage ≥T3. Patients with negative, equivocal or oligometastatic disease on first line-imaging will cross over to receive the other imaging arm. The primary objective is to compare the accuracy of PSMA-PET/CT with that of conventional imaging for detecting nodal or distant metastatic disease. Histopathological, imaging and clinical follow-up at 6 months will define the primary endpoint according to a predefined scoring system. Secondary objectives include comparing management impact, the number of equivocal studies, the incremental value of second-line imaging in patients who cross over, the cost of each imaging strategy, radiation exposure, inter-observer agreement and safety of PSMA-PET/CT. Longer-term follow-up will also assess the prognostic value of a negative PSMA-PET/CT. This trial will provide data to establish whether PSMA-PET/CT should replace conventional imaging in the primary staging of select high-risk localized PCa, or whether it should be used to provide incremental diagnostic information in selected cases. © 2018 The Authors BJU International © 2018 BJU International Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fei Baowei; Wang Hesheng; Muzic, Raymond F. Jr.
2006-03-15
We are investigating imaging techniques to study the tumor response to photodynamic therapy (PDT). Positron emission tomography (PET) can provide physiological and functional information. High-resolution magnetic resonance imaging (MRI) can provide anatomical and morphological changes. Image registration can combine MRI and PET images for improved tumor monitoring. In this study, we acquired high-resolution MRI and microPET {sup 18}F-fluorodeoxyglucose (FDG) images from C3H mice with RIF-1 tumors that were treated with Pc 4-based PDT. We developed two registration methods for this application. For registration of the whole mouse body, we used an automatic three-dimensional, normalized mutual information algorithm. For tumor registration,more » we developed a finite element model (FEM)-based deformable registration scheme. To assess the quality of whole body registration, we performed slice-by-slice review of both image volumes; manually segmented feature organs, such as the left and right kidneys and the bladder, in each slice; and computed the distance between corresponding centroids. Over 40 volume registration experiments were performed with MRI and microPET images. The distance between corresponding centroids of organs was 1.5{+-}0.4 mm which is about 2 pixels of microPET images. The mean volume overlap ratios for tumors were 94.7% and 86.3% for the deformable and rigid registration methods, respectively. Registration of high-resolution MRI and microPET images combines anatomical and functional information of the tumors and provides a useful tool for evaluating photodynamic therapy.« less
Shiga, Tohru; Morimoto, Yuichi; Kubo, Naoki; Katoh, Norio; Katoh, Chietsugu; Takeuchi, Wataru; Usui, Reiko; Hirata, Kenji; Kojima, Shinichi; Umegaki, Kikuo; Shirato, Hiroki; Tamaki, Nagara
2009-01-01
An autoradiography method revealed intratumoral inhomogeneity in various solid tumors. It is becoming increasingly important to estimate intratumoral inhomogeneity. However, with low spatial resolution and high scatter noise, it is difficult to detect intratumoral inhomogeneity in clinical settings. We developed a new PET system with CdTe semiconductor detectors to provide images with high spatial resolution and low scatter noise. Both phantom images and patients' images were analyzed to evaluate intratumoral inhomogeneity. This study was performed with a cold spot phantom that had 6-mm-diameter cold sphenoid defects, a dual-cylinder phantom with an adjusted concentration of 1:2, and an "H"-shaped hot phantom. These were surrounded with water. Phantom images and (18)F-FDG PET images of patients with nasopharyngeal cancer were compared with conventional bismuth germanate PET images. Profile curves for the phantoms were measured as peak-to-valley ratios to define contrast. Intratumoral inhomogeneity and tumor edge sharpness were evaluated on the images of the patients. The contrast obtained with the semiconductor PET scanner (1.53) was 28% higher than that obtained with the conventional scanner (1.20) for the 6-mm-diameter cold sphenoid phantom. The contrast obtained with the semiconductor PET scanner (1.43) was 27% higher than that obtained with the conventional scanner (1.13) for the dual-cylinder phantom. Similarly, the 2-mm cold region between 1-mm hot rods was identified only by the new PET scanner and not by the conventional scanner. The new PET scanner identified intratumoral inhomogeneity in more detail than the conventional scanner in 6 of 10 patients. The tumor edge was sharper on the images obtained with the new PET scanner than on those obtained with the conventional scanner. These phantom and clinical studies suggested that this new PET scanner has the potential for better identification of intratumoral inhomogeneity, probably because of its high spatial resolution and low scatter noise.
Studies of the brain cannabinoid system using positron emission tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gatley, S.J.; Volkow, N.D.
Studies using radiolabeled psychoactive drugs in conjunction with positron emission tomography (PET) have permitted the imaging of binding sites in the human brain. Similar studies of marijuana have been hampered by the unsuitability of radiolabeled THC for PET studies, and the current unavailability of other in vivo imaging agents for cannabinoid receptors. Recent developments in medicinal chemistry suggest that a PET radiotracer for cannabinoid receptors will soon become available. This chapter briefly reviews these developments, together with the results of PET studies of the effects of marijuana and other abused drugs on brain metabolism. It also reviews PET studies ofmore » cocaine binding sites, to demonstrate the kind of investigations that will be possible when a cannabinoid receptor PET radioligand becomes available.« less
Deformable image registration for multimodal lung-cancer staging
NASA Astrophysics Data System (ADS)
Cheirsilp, Ronnarit; Zang, Xiaonan; Bascom, Rebecca; Allen, Thomas W.; Mahraj, Rickhesvar P. M.; Higgins, William E.
2016-03-01
Positron emission tomography (PET) and X-ray computed tomography (CT) serve as major diagnostic imaging modalities in the lung-cancer staging process. Modern scanners provide co-registered whole-body PET/CT studies, collected while the patient breathes freely, and high-resolution chest CT scans, collected under a brief patient breath hold. Unfortunately, no method exists for registering a PET/CT study into the space of a high-resolution chest CT scan. If this could be done, vital diagnostic information offered by the PET/CT study could be brought seamlessly into the procedure plan used during live cancer-staging bronchoscopy. We propose a method for the deformable registration of whole-body PET/CT data into the space of a high-resolution chest CT study. We then demonstrate its potential for procedure planning and subsequent use in multimodal image-guided bronchoscopy.
PSMA PET in prostate cancer – a step towards personalized medicine
Bouchelouche, Kirsten; Choyke, Peter L.
2017-01-01
Purpose of review Increasing attention is being given to personalized medicine in oncology, where therapies are tailored to the particular characteristics of the individual cancer patient. In recent years, there has been greater focus on PSMA in prostate cancer (PCa) as a target for imaging and therapy with radionuclides. This review highlights the recent advancements in PSMA PET in PCa during the past year. Recent findings Several reports on PSMA PET/CT in PCa patients are demonstrating promising results, especially for detection of biochemical recurrence. 18F-PSMA PET/CT may be superior to 68Ga-PSMA PET/CT. The detection rate of PSMA PET is influenced by PSA level. PSMA PET/CT may have a higher detection rate than choline PET/CT. Only a few reports have been published on PSMA PET/MRI, and this modality remains to be elucidated further. Conclusion Molecular imaging with PSMA PET is paving the way for personalized medicine in PCa. However, large prospective clinical studies are needed to further evaluate the role of PSMA PET/CT and PET/MRI in the clinical workflow of PCa. PSMA is an excellent target for imaging and therapy with radionuclides, and the “image and treat” strategy has the potential to become a milestone in the management of PCa patients. PMID:26967720
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kipritidis, John, E-mail: john.kipritidis@sydney.edu.au; Keall, Paul J.; Siva, Shankar
Purpose: CT ventilation imaging is a novel functional lung imaging modality based on deformable image registration. The authors present the first validation study of CT ventilation using positron emission tomography with{sup 68}Ga-labeled nanoparticles (PET-Galligas). The authors quantify this agreement for different CT ventilation metrics and PET reconstruction parameters. Methods: PET-Galligas ventilation scans were acquired for 12 lung cancer patients using a four-dimensional (4D) PET/CT scanner. CT ventilation images were then produced by applying B-spline deformable image registration between the respiratory correlated phases of the 4D-CT. The authors test four ventilation metrics, two existing and two modified. The two existing metricsmore » model mechanical ventilation (alveolar air-flow) based on Hounsfield unit (HU) change (V{sub HU}) or Jacobian determinant of deformation (V{sub Jac}). The two modified metrics incorporate a voxel-wise tissue-density scaling (ρV{sub HU} and ρV{sub Jac}) and were hypothesized to better model the physiological ventilation. In order to assess the impact of PET image quality, comparisons were performed using both standard and respiratory-gated PET images with the former exhibiting better signal. Different median filtering kernels (σ{sub m} = 0 or 3 mm) were also applied to all images. As in previous studies, similarity metrics included the Spearman correlation coefficient r within the segmented lung volumes, and Dice coefficient d{sub 20} for the (0 − 20)th functional percentile volumes. Results: The best agreement between CT and PET ventilation was obtained comparing standard PET images to the density-scaled HU metric (ρV{sub HU}) with σ{sub m} = 3 mm. This leads to correlation values in the ranges 0.22 ⩽ r ⩽ 0.76 and 0.38 ⩽ d{sub 20} ⩽ 0.68, with r{sup ¯}=0.42±0.16 and d{sup ¯}{sub 20}=0.52±0.09 averaged over the 12 patients. Compared to Jacobian-based metrics, HU-based metrics lead to statistically significant improvements in r{sup ¯} and d{sup ¯}{sub 20} (p < 0.05), with density scaled metrics also showing higher r{sup ¯} than for unscaled versions (p < 0.02). r{sup ¯} and d{sup ¯}{sub 20} were also sensitive to image quality, with statistically significant improvements using standard (as opposed to gated) PET images and with application of median filtering. Conclusions: The use of modified CT ventilation metrics, in conjunction with PET-Galligas and careful application of image filtering has resulted in improved correlation compared to earlier studies using nuclear medicine ventilation. However, CT ventilation and PET-Galligas do not always provide the same functional information. The authors have demonstrated that the agreement can improve for CT ventilation metrics incorporating a tissue density scaling, and also with increasing PET image quality. CT ventilation imaging has clear potential for imaging regional air volume change in the lung, and further development is warranted.« less
Optimization of yttrium-90 PET for simultaneous PET/MR imaging: A phantom study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldib, Mootaz
2016-08-15
Purpose: Positron emission tomography (PET) imaging of yttrium-90 in the liver post radioembolization has been shown useful for personalized dosimetry calculations and evaluation of extrahepatic deposition. The purpose of this study was to quantify the benefits of several MR-based data correction approaches offered by using a combined PET/MR system to improve Y-90 PET imaging. In particular, the feasibility of motion and partial volume corrections were investigated in a controlled phantom study. Methods: The ACR phantom was filled with an initial concentration of 8 GBq of Y-90 solution resulting in a contrast of 10:1 between the hot cylinders and the background.more » Y-90 PET motion correction through motion estimates from MR navigators was evaluated by using a custom-built motion stage that simulated realistic amplitudes of respiration-induced liver motion. Finally, the feasibility of an MR-based partial volume correction method was evaluated using a wavelet decomposition approach. Results: Motion resulted in a large (∼40%) loss of contrast recovery for the 8 mm cylinder in the phantom, but was corrected for after MR-based motion correction was applied. Partial volume correction improved contrast recovery by 13% for the 8 mm cylinder. Conclusions: MR-based data correction improves Y-90 PET imaging on simultaneous PET/MR systems. Assessment of these methods must be studied further in the clinical setting.« less
Park, Jung Mi; Kim, Il Young; Kim, Sang Won; Lee, Sang Mi; Kim, Hyun Gi; Kim, Shin Young; Shin, Hyung Chul
2013-04-01
The aim of this study was to compare the diagnosability between (18)F-fluorodeoxyglucose (FDG) PET/CT and enhanced multi-detector CT (MDCT) for the detection of liver metastasis (LM) according to the size and location in liver and to evaluate standard maximum standardized uptake values (SUVmax) of all liver metastatic lesions. One hundred two consecutive patients with malignancy who underwent both FDG PET/CT and MDCT for LM evaluation were retrospectively reviewed. Among them, 56 patients with LM were enrolled in this study. LM was confirmed by follow-up imaging studies after at least 6 months or by histopathology. FDG PET/CT and MDCT images were visually analyzed using three-point scale by the consensus of two radiologists and two nuclear medicine physicians. The size and location (central vs. sub-capsular) of the all liver lesions were evaluated using MDCT images. Furthermore, SUVmax of all liver lesions on FDG PET/CT images were calculated. A total of 146 liver lesions were detected by FDG PET/CT and MDCT and 142 of the lesions were diagnosed as LM. The detection rates of MDCT and FDG PET/CT for LM by visual analysis were 77 and 78%, respectively. There was no significant difference of detection rate according to the overall location and size of the lesions. However, FDG PET/CT was more sensitive than MDCT for detecting small and sub-capsular LM. The detection rate of FDG PET/CT for LM was 68% by the cutoff SUVmax of 2.7. Although the diagnosabilities of MDCT and FDG PET/CT for detecting LM were comparable, FDG PET/CT is superior to MDCT for detecting small LM located in the sub-capsular portion of liver.
PKU-PET-II: A novel SiPM-based PET imaging system for small animals
NASA Astrophysics Data System (ADS)
Xie, Zhaoheng; Li, Suying; Zhou, Kun; Vuletic, Ivan; Meng, Xiangxi; Zhu, Sihao; Xu, Huan; Yang, Kun; Xu, Baixuan; Zhang, Jinming; Ren, Qiushi
2018-01-01
The objective of this study was to introduce, describe, and validate the performance of a novel preclinical silicon photomultiplier (SiPM)-based PET system (PKU-PET-II). Briefly, the detector assembly consisted of cerium-doped lutetium-yttrium oxyorthosilicate (LYSO) crystals, with dimensions of 2 ×2 ×15 mm3, that offered a 60 mm transaxial field of view (FOV) and 32 mm axial FOV, respectively. The compact front-end electronics readout and digital controller implemented architecture in the FPGA were noteworthy improvements in PKU-PET-II over its predecessor (PKU-PET-I). Based on the National Electrical Manufacturers Association (NEMA) NU 04-2008 standards, the design of the PKU-PET-II system was validated by a phantom experiment. The results presented spatial resolution (evaluated as full width at half maximum) with a system range from 1.68 ±0.07 to 2.31 ±0.03 mm at the FOV center and from 1.43 ±0.02 to 2.10 ±0.10 mm at the 1/4th axial FOV, respectively. The system's absolute sensitivity at the center position was 1.35% with the coincidence window of 6 ns and energy window of 300-700 keV. In addition, the NEMA image quality phantom and an animal study results validated the system imaging performance in preclinical imaging application. In conclusion, this SiPM-based, small-animal PET system (PKU-PET-II) provided higher-resolution, adequate sensitivity, and excellent image quality and has potential as a useful tool for real-time imaging of disease progression and development in vivo.
TH-E-202-00: PET for Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
PET/CT is a very important imaging tool in the management of oncology patients. PET/CT has been applied for treatment planning and response evaluation in radiation therapy. This educational session will discuss: Pitfalls and remedies in PET/CT imaging for RT planning The use of hypoxia PET imaging for radiotherapy PET for tumor response evaluation The first presentation will address the issue of mis-registration between the CT and PET images in the thorax and the abdomen. We will discuss the challenges of respiratory gating and introduce an average CT technique to improve the registration for dose calculation and image-guidance in radiation therapy.more » The second presentation will discuss the use of hypoxia PET Imaging for radiation therapy. We will discuss various hypoxia radiotracers, the choice of clinical acquisition protocol (in particular a single late static acquisition versus a dynamic acquisition), and the compartmental modeling with different transfer rate constants explained. We will demonstrate applications of hypoxia imaging for dose escalation/de-escalation in clinical trials. The last presentation will discuss the use of PET/CT for tumor response evaluation. We will discuss anatomic response assessment vs. metabolic response assessment, visual evaluation and semi-quantitative evaluation, and limitations of current PET/CT assessment. We will summarize clinical trials using PET response in guiding adaptive radiotherapy. Finally, we will summarize recent advancements in PET/CT radiomics and non-FDG PET tracers for response assessment. Learning Objectives: Identify the causes of mis-registration of CT and PET images in PET/CT, and review the strategies to remedy the issue. Understand the basics of PET imaging of tumor hypoxia (radiotracers, how PET measures the hypoxia selective uptake, imaging protocols, applications in chemo-radiation therapy). Understand the basics of dynamic PET imaging, compartmental modeling and parametric images. Understand the basics of using FDG PET/CT for tumor response evaluation. Learn about recent advancement in PET/CT radiomics and non-FDG PET tracers for response assessment. This work was supported in part by the National Cancer Institute Grants R01CA172638.; W. Lu, This work was supported in part by the National Cancer Institute Grants R01CA172638.« less
TH-E-202-03: PET for Tumor Response Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, W.
PET/CT is a very important imaging tool in the management of oncology patients. PET/CT has been applied for treatment planning and response evaluation in radiation therapy. This educational session will discuss: Pitfalls and remedies in PET/CT imaging for RT planning The use of hypoxia PET imaging for radiotherapy PET for tumor response evaluation The first presentation will address the issue of mis-registration between the CT and PET images in the thorax and the abdomen. We will discuss the challenges of respiratory gating and introduce an average CT technique to improve the registration for dose calculation and image-guidance in radiation therapy.more » The second presentation will discuss the use of hypoxia PET Imaging for radiation therapy. We will discuss various hypoxia radiotracers, the choice of clinical acquisition protocol (in particular a single late static acquisition versus a dynamic acquisition), and the compartmental modeling with different transfer rate constants explained. We will demonstrate applications of hypoxia imaging for dose escalation/de-escalation in clinical trials. The last presentation will discuss the use of PET/CT for tumor response evaluation. We will discuss anatomic response assessment vs. metabolic response assessment, visual evaluation and semi-quantitative evaluation, and limitations of current PET/CT assessment. We will summarize clinical trials using PET response in guiding adaptive radiotherapy. Finally, we will summarize recent advancements in PET/CT radiomics and non-FDG PET tracers for response assessment. Learning Objectives: Identify the causes of mis-registration of CT and PET images in PET/CT, and review the strategies to remedy the issue. Understand the basics of PET imaging of tumor hypoxia (radiotracers, how PET measures the hypoxia selective uptake, imaging protocols, applications in chemo-radiation therapy). Understand the basics of dynamic PET imaging, compartmental modeling and parametric images. Understand the basics of using FDG PET/CT for tumor response evaluation. Learn about recent advancement in PET/CT radiomics and non-FDG PET tracers for response assessment. This work was supported in part by the National Cancer Institute Grants R01CA172638.; W. Lu, This work was supported in part by the National Cancer Institute Grants R01CA172638.« less
Bluemel, Christina; Krebs, Markus; Polat, Bülent; Linke, Fränze; Eiber, Matthias; Samnick, Samuel; Lapa, Constantin; Lassmann, Michael; Riedmiller, Hubertus; Czernin, Johannes; Rubello, Domenico; Bley, Thorsten; Kropf, Saskia; Wester, Hans-Juergen; Buck, Andreas K; Herrmann, Ken
2016-07-01
Investigating the value of Ga-PSMA-PET/CT in biochemically recurring prostate cancer patients with negative F-choline-PET/CT. One hundred thirty-nine consecutive patients with biochemical recurrence after curative (surgery and/or radiotherapy) therapy were offered participation in this sequential clinical imaging approach. Patients first underwent an F-choline-PET/CT. If negative, an additional Ga-PSMA-PET/CT was offered. One hundred twenty-five of 139 eligible patients were included in the study; 32 patients underwent additional Ga-PSMA-PET/CT. Patients with equivocal findings (n = 5) on F-choline-PET/CT and those who declined the additional Ga-PSMA-PET/CT (n = 9) were excluded. Images were analyzed visually for the presence of suspicious lesions. Findings on PET/CT were correlated with PSA level, PSA doubling time (dt), and PSA velocity (vel). The overall detection rates were 85.6% (107/125) for the sequential imaging approach and 74.4% (93/125) for F-choline-PET/CT alone. Ga-PSMA-PET/CT detected sites of recurrence in 43.8% (14/32) of the choline-negative patients. Detection rates of the sequential imaging approach and F-choline-PET/CT alone increased with higher serum PSA levels and PSA vel. Subgroup analysis of Ga-PSMA-PET/CT in F-choline negative patients revealed detection rates of 28.6%, 45.5%, and 71.4% for PSA levels of 0.2 or greater to less than 1 ng/mL, 1 to 2 ng/mL, and greater than 2 ng/mL, respectively. The sequential imaging approach designed to limit Ga-PSMA imaging to patients with negative choline scans resulted in high detection rates. Ga-PSMA-PET/CT identified sites of recurrent disease in 43.8% of the patients with negative F-choline PET/CT scans.
Bluemel, Christina; Krebs, Markus; Polat, Bülent; Linke, Fränze; Eiber, Matthias; Samnick, Samuel; Lapa, Constantin; Lassmann, Michael; Riedmiller, Hubertus; Czernin, Johannes; Rubello, Domenico; Bley, Thorsten; Kropf, Saskia; Wester, Hans-Juergen; Buck, Andreas K.; Herrmann, Ken
2016-01-01
Purpose Investigating the value of 68Ga-PSMA-PET/CT in biochemically recurring prostate cancer patients with negative 18F-choline-PET/CT. Patients and Methods One hundred thirty-nine consecutive patients with biochemical recurrence after curative (surgery and/or radiotherapy) therapy were offered participation in this sequential clinical imaging approach. Patients first underwent an 18F-choline-PET/CT. If negative, an additional 68Ga-PSMA-PET/CTwas offered. One hundred twenty-five of 139 eligible patients were included in the study; 32 patients underwent additional 68Ga-PSMA-PET/CT. Patients with equivocal findings (n = 5) on 18F-choline-PET/CT and those who declined the additional 68Ga-PSMA-PET/CT (n = 9) were excluded. Images were analyzed visually for the presence of suspicious lesions. Findings on PET/CT were correlated with PSA level, PSA doubling time (dt), and PSA velocity (vel). Results The overall detection rates were 85.6% (107/125) for the sequential imaging approach and 74.4% (93/125) for 18F-choline-PET/CT alone. 68Ga-PSMA-PET/CT detected sites of recurrence in 43.8% (14/32) of the choline-negative patients. Detection rates of the sequential imaging approach and 18F-choline-PET/CT alone increased with higher serum PSA levels and PSA vel. Subgroup analysis of 68Ga-PSMA-PET/CT in 18F-choline negative patients revealed detection rates of 28.6%, 45.5%, and 71.4% for PSA levels of 0.2 or greater to less than 1 ng/mL, 1 to 2 ng/mL, and greater than 2 ng/mL, respectively. Conclusions The sequential imaging approach designed to limit 68Ga-PSMA imaging to patients with negative choline scans resulted in high detection rates. 68Ga-PSMA-PET/CT identified sites of recurrent disease in 43.8% of the patients with negative 18F-choline PET/CT scans. PMID:26975008
Klén, Riku; Noponen, Tommi; Koikkalainen, Juha; Lötjönen, Jyrki; Thielemans, Kris; Hoppela, Erika; Sipilä, Hannu; Teräs, Mika; Knuuti, Juhani
2016-09-01
Dual gating is a method of dividing the data of a cardiac PET scan into smaller bins according to the respiratory motion and the ECG of the patient. It reduces the undesirable motion artefacts in images, but produces several images for interpretation and decreases the quality of single images. By using motion-correction techniques, the motion artefacts in the dual-gated images can be corrected and the images can be combined into a single motion-free image with good statistics. The aim of the present study is to develop and evaluate motion-correction methods for cardiac PET studies. We have developed and compared two different methods: computed tomography (CT)/PET-based and CT-only methods. The methods were implemented and tested with a cardiac phantom and three patient datasets. In both methods, anatomical information of CT images is used to create models for the cardiac motion. In the patient study, the CT-only method reduced motion (measured as the centre of mass of the myocardium) on average 43%, increased the contrast-to-noise ratio on average 6.0% and reduced the target size on average 10%. Slightly better figures (51, 6.9 and 28%) were obtained with the CT/PET-based method. Even better results were obtained in the phantom study for both the CT-only method (57, 68 and 43%) and the CT/PET-based method (61, 74 and 52%). We conclude that using anatomical information of CT for motion correction of cardiac PET images, both respiratory and pulsatile motions can be corrected with good accuracy.
NASA Astrophysics Data System (ADS)
Omidvari, Negar; Topping, Geoffrey; Cabello, Jorge; Paul, Stephan; Schwaiger, Markus; Ziegler, Sibylle I.
2018-05-01
Compromises in the design of a positron emission tomography (PET) insert for a magnetic resonance imaging (MRI) system should minimize the deterioration of image quality in both modalities, particularly when simultaneous demanding acquisitions are performed. In this work, the advantages of using individually read-out crystals with high-gain silicon photomultipliers (SiPMs) were studied with a small animal PET insert for a 7 T MRI system, in which the SiPM charge was transferred to outside the MRI scanner using coaxial cables. The interferences between the two systems were studied with three radio-frequency (RF) coil configurations. The effects of PET on the static magnetic field, flip angle distribution, RF noise, and image quality of various MRI sequences (gradient echo, spin echo, and echo planar imaging (EPI) at 1H frequency, and chemical shift imaging at 13C frequency) were investigated. The effects of fast-switching gradient fields and RF pulses on PET count rate were studied, while the PET insert and the readout electronics were not shielded. Operating the insert inside a 1H volume coil, used for RF transmission and reception, limited the MRI to T1-weighted imaging, due to coil detuning and RF attenuation, and resulted in significant PET count loss. Using a surface receive coil allowed all tested MR sequences to be used with the insert, with 45–59% signal-to-noise ratio (SNR) degradation, compared to without PET. With a 1H/13C volume coil inside the insert and shielded by a copper tube, the SNR degradation was limited to 23–30% with all tested sequences. The insert did not introduce any discernible distortions into images of two tested EPI sequences. Use of truncated sinc shaped RF excitation pulses and gradient field switching had negligible effects on PET count rate. However, PET count rate was substantially affected by high-power RF block pulses and temperature variations due to high gradient duty cycles.
Catana, Ciprian; van der Kouwe, Andre; Benner, Thomas; Michel, Christian J.; Hamm, Michael; Fenchel, Matthias; Fischl, Bruce; Rosen, Bruce; Schmand, Matthias; Sorensen, A. Gregory
2013-01-01
A number of factors have to be considered for implementing an accurate attenuation correction (AC) in a combined MR-PET scanner. In this work, some of these challenges were investigated and an AC method based entirely on the MR data obtained with a single dedicated sequence was developed and used for neurological studies performed with the MR-PET human brain scanner prototype. Methods The focus was on the bone/air segmentation problem, the bone linear attenuation coefficient selection and the RF coil positioning. The impact of these factors on the PET data quantification was studied in simulations and experimental measurements performed on the combined MR-PET scanner. A novel dual-echo ultra-short echo time (DUTE) MR sequence was proposed for head imaging. Simultaneous MR-PET data were acquired and the PET images reconstructed using the proposed MR-DUTE-based AC method were compared with the PET images reconstructed using a CT-based AC. Results Our data suggest that incorrectly accounting for the bone tissue attenuation can lead to large underestimations (>20%) of the radiotracer concentration in the cortex. Assigning a linear attenuation coefficient of 0.143 or 0.151 cm−1 to bone tissue appears to give the best trade-off between bias and variability in the resulting images. Not identifying the internal air cavities introduces large overestimations (>20%) in adjacent structures. Based on these results, the segmented CT AC method was established as the “silver standard” for the segmented MR-based AC method. Particular to an integrated MR-PET scanner, ignoring the RF coil attenuation can cause large underestimations (i.e. up to 50%) in the reconstructed images. Furthermore, the coil location in the PET field of view has to be accurately known. Good quality bone/air segmentation can be performed using the DUTE data. The PET images obtained using the MR-DUTE- and CT-based AC methods compare favorably in most of the brain structures. Conclusion An MR-DUTE-based AC method was implemented considering all these factors and our preliminary results suggest that this method could potentially be as accurate as the segmented CT method and it could be used for quantitative neurological MR-PET studies. PMID:20810759
Catana, Ciprian; van der Kouwe, Andre; Benner, Thomas; Michel, Christian J; Hamm, Michael; Fenchel, Matthias; Fischl, Bruce; Rosen, Bruce; Schmand, Matthias; Sorensen, A Gregory
2010-09-01
Several factors have to be considered for implementing an accurate attenuation-correction (AC) method in a combined MR-PET scanner. In this work, some of these challenges were investigated, and an AC method based entirely on the MRI data obtained with a single dedicated sequence was developed and used for neurologic studies performed with the MR-PET human brain scanner prototype. The focus was on the problem of bone-air segmentation, selection of the linear attenuation coefficient for bone, and positioning of the radiofrequency coil. The impact of these factors on PET data quantification was studied in simulations and experimental measurements performed on the combined MR-PET scanner. A novel dual-echo ultrashort echo time (DUTE) MRI sequence was proposed for head imaging. Simultaneous MR-PET data were acquired, and the PET images reconstructed using the proposed DUTE MRI-based AC method were compared with the PET images that had been reconstructed using a CT-based AC method. Our data suggest that incorrectly accounting for the bone tissue attenuation can lead to large underestimations (>20%) of the radiotracer concentration in the cortex. Assigning a linear attenuation coefficient of 0.143 or 0.151 cm(-1) to bone tissue appears to give the best trade-off between bias and variability in the resulting images. Not identifying the internal air cavities introduces large overestimations (>20%) in adjacent structures. On the basis of these results, the segmented CT AC method was established as the silver standard for the segmented MRI-based AC method. For an integrated MR-PET scanner, in particular, ignoring the radiofrequency coil attenuation can cause large underestimations (i.e.,
PET/MRI: Where Might It Replace PET/CT?
Ehman, Eric C.; Johnson, Geoffrey B.; Villanueva-Meyer, Javier E.; Cha, Soonmee; Leynes, Andrew Palmera; Larson, Peder Eric Zufall; Hope, Thomas A.
2017-01-01
Simultaneous positron emission tomography and MRI (PET/MRI) is a technology that combines the anatomic and quantitative strengths of MR imaging with physiologic information obtained from PET. PET and computed tomography (PET/ CT) performed in a single scanning session is an established technology already in widespread and accepted use worldwide. Given the higher cost and complexity of operating and interpreting the studies obtained on a PET/MRI system, there has been question as to which patients would benefit most from imaging with PET/MRI versus PET/CT. In this article, we compare PET/MRI with PET/CT, detail the applications for which PET/MRI has shown promise and discuss impediments to future adoption. It is our hope that future work will prove the benefit of PET/MRI to specific groups of patients, initially those in which PET/CT and MRI are already performed, leveraging simultaneity and allowing for greater degrees of multiparametric evaluation. PMID:28370695
Real-time iterative monitoring of radiofrequency ablation tumor therapy with 15O-water PET imaging.
Bao, Ande; Goins, Beth; Dodd, Gerald D; Soundararajan, Anuradha; Santoyo, Cristina; Otto, Randal A; Davis, Michael D; Phillips, William T
2008-10-01
A method that provides real-time image-based monitoring of solid tumor therapy to ensure complete tumor eradication during image-guided interventional therapy would be a valuable tool. The short, 2-min half-life of (15)O makes it possible to perform repeated PET imaging at 20-min intervals at multiple time points before and after image-guided therapy. In this study, (15)O-water PET was evaluated as a tool to provide real-time feedback and iterative image guidance to rapidly monitor the intratumoral coverage of radiofrequency (RF) ablation therapy. Tumor RF ablation therapy was performed on head and neck squamous cell carcinoma (SCC) xenograft tumors (length, approximately 23 mm) in 6 nude rats. The tumor in each animal was ablated with RF (1-cm active size ablation catheter, 70 degrees C for 5 min) twice in 2 separate tumor regions with a 20-min separation. The (15)O-water PET images were acquired before RF ablation and after the first RF and second RF ablations using a small-animal PET scanner. In each PET session, approximately 100 MBq of (15)O-water in 1.0 mL of saline were injected intravenously into each animal. List-mode PET images were acquired for 7 min starting 20 s before injection. PET images were reconstructed by 2-dimensional ordered-subset expectation maximization into single-frame images and dynamic images at 10 s/frame. PET images were displayed and analyzed with software. Pre-RF ablation images demonstrate that (15)O-water accumulates in tumors with (15)O activity reaching peak levels immediately after administration. After RF ablation, the ablated region had almost zero activity, whereas the unablated tumor tissue continued to have a high (15)O-water accumulation. Using image feedback, the RF probe was repositioned to a tumor region with residual (15)O-water uptake and then ablated. The second RF ablation in this new region of the tumor resulted in additional ablation of the solid tumor, with a corresponding decrease in activity on the (15)O-water PET image. (15)O-water PET clearly demonstrated the ablated tumor region, whereas the unablated tumor continued to show high (15)O-water accumulation. (15)O-water imaging shows promise as a tool for on-site, real-time monitoring of image-guided interventional cancer therapy.
Gallium 68 PSMA-11 PET/MR Imaging in Patients with Intermediate- or High-Risk Prostate Cancer.
Park, Sonya Youngju; Zacharias, Claudia; Harrison, Caitlyn; Fan, Richard E; Kunder, Christian; Hatami, Negin; Giesel, Frederik; Ghanouni, Pejman; Daniel, Bruce; Loening, Andreas M; Sonn, Geoffrey A; Iagaru, Andrei
2018-05-16
Purpose To report the results of dual-time-point gallium 68 ( 68 Ga) prostate-specific membrane antigen (PSMA)-11 positron emission tomography (PET)/magnetic resonance (MR) imaging prior to prostatectomy in patients with intermediate- or high-risk cancer. Materials and Methods Thirty-three men who underwent conventional imaging as clinically indicated and who were scheduled for radical prostatectomy with pelvic lymph node dissection were recruited for this study. A mean dose of 4.1 mCi ± 0.7 (151.7 MBq ± 25.9) of 68 Ga-PSMA-11 was administered. Whole-body images were acquired starting 41-61 minutes after injection by using a GE SIGNA PET/MR imaging unit, followed by an additional pelvic PET/MR imaging acquisition at 87-125 minutes after injection. PET/MR imaging findings were compared with findings at multiparametric MR imaging (including diffusion-weighted imaging, T2-weighted imaging, and dynamic contrast material-enhanced imaging) and were correlated with results of final whole-mount pathologic examination and pelvic nodal dissection to yield sensitivity and specificity. Dual-time-point metabolic parameters (eg, maximum standardized uptake value [SUV max ]) were compared by using a paired t test and were correlated with clinical and histopathologic variables including prostate-specific antigen level, Gleason score, and tumor volume. Results Prostate cancer was seen at 68 Ga-PSMA-11 PET in all 33 patients, whereas multiparametric MR imaging depicted Prostate Imaging Reporting and Data System (PI-RADS) 4 or 5 lesions in 26 patients and PI-RADS 3 lesions in four patients. Focal uptake was seen in the pelvic lymph nodes in five patients. Pathologic examination confirmed prostate cancer in all patients, as well as nodal metastasis in three. All patients with normal pelvic nodes in PET/MR imaging had no metastases at pathologic examination. The accumulation of 68 Ga-PSMA-11 increased at later acquisition times, with higher mean SUV max (15.3 vs 12.3, P < .001). One additional prostate cancer was identified only at delayed imaging. Conclusion This study found that 68 Ga-PSMA-11 PET can be used to identify prostate cancer, while MR imaging provides detailed anatomic guidance. Hence, 68 Ga-PSMA-11 PET/MR imaging provides valuable diagnostic information and may inform the need for and extent of pelvic node dissection. © RSNA, 2018 Online supplemental material is available for this article.
Mollet, Pieter; Keereman, Vincent; Bini, Jason; Izquierdo-Garcia, David; Fayad, Zahi A; Vandenberghe, Stefaan
2014-02-01
Quantitative PET imaging relies on accurate attenuation correction. Recently, there has been growing interest in combining state-of-the-art PET systems with MR imaging in a sequential or fully integrated setup. As CT becomes unavailable for these systems, an alternative approach to the CT-based reconstruction of attenuation coefficients (μ values) at 511 keV must be found. Deriving μ values directly from MR images is difficult because MR signals are related to the proton density and relaxation properties of tissue. Therefore, most research groups focus on segmentation or atlas registration techniques. Although studies have shown that these methods provide viable solutions in particular applications, some major drawbacks limit their use in whole-body PET/MR. Previously, we used an annulus-shaped PET transmission source inside the field of view of a PET scanner to measure attenuation coefficients at 511 keV. In this work, we describe the use of this method in studies of patients with the sequential time-of-flight (TOF) PET/MR scanner installed at the Icahn School of Medicine at Mount Sinai, New York, NY. Five human PET/MR and CT datasets were acquired. The transmission-based attenuation correction method was compared with conventional CT-based attenuation correction and the 3-segment, MR-based attenuation correction available on the TOF PET/MR imaging scanner. The transmission-based method overcame most problems related to the MR-based technique, such as truncation artifacts of the arms, segmentation artifacts in the lungs, and imaging of cortical bone. Additionally, the TOF capabilities of the PET detectors allowed the simultaneous acquisition of transmission and emission data. Compared with the MR-based approach, the transmission-based method provided average improvements in PET quantification of 6.4%, 2.4%, and 18.7% in volumes of interest inside the lung, soft tissue, and bone tissue, respectively. In conclusion, a transmission-based technique with an annulus-shaped transmission source will be more accurate than a conventional MR-based technique for measuring attenuation coefficients at 511 keV in future whole-body PET/MR studies.
Lee, Soo Jin; Paeng, Jin Chul; Goo, Jin Mo; Lee, Jeong Min; Cheon, Gi Jeong; Lee, Dong Soo; Chung, June-Key; Kang, Keon Wook
2017-04-01
The purpose of this study was to compare quantitative indexes for fluorine-18 fluorodeoxyglucose uptake and metabolic volume between PET/MRI and PET/CT. Sixty-six patients with solid tumors (32 with lung cancer and 34 with pancreatic cancer) who underwent sequential fluorine-18 fluorodeoxyglucose PET/MRI and PET/CT were retrospectively enrolled. On PET images, maximum and peak standardized uptake values (SUVmax and SUVpeak, respectively), and maximum tumor-to-liver ratio (TLRmax) were measured. Metabolic tumor volume (MTV) and total-lesion glycolysis (TLG) with margin thresholds of 50% SUVmax and SUV 2.5 (MTV50%, MTV2.5; TLG50%, TLG2.5, respectively) were compared between PET/MRI and PET/CT, with patients classified into two groups using imaging protocol (the PET/MRI-first and PET/CT-first groups). There were significant correlations of all tested indexes between PET/MRI and PET/CT (r=0.867-0.987, P<0.001). SUVmax and SUVpeak were lower on PET/MRI regardless of imaging protocol (P<0.001 in the PET/MRI-first group). In contrast, TLRmax exhibited reverse results between the PET/MRI-first and PET/CT-first groups. MTV50% and TLG values varied between PET/MRI and PET/CT, as well as between the PET/MRI-first and PET/CT-first groups. However, MTV2.5 was relatively robust against imaging protocol and modality. There are significant correlations of the quantitative indexes between PET/MRI and PET/CT. However, uptake indexes of SUVmax and SUVpeak are lower on PET/MRI than on PET/CT, and volumetric indexes of MTV50% and TLG values also exhibited significant differences. It may be suggested that TLRmax and MTV2.5 are relatively more appropriate indexes than others when PET/MRI and PET/CT are used interchangeably.
Selected PET radiomic features remain the same.
Tsujikawa, Tetsuya; Tsuyoshi, Hideaki; Kanno, Masafumi; Yamada, Shizuka; Kobayashi, Masato; Narita, Norihiko; Kimura, Hirohiko; Fujieda, Shigeharu; Yoshida, Yoshio; Okazawa, Hidehiko
2018-04-17
We investigated whether PET radiomic features are affected by differences in the scanner, scan protocol, and lesion location using 18 F-FDG PET/CT and PET/MR scans. SUV, TMR, skewness, kurtosis, entropy, and homogeneity strongly correlated between PET/CT and PET/MR images. SUVs were significantly higher on PET/MR 0-2 min and PET/MR 0-10 min than on PET/CT in gynecological cancer ( p = 0.008 and 0.008, respectively), whereas no significant difference was observed between PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min images in oral cavity/oropharyngeal cancer. TMRs on PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min increased in this order in gynecological cancer and oral cavity/oropharyngeal cancer. In contrast to conventional and histogram indices, 4 textural features (entropy, homogeneity, SRE, and LRE) were not significantly different between PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min images. 18 F-FDG PET radiomic features strongly correlated between PET/CT and PET/MR images. Dixon-based attenuation correction on PET/MR images underestimated tumor tracer uptake more significantly in oral cavity/oropharyngeal cancer than in gynecological cancer. 18 F-FDG PET textural features were affected less by differences in the scanner and scan protocol than conventional and histogram features, possibly due to the resampling process using a medium bin width. Eight patients with gynecological cancer and 7 with oral cavity/oropharyngeal cancer underwent a whole-body 18 F-FDG PET/CT scan and regional PET/MR scan in one day. PET/MR scans were performed for 10 minutes in the list mode, and PET/CT and 0-2 min and 0-10 min PET/MR images were reconstructed. The standardized uptake value (SUV), tumor-to-muscle SUV ratio (TMR), skewness, kurtosis, entropy, homogeneity, short-run emphasis (SRE), and long-run emphasis (LRE) were compared between PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min images.
NASA Astrophysics Data System (ADS)
Cha, Min Kyoung; Ko, Hyun Soo; Jung, Woo Young; Ryu, Jae Kwang; Choe, Bo-Young
2015-08-01
The Accuracy of registration between positron emission tomography (PET) and computed tomography (CT) images is one of the important factors for reliable diagnosis in PET/CT examinations. Although quality control (QC) for checking alignment of PET and CT images should be performed periodically, the procedures have not been fully established. The aim of this study is to determine optimal quality control (QC) procedures that can be performed at the user level to ensure the accuracy of PET/CT registration. Two phantoms were used to carry out this study: the American college of Radiology (ACR)-approved PET phantom and National Electrical Manufacturers Association (NEMA) International Electrotechnical Commission (IEC) body phantom, containing fillable spheres. All PET/CT images were acquired on a Biograph TruePoint 40 PET/CT scanner using routine protocols. To measure registration error, the spatial coordinates of the estimated centers of the target slice (spheres) was calculated independently for the PET and the CT images in two ways. We compared the images from the ACR-approved PET phantom to that from the NEMA IEC body phantom. Also, we measured the total time required from phantom preparation to image analysis. The first analysis method showed a total difference of 0.636 ± 0.11 mm for the largest hot sphere and 0.198 ± 0.09 mm for the largest cold sphere in the case of the ACR-approved PET phantom. In the NEMA IEC body phantom, the total difference was 3.720 ± 0.97 mm for the largest hot sphere and 4.800 ± 0.85 mm for the largest cold sphere. The second analysis method showed that the differences in the x location at the line profile of the lesion on PET and CT were (1.33, 1.33) mm for a bone lesion, (-1.26, -1.33) mm for an air lesion and (-1.67, -1.60) mm for a hot sphere lesion for the ACR-approved PET phantom. For the NEMA IEC body phantom, the differences in the x location at the line profile of the lesion on PET and CT were (-1.33, 4.00) mm for the air lesion and (1.33, -1.29) mm for a hot sphere lesion. These registration errors from this study were reasonable compared to the errors reported in previous studies. Meanwhile, the total time required from phantom preparation was 67.72 ± 4.50 min for the ACR-approved PET phantom and 96.78 ± 8.50 min for the NEMA IEC body phantom. When the registration errors and the lead times are considered, the method using the ACR-approved PET phantom was more practical and useful than the method using the NEMA IEC body phantom.
Hybrid MR-PET of brain tumours using amino acid PET and chemical exchange saturation transfer MRI.
da Silva, N A; Lohmann, P; Fairney, J; Magill, A W; Oros Peusquens, A-M; Choi, C-H; Stirnberg, R; Stoffels, G; Galldiks, N; Golay, X; Langen, K-J; Jon Shah, N
2018-06-01
PET using radiolabelled amino acids has become a promising tool in the diagnostics of gliomas and brain metastasis. Current research is focused on the evaluation of amide proton transfer (APT) chemical exchange saturation transfer (CEST) MR imaging for brain tumour imaging. In this hybrid MR-PET study, brain tumours were compared using 3D data derived from APT-CEST MRI and amino acid PET using O-(2- 18 F-fluoroethyl)-L-tyrosine ( 18 F-FET). Eight patients with gliomas were investigated simultaneously with 18 F-FET PET and APT-CEST MRI using a 3-T MR-BrainPET scanner. CEST imaging was based on a steady-state approach using a B 1 average power of 1μT. B 0 field inhomogeneities were corrected a Prametric images of magnetisation transfer ratio asymmetry (MTR asym ) and differences to the extrapolated semi-solid magnetisation transfer reference method, APT# and nuclear Overhauser effect (NOE#), were calculated. Statistical analysis of the tumour-to-brain ratio of the CEST data was performed against PET data using the non-parametric Wilcoxon test. A tumour-to-brain ratio derived from APT# and 18 F-FET presented no significant differences, and no correlation was found between APT# and 18 F-FET PET data. The distance between local hot spot APT# and 18 F-FET were different (average 20 ± 13 mm, range 4-45 mm). For the first time, CEST images were compared with 18 F-FET in a simultaneous MR-PET measurement. Imaging findings derived from 18 F-FET PET and APT CEST MRI seem to provide different biological information. The validation of these imaging findings by histological confirmation is necessary, ideally using stereotactic biopsy.
The current status of positron emission tomography.
Digby, W; Keppler, J
2000-01-01
Positron emission tomography (PET), invented over 25 years ago, is the only imaging technique that provides images of the biological basis of disease. Since disease is a biological process, PET routinely detects disease when other imaging studies, such as CT and MRI, are normal. In addition to its clinical effectiveness, PET has been shown to reduce costs, primarily due to the elimination of other less accurate diagnostic tests and ineffective surgeries. PET has been determined to be applicable to a number of specific applications in the areas of: imaging cancer patients, characterizing myocardial blood flow and viability, and brain imaging in various physiological and pathologic conditions. Tremendous progress has been made in resolving the regulatory and reimbursement issues facing the field of PET. Working with HCFA, representatives of the Institute for Clinical PET and the Society of Nuclear Medicine have brought about expanded HCFA coverage for PET. When HCFA first authorized payment for PET, all coverage decisions were restricted to HCFA and an expanded national coverage policy. HCFA revised its national coverage policy in 1997; this was the first of several steps taken by HCFA towards careful expansion of PET reimbursement. In March 1999, three new indications for whole-body PET scans were added to Medicare's coverage policy. The Institute for Clinical PET is continuing to work with HCFA on continued, appropriate expansion of the coverage policy. This article is partially excerpted from a written statement made by Terry Douglass, Ph.D., president of CTI, Inc., on May 12, 1999, before the Senate Committee on Commerce, Science and Transportation and its Subcommittee on Science, Technology and Space. This was part of the committee's study of "Emerging Technologies in the New Millennium."
PET and MR imaging: the odd couple or a match made in heaven?
Catana, Ciprian; Guimaraes, Alexander R; Rosen, Bruce R
2013-05-01
PET and MR imaging are modalities routinely used for clinical and research applications. Integrated scanners capable of acquiring PET and MR imaging data in the same session, sequentially or simultaneously, have recently become available for human use. In this article, we describe some of the technical advances that allowed the development of human PET/MR scanners; briefly discuss methodologic challenges and opportunities provided by this novel technology; and present potential oncologic, cardiac, and neuropsychiatric applications. These examples range from studies that might immediately benefit from PET/MR to more advanced applications on which future development might have an even broader impact.
18F-FDG PET/MRI fusion in characterizing pancreatic tumors: comparison to PET/CT.
Tatsumi, Mitsuaki; Isohashi, Kayako; Onishi, Hiromitsu; Hori, Masatoshi; Kim, Tonsok; Higuchi, Ichiro; Inoue, Atsuo; Shimosegawa, Eku; Takeda, Yutaka; Hatazawa, Jun
2011-08-01
To demonstrate that positron emission tomography (PET)/magnetic resonance imaging (MRI) fusion was feasible in characterizing pancreatic tumors (PTs), comparing MRI and computed tomography (CT) as mapping images for fusion with PET as well as fused PET/MRI and PET/CT. We retrospectively reviewed 47 sets of (18)F-fluorodeoxyglucose ((18)F -FDG) PET/CT and MRI examinations to evaluate suspected or known pancreatic cancer. To assess the ability of mapping images for fusion with PET, CT (of PET/CT), T1- and T2-weighted (w) MR images (all non-contrast) were graded regarding the visibility of PT (5-point confidence scale). Fused PET/CT, PET/T1-w or T2-w MR images of the upper abdomen were evaluated to determine whether mapping images provided additional diagnostic information to PET alone (3-point scale). The overall quality of PET/CT or PET/MRI sets in diagnosis was also assessed (3-point scale). These PET/MRI-related scores were compared to PET/CT-related scores and the accuracy in characterizing PTs was compared. Forty-three PTs were visualized on CT or MRI, including 30 with abnormal FDG uptake and 13 without. The confidence score for the visibility of PT was significantly higher on T1-w MRI than CT. The scores for additional diagnostic information to PET and overall quality of each image set in diagnosis were significantly higher on the PET/T1-w MRI set than the PET/CT set. The diagnostic accuracy was higher on PET/T1-w or PET/T2-w MRI (93.0 and 90.7%, respectively) than PET/CT (88.4%), but statistical significance was not obtained. PET/MRI fusion, especially PET with T1-w MRI, was demonstrated to be superior to PET/CT in characterizing PTs, offering better mapping and fusion image quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deniaud-Alexandre, Elisabeth; Touboul, Emmanuel; Lerouge, Delphine
2005-12-01
Purpose: To report a retrospective study concerning the impact of fused {sup 18}F-fluoro-deoxy-D-glucose (FDG)-hybrid positron emission tomography (PET) and CT images on three-dimensional conformal radiotherapy planning for patients with non-small-cell lung cancer. Methods and Materials: A total of 101 patients consecutively treated for Stage I-III non-small-cell lung cancer were studied. Each patient underwent CT and FDG-hybrid PET for simulation treatment in the same treatment position. Images were coregistered using five fiducial markers. Target volume delineation was initially performed on the CT images, and the corresponding FDG-PET data were subsequently used as an overlay to the CT data to define themore » target volume. Results: {sup 18}F-fluoro-deoxy-D-glucose-PET identified previously undetected distant metastatic disease in 8 patients, making them ineligible for curative conformal radiotherapy (1 patient presented with some positive uptake corresponding to concomitant pulmonary tuberculosis). Another patient was ineligible for curative treatment because the fused PET-CT images demonstrated excessively extensive intrathoracic disease. The gross tumor volume (GTV) was decreased by CT-PET image fusion in 21 patients (23%) and was increased in 24 patients (26%). The GTV reduction was {>=}25% in 7 patients because CT-PET image fusion reduced the pulmonary GTV in 6 patients (3 patients with atelectasis) and the mediastinal nodal GTV in 1 patient. The GTV increase was {>=}25% in 14 patients owing to an increase in the pulmonary GTV in 11 patients (4 patients with atelectasis) and detection of occult mediastinal lymph node involvement in 3 patients. Of 81 patients receiving a total dose of {>=}60 Gy at the International Commission on Radiation Units and Measurements point, after CT-PET image fusion, the percentage of total lung volume receiving >20 Gy increased in 15 cases and decreased in 22. The percentage of total heart volume receiving >36 Gy increased in 8 patients and decreased in 14. The spinal cord volume receiving at least 45 Gy (2 patients) decreased. Multivariate analysis showed that tumor with atelectasis was the single independent factor that resulted in a significant effect on the modification of the size of the GTV by FDG-PET: tumor with atelectasis (with vs. without atelectasis, p = 0.0001). Conclusion: The results of our study have confirmed that integrated hybrid PET/CT in the treatment position and coregistered images have an impact on treatment planning and management of non-small-cell lung cancer. However, FDG images using dedicated PET scanners and respiration-gated acquisition protocols could improve the PET-CT image coregistration. Furthermore, the impact on treatment outcome remains to be demonstrated.« less
Kalantari, Faraz; Li, Tianfang; Jin, Mingwu; Wang, Jing
2016-01-01
In conventional 4D positron emission tomography (4D-PET), images from different frames are reconstructed individually and aligned by registration methods. Two issues that arise with this approach are as follows: 1) the reconstruction algorithms do not make full use of projection statistics; and 2) the registration between noisy images can result in poor alignment. In this study, we investigated the use of simultaneous motion estimation and image reconstruction (SMEIR) methods for motion estimation/correction in 4D-PET. A modified ordered-subset expectation maximization algorithm coupled with total variation minimization (OSEM-TV) was used to obtain a primary motion-compensated PET (pmc-PET) from all projection data, using Demons derived deformation vector fields (DVFs) as initial motion vectors. A motion model update was performed to obtain an optimal set of DVFs in the pmc-PET and other phases, by matching the forward projection of the deformed pmc-PET with measured projections from other phases. The OSEM-TV image reconstruction was repeated using updated DVFs, and new DVFs were estimated based on updated images. A 4D-XCAT phantom with typical FDG biodistribution was generated to evaluate the performance of the SMEIR algorithm in lung and liver tumors with different contrasts and different diameters (10 to 40 mm). The image quality of the 4D-PET was greatly improved by the SMEIR algorithm. When all projections were used to reconstruct 3D-PET without motion compensation, motion blurring artifacts were present, leading up to 150% tumor size overestimation and significant quantitative errors, including 50% underestimation of tumor contrast and 59% underestimation of tumor uptake. Errors were reduced to less than 10% in most images by using the SMEIR algorithm, showing its potential in motion estimation/correction in 4D-PET. PMID:27385378
NASA Astrophysics Data System (ADS)
Kalantari, Faraz; Li, Tianfang; Jin, Mingwu; Wang, Jing
2016-08-01
In conventional 4D positron emission tomography (4D-PET), images from different frames are reconstructed individually and aligned by registration methods. Two issues that arise with this approach are as follows: (1) the reconstruction algorithms do not make full use of projection statistics; and (2) the registration between noisy images can result in poor alignment. In this study, we investigated the use of simultaneous motion estimation and image reconstruction (SMEIR) methods for motion estimation/correction in 4D-PET. A modified ordered-subset expectation maximization algorithm coupled with total variation minimization (OSEM-TV) was used to obtain a primary motion-compensated PET (pmc-PET) from all projection data, using Demons derived deformation vector fields (DVFs) as initial motion vectors. A motion model update was performed to obtain an optimal set of DVFs in the pmc-PET and other phases, by matching the forward projection of the deformed pmc-PET with measured projections from other phases. The OSEM-TV image reconstruction was repeated using updated DVFs, and new DVFs were estimated based on updated images. A 4D-XCAT phantom with typical FDG biodistribution was generated to evaluate the performance of the SMEIR algorithm in lung and liver tumors with different contrasts and different diameters (10-40 mm). The image quality of the 4D-PET was greatly improved by the SMEIR algorithm. When all projections were used to reconstruct 3D-PET without motion compensation, motion blurring artifacts were present, leading up to 150% tumor size overestimation and significant quantitative errors, including 50% underestimation of tumor contrast and 59% underestimation of tumor uptake. Errors were reduced to less than 10% in most images by using the SMEIR algorithm, showing its potential in motion estimation/correction in 4D-PET.
Larsson, Anne; Johansson, Adam; Axelsson, Jan; Nyholm, Tufve; Asklund, Thomas; Riklund, Katrine; Karlsson, Mikael
2013-02-01
The aim of this study was to evaluate MR-based attenuation correction of PET emission data of the head, based on a previously described technique that calculates substitute CT (sCT) images from a set of MR images. Images from eight patients, examined with (18)F-FLT PET/CT and MRI, were included. sCT images were calculated and co-registered to the corresponding CT images, and transferred to the PET/CT scanner for reconstruction. The new reconstructions were then compared with the originals. The effect of replacing bone with soft tissue in the sCT-images was also evaluated. The average relative difference between the sCT-corrected PET images and the CT-corrected PET images was 1.6% for the head and 1.9% for the brain. The average standard deviations of the relative differences within the head were relatively high, at 13.2%, primarily because of large differences in the nasal septa region. For the brain, the average standard deviation was lower, 4.1%. The global average difference in the head when replacing bone with soft tissue was 11%. The method presented here has a high rate of accuracy, but high-precision quantitative imaging of the nasal septa region is not possible at the moment.
Ziegler, Susanne; Jakoby, Bjoern W; Braun, Harald; Paulus, Daniel H; Quick, Harald H
2015-12-01
In integrated PET/MR hybrid imaging the evaluation of PET performance characteristics according to the NEMA standard NU 2-2007 is challenging because of incomplete MR-based attenuation correction (AC) for phantom imaging. In this study, a strategy for CT-based AC of the NEMA image quality (IQ) phantom is assessed. The method is systematically evaluated in NEMA IQ phantom measurements on an integrated PET/MR system. NEMA IQ measurements were performed on the integrated 3.0 Tesla PET/MR hybrid system (Biograph mMR, Siemens Healthcare). AC of the NEMA IQ phantom was realized by an MR-based and by a CT-based method. The suggested CT-based AC uses a template μ-map of the NEMA IQ phantom and a phantom holder for exact repositioning of the phantom on the systems patient table. The PET image quality parameters contrast recovery, background variability, and signal-to-noise ratio (SNR) were determined and compared for both phantom AC methods. Reconstruction parameters of an iterative 3D OP-OSEM reconstruction were optimized for highest lesion SNR in NEMA IQ phantom imaging. Using a CT-based NEMA IQ phantom μ-map on the PET/MR system is straightforward and allowed performing accurate NEMA IQ measurements on the hybrid system. MR-based AC was determined to be insufficient for PET quantification in the tested NEMA IQ phantom because only photon attenuation caused by the MR-visible phantom filling but not the phantom housing is considered. Using the suggested CT-based AC, the highest SNR in this phantom experiment for small lesions (<= 13 mm) was obtained with 3 iterations, 21 subsets and 4 mm Gaussian filtering. This study suggests CT-based AC for the NEMA IQ phantom when performing PET NEMA IQ measurements on an integrated PET/MR hybrid system. The superiority of CT-based AC for this phantom is demonstrated by comparison to measurements using MR-based AC. Furthermore, optimized PET image reconstruction parameters are provided for the highest lesion SNR in NEMA IQ phantom measurements.
TH-E-202-01: Pitfalls and Remedies in PET/CT Imaging for RT Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, T.
2016-06-15
PET/CT is a very important imaging tool in the management of oncology patients. PET/CT has been applied for treatment planning and response evaluation in radiation therapy. This educational session will discuss: Pitfalls and remedies in PET/CT imaging for RT planning The use of hypoxia PET imaging for radiotherapy PET for tumor response evaluation The first presentation will address the issue of mis-registration between the CT and PET images in the thorax and the abdomen. We will discuss the challenges of respiratory gating and introduce an average CT technique to improve the registration for dose calculation and image-guidance in radiation therapy.more » The second presentation will discuss the use of hypoxia PET Imaging for radiation therapy. We will discuss various hypoxia radiotracers, the choice of clinical acquisition protocol (in particular a single late static acquisition versus a dynamic acquisition), and the compartmental modeling with different transfer rate constants explained. We will demonstrate applications of hypoxia imaging for dose escalation/de-escalation in clinical trials. The last presentation will discuss the use of PET/CT for tumor response evaluation. We will discuss anatomic response assessment vs. metabolic response assessment, visual evaluation and semi-quantitative evaluation, and limitations of current PET/CT assessment. We will summarize clinical trials using PET response in guiding adaptive radiotherapy. Finally, we will summarize recent advancements in PET/CT radiomics and non-FDG PET tracers for response assessment. Learning Objectives: Identify the causes of mis-registration of CT and PET images in PET/CT, and review the strategies to remedy the issue. Understand the basics of PET imaging of tumor hypoxia (radiotracers, how PET measures the hypoxia selective uptake, imaging protocols, applications in chemo-radiation therapy). Understand the basics of dynamic PET imaging, compartmental modeling and parametric images. Understand the basics of using FDG PET/CT for tumor response evaluation. Learn about recent advancement in PET/CT radiomics and non-FDG PET tracers for response assessment. This work was supported in part by the National Cancer Institute Grants R01CA172638.; W. Lu, This work was supported in part by the National Cancer Institute Grants R01CA172638.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapuyade-Lahorgue, J; Ruan, S; Li, H
Purpose: Multi-tracer PET imaging is getting more attention in radiotherapy by providing additional tumor volume information such as glucose and oxygenation. However, automatic PET-based tumor segmentation is still a very challenging problem. We propose a statistical fusion approach to joint segment the sub-area of tumors from the two tracers FDG and FMISO PET images. Methods: Non-standardized Gamma distributions are convenient to model intensity distributions in PET. As a serious correlation exists in multi-tracer PET images, we proposed a new fusion method based on copula which is capable to represent dependency between different tracers. The Hidden Markov Field (HMF) model ismore » used to represent spatial relationship between PET image voxels and statistical dynamics of intensities for each modality. Real PET images of five patients with FDG and FMISO are used to evaluate quantitatively and qualitatively our method. A comparison between individual and multi-tracer segmentations was conducted to show advantages of the proposed fusion method. Results: The segmentation results show that fusion with Gaussian copula can receive high Dice coefficient of 0.84 compared to that of 0.54 and 0.3 of monomodal segmentation results based on individual segmentation of FDG and FMISO PET images. In addition, high correlation coefficients (0.75 to 0.91) for the Gaussian copula for all five testing patients indicates the dependency between tumor regions in the multi-tracer PET images. Conclusion: This study shows that using multi-tracer PET imaging can efficiently improve the segmentation of tumor region where hypoxia and glucidic consumption are present at the same time. Introduction of copulas for modeling the dependency between two tracers can simultaneously take into account information from both tracers and deal with two pathological phenomena. Future work will be to consider other families of copula such as spherical and archimedian copulas, and to eliminate partial volume effect by considering dependency between neighboring voxels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalantari, F; Wang, J; Li, T
2015-06-15
Purpose: In conventional 4D-PET, images from different frames are reconstructed individually and aligned by registration methods. Two issues with these approaches are: 1) Reconstruction algorithms do not make full use of all projections statistics; and 2) Image registration between noisy images can Result in poor alignment. In this study we investigated the use of simultaneous motion estimation and image reconstruction (SMEIR) method for cone beam CT for motion estimation/correction in 4D-PET. Methods: Modified ordered-subset expectation maximization algorithm coupled with total variation minimization (OSEM- TV) is used to obtain a primary motion-compensated PET (pmc-PET) from all projection data using Demons derivedmore » deformation vector fields (DVFs) as initial. Motion model update is done to obtain an optimal set of DVFs between the pmc-PET and other phases by matching the forward projection of the deformed pmc-PET and measured projections of other phases. Using updated DVFs, OSEM- TV image reconstruction is repeated and new DVFs are estimated based on updated images. 4D XCAT phantom with typical FDG biodistribution and a 10mm diameter tumor was used to evaluate the performance of the SMEIR algorithm. Results: Image quality of 4D-PET is greatly improved by the SMEIR algorithm. When all projections are used to reconstruct a 3D-PET, motion blurring artifacts are present, leading to a more than 5 times overestimation of the tumor size and 54% tumor to lung contrast ratio underestimation. This error reduced to 37% and 20% for post reconstruction registration methods and SMEIR respectively. Conclusion: SMEIR method can be used for motion estimation/correction in 4D-PET. The statistics is greatly improved since all projection data are combined together to update the image. The performance of the SMEIR algorithm for 4D-PET is sensitive to smoothness control parameters in the DVF estimation step.« less
Kajander, Sami; Saraste, Antti; Ukkonen, Heikki; Knuuti, Juhani
2010-05-01
CT coronary angiography and perfusion PET form an attractive combination to study coronary artery lesions and their consequences in patients with coronary artery disease. Whereas CT provides non-invasive assessment of coronary lumen and wall, PET perfusion is a reliable method for the evaluation of myocardial flow. CT, although very capable of ruling out significant coronary artery disease, is less than satisfactory in assessing the actual significance of the detected lesions. PET imaging, despite its excellent sensitivity, fails to describe the exact anatomy of the epicardial vessels. By fusing image data from these two modalities, lesions can be accurately correlated with their physiological or anatomical counterparts. Hybrid PET-CT devices, now in wide clinical use, allow such fusion in a one-stop-shop study. Although still seeking its place in clinical scenarios, growing evidence suggests that hybrid PET-CT imaging of coronary anatomy and myocardial perfusion can accurately - and non-invasively - assess the existence and degree of coronary artery disease.
Approaches using molecular imaging technology - use of PET in clinical microdose studies§
Wagner, Claudia C; Langer, Oliver
2013-01-01
Positron emission tomography (PET) imaging uses minute amounts of radiolabeled drug tracers and thereby meets the criteria for clinical microdose studies. The advantage of PET, when compared to other analytical methods used in microdose studies, is that the pharmacokinetics (PK) of a drug can be determined in the tissue targeted for drug treatment. PET microdosing already offers interesting applications in clinical oncology and in the development of central nervous system pharmaceuticals and is extending its range of application to many other fields of pharmaceutical medicine. Although requirements for preclinical safety testing for microdose studies have been cut down by regulatory authorities, radiopharmaceuticals increasingly need to be produced under good manufacturing practice (GMP) conditions, which increases the costs of PET microdosing studies. Further challenges in PET microdosing include combining PET with other ultrasensitive analytical methods, such as accelerator mass spectrometry (AMS), to gain plasma PK data of drugs, beyond the short PET examination periods. Finally, conducting clinical PET studies with radiolabeled drugs both at micro- and therapeutic doses is encouraged to answer the question of dose linearity in clinical microdosing. PMID:20887762
Treglia, Giorgio; Mattoli, Maria Vittoria; Leccisotti, Lucia; Ferraccioli, Gianfranco; Giordano, Alessandro
2011-10-01
The objective of this study is to systematically review the role of positron emission tomography (PET) and PET/computed tomography (PET/CT) with fluorine-18-fluorodeoxyglucose (FDG) in patients with large-vessel vasculitis (LVV). A comprehensive literature search of published studies through April 2011 in PubMed/MEDLINE and Scopus databases regarding whole-body FDG-PET and PET/CT in patients with LVV was performed. We identified 32 studies including 604 LVV patients. The main findings of these studies are presented. The conclusions are the following: (1) FDG-PET and PET/CT are useful imaging methods in the initial diagnosis and in the assessment of activity and extent of disease in patients with LVV; (2) the correlation between FDG-PET findings and serological levels of inflammatory markers, as well as the usefulness of FDG-PET and PET/CT in evaluating treatment response, remains unclear; (3) it appears that there is a superiority of FDG-PET and PET/CT over conventional imaging methods in the diagnosis of LVV, but not in assessing disease activity under immunosuppressive treatment, in predicting relapse or in evaluating vascular complications; and (4) given the heterogeneity between studies with regard to PET analysis and diagnostic criteria, a standardization of the technique is needed.
Shakespeare, Thomas P
2015-11-18
Positron emission tomography (PET) imaging is routinely used in many cancer types, although is not yet a standard modality for prostate carcinoma. Prostate-specific membrane antigen (PSMA) PET is a promising new modality for staging prostate cancer, with recent studies showing potential advantages over traditional computed tomography (CT), magnetic resonance imaging (MRI) and nuclear medicine bone scan imaging. However, the impact of PSMA PET on the decision-making of radiation oncologists and outcomes after radiotherapy is yet to be determined. Our aim was to determine the impact of PSMA PET on a radiation oncologist's clinical practice. Patients in a radiation oncology clinic who underwent PSMA PET were prospectively recorded in an electronic oncology record. Patient demographics, outcomes of imaging, and impact on decision-making were evaluated. Fifty-four patients underwent PSMA PET between January and May 2015. The major reasons for undergoing PET included staging before definitive (14.8%) or post-prostatectomy (33.3%) radiotherapy, and investigation of PSA failures following definitive (16.7%) or post-prostatectomy (33.3%) radiotherapy. In 46.3% of patients PSMA was positive after negative traditional imaging, in 9.3% PSMA was positive after equivocal imaging, and in 13.0% PSMA was negative after equivocal imaging. PSMA PET changed radiotherapy management in 46.3% of cases, and hormone therapy in 33.3% of patients, with an overall change in decision-making in 53.7% of patients. PSMA PET has the potential to significantly alter the decision-making of radiation oncologists, and may become a valuable imaging tool in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keall, P; Pollock, S; Yang, J
2014-06-01
Purpose: The ability of audiovisual (AV) biofeedback to improve breathing regularity has not previously been investigated for functional imaging studies. The purpose of this study was to investigate the impact of AV biofeedback on 4D-PET and 4D-CT image quality in a prospective clinical trial. We hypothesized that motion blurring in 4D-PET images and the number of artifacts in 4D-CT images are reduced using AV biofeedback. Methods: AV biofeedback is a real-time, interactive and personalized system designed to help a patient self-regulate his/her breathing using a patient-specific representative waveform and musical guides. In an IRB-approved prospective clinical trial, 4D-PET and 4D-CTmore » images of 10 lung cancer patients were acquired with AV biofeedback (AV) and free breathing (FB). The 4D-PET images in 6 respiratory bins were analyzed for motion blurring by: (1) decrease of GTVPET and (2) increase of SUVmax in 4-DPET compared to 3D-PET. The 4D-CT images were analyzed for artifacts by: (1) comparing normalized cross correlation-based scores (NCCS); and (2) quantifying a visual assessment score (VAS). A two-tailed paired t-test was used to test the hypotheses. Results: The impact of AV biofeedback on 4D-PET and 4D-CT images varied widely between patients, suggesting inconsistent patient comprehension and capability. Overall, the 4D-PET decrease of GTVPET was 2.0±3.0cm3 with AV and 2.3±3.9cm{sup 3} for FB (p=0.61). The 4D-PET increase of SUVmax was 1.6±1.0 with AV and 1.1±0.8 with FB (p=0.002). The 4D-CT NCCS were 0.65±0.27 with AV and 0.60±0.32 for FB (p=0.32). The 4D-CT VAS was 0.0±2.7 (p=ns). Conclusion: A 10-patient study demonstrated a statistically significant reduction of motion blurring of AV over FB for 1/2 functional 4D-PET imaging metrics. No difference between AV and FB was found for 2 anatomic 4D-CT imaging metrics. Future studies will focus on optimizing the human-computer interface and including patient training sessions for improved comprehension and capability. Supported by NIH/NCI R01 CA 093626, Stanford BioX Interdisciplinary Initiatives Program, NHMRC Australia Fellowship, and Kwanjeong Educational Foundation. GE Healthcare provided the Respiratory Gating Toolbox for 4D-PET image reconstruction. Stanford University owns US patent #E7955270 which is unlicensed to any commercial entity.« less
Scatter characterization and correction for simultaneous multiple small-animal PET imaging.
Prasad, Rameshwar; Zaidi, Habib
2014-04-01
The rapid growth and usage of small-animal positron emission tomography (PET) in molecular imaging research has led to increased demand on PET scanner's time. One potential solution to increase throughput is to scan multiple rodents simultaneously. However, this is achieved at the expense of deterioration of image quality and loss of quantitative accuracy owing to enhanced effects of photon attenuation and Compton scattering. The purpose of this work is, first, to characterize the magnitude and spatial distribution of the scatter component in small-animal PET imaging when scanning single and multiple rodents simultaneously and, second, to assess the relevance and evaluate the performance of scatter correction under similar conditions. The LabPET™-8 scanner was modelled as realistically as possible using Geant4 Application for Tomographic Emission Monte Carlo simulation platform. Monte Carlo simulations allow the separation of unscattered and scattered coincidences and as such enable detailed assessment of the scatter component and its origin. Simple shape-based and more realistic voxel-based phantoms were used to simulate single and multiple PET imaging studies. The modelled scatter component using the single-scatter simulation technique was compared to Monte Carlo simulation results. PET images were also corrected for attenuation and the combined effect of attenuation and scatter on single and multiple small-animal PET imaging evaluated in terms of image quality and quantitative accuracy. A good agreement was observed between calculated and Monte Carlo simulated scatter profiles for single- and multiple-subject imaging. In the LabPET™-8 scanner, the detector covering material (kovar) contributed the maximum amount of scatter events while the scatter contribution due to lead shielding is negligible. The out-of field-of-view (FOV) scatter fraction (SF) is 1.70, 0.76, and 0.11% for lower energy thresholds of 250, 350, and 400 keV, respectively. The increase in SF ranged between 25 and 64% when imaging multiple subjects (three to five) of different size simultaneously in comparison to imaging a single subject. The spill-over ratio (SOR) increases with increasing the number of subjects in the FOV. Scatter correction improved the SOR for both water and air cold compartments of single and multiple imaging studies. The recovery coefficients for different body parts of the mouse whole-body and rat whole-body anatomical models were improved for multiple imaging studies following scatter correction. The magnitude and spatial distribution of the scatter component in small-animal PET imaging of single and multiple subjects simultaneously were characterized, and its impact was evaluated in different situations. Scatter correction improves PET image quality and quantitative accuracy for single rat and simultaneous multiple mice and rat imaging studies, whereas its impact is insignificant in single mouse imaging.
Suppiah, Subapriya; Chang, Wing Liong; Hassan, Hasyma Abu; Kaewput, Chalermrat; Asri, Andi Anggeriana Andi; Saad, Fathinul Fikri Ahmad; Nordin, Abdul Jalil; Vinjamuri, Sobhan
2017-01-01
Ovarian cancer (OC) often presents at an advanced stage with frequent relapses despite optimal treatment; thus, accurate staging and restaging are required for improving treatment outcomes and prognostication. Conventionally, staging of OC is performed using contrast-enhanced computed tomography (CT). Nevertheless, recent advances in the field of hybrid imaging have made positron emission tomography/CT (PET/CT) and PET/magnetic resonance imaging (PET/MRI) as emerging potential noninvasive imaging tools for improved management of OC. Several studies have championed the role of PET/CT for the detection of recurrence and prognostication of OC. We provide a systematic review and meta-analysis of the latest publications regarding the role of molecular imaging in the management of OC. We retrieved 57 original research articles with one article having overlap in both diagnosis and staging; 10 articles (734 patients) regarding the role of PET/CT in diagnosis of OC; 12 articles (604 patients) regarding staging of OC; 22 studies (1429 patients) for detection of recurrence; and 13 articles for prognostication and assessment of treatment response. We calculated pooled sensitivity and specificity of PET/CT performance in various aspects of imaging of OC. We also discussed the emerging role of PET/MRI in the management of OC. We aim to give the readers and objective overview on the role of molecular imaging in the management of OC. PMID:28670174
Bias atlases for segmentation-based PET attenuation correction using PET-CT and MR.
Ouyang, Jinsong; Chun, Se Young; Petibon, Yoann; Bonab, Ali A; Alpert, Nathaniel; Fakhri, Georges El
2013-10-01
This study was to obtain voxel-wise PET accuracy and precision using tissue-segmentation for attenuation correction. We applied multiple thresholds to the CTs of 23 patients to classify tissues. For six of the 23 patients, MR images were also acquired. The MR fat/in-phase ratio images were used for fat segmentation. Segmented tissue classes were used to create attenuation maps, which were used for attenuation correction in PET reconstruction. PET bias images were then computed using the PET reconstructed with the original CT as the reference. We registered the CTs for all the patients and transformed the corresponding bias images accordingly. We then obtained the mean and standard deviation bias atlas using all the registered bias images. Our CT-based study shows that four-class segmentation (air, lungs, fat, other tissues), which is available on most PET-MR scanners, yields 15.1%, 4.1%, 6.6%, and 12.9% RMSE bias in lungs, fat, non-fat soft-tissues, and bones, respectively. An accurate fat identification is achievable using fat/in-phase MR images. Furthermore, we have found that three-class segmentation (air, lungs, other tissues) yields less than 5% standard deviation of bias within the heart, liver, and kidneys. This implies that three-class segmentation can be sufficient to achieve small variation of bias for imaging these three organs. Finally, we have found that inter- and intra-patient lung density variations contribute almost equally to the overall standard deviation of bias within the lungs.
VPAC1 targeted 64Cu-TP3805 PET imaging of prostate cancer: preliminary evaluation in man
Tripathi, Sushil; Trabulsi, Edouard J; Gomella, Leonard; Kim, Sung; McCue, Peter; Intenzo, Charles; Birbe, Ruth; Gandhe, Ashish; Kumar, Pardeep; Thakur, Mathew
2015-01-01
Objectives To evaluate 64Cu-TP3805 as a novel biomolecule, to PET image prostate cancer (PC), at the onset of which VPAC1, the superfamily of G-protein coupled receptors, is expressed in high density on PC cells, but not on normal cells. Methods 25 patients undergoing radical prostatectomy were PET/CT imaged preoperatively with 64Cu-TP3805. Standardized uptake values (SUVmax) were determined, malignant lesions (SUV > 1.0) counted, and compared with histologic findings. Whole mount pathology slides from 6 VPAC1 PET imaged patients, 3 BPH patients, one malignant and one benign lymph node underwent digital autoradiography (DAR) after 64Cu-TP3805 incubation and compared to H&E stained slides. Results In 25 patient PET imaging, 212 prostate gland lesions had SUVmax > 1.0 vs.127 lesions identified by histology of biopsy tissues. The status of the additional 85 PET identified prostate lesions remains to be determined. In 68 histological slides from 6 PET imaged patients, DAR identified 105/107 PC foci, 19/19 HGPIN, and ejaculatory ducts and verumontanum involved with cancer. Additionally, DAR found 9 PC lesions not previously identified histologically. The positive and negative lymph nodes were correctly identified and in 3/3 BPH patients and 5/5 cysts, DAR was negative. Conclusion This feasibility study demonstrated that 64Cu-TP3805 delineates PC in vivo and ex vivo, provided normal images for benign masses, and is worthy of further studies. PMID:26519886
Gould, Robert W.; Duke, Angela N.; Nader, Michael A.
2013-01-01
The current review highlights the utility of positron emission tomography (PET) imaging to study the neurobiological substrates underlying vulnerability to cocaine addiction and subsequent adaptations following chronic cocaine self-administration in nonhuman primate models of cocaine abuse. Environmental (e.g., social rank) and sex-specific influences on dopaminergic function and sensitivity to the reinforcing effects of cocaine are discussed. Cocaine-related cognitive deficits have been hypothesized to contribute to high rates of relapse and are described in nonhuman primate models. Lastly, the long-term consequences of cocaine on neurobiology are discussed. PET imaging and longitudinal, within-subject behavioral studies in nonhuman primates have provided a strong framework for designing pharmacological and behavioral treatment strategies to aid drug-dependent treatment seekers. Non-invasive PET imaging will allow for individualized treatment strategies. Recent advances in radiochemistry of novel PET ligands and other imaging modalities can further advance our understanding of stimulant use on the brain. PMID:23458573
Klenk, Christopher; Gawande, Rakhee; Tran, Vy Thao; Leung, Jennifer Trinh; Chi, Kevin; Owen, Daniel; Luna-Fineman, Sandra; Sakamoto, Kathleen M; McMillan, Alex; Quon, Andy; Daldrup-Link, Heike E
2016-01-01
With the increasing availability of integrated PET/MR scanners, the utility and need for MR contrast agents for combined scans is questioned. The purpose of our study was to evaluate whether administration of gadolinium chelates is necessary for evaluation of pediatric tumors on (18)F-FDG PET/MR images. First, in 119 pediatric patients with primary and secondary tumors, we used 14 diagnostic criteria to compare the accuracy of several MR sequences: unenhanced T2-weighted fast spin-echo imaging; unenhanced diffusion-weighted imaging; and-before and after gadolinium chelate contrast enhancement-T1-weighted 3-dimensional spoiled gradient echo LAVA (liver acquisition with volume acquisition) imaging. Next, in a subset of 36 patients who had undergone (18)F-FDG PET within 3 wk of MRI, we fused the PET images with the unenhanced T2-weighted MR images (unenhanced (18)F-FDG PET/MRI) and the enhanced T1-weighted MR images (enhanced (18)F-FDG PET/MRI). Using the McNemar test, we compared the accuracy of the two types of fused images using the 14 diagnostic criteria. We also evaluated the concordance between (18)F-FDG avidity and gadolinium chelate enhancement. The standard of reference was histopathologic results, surgical notes, and follow-up imaging. There was no significant difference in diagnostic accuracy between the unenhanced and enhanced MR images. Accordingly, there was no significant difference in diagnostic accuracy between the unenhanced and enhanced (18)F-FDG PET/MR images. (18)F-FDG avidity and gadolinium chelate enhancement were concordant in 30 of the 36 patients and 106 of their 123 tumors. Gadolinium chelate administration is not necessary for accurate diagnostic characterization of most solid pediatric malignancies on (18)F-FDG PET/MR images, with the possible exception of focal liver lesions. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Shi, Ximin; Li, Nan; Ding, Haiyan; Dang, Yonghong; Hu, Guilan; Liu, Shuai; Cui, Jie; Zhang, Yue; Li, Fang; Zhang, Hui; Huo, Li
2018-01-01
Kinetic modeling of dynamic 11 C-acetate PET imaging provides quantitative information for myocardium assessment. The quality and quantitation of PET images are known to be dependent on PET reconstruction methods. This study aims to investigate the impacts of reconstruction algorithms on the quantitative analysis of dynamic 11 C-acetate cardiac PET imaging. Suspected alcoholic cardiomyopathy patients ( N = 24) underwent 11 C-acetate dynamic PET imaging after low dose CT scan. PET images were reconstructed using four algorithms: filtered backprojection (FBP), ordered subsets expectation maximization (OSEM), OSEM with time-of-flight (TOF), and OSEM with both time-of-flight and point-spread-function (TPSF). Standardized uptake values (SUVs) at different time points were compared among images reconstructed using the four algorithms. Time-activity curves (TACs) in myocardium and blood pools of ventricles were generated from the dynamic image series. Kinetic parameters K 1 and k 2 were derived using a 1-tissue-compartment model for kinetic modeling of cardiac flow from 11 C-acetate PET images. Significant image quality improvement was found in the images reconstructed using iterative OSEM-type algorithms (OSME, TOF, and TPSF) compared with FBP. However, no statistical differences in SUVs were observed among the four reconstruction methods at the selected time points. Kinetic parameters K 1 and k 2 also exhibited no statistical difference among the four reconstruction algorithms in terms of mean value and standard deviation. However, for the correlation analysis, OSEM reconstruction presented relatively higher residual in correlation with FBP reconstruction compared with TOF and TPSF reconstruction, and TOF and TPSF reconstruction were highly correlated with each other. All the tested reconstruction algorithms performed similarly for quantitative analysis of 11 C-acetate cardiac PET imaging. TOF and TPSF yielded highly consistent kinetic parameter results with superior image quality compared with FBP. OSEM was relatively less reliable. Both TOF and TPSF were recommended for cardiac 11 C-acetate kinetic analysis.
Evaluation of PET Imaging Resolution Using 350 mu{m} Pixelated CZT as a VP-PET Insert Detector
NASA Astrophysics Data System (ADS)
Yin, Yongzhi; Chen, Ximeng; Li, Chongzheng; Wu, Heyu; Komarov, Sergey; Guo, Qingzhen; Krawczynski, Henric; Meng, Ling-Jian; Tai, Yuan-Chuan
2014-02-01
A cadmium-zinc-telluride (CZT) detector with 350 μm pitch pixels was studied in high-resolution positron emission tomography (PET) imaging applications. The PET imaging system was based on coincidence detection between a CZT detector and a lutetium oxyorthosilicate (LSO)-based Inveon PET detector in virtual-pinhole PET geometry. The LSO detector is a 20 ×20 array, with 1.6 mm pitches, and 10 mm thickness. The CZT detector uses ac 20 ×20 ×5 mm substrate, with 350 μm pitch pixelated anodes and a coplanar cathode. A NEMA NU4 Na-22 point source of 250 μm in diameter was imaged by this system. Experiments show that the image resolution of single-pixel photopeak events was 590 μm FWHM while the image resolution of double-pixel photopeak events was 640 μm FWHM. The inclusion of double-pixel full-energy events increased the sensitivity of the imaging system. To validate the imaging experiment, we conducted a Monte Carlo (MC) simulation for the same PET system in Geant4 Application for Emission Tomography. We defined LSO detectors as a scanner ring and 350 μm pixelated CZT detectors as an insert ring. GATE simulated coincidence data were sorted into an insert-scanner sinogram and reconstructed. The image resolution of MC-simulated data (which did not factor in positron range and acolinearity effect) was 460 μm at FWHM for single-pixel events. The image resolutions of experimental data, MC simulated data, and theoretical calculation are all close to 500 μm FWHM when the proposed 350 μm pixelated CZT detector is used as a PET insert. The interpolation algorithm for the charge sharing events was also investigated. The PET image that was reconstructed using the interpolation algorithm shows improved image resolution compared with the image resolution without interpolation algorithm.
NASA Astrophysics Data System (ADS)
Gianoli, Chiara; Kurz, Christopher; Riboldi, Marco; Bauer, Julia; Fontana, Giulia; Baroni, Guido; Debus, Jürgen; Parodi, Katia
2016-06-01
A clinical trial named PROMETHEUS is currently ongoing for inoperable hepatocellular carcinoma (HCC) at the Heidelberg Ion Beam Therapy Center (HIT, Germany). In this framework, 4D PET-CT datasets are acquired shortly after the therapeutic treatment to compare the irradiation induced PET image with a Monte Carlo PET prediction resulting from the simulation of treatment delivery. The extremely low count statistics of this measured PET image represents a major limitation of this technique, especially in presence of target motion. The purpose of the study is to investigate two different 4D PET motion compensation strategies towards the recovery of the whole count statistics for improved image quality of the 4D PET-CT datasets for PET-based treatment verification. The well-known 4D-MLEM reconstruction algorithm, embedding the motion compensation in the reconstruction process of 4D PET sinograms, was compared to a recently proposed pre-reconstruction motion compensation strategy, which operates in sinogram domain by applying the motion compensation to the 4D PET sinograms. With reference to phantom and patient datasets, advantages and drawbacks of the two 4D PET motion compensation strategies were identified. The 4D-MLEM algorithm was strongly affected by inverse inconsistency of the motion model but demonstrated the capability to mitigate the noise-break-up effects. Conversely, the pre-reconstruction warping showed less sensitivity to inverse inconsistency but also more noise in the reconstructed images. The comparison was performed by relying on quantification of PET activity and ion range difference, typically yielding similar results. The study demonstrated that treatment verification of moving targets could be accomplished by relying on the whole count statistics image quality, as obtained from the application of 4D PET motion compensation strategies. In particular, the pre-reconstruction warping was shown to represent a promising choice when combined with intra-reconstruction smoothing.
NASA Astrophysics Data System (ADS)
Wu, Jay; Shih, Cheng-Ting; Chang, Shu-Jun; Huang, Tzung-Chi; Chen, Chuan-Lin; Wu, Tung Hsin
2011-08-01
The quantitative ability of PET/CT allows the widespread use in clinical research and cancer staging. However, metal artifacts induced by high-density metal objects degrade the quality of CT images. These artifacts also propagate to the corresponding PET image and cause a false increase of 18F-FDG uptake near the metal implants when the CT-based attenuation correction (AC) is performed. In this study, we applied a model-based metal artifact reduction (MAR) algorithm to reduce the dark and bright streaks in the CT image and compared the differences between PET images with the general CT-based AC (G-AC) and the MAR-corrected-CT AC (MAR-AC). Results showed that the MAR algorithm effectively reduced the metal artifacts in the CT images of the ACR flangeless phantom and two clinical cases. The MAR-AC also removed the false-positive hot spot near the metal implants of the PET images. We conclude that the MAR-AC could be applied in clinical practice to improve the quantitative accuracy of PET images. Additionally, further use of PET/CT fusion images with metal artifact correction could be more valuable for diagnosis.
Do TSH, FT3, and FT4 Impact BAT Visualization of Clinical FDG-PET/CT Images?
Nagamachi, Shigeki; Mizutani, Youichi; Terada, Tamasa; Kiyohara, Syogo; Wakamatsu, Hideyuki; Fujita, Seigo; Higashi, Tatsuya; Yoshinaga, Keiichiro; Saga, Tsuneo; Hirai, Toshinori
2018-01-01
Objective We retrospectively analyzed activated BAT visualization on FDG-PET/CT in patients with various conditions and TH levels to clarify the relationships between visualization of BAT on FDG-PET/CT and the effect of TH. Methods Patients who underwent clinical FDG-PET/CT were reviewed and we categorized patients into 5 groups: (i) thyroid hormone withdrawal (THW) group; (ii) recombinant human thyrotropin (rhTSH) group; (iii) hypothyroidism group; (iv) hyperthyroidism group; and (v) BAT group. A total of sixty-two FDG-PET/CT imaging studies in fifty-nine patients were performed. To compare each group, gender; age; body weight; serum TSH, FT3, and FT4 levels; and outside temperature were evaluated. Results No significant visualization of BAT was noted in any of the images in the THW, rhTSH, hypothyroidism, and hyperthyroidism groups. All patients in the BAT group were in a euthyroid state. When the BAT-negative and BAT-positive patient groups were compared, it was noted that the minimum and maximum temperature on the day of the PET study and maximum temperature of the one day before the PET study were significantly lower in BAT-positive group than in all those of other groups. Conclusions Elevated TSH condition before RIT, hyperthyroidism, or hypothyroidism did not significantly impact BAT visualization of clinical FDG-PET/CT images. PMID:29666563
NASA Astrophysics Data System (ADS)
Ahmed, Abdella M.; Tashima, Hideaki; Yoshida, Eiji; Nishikido, Fumihiko; Yamaya, Taiga
2017-06-01
There is a growing interest in developing brain PET scanners with high sensitivity and high spatial resolution for early diagnosis of neurodegenerative diseases and studies of brain functions. Sensitivity of the PET scanner can be improved by increasing the solid angle. However, conventional PET scanners are designed based on a cylindrical geometry, which may not be the most efficient design for brain imaging in terms of the balance between sensitivity and cost. We proposed a dedicated brain PET scanner based on a hemispheric shape detector and a chin detector (referred to as the helmet-chin PET), which is designed to maximize the solid angle by increasing the number of lines-of-response in the hemisphere. The parallax error, which PET scanners with a large solid angle tend to have, can be suppressed by the use of depth-of-interaction detectors. In this study, we carry out a realistic evaluation of the helmet-chin PET using Monte Carlo simulation based on the 4-layer GSO detector which consists of a 16 × 16 × 4 array of crystals with dimensions of 2.8 × 2.8 × 7.5 mm3. The purpose of this simulation is to show the gain in imaging performance of the helmet-chin PET compared with the cylindrical PET using the same number of detectors in each configuration. The sensitivity of the helmet-chin PET evaluated with a cylindrical phantom has a significant increase, especially at the top of the (field-of-view) FOV. The peak-NECR of the helmet-chin PET is 1.4 times higher compared to the cylindrical PET. The helmet-chin PET provides relatively low noise images throughout the FOV compared to the cylindrical PET which exhibits enhanced noise at the peripheral regions. The results show the helmet-chin PET can significantly improve the sensitivity and reduce the noise in the reconstructed images.
Report on the development and application of PET/CT in mainland China.
Chen, Yumei; Chen, Ruohua; Zhou, Xiang; Liu, Jianjun; Huang, Gang
2017-09-08
To examine the development and application of systems combining positron emission and x-ray-computed tomography systems (PET/CTs) in mainland China. Using a questionnaire, we surveyed Chinese medical institutions on a variety topics relating to their PET/CT systems and its use. The respondents had PET/CTs installed and in clinical use before 31 December 2015. We examined the clinical scenarios to which Chinese PET/CTs were applied by reviewing the related Chinese and international literature from the start of 1995 to the end of 2013; these papers were found by searching the Wanfang and PubMed databases, respectively. The data were then classified and analyzed statistically. At the end of 2015, there were 240 PET/CTs and 101 medical cyclotrons in mainland China. The total number of PET studies performed in 2015 was 469,364. The main clinical applications of PET were found to be diagnostic fludeoxyglucose ( 18 F-FDG) imaging and oncological imaging. A minority of PET/CT studies were performed using 11 C-choline and other imaging agents. The number of papers relating to clinical use of PET/CT in mainland China increased each year over the period of study, in both the Chinese and international literature. Despite this progress, important problems were also apparent, including unbalanced regional development and the limited quality of the research. This study provides detailed information for understanding the development PET/CT technology in mainland China, along with its geographical distribution and clinical application. It may thus prove a useful reference for all those involved in planning the future of PET/CT in China.
Imaging Bone–Cartilage Interactions in Osteoarthritis Using [18F]-NaF PET-MRI
Pedoia, Valentina; Seo, Youngho; Yang, Jaewon; Bucknor, Matt; Franc, Benjamin L.; Majumdar, Sharmila
2016-01-01
Purpose: Simultaneous positron emission tomography–magnetic resonance imaging (PET-MRI) is an emerging technology providing both anatomical and functional images without increasing the scan time. Compared to the traditional PET/computed tomography imaging, it also exposes the patient to significantly less radiation and provides better anatomical images as MRI provides superior soft tissue characterization. Using PET-MRI, we aim to study interactions between cartilage composition and bone function simultaneously, in knee osteoarthritis (OA). Procedures: In this article, bone turnover and remodeling was studied using [18F]-sodium fluoride (NaF) PET data. Quantitative MR-derived T1ρ relaxation times characterized the biochemical cartilage degeneration. Sixteen participants with early signs of OA of the knee received intravenous injections of [18F]-NaF at the onset of PET-MR image acquisition. Regions of interest were identified, and kinetic analysis of dynamic PET data provided the rate of uptake (Ki) and the normalized uptake (standardized uptake value) of [18F]-NaF in the bone. Morphological MR images and quantitative voxel-based T1ρ maps of cartilage were obtained using an atlas-based registration technique to segment cartilage automatically. Voxel-by-voxel statistical parameter mapping was used to investigate the relationship between bone and cartilage. Results: Increases in cartilage T1ρ, indicating degenerative changes, were associated with increased turnover in the adjoining bone but reduced turnover in the nonadjoining compartments. Associations between pain and increased bone uptake were seen in the absence of morphological lesions in cartilage, but the relationship was reversed in the presence of incident cartilage lesions. Conclusion: This study shows significant cartilage and bone interactions in OA of the knee joint using simultaneous [18F]-NaF PET-MR, the first in human study. These observations highlight the complex biomechanical and biochemical interactions in the whole knee joint in OA, which potentially could help assess therapeutic targets in treating OA. PMID:28654417
Non-local means denoising of dynamic PET images.
Dutta, Joyita; Leahy, Richard M; Li, Quanzheng
2013-01-01
Dynamic positron emission tomography (PET), which reveals information about both the spatial distribution and temporal kinetics of a radiotracer, enables quantitative interpretation of PET data. Model-based interpretation of dynamic PET images by means of parametric fitting, however, is often a challenging task due to high levels of noise, thus necessitating a denoising step. The objective of this paper is to develop and characterize a denoising framework for dynamic PET based on non-local means (NLM). NLM denoising computes weighted averages of voxel intensities assigning larger weights to voxels that are similar to a given voxel in terms of their local neighborhoods or patches. We introduce three key modifications to tailor the original NLM framework to dynamic PET. Firstly, we derive similarities from less noisy later time points in a typical PET acquisition to denoise the entire time series. Secondly, we use spatiotemporal patches for robust similarity computation. Finally, we use a spatially varying smoothing parameter based on a local variance approximation over each spatiotemporal patch. To assess the performance of our denoising technique, we performed a realistic simulation on a dynamic digital phantom based on the Digimouse atlas. For experimental validation, we denoised [Formula: see text] PET images from a mouse study and a hepatocellular carcinoma patient study. We compared the performance of NLM denoising with four other denoising approaches - Gaussian filtering, PCA, HYPR, and conventional NLM based on spatial patches. The simulation study revealed significant improvement in bias-variance performance achieved using our NLM technique relative to all the other methods. The experimental data analysis revealed that our technique leads to clear improvement in contrast-to-noise ratio in Patlak parametric images generated from denoised preclinical and clinical dynamic images, indicating its ability to preserve image contrast and high intensity details while lowering the background noise variance.
A novel dual gating approach using joint inertial sensors: implications for cardiac PET imaging
NASA Astrophysics Data System (ADS)
Jafari Tadi, Mojtaba; Teuho, Jarmo; Lehtonen, Eero; Saraste, Antti; Pänkäälä, Mikko; Koivisto, Tero; Teräs, Mika
2017-10-01
Positron emission tomography (PET) is a non-invasive imaging technique which may be considered as the state of art for the examination of cardiac inflammation due to atherosclerosis. A fundamental limitation of PET is that cardiac and respiratory motions reduce the quality of the achieved images. Current approaches for motion compensation involve gating the PET data based on the timing of quiescent periods of cardiac and respiratory cycles. In this study, we present a novel gating method called microelectromechanical (MEMS) dual gating which relies on joint non-electrical sensors, i.e. tri-axial accelerometer and gyroscope. This approach can be used for optimized selection of quiescent phases of cardiac and respiratory cycles. Cardiomechanical activity according to echocardiography observations was investigated to confirm whether this dual sensor solution can provide accurate trigger timings for cardiac gating. Additionally, longitudinal chest motions originating from breathing were measured by accelerometric- and gyroscopic-derived respiratory (ADR and GDR) tracking. The ADR and GDR signals were evaluated against Varian real-time position management (RPM) signals in terms of amplitude and phase. Accordingly, high linear correlation and agreement were achieved between the reference electrocardiography, RPM, and measured MEMS signals. We also performed a Ge-68 phantom study to evaluate possible metal artifacts caused by the integrated read-out electronics including mechanical sensors and semiconductors. The reconstructed phantom images did not reveal any image artifacts. Thus, it was concluded that MEMS-driven dual gating can be used in PET studies without an effect on the quantitative or visual accuracy of the PET images. Finally, the applicability of MEMS dual gating for cardiac PET imaging was investigated with two atherosclerosis patients. Dual gated PET images were successfully reconstructed using only MEMS signals and both qualitative and quantitative assessments revealed encouraging results that warrant further investigation of this method.
Comparison of first pass bolus AIFs extracted from sequential 18F-FDG PET and DSC-MRI of mice
NASA Astrophysics Data System (ADS)
Evans, Eleanor; Sawiak, Stephen J.; Ward, Alexander O.; Buonincontri, Guido; Hawkes, Robert C.; Adrian Carpenter, T.
2014-01-01
Accurate kinetic modelling of in vivo physiological function using positron emission tomography (PET) requires determination of the tracer time-activity curve in plasma, known as the arterial input function (AIF). The AIF is usually determined by invasive blood sampling methods, which are prohibitive in murine studies due to low total blood volumes. Extracting AIFs from PET images is also challenging due to large partial volume effects (PVE). We hypothesise that in combined PET with magnetic resonance imaging (PET/MR), a co-injected bolus of MR contrast agent and PET ligand can be tracked using fast MR acquisitions. This protocol would allow extraction of a MR AIF from MR contrast agent concentration-time curves, at higher spatial and temporal resolution than an image-derived PET AIF. A conversion factor could then be applied to the MR AIF for use in PET kinetic analysis. This work has compared AIFs obtained from sequential DSC-MRI and PET with separate injections of gadolinium contrast agent and 18F-FDG respectively to ascertain the technique‧s validity. An automated voxel selection algorithm was employed to improve MR AIF reproducibility. We found that MR and PET AIFs displayed similar character in the first pass, confirmed by gamma variate fits (p<0.02). MR AIFs displayed reduced PVE compared to PET AIFs, indicating their potential use in PET/MR studies.
Comparison of first pass bolus AIFs extracted from sequential 18F-FDG PET and DSC-MRI of mice.
Evans, Eleanor; Sawiak, Stephen J; Ward, Alexander O; Buonincontri, Guido; Hawkes, Robert C; Carpenter, T Adrian
2014-01-11
Accurate kinetic modelling of in vivo physiological function using positron emission tomography (PET) requires determination of the tracer time-activity curve in plasma, known as the arterial input function (AIF). The AIF is usually determined by invasive blood sampling methods, which are prohibitive in murine studies due to low total blood volumes. Extracting AIFs from PET images is also challenging due to large partial volume effects (PVE). We hypothesise that in combined PET with magnetic resonance imaging (PET/MR), a co-injected bolus of MR contrast agent and PET ligand can be tracked using fast MR acquisitions. This protocol would allow extraction of a MR AIF from MR contrast agent concentration-time curves, at higher spatial and temporal resolution than an image-derived PET AIF. A conversion factor could then be applied to the MR AIF for use in PET kinetic analysis. This work has compared AIFs obtained from sequential DSC-MRI and PET with separate injections of gadolinium contrast agent and 18 F-FDG respectively to ascertain the technique's validity. An automated voxel selection algorithm was employed to improve MR AIF reproducibility. We found that MR and PET AIFs displayed similar character in the first pass, confirmed by gamma variate fits (p<0.02). MR AIFs displayed reduced PVE compared to PET AIFs, indicating their potential use in PET/MR studies.
Raynor, William; Houshmand, Sina; Gholami, Saeid; Emamzadehfard, Sahra; Rajapakse, Chamith S; Blomberg, Björn Alexander; Werner, Thomas J; Høilund-Carlsen, Poul F; Baker, Joshua F; Alavi, Abass
2016-08-01
(18)F-sodium fluoride (NaF) as an imaging tracer portrays calcium metabolic activity either in the osseous structures or in soft tissue. Currently, clinical use of NaF-PET is confined to detecting metastasis to the bone, but this approach reveals indirect evidence for disease activity and will have limited use in the future in favor of more direct approaches that visualize cancer cells in the read marrow where they reside. This has proven to be the case with FDG-PET imaging in most cancers. However, a variety of studies support the application of NaF-PET to assess benign osseous diseases. In particular, bone turnover can be measured from NaF uptake to diagnose osteoporosis. Several studies have evaluated the efficacy of bisphosphonates and their lasting effects as treatment for osteoporosis using bone turnover measured by NaF-PET. Additionally, NaF uptake in vessels tracks calcification in the plaques at the molecular level, which is relevant to coronary artery disease. Also, NaF-PET imaging of diseased joints is able to project disease progression in osteoarthritis, rheumatoid arthritis, and ankylosing spondylitis. Further studies suggest potential use of NaF-PET in domains such as back pain, osteosarcoma, stress-related fracture, and bisphosphonate-induced osteonecrosis of the jaw. The critical role of NaF-PET in disease detection and characterization of many musculoskeletal disorders has been clearly demonstrated in the literature, and these methods will become more widespread in the future. The data from PET imaging are quantitative in nature, and as such, it adds a major dimension to assessing disease activity.
WHOLE BODY NONRIGID CT-PET REGISTRATION USING WEIGHTED DEMONS.
Suh, J W; Kwon, Oh-K; Scheinost, D; Sinusas, A J; Cline, Gary W; Papademetris, X
2011-03-30
We present a new registration method for whole-body rat computed tomography (CT) image and positron emission tomography (PET) images using a weighted demons algorithm. The CT and PET images are acquired in separate scanners at different times and the inherent differences in the imaging protocols produced significant nonrigid changes between the two acquisitions in addition to heterogeneous image characteristics. In this situation, we utilized both the transmission-PET and the emission-PET images in the deformable registration process emphasizing particular regions of the moving transmission-PET image using the emission-PET image. We validated our results with nine rat image sets using M-Hausdorff distance similarity measure. We demonstrate improved performance compared to standard methods such as Demons and normalized mutual information-based non-rigid FFD registration.
Molecular imaging of angiogenesis with SPECT
Boerman, Otto C.
2010-01-01
Single-photon emission computed tomography (SPECT) and position emission tomography (PET) are the two main imaging modalities in nuclear medicine. SPECT imaging is more widely available than PET imaging and the radionuclides used for SPECT are easier to prepare and usually have a longer half-life than those used for PET. In addition, SPECT is a less expensive technique than PET. Commonly used gamma emitters are: 99mTc (Emax 141 keV, T1/2 6.02 h), 123I (Emax 529 keV, T1/2 13.0 h) and 111In (Emax 245 keV, T1/2 67.2 h). Compared to clinical SPECT, PET has a higher spatial resolution and the possibility to more accurately estimate the in vivo concentration of a tracer. In preclinical imaging, the situation is quite different. The resolution of microSPECT cameras (<0.5 mm) is higher than that of microPET cameras (>1.5 mm). In this report, studies on new radiolabelled tracers for SPECT imaging of angiogenesis in tumours are reviewed. PMID:20617435
Wang, Danyang; Huo, Yanlei; Chen, Suyun; Wang, Hui; Ding, Yingli; Zhu, Xiaochun; Ma, Chao
2018-01-01
18 F-fluorodeoxyglucose ( 18 F-FDG) positron emission tomography/computed tomography (PET/CT) is the reference standard in staging of 18 F-FDG-avid lymphomas; however, there is no recommended functional imaging modality for indolent lymphomas. Therefore, we aimed to compare the performance of whole-body magnetic resonance imaging (WB-MRI) with that of 18 F-FDG PET/CT for lesion detection and initial staging in patients with aggressive or indolent lymphoma. We searched the MEDLINE, EMBASE, and CENTRAL databases for studies that compared WB-MRI with 18 F-FDG PET/CT for lymphoma staging or lesion detection. The methodological quality of the studies was assessed using version 2 of the "Quality Assessment of Diagnostic Accuracy Studies" tool. The pooled staging accuracy ( μ ) of WB-MRI and 18 F-FDG PET/CT for initial staging and for assessing possible heterogeneity ( χ 2 ) across studies were calculated using commercially available software. Eight studies comprising 338 patients were included. In terms of staging, the meta-analytic staging accuracies of WB-MRI and 18 F-FDG PET/CT for Hodgkin lymphoma and aggressive non-Hodgkin lymphoma (NHL) were 98% (95% CI, 94%-100%) and 98% (95% CI, 94%-100%), respectively. The pooled staging accuracy of 18 F-FDG PET/CT dropped to 87% (95% CI, 72%-97%) for staging in patients with indolent lymphoma, whereas that of WB-MRI remained 96% (95% CI, 91%-100%). Subgroup analysis indicated an even lower staging accuracy of 18 F-FDG PET/CT for staging of less FDG-avid indolent NHLs (60%; 95% CI, 23%-92%), in contrast to the superior performance of WB-MRI (98%; 95% CI, 88%-100%). WB-MRI is a promising radiation-free imaging technique that may serve as a viable alternative to 18 F-FDG PET/CT for staging of 18 FDG-avid lymphomas, where 18 F-FDG PET/CT remains the standard of care. Additionally, WB-MRI seems a less histology-dependent functional imaging test than 18 F-FDG PET/CT and may be the imaging test of choice for staging of indolent NHLs with low 18 F-FDG avidity.
Ibaraki, Masanobu; Sato, Kaoru; Mizuta, Tetsuro; Kitamura, Keishi; Miura, Shuichi; Sugawara, Shigeki; Shinohara, Yuki; Kinoshita, Toshibumi
2009-09-01
A modified version of row-action maximum likelihood algorithm (RAMLA) using a 'subset-dependent' relaxation parameter for noise suppression, or dynamic RAMLA (DRAMA), has been proposed. The aim of this study was to assess the capability of DRAMA reconstruction for quantitative (15)O brain positron emission tomography (PET). Seventeen healthy volunteers were studied using a 3D PET scanner. The PET study included 3 sequential PET scans for C(15)O, (15)O(2) and H (2) (15) O. First, the number of main iterations (N (it)) in DRAMA was optimized in relation to image convergence and statistical image noise. To estimate the statistical variance of reconstructed images on a pixel-by-pixel basis, a sinogram bootstrap method was applied using list-mode PET data. Once the optimal N (it) was determined, statistical image noise and quantitative parameters, i.e., cerebral blood flow (CBF), cerebral blood volume (CBV), cerebral metabolic rate of oxygen (CMRO(2)) and oxygen extraction fraction (OEF) were compared between DRAMA and conventional FBP. DRAMA images were post-filtered so that their spatial resolutions were matched with FBP images with a 6-mm FWHM Gaussian filter. Based on the count recovery data, N (it) = 3 was determined as an optimal parameter for (15)O PET data. The sinogram bootstrap analysis revealed that DRAMA reconstruction resulted in less statistical noise, especially in a low-activity region compared to FBP. Agreement of quantitative values between FBP and DRAMA was excellent. For DRAMA images, average gray matter values of CBF, CBV, CMRO(2) and OEF were 46.1 +/- 4.5 (mL/100 mL/min), 3.35 +/- 0.40 (mL/100 mL), 3.42 +/- 0.35 (mL/100 mL/min) and 42.1 +/- 3.8 (%), respectively. These values were comparable to corresponding values with FBP images: 46.6 +/- 4.6 (mL/100 mL/min), 3.34 +/- 0.39 (mL/100 mL), 3.48 +/- 0.34 (mL/100 mL/min) and 42.4 +/- 3.8 (%), respectively. DRAMA reconstruction is applicable to quantitative (15)O PET study and is superior to conventional FBP in terms of image quality.
SU-C-9A-06: The Impact of CT Image Used for Attenuation Correction in 4D-PET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Y; Bowsher, J; Yan, S
2014-06-01
Purpose: To evaluate the appropriateness of using 3D non-gated CT image for attenuation correction (AC) in a 4D-PET (gated PET) imaging protocol used in radiotherapy treatment planning simulation. Methods: The 4D-PET imaging protocol in a Siemens PET/CT simulator (Biograph mCT, Siemens Medical Solutions, Hoffman Estates, IL) was evaluated. CIRS Dynamic Thorax Phantom (CIRS Inc., Norfolk, VA) with a moving glass sphere (8 mL) in the middle of its thorax portion was used in the experiments. The glass was filled with {sup 18}F-FDG and was in a longitudinal motion derived from a real patient breathing pattern. Varian RPM system (Varian Medicalmore » Systems, Palo Alto, CA) was used for respiratory gating. Both phase-gating and amplitude-gating methods were tested. The clinical imaging protocol was modified to use three different CT images for AC in 4D-PET reconstruction: first is to use a single-phase CT image to mimic actual clinical protocol (single-CT-PET); second is to use the average intensity projection CT (AveIP-CT) derived from 4D-CT scanning (AveIP-CT-PET); third is to use 4D-CT image to do the phase-matched AC (phase-matching- PET). Maximum SUV (SUVmax) and volume of the moving target (glass sphere) with threshold of 40% SUVmax were calculated for comparison between 4D-PET images derived with different AC methods. Results: The SUVmax varied 7.3%±6.9% over the breathing cycle in single-CT-PET, compared to 2.5%±2.8% in AveIP-CT-PET and 1.3%±1.2% in phasematching PET. The SUVmax in single-CT-PET differed by up to 15% from those in phase-matching-PET. The target volumes measured from single- CT-PET images also presented variations up to 10% among different phases of 4D PET in both phase-gating and amplitude-gating experiments. Conclusion: Attenuation correction using non-gated CT in 4D-PET imaging is not optimal process for quantitative analysis. Clinical 4D-PET imaging protocols should consider phase-matched 4D-CT image if available to achieve better accuracy.« less
Zhu, Lei; Guo, Ning; Li, Quanzheng; Ma, Ying; Jacboson, Orit; Lee, Seulki; Choi, Hak Soo; Mansfield, James R.; Niu, Gang; Chen, Xiaoyuan
2012-01-01
Purpose: The aim of this study is to determine if dynamic optical imaging could provide comparable kinetic parameters to that of dynamic PET imaging by a near-infrared dye/64Cu dual-labeled cyclic RGD peptide. Methods: The integrin αvβ3 binding RGD peptide was conjugated with a macrocyclic chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for copper labeling and PET imaging and a near-infrared dye ZW-1 for optical imaging. The in vitro biological activity of RGD-C(DOTA)-ZW-1 was characterized by cell staining and receptor binding assay. Sixty-min dynamic PET and optical imaging were acquired on a MDA-MB-435 tumor model. Singular value decomposition (SVD) method was applied to compute the dynamic optical signal from the two-dimensional optical projection images. Compartment models were used to quantitatively analyze and compare the dynamic optical and PET data. Results: The dual-labeled probe 64Cu-RGD-C(DOTA)-ZW-1 showed integrin specific binding in vitro and in vivo. The binding potential (Bp) derived from dynamic optical imaging (1.762 ± 0.020) is comparable to that from dynamic PET (1.752 ± 0.026). Conclusion: The signal un-mixing process using SVD improved the accuracy of kinetic modeling of 2D dynamic optical data. Our results demonstrate that 2D dynamic optical imaging with SVD analysis could achieve comparable quantitative results as dynamic PET imaging in preclinical xenograft models. PMID:22916074
Zhu, Lei; Guo, Ning; Li, Quanzheng; Ma, Ying; Jacboson, Orit; Lee, Seulki; Choi, Hak Soo; Mansfield, James R; Niu, Gang; Chen, Xiaoyuan
2012-01-01
The aim of this study is to determine if dynamic optical imaging could provide comparable kinetic parameters to that of dynamic PET imaging by a near-infrared dye/(64)Cu dual-labeled cyclic RGD peptide. The integrin α(v)β(3) binding RGD peptide was conjugated with a macrocyclic chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for copper labeling and PET imaging and a near-infrared dye ZW-1 for optical imaging. The in vitro biological activity of RGD-C(DOTA)-ZW-1 was characterized by cell staining and receptor binding assay. Sixty-min dynamic PET and optical imaging were acquired on a MDA-MB-435 tumor model. Singular value decomposition (SVD) method was applied to compute the dynamic optical signal from the two-dimensional optical projection images. Compartment models were used to quantitatively analyze and compare the dynamic optical and PET data. The dual-labeled probe (64)Cu-RGD-C(DOTA)-ZW-1 showed integrin specific binding in vitro and in vivo. The binding potential (Bp) derived from dynamic optical imaging (1.762 ± 0.020) is comparable to that from dynamic PET (1.752 ± 0.026). The signal un-mixing process using SVD improved the accuracy of kinetic modeling of 2D dynamic optical data. Our results demonstrate that 2D dynamic optical imaging with SVD analysis could achieve comparable quantitative results as dynamic PET imaging in preclinical xenograft models.
Monte Carlo simulation of PET and SPECT imaging of {sup 90}Y
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Akihiko, E-mail: takahsr@hs.med.kyushu-u.ac.jp; Sasaki, Masayuki; Himuro, Kazuhiko
2015-04-15
Purpose: Yittrium-90 ({sup 90}Y) is traditionally thought of as a pure beta emitter, and is used in targeted radionuclide therapy, with imaging performed using bremsstrahlung single-photon emission computed tomography (SPECT). However, because {sup 90}Y also emits positrons through internal pair production with a very small branching ratio, positron emission tomography (PET) imaging is also available. Because of the insufficient image quality of {sup 90}Y bremsstrahlung SPECT, PET imaging has been suggested as an alternative. In this paper, the authors present the Monte Carlo-based simulation–reconstruction framework for {sup 90}Y to comprehensively analyze the PET and SPECT imaging techniques and to quantitativelymore » consider the disadvantages associated with them. Methods: Our PET and SPECT simulation modules were developed using Monte Carlo simulation of Electrons and Photons (MCEP), developed by Dr. S. Uehara. PET code (MCEP-PET) generates a sinogram, and reconstructs the tomography image using a time-of-flight ordered subset expectation maximization (TOF-OSEM) algorithm with attenuation compensation. To evaluate MCEP-PET, simulated results of {sup 18}F PET imaging were compared with the experimental results. The results confirmed that MCEP-PET can simulate the experimental results very well. The SPECT code (MCEP-SPECT) models the collimator and NaI detector system, and generates the projection images and projection data. To save the computational time, the authors adopt the prerecorded {sup 90}Y bremsstrahlung photon data calculated by MCEP. The projection data are also reconstructed using the OSEM algorithm. The authors simulated PET and SPECT images of a water phantom containing six hot spheres filled with different concentrations of {sup 90}Y without background activity. The amount of activity was 163 MBq, with an acquisition time of 40 min. Results: The simulated {sup 90}Y-PET image accurately simulated the experimental results. PET image is visually superior to SPECT image because of the low background noise. The simulation reveals that the detected photon number in SPECT is comparable to that of PET, but the large fraction (approximately 75%) of scattered and penetration photons contaminates SPECT image. The lower limit of {sup 90}Y detection in SPECT image was approximately 200 kBq/ml, while that in PET image was approximately 100 kBq/ml. Conclusions: By comparing the background noise level and the image concentration profile of both the techniques, PET image quality was determined to be superior to that of bremsstrahlung SPECT. The developed simulation codes will be very useful in the future investigations of PET and bremsstrahlung SPECT imaging of {sup 90}Y.« less
Low-count PET image restoration using sparse representation
NASA Astrophysics Data System (ADS)
Li, Tao; Jiang, Changhui; Gao, Juan; Yang, Yongfeng; Liang, Dong; Liu, Xin; Zheng, Hairong; Hu, Zhanli
2018-04-01
In the field of positron emission tomography (PET), reconstructed images are often blurry and contain noise. These problems are primarily caused by the low resolution of projection data. Solving this problem by improving hardware is an expensive solution, and therefore, we attempted to develop a solution based on optimizing several related algorithms in both the reconstruction and image post-processing domains. As sparse technology is widely used, sparse prediction is increasingly applied to solve this problem. In this paper, we propose a new sparse method to process low-resolution PET images. Two dictionaries (D1 for low-resolution PET images and D2 for high-resolution PET images) are learned from a group real PET image data sets. Among these two dictionaries, D1 is used to obtain a sparse representation for each patch of the input PET image. Then, a high-resolution PET image is generated from this sparse representation using D2. Experimental results indicate that the proposed method exhibits a stable and superior ability to enhance image resolution and recover image details. Quantitatively, this method achieves better performance than traditional methods. This proposed strategy is a new and efficient approach for improving the quality of PET images.
Munoz, Camila; Kunze, Karl P; Neji, Radhouene; Vitadello, Teresa; Rischpler, Christoph; Botnar, René M; Nekolla, Stephan G; Prieto, Claudia
2018-05-12
Cardiac PET-MR has shown potential for the comprehensive assessment of coronary heart disease. However, image degradation due to physiological motion remains a challenge that could hinder the adoption of this technology in clinical practice. The purpose of this study was to validate a recently proposed respiratory motion-corrected PET-MR framework for the simultaneous visualisation of myocardial viability ( 18 F-FDG PET) and coronary artery anatomy (coronary MR angiography, CMRA) in patients with chronic total occlusion (CTO). A cohort of 14 patients was scanned with the proposed PET-CMRA framework. PET and CMRA images were reconstructed with and without the proposed motion correction approach for comparison purposes. Metrics of image quality including visible vessel length and sharpness were obtained for CMRA for both the right and left anterior descending coronary arteries (RCA, LAD), and relative increase in 18 F-FDG PET signal after motion correction for standard 17-segment polar maps was computed. Resulting coronary anatomy by CMRA and myocardial integrity by PET were visually compared against X-ray angiography and conventional Late Gadolinium Enhancement (LGE) MRI, respectively. Motion correction increased CMRA visible vessel length by 49.9% and 32.6% (RCA, LAD) and vessel sharpness by 12.3% and 18.9% (RCA, LAD) on average compared to uncorrected images. Coronary lumen delineation on motion-corrected CMRA images was in good agreement with X-ray angiography findings. For PET, motion correction resulted in an average 8% increase in 18 F-FDG signal in the inferior and inferolateral segments of the myocardial wall. An improved delineation of myocardial viability defects and reduced noise in the 18 F-FDG PET images was observed, improving correspondence to subendocardial LGE-MRI findings compared to uncorrected images. The feasibility of the PET-CMRA framework for simultaneous cardiac PET-MR imaging in a short and predictable scan time (~11 min) has been demonstrated in 14 patients with CTO. Motion correction increased visible length and sharpness of the coronary arteries by CMRA, and improved delineation of the myocardium by 18 F-FDG PET, resulting in good agreement with X-ray angiography and LGE-MRI.
Demons versus Level-Set motion registration for coronary 18F-sodium fluoride PET.
Rubeaux, Mathieu; Joshi, Nikhil; Dweck, Marc R; Fletcher, Alison; Motwani, Manish; Thomson, Louise E; Germano, Guido; Dey, Damini; Berman, Daniel S; Newby, David E; Slomka, Piotr J
2016-02-27
Ruptured coronary atherosclerotic plaques commonly cause acute myocardial infarction. It has been recently shown that active microcalcification in the coronary arteries, one of the features that characterizes vulnerable plaques at risk of rupture, can be imaged using cardiac gated 18 F-sodium fluoride ( 18 F-NaF) PET. We have shown in previous work that a motion correction technique applied to cardiac-gated 18 F-NaF PET images can enhance image quality and improve uptake estimates. In this study, we further investigated the applicability of different algorithms for registration of the coronary artery PET images. In particular, we aimed to compare demons vs. level-set nonlinear registration techniques applied for the correction of cardiac motion in coronary 18 F-NaF PET. To this end, fifteen patients underwent 18 F-NaF PET and prospective coronary CT angiography (CCTA). PET data were reconstructed in 10 ECG gated bins; subsequently these gated bins were registered using demons and level-set methods guided by the extracted coronary arteries from CCTA, to eliminate the effect of cardiac motion on PET images. Noise levels, target-to-background ratios (TBR) and global motion were compared to assess image quality. Compared to the reference standard of using only diastolic PET image (25% of the counts from PET acquisition), cardiac motion registration using either level-set or demons techniques almost halved image noise due to the use of counts from the full PET acquisition and increased TBR difference between 18 F-NaF positive and negative lesions. The demons method produces smoother deformation fields, exhibiting no singularities (which reflects how physically plausible the registration deformation is), as compared to the level-set method, which presents between 4 and 8% of singularities, depending on the coronary artery considered. In conclusion, the demons method produces smoother motion fields as compared to the level-set method, with a motion that is physiologically plausible. Therefore, level-set technique will likely require additional post-processing steps. On the other hand, the observed TBR increases were the highest for the level-set technique. Further investigations of the optimal registration technique of this novel coronary PET imaging technique are warranted.
Demons versus level-set motion registration for coronary 18F-sodium fluoride PET
NASA Astrophysics Data System (ADS)
Rubeaux, Mathieu; Joshi, Nikhil; Dweck, Marc R.; Fletcher, Alison; Motwani, Manish; Thomson, Louise E.; Germano, Guido; Dey, Damini; Berman, Daniel S.; Newby, David E.; Slomka, Piotr J.
2016-03-01
Ruptured coronary atherosclerotic plaques commonly cause acute myocardial infarction. It has been recently shown that active microcalcification in the coronary arteries, one of the features that characterizes vulnerable plaques at risk of rupture, can be imaged using cardiac gated 18F-sodium fluoride (18F-NaF) PET. We have shown in previous work that a motion correction technique applied to cardiac-gated 18F-NaF PET images can enhance image quality and improve uptake estimates. In this study, we further investigated the applicability of different algorithms for registration of the coronary artery PET images. In particular, we aimed to compare demons vs. level-set nonlinear registration techniques applied for the correction of cardiac motion in coronary 18F-NaF PET. To this end, fifteen patients underwent 18F-NaF PET and prospective coronary CT angiography (CCTA). PET data were reconstructed in 10 ECG gated bins; subsequently these gated bins were registered using demons and level-set methods guided by the extracted coronary arteries from CCTA, to eliminate the effect of cardiac motion on PET images. Noise levels, target-to-background ratios (TBR) and global motion were compared to assess image quality. Compared to the reference standard of using only diastolic PET image (25% of the counts from PET acquisition), cardiac motion registration using either level-set or demons techniques almost halved image noise due to the use of counts from the full PET acquisition and increased TBR difference between 18F-NaF positive and negative lesions. The demons method produces smoother deformation fields, exhibiting no singularities (which reflects how physically plausible the registration deformation is), as compared to the level-set method, which presents between 4 and 8% of singularities, depending on the coronary artery considered. In conclusion, the demons method produces smoother motion fields as compared to the level-set method, with a motion that is physiologically plausible. Therefore, level-set technique will likely require additional post-processing steps. On the other hand, the observed TBR increases were the highest for the level-set technique. Further investigations of the optimal registration technique of this novel coronary PET imaging technique are warranted.
Positron Emission Tomography (PET)
DOE R&D Accomplishments Database
Welch, M. J.
1990-01-01
Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.
King, Kathryn S; Chen, Clara C; Alexopoulos, Dimitrios K; Whatley, Millie A; Reynolds, James C; Patronas, Nicholas; Ling, Alexander; Adams, Karen T; Xekouki, Paraskevi; Lando, Howard; Stratakis, Constantine A; Pacak, Karel
2011-09-01
Accurate diagnosis of head and neck paragangliomas is often complicated by biochemical silence and lack of catecholamine-associated symptoms, making accurate anatomical and functional imaging techniques essential to the diagnostic process. Ten patients (seven SDHD, three SDHB), with a total of 26 head and neck paragangliomas, were evaluated with anatomical and functional imaging. This study compares five different functional imaging techniques [(18)F-fluorodihydroxyphenylalanine ((18)F-FDOPA) positron emission tomography (PET), (18)F-fluorodopamine ((18)F-FDA) PET/computed tomography (CT), (18)F-fluoro-2-deoxy-D-glucose ((18)F-FDG) PET/CT, (123)I-metaiodobenzylguanidine ((123)I-MIBG) scintigraphy, and (111)In-pentetreotide scintigraphy] in the localization of head and neck paragangliomas. Prospectively (18)F-FDOPA PET localized 26 of 26 lesions in the 10 patients, CT/magnetic resonance imaging localized 21 of 26 lesions, (18)F-FDG PET/CT localized 20 of 26 lesions, (111)In-pentetreotide scintigraphy localized 16 of 25 lesions, (18)F-FDA PET/CT localized 12 of 26 lesions, and (123)I-MIBG scintigraphy localized eight of 26 lesions. Differences in imaging efficacy related to genetic phenotype, even in the present small sample size, included the negativity of (18)F-FDA PET/CT and (123)I-MIBG scintigraphy in patients with SDHB mutations and the accuracy of (18)F-FDG PET/CT in all patients with SDHD mutations, as compared with the accuracy of (18)F-FDG PET/CT in only one patient with an SDHB mutation. Overall, (18)F-FDOPA PET proved to be the most efficacious functional imaging modality in the localization of SDHx-related head and neck paragangliomas and may be a potential first-line functional imaging agent for the localization of these tumors.
3D intrathoracic region definition and its application to PET-CT analysis
NASA Astrophysics Data System (ADS)
Cheirsilp, Ronnarit; Bascom, Rebecca; Allen, Thomas W.; Higgins, William E.
2014-03-01
Recently developed integrated PET-CT scanners give co-registered multimodal data sets that offer complementary three-dimensional (3D) digital images of the chest. PET (positron emission tomography) imaging gives highly specific functional information of suspect cancer sites, while CT (X-ray computed tomography) gives associated anatomical detail. Because the 3D CT and PET scans generally span the body from the eyes to the knees, accurate definition of the intrathoracic region is vital for focusing attention to the central-chest region. In this way, diagnostically important regions of interest (ROIs), such as central-chest lymph nodes and cancer nodules, can be more efficiently isolated. We propose a method for automatic segmentation of the intrathoracic region from a given co-registered 3D PET-CT study. Using the 3D CT scan as input, the method begins by finding an initial intrathoracic region boundary for a given 2D CT section. Next, active contour analysis, driven by a cost function depending on local image gradient, gradient-direction, and contour shape features, iteratively estimates the contours spanning the intrathoracic region on neighboring 2D CT sections. This process continues until the complete region is defined. We next present an interactive system that employs the segmentation method for focused 3D PET-CT chest image analysis. A validation study over a series of PET-CT studies reveals that the segmentation method gives a Dice index accuracy of less than 98%. In addition, further results demonstrate the utility of the method for focused 3D PET-CT chest image analysis, ROI definition, and visualization.
Olin, Anders; Ladefoged, Claes N; Langer, Natasha H; Keller, Sune H; Löfgren, Johan; Hansen, Adam E; Kjær, Andreas; Langer, Seppo W; Fischer, Barbara M; Andersen, Flemming L
2018-06-01
Quantitative PET/MRI is dependent on reliable and reproducible MR-based attenuation correction (MR-AC). In this study, we evaluated the quality of current vendor-provided thoracic MR-AC maps and further investigated the reproducibility of their impact on 18 F-FDG PET quantification in patients with non-small cell lung cancer. Methods: Eleven patients with inoperable non-small cell lung cancer underwent 2-5 thoracic PET/MRI scan-rescan examinations within 22 d. 18 F-FDG PET data were acquired along with 2 Dixon MR-AC maps for each examination. Two PET images (PET A and PET B ) were reconstructed using identical PET emission data but with MR-AC from these intrasubject repeated attenuation maps. In total, 90 MR-AC maps were evaluated visually for quality and the occurrence of categorized artifacts by 2 PET/MRI-experienced physicians. Each tumor was outlined by a volume of interest (40% isocontour of maximum) on PET A , which was then projected onto the corresponding PET B SUV mean and SUV max were assessed from the PET images. Within-examination coefficients of variation and Bland-Altman analyses were conducted for the assessment of SUV variations between PET A and PET B Results: Image artifacts were observed in 86% of the MR-AC maps, and 30% of the MR-AC maps were subjectively expected to affect the tumor SUV. SUV mean and SUV max resulted in coefficients of variation of 5.6% and 6.6%, respectively, and scan-rescan SUV variations were within ±20% in 95% of the cases. Substantial SUV variations were seen mainly for scan-rescan examinations affected by respiratory motion. Conclusion: Artifacts occur frequently in standard thoracic MR-AC maps, affecting the reproducibility of PET/MRI. These, in combination with other well-known sources of error associated with PET/MRI examinations, lead to inconsistent SUV measurements in serial studies, which may affect the reliability of therapy response assessment. A thorough visual inspection of the thoracic MR-AC map and Dixon images from which it is derived remains crucial for the detection of MR-AC artifacts that may influence the reliability of SUV. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
Arnaud, Laurent; Malek, Zoulikha; Archambaud, Frédérique; Kas, Aurélie; Toledano, Dan; Drier, Aurélie; Zeitoun, Delphine; Cluzel, Philippe; Grenier, Philippe A; Chiras, Jacques; Piette, Jean-Charles; Amoura, Zahir; Haroche, Julien
2009-10-01
Erdheim-Chester disease (ECD) is a rare form of non-Langerhans' cell histiocytosis. The aim of this study was to assess the value of whole-body scanning with (18)F-fluorodeoxyglucose-positron emission tomography (FDG-PET) in a large cohort of ECD patients from a single center. We retrospectively reviewed all PET scans performed on 31 patients with ECD who were referred to our department between 2005 and 2008. PET images were reviewed by 2 independent nuclear medicine specialist physicians and were compared with other imaging modalities performed within 15 days of each PET scan. Thirty-one patients (10 women and 21 men; median age 59.5 years) underwent a total of 65 PET scans. Twenty-three patients (74%) were untreated at the time of the initial PET scan, whereas 30 of the 34 followup PET scans (88%) were performed in patients who were undergoing immunomodulatory therapy. Comparison of the initial and followup PET scans with other imaging modalities revealed that the sensitivity of PET scanning varied greatly among the different organs studied (range 4.3-100%), while the specificity remained high (range 69.2-100%). Followup PET scans were particularly helpful in assessing central nervous system (CNS) involvement, since the PET scan was able to detect an early therapeutic response of CNS lesions, even before magnetic resonance imaging showed a decrease in their size. PET scanning was also very helpful in evaluating the cardiovascular system, which is a major prognostic factor in ECD, by assessing the heart and the entire vascular tree during a single session. The results of our large, single-center, retrospective study suggest that the findings of a FDG-PET scan may be interesting in the initial assessment of patients with ECD, but its greater contribution is in followup of these patients.
Uprimny, Christian; Kroiss, Alexander Stephan; Fritz, Josef; Decristoforo, Clemens; Kendler, Dorota; von Guggenberg, Elisabeth; Nilica, Bernhard; Maffey-Steffan, Johanna; di Santo, Gianpaolo; Bektic, Jasmin; Horninger, Wolfgang; Virgolini, Irene Johanna
2017-09-01
PET/CT using 68 Ga-labelled prostate-specific membrane antigen PSMA-11 (HBEDD-CC) has emerged as a promising imaging method in the diagnostic evaluation of prostate cancer (PC) patients with biochemical recurrence. However, assessment of local recurrence (LR) may be limited by intense physiologic tracer accumulation in the urinary bladder on whole-body scans, normally conducted 60 min post-tracer injection (p.i.). It could be shown on early dynamic imaging studies that 68 Ga-PSMA-11 uptake in PC lesions occurs earlier than tracer accumulation in the urinary bladder. This study aims to investigate whether early static PET acquisition increases detection rate of local recurrence on 68 Ga-PSMA-11 PET/CT in comparison to PET imaging 60 min p.i.. 203 consecutive PC patients with biochemical failure referred to 68 Ga-PSMA-11 PET/CT were analysed retrospectively (median prostate specific antigen (PSA) value: 1.44 ng/ml). In addition to whole-body PET/CT scans 60 min p.i., early static imaging of the pelvis was performed, starting at a median time of 283 s p.i. (range: 243-491 s). Assessment was based on visual analysis and calculation of maximum standardized uptake value (SUV max ) of pathologic lesions present in the pelvic area found on early PET imaging and on 60 min-PET scans. 26 patients (12.8%) were judged positive for LR on PET scans 60 min p.i. (median SUV max : 10.8; range: 4.7-40.9), whereas 50 patients (24.6%) revealed a lesion suggestive of LR on early PET imaging (median SUV max : 5.9; range: 2.9-17.6), resulting in a significant rise in detection rate (p < 0.001). Equivocal findings on PET scans 60 min p.i. decreased significantly with the help of early imaging (15.8% vs. 4.5% of patients; p < 0.001). Tracer activity in the urinary bladder with a median SUV max of 8.2 was present in 63 patients on early PET scans (31.0%). However, acquisition starting time of early PET scans differed significantly in the patient groups with and without urinary bladder activity (median starting time of 321 vs. 275 s p.i.; range: 281-491 vs. 243-311 s p.i.; p < 0.001). Median SUV max value of lesions suggestive of LR on early images was significantly higher in comparison to gluteal muscle, inguinal vessels and seminal vesicle/anastomosis (median SUV max : 5.9 vs. 1.9, 4.0 and 2.4, respectively). Performance of early imaging in 68 Ga-PSMA-11 PET/CT in addition to whole-body scans 60 min p.i. increases the detection rate of local recurrence in PC patients with biochemical recurrence. Acquisition of early PET images should be started as early as 5 min p.i. in order to avoid disturbing tracer activity in the urinary bladder occuring at a later time point.
Fei, Baowei; Yang, Xiaofeng; Nye, Jonathon A.; Aarsvold, John N.; Raghunath, Nivedita; Cervo, Morgan; Stark, Rebecca; Meltzer, Carolyn C.; Votaw, John R.
2012-01-01
Purpose: Combined MR/PET is a relatively new, hybrid imaging modality. A human MR/PET prototype system consisting of a Siemens 3T Trio MR and brain PET insert was installed and tested at our institution. Its present design does not offer measured attenuation correction (AC) using traditional transmission imaging. This study is the development of quantification tools including MR-based AC for quantification in combined MR/PET for brain imaging. Methods: The developed quantification tools include image registration, segmentation, classification, and MR-based AC. These components were integrated into a single scheme for processing MR/PET data. The segmentation method is multiscale and based on the Radon transform of brain MR images. It was developed to segment the skull on T1-weighted MR images. A modified fuzzy C-means classification scheme was developed to classify brain tissue into gray matter, white matter, and cerebrospinal fluid. Classified tissue is assigned an attenuation coefficient so that AC factors can be generated. PET emission data are then reconstructed using a three-dimensional ordered sets expectation maximization method with the MR-based AC map. Ten subjects had separate MR and PET scans. The PET with [11C]PIB was acquired using a high-resolution research tomography (HRRT) PET. MR-based AC was compared with transmission (TX)-based AC on the HRRT. Seventeen volumes of interest were drawn manually on each subject image to compare the PET activities between the MR-based and TX-based AC methods. Results: For skull segmentation, the overlap ratio between our segmented results and the ground truth is 85.2 ± 2.6%. Attenuation correction results from the ten subjects show that the difference between the MR and TX-based methods was <6.5%. Conclusions: MR-based AC compared favorably with conventional transmission-based AC. Quantitative tools including registration, segmentation, classification, and MR-based AC have been developed for use in combined MR/PET. PMID:23039679
Improved frame-based estimation of head motion in PET brain imaging.
Mukherjee, J M; Lindsay, C; Mukherjee, A; Olivier, P; Shao, L; King, M A; Licho, R
2016-05-01
Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. The list mode data for PET acquisition is uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is not susceptible to motion introduced between CT and PET acquisitions. The authors have shown that they can estimate motion for frames with time intervals as short as 5 s using nonattenuation corrected reconstructed FDG PET brain images. Intraframe motion in 60-s frames causes degradation of accuracy to about 2 mm based on the motion type.
PET and MRI: The Odd Couple or a Match Made in Heaven?
Catana, Ciprian; Guimaraes, Alexander R.; Rosen, Bruce R.
2013-01-01
Positron emission tomography (PET) and magnetic resonance imaging (MRI) are imaging modalities routinely used for clinical and research applications. Integrated scanners capable of acquiring PET and MRI data in the same imaging session, sequentially or simultaneously, have recently become available for human use. In this manuscript, we describe some of the technical advances that allowed the development of human PET/MR scanners, briefly discuss methodological challenges and opportunities provided by this novel technology and present potential oncologic, cardiac, and neuro-psychiatric applications. These examples range from studies that might immediately benefit from PET/MR to more advanced applications where future development might have an even broader impact. PMID:23492887
Pulmonary imaging using respiratory motion compensated simultaneous PET/MR
Dutta, Joyita; Huang, Chuan; Li, Quanzheng; El Fakhri, Georges
2015-01-01
Purpose: Pulmonary positron emission tomography (PET) imaging is confounded by blurring artifacts caused by respiratory motion. These artifacts degrade both image quality and quantitative accuracy. In this paper, the authors present a complete data acquisition and processing framework for respiratory motion compensated image reconstruction (MCIR) using simultaneous whole body PET/magnetic resonance (MR) and validate it through simulation and clinical patient studies. Methods: The authors have developed an MCIR framework based on maximum a posteriori or MAP estimation. For fast acquisition of high quality 4D MR images, the authors developed a novel Golden-angle RAdial Navigated Gradient Echo (GRANGE) pulse sequence and used it in conjunction with sparsity-enforcing k-t FOCUSS reconstruction. The authors use a 1D slice-projection navigator signal encapsulated within this pulse sequence along with a histogram-based gate assignment technique to retrospectively sort the MR and PET data into individual gates. The authors compute deformation fields for each gate via nonrigid registration. The deformation fields are incorporated into the PET data model as well as utilized for generating dynamic attenuation maps. The framework was validated using simulation studies on the 4D XCAT phantom and three clinical patient studies that were performed on the Biograph mMR, a simultaneous whole body PET/MR scanner. Results: The authors compared MCIR (MC) results with ungated (UG) and one-gate (OG) reconstruction results. The XCAT study revealed contrast-to-noise ratio (CNR) improvements for MC relative to UG in the range of 21%–107% for 14 mm diameter lung lesions and 39%–120% for 10 mm diameter lung lesions. A strategy for regularization parameter selection was proposed, validated using XCAT simulations, and applied to the clinical studies. The authors’ results show that the MC image yields 19%–190% increase in the CNR of high-intensity features of interest affected by respiratory motion relative to UG and a 6%–51% increase relative to OG. Conclusions: Standalone MR is not the traditional choice for lung scans due to the low proton density, high magnetic susceptibility, and low T2∗ relaxation time in the lungs. By developing and validating this PET/MR pulmonary imaging framework, the authors show that simultaneous PET/MR, unique in its capability of combining structural information from MR with functional information from PET, shows promise in pulmonary imaging. PMID:26133621
Pulmonary imaging using respiratory motion compensated simultaneous PET/MR.
Dutta, Joyita; Huang, Chuan; Li, Quanzheng; El Fakhri, Georges
2015-07-01
Pulmonary positron emission tomography (PET) imaging is confounded by blurring artifacts caused by respiratory motion. These artifacts degrade both image quality and quantitative accuracy. In this paper, the authors present a complete data acquisition and processing framework for respiratory motion compensated image reconstruction (MCIR) using simultaneous whole body PET/magnetic resonance (MR) and validate it through simulation and clinical patient studies. The authors have developed an MCIR framework based on maximum a posteriori or MAP estimation. For fast acquisition of high quality 4D MR images, the authors developed a novel Golden-angle RAdial Navigated Gradient Echo (GRANGE) pulse sequence and used it in conjunction with sparsity-enforcing k-t FOCUSS reconstruction. The authors use a 1D slice-projection navigator signal encapsulated within this pulse sequence along with a histogram-based gate assignment technique to retrospectively sort the MR and PET data into individual gates. The authors compute deformation fields for each gate via nonrigid registration. The deformation fields are incorporated into the PET data model as well as utilized for generating dynamic attenuation maps. The framework was validated using simulation studies on the 4D XCAT phantom and three clinical patient studies that were performed on the Biograph mMR, a simultaneous whole body PET/MR scanner. The authors compared MCIR (MC) results with ungated (UG) and one-gate (OG) reconstruction results. The XCAT study revealed contrast-to-noise ratio (CNR) improvements for MC relative to UG in the range of 21%-107% for 14 mm diameter lung lesions and 39%-120% for 10 mm diameter lung lesions. A strategy for regularization parameter selection was proposed, validated using XCAT simulations, and applied to the clinical studies. The authors' results show that the MC image yields 19%-190% increase in the CNR of high-intensity features of interest affected by respiratory motion relative to UG and a 6%-51% increase relative to OG. Standalone MR is not the traditional choice for lung scans due to the low proton density, high magnetic susceptibility, and low T2 (∗) relaxation time in the lungs. By developing and validating this PET/MR pulmonary imaging framework, the authors show that simultaneous PET/MR, unique in its capability of combining structural information from MR with functional information from PET, shows promise in pulmonary imaging.
Doot, Robert K.; Thompson, Tove; Greer, Benjamin E.; Allberg, Keith C.; Linden, Hannah M.; Mankoff, David A.; Kinahan, Paul E.
2012-01-01
The Seattle Cancer Care Alliance (SCCA) is a Pacific Northwest regional network that enables patients from community cancer centers to participate in multicenter oncology clinical trials where patients can receive some trial-related procedures at their local center. Results of positron emission tomography (PET) scans performed at community cancer centers are not currently used in SCCA Network trials since clinical trials customarily accept results from only trial-accredited PET imaging centers located at academic and large hospitals. Oncologists would prefer the option of using standard clinical PET scans from Network sites in multicenter clinical trials to increase accrual of patients for whom additional travel requirements for imaging is a barrier to recruitment. In an effort to increase accrual of rural and other underserved populations to Network trials, researchers and clinicians at the University of Washington, SCCA and its Network are assessing feasibility of using PET scans from all Network sites in their oncology clinical trials. A feasibility study is required because the reproducibility of multicenter PET measurements ranges from approximately 3% to 40% at national academic centers. Early experiences from both national and local PET phantom imaging trials are discussed and next steps are proposed for including patient PET scans from the emerging regional quantitative imaging network in clinical trials. There are feasible methods to determine and characterize PET quantitation errors and improve data quality by either prospective scanner calibration or retrospective post hoc corrections. These methods should be developed and implemented in multicenter clinical trials employing quantitative PET imaging of patients. PMID:22795929
Quantitative dynamic ¹⁸FDG-PET and tracer kinetic analysis of soft tissue sarcomas.
Rusten, Espen; Rødal, Jan; Revheim, Mona E; Skretting, Arne; Bruland, Oyvind S; Malinen, Eirik
2013-08-01
To study soft tissue sarcomas using dynamic positron emission tomography (PET) with the glucose analog tracer [(18)F]fluoro-2-deoxy-D-glucose ((18)FDG), to investigate correlations between derived PET image parameters and clinical characteristics, and to discuss implications of dynamic PET acquisition (D-PET). D-PET images of 11 patients with soft tissue sarcomas were analyzed voxel-by-voxel using a compartment tracer kinetic model providing estimates of transfer rates between the vascular, non-metabolized, and metabolized compartments. Furthermore, standard uptake values (SUVs) in the early (2 min p.i.; SUVE) and late (45 min p.i.; SUVL) phases of the PET acquisition were obtained. The derived transfer rates K1, k2 and k3, along with the metabolic rate of (18)FDG (MRFDG) and the vascular fraction νp, was fused with the computed tomography (CT) images for visual interpretation. Correlations between D-PET imaging parameters and clinical parameters, i.e. tumor size, grade and clinical status, were calculated with a significance level of 0.05. The temporal uptake pattern of (18)FDG in the tumor varied considerably from patient to patient. SUVE peak was higher than SUVL peak for four patients. The images of the rate constants showed a systematic pattern, often with elevated intensity in the tumors compared to surrounding tissue. Significant correlations were found between SUVE/L and some of the rate parameters. Dynamic (18)FDG-PET may provide additional valuable information on soft tissue sarcomas not obtainable from conventional (18)FDG-PET. The prognostic role of dynamic imaging should be investigated.
Doot, Robert K; Thompson, Tove; Greer, Benjamin E; Allberg, Keith C; Linden, Hannah M; Mankoff, David A; Kinahan, Paul E
2012-11-01
The Seattle Cancer Care Alliance (SCCA) is a Pacific Northwest regional network that enables patients from community cancer centers to participate in multicenter oncology clinical trials where patients can receive some trial-related procedures at their local center. Results of positron emission tomography (PET) scans performed at community cancer centers are not currently used in SCCA Network trials since clinical trials customarily accept results from only trial-accredited PET imaging centers located at academic and large hospitals. Oncologists would prefer the option of using standard clinical PET scans from Network sites in multicenter clinical trials to increase accrual of patients for whom additional travel requirements for imaging are a barrier to recruitment. In an effort to increase accrual of rural and other underserved populations to Network trials, researchers and clinicians at the University of Washington, SCCA and its Network are assessing the feasibility of using PET scans from all Network sites in their oncology clinical trials. A feasibility study is required because the reproducibility of multicenter PET measurements ranges from approximately 3% to 40% at national academic centers. Early experiences from both national and local PET phantom imaging trials are discussed, and next steps are proposed for including patient PET scans from the emerging regional quantitative imaging network in clinical trials. There are feasible methods to determine and characterize PET quantitation errors and improve data quality by either prospective scanner calibration or retrospective post hoc corrections. These methods should be developed and implemented in multicenter clinical trials employing quantitative PET imaging of patients. Copyright © 2012 Elsevier Inc. All rights reserved.
Technical aspects of cardiac PET/MRI.
Masuda, Atsuro; Nemoto, Ayaka; Takeishi, Yasuchika
2018-06-01
PET/MRI is a novel modality that enables to combine PET and MR images, and has significant potential to evaluate various cardiac diseases through the combination of PET molecular imaging and MRI functional imaging. Precise management of technical issues, however, is necessary for cardiac PET/MRI. This article describes several technical points, including patient preparation, MR attenuation correction, parallel acquisition of PET with MRI, clinical aspects, and image quality control.
Yang, Jaewon; Jian, Yiqiang; Jenkins, Nathaniel; Behr, Spencer C; Hope, Thomas A; Larson, Peder E Z; Vigneron, Daniel; Seo, Youngho
2017-07-01
Purpose To assess the patient-dependent accuracy of atlas-based attenuation correction (ATAC) for brain positron emission tomography (PET) in an integrated time-of-flight (TOF) PET/magnetic resonance (MR) imaging system. Materials and Methods Thirty recruited patients provided informed consent in this institutional review board-approved study. All patients underwent whole-body fluorodeoxyglucose PET/computed tomography (CT) followed by TOF PET/MR imaging. With use of TOF PET data, PET images were reconstructed with four different attenuation correction (AC) methods: PET with patient CT-based AC (CTAC), PET with ATAC (air and bone from an atlas), PET with ATAC patientBone (air and tissue from the atlas with patient bone), and PET with ATAC boneless (air and tissue from the atlas without bone). For quantitative evaluation, PET mean activity concentration values were measured in 14 1-mL volumes of interest (VOIs) distributed throughout the brain and statistical significance was tested with a paired t test. Results The mean overall difference (±standard deviation) of PET with ATAC compared with PET with CTAC was -0.69 kBq/mL ± 0.60 (-4.0% ± 3.2) (P < .001). The results were patient dependent (range, -9.3% to 0.57%) and VOI dependent (range, -5.9 to -2.2). In addition, when bone was not included for AC, the overall difference of PET with ATAC boneless (-9.4% ± 3.7) was significantly worse than that of PET with ATAC (-4.0% ± 3.2) (P < .001). Finally, when patient bone was used for AC instead of atlas bone, the overall difference of PET with ATAC patientBone (-1.5% ± 1.5) improved over that of PET with ATAC (-4.0% ± 3.2) (P < .001). Conclusion ATAC in PET/MR imaging achieves similar quantification accuracy to that from CTAC by means of atlas-based bone compensation. However, patient-specific anatomic differences from the atlas causes bone attenuation differences and misclassified sinuses, which result in patient-dependent performance variation of ATAC. © RSNA, 2017 Online supplemental material is available for this article.
Nuclear emission-based imaging in the study of brain function
NASA Astrophysics Data System (ADS)
Sossi, Vesna
2016-09-01
Nuclear emission - based imaging has been used in medicine for decades either in the form of Single Photon Emission Computerized Tomography (SPECT) or Positron Emission Tomography (PET). Both techniques are based on radiolabelling molecules of biological interest (radiotracers) with either a gamma (SPECT) or a positron (PET) emitting radionuclide. By detecting radiation from the radiolabels and reconstructing the acquired data it is possible to form an image of the radiotracer distribution in the body and thus obtain information on the biological process that the radiotracer is tagging. While most of the clinical applications of PET are in oncology, where the glucose analogue 18F-flurodeoxyglocose (FDG) is the most commonly used radiotracer, the importance of PET imaging for brain applications is rapidly increasing. Numerous radiotracers exist that can tag different neurotransmitter systems as well as abnormal protein aggregations that are known to underlie several brain diseases: amyloid deposition, a characteristic of Alzheimer's, and, more recently, tau deposition, which is deemed abnormal not only in dementia, but also in Parkinson's syndrome and traumatic brain injury. Imaging has shown that may brain diseases start decades before clinical symptoms, in part explaining the difficulty of developing adequate treatments. This talk will briefly summarize the role of PET imaging in the study of neurodegeneration and discuss the upcoming hybrid PET/MRI imaging instrumentation. NSERC, CIHR, MJFF.
Detection of osseous metastasis by 18F-NaF/18F-FDG PET/CT versus CT alone.
Sampath, Srinath C; Sampath, Srihari C; Mosci, Camila; Lutz, Amelie M; Willmann, Juergen K; Mittra, Erik S; Gambhir, Sanjiv S; Iagaru, Andrei
2015-03-01
Sodium fluoride PET (18F-NaF) has recently reemerged as a valuable method for detection of osseous metastasis, with recent work highlighting the potential of coadministered 18F-NaF and 18F-FDG PET/CT in a single combined imaging examination. We further examined the potential of such combined examinations by comparing dual tracer 18F-NaF18/F-FDG PET/CT with CT alone for detection of osseous metastasis. Seventy-five participants with biopsy-proven malignancy were consecutively enrolled from a single center and underwent combined 18F-NaF/18F-FDG PET/CT and diagnostic CT scans. PET/CT as well as CT only images were reviewed in blinded fashion and compared with the results of clinical, imaging, or histological follow-up as a truth standard. Sensitivity of the combined 18F-NaF/18F-FDG PET/CT was higher than that of CT alone (97.4% vs 66.7%). CT and 18F-NaF/18F-FDG PET/CT were concordant in 73% of studies. Of 20 discordant cases, 18F-NaF/18F-FDG PET/CT was correct in 19 (95%). Three cases were interpreted concordantly but incorrectly, and all 3 were false positives. A single case of osseous metastasis was detected by CT alone, but not by 18F-NaF/18F-FDG PET/CT. Combined 18F-NaF/18F-FDG PET/CT outperforms CT alone and is highly sensitive and specific for detection of osseous metastases. The concordantly interpreted false-positive cases demonstrate the difficulty of distinguishing degenerative from malignant disease, whereas the single case of metastasis seen on CT but not PET highlights the need for careful review of CT images in multimodality studies.
PET/CT: underlying physics, instrumentation, and advances.
Torres Espallardo, I
Since it was first introduced, the main goal of PET/CT has been to provide both PET and CT images with high clinical quality and to present them to radiologists and specialists in nuclear medicine as a fused, perfectly aligned image. The use of fused PET and CT images quickly became routine in clinical practice, showing the great potential of these hybrid scanners. Thanks to this success, manufacturers have gone beyond considering CT as a mere attenuation corrector for PET, concentrating instead on design high performance PET and CT scanners with more interesting features. Since the first commercial PET/CT scanner became available in 2001, both the PET component and the CT component have improved immensely. In the case of PET, faster scintillation crystals with high stopping power such as LYSO crystals have enabled more sensitive devices to be built, making it possible to reduce the number of undesired coincidence events and to use time of flight (TOF) techniques. All these advances have improved lesion detection, especially in situations with very noisy backgrounds. Iterative reconstruction methods, together with the corrections carried out during the reconstruction and the use of the point-spread function, have improved image quality. In parallel, CT instrumentation has also improved significantly, and 64- and 128-row detectors have been incorporated into the most modern PET/CT scanners. This makes it possible to obtain high quality diagnostic anatomic images in a few seconds that both enable the correction of PET attenuation and provide information for diagnosis. Furthermore, nowadays nearly all PET/CT scanners have a system that modulates the dose of radiation that the patient is exposed to in the CT study in function of the region scanned. This article reviews the underlying physics of PET and CT imaging separately, describes the changes in the instrumentation and standard protocols in a combined PET/CT system, and finally points out the most important advances in this hybrid imaging modality. Copyright © 2016 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.
Behr, Spencer C; Bahroos, Emma; Hawkins, Randall A; Nardo, Lorenzo; Ravanfar, Vahid; Capbarat, Emily V; Seo, Youngho
2018-06-01
Newer high-performance time-of-flight (TOF) positron emission tomography (PET) systems have the capability to preserve diagnostic image quality with low count density, while maintaining a high raw photon detection sensitivity that would allow for a reduction in injected dose or rapid data acquisition. To assess this, we performed quantitative and visual assessments of the PET images acquired using a highly sensitive (23.3 cps/kBq) large field of view (25-cm axial) silicon photomultiplier (SiPM)-based TOF PET (400-ps timing resolution) integrated with 3 T-MRI in comparison to PET images acquired on non-TOF PET/x-ray computed tomography (CT) systems. Whole-body 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) PET/CT was acquired for 15 patients followed by whole body PET/magnetic resonance imaging (MRI) with an average injected dose of 325 ± 84 MBq. The PET list mode data from PET/MRI were reconstructed using full datasets (4 min/bed) and reduced datasets (2, 1, 0.5, and 0.25 min/bed). Qualitative assessment between PET/CT and PET/MR images were made. A Likert-type scale between 1 and 5, 1 for non-diagnostic, 3 equivalent to PET/CT, and 5 superior quality, was used. Maximum and mean standardized uptake values (SUV max and SUV mean ) of normal tissues and lesions detected were measured and compared. Mean visual assessment scores were 3.54 ± 0.32, 3.62 ± 0.38, and 3.69 ± 0.35 for the brain and 3.05 ± 0.49, 3.71 ± 0.45, and 4.14 ± 0.44 for the whole-body maximum intensity projections (MIPs) for 1, 2, and 4 min/bed PET/MR images, respectively. The SUV mean values for normal tissues were lower and statistically significant for images acquired at 4, 2, 1, 0.5, and 0.25 min/bed on the PET/MR, with values of - 18 ± 28 % (p < 0.001), - 16 ± 29 % (p = 0.001), - 16 ± 31 % (p = 0.002), - 14 ± 35 % (p < 0.001), and - 13 ± 34 % (p = 0.002), respectively. SUV max and SUV peak values of all lesions were higher and statistically significant (p < 0.05) for 4, 2, 1, 0.50, and 0.25 min/bed PET/MR datasets. High-sensitivity TOF PET showed comparable but still better visual image quality even at a much reduced activity in comparison to lower-sensitivity non-TOF PET. Our data translates to a seven times reduction in either injection dose for the same time or total scan time for the same injected dose. This "ultra-sensitivity" PET system provides a path to clinically acceptable extremely low-dose FDG PET studies (e.g., sub 1 mCi injection or sub-mSv effective dose) or PET studies as short as 1 min/bed (e.g., 6 min of total scan time) to cover whole body without compromising diagnostic performance.
Quantifying hypoxia in human cancers using static PET imaging.
Taylor, Edward; Yeung, Ivan; Keller, Harald; Wouters, Bradley G; Milosevic, Michael; Hedley, David W; Jaffray, David A
2016-11-21
Compared to FDG, the signal of 18 F-labelled hypoxia-sensitive tracers in tumours is low. This means that in addition to the presence of hypoxic cells, transport properties contribute significantly to the uptake signal in static PET images. This sensitivity to transport must be minimized in order for static PET to provide a reliable standard for hypoxia quantification. A dynamic compartmental model based on a reaction-diffusion formalism was developed to interpret tracer pharmacokinetics and applied to static images of FAZA in twenty patients with pancreatic cancer. We use our model to identify tumour properties-well-perfused without substantial necrosis or partitioning-for which static PET images can reliably quantify hypoxia. Normalizing the measured activity in a tumour voxel by the value in blood leads to a reduction in the sensitivity to variations in 'inter-corporal' transport properties-blood volume and clearance rate-as well as imaging study protocols. Normalization thus enhances the correlation between static PET images and the FAZA binding rate K 3 , a quantity which quantifies hypoxia in a biologically significant way. The ratio of FAZA uptake in spinal muscle and blood can vary substantially across patients due to long muscle equilibration times. Normalized static PET images of hypoxia-sensitive tracers can reliably quantify hypoxia for homogeneously well-perfused tumours with minimal tissue partitioning. The ideal normalizing reference tissue is blood, either drawn from the patient before PET scanning or imaged using PET. If blood is not available, uniform, homogeneously well-perfused muscle can be used. For tumours that are not homogeneously well-perfused or for which partitioning is significant, only an analysis of dynamic PET scans can reliably quantify hypoxia.
Quantifying hypoxia in human cancers using static PET imaging
NASA Astrophysics Data System (ADS)
Taylor, Edward; Yeung, Ivan; Keller, Harald; Wouters, Bradley G.; Milosevic, Michael; Hedley, David W.; Jaffray, David A.
2016-11-01
Compared to FDG, the signal of 18F-labelled hypoxia-sensitive tracers in tumours is low. This means that in addition to the presence of hypoxic cells, transport properties contribute significantly to the uptake signal in static PET images. This sensitivity to transport must be minimized in order for static PET to provide a reliable standard for hypoxia quantification. A dynamic compartmental model based on a reaction-diffusion formalism was developed to interpret tracer pharmacokinetics and applied to static images of FAZA in twenty patients with pancreatic cancer. We use our model to identify tumour properties—well-perfused without substantial necrosis or partitioning—for which static PET images can reliably quantify hypoxia. Normalizing the measured activity in a tumour voxel by the value in blood leads to a reduction in the sensitivity to variations in ‘inter-corporal’ transport properties—blood volume and clearance rate—as well as imaging study protocols. Normalization thus enhances the correlation between static PET images and the FAZA binding rate K 3, a quantity which quantifies hypoxia in a biologically significant way. The ratio of FAZA uptake in spinal muscle and blood can vary substantially across patients due to long muscle equilibration times. Normalized static PET images of hypoxia-sensitive tracers can reliably quantify hypoxia for homogeneously well-perfused tumours with minimal tissue partitioning. The ideal normalizing reference tissue is blood, either drawn from the patient before PET scanning or imaged using PET. If blood is not available, uniform, homogeneously well-perfused muscle can be used. For tumours that are not homogeneously well-perfused or for which partitioning is significant, only an analysis of dynamic PET scans can reliably quantify hypoxia.
NASA Astrophysics Data System (ADS)
Davis, Paul B.; Abidi, Mongi A.
1989-05-01
PET is the only imaging modality that provides doctors with early analytic and quantitative biochemical assessment and precise localization of pathology. In PET images, boundary information as well as local pixel intensity are both crucial for manual and/or automated feature tracing, extraction, and identification. Unfortunately, the present PET technology does not provide the necessary image quality from which such precise analytic and quantitative measurements can be made. PET images suffer from significantly high levels of radial noise present in the form of streaks caused by the inexactness of the models used in image reconstruction. In this paper, our objective is to model PET noise and remove it without altering dominant features in the image. The ultimate goal here is to enhance these dominant features to allow for automatic computer interpretation and classification of PET images by developing techniques that take into consideration PET signal characteristics, data collection, and data reconstruction. We have modeled the noise steaks in PET images in both rectangular and polar representations and have shown both analytically and through computer simulation that it exhibits consistent mapping patterns. A class of filters was designed and applied successfully. Visual inspection of the filtered images show clear enhancement over the original images.
Wardak, Mirwais; Wong, Koon-Pong; Shao, Weber; Dahlbom, Magnus; Kepe, Vladimir; Satyamurthy, Nagichettiar; Small, Gary W.; Barrio, Jorge R.; Huang, Sung-Cheng
2010-01-01
Head movement during a PET scan (especially, dynamic scan) can affect both the qualitative and quantitative aspects of an image, making it difficult to accurately interpret the results. The primary objective of this study was to develop a retrospective image-based movement correction (MC) method and evaluate its implementation on dynamic [18F]-FDDNP PET images of cognitively intact controls and patients with Alzheimer’s disease (AD). Methods Dynamic [18F]-FDDNP PET images, used for in vivo imaging of beta-amyloid plaques and neurofibrillary tangles, were obtained from 12 AD and 9 age-matched controls. For each study, a transmission scan was first acquired for attenuation correction. An accurate retrospective MC method that corrected for transmission-emission misalignment as well as emission-emission misalignment was applied to all studies. No restriction was assumed for zero movement between the transmission scan and first emission scan. Logan analysis with cerebellum as the reference region was used to estimate various regional distribution volume ratio (DVR) values in the brain before and after MC. Discriminant analysis was used to build a predictive model for group membership, using data with and without MC. Results MC improved the image quality and quantitative values in [18F]-FDDNP PET images. In this subject population, medial temporal (MTL) did not show a significant difference between controls and AD before MC. However, after MC, significant differences in DVR values were seen in frontal, parietal, posterior cingulate (PCG), MTL, lateral temporal (LTL), and global between the two groups (P < 0.05). In controls and AD, the variability of regional DVR values (as measured by the coefficient of variation) decreased on average by >18% after MC. Mean DVR separation between controls and ADs was higher in frontal, MTL, LTL and global after MC. Group classification by discriminant analysis based on [18F]-FDDNP DVR values was markedly improved after MC. Conclusion The streamlined and easy to use MC method presented in this work significantly improves the image quality and the measured tracer kinetics of [18F]-FDDNP PET images. The proposed MC method has the potential to be applied to PET studies on patients having other disorders (e.g., Down syndrome and Parkinson’s disease) and to brain PET scans with other molecular imaging probes. PMID:20080894
TH-A-17A-01: Innovation in PET Instrumentation and Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casey, M; Miyaoka, R; Shao, Y
Innovation in PET instrumentation has led to the new millennium revolutionary imaging applications for diagnosis, therapeutic guidance, and development of new molecular imaging probes, etc. However, after several decades innovations, will the advances of PET technology and applications continue with the same trend and pace? What will be the next big thing beyond the PET/CT, PET/MRI, and Time-of-flight PET? How will the PET instrumentation and imaging performance be further improved by novel detector research and advanced imaging system development? Or will the development of new algorithms and methodologies extend the limit of current instrumentation and leapfrog the imaging quality andmore » quantification for practical applications? The objective of this session is to present an overview of current status and advances in the PET instrumentation and applications with speakers from leading academic institutes and a major medical imaging company. Presenting with both academic research projects and commercial technology developments, this session will provide a glimpse of some latest advances and challenges in the field, such as using semiconductor photon-sensor based PET detectors to improve performance and enable new applications, as well as the technology trend that may lead to the next breakthrough in PET imaging for clinical and preclinical applications. Both imaging and image-guided therapy subjects will be discussed. Learning Objectives: Describe the latest innovations in PET instrumentation and applications Understand the driven force behind the PET instrumentation innovation and development Learn the trend of PET technology development for applications.« less
A statistical method for lung tumor segmentation uncertainty in PET images based on user inference.
Zheng, Chaojie; Wang, Xiuying; Feng, Dagan
2015-01-01
PET has been widely accepted as an effective imaging modality for lung tumor diagnosis and treatment. However, standard criteria for delineating tumor boundary from PET are yet to develop largely due to relatively low quality of PET images, uncertain tumor boundary definition, and variety of tumor characteristics. In this paper, we propose a statistical solution to segmentation uncertainty on the basis of user inference. We firstly define the uncertainty segmentation band on the basis of segmentation probability map constructed from Random Walks (RW) algorithm; and then based on the extracted features of the user inference, we use Principle Component Analysis (PCA) to formulate the statistical model for labeling the uncertainty band. We validated our method on 10 lung PET-CT phantom studies from the public RIDER collections [1] and 16 clinical PET studies where tumors were manually delineated by two experienced radiologists. The methods were validated using Dice similarity coefficient (DSC) to measure the spatial volume overlap. Our method achieved an average DSC of 0.878 ± 0.078 on phantom studies and 0.835 ± 0.039 on clinical studies.
Sachpekidis, C; Goldschmidt, H; Kopka, K; Kopp-Schneider, A; Dimitrakopoulou-Strauss, A
2018-04-10
Despite the significant upgrading in recent years of the role of 18 F-FDG PET/CT in multiple myeloma (MM) diagnostics, there is a still unmet need for myeloma-specific radiotracers. 3'-Deoxy-3'-[ 18 F]fluorothymidine ( 18 F-FLT) is the most studied cellular proliferation PET agent, considered a potentially new myeloma functional imaging tracer. The aim of this pilot study was to evaluate 18 F-FLT PET/CT in imaging of MM patients, in the context of its combined use with 18 F-FDG PET/CT. Eight patients, four suffering from symptomatic MM and four suffering from smoldering MM (SMM), were enrolled in the study. All patients underwent 18 F-FDG PET/CT and 18 F-FLT PET/CT imaging by means of static (whole body) and dynamic PET/CT of the lower abdomen and pelvis (dPET/CT) in two consecutive days. The evaluation of PET/CT studies was based on qualitative evaluation, semi-quantitative (SUV) calculation, and quantitative analysis based on two-tissue compartment modeling. 18 F-FDG PET/CT demonstrated focal, 18 F-FDG avid, MM-indicative bone marrow lesions in five patients. In contrary, 18 F-FLT PET/CT showed focal, 18 F-FLT avid, myeloma-indicative lesions in only two patients. In total, 48 18 F-FDG avid, focal, MM-indicative lesions were detected with 18 F-FDG PET/CT, while 17 18 F-FLT avid, focal, MM-indicative lesions were detected with 18 F-FLT PET/CT. The number of myeloma-indicative lesions was significantly higher for 18 F-FDG PET/CT than for 18 F-FLT PET/CT. A common finding was a mismatch of focally increased 18 F-FDG uptake and reduced 18 F-FLT uptake (lower than the surrounding bone marrow). Moreover, 18 F-FLT PET/CT was characterized by high background activity in the bone marrow compartment, further complicating the evaluation of bone marrow lesions. Semi-quantitative evaluation revealed that both SUV mean and SUV max were significantly higher for 18 F-FLT than for 18 F-FDG in both MM lesions and reference tissue. SUV values were higher in MM lesions than in reference bone marrow for both tracers. Despite the limited number of patients analyzed in this pilot study, the first results of the trial indicate that 18 F-FLT does not seem suitable as a single tracer in MM diagnostics. Further studies with a larger patient population are warranted to generalize the herein presented results.
Conventional and Nuclear Medicine Imaging in Ectopic Cushing's Syndrome: A Systematic Review.
Isidori, Andrea M; Sbardella, Emilia; Zatelli, Maria Chiara; Boschetti, Mara; Vitale, Giovanni; Colao, Annamaria; Pivonello, Rosario
2015-09-01
Ectopic Cushing's Syndrome (ECS) can be a diagnostic challenge with the hormonal source difficult to find. This study analyzes the accuracy of imaging studies in ECS localization. Systematic review of medical literature for ECS case series providing individual patient data on at least one conventional imaging technique (computed tomography [CT]/magnetic resonance imaging) and one of the following: 111In-pentetreotide (OCT), 131I/123I-metaiodobenzylguanidine, 18Ffluoro-2-deoxyglucose-positron emission tomography (FDG-PET), 18F-fluorodopa-PET (F-DOPA-PET), 68Ga- DOTATATE-PET/CT or 68Ga-DOTATOC-PET/CT scan (68Gallium-SSTR-PET/CT). The analysis comprised 231 patients (females, 50.2%; age, 42.617 y). Overall, 52.4%(121/231) had "overt" ECS,18.6% had "occult" ECS, and 29% had "covert" ECS. Tumors were located in the lung (55.3%), mediastinum-thymus (7.9%), pancreas (8.5%), adrenal glands (6.4%), gastrointestinal tract (5.4%), thyroid (3.7%), and other sites (12.8%), and primary tumors were mostly bronchial neuroendocrine tumors (NETs) (54.8%), pancreatic NETs (8%), mediastinum-thymus NETs (6.9%), gastrointestinal NETs (5.3%), pheochromocytoma (6.4%), neuroblastoma (3.2%), and medullary thyroid carcinoma (3.2%). Tumors were localized byCTin66.2%(137/207), magnetic resonance imaging in 51.5% (53/103), OCT in 48.9% (84/172), FDG-PET in 51.7% (46/89), F-DOPAPET in 57.1% (12/21), 131/123I-metaiodobenzylguanidine in 30.8% (4/13), and 68Gallium-SSTRPET/CT in 81.8% (18/22) of cases. Molecular imaging discovered 79.1% (53/67) of tumors unidentified by conventional radiology, with OCT the most commonly used, revealing the tumor in 64%, followed by FDG-PET in 59.4%. F-DOPA-PET was used in only seven covert cases (sensitivity, 85.7%). Notably, 68Gallium-SSTR-PET/CT had 100% sensitivity among covert cases. Nuclear medicine improves the sensitivity of conventional radiology when tumor site identification is problematic. OCT offers a good availability/reliability ratio, and FDG-PET was proven useful. 68Gallium-SSTR-PET/CT use was infrequent, despite offering the highest sensitivity.
Development of a simultaneous optical/PET imaging system for awake mice
NASA Astrophysics Data System (ADS)
Takuwa, Hiroyuki; Ikoma, Yoko; Yoshida, Eiji; Tashima, Hideaki; Wakizaka, Hidekatsu; Shinaji, Tetsuya; Yamaya, Taiga
2016-09-01
Simultaneous measurements of multiple physiological parameters are essential for the study of brain disease mechanisms and the development of suitable therapies to treat them. In this study, we developed a measurement system for simultaneous optical imaging and PET for awake mice. The key elements of this system are the OpenPET, optical imaging and fixation apparatus for an awake mouse. The OpenPET is our original open-type PET geometry, which can be used in combination with another device because of the easily accessible open space of the former. A small prototype of the axial shift single-ring OpenPET was used. The objective lens for optical imaging with a mounted charge-coupled device camera was placed inside the open space of the AS-SROP. Our original fixation apparatus to hold an awake mouse was also applied. As a first application of this system, simultaneous measurements of cerebral blood flow (CBF) by laser speckle imaging (LSI) and [11C]raclopride-PET were performed under control and 5% CO2 inhalation (hypercapnia) conditions. Our system successfully obtained the CBF and [11C]raclopride radioactivity concentration simultaneously. Accumulation of [11C]raclopride was observed in the striatum where the density of dopamine D2 receptors is high. LSI measurements could be stably performed for more than 60 minutes. Increased CBF induced by hypercapnia was observed while CBF under the control condition was stable. We concluded that our imaging system should be useful for investigating the mechanisms of brain diseases in awake animal models.
Mehranian, Abolfazl; Kotasidis, Fotis; Zaidi, Habib
2016-02-07
Time-of-flight (TOF) positron emission tomography (PET) technology has recently regained popularity in clinical PET studies for improving image quality and lesion detectability. Using TOF information, the spatial location of annihilation events is confined to a number of image voxels along each line of response, thereby the cross-dependencies of image voxels are reduced, which in turns results in improved signal-to-noise ratio and convergence rate. In this work, we propose a novel approach to further improve the convergence of the expectation maximization (EM)-based TOF PET image reconstruction algorithm through subsetization of emission data over TOF bins as well as azimuthal bins. Given the prevalence of TOF PET, we elaborated the practical and efficient implementation of TOF PET image reconstruction through the pre-computation of TOF weighting coefficients while exploiting the same in-plane and axial symmetries used in pre-computation of geometric system matrix. In the proposed subsetization approach, TOF PET data were partitioned into a number of interleaved TOF subsets, with the aim of reducing the spatial coupling of TOF bins and therefore to improve the convergence of the standard maximum likelihood expectation maximization (MLEM) and ordered subsets EM (OSEM) algorithms. The comparison of on-the-fly and pre-computed TOF projections showed that the pre-computation of the TOF weighting coefficients can considerably reduce the computation time of TOF PET image reconstruction. The convergence rate and bias-variance performance of the proposed TOF subsetization scheme were evaluated using simulated, experimental phantom and clinical studies. Simulations demonstrated that as the number of TOF subsets is increased, the convergence rate of MLEM and OSEM algorithms is improved. It was also found that for the same computation time, the proposed subsetization gives rise to further convergence. The bias-variance analysis of the experimental NEMA phantom and a clinical FDG-PET study also revealed that for the same noise level, a higher contrast recovery can be obtained by increasing the number of TOF subsets. It can be concluded that the proposed TOF weighting matrix pre-computation and subsetization approaches enable to further accelerate and improve the convergence properties of OSEM and MLEM algorithms, thus opening new avenues for accelerated TOF PET image reconstruction.
NASA Astrophysics Data System (ADS)
Mehranian, Abolfazl; Kotasidis, Fotis; Zaidi, Habib
2016-02-01
Time-of-flight (TOF) positron emission tomography (PET) technology has recently regained popularity in clinical PET studies for improving image quality and lesion detectability. Using TOF information, the spatial location of annihilation events is confined to a number of image voxels along each line of response, thereby the cross-dependencies of image voxels are reduced, which in turns results in improved signal-to-noise ratio and convergence rate. In this work, we propose a novel approach to further improve the convergence of the expectation maximization (EM)-based TOF PET image reconstruction algorithm through subsetization of emission data over TOF bins as well as azimuthal bins. Given the prevalence of TOF PET, we elaborated the practical and efficient implementation of TOF PET image reconstruction through the pre-computation of TOF weighting coefficients while exploiting the same in-plane and axial symmetries used in pre-computation of geometric system matrix. In the proposed subsetization approach, TOF PET data were partitioned into a number of interleaved TOF subsets, with the aim of reducing the spatial coupling of TOF bins and therefore to improve the convergence of the standard maximum likelihood expectation maximization (MLEM) and ordered subsets EM (OSEM) algorithms. The comparison of on-the-fly and pre-computed TOF projections showed that the pre-computation of the TOF weighting coefficients can considerably reduce the computation time of TOF PET image reconstruction. The convergence rate and bias-variance performance of the proposed TOF subsetization scheme were evaluated using simulated, experimental phantom and clinical studies. Simulations demonstrated that as the number of TOF subsets is increased, the convergence rate of MLEM and OSEM algorithms is improved. It was also found that for the same computation time, the proposed subsetization gives rise to further convergence. The bias-variance analysis of the experimental NEMA phantom and a clinical FDG-PET study also revealed that for the same noise level, a higher contrast recovery can be obtained by increasing the number of TOF subsets. It can be concluded that the proposed TOF weighting matrix pre-computation and subsetization approaches enable to further accelerate and improve the convergence properties of OSEM and MLEM algorithms, thus opening new avenues for accelerated TOF PET image reconstruction.
Naswa, Niraj; Sharma, Punit; Gupta, Santosh Kumar; Karunanithi, Sellam; Reddy, Rama Mohan; Patnecha, Manish; Lata, Sneh; Kumar, Rakesh; Malhotra, Arun; Bal, Chandrasekhar
2014-01-01
This study aimed to compare the diagnostic performance of Ga-DOTANOC PET/CT with F-FDG PET/CT in the patients with gastroenteropancreatic neuroendocrine tumors (GEP-NETs). Data of 51 patients with definite histological diagnosis of GEP-NET who underwent both Ga-DOTA-NOC PET-CT and F-FDG PET-CT within a span of 15 days were selected for this retrospective analysis. Sensitivity, specificity, and predictive values were calculated for Ga-DOTA-NOC PET-CT and F-FDG PET-CT, and results were compared both on patientwise and regionwise analysis. Ga-DOTA-NOC PET-CT is superior to F-FDG PET-CT on patientwise analysis (P < 0.0001). On regionwise analysis, Ga-DOTA-NOC PET-CT is superior to F-FDG PET-CT only for lymph node metastases (P < 0.003). Although Ga-DOTA-NOC PET-CT detected more liver and skeletal lesions compared with F-FDG PET-CT, the difference was not statistically significant. In addition, the results of combined imaging helped in selecting candidates who would undergo the appropriate mode of treatment, whether octreotide therapy or conventional chemotherapy Ga-DOTA-NOC PET-CT seems to be superior to F-FDG PET-CT for imaging GEP-NETs. However, their role seems to be complementary because combination of Ga-DOTA-NOC PET-CT and F-FDG PET-CT in such patients helps demonstrate the total disease burden and segregate them to proper therapeutic groups.
Qian, Yushen; Von Eyben, Rie; Liu, Yufei; Chin, Frederick T; Miao, Zheng; Apte, Sandeep; Carter, Justin N; Binkley, Michael S; Pollom, Erqi L; Harris, Jeremy P; Prionas, Nicolas D; Kissel, Madelyn; Simmons, Amanda; Diehn, Maximilian; Shultz, David B; Brown, J Martin; Maxim, Peter G; Koong, Albert C; Graves, Edward E; Loo, Billy W
2018-04-18
Tumor hypoxia contributes to radiation resistance. A noninvasive assessment of tumor hypoxia would be valuable for prognostication and possibly selection for hypoxia-targeted therapies. 18 F-pentafluorinated etanidazole ( 18 F-EF5) is a nitroimidazole derivative that has demonstrated promise as a positron emission tomography (PET) hypoxia imaging agent in preclinical and clinical studies. However, correlation of imageable hypoxia by 18 F-EF5 PET with clinical outcomes after radiation therapy remains limited. Our study prospectively enrolled 28 patients undergoing radiation therapy for localized lung or other tumors to receive pretreatment 18 F-EF5 PET imaging. Depending on the level of 18 F-EF5 tumor uptake, patients underwent functional manipulation of tumor oxygenation with either carbogen breathing or oral dichloroacetate followed by repeated 18 F-EF5 PET. The hypoxic subvolume of tumor was defined as the proportion of tumor voxels exhibiting higher 18 F-EF5 uptake than the 95th percentile of 18 F-EF5 uptake in the blood pool. Tumors with a hypoxic subvolume ≥ 10% on baseline 18 F-EF5 PET imaging were classified as hypoxic by imaging. A Cox model was used to assess the correlation between imageable hypoxia and clinical outcomes after treatment. At baseline, imageable hypoxia was demonstrated in 43% of all patients (12 of 28), including 6 of 16 patients with early-stage non-small cell lung cancer treated with stereotactic ablative radiation therapy and 6 of 12 patients with other cancers. Carbogen breathing was significantly associated with decreased imageable hypoxia, while dichloroacetate did not result in a significant change under our protocol conditions. Tumors with imageable hypoxia had a higher incidence of local recurrence at 12 months (30%) than those without (0%) (P < .01). Noninvasive hypoxia imaging by 18 F-EF5 PET identified imageable hypoxia in about 40% of tumors in our study population. Local tumor recurrence after highly conformal radiation therapy was higher in tumors with imageable hypoxia. Copyright © 2018 Elsevier Inc. All rights reserved.
Reproducibility of Quantitative Brain Imaging Using a PET-Only and a Combined PET/MR System
Lassen, Martin L.; Muzik, Otto; Beyer, Thomas; Hacker, Marcus; Ladefoged, Claes Nøhr; Cal-González, Jacobo; Wadsak, Wolfgang; Rausch, Ivo; Langer, Oliver; Bauer, Martin
2017-01-01
The purpose of this study was to test the feasibility of migrating a quantitative brain imaging protocol from a positron emission tomography (PET)-only system to an integrated PET/MR system. Potential differences in both absolute radiotracer concentration as well as in the derived kinetic parameters as a function of PET system choice have been investigated. Five healthy volunteers underwent dynamic (R)-[11C]verapamil imaging on the same day using a GE-Advance (PET-only) and a Siemens Biograph mMR system (PET/MR). PET-emission data were reconstructed using a transmission-based attenuation correction (AC) map (PET-only), whereas a standard MR-DIXON as well as a low-dose CT AC map was applied to PET/MR emission data. Kinetic modeling based on arterial blood sampling was performed using a 1-tissue-2-rate constant compartment model, yielding kinetic parameters (K1 and k2) and distribution volume (VT). Differences for parametric values obtained in the PET-only and the PET/MR systems were analyzed using a 2-way Analysis of Variance (ANOVA). Comparison of DIXON-based AC (PET/MR) with emission data derived from the PET-only system revealed average inter-system differences of −33 ± 14% (p < 0.05) for the K1 parameter and −19 ± 9% (p < 0.05) for k2. Using a CT-based AC for PET/MR resulted in slightly lower systematic differences of −16 ± 18% for K1 and −9 ± 10% for k2. The average differences in VT were −18 ± 10% (p < 0.05) for DIXON- and −8 ± 13% for CT-based AC. Significant systematic differences were observed for kinetic parameters derived from emission data obtained from PET/MR and PET-only imaging due to different standard AC methods employed. Therefore, a transfer of imaging protocols from PET-only to PET/MR systems is not straightforward without application of proper correction methods. Clinical Trial Registration: www.clinicaltrialsregister.eu, identifier 2013-001724-19 PMID:28769742
External radioactive markers for PET data-driven respiratory gating in positron emission tomography.
Büther, Florian; Ernst, Iris; Hamill, James; Eich, Hans T; Schober, Otmar; Schäfers, Michael; Schäfers, Klaus P
2013-04-01
Respiratory gating is an established approach to overcoming respiration-induced image artefacts in PET. Of special interest in this respect are raw PET data-driven gating methods which do not require additional hardware to acquire respiratory signals during the scan. However, these methods rely heavily on the quality of the acquired PET data (statistical properties, data contrast, etc.). We therefore combined external radioactive markers with data-driven respiratory gating in PET/CT. The feasibility and accuracy of this approach was studied for [(18)F]FDG PET/CT imaging in patients with malignant liver and lung lesions. PET data from 30 patients with abdominal or thoracic [(18)F]FDG-positive lesions (primary tumours or metastases) were included in this prospective study. The patients underwent a 10-min list-mode PET scan with a single bed position following a standard clinical whole-body [(18)F]FDG PET/CT scan. During this scan, one to three radioactive point sources (either (22)Na or (18)F, 50-100 kBq) in a dedicated holder were attached the patient's abdomen. The list mode data acquired were retrospectively analysed for respiratory signals using established data-driven gating approaches and additionally by tracking the motion of the point sources in sinogram space. Gated reconstructions were examined qualitatively, in terms of the amount of respiratory displacement and in respect of changes in local image intensity in the gated images. The presence of the external markers did not affect whole-body PET/CT image quality. Tracking of the markers led to characteristic respiratory curves in all patients. Applying these curves for gated reconstructions resulted in images in which motion was well resolved. Quantitatively, the performance of the external marker-based approach was similar to that of the best intrinsic data-driven methods. Overall, the gain in measured tumour uptake from the nongated to the gated images indicating successful removal of respiratory motion was correlated with the magnitude of the respiratory displacement of the respective tumour lesion, but not with lesion size. Respiratory information can be assessed from list-mode PET/CT through PET data-derived tracking of external radioactive markers. This information can be successfully applied to respiratory gating to reduce motion-related image blurring. In contrast to other previously described PET data-driven approaches, the external marker approach is independent of tumour uptake and thereby applicable even in patients with poor uptake and small tumours.
Derivation of the scan time requirement for maintaining a consistent PET image quality
NASA Astrophysics Data System (ADS)
Kim, Jin Su; Lee, Jae Sung; Kim, Seok-Ki
2015-05-01
Objectives: the image quality of PET for larger patients is relatively poor, even though the injection dose is optimized considering the NECR characteristics of the PET scanner. This poor image quality is due to the lower level of maximum NECR that can be achieved in these large patients. The aim of this study was to optimize the PET scan time to obtain a consistent PET image quality regardless of the body size, based on the relationship between the patient specific NECR (pNECR) and body weight. Methods: eighty patients (M/F=53/27, body weight: 059 ± 1 kg) underwent whole-body FDG PET scans using a Philips GEMINI GS PET/CT scanner after an injection of 0.14 mCi/kg FDG. The relationship between the scatter fraction (SF) and body weight was determined by repeated Monte Carlo simulations using a NEMA scatter phantom, the size of which varied according to the relationship between the abdominal circumference and body weight. Using this information, the pNECR was calculated from the prompt and delayed PET sinograms to obtain the prediction equation of NECR vs. body weight. The time scaling factor (FTS) for the scan duration was finally derived to make PET images with equivalent SNR levels. Results: the SF and NECR had the following nonlinear relationships with the body weight: SF=0.15 ṡ body weight0.3 and NECR = 421.36 (body weight)-0.84. The equation derived for FTS was 0.01ṡ body weight + 0.2, which means that, for example, a 120-kg person should be scanned 1.8 times longer than a 70 kg person, or the scan time for a 40-kg person can be reduced by 30%. Conclusion: the equation of the relative time demand derived in this study will be useful for maintaining consistent PET image quality in clinics.
Parodi, Katia; Paganetti, Harald; Cascio, Ethan; Flanz, Jacob B.; Bonab, Ali A.; Alpert, Nathaniel M.; Lohmann, Kevin; Bortfeld, Thomas
2008-01-01
The feasibility of off-line positron emission tomography/computed tomography (PET/CT) for routine three dimensional in-vivo treatment verification of proton radiation therapy is currently under investigation at Massachusetts General Hospital in Boston. In preparation for clinical trials, phantom experiments were carried out to investigate the sensitivity and accuracy of the method depending on irradiation and imaging parameters. Furthermore, they addressed the feasibility of PET/CT as a robust verification tool in the presence of metallic implants. These produce x-ray CT artifacts and fluence perturbations which may compromise the accuracy of treatment planning algorithms. Spread-out Bragg peak proton fields were delivered to different phantoms consisting of polymethylmethacrylate (PMMA), PMMA stacked with lung and bone equivalent materials, and PMMA with titanium rods to mimic implants in patients. PET data were acquired in list mode starting within 20 min after irradiation at a commercial luthetium-oxyorthosilicate (LSO)-based PET/CT scanner. The amount and spatial distribution of the measured activity could be well reproduced by calculations based on the GEANT4 and FLUKA Monte Carlo codes. This phantom study supports the potential of millimeter accuracy for range monitoring and lateral field position verification even after low therapeutic dose exposures of 2 Gy, despite the delay between irradiation and imaging. It also indicates the value of PET for treatment verification in the presence of metallic implants, demonstrating a higher sensitivity to fluence perturbations in comparison to a commercial analytical treatment planning system. Finally, it addresses the suitability of LSO-based PET detectors for hadron therapy monitoring. This unconventional application of PET involves countrates which are orders of magnitude lower than in diagnostic tracer imaging, i.e., the signal of interest is comparable to the noise originating from the intrinsic radioactivity of the detector itself. In addition to PET alone, PET/CT imaging provides accurate information on the position of the imaged object and may assess possible anatomical changes during fractionated radiotherapy in clinical applications. PMID:17388158
Wan, Chih-Hsing; Tseng, Jing-Ren; Lee, Ming-Hsun; Yang, Lan-Yan; Yen, Tzu-Chen
2018-03-01
Acute complicated pyelonephritis (ACP) is an upper urinary tract infection associated with coexisting urinary tract abnormalities or medical conditions that could predispose to serious outcomes or treatment failures. Although CT and magnetic resonance imaging (MRI) are frequently used in patients with ACP, the clinical value of 18 F-fluorodeoxyglucose positron emission tomography and computed tomography (FDG PET/CT) has not been systematically investigated. This single-center retrospective study was designed to evaluate the potential usefulness of FDG PET/CT in patients with ACP. Thirty-one adult patients with ACP who underwent FDG PET/CT were examined. FDG PET/CT imaging characteristics, including tracer uptake patterns, kidney volumes, and extrarenal imaging findings, were reviewed in combination with clinical data and conventional imaging results. Of the 31 patients, 19 (61%) showed focal FDG uptake. The remaining 12 study participants showed a diffuse FDG uptake pattern. After volumetric approximation, the affected kidneys were found to be significantly enlarged. Patients who showed a focal uptake pattern had a higher frequency of abscess formation requiring drainage. ACP patients showing diffuse tracer uptake patterns had a more benign clinical course. Seven patients had suspected extrarenal coinfections, and FDG PET/CT successfully confirmed the clinical suspicion in five cases. FDG PET/CT was as sensitive as CT in identifying the six patients (19%) who developed abscesses. Notably, FDG PET/CT findings caused a modification to the initial antibiotic regimen in nine patients (29%). FDG PET/CT may be clinically useful in the assessment of patients with ACP who have a progressive disease course.
NASA Astrophysics Data System (ADS)
Raylman, Raymond R.; Majewski, Stan; Velan, S. Sendhil; Lemieux, Susan; Kross, Brian; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.
2007-06-01
Multi-modality imaging (such as PET-CT) is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET, fused with anatomical images created by MRI, allow the correlation of form with function. Perhaps more exciting than the combination of anatomical MRI with PET, is the melding of PET with MR spectroscopy (MRS). Thus, two aspects of physiology could be combined in novel ways to produce new insights into the physiology of normal and pathological processes. Our team is developing a system to acquire MRI images and MRS spectra, and PET images contemporaneously. The prototype MR-compatible PET system consists of two opposed detector heads (appropriate in size for small animal imaging), operating in coincidence mode with an active field-of-view of ˜14 cm in diameter. Each detector consists of an array of LSO detector elements coupled through a 2-m long fiber optic light guide to a single position-sensitive photomultiplier tube. The use of light guides allows these magnetic field-sensitive elements of the PET imager to be positioned outside the strong magnetic field of our 3T MRI scanner. The PET scanner imager was integrated with a 12-cm diameter, 12-leg custom, birdcage coil. Simultaneous MRS spectra and PET images were successfully acquired from a multi-modality phantom consisting of a sphere filled with 17 brain relevant substances and a positron-emitting radionuclide. There were no significant changes in MRI or PET scanner performance when both were present in the MRI magnet bore. This successful initial test demonstrates the potential for using such a multi-modality to obtain complementary MRS and PET data.
Conventional and Nuclear Medicine Imaging in Ectopic Cushing's Syndrome: A Systematic Review
Isidori, Andrea M.; Sbardella, Emilia; Zatelli, Maria Chiara; Boschetti, Mara; Vitale, Giovanni; Colao, Annamaria
2015-01-01
Context: Ectopic Cushing's Syndrome (ECS) can be a diagnostic challenge with the hormonal source difficult to find. This study analyzes the accuracy of imaging studies in ECS localization. Evidence Acquisition: Systematic review of medical literature for ECS case series providing individual patient data on at least one conventional imaging technique (computed tomography [CT]/magnetic resonance imaging) and one of the following: 111In-pentetreotide (OCT), 131I/123I-metaiodobenzylguanidine, 18F-fluoro-2-deoxyglucose-positron emission tomography (FDG-PET), 18F-fluorodopa-PET (F-DOPA-PET), 68Ga-DOTATATE-PET/CT or 68Ga-DOTATOC-PET/CT scan (68Gallium-SSTR-PET/CT). Evidence Summary: The analysis comprised 231 patients (females, 50.2%; age, 42.6 ± 17 y). Overall, 52.4% (121/231) had “overt” ECS, 18.6% had “occult” ECS, and 29% had “covert” ECS. Tumors were located in the lung (55.3%), mediastinum-thymus (7.9%), pancreas (8.5%), adrenal glands (6.4%), gastrointestinal tract (5.4%), thyroid (3.7%), and other sites (12.8%), and primary tumors were mostly bronchial neuroendocrine tumors (NETs) (54.8%), pancreatic NETs (8%), mediastinum-thymus NETs (6.9%), gastrointestinal NETs (5.3%), pheochromocytoma (6.4%), neuroblastoma (3.2%), and medullary thyroid carcinoma (3.2%). Tumors were localized by CT in 66.2% (137/207), magnetic resonance imaging in 51.5% (53/103), OCT in 48.9% (84/172), FDG-PET in 51.7% (46/89), F-DOPA-PET in 57.1% (12/21), 131/123I-metaiodobenzylguanidine in 30.8% (4/13), and 68Gallium-SSTR-PET/CT in 81.8% (18/22) of cases. Molecular imaging discovered 79.1% (53/67) of tumors unidentified by conventional radiology, with OCT the most commonly used, revealing the tumor in 64%, followed by FDG-PET in 59.4%. F-DOPA-PET was used in only seven covert cases (sensitivity, 85.7%). Notably, 68Gallium-SSTR-PET/CT had 100% sensitivity among covert cases. Conclusions: Nuclear medicine improves the sensitivity of conventional radiology when tumor site identification is problematic. OCT offers a good availability/reliability ratio, and FDG-PET was proven useful. 68Gallium-SSTR-PET/CT use was infrequent, despite offering the highest sensitivity. PMID:26158607
İntepe, Yavuz Selim; Metin, Bayram; Şahin, Sevinç; Kaya, Buğra; Okur, Aylin
2016-08-01
The objective of this study was to compare the results of transthoracic biopsies performed through the use of FDG PET/CT imaging with the results of transthoracic needle biopsy performed without using the FDG PET/CT imaging. The medical files of a total of 58 patients with pulmonary and mediastinal masses. A total of 20 patients, who were suspected of malignancy with the SUVmax value of over 2.5 in FDG PET/CT, underwent a biopsy process. Twelve patients with no suspicion of malignancy in accordance with CT images and with the SUVmax value below 2.5 underwent no biopsy procedure, and hence, they were excluded from the study. On the other hand, 26 patients directly went through a biopsy process with the suspicion of malignancy according to CT imaging, regardless of performing any FDG PET/CT imaging. According to the biopsy results, the number of the patients diagnosed with cancer was 20 (43.5%), while the number of non-cancerous patients was 26 (56.5%). When these findings were considered, it was determined that the sensitivity of the whole TTNB (transthoracic needle biopsy) was 80.8%, and the specificity was found as 100%. The positive predictive value of the whole TTNB was 100%, while its negative predictive value was found to be 80%. The sensitivity in TTNB performed together with FDG PET/CT was 90.9%, whereas the specificity was 100%. The positive predictive value of TTNB with FDG PET/CT was 100%, while its negative predictive value was found to be 81.8%. The sensitivity in TTNB performed without the use of FDG PET/CT was 73.3%, whereas the specificity was determined as 100%. Performing FDG PET/CT imaging process prior to a transthoracic biopsy as well as preferring FDG PET/CT for the spot on which the biopsy will be performed during the transthoracic biopsy procedure increases the rate of receiving accurate diagnosis.
Simultaneous PET/MR imaging with a radio frequency-penetrable PET insert
Grant, Alexander M.; Lee, Brian J.; Chang, Chen-Ming; Levin, Craig S.
2017-01-01
Purpose A brain sized radio-frequency (RF)-penetrable PET insert has been designed for simultaneous operation with MRI systems. This system takes advantage of electro-optical coupling and battery power to electrically float the PET insert relative to the MRI ground, permitting RF signals to be transmitted through small gaps between the modules that form the PET ring. This design facilitates the use of the built-in body coil for RF transmission, and thus could be inserted into any existing MR site wishing to achieve simultaneous PET/MR imaging. The PET detectors employ non-magnetic silicon photomultipliers in conjunction with a compressed sensing signal multiplexing scheme, and optical fibers to transmit analog PET detector signals out of the MRI room for decoding, processing, and image reconstruction. Methods The PET insert was first constructed and tested in a laboratory benchtop setting, where tomographic images of a custom resolution phantom were successfully acquired. The PET insert was then placed within a 3T body MRI system, and tomographic resolution/contrast phantom images were acquired both with only the B0 field present, and under continuous pulsing from different MR imaging sequences. Results The resulting PET images have comparable contrast-to-noise ratios (CNR) under all MR pulsing conditions: the maximum percent CNR relative difference for each rod type among all four PET images acquired in the MRI system has a mean of 14.0±7.7%. MR images were successfully acquired through the RF-penetrable PET shielding using only the built-in MR body coil, suggesting that simultaneous imaging is possible without significant mutual interference. Conclusions These results show promise for this technology as an alternative to costly integrated PET/MR scanners; a PET insert that is compatible with any existing clinical MRI system could greatly increase the availability, accessibility, and dissemination of PET/MR. PMID:28102949
Approaches using molecular imaging technology -- use of PET in clinical microdose studies.
Wagner, Claudia C; Langer, Oliver
2011-06-19
Positron emission tomography (PET) imaging uses minute amounts of radiolabeled drug tracers and thereby meets the criteria for clinical microdose studies. The advantage of PET, when compared to other analytical methods used in microdose studies, is that the pharmacokinetics (PK) of a drug can be determined in the tissue targeted for drug treatment. PET microdosing already offers interesting applications in clinical oncology and in the development of central nervous system pharmaceuticals and is extending its range of application to many other fields of pharmaceutical medicine. Although requirements for preclinical safety testing for microdose studies have been cut down by regulatory authorities, radiopharmaceuticals increasingly need to be produced under good manufacturing practice (GMP) conditions, which increases the costs of PET microdosing studies. Further challenges in PET microdosing include combining PET with other ultrasensitive analytical methods, such as accelerator mass spectrometry (AMS), to gain plasma PK data of drugs, beyond the short PET examination periods. Finally, conducting clinical PET studies with radiolabeled drugs both at micro- and therapeutic doses is encouraged to answer the question of dose linearity in clinical microdosing. Copyright © 2010 Elsevier B.V. All rights reserved.
Report on the development and application of PET/CT in mainland China
Zhou, Xiang; Liu, Jianjun; Huang, Gang
2017-01-01
Purpose To examine the development and application of systems combining positron emission and x-ray-computed tomography systems (PET/CTs) in mainland China. Methods Using a questionnaire, we surveyed Chinese medical institutions on a variety topics relating to their PET/CT systems and its use. The respondents had PET/CTs installed and in clinical use before 31 December 2015. We examined the clinical scenarios to which Chinese PET/CTs were applied by reviewing the related Chinese and international literature from the start of 1995 to the end of 2013; these papers were found by searching the Wanfang and PubMed databases, respectively. The data were then classified and analyzed statistically. Results At the end of 2015, there were 240 PET/CTs and 101 medical cyclotrons in mainland China. The total number of PET studies performed in 2015 was 469,364. The main clinical applications of PET were found to be diagnostic fludeoxyglucose (18F-FDG) imaging and oncological imaging. A minority of PET/CT studies were performed using 11C-choline and other imaging agents. The number of papers relating to clinical use of PET/CT in mainland China increased each year over the period of study, in both the Chinese and international literature. Despite this progress, important problems were also apparent, including unbalanced regional development and the limited quality of the research. Conclusions This study provides detailed information for understanding the development PET/CT technology in mainland China, along with its geographical distribution and clinical application. It may thus prove a useful reference for all those involved in planning the future of PET/CT in China. PMID:28969081
Advances in time-of-flight PET
Surti, Suleman; Karp, Joel S.
2016-01-01
This paper provides a review and an update on time-of-flight PET imaging with a focus on PET instrumentation, ranging from hardware design to software algorithms. We first present a short introduction to PET, followed by a description of TOF PET imaging and its history from the early days. Next, we introduce the current state-of-art in TOF PET technology and briefly summarize the benefits of TOF PET imaging. This is followed by a discussion of the various technological advancements in hardware (scintillators, photo-sensors, electronics) and software (image reconstruction) that have led to the current widespread use of TOF PET technology, and future developments that have the potential for further improvements in the TOF imaging performance. We conclude with a discussion of some new research areas that have opened up in PET imaging as a result of having good system timing resolution, ranging from new algorithms for attenuation correction, through efficient system calibration techniques, to potential for new PET system designs. PMID:26778577
Ahrens, Bradley J; Li, Lin; Ciminera, Alexandra K; Chea, Junie; Poku, Erasmus; Bading, James R; Weist, Michael R; Miller, Marcia M; Colcher, David M; Shively, John E
2017-09-01
The development of improved breast cancer screening methods is hindered by a lack of cancer-specific imaging agents and effective small-animal models to test them. The purpose of this study was to evaluate 64 Cu-DOTA-alendronate as a mammary microcalcification-targeting PET imaging agent, using an ideal rat model. Our long-term goal is to develop 64 Cu-DOTA-alendronate for the detection and noninvasive differentiation of malignant versus benign breast tumors with PET. Methods: DOTA-alendronate was synthesized, radiolabeled with 64 Cu, and administered to normal or tumor-bearing aged, female, retired breeder Sprague-Dawley rats for PET imaging. Mammary tissues were subsequently labeled and imaged with light, confocal, and electron microscopy to verify microcalcification targeting specificity of DOTA-alendronate and elucidate the histologic and ultrastructural characteristics of the microcalcifications in different mammary tumor types. Tumor uptake, biodistribution, and dosimetry studies were performed to evaluate the efficacy and safety of 64 Cu-DOTA-alendronate. Results: 64 Cu-DOTA-alendronate was radiolabeled with a 98% yield. PET imaging using aged, female, retired breeder rats showed specific binding of 64 Cu-DOTA-alendronate in mammary glands and mammary tumors. The highest uptake of 64 Cu-DOTA-alendronate was in malignant tumors and the lowest uptake in benign tumors and normal mammary tissue. Confocal analysis with carboxyfluorescein-alendronate confirmed the microcalcification binding specificity of alendronate derivatives. Biodistribution studies revealed tissue alendronate concentrations peaking within the first hour, then decreasing over the next 48 h. Our dosimetric analysis demonstrated a 64 Cu effective dose within the acceptable range for clinical PET imaging agents and the potential for translation into human patients. Conclusion: 64 Cu-DOTA-alendronate is a promising PET imaging agent for the sensitive and specific detection of mammary tumors as well as the differentiation of malignant versus benign tumors based on absolute labeling uptake. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Effect of respiratory gating on reducing lung motion artifacts in PET imaging of lung cancer.
Nehmeh, S A; Erdi, Y E; Ling, C C; Rosenzweig, K E; Squire, O D; Braban, L E; Ford, E; Sidhu, K; Mageras, G S; Larson, S M; Humm, J L
2002-03-01
Positron emission tomography (PET) has shown an increase in both sensitivity and specificity over computed tomography (CT) in lung cancer. However, motion artifacts in the 18F fluorodioxydoglucose (FDG) PET images caused by respiration persists to be an important factor in degrading PET image quality and quantification. Motion artifacts lead to two major effects: First, it affects the accuracy of quantitation, producing a reduction of the measured standard uptake value (SUV). Second, the apparent lesion volume is overestimated. Both impact upon the usage of PET images for radiation treatment planning. The first affects the visibility, or contrast, of the lesion. The second results in an increase in the planning target volume, and consequently a greater radiation dose to the normal tissues. One way to compensate for this effect is by applying a multiple-frame capture technique. The PET data are then acquired in synchronization with the respiratory motion. Reduction in smearing due to gating was investigated in both phantoms and patient studies. Phantom studies showed a dependence of the reduction in smearing on the lesion size, the motion amplitude, and the number of bins used for data acquisition. These studies also showed an improvement in the target-to-background ratio, and a more accurate measurement of the SUV. When applied to one patient, respiratory gating showed a 28% reduction in the total lesion volume, and a 56.5% increase in the SUV. This study was conducted as a proof of principle that a gating technique can effectively reduce motion artifacts in PET image acquisition.
Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI
NASA Astrophysics Data System (ADS)
Harsha Maramraju, Sri; Smith, S. David; Junnarkar, Sachin S.; Schulz, Daniela; Stoll, Sean; Ravindranath, Bosky; Purschke, Martin L.; Rescia, Sergio; Southekal, Sudeepti; Pratte, Jean-François; Vaska, Paul; Woody, Craig L.; Schlyer, David J.
2011-04-01
We developed a non-magnetic positron-emission tomography (PET) device based on the rat conscious animal PET that operates in a small-animal magnetic resonance imaging (MRI) scanner, thereby enabling us to carry out simultaneous PET/MRI studies. The PET detector comprises 12 detector blocks, each being a 4 × 8 array of lutetium oxyorthosilicate crystals (2.22 × 2.22 × 5 mm3) coupled to a matching non-magnetic avalanche photodiode array. The detector blocks, housed in a plastic case, form a 38 mm inner diameter ring with an 18 mm axial extent. Custom-built MRI coils fit inside the positron-emission tomography (PET) device, operating in transceiver mode. The PET insert is integrated with a Bruker 9.4 T 210 mm clear-bore diameter MRI scanner. We acquired simultaneous PET/MR images of phantoms, of in vivo rat brain, and of cardiac-gated mouse heart using [11C]raclopride and 2-deoxy-2-[18F]fluoro-d-glucose PET radiotracers. There was minor interference between the PET electronics and the MRI during simultaneous operation, and small effects on the signal-to-noise ratio in the MR images in the presence of the PET, but no noticeable visual artifacts. Gradient echo and high-duty-cycle spin echo radio frequency (RF) pulses resulted in a 7% and a 28% loss in PET counts, respectively, due to high PET counts during the RF pulses that had to be gated out. The calibration of the activity concentration of PET data during MR pulsing is reproducible within less than 6%. Our initial results demonstrate the feasibility of performing simultaneous PET and MRI studies in adult rats and mice using the same PET insert in a small-bore 9.4 T MRI.
Odalovic, Strahinja; Artiko, Vera; Sobic-Saranovic, Dragana; Stojiljkovic, Milica; Petrovic, Milorad; Petrovic, Nebojsa; Kozarevic, Nebojsa; Grozdic-Milojevic, Isidora; Obradovic, Vladimir
2015-01-01
The aim of this study was to assess the value of (18)F-fluorodeoxyglucose ((18)F-FDG) PET/CT in detection of liver metastases in patients with suspected recurrent colorectal carcinoma, as well as to compare diagnostic performance of (18)F-FDG PET/CT with conventional imaging methods (MDCT). This study included 73 patients with resected primary colorectal adenocarcinoma referred for (18)F-FDG PET/CT to the National PET Center, at the Clinical Center of Serbia, Belgrade, from January 2010 to May 2013, with suspicion of recurrence. The patients underwent (18)F-FDG PET/CT examination on a 64-slice hybrid PET/CT scanner (Biograph, TruePoint64, Siemens Medical Solutions, Inc. USA). Prior to (18)F-FDG PET/CT all patients underwent contrast-enhanced MDCT. Findings of (18)F-FDG PET/CT and MDCT were compared to findings of subsequent histopathological examinations or with results of clinical and imaging follow-up over at least six months. Final diagnosis of liver metastases of colorectal cancer was made either by histopathological examination of specimen after biopsy or surgery, or based on clinical, laboratory and imaging evaluation during first six months after PET/CT scan. In detection of liver metastases (18)F-FDG PET/CT showed sensitivity, specificity, positive predictive value, negative predictive value and accuracy of 83.3%, 95.3%, 92.6%, 89.1% and 90.4%, respectively. In addition, MDCT showed sensitivity, specificity, positive predictive value, negative predictive value and accuracy in detection of liver metastases of 60%, 88.4%, 78.3%, 76% and 76.7%, respectively. There was significant difference in sensitivity (83.3% vs 60%; P=0.045) between these two methods. In addition, significant difference was observed in accuracy between PET/CT and MDCT (90.4% vs 76.7%; P=0.016). The higher specificity in visualization of liver metastases was also achieved by (18)F-FDG PET/CT compared to MDCT (95.3% vs 88.4%), but this difference was not significant (P=0.37). (18)F-FDG PET/CT was highly sensitive, specific and accurate method in detection of liver metastases in patients with suspected recurrent colorectal carcinoma in our study. This hybrid imaging showed superior diagnostic performance in evaluation of suspected colorectal cancer liver metastases compared to conventional imaging.
Dictionary Learning for Data Recovery in Positron Emission Tomography
Valiollahzadeh, SeyyedMajid; Clark, John W.; Mawlawi, Osama
2015-01-01
Compressed sensing (CS) aims to recover images from fewer measurements than that governed by the Nyquist sampling theorem. Most CS methods use analytical predefined sparsifying domains such as Total variation (TV), wavelets, curvelets, and finite transforms to perform this task. In this study, we evaluated the use of dictionary learning (DL) as a sparsifying domain to reconstruct PET images from partially sampled data, and compared the results to the partially and fully sampled image (baseline). A CS model based on learning an adaptive dictionary over image patches was developed to recover missing observations in PET data acquisition. The recovery was done iteratively in two steps: a dictionary learning step and an image reconstruction step. Two experiments were performed to evaluate the proposed CS recovery algorithm: an IEC phantom study and five patient studies. In each case, 11% of the detectors of a GE PET/CT system were removed and the acquired sinogram data were recovered using the proposed DL algorithm. The recovered images (DL) as well as the partially sampled images (with detector gaps) for both experiments were then compared to the baseline. Comparisons were done by calculating RMSE, contrast recovery and SNR in ROIs drawn in the background, and spheres of the phantom as well as patient lesions. For the phantom experiment, the RMSE for the DL recovered images were 5.8% when compared with the baseline images while it was 17.5% for the partially sampled images. In the patients’ studies, RMSE for the DL recovered images were 3.8%, while it was 11.3% for the partially sampled images. Our proposed CS with DL is a good approach to recover partially sampled PET data. This approach has implications towards reducing scanner cost while maintaining accurate PET image quantification. PMID:26161630
Dictionary learning for data recovery in positron emission tomography
NASA Astrophysics Data System (ADS)
Valiollahzadeh, SeyyedMajid; Clark, John W., Jr.; Mawlawi, Osama
2015-08-01
Compressed sensing (CS) aims to recover images from fewer measurements than that governed by the Nyquist sampling theorem. Most CS methods use analytical predefined sparsifying domains such as total variation, wavelets, curvelets, and finite transforms to perform this task. In this study, we evaluated the use of dictionary learning (DL) as a sparsifying domain to reconstruct PET images from partially sampled data, and compared the results to the partially and fully sampled image (baseline). A CS model based on learning an adaptive dictionary over image patches was developed to recover missing observations in PET data acquisition. The recovery was done iteratively in two steps: a dictionary learning step and an image reconstruction step. Two experiments were performed to evaluate the proposed CS recovery algorithm: an IEC phantom study and five patient studies. In each case, 11% of the detectors of a GE PET/CT system were removed and the acquired sinogram data were recovered using the proposed DL algorithm. The recovered images (DL) as well as the partially sampled images (with detector gaps) for both experiments were then compared to the baseline. Comparisons were done by calculating RMSE, contrast recovery and SNR in ROIs drawn in the background, and spheres of the phantom as well as patient lesions. For the phantom experiment, the RMSE for the DL recovered images were 5.8% when compared with the baseline images while it was 17.5% for the partially sampled images. In the patients’ studies, RMSE for the DL recovered images were 3.8%, while it was 11.3% for the partially sampled images. Our proposed CS with DL is a good approach to recover partially sampled PET data. This approach has implications toward reducing scanner cost while maintaining accurate PET image quantification.
Deep Learning MR Imaging-based Attenuation Correction for PET/MR Imaging.
Liu, Fang; Jang, Hyungseok; Kijowski, Richard; Bradshaw, Tyler; McMillan, Alan B
2018-02-01
Purpose To develop and evaluate the feasibility of deep learning approaches for magnetic resonance (MR) imaging-based attenuation correction (AC) (termed deep MRAC) in brain positron emission tomography (PET)/MR imaging. Materials and Methods A PET/MR imaging AC pipeline was built by using a deep learning approach to generate pseudo computed tomographic (CT) scans from MR images. A deep convolutional auto-encoder network was trained to identify air, bone, and soft tissue in volumetric head MR images coregistered to CT data for training. A set of 30 retrospective three-dimensional T1-weighted head images was used to train the model, which was then evaluated in 10 patients by comparing the generated pseudo CT scan to an acquired CT scan. A prospective study was carried out for utilizing simultaneous PET/MR imaging for five subjects by using the proposed approach. Analysis of covariance and paired-sample t tests were used for statistical analysis to compare PET reconstruction error with deep MRAC and two existing MR imaging-based AC approaches with CT-based AC. Results Deep MRAC provides an accurate pseudo CT scan with a mean Dice coefficient of 0.971 ± 0.005 for air, 0.936 ± 0.011 for soft tissue, and 0.803 ± 0.021 for bone. Furthermore, deep MRAC provides good PET results, with average errors of less than 1% in most brain regions. Significantly lower PET reconstruction errors were realized with deep MRAC (-0.7% ± 1.1) compared with Dixon-based soft-tissue and air segmentation (-5.8% ± 3.1) and anatomic CT-based template registration (-4.8% ± 2.2). Conclusion The authors developed an automated approach that allows generation of discrete-valued pseudo CT scans (soft tissue, bone, and air) from a single high-spatial-resolution diagnostic-quality three-dimensional MR image and evaluated it in brain PET/MR imaging. This deep learning approach for MR imaging-based AC provided reduced PET reconstruction error relative to a CT-based standard within the brain compared with current MR imaging-based AC approaches. © RSNA, 2017 Online supplemental material is available for this article.
MRI-Based Nonrigid Motion Correction in Simultaneous PET/MRI
Chun, Se Young; Reese, Timothy G.; Ouyang, Jinsong; Guerin, Bastien; Catana, Ciprian; Zhu, Xuping; Alpert, Nathaniel M.; El Fakhri, Georges
2014-01-01
Respiratory and cardiac motion is the most serious limitation to whole-body PET, resulting in spatial resolution close to 1 cm. Furthermore, motion-induced inconsistencies in the attenuation measurements often lead to significant artifacts in the reconstructed images. Gating can remove motion artifacts at the cost of increased noise. This paper presents an approach to respiratory motion correction using simultaneous PET/MRI to demonstrate initial results in phantoms, rabbits, and nonhuman primates and discusses the prospects for clinical application. Methods Studies with a deformable phantom, a free-breathing primate, and rabbits implanted with radioactive beads were performed with simultaneous PET/MRI. Motion fields were estimated from concurrently acquired tagged MR images using 2 B-spline nonrigid image registration methods and incorporated into a PET list-mode ordered-subsets expectation maximization algorithm. Using the measured motion fields to transform both the emission data and the attenuation data, we could use all the coincidence data to reconstruct any phase of the respiratory cycle. We compared the resulting SNR and the channelized Hotelling observer (CHO) detection signal-to-noise ratio (SNR) in the motion-corrected reconstruction with the results obtained from standard gating and uncorrected studies. Results Motion correction virtually eliminated motion blur without reducing SNR, yielding images with SNR comparable to those obtained by gating with 5–8 times longer acquisitions in all studies. The CHO study in dynamic phantoms demonstrated a significant improvement (166%–276%) in lesion detection SNR with MRI-based motion correction as compared with gating (P < 0.001). This improvement was 43%–92% for large motion compared with lesion detection without motion correction (P < 0.001). CHO SNR in the rabbit studies confirmed these results. Conclusion Tagged MRI motion correction in simultaneous PET/MRI significantly improves lesion detection compared with respiratory gating and no motion correction while reducing radiation dose. In vivo primate and rabbit studies confirmed the improvement in PET image quality and provide the rationale for evaluation in simultaneous whole-body PET/MRI clinical studies. PMID:22743250
Henninger, B.; Putzer, D.; Kendler, D.; Uprimny, C.; Virgolini, I.; Gunsilius, E.; Bale, R.
2012-01-01
Aim. The purpose of this study was to evaluate the accuracy of 2-deoxy-2-[fluorine-18]fluoro-D-glucose (FDG) positron emission tomography (PET), computed tomography (CT), and software-based image fusion of both modalities in the imaging of non-Hodgkin's lymphoma (NHL) and Hodgkin's disease (HD). Methods. 77 patients with NHL (n = 58) or HD (n = 19) underwent a FDG PET scan, a contrast-enhanced CT, and a subsequent digital image fusion during initial staging or followup. 109 examinations of each modality were evaluated and compared to each other. Conventional staging procedures, other imaging techniques, laboratory screening, and follow-up data constituted the reference standard for comparison with image fusion. Sensitivity and specificity were calculated for CT and PET separately. Results. Sensitivity and specificity for detecting malignant lymphoma were 90% and 76% for CT and 94% and 91% for PET, respectively. A lymph node region-based analysis (comprising 14 defined anatomical regions) revealed a sensitivity of 81% and a specificity of 97% for CT and 96% and 99% for FDG PET, respectively. Only three of 109 image fusion findings needed further evaluation (false positive). Conclusion. Digital fusion of PET and CT improves the accuracy of staging, restaging, and therapy monitoring in patients with malignant lymphoma and may reduce the need for invasive diagnostic procedures. PMID:22654631
Andersen, Julie B; Henning, William S; Lindberg, Ulrich; Ladefoged, Claes N; Højgaard, Liselotte; Greisen, Gorm; Law, Ian
2015-01-01
Abnormality in cerebral blood flow (CBF) distribution can lead to hypoxic–ischemic cerebral damage in newborn infants. The aim of the study was to investigate minimally invasive approaches to measure CBF by comparing simultaneous 15O-water positron emission tomography (PET) and single TI pulsed arterial spin labeling (ASL) magnetic resonance imaging (MR) on a hybrid PET/MR in seven newborn piglets. Positron emission tomography was performed with IV injections of 20 MBq and 100 MBq 15O-water to confirm CBF reliability at low activity. Cerebral blood flow was quantified using a one-tissue-compartment-model using two input functions: an arterial input function (AIF) or an image-derived input function (IDIF). The mean global CBF (95% CI) PET-AIF, PET-IDIF, and ASL at baseline were 27 (23; 32), 34 (31; 37), and 27 (22; 32) mL/100 g per minute, respectively. At acetazolamide stimulus, PET-AIF, PET-IDIF, and ASL were 64 (55; 74), 76 (70; 83) and 79 (67; 92) mL/100 g per minute, respectively. At baseline, differences between PET-AIF, PET-IDIF, and ASL were 22% (P<0.0001) and −0.7% (P=0.9). At acetazolamide, differences between PET-AIF, PET-IDIF, and ASL were 19% (P=0.001) and 24% (P=0.0003). In conclusion, PET-IDIF overestimated CBF. Injected activity of 20 MBq 15O-water had acceptable concordance with 100 MBq, without compromising image quality. Single TI ASL was questionable for regional CBF measurements. Global ASL CBF and PET CBF were congruent during baseline but not during hyperperfusion. PMID:26058699
Metabolic Imaging in Parkinson Disease.
Meles, Sanne K; Teune, Laura K; de Jong, Bauke M; Dierckx, Rudi A; Leenders, Klaus L
2017-01-01
This review focuses on recent human 18 F-FDG PET studies in Parkinson disease. First, an overview is given of the current analytic approaches to metabolic brain imaging data. Next, we discuss how 18 F-FDG PET studies have advanced understanding of the relation between distinct brain regions and associated symptoms in Parkinson disease, including cognitive decline. In addition, the value of 18 F-FDG PET studies in differential diagnosis, identifying prodromal patients, and the evaluation of treatment effects are reviewed. Finally, anticipated developments in the field are addressed. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
A study of the effects of strong magnetic fields on the image resolution of PET scanners
NASA Astrophysics Data System (ADS)
Burdette, Don J.
Very high resolution images can be achieved in small animal PET systems utilizing solid state silicon pad detectors. In such systems using detectors with sub-millimeter intrinsic resolutions, the range of the positron is the largest contribution to the image blur. The size of the positron range effect depends on the initial positron energy and hence the radioactive tracer used. For higher energy positron emitters, such as 68Ga and 94mTc, the variation of the annihilation point dominates the spatial resolution. In this study two techniques are investigated to improve the image resolution of PET scanners limited by the range of the positron. One, the positron range can be reduced by embedding the PET field of view in a strong magnetic field. We have developed a silicon pad detector based PET instrument that can operate in strong magnetic fields with an image resolution of 0.7 mm FWHM to study this effect. Two, iterative reconstruction methods can be used to statistically correct for the range of the positron. Both strong magnetic fields and iterative reconstruction algorithms that statistically account for the positron range distribution are investigated in this work.
Gong, Kuang; Cheng-Liao, Jinxiu; Wang, Guobao; Chen, Kevin T; Catana, Ciprian; Qi, Jinyi
2018-04-01
Positron emission tomography (PET) is a functional imaging modality widely used in oncology, cardiology, and neuroscience. It is highly sensitive, but suffers from relatively poor spatial resolution, as compared with anatomical imaging modalities, such as magnetic resonance imaging (MRI). With the recent development of combined PET/MR systems, we can improve the PET image quality by incorporating MR information into image reconstruction. Previously, kernel learning has been successfully embedded into static and dynamic PET image reconstruction using either PET temporal or MRI information. Here, we combine both PET temporal and MRI information adaptively to improve the quality of direct Patlak reconstruction. We examined different approaches to combine the PET and MRI information in kernel learning to address the issue of potential mismatches between MRI and PET signals. Computer simulations and hybrid real-patient data acquired on a simultaneous PET/MR scanner were used to evaluate the proposed methods. Results show that the method that combines PET temporal information and MRI spatial information adaptively based on the structure similarity index has the best performance in terms of noise reduction and resolution improvement.
Advances in PET Imaging of P-Glycoprotein Function at the Blood-Brain Barrier
2012-01-01
Efflux transporter P-glycoprotein (P-gp) at the blood-brain barrier (BBB) restricts substrate compounds from entering the brain and may thus contribute to pharmacoresistance observed in patient groups with refractory epilepsy and HIV. Altered P-gp function has also been implicated in neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. Positron emission tomography (PET), a molecular imaging modality, has become a promising method to study the role of P-gp at the BBB. The first PET study of P-gp function was conducted in 1998, and during the past 15 years two main categories of P-gp PET tracers have been investigated: tracers that are substrates of P-gp efflux and tracers that are inhibitors of P-gp function. PET, as a noninvasive imaging technique, allows translational research. Examples of this are preclinical investigations of P-gp function before and after administering P-gp modulating drugs, investigations in various animal and disease models, and clinical investigations regarding disease and aging. The objective of the present review is to give an overview of available PET radiotracers for studies of P-gp and to discuss how such studies can be designed. Further, the review summarizes results from PET studies of P-gp function in different central nervous system disorders. PMID:23421673
SU-E-J-174: Adaptive PET-Based Dose Painting with Tomotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darwish, N; Mackie, T; Thomadsen, B
2014-06-01
Purpose: PET imaging can be converted into dose prescription directly. Due to the variability of the intensity of PET the image, PET prescription maybe superior over uniform dose prescription. Furthermore, unlike the case in image reconstruction of not knowing the image solution in advance, the prescribed dose is known from a PET image a priori. Therefore, optimum beam orientations are derivable. Methods: We can assume the PET image to be the prescribed dose and invert it to determine the energy fluence. The same method used to reconstruct tissue images from projections could be used to solve the inverse problem ofmore » determining beam orientations and modulation patterns from a dose prescription [10]. Unlike standard tomographic reconstruction of images from measured projection profiles, the inversion of the prescribed dose results in photon fluence which may be negative and therefore unphysical. Two-dimensional modulated beams can be modelled in terms of the attenuated or exponential radon transform of the prescribed dose function (assumed to be the PET image in this case), an application of a Ram-Lak filter, and inversion by backprojection. Unlike the case in PET processing, however, the filtered beam obtained from the inversion represents a physical photon fluence. Therefore, a positivity constraint for the fluence (setting negative fluence to zero) must be applied (Brahme et al 1982, Bortfeld et al 1990) Results: Truncating the negative profiles from the PET data results in an approximation of the derivable energy fluence. Backprojection of the deliverable fluence is an approximation of the dose delivered. The deliverable dose is comparable to the original PET image and is similar to the PET image. Conclusion: It is possible to use the PET data or image as a direct indicator of deliverable fluence for cylindrical radiotherapy systems such as TomoTherapy.« less
Clinical use of cardiac PET/MRI: current state-of-the-art and potential future applications.
Krumm, Patrick; Mangold, Stefanie; Gatidis, Sergios; Nikolaou, Konstantin; Nensa, Felix; Bamberg, Fabian; la Fougère, Christian
2018-05-01
Combined PET/MRI is a novel imaging method integrating the advances of functional and morphological MR imaging with PET applications that include assessment of myocardial viability, perfusion, metabolism of inflammatory tissue and tumors, as well as amyloid deposition imaging. As such, PET/MRI is a promising tool to detect and characterize ischemic and non-ischemic cardiomyopathies. To date, the greatest benefit may be expected for diagnostic evaluation of systemic diseases and cardiac masses that remain unclear in cardiac MRI, as well as for clinical and scientific studies in the setting of ischemic cardiomyopathies. Diagnosis and therapeutic monitoring of cardiac sarcoidosis has the potential of a possible 'killer-application' for combined cardiac PET/MRI. In this article, we review the current evidence and discuss current and potential future applications of cardiac PET/MRI.
Warnock, Geoff; Turtoi, Andrei; Blomme, Arnaud; Bretin, Florian; Bahri, Mohamed Ali; Lemaire, Christian; Libert, Lionel Cyrille; Seret, Alain E J J; Luxen, André; Castronovo, Vincenzo; Plenevaux, Alain R E G
2013-10-01
For many years the laboratory mouse has been used as the standard model for in vivo oncology research, particularly in the development of novel PET tracers, but the growth of tumors on chicken chorioallantoic membrane (CAM) provides a more rapid, low cost, and ethically sustainable alternative. For the first time, to our knowledge, we demonstrate the feasibility of in vivo PET and CT imaging in a U87 glioblastoma tumor model on chicken CAM, with the aim of applying this model for screening of novel PET tracers. U87 glioblastoma cells were implanted on the CAM at day 11 after fertilization and imaged at day 18. A small-animal imaging cell was used to maintain incubation and allow anesthesia using isoflurane. Radiotracers were injected directly into the exposed CAM vasculature. Sodium (18)F-fluoride was used to validate the imaging protocol, demonstrating that image-degrading motion can be removed with anesthesia. Tumor glucose metabolism was imaged using (18)F-FDG, and tumor protein synthesis was imaged using 2-(18)F-fluoro-l-tyrosine. Anatomic images were obtained by contrast-enhanced CT, facilitating clear delineation of the tumor, delineation of tracer uptake in tumor versus embryo, and accurate volume measurements. PET imaging of tumor glucose metabolism and protein synthesis was successfully demonstrated in the CAM U87 glioblastoma model. Catheterization of CAM blood vessels facilitated dynamic imaging of glucose metabolism with (18)F-FDG and demonstrated the ability to study PET tracer uptake over time in individual tumors, and CT imaging improved the accuracy of tumor volume measurements. We describe the novel application of PET/CT in the CAM tumor model, with optimization of typical imaging protocols. PET imaging in this valuable tumor model could prove particularly useful for rapid, high-throughput screening of novel radiotracers.
Guerra-García, Pilar; Hirsch, Steffen; Levine, Daniel S; Taj, Mary M
2017-12-01
Post-transplant lymphoproliferative disorder (PTLD) is a well-known complication following prolonged immunosuppression. Contrary to other lymphomas, there is no standardized imaging approach to assess PTLD either at staging or for response to therapy. Positron emission tomography/computed tomography (PET/CT) is an imaging modality that has proven to be useful in lymphoma. However, there is still limited data concerning its use in pediatric PTLD. Our study evaluates the use of PET/CT in pediatric PTLD at our institution. To assess the role of PET/CT in pediatric PTLD, we reviewed the pediatric patients with PTLD who had undergone PET/CT at our institution between 2000 and 2016. Nine patients were identified. Six had PET/CT at diagnosis. All lesions seen on CT were identified with PET/CT. Fourteen PET/CTs were done during treatment. Eight PET/CTs were negative, including three where CT showed areas of uncertain significance. In these cases, PET/CT helped us to stop treatment and the patients remain in remission after a long follow-up (mean 74.3 months; range 12.4-180.9 months). PET/CT revealed additional disease in two cases, therefore treatment was intensified. Six biopsies and close follow-up was done to confirm PET/CT results. In one case, PET/CT did not identify central nervous system involvement demonstrated on magnetic resonance imaging. PET/CT may have an important role in the staging and follow-up of pediatric PTLD. In our cohort, PET/CT was helpful in staging and assessing treatment response and in clarifying equivocal findings on other imaging modalities. © 2017 Wiley Periodicals, Inc.
Hybrid PET/MR imaging: physics and technical considerations.
Shah, Shetal N; Huang, Steve S
2015-08-01
In just over a decade, hybrid imaging with FDG PET/CT has become a standard bearer in the management of cancer patients. An exquisitely sensitive whole-body imaging modality, it combines the ability to detect subtle biologic changes with FDG PET and the anatomic information offered by CT scans. With advances in MR technology and advent of novel targeted PET radiotracers, hybrid PET/MRI is an evolutionary technique that is poised to revolutionize hybrid imaging. It offers unparalleled spatial resolution and functional multi-parametric data combined with biologic information in the non-invasive detection and characterization of diseases, without the deleterious effects of ionizing radiation. This article reviews the basic principles of FDG PET and MR imaging, discusses the salient technical developments of hybrid PET/MR systems, and provides an introduction to FDG PET/MR image acquisition.
Catalano, Onofrio Antonio; Daye, Dania; Signore, Alberto; Iannace, Carlo; Vangel, Mark; Luongo, Angelo; Catalano, Marco; Filomena, Mazzeo; Mansi, Luigi; Soricelli, Andrea; Salvatore, Marco; Fuin, Niccolo; Catana, Ciprian; Mahmood, Umar; Rosen, Bruce Robert
2017-07-01
The aim of the present study was to evaluate the performance of whole-body diffusion-weighted imaging (WB-DWI), whole-body positron emission tomography with computed tomography (WB-PET/CT), and whole-body positron emission tomography with magnetic resonance imaging (WB-PET/MRI) in staging patients with untreated invasive ductal carcinoma of the breast. Fifty-one women with newly diagnosed invasive ductal carcinoma of the breast underwent WB-DWI, WB-PET/CT and WB-PET/MRI before treatment. A radiologist and a nuclear medicine physician reviewed in consensus the images from the three modalities and searched for occurrence, number and location of metastases. Final staging, according to each technique, was compared. Pathology and imaging follow-up were used as the reference. WB-DWI, WB-PET/CT and WB-PET/MRI correctly and concordantly staged 33/51 patients: stage IIA in 7 patients, stage IIB in 8 patients, stage IIIC in 4 patients and stage IV in 14 patients. WB-DWI, WB-PET/CT and WB-PET/MRI incorrectly and concordantly staged 1/51 patient as stage IV instead of IIIA. Discordant staging was reported in 17/51 patients. WB-PET/MRI resulted in improved staging when compared to WB-PET/CT (50 correctly staged on WB-PET/MRI vs. 38 correctly staged on WB-PET/CT; McNemar's test; p<0.01). Comparing the performance of WB-PET/MRI and WB-DWI (43 correct) did not reveal a statistically significant difference (McNemar test, p=0.14). WB-PET/MRI is more accurate in the initial staging of breast cancer than WB-DWI and WB-PET/CT, however, the discrepancies between WB-PET/MRI and WB-DWI were not statistically significant. When available, WB-PET/MRI should be considered for staging patient with invasive ductal breast carcinoma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welch, M.J.
Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy inmore » PET, and the futures of PET. 22 figs.« less
Chesnut, C Haile; Chesnut, Charles H
2012-03-01
Atypical femoral shaft fractures are associated with the extended usage of nitrogen-containing bisphosphonates as therapy for osteoporosis. For such fractures, the positron emission tomography (PET) procedure, coupled with computerized tomography (CT), provides a potential imaging modality for defining aspects of the pathogenesis, site specificity, and possible prodromal abnormalities prior to fracture. PET-CT may assess the radiokinetic variables K1 (a putative marker for skeletal blood flow) and Ki (a putative marker for skeletal bone formation), and when combined with PET imaging modalities and CT skeletal site localization, may define the site of such radiokinetic findings. Further studies into the clinical usage of PET-CT in patients with atypical femoral shaft fractures are warranted.
Sethi, A; Rusu, I; Surucu, M; Halama, J
2012-06-01
Evaluate accuracy of multi-modality image registration in radiotherapy planning process. A water-filled anthropomorphic head phantom containing eight 'donut-shaped' fiducial markers (3 internal + 5 external) was selected for this study. Seven image sets (3CTs, 3MRs and PET) of phantom were acquired and fused in a commercial treatment planning system. First, a narrow slice (0.75mm) baseline CT scan was acquired (CT1). Subsequently, the phantom was re-scanned with a coarse slice width = 1.5mm (CT2) and after subjecting phantom to rotation/displacement (CT3). Next, the phantom was scanned in a 1.5 Tesla MR scanner and three MR image sets (axial T1, axial T2, coronal T1) were acquired at 2mm slice width. Finally, the phantom and center of fiducials were doped with 18F and a PET scan was performed with 2mm cubic voxels. All image scans (CT/MR/PET) were fused to the baseline (CT1) data using automated mutual-information based fusion algorithm. Difference between centroids of fiducial markers in various image modalities was used to assess image registration accuracy. CT/CT image registration was superior to CT/MR and CT/PET: average CT/CT fusion error was found to be 0.64 ± 0.14 mm. Corresponding values for CT/MR and CT/PET fusion were 1.33 ± 0.71mm and 1.11 ± 0.37mm. Internal markers near the center of phantom fused better than external markers placed on the phantom surface. This was particularly true for the CT/MR and CT/PET. The inferior quality of external marker fusion indicates possible distortion effects toward the edges of MR image. Peripheral targets in the PET scan may be subject to parallax error caused by depth of interaction of photons in detectors. Current widespread use of multimodality imaging in radiotherapy planning calls for periodic quality assurance of image registration process. Such studies may help improve safety and accuracy in treatment planning. © 2012 American Association of Physicists in Medicine.
Inui, Yoshitaka; Ito, Kengo; Kato, Takashi
2017-01-01
The value of fluorine-18-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) and magnetic resonance imaging (MRI) for predicting conversion of mild cognitive impairment (MCI) to Alzheimer's disease (AD) in longer-term is unclear. To evaluate longer-term prediction of MCI to AD conversion using 18F-FDG-PET and MRI in a multicenter study. One-hundred and fourteen patients with MCI were followed for 5 years. They underwent clinical and neuropsychological examinations, 18F-FDG-PET, and MRI at baseline. PET images were visually classified into predefined dementia patterns. PET scores were calculated as a semi quantitative index. For structural MRI, z-scores in medial temporal area were calculated by automated volume-based morphometry (VBM). Overall, 72% patients with amnestic MCI progressed to AD during the 5-year follow-up. The diagnostic accuracy of PET scores over 5 years was 60% with 53% sensitivity and 84% specificity. Visual interpretation of PET images predicted conversion to AD with an overall 82% diagnostic accuracy, 94% sensitivity, and 53% specificity. The accuracy of VBM analysis presented little fluctuation through 5 years and it was highest (73%) at the 5-year follow-up, with 79% sensitivity and 63% specificity. The best performance (87.9% diagnostic accuracy, 89.8% sensitivity, and 82.4% specificity) was with a combination identified using multivariate logistic regression analysis that included PET visual interpretation, educational level, and neuropsychological tests as predictors. 18F-FDG-PET visual assessment showed high performance for predicting conversion to AD from MCI, particularly in combination with neuropsychological tests. PET scores showed high diagnostic specificity. Structural MRI focused on the medial temporal area showed stable predictive value throughout the 5-year course.
Mallik, Atul; Drzezga, Alex; Minoshima, Satoshi
2017-01-01
Amyloid plaques, along with neurofibrillary tangles, are a neuropathologic hallmark of Alzheimer disease (AD). Recently, amyloid PET radiotracers have been developed and approved for clinical use in the evaluation of suspected neurodegenerative disorders. In both research and clinical settings, amyloid PET imaging has provided important diagnostic and prognostic information for the management of patients with possible AD, mild cognitive impairment (MCI), and other challenging diagnostic presentations. Although the overall impact of amyloid imaging is still being evaluated, the Society of Nuclear Medicine and Molecular Imaging and Alzheimer's Association Amyloid Imaging Task Force have created appropriate use criteria for the standard clinical use of amyloid PET imaging. By the appropriate use criteria, amyloid imaging is appropriate for patients with (1) persistent or unexplained MCI, (2) AD as a possible but still uncertain diagnosis after expert evaluation and (3) atypically early-age-onset progressive dementia. To better understand the clinical and economic effect of amyloid imaging, the Imaging Dementia-Evidence for Amyloid Scanning (IDEAS) study is an ongoing large multicenter study in the United States, which is evaluating how amyloid imaging affects diagnosis, management, and outcomes for cognitively impaired patients who cannot be completely evaluated by clinical assessment alone. Multiple other large-scale studies are evaluating the prognostic role of amyloid PET imaging for predicting MCI progression to AD in general and high-risk populations. At the same time, amyloid imaging is an important tool for evaluating potential disease-modifying therapies for AD. Overall, the increased use of amyloid PET imaging has led to a better understanding of the strengths and limitations of this imaging modality and how it may best be used with other clinical, molecular, and imaging assessment techniques for the diagnosis and management of neurodegenerative disorders. Copyright © 2017 Elsevier Inc. All rights reserved.
The role of amino acid PET in the light of the new WHO classification 2016 for brain tumors.
Suchorska, Bogdana; Albert, Nathalie L; Bauer, Elena K; Tonn, Jörg-Christian; Galldiks, Norbert
2018-04-26
Since its introduction in 2016, the revision of the World Health Organization (WHO) classification of central nervous system tumours has already changed the diagnostic and therapeutic approach in glial tumors. Blurring the lines between entities formerly labelled as "high-grade" or "low-grade", molecular markers define distinct biological subtypes with different clinical course. This new classification raises the demand for non-invasive imaging methods focussing on depicting metabolic processes. We performed a review of current literature on the use of amino acid PET (AA-PET) for obtaining diagnostic or prognostic information on glioma in the setting of the current WHO 2016 classification. So far, only a few studies have focussed on combining molecular genetic information and metabolic imaging using AA-PET. The current review summarizes the information available on "molecular grading" as well as prognostic information obtained from AA-PET and delivers an insight into a possible interrelation between metabolic imaging and glioma genetics. Within the framework of molecular characterization of gliomas, metabolic imaging using AA-PET is a promising tool for non-invasive characterisation of molecular features and to provide additional prognostic information. Further studies incorporating molecular and metabolic features are necessary to improve the explanatory power of AA-PET in glial tumors.
Dual-Modality PET/Ultrasound imaging of the Prostate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huber, Jennifer S.; Moses, William W.; Pouliot, Jean
2005-11-11
Functional imaging with positron emission tomography (PET)will detect malignant tumors in the prostate and/or prostate bed, as well as possibly help determine tumor ''aggressiveness''. However, the relative uptake in a prostate tumor can be so great that few other anatomical landmarks are visible in a PET image. Ultrasound imaging with a transrectal probe provides anatomical detail in the prostate region that can be co-registered with the sensitive functional information from the PET imaging. Imaging the prostate with both PET and transrectal ultrasound (TRUS) will help determine the location of any cancer within the prostate region. This dual-modality imaging should helpmore » provide better detection and treatment of prostate cancer. LBNL has built a high performance positron emission tomograph optimized to image the prostate.Compared to a standard whole-body PET camera, our prostate-optimized PET camera has the same sensitivity and resolution, less backgrounds and lower cost. We plan to develop the hardware and software tools needed for a validated dual PET/TRUS prostate imaging system. We also plan to develop dual prostate imaging with PET and external transabdominal ultrasound, in case the TRUS system is too uncomfortable for some patients. We present the design and intended clinical uses for these dual imaging systems.« less
Martini, Katharina; Meier, Andreas; Opitz, Isabelle; Weder, Walter; Veit-Haibach, Patrick; Stahel, Rolf A; Frauenfelder, Thomas
2016-04-01
To investigate the diagnostic accuracy of sequential co-registered PET+MR (PET+MR) for local staging of malignant pleural mesothelioma (MPM) compared to PET/CT. In a prospective clinical trial 34 consecutive patients (median age 66 years; range 40-79 years; 1 female, 33 male) with known MPM, who underwent PET/CT and PET+MR exams for either staging or re-staging/follow-up were evaluated. Imaging was conducted using a tri-modality PET/CT-MR set-up (Discovery PET/CT 690, 3T Discovery MR 750w, both GE Healthcare, Waukesha, WI, USA). In 26 cases histopathology served as standard of reference. Two independent readers evaluated images for T and N stage, confidence level (sure to unsure; 1-3) and subjective overall image quality (very good to non-diagnostic; 1-4). Inter-observer agreement of T and N stages (Cohen's kappa) and interclass correlation coefficient (ICC) between PET/CT vs. PET+MR was calculated. Inter observer agreement for evaluation of T and N Stage in PET/CT images was excellent (k=0.844 and k=0.824, respectively), whereas PET+MR imaging showed substantial agreement in T and N stage (k=0.729 and k=0.691, respectively). The ICC of PET/CT vs. PET+MR for evaluation of both, T and N Stage, was excellent (ICC=0.951 and ICC=0.93, respectively). Diagnostic confidence was scored significantly higher in PET+MR compared to PET/CT (mean score=1.66 and 1.93, respectively; p=0.004). Image quality was diagnostic for all image series. Comparing pT and pN stage vs cT and cN stage (n=26 cases), both imaging modalities showed excellent agreement for T stage (ICCPET+MR=0.888 vs. ICCPET/CT=0.853, respectively) and substantial to moderate agreement for N stage (ICCPET+MR=0.683 vs. ICC=0.595PET/CT, respectively). Our findings suggest that diagnostic accuracy of PET+MR is comparable to PET/CT for local staging of MPM, whereas radiologists felt significantly more confident staging PET+MR compared to PET/CT images (p=0003), using dedicated sequences. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Chuan; Brady, Thomas J.; El Fakhri, Georges
2014-04-15
Purpose: Artifacts caused by head motion present a major challenge in brain positron emission tomography (PET) imaging. The authors investigated the feasibility of using wired active MR microcoils to track head motion and incorporate the measured rigid motion fields into iterative PET reconstruction. Methods: Several wired active MR microcoils and a dedicated MR coil-tracking sequence were developed. The microcoils were attached to the outer surface of an anthropomorphic{sup 18}F-filled Hoffman phantom to mimic a brain PET scan. Complex rotation/translation motion of the phantom was induced by a balloon, which was connected to a ventilator. PET list-mode and MR tracking datamore » were acquired simultaneously on a PET-MR scanner. The acquired dynamic PET data were reconstructed iteratively with and without motion correction. Additionally, static phantom data were acquired and used as the gold standard. Results: Motion artifacts in PET images were effectively removed by wired active MR microcoil based motion correction. Motion correction yielded an activity concentration bias ranging from −0.6% to 3.4% as compared to a bias ranging from −25.0% to 16.6% if no motion correction was applied. The contrast recovery values were improved by 37%–156% with motion correction as compared to no motion correction. The image correlation (mean ± standard deviation) between the motion corrected (uncorrected) images of 20 independent noise realizations and static reference was R{sup 2} = 0.978 ± 0.007 (0.588 ± 0.010, respectively). Conclusions: Wired active MR microcoil based motion correction significantly improves brain PET quantitative accuracy and image contrast.« less
Slart, Riemer H J A
2018-07-01
Large vessel vasculitis (LVV) is defined as a disease mainly affecting the large arteries, with two major variants, Takayasu arteritis (TA) and giant cell arteritis (GCA). GCA often coexists with polymyalgia rheumatica (PMR) in the same patient, since both belong to the same disease spectrum. FDG-PET/CT is a functional imaging technique which is an established tool in oncology, and has also demonstrated a role in the field of inflammatory diseases. Functional FDG-PET combined with anatomical CT angiography, FDG-PET/CT(A), may be of synergistic value for optimal diagnosis, monitoring of disease activity, and evaluating damage progression in LVV. There are currently no guidelines regarding PET imaging acquisition for LVV and PMR, even though standardization is of the utmost importance in order to facilitate clinical studies and for daily clinical practice. This work constitutes a joint procedural recommendation on FDG-PET/CT(A) imaging in large vessel vasculitis (LVV) and PMR from the Cardiovascular and Inflammation & Infection Committees of the European Association of Nuclear Medicine (EANM), the Cardiovascular Council of the Society of Nuclear Medicine and Molecular Imaging (SNMMI), and the PET Interest Group (PIG), and endorsed by the American Society of Nuclear Cardiology (ASNC). The aim of this joint paper is to provide recommendations and statements, based on the available evidence in the literature and consensus of experts in the field, for patient preparation, and FDG-PET/CT(A) acquisition and interpretation for the diagnosis and follow-up of patients with suspected or diagnosed LVV and/or PMR. This position paper aims to set an internationally accepted standard for FDG-PET/CT(A) imaging and reporting of LVV and PMR.
Added Value of Including Entire Brain on Body Imaging With FDG PET/MRI.
Franceschi, Ana M; Matthews, Robert; Bangiyev, Lev; Relan, Nand; Chaudhry, Ammar; Franceschi, Dinko
2018-05-24
FDG PET/MRI examination of the body is routinely performed from the skull base to the mid thigh. Many types of brain abnormalities potentially could be detected on PET/MRI if the head was included. The objective of this study was therefore to identify and characterize brain findings incidentally detected on PET/MRI of the body with the head included. We retrospectively identified 269 patients with FDG PET/MRI whole-body scans that included the head. PET/MR images of the brain were reviewed by a nuclear medicine physician and neuroradiologist, first individually and then concurrently. Both PET and MRI findings were identified, including abnormal FDG uptake, standardized uptake value, lesion size, and MRI signal characteristics. For each patient, relevant medical history and prior imaging were reviewed. Of the 269 subjects, 173 were women and 96 were men (mean age, 57.4 years). Only the initial PET/MR image of each patient was reviewed. A total of 37 of the 269 patients (13.8%) had abnormal brain findings noted on the PET/MRI whole-body scan. Sixteen patients (5.9%) had vascular disease, nine patients (3.3%) had posttherapy changes, and two (0.7%) had benign cystic lesions in the brain. Twelve patients (4.5%) had serious nonvascular brain abnormalities, including cerebral metastasis in five patients and pituitary adenomas in two patients. Only nine subjects (3.3%) had a new neurologic or cognitive symptom suggestive of a brain abnormality. Routine body imaging with FDG PET/MRI of the area from the skull base to the mid thigh may miss important brain abnormalities when the head is not included. The additional brain abnormalities identified on whole-body imaging may provide added clinical value to the management of oncology patients.
Huang, Chuan; Ackerman, Jerome L.; Petibon, Yoann; Brady, Thomas J.; El Fakhri, Georges; Ouyang, Jinsong
2014-01-01
Purpose: Artifacts caused by head motion present a major challenge in brain positron emission tomography (PET) imaging. The authors investigated the feasibility of using wired active MR microcoils to track head motion and incorporate the measured rigid motion fields into iterative PET reconstruction. Methods: Several wired active MR microcoils and a dedicated MR coil-tracking sequence were developed. The microcoils were attached to the outer surface of an anthropomorphic 18F-filled Hoffman phantom to mimic a brain PET scan. Complex rotation/translation motion of the phantom was induced by a balloon, which was connected to a ventilator. PET list-mode and MR tracking data were acquired simultaneously on a PET-MR scanner. The acquired dynamic PET data were reconstructed iteratively with and without motion correction. Additionally, static phantom data were acquired and used as the gold standard. Results: Motion artifacts in PET images were effectively removed by wired active MR microcoil based motion correction. Motion correction yielded an activity concentration bias ranging from −0.6% to 3.4% as compared to a bias ranging from −25.0% to 16.6% if no motion correction was applied. The contrast recovery values were improved by 37%–156% with motion correction as compared to no motion correction. The image correlation (mean ± standard deviation) between the motion corrected (uncorrected) images of 20 independent noise realizations and static reference was R2 = 0.978 ± 0.007 (0.588 ± 0.010, respectively). Conclusions: Wired active MR microcoil based motion correction significantly improves brain PET quantitative accuracy and image contrast. PMID:24694141
NASA Astrophysics Data System (ADS)
Didierlaurent, D.; Ribes, S.; Batatia, H.; Jaudet, C.; Dierickx, L. O.; Zerdoud, S.; Brillouet, S.; Caselles, O.; Courbon, F.
2012-12-01
This study assesses the accuracy of prospective phase-gated PET/CT data binning and presents a retrospective data binning method that improves image quality and consistency. Respiratory signals from 17 patients who underwent 4D PET/CT were analysed to evaluate the reproducibility of temporal triggers used for the standard phase-based gating method. Breathing signals were reprocessed to implement retrospective PET data binning. The mean and standard deviation of time lags between automatic triggers provided by the Real-time Position Management (RPM, Varian) gating device and inhalation peaks derived from respiratory curves were computed for each patient. The total number of respiratory cycles available for 4D PET/CT according to the binning mode (prospective versus retrospective) was compared. The maximum standardized uptake value (SUVmax), biological tumour volume (BTV) and tumour trajectory measures were determined from the PET/CT images of five patients. Compared to retrospective binning (RB), prospective gating approach led to (i) a significant loss in breathing cycles (15%) and (ii) the inconsistency of data binning due to temporal dispersion of triggers (average 396 ms). Consequently, tumour characterization could be impacted. In retrospective mode, SUVmax was up to 27% higher, where no significant difference appeared in BTV. In addition, prospective mode gave an inconsistent spatial location of the tumour throughout the bins. Improved consistency with breathing patterns and greater motion amplitude of the tumour centroid were observed with retrospective mode. The detection of the tumour motion and trajectory was improved also for small temporal dispersion of triggers. This study shows that the binning mode could have a significant impact on 4D PET images. The consistency of triggers with breathing signals should be checked before clinical use of gated PET/CT images, and our RB method improves 4D PET/CT image quantification.
Sheikhbahaei, Sara; Mena, Esther; Pattanayak, Puskar; Taghipour, Mehdi; Solnes, Lilja B; Subramaniam, Rathan M
2017-01-01
A variety of methods have been developed to assess tumor response to therapy. Standardized qualitative criteria based on 18F-fluoro-deoxyglucose PET/computed tomography have been proposed to evaluate the treatment effectiveness in specific cancers and these allow more accurate therapy response assessment and survival prognostication. Multiple studies have addressed the utility of the volumetric PET biomarkers as prognostic indicators but there is no consensus about the preferred segmentation methodology for these metrics. Heterogeneous intratumoral uptake was proposed as a novel PET metric for therapy response assessment. PET imaging techniques will be used to study the biological behavior of cancers during therapy. Copyright © 2016 Elsevier Inc. All rights reserved.
MR-assisted PET Motion Correction for eurological Studies in an Integrated MR-PET Scanner
Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B.; Michel, Christian J.; El Fakhri, Georges; Schmand, Matthias; Sorensen, A. Gregory
2011-01-01
Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MR data can be used for motion tracking. In this work, a novel data processing and rigid-body motion correction (MC) algorithm for the MR-compatible BrainPET prototype scanner is described and proof-of-principle phantom and human studies are presented. Methods To account for motion, the PET prompts and randoms coincidences as well as the sensitivity data are processed in the line or response (LOR) space according to the MR-derived motion estimates. After sinogram space rebinning, the corrected data are summed and the motion corrected PET volume is reconstructed from these sinograms and the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed and motion estimates were obtained using two high temporal resolution MR-based motion tracking techniques. Results After accounting for the physical mismatch between the two scanners, perfectly co-registered MR and PET volumes are reproducibly obtained. The MR output gates inserted in to the PET list-mode allow the temporal correlation of the two data sets within 0.2 s. The Hoffman phantom volume reconstructed processing the PET data in the LOR space was similar to the one obtained processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the novel MC algorithm. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 seconds and 20 ms, respectively. Substantially improved PET images with excellent delineation of specific brain structures were obtained after applying the MC using these MR-based estimates. Conclusion A novel MR-based MC algorithm was developed for the integrated MR-PET scanner. High temporal resolution MR-derived motion estimates (obtained while simultaneously acquiring anatomical or functional MR data) can be used for PET MC. An MR-based MC has the potential to improve PET as a quantitative method, increasing its reliability and reproducibility which could benefit a large number of neurological applications. PMID:21189415
NASA Astrophysics Data System (ADS)
Petibon, Yoann; Guehl, Nicolas J.; Reese, Timothy G.; Ebrahimi, Behzad; Normandin, Marc D.; Shoup, Timothy M.; Alpert, Nathaniel M.; El Fakhri, Georges; Ouyang, Jinsong
2017-01-01
PET is an established modality for myocardial perfusion imaging (MPI) which enables quantification of absolute myocardial blood flow (MBF) using dynamic imaging and kinetic modeling. However, heart motion and partial volume effects (PVE) significantly limit the spatial resolution and quantitative accuracy of PET MPI. Simultaneous PET-MR offers a solution to the motion problem in PET by enabling MR-based motion correction of PET data. The aim of this study was to develop a motion and PVE correction methodology for PET MPI using simultaneous PET-MR, and to assess its impact on both static and dynamic PET MPI using 18F-Flurpiridaz, a novel 18F-labeled perfusion tracer. Two dynamic 18F-Flurpiridaz MPI scans were performed on healthy pigs using a PET-MR scanner. Cardiac motion was tracked using a dedicated tagged-MRI (tMR) sequence. Motion fields were estimated using non-rigid registration of tMR images and used to calculate motion-dependent attenuation maps. Motion correction of PET data was achieved by incorporating tMR-based motion fields and motion-dependent attenuation coefficients into image reconstruction. Dynamic and static PET datasets were created for each scan. Each dataset was reconstructed as (i) Ungated, (ii) Gated (end-diastolic phase), and (iii) Motion-Corrected (MoCo), each without and with point spread function (PSF) modeling for PVE correction. Myocardium-to-blood concentration ratios (MBR) and apparent wall thickness were calculated to assess image quality for static MPI. For dynamic MPI, segment- and voxel-wise MBF values were estimated by non-linear fitting of a 2-tissue compartment model to tissue time-activity-curves. MoCo and Gating respectively decreased mean apparent wall thickness by 15.1% and 14.4% and increased MBR by 20.3% and 13.6% compared to Ungated images (P < 0.01). Combined motion and PSF correction (MoCo-PSF) yielded 30.9% (15.7%) lower wall thickness and 82.2% (20.5%) higher MBR compared to Ungated data reconstructed without (with) PSF modeling (P < 0.01). For dynamic PET, mean MBF across all segments were comparable for MoCo (0.72 ± 0.21 ml/min/ml) and Gating (0.69 ± 0.18 ml/min/ml). Ungated data yielded significantly lower mean MBF (0.59 ± 0.16 ml/min/ml). Mean MBF for MoCo-PSF was 0.80 ± 0.22 ml/min/ml, which was 37.9% (25.0%) higher than that obtained from Ungated data without (with) PSF correction (P < 0.01). The developed methodology holds promise to improve the image quality and sensitivity of PET MPI studies performed using PET-MR.
Huellner, Martin W; Appenzeller, Philippe; Kuhn, Félix P; Husmann, Lars; Pietsch, Carsten M; Burger, Irene A; Porto, Miguel; Delso, Gaspar; von Schulthess, Gustav K; Veit-Haibach, Patrick
2014-12-01
To assess the diagnostic performance of whole-body non-contrast material-enhanced positron emission tomography (PET)/magnetic resonance (MR) imaging and PET/computed tomography (CT) for staging and restaging of cancers and provide guidance for modality and sequence selection. This study was approved by the institutional review board and national government authorities. One hundred six consecutive patients (median age, 68 years; 46 female and 60 male patients) referred for staging or restaging of oncologic malignancies underwent whole-body imaging with a sequential trimodality PET/CT/MR system. The MR protocol included short inversion time inversion-recovery ( STIR short inversion time inversion-recovery ), Dixon-type liver accelerated volume acquisition ( LAVA liver accelerated volume acquisition ; GE Healthcare, Waukesha, Wis), and respiratory-gated periodically rotated overlapping parallel lines with enhanced reconstruction ( PROPELLER periodically rotated overlapping parallel lines with enhanced reconstruction ; GE Healthcare) sequences. Primary tumors (n = 43), local lymph node metastases (n = 74), and distant metastases (n = 66) were evaluated for conspicuity (scored 0-4), artifacts (scored 0-2), and reader confidence on PET/CT and PET/MR images. Subanalysis for lung lesions (n = 46) was also performed. Relevant incidental findings with both modalities were compared. Interreader agreement was analyzed with intraclass correlation coefficients and κ statistics. Lesion conspicuity, image artifacts, and incidental findings were analyzed with nonparametric tests. Primary tumors were less conspicuous on STIR short inversion time inversion-recovery (3.08, P = .016) and LAVA liver accelerated volume acquisition (2.64, P = .002) images than on CT images (3.49), while findings with the PROPELLER periodically rotated overlapping parallel lines with enhanced reconstruction sequence (3.70, P = .436) were comparable to those at CT. In distant metastases, the PROPELLER periodically rotated overlapping parallel lines with enhanced reconstruction sequence (3.84) yielded better results than CT (2.88, P < .001). Subanalysis for lung lesions yielded similar results (primary lung tumors: CT, 3.71; STIR short inversion time inversion-recovery , 3.32 [P = .014]; LAVA liver accelerated volume acquisition , 2.52 [P = .002]; PROPELLER periodically rotated overlapping parallel lines with enhanced reconstruction , 3.64 [P = .546]). Readers classified lesions more confidently with PET/MR than PET/CT. However, PET/CT showed more incidental findings than PET/MR (P = .039), especially in the lung (P < .001). MR images had more artifacts than CT images. PET/MR performs comparably to PET/CT in whole-body oncology and neoplastic lung disease, with the use of appropriate sequences. Further studies are needed to define regionalized PET/MR protocols with sequences tailored to specific tumor entities. © RSNA, 2014 Online supplemental material is available for this article.
Weng, Chi-Chang; Chen, Zi-An; Chao, Ko-Ting; Ee, Ting-Wei; Lin, Kun-Ju; Chan, Ming-Huan; Hsiao, Ing-Tsung; Yen, Tzu-Chen; Kung, Mei-Ping; Hsu, Ching-Han; Wey, Shiaw-Pyng
2017-01-01
18F-9-Fluoropropyl-(+)-dihydrotetrabenazine [18F-FP-(+)-DTBZ] positron emission tomography (PET) has been shown to detect dopaminergic neuron loss associated with Parkinson's disease (PD) in human and neurotoxin-induced animal models. A polyphenol compound, magnolol, was recently proposed as having a potentially restorative effect in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- or 6-hydroxydopamine-treated animal models. In this study, 18F-FP-(+)-DTBZ PET was used to determine the therapeutic efficacy of magnolol in an MPTP-PD mouse model that was prepared by giving an intraperitoneally (i.p.) daily dose of 25 mg/kg MPTP to male C57BL/6 mice for 5 consecutive days. Twenty-minute static 18F-FP-(+)-DTBZ PET scans were performed before MPTP treatment and 5 days after the termination of MPTP treatment to set up the baseline control. Half of the MPTP-treated mice then received a daily dose of magnolol (10 mg/kg dissolved in corn oil, i.p.) for 6 days. 18F-FP-(+)-DTBZ PET imaging was performed the day after the final treatment. All 18F-FP-(+)-DTBZ PET images were analysed and the specific uptake ratio (SUr) was calculated. Ex vivo autoradiography (ARG) and corresponding immunohistochemistry (IHC) studies were conducted to confirm the distribution of dopaminergic terminals in the striatum. The striatal SUr ratios of 18F-FP-(+)-DTBZ PET images for the Sham, the MPTP, and the MPTP + Magnolol-treated groups were 1.25 ± 0.05, 0.75 ± 0.06, and 1.00 ± 0.11, respectively (n = 4 for each group). The ex vivo 18F-FP-(+)-DTBZ ARG and IHC results correlated favourably with the PET imaging results. 18F-FP-(+)-DTBZ PET imaging suggested that magnolol post-treatment may reverse the neuronal damage in the MPTP-lesioned PD mice. In vivo imaging of the striatal vesicular monoamine transporter type 2 (VMAT2) distribution using 18F-FP-(+)-DTBZ animal PET is a useful method to evaluate the efficacy of therapeutic drugs i.e., magnolol, for the management of PD.
Chao, Ko-Ting; Ee, Ting-Wei; Lin, Kun-Ju; Chan, Ming-Huan; Hsiao, Ing-Tsung; Yen, Tzu-Chen; Kung, Mei-Ping; Hsu, Ching-Han
2017-01-01
18F-9-Fluoropropyl-(+)-dihydrotetrabenazine [18F-FP-(+)-DTBZ] positron emission tomography (PET) has been shown to detect dopaminergic neuron loss associated with Parkinson’s disease (PD) in human and neurotoxin-induced animal models. A polyphenol compound, magnolol, was recently proposed as having a potentially restorative effect in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- or 6-hydroxydopamine-treated animal models. In this study, 18F-FP-(+)-DTBZ PET was used to determine the therapeutic efficacy of magnolol in an MPTP–PD mouse model that was prepared by giving an intraperitoneally (i.p.) daily dose of 25 mg/kg MPTP to male C57BL/6 mice for 5 consecutive days. Twenty-minute static 18F-FP-(+)-DTBZ PET scans were performed before MPTP treatment and 5 days after the termination of MPTP treatment to set up the baseline control. Half of the MPTP-treated mice then received a daily dose of magnolol (10 mg/kg dissolved in corn oil, i.p.) for 6 days. 18F-FP-(+)-DTBZ PET imaging was performed the day after the final treatment. All 18F-FP-(+)-DTBZ PET images were analysed and the specific uptake ratio (SUr) was calculated. Ex vivo autoradiography (ARG) and corresponding immunohistochemistry (IHC) studies were conducted to confirm the distribution of dopaminergic terminals in the striatum. The striatal SUr ratios of 18F-FP-(+)-DTBZ PET images for the Sham, the MPTP, and the MPTP + Magnolol-treated groups were 1.25 ± 0.05, 0.75 ± 0.06, and 1.00 ± 0.11, respectively (n = 4 for each group). The ex vivo 18F-FP-(+)-DTBZ ARG and IHC results correlated favourably with the PET imaging results. 18F-FP-(+)-DTBZ PET imaging suggested that magnolol post-treatment may reverse the neuronal damage in the MPTP-lesioned PD mice. In vivo imaging of the striatal vesicular monoamine transporter type 2 (VMAT2) distribution using 18F-FP-(+)-DTBZ animal PET is a useful method to evaluate the efficacy of therapeutic drugs i.e., magnolol, for the management of PD. PMID:28257461
Dynamic whole body PET parametric imaging: II. Task-oriented statistical estimation
Karakatsanis, Nicolas A.; Lodge, Martin A.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman
2013-01-01
In the context of oncology, dynamic PET imaging coupled with standard graphical linear analysis has been previously employed to enable quantitative estimation of tracer kinetic parameters of physiological interest at the voxel level, thus, enabling quantitative PET parametric imaging. However, dynamic PET acquisition protocols have been confined to the limited axial field-of-view (~15–20cm) of a single bed position and have not been translated to the whole-body clinical imaging domain. On the contrary, standardized uptake value (SUV) PET imaging, considered as the routine approach in clinical oncology, commonly involves multi-bed acquisitions, but is performed statically, thus not allowing for dynamic tracking of the tracer distribution. Here, we pursue a transition to dynamic whole body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. In a companion study, we presented a novel clinically feasible dynamic (4D) multi-bed PET acquisition protocol as well as the concept of whole body PET parametric imaging employing Patlak ordinary least squares (OLS) regression to estimate the quantitative parameters of tracer uptake rate Ki and total blood distribution volume V. In the present study, we propose an advanced hybrid linear regression framework, driven by Patlak kinetic voxel correlations, to achieve superior trade-off between contrast-to-noise ratio (CNR) and mean squared error (MSE) than provided by OLS for the final Ki parametric images, enabling task-based performance optimization. Overall, whether the observer's task is to detect a tumor or quantitatively assess treatment response, the proposed statistical estimation framework can be adapted to satisfy the specific task performance criteria, by adjusting the Patlak correlation-coefficient (WR) reference value. The multi-bed dynamic acquisition protocol, as optimized in the preceding companion study, was employed along with extensive Monte Carlo simulations and an initial clinical FDG patient dataset to validate and demonstrate the potential of the proposed statistical estimation methods. Both simulated and clinical results suggest that hybrid regression in the context of whole-body Patlak Ki imaging considerably reduces MSE without compromising high CNR. Alternatively, for a given CNR, hybrid regression enables larger reductions than OLS in the number of dynamic frames per bed, allowing for even shorter acquisitions of ~30min, thus further contributing to the clinical adoption of the proposed framework. Compared to the SUV approach, whole body parametric imaging can provide better tumor quantification, and can act as a complement to SUV, for the task of tumor detection. PMID:24080994
Dynamic whole-body PET parametric imaging: II. Task-oriented statistical estimation.
Karakatsanis, Nicolas A; Lodge, Martin A; Zhou, Y; Wahl, Richard L; Rahmim, Arman
2013-10-21
In the context of oncology, dynamic PET imaging coupled with standard graphical linear analysis has been previously employed to enable quantitative estimation of tracer kinetic parameters of physiological interest at the voxel level, thus, enabling quantitative PET parametric imaging. However, dynamic PET acquisition protocols have been confined to the limited axial field-of-view (~15-20 cm) of a single-bed position and have not been translated to the whole-body clinical imaging domain. On the contrary, standardized uptake value (SUV) PET imaging, considered as the routine approach in clinical oncology, commonly involves multi-bed acquisitions, but is performed statically, thus not allowing for dynamic tracking of the tracer distribution. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. In a companion study, we presented a novel clinically feasible dynamic (4D) multi-bed PET acquisition protocol as well as the concept of whole-body PET parametric imaging employing Patlak ordinary least squares (OLS) regression to estimate the quantitative parameters of tracer uptake rate Ki and total blood distribution volume V. In the present study, we propose an advanced hybrid linear regression framework, driven by Patlak kinetic voxel correlations, to achieve superior trade-off between contrast-to-noise ratio (CNR) and mean squared error (MSE) than provided by OLS for the final Ki parametric images, enabling task-based performance optimization. Overall, whether the observer's task is to detect a tumor or quantitatively assess treatment response, the proposed statistical estimation framework can be adapted to satisfy the specific task performance criteria, by adjusting the Patlak correlation-coefficient (WR) reference value. The multi-bed dynamic acquisition protocol, as optimized in the preceding companion study, was employed along with extensive Monte Carlo simulations and an initial clinical (18)F-deoxyglucose patient dataset to validate and demonstrate the potential of the proposed statistical estimation methods. Both simulated and clinical results suggest that hybrid regression in the context of whole-body Patlak Ki imaging considerably reduces MSE without compromising high CNR. Alternatively, for a given CNR, hybrid regression enables larger reductions than OLS in the number of dynamic frames per bed, allowing for even shorter acquisitions of ~30 min, thus further contributing to the clinical adoption of the proposed framework. Compared to the SUV approach, whole-body parametric imaging can provide better tumor quantification, and can act as a complement to SUV, for the task of tumor detection.
Yang, Meng; Cheng, Kai; Qi, Shibo; Liu, Hongguang; Jiang, Yuxin; Jiang, Han; Li, Jinbo; Chen, Kai; Zhang, Huimao; Cheng, Zhen
2013-01-01
A highly monodispersed hetero-nanostructure with two different functional nanomaterials (gold (Au) and iron oxide (Fe3O4, IO)) within one structure was successfully developed as Affibody based trimodality nanoprobe (positron emission tomography, PET; optical imaging; and magnetic resonance imaging, MRI) for imaging of epidermal growth factor receptor (EGFR) positive tumors. Unlike other regular nanostructures with a single component, the Au-IO hetero-nanostructures (Au-IONPs) with unique chemical and physical properties have capability to combine several imaging modalities together to provide complementary information. The IO component within hetero-nanostructures serve as a T2 reporter for MRI; and gold component serve as both optical and PET reporters. Moreover, such hetero-nanoprobes could provide a robust nano-platform for surface-specific modification with both targeting molecules (anti-EGFR Affibody protein) and PET imaging reporters (radiometal 64Cu chelators) in highly efficient and reliable manner. In vitro and in vivo study showed that the resultant nanoprobe provided high specificity, sensitivity, and excellent tumor contrast for both PET and MRI imaging in the human EGFR-expressing cells and tumors. Our study data also highlighted the EGFR targeting efficiency of hetero-nanoparticles and the feasibility for their further theranostic applications. PMID:23343632
NASA Astrophysics Data System (ADS)
Raylman, Raymond R.; Stolin, Alexander V.; Sompalli, Prashanth; Randall, Nicole Bunda; Martone, Peter F.; Clinthorne, Neal H.
2015-10-01
Staging of head and neck cancer (HNC) is often hindered by the limited resolution of standard whole body PET scanners, which can make it challenging to detect small areas of metastatic disease in regional lymph nodes and accurately delineate tumor boundaries. In this investigation, the performance of a proposed high resolution PET/CT scanner designed specifically for imaging of the head and neck region was explored. The goal is to create a dedicated PET/CT system that will enhance the staging and treatment of HNCs. Its performance was assessed by simulating the scanning of a three-dimensional Rose-Burger contrast phantom. To extend the results from the simulation studies, an existing scanner with a similar geometry to the dedicated system and a whole body, clinical PET/CT scanner were used to image a Rose-Burger contrast phantom and a phantom simulating the neck of an HNC patient (out-of-field-of-view sources of activity were not included). Images of the contrast detail phantom acquired with Breast-PET/CT and simulated head and neck scanner both produced object contrasts larger than the images created by the clinical scanner. Images of a neck phantom acquired with the Breast-PET/CT scanner permitted the identification of all of the simulated metastases, while it was not possible to identify any of the simulated metastasis with the clinical scanner. The initial results from this study demonstrate the potential benefits of high-resolution PET systems for improving the diagnosis and treatment of HNC.
Putzer, Daniel; Henninger, Benjamin; Kovacs, Peter; Uprimny, Christian; Kendler, Dorota; Jaschke, Werner; Bale, Reto J
2016-06-01
Even as PET/CT provides valuable diagnostic information in a great number of clinical indications, availability of hybrid PET/CT scanners is mainly limited to clinical centers. A software-based image fusion would facilitate combined image reading of CT and PET data sets if hardware image fusion is not available. To analyze the relevance of retrospective image fusion of separately acquired PET and CT data sets, we studied the accuracy, practicability and reproducibility of three different image registration techniques. We evaluated whole-body 18F-FDG-PET and CT data sets of 71 oncologic patients. Images were fused retrospectively using Stealth Station System, Treon (Medtronic Inc., Louisville, CO, USA) equipped with Cranial4 Software. External markers fixed to a vacuum mattress were used as reference for exact repositioning. Registration was repeated using internal anatomic landmarks and Automerge software, assessing accuracy for all three methods, measuring distances of liver representation in CT and PET with reference to a common coordinate system. On first measurement of image fusions with external markers, 53 were successful, 16 feasible and 2 not successful. Using anatomic landmarks, 42 were successful, 26 feasible and 3 not successful. Using Automerge Software only 13 were successful. The mean distance between center points in PET and CT was 7.69±4.96 mm on first, and 7.65±4.2 mm on second measurement. Results with external markers correlate very well and inaccuracies are significantly lower (P<0.001) than results using anatomical landmarks (10.38±6.13 mm and 10.83±6.23 mm). Analysis revealed a significantly faster alignment using external markers (P<0.001). External fiducials in combination with immobilization devices and breathing protocols allow for highly accurate image fusion cost-effectively and significantly less time, posing an attractive alternative for PET/CT interpretation when a hybrid scanner is not available.
Ahrens, Bradley J.; Li, Lin; Ciminera, Alexandra K.; Chea, Junie; Poku, Erasmus; Bading, James R.; Weist, Michael R.; Miller, Marcia M.; Colcher, David M.
2017-01-01
The development of improved breast cancer screening methods is hindered by a lack of cancer-specific imaging agents and effective small-animal models to test them. The purpose of this study was to evaluate 64Cu-DOTA-alendronate as a mammary microcalcification-targeting PET imaging agent, using an ideal rat model. Our long-term goal is to develop 64Cu-DOTA-alendronate for the detection and noninvasive differentiation of malignant versus benign breast tumors with PET. Methods: DOTA-alendronate was synthesized, radiolabeled with 64Cu, and administered to normal or tumor-bearing aged, female, retired breeder Sprague–Dawley rats for PET imaging. Mammary tissues were subsequently labeled and imaged with light, confocal, and electron microscopy to verify microcalcification targeting specificity of DOTA-alendronate and elucidate the histologic and ultrastructural characteristics of the microcalcifications in different mammary tumor types. Tumor uptake, biodistribution, and dosimetry studies were performed to evaluate the efficacy and safety of 64Cu-DOTA-alendronate. Results: 64Cu-DOTA-alendronate was radiolabeled with a 98% yield. PET imaging using aged, female, retired breeder rats showed specific binding of 64Cu-DOTA-alendronate in mammary glands and mammary tumors. The highest uptake of 64Cu-DOTA-alendronate was in malignant tumors and the lowest uptake in benign tumors and normal mammary tissue. Confocal analysis with carboxyfluorescein-alendronate confirmed the microcalcification binding specificity of alendronate derivatives. Biodistribution studies revealed tissue alendronate concentrations peaking within the first hour, then decreasing over the next 48 h. Our dosimetric analysis demonstrated a 64Cu effective dose within the acceptable range for clinical PET imaging agents and the potential for translation into human patients. Conclusion: 64Cu-DOTA-alendronate is a promising PET imaging agent for the sensitive and specific detection of mammary tumors as well as the differentiation of malignant versus benign tumors based on absolute labeling uptake. PMID:28450564
Iravani, Amir; Hofman, Michael S; Mulcahy, Tony; Williams, Scott; Murphy, Declan; Parameswaran, Bimal K; Hicks, Rodney J
2017-12-21
68 Ga-labelled prostate specific membrane antigen (PSMA) ligand PET/CT is a promising modality in primary staging (PS) and biochemical relapse (BCR) of prostate cancer (PC). However, pelvic nodes or local recurrences can be difficult to differentiate from radioactive urine. CT urography (CT-U) is an established method, which allows assessment of urological malignancies. The study presents a novel protocol of 68 Ga-PSMA-11 PET/CT-U in PS and BCR of PC. A retrospective review of PSMA PET/CT-U preformed on 57 consecutive patients with prostate cancer. Fifty mL of IV contrast was administered 10 min (range 8-15) before the CT component of a combined PET/CT study, acquired approximately 60 min (range 40-85) after administration of 166 MBq (range 91-246) of 68 Ga-PSMA-11. PET and PET/CT-U were reviewed by two nuclear medicine physicians and CT-U by a radiologist. First, PET images were reviewed independently followed by PET/CT-U images. Foci of activity which could not unequivocally be assessed as disease or urinary activity were recorded. PET/CT-U was considered of potential benefit in final interpretation when the equivocal focal activity in PET images corresponded to opacified ureter, bladder, prostate bed, seminal vesicles, or urethra. Student's T test and Pearson's correlation coefficient was used for assessment of variables including lymph node size and standardized uptake value. Overall 50 PSMA PET/CT-U studies were performed for BCR and 7 for PS. Median PSA with BCR and PS were 2.0 ± 11.4 ng/ml (0.06-57.3 ng/ml) and 18 ± 35.3 ng/ml (6.8-100 ng/ml), respectively. The median Gleason-score for both groups was 7 (range 6-10). In BCR group, PSMA PET was reported positive in 36 (72%) patients, CT-U in 11(22%) patients and PET/CT-U in 33 (66%) patients. In PS group, PSMA PET detected the primary site in all seven patients, of which one patient with metastatic nodal disease had negative CT finding. Of 40 equivocal foci (27/57 patients) on PET, 11 foci (10/57 patients, 17.5%) were localized to enhanced urine on PET/CT-U, hence considered of potential benefit in interpretation. Of those, 3 foci (3 patients) were solitary sites of activity on PSMA imaging including two local and one nodal site and 4 foci (3 patients) were in different nodal fields. PET/CT-U protocol is a practical approach and may assist in interpretation of 68 Ga-PSMA-11 imaging by delineation of the contrast opacified genitourinary system and matching focal PSMA activity with urinary contrast.
MR-assisted PET motion correction in simultaneous PET/MRI studies of dementia subjects.
Chen, Kevin T; Salcedo, Stephanie; Chonde, Daniel B; Izquierdo-Garcia, David; Levine, Michael A; Price, Julie C; Dickerson, Bradford C; Catana, Ciprian
2018-03-08
Subject motion in positron emission tomography (PET) studies leads to image blurring and artifacts; simultaneously acquired magnetic resonance imaging (MRI) data provides a means for motion correction (MC) in integrated PET/MRI scanners. To assess the effect of realistic head motion and MR-based MC on static [ 18 F]-fluorodeoxyglucose (FDG) PET images in dementia patients. Observational study. Thirty dementia subjects were recruited. 3T hybrid PET/MR scanner where EPI-based and T 1 -weighted sequences were acquired simultaneously with the PET data. Head motion parameters estimated from high temporal resolution MR volumes were used for PET MC. The MR-based MC method was compared to PET frame-based MC methods in which motion parameters were estimated by coregistering 5-minute frames before and after accounting for the attenuation-emission mismatch. The relative changes in standardized uptake value ratios (SUVRs) between the PET volumes processed with the various MC methods, without MC, and the PET volumes with simulated motion were compared in relevant brain regions. The absolute value of the regional SUVR relative change was assessed with pairwise paired t-tests testing at the P = 0.05 level, comparing the values obtained through different MR-based MC processing methods as well as across different motion groups. The intraregion voxelwise variability of regional SUVRs obtained through different MR-based MC processing methods was also assessed with pairwise paired t-tests testing at the P = 0.05 level. MC had a greater impact on PET data quantification in subjects with larger amplitude motion (higher than 18% in the medial orbitofrontal cortex) and greater changes were generally observed for the MR-based MC method compared to the frame-based methods. Furthermore, a mean relative change of ∼4% was observed after MC even at the group level, suggesting the importance of routinely applying this correction. The intraregion voxelwise variability of regional SUVRs was also decreased using MR-based MC. All comparisons were significant at the P = 0.05 level. Incorporating temporally correlated MR data to account for intraframe motion has a positive impact on the FDG PET image quality and data quantification in dementia patients. 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.
Grant, Alexander M; Deller, Timothy W; Khalighi, Mohammad Mehdi; Maramraju, Sri Harsha; Delso, Gaspar; Levin, Craig S
2016-05-01
The GE SIGNA PET/MR is a new whole body integrated time-of-flight (ToF)-PET/MR scanner from GE Healthcare. The system is capable of simultaneous PET and MR image acquisition with sub-400 ps coincidence time resolution. Simultaneous PET/MR holds great potential as a method of interrogating molecular, functional, and anatomical parameters in clinical disease in one study. Despite the complementary imaging capabilities of PET and MRI, their respective hardware tends to be incompatible due to mutual interference. In this work, the GE SIGNA PET/MR is evaluated in terms of PET performance and the potential effects of interference from MRI operation. The NEMA NU 2-2012 protocol was followed to measure PET performance parameters including spatial resolution, noise equivalent count rate, sensitivity, accuracy, and image quality. Each of these tests was performed both with the MR subsystem idle and with continuous MR pulsing for the duration of the PET data acquisition. Most measurements were repeated at three separate test sites where the system is installed. The scanner has achieved an average of 4.4, 4.1, and 5.3 mm full width at half maximum radial, tangential, and axial spatial resolutions, respectively, at 1 cm from the transaxial FOV center. The peak noise equivalent count rate (NECR) of 218 kcps and a scatter fraction of 43.6% are reached at an activity concentration of 17.8 kBq/ml. Sensitivity at the center position is 23.3 cps/kBq. The maximum relative slice count rate error below peak NECR was 3.3%, and the residual error from attenuation and scatter corrections was 3.6%. Continuous MR pulsing had either no effect or a minor effect on each measurement. Performance measurements of the ToF-PET whole body GE SIGNA PET/MR system indicate that it is a promising new simultaneous imaging platform.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathias, C.J.; Welch, M.J.; Raichle, M.E.
1990-03-01
Copper(II) pyruvaldehyde bis(N4-methylthiosemicarbazone) (Cu-PTSM), copper(II) pyruvaldehyde bis(N4-dimethylthiosemicarbazone) (Cu-PTSM2), and copper(II) ethylglyoxal bis(N4-methylthiosemicarbazone) (Cu-ETSM), have been proposed as PET tracers for cerebral blood flow (CBF) when labeled with generator-produced 62Cu (t1/2 = 9.7 min). To evaluate the potential of Cu-PTSM for CBF PET studies, baboon single-pass cerebral extraction measurements and PET imaging were carried out with the use of 67Cu (t1/2 = 2.6 days) and 64Cu (t1/2 = 12.7 hr), respectively. All three chelates were extracted into the brain with high efficiency. There was some clearance of all chelates in the 10-50-sec time frame and Cu-PTSM2 continued to clear. Cu-PTSM andmore » Cu-ETSM have high residual brain activity. PET imaging of baboon brain was carried out with the use of (64Cu)-Cu-PTSM. For comparison with the 64Cu brain image, a CBF (15O-labeled water) image (40 sec) was first obtained. Qualitatively, the H2(15)O and (64Cu)-Cu-PTSM images were very similar; for example, a comparison of gray to white matter uptake resulted in ratios of 2.42 for H2(15)O and 2.67 for Cu-PTSM. No redistribution of 64Cu was observed in 2 hr of imaging, as was predicted from the single-pass study results. Quantitative determination of blood flow using Cu-PTSM showed good agreement with blood flow determined with H2(15)O. This data suggests that (62Cu)-Cu-PTSM may be a useful generator-produced radiopharmaceutical for blood flow studies with PET.« less
Automatic lung tumor segmentation on PET/CT images using fuzzy Markov random field model.
Guo, Yu; Feng, Yuanming; Sun, Jian; Zhang, Ning; Lin, Wang; Sa, Yu; Wang, Ping
2014-01-01
The combination of positron emission tomography (PET) and CT images provides complementary functional and anatomical information of human tissues and it has been used for better tumor volume definition of lung cancer. This paper proposed a robust method for automatic lung tumor segmentation on PET/CT images. The new method is based on fuzzy Markov random field (MRF) model. The combination of PET and CT image information is achieved by using a proper joint posterior probability distribution of observed features in the fuzzy MRF model which performs better than the commonly used Gaussian joint distribution. In this study, the PET and CT simulation images of 7 non-small cell lung cancer (NSCLC) patients were used to evaluate the proposed method. Tumor segmentations with the proposed method and manual method by an experienced radiation oncologist on the fused images were performed, respectively. Segmentation results obtained with the two methods were similar and Dice's similarity coefficient (DSC) was 0.85 ± 0.013. It has been shown that effective and automatic segmentations can be achieved with this method for lung tumors which locate near other organs with similar intensities in PET and CT images, such as when the tumors extend into chest wall or mediastinum.
Hatt, Mathieu; Cheze-le Rest, Catherine; van Baardwijk, Angela; Lambin, Philippe; Pradier, Olivier; Visvikis, Dimitris
2011-11-01
The objectives of this study were to investigate the relationship between CT- and (18)F-FDG PET-based tumor volumes in non-small cell lung cancer (NSCLC) and the impact of tumor size and uptake heterogeneity on various approaches to delineating uptake on PET images. Twenty-five NSCLC cancer patients with (18)F-FDG PET/CT were considered. Seventeen underwent surgical resection of their tumor, and the maximum diameter was measured. Two observers manually delineated the tumors on the CT images and the tumor uptake on the corresponding PET images, using a fixed threshold at 50% of the maximum (T(50)), an adaptive threshold methodology, and the fuzzy locally adaptive Bayesian (FLAB) algorithm. Maximum diameters of the delineated volumes were compared with the histopathology reference when available. The volumes of the tumors were compared, and correlations between the anatomic volume and PET uptake heterogeneity and the differences between delineations were investigated. All maximum diameters measured on PET and CT images significantly correlated with the histopathology reference (r > 0.89, P < 0.0001). Significant differences were observed among the approaches: CT delineation resulted in large overestimation (+32% ± 37%), whereas all delineations on PET images resulted in underestimation (from -15% ± 17% for T(50) to -4% ± 8% for FLAB) except manual delineation (+8% ± 17%). Overall, CT volumes were significantly larger than PET volumes (55 ± 74 cm(3) for CT vs. from 18 ± 25 to 47 ± 76 cm(3) for PET). A significant correlation was found between anatomic tumor size and heterogeneity (larger lesions were more heterogeneous). Finally, the more heterogeneous the tumor uptake, the larger was the underestimation of PET volumes by threshold-based techniques. Volumes based on CT images were larger than those based on PET images. Tumor size and tracer uptake heterogeneity have an impact on threshold-based methods, which should not be used for the delineation of cases of large heterogeneous NSCLC, as these methods tend to largely underestimate the spatial extent of the functional tumor in such cases. For an accurate delineation of PET volumes in NSCLC, advanced image segmentation algorithms able to deal with tracer uptake heterogeneity should be preferred.
NASA Astrophysics Data System (ADS)
Canadas, Mario; Embid, Miguel; Lage, Eduardo; Desco, Manuel; Vaquero, Juan José; Perez, José Manuel
2011-02-01
In this work, we compare two commercial positron emission tomography (PET) scanners installed at CIEMAT (Madrid, Spain): the ClearPET and the rPET-1. These systems have significant geometrical differences, such as the axial field of view (110 mm on ClearPET versus 45.6 mm on rPET-1), the configuration of the detectors (whole ring on ClearPET versus one pair of planar blocks on rPET-1) and the use of an axial shift between ClearPET detector modules. We used an assessment procedure that fulfilled the recommendations of the National Electrical Manufacturers Association (NEMA) NU 4-2008 standard. The methodology includes studies of spatial resolution, sensitivity, scatter fraction, count losses and image quality. Our experiments showed a central spatial resolution of 1.5 mm (transaxial), 3.2 mm (axial) for the ClearPET and 1.5 mm (transaxial), 1.6 mm (axial) for the rPET-1, with a small variation across the transverse axis on both scanners ( 1 mm). The absolute sensitivity at the centre of the field of view was 4.7% for the ClearPET and 1.0% for the rPET-1. The peak noise equivalent counting rate for the mouse-sized phantom was 73.4 kcps reached at 0.51 MBq/mL on the ClearPET and 29.2 kcps at 1.35 MBq/mL on the rPET-1. The recovery coefficients measured using the image quality phantom ranged from 0.11 to 0.89 on the ClearPET and from 0.14 to 0.81 on the rPET-1. The overall performance shows that both the ClearPET and the rPET-1 systems are very suitable for preclinical research and imaging of small animals.
Bunka, Maruta; Müller, Cristina; Vermeulen, Christiaan; Haller, Stephanie; Türler, Andreas; Schibli, Roger; van der Meulen, Nicholas P
2016-04-01
PET is the favored nuclear imaging technique because of the high sensitivity and resolution it provides, as well as the possibility for quantification of accumulated radioactivity. (44)Sc (T1/2=3.97h, Eβ(+)=632keV) was recently proposed as a potentially interesting radionuclide for PET. The aim of this study was to investigate the image quality, which can be obtained with (44)Sc, and compare it with five other, frequently employed PET nuclides using Derenzo phantoms and a small-animal PET scanner. The radionuclides were produced at the medical cyclotron at CRS, ETH Zurich ((11)C, (18)F), at the Injector II research cyclotron at CRS, PSI ((64)Cu, (89)Zr, (44)Sc), as well as via a generator system ((68)Ga). Derenzo phantoms, containing solutions of each of these radionuclides, were scanned using a GE Healthcare eXplore VISTA small-animal PET scanner. The image resolution was determined for each nuclide by analysis of the intensity signal using the reconstructed PET data of a hole diameter of 1.3mm. The image quality of (44)Sc was compared to five frequently-used PET radionuclides. In agreement with the positron range, an increasing relative resolution was determined in the sequence of (68)Ga<(44)Sc<(89)Zr<(11)C<(64)Cu<(18)F. The performance of (44)Sc was in agreement with the theoretical expectations based on the energy of the emitted positrons. Copyright © 2016 Elsevier Ltd. All rights reserved.
Contractor, Kaiyumars; Challapalli, Amarnath; Tomasi, Giampaolo; Rosso, Lula; Wasan, Harpreet; Stebbing, Justin; Kenny, Laura; Mangar, Stephen; Riddle, Pippa; Palmieri, Carlo; Al-Nahhas, Adil; Sharma, Rohini; Turkheimer, Federico; Coombes, R Charles; Aboagye, Eric
2012-06-07
Although [(18)F]fluorothymidine positron emission tomography (FLT-PET) permits estimation of tumor thymidine kinase-1 expression, and thus, cell proliferation, high physiological uptake of tracer in liver tissue can limit its utility. We evaluated FLT-PET combined with a temporal-intensity information-based voxel-clustering approach termed kinetic spatial filtering (FLT-PET(KSF)) for detecting drug response in liver metastases. FLT-PET and computed tomography data were collected from patients with confirmed breast or colorectal liver metastases before, and two weeks after the first cycle of chemotherapy. Changes in tumor FLT-PET and FLT-PET(KSF) variables were determined. Visual distinction between tumor and normal liver was seen in FLT-PET(KSF) images. Of the 33 metastases from 20 patients studied, 26 were visible after kinetic filtering. The net irreversible retention of the tracer (Ki; from unfiltered data) in the tumor, correlated strongly with tracer uptake when the imaging variable was an unfiltered average or maximal standardized uptake value, 60 min post-injection (SUV(60,av): r = 0.9, SUV(60,max): r = 0.7; p < 0.0001 for both) and occurrence of high intensity voxels derived from FLT-PET(KSF) (r = 0.7, p < 0.0001). Overall, a significant reduction in the imaging variables was seen in responders compared to non-responders; however, the two week time point selected for imaging was too early to allow prediction of long term clinical benefit from chemotherapy. FLT-PET and FLT-PET(KSF) detected changes in proliferation in liver metastases.
A Review on Segmentation of Positron Emission Tomography Images
Foster, Brent; Bagci, Ulas; Mansoor, Awais; Xu, Ziyue; Mollura, Daniel J.
2014-01-01
Positron Emission Tomography (PET), a non-invasive functional imaging method at the molecular level, images the distribution of biologically targeted radiotracers with high sensitivity. PET imaging provides detailed quantitative information about many diseases and is often used to evaluate inflammation, infection, and cancer by detecting emitted photons from a radiotracer localized to abnormal cells. In order to differentiate abnormal tissue from surrounding areas in PET images, image segmentation methods play a vital role; therefore, accurate image segmentation is often necessary for proper disease detection, diagnosis, treatment planning, and follow-ups. In this review paper, we present state-of-the-art PET image segmentation methods, as well as the recent advances in image segmentation techniques. In order to make this manuscript self-contained, we also briefly explain the fundamentals of PET imaging, the challenges of diagnostic PET image analysis, and the effects of these challenges on the segmentation results. PMID:24845019
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teramoto, Atsushi, E-mail: teramoto@fujita-hu.ac.jp; Fujita, Hiroshi; Yamamuro, Osamu
Purpose: Automated detection of solitary pulmonary nodules using positron emission tomography (PET) and computed tomography (CT) images shows good sensitivity; however, it is difficult to detect nodules in contact with normal organs, and additional efforts are needed so that the number of false positives (FPs) can be further reduced. In this paper, the authors propose an improved FP-reduction method for the detection of pulmonary nodules in PET/CT images by means of convolutional neural networks (CNNs). Methods: The overall scheme detects pulmonary nodules using both CT and PET images. In the CT images, a massive region is first detected using anmore » active contour filter, which is a type of contrast enhancement filter that has a deformable kernel shape. Subsequently, high-uptake regions detected by the PET images are merged with the regions detected by the CT images. FP candidates are eliminated using an ensemble method; it consists of two feature extractions, one by shape/metabolic feature analysis and the other by a CNN, followed by a two-step classifier, one step being rule based and the other being based on support vector machines. Results: The authors evaluated the detection performance using 104 PET/CT images collected by a cancer-screening program. The sensitivity in detecting candidates at an initial stage was 97.2%, with 72.8 FPs/case. After performing the proposed FP-reduction method, the sensitivity of detection was 90.1%, with 4.9 FPs/case; the proposed method eliminated approximately half the FPs existing in the previous study. Conclusions: An improved FP-reduction scheme using CNN technique has been developed for the detection of pulmonary nodules in PET/CT images. The authors’ ensemble FP-reduction method eliminated 93% of the FPs; their proposed method using CNN technique eliminates approximately half the FPs existing in the previous study. These results indicate that their method may be useful in the computer-aided detection of pulmonary nodules using PET/CT images.« less
PSMA PET and radionuclide therapy in prostate cancer
Bouchelouche, Kirsten; Turkbey, Baris; Choyke, Peter L.
2016-01-01
Prostate cancer (Pca) is the most common malignancy in men and a major cause of cancer death. Accurate imaging plays an important role in diagnosis, staging, restaging, detection of biochemical recurrence, and for therapy of PCa patients. Since no effective treatment is available for advanced PCa, there is an urgent need to develop new and more effective therapeutic strategies. In order to optimize treatment outcome, especially in high risk PCa patients, therapy of PCa is moving rapidly towards personalization. Medical imaging, including positron emission tomography (PET)/computed tomography (CT), plays an important role in personalized medicine in oncology. In the recent years, much focus has been on prostate specific membrane antigen (PSMA) as a promising target for imaging and therapy with radionuclides, since it is upregulated in most PCa. In the prostate, one potential role for PSMA PET imaging is to help guiding focal therapy. Several studies have shown great potential of PSMA PET/CT for initial staging, lymph node staging, and detection of recurrence of PCa, even at very low PSA values after primary therapy. Furthermore, studies have shown that PSMA PET/CT has a higher detection rate than choline PET/CT. Radiolabeled PSMA ligands for therapy show promise in several studies with metastatic PCa, and is an area of active investigation. The “Image and treat” strategy, with radiolabeled PSMA ligands, has the potential to improve the treatment outcome of PCa patients, and is paving the way for precision medicine in PCa. The aim of this review is to give an overview of recent advancement in PSMA PET and radionuclide therapy of PCa. PMID:27825432
In vivo quantification of mouse autoimmune arthritis by PET/CT
Kundu-Raychaudhuri, Smriti; Mitra, Anupam; Datta-Mitra, Ananya; Chaudhari, Abhijit J.; Raychaudhuri, Siba P.
2014-01-01
Aim To quantify the progression and severity of mouse collagen-induced arthritis (CIA) using an in vivo imaging tool, 18F-fluorodeoxyglucose (18F-FDG) PET/CT, and validate it against gold standard ‘histopathological’ evaluation. Method The PET radiotracer 18F-FDG, a marker for glucose metabolism, was injected in mice at different stages during the development of CIA and the radiotracer distribution was imaged using a PET scanner. A sequential CT scan provided correlated anatomy. Radiotracer concentration was derived from PET/CT images for individual limb joints and on a per-limb basis at different stages of the disease. The imaging outcomes were subjected to correlation analysis with concurrently-measured clinical and histological score. Results Clinical and histological score, and hence disease severity, showed a strong linear correlation (R2=0.71, p=0.001, and R2=0.87, p<0.001, respectively) with radiotracer concentration measured from PET/CT during the progression of CIA. Conclusions The strong positive correlation of the 18F-FDG PET/CT findings with the histopathological evaluation at different stages of the disease suggest the potential of this imaging tool for the non-invasive assessment of progression and severity in mouse autoimmune arthritis. Thus, 18F-FDG PET/CT can be considered as a non invasive tool in preclinical studies for development of novel therapies of inflammatory arthritis. PMID:24965561
A Digital Preclinical PET/MRI Insert and Initial Results.
Weissler, Bjoern; Gebhardt, Pierre; Dueppenbecker, Peter M; Wehner, Jakob; Schug, David; Lerche, Christoph W; Goldschmidt, Benjamin; Salomon, Andre; Verel, Iris; Heijman, Edwin; Perkuhn, Michael; Heberling, Dirk; Botnar, Rene M; Kiessling, Fabian; Schulz, Volkmar
2015-11-01
Combining Positron Emission Tomography (PET) with Magnetic Resonance Imaging (MRI) results in a promising hybrid molecular imaging modality as it unifies the high sensitivity of PET for molecular and cellular processes with the functional and anatomical information from MRI. Digital Silicon Photomultipliers (dSiPMs) are the digital evolution in scintillation light detector technology and promise high PET SNR. DSiPMs from Philips Digital Photon Counting (PDPC) were used to develop a preclinical PET/RF gantry with 1-mm scintillation crystal pitch as an insert for clinical MRI scanners. With three exchangeable RF coils, the hybrid field of view has a maximum size of 160 mm × 96.6 mm (transaxial × axial). 0.1 ppm volume-root-mean-square B 0-homogeneity is kept within a spherical diameter of 96 mm (automatic volume shimming). Depending on the coil, MRI SNR is decreased by 13% or 5% by the PET system. PET count rates, energy resolution of 12.6% FWHM, and spatial resolution of 0.73 mm (3) (isometric volume resolution at isocenter) are not affected by applied MRI sequences. PET time resolution of 565 ps (FWHM) degraded by 6 ps during an EPI sequence. Timing-optimized settings yielded 260 ps time resolution. PET and MR images of a hot-rod phantom show no visible differences when the other modality was in operation and both resolve 0.8-mm rods. Versatility of the insert is shown by successfully combining multi-nuclei MRI ((1)H/(19)F) with simultaneously measured PET ((18)F-FDG). A longitudinal study of a tumor-bearing mouse verifies the operability, stability, and in vivo capabilities of the system. Cardiac- and respiratory-gated PET/MRI motion-capturing (CINE) images of the mouse heart demonstrate the advantage of simultaneous acquisition for temporal and spatial image registration.
NASA Astrophysics Data System (ADS)
McDougald, Wendy A.; Collins, Richard; Green, Mark; Tavares, Adriana A. S.
2017-10-01
Obtaining accurate quantitative measurements in preclinical Positron Emission Tomography/Computed Tomography (PET/CT) imaging is of paramount importance in biomedical research and helps supporting efficient translation of preclinical results to the clinic. The purpose of this study was two-fold: (1) to investigate the effects of different CT acquisition protocols on PET/CT image quality and data quantification; and (2) to evaluate the absorbed dose associated with varying CT parameters. Methods: An air/water quality control CT phantom, tissue equivalent material phantom, an in-house 3D printed phantom and an image quality PET/CT phantom were imaged using a Mediso nanoPET/CT scanner. Collected data was analyzed using PMOD software, VivoQuant software and National Electric Manufactures Association (NEMA) software implemented by Mediso. Measured Hounsfield Unit (HU) in collected CT images were compared to the known HU values and image noise was quantified. PET recovery coefficients (RC), uniformity and quantitative bias were also measured. Results: Only less than 2% and 1% of CT acquisition protocols yielded water HU values < -80 and air HU values < -840, respectively. Four out of eleven CT protocols resulted in more than 100 mGy absorbed dose. Different CT protocols did not impact PET uniformity and RC, and resulted in <4% overall bias relative to expected radioactive concentration. Conclusion: Preclinical CT protocols with increased exposure times can result in high absorbed doses to the small animals. These should be avoided, as they do not contributed towards improved microPET/CT image quantitative accuracy and could limit longitudinal scanning of small animals.
NASA Astrophysics Data System (ADS)
Ladefoged, Claes N.; Benoit, Didier; Law, Ian; Holm, Søren; Kjær, Andreas; Højgaard, Liselotte; Hansen, Adam E.; Andersen, Flemming L.
2015-10-01
The reconstruction of PET brain data in a PET/MR hybrid scanner is challenging in the absence of transmission sources, where MR images are used for MR-based attenuation correction (MR-AC). The main challenge of MR-AC is to separate bone and air, as neither have a signal in traditional MR images, and to assign the correct linear attenuation coefficient to bone. The ultra-short echo time (UTE) MR sequence was proposed as a basis for MR-AC as this sequence shows a small signal in bone. The purpose of this study was to develop a new clinically feasible MR-AC method with patient specific continuous-valued linear attenuation coefficients in bone that provides accurate reconstructed PET image data. A total of 164 [18F]FDG PET/MR patients were included in this study, of which 10 were used for training. MR-AC was based on either standard CT (reference), UTE or our method (RESOLUTE). The reconstructed PET images were evaluated in the whole brain, as well as regionally in the brain using a ROI-based analysis. Our method segments air, brain, cerebral spinal fluid, and soft tissue voxels on the unprocessed UTE TE images, and uses a mapping of R2* values to CT Hounsfield Units (HU) to measure the density in bone voxels. The average error of our method in the brain was 0.1% and less than 1.2% in any region of the brain. On average 95% of the brain was within ±10% of PETCT, compared to 72% when using UTE. The proposed method is clinically feasible, reducing both the global and local errors on the reconstructed PET images, as well as limiting the number and extent of the outliers.
Multi-technique hybrid imaging in PET/CT and PET/MR: what does the future hold?
de Galiza Barbosa, F; Delso, G; Ter Voert, E E G W; Huellner, M W; Herrmann, K; Veit-Haibach, P
2016-07-01
Integrated positron-emission tomography and computed tomography (PET/CT) is one of the most important imaging techniques to have emerged in oncological practice in the last decade. Hybrid imaging, in general, remains a rapidly growing field, not only in developing countries, but also in western industrialised healthcare systems. A great deal of technological development and research is focused on improving hybrid imaging technology further and introducing new techniques, e.g., integrated PET and magnetic resonance imaging (PET/MRI). Additionally, there are several new PET tracers on the horizon, which have the potential to broaden clinical applications in hybrid imaging for diagnosis as well as therapy. This article aims to highlight some of the major technical and clinical advances that are currently taking place in PET/CT and PET/MRI that will potentially maintain the position of hybrid techniques at the forefront of medical imaging technologies. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Schmidt, Holger; Brendle, Cornelia; Schraml, Christina; Martirosian, Petros; Bezrukov, Ilja; Hetzel, Jürgen; Müller, Mark; Sauter, Alexander; Claussen, Claus D; Pfannenberg, Christina; Schwenzer, Nina F
2013-05-01
Hybrid whole-body magnetic resonance/positron emission tomography (MR/PET) systems are a new diagnostic tool enabling the simultaneous acquisition of morphologic and multiple functional data and thus allowing for a diversified characterization of oncological diseases.The aim of this study was to investigate the image and alignment quality of MR/PET in patients with pulmonary lesions and to compare the congruency of the 2 functional measurements of diffusion-weighted imaging (DWI) in MR imaging and 2-deoxy-[18F] fluoro-2-D-glucose (FDG) uptake in PET. A total of 15 patients were examined with a routine positron emission tomography/computer tomography (PET/CT) protocol and, subsequently, in a whole-body MR/PET scanner allowing for simultaneous PET and MR data acquisition. The PET and MR image quality was assessed visually using a 4-point score (1, insufficient; 4, excellent). The alignment quality of the rigidly registered PET/CT and MR/PET data sets was investigated on the basis of multiple anatomic landmarks of the lung using a scoring system from 1 (no alignment) to 4 (very good alignment). In addition, the alignment quality of the tumor lesions in PET/CT and MR/PET as well as for retrospective fusion of PET from PET/CT and MR images was assessed quantitatively and was compared between lesions strongly or less influenced by respiratory motion. The correlation of the simultaneously acquired DWI and FDG uptake in the pulmonary masses was analyzed using the minimum and mean apparent diffusion coefficient (ADC min and ADC mean) as well as the maximum and mean standardized uptake value (SUV max and SUV mean), respectively. In addition, the correlation of SUV max from PET/CT data was investigated as well. On lesions 3 cm or greater, a voxelwise analysis of ADC and SUV was performed. The visual evaluation revealed excellent image quality of the PET images (mean [SD] score, 3.6 [0.5]) and overall good image quality of DWI (mean [SD] score of 2.5 [0.5] for ADC maps and 2.7 [0.5] for diffusion-weighted images, respectively). The alignment quality of the data sets was very good in both MR/PET and PET/CT without significant differences (overall mean [SD] score of MR/PET, 3.8 [0.4]; PET/CT 3.6 [0.5]). Also, the alignment quality of the tumor lesions showed no significant differences between PET/CT and MR/PET (mean cumulative misalignment of MR/PET, 7.7 mm; PET/CT, 7.0 mm; P = 0.705) but between both modalities and a retrospective fusion (mean cumulative misalignment, 17.1 mm; P = 0.002 and P = 0.008 for PET/CT and MR/PET, respectively). Also, the comparison of the lesions strongly or less influenced by respiratory motion showed significant differences only for the retrospective fusion (21.3 mm vs 11.5 mm, respectively; P = 0.043). The ADC min and SUV max as measures of the cell density and glucose metabolism showed a significant reverse correlation (r = -0.80; P = 0.0006). No significant correlation was found between ADC mean and SUV mean (r = -0.42; P = 0.1392). Also, SUV max from the PET/CT data showed significant reverse correlation to ADC min (r = -0.62; P = 0.019). The voxelwise analysis of 5 pulmonary lesions each showed weak but significant negative correlation between ADC and SUV. Examinations of pulmonary lesions in a simultaneous whole-body MR/PET system provide diagnostic image quality in both modalities. Although DWI and FDG-PET reflect different tissue properties, there may very well be an association between the measures of both methods most probably because of increased cellularity and glucose metabolism of FDG-avid pulmonary lesions. A voxelwise DWI and FDG-PET correlation might provide a more sophisticated spatial characterization of pulmonary lesions.
Akbarzadeh, A; Ay, M R; Ahmadian, A; Alam, N Riahi; Zaidi, H
2013-02-01
Hybrid PET/MRI presents many advantages in comparison with its counterpart PET/CT in terms of improved soft-tissue contrast, decrease in radiation exposure, and truly simultaneous and multi-parametric imaging capabilities. However, the lack of well-established methodology for MR-based attenuation correction is hampering further development and wider acceptance of this technology. We assess the impact of ignoring bone attenuation and using different tissue classes for generation of the attenuation map on the accuracy of attenuation correction of PET data. This work was performed using simulation studies based on the XCAT phantom and clinical input data. For the latter, PET and CT images of patients were used as input for the analytic simulation model using realistic activity distributions where CT-based attenuation correction was utilized as reference for comparison. For both phantom and clinical studies, the reference attenuation map was classified into various numbers of tissue classes to produce three (air, soft tissue and lung), four (air, lungs, soft tissue and cortical bones) and five (air, lungs, soft tissue, cortical bones and spongeous bones) class attenuation maps. The phantom studies demonstrated that ignoring bone increases the relative error by up to 6.8% in the body and up to 31.0% for bony regions. Likewise, the simulated clinical studies showed that the mean relative error reached 15% for lesions located in the body and 30.7% for lesions located in bones, when neglecting bones. These results demonstrate an underestimation of about 30% of tracer uptake when neglecting bone, which in turn imposes substantial loss of quantitative accuracy for PET images produced by hybrid PET/MRI systems. Considering bones in the attenuation map will considerably improve the accuracy of MR-guided attenuation correction in hybrid PET/MR to enable quantitative PET imaging on hybrid PET/MR technologies.
Subramaniam, Rathan M; Janowitz, Warren R; Johnson, Geoffrey B; Lodge, Martin A; Parisi, Marguerite T; Ferguson, Mark R; Hellinger, Jeffrey C; Gladish, Gregory W; Gupta, Narainder K
2017-12-01
This clinical practice parameter has been developed collaboratively by the American College of Radiology (ACR), the Society for Pediatric Radiology (SPR), and the Society of Thoracic Radiology (STR). This document is intended to act as a guide for physicians performing and interpreting positron emission tomography-computed tomography (PET/CT) of cardiac diseases in adults and children. The primary value of cardiac PET/CT imaging include evaluation of perfusion, function, viability, inflammation, anatomy, and risk stratification for cardiac-related events such as myocardial infarction and death. Optimum utility of cardiac PET/CT is achieved when images are interpreted in conjunction with clinical information and laboratory data. Measurement of myocardial blood flow, coronary flow reserve and detection of balanced ischemia are significant advantages of cardiac PET perfusion studies. Increasingly cardiac PET/CT is used in diagnosis and treatment response assessment for cardiac sarcoidosis.
Freitag, Martin T; Kesch, Claudia; Cardinale, Jens; Flechsig, Paul; Floca, Ralf; Eiber, Matthias; Bonekamp, David; Radtke, Jan P; Kratochwil, Clemens; Kopka, Klaus; Hohenfellner, Markus; Stenzinger, Albrecht; Schlemmer, Heinz-Peter; Haberkorn, Uwe; Giesel, Frederik
2018-03-01
The aim of the present study was to explore the clinical feasibility and reproducibility of a comprehensive whole-body 18 F-PSMA-1007-PET/MRI protocol for imaging prostate cancer (PC) patients. Eight patients with high-risk biopsy-proven PC underwent a whole-body PET/MRI (3 h p.i.) including a multi-parametric prostate MRI after 18 F-PSMA-1007-PET/CT (1 h p.i.) which served as reference. Seven patients presented with non-treated PC, whereas one patient presented with biochemical recurrence. SUV mean -quantification was performed using a 3D-isocontour volume-of-interest. Imaging data was consulted for TNM-staging and compared with histopathology. PC was confirmed in 4/7 patients additionally by histopathology after surgery. PET-artifacts, co-registration of pelvic PET/MRI and MRI-data were assessed (PI-RADS 2.0). The examinations were well accepted by patients and comprised 1 h. SUV mean -values between PET/CT (1 h p.i.) and PET/MRI (3 h p.i.) were significantly correlated (p < 0.0001, respectively) and similar to literature of 18 F-PSMA-1007-PET/CT 1 h vs 3 h p.i. The dominant intraprostatic lesion could be detected in all seven patients in both PET and MRI. T2c, T3a, T3b and T4 features were detected complimentarily by PET and MRI in five patients. PET/MRI demonstrated moderate photopenic PET-artifacts surrounding liver and kidneys representing high-contrast areas, no PET-artifacts were observed for PET/CT. Simultaneous PET-readout during prostate MRI achieved optimal co-registration results. The presented 18 F-PSMA-1007-PET/MRI protocol combines efficient whole-body assessment with high-resolution co-registered PET/MRI of the prostatic fossa for comprehensive oncological staging of patients with PC.
Globally optimal tumor segmentation in PET-CT images: a graph-based co-segmentation method.
Han, Dongfeng; Bayouth, John; Song, Qi; Taurani, Aakant; Sonka, Milan; Buatti, John; Wu, Xiaodong
2011-01-01
Tumor segmentation in PET and CT images is notoriously challenging due to the low spatial resolution in PET and low contrast in CT images. In this paper, we have proposed a general framework to use both PET and CT images simultaneously for tumor segmentation. Our method utilizes the strength of each imaging modality: the superior contrast of PET and the superior spatial resolution of CT. We formulate this problem as a Markov Random Field (MRF) based segmentation of the image pair with a regularized term that penalizes the segmentation difference between PET and CT. Our method simulates the clinical practice of delineating tumor simultaneously using both PET and CT, and is able to concurrently segment tumor from both modalities, achieving globally optimal solutions in low-order polynomial time by a single maximum flow computation. The method was evaluated on clinically relevant tumor segmentation problems. The results showed that our method can effectively make use of both PET and CT image information, yielding segmentation accuracy of 0.85 in Dice similarity coefficient and the average median hausdorff distance (HD) of 6.4 mm, which is 10% (resp., 16%) improvement compared to the graph cuts method solely using the PET (resp., CT) images.
Automatic delineation of brain regions on MRI and PET images from the pig.
Villadsen, Jonas; Hansen, Hanne D; Jørgensen, Louise M; Keller, Sune H; Andersen, Flemming L; Petersen, Ida N; Knudsen, Gitte M; Svarer, Claus
2018-01-15
The increasing use of the pig as a research model in neuroimaging requires standardized processing tools. For example, extraction of regional dynamic time series from brain PET images requires parcellation procedures that benefit from being automated. Manual inter-modality spatial normalization to a MRI atlas is operator-dependent, time-consuming, and can be inaccurate with lack of cortical radiotracer binding or skull uptake. A parcellated PET template that allows for automatic spatial normalization to PET images of any radiotracer. MRI and [ 11 C]Cimbi-36 PET scans obtained in sixteen pigs made the basis for the atlas. The high resolution MRI scans allowed for creation of an accurately averaged MRI template. By aligning the within-subject PET scans to their MRI counterparts, an averaged PET template was created in the same space. We developed an automatic procedure for spatial normalization of the averaged PET template to new PET images and hereby facilitated transfer of the atlas regional parcellation. Evaluation of the automatic spatial normalization procedure found the median voxel displacement to be 0.22±0.08mm using the MRI template with individual MRI images and 0.92±0.26mm using the PET template with individual [ 11 C]Cimbi-36 PET images. We tested the automatic procedure by assessing eleven PET radiotracers with different kinetics and spatial distributions by using perfusion-weighted images of early PET time frames. We here present an automatic procedure for accurate and reproducible spatial normalization and parcellation of pig PET images of any radiotracer with reasonable blood-brain barrier penetration. Copyright © 2017 Elsevier B.V. All rights reserved.
A Dual Tracer 18F-FCH/18F-FDG PET Imaging of an Orthotopic Brain Tumor Xenograft Model.
Fu, Yilong; Ong, Lai-Chun; Ranganath, Sudhir H; Zheng, Lin; Kee, Irene; Zhan, Wenbo; Yu, Sidney; Chow, Pierce K H; Wang, Chi-Hwa
2016-01-01
Early diagnosis of low grade glioma has been a challenge to clinicians. Positron Emission Tomography (PET) using 18F-FDG as a radio-tracer has limited utility in this area because of the high background in normal brain tissue. Other radiotracers such as 18F-Fluorocholine (18F-FCH) could provide better contrast between tumor and normal brain tissue but with high incidence of false positives. In this study, the potential application of a dual tracer 18F-FCH/18F-FDG-PET is investigated in order to improve the sensitivity of PET imaging for low grade glioma diagnosis based on a mouse orthotopic xenograft model. BALB/c nude mice with and without orthotopic glioma xenografts from U87 MG-luc2 glioma cell line are used for the study. The animals are subjected to 18F-FCH and 18F-FDG PET imaging, and images acquired from two separate scans are superimposed for analysis. The 18F-FCH counts are subtracted from the merged images to identify the tumor. Micro-CT, bioluminescence imaging (BLI), histology and measurement of the tumor diameter are also conducted for comparison. Results show that there is a significant contrast in 18F-FCH uptake between tumor and normal brain tissue (2.65 ± 0.98), but with a high false positive rate of 28.6%. The difficulty of identifying the tumor by 18F-FDG only is also proved in this study. All the tumors can be detected based on the dual tracer technique of 18F-FCH/18F-FDG-PET imaging in this study, while the false-positive caused by 18F-FCH can be eliminated. Dual tracer 18F-FCH/18F-FDG PET imaging has the potential to improve the visualization of low grade glioma. 18F-FCH delineates tumor areas and the tumor can be identified by subtracting the 18F-FCH counts. The sensitivity was over 95%. Further studies are required to evaluate the possibility of applying this technique in clinical trials.
A Dual Tracer 18F-FCH/18F-FDG PET Imaging of an Orthotopic Brain Tumor Xenograft Model
Ranganath, Sudhir H.; Zheng, Lin; Kee, Irene; Zhan, Wenbo; Yu, Sidney; Chow, Pierce K. H.; Wang, Chi-Hwa
2016-01-01
Early diagnosis of low grade glioma has been a challenge to clinicians. Positron Emission Tomography (PET) using 18F-FDG as a radio-tracer has limited utility in this area because of the high background in normal brain tissue. Other radiotracers such as 18F-Fluorocholine (18F-FCH) could provide better contrast between tumor and normal brain tissue but with high incidence of false positives. In this study, the potential application of a dual tracer 18F-FCH/18F-FDG-PET is investigated in order to improve the sensitivity of PET imaging for low grade glioma diagnosis based on a mouse orthotopic xenograft model. BALB/c nude mice with and without orthotopic glioma xenografts from U87 MG-luc2 glioma cell line are used for the study. The animals are subjected to 18F-FCH and 18F-FDG PET imaging, and images acquired from two separate scans are superimposed for analysis. The 18F-FCH counts are subtracted from the merged images to identify the tumor. Micro-CT, bioluminescence imaging (BLI), histology and measurement of the tumor diameter are also conducted for comparison. Results show that there is a significant contrast in 18F-FCH uptake between tumor and normal brain tissue (2.65 ± 0.98), but with a high false positive rate of 28.6%. The difficulty of identifying the tumor by 18F-FDG only is also proved in this study. All the tumors can be detected based on the dual tracer technique of 18F-FCH/ 18F-FDG-PET imaging in this study, while the false-positive caused by 18F-FCH can be eliminated. Dual tracer 18F-FCH/18F-FDG PET imaging has the potential to improve the visualization of low grade glioma. 18F-FCH delineates tumor areas and the tumor can be identified by subtracting the 18F-FCH counts. The sensitivity was over 95%. Further studies are required to evaluate the possibility of applying this technique in clinical trials. PMID:26844770
Improved frame-based estimation of head motion in PET brain imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, J. M., E-mail: joyeeta.mitra@umassmed.edu; Lindsay, C.; King, M. A.
Purpose: Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. Methods: The list mode data for PET acquisition ismore » uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. Results: The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is not susceptible to motion introduced between CT and PET acquisitions. Conclusions: The authors have shown that they can estimate motion for frames with time intervals as short as 5 s using nonattenuation corrected reconstructed FDG PET brain images. Intraframe motion in 60-s frames causes degradation of accuracy to about 2 mm based on the motion type.« less
Improved frame-based estimation of head motion in PET brain imaging
Mukherjee, J. M.; Lindsay, C.; Mukherjee, A.; Olivier, P.; Shao, L.; King, M. A.; Licho, R.
2016-01-01
Purpose: Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. Methods: The list mode data for PET acquisition is uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. Results: The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is not susceptible to motion introduced between CT and PET acquisitions. Conclusions: The authors have shown that they can estimate motion for frames with time intervals as short as 5 s using nonattenuation corrected reconstructed FDG PET brain images. Intraframe motion in 60-s frames causes degradation of accuracy to about 2 mm based on the motion type. PMID:27147355
PET guidance for liver radiofrequency ablation: an evaluation
NASA Astrophysics Data System (ADS)
Lei, Peng; Dandekar, Omkar; Mahmoud, Faaiza; Widlus, David; Malloy, Patrick; Shekhar, Raj
2007-03-01
Radiofrequency ablation (RFA) is emerging as the primary mode of treatment of unresectable malignant liver tumors. With current intraoperative imaging modalities, quick, precise, and complete localization of lesions remains a challenge for liver RFA. Fusion of intraoperative CT and preoperative PET images, which relies on PET and CT registration, can produce a new image with complementary metabolic and anatomic data and thus greatly improve the targeting accuracy. Unlike neurological images, alignment of abdominal images by combined PET/CT scanner is prone to errors as a result of large nonrigid misalignment in abdominal images. Our use of a normalized mutual information-based 3D nonrigid registration technique has proven powerful for whole-body PET and CT registration. We demonstrate here that this technique is capable of acceptable abdominal PET and CT registration as well. In five clinical cases, both qualitative and quantitative validation showed that the registration is robust and accurate. Quantitative accuracy was evaluated by comparison between the result from the algorithm and clinical experts. The accuracy of registration is much less than the allowable margin in liver RFA. Study findings show the technique's potential to enable the augmentation of intraoperative CT with preoperative PET to reduce procedure time, avoid repeating procedures, provide clinicians with complementary functional/anatomic maps, avoid omitting dispersed small lesions, and improve the accuracy of tumor targeting in liver RFA.
Zheng, Yuanda; Sun, Xiaojiang; Wang, Jian; Zhang, Lingnan; DI, Xiaoyun; Xu, Yaping
2014-04-01
18 F-fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) has the potential to improve the staging and radiation treatment (RT) planning of various tumor sites. However, from a clinical standpoint, questions remain with regard to what extent PET/CT changes the target volume and whether PET/CT reduces interobserver variability in target volume delineation. The present study analyzed the use of FDG-PET/CT images for staging and evaluated the impact of FDG-PET/CT on the radiotherapy volume delineation compared with CT in patients with non-small cell lung cancer (NSCLC) who were candidates for radiotherapy. Intraobserver variation in delineating tumor volumes was also observed. In total, 23 patients with stage I-III NSCLC were enrolled and treated with fractionated RT-based therapy with or without chemotherapy. FDG-PET/CT scans were acquired within two weeks prior to RT. PET and CT data sets were sent to the treatment planning system, Pinnacle, through compact discs. The CT and PET images were subsequently fused by means of a dedicated RT planning system. Gross tumor volume (GTV) was contoured by four radiation oncologists on CT (GTV-CT) and PET/CT images (GTV-PET/CT). The resulting volumes were analyzed and compared. For the first phase, two radiation oncologists outlined the contours together, achieving a final consensus. Based on PET/CT, changes in tumor-node-metastasis categories occurred in 8/23 cases (35%). Radiation targeting with fused FDG-PET and CT images resulted in alterations in radiation therapy planning in 12/20 patients (60%) in comparison with CT targeting. The most prominent changes in GTV were observed in cases with atelectasis. For the second phase, the variation in delineating tumor volumes was assessed by four observers. The mean ratio of largest to smallest CT-based GTV was 2.31 (range, 1.01-5.96). The addition of the PET results reduced the mean ratio to 1.46 (range, 1.02-2.27). PET/CT fusion images may have a potential impact on tumor staging and treatment planning. Implementing matched PET/CT results reduced observer variation in delineating tumor volumes significantly with respect to CT only.
Use of Video Goggles to Distract Patients During PET/CT Studies of School-Aged Children.
Gelfand, Michael J; Harris, Jennifer M; Rich, Amanda C; Kist, Chelsea S
2016-12-01
This study was designed to evaluate the effectiveness of video goggles in distracting children undergoing PET/CT and to determine whether the goggles create CT and PET artifacts. Video goggles with small amounts of internal radioopaque material were used. During whole-body PET/CT imaging, 30 nonsedated patients aged 4-13 y watched videos of their choice using the goggles. Fifteen of the PET/CT studies were performed on a scanner installed in 2006, and the other 15 were performed on a scanner installed in 2013. The fused scans were reviewed for evidence of head movement, and the individual PET and CT scans of the head were reviewed for the presence and severity of streak artifact. The CT exposure settings were recorded for each scan at the anatomic level at which the goggles were worn. Only one of the 30 scans had evidence of significant head motion. Two of the 30 had minor coregistration problems due to motion, and 27 of the 30 had very good to excellent coregistration. For the 2006 scanner, 2 of the 14 evaluable localization CT scans of the head demonstrated no streak artifact in brain tissue, 6 of the 14 had mild streak artifact in brain tissue, and 6 of the 14 had moderate streak artifact in brain tissue. Mild streak artifact in bone was noted in 2 of the 14 studies. For the 2013 scanner, 7 of 15 studies had mild streak artifact in brain tissue and 8 of 15 had no streak artifact in brain tissue, whereas none of the 15 had streak artifact in bone. There were no artifacts attributable to the goggles on the 18 F-FDG PET brain images of any of the 29 evaluable studies. The average CT exposure parameters at the level of the orbits were 36% lower on the 2013 scanner than on the 2006 scanner. Video goggles may be used successfully to distract children undergoing PET with localization CT. The goggles cause no significant degradation of the PET brain images or the CT skull images. The degree of artifact on brain tissue images varies from none to moderate and depends on the CT equipment used. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Methodology for quantitative rapid multi-tracer PET tumor characterizations.
Kadrmas, Dan J; Hoffman, John M
2013-10-04
Positron emission tomography (PET) can image a wide variety of functional and physiological parameters in vivo using different radiotracers. As more is learned about the molecular basis for disease and treatment, the potential value of molecular imaging for characterizing and monitoring disease status has increased. Characterizing multiple aspects of tumor physiology by imaging multiple PET tracers in a single patient provides additional complementary information, and there is a significant body of literature supporting the potential value of multi-tracer PET imaging in oncology. However, imaging multiple PET tracers in a single patient presents a number of challenges. A number of techniques are under development for rapidly imaging multiple PET tracers in a single scan, where signal-recovery processing algorithms are employed to recover various imaging endpoints for each tracer. Dynamic imaging is generally used with tracer injections staggered in time, and kinetic constraints are utilized to estimate each tracers' contribution to the multi-tracer imaging signal. This article summarizes past and ongoing work in multi-tracer PET tumor imaging, and then organizes and describes the main algorithmic approaches for achieving multi-tracer PET signal-recovery. While significant advances have been made, the complexity of the approach necessitates protocol design, optimization, and testing for each particular tracer combination and application. Rapid multi-tracer PET techniques have great potential for both research and clinical cancer imaging applications, and continued research in this area is warranted.
Methodology for Quantitative Rapid Multi-Tracer PET Tumor Characterizations
Kadrmas, Dan J.; Hoffman, John M.
2013-01-01
Positron emission tomography (PET) can image a wide variety of functional and physiological parameters in vivo using different radiotracers. As more is learned about the molecular basis for disease and treatment, the potential value of molecular imaging for characterizing and monitoring disease status has increased. Characterizing multiple aspects of tumor physiology by imaging multiple PET tracers in a single patient provides additional complementary information, and there is a significant body of literature supporting the potential value of multi-tracer PET imaging in oncology. However, imaging multiple PET tracers in a single patient presents a number of challenges. A number of techniques are under development for rapidly imaging multiple PET tracers in a single scan, where signal-recovery processing algorithms are employed to recover various imaging endpoints for each tracer. Dynamic imaging is generally used with tracer injections staggered in time, and kinetic constraints are utilized to estimate each tracers' contribution to the multi-tracer imaging signal. This article summarizes past and ongoing work in multi-tracer PET tumor imaging, and then organizes and describes the main algorithmic approaches for achieving multi-tracer PET signal-recovery. While significant advances have been made, the complexity of the approach necessitates protocol design, optimization, and testing for each particular tracer combination and application. Rapid multi-tracer PET techniques have great potential for both research and clinical cancer imaging applications, and continued research in this area is warranted. PMID:24312149
Le, Yali; Chen, Yu; Zhou, Fan; Liu, Guangfu; Huang, Zhanwen; Chen, Yue
2016-10-01
This study compared the diagnostic value of F-fluoride PET-computed tomography (PET-CT) and MRI in skull-base bone erosion in nasopharyngeal carcinoma (NPC) patients. A total of 93 patients with biopsy-confirmed NPC were enrolled, including 68 men and 25 women between 23 and 74 years of age. All patients were evaluated by both F-fluoride PET-CT and MRI, and the interval between the two imaging examinations was less than 20 days. The patients received no treatment either before or between scans. The studies were interpreted by two nuclear medicine physicians or two radiologists with more than 10 years of professional experience who were blinded to both the diagnosis and the results of the other imaging studies. The reference standard was skull-base bone erosion at a 20-week follow-up imaging study. On the basis of the results of the follow-up imaging studies, 52 patients showed skull-base bone erosion. The numbers of true positives, false positives, true negatives, and false negatives with F-fluoride PET-CT were 49, 4, 37, and 3, respectively. The numbers of true positives, false positives, true negatives, and false negatives with MRI were 46, 5, 36, and 6, respectively. The sensitivity, specificity, and crude accuracy of F-fluoride PET-CT were 94.23, 90.24, and 92.47%, respectively; for MRI, these values were 88.46, 87.80, and 88.17%. Of the 52 patients, 43 showed positive findings both on F-fluoride PET-CT and on MRI. Within the patient cohort, F-fluoride PET-CT and MRI detected 178 and 135 bone lesions, respectively. Both F-fluoride PET-CT and MRI have high sensitivity, specificity, and crude accuracy for detecting skull-base bone invasion in patients with NPC. F-fluoride PET-CT detected more lesions than did MRI in the skull-base bone. This suggests that F-fluoride PET-CT has a certain advantage in evaluating the skull-base bone of NPC patients. Combining the two methods could improve the diagnostic accuracy of skull-base bone invasion for NPC.
Quantitative assessment of dynamic PET imaging data in cancer imaging.
Muzi, Mark; O'Sullivan, Finbarr; Mankoff, David A; Doot, Robert K; Pierce, Larry A; Kurland, Brenda F; Linden, Hannah M; Kinahan, Paul E
2012-11-01
Clinical imaging in positron emission tomography (PET) is often performed using single-time-point estimates of tracer uptake or static imaging that provides a spatial map of regional tracer concentration. However, dynamic tracer imaging can provide considerably more information about in vivo biology by delineating both the temporal and spatial pattern of tracer uptake. In addition, several potential sources of error that occur in static imaging can be mitigated. This review focuses on the application of dynamic PET imaging to measuring regional cancer biologic features and especially in using dynamic PET imaging for quantitative therapeutic response monitoring for cancer clinical trials. Dynamic PET imaging output parameters, particularly transport (flow) and overall metabolic rate, have provided imaging end points for clinical trials at single-center institutions for years. However, dynamic imaging poses many challenges for multicenter clinical trial implementations from cross-center calibration to the inadequacy of a common informatics infrastructure. Underlying principles and methodology of PET dynamic imaging are first reviewed, followed by an examination of current approaches to dynamic PET image analysis with a specific case example of dynamic fluorothymidine imaging to illustrate the approach. Copyright © 2012 Elsevier Inc. All rights reserved.
Method of simulation and visualization of FDG metabolism based on VHP image
NASA Astrophysics Data System (ADS)
Cui, Yunfeng; Bai, Jing
2005-04-01
FDG ([18F] 2-fluoro-2-deoxy-D-glucose) is the typical tracer used in clinical PET (positron emission tomography) studies. The FDG-PET is an important imaging tool for early diagnosis and treatment of malignant tumor and functional disease. The main purpose of this work is to propose a method that represents FDG metabolism in human body through the simulation and visualization of 18F distribution process dynamically based on the segmented VHP (Visible Human Project) image dataset. First, the plasma time-activity curve (PTAC) and the tissues time-activity curves (TTAC) are obtained from the previous studies and the literatures. According to the obtained PTAC and TTACs, a set of corresponding values are assigned to the segmented VHP image, Thus a set of dynamic images are derived to show the 18F distribution in the concerned tissues for the predetermined sampling schedule. Finally, the simulated FDG distribution images are visualized in 3D and 2D formats, respectively, incorporated with principal interaction functions. As compared with original PET image, our visualization result presents higher resolution because of the high resolution of VHP image data, and show the distribution process of 18F dynamically. The results of our work can be used in education and related research as well as a tool for the PET operator to design their PET experiment program.
PET Imaging: Basics and New Trends
NASA Astrophysics Data System (ADS)
Dahlbom, Magnus
Positron Emission Tomography or PET is a noninvasive molecular imaging method used both in research to study biology and disease, and clinically as a routine diagnostic imaging tool. In PET imaging, the subject is injected with a tracer labeled with a positron-emitting isotope and is then placed in a scanner to localize the radioactive tracer in the body. The localization of the tracer utilizes the unique decay characteristics of isotopes decaying by positron emission. In the PET scanner, a large number of scintillation detectors use coincidence detection of the annihilation radiation that is emitted as a result of the positron decay. By collecting a large number of these coincidence events, together with tomographic image reconstruction methods, the 3-D distribution of the radioactive tracer in the body can be reconstructed. Depending on the type of tracer used, the distribution will reflect a particular biological process, such as glucose metabolism when fluoro-deoxyglucose is used. PET has evolved from a relatively inefficient single-slice imaging system with relatively poor spatial resolution to an efficient, high-resolution imaging modality which can acquire a whole-body scan in a few minutes. This chapter will describe the basic physics and instrumentation used in PET. The various corrections that are necessary to apply to the acquired data in order to produce quantitative images are also described. Finally, some of the latest trends in instrumentation development are also discussed.
Multi-modality imaging of tumor phenotype and response to therapy
NASA Astrophysics Data System (ADS)
Nyflot, Matthew J.
2011-12-01
Imaging and radiation oncology have historically been closely linked. However, the vast majority of techniques used in the clinic involve anatomical imaging. Biological imaging offers the potential for innovation in the areas of cancer diagnosis and staging, radiotherapy target definition, and treatment response assessment. Some relevant imaging techniques are FDG PET (for imaging cellular metabolism), FLT PET (proliferation), CuATSM PET (hypoxia), and contrast-enhanced CT (vasculature and perfusion). Here, a technique for quantitative spatial correlation of tumor phenotype is presented for FDG PET, FLT PET, and CuATSM PET images. Additionally, multimodality imaging of treatment response with FLT PET, CuATSM, and dynamic contrast-enhanced CT is presented, in a trial of patients receiving an antiangiogenic agent (Avastin) combined with cisplatin and radiotherapy. Results are also presented for translational applications in animal models, including quantitative assessment of proliferative response to cetuximab with FLT PET and quantification of vascular volume with a blood-pool contrast agent (Fenestra). These techniques have clear applications to radiobiological research and optimized treatment strategies, and may eventually be used for personalized therapy for patients.
Silverman, Daniel H S
2004-04-01
The clinical identification and differential diagnosis of dementias is especially challenging in the early stages, but the need for early, accurate diagnosis has become more important, now that several medications for the treatment of mild to moderate Alzheimer's disease (AD) are available. Many neurodegenerative diseases produce significant brain-function alterations detectable with PET or SPECT even when structural images with CT or MRI reveal no specific abnormalities. (18)F-FDG PET images of AD demonstrate focally decreased cerebral metabolism involving especially the posterior cingulate and neocortical association cortices, while largely sparing the basal ganglia, thalamus, cerebellum, and cortex mediating primary sensory and motor functions. Assessment of the precise diagnostic accuracy of PET had until recently been hindered by the paucity of data on diagnoses made using PET and confirmed by definitive histopathologic examination. In the past few years, however, studies comparing neuropathologic examination with PET have established reliable and consistent accuracy for diagnostic evaluations using PET-accuracies substantially exceeding those of comparable studies of the diagnostic value of SPECT or of both modalities assessed side by side, or of clinical evaluations done without nuclear imaging. Similar data are emerging concerning the prognostic value of (18)F-FDG PET. Improvements in the ability of PET to identify very early changes associated with AD and other neurodegenerative dementias are currently outpacing improvements in therapeutic options, but with advances in potential preventive and disease-modifying treatments appearing imminent, early detection and diagnosis will play an increasing role in the management of dementing illness.
NASA Astrophysics Data System (ADS)
Teuho, J.; Johansson, J.; Linden, J.; Saunavaara, V.; Tolvanen, T.; Teräs, M.
2014-01-01
Selection of reconstruction parameters has an effect on the image quantification in PET, with an additional contribution from a scanner-specific attenuation correction method. For achieving comparable results in inter- and intra-center comparisons, any existing quantitative differences should be identified and compensated for. In this study, a comparison between PET, PET/CT and PET/MR is performed by using an anatomical brain phantom, to identify and measure the amount of bias caused due to differences in reconstruction and attenuation correction methods especially in PET/MR. Differences were estimated by using visual, qualitative and quantitative analysis. The qualitative analysis consisted of a line profile analysis for measuring the reproduction of anatomical structures and the contribution of the amount of iterations to image contrast. The quantitative analysis consisted of measurement and comparison of 10 anatomical VOIs, where the HRRT was considered as the reference. All scanners reproduced the main anatomical structures of the phantom adequately, although the image contrast on the PET/MR was inferior when using a default clinical brain protocol. Image contrast was improved by increasing the amount of iterations from 2 to 5 while using 33 subsets. Furthermore, a PET/MR-specific bias was detected, which resulted in underestimation of the activity values in anatomical structures closest to the skull, due to the MR-derived attenuation map that ignores the bone. Thus, further improvements for the PET/MR reconstruction and attenuation correction could be achieved by optimization of RAMLA-specific reconstruction parameters and implementation of bone to the attenuation template.
A new methodological approach for PET implementation in radiotherapy treatment planning.
Bellan, Elena; Ferretti, Alice; Capirci, Carlo; Grassetto, Gaia; Gava, Marcello; Chondrogiannis, Sotirios; Virdis, Graziella; Marzola, Maria Cristina; Massaro, Arianna; Rubello, Domenico; Nibale, Otello
2012-05-01
In this paper, a new methodological approach to using PET information in radiotherapy treatment planning has been discussed. Computed tomography (CT) represents the primary modality to plan personalized radiation treatment, because it provides the basic electron density map for correct dose calculation. If PET scanning is also performed it is typically coregistered with the CT study. This operation can be executed automatically by a hybrid PET/CT scanner or, if the PET and CT imaging sets have been acquired through different equipment, by a dedicated module of the radiotherapy treatment planning system. Both approaches have some disadvantages: in the first case, the bore of a PET/CT system generally used in clinical practice often does not allow the use of certain bulky devices for patient immobilization in radiotherapy, whereas in the second case the result could be affected by limitations in window/level visualization of two different image modalities, and the displayed PET volumes can appear not to be related to the actual uptake into the patient. To overcome these problems, at our centre a specific procedure has been studied and tested in 30 patients, allowing good results of precision in the target contouring to be obtained. The process consists of segmentation of the biological target volume by a dedicated PET/CT console and its export to a dedicated radiotherapy system, where an image registration between the CT images acquired by the PET/CT scanner and a large-bore CT is performed. The planning target volume is contoured only on the large-bore CT and is used for virtual simulation, to individuate permanent skin markers on the patient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, J; Yoon, D; Suh, T
2014-06-01
Purpose: The aim of our proposed system is to confirm the feasibility of extraction of two types of images from one positron emission tomography (PET) module with an insertable collimator for brain tumor treatment during the BNCT. Methods: Data from the PET module, neutron source, and collimator was entered in the Monte Carlo n-particle extended (MCNPX) source code. The coincidence events were first compiled on the PET detector, and then, the events of the prompt gamma ray were collected after neutron emission by using a single photon emission computed tomography (SPECT) collimator on the PET. The obtaining of full widthmore » at half maximum (FWHM) values from the energy spectrum was performed to collect effective events for reconstructed image. In order to evaluate the images easily, five boron regions in a brain phantom were used. The image profiles were extracted from the region of interest (ROI) of a phantom. The image was reconstructed using the ordered subsets expectation maximization (OSEM) reconstruction algorithm. The image profiles and the receiver operating characteristic (ROC) curve were compiled for quantitative analysis from the two kinds of reconstructed image. Results: The prompt gamma ray energy peak of 478 keV appeared in the energy spectrum with a FWHM of 41 keV (6.4%). On the basis of the ROC curve in Region A to Region E, the differences in the area under the curve (AUC) of the PET and SPECT images were found to be 10.2%, 11.7%, 8.2% (center, Region C), 12.6%, and 10.5%, respectively. Conclusion: We attempted to acquire the PET and SPECT images simultaneously using only PET without an additional isotope. Single photon images were acquired using an insertable collimator on a PET detector. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, Information and Communication Technologies (ICT) and Future Planning (MSIP)(Grant No.2009 00420) and the Radiation Technology R and D program (Grant No.2013M2A2A7043498), Republic of Korea.« less
Correlative studies of structural and functional imaging in primary progressive aphasia.
Panegyres, P K; McCarthy, M; Campbell, A; Lenzo, N; Fallon, M; Thompson, J
2008-01-01
To compare and contrast structural and functional imaging in primary progressive aphasia (PPA). A cohort of 8 patients diagnosed with PPA presenting with nonfluency were prospectively evaluated. All patients had structural imaging in the form of MRI and in 1 patient CAT scanning on account of a cardiac pacemaker. All patients had single-photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging. SPECT and PET imaging had 100% correlation. Anatomical imaging was abnormal in only 6 of the 8 patients. Wernicke's area showed greater peak Z score reduction and extent of area affected than Broca's area (McNemar paired test: P = .008 for Z score reduction; P = .0003 for extent). PET scanning revealed significant involvement of the anterior cingulum. Functional imaging in PPA: (a) identified more patients correctly than anatomic imaging highlighting the importance of SPECT and PET in the diagnosis; and (b) demonstrated the heterogeneous involvement of disordered linguistic networks in PPA suggesting its syndromic nature.
Dual tracer imaging of SPECT and PET probes in living mice using a sequential protocol
Chapman, Sarah E; Diener, Justin M; Sasser, Todd A; Correcher, Carlos; González, Antonio J; Avermaete, Tony Van; Leevy, W Matthew
2012-01-01
Over the past 20 years, multimodal imaging strategies have motivated the fusion of Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) scans with an X-ray computed tomography (CT) image to provide anatomical information, as well as a framework with which molecular and functional images may be co-registered. Recently, pre-clinical nuclear imaging technology has evolved to capture multiple SPECT or multiple PET tracers to further enhance the information content gathered within an imaging experiment. However, the use of SPECT and PET probes together, in the same animal, has remained a challenge. Here we describe a straightforward method using an integrated trimodal imaging system and a sequential dosing/acquisition protocol to achieve dual tracer imaging with 99mTc and 18F isotopes, along with anatomical CT, on an individual specimen. Dosing and imaging is completed so that minimal animal manipulations are required, full trimodal fusion is conserved, and tracer crosstalk including down-scatter of the PET tracer in SPECT mode is avoided. This technique will enhance the ability of preclinical researchers to detect multiple disease targets and perform functional, molecular, and anatomical imaging on individual specimens to increase the information content gathered within longitudinal in vivo studies. PMID:23145357
Joint PET-MR respiratory motion models for clinical PET motion correction
NASA Astrophysics Data System (ADS)
Manber, Richard; Thielemans, Kris; Hutton, Brian F.; Wan, Simon; McClelland, Jamie; Barnes, Anna; Arridge, Simon; Ourselin, Sébastien; Atkinson, David
2016-09-01
Patient motion due to respiration can lead to artefacts and blurring in positron emission tomography (PET) images, in addition to quantification errors. The integration of PET with magnetic resonance (MR) imaging in PET-MR scanners provides complementary clinical information, and allows the use of high spatial resolution and high contrast MR images to monitor and correct motion-corrupted PET data. In this paper we build on previous work to form a methodology for respiratory motion correction of PET data, and show it can improve PET image quality whilst having minimal impact on clinical PET-MR protocols. We introduce a joint PET-MR motion model, using only 1 min per PET bed position of simultaneously acquired PET and MR data to provide a respiratory motion correspondence model that captures inter-cycle and intra-cycle breathing variations. In the model setup, 2D multi-slice MR provides the dynamic imaging component, and PET data, via low spatial resolution framing and principal component analysis, provides the model surrogate. We evaluate different motion models (1D and 2D linear, and 1D and 2D polynomial) by computing model-fit and model-prediction errors on dynamic MR images on a data set of 45 patients. Finally we apply the motion model methodology to 5 clinical PET-MR oncology patient datasets. Qualitative PET reconstruction improvements and artefact reduction are assessed with visual analysis, and quantitative improvements are calculated using standardised uptake value (SUVpeak and SUVmax) changes in avid lesions. We demonstrate the capability of a joint PET-MR motion model to predict respiratory motion by showing significantly improved image quality of PET data acquired before the motion model data. The method can be used to incorporate motion into the reconstruction of any length of PET acquisition, with only 1 min of extra scan time, and with no external hardware required.
Nakajo, Kazuya; Tatsumi, Mitsuaki; Inoue, Atsuo; Isohashi, Kayako; Higuchi, Ichiro; Kato, Hiroki; Imaizumi, Masao; Enomoto, Takayuki; Shimosegawa, Eku; Kimura, Tadashi; Hatazawa, Jun
2010-02-01
We compared the diagnostic accuracy of fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) and PET/magnetic resonance imaging (MRI) fusion images for gynecological malignancies. A total of 31 patients with gynecological malignancies were enrolled. FDG-PET images were fused to CT, T1- and T2-weighted images (T1WI, T2WI). PET-MRI fusion was performed semiautomatically. We performed three types of evaluation to demonstrate the usefulness of PET/MRI fusion images in comparison with that of inline PET/CT as follows: depiction of the uterus and the ovarian lesions on CT or MRI mapping images (first evaluation); additional information for lesion localization with PET and mapping images (second evaluation); and the image quality of fusion on interpretation (third evaluation). For the first evaluation, the score for T2WI (4.68 +/- 0.65) was significantly higher than that for CT (3.54 +/- 1.02) or T1WI (3.71 +/- 0.97) (P < 0.01). For the second evaluation, the scores for the localization of FDG accumulation showing that T2WI (2.74 +/- 0.57) provided significantly more additional information for the identification of anatomical sites of FDG accumulation than did CT (2.06 +/- 0.68) or T1WI (2.23 +/- 0.61) (P < 0.01). For the third evaluation, the three-point rating scale for the patient group as a whole demonstrated that PET/T2WI (2.72 +/- 0.54) localized the lesion significantly more convincingly than PET/CT (2.23 +/- 0.50) or PET/T1WI (2.29 +/- 0.53) (P < 0.01). PET/T2WI fusion images are superior for the detection and localization of gynecological malignancies.
Quantitative myocardial blood flow imaging with integrated time-of-flight PET-MR.
Kero, Tanja; Nordström, Jonny; Harms, Hendrik J; Sörensen, Jens; Ahlström, Håkan; Lubberink, Mark
2017-12-01
The use of integrated PET-MR offers new opportunities for comprehensive assessment of cardiac morphology and function. However, little is known on the quantitative accuracy of cardiac PET imaging with integrated time-of-flight PET-MR. The aim of the present work was to validate the GE Signa PET-MR scanner for quantitative cardiac PET perfusion imaging. Eleven patients (nine male; mean age 59 years; range 46-74 years) with known or suspected coronary artery disease underwent 15 O-water PET scans at rest and during adenosine-induced hyperaemia on a GE Discovery ST PET-CT and a GE Signa PET-MR scanner. PET-MR images were reconstructed using settings recommended by the manufacturer, including time-of-flight (TOF). Data were analysed semi-automatically using Cardiac VUer software, resulting in both parametric myocardial blood flow (MBF) images and segment-based MBF values. Correlation and agreement between PET-CT-based and PET-MR-based MBF values for all three coronary artery territories were assessed using regression analysis and intra-class correlation coefficients (ICC). In addition to the cardiac PET-MR reconstruction protocol as recommended by the manufacturer, comparisons were made using a PET-CT resolution-matched reconstruction protocol both without and with TOF to assess the effect of time-of-flight and reconstruction parameters on quantitative MBF values. Stress MBF data from one patient was excluded due to movement during the PET-CT scanning. Mean MBF values at rest and stress were (0.92 ± 0.12) and (2.74 ± 1.37) mL/g/min for PET-CT and (0.90 ± 0.23) and (2.65 ± 1.15) mL/g/min for PET-MR (p = 0.33 and p = 0.74). ICC between PET-CT-based and PET-MR-based regional MBF was 0.98. Image quality was improved with PET-MR as compared to PET-CT. ICC between PET-MR-based regional MBF with and without TOF and using different filter and reconstruction settings was 1.00. PET-MR-based MBF values correlated well with PET-CT-based MBF values and the parametric PET-MR images were excellent. TOF and reconstruction settings had little impact on MBF values.
Kouijzer, Ilse J E; Scheper, Henk; de Rooy, Jacky W J; Bloem, Johan L; Janssen, Marcel J R; van den Hoven, Leon; Hosman, Allard J F; Visser, Leo G; Oyen, Wim J G; Bleeker-Rovers, Chantal P; de Geus-Oei, Lioe-Fee
2018-05-01
The aim of this study was to determine the diagnostic value of 18 F-fluorodeoxyglucose (FDG) positron emission tomography and computed tomography (PET/CT) and magnetic resonance imaging (MRI) in diagnosing vertebral osteomyelitis. From November 2015 until December 2016, 32 patients with suspected vertebral osteomyelitis were prospectively included. All patients underwent both 18 F-FDG-PET/CT and MRI within 48 h. All images were independently reevaluated by two radiologists and two nuclear medicine physicians who were blinded to each others' image interpretation. 18 F-FDG-PET/CT and MRI were compared to the clinical diagnosis according to international guidelines. For 18 F-FDG-PET/CT, sensitivity, specificity, PPV, and NPV in diagnosing vertebral osteomyelitis were 100%, 83.3%, 90.9%, and 100%, respectively. For MRI, sensitivity, specificity, PPV, and NPV were 100%, 91.7%, 95.2%, and 100%, respectively. MRI detected more epidural/spinal abscesses. An important advantage of 18 F-FDG-PET/CT is the detection of metastatic infection (16 patients, 50.0%). 18 F-FDG-PET/CT and MRI are both necessary techniques in diagnosing vertebral osteomyelitis. An important advantage of 18 F-FDG-PET/CT is the visualization of metastatic infection, especially in patients with bacteremia. MRI is more sensitive in detection of small epidural abscesses.
Comparison of 18F-FDG PET/CT and PET/MRI in patients with multiple myeloma
Sachpekidis, Christos; Hillengass, Jens; Goldschmidt, Hartmut; Mosebach, Jennifer; Pan, Leyun; Schlemmer, Heinz-Peter; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia
2015-01-01
PET/MRI represents a promising hybrid imaging modality with several potential clinical applications. Although PET/MRI seems highly attractive in the diagnostic approach of multiple myeloma (MM), its role has not yet been evaluated. The aims of this prospective study are to evaluate the feasibility of 18F-FDG PET/MRI in detection of MM lesions, and to investigate the reproducibility of bone marrow lesions detection and quantitative data of 18F-FDG uptake between the functional (PET) component of PET/CT and PET/MRI in MM patients. The study includes 30 MM patients. All patients initially underwent 18F-FDG PET/CT (60 min p.i.), followed by PET/MRI (120 min p.i.). PET/CT and PET/MRI data were assessed and compared based on qualitative (lesion detection) and quantitative (SUV) evaluation. The hybrid PET/MRI system provided good image quality in all cases without artefacts. PET/MRI identified 65 of the 69 lesions, which were detectable with PET/CT (94.2%). Quantitative PET evaluations showed the following mean values in MM lesions: SUVaverage=5.5 and SUVmax=7.9 for PET/CT; SUVaverage=3.9 and SUVmax=5.8 for PET/MRI. Both SUVaverage and SUVmax were significantly higher on PET/CT than on PET/MRI. Spearman correlation analysis demonstrated a strong correlation between both lesional SUVaverage (r=0.744) and lesional SUVmax (r=0.855) values derived from PET/CT and PET/MRI. Regarding detection of myeloma skeletal lesions, PET/MRI exhibited equivalent performance to PET/CT. In terms of tracer uptake quantitation, a significant correlation between the two techniques was demonstrated, despite the statistically significant differences in lesional SUVs between PET/CT and PET/MRI. PMID:26550538
Berger, Frank; Sam Gambhir, Sanjiv
2001-01-01
A variety of imaging technologies is being investigated as tools for studying gene expression in living subjects. Two technologies that use radiolabeled isotopes are single photon emission computed tomography (SPECT) and positron emission tomography (PET). A relatively high sensitivity, a full quantitative tomographic capability, and the ability to extend small animal imaging assays directly into human applications characterize radionuclide approaches. Various radiolabeled probes (tracers) can be synthesized to target specific molecules present in breast cancer cells. These include antibodies or ligands to target cell surface receptors, substrates for intracellular enzymes, antisense oligodeoxynucleotide probes for targeting mRNA, probes for targeting intracellular receptors, and probes for genes transferred into the cell. We briefly discuss each of these imaging approaches and focus in detail on imaging reporter genes. In a PET reporter gene system for in vivo reporter gene imaging, the protein products of the reporter genes sequester positron emitting reporter probes. PET subsequently measures the PET reporter gene dependent sequestration of the PET reporter probe in living animals. We describe and review reporter gene approaches using the herpes simplex type 1 virus thymidine kinase and the dopamine type 2 receptor genes. Application of the reporter gene approach to animal models for breast cancer is discussed. Prospects for future applications of the transgene imaging technology in human gene therapy are also discussed. Both SPECT and PET provide unique opportunities to study animal models of breast cancer with direct application to human imaging. Continued development of new technology, probes and assays should help in the better understanding of basic breast cancer biology and in the improved management of breast cancer patients. PMID:11250742
Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET)/MRI for Lung Cancer Staging.
Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Yoshikawa, Takeshi; Sugimura, Kazuro
2016-07-01
Tumor, lymph node, and metastasis (TNM) classification of lung cancer is typically performed with the TNM staging system, as recommended by the Union Internationale Contre le Cancer (UICC), the American Joint Committee on Cancer (AJCC), and the International Association for the Study of Lung Cancer (IASLC). Radiologic examinations for TNM staging of lung cancer patients include computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography with 2-[fluorine-18] fluoro-2-deoxy-D-glucose (FDG-PET), and FDG-PET combined with CT (FDG-PET/CT) and are used for pretherapeutic assessments. Recent technical advances in MR systems, application of fast and parallel imaging and/or introduction of new MR techniques, and utilization of contrast media have markedly improved the diagnostic utility of MRI in this setting. In addition, FDG-PET can be combined or fused with MRI (PET/MRI) for clinical practice. This review article will focus on these recent advances in MRI as well as on PET/MRI for lung cancer staging, in addition to a discussion of their potential and limitations for routine clinical practice in comparison with other modalities such as CT, FDG-PET, and PET/CT.
Zukotynski, Katherine A; Vajapeyam, Sridhar; Fahey, Frederic H; Kocak, Mehmet; Brown, Douglas; Ricci, Kelsey I; Onar-Thomas, Arzu; Fouladi, Maryam; Poussaint, Tina Young
2017-08-01
The purpose of this study was to describe baseline 18 F-FDG PET voxel characteristics in pediatric diffuse intrinsic pontine glioma (DIPG) and to correlate these metrics with baseline MRI apparent diffusion coefficient (ADC) histogram metrics, progression-free survival (PFS), and overall survival. Methods: Baseline brain 18 F-FDG PET and MRI scans were obtained in 33 children from Pediatric Brain Tumor Consortium clinical DIPG trials. 18 F-FDG PET images, postgadolinium MR images, and ADC MR images were registered to baseline fluid attenuation inversion recovery MR images. Three-dimensional regions of interest on fluid attenuation inversion recovery MR images and postgadolinium MR images and 18 F-FDG PET and MR ADC histograms were generated. Metrics evaluated included peak number, skewness, and kurtosis. Correlation between PET and MR ADC histogram metrics was evaluated. PET pixel values within the region of interest for each tumor were plotted against MR ADC values. The association of these imaging markers with survival was described. Results: PET histograms were almost always unimodal (94%, vs. 6% bimodal). None of the PET histogram parameters (skewness or kurtosis) had a significant association with PFS, although a higher PET postgadolinium skewness tended toward a less favorable PFS (hazard ratio, 3.48; 95% confidence interval [CI], 0.75-16.28 [ P = 0.11]). There was a significant association between higher MR ADC postgadolinium skewness and shorter PFS (hazard ratio, 2.56; 95% CI, 1.11-5.91 [ P = 0.028]), and there was the suggestion that this also led to shorter overall survival (hazard ratio, 2.18; 95% CI, 0.95-5.04 [ P = 0.067]). Higher MR ADC postgadolinium kurtosis tended toward shorter PFS (hazard ratio, 1.30; 95% CI, 0.98-1.74 [ P = 0.073]). PET and MR ADC pixel values were negatively correlated using the Pearson correlation coefficient. Further, the level of PET and MR ADC correlation was significantly positively associated with PFS; tumors with higher values of ADC-PET correlation had more favorable PFS (hazard ratio, 0.17; 95% CI, 0.03-0.89 [ P = 0.036]), suggesting that a higher level of negative ADC-PET correlation leads to less favorable PFS. A more significant negative correlation may indicate higher-grade elements within the tumor leading to poorer outcomes. Conclusion: 18 F-FDG PET and MR ADC histogram metrics in pediatric DIPG demonstrate different characteristics with often a negative correlation between PET and MR ADC pixel values. A higher negative correlation is associated with a worse PFS, which may indicate higher-grade elements within the tumor. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
A comparative uptake study of multiplexed PET tracers in mice with turpentine-induced inflammation.
Huang, Tingting; Wang, Hongliang; Tang, Ganghua; Liang, Xiang; Nie, Dahong; Yi, Chang; Wu, Kening
2012-11-26
The potential value of multiplexed positron emission tomography (PET) tracers in mice with turpentine-induced inflammation was evaluated and compared with 2-[¹⁸F]fluoro-2-deoxy-D-glucose ([¹⁸F]FDG) for glucose metabolism imaging. These PET tracers included [¹⁸F]fluoromethylcholine ([¹⁸F]FCH) for choline metabolism imaging, (S-[¹¹C]methyl)-D-cysteine ([¹¹C]DMCYS) for amino acid metabolism imaging, [¹¹C]bis(zinc(II)-dipicolylamine) ([¹¹C]DPA-Zn²⁺) for apoptosis imaging, 2-(4-N-[¹¹C]-methylaminophenyl)-6-hydroxybenzothiazole ([¹¹C]PIB) for β amyloid binding imaging, and [¹⁸F]fluoride (¹⁸F⁻) for bone metabolism imaging. In mice with turpentine-induced inflammation mice, the biodistribution of all the tracers mentioned above at 5, 15, 30, 45, and 60 min postinjection was determined. Also, the time-course curves of the tracer uptake ratios for inflammatory thigh muscle (IM) to normal uninflammatory thigh muscle (NM), IM to blood (BL), IM to brain (BR), and IM to liver (LI) were acquired, respectively. Moreover, PET imaging with the tracers within 60 min postinjection on a clinical PET/CT scanner was also conducted. [¹⁸F]FDG and ¹⁸F⁻ showed relatively higher uptake ratios for IM to NM, IM to BL, IM to BR, and IM to LI than [¹⁸F]FCH, [¹¹C]DPA-Zn²⁺, [¹¹C]DMCYS and [¹¹C]PIB, which were highly consistent with the results delineated in PET images. The results demonstrate that ¹⁸F⁻ seems to be a potential PET tracer for inflammation imaging. [¹⁸F]FCH and [¹¹C]DMCYS, with lower accumulation in inflammatory tissue than [¹⁸F]FDG, are not good PET tracers for inflammation imaging. As a promising inflammatory tracer, the chemical structure of [¹¹C]DPA-Zn²⁺ needs to be further optimized.
[PET/CT: protocol aspects and legal controversies].
Gorospe Sarasúa, L; Vicente Bártulos, A; González Gordaliza, C; García Poza, J; Lourido García, D; Jover Díaz, R
2008-01-01
The combination of positron emission tomography (PET) and computed tomography (CT) in a single scanner (PET/CT) allows anatomic and metabolic images to be fused and correlated with a high degree of accuracy; this represents a very important landmark in the history of medicine and especially in the area of diagnostic imaging. Nevertheless, the implementation, startup, and operation of a PET/CT scanner presents particularly interesting challenges, because it involves the integration of two well-established and consolidated techniques (CT and PET, which provide complementary information) that have traditionally been carried out in the context of two different specialties (radiology and nuclear medicine). The rapid diffusion of this new integrated technology raises a series of questions related to the optimal protocols for image acquisition, the supervision of the examinations, image interpretation, and reporting, as well as questions related to the legal competence and responsibility of the specialists involved in a PET/CT study. The objective of this article is to approach these aspects from a constructive perspective and to stimulate the dialog between the specialties of radiology and nuclear medicine, with the aim of maximizing the diagnostic potential of PET/CT and thus of providing better care for patients.
Is choline PET useful for identifying intraprostatic tumour lesions? A literature review.
Chan, Joachim; Syndikus, Isabel; Mahmood, Shelan; Bell, Lynn; Vinjamuri, Sobhan
2015-09-01
More than 80% of patients with intermediate-risk or high-risk localized prostate cancer are cured with radiation doses of 74-78 Gy, but high doses increase the risk for late bowel and bladder toxicity among long-term survivors. Dose painting, defined as dose escalation to areas in the prostate containing the tumour, rather than to the whole gland, minimizes dose to normal tissues and hence toxicity. It requires accurate identification of the location and size of these lesions, for which functional MRI is the current gold standard. Many studies have assessed the use of choline PET in staging newly diagnosed patients. This review will discuss important imaging variables affecting the accuracy of choline PET scans, how choline PET contributes to tumour identification and is used in radiotherapy planning and how PET can improve the patient pathway involving prostate radiotherapy. In summary, the available literature shows that the accuracy of choline PET improves with higher tracer doses and delayed imaging (although the optimal uptake time is unclear), and tumour identification by MRI is improved by the addition of PET imaging. We propose future research with prolonged choline uptake time and multiphase imaging, which may further improve accuracy.
Li, Qiao-Xin; Villemagne, Victor L; Doecke, James D; Rembach, Alan; Sarros, Shannon; Varghese, Shiji; McGlade, Amelia; Laughton, Katrina M; Pertile, Kelly K; Fowler, Christopher J; Rumble, Rebecca L; Trounson, Brett O; Taddei, Kevin; Rainey-Smith, Stephanie R; Laws, Simon M; Robertson, Joanne S; Evered, Lisbeth A; Silbert, Brendan; Ellis, Kathryn A; Rowe, Christopher C; Macaulay, S Lance; Darby, David; Martins, Ralph N; Ames, David; Masters, Colin L; Collins, Steven
2015-01-01
The cerebrospinal fluid (CSF) amyloid-β (Aβ)(1-42), total-tau (T-tau), and phosphorylated-tau (P-tau181P) profile has been established as a valuable biomarker for Alzheimer's disease (AD). The current study aimed to determine CSF biomarker cut-points using positron emission tomography (PET) Aβ imaging screened subjects from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging, as well as correlate CSF analyte cut-points across a range of PET Aβ amyloid ligands. Aβ pathology was determined by PET imaging, utilizing ¹¹C-Pittsburgh Compound B, ¹⁸F-flutemetamol, or ¹⁸F-florbetapir, in 157 AIBL participants who also underwent CSF collection. Using an INNOTEST assay, cut-points were established (Aβ(1-42) >544 ng/L, T-tau <407 ng/L, and P-tau181P <78 ng/L) employing a rank based method to define a "positive" CSF in the sub-cohort of amyloid-PET negative healthy participants (n = 97), and compared with the presence of PET demonstrated AD pathology. CSF Aβ(1-42) was the strongest individual biomarker, detecting cognitively impaired PET positive mild cognitive impairment (MCI)/AD with 85% sensitivity and 91% specificity. The ratio of P-tau181P or T-tau to Aβ(1-42) provided greater accuracy, predicting MCI/AD with Aβ pathology with ≥92% sensitivity and specificity. Cross-validated accuracy, using all three biomarkers or the ratio of P-tau or T-tau to Aβ(1-42) to predict MCI/AD, reached ≥92% sensitivity and specificity. CSF Aβ(1-42) levels and analyte combination ratios demonstrated very high correlation with PET Aβ imaging. Our study offers additional support for CSF biomarkers in the early and accurate detection of AD pathology, including enrichment of patient cohorts for treatment trials even at the pre-symptomatic stage.
TU-F-12A-05: Sensitivity of Textural Features to 3D Vs. 4D FDG-PET/CT Imaging in NSCLC Patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, F; Nyflot, M; Bowen, S
2014-06-15
Purpose: Neighborhood Gray-level difference matrices (NGLDM) based texture parameters extracted from conventional (3D) 18F-FDG PET scans in patients with NSCLC have been previously shown to associate with response to chemoradiation and poorer patient outcome. However, the change in these parameters when utilizing respiratory-correlated (4D) FDG-PET scans has not yet been characterized for NSCLC. The Objectives: of this study was to assess the extent to which NGLDM-based texture parameters on 4D PET images vary with reference to values derived from 3D scans in NSCLC. Methods: Eight patients with newly diagnosed NSCLC treated with concomitant chemoradiotherapy were included in this study. 4Dmore » PET scans were reconstructed with OSEM-IR in 5 respiratory phase-binned images and corresponding CT data of each phase were employed for attenuation correction. NGLDM-based texture features, consisting of coarseness, contrast, busyness, complexity and strength, were evaluated for gross tumor volumes defined on 3D/4D PET scans by radiation oncologists. Variation of the obtained texture parameters over the respiratory cycle were examined with respect to values extracted from 3D scans. Results: Differences between texture parameters derived from 4D scans at different respiratory phases and those extracted from 3D scans ranged from −30% to 13% for coarseness, −12% to 40% for contrast, −5% to 50% for busyness, −7% to 38% for complexity, and −43% to 20% for strength. Furthermore, no evident correlations were observed between respiratory phase and 4D scan texture parameters. Conclusion: Results of the current study showed that NGLDM-based texture parameters varied considerably based on choice of 3D PET and 4D PET reconstruction of NSCLC patient images, indicating that standardized image acquisition and analysis protocols need to be established for clinical studies, especially multicenter clinical trials, intending to validate prognostic values of texture features for NSCLC.« less
Hamazawa, Yoshimasa; Koyama, Koichi; Okamura, Terue; Wada, Yasuhiro; Wakasa, Tomoko; Okuma, Tomohisa; Watanabe, Yasuyoshi; Inoue, Yuichi
2007-01-01
We investigated the optimum time for the differentiation tumor from inflammation using dynamic FDG-microPET scans obtained by a MicroPET P4 scanner in animal models. Forty-six rabbits with 92 inflammatory lesions that were induced 2, 5, 7, 14, 30 and 60 days after 0.2 ml (Group 1) or 1.0 ml (Group 2) of turpentine oil injection were used as inflammatory models. Five rabbits with 10 VX2 tumors were used as the tumor model. Helical CT scans were performed before the PET studies. In the PET study, after 4 hours fasting, and following transmission scans and dynamic emission data acquisitions were performed until 2 hours after intravenous FDG injection. Images were reconstructed every 10 minutes using a filtered-back projection method. PET images were analyzed visually referring to CT images. For quantitative analysis, the inflammation-to-muscle (I/M) ratio and tumor-to-muscle (T/M) ratio were calculated after regions of interest were set in tumors and muscles referring to CT images and the time-I/M ratio and time-T/M ratio curves (TRCs) were prepared to show the change over time in these ratios. The histological appearance of both inflammatory lesions and tumor lesions were examined and compared with the CT and FDG-microPET images. In visual and quantitative analysis, All the I/M ratios and the T/M ratios increased over time except that Day 60 of Group 1 showed an almost flat curve. The TRC of the T/M ratio showed a linear increasing curve over time, while that of the I/M ratios showed a parabolic increasing over time at the most. FDG uptake in the inflammatory lesions reflected the histological findings. For differentiating tumors from inflammatory lesions with the early image acquired at 40 min for dual-time imaging, the delayed image must be acquired 30 min after the early image, while imaging at 90 min or later after intravenous FDG injection was necessary in single-time-point imaging. Our results suggest the possibility of shortening the overall testing time in clinical practice by adopting dual-time-point imaging rather than single-time-point imaging.
NASA Astrophysics Data System (ADS)
Tseytlin, Mark; Stolin, Alexander V.; Guggilapu, Priyaankadevi; Bobko, Andrey A.; Khramtsov, Valery V.; Tseytlin, Oxana; Raylman, Raymond R.
2018-05-01
The advent of hybrid scanners, combining complementary modalities, has revolutionized the application of advanced imaging technology to clinical practice and biomedical research. In this project, we investigated the melding of two complementary, functional imaging methods: positron emission tomography (PET) and electron paramagnetic resonance imaging (EPRI). PET radiotracers can provide important information about cellular parameters, such as glucose metabolism. While EPR probes can provide assessment of tissue microenvironment, measuring oxygenation and pH, for example. Therefore, a combined PET/EPRI scanner promises to provide new insights not attainable with current imagers by simultaneous acquisition of multiple components of tissue microenvironments. To explore the simultaneous acquisition of PET and EPR images, a prototype system was created by combining two existing scanners. Specifically, a silicon photomultiplier (SiPM)-based PET scanner ring designed as a portable scanner was combined with an EPRI scanner designed for the imaging of small animals. The ability of the system to obtain simultaneous images was assessed with a small phantom consisting of four cylinders containing both a PET tracer and EPR spin probe. The resulting images demonstrated the ability to obtain contemporaneous PET and EPR images without cross-modality interference. Given the promising results from this initial investigation, the next step in this project is the construction of the next generation pre-clinical PET/EPRI scanner for multi-parametric assessment of physiologically-important parameters of tissue microenvironments.
A device to measure the effects of strong magnetic fields on the image resolution of PET scanners
NASA Astrophysics Data System (ADS)
Burdette, D.; Albani, D.; Chesi, E.; Clinthorne, N. H.; Cochran, E.; Honscheid, K.; Huh, S. S.; Kagan, H.; Knopp, M.; Lacasta, C.; Mikuz, M.; Schmalbrock, P.; Studen, A.; Weilhammer, P.
2009-10-01
Very high resolution images can be achieved in small animal PET systems utilizing solid state silicon pad detectors. As these systems approach sub-millimeter resolutions, the range of the positron is becoming the dominant contribution to image blur. The size of the positron range effect depends on the initial positron energy and hence the radioactive tracer used. For higher energy positron emitters, such as Ga68 and Tc94m, which are gaining importance in small animal studies, the width of the annihilation point distribution dominates the spatial resolution. This positron range effect can be reduced by embedding the field of view of the PET scanner in a strong magnetic field. In order to confirm this effect experimentally, we developed a high resolution PET instrument based on silicon pad detectors that can operate in a 7 T magnetic field. In this paper, we describe the instrument and present initial results of a study of the effects of magnetic fields up to 7 T on PET image resolution for Na22 and Ga68 point sources.
Technical Note: Deep learning based MRAC using rapid ultra-short echo time imaging.
Jang, Hyungseok; Liu, Fang; Zhao, Gengyan; Bradshaw, Tyler; McMillan, Alan B
2018-05-15
In this study, we explore the feasibility of a novel framework for MR-based attenuation correction for PET/MR imaging based on deep learning via convolutional neural networks, which enables fully automated and robust estimation of a pseudo CT image based on ultrashort echo time (UTE), fat, and water images obtained by a rapid MR acquisition. MR images for MRAC are acquired using dual echo ramped hybrid encoding (dRHE), where both UTE and out-of-phase echo images are obtained within a short single acquisition (35 sec). Tissue labeling of air, soft tissue, and bone in the UTE image is accomplished via a deep learning network that was pre-trained with T1-weighted MR images. UTE images are used as input to the network, which was trained using labels derived from co-registered CT images. The tissue labels estimated by deep learning are refined by a conditional random field based correction. The soft tissue labels are further separated into fat and water components using the two-point Dixon method. The estimated bone, air, fat, and water images are then assigned appropriate Hounsfield units, resulting in a pseudo CT image for PET attenuation correction. To evaluate the proposed MRAC method, PET/MR imaging of the head was performed on 8 human subjects, where Dice similarity coefficients of the estimated tissue labels and relative PET errors were evaluated through comparison to a registered CT image. Dice coefficients for air (within the head), soft tissue, and bone labels were 0.76±0.03, 0.96±0.006, and 0.88±0.01. In PET quantification, the proposed MRAC method produced relative PET errors less than 1% within most brain regions. The proposed MRAC method utilizing deep learning with transfer learning and an efficient dRHE acquisition enables reliable PET quantification with accurate and rapid pseudo CT generation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Cherry, Simon R; Jones, Terry; Karp, Joel S; Qi, Jinyi; Moses, William W; Badawi, Ramsey D
2018-01-01
PET is widely considered the most sensitive technique available for noninvasively studying physiology, metabolism, and molecular pathways in the living human being. However, the utility of PET, being a photon-deficient modality, remains constrained by factors including low signal-to-noise ratio, long imaging times, and concerns about radiation dose. Two developments offer the potential to dramatically increase the effective sensitivity of PET. First by increasing the geometric coverage to encompass the entire body, sensitivity can be increased by a factor of about 40 for total-body imaging or a factor of about 4-5 for imaging a single organ such as the brain or heart. The world's first total-body PET/CT scanner is currently under construction to demonstrate how this step change in sensitivity affects the way PET is used both in clinical research and in patient care. Second, there is the future prospect of significant improvements in timing resolution that could lead to further effective sensitivity gains. When combined with total-body PET, this could produce overall sensitivity gains of more than 2 orders of magnitude compared with existing state-of-the-art systems. In this article, we discuss the benefits of increasing body coverage, describe our efforts to develop a first-generation total-body PET/CT scanner, discuss selected application areas for total-body PET, and project the impact of further improvements in time-of-flight PET. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
Towards improved hardware component attenuation correction in PET/MR hybrid imaging
NASA Astrophysics Data System (ADS)
Paulus, D. H.; Tellmann, L.; Quick, H. H.
2013-11-01
In positron emission tomography/computed tomography (PET/CT) hybrid imaging attenuation correction (AC) of the patient tissue and patient table is performed by converting the CT-based Hounsfield units (HU) to linear attenuation coefficients (LAC) of PET. When applied to the new field of hardware component AC in PET/magnetic resonance (MR) hybrid imaging, this conversion method may result in local overcorrection of PET activity values. The aim of this study thus was to optimize the conversion parameters for CT-based AC of hardware components in PET/MR. Systematic evaluation and optimization of the HU to LAC conversion parameters has been performed for the hardware component attenuation map (µ-map) of a flexible radiofrequency (RF) coil used in PET/MR imaging. Furthermore, spatial misregistration of this RF coil to its µ-map was simulated by shifting the µ-map in different directions and the effect on PET quantification was evaluated. Measurements of a PET NEMA standard emission phantom were performed on an integrated hybrid PET/MR system. Various CT parameters were used to calculate different µ-maps for the flexible RF coil and to evaluate the impact on the PET activity concentration. A 511 keV transmission scan of the local RF coil was used as standard of reference to adapt the slope of the conversion from HUs to LACs at 511 keV. The average underestimation of the PET activity concentration due to the non-attenuation corrected RF coil in place was calculated to be 5.0% in the overall phantom. When considering attenuation only in the upper volume of the phantom, the average difference to the reference scan without RF coil is 11.0%. When the PET/CT conversion is applied, an average overestimation of 3.1% (without extended CT scale) and 4.2% (with extended CT scale) is observed in the top volume of the NEMA phantom. Using the adapted conversion resulting from this study, the deviation in the top volume of the phantom is reduced to -0.5% and shows the lowest standard deviation inside the phantom in comparison to all other conversions. Simulation of a µ-map misregistration shows acceptable results for shifts below 5 mm for the flexible surface RF coil. The adapted conversion from HUs to LAC at 511 keV within this study can improve hardware component AC in PET/MR hybrid imaging as shown for a flexible RF surface coil. Furthermore, these results have a direct impact on the improvement of the hardware component AC of the examined flexible RF coil in conjunction with position determination.
Performance evaluation of neuro-PET using silicon photomultipliers
NASA Astrophysics Data System (ADS)
Jung, Jiwoong; Choi, Yong; Jung, Jin Ho; Kim, Sangsu; Im, Ki Chun
2016-05-01
Recently, we have developed the second prototype Silicon photomultiplier (SiPM) based positron emission tomography (PET) scanner for human brain imaging. The PET system was comprised of detector block which consisted of 4×4 SiPMs and 4×4 Lutetium Yttrium Orthosilicate arrays, charge signal transmission method, high density position decoder circuit and FPGA-embedded ADC boards. The purpose of this study was to evaluate the performance of the newly developed neuro-PET system. The energy resolution, timing resolution, spatial resolution, sensitivity, stability of the photo-peak position and count rate performance were measured. Tomographic image of 3D Hoffman brain phantom was also acquired to evaluate imaging capability of the neuro-PET. The average energy and timing resolutions measured for 511 keV gamma rays were 17±0.1% and 3±0.3 ns, respectively. Spatial resolution and sensitivity at the center of field of view (FOV) were 3.1 mm and 0.8%, respectively. The average scatter fraction was 0.4 with an energy window of 350-650 keV. The maximum true count rate and maximum NECR were measured as 43.3 kcps and 6.5 kcps at an activity concentration of 16.7 kBq/ml and 5.5 kBq/ml, respectively. Long-term stability results show that there was no significant change in the photo-peak position, energy resolution and count rate for 60 days. Phantom imaging studies were performed and they demonstrated the feasibility for high quality brain imaging. The performance tests and imaging results indicate that the newly developed PET is useful for brain imaging studies, if the axial FOV is extended to improve the system sensitivity.
Positron emission tomography with additional γ-ray detectors for multiple-tracer imaging.
Fukuchi, Tomonori; Okauchi, Takashi; Shigeta, Mika; Yamamoto, Seiichi; Watanabe, Yasuyoshi; Enomoto, Shuichi
2017-06-01
Positron emission tomography (PET) is a useful imaging modality that quantifies the physiological distributions of radiolabeled tracers in vivo in humans and animals. However, this technique is unsuitable for multiple-tracer imaging because the annihilation photons used for PET imaging have a fixed energy regardless of the selection of the radionuclide tracer. This study developed a multi-isotope PET (MI-PET) system and evaluated its imaging performance. Our MI-PET system is composed of a PET system and additional γ-ray detectors. The PET system consists of pixelized gadolinium orthosilicate (GSO) scintillation detectors and has a ring geometry that is 95 mm in diameter with an axial field of view of 37.5 mm. The additional detectors are eight bismuth germanium oxide (BGO) scintillation detectors, each of which is 50 × 50 × 30 mm 3 , arranged into two rings mounted on each side of the PET ring with a 92-mm-inner diameter. This system can distinguish between different tracers using the additional γ-ray detectors to observe prompt γ-rays, which are emitted after positron emission and have an energy intrinsic to each radionuclide. Our system can simultaneously acquire double- (two annihilation photons) and triple- (two annihilation photons and a prompt γ-ray) coincidence events. The system's efficiency for detecting prompt de-excitation γ-rays was measured using a positron-γ emitter, 22 Na. Dual-radionuclide ( 18 F and 22 Na) imaging of a rod phantom and a mouse was performed to demonstrate the performance of the developed system. Our system's basic performance was evaluated by reconstructing two images, one containing both tracers and the other containing just the second tracer, from list-mode data sets that were categorized by the presence or absence of the prompt γ-ray. The maximum detection efficiency for 1275 keV γ-rays emitted from 22 Na was approximately 7% at the scanner's center, and the minimum detection efficiency was 5.1% at the edge of the field of view. Dual-radionuclide imaging of the point sources and rod phantom revealed that our system maintained PET's intrinsic spatial resolution and quantitative nature for the second tracer. We also successfully acquired simultaneous double- and triple-coincidence events from a mouse containing 18 F-fluoro-deoxyglucose and 22 Na dissolved in water. The dual-tracer distributions in the mouse obtained by our MI-PET were reasonable from the viewpoints of physiology and pharmacokinetics. This study demonstrates the feasibility of multiple-tracer imaging using PET with additional γ-ray detectors. This method holds promise for enabling the reconstruction of quantitative multiple-tracer images and could be very useful for analyzing multiple-molecular dynamics. © 2017 American Association of Physicists in Medicine.
Simulation study of a high performance brain PET system with dodecahedral geometry.
Tao, Weijie; Chen, Gaoyu; Weng, Fenghua; Zan, Yunlong; Zhao, Zhixiang; Peng, Qiyu; Xu, Jianfeng; Huang, Qiu
2018-05-25
In brain imaging, the spherical PET system achieves the highest sensitivity when the solid angle is concerned. However it is not practical. In this work we designed an alternative sphere-like scanner, the dodecahedral scanner, which has a high sensitivity in imaging and a high feasibility to manufacture. We simulated this system and compared the performance with a few other dedicated brain PET systems. Monte Carlo simulations were conducted to generate data of the dedicated brain PET system with the dodecahedral geometry (11 regular pentagon detectors). The data were then reconstructed using the in-house developed software with the fully three-dimensional maximum-likelihood expectation maximization (3D-MLEM) algorithm. Results show that the proposed system has a high sensitivity distribution for the whole field of view (FOV). With a depth-of-interaction (DOI) resolution around 6.67 mm, the proposed system achieves the spatial resolution of 1.98 mm. Our simulation study also shows that the proposed system improves the image contrast and reduces noise compared with a few other dedicated brain PET systems. Finally, simulations with the Hoffman phantom show the potential application of the proposed system in clinical applications. In conclusion, the proposed dodecahedral PET system is potential for widespread applications in high-sensitivity, high-resolution PET imaging, to lower the injected dose. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Shidahara, Miho; Thomas, Benjamin A; Okamura, Nobuyuki; Ibaraki, Masanobu; Matsubara, Keisuke; Oyama, Senri; Ishikawa, Yoichi; Watanuki, Shoichi; Iwata, Ren; Furumoto, Shozo; Tashiro, Manabu; Yanai, Kazuhiko; Gonda, Kohsuke; Watabe, Hiroshi
2017-08-01
To suppress partial volume effect (PVE) in brain PET, there have been many algorithms proposed. However, each methodology has different property due to its assumption and algorithms. Our aim of this study was to investigate the difference among partial volume correction (PVC) method for tau and amyloid PET study. We investigated two of the most commonly used PVC methods, Müller-Gärtner (MG) and geometric transfer matrix (GTM) and also other three methods for clinical tau and amyloid PET imaging. One healthy control (HC) and one Alzheimer's disease (AD) PET studies of both [ 18 F]THK5351 and [ 11 C]PIB were performed using a Eminence STARGATE scanner (Shimadzu Inc., Kyoto, Japan). All PET images were corrected for PVE by MG, GTM, Labbé (LABBE), Regional voxel-based (RBV), and Iterative Yang (IY) methods, with segmented or parcellated anatomical information processed by FreeSurfer, derived from individual MR images. PVC results of 5 algorithms were compared with the uncorrected data. In regions of high uptake of [ 18 F]THK5351 and [ 11 C]PIB, different PVCs demonstrated different SUVRs. The degree of difference between PVE uncorrected and corrected depends on not only PVC algorithm but also type of tracer and subject condition. Presented PVC methods are straight-forward to implement but the corrected images require careful interpretation as different methods result in different levels of recovery.
Bai, Xia; Wang, Xuemei; Zhuang, Hongming
2018-03-01
It is common to notice increased FDG activity in the muscles of the forearms or hands on PET/CT images. The purpose of this study was to determine relationship between the prevalence of increased FDG activity in the forearms or hands and using mobile devices prior to the FDG PET/CT study. A total of 443 young patients with ages between 5 and 19 years who underwent FDG PET/CT scan were included in this retrospective analysis. All patients had FDG PET/CT with their arms within the field of views. The images were reviewed for elevated activity in the muscles of the distal upper extremities (DUEs), which include forearms and hands. The preimaging questionnaire/interview records regarding using mobile devices prior to FDG PET/CT were also reviewed and compared with the imaging findings. Most patients (72.0% [319/443]) used mobile devices more than 60 minutes in the period of 24 hours prior to the FDG PET/CT study. Elevated uptake in the muscles in the DUEs was observed in 38.6% (123/319) of these patients. In contrast, among 124 patients who did not use the mobile devices or used the mobile device minimally prior to the study, only 6.5% (8/124) of them had elevated FDG activity in the DUEs. The difference persisted following stratification analysis for sex, age, and serum glucose level in our patient population. Increased FDG uptake in the muscles of the DUEs in young patients is commonly seen in those who used mobile devices prior to PET/CT study. Recommendation should be considered to reduce using mobile devices prior to FDG PET/CT study in young patient population.
Preliminary studies of a simultaneous PET/MRI scanner based on the RatCAP small animal tomograph
NASA Astrophysics Data System (ADS)
Woody, C.; Schlyer, D.; Vaska, P.; Tomasi, D.; Solis-Najera, S.; Rooney, W.; Pratte, J.-F.; Junnarkar, S.; Stoll, S.; Master, Z.; Purschke, M.; Park, S.-J.; Southekal, S.; Kriplani, A.; Krishnamoorthy, S.; Maramraju, S.; O'Connor, P.; Radeka, V.
2007-02-01
We are developing a scanner that will allow simultaneous acquisition of high resolution anatomical data using magnetic resonance imaging (MRI) and quantitative physiological data using positron emission tomography (PET). The approach is based on the technology used for the RatCAP conscious small animal PET tomograph which utilizes block detectors consisting of pixelated arrays of LSO crystals read out with matching arrays of avalanche photodiodes and a custom-designed ASIC. The version of this detector used for simultaneous PET/MRI imaging will be constructed out of all nonmagnetic materials and will be situated inside the MRI field. We have demonstrated that the PET detector and its electronics can be operated inside the MRI, and have obtained MRI images with various detector components located inside the MRI field. The MRI images show minimal distortion in this configuration even where some components still contain traces of certain magnetic materials. We plan to improve on the image quality in the future using completely non-magnetic components and by tuning the MRI pulse sequences. The combined result will be a highly compact, low mass PET scanner that can operate inside an MRI magnet without distorting the MRI image, and can be retrofitted into existing MRI instruments.
NASA Astrophysics Data System (ADS)
Bahn, Y. K.; Park, H. H.; Lee, C. H.; Kim, H. S.; Lyu, K. Y.; Dong, K. R.; Chung, W. K.; Cho, J. H.
2014-04-01
In this study, phantom was used to evaluate attenuation correction computed tomography (CT) dose and image in case of pediatric positron emission tomography (PET)/CT scan. Three PET/CT scanners were used along with acryl phantom in the size for infant and ion-chamber dosimeter. The CT image acquisition conditions were changed from 10 to 20, 40, 80, 100 and 160 mA and from 80 to 100, 120 and 140 kVp, which aimed at evaluating penetrate dose and computed tomography dose indexvolume (CTDIvol) value. And NEMA PET Phantom™ was used to obtain PET image under the same CT conditions in order to evaluate each attenuation-corrected PET image based on standard uptake value (SUV) value and signal-to-noise ratio (SNR). In general, the penetrate dose was reduced by around 92% under the minimum CT conditions (80 kVp and 10 mA) with the decrease in CTDIvol value by around 88%, compared with the pediatric abdomen CT conditions (100 kVp and 100 mA). The PET image with its attenuation corrected according to each CT condition showed no change in SUV value and no influence on the SNR. In conclusion, if the minimum dose CT that is properly applied to body of pediatric patient is corrected for attenuation to ensure that the effective dose is reduced by around 90% or more compared with that for adult patient, this will be useful to reduce radiation exposure level.
Deller, Timothy W; Khalighi, Mohammad Mehdi; Jansen, Floris P; Glover, Gary H
2018-01-01
The recent introduction of simultaneous whole-body PET/MR scanners has enabled new research taking advantage of the complementary information obtainable with PET and MRI. One such application is kinetic modeling, which requires high levels of PET quantitative stability. To accomplish the required PET stability levels, the PET subsystem must be sufficiently isolated from the effects of MR activity. Performance measurements have previously been published, demonstrating sufficient PET stability in the presence of MR pulsing for typical clinical use; however, PET stability during radiofrequency (RF)-intensive and gradient-intensive sequences has not previously been evaluated for a clinical whole-body scanner. In this work, PET stability of the GE SIGNA PET/MR was examined during simultaneous scanning of aggressive MR pulse sequences. Methods: PET performance tests were acquired with MR idle and during simultaneous MR pulsing. Recent system improvements mitigating RF interference and gain variation were used. A fast recovery fast spin echo MR sequence was selected for high RF power, and an echo planar imaging sequence was selected for its high heat-inducing gradients. Measurements were performed to determine PET stability under varying MR conditions using the following metrics: sensitivity, scatter fraction, contrast recovery, uniformity, count rate performance, and image quantitation. A final PET quantitative stability assessment for simultaneous PET scanning during functional MRI studies was performed with a spiral in-and-out gradient echo sequence. Results: Quantitation stability of a 68 Ge flood phantom was demonstrated within 0.34%. Normalized sensitivity was stable during simultaneous scanning within 0.3%. Scatter fraction measured with a 68 Ge line source in the scatter phantom was stable within the range of 40.4%-40.6%. Contrast recovery and uniformity were comparable for PET images acquired simultaneously with multiple MR conditions. Peak noise equivalent count rate was 224 kcps at an effective activity concentration of 18.6 kBq/mL, and the count rate curves and scatter fraction curve were consistent for the alternating MR pulsing states. A final test demonstrated quantitative stability during a spiral functional MRI sequence. Conclusion: PET stability metrics demonstrated that PET quantitation was not affected during simultaneous aggressive MRI. This stability enables demanding applications such as kinetic modeling. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
Impact of time-of-flight PET on quantification errors in MR imaging-based attenuation correction.
Mehranian, Abolfazl; Zaidi, Habib
2015-04-01
Time-of-flight (TOF) PET/MR imaging is an emerging imaging technology with great capabilities offered by TOF to improve image quality and lesion detectability. We assessed, for the first time, the impact of TOF image reconstruction on PET quantification errors induced by MR imaging-based attenuation correction (MRAC) using simulation and clinical PET/CT studies. Standard 4-class attenuation maps were derived by segmentation of CT images of 27 patients undergoing PET/CT examinations into background air, lung, soft-tissue, and fat tissue classes, followed by the assignment of predefined attenuation coefficients to each class. For each patient, 4 PET images were reconstructed: non-TOF and TOF both corrected for attenuation using reference CT-based attenuation correction and the resulting 4-class MRAC maps. The relative errors between non-TOF and TOF MRAC reconstructions were compared with their reference CT-based attenuation correction reconstructions. The bias was locally and globally evaluated using volumes of interest (VOIs) defined on lesions and normal tissues and CT-derived tissue classes containing all voxels in a given tissue, respectively. The impact of TOF on reducing the errors induced by metal-susceptibility and respiratory-phase mismatch artifacts was also evaluated using clinical and simulation studies. Our results show that TOF PET can remarkably reduce attenuation correction artifacts and quantification errors in the lungs and bone tissues. Using classwise analysis, it was found that the non-TOF MRAC method results in an error of -3.4% ± 11.5% in the lungs and -21.8% ± 2.9% in bones, whereas its TOF counterpart reduced the errors to -2.9% ± 7.1% and -15.3% ± 2.3%, respectively. The VOI-based analysis revealed that the non-TOF and TOF methods resulted in an average overestimation of 7.5% and 3.9% in or near lung lesions (n = 23) and underestimation of less than 5% for soft tissue and in or near bone lesions (n = 91). Simulation results showed that as TOF resolution improves, artifacts and quantification errors are substantially reduced. TOF PET substantially reduces artifacts and improves significantly the quantitative accuracy of standard MRAC methods. Therefore, MRAC should be less of a concern on future TOF PET/MR scanners with improved timing resolution. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, L; Tan, S; Lu, W
Purpose: PET images are usually blurred due to the finite spatial resolution, while CT images suffer from low contrast. Segment a tumor from either a single PET or CT image is thus challenging. To make full use of the complementary information between PET and CT, we propose a novel variational method for simultaneous PET image restoration and PET/CT images co-segmentation. Methods: The proposed model was constructed based on the Γ-convergence approximation of Mumford-Shah (MS) segmentation model for PET/CT co-segmentation. Moreover, a PET de-blur process was integrated into the MS model to improve the segmentation accuracy. An interaction edge constraint termmore » over the two modalities were specially designed to share the complementary information. The energy functional was iteratively optimized using an alternate minimization (AM) algorithm. The performance of the proposed method was validated on ten lung cancer cases and five esophageal cancer cases. The ground truth were manually delineated by an experienced radiation oncologist using the complementary visual features of PET and CT. The segmentation accuracy was evaluated by Dice similarity index (DSI) and volume error (VE). Results: The proposed method achieved an expected restoration result for PET image and satisfactory segmentation results for both PET and CT images. For lung cancer dataset, the average DSI (0.72) increased by 0.17 and 0.40 than single PET and CT segmentation. For esophageal cancer dataset, the average DSI (0.85) increased by 0.07 and 0.43 than single PET and CT segmentation. Conclusion: The proposed method took full advantage of the complementary information from PET and CT images. This work was supported in part by the National Cancer Institute Grants R01CA172638. Shan Tan and Laquan Li were supported in part by the National Natural Science Foundation of China, under Grant Nos. 60971112 and 61375018.« less
Cerenkov luminescence imaging of medical isotopes
Ruggiero, Alessandro; Holland, Jason P.; Lewis, Jason S.; Grimm, Jan
2011-01-01
The development of novel multimodality imaging agents and techniques represents the current frontier of research in the field of medical imaging science. However, the combination of nuclear tomography with optical techniques has yet to be established. Here, we report the use of the inherent optical emissions from the decay of radiopharmaceuticals for Cerenkov luminescence imaging (CLI) of tumors in vivo and correlate the results with those obtained from concordant immuno-PET studies. Methods In vitro phantom studies were used to validate the visible light emission observed from a range of radionuclides including the positron emitters 18F, 64Cu, 89Zr, and 124I; β-emitter 131I; and α-particle emitter 225Ac for potential use in CLI. The novel radiolabeled monoclonal antibody 89Zr-desferrioxamine B-[DFO-J591 for immuno-PET of prostate-specific membrane antigen (PSMA) expression was used to coregister and correlate the CLI signal observed with the immuno-PET images and biodistribution studies. Results Phantom studies confirmed that Cerenkov radiation can be observed from a range of positron-,β-, and α-emitting radionuclides using standard optical imaging devices. The change in light emission intensity versus time was concordant with radionuclide decay and was also found to correlate linearly with both the activity concentration and the measured PET signal (percentage injected dose per gram). In vivo studies conducted in male severe combined immune deficient mice bearing PSMA-positive, subcutaneous LNCaP tumors demonstrated that tumor-specific uptake of 89Zr-DFO-J591 could be visualized by both immuno-PET and CLI. Optical and immuno-PET signal intensities were found to increase over time from 24 to 96 h, and biodistribution studies were found to correlate well with both imaging modalities. Conclusion These studies represent the first, to our knowledge, quantitative assessment of CLI for measuring radiotracer uptake in vivo. Many radionuclides common to both nuclear tomographic imaging and radiotherapy have the potential to be used in CLI. The value of CLI lies in its ability to image radionuclides that do not emit either positrons or γ-rays and are, thus, unsuitable for use with current nuclear imaging modalities. Optical imaging of Cerenkov radiation emission shows excellent promise as a potential new imaging modality for the rapid, high-throughput screening of radiopharmaceuticals PMID:20554722
Guillot, Martin; Chartrand, Gabriel; Chav, Ramnada; Rousseau, Jacques; Beaudoin, Jean-François; Martel-Pelletier, Johanne; Pelletier, Jean-Pierre; Lecomte, Roger; de Guise, Jacques A; Troncy, Eric
2015-06-01
The objective of this pilot study was to investigate central nervous system (CNS) changes related to osteoarthritis (OA)-associated chronic pain in cats using [(18)F]-fluorodeoxyglucose ((18)FDG) positron emission tomography (PET) imaging. The brains of five normal, healthy (non-OA) cats and seven cats with pain associated with naturally occurring OA were imaged using (18)FDG-PET during a standardized mild anesthesia protocol. The PET images were co-registered over a magnetic resonance image of a cat brain segmented into several regions of interest. Brain metabolism was assessed in these regions using standardized uptake values. The brain metabolism in the secondary somatosensory cortex, thalamus and periaqueductal gray matter was increased significantly (P ≤ 0.005) in OA cats compared with non-OA cats. This study indicates that (18)FDG-PET brain imaging in cats is feasible to investigate CNS changes related to chronic pain. The results also suggest that OA is associated with sustained nociceptive inputs and increased activity of the descending modulatory pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kang, Choong Mo; An, Gwang Il; Choe, Yearn Seong
2015-10-01
Human serum albumin (HSA), which has 58 Lys residues, one Cys residue, and indocyanine green (ICG) adsorption sites, can be used as a multifunctional platform for the development of hybrid imaging probes. In this study, we prepared 64Cu-labeled mannose-conjugated HSA with and without ICG ([64Cu]1-ICG and [64Cu]1, respectively) and compared hybrid PET/near-infrared fluorescence (NIRF) imaging with positron emission tomography (PET)/Cerenkov luminescence (CL) imaging of lymph nodes (LNs). 1,4,7,10-Tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA)/mannose-conjugated HSA (1) was synthesized by conjugating mannose molecules to Lys residues and a DOTA molecule to a Cys residue of HSA. Compound 1 was then labeled with Cu ([64Cu]1), and the resulting [64Cu]1 was adsorbed with ICG ([64Cu]1-ICG). PET/NIRF or PET/CL imaging and subsequent biodistribution studies were performed in ICR mice after injection of the probes into the foot pads. The numbers of mannose and DOTA molecules conjugated to HSA were 7.17 ± 0.49 and 0.95 ± 0.18, respectively. The site-specific conjugation of one DOTA molecule to HSA was sufficient for 64Cu-labeling with high efficiency (96.0 ± 1.1%). PET/NIRF and PET/CL imaging and subsequent biodistribution studies demonstrated that the probes were avidly taken up by the popliteal LNs (PO), with a slightly higher uptake ratio of the PO to the lumbar LNs by [64Cu]1. In-vivo studies suggest that [64Cu]1 has more specific and selective binding to mannose receptors in the PO than [64Cu]1-ICG.
Salloum, Darin; Carney, Brandon; Brand, Christian; Kossatz, Susanne; Sadique, Ahmad; Lewis, Jason S.; Weber, Wolfgang A.; Wendel, Hans-Guido; Reiner, Thomas
2017-01-01
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma in adults. DLBCL exhibits highly aggressive and systemic progression into multiple tissues in patients, particularly in lymph nodes. Whole-body 18F-fluodeoxyglucose positron emission tomography ([18F]FDG-PET) imaging has an essential role in diagnosing DLBCL in the clinic; however, [18F]FDG-PET often faces difficulty in differentiating malignant tissues from certain nonmalignant tissues with high glucose uptake. We have developed a PET imaging strategy for DLBCL that targets poly[ADP ribose] polymerase 1 (PARP1), the expression of which has been found to be much higher in DLBCL than in healthy tissues. In a syngeneic DLBCL mouse model, this PARP1-targeted PET imaging approach allowed us to discriminate between malignant and inflamed lymph nodes, whereas [18F]FDG-PET failed to do so. Our PARP1-targeted PET imaging approach may be an attractive addition to the current PET imaging strategy to differentiate inflammation from malignancy in DLBCL. PMID:28827325
Immuno-SPET/CT and immuno-PET/CT: a step ahead to translational imaging.
Pecking, Alain P; Bellet, Dominique; Alberini, Jean Louis
2012-10-01
Malignant tumours have the remarkable property to express cell surface antigens. Pressman was first reporting that radiolabeled antibodies were capable of organ localization. It was a promising challenge but the expected success and the development of this imaging method was limited by a poor imaging resolution despite a rather good specificity of the antibodies used. Identification of key cell surface markers is opening a new era as potential molecular imaging biomarkers in oncologic applications. Antibodies production has been promoted by the development of engineered fragments with preserved immunological properties and pharmacokinetics optimized for molecular imaging. A good compromise has to be obtained between the biological properties of the antibody and the physical half-life of the radionuclide. Several positron emission tomography (PET) radionuclides such as iodine-124, copper-64, yttrium-86 or zirconium-89 have been the focus of recent immuno-PET studies with interesting informative images in preclinical and clinical studies. Thanks to the development of more sensitive new detectors and specific software, molecular imaging methods, particularly PET imaging, allow nowadays the detection of lesions smaller than 5 mm in human. Immuno-PET can potentially be used for tumour detection and identification at diagnosis, staging and restaging, for treatment selection and monitoring, and during follow-up. Moreover the availability of matched imaging or therapeutic radionuclide pairs, such as (124)I/(131)I, (64)Cu/(67)Cu and (86)Y/(90)Y, make easier the quantification of tissue uptake and dosimetry calculation for radioimmunotherapy.
Hayasaka, Daisuke; Nishi, Kodai; Fuchigami, Takeshi; Shiogama, Kazuya; Onouchi, Takanori; Shimada, Satoshi; Tsutsumi, Yutaka; Morita, Kouichi
2016-01-05
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging disease that causes fever, enteritis, thrombocytopenia, and leucopenia and can be fatal in up to 30% of cases. However, the mechanism of severe disease is not fully understood. Molecular imaging approaches, such as positron-emission tomography (PET), are functional in vivo imaging techniques that provide real-time dynamics of disease progression, assessments of pharmacokinetics, and diagnoses for disease progression. Molecular imaging also potentially provides useful approaches to explore the pathogenesis of viral infections. Thus, the purpose of this study was to image the pathological features of SFTSV infection in vivo by PET imaging. In a mouse model, we showed that 18F-FDG accumulations clearly identified the intestinal tract site as a pathological site. We also demonstrated that 18F-FDG PET imaging can assess disease progression and response to antiserum therapy within the same individual. This is the first report demonstrating a molecular imaging strategy for SFTSV infection. Our results provide potentially useful information for preclinical studies such as the elucidation of the mechanism of SFTSV infection in vivo and the assessment of drugs for SFTS treatment.
Influence of Iterative Reconstruction Algorithms on PET Image Resolution
NASA Astrophysics Data System (ADS)
Karpetas, G. E.; Michail, C. M.; Fountos, G. P.; Valais, I. G.; Nikolopoulos, D.; Kandarakis, I. S.; Panayiotakis, G. S.
2015-09-01
The aim of the present study was to assess image quality of PET scanners through a thin layer chromatography (TLC) plane source. The source was simulated using a previously validated Monte Carlo model. The model was developed by using the GATE MC package and reconstructed images obtained with the STIR software for tomographic image reconstruction. The simulated PET scanner was the GE DiscoveryST. A plane source consisted of a TLC plate, was simulated by a layer of silica gel on aluminum (Al) foil substrates, immersed in 18F-FDG bath solution (1MBq). Image quality was assessed in terms of the modulation transfer function (MTF). MTF curves were estimated from transverse reconstructed images of the plane source. Images were reconstructed by the maximum likelihood estimation (MLE)-OSMAPOSL, the ordered subsets separable paraboloidal surrogate (OSSPS), the median root prior (MRP) and OSMAPOSL with quadratic prior, algorithms. OSMAPOSL reconstruction was assessed by using fixed subsets and various iterations, as well as by using various beta (hyper) parameter values. MTF values were found to increase with increasing iterations. MTF also improves by using lower beta values. The simulated PET evaluation method, based on the TLC plane source, can be useful in the resolution assessment of PET scanners.
Harms, Hendrik Johannes; Stubkjær Hansson, Nils Henrik; Tolbod, Lars Poulsen; Kim, Won Yong; Jakobsen, Steen; Bouchelouche, Kirsten; Wiggers, Henrik; Frøkiaer, Jørgen; Sörensen, Jens
2016-09-01
Dynamic cardiac PET is used to quantify molecular processes in vivo. However, measurements of left ventricular (LV) mass and volume require electrocardiogram-gated PET data. The aim of this study was to explore the feasibility of measuring LV geometry using nongated dynamic cardiac PET. Thirty-five patients with aortic-valve stenosis and 10 healthy controls underwent a 27-min (11)C-acetate PET/CT scan and cardiac MRI (CMR). The controls were scanned twice to assess repeatability. Parametric images of uptake rate K1 and the blood pool were generated from nongated dynamic data. Using software-based structure recognition, the LV wall was automatically segmented from K1 images to derive functional assessments of LV mass (mLV) and wall thickness. End-systolic and end-diastolic volumes were calculated using blood pool images and applied to obtain stroke volume and LV ejection fraction (LVEF). PET measurements were compared with CMR. High, linear correlations were found for LV mass (r = 0.95), end-systolic volume (r = 0.93), and end-diastolic volume (r = 0.90), and slightly lower correlations were found for stroke volume (r = 0.74), LVEF (r = 0.81), and thickness (r = 0.78). Bland-Altman analyses showed significant differences for mLV and thickness only and an overestimation for LVEF at lower values. Intra- and interobserver correlations were greater than 0.95 for all PET measurements. PET repeatability accuracy in the controls was comparable to CMR. LV mass and volume are accurately and automatically generated from dynamic (11)C-acetate PET without electrocardiogram gating. This method can be incorporated in a standard routine without any additional workload and can, in theory, be extended to other PET tracers. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
A 31-Channel MR Brain Array Coil Compatible with Positron Emission Tomography
Sander, Christin Y.; Keil, Boris; Chonde, Daniel B.; Rosen, Bruce R.; Catana, Ciprian; Wald, Lawrence L.
2014-01-01
Purpose Simultaneous acquisition of MR and PET images requires the placement of the MR detection coil inside the PET detector ring where it absorbs and scatters photons. This constraint is the principal barrier to achieving optimum sensitivity on each modality. Here, we present a 31-channel PET-compatible brain array coil with reduced attenuation but improved MR sensitivity. Methods A series of component tests were performed to identify tradeoffs between PET and MR performance. Aspects studied include the remote positioning of preamplifiers, coax size, coil trace size/material, and plastic housing. We then maximized PET performance at minimal cost to MR sensitivity. The coil was evaluated for MR performance (SNR, g-factor) and PET attenuation. Results The coil design showed an improvement in attenuation by 190% (average) compared to conventional 32-channel arrays, and no loss in MR SNR. Moreover, the 31-channel coil displayed an SNR improvement of 230% (cortical ROI) compared to a PET-optimized 8-channel array with similar attenuation properties. Implementing attenuation correction of the 31-channel array successfully removed PET artifacts, which were comparable to those of the 8-channel array. Conclusion The design of the 31-channel PET-compatible coil enables higher sensitivity for PET/MR imaging, paving the way for novel applications in this hybrid-imaging domain. PMID:25046699
Toumpanakis, Christos; Kim, Michelle K; Rinke, Anja; Bergestuen, Deidi S; Thirlwell, Christina; Khan, Mohid S; Salazar, Ramon; Oberg, Kjell
2014-01-01
Molecular imaging modalities exploit aspects of neuroendocrine tumors (NET) pathophysiology for both diagnostic imaging and therapeutic purposes. The characteristic metabolic pathways of NET determine which tracers are useful for their visualization. In this review, we summarize the diagnostic value of all available molecular imaging studies, present data about their use in daily practice in NET centers globally, and finally make recommendations about the appropriate use of those modalities in specific clinical scenarios. Somatostatin receptor scintigraphy (SRS) continues to have a central role in the diagnostic workup of patients with NET, as it is also widely available. However, and despite the lack of prospective randomized studies, many NET experts predict that Gallium-68 ((68)Ga)-DOTA positron emission tomography (PET) techniques may replace SRS in the future, not only because of their technical advantages, but also because they are superior in patients with small-volume disease, in patients with skeletal metastases, and in those with occult primary tumors. Carbon-11 ((11)C)-5-hydroxy-L-tryptophan (5-HTP) PET and (18)F-dihydroxyphenylalanine ((18)F-DOPA) PET are new molecular imaging techniques of limited availability, and based on retrospective data, their sensitivities seem to be inferior to that of (68)Ga-DOTA PET. Glucagon-like-peptide-1 (GLP-1) receptor imaging seems promising for localization of the primary in benign insulinomas, but is currently available only in a few centers. Fluorine-18 ((18)F)-fluorodeoxyglucose ((18)F-FDG) PET was initially thought to be of limited value in NET, due to their usually slow-growing nature. However, according to subsequent data, (18)F-FDG PET is particularly helpful for visualizing the more aggressive NET, such as poorly differentiated neuroendocrine carcinomas, and well-differentiated tumors with Ki67 values >10%. According to limited data, (18)F-FDG-avid tumor lesions, even in slow-growing NET, may indicate a more aggressive disease course. When a secondary malignancy has already been established or is strongly suspected, combining molecular imaging techniques (e.g. (18)F-FDG PET and (68)Ga-DOTA PET) takes advantage of the diverse avidities of different tumor types to differentiate lesions of different origins. All the above-mentioned molecular imaging studies should always be reviewed and interpreted in a multidisciplinary (tumor board) meeting in combination with the conventional cross-sectional imaging, as the latter remains the imaging of choice for the evaluation of treatment response and disease follow-up. © 2014 S. Karger AG, Basel
Maskery, Mark P; Hill, Jonathan; Cain, John R; Emsley, Hedley C A
2017-01-01
Paraneoplastic neurological syndrome (PNS) describes a spectrum of rare, heterogeneous neurological conditions associated with an underlying malignancy. Diagnosis of PNS is inherently difficult, with frequent misdiagnosis and delay. The literature suggests an underlying immune-mediated pathophysiology, and patients are usually tested for the presence of onconeural antibodies. With direct tumor therapy being the most effective method of stabilizing patients, there is a strong emphasis on detecting underlying tumors. The sensitivity of conventional CT imaging is often inadequate in such patients. While FDG-PET imaging has already been shown to be effective at detecting these tumors, FDG-PET/CT, combining both structural and functional imaging in a single study, is a more recent technique. To study the utility of FDG-PET/CT, we conducted a systematic literature review and a retrospective study. We identified 41 patients who underwent imaging for clinically suspected PNS at the regional PET-CT and neurosciences center based at the Royal Preston Hospital between 2007 and 2014 and compared the results to conventional investigations. Five patients had FDG-PET/CT tracer avidity suspicious of malignant disease, and four of these were subsequently diagnosed with cancer. Sensitivity and specificity were calculated to be 100 and 97.3%, respectively, with positive predictive value 80% and negative predictive value 100%. This compares to a sensitivity and specificity of 50 and 100%, respectively, for CT and 50 and 89%, respectively, for onconeural antibodies. These findings are in line with previous studies and support the diagnostic accuracy of FDG-PET/CT for the detection of underlying malignancy.
Diagnostic Value of 68Ga PSMA-11 PET/CT Imaging of Brain Tumors-Preliminary Analysis.
Sasikumar, Arun; Joy, Ajith; Pillai, M R A; Nanabala, Raviteja; Anees K, Muhammed; Jayaprakash, P G; Madhavan, Jayaprakash; Nair, Suresh
2017-01-01
To evaluate the feasibility of using Ga PSMA-11 PET/CT for imaging brain lesions and its comparison with F-FDG. Ten patients with brain lesions were included in the study. Five patients were treated cases of glioblastoma with suspected recurrence. F-FDG and Ga PSMA-11 brain scans were done for these patients. Five patients were sent for assessing the nature (primary lesion/metastasis) of space occupying lesion in brain. They underwent whole body F-FDG PET/CT scan and a primary site elsewhere in the body was ruled out. Subsequently they underwent Ga PSMA-11 brain PET/CT imaging. Target to background ratios (TBR) for the brain lesions were calculated using contralateral cerebellar uptake as background. In five treated cases of glioblastoma with suspected recurrence the findings of Ga PSMA-11 PET/CT showed good correlation with that of F-FDG PET/CT scan. Compared to the F-FDG, Ga PSMA-11 PET/CT showed better visualization of the recurrent lesion (presence/absence) owing to its significantly high TBR. Among the five cases evaluated for lesion characterization glioma and atypical meningioma patients showed higher SUVmax in the lesion with Ga PSMA-11 than with F-FDG and converse in cases of lymphoma. TBR was better with Ga PSMA PET/CT in all cases. Ga PSMA-11 PET/CT brain imaging is a potentially useful imaging tool in the evaluation of brain lesions. Absence of physiological uptake of Ga PSMA-11 in the normal brain parenchyma results in high TBR values and consequently better visualization of metabolically active disease in brain.
Challenges in the development of dopamine D2- and D3-selective radiotracers for PET imaging studies.
Mach, Robert H; Luedtke, Robert R
2018-03-01
The dopamine D2-like receptors (ie, D2/3 receptors) have been the most extensively studied CNS receptor with Positron Emission Tomography (PET). The 3 different radiotracers that have been used in these studies are [ 11 C]raclopride, [ 18 F]fallypride, and [ 11 C]PHNO. Because these radiotracers have a high affinity for both dopamine D2 and D3 receptors, the density of dopamine receptors in the CNS is reported as the D2/3 binding potential, which reflects a measure of the density of both receptor subtypes. Although the development of D2- and D3-selective PET radiotracers has been an active area of research for many years, this by and large presents an unmet need in the area of translational PET imaging studies. This article discusses some of the challenges that have inhibited progress in this area of research and the current status of the development of subtype selective radiotracers for imaging D3 and D2 dopamine receptors with PET. Copyright © 2017 John Wiley & Sons, Ltd.
Lee, Young Sub; Kim, Jin Su; Kim, Kyeong Min; Kang, Joo Hyun; Lim, Sang Moo; Kim, Hee-Joung
2014-05-01
The Siemens Biograph TruePoint TrueV (B-TPTV) positron emission tomography (PET) scanner performs 3D PET reconstruction using a system matrix with point spread function (PSF) modeling (called the True X reconstruction). PET resolution was dramatically improved with the True X method. In this study, we assessed the spatial resolution and image quality on a B-TPTV PET scanner. In addition, we assessed the feasibility of animal imaging with a B-TPTV PET and compared it with a microPET R4 scanner. Spatial resolution was measured at center and at 8 cm offset from the center in transverse plane with warm background activity. True X, ordered subset expectation maximization (OSEM) without PSF modeling, and filtered back-projection (FBP) reconstruction methods were used. Percent contrast (% contrast) and percent background variability (% BV) were assessed according to NEMA NU2-2007. The recovery coefficient (RC), non-uniformity, spill-over ratio (SOR), and PET imaging of the Micro Deluxe Phantom were assessed to compare image quality of B-TPTV PET with that of the microPET R4. When True X reconstruction was used, spatial resolution was <3.65 mm with warm background activity. % contrast and % BV with True X reconstruction were higher than those with the OSEM reconstruction algorithm without PSF modeling. In addition, the RC with True X reconstruction was higher than that with the FBP method and the OSEM without PSF modeling method on the microPET R4. The non-uniformity with True X reconstruction was higher than that with FBP and OSEM without PSF modeling on microPET R4. SOR with True X reconstruction was better than that with FBP or OSEM without PSF modeling on the microPET R4. This study assessed the performance of the True X reconstruction. Spatial resolution with True X reconstruction was improved by 45 % and its % contrast was significantly improved compared to those with the conventional OSEM without PSF modeling reconstruction algorithm. The noise level was higher than that with the other reconstruction algorithm. Therefore, True X reconstruction should be used with caution when quantifying PET data.
Ruhlmann, Marcus; Jentzen, Walter; Ruhlmann, Verena; Pettinato, Cinzia; Rossi, Gloria; Binse, Ina; Bockisch, Andreas; Rosenbaum-Krumme, Sandra
2016-09-01
The aim of this retrospective study was to assess the level of agreement between PET and scintigraphy using diagnostic amounts of (124)I and therapeutic amounts of (131)I, respectively, in detecting iodine-positive metastases in patients with differentiated thyroid carcinoma. The study included patients who underwent PET /: CT 24 and 120 h after administration of approximately 25 MBq of (124)I and subsequently underwent imaging 5-10 d after administration of 1-10 GBq of (131)I. For each patient, the intratherapeutic (131)I imaging comprised a whole-body scintigraphy scan and a SPECT/CT scan of the neck to distinguish between metastatic and thyroid remnant tissues. Iodine uptake was rated as a metastatic focus if located outside the thyroid bed. Lesion- and patient-based analyses were performed. The study included 137 patients with 227 metastases iodine-positive on both functional imaging modalities. In the lesion-based analysis, (124)I PET and (131)I imaging detected 98% (223/227) and 99% (225/227) of the iodine-positive metastases, respectively; the level of agreement between (124)I PET and (131)I imaging was 97% (221/227). Four metastases (3 lymph node and 1 bone) in 4 patients were (124)I-negative but (131)I-positive, and 2 lymph node metastases in 2 patients were (131)I-negative but (124)I-positive. In the patient-based analysis, 61 of the 137 patients presented with iodine-positive metastases. (124)I PET and (131)I imaging detected at least one iodine-positive metastasis in 97% (59/61) and 98% (60/61) of the patients, respectively. The level of agreement was 95% (58/61). Both imaging modalities concordantly identified 76 of 137 patients without pathologic iodine uptake. Because of the high level of agreement, pretherapeutic (124)I PET/CT is an adequate methodology in the detection of iodine-positive metastases and can be used as a reliable tool for staging of thyroid cancer patients and individualized treatment planning. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Santos, Jonathan; Chaudhari, Abhijit J; Joshi, Anand A; Ferrero, Andrea; Yang, Kai; Boone, John M; Badawi, Ramsey D
2014-09-01
Dedicated breast CT and PET/CT scanners provide detailed 3D anatomical and functional imaging data sets and are currently being investigated for applications in breast cancer management such as diagnosis, monitoring response to therapy and radiation therapy planning. Our objective was to evaluate the performance of the diffeomorphic demons (DD) non-rigid image registration method to spatially align 3D serial (pre- and post-contrast) dedicated breast computed tomography (CT), and longitudinally-acquired dedicated 3D breast CT and positron emission tomography (PET)/CT images. The algorithmic parameters of the DD method were optimized for the alignment of dedicated breast CT images using training data and fixed. The performance of the method for image alignment was quantitatively evaluated using three separate data sets; (1) serial breast CT pre- and post-contrast images of 20 women, (2) breast CT images of 20 women acquired before and after repositioning the subject on the scanner, and (3) dedicated breast PET/CT images of 7 women undergoing neo-adjuvant chemotherapy acquired pre-treatment and after 1 cycle of therapy. The DD registration method outperformed no registration (p < 0.001) and conventional affine registration (p ≤ 0.002) for serial and longitudinal breast CT and PET/CT image alignment. In spite of the large size of the imaging data, the computational cost of the DD method was found to be reasonable (3-5 min). Co-registration of dedicated breast CT and PET/CT images can be performed rapidly and reliably using the DD method. This is the first study evaluating the DD registration method for the alignment of dedicated breast CT and PET/CT images. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
(18)F-Fluorodeoxyglucose PET/MR Imaging in Head and Neck Cancer.
Platzek, Ivan
2016-10-01
(18)F-fluorodeoxyglucose (FDG) PET/MR imaging does not offer significant additional information in initial staging of squamous cell carcinoma of the head and neck when compared with standalone MR imaging. In patients with suspected tumor recurrence, FDG PET/MR imaging has higher sensitivity than MR imaging, although its accuracy is equivalent to the accuracy of FDG PET/CT. Copyright © 2016 Elsevier Inc. All rights reserved.
Imaging Alzheimer's disease pathophysiology with PET
Schilling, Lucas Porcello; Zimmer, Eduardo R.; Shin, Monica; Leuzy, Antoine; Pascoal, Tharick A.; Benedet, Andréa L.; Borelli, Wyllians Vendramini; Palmini, André; Gauthier, Serge; Rosa-Neto, Pedro
2016-01-01
ABSTRACT Alzheimer's disease (AD) has been reconceptualised as a dynamic pathophysiological process characterized by preclinical, mild cognitive impairment (MCI), and dementia stages. Positron emission tomography (PET) associated with various molecular imaging agents reveals numerous aspects of dementia pathophysiology, such as brain amyloidosis, tau accumulation, neuroreceptor changes, metabolism abnormalities and neuroinflammation in dementia patients. In the context of a growing shift toward presymptomatic early diagnosis and disease-modifying interventions, PET molecular imaging agents provide an unprecedented means of quantifying the AD pathophysiological process, monitoring disease progression, ascertaining whether therapies engage their respective brain molecular targets, as well as quantifying pharmacological responses. In the present study, we highlight the most important contributions of PET in describing brain molecular abnormalities in AD. PMID:29213438
Practical guide for implementing hybrid PET/MR clinical service: lessons learned from our experience
Parikh, Nainesh; Friedman, Kent P.; Shah, Shetal N.; Chandarana, Hersh
2015-01-01
Positron emission tomography (PET) and magnetic resonance imaging, until recently, have been performed on separate PET and MR systems with varying temporal delay between the two acquisitions. The interpretation of these two separately acquired studies requires cognitive fusion by radiologists/nuclear medicine physicians or dedicated and challenging post-processing. Recent advances in hardware and software with introduction of hybrid PET/MR systems have made it possible to acquire the PET and MR images simultaneously or near simultaneously. This review article serves as a road-map for clinical implementation of hybrid PET/MR systems and briefly discusses hardware systems, the personnel needs, safety and quality issues, and reimbursement topics based on experience at NYU Langone Medical Center and Cleveland Clinic. PMID:25985966
Morphology supporting function: attenuation correction for SPECT/CT, PET/CT, and PET/MR imaging
Lee, Tzu C.; Alessio, Adam M.; Miyaoka, Robert M.; Kinahan, Paul E.
2017-01-01
Both SPECT, and in particular PET, are unique in medical imaging for their high sensitivity and direct link to a physical quantity, i.e. radiotracer concentration. This gives PET and SPECT imaging unique capabilities for accurately monitoring disease activity for the purposes of clinical management or therapy development. However, to achieve a direct quantitative connection between the underlying radiotracer concentration and the reconstructed image values several confounding physical effects have to be estimated, notably photon attenuation and scatter. With the advent of dual-modality SPECT/CT, PET/CT, and PET/MR scanners, the complementary CT or MR image data can enable these corrections, although there are unique challenges for each combination. This review covers the basic physics underlying photon attenuation and scatter and summarizes technical considerations for multimodal imaging with regard to PET and SPECT quantification and methods to address the challenges for each multimodal combination. PMID:26576737
Takano, Koji; Kinoshita, Manabu; Arita, Hideyuki; Okita, Yoshiko; Chiba, Yasuyoshi; Kagawa, Naoki; Watanabe, Yoshiyuki; Shimosegawa, Eku; Hatazawa, Jun; Hashimoto, Naoya; Fujimoto, Yasunori; Kishima, Haruhiko
2018-05-01
A number of studies have revealed the usefulness of multimodal imaging in gliomas. Although the results have been heavily affected by the method used for region of interest (ROI) design, the most discriminatory method for setting the ROI remains unclear. The aim of the present study was to determine the most suitable ROI design for 18 F-fluorodeoxyglucose (FDG) and 11 C-methionine (MET) positron emission tomography (PET), apparent diffusion coefficient (ADC), and fractional anisotropy (FA) obtained by diffusion tensor imaging (DTI) from the viewpoint of grades of non-enhancing gliomas. A total of 31 consecutive patients with newly diagnosed, histologically confirmed magnetic resonance (MR) non-enhancing gliomas who underwent FDG-PET, MET-PET and DTI were retrospectively investigated. Quantitative measurements were performed using four different ROIs; hotspot/tumor center and whole tumor, constructed in either two-dimensional (2D) or three-dimensional (3D). Histopathological grading of the tumor was considered as empirical truth and the quantitative measurements obtained from each ROI was correlated with the grade of the tumor. The most discriminating ROI for non-enhancing glioma grading was different according to the different imaging modalities. 2D-hotspot/center ROI was most discriminating for FDG-PET (P=0.087), ADC map (P=0.0083), and FA map (P=0.25), whereas 3D-whole tumor ROI was best for MET-PET (P=0.0050). In the majority of scenarios, 2D-ROIs performed better than 3D-ROIs. Results from the image analysis using FDG-PET, MET-PET, ADC and FA may be affected by ROI design and the most discriminating ROI for non-enhancing glioma grading was different according to the imaging modality.
Chang, Guoping; Chang, Tingting; Pan, Tinsu; Clark, John W; Mawlawi, Osama R
2010-12-01
Respiratory motion artifacts and partial volume effects (PVEs) are two degrading factors that affect the accuracy of image quantification in PET/CT imaging. In this article, the authors propose a joint motion and PVE correction approach (JMPC) to improve PET quantification by simultaneously correcting for respiratory motion artifacts and PVE in patients with lung/thoracic cancer. The objective of this article is to describe this approach and evaluate its performance using phantom and patient studies. The proposed joint correction approach incorporates a model of motion blurring, PVE, and object size/shape. A motion blurring kernel (MBK) is then estimated from the deconvolution of the joint model, while the activity concentration (AC) of the tumor is estimated from the normalization of the derived MBK. To evaluate the performance of this approach, two phantom studies and eight patient studies were performed. In the phantom studies, two motion waveforms-a linear sinusoidal and a circular motion-were used to control the motion of a sphere, while in the patient studies, all participants were instructed to breathe regularly. For the phantom studies, the resultant MBK was compared to the true MBK by measuring a correlation coefficient between the two kernels. The measured sphere AC derived from the proposed method was compared to the true AC as well as the ACs in images exhibiting PVE only and images exhibiting both PVE and motion blurring. For the patient studies, the resultant MBK was compared to the motion extent derived from a 4D-CT study, while the measured tumor AC was compared to the AC in images exhibiting both PVE and motion blurring. For the phantom studies, the estimated MBK approximated the true MBK with an average correlation coefficient of 0.91. The tumor ACs following the joint correction technique were similar to the true AC with an average difference of 2%. Furthermore, the tumor ACs on the PVE only images and images with both motion blur and PVE effects were, on average, 75% and 47.5% (10%) of the true AC, respectively, for the linear (circular) motion phantom study. For the patient studies, the maximum and mean AC/SUV on the PET images following the joint correction are, on average, increased by 125.9% and 371.6%, respectively, when compared to the PET images with both PVE and motion. The motion extents measured from the derived MBK and 4D-CT exhibited an average difference of 1.9 mm. The proposed joint correction approach can improve the accuracy of PET quantification by simultaneously compensating for the respiratory motion artifacts and PVE in lung/thoracic PET/CT imaging.
Experimental evaluation of the resolution improvement provided by a silicon PET probe.
Brzeziński, K; Oliver, J F; Gillam, J; Rafecas, M; Studen, A; Grkovski, M; Kagan, H; Smith, S; Llosá, G; Lacasta, C; Clinthorne, N H
2016-09-01
A high-resolution PET system, which incorporates a silicon detector probe into a conventional PET scanner, has been proposed to obtain increased image quality in a limited region of interest. Detailed simulation studies have previously shown that the additional probe information improves the spatial resolution of the reconstructed image and increases lesion detectability, with no cost to other image quality measures. The current study expands on the previous work by using a laboratory prototype of the silicon PET-probe system to examine the resolution improvement in an experimental setting. Two different versions of the probe prototype were assessed, both consisting of a back-to-back pair of 1-mm thick silicon pad detectors, one arranged in 32 × 16 arrays of 1.4 mm × 1.4 mm pixels and the other in 40 × 26 arrays of 1.0 mm × 1.0 mm pixels. Each detector was read out by a set of VATAGP7 ASICs and a custom-designed data acquisition board which allowed trigger and data interfacing with the PET scanner, itself consisting of BGO block detectors segmented into 8 × 6 arrays of 6 mm × 12 mm × 30 mm crystals. Limited-angle probe data was acquired from a group of Na-22 point-like sources in order to observe the maximum resolution achievable using the probe system. Data from a Derenzo-like resolution phantom was acquired, then scaled to obtain similar statistical quality as that of previous simulation studies. In this case, images were reconstructed using measurements of the PET ring alone and with the inclusion of the probe data. Images of the Na-22 source demonstrated a resolution of 1.5 mm FWHM in the probe data, the PET ring resolution being approximately 6 mm. Profiles taken through the image of the Derenzo-like phantom showed a clear increase in spatial resolution. Improvements in peak-to-valley ratios of 50% and 38%, in the 4.8 mm and 4.0 mm phantom features respectively, were observed, while previously unresolvable 3.2 mm features were brought to light by the addition of the probe. These results support the possibility of improving the image resolution of a clinical PET scanner using the silicon PET-probe.
Early Recognition of Chronic Traumatic Encephalopathy through FDDNP PET Imaging
2014-10-01
Encephalopathy through FDDNP PET Imaging PRINCIPAL INVESTIGATOR: Charles Bernick, MD, MPH...Traumatic Encephalopathy through FDDNP PET Imaging 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-13-1-0486 5c. PROGRAM ELEMENT NUMBER 6... Encephalopathy . This project will examine whether FDDNP PET imaging correlates with, and/or can predict, decline in cognitive function in those exposed to
Evaluation of image registration in PET/CT of the liver and recommendations for optimized imaging.
Vogel, Wouter V; van Dalen, Jorn A; Wiering, Bas; Huisman, Henkjan; Corstens, Frans H M; Ruers, Theo J M; Oyen, Wim J G
2007-06-01
Multimodality PET/CT of the liver can be performed with an integrated (hybrid) PET/CT scanner or with software fusion of dedicated PET and CT. Accurate anatomic correlation and good image quality of both modalities are important prerequisites, regardless of the applied method. Registration accuracy is influenced by breathing motion differences on PET and CT, which may also have impact on (attenuation correction-related) artifacts, especially in the upper abdomen. The impact of these issues was evaluated for both hybrid PET/CT and software fusion, focused on imaging of the liver. Thirty patients underwent hybrid PET/CT, 20 with CT during expiration breath-hold (EB) and 10 with CT during free breathing (FB). Ten additional patients underwent software fusion of dedicated PET and dedicated expiration breath-hold CT (SF). The image registration accuracy was evaluated at the location of liver borders on CT and uncorrected PET images and at the location of liver lesions. Attenuation-correction artifacts were evaluated by comparison of liver borders on uncorrected and attenuation-corrected PET images. CT images were evaluated for the presence of breathing artifacts. In EB, 40% of patients had an absolute registration error of the diaphragm in the craniocaudal direction of >1 cm (range, -16 to 44 mm), and 45% of lesions were mispositioned >1 cm. In 50% of cases, attenuation-correction artifacts caused a deformation of the liver dome on PET of >1 cm. Poor compliance to breath-hold instructions caused CT artifacts in 55% of cases. In FB, 30% had registration errors of >1 cm (range, -4 to 16 mm) and PET artifacts were less extensive, but all CT images had breathing artifacts. As SF allows independent alignment of PET and CT, no registration errors or artifacts of >1 cm of the diaphragm occurred. Hybrid PET/CT of the liver may have significant registration errors and artifacts related to breathing motion. The extent of these issues depends on the selected breathing protocol and the speed of the CT scanner. No protocol or scanner can guarantee perfect image fusion. On the basis of these findings, recommendations were formulated with regard to scanner requirements, breathing protocols, and reporting.
NASA Astrophysics Data System (ADS)
Khan, Mohammad Khurram
The Monte-Carlo based simulation environment for radiation therapy (SERA) software is used to simulate the dose administered to a patient undergoing boron neutron capture therapy (BNCT). Point sampling of tumor tissue results in an estimate of a uniform boron concentration scaling factor of 3.5. Under conventional treatment protocols, this factor is used to scale the boron component of the dose linearly and homogenously within the tumor and target volumes. The average dose to the tumor cells by such a method could be improved by better methods of quantifying the in-vivo 10B biodistribution. A better method includes radiolabeling para-Boronophenylalanine (p-BPA) with 18F and imaging the pharmaceutical using positron emission tomography (PET). This biodistribution of 18F-BPA can then be used to better predict the average dose delivered to the tumor regions. This work uses registered 18F-BPA PET images to incorporate the in-vivo boron biodistribution within current treatment planning. The registered 18F-BPA PET images are then coupled in a new computer software, PET2MRI.m, to linearly scale the boron component of the dose. A qualititative and quantitative assessment of the dose contours is presented using the two approaches. Tumor volume, tumor axial extent, and target locations are compared between using MRI or PET images to define the tumor volume. In addition, peak-to-normal brain value at tumor axial center is determined for pre and post surgery patients using 18F-BPA PET images. The differences noted between the registered GBM tumor volumes (range: 34.04--136.36%), tumor axial extent (range: 20--150%), and the beam target location (1.27--4.29 cm) are significantly different. The peak-to-normal brain values are also determined at the tumor axial center using the 18F-BPA PET images. The peak-to-normal brain values using the last frame of the pre-surgery study for the GBM patients ranged from 2.05--3.4. For post surgery time weighted PET data, the peak-to-normal brain value in the residual parts of the tumor ranged from 1.5--1.7. Qualitatively, boron dose contours are greatly shifted using PET images when compared with MRI images. Collectively, these differences can lead to significant reorientation of the beam and can significantly impact current BNCT treatment planning.
Näslund, Olivia; Smits, Anja; Förander, Petter; Laesser, Mats; Bartek, Jiri; Gempt, Jens; Liljegren, Ann; Daxberg, Eva-Lotte; Jakola, Asgeir Store
2018-05-24
Positron emission tomography (PET) imaging using amino acid tracers has in recent years become widely used in the diagnosis and prediction of disease course in diffuse low-grade gliomas (LGG). However, implications of preoperative PET for treatment and prognosis in this patient group have not been systematically studied. The aim of this systematic review was to evaluate the preoperative diagnostic and prognostic value of amino acid PET in suspected diffuse LGG. Medline, Cochrane Library, and Embase databases were systematically searched using keywords "PET," "low-grade glioma," and "amino acids tracers" with their respective synonyms. Out of 2137 eligible studies, 28 met the inclusion criteria. Increased amino acid uptake (lesion/brain) was consistently reported among included studies; in 25-92% of subsequently histopathology-verified LGG, in 83-100% of histopathology-verified HGG, and also in some non-neoplastic lesions. No consistent results were found in studies reporting hot spot areas on PET in MRI-suspected LGG. Thus, the diagnostic value of amino acid PET imaging in suspected LGG has proven difficult to interpret, showing clear overlap and inconsistencies among reported results. Similarly, the results regarding the prognostic value of PET in suspected LGG and the correlation between uptake ratios and the molecular tumor status of LGG were conflicting. This systematic review illustrates the difficulties with prognostic studies presenting data on group-level without adjustment for established clinical prognostic factors, leading to a loss of additional prognostic information. We conclude that the prognostic value of PET is limited to analysis of histological subgroups of LGG and is probably strongest when using kinetic analysis of dynamic FET uptake parameters.
Recent Trends in Soft Tissue Infection Imaging
Petruzzi, Nicholas; Shanthly, Nylla; Thakur, Mathew
2009-01-01
This article discusses the current techniques and future directions of infection imaging with particular attention to respiratory, CNS, abdominal, and postoperative infections. The agents currently in use localize to areas of infection and inflammation. An infection specific imaging agent would greatly improve the utility of scintigraphy in imaging occult infections. The superior spatial resolution of 18F-FDG PET and its lack of reliance on a functional immune system, gives this agent certain advantages over the other radiopharmaceuticals. In respiratory infection imaging, an important advancement would be the ability to quantitatively delineate lung inflammation, allowing one to monitor the therapeutic response in a variety of conditions. Current studies suggest PET should be considered the most accurate quantitative method. Scintigraphy has much to offer in localizing abdominal infection as well as inflammation. We may begin to see a gradual increase in the usage of FDG PET in detecting occult abdominal infections. Commonly used modalities for imaging inflammatory bowel disease are scintigraphy with 111In-oxine/99mTc-HMPAO labeled autologous white blood cells. The literature on CNS infection imaging is relatively scarce. Few clinical studies have been performed and numerous new agents have been developed for this use with varying results. Further studies are needed to more clearly delineate the future direction of this field. In evaluating the post-operative spine, 99mTc-ciprofloxacin SPECT was reported to be >80% sensitive in patients more than 6 months post-surgery. FDG PET has also been suggested for this purpose and may play a larger role than originally thought. It appears PET/CT is gaining support, especially in imaging those with fever of unknown origin or nonfunctional immune systems. While an infection specific agent is lacking, the development of one would greatly advance our ability to detect, localize, and quantify infections. Overall, imaging such an agent via SPECT/CT or PET/CT will pave the way for greater clinical reliability in the localization of infection. PMID:19187804
Development of a PET/Cerenkov-light hybrid imaging system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Hamamura, Fuka; Kato, Katsuhiko
2014-09-15
Purpose: Cerenkov-light imaging is a new molecular imaging technology that detects visible photons from high-speed electrons using a high sensitivity optical camera. However, the merit of Cerenkov-light imaging remains unclear. If a PET/Cerenkov-light hybrid imaging system were developed, the merit of Cerenkov-light imaging would be clarified by directly comparing these two imaging modalities. Methods: The authors developed and tested a PET/Cerenkov-light hybrid imaging system that consists of a dual-head PET system, a reflection mirror located above the subject, and a high sensitivity charge coupled device (CCD) camera. The authors installed these systems inside a black box for imaging the Cerenkov-light.more » The dual-head PET system employed a 1.2 × 1.2 × 10 mm{sup 3} GSO arranged in a 33 × 33 matrix that was optically coupled to a position sensitive photomultiplier tube to form a GSO block detector. The authors arranged two GSO block detectors 10 cm apart and positioned the subject between them. The Cerenkov-light above the subject is reflected by the mirror and changes its direction to the side of the PET system and is imaged by the high sensitivity CCD camera. Results: The dual-head PET system had a spatial resolution of ∼1.2 mm FWHM and sensitivity of ∼0.31% at the center of the FOV. The Cerenkov-light imaging system's spatial resolution was ∼275μm for a {sup 22}Na point source. Using the combined PET/Cerenkov-light hybrid imaging system, the authors successfully obtained fused images from simultaneously acquired images. The image distributions are sometimes different due to the light transmission and absorption in the body of the subject in the Cerenkov-light images. In simultaneous imaging of rat, the authors found that {sup 18}F-FDG accumulation was observed mainly in the Harderian gland on the PET image, while the distribution of Cerenkov-light was observed in the eyes. Conclusions: The authors conclude that their developed PET/Cerenkov-light hybrid imaging system is useful to evaluate the merits and the limitations of Cerenkov-light imaging in molecular imaging research.« less
Issues in quantification of registered respiratory gated PET/CT in the lung.
Cuplov, Vesna; Holman, Beverley F; McClelland, Jamie; Modat, Marc; Hutton, Brian F; Thielemans, Kris
2017-12-14
PET/CT quantification of lung tissue is limited by several difficulties: the lung density and local volume changes during respiration, the anatomical mismatch between PET and CT and the relative contributions of tissue, air and blood to the PET signal (the tissue fraction effect). Air fraction correction (AFC) has been shown to improve PET image quantification in the lungs. Methods to correct for the movement and anatomical mismatch involve respiratory gating and image registration techniques. While conventional registration methods only account for spatial mismatch, the Jacobian determinant of the deformable registration transformation field can be used to estimate local volume changes and could therefore potentially be used to correct (i.e. Jacobian Correction, JC) the PET signal for changes in concentration due to local volume changes. This work aims to investigate the relationship between variations in the lung due to respiration, specifically density, tracer concentration and local volume changes. In particular, we study the effect of AFC and JC on PET quantitation after registration of respiratory gated PET/CT patient data. Six patients suffering from lung cancer with solitary pulmonary nodules underwent [Formula: see text]F-FDG PET/cine-CT. The PET data were gated into six respiratory gates using displacement gating based on a real-time position management (RPM) signal and reconstructed with matched gated CT. The PET tracer concentration and tissue density were extracted from registered gated PET and CT images before and after corrections (AFC or JC) and compared to the values from the reference images. Before correction, we observed a linear correlation between the PET tracer concentration values and density. Across all gates and patients, the maximum relative change in PET tracer concentration before (after) AFC was found to be 16.2% (4.1%) and the maximum relative change in tissue density and PET tracer concentration before (after) JC was found to be 17.1% (5.5%) and 16.2% (6.8%) respectively. Overall our results show that both AFC or JC largely explain the observed changes in PET tracer activity over the respiratory cycle. We also speculate that a second order effect is related to change in fluid content but this needs further investigation. Consequently, either AFC or JC is recommended when combining lung PET images from different gates to reduce noise.
Issues in quantification of registered respiratory gated PET/CT in the lung
NASA Astrophysics Data System (ADS)
Cuplov, Vesna; Holman, Beverley F.; McClelland, Jamie; Modat, Marc; Hutton, Brian F.; Thielemans, Kris
2018-01-01
PET/CT quantification of lung tissue is limited by several difficulties: the lung density and local volume changes during respiration, the anatomical mismatch between PET and CT and the relative contributions of tissue, air and blood to the PET signal (the tissue fraction effect). Air fraction correction (AFC) has been shown to improve PET image quantification in the lungs. Methods to correct for the movement and anatomical mismatch involve respiratory gating and image registration techniques. While conventional registration methods only account for spatial mismatch, the Jacobian determinant of the deformable registration transformation field can be used to estimate local volume changes and could therefore potentially be used to correct (i.e. Jacobian Correction, JC) the PET signal for changes in concentration due to local volume changes. This work aims to investigate the relationship between variations in the lung due to respiration, specifically density, tracer concentration and local volume changes. In particular, we study the effect of AFC and JC on PET quantitation after registration of respiratory gated PET/CT patient data. Six patients suffering from lung cancer with solitary pulmonary nodules underwent 18 F-FDG PET/cine-CT. The PET data were gated into six respiratory gates using displacement gating based on a real-time position management (RPM) signal and reconstructed with matched gated CT. The PET tracer concentration and tissue density were extracted from registered gated PET and CT images before and after corrections (AFC or JC) and compared to the values from the reference images. Before correction, we observed a linear correlation between the PET tracer concentration values and density. Across all gates and patients, the maximum relative change in PET tracer concentration before (after) AFC was found to be 16.2% (4.1%) and the maximum relative change in tissue density and PET tracer concentration before (after) JC was found to be 17.1% (5.5%) and 16.2% (6.8%) respectively. Overall our results show that both AFC or JC largely explain the observed changes in PET tracer activity over the respiratory cycle. We also speculate that a second order effect is related to change in fluid content but this needs further investigation. Consequently, either AFC or JC is recommended when combining lung PET images from different gates to reduce noise.
Stolin, Alexander V; Martone, Peter F; Jaliparthi, Gangadhar; Raylman, Raymond R
2017-01-01
Positron emission tomography (PET) scanners designed for imaging of small animals have transformed translational research by reducing the necessity to invasively monitor physiology and disease progression. Virtually all of these scanners are based on the use of pixelated detector modules arranged in rings. This design, while generally successful, has some limitations. Specifically, use of discrete detector modules to construct PET scanners reduces detection sensitivity and can introduce artifacts in reconstructed images, requiring the use of correction methods. To address these challenges, and facilitate measurement of photon depth-of-interaction in the detector, we investigated a small animal PET scanner (called AnnPET) based on a monolithic annulus of scintillator. The scanner was created by placing 12 flat facets around the outer surface of the scintillator to accommodate placement of silicon photomultiplier arrays. Its performance characteristics were explored using Monte Carlo simulations and sections of the NEMA NU4-2008 protocol. Results from this study revealed that AnnPET's reconstructed spatial resolution is predicted to be [Formula: see text] full width at half maximum in the radial, tangential, and axial directions. Peak detection sensitivity is predicted to be 10.1%. Images of simulated phantoms (mini-hot rod and mouse whole body) yielded promising results, indicating the potential of this system for enhancing PET imaging of small animals.
Modification of a medical PET scanner for PEPT studies
NASA Astrophysics Data System (ADS)
Sadrmomtaz, Alireza; Parker, D. J.; Byars, L. G.
2007-04-01
Over the last 20 years, positron emission tomography (PET) has developed as the most powerful functional imaging modality in medicine. Over the same period the University of Birmingham Positron Imaging Centre has applied PET to study engineering processes and developed the alternative technique of positron emission particle tracking (PEPT) in which a single radioactively labelled tracer particle is tracked by detecting simultaneously the pairs of back-to-back photons arising from positron/electron annihilation. Originally PEPT was performed using a pair of multiwire detectors, and more recently using a pair of digital gamma camera heads. In 2002 the Positron Imaging Centre acquired a medical PET scanner, an ECAT 931/08, previously used at Hammersmith Hospital. This scanner has been rebuilt in a flexible geometry for use in PEPT studies. This paper presents initial results from this system. Fast moving tracer particles can be rapidly and accurately located.
Al-Bayati, Mohammad; Grueneisen, Johannes; Lütje, Susanne; Sawicki, Lino M; Suntharalingam, Saravanabavaan; Tschirdewahn, Stephan; Forsting, Michael; Rübben, Herbert; Herrmann, Ken; Umutlu, Lale; Wetter, Axel
2018-01-01
To evaluate diagnostic accuracy of integrated 68Gallium labelled prostate-specific membrane antigen (68Ga-PSMA)-11 positron emission tomography (PET)/MRI in patients with primary prostate cancer (PCa) as compared to multi-parametric MRI. A total of 22 patients with recently diagnosed primary PCa underwent clinically indicated 68Ga-PSMA-11 PET/CT for initial staging followed by integrated 68Ga-PSMA-11 PET/MRI. Images of multi-parametric magnetic resonance imaging (mpMRI), PET and PET/MRI were evaluated separately by applying Prostate Imaging Reporting and Data System (PIRADSv2) for mpMRI and a 5-point Likert scale for PET and PET/MRI. Results were compared with pathology reports of biopsy or resection. Statistical analyses including receiver operating characteristics analysis were performed to compare the diagnostic performance of mpMRI, PET and PET/MRI. PET and integrated PET/MRI demonstrated a higher diagnostic accuracy than mpMRI (area under the curve: mpMRI: 0.679, PET and PET/MRI: 0.951). The proportion of equivocal results (PIRADS 3 and Likert 3) was considerably higher in mpMRI than in PET and PET/MRI. In a notable proportion of equivocal PIRADS results, PET led to a correct shift towards higher suspicion of malignancy and enabled correct lesion classification. Integrated 68Ga-PSMA-11 PET/MRI demonstrates higher diagnostic accuracy than mpMRI and is particularly valuable in tumours with equivocal results from PIRADS classification. © 2018 S. Karger AG, Basel.
Positron emission tomography in oncology: the most sophisticated imaging technology.
Lacić, M; Maisey, M N; Kusić, Z
1997-01-01
The primary aim of this paper is to present a new nuclear medicine technology, which has just recently crossed over the clinical-research barrier. Positron emission tomography (PET) has become one of the routine functional imaging techniques in the most developed countries. The biggest advantage of PET is the usage of short-lived positron emission radionuclides, e.g., fluorine-18 (F-18), carbon-11 (C-11), nitrogen-13, and oxygen-15 (0-15). These radionuclides could be incorporated (H2O15) or linked (F-18 fluorodeoxyglucose (FDG) to different metabolically active molecules. In this way, it is possible to image and quantify the metabolic activity of various disorders and diseases including different types of tumors. The authors have concentrated on the PET rule in oncology. FDG and C-11 methionine are the most widely used PET radiopharmaceuticals in tumor imaging today, thus the results of human PET studies with FDG and C-11 methionine in the evaluation of tumors have been reviewed. The facts about the mechanism of uptake of both metabolic PET radiopharmaceuticals as well as the kinetics of tracers in normal and tumor tissue are described. The problem of accumulation of these tracers in some benign lesions is also mentioned. PET could be used for the evaluation of tumor response to therapy and duration of therapeutic effects in follow-up studies. PET offers a unique possibility to fully quantify the tumor metabolic activity, although semi-quantitative approaches are clinically more convenient. At the end, comparative studies of FDG and C-11 methionine in tumor evaluation are analyzed. A double-tracer FDG and C-11 methionine scanning protocol has been suggested as very useful for the assessment of brain tumor. This finding was also supported by the authors' data.
Schiller, Kilian; Sauter, K; Dewes, S; Eiber, M; Maurer, T; Gschwend, J; Combs, S E; Habl, G
2017-09-01
Salvage radiotherapy (SRT) after radical prostatectomy (RPE) and lymphadenectomy (LAE) is the appropriate radiotherapy option for patients with persistent/ recurrent prostate cancer (PC). 68 Ga-PSMA-PET imaging has been shown to accurately detect PC lesions in a primary setting as well as for local recurrence or for lymph node (LN) metastases. In this study we evaluated the patterns of recurrence after RPE in patients with PC, putting a highlight on the differentiation between sites that would have been covered by a standard radiation therapy (RT) field in consensus after the RTOG consensus and others that would have not. Thirty-one out of 83 patients (37%) with high-risk PC were the subject of our study. Information from 68 Ga-PSMA-PET imaging was used to individualize treatment plans to include suspicious lesions as well as possibly boost sites with tracer uptake in LN or the prostate bed. For evaluation, 68 Ga-PSMA-PET-positive LN were contoured in a patient dataset with a standard lymph drainage (RTOG consensus on CTV definition of pelvic lymph nodes) radiation field depicting color-coded nodes that would have been infield or outfield of that standard lymph drainage field and thereby visualizing typical patterns of failure of a "blind" radiation therapy after RPE and LAE. Compared to negative conventional imaging (CT/MRI), lesions suspicious for PC were detected in 27/31 cases (87.1%) by 68 Ga-PSMA-PET imaging, which resulted in changes to the radiation concept. There were 16/31 patients (51.6%) that received a simultaneous integrated boost (SIB) to a subarea of the prostate bed (in only three cases this dose escalation would have been planned without the additional knowledge of 68 Ga-PSMA-PET imaging) and 18/31 (58.1%) to uncommon (namely presacral, paravesical, pararectal, preacetabular and obturatoric) LN sites. Furthermore, 14 patients (45.2%) had a changed TNM staging result by means of 68 Ga-PSMA-PET imaging. Compared to conventional CT or MRI staging, 68 Ga-PSMA-PET imaging detects more PC lesions and, thus, significantly influences radiation planning in recurrent prostate cancer patients enabling individually tailored treatment.
Considerations in the Development of Reversibly Binding PET Radioligands for Brain Imaging
Pike, Victor W.
2017-01-01
The development of reversibly binding radioligands for imaging brain proteins in vivo, such as enzymes, neurotransmitter transporters, receptors and ion channels, with positron emission tomography (PET) is keenly sought for biomedical studies of neuropsychiatric disorders and for drug discovery and development, but is recognized as being highly challenging at the medicinal chemistry level. This article aims to compile and discuss the main considerations to be taken into account by chemists embarking on programs of radioligand development for PET imaging of brain protein targets. PMID:27087244
Perk, Lars R; Stigter-van Walsum, Marijke; Visser, Gerard W M; Kloet, Reina W; Vosjan, Maria J W D; Leemans, C René; Giaccone, Giuseppe; Albano, Raffaella; Comoglio, Paolo M; van Dongen, Guus A M S
2008-10-01
Targeting the c-Met receptor with monoclonal antibodies (MAbs) is an appealing approach for cancer diagnosis and treatment because this receptor plays a prominent role in tumour invasion and metastasis. Positron emission tomography (PET) might be a powerful tool for guidance of therapy with anti-Met MAbs like the recently described MAb DN30 because it allows accurate quantitative imaging of tumour targeting (immuno-PET). We considered the potential of PET with either (89)Zr-labelled (residualising radionuclide) or (124)I-labelled (non-residualising radionuclide) DN30 for imaging of Met-expressing tumours. The biodistribution of co-injected (89)Zr-DN30 and iodine-labelled DN30 was compared in nude mice bearing either the human gastric cancer line GLT-16 (high Met expression) or the head-and-neck cancer line FaDu (low Met expression). PET images were acquired in both xenograft models up to 4 days post-injection (p.i.) and used for quantification of tumour uptake. Biodistribution studies in GTL-16-tumour-bearing mice revealed that (89)Zr-DN30 achieved much higher tumour uptake levels than iodine-labelled DN30 (e.g. 19.6%ID/g vs 5.3%ID/g, 5 days p.i.), while blood levels were similar, indicating internalisation of DN30. Therefore, (89)Zr-DN30 was selected for PET imaging of GLT-16-bearing mice. Tumours as small as 11 mg were readily visualised with immuno-PET. A distinctive lower (89)Zr uptake was observed in FaDu compared to GTL-16 xenografts (e.g. 7.8%ID/g vs 18.1%ID/g, 3 days p.i.). Nevertheless, FaDu xenografts were also clearly visualised with (89)Zr-DN30 immuno-PET. An excellent correlation was found between PET-image-derived (89)Zr tumour uptake and ex-vivo-assessed (89)Zr tumour uptake (R(2)=0.98). The long-lived positron emitter (89)Zr seems attractive for PET-guided development of therapeutic anti-c-Met MAbs.
Bagrosky, Brian M; Hayes, Kari L; Koo, Phillip J; Fenton, Laura Z
2013-08-01
Evaluation of the child with spinal fusion hardware and concern for infection is challenging because of hardware artifact with standard imaging (CT and MRI) and difficult physical examination. Studies using (18)F-FDG PET/CT combine the benefit of functional imaging with anatomical localization. To discuss a case series of children and young adults with spinal fusion hardware and clinical concern for hardware infection. These people underwent FDG PET/CT imaging to determine the site of infection. We performed a retrospective review of whole-body FDG PET/CT scans at a tertiary children's hospital from December 2009 to January 2012 in children and young adults with spinal hardware and suspected hardware infection. The PET/CT scan findings were correlated with pertinent clinical information including laboratory values of inflammatory markers, postoperative notes and pathology results to evaluate the diagnostic accuracy of FDG PET/CT. An exempt status for this retrospective review was approved by the Institution Review Board. Twenty-five FDG PET/CT scans were performed in 20 patients. Spinal fusion hardware infection was confirmed surgically and pathologically in six patients. The most common FDG PET/CT finding in patients with hardware infection was increased FDG uptake in the soft tissue and bone immediately adjacent to the posterior spinal fusion rods at multiple contiguous vertebral levels. Noninfectious hardware complications were diagnosed in ten patients and proved surgically in four. Alternative sources of infection were diagnosed by FDG PET/CT in seven patients (five with pneumonia, one with pyonephrosis and one with superficial wound infections). FDG PET/CT is helpful in evaluation of children and young adults with concern for spinal hardware infection. Noninfectious hardware complications and alternative sources of infection, including pneumonia and pyonephrosis, can be diagnosed. FDG PET/CT should be the first-line cross-sectional imaging study in patients with suspected spinal hardware infection. Because pneumonia was diagnosed as often as spinal hardware infection, initial chest radiography should also be performed.
Becker, Minerva; Varoquaux, Arthur D; Combescure, Christophe; Rager, Olivier; Pusztaszeri, Marc; Burkhardt, Karim; Delattre, Bénédicte M A; Dulguerov, Pavel; Dulguerov, Nicolas; Katirtzidou, Eirini; Caparrotti, Francesca; Ratib, Osman; Zaidi, Habib; Becker, Christoph D
2018-02-01
To determine the diagnostic performance of FDG-PET/MRI with diffusion-weighted imaging (FDG-PET/DWIMRI) for detection and local staging of head and neck squamous cell carcinoma (HNSCC) after radio(chemo)therapy. This was a prospective study that included 74 consecutive patients with previous radio(chemo)therapy for HNSCC and in whom tumour recurrence or radiation-induced complications were suspected clinically. The patients underwent hybrid PET/MRI examinations with morphological MRI, DWI and FDG-PET. Experienced readers blinded to clinical/histopathological data evaluated images according to established diagnostic criteria taking into account the complementarity of multiparametric information. The standard of reference was histopathology with whole-organ sections and follow-up ≥24 months. Statistical analysis considered data clustering. The proof of diagnosis was histology in 46/74 (62.2%) patients and follow-up (mean ± SD = 34 ± 8 months) in 28/74 (37.8%). Thirty-eight patients had 43 HNSCCs and 46 patients (10 with and 36 without tumours) had 62 benign lesions/complications. Sensitivity, specificity, and positive and negative predictive value of PET/DWIMRI were 97.4%, 91.7%, 92.5% and 97.1% per patient, and 93.0%, 93.5%, 90.9%, and 95.1% per lesion, respectively. Agreement between imaging-based and pathological T-stage was excellent (kappa = 0.84, p < 0.001). FDG-PET/DWIMRI yields excellent results for detection and T-classification of HNSCC after radio(chemo)therapy. • FDG-PET/DWIMRI yields excellent results for the detection of post-radio(chemo)therapy HNSCC recurrence. • Prospective one-centre study showed excellent agreement between imaging-based and pathological T-stage. • 97.5% of positive concordant MRI, DWI and FDG-PET results correspond to recurrence. • 87% of discordant MRI, DWI and FDG-PET results correspond to benign lesions. • Multiparametric FDG-PET/DWIMRI facilitates planning of salvage surgery in the irradiated neck.
18F-FDG PET/CT in differentiating malignant from benign origins of obstructive jaundice.
Wang, Shao-Bo; Wu, Hu-Bing; Wang, Quan-Shi; Zhou, Wen-Lan; Tian, Ying; Ji, Yun-Hai; Lv, Liang
2015-10-01
The various origins of obstructive jaundice make the diagnosis of the disease difficult. This study was undertaken to evaluate the role of 18F-FDG PET/CT in differentiating malignant from benign origins of obstructive jaundice and to quantify the added value of 18F-FDG PET/CT over conventional imaging (enhanced CT and/or MRI). Eighty-five patients with obstructive jaundice who underwent 18F-FDG PET/CT within 2 weeks after enhanced CT and/or MRI were reviewed retrospectively. All 18F-FDG PET/CT images were independently evaluated by 2 nuclear medicine physicians who were unaware of other imaging data; differences were resolved by consensus of the physicians. All conventional imaging interpretations, according to the medical records, were reviewed by 2 radiologists to determine the potential value. Final diagnoses were based on histological or surgical findings. Sixty-six patients were diagnosed with malignancies, and 19 patients with benign lesions. The maximum standardized uptake values for malignant and benign lesions causing biliary obstruction were 8.2+/-4.4 and 4.0+/-5.0, respectively (P<0.05). The sensitivity, specificity, and overall accuracy for differentiating malignant from benign origins with 18F-FDG PET/CT were 86.4% (57/66), 73.7% (14/19), and 83.5% (71/85), respectively. 18F-FDG PET/CT in conjunction with conventional imaging changed the sensitivity, specificity, and overall accuracy of conventional imaging alone from 75.8% (50/66) to 95.5% (63/66) (P<0.05), 68.4% (13/19) to 57.9% (11/19) (P>0.05), and 74.1% (63/85) to 87.1% (74/85) (P<0.05), respectively. 18F-FDG PET/CT is of great value in differentiating malignant from benign origins of obstructive jaundice and is a useful adjuvant to conventional imaging. 18F-FDG PET/CT should be recommended for further etiological clarification.
Morimoto, Emiko; Okada, Tomohisa; Kanagaki, Mitsunori; Yamamoto, Akira; Fushimi, Yasutaka; Matsumoto, Riki; Takaya, Shigetoshi; Ikeda, Akio; Kunieda, Takeharu; Kikuchi, Takayuki; Paul, Dominik; Miyamoto, Susumu; Takahashi, Ryosuke; Togashi, Kaori
2013-12-01
To quantitatively compare the diagnostic capability of double inversion-recovery (DIR) with F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) for detection of seizure focus laterality in temporal lobe epilepsy (TLE). This study was approved by the institutional review board, and written informed consent was obtained. Fifteen patients with TLE and 38 healthy volunteers were enrolled. All magnetic resonance (MR) images were acquired using a 3T-MRI system. Voxel-based analysis (VBA) was conducted for FDG-PET images and white matter segments of DIR images (DIR-WM) focused on the whole temporal lobe (TL) and the anterior part of the temporal lobe (ATL). Distribution of hypometabolic areas on FDG-PET and increased signal intensity areas on DIR-WM were evaluated, and their laterality was compared with clinically determined seizure focus laterality. Correct diagnostic rates of laterality were evaluated, and agreement between DIR-WM and FDG-PET was assessed using κ statistics. Increased signal intensity areas on DIR-WM were located at the vicinity of the hypometabolic areas on FDG-PET, especially in the ATL. Correct diagnostic rates of seizure focus laterality for DIR-WM (0.80 and 0.67 for the TL and the ATL, respectively) were slightly higher than those for FDG-PET (0.67 and 0.60 for the TL and the ATL, respectively). Agreement of laterality between DIR-WM and FDG-PET was substantial for the TL and almost perfect for the ATL (κ = 0.67 and 0.86, respectively). High agreement in localization between DIR-WM and FDG-PET and nearly equivalent detectability of them show us an additional role of MRI in TLE. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.
Okizaki, Atsutaka; Nakayama, Michihiro; Nakajima, Kaori; Takahashi, Koji
2017-12-01
Positron emission tomography (PET) has become a useful and important technique in oncology. However, spatial resolution of PET is not high; therefore, small abnormalities can sometimes be overlooked with PET. To address this problem, we devised a novel algorithm, iterative modified bicubic interpolation method (IMBIM). IMBIM generates high resolution and -contrast image. The purpose of this study was to investigate the utility of IMBIM for clinical FDG positron emission tomography/X-ray computed tomography (PET/CT) imaging.We evaluated PET images from 1435 patients with malignant tumor and compared the contrast (uptake ratio of abnormal lesions to background) in high resolution image with the standard bicubic interpolation method (SBIM) and IMBIM. In addition to the contrast analysis, 340 out of 1435 patients were selected for visual evaluation by nuclear medicine physicians to investigate lesion detectability. Abnormal uptakes on the images were categorized as either absolutely abnormal or equivocal finding.The average of contrast with IMBIM was significantly higher than that with SBIM (P < .001). The improvements were prominent with large matrix sizes and small lesions. SBIM images showed abnormalities in 198 of 340 lesions (58.2%), while IMBIM indicated abnormalities in 312 (91.8%). There was statistically significant improvement in lesion detectability with IMBIM (P < .001).In conclusion, IMBIM generates high-resolution images with improved contrast and, therefore, may facilitate more accurate diagnoses in clinical practice. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.
Wu, Rongli; Watanabe, Yoshiyuki; Arisawa, Atsuko; Takahashi, Hiroto; Tanaka, Hisashi; Fujimoto, Yasunori; Watabe, Tadashi; Isohashi, Kayako; Hatazawa, Jun; Tomiyama, Noriyuki
2017-10-01
This study aimed to compare the tumor volume definition using conventional magnetic resonance (MR) and 11C-methionine positron emission tomography (MET/PET) images in the differentiation of the pre-operative glioma grade by using whole-tumor histogram analysis of normalized cerebral blood volume (nCBV) maps. Thirty-four patients with histopathologically proven primary brain low-grade gliomas (n = 15) and high-grade gliomas (n = 19) underwent pre-operative or pre-biopsy MET/PET, fluid-attenuated inversion recovery, dynamic susceptibility contrast perfusion-weighted magnetic resonance imaging, and contrast-enhanced T1-weighted at 3.0 T. The histogram distribution derived from the nCBV maps was obtained by co-registering the whole tumor volume delineated on conventional MR or MET/PET images, and eight histogram parameters were assessed. The mean nCBV value had the highest AUC value (0.906) based on MET/PET images. Diagnostic accuracy significantly improved when the tumor volume was measured from MET/PET images compared with conventional MR images for the parameters of mean, 50th, and 75th percentile nCBV value (p = 0.0246, 0.0223, and 0.0150, respectively). Whole-tumor histogram analysis of CBV map provides more valuable histogram parameters and increases diagnostic accuracy in the differentiation of pre-operative cerebral gliomas when the tumor volume is derived from MET/PET images.
Disselhorst, Jonathan A; Bezrukov, Ilja; Kolb, Armin; Parl, Christoph; Pichler, Bernd J
2014-06-01
Hybrid PET/MR systems have rapidly progressed from the prototype stage to systems that are increasingly being used in the clinics. This review provides an overview of developments in hybrid PET/MR systems and summarizes the current state of the art in PET/MR instrumentation, correction techniques, and data analysis. The strong magnetic field requires considerable changes in the manner by which PET images are acquired and has led, among others, to the development of new PET detectors, such as silicon photomultipliers. During more than a decade of active PET/MR development, several system designs have been described. The technical background of combined PET/MR systems is explained and related challenges are discussed. The necessity for PET attenuation correction required new methods based on MR data. Therefore, an overview of recent developments in this field is provided. Furthermore, MR-based motion correction techniques for PET are discussed, as integrated PET/MR systems provide a platform for measuring motion with high temporal resolution without additional instrumentation. The MR component in PET/MR systems can provide functional information about disease processes or brain function alongside anatomic images. Against this background, we point out new opportunities for data analysis in this new field of multimodal molecular imaging. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Gaitanis, Anastasios; Kastis, George A; Vlastou, Elena; Bouziotis, Penelope; Verginis, Panayotis; Anagnostopoulos, Constantinos D
2017-08-01
The Tera-Tomo 3D image reconstruction algorithm (a version of OSEM), provided with the Mediso nanoScan® PC (PET8/2) small-animal positron emission tomograph (PET)/x-ray computed tomography (CT) scanner, has various parameter options such as total level of regularization, subsets, and iterations. Also, the acquisition time in PET plays an important role. This study aims to assess the performance of this new small-animal PET/CT scanner for different acquisition times and reconstruction parameters, for 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) and Ga-68, under the NEMA NU 4-2008 standards. Various image quality metrics were calculated for different realizations of [ 18 F]FDG and Ga-68 filled image quality (IQ) phantoms. [ 18 F]FDG imaging produced improved images over Ga-68. The best compromise for the optimization of all image quality factors is achieved for at least 30 min acquisition and image reconstruction with 52 iteration updates combined with a high regularization level. A high regularization level at 52 iteration updates and 30 min acquisition time were found to optimize most of the figures of merit investigated.
Automatic co-segmentation of lung tumor based on random forest in PET-CT images
NASA Astrophysics Data System (ADS)
Jiang, Xueqing; Xiang, Dehui; Zhang, Bin; Zhu, Weifang; Shi, Fei; Chen, Xinjian
2016-03-01
In this paper, a fully automatic method is proposed to segment the lung tumor in clinical 3D PET-CT images. The proposed method effectively combines PET and CT information to make full use of the high contrast of PET images and superior spatial resolution of CT images. Our approach consists of three main parts: (1) initial segmentation, in which spines are removed in CT images and initial connected regions achieved by thresholding based segmentation in PET images; (2) coarse segmentation, in which monotonic downhill function is applied to rule out structures which have similar standardized uptake values (SUV) to the lung tumor but do not satisfy a monotonic property in PET images; (3) fine segmentation, random forests method is applied to accurately segment the lung tumor by extracting effective features from PET and CT images simultaneously. We validated our algorithm on a dataset which consists of 24 3D PET-CT images from different patients with non-small cell lung cancer (NSCLC). The average TPVF, FPVF and accuracy rate (ACC) were 83.65%, 0.05% and 99.93%, respectively. The correlation analysis shows our segmented lung tumor volumes has strong correlation ( average 0.985) with the ground truth 1 and ground truth 2 labeled by a clinical expert.
Petersen, Lars J.; Nielsen, Julie B.; Dettmann, Katja; Fisker, Rune V.; Haberkorn, Uwe; Stenholt, Louise; Zacho, Helle D.
2017-01-01
Localization of prostate cancer recurrence, particularly in the bones, is a major challenge with standard of care imaging in patients with biochemical recurrence following curatively intended treatment. Gallium-68-labeled prostate specific membrane antigen positron emission tomography/computed tomography (68Ga-PSMA PET/CT) is a novel and promising method for imaging in prostate cancer. The present study reports two cases of patients with prostate cancer with biochemical recurrence, with evidence of bone metastases on 68Ga-PSMA PET/CT images and low prostate specific antigen PSA levels (<2 ng/ml) and PSA doubling time >6 months. The bone metastases were verified by supplementary imaging with 18F-sodium fluoride PET/CT and magnetic resonance imaging as well as biochemical responses to androgen deprivation therapy. Therefore, 68Ga-PSMA PET/CT is promising for the restaging of patients with prostate cancer with biochemical recurrence, including patients with low PSA levels and low PSA kinetics. PMID:28685078
Chelator-Free Labeling of Layered Double Hydroxide Nanoparticles for in Vivo PET Imaging
NASA Astrophysics Data System (ADS)
Shi, Sixiang; Fliss, Brianne C.; Gu, Zi; Zhu, Yian; Hong, Hao; Valdovinos, Hector F.; Hernandez, Reinier; Goel, Shreya; Luo, Haiming; Chen, Feng; Barnhart, Todd E.; Nickles, Robert J.; Xu, Zhi Ping; Cai, Weibo
2015-11-01
Layered double hydroxide (LDH) nanomaterial has emerged as a novel delivery agent for biomedical applications due to its unique structure and properties. However, in vivo positron emission tomography (PET) imaging with LDH nanoparticles has not been achieved. The aim of this study is to explore chelator-free labeling of LDH nanoparticles with radioisotopes for in vivo PET imaging. Bivalent cation 64Cu2+ and trivalent cation 44Sc3+ were found to readily label LDH nanoparticles with excellent labeling efficiency and stability, whereas tetravalent cation 89Zr4+ could not label LDH since it does not fit into the LDH crystal structure. PET imaging shows that prominent tumor uptake was achieved in 4T1 breast cancer with 64Cu-LDH-BSA via passive targeting alone (7.7 ± 0.1%ID/g at 16 h post-injection; n = 3). These results support that LDH is a versatile platform that can be labeled with various bivalent and trivalent radiometals without comprising the native properties, highly desirable for PET image-guided drug delivery.
Sone, Daichi; Imabayashi, Etsuko; Maikusa, Norihide; Okamura, Nobuyuki; Furumoto, Shozo; Kudo, Yukitsuka; Ogawa, Masayo; Takano, Harumasa; Yokoi, Yuma; Sakata, Masuhiro; Tsukamoto, Tadashi; Kato, Koichi; Matsuda, Hiroshi
2017-01-01
Molecular imaging and selective hippocampal subfield atrophy are a focus of recent Alzheimer's disease (AD) research. Here, we investigated correlations between molecular imaging and hippocampal subfields in early AD. We investigated 18 patients with early AD and 18 healthy control subjects using 11 C-Pittsburgh compound-B (PIB) positron emission tomography (PET) and 18 F-THK5351 PET and automatic segmentation of hippocampal subfields with high-resolution T2-weighted magnetic resonance imaging. The PET images were normalized and underwent voxelwise regression analysis with each subregion volumes using SPM12. As for 18 F-THK5351 PET, the bilateral perirhinal cortex volumes were significantly associated with the ipsilateral or bilateral temporal lobar uptakes, whereas hippocampal subfields showed no correlations. 11 C-PIB PET showed relatively broad negative correlation with the right cornu ammonis 3 volumes. Regional tau deposition was correlated with extrahippocampal subregional atrophy and not with hippocampal subfields, possibly reflecting different underlying mechanisms of atrophy in early AD. Amyloid might be associated with right cornu ammonis 3 atrophy.
Accelerating image reconstruction in dual-head PET system by GPU and symmetry properties.
Chou, Cheng-Ying; Dong, Yun; Hung, Yukai; Kao, Yu-Jiun; Wang, Weichung; Kao, Chien-Min; Chen, Chin-Tu
2012-01-01
Positron emission tomography (PET) is an important imaging modality in both clinical usage and research studies. We have developed a compact high-sensitivity PET system that consisted of two large-area panel PET detector heads, which produce more than 224 million lines of response and thus request dramatic computational demands. In this work, we employed a state-of-the-art graphics processing unit (GPU), NVIDIA Tesla C2070, to yield an efficient reconstruction process. Our approaches ingeniously integrate the distinguished features of the symmetry properties of the imaging system and GPU architectures, including block/warp/thread assignments and effective memory usage, to accelerate the computations for ordered subset expectation maximization (OSEM) image reconstruction. The OSEM reconstruction algorithms were implemented employing both CPU-based and GPU-based codes, and their computational performance was quantitatively analyzed and compared. The results showed that the GPU-accelerated scheme can drastically reduce the reconstruction time and thus can largely expand the applicability of the dual-head PET system.
Schmidt, Mark E; Chiao, Ping; Klein, Gregory; Matthews, Dawn; Thurfjell, Lennart; Cole, Patricia E; Margolin, Richard; Landau, Susan; Foster, Norman L; Mason, N Scott; De Santi, Susan; Suhy, Joyce; Koeppe, Robert A; Jagust, William
2015-09-01
In vivo imaging of amyloid burden with positron emission tomography (PET) provides a means for studying the pathophysiology of Alzheimer's and related diseases. Measurement of subtle changes in amyloid burden requires quantitative analysis of image data. Reliable quantitative analysis of amyloid PET scans acquired at multiple sites and over time requires rigorous standardization of acquisition protocols, subject management, tracer administration, image quality control, and image processing and analysis methods. We review critical points in the acquisition and analysis of amyloid PET, identify ways in which technical factors can contribute to measurement variability, and suggest methods for mitigating these sources of noise. Improved quantitative accuracy could reduce the sample size necessary to detect intervention effects when amyloid PET is used as a treatment end point and allow more reliable interpretation of change in amyloid burden and its relationship to clinical course. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Does Choline PET/CT Change the Management of Prostate Cancer Patients With Biochemical Failure?
Goldstein, Jeffrey; Even-Sapir, Einat; Ben-Haim, Simona; Saad, Akram; Spieler, Benjamin; Davidson, Tima; Berger, Raanan; Weiss, Ilana; Appel, Sarit; Lawrence, Yaacov R; Symon, Zvi
2017-06-01
The FDA approved C-11 choline PET/computed tomography (CT) for imaging patients with recurrent prostate cancer in 2012. Subsequently, the 2014 NCCN guidelines have introduced labeled choline PET/CT in the imaging algorithm of patients with suspected recurrent disease. However, there is only scarce data on the impact of labeled choline PET/CT findings on disease management. We hypothesized that labeled-choline PET/CT studies showing local or regional recurrence or distant metastases will have a direct role in selection of appropriate patient management and improve radiation planning in patients with disease that can be controlled using this mode of therapy. This retrospective study was approved by the Tel Aviv Sourasky and Sheba Medical Center's Helsinki ethical review committees. Patient characteristics including age, PSA, stage, prior treatments, and pre-PET choline treatment recommendations based on NCCN guidelines were recorded. Patients with biochemical failure and without evidence of recurrence on physical examination or standard imaging were offered the option of additional imaging with labeled choline PET/CT. Treatment recommendations post-PET/CT were compared with pre-PET/CT ones. Pathologic confirmation was obtained before prostate retreatment. A nonparametric χ test was used to compare the initial and final treatment recommendations following choline PET/CT. Between June 2010 and January 2014, 34 labeled-choline PET/CT studies were performed on 33 patients with biochemical failure following radical prostatectomy (RP) (n=6), radiation therapy (RT) (n=6), brachytherapy (n=2), RP+salvage prostate fossa RT (n=14), and RP+salvage prostate fossa/lymph node RT (n=6). Median PSA level before imaging was 2 ng/mL (range, 0.16 to 79). Labeled choline PET/CT showed prostate, prostate fossa, or pelvic lymph node increased uptake in 17 studies, remote metastatic disease in 9 studies, and failed to identify the cause for biochemical failure in 7 scans.PET/CT altered treatment approach in 18 of 33 (55%) patients (P=0.05). Sixteen of 27 patients (59%) treated previously with radiation were retreated with RT and delayed or eliminated androgen deprivation therapy: 1 received salvage brachytherapy, 10 received salvage pelvic lymph node or prostate fossa irradiation, 2 brachytherapy failures received salvage prostate and lymph nodes IMRT, and 3 with solitary bone metastasis were treated with radiosurgery. Eleven of 16 patients retreated responded to salvage therapy with a significant PSA response (<0.2 ng/mL), 2 patients had partial biochemical responses, and 3 patients failed. The median duration of response was 500±447 days. Two of 6 patients with no prior RT were referred for salvage prostatic fossa RT: 1 received dose escalation for disease identified in the prostate fossa and another had inclusion of "hot" pelvic lymph nodes in the treatment volume. These early results suggest that labeled choline PET/CT imaging performed according to current NCCN guidelines may change management and improve care in prostate cancer patients with biochemical failure by identifying patients for referral for salvage radiation therapy, improving radiation planning, and delaying or avoiding use of androgen deprivation therapy.
Image-Based 2D Re-Projection for Attenuation Substitution in PET Neuroimaging.
Laymon, Charles M; Minhas, Davneet S; Becker, Carl R; Matan, Cristy; Oborski, Matthew J; Price, Julie C; Mountz, James M
2018-02-27
In dual modality positron emission tomography (PET)/magnetic resonance imaging (MRI), attenuation correction (AC) methods are continually improving. Although a new AC can sometimes be generated from existing MR data, its application requires a new reconstruction. We evaluate an approximate 2D projection method that allows offline image-based reprocessing. 2-Deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) brain scans were acquired (Siemens HR+) for six subjects. Attenuation data were obtained using the scanner's transmission source (SAC). Additional scanning was performed on a Siemens mMR including production of a Dixon-based MR AC (MRAC). The MRAC was imported to the HR+ and the PET data were reconstructed twice: once using native SAC (ground truth); once using the imported MRAC (imperfect AC). The re-projection method was implemented as follows. The MRAC PET was forward projected to approximately reproduce attenuation-corrected sinograms. The SAC and MRAC images were forward projected and converted to attenuation-correction factors (ACFs). The MRAC ACFs were removed from the MRAC PET sinograms by division; the SAC ACFs were applied by multiplication. The regenerated sinograms were reconstructed by filtered back projection to produce images (SUBAC PET) in which SAC has been substituted for MRAC. Ideally SUBAC PET should match SAC PET. Via coregistered T1 images, FreeSurfer (FS; MGH, Boston) was used to define a set of cortical gray matter regions of interest. Regional activity concentrations were extracted for SAC PET, MRAC PET, and SUBAC PET. SUBAC PET showed substantially smaller root mean square error than MRAC PET with averaged values of 1.5 % versus 8.1 %. Re-projection is a viable image-based method for the application of an alternate attenuation correction in neuroimaging.
Biological Image-Guided Radiotherapy in Rectal Cancer: Challenges and Pitfalls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roels, Sarah; Slagmolen, Pieter; Nuyts, Johan
2009-11-01
Purpose: To investigate the feasibility of integrating multiple imaging modalities for image-guided radiotherapy in rectal cancer. Patients and Methods: Magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) were performed before, during, and after preoperative chemoradiotherapy (CRT) in patients with resectable rectal cancer. The FDG-PET signals were segmented with an adaptive threshold-based and a gradient-based method. Magnetic resonance tumor volumes (TVs) were manually delineated. A nonrigid registration algorithm was applied to register the images, and mismatch analyses were carried out between MR and FDG-PET TVs and between TVs over time. Tumor volumes delineated on the images after CRTmore » were compared with the pathologic TV. Results: Forty-five FDG-PET/CT and 45 MR images were analyzed from 15 patients. The mean MRI and FDG-PET TVs showed a tendency to shrink during and after CRT. In general, MRI showed larger TVs than FDG-PET. There was an approximately 50% mismatch between the FDG-PET TV and the MRI TV at baseline and during CRT. Sixty-one percent of the FDG-PET TV and 76% of the MRI TV obtained after 10 fractions of CRT remained inside the corresponding baseline TV. On MRI, residual tumor was still suspected in all 6 patients with a pathologic complete response, whereas FDG-PET showed a metabolic complete response in 3 of them. The FDG-PET TVs delineated with the gradient-based method matched closest with pathologic findings. Conclusions: Integration of MRI and FDG-PET into radiotherapy seems feasible. Gradient-based segmentation is recommended for FDG-PET. Spatial variance between MRI and FDG-PET TVs should be taken into account for target definition.« less
In vivo evaluation of (64)Cu-labeled magnetic nanoparticles as a dual-modality PET/MR imaging agent.
Glaus, Charles; Rossin, Raffaella; Welch, Michael J; Bao, Gang
2010-04-21
A novel nanoparticle-based dual-modality positron emission tomograph/magnetic resonance imaging (PET/MRI) contrast agent was developed. The probe consisted of a superparamagnetic iron oxide (SPIO) core coated with PEGylated phospholipids. The chelator 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid (DOTA) was conjugated to PEG termini to allow labeling with positron-emitting (64)Cu. Radiolabeling with (64)Cu at high yield and high purity was readily achieved. The (64)Cu-SPIO probes produced strong MR and PET signals and were stable in mouse serum for 24 h at 37 degrees C. Biodistribution and in vivo PET/CT imaging studies of the probes showed a circulation half-life of 143 min and high initial blood retention with moderate liver uptake, making them an attractive contrast agent for disease studies.
New cardiac cameras: single-photon emission CT and PET.
Slomka, Piotr J; Berman, Daniel S; Germano, Guido
2014-07-01
Nuclear cardiology instrumentation has evolved significantly in the recent years. Concerns about radiation dose and long acquisition times have propelled developments of dedicated high-efficiency cardiac SPECT scanners. Novel collimator designs, such as multipinhole or locally focusing collimators arranged in geometries that are optimized for cardiac imaging, have been implemented to enhance photon-detection sensitivity. Some of these new SPECT scanners use solid-state photon detectors instead of photomultipliers to improve image quality and to reduce the scanner footprint. These new SPECT devices allow dramatic up to 7-fold reduction in acquisition times or similar reduction in radiation dose. In addition, new hardware for photon attenuation correction allowing ultralow radiation doses has been offered by some vendors. To mitigate photon attenuation artifacts for the new SPECT scanners not equipped with attenuation correction hardware, 2-position (upright-supine or prone-supine) imaging has been proposed. PET hardware developments have been primarily driven by the requirements of oncologic imaging, but cardiac imaging can benefit from improved PET image quality and improved sensitivity of 3D systems. The time-of-flight reconstruction combined with resolution recovery techniques is now implemented by all major PET vendors. These new methods improve image contrast and image resolution and reduce image noise. High-sensitivity 3D PET without interplane septa allows reduced radiation dose for cardiac perfusion imaging. Simultaneous PET/MR hybrid system has been developed. Solid-state PET detectors with avalanche photodiodes or digital silicon photomultipliers have been introduced, and they offer improved imaging characteristics and reduced sensitivity to electromagnetic MR fields. Higher maximum count rate of the new PET detectors allows routine first-pass Rb-82 imaging, with 3D PET acquisition enabling clinical utilization of dynamic imaging with myocardial flow measurements for this tracer. The availability of high-end CT component in most PET/CT configurations enables hybrid multimodality cardiac imaging protocols with calcium scoring or CT angiography or both. Copyright © 2014. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Berradja, Khadidja; Boughanmi, Nabil
2016-09-01
In dynamic cardiac PET FDG studies the assessment of myocardial metabolic rate of glucose (MMRG) requires the knowledge of the blood input function (IF). IF can be obtained by manual or automatic blood sampling and cross calibrated with PET. These procedures are cumbersome, invasive and generate uncertainties. The IF is contaminated by spillover of radioactivity from the adjacent myocardium and this could cause important error in the estimated MMRG. In this study, we show that the IF can be extracted from the images in a rat heart study with 18F-fluorodeoxyglucose (18F-FDG) by means of Independent Component Analysis (ICA) based on Bayesian theory and Markov Chain Monte Carlo (MCMC) sampling method (BICA). Images of the heart from rats were acquired with the Sherbrooke small animal PET scanner. A region of interest (ROI) was drawn around the rat image and decomposed into blood and tissue using BICA. The Statistical study showed that there is a significant difference (p < 0.05) between MMRG obtained with IF extracted by BICA with respect to IF extracted from measured images corrupted with spillover.
Development of a Widely Usable Amino Acid Tracer: ⁷⁶Br-α-Methyl-Phenylalanine for Tumor PET Imaging.
Hanaoka, Hirofumi; Ohshima, Yasuhiro; Suzuki, Yurika; Yamaguchi, Aiko; Watanabe, Shigeki; Uehara, Tomoya; Nagamori, Shushi; Kanai, Yoshikatsu; Ishioka, Noriko S; Tsushima, Yoshito; Endo, Keigo; Arano, Yasushi
2015-05-01
Radiolabeled amino acids are superior PET tracers for the imaging of malignant tumors, and amino acids labeled with (76)Br, an attractive positron emitter because of its relatively long half-life (16.2 h), could potentially be a widely usable tumor imaging tracer. In this study, in consideration of its stability and tumor specificity, we designed two (76)Br-labeled amino acid derivatives, 2-(76)Br-bromo-α-methyl-l-phenylalanine (2-(76)Br-BAMP) and 4-(76)Br-bromo-α-methyl-l-phenylalanine (4-(76)Br-BAMP), and investigated their potential as tumor imaging agents. Both (76)Br- and (77)Br-labeled amino acid derivatives were prepared. We performed in vitro and in vivo stability studies and cellular uptake studies using the LS180 colon adenocarcinoma cell line. Biodistribution studies in normal mice and in LS180 tumor-bearing mice were performed, and the tumors were imaged with a small-animal PET scanner. Both (77)Br-BAMPs were stable in the plasma and in the murine body. Although both (77)Br-BAMPs were taken up by LS180 cells and the uptake was inhibited by L-type amino acid transporter 1 inhibitors, 2-(77)Br-BAMP exhibited higher uptake than 4-(77)Br-BAMP. In the biodistribution studies, 2-(77)Br-BAMP showed more rapid blood clearance and lower renal accumulation than 4-(77)Br-BAMP. More than 90% of the injected radioactivity was excreted in the urine by 6 h after the injection of 2-(77)Br-BAMP. High tumor accumulation of 2-(77)Br-BAMP was observed in tumor-bearing mice, and PET imaging with 2-(76)Br-BAMP enabled clear visualization of the tumors. 2-(77)Br-BAMP exhibited preferred pharmacokinetics and high LS180 tumor accumulation, and 2-(76)Br-BAMP enabled clear visualization of the tumors by PET imaging. These findings suggest that 2-(76)Br-BAMP could constitute a potential new PET tracer for tumor imaging and may eventually enable the wider use of amino acid tracers. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Noninvasive imaging of islet grafts using positron-emission tomography
NASA Astrophysics Data System (ADS)
Lu, Yuxin; Dang, Hoa; Middleton, Blake; Zhang, Zesong; Washburn, Lorraine; Stout, David B.; Campbell-Thompson, Martha; Atkinson, Mark A.; Phelps, Michael; Gambhir, Sanjiv Sam; Tian, Jide; Kaufman, Daniel L.
2006-07-01
Islet transplantation offers a potential therapy to restore glucose homeostasis in type 1 diabetes patients. However, islet transplantation is not routinely successful because most islet recipients gradually lose graft function. Furthermore, serological markers of islet function are insensitive to islet loss until the latter stages of islet graft rejection. A noninvasive method of monitoring islet grafts would aid in the assessment of islet graft survival and the evaluation of interventions designed to prolong graft survival. Here, we show that recombinant adenovirus can engineer isolated islets to express a positron-emission tomography (PET) reporter gene and that these islets can be repeatedly imaged by using microPET after transplantation into mice. The magnitude of signal from engineered islets implanted into the axillary cavity was directly related to the implanted islet mass. PET signals attenuated over the following weeks because of the transient nature of adenovirus-mediated gene expression. Because the liver is the preferred site for islet implantation in humans, we also tested whether islets could be imaged after transfusion into the mouse liver. Control studies revealed that both intrahepatic islet transplantation and hyperglycemia altered the biodistribution kinetics of the PET probe systemically. Although transplanted islets were dispersed throughout the liver, clear signals from the liver region of mice receiving PET reporter-expressing islets were detectable for several weeks. Viral transduction, PET reporter expression, and repeated microPET imaging had no apparent deleterious effects on islet function after implantation. These studies lay a foundation for noninvasive quantitative assessments of islet graft survival using PET. diabetes | transplantation
64Cu-DOTA-trastuzumab PET imaging in patients with HER2-positive breast cancer.
Tamura, Kenji; Kurihara, Hiroaki; Yonemori, Kan; Tsuda, Hitoshi; Suzuki, Junko; Kono, Yuzuru; Honda, Natsuki; Kodaira, Makoto; Yamamoto, Harukaze; Yunokawa, Mayu; Shimizu, Chikako; Hasegawa, Koki; Kanayama, Yousuke; Nozaki, Satoshi; Kinoshita, Takayuki; Wada, Yasuhiro; Tazawa, Shusaku; Takahashi, Kazuhiro; Watanabe, Yasuyoshi; Fujiwara, Yasuhiro
2013-11-01
The purpose of this study was to determine the safety, distribution, internal dosimetry, and initial human epidermal growth factor receptor 2 (HER2)-positive tumor images of (64)Cu-DOTA-trastuzumab in humans. PET was performed on 6 patients with primary or metastatic HER2-positive breast cancer at 1, 24, and 48 h after injection of approximately 130 MBq of the probe (64)Cu-DOTA-trastuzumab. Radioactivity data were collected from the blood, urine, and normal-tissue samples of these 6 patients, and the multiorgan biodistribution and internal dosimetry of the probe were evaluated. Safety data were collected for all the patients after the administration of (64)Cu-DOTA-trastuzumab and during the 1-wk follow-up period. According to our results, the best timing for the assessment of (64)Cu-DOTA-trastuzumab uptake by the tumor was 48 h after injection. Radiation exposure during (64)Cu-DOTA-trastuzumab PET was equivalent to that during conventional (18)F-FDG PET. The radioactivity in the blood was high, but uptake of (64)Cu-DOTA-trastuzumab in normal tissues was low. In 2 patients, (64)Cu-DOTA-trastuzumab PET showed brain metastases, indicative of blood-brain barrier disruptions. In 3 patients, (64)Cu-DOTA-trastuzumab PET imaging also revealed primary breast tumors at the lesion sites initially identified by CT. The findings of this study indicated that (64)Cu-DOTA-trastuzumab PET is feasible for the identification of HER2-positive lesions in patients with primary and metastatic breast cancer. The dosimetry and pharmacologic safety results were acceptable at the dose required for adequate PET imaging.
NASA Astrophysics Data System (ADS)
Badea, C. T.; Ghaghada, K.; Espinosa, G.; Strong, L.; Annapragada, A.
2011-03-01
Multi-modality PET-CT imaging is playing an important role in the field of oncology. While PET imaging facilitates functional interrogation of tumor status, the use of CT imaging is primarily limited to anatomical reference. In an attempt to extract comprehensive information about tumor cells and its microenvironment, we used a nanoparticle xray contrast agent to image tumor vasculature and vessel 'leakiness' and 18F-FDG to investigate the metabolic status of tumor cells. In vivo PET/CT studies were performed in mice implanted with 4T1 mammary breast cancer cells.Early-phase micro-CT imaging enabled visualization 3D vascular architecture of the tumors whereas delayedphase micro-CT demonstrated highly permeable vessels as evident by nanoparticle accumulation within the tumor. Both imaging modalities demonstrated the presence of a necrotic core as indicated by a hypo-enhanced region in the center of the tumor. At early time-points, the CT-derived fractional blood volume did not correlate with 18F-FDG uptake. At delayed time-points, the tumor enhancement in 18F-FDG micro-PET images correlated with the delayed signal enhanced due to nanoparticle extravasation seen in CT images. The proposed hybrid imaging approach could be used to better understand tumor angiogenesis and to be the basis for monitoring and evaluating anti-angiogenic and nano-chemotherapies.
Ganeshan, B; Miles, K A; Babikir, S; Shortman, R; Afaq, A; Ardeshna, K M; Groves, A M; Kayani, I
2017-03-01
The purpose of this study was to investigate the ability of computed tomography texture analysis (CTTA) to provide additional prognostic information in patients with Hodgkin's lymphoma (HL) and high-grade non-Hodgkin's lymphoma (NHL). This retrospective, pilot-study approved by the IRB comprised 45 lymphoma patients undergoing routine 18F-FDG-PET-CT. Progression-free survival (PFS) was determined from clinical follow-up (mean-duration: 40 months; range: 10-62 months). Non-contrast-enhanced low-dose CT images were submitted to CTTA comprising image filtration to highlight features of different sizes followed by histogram-analysis using kurtosis. Prognostic value of CTTA was compared to PET FDG-uptake value, tumour-stage, tumour-bulk, lymphoma-type, treatment-regime, and interim FDG-PET (iPET) status using Kaplan-Meier analysis. Cox regression analysis determined the independence of significantly prognostic imaging and clinical features. A total of 27 patients had aggressive NHL and 18 had HL. Mean PFS was 48.5 months. There was no significant difference in pre-treatment CTTA between the lymphoma sub-types. Kaplan-Meier analysis found pre-treatment CTTA (medium feature scale, p=0.010) and iPET status (p<0.001) to be significant predictors of PFS. Cox analysis revealed that an interaction between pre-treatment CTTA and iPET status was the only independent predictor of PFS (HR: 25.5, 95% CI: 5.4-120, p<0.001). Specifically, pre-treatment CTTA risk stratified patients with negative iPET. CTTA can potentially provide prognostic information complementary to iPET for patients with HL and aggressive NHL. • CT texture-analysis (CTTA) provides prognostic information complementary to interim FDG-PET in Lymphoma. • Pre-treatment CTTA and interim PET status were significant predictors of progression-free survival. • Patients with negative interim PET could be further stratified by pre-treatment CTTA. • Provide precision surveillance where additional imaging reserved for patients at greatest recurrence-risk. • Assists in risk-adapted treatment strategy based on interim PET and CTTA.
Dutta, Pinaki R; Riaz, Nadeem; McBride, Sean; Morris, Luc G; Patel, Snehal; Ganly, Ian; Wong, Richard J; Palmer, Frank; Schöder, Heiko; Lee, Nancy
2016-04-01
The purpose of this study was for us to present our evaluation of the effectiveness of positron emission tomography (PET)/CT imaging in postoperative patients with oral cavity squamous cell carcinoma (SCC) before initiating adjuvant radiation therapy. Treatment planning PET/CT scans were obtained in 44 patients with oral cavity SCC receiving adjuvant radiation. We identified target areas harboring macroscopic disease requiring higher radiation doses or additional surgery. Fourteen PET/CT scans were abnormal. Thirteen patients underwent surgery and/or biopsy, increased radiation dose, and/or addition of chemotherapy. Eleven patients received higher radiation doses. Patients undergoing imaging >8 weeks were more likely to have abnormal results (p = .01). One-year distant metastases-free survival was significantly worse in patients with positive PET/CT scans (61.5% vs 92.7%; p = .01). The estimated positive predictive value (PPV) was 38% for postoperative PET/CT scanning. We demonstrated that 32% of patients have abnormal PET/CT scans resulting in management changes. Patients may benefit from postoperative PET/CT imaging to optimize adjuvant radiation treatment planning. © 2015 Wiley Periodicals, Inc. Head Neck 38: E1285-E1293, 2016. © 2015 Wiley Periodicals, Inc.
Sidell, Douglas; Venick, Robert S; Shapiro, Nina L
2014-05-01
Epstein-Barr virus (EBV) infection is a potential precursor of post-transplantation lymphoproliferative disorder (PTLD) in the pediatric transplant patient. Positron-emission tomography (PET) imaging is increasingly utilized in this population to monitor for neoplasia and PTLD. We assess the association between EBV serum titers and Waldeyer's ring and cervical lymph node PET positivity in the pediatric transplant recipient. Retrospective analysis of EBV serology and PET imaging results in pediatric orthotopic liver transplantation (OLT) recipients. Imaging results and laboratory data were reviewed for all pediatric OLT recipients from January 2005 to July 2011 at a single institution. Charts were evaluated for PET positivity at Waldeyer's ring or cervical lymphatics, and for EBV serology results. Demographic data extracted include patient sex and age at transplantation. A total of 122 pediatric OLT recipients were reviewed. Twelve patients (10%) underwent PET imaging. Overall, four patients (33%) had evidence of PET positivity at Waldeyer's ring or cervical lymphatics. Five patients (42%) had positive EBV serology. There was a significant association between PET imaging results and EBV DNA serology results (P = .01). PTLD surveillance in the pediatric transplant recipient is an important component of long-term care in this population. Although PET imaging is a new modality in monitoring pediatric transplant recipients for early signs of PTLD, an association between EBV serology and PET imaging results appears to exist. With increased implementation, PET imaging will likely prove valuable in its ability to monitor the transplant recipient at risk for PTLD. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.
NASA Astrophysics Data System (ADS)
Magee, Derek; Tanner, Steven F.; Waller, Michael; Tan, Ai Lyn; McGonagle, Dennis; Jeavons, Alan P.
2010-08-01
Co-registration of clinical images acquired using different imaging modalities and equipment is finding increasing use in patient studies. Here we present a method for registering high-resolution positron emission tomography (PET) data of the hand acquired using high-density avalanche chambers with magnetic resonance (MR) images of the finger obtained using a 'microscopy coil'. This allows the identification of the anatomical location of the PET radiotracer and thereby locates areas of active bone metabolism/'turnover'. Image fusion involving data acquired from the hand is demanding because rigid-body transformations cannot be employed to accurately register the images. The non-rigid registration technique that has been implemented in this study uses a variational approach to maximize the mutual information between images acquired using these different imaging modalities. A piecewise model of the fingers is employed to ensure that the methodology is robust and that it generates an accurate registration. Evaluation of the accuracy of the technique is tested using both synthetic data and PET and MR images acquired from patients with osteoarthritis. The method outperforms some established non-rigid registration techniques and results in a mean registration error that is less than approximately 1.5 mm in the vicinity of the finger joints.
NASA Astrophysics Data System (ADS)
Boisson, F.; Wimberley, C. J.; Lehnert, W.; Zahra, D.; Pham, T.; Perkins, G.; Hamze, H.; Gregoire, M.-C.; Reilhac, A.
2013-10-01
Monte Carlo-based simulation of positron emission tomography (PET) data plays a key role in the design and optimization of data correction and processing methods. Our first aim was to adapt and configure the PET-SORTEO Monte Carlo simulation program for the geometry of the widely distributed Inveon PET preclinical scanner manufactured by Siemens Preclinical Solutions. The validation was carried out against actual measurements performed on the Inveon PET scanner at the Australian Nuclear Science and Technology Organisation in Australia and at the Brain & Mind Research Institute and by strictly following the NEMA NU 4-2008 standard. The comparison of simulated and experimental performance measurements included spatial resolution, sensitivity, scatter fraction and count rates, image quality and Derenzo phantom studies. Results showed that PET-SORTEO reliably reproduces the performances of this Inveon preclinical system. In addition, imaging studies showed that the PET-SORTEO simulation program provides raw data for the Inveon scanner that can be fully corrected and reconstructed using the same programs as for the actual data. All correction techniques (attenuation, scatter, randoms, dead-time, and normalization) can be applied on the simulated data leading to fully quantitative reconstructed images. In the second part of the study, we demonstrated its ability to generate fast and realistic biological studies. PET-SORTEO is a workable and reliable tool that can be used, in a classical way, to validate and/or optimize a single PET data processing step such as a reconstruction method. However, we demonstrated that by combining a realistic simulated biological study ([11C]Raclopride here) involving different condition groups, simulation allows one also to assess and optimize the data correction, reconstruction and data processing line flow as a whole, specifically for each biological study, which is our ultimate intent.
Novel multimodality segmentation using level sets and Jensen-Rényi divergence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markel, Daniel, E-mail: daniel.markel@mail.mcgill.ca; Zaidi, Habib; Geneva Neuroscience Center, Geneva University, CH-1205 Geneva
2013-12-15
Purpose: Positron emission tomography (PET) is playing an increasing role in radiotherapy treatment planning. However, despite progress, robust algorithms for PET and multimodal image segmentation are still lacking, especially if the algorithm were extended to image-guided and adaptive radiotherapy (IGART). This work presents a novel multimodality segmentation algorithm using the Jensen-Rényi divergence (JRD) to evolve the geometric level set contour. The algorithm offers improved noise tolerance which is particularly applicable to segmentation of regions found in PET and cone-beam computed tomography. Methods: A steepest gradient ascent optimization method is used in conjunction with the JRD and a level set activemore » contour to iteratively evolve a contour to partition an image based on statistical divergence of the intensity histograms. The algorithm is evaluated using PET scans of pharyngolaryngeal squamous cell carcinoma with the corresponding histological reference. The multimodality extension of the algorithm is evaluated using 22 PET/CT scans of patients with lung carcinoma and a physical phantom scanned under varying image quality conditions. Results: The average concordance index (CI) of the JRD segmentation of the PET images was 0.56 with an average classification error of 65%. The segmentation of the lung carcinoma images had a maximum diameter relative error of 63%, 19.5%, and 14.8% when using CT, PET, and combined PET/CT images, respectively. The estimated maximal diameters of the gross tumor volume (GTV) showed a high correlation with the macroscopically determined maximal diameters, with aR{sup 2} value of 0.85 and 0.88 using the PET and PET/CT images, respectively. Results from the physical phantom show that the JRD is more robust to image noise compared to mutual information and region growing. Conclusions: The JRD has shown improved noise tolerance compared to mutual information for the purpose of PET image segmentation. Presented is a flexible framework for multimodal image segmentation that can incorporate a large number of inputs efficiently for IGART.« less
Novel multimodality segmentation using level sets and Jensen-Rényi divergence.
Markel, Daniel; Zaidi, Habib; El Naqa, Issam
2013-12-01
Positron emission tomography (PET) is playing an increasing role in radiotherapy treatment planning. However, despite progress, robust algorithms for PET and multimodal image segmentation are still lacking, especially if the algorithm were extended to image-guided and adaptive radiotherapy (IGART). This work presents a novel multimodality segmentation algorithm using the Jensen-Rényi divergence (JRD) to evolve the geometric level set contour. The algorithm offers improved noise tolerance which is particularly applicable to segmentation of regions found in PET and cone-beam computed tomography. A steepest gradient ascent optimization method is used in conjunction with the JRD and a level set active contour to iteratively evolve a contour to partition an image based on statistical divergence of the intensity histograms. The algorithm is evaluated using PET scans of pharyngolaryngeal squamous cell carcinoma with the corresponding histological reference. The multimodality extension of the algorithm is evaluated using 22 PET/CT scans of patients with lung carcinoma and a physical phantom scanned under varying image quality conditions. The average concordance index (CI) of the JRD segmentation of the PET images was 0.56 with an average classification error of 65%. The segmentation of the lung carcinoma images had a maximum diameter relative error of 63%, 19.5%, and 14.8% when using CT, PET, and combined PET/CT images, respectively. The estimated maximal diameters of the gross tumor volume (GTV) showed a high correlation with the macroscopically determined maximal diameters, with a R(2) value of 0.85 and 0.88 using the PET and PET/CT images, respectively. Results from the physical phantom show that the JRD is more robust to image noise compared to mutual information and region growing. The JRD has shown improved noise tolerance compared to mutual information for the purpose of PET image segmentation. Presented is a flexible framework for multimodal image segmentation that can incorporate a large number of inputs efficiently for IGART.
Zhu, Yunqi; Xu, Kedi; Xu, Caiyun; Zhang, Jiacheng; Ji, Jianfeng; Zheng, Xiaoxiang; Zhang, Hong; Tian, Mei
2016-07-01
Brain-computer interface (BCI) technology has great potential for improving the quality of life for neurologic patients. This study aimed to use PET mapping for BCI-based stimulation in a rat model with electrodes implanted in the ventroposterior medial (VPM) nucleus of the thalamus. PET imaging studies were conducted before and after stimulation of the right VPM. Stimulation induced significant orienting performance. (18)F-FDG uptake increased significantly in the paraventricular thalamic nucleus, septohippocampal nucleus, olfactory bulb, left crus II of the ansiform lobule of the cerebellum, and bilaterally in the lateral septum, amygdala, piriform cortex, endopiriform nucleus, and insular cortex, but it decreased in the right secondary visual cortex, right simple lobule of the cerebellum, and bilaterally in the somatosensory cortex. This study demonstrated that PET mapping after VPM stimulation can identify specific brain regions associated with orienting performance. PET molecular imaging may be an important approach for BCI-based research and its clinical applications. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
NASA Astrophysics Data System (ADS)
Morrow, Andrew N.; Matthews, Kenneth L., II; Bujenovic, Steven
2008-03-01
Positron emission tomography (PET) and computed tomography (CT) together are a powerful diagnostic tool, but imperfect image quality allows false positive and false negative diagnoses to be made by any observer despite experience and training. This work investigates PET acquisition mode, reconstruction method and a standard uptake value (SUV) correction scheme on the classification of lesions as benign or malignant in PET/CT images, in an anthropomorphic phantom. The scheme accounts for partial volume effect (PVE) and PET resolution. The observer draws a region of interest (ROI) around the lesion using the CT dataset. A simulated homogenous PET lesion of the same shape as the drawn ROI is blurred with the point spread function (PSF) of the PET scanner to estimate the PVE, providing a scaling factor to produce a corrected SUV. Computer simulations showed that the accuracy of the corrected PET values depends on variations in the CT-drawn boundary and the position of the lesion with respect to the PET image matrix, especially for smaller lesions. Correction accuracy was affected slightly by mismatch of the simulation PSF and the actual scanner PSF. The receiver operating characteristic (ROC) study resulted in several observations. Using observer drawn ROIs, scaled tumor-background ratios (TBRs) more accurately represented actual TBRs than unscaled TBRs. For the PET images, 3D OSEM outperformed 2D OSEM, 3D OSEM outperformed 3D FBP, and 2D OSEM outperformed 2D FBP. The correction scheme significantly increased sensitivity and slightly increased accuracy for all acquisition and reconstruction modes at the cost of a small decrease in specificity.
Parodi, Katia; Paganetti, Harald; Shih, Helen A.; Michaud, Susan; Loeffler, Jay S.; Delaney, Thomas F.; Liebsch, Norbert J.; Munzenrider, John E.; Fischman, Alan J.; Knopf, Antje; Bortfeld, Thomas
2007-01-01
Purpose To investigate the feasibility and value of positron emission tomography and computed tomography (PET/CT) for treatment verification after proton radiotherapy. Methods and Materials This study included 9 patients with tumors in the cranial base, spine, orbit, and eye. Total doses of 1.8–3 GyE and 10 GyE (for an ocular melanoma) per fraction were delivered in 1 or 2 fields. Imaging was performed with a commercial PET/CT scanner for 30 min, starting within 20 min after treatment. The same treatment immobilization device was used during imaging for all but 2 patients. Measured PET/CT images were coregistered to the planning CT and compared with the corresponding PET expectation, obtained from CT-based Monte Carlo calculations complemented by functional information. For the ocular case, treatment position was approximately replicated, and spatial correlation was deduced from reference clips visible in both the planning radiographs and imaging CT. Here, the expected PET image was obtained from an analytical model. Results Good spatial correlation and quantitative agreement within 30% were found between the measured and expected activity. For head-and-neck patients, the beam range could be verified with an accuracy of 1–2 mm in well-coregistered bony structures. Low spine and eye sites indicated the need for better fixation and coregistration methods. An analysis of activity decay revealed as tissue-effective half-lives of 800–1,150 s. Conclusions This study demonstrates the feasibility of postradiation PET/CT for in vivo treatment verification. It also indicates some technological and methodological improvements needed for optimal clinical application. PMID:17544003
Fusion of multi-tracer PET images for dose painting.
Lelandais, Benoît; Ruan, Su; Denœux, Thierry; Vera, Pierre; Gardin, Isabelle
2014-10-01
PET imaging with FluoroDesoxyGlucose (FDG) tracer is clinically used for the definition of Biological Target Volumes (BTVs) for radiotherapy. Recently, new tracers, such as FLuoroThymidine (FLT) or FluoroMisonidazol (FMiso), have been proposed. They provide complementary information for the definition of BTVs. Our work is to fuse multi-tracer PET images to obtain a good BTV definition and to help the radiation oncologist in dose painting. Due to the noise and the partial volume effect leading, respectively, to the presence of uncertainty and imprecision in PET images, the segmentation and the fusion of PET images is difficult. In this paper, a framework based on Belief Function Theory (BFT) is proposed for the segmentation of BTV from multi-tracer PET images. The first step is based on an extension of the Evidential C-Means (ECM) algorithm, taking advantage of neighboring voxels for dealing with uncertainty and imprecision in each mono-tracer PET image. Then, imprecision and uncertainty are, respectively, reduced using prior knowledge related to defects in the acquisition system and neighborhood information. Finally, a multi-tracer PET image fusion is performed. The results are represented by a set of parametric maps that provide important information for dose painting. The performances are evaluated on PET phantoms and patient data with lung cancer. Quantitative results show good performance of our method compared with other methods. Copyright © 2014 Elsevier B.V. All rights reserved.
Grecchi, Elisabetta; Veronese, Mattia; Bodini, Benedetta; García-Lorenzo, Daniel; Battaglini, Marco; Stankoff, Bruno; Turkheimer, Federico E
2017-12-01
The [ 11 C]PIB PET tracer, originally developed for amyloid imaging, has been recently repurposed to quantify demyelination and remyelination in multiple sclerosis (MS). Myelin PET imaging, however, is limited by its low resolution that deteriorates the quantification accuracy of white matter (WM) lesions. Here, we introduce a novel partial volume correction (PVC) method called Multiresolution-Multimodal Resolution-Recovery (MM-RR), which uses the wavelet transform and a synergistic statistical model to exploit MRI structural images to improve the resolution of [ 11 C]PIB PET myelin imaging. MM-RR performance was tested on a phantom acquisition and in a dataset comprising [ 11 C]PIB PET and MR T1- and T2-weighted images of 8 healthy controls and 20 MS patients. For the control group, the MM-RR PET images showed an average increase of 5.7% in WM uptake while the grey-matter (GM) uptake remained constant, resulting in +31% WM/GM contrast. Furthermore, MM-RR PET binding maps correlated significantly with the mRNA expressions of the most represented proteins in the myelin sheath (R 2 = 0.57 ± 0.09). In the patient group, MM-RR PET images showed sharper lesion contours and significant improvement in normal-appearing tissue/WM-lesion contrast compared to standard PET (contrast improvement > +40%). These results were consistent with MM-RR performances in phantom experiments.
Kamei, Ryotaro; Watanabe, Yuji; Sagiyama, Koji; Isoda, Takuro; Togao, Osamu; Honda, Hiroshi
2018-05-23
To investigate the optimal monochromatic color combination for fusion imaging of FDG-PET and diffusion-weighted MR images (DW) regarding lesion conspicuity of each image. Six linear monochromatic color-maps of red, blue, green, cyan, magenta, and yellow were assigned to each of the FDG-PET and DW images. Total perceptual color differences of the lesions were calculated based on the lightness and chromaticity measured with the photometer. Visual lesion conspicuity was also compared among the PET-only, DW-only and PET-DW-double positive portions with mean conspicuity scores. Statistical analysis was performed with a one-way analysis of variance and Spearman's rank correlation coefficient. Among all the 12 possible monochromatic color-map combinations, the 3 combinations of red/cyan, magenta/green, and red/green produced the highest conspicuity scores. Total color differences between PET-positive and double-positive portions correlated with conspicuity scores (ρ = 0.2933, p < 0.005). Lightness differences showed a significant negative correlation with conspicuity scores between the PET-only and DWI-only positive portions. Chromaticity differences showed a marginally significant correlation with conspicuity scores between DWI-positive and double-positive portions. Monochromatic color combinations can facilitate the visual evaluation of FDG-uptake and diffusivity as well as registration accuracy on the FDG-PET/DW fusion images, when red- and green-colored elements are assigned to FDG-PET and DW images, respectively.
Kim, Jin Su; Cho, Hanna; Choi, Jae Yong; Lee, Seung Ha; Ryu, Young Hoon; Lyoo, Chul Hyoung; Lee, Myung Sik
2015-01-01
Spatial normalization is a prerequisite step for analyzing positron emission tomography (PET) images both by using volume-of-interest (VOI) template and voxel-based analysis. Magnetic resonance (MR) or ligand-specific PET templates are currently used for spatial normalization of PET images. We used computed tomography (CT) images acquired with PET/CT scanner for the spatial normalization for [18F]-N-3-fluoropropyl-2-betacarboxymethoxy-3-beta-(4-iodophenyl) nortropane (FP-CIT) PET images and compared target-to-cerebellar standardized uptake value ratio (SUVR) values with those obtained from MR- or PET-guided spatial normalization method in healthy controls and patients with Parkinson's disease (PD). We included 71 healthy controls and 56 patients with PD who underwent [18F]-FP-CIT PET scans with a PET/CT scanner and T1-weighted MR scans. Spatial normalization of MR images was done with a conventional spatial normalization tool (cvMR) and with DARTEL toolbox (dtMR) in statistical parametric mapping software. The CT images were modified in two ways, skull-stripping (ssCT) and intensity transformation (itCT). We normalized PET images with cvMR-, dtMR-, ssCT-, itCT-, and PET-guided methods by using specific templates for each modality and measured striatal SUVR with a VOI template. The SUVR values measured with FreeSurfer-generated VOIs (FSVOI) overlaid on original PET images were also used as a gold standard for comparison. The SUVR values derived from all four structure-guided spatial normalization methods were highly correlated with those measured with FSVOI (P < 0.0001). Putaminal SUVR values were highly effective for discriminating PD patients from controls. However, the PET-guided method excessively overestimated striatal SUVR values in the PD patients by more than 30% in caudate and putamen, and thereby spoiled the linearity between the striatal SUVR values in all subjects and showed lower disease discrimination ability. Two CT-guided methods showed comparable capability with the MR-guided methods in separating PD patients from controls and showed better correlation between putaminal SUVR values and the parkinsonian motor severity than the PET-guided method. CT-guided spatial normalization methods provided reliable striatal SUVR values comparable to those obtained with MR-guided methods. CT-guided methods can be useful for analyzing dopamine transporter PET images when MR images are unavailable.
Kim, Jin Su; Cho, Hanna; Choi, Jae Yong; Lee, Seung Ha; Ryu, Young Hoon; Lyoo, Chul Hyoung; Lee, Myung Sik
2015-01-01
Background Spatial normalization is a prerequisite step for analyzing positron emission tomography (PET) images both by using volume-of-interest (VOI) template and voxel-based analysis. Magnetic resonance (MR) or ligand-specific PET templates are currently used for spatial normalization of PET images. We used computed tomography (CT) images acquired with PET/CT scanner for the spatial normalization for [18F]-N-3-fluoropropyl-2-betacarboxymethoxy-3-beta-(4-iodophenyl) nortropane (FP-CIT) PET images and compared target-to-cerebellar standardized uptake value ratio (SUVR) values with those obtained from MR- or PET-guided spatial normalization method in healthy controls and patients with Parkinson’s disease (PD). Methods We included 71 healthy controls and 56 patients with PD who underwent [18F]-FP-CIT PET scans with a PET/CT scanner and T1-weighted MR scans. Spatial normalization of MR images was done with a conventional spatial normalization tool (cvMR) and with DARTEL toolbox (dtMR) in statistical parametric mapping software. The CT images were modified in two ways, skull-stripping (ssCT) and intensity transformation (itCT). We normalized PET images with cvMR-, dtMR-, ssCT-, itCT-, and PET-guided methods by using specific templates for each modality and measured striatal SUVR with a VOI template. The SUVR values measured with FreeSurfer-generated VOIs (FSVOI) overlaid on original PET images were also used as a gold standard for comparison. Results The SUVR values derived from all four structure-guided spatial normalization methods were highly correlated with those measured with FSVOI (P < 0.0001). Putaminal SUVR values were highly effective for discriminating PD patients from controls. However, the PET-guided method excessively overestimated striatal SUVR values in the PD patients by more than 30% in caudate and putamen, and thereby spoiled the linearity between the striatal SUVR values in all subjects and showed lower disease discrimination ability. Two CT-guided methods showed comparable capability with the MR-guided methods in separating PD patients from controls and showed better correlation between putaminal SUVR values and the parkinsonian motor severity than the PET-guided method. Conclusion CT-guided spatial normalization methods provided reliable striatal SUVR values comparable to those obtained with MR-guided methods. CT-guided methods can be useful for analyzing dopamine transporter PET images when MR images are unavailable. PMID:26147749
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, W; Wang, J; Zhang, H
Purpose: To review the literature in using computerized PET/CT image analysis for the evaluation of tumor response to therapy. Methods: We reviewed and summarized more than 100 papers that used computerized image analysis techniques for the evaluation of tumor response with PET/CT. This review mainly covered four aspects: image registration, tumor segmentation, image feature extraction, and response evaluation. Results: Although rigid image registration is straightforward, it has been shown to achieve good alignment between baseline and evaluation scans. Deformable image registration has been shown to improve the alignment when complex deformable distortions occur due to tumor shrinkage, weight loss ormore » gain, and motion. Many semi-automatic tumor segmentation methods have been developed on PET. A comparative study revealed benefits of high levels of user interaction with simultaneous visualization of CT images and PET gradients. On CT, semi-automatic methods have been developed for only tumors that show marked difference in CT attenuation between the tumor and the surrounding normal tissues. Quite a few multi-modality segmentation methods have been shown to improve accuracy compared to single-modality algorithms. Advanced PET image features considering spatial information, such as tumor volume, tumor shape, total glycolytic volume, histogram distance, and texture features have been found more informative than the traditional SUVmax for the prediction of tumor response. Advanced CT features, including volumetric, attenuation, morphologic, structure, and texture descriptors, have also been found advantage over the traditional RECIST and WHO criteria in certain tumor types. Predictive models based on machine learning technique have been constructed for correlating selected image features to response. These models showed improved performance compared to current methods using cutoff value of a single measurement for tumor response. Conclusion: This review showed that computerized PET/CT image analysis holds great potential to improve the accuracy in evaluation of tumor response. This work was supported in part by the National Cancer Institute Grant R01CA172638.« less
Yamasaki, Tomoteru; Fujinaga, Masayuki; Maeda, Jun; Kawamura, Kazunori; Yui, Joji; Hatori, Akiko; Yoshida, Yuichiro; Nagai, Yuji; Tokunaga, Masaki; Higuchi, Makoto; Suhara, Tetsuya; Fukumura, Toshimitsu; Zhang, Ming-Rong
2012-04-01
In this study, we evaluate the utility of 4-[(18)F]fluoro-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methylbenzamide ([(18)F]FITM) as a positron emission tomography (PET) ligand for imaging of the metabotropic glutamate receptor subtype 1 (mGluR1) in rat and monkey brains. In vivo distribution of [(18)F]FITM in brains was evaluated by PET scans with or without the mGluR1-selective antagonist (JNJ16259685). Kinetic parameters of monkey PET data were obtained using the two-tissue compartment model with arterial blood sampling. In PET studies in rat and monkey brains, the highest uptake of radioactivity was in the cerebellum, followed by moderate uptake in the thalamus, hippocampus and striatum. The lowest uptake of radioactivity was detected in the pons. These uptakes in all brain regions were dramatically decreased by pre-administration of JNJ16259685. In kinetic analysis of monkey PET, the highest volume of distribution (V(T)) was detected in the cerebellum (V(T) = 11.5). [(18)F]FITM has an excellent profile as a PET ligand for mGluR1 imaging. PET with [(18)F]FITM may prove useful for determining the regional distribution and density of mGluR1 and the mGluR1 occupancy of drugs in human brains.
Positron emission tomography to assess hypoxia and perfusion in lung cancer
Verwer, Eline E; Boellaard, Ronald; van der Veldt, Astrid AM
2014-01-01
In lung cancer, tumor hypoxia is a characteristic feature, which is associated with a poor prognosis and resistance to both radiation therapy and chemotherapy. As the development of tumor hypoxia is associated with decreased perfusion, perfusion measurements provide more insight into the relation between hypoxia and perfusion in malignant tumors. Positron emission tomography (PET) is a highly sensitive nuclear imaging technique that is suited for non-invasive in vivo monitoring of dynamic processes including hypoxia and its associated parameter perfusion. The PET technique enables quantitative assessment of hypoxia and perfusion in tumors. To this end, consecutive PET scans can be performed in one scan session. Using different hypoxia tracers, PET imaging may provide insight into the prognostic significance of hypoxia and perfusion in lung cancer. In addition, PET studies may play an important role in various stages of personalized medicine, as these may help to select patients for specific treatments including radiation therapy, hypoxia modifying therapies, and antiangiogenic strategies. In addition, specific PET tracers can be applied for monitoring therapy. The present review provides an overview of the clinical applications of PET to measure hypoxia and perfusion in lung cancer. Available PET tracers and their characteristics as well as the applications of combined hypoxia and perfusion PET imaging are discussed. PMID:25493221
Koolen, Bas B; Vrancken Peeters, Marie-Jeanne T F D; Aukema, Tjeerd S; Vogel, Wouter V; Oldenburg, Hester S A; van der Hage, Jos A; Hoefnagel, Cornelis A; Stokkel, Marcel P M; Loo, Claudette E; Rodenhuis, Sjoerd; Rutgers, Emiel J Th; Valdés Olmos, Renato A
2012-01-01
The aim of the present study was to investigate if 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) outperforms conventional imaging techniques for excluding distant metastases prior to neoadjuvant chemotherapy (NAC) treatment in patients with stage II and III breast cancer. Second, we assessed the clinical importance of false positive findings. One hundred and fifty four patients with stage II or III breast cancer, scheduled to receive NAC, underwent an 18F-FDG PET/CT scan and conventional imaging, consisting of bone scintigraphy, ultrasound of the liver, and chest radiography. Suspect additional lesions at staging examination were confirmed by biopsy and histopathology and/or additional imaging. Metastases that were detected within 6 months after the PET/CT scan were considered evidence of occult metastasis, missed by staging examination. Forty-two additional distant lesions were seen in 25 patients with PET/CT and could be confirmed in 20 (13%) of 154 patients. PET/CT was false positive for 8 additional lesions (19%) and misclassified the presence of metastatic disease in 5 (3%) of 154 patients. In 16 (80%) of 20 patients, additional lesions were exclusively seen with PET/CT, leading to a change in treatment in 13 (8%) of 154 patients. In 129 patients with a negative staging PET/CT, no metastases developed during the follow-up of 9.0 months. Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of PET/CT in the detection of additional distant lesions in patients with stage II or III breast cancer are 100, 96, 80, 100, and 97%, respectively. FDG PET/CT is superior to conventional imaging techniques in the detection of distant metastases in patients with untreated stage II or III breast cancer and is associated with a low false positive rate. PET/CT may be of additional value in the staging of breast cancer prior to NAC.
Umeda, Takuro; Miwa, Kenta; Murata, Taisuke; Miyaji, Noriaki; Wagatsuma, Kei; Motegi, Kazuki; Terauchi, Takashi; Koizumi, Mitsuru
2017-12-01
The present study aimed to qualitatively and quantitatively evaluate PET images as a function of acquisition time for various leg sizes, and to optimize a shorter variable-acquisition time protocol for legs to achieve better qualitative and quantitative accuracy of true whole-body PET/CT images. The diameters of legs to be modeled as phantoms were defined based on data derived from 53 patients. This study analyzed PET images of a NEMA phantom and three plastic bottle phantoms (diameter, 5.68, 8.54 and 10.7 cm) that simulated the human body and legs, respectively. The phantoms comprised two spheres (diameters, 10 and 17 mm) containing fluorine-18 fluorodeoxyglucose solution with sphere-to-background ratios of 4 at a background radioactivity level of 2.65 kBq/mL. All PET data were reconstructed with acquisition times ranging from 10 to 180, and 1200 s. We visually evaluated image quality and determined the coefficient of variance (CV) of the background, contrast and the quantitative %error of the hot spheres, and then determined two shorter variable-acquisition protocols for legs. Lesion detectability and quantitative accuracy determined based on maximum standardized uptake values (SUV max ) in PET images of a patient using the proposed protocols were also evaluated. A larger phantom and a shorter acquisition time resulted in increased background noise on images and decreased the contrast in hot spheres. A visual score of ≥ 1.5 was obtained when the acquisition time was ≥ 30 s for three leg phantoms, and ≥ 120 s for the NEMA phantom. The quantitative %errors of the 10- and 17-mm spheres in the leg phantoms were ± 15 and ± 10%, respectively, in PET images with a high CV (scan < 30 s). The mean SUV max of three lesions using the current fixed-acquisition and two proposed variable-acquisition time protocols in the clinical study were 3.1, 3.1 and 3.2, respectively, which did not significantly differ. Leg acquisition time per bed position of even 30-90 s allows axial equalization, uniform image noise and a maximum ± 15% quantitative accuracy for the smallest lesion. The overall acquisition time was reduced by 23-42% using the proposed shorter variable than the current fixed-acquisition time for imaging legs, indicating that this is a useful and practical protocol for routine qualitative and quantitative PET/CT assessment in the clinical setting.
Functional Renal Imaging with 2-Deoxy-2-18F-Fluorosorbitol PET in Rat Models of Renal Disorders.
Werner, Rudolf A; Wakabayashi, Hiroshi; Chen, Xinyu; Hirano, Mitsuru; Shinaji, Tetsuya; Lapa, Constantin; Rowe, Steven P; Javadi, Mehrbod S; Higuchi, Takahiro
2018-05-01
Precise regional quantitative assessment of renal function is limited with conventional 99m Tc-labeled renal radiotracers. A recent study reported that the PET radiotracer 2-deoxy-2- 18 F-fluorosorbitol ( 18 F-FDS) has ideal pharmacokinetics for functional renal imaging. Furthermore, 18 F-FDS is available via simple reduction from routinely used 18 F-FDG. We aimed to further investigate the potential of 18 F-FDS PET as a functional renal imaging agent using rat models of kidney disease. Methods: Two different rat models of renal impairment were investigated: induction of acute renal failure by intramuscular administration of glycerol in the hind legs, and induction of unilateral ureteral obstruction by ligation of the left ureter. At 24 h after these procedures, dynamic 30-min 18 F-FDS PET data were acquired using a dedicated small-animal PET system. Urine 18 F-FDS radioactivity 30 min after radiotracer injection was measured together with coinjected 99m Tc-diethylenetriaminepentaacetic acid urine activity. Results: Dynamic PET imaging demonstrated rapid 18 F-FDS accumulation in the renal cortex and rapid radiotracer excretion via the kidneys in healthy control rats. On the other hand, significantly delayed renal radiotracer uptake (continuous slow uptake) was observed in acute renal failure rats and unilateral ureteral obstruction kidneys. Measured urine radiotracer concentrations of 18 F-FDS and 99m Tc-diethylenetriaminepentaacetic acid correlated well with each other ( R = 0.84, P < 0.05). Conclusion: 18 F-FDS PET demonstrated favorable kinetics for functional renal imaging in rat models of kidney diseases. 18 F-FDS PET imaging, with its advantages of high spatiotemporal resolution and simple tracer production, could potentially complement or replace conventional renal scintigraphy in select cases and significantly improve the diagnostic performance of renal functional imaging. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
Reuzé, Sylvain; Orlhac, Fanny; Chargari, Cyrus; Nioche, Christophe; Limkin, Elaine; Riet, François; Escande, Alexandre; Haie-Meder, Christine; Dercle, Laurent; Gouy, Sébastien; Buvat, Irène; Deutsch, Eric; Robert, Charlotte
2017-06-27
To identify an imaging signature predicting local recurrence for locally advanced cervical cancer (LACC) treated by chemoradiation and brachytherapy from baseline 18F-FDG PET images, and to evaluate the possibility of gathering images from two different PET scanners in a radiomic study. 118 patients were included retrospectively. Two groups (G1, G2) were defined according to the PET scanner used for image acquisition. Eleven radiomic features were extracted from delineated cervical tumors to evaluate: (i) the predictive value of features for local recurrence of LACC, (ii) their reproducibility as a function of the scanner within a hepatic reference volume, (iii) the impact of voxel size on feature values. Eight features were statistically significant predictors of local recurrence in G1 (p < 0.05). The multivariate signature trained in G2 was validated in G1 (AUC=0.76, p<0.001) and identified local recurrence more accurately than SUVmax (p=0.022). Four features were significantly different between G1 and G2 in the liver. Spatial resampling was not sufficient to explain the stratification effect. This study showed that radiomic features could predict local recurrence of LACC better than SUVmax. Further investigation is needed before applying a model designed using data from one PET scanner to another.
Molecular Imaging and Precision Medicine in Uterine and Ovarian Cancers.
Zukotynski, Katherine A; Kim, Chun K
2017-10-01
Gynecologic cancer is a heterogeneous group of diseases both functionally and morphologically. Today, PET coupled with computed tomography (PET/CT) or PET/MR imaging play a central role in the precision medicine algorithm of patients with gynecologic malignancy. In particular, PET/CT and PET/MR imaging are molecular imaging techniques that not only are useful tools for initial staging and restaging but provide anatomofunctional insight and can serve as predictive and prognostic biomarkers of response in patients with gynecologic malignancy. Copyright © 2017 Elsevier Inc. All rights reserved.
Role for positron emission tomography in skeletal diseases.
Duet, Michèle; Pouchot, Jacques; Lioté, Frédéric; Faraggi, Marc
2007-01-01
Imaging plays a prominent role in the diagnosis and management of rheumatic diseases. Conventional imaging methods provide high-resolution structural information but usually fail to distinguish between active lesions and residual changes. Positron emission tomography (PET) with the tracer 18F-fluorodeoxyglucose (18F-FDG) was recently introduced into clinical practice as a means of obtaining information on both structure and metabolic activity. 18F-FDG-PET is widely used in oncology and may be valuable in patients with infections or inflammatory diseases, most notably vasculitis. Although encouraging results have been published, the number of studies remains small, as 18F-FDG-PET is an expensive investigation that is not available everywhere. Further work is needed to determine the cost-effectiveness ratio of 18F-FDG-PET in patients with infections or inflammatory diseases. Imaging plays a prominent role in the diagnosis and management of many musculoskeletal diseases. Although considerable progress has been made recently, the structural information supplied by conventional imaging methods is inadequate in some patients. Positron emission tomography (PET) after injection of 18fluorodeoxyglucose (18F-FDG) provides information on tissue metabolism. The usefulness of 18F-FDG-PET in oncology is now widely recognized. Other uses are emerging, in part thanks to the development of new cameras that combine dedicated detectors and an X-scanner in order to ensure accurate three-dimensional localization of metabolically active lesions. However, the exact role for 18F-FDG-PET needs to be studied in larger populations of patients.
Functional Imaging for Prostate Cancer: Therapeutic Implications
Aparici, Carina Mari; Seo, Youngho
2012-01-01
Functional radionuclide imaging modalities, now commonly combined with anatomical imaging modalities CT or MRI (SPECT/CT, PET/CT, and PET/MRI) are promising tools for the management of prostate cancer particularly for therapeutic implications. Sensitive detection capability of prostate cancer using these imaging modalities is one issue; however, the treatment of prostate cancer using the information that can be obtained from functional radionuclide imaging techniques is another challenging area. There are not many SPECT or PET radiotracers that can cover the full spectrum of the management of prostate cancer from initial detection, to staging, prognosis predictor, and all the way to treatment response assessment. However, when used appropriately, the information from functional radionuclide imaging improves, and sometimes significantly changes, the whole course of the cancer management. The limitations of using SPECT and PET radiotracers with regards to therapeutic implications are not so much different from their limitations solely for the task of detecting prostate cancer; however, the specific imaging target and how this target is reliably imaged by SPECT and PET can potentially make significant impact in the treatment of prostate cancer. Finally, while the localized prostate cancer is considered manageable, there is still significant need for improvement in noninvasive imaging of metastatic prostate cancer, in treatment guidance, and in response assessment from functional imaging including radionuclide-based techniques. In this review article, we present the rationale of using functional radionuclide imaging and the therapeutic implications for each of radionuclide imaging agent that have been studied in human subjects. PMID:22840598
Hybrid FDG-PET/MR compared to FDG-PET/CT in adult lymphoma patients.
Atkinson, Wendy; Catana, Ciprian; Abramson, Jeremy S; Arabasz, Grae; McDermott, Shanaugh; Catalano, Onofrio; Muse, Victorine; Blake, Michael A; Barnes, Jeffrey; Shelly, Martin; Hochberg, Ephraim; Rosen, Bruce R; Guimaraes, Alexander R
2016-07-01
The goal of this study is to evaluate the diagnostic performance of simultaneous FDG-PET/MR including diffusion compared to FDG-PET/CT in patients with lymphoma. Eighteen patients with a confirmed diagnosis of non-Hodgkin's (NHL) or Hodgkin's lymphoma (HL) underwent an IRB-approved, single-injection/dual-imaging protocol consisting of a clinical FDG-PET/CT and subsequent FDG-PET/MR scan. PET images from both modalities were reconstructed iteratively. Attenuation correction was performed using low-dose CT data for PET/CT and Dixon-MR sequences for PET/MR. Diffusion-weighted imaging was performed. SUVmax was measured and compared between modalities and the apparent diffusion coefficient (ADC) using ROI analysis by an experienced radiologist using OsiriX. Strength of correlation between variables was measured using the Pearson correlation coefficient (r p). Of the 18 patients included in this study, 5 had HL and 13 had NHL. The median age was 51 ± 14.8 years. Sixty-five FDG-avid lesions were identified. All FDG-avid lesions were visible with comparable contrast, and therefore initial and follow-up staging was identical between both examinations. SUVmax from FDG-PET/MR [(mean ± sem) (21.3 ± 2.07)] vs. FDG-PET/CT (mean 23.2 ± 2.8) demonstrated a strongly positive correlation [r s = 0.95 (0.94, 0.99); p < 0.0001]. There was no correlation found between ADCmin and SUVmax from FDG-PET/MR [r = 0.17(-0.07, 0.66); p = 0.09]. FDG-PET/MR offers an equivalent whole-body staging examination as compared with PET/CT with an improved radiation safety profile in lymphoma patients. Correlation of ADC to SUVmax was weak, understating their lack of equivalence, but not undermining their potential synergy and differing importance.
68Ga-PSMA-11 PET/CT: the rising star of nuclear medicine in prostate cancer imaging?
Uprimny, Christian
2017-06-02
Ever since the introduction of 68 Ga-prostate-specific membrane antigen 11 positron-emission tomography/computed tomography ( 68 Ga-PSMA-11 PET/CT) a few years ago, it has rapidly achieved great success in the field of prostate cancer imaging. A large number of studies have been published to date, indicating a high potential of 68 Ga-PSMA-11 PET/CT in the work-up of prostate cancer patients, including primary diagnosis, staging and biochemical recurrence. The aim of this review is to present the most important data on this novel, highly promising imaging technique, and to formulate recommendations for possible applications of 68 Ga-PSMA-11 PET/CT in clinical routine.
Kagna, Olga; Kurash, Marina; Ghanem-Zoubi, Nesrin; Keidar, Zohar; Israel, Ora
2017-11-01
18 F-FDG PET/CT plays a significant role in the assessment of various infectious processes. Patients with suspected or known sites of infection are often referred for 18 F-FDG imaging while already receiving antibiotic treatment. The current study assessed whether antibiotic therapy affected the detectability rate of infectious processes by 18 F-FDG PET/CT. Methods: A 5-y retrospective study of all adult patients who underwent 18 F-FDG PET/CT in search of a focal source of infection was performed. The presence, duration, and appropriateness of antibiotic treatment before 18 F-FDG imaging were recorded. Diagnosis of an infectious process was based on microbiologic or pathologic data as well as on clinical and radiologic follow-up. Results: Two hundred seventeen patients underwent 243 PET/CT studies in search of a focal source of infection and were included in the study. Sixty-seven studies were excluded from further analysis because of a final noninfectious etiology or lack of further follow-up or details regarding the antibiotic treatment. The final study population included 176 18 F-FDG PET/CT studies in 153 patients (107 men, 46 women; age range, 18-86 y). One hundred nineteen studies (68%) were performed in patients receiving antibiotic therapy for a range of 1-73 d. A diagnosis of infection was made in 107 true-positive cases (61%), including 63 studies (59%) in patients receiving appropriate antibiotic therapy started before the performance of the 18 F-FDG PET/CT study. There were 52 true-negative (29%) and 17 false-positive (10%) 18 F-FDG PET/CT studies. No false-negative results were found. Conclusion: 18 F-FDG PET/CT correctly identified foci of increased uptake compatible with infection in most patients, including all patients receiving appropriate antimicrobial therapy, with no false-negative cases. On the basis of the current study results, the administration of antibiotics appears to have no clinically significant impact on the diagnostic accuracy of 18 F-FDG PET/CT performed for evaluation of known or suspected infectious processes. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Liang, Yicheng; Peng, Hao
2015-02-07
Depth-of-interaction (DOI) poses a major challenge for a PET system to achieve uniform spatial resolution across the field-of-view, particularly for small animal and organ-dedicated PET systems. In this work, we implemented an analytical method to model system matrix for resolution recovery, which was then incorporated in PET image reconstruction on a graphical processing unit platform, due to its parallel processing capacity. The method utilizes the concepts of virtual DOI layers and multi-ray tracing to calculate the coincidence detection response function for a given line-of-response. The accuracy of the proposed method was validated for a small-bore PET insert to be used for simultaneous PET/MR breast imaging. In addition, the performance comparisons were studied among the following three cases: 1) no physical DOI and no resolution modeling; 2) two physical DOI layers and no resolution modeling; and 3) no physical DOI design but with a different number of virtual DOI layers. The image quality was quantitatively evaluated in terms of spatial resolution (full-width-half-maximum and position offset), contrast recovery coefficient and noise. The results indicate that the proposed method has the potential to be used as an alternative to other physical DOI designs and achieve comparable imaging performances, while reducing detector/system design cost and complexity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Guang, E-mail: lig2@mskcc.org; Schmidtlein, C. Ross; Humm, John L.
Purpose: To assess and account for the impact of respiratory motion on the variability of activity and volume determination of liver tumor in positron emission tomography (PET) through a comparison between free-breathing (FB) and respiration-suspended (RS) PET images. Methods: As part of a PET/computed tomography (CT) guided percutaneous liver ablation procedure performed on a PET/CT scanner, a patient's breathing is suspended on a ventilator, allowing the acquisition of a near-motionless PET and CT reference images of the liver. In this study, baseline RS and FB PET/CT images of 20 patients undergoing thermal ablation were acquired. The RS PET provides near-motionlessmore » reference in a human study, and thereby allows a quantitative evaluation of the effect of respiratory motion on PET images obtained under FB conditions. Two methods were applied to calculate tumor activity and volume: (1) threshold-based segmentation (TBS), estimating the total lesion glycolysis (TLG) and the segmented volume and (2) histogram-based estimation (HBE), yielding the background-subtracted lesion (BSL) activity and associated volume. The TBS method employs 50% of the maximum standardized uptake value (SUV{sub max}) as the threshold for tumors with SUV{sub max} ≥ 2× SUV{sub liver-bkg}, and tumor activity above this threshold yields TLG{sub 50%}. The HBE method determines local PET background based on a Gaussian fit of the low SUV peak in a SUV-volume histogram, which is generated within a user-defined and optimized volume of interest containing both local background and lesion uptakes. Voxels with PET intensity above the fitted background were considered to have originated from the tumor and used to calculate the BSL activity and its associated lesion volume. Results: Respiratory motion caused SUV{sub max} to decrease from RS to FB by −15% ± 11% (p = 0.01). Using TBS method, there was also a decrease in SUV{sub mean} (−18% ± 9%, p = 0.01), but an increase in TLG{sub 50%} (18% ± 36%) and in the segmented volume (47% ± 52%, p = 0.01) from RS to FB PET images. The background uptake in normal liver was stable, 1% ± 9%. In contrast, using the HBE method, the differences in both BSL activity and BSL volume from RS to FB were −8% ± 10% (p = 0.005) and 0% ± 16% (p = 0.94), respectively. Conclusions: This is the first time that almost motion-free PET images of the human liver were acquired and compared to free-breathing PET. The BSL method's results are more consistent, for the calculation of both tumor activity and volume in RS and FB PET images, than those using conventional TBS. This suggests that the BSL method might be less sensitive to motion blurring and provides an improved estimation of tumor activity and volume in the presence of respiratory motion.« less
Efficient system modeling for a small animal PET scanner with tapered DOI detectors.
Zhang, Mengxi; Zhou, Jian; Yang, Yongfeng; Rodríguez-Villafuerte, Mercedes; Qi, Jinyi
2016-01-21
A prototype small animal positron emission tomography (PET) scanner for mouse brain imaging has been developed at UC Davis. The new scanner uses tapered detector arrays with depth of interaction (DOI) measurement. In this paper, we present an efficient system model for the tapered PET scanner using matrix factorization and a virtual scanner geometry. The factored system matrix mainly consists of two components: a sinogram blurring matrix and a geometrical matrix. The geometric matrix is based on a virtual scanner geometry. The sinogram blurring matrix is estimated by matrix factorization. We investigate the performance of different virtual scanner geometries. Both simulation study and real data experiments are performed in the fully 3D mode to study the image quality under different system models. The results indicate that the proposed matrix factorization can maintain image quality while substantially reduce the image reconstruction time and system matrix storage cost. The proposed method can be also applied to other PET scanners with DOI measurement.
Karakatsanis, Nicolas A; Lodge, Martin A; Tahari, Abdel K; Zhou, Y; Wahl, Richard L; Rahmim, Arman
2013-10-21
Static whole-body PET/CT, employing the standardized uptake value (SUV), is considered the standard clinical approach to diagnosis and treatment response monitoring for a wide range of oncologic malignancies. Alternative PET protocols involving dynamic acquisition of temporal images have been implemented in the research setting, allowing quantification of tracer dynamics, an important capability for tumor characterization and treatment response monitoring. Nonetheless, dynamic protocols have been confined to single-bed-coverage limiting the axial field-of-view to ~15-20 cm, and have not been translated to the routine clinical context of whole-body PET imaging for the inspection of disseminated disease. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. We investigate solutions to address the challenges of: (i) long acquisitions, (ii) small number of dynamic frames per bed, and (iii) non-invasive quantification of kinetics in the plasma. In the present study, a novel dynamic (4D) whole-body PET acquisition protocol of ~45 min total length is presented, composed of (i) an initial 6 min dynamic PET scan (24 frames) over the heart, followed by (ii) a sequence of multi-pass multi-bed PET scans (six passes × seven bed positions, each scanned for 45 s). Standard Patlak linear graphical analysis modeling was employed, coupled with image-derived plasma input function measurements. Ordinary least squares Patlak estimation was used as the baseline regression method to quantify the physiological parameters of tracer uptake rate Ki and total blood distribution volume V on an individual voxel basis. Extensive Monte Carlo simulation studies, using a wide set of published kinetic FDG parameters and GATE and XCAT platforms, were conducted to optimize the acquisition protocol from a range of ten different clinically acceptable sampling schedules examined. The framework was also applied to six FDG PET patient studies, demonstrating clinical feasibility. Both simulated and clinical results indicated enhanced contrast-to-noise ratios (CNRs) for Ki images in tumor regions with notable background FDG concentration, such as the liver, where SUV performed relatively poorly. Overall, the proposed framework enables enhanced quantification of physiological parameters across the whole body. In addition, the total acquisition length can be reduced from 45 to ~35 min and still achieve improved or equivalent CNR compared to SUV, provided the true Ki contrast is sufficiently high. In the follow-up companion paper, a set of advanced linear regression schemes is presented to particularly address the presence of noise, and attempt to achieve a better trade-off between the mean-squared error and the CNR metrics, resulting in enhanced task-based imaging.
Karakatsanis, Nicolas A.; Lodge, Martin A.; Tahari, Abdel K.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman
2013-01-01
Static whole body PET/CT, employing the standardized uptake value (SUV), is considered the standard clinical approach to diagnosis and treatment response monitoring for a wide range of oncologic malignancies. Alternative PET protocols involving dynamic acquisition of temporal images have been implemented in the research setting, allowing quantification of tracer dynamics, an important capability for tumor characterization and treatment response monitoring. Nonetheless, dynamic protocols have been confined to single bed-coverage limiting the axial field-of-view to ~15–20 cm, and have not been translated to the routine clinical context of whole-body PET imaging for the inspection of disseminated disease. Here, we pursue a transition to dynamic whole body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. We investigate solutions to address the challenges of: (i) long acquisitions, (ii) small number of dynamic frames per bed, and (iii) non-invasive quantification of kinetics in the plasma. In the present study, a novel dynamic (4D) whole body PET acquisition protocol of ~45min total length is presented, composed of (i) an initial 6-min dynamic PET scan (24 frames) over the heart, followed by (ii) a sequence of multi-pass multi-bed PET scans (6 passes x 7 bed positions, each scanned for 45sec). Standard Patlak linear graphical analysis modeling was employed, coupled with image-derived plasma input function measurements. Ordinary least squares (OLS) Patlak estimation was used as the baseline regression method to quantify the physiological parameters of tracer uptake rate Ki and total blood distribution volume V on an individual voxel basis. Extensive Monte Carlo simulation studies, using a wide set of published kinetic FDG parameters and GATE and XCAT platforms, were conducted to optimize the acquisition protocol from a range of 10 different clinically acceptable sampling schedules examined. The framework was also applied to six FDG PET patient studies, demonstrating clinical feasibility. Both simulated and clinical results indicated enhanced contrast-to-noise ratios (CNRs) for Ki images in tumor regions with notable background FDG concentration, such as the liver, where SUV performed relatively poorly. Overall, the proposed framework enables enhanced quantification of physiological parameters across the whole-body. In addition, the total acquisition length can be reduced from 45min to ~35min and still achieve improved or equivalent CNR compared to SUV, provided the true Ki contrast is sufficiently high. In the follow-up companion paper, a set of advanced linear regression schemes is presented to particularly address the presence of noise, and attempt to achieve a better trade-off between the mean-squared error (MSE) and the CNR metrics, resulting in enhanced task-based imaging. PMID:24080962
NASA Astrophysics Data System (ADS)
Karakatsanis, Nicolas A.; Lodge, Martin A.; Tahari, Abdel K.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman
2013-10-01
Static whole-body PET/CT, employing the standardized uptake value (SUV), is considered the standard clinical approach to diagnosis and treatment response monitoring for a wide range of oncologic malignancies. Alternative PET protocols involving dynamic acquisition of temporal images have been implemented in the research setting, allowing quantification of tracer dynamics, an important capability for tumor characterization and treatment response monitoring. Nonetheless, dynamic protocols have been confined to single-bed-coverage limiting the axial field-of-view to ˜15-20 cm, and have not been translated to the routine clinical context of whole-body PET imaging for the inspection of disseminated disease. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. We investigate solutions to address the challenges of: (i) long acquisitions, (ii) small number of dynamic frames per bed, and (iii) non-invasive quantification of kinetics in the plasma. In the present study, a novel dynamic (4D) whole-body PET acquisition protocol of ˜45 min total length is presented, composed of (i) an initial 6 min dynamic PET scan (24 frames) over the heart, followed by (ii) a sequence of multi-pass multi-bed PET scans (six passes × seven bed positions, each scanned for 45 s). Standard Patlak linear graphical analysis modeling was employed, coupled with image-derived plasma input function measurements. Ordinary least squares Patlak estimation was used as the baseline regression method to quantify the physiological parameters of tracer uptake rate Ki and total blood distribution volume V on an individual voxel basis. Extensive Monte Carlo simulation studies, using a wide set of published kinetic FDG parameters and GATE and XCAT platforms, were conducted to optimize the acquisition protocol from a range of ten different clinically acceptable sampling schedules examined. The framework was also applied to six FDG PET patient studies, demonstrating clinical feasibility. Both simulated and clinical results indicated enhanced contrast-to-noise ratios (CNRs) for Ki images in tumor regions with notable background FDG concentration, such as the liver, where SUV performed relatively poorly. Overall, the proposed framework enables enhanced quantification of physiological parameters across the whole body. In addition, the total acquisition length can be reduced from 45 to ˜35 min and still achieve improved or equivalent CNR compared to SUV, provided the true Ki contrast is sufficiently high. In the follow-up companion paper, a set of advanced linear regression schemes is presented to particularly address the presence of noise, and attempt to achieve a better trade-off between the mean-squared error and the CNR metrics, resulting in enhanced task-based imaging.
Hybrid registration of PET/CT in thoracic region with pre-filtering PET sinogram
NASA Astrophysics Data System (ADS)
Mokri, S. S.; Saripan, M. I.; Marhaban, M. H.; Nordin, A. J.; Hashim, S.
2015-11-01
The integration of physiological (PET) and anatomical (CT) images in cancer delineation requires an accurate spatial registration technique. Although hybrid PET/CT scanner is used to co-register these images, significant misregistrations exist due to patient and respiratory/cardiac motions. This paper proposes a hybrid feature-intensity based registration technique for hybrid PET/CT scanner. First, simulated PET sinogram was filtered with a 3D hybrid mean-median before reconstructing the image. The features were then derived from the segmented structures (lung, heart and tumor) from both images. The registration was performed based on modified multi-modality demon registration with multiresolution scheme. Apart from visual observations improvements, the proposed registration technique increased the normalized mutual information index (NMI) between the PET/CT images after registration. All nine tested datasets show marked improvements in mutual information (MI) index than free form deformation (FFD) registration technique with the highest MI increase is 25%.
Positron Emission Tomography for Pre-Clinical Sub-Volume Dose Escalation
NASA Astrophysics Data System (ADS)
Bass, Christopher Paul
Purpose: This dissertation focuses on establishment of pre-clinical methods facilitating the use of PET imaging for selective sub-volume dose escalation. Specifically the problems addressed are 1.) The difficulties associated with comparing multiple PET images, 2.) The need for further validation of novel PET tracers before their implementation in dose escalation schema and 3.) The lack of concrete pre-clinical data supporting the use of PET images for guidance of selective sub-volume dose escalations. Methods and materials: In order to compare multiple PET images the confounding effects of mispositioning and anatomical change between imaging sessions needed to be alleviated. To mitigate the effects of these sources of error, deformable image registration was employed. A deformable registration algorithm was selected and the registration error was evaluated via the introduction of external fiducials to the tumor. Once a method for image registration was established, a procedure for validating the use of novel PET tracers with FDG was developed. Nude mice were used to perform in-vivo comparisons of the spatial distributions of two PET tracers, FDG and FLT. The spatial distributions were also compared across two separate tumor lines to determine the effects of tumor morphology on spatial distribution. Finally, the research establishes a method for acquiring pre-clinical data supporting the use of PET for image-guidance in selective dose escalation. Nude mice were imaged using only FDG PET/CT and the resulting images were used to plan PET-guided dose escalations to a 5 mm sub-volume within the tumor that contained the highest PET tracer uptake. These plans were then delivered using the Small Animal Radiation Research Platform (SARRP) and the efficacy of the PET-guided plans was observed. Results and Conclusions: The analysis of deformable registration algorithms revealed that the BRAINSFit B-spline deformable registration algorithm available in SLICER3D was capable of registering small animal PET/CT data sets in less than 5 minutes with an average registration error of .3 mm. The methods used in chapter 3 allowed for the comparison of the spatial distributions of multiple PET tracers imaged at different times. A comparison of FDG and FLT showed that both are positively correlated but that tumor morphology does significantly affect the correlation between the two tracers. An overlap analysis of the high intensity PET regions of FDG and FLT showed that FLT offers additional spatial information to that seen with FDG. In chapter 4 the SARRP allowed for the delivery of planned PET-guided selective dose escalations to a pre-clinical tumor model. This will facilitate future research validating the use of PET for clinical selective dose escalation.
Positron emission tomography with [ 18F]-FDG in oncology
NASA Astrophysics Data System (ADS)
Talbot, J. N.; Petegnief, Y.; Kerrou, K.; Montravers, F.; Grahek, D.; Younsi, N.
2003-05-01
Positron Emission Tomography (PET) is a several decade old imaging technique that has more recently demonstrated its utility in clinical applications. The imaging agents used for PET contain a positron emmiter coupled to a molecule that drives the radionuclide to target organs or to tissues performing the targetted biological function. PET is then part of functional imaging. As compared to conventional scintigraphy that uses gamma photons, the coincidence emission of two 511 keV annihilation photons in opposite direction that finally results from by beta plus decay makes it possible for PET to get rid of the collimators that greatly contribute to the poor resolution of scintigraphy. In this article, the authors describe the basics of physics for PET imaging and report on the clinical performances of the most commonly used PET tracer: [ 18F]-fluorodeoxyglucose (FDG). A recent and promising development in this field is fusion of images coming from different imaging modalities. New PET machines now include a CT and this fusion is therefore much easier.
Intra-individual comparison of PET/CT with different body weight-adapted FDG dosage regimens
Geismar, Jan H; Sah, Bert-Ram; Burger, Irene A; Seifert, Burkhardt; Delso, Gaspar; von Schulthess, Gustav K; Veit-Haibach, Patrick; Husmann, Lars
2015-01-01
Background 18F-2-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET)/ computed tomography (CT) imaging demands guidelines to safeguard sufficient image quality at low radiation exposure. Various FDG dose regimes have been investigated; however, body weight-adapted dose regimens and related image quality (IQ) have not yet been compared in the same patient. Purpose To investigate the relationship between FDG dosage and image quality in PET/CT in the same patient and determine prerequisites for low dosage scanning. Material and Methods This study included 61 patients undergoing a clinically indicated PET/CT imaging study and follow-up with a normal (NDS, 5 MBq/kg body weight [BW]) and low dosage scanning protocol (LDS, 4 MBq/kg BW), respectively, using a Discovery VCT64 scanner. Two blinded and independent readers randomly assessed IQ of PET using a 5-point Likert scale and signal-to-noise ratio (SNR) of the liver. Results Body mass index (BMI) was significantly lower at LDS (P = 0.021) and represented a significant predictor of SNR at both NDS (P < 0.001) and LDS (P = 0.005). NDS with a mean administered activity of 340 MBq resulted in significantly higher IQ (P < 0.001) and SNR as compared with LDS with a mean of 264 MBq (F-value = 23.5, P < 0.001, mixed model ANOVA adjusted for covariate BMI). Non-diagnostic IQ at LDS was associated with a BMI > 22 kg/m2. Conclusion FDG dosage significantly predicts IQ and SNR in PET/CT imaging as demonstrated in the same patient with optimal IQ achieved at 5 MBq/kg BM. PET/CT imaging at 4 MBq/kg BW may only be recommended in patients with a BMI ≤ 22 kg/m2 to maintain diagnostic IQ. PMID:25793109
A 31-channel MR brain array coil compatible with positron emission tomography.
Sander, Christin Y; Keil, Boris; Chonde, Daniel B; Rosen, Bruce R; Catana, Ciprian; Wald, Lawrence L
2015-06-01
Simultaneous acquisition of MR and positron emission tomography (PET) images requires the placement of the MR detection coil inside the PET detector ring where it absorbs and scatters photons. This constraint is the principal barrier to achieving optimum sensitivity on each modality. Here, we present a 31-channel PET-compatible brain array coil with reduced attenuation but improved MR sensitivity. A series of component tests were performed to identify tradeoffs between PET and MR performance. Aspects studied include the remote positioning of preamplifiers, coax size, coil trace size/material, and plastic housing. We then maximized PET performance at minimal cost to MR sensitivity. The coil was evaluated for MR performance (signal to noise ratio [SNR], g-factor) and PET attenuation. The coil design showed an improvement in attenuation by 190% (average) compared with conventional 32-channel arrays, and no loss in MR SNR. Moreover, the 31-channel coil displayed an SNR improvement of 230% (cortical region of interest) compared with a PET-optimized 8-channel array with similar attenuation properties. Implementing attenuation correction of the 31-channel array successfully removed PET artifacts, which were comparable to those of the 8-channel array. The design of the 31-channel PET-compatible coil enables higher sensitivity for PET/MR imaging, paving the way for novel applications in this hybrid-imaging domain. © 2014 Wiley Periodicals, Inc.
PET/CT in renal, bladder and testicular cancer
Bouchelouche, Kirsten; Physician, Chief; Choyke, Peter L.
2015-01-01
Imaging plays an important role in the clinical management of cancer patients. Hybrid imaging with PET/CT is having a broad impact in oncology, and in recent years PET/CT is beginning to have an impact in uro-oncology as well. In both bladder and renal cancer there is a need to study the efficacy of other tracers than F-18 fluorodeoxyglucose (FDG), particularly tracers with only limited renal excretion. Thus, new tracers are being introduced in these malignancies. This review focuses on the clinical role of FDG and other PET agents in renal, bladder and testicular cancer. PMID:26099672
MRI and PET Compatible Bed for Direct Co-Registration in Small Animals
NASA Astrophysics Data System (ADS)
Bartoli, Antonietta; Esposito, Giovanna; D'Angeli, Luca; Chaabane, Linda; Terreno, Enzo
2013-06-01
To obtain an accurate co-registration with stand-alone PET and MRI scanners, we developed a compatible bed system for mice and rats that enables both images to be acquired without repositioning the animals. MRI acquisitions were performed on a preclinical 7T scanner (Pharmascan, Bruker), whereas PET scans were acquired on a YAP-(S)PET (ISE s.r.l.). The bed performance was tested both on a phantom (NEMA Image Quality phantom) and in vivo (healthy rats and mice brain). Fiducial markers filled up with a drop of 18 F were visible in both modalities. Co-registration process was performed using the point-based registration technique. The reproducibility and accuracy of the co-registration were assessed using the phantom. The reproducibility of the translation distances was 0.2 mm along the z axis. On the other hand, the accuracy depended on the physical size of the phantom structures under investigation but was always lower than 4%. Regions of Interest (ROIs) drawn on the fused images were used for quantification purposes. PET and MRI intensity profiles on small structures of the phantom showed that the underestimation in activity concentration reached 90% in regions that were smaller than the PET spatial resolution, while the MRI allowed a good visualization of the 1 mm 0 rod. PET/MRI images of healthy mice and rats highlighted the expected superior capability of MRI to define brain structures. The simplicity of our developed MRI/PET compatible bed and the quality of the fused images obtained offers a promising opportunity for a future preclinical translation, particularly for neuroimaging studies.
NASA Astrophysics Data System (ADS)
Zakhnini, Abdelhamid; Kulenkampff, Johannes; Sauerzapf, Sophie; Pietrzyk, Uwe; Lippmann-Pipke, Johanna
2013-08-01
Understanding conservative fluid flow and reactive tracer transport in soils and rock formations requires quantitative transport visualization methods in 3D+t. After a decade of research and development we established the GeoPET as a non-destructive method with unrivalled sensitivity and selectivity, with due spatial and temporal resolution by applying Positron Emission Tomography (PET), a nuclear medicine imaging method, to dense rock material. Requirements for reaching the physical limit of image resolution of nearly 1 mm are (a) a high-resolution PET-camera, like our ClearPET scanner (Raytest), and (b) appropriate correction methods for scatter and attenuation of 511 keV—photons in the dense geological material. The latter are by far more significant in dense geological material than in human and small animal body tissue (water). Here we present data from Monte Carlo simulations (MCS) reflecting selected GeoPET experiments. The MCS consider all involved nuclear physical processes of the measurement with the ClearPET-system and allow us to quantify the sensitivity of the method and the scatter fractions in geological media as function of material (quartz, Opalinus clay and anhydrite compared to water), PET isotope (18F, 58Co and 124I), and geometric system parameters. The synthetic data sets obtained by MCS are the basis for detailed performance assessment studies allowing for image quality improvements. A scatter correction method is applied exemplarily by subtracting projections of simulated scattered coincidences from experimental data sets prior to image reconstruction with an iterative reconstruction process.
Yang, Zhongyi; Cheng, Jingyi; Pan, Lingling; Hu, Silong; Xu, Junyan; Zhang, Yongping; Wang, Mingwei; Zhang, Jianping; Ye, Dingwei; Zhang, Yingjian
2012-08-01
Because of the urinary excretion of fluorine-18 fluorodeoxyglucose ((18)F-FDG), FDG-PET or PET/CT is thought of little value in patients with bladder cancer. The purpose of our study was to investigate the value of (18)F-FDG PET/CT with additional pelvic images in detection of recurrent bladder cancers. From December 2006 to August 2010, 35 bladder cancer patients (median age 56 years old, ranging from 35 to 96) underwent routine (18)F-FDG PET/CT. To better detect bladder lesions, a new method called as oral hydration-voiding-refilling was introduced, which included that all the patients firstly received oral hydration, then were required to void frequently and finally were demanded to hold back urine when the additional pelvic images were scanned. Lesions were confirmed by either histopathology or clinical follow-up for at least 6 months. Finally, 12 recurrent cases of 35 patients were confirmed by cystoscope. PET/CT correctly detected 11 of them. Among these 11 true positive patients, 5 patients (45.5 %) were detected only after additional pelvic images. Lichenoid lesions on the bladder wall were missed, which caused 1 false negative result. All three false positive cases were testified to be inflammatory tissues by cystoscope. Therefore, the sensitivity, specificity and accuracy of PET/CT were 91.7 % (11/12), 87.0 % (20/23) and 88.6 % (31/35), respectively. PET/CT with additional pelvic images can highly detect recurrent lesions in residual bladder tissues. Our method with high accuracy and better endurance could be potentially applied.
Development of a MPPC-based prototype gantry for future MRI-PET scanners
NASA Astrophysics Data System (ADS)
Kurei, Y.; Kataoka, J.; Kato, T.; Fujita, T.; Ohshima, T.; Taya, T.; Yamamoto, S.
2014-12-01
We have developed a high spatial resolution, compact Positron Emission Tomography (PET) module designed for small animals and intended for use in magnetic resonance imaging (MRI) systems. This module consists of large-area, 4 × 4 ch MPPC arrays (S11830-3344MF; Hamamatsu Photonics K.K.) optically coupled with Ce-doped (Lu,Y)2(SiO4)O (Ce:LYSO) scintillators fabricated into 16 × 16 matrices of 0.5 × 0.5 mm2 pixels. We set the temperature sensor (LM73CIMK-0; National Semiconductor Corp.) at the rear of the MPPC acceptance surface, and apply optimum voltage to maintain the gain. The eight MPPC-based PET modules and coincidence circuits were assembled into a gantry arranged in a ring 90 mm in diameter to form the MPPC-based PET system. We have developed two types PET gantry: one made of non-magnetic metal and the other made of acrylonitrile butadiene styrene (ABS) resins. The PET gantry was positioned around the RF coil of the 4.7 T MRI system. We took an image of a point }22Na source under fast spin echo (FSE) and gradient echo (GE), in order to measure the interference between the MPPC-based PET and MRI. The spatial resolution of PET imaging in a transaxial plane of about 1 mm (FWHM) was achieved in all cases. Operating with PET made of ABS has no effect on MR images, while operating with PET made of non-magnetic metal has a significant detrimental effect on MR images. This paper describes our quantitative evaluations of PET images and MR images, and presents a more advanced version of the gantry for future MRI/DOI-PET systems.
Dual PET and Near-Infrared Fluorescence Imaging Probes as Tools for Imaging in Oncology
An, Fei-Fei; Chan, Mark; Kommidi, Harikrishna; Ting, Richard
2016-01-01
OBJECTIVE The purpose of this article is to summarize advances in PET fluorescence resolution, agent design, and preclinical imaging that make a growing case for clinical PET fluorescence imaging. CONCLUSION Existing SPECT, PET, fluorescence, and MRI contrast imaging techniques are already deeply integrated into the management of cancer, from initial diagnosis to the observation and management of metastases. Combined positron-emitting fluorescent contrast agents can convey new or substantial benefits that improve on these proven clinical contrast agents. PMID:27223168
Thymidine Kinase PET Reporter Gene Imaging of Cancer Cells In Vivo.
McCracken, Melissa N
2018-01-01
Positron emission tomography (PET) is a three dimensional imaging modality that detects the accumulation of radiolabeled isotopes in vivo. Ectopic expression of a thymidine kinase reporter gene allows for the specific detection of reporter cells in vivo by imaging with the reporter specific probe. PET reporter imaging is sensitive, quantitative and can be scaled into larger tumors or animals with little to no tissue diffraction. Here, we describe how thymidine kinase PET reporter genes can be used to noninvasively image cancer cells in vivo.
Morana, Giovanni; Piccardo, Arnoldo; Milanaccio, Claudia; Puntoni, Matteo; Nozza, Paolo; Cama, Armando; Zefiro, Daniele; Cabria, Massimo; Rossi, Andrea; Garrè, Maria Luisa
2014-05-01
Infiltrative astrocytomas (IAs) represent a group of astrocytic gliomas ranging from low-grade to highly malignant, characterized by diffuse invasion of the brain parenchyma. When compared with their adult counterpart, pediatric IAs may be considered biologically distinct entities; nevertheless, similarly to those in adults they represent a complex oncologic challenge. The aim of this study was to investigate the diagnostic role, clinical contribution, and prognostic value of fused (18)F-3,4-dihydroxyphenylalanine ((18)F-DOPA) PET/MR images in pediatric supratentorial IAs. Pediatric patients with supratentorial IAs involving at least 2 cerebral lobes, either newly diagnosed or with suspected disease progression, prospectively underwent (18)F-DOPA PET and conventional MR imaging, performed within 10 d of each other. (18)F-DOPA PET data were interpreted qualitatively and semiquantitatively, fusing images with MR images. PET scans were classified as positive if tumors identified on MR imaging exhibited tracer uptake above the level of the corresponding contralateral normal brain. Maximum standardized uptake values, tumor-to-normal contralateral tissue ratios, and tumor-to-normal striatum ratios were calculated for all tumors. Correlations between the degree and extent of (18)F-DOPA uptake, MR imaging tumor characteristics, and histologic results were investigated. The contribution of (18)F-DOPA PET/MR image fusion was considered relevant if it enabled one to select the most appropriate biopsy site, discriminate between disease progression and treatment-related changes, or influence treatment strategy. The patient's outcome was finally correlated with (18)F-DOPA uptake. Thirteen patients (8 boys and 5 girls) were included (5 diffuse astrocytomas, 2 anaplastic astrocytomas, 5 gliomatosis cerebri, and 1 glioblastoma multiforme). The (18)F-DOPA uptake pattern was heterogeneous in all positive scans (9/13), revealing metabolic heterogeneities within each tumor. Significant differences in terms of (18)F-DOPA uptake were found between low- and high-grade lesions (P < 0.05). The diagnostic and therapeutic contribution of (18)F-DOPA PET/MR image fusion was relevant in 9 of 13 patients (69%). (18)F-DOPA uptake correlated significantly with progression-free survival (P = 0.004). Our results indicate that (18)F-DOPA PET/MR image fusion may be a reliable imaging biomarker of pediatric IAs. Information gathered by this combined imaging approach can be readily transferred to the everyday practice and may help clinicians to better stratify patients with IAs, especially diffuse astrocytomas and gliomatosis cerebri, for diagnostic, therapeutic, and prognostic purposes.
A PET imaging agent for evaluating PARP-1 expression in ovarian cancer.
Makvandi, Mehran; Pantel, Austin; Schwartz, Lauren; Schubert, Erin; Xu, Kuiying; Hsieh, Chia-Ju; Hou, Catherine; Kim, Hyoung; Weng, Chi-Chang; Winters, Harrison; Doot, Robert; Farwell, Michael D; Pryma, Daniel A; Greenberg, Roger A; Mankoff, David A; Simpkins, Fiona; Mach, Robert H; Lin, Lilie L
2018-05-01
Poly(ADP-ribose) polymerase (PARP) inhibitors are effective in a broad population of patients with ovarian cancer; however, resistance caused by low enzyme expression of the drug target PARP-1 remains to be clinically evaluated in this context. We hypothesize that PARP-1 expression is variable in ovarian cancer and can be quantified in primary and metastatic disease using a novel PET imaging agent. We used a translational approach to describe the significance of PET imaging of PARP-1 in ovarian cancer. First, we produced PARP1-KO ovarian cancer cell lines using CRISPR/Cas9 gene editing to test the loss of PARP-1 as a resistance mechanism to all clinically used PARP inhibitors. Next, we performed preclinical microPET imaging studies using ovarian cancer patient-derived xenografts in mouse models. Finally, in a phase I PET imaging clinical trial we explored PET imaging as a regional marker of PARP-1 expression in primary and metastatic disease through correlative tissue histology. We found that deletion of PARP1 causes resistance to all PARP inhibitors in vitro, and microPET imaging provides proof of concept as an approach to quantify PARP-1 in vivo. Clinically, we observed a spectrum of standard uptake values (SUVs) ranging from 2-12 for PARP-1 in tumors. In addition, we found a positive correlation between PET SUVs and fluorescent immunohistochemistry for PARP-1 (r2 = 0.60). This work confirms the translational potential of a PARP-1 PET imaging agent and supports future clinical trials to test PARP-1 expression as a method to stratify patients for PARP inhibitor therapy. Clinicaltrials.gov NCT02637934. Research reported in this publication was supported by the Department of Defense OC160269, a Basser Center team science grant, NIH National Cancer Institute R01CA174904, a Department of Energy training grant DE-SC0012476, Abramson Cancer Center Radiation Oncology pilot grants, the Marsha Rivkin Foundation, Kaleidoscope of Hope Foundation, and Paul Calabresi K12 Career Development Award 5K12CA076931.
Natarajan, Arutselvan; Habte, Frezghi; Liu, Hongguang; Sathirachinda, Ataya; Hu, Xiang; Cheng, Zhen; Nagamine, Claude M; Gambhir, Sanjiv Sam
2013-08-01
This research aimed to study the use of Cerenkov luminescence imaging (CLI) for non-Hodgkin's lymphoma (NHL) using 89Zr-rituximab positron emission tomography (PET) tracer with a humanized transgenic mouse model that expresses human CD20 and the correlation of CLI with PET. Zr-rituximab (2.6 MBq) was tail vein-injected into transgenic mice that express the human CD20 on their B cells (huCD20TM). One group (n=3) received 2 mg/kg pre-dose (blocking) of cold rituximab 2 h prior to tracer; a second group (n=3) had no pre-dose (non-blocking). CLI was performed using a cooled charge-coupled device optical imager. We also performed PET imaging and ex vivo studies in order to confirm the in vivo CLI results. At each time point (4, 24, 48, 72, and 96 h), two groups of mice were imaged in vivo and ex vivo with CLI and PET, and at 96 h, organs were measured by gamma counter. huCD20 transgenic mice injected with 89Zr-rituximab demonstrated a high-contrast CLI image compared to mice blocked with a cold dose. At various time points of 4-96 h post-radiotracer injection, the in vivo CLI signal intensity showed specific uptake in the spleen where B cells reside and, hence, the huCD20 biomarker is present at very high levels. The time-activity curve of dose decay-corrected CLI intensity and percent injected dose per gram of tissue of PET uptake in the spleen were increased over the time period (4-96 h). At 96 h, the 89Zr-rituximab uptake ratio (non-blocking vs blocking) counted (mean±standard deviation) for the spleen was 1.5±0.6 for CLI and 1.9±0.3 for PET. Furthermore, spleen uptake measurements (non-blocking and blocking of all time points) of CLI vs PET showed good correlation (R2=0.85 and slope=0.576), which also confirmed the corresponding correlations parameter value (R2=0.834 and slope=0.47) obtained for ex vivo measurements. CLI and PET of huCD20 transgenic mice injected with 89Zr-rituximab demonstrated that the tracer was able to target huCD20-expressing B cells. The in vivo and ex vivo tracer uptake corresponding to the CLI radiance intensity from the spleen is in good agreement with PET. In this report, we have validated the use of CLI with PET for NHL imaging in huCD20TM.
Shang, Kun; Cui, Bixiao; Ma, Jie; Shuai, Dongmei; Liang, Zhigang; Jansen, Floris; Zhou, Yun; Lu, Jie; Zhao, Guoguang
2017-08-01
Hybrid positron emission tomography/magnetic resonance (PET/MR) imaging is a new multimodality imaging technology that can provide structural and functional information simultaneously. The aim of this study was to investigate the effects of the time-of-flight (TOF) and point-spread function (PSF) on small lesions observed in PET/MR images from clinical patient image sets. This study evaluated 54 small lesions in 14 patients who had undergone 18 F-fluorodeoxyglucose (FDG) PET/MR. Lesions up to 30mm in diameter were included. The PET data were reconstructed with a baseline ordered-subsets expectation-maximization (OSEM) algorithm, OSEM+PSF, OSEM+TOF and OSEM+TOF+PSF. PET image quality and small lesions were visually evaluated and scored by a 3-point scale. A quantitative analysis was then performed using the mean and maximum standardized uptake value (SUV) of the small lesions (SUV mean and SUV max ). The lesions were divided into two groups according to the long-axis diameter and the location respectively and evaluated with each reconstruction algorithm. We also evaluated the background signal by analyzing the SUV liver . OSEM+TOF+PSF provided the highest value and OSEM+TOF or PSF showed a higher value than OSEM for the visual assessment and quantitative analysis. The combination of TOF and PSF increased the SUV mean by 26.6% and the SUV max by 30.0%. The SUV liver was not influenced by PSF or TOF. For the OSEM+TOF+PSF model, the change in SUV mean and SUV max for lesions <10mm in diameter was 31.9% and 35.8%, and 24.5% and 27.6% for lesions 10-30mm in diameter, respectively. The abdominal lesions obtained the higher SUV than those of chest on the images with TOF and/or PSF. Application of TOF and PSF significantly increased the SUV of small lesions in hybrid PET/MR images, potentially improving small lesion detectability. Copyright © 2017 Elsevier B.V. All rights reserved.
Shepherd, T; Teras, M; Beichel, RR; Boellaard, R; Bruynooghe, M; Dicken, V; Gooding, MJ; Julyan, PJ; Lee, JA; Lefèvre, S; Mix, M; Naranjo, V; Wu, X; Zaidi, H; Zeng, Z; Minn, H
2017-01-01
The impact of positron emission tomography (PET) on radiation therapy is held back by poor methods of defining functional volumes of interest. Many new software tools are being proposed for contouring target volumes but the different approaches are not adequately compared and their accuracy is poorly evaluated due to the ill-definition of ground truth. This paper compares the largest cohort to date of established, emerging and proposed PET contouring methods, in terms of accuracy and variability. We emphasize spatial accuracy and present a new metric that addresses the lack of unique ground truth. Thirty methods are used at 13 different institutions to contour functional volumes of interest in clinical PET/CT and a custom-built PET phantom representing typical problems in image guided radiotherapy. Contouring methods are grouped according to algorithmic type, level of interactivity and how they exploit structural information in hybrid images. Experiments reveal benefits of high levels of user interaction, as well as simultaneous visualization of CT images and PET gradients to guide interactive procedures. Method-wise evaluation identifies the danger of over-automation and the value of prior knowledge built into an algorithm. PMID:22692898
PET Imaging in Huntington's Disease.
Roussakis, Andreas-Antonios; Piccini, Paola
2015-01-01
To date, little is known about how neurodegeneration and neuroinflammation propagate in Huntington's disease (HD). Unfortunately, no treatment is available to cure or reverse the progressive decline of function caused by the disease, thus considering HD a fatal disease. Mutation gene carriers typically remain asymptomatic for many years although alterations in the basal ganglia and cortex occur early on in mutant HD gene-carriers. Positron Emission Tomography (PET) is a functional imaging technique of nuclear medicine which enables in vivo visualization of numerous biological molecules expressed in several human tissues. Brain PET is most powerful to study in vivo neuronal and glial cells function as well as cerebral blood flow in a plethora of neurodegenerative disorders including Parkinson's disease, Alzheimer's and HD. In absence of HD-specific biomarkers for monitoring disease progression, previous PET studies in HD were merely focused on the study of dopaminergic terminals, cerebral blood flow and glucose metabolism in manifest and premanifest HD-gene carriers. More recently, research interest has been exploring novel PET targets in HD including the state of phosphodiesterse expression and the role of activated microglia. Hence, a better understanding of the HD pathogenesis mechanisms may lead to the development of targeted therapies. PET imaging follow-up studies with novel selective PET radiotracers such as 11C-IMA-107 and 11C-PBR28 may provide insight on disease progression and identify prognostic biomarkers, elucidate the underlying HD pathology and assess novel pharmaceutical agents and over time.
Salem, A; Salem, A F; Al-Ibraheem, A; Lataifeh, I; Almousa, A; Jaradat, I
2011-01-01
In recent years, the role of positron emission tomography (PET) in the staging and management of gynecological cancers has been increasing. The aim of this study was to systematically review the role of PET in radiotherapy planning and brachytherapy treatment optimization in patients with cervical cancer. Systematic literature review. Systematic review of relevant literature addressing the utilization of PET and/or PET-computed tomography (CT) in external-beam radiotherapy planning and brachytherapy treatment optimization. We performed an extensive PubMed database search on 20 April 2011. Nineteen studies, including 759 patients, formed the basis of this systematic review. PET/ PET-CT is the most sensitive imaging modality for detecting nodal metastases in patients with cervical cancer and has been shown to impact external-beam radiotherapy planning by modifying the treatment field and customizing the radiation dose. This particularly applies to detection of previously uncovered para-aortic and inguinal nodal metastases. Furthermore, PET/ PET-CT guided intensity-modulated radiation therapy (IMRT) allows delivery of higher doses of radiation to the primary tumor, if brachytherapy is unsuitable, and to grossly involved nodal disease while minimizing treatment-related toxicity. PET/ PET-CT based brachytherapy optimization allows improved tumor-volume dose distribution and detailed 3D dosimetric evaluation of risk organs. Sequential PET/ PET-CT imaging performed during the course of brachytherapy form the basis of âadaptiveâ brachytherapy in cervical cancer. This review demonstrates the effectiveness of pretreatment PET/ PET-CT in cervical cancer patients treated by radiotherapy. Further prospective studies are required to define the group of patients who would benefit the most from this procedure.
Advances in prostate-specific membrane antigen PET of prostate cancer.
Bouchelouche, Kirsten; Choyke, Peter L
2018-05-01
In recent years, a large number of reports have been published on prostate-specific membrane antigen (PSMA)/PET in prostate cancer (PCa). This review highlights advances in PSMA PET in PCa during the past year. PSMA PET/computed tomography (CT) is useful in detection of biochemical recurrence, especially at low prostate-specific antigen (PSA) values. The detection rate of PSMA PET is influenced by PSA level. For primary PCa, PSMA PET/CT shows promise for tumour localization in the prostate, especially in combination with multiparametric MRI (mpMRI). For primary staging, PSMA PET/CT can be used in intermediate and high-risk PCa. Intraoperative PSMA radioligand guidance seems promising for detection of malignant lymph nodes. While the use of PSMA PET/MRI in primary localized disease is limited to high and intermediate-risk patients and localized staging, in the recurrence setting, PET/MRI can be particularly helpful when the lesions are subtle. PSMA PET/CT is superior to choline PET/CT and other conventional imaging modalities. Molecular imaging with PSMA PET continues to pave the way for personalized medicine in PCa.However, large prospective clinical studies are still needed to fully evaluate the role of PSMA PET/CT and PET/MRI in the clinical workflow of PCa.
Feasibility of FDG-PET in myocarditis: Comparison to CMR using integrated PET/MRI.
Nensa, Felix; Kloth, Julia; Tezgah, Ercan; Poeppel, Thorsten D; Heusch, Philipp; Goebel, Juliane; Nassenstein, Kai; Schlosser, Thomas
2018-06-01
Besides cardiac sarcoidosis, FDG-PET is rarely used in the diagnosis of myocardial inflammation, while cardiac MRI (CMR) is the actual imaging reference for the workup of myocarditis. Using integrated PET/MRI in patients with suspected myocarditis, we prospectively compared FDG-PET to CMR and the feasibility of integrated FDG-PET/MRI in myocarditis. A total of 65 consecutive patients with suspected myocarditis were prospectively assessed using integrated cardiac FDG-PET/MRI. Studies comprised T2-weighted imaging, late gadolinium enhancement (LGE), and simultaneous PET acquisition. Physiological glucose uptake in the myocardium was suppressed using dietary preparation. FDG-PET/MRI was successful in 55 of 65 enrolled patients: two patients were excluded due to claustrophobia and eight patients due to failed inhibition of myocardial glucose uptake. Compared with CMR (LGE and/or T2), sensitivity and specificity of PET was 74% and 97%. Overall spatial agreement between PET and CMR was κ = 0.73. Spatial agreement between PET and T2 (κ = 0.75) was higher than agreement between PET and LGE (κ = 0.64) as well as between LGE and T2 (κ = 0.56). In patients with suspected myocarditis, FDG-PET is in good agreement with CMR findings.
Fuin, Niccolo; Catalano, Onofrio Antonio; Scipioni, Michele; Canjels, Lisanne P W; Izquierdo, David; Pedemonte, Stefano; Catana, Ciprian
2018-01-25
Purpose: We present an approach for concurrent reconstruction of respiratory motion compensated abdominal DCE-MRI and PET data in an integrated PET/MR scanner. The MR and PET reconstructions share the same motion vector fields (MVFs) derived from radial MR data; the approach is robust to changes in respiratory pattern and do not increase the total acquisition time. Methods: PET and DCE-MRI data of 12 oncological patients were simultaneously acquired for 6 minutes on an integrated PET/MR system after administration of 18 F-FDG and gadoterate meglumine. Golden-angle radial MR data were continuously acquired simultaneously with PET data and sorted into multiple motion phases based on a respiratory signal derived directly from the radial MR data. The resulting multidimensional dataset was reconstructed using a compressed sensing approach that exploits sparsity among respiratory phases. MVFs obtained using the full 6-minute (MC_6-min) and only the last 1 minute (MC_1-min) of data were incorporated into the PET reconstruction to obtain motion-corrected PET images and in an MR iterative reconstruction algorithm to produce a series of motion-corrected DCE-MRI images (moco_GRASP). The motion-correction methods (MC_6-min and MC_1-min) were evaluated by qualitative analysis of the MR images and quantitative analysis of maximum and mean standardized uptake values (SUV max , SUVmean), contrast, signal-to-noise ratio (SNR) and lesion volume in the PET images. Results: Motion corrected MC_6-min PET images demonstrated 30%, 23%, 34% and 18% increases in average SUV max , SUVmean, contrast and SNR, and an average 40% reduction in lesion volume with respect to the non-motion-corrected PET images. The changes in these figures of merit were smaller but still substantial for the MC_1-min protocol: 19%, 10%, 15% and 9% increases in average SUV max , SUVmean, contrast and SNR; and a 28% reduction in lesion volume. Moco_GRASP images were deemed of acceptable or better diagnostic image quality with respect to conventional breath hold cartesian VIBE acquisitions. Conclusion: We presented a method that allows the simultaneous acquisition of respiratory motion-corrected diagnostic quality DCE-MRI and quantitatively accurate PET data in an integrated PET/MR scanner with negligible prolongation in acquisition time compared to routine PET/DCE-MRI protocols. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Positron Emission Tomography for the Assessment of Myocardial Viability
2010-01-01
Executive Summary In July 2009, the Medical Advisory Secretariat (MAS) began work on Non-Invasive Cardiac Imaging Technologies for the Assessment of Myocardial Viability, an evidence-based review of the literature surrounding different cardiac imaging modalities to ensure that appropriate technologies are accessed by patients undergoing viability assessment. This project came about when the Health Services Branch at the Ministry of Health and Long-Term Care asked MAS to provide an evidentiary platform on effectiveness and cost-effectiveness of non-invasive cardiac imaging modalities. After an initial review of the strategy and consultation with experts, MAS identified five key non-invasive cardiac imaging technologies that can be used for the assessment of myocardial viability: positron emission tomography, cardiac magnetic resonance imaging, dobutamine echocardiography, and dobutamine echocardiography with contrast, and single photon emission computed tomography. A 2005 review conducted by MAS determined that positron emission tomography was more sensitivity than dobutamine echocardiography and single photon emission tomography and dominated the other imaging modalities from a cost-effective standpoint. However, there was inadequate evidence to compare positron emission tomography and cardiac magnetic resonance imaging. Thus, this report focuses on this comparison only. For both technologies, an economic analysis was also completed. The Non-Invasive Cardiac Imaging Technologies for the Assessment of Myocardial Viability is made up of the following reports, which can be publicly accessed at the MAS website at: www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.html Positron Emission Tomography for the Assessment of Myocardial Viability: An Evidence-Based Analysis Magnetic Resonance Imaging for the Assessment of Myocardial Viability: An Evidence-Based Analysis Objective The objective of this analysis is to assess the effectiveness and safety of positron emission tomography (PET) imaging using F-18-fluorodeoxyglucose (FDG) for the assessment of myocardial viability. To evaluate the effectiveness of FDG PET viability imaging, the following outcomes are examined: the diagnostic accuracy of FDG PET for predicting functional recovery; the impact of PET viability imaging on prognosis (mortality and other patient outcomes); and the contribution of PET viability imaging to treatment decision making and subsequent patient outcomes. Clinical Need: Condition and Target Population Left Ventricular Systolic Dysfunction and Heart Failure Heart failure is a complex syndrome characterized by the heart’s inability to maintain adequate blood circulation through the body leading to multiorgan abnormalities and, eventually, death. Patients with heart failure experience poor functional capacity, decreased quality of life, and increased risk of morbidity and mortality. In 2005, more than 71,000 Canadians died from cardiovascular disease, of which, 54% were due to ischemic heart disease. Left ventricular (LV) systolic dysfunction due to coronary artery disease (CAD)1 is the primary cause of heart failure accounting for more than 70% of cases. The prevalence of heart failure was estimated at one percent of the Canadian population in 1989. Since then, the increase in the older population has undoubtedly resulted in a substantial increase in cases. Heart failure is associated with a poor prognosis: one-year mortality rates were 32.9% and 31.1% for men and women, respectively in Ontario between 1996 and 1997. Treatment Options In general, there are three options for the treatment of heart failure: medical treatment, heart transplantation, and revascularization for those with CAD as the underlying cause. Concerning medical treatment, despite recent advances, mortality remains high among treated patients, while, heart transplantation is affected by the limited availability of donor hearts and consequently has long waiting lists. The third option, revascularization, is used to restore the flow of blood to the heart via coronary artery bypass grafting (CABG) or through minimally invasive percutaneous coronary interventions (balloon angioplasty and stenting). Both methods, however, are associated with important perioperative risks including mortality, so it is essential to properly select patients for this procedure. Myocardial Viability Left ventricular dysfunction may be permanent if a myocardial scar is formed, or it may be reversible after revascularization. Reversible LV dysfunction occurs when the myocardium is viable but dysfunctional (reduced contractility). Since only patients with dysfunctional but viable myocardium benefit from revascularization, the identification and quantification of the extent of myocardial viability is an important part of the work-up of patients with heart failure when determining the most appropriate treatment path. Various non-invasive cardiac imaging modalities can be used to assess patients in whom determination of viability is an important clinical issue, specifically: dobutamine echocardiography (echo), stress echo with contrast, SPECT using either technetium or thallium, cardiac magnetic resonance imaging (cardiac MRI), and positron emission tomography (PET). Dobutamine Echocardiography Stress echocardiography can be used to detect viable myocardium. During the infusion of low dose dobutamine (5 – 10 μg/kg/min), an improvement of contractility in hypokinetic and akentic segments is indicative of the presence of viable myocardium. Alternatively, a low-high dose dobutamine protocol can be used in which a biphasic response characterized by improved contractile function during the low-dose infusion followed by a deterioration in contractility due to stress induced ischemia during the high dose dobutamine infusion (dobutamine dose up to 40 ug/kg/min) represents viable tissue. Newer techniques including echocardiography using contrast agents, harmonic imaging, and power doppler imaging may help to improve the diagnostic accuracy of echocardiographic assessment of myocardial viability. Stress Echocardiography with Contrast Intravenous contrast agents, which are high molecular weight inert gas microbubbles that act like red blood cells in the vascular space, can be used during echocardiography to assess myocardial viability. These agents allow for the assessment of myocardial blood flow (perfusion) and contractile function (as described above), as well as the simultaneous assessment of perfusion to make it possible to distinguish between stunned and hibernating myocardium. SPECT SPECT can be performed using thallium-201 (Tl-201), a potassium analogue, or technetium-99 m labelled tracers. When Tl-201 is injected intravenously into a patient, it is taken up by the myocardial cells through regional perfusion, and Tl-201 is retained in the cell due to sodium/potassium ATPase pumps in the myocyte membrane. The stress-redistribution-reinjection protocol involves three sets of images. The first two image sets (taken immediately after stress and then three to four hours after stress) identify perfusion defects that may represent scar tissue or viable tissue that is severely hypoperfused. The third set of images is taken a few minutes after the re-injection of Tl-201 and after the second set of images is completed. These re-injection images identify viable tissue if the defects exhibit significant fill-in (> 10% increase in tracer uptake) on the re-injection images. The other common Tl-201 viability imaging protocol, rest-redistribution, involves SPECT imaging performed at rest five minutes after Tl-201 is injected and again three to four hours later. Viable tissue is identified if the delayed images exhibit significant fill-in of defects identified in the initial scans (> 10% increase in uptake) or if defects are fixed but the tracer activity is greater than 50%. There are two technetium-99 m tracers: sestamibi (MIBI) and tetrofosmin. The uptake and retention of these tracers is dependent on regional perfusion and the integrity of cellular membranes. Viability is assessed using one set of images at rest and is defined by segments with tracer activity greater than 50%. Cardiac Magnetic Resonance Imaging Cardiac magnetic resonance imaging (cardiac MRI) is a non-invasive, x-ray free technique that uses a powerful magnetic field, radio frequency pulses, and a computer to produce detailed images of the structure and function of the heart. Two types of cardiac MRI are used to assess myocardial viability: dobutamine stress magnetic resonance imaging (DSMR) and delayed contrast-enhanced cardiac MRI (DE-MRI). DE-MRI, the most commonly used technique in Ontario, uses gadolinium-based contrast agents to define the transmural extent of scar, which can be visualized based on the intensity of the image. Hyper-enhanced regions correspond to irreversibly damaged myocardium. As the extent of hyper-enhancement increases, the amount of scar increases, so there is a lower the likelihood of functional recovery. Cardiac Positron Emission Tomography Positron emission tomography (PET) is a nuclear medicine technique used to image tissues based on the distinct ways in which normal and abnormal tissues metabolize positron-emitting radionuclides. Radionuclides are radioactive analogs of common physiological substrates such as sugars, amino acids, and free fatty acids that are used by the body. The only licensed radionuclide used in PET imaging for viability assessment is F-18 fluorodeoxyglucose (FDG). During a PET scan, the radionuclides are injected into the body and as they decay, they emit positively charged particles (positrons) that travel several millimetres into tissue and collide with orbiting electrons. This collision results in annihilation where the combined mass of the positron and electron is converted into energy in the form of two 511 keV gamma rays, which are then emitted in opposite directions (180 degrees) and captured by an external array of detector elements in the PET gantry. Computer software is then used to convert the radiation emission into images. The system is set up so that it only detects coincident gamma rays that arrive at the detectors within a predefined temporal window, while single photons arriving without a pair or outside the temporal window do not active the detector. This allows for increased spatial and contrast resolution. Evidence-Based Analysis Research Questions What is the diagnostic accuracy of PET for detecting myocardial viability? What is the prognostic value of PET viability imaging (mortality and other clinical outcomes)? What is the contribution of PET viability imaging to treatment decision making? What is the safety of PET viability imaging? Literature Search A literature search was performed on July 17, 2009 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2004 to July 16, 2009. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. In addition, published systematic reviews and health technology assessments were reviewed for relevant studies published before 2004. Reference lists of included studies were also examined for any additional relevant studies not already identified. The quality of the body of evidence was assessed as high, moderate, low or very low according to GRADE methodology. Inclusion Criteria Criteria applying to diagnostic accuracy studies, prognosis studies, and physician decision-making studies: English language full-reports Health technology assessments, systematic reviews, meta-analyses, randomized controlled trials (RCTs), and observational studies Patients with chronic, known CAD PET imaging using FDG for the purpose of detecting viable myocardium Criteria applying to diagnostic accuracy studies: Assessment of functional recovery ≥3 months after revascularization Raw data available to calculate sensitivity and specificity Gold standard: prediction of global or regional functional recovery Criteria applying to prognosis studies: Mortality studies that compare revascularized patients with non-revascularized patients and patients with viable and non-viable myocardium Exclusion Criteria Criteria applying to diagnostic accuracy studies, prognosis studies, and physician decision-making studies: PET perfusion imaging < 20 patients < 18 years of age Patients with non-ischemic heart disease Animal or phantom studies Studies focusing on the technical aspects of PET Studies conducted exclusively in patients with acute myocardial infarction (MI) Duplicate publications Criteria applying to diagnostic accuracy studies Gold standard other than functional recovery (e.g., PET or cardiac MRI) Assessment of functional recovery occurs before patients are revascularized Outcomes of Interest Diagnostic accuracy studies Sensitivity and specificity Positive and negative predictive values (PPV and NPV) Positive and negative likelihood ratios Diagnostic accuracy Adverse events Prognosis studies Mortality rate Functional status Exercise capacity Quality of Life Influence on PET viability imaging on physician decision making Statistical Methods Pooled estimates of sensitivity and specificity were calculated using a bivariate, binomial generalized linear mixed model. Statistical significance was defined by P values less than 0.05, where “false discovery rate” adjustments were made for multiple hypothesis testing. Using the bivariate model parameters, summary receiver operating characteristic (sROC) curves were produced. The area under the sROC curve was estimated by numerical integration with a cubic spline (default option). Finally, pooled estimates of mortality rates were calculated using weighted means. Quality of Evidence The quality of evidence assigned to individual diagnostic studies was determined using the QUADAS tool, a list of 14 questions that address internal and external validity, bias, and generalizibility of diagnostic accuracy studies. Each question is scored as “yes”, “no”, or “unclear”. The quality of the body of evidence was then assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence: High Further research is very unlikely to change confidence in the estimate of effect. Moderate Further research is likely to have an important impact on confidence in the estimate of effect and may change the estimate. Low Further research is very likely to have an important impact on confidence in the estimate of effect and is likely to change the estimate. Very Low Any estimate of effect is very uncertain Summary of Findings A total of 40 studies met the inclusion criteria and were included in this review: one health technology assessment, two systematic reviews, 22 observational diagnostic accuracy studies, and 16 prognosis studies. The available PET viability imaging literature addresses two questions: 1) what is the diagnostic accuracy of PET imaging for the assessment; and 2) what is the prognostic value of PET viability imaging. The diagnostic accuracy studies use regional or global functional recovery as the reference standard to determine the sensitivity and specificity of the technology. While regional functional recovery was most commonly used in the studies, global functional recovery is more important clinically. Due to differences in reporting and thresholds, however, it was not possible to pool global functional recovery. Functional recovery, however, is a surrogate reference standard for viability and consequently, the diagnostic accuracy results may underestimate the specificity of PET viability imaging. For example, regional functional recovery may take up to a year after revascularization depending on whether it is stunned or hibernating tissue, while many of the studies looked at regional functional recovery 3 to 6 months after revascularization. In addition, viable tissue may not recover function after revascularization due to graft patency or re-stenosis. Both issues may lead to false positives and underestimate specificity. Given these limitations, the prognostic value of PET viability imaging provides the most direct and clinically useful information. This body of literature provides evidence on the comparative effectiveness of revascularization and medical therapy in patients with viable myocardium and patients without viable myocardium. In addition, the literature compares the impact of PET-guided treatment decision making with SPECT-guided or standard care treatment decision making on survival and cardiac events (including cardiac mortality, MI, hospital stays, unintended revascularization, etc). The main findings from the diagnostic accuracy and prognosis evidence are: Based on the available very low quality evidence, PET is a useful imaging modality for the detection of viable myocardium. The pooled estimates of sensitivity and specificity for the prediction of regional functional recovery as a surrogate for viable myocardium are 91.5% (95% CI, 88.2% – 94.9%) and 67.8% (95% CI, 55.8% – 79.7%), respectively. Based the available very low quality of evidence, an indirect comparison of pooled estimates of sensitivity and specificity showed no statistically significant difference in the diagnostic accuracy of PET viability imaging for regional functional recovery using perfusion/metabolism mismatch with FDG PET plus either a PET or SPECT perfusion tracer compared with metabolism imaging with FDG PET alone. FDG PET + PET perfusion metabolism mismatch: sensitivity, 89.9% (83.5% – 96.4%); specificity, 78.3% (66.3% – 90.2%); FDG PET + SPECT perfusion metabolism mismatch: sensitivity, 87.2% (78.0% – 96.4%); specificity, 67.1% (48.3% – 85.9%); FDG PET metabolism: sensitivity, 94.5% (91.0% – 98.0%); specificity, 66.8% (53.2% – 80.3%). Given these findings, further higher quality studies are required to determine the comparative effectiveness and clinical utility of metabolism and perfusion/metabolism mismatch viability imaging with PET. Based on very low quality of evidence, patients with viable myocardium who are revascularized have a lower mortality rate than those who are treated with medical therapy. Given the quality of evidence, however, this estimate of effect is uncertain so further higher quality studies in this area should be undertaken to determine the presence and magnitude of the effect. While revascularization may reduce mortality in patients with viable myocardium, current moderate quality RCT evidence suggests that PET-guided treatment decisions do not result in statistically significant reductions in mortality compared with treatment decisions based on SPECT or standard care protocols. The PARR II trial by Beanlands et al. found a significant reduction in cardiac events (a composite outcome that includes cardiac deaths, MI, or hospital stay for cardiac cause) between the adherence to PET recommendations subgroup and the standard care group (hazard ratio, .62; 95% confidence intervals, 0.42 – 0.93; P = .019); however, this post-hoc sub-group analysis is hypothesis generating and higher quality studies are required to substantiate these findings. The use of FDG PET plus SPECT to determine perfusion/metabolism mismatch to assess myocardial viability increases the radiation exposure compared with FDG PET imaging alone or FDG PET combined with PET perfusion imaging (total-body effective dose: FDG PET, 7 mSv; FDG PET plus PET perfusion tracer, 7.6 – 7.7 mSV; FDG PET plus SPECT perfusion tracer, 16 – 25 mSv). While the precise risk attributed to this increased exposure is unknown, there is increasing concern regarding lifetime multiple exposures to radiation-based imaging modalities, although the incremental lifetime risk for patients who are older or have a poor prognosis may not be as great as for healthy individuals. PMID:23074393
Häggström, Ida; Beattie, Bradley J; Schmidtlein, C Ross
2016-06-01
To develop and evaluate a fast and simple tool called dpetstep (Dynamic PET Simulator of Tracers via Emission Projection), for dynamic PET simulations as an alternative to Monte Carlo (MC), useful for educational purposes and evaluation of the effects of the clinical environment, postprocessing choices, etc., on dynamic and parametric images. The tool was developed in matlab using both new and previously reported modules of petstep (PET Simulator of Tracers via Emission Projection). Time activity curves are generated for each voxel of the input parametric image, whereby effects of imaging system blurring, counting noise, scatters, randoms, and attenuation are simulated for each frame. Each frame is then reconstructed into images according to the user specified method, settings, and corrections. Reconstructed images were compared to MC data, and simple Gaussian noised time activity curves (GAUSS). dpetstep was 8000 times faster than MC. Dynamic images from dpetstep had a root mean square error that was within 4% on average of that of MC images, whereas the GAUSS images were within 11%. The average bias in dpetstep and MC images was the same, while GAUSS differed by 3% points. Noise profiles in dpetstep images conformed well to MC images, confirmed visually by scatter plot histograms, and statistically by tumor region of interest histogram comparisons that showed no significant differences (p < 0.01). Compared to GAUSS, dpetstep images and noise properties agreed better with MC. The authors have developed a fast and easy one-stop solution for simulations of dynamic PET and parametric images, and demonstrated that it generates both images and subsequent parametric images with very similar noise properties to those of MC images, in a fraction of the time. They believe dpetstep to be very useful for generating fast, simple, and realistic results, however since it uses simple scatter and random models it may not be suitable for studies investigating these phenomena. dpetstep can be downloaded free of cost from https://github.com/CRossSchmidtlein/dPETSTEP.
Dual time-point (18)F-FDG PET/CT to assess response to radiofrequency ablation of lung metastases.
Lafuente, S; Fuster, D; Arguis, P; Granados, U; Perlaza, P; Paredes, P; Vollmer, I; Sánchez, M; Lomeña, F
2016-01-01
To establish the usefulness of dual time-point PET/CT imaging in determining the response to radiofrequency ablation (RFA) of solitary lung metastases from gastrointestinal cancer. This prospective study included 18 cases (3 female, 15 male, mean age 71±15 yrs) with solitary lung metastases from malignant digestive tract tumors candidates for RFA. PET/CT images 1h after injection of 4.07MBq/kg of (18)F-FDG (standard images) were performed at baseline, 1 month, and 3 months after RFA. PET/CT images 2h after injection centered in the thorax at 1 month after RFA were also performed (delayed images). A retention index (RI) of dual time-point images was calculated as follows: RI=(SUVmax delayed image-SUVmax standard image/SUVmax standard image)*100. Pathological confirmation of residual tumor by histology of the treated lesion was considered as local recurrence. A negative imaging follow-up was considered as complete response. Local recurrence was found in 6/18 lesions, and complete response in the remaining 12. The mean percentage change in SUVmax at 1 month and at 3 months showed a sensitivity and specificity for PET/CT of 50% and 33%, and 67% and 92%, respectively. The RI at 1 month after RFA showed a sensitivity and specificity of 83% and 92%, respectively. Dual time point PET/CT can predict the outcome at one month after RFA in lung metastases from digestive tract cancers. The RI can be used to indicate the need for further procedures to rule out persistent tumor due to incomplete RFA. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.
NASA Astrophysics Data System (ADS)
Cross, Nathan; Sharma, Rahul; Varghai, Davood; Spring-Robinson, Chandra; Oleinick, Nancy L.; Muzic, Raymond F., Jr.; Dean, David
2007-02-01
Small animal imaging devices are now commonly used to study gene activation and model the effects of potential therapies. We are attempting to develop a protocol that non-invasively tracks the affect of Pc 4-mediated photodynamic therapy (PDT) in a human glioma model using structural image data from micro-CT and/or micro-MR scanning and functional data from 18F-fluorodeoxy-glucose (18F-FDG) micro-PET imaging. Methods: Athymic nude rat U87-derived glioma was imaged by micro-PET and either micro-CT or micro-MR prior to Pc 4-PDT. Difficulty insuring animal anesthesia and anatomic position during the micro-PET, micro-CT, and micro-MR scans required adaptation of the scanning bed hardware. Following Pc 4-PDT the animals were again 18F-FDG micro-PET scanned, euthanized one day later, and their brains were explanted and prepared for H&E histology. Histology provided the gold standard for tumor location and necrosis. The tumor and surrounding brain functional and structural image data were then isolated and coregistered. Results: Surprisingly, both the non-PDT and PDT groups showed an increase in tumor functional activity when we expected this signal to disappear in the group receiving PDT. Co-registration of the functional and structural image data was done manually. Discussion: As expected, micro-MR imaging provided better structural discrimination of the brain tumor than micro-CT. Contrary to expectations, in our preliminary analysis 18F-FDG micro-PET imaging does not readily discriminate the U87 tumors that received Pc 4-PDT. We continue to investigate the utility of micro-PET and other methods of functional imaging to remotely detect the specificity and sensitivity of Pc 4-PDT in deeply placed tumors.
Beiderwellen, Karsten J; Poeppel, Thorsten D; Hartung-Knemeyer, Verena; Buchbender, Christian; Kuehl, Hilmar; Bockisch, Andreas; Lauenstein, Thomas C
2013-05-01
The aim of this pilot study was to demonstrate the potential of simultaneously acquired 68-Gallium-DOTA-D-Phe1-Tyr3-octreotide (68Ga-DOTATOC) positron emission tomography/magnetic resonance imaging (PET/MRI) in comparison with 68Ga-DOTATOC PET/computed tomography (PET/CT) in patients with known gastroenteropancreatic neuroendocrine tumors (NETs). Eight patients (4 women and 4 men; mean [SD] age, 54 [17] years; median, 55 years; range 25-74 years) with histopathologically confirmed NET and scheduled 68Ga-DOTATOC PET/CT were prospectively enrolled for an additional integrated PET/MRI scan. Positron emission tomography/computed tomography was performed using a triple-phase contrast-enhanced full-dose protocol. Positron emission tomography/magnetic resonance imaging encompassed a diagnostic, contrast-enhanced whole-body MRI protocol. Two readers separately analyzed the PET/CT and PET/MRI data sets including their subscans in random order regarding lesion localization, count, and characterization on a 4-point ordinal scale (0, not visible; 1, benign; 2, indeterminate; and 3, malignant). In addition, each lesion was rated in consensus on a binary scale (allowing for benign/malignant only). Clinical imaging, existing prior examinations, and histopathology (if available) served as the standard of reference. In PET-positive lesions, the standardized uptake value (SUV max) was measured in consensus. A descriptive, case-oriented data analysis was performed, including determination of frequencies and percentages in detection of malignant, benign, and indeterminate lesions in connection to their localization. In addition, percentages in detection by a singular modality (such as PET, CT, or MRI) were calculated. Interobserver variability was calculated (Cohen's κ). The SUVs in the lesions in PET/CT and PET/MRI were measured, and the correlation coefficient (Pearson, 2-tailed) was calculated. According to the reference standard, 5 of the 8 patients had malignant NET lesions at the time of the examination. A total of 4 patients were correctly identified by PET/CT, with the PET and CT component correctly identifying 3 patients each. All 5 patients positive for NET disease were correctly identified by PET/MRI, with the MRI subscan identifying all 5 patients and the PET subscan identifying 3 patients. All lesions considered as malignant in PET/CT were equally depicted in and considered using PET/MRI. One liver lesion rated as "indetermined" in PET/CT was identified as metastasis in PET/MRI because of a diffusion restriction in diffusion-weighted imaging. Of the 4 lung lesions characterized in PET/CT, only 1 was depicted in PET/MRI. Of the 3 lymph nodes depicted in PET/CT, only 1 was characterized in PET/MRI. Interobserver reliability was equally very good in PET/CT (κ = 0.916) and PET/MRI (κ = 1.0). The SUV max measured in PET/CT and in PET/MRI showed a strong correlation (Pearson correlation coefficient, 0.996). This pilot study demonstrates the potential of 68Ga-DOTATOC PET/MRI in patients with gastroenteropancreatic NET, with special advantages in the characterization of abdominal lesions yet certain weaknesses inherent to MRI, such as lung metastases and hypersclerotic bone lesions.