Sample records for pet partial volume

  1. Effects of Regularisation Priors and Anatomical Partial Volume Correction on Dynamic PET Data

    NASA Astrophysics Data System (ADS)

    Caldeira, Liliana L.; Silva, Nuno da; Scheins, Jürgen J.; Gaens, Michaela E.; Shah, N. Jon

    2015-08-01

    Dynamic PET provides temporal information about the tracer uptake. However, each PET frame has usually low statistics, resulting in noisy images. Furthermore, PET images suffer from partial volume effects. The goal of this study is to understand the effects of prior regularisation on dynamic PET data and subsequent anatomical partial volume correction. The Median Root Prior (MRP) regularisation method was used in this work during reconstruction. The quantification and noise in image-domain and time-domain (time-activity curves) as well as the impact on parametric images is assessed and compared with Ordinary Poisson Ordered Subset Expectation Maximisation (OP-OSEM) reconstruction with and without Gaussian filter. This study shows the improvement in PET images and time-activity curves (TAC) in terms of noise as well as in the parametric images when using prior regularisation in dynamic PET data. Anatomical partial volume correction improves the TAC and consequently, parametric images. Therefore, the use of MRP with anatomical partial volume correction is of interest for dynamic PET studies.

  2. Partial volume correction and image analysis methods for intersubject comparison of FDG-PET studies

    NASA Astrophysics Data System (ADS)

    Yang, Jun

    2000-12-01

    Partial volume effect is an artifact mainly due to the limited imaging sensor resolution. It creates bias in the measured activity in small structures and around tissue boundaries. In brain FDG-PET studies, especially for Alzheimer's disease study where there is serious gray matter atrophy, accurate estimate of cerebral metabolic rate of glucose is even more problematic due to large amount of partial volume effect. In this dissertation, we developed a framework enabling inter-subject comparison of partial volume corrected brain FDG-PET studies. The framework is composed of the following image processing steps: (1)MRI segmentation, (2)MR-PET registration, (3)MR based PVE correction, (4)MR 3D inter-subject elastic mapping. Through simulation studies, we showed that the newly developed partial volume correction methods, either pixel based or ROI based, performed better than previous methods. By applying this framework to a real Alzheimer's disease study, we demonstrated that the partial volume corrected glucose rates vary significantly among the control, at risk and disease patient groups and this framework is a promising tool useful for assisting early identification of Alzheimer's patients.

  3. Analytical-Based Partial Volume Recovery in Mouse Heart Imaging

    NASA Astrophysics Data System (ADS)

    Dumouchel, Tyler; deKemp, Robert A.

    2011-02-01

    Positron emission tomography (PET) is a powerful imaging modality that has the ability to yield quantitative images of tracer activity. Physical phenomena such as photon scatter, photon attenuation, random coincidences and spatial resolution limit quantification potential and must be corrected to preserve the accuracy of reconstructed images. This study focuses on correcting the partial volume effects that arise in mouse heart imaging when resolution is insufficient to resolve the true tracer distribution in the myocardium. The correction algorithm is based on fitting 1D profiles through the myocardium in gated PET images to derive myocardial contours along with blood, background and myocardial activity. This information is interpolated onto a 2D grid and convolved with the tomograph's point spread function to derive regional recovery coefficients enabling partial volume correction. The point spread function was measured by placing a line source inside a small animal PET scanner. PET simulations were created based on noise properties measured from a reconstructed PET image and on the digital MOBY phantom. The algorithm can estimate the myocardial activity to within 5% of the truth when different wall thicknesses, backgrounds and noise properties are encountered that are typical of healthy FDG mouse scans. The method also significantly improves partial volume recovery in simulated infarcted tissue. The algorithm offers a practical solution to the partial volume problem without the need for co-registered anatomic images and offers a basis for improved quantitative 3D heart imaging.

  4. Optimized statistical parametric mapping for partial-volume-corrected amyloid positron emission tomography in patients with Alzheimer's disease and Lewy body dementia

    NASA Astrophysics Data System (ADS)

    Oh, Jungsu S.; Kim, Jae Seung; Chae, Sun Young; Oh, Minyoung; Oh, Seung Jun; Cha, Seung Nam; Chang, Ho-Jong; Lee, Chong Sik; Lee, Jae Hong

    2017-03-01

    We present an optimized voxelwise statistical parametric mapping (SPM) of partial-volume (PV)-corrected positron emission tomography (PET) of 11C Pittsburgh Compound B (PiB), incorporating the anatomical precision of magnetic resonance image (MRI) and amyloid β (A β) burden-specificity of PiB PET. First, we applied region-based partial-volume correction (PVC), termed the geometric transfer matrix (GTM) method, to PiB PET, creating MRI-based lobar parcels filled with mean PiB uptakes. Then, we conducted a voxelwise PVC by multiplying the original PET by the ratio of a GTM-based PV-corrected PET to a 6-mm-smoothed PV-corrected PET. Finally, we conducted spatial normalizations of the PV-corrected PETs onto the study-specific template. As such, we increased the accuracy of the SPM normalization and the tissue specificity of SPM results. Moreover, lobar smoothing (instead of whole-brain smoothing) was applied to increase the signal-to-noise ratio in the image without degrading the tissue specificity. Thereby, we could optimize a voxelwise group comparison between subjects with high and normal A β burdens (from 10 patients with Alzheimer's disease, 30 patients with Lewy body dementia, and 9 normal controls). Our SPM framework outperformed than the conventional one in terms of the accuracy of the spatial normalization (85% of maximum likelihood tissue classification volume) and the tissue specificity (larger gray matter, and smaller cerebrospinal fluid volume fraction from the SPM results). Our SPM framework optimized the SPM of a PV-corrected A β PET in terms of anatomical precision, normalization accuracy, and tissue specificity, resulting in better detection and localization of A β burdens in patients with Alzheimer's disease and Lewy body dementia.

  5. Optimization of yttrium-90 PET for simultaneous PET/MR imaging: A phantom study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldib, Mootaz

    2016-08-15

    Purpose: Positron emission tomography (PET) imaging of yttrium-90 in the liver post radioembolization has been shown useful for personalized dosimetry calculations and evaluation of extrahepatic deposition. The purpose of this study was to quantify the benefits of several MR-based data correction approaches offered by using a combined PET/MR system to improve Y-90 PET imaging. In particular, the feasibility of motion and partial volume corrections were investigated in a controlled phantom study. Methods: The ACR phantom was filled with an initial concentration of 8 GBq of Y-90 solution resulting in a contrast of 10:1 between the hot cylinders and the background.more » Y-90 PET motion correction through motion estimates from MR navigators was evaluated by using a custom-built motion stage that simulated realistic amplitudes of respiration-induced liver motion. Finally, the feasibility of an MR-based partial volume correction method was evaluated using a wavelet decomposition approach. Results: Motion resulted in a large (∼40%) loss of contrast recovery for the 8 mm cylinder in the phantom, but was corrected for after MR-based motion correction was applied. Partial volume correction improved contrast recovery by 13% for the 8 mm cylinder. Conclusions: MR-based data correction improves Y-90 PET imaging on simultaneous PET/MR systems. Assessment of these methods must be studied further in the clinical setting.« less

  6. What approach to brain partial volume correction is best for PET/MRI?

    NASA Astrophysics Data System (ADS)

    Hutton, B. F.; Thomas, B. A.; Erlandsson, K.; Bousse, A.; Reilhac-Laborde, A.; Kazantsev, D.; Pedemonte, S.; Vunckx, K.; Arridge, S. R.; Ourselin, S.

    2013-02-01

    Many partial volume correction approaches make use of anatomical information, readily available in PET/MRI systems but it is not clear what approach is best. Seven novel approaches to partial volume correction were evaluated, including several post-reconstruction methods and several reconstruction methods that incorporate anatomical information. These were compared with an MRI-independent approach (reblurred van Cittert ) and uncorrected data. Monte Carlo PET data were generated for activity distributions representing both 18F FDG and amyloid tracer uptake. Post-reconstruction methods provided the best recovery with ideal segmentation but were particularly sensitive to mis-registration. Alternative approaches performed better in maintaining lesion contrast (unseen in MRI) with good noise control. These were also relatively insensitive to mis-registration errors. The choice of method will depend on the specific application and reliability of segmentation and registration algorithms.

  7. Partial volume correction using cortical surfaces

    NASA Astrophysics Data System (ADS)

    Blaasvær, Kamille R.; Haubro, Camilla D.; Eskildsen, Simon F.; Borghammer, Per; Otzen, Daniel; Ostergaard, Lasse R.

    2010-03-01

    Partial volume effect (PVE) in positron emission tomography (PET) leads to inaccurate estimation of regional metabolic activities among neighbouring tissues with different tracer concentration. This may be one of the main limiting factors in the utilization of PET in clinical practice. Partial volume correction (PVC) methods have been widely studied to address this issue. MRI based PVC methods are well-established.1 Their performance depend on the quality of the co-registration of the MR and PET dataset, on the correctness of the estimated point-spread function (PSF) of the PET scanner and largely on the performance of the segmentation method that divide the brain into brain tissue compartments.1, 2 In the present study a method for PVC is suggested, that utilizes cortical surfaces, to obtain detailed anatomical information. The objectives are to improve the performance of PVC, facilitate a study of the relationship between metabolic activity in the cerebral cortex and cortical thicknesses, and to obtain an improved visualization of PET data. The gray matter metabolic activity after performing PVC was recovered by 99.7 - 99.8 % , in relation to the true activity when testing on simple simulated data with different PSFs and by 97.9 - 100 % when testing on simulated brain PET data at different cortical thicknesses. When studying the relationship between metabolic activities and anatomical structures it was shown on simulated brain PET data, that it is important to correct for PVE in order to get the true relationship.

  8. Physical and mechanical properties of mortars containing PET and PC waste aggregates.

    PubMed

    Hannawi, Kinda; Kamali-Bernard, Siham; Prince, William

    2010-11-01

    Non-biodegradable plastic aggregates made of polycarbonate (PC) and polyethylene terephthalate (PET) waste are used as partial replacement of natural aggregates in mortar. Various volume fractions of sand 3%, 10%, 20% and 50% are replaced by the same volume of plastic. This paper investigates the physical and mechanical properties of the obtained composites. The main results of this study show the feasibility of the reuse of PC and PET waste aggregates materials as partial volume substitutes for natural aggregates in cementitious materials. Despite of some drawbacks like a decrease in compressive strength, the use of PC and PET waste aggregates presents various advantages. A reduction of the specific weight of the cementitious materials and a significant improvement of their post-peak flexural behaviour are observed. The calculated flexural toughness factors increase significantly with increasing volume fraction of PET and PC-aggregates. Thus, addition of PC and PET plastic aggregates in cementitious materials seems to give good energy absorbing materials which is very interesting for several civil engineering applications like structures subjected to dynamic or impact efforts. The present study has shown quite encouraging results and opened new way for the recycling of PC waste aggregate in cement and concrete composites. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. MRI-guided brain PET image filtering and partial volume correction

    NASA Astrophysics Data System (ADS)

    Yan, Jianhua; Chu-Shern Lim, Jason; Townsend, David W.

    2015-02-01

    Positron emission tomography (PET) image quantification is a challenging problem due to limited spatial resolution of acquired data and the resulting partial volume effects (PVE), which depend on the size of the structure studied in relation to the spatial resolution and which may lead to over or underestimation of the true tissue tracer concentration. In addition, it is usually necessary to perform image smoothing either during image reconstruction or afterwards to achieve a reasonable signal-to-noise ratio. Typically, an isotropic Gaussian filtering (GF) is used for this purpose. However, the noise suppression is at the cost of deteriorating spatial resolution. As hybrid imaging devices such as PET/MRI have become available, the complementary information derived from high definition morphologic images could be used to improve the quality of PET images. In this study, first of all, we propose an MRI-guided PET filtering method by adapting a recently proposed local linear model and then incorporate PVE into the model to get a new partial volume correction (PVC) method without parcellation of MRI. In addition, both the new filtering and PVC are voxel-wise non-iterative methods. The performance of the proposed methods were investigated with simulated dynamic FDG brain dataset and 18F-FDG brain data of a cervical cancer patient acquired with a simultaneous hybrid PET/MR scanner. The initial simulation results demonstrated that MRI-guided PET image filtering can produce less noisy images than traditional GF and bias and coefficient of variation can be further reduced by MRI-guided PET PVC. Moreover, structures can be much better delineated in MRI-guided PET PVC for real brain data.

  10. A comparison of five partial volume correction methods for Tau and Amyloid PET imaging with [18F]THK5351 and [11C]PIB.

    PubMed

    Shidahara, Miho; Thomas, Benjamin A; Okamura, Nobuyuki; Ibaraki, Masanobu; Matsubara, Keisuke; Oyama, Senri; Ishikawa, Yoichi; Watanuki, Shoichi; Iwata, Ren; Furumoto, Shozo; Tashiro, Manabu; Yanai, Kazuhiko; Gonda, Kohsuke; Watabe, Hiroshi

    2017-08-01

    To suppress partial volume effect (PVE) in brain PET, there have been many algorithms proposed. However, each methodology has different property due to its assumption and algorithms. Our aim of this study was to investigate the difference among partial volume correction (PVC) method for tau and amyloid PET study. We investigated two of the most commonly used PVC methods, Müller-Gärtner (MG) and geometric transfer matrix (GTM) and also other three methods for clinical tau and amyloid PET imaging. One healthy control (HC) and one Alzheimer's disease (AD) PET studies of both [ 18 F]THK5351 and [ 11 C]PIB were performed using a Eminence STARGATE scanner (Shimadzu Inc., Kyoto, Japan). All PET images were corrected for PVE by MG, GTM, Labbé (LABBE), Regional voxel-based (RBV), and Iterative Yang (IY) methods, with segmented or parcellated anatomical information processed by FreeSurfer, derived from individual MR images. PVC results of 5 algorithms were compared with the uncorrected data. In regions of high uptake of [ 18 F]THK5351 and [ 11 C]PIB, different PVCs demonstrated different SUVRs. The degree of difference between PVE uncorrected and corrected depends on not only PVC algorithm but also type of tracer and subject condition. Presented PVC methods are straight-forward to implement but the corrected images require careful interpretation as different methods result in different levels of recovery.

  11. Partial volume correction of PET-imaged tumor heterogeneity using expectation maximization with a spatially varying point spread function

    PubMed Central

    Barbee, David L; Flynn, Ryan T; Holden, James E; Nickles, Robert J; Jeraj, Robert

    2010-01-01

    Tumor heterogeneities observed in positron emission tomography (PET) imaging are frequently compromised of partial volume effects which may affect treatment prognosis, assessment, or future implementations such as biologically optimized treatment planning (dose painting). This paper presents a method for partial volume correction of PET-imaged heterogeneous tumors. A point source was scanned on a GE Discover LS at positions of increasing radii from the scanner’s center to obtain the spatially varying point spread function (PSF). PSF images were fit in three dimensions to Gaussian distributions using least squares optimization. Continuous expressions were devised for each Gaussian width as a function of radial distance, allowing for generation of the system PSF at any position in space. A spatially varying partial volume correction (SV-PVC) technique was developed using expectation maximization (EM) and a stopping criterion based on the method’s correction matrix generated for each iteration. The SV-PVC was validated using a standard tumor phantom and a tumor heterogeneity phantom, and was applied to a heterogeneous patient tumor. SV-PVC results were compared to results obtained from spatially invariant partial volume correction (SINV-PVC), which used directionally uniform three dimensional kernels. SV-PVC of the standard tumor phantom increased the maximum observed sphere activity by 55 and 40% for 10 and 13 mm diameter spheres, respectively. Tumor heterogeneity phantom results demonstrated that as net changes in the EM correction matrix decreased below 35%, further iterations improved overall quantitative accuracy by less than 1%. SV-PVC of clinically observed tumors frequently exhibited changes of ±30% in regions of heterogeneity. The SV-PVC method implemented spatially varying kernel widths and automatically determined the number of iterations for optimal restoration, parameters which are arbitrarily chosen in SINV-PVC. Comparing SV-PVC to SINV-PVC demonstrated that similar results could be reached using both methods, but large differences result for the arbitrary selection of SINV-PVC parameters. The presented SV-PVC method was performed without user intervention, requiring only a tumor mask as input. Research involving PET-imaged tumor heterogeneity should include correcting for partial volume effects to improve the quantitative accuracy of results. PMID:20009194

  12. Combining MRI With PET for Partial Volume Correction Improves Image-Derived Input Functions in Mice

    NASA Astrophysics Data System (ADS)

    Evans, Eleanor; Buonincontri, Guido; Izquierdo, David; Methner, Carmen; Hawkes, Rob C.; Ansorge, Richard E.; Krieg, Thomas; Carpenter, T. Adrian; Sawiak, Stephen J.

    2015-06-01

    Accurate kinetic modelling using dynamic PET requires knowledge of the tracer concentration in plasma, known as the arterial input function (AIF). AIFs are usually determined by invasive blood sampling, but this is prohibitive in murine studies due to low total blood volumes. As a result of the low spatial resolution of PET, image-derived input functions (IDIFs) must be extracted from left ventricular blood pool (LVBP) ROIs of the mouse heart. This is challenging because of partial volume and spillover effects between the LVBP and myocardium, contaminating IDIFs with tissue signal. We have applied the geometric transfer matrix (GTM) method of partial volume correction (PVC) to 12 mice injected with 18F - FDG affected by a Myocardial Infarction (MI), of which 6 were treated with a drug which reduced infarction size [1]. We utilised high resolution MRI to assist in segmenting mouse hearts into 5 classes: LVBP, infarcted myocardium, healthy myocardium, lungs/body and background. The signal contribution from these 5 classes was convolved with the point spread function (PSF) of the Cambridge split magnet PET scanner and a non-linear fit was performed on the 5 measured signal components. The corrected IDIF was taken as the fitted LVBP component. It was found that the GTM PVC method could recover an IDIF with less contamination from spillover than an IDIF extracted from PET data alone. More realistic values of Ki were achieved using GTM IDIFs, which were shown to be significantly different (p <; 0.05) between the treated and untreated groups.

  13. Metabolic impact of partial volume correction of [18F]FDG PET-CT oncological studies on the assessment of tumor response to treatment.

    PubMed

    Stefano, A; Gallivanone, F; Messa, C; Gilardi, M C; Gastiglioni, I

    2014-12-01

    The aim of this work is to evaluate the metabolic impact of Partial Volume Correction (PVC) on the measurement of the Standard Uptake Value (SUV) from [18F]FDG PET-CT oncological studies for treatment monitoring purpose. Twenty-nine breast cancer patients with bone lesions (42 lesions in total) underwent [18F]FDG PET-CT studies after surgical resection of breast cancer primitives, and before (PET-II) chemotherapy and hormone treatment. PVC of bone lesion uptake was performed on the two [18F]FDG PET-CT studies, using a method based on Recovery Coefficients (RC) and on an automatic measurement of lesion metabolic volume. Body-weight average SUV was calculated for each lesion, with and without PVC. The accuracy, reproducibility, clinical feasibility and the metabolic impact on treatment response of the considered PVC method was evaluated. The PVC method was found clinically feasible in bone lesions, with an accuracy of 93% for lesion sphere-equivalent diameter >1 cm. Applying PVC, average SUV values increased, from 7% up to 154% considering both PET-I and PET-II studies, proving the need of the correction. As main finding, PVC modified the therapy response classification in 6 cases according to EORTC 1999 classification and in 5 cases according to PERCIST 1.0 classification. PVC has an important metabolic impact on the assessment of tumor response to treatment by [18F]FDG PET-CT oncological studies.

  14. Feasibility and performance of novel software to quantify metabolically active volumes and 3D partial volume corrected SUV and metabolic volumetric products of spinal bone marrow metastases on 18F-FDG-PET/CT.

    PubMed

    Torigian, Drew A; Lopez, Rosa Fernandez; Alapati, Sridevi; Bodapati, Geetha; Hofheinz, Frank; van den Hoff, Joerg; Saboury, Babak; Alavi, Abass

    2011-01-01

    Our aim was to assess feasibility and performance of novel semi-automated image analysis software called ROVER to quantify metabolically active volume (MAV), maximum standardized uptake value-maximum (SUV(max)), 3D partial volume corrected mean SUV (cSUV(mean)), and 3D partial volume corrected mean MVP (cMVP(mean)) of spinal bone marrow metastases on fluorine-18 fluorodeoxyglucose-positron emission tomography/computerized tomography ((18)F-FDG-PET/CT). We retrospectively studied 16 subjects with 31 spinal metastases on FDG-PET/CT and MRI. Manual and ROVER determinations of lesional MAV and SUV(max), and repeated ROVER measurements of MAV, SUV(max), cSUV(mean) and cMVP(mean) were made. Bland-Altman and correlation analyses were performed to assess reproducibility and agreement. Our results showed that analyses of repeated ROVER measurements revealed MAV mean difference (D)=-0.03±0.53cc (95% CI(-0.22, 0.16)), lower limit of agreement (LLOA)=-1.07cc, and upper limit of agreement (ULOA)=1.01cc; SUV(max) D=0.00±0.00 with LOAs=0.00; cSUV(mean) D=-0.01±0.39 (95% CI(-0.15, 0.13)), LLOA=-0.76, and ULOA=0.75; cMVP(mean) D=-0.52±4.78cc (95% CI(-2.23, 1.23)), LLOA=-9.89cc, and ULOA=8.86cc. Comparisons between ROVER and manual measurements revealed volume D= -0.39±1.37cc (95% CI (-0.89, 0.11)), LLOA=-3.08cc, and ULOA=2.30cc; SUV(max) D=0.00±0.00 with LOAs=0.00. Mean percent increase in lesional SUV(mean) and MVP(mean) following partial volume correction using ROVER was 84.25±36.00% and 84.45±35.94% , respectively. In conclusion, it is feasible to estimate MAV, SUV(max), cSUV(mean), and cMVP(mean) of spinal bone marrow metastases from (18)F-FDG-PET/CT quickly and easily with good reproducibility via ROVER software. Partial volume correction is imperative, as uncorrected SUV(mean) and MVP(mean) are significantly underestimated, even for large lesions. This novel approach has great potential for practical, accurate, and precise combined structural-functional PET quantification of disease before and after therapeutic intervention.

  15. A multifractal approach to space-filling recovery for PET quantification.

    PubMed

    Willaime, Julien M Y; Aboagye, Eric O; Tsoumpas, Charalampos; Turkheimer, Federico E

    2014-11-01

    A new image-based methodology is developed for estimating the apparent space-filling properties of an object of interest in PET imaging without need for a robust segmentation step and used to recover accurate estimates of total lesion activity (TLA). A multifractal approach and the fractal dimension are proposed to recover the apparent space-filling index of a lesion (tumor volume, TV) embedded in nonzero background. A practical implementation is proposed, and the index is subsequently used with mean standardized uptake value (SUV mean) to correct TLA estimates obtained from approximate lesion contours. The methodology is illustrated on fractal and synthetic objects contaminated by partial volume effects (PVEs), validated on realistic (18)F-fluorodeoxyglucose PET simulations and tested for its robustness using a clinical (18)F-fluorothymidine PET test-retest dataset. TLA estimates were stable for a range of resolutions typical in PET oncology (4-6 mm). By contrast, the space-filling index and intensity estimates were resolution dependent. TLA was generally recovered within 15% of ground truth on postfiltered PET images affected by PVEs. Volumes were recovered within 15% variability in the repeatability study. Results indicated that TLA is a more robust index than other traditional metrics such as SUV mean or TV measurements across imaging protocols. The fractal procedure reported here is proposed as a simple and effective computational alternative to existing methodologies which require the incorporation of image preprocessing steps (i.e., partial volume correction and automatic segmentation) prior to quantification.

  16. Multimodal partial volume correction: Application to [11C]PIB PET/MRI myelin imaging in multiple sclerosis.

    PubMed

    Grecchi, Elisabetta; Veronese, Mattia; Bodini, Benedetta; García-Lorenzo, Daniel; Battaglini, Marco; Stankoff, Bruno; Turkheimer, Federico E

    2017-12-01

    The [ 11 C]PIB PET tracer, originally developed for amyloid imaging, has been recently repurposed to quantify demyelination and remyelination in multiple sclerosis (MS). Myelin PET imaging, however, is limited by its low resolution that deteriorates the quantification accuracy of white matter (WM) lesions. Here, we introduce a novel partial volume correction (PVC) method called Multiresolution-Multimodal Resolution-Recovery (MM-RR), which uses the wavelet transform and a synergistic statistical model to exploit MRI structural images to improve the resolution of [ 11 C]PIB PET myelin imaging. MM-RR performance was tested on a phantom acquisition and in a dataset comprising [ 11 C]PIB PET and MR T1- and T2-weighted images of 8 healthy controls and 20 MS patients. For the control group, the MM-RR PET images showed an average increase of 5.7% in WM uptake while the grey-matter (GM) uptake remained constant, resulting in +31% WM/GM contrast. Furthermore, MM-RR PET binding maps correlated significantly with the mRNA expressions of the most represented proteins in the myelin sheath (R 2  = 0.57 ± 0.09). In the patient group, MM-RR PET images showed sharper lesion contours and significant improvement in normal-appearing tissue/WM-lesion contrast compared to standard PET (contrast improvement > +40%). These results were consistent with MM-RR performances in phantom experiments.

  17. A multifractal approach to space-filling recovery for PET quantification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willaime, Julien M. Y., E-mail: julien.willaime@siemens.com; Aboagye, Eric O.; Tsoumpas, Charalampos

    2014-11-01

    Purpose: A new image-based methodology is developed for estimating the apparent space-filling properties of an object of interest in PET imaging without need for a robust segmentation step and used to recover accurate estimates of total lesion activity (TLA). Methods: A multifractal approach and the fractal dimension are proposed to recover the apparent space-filling index of a lesion (tumor volume, TV) embedded in nonzero background. A practical implementation is proposed, and the index is subsequently used with mean standardized uptake value (SUV {sub mean}) to correct TLA estimates obtained from approximate lesion contours. The methodology is illustrated on fractal andmore » synthetic objects contaminated by partial volume effects (PVEs), validated on realistic {sup 18}F-fluorodeoxyglucose PET simulations and tested for its robustness using a clinical {sup 18}F-fluorothymidine PET test–retest dataset. Results: TLA estimates were stable for a range of resolutions typical in PET oncology (4–6 mm). By contrast, the space-filling index and intensity estimates were resolution dependent. TLA was generally recovered within 15% of ground truth on postfiltered PET images affected by PVEs. Volumes were recovered within 15% variability in the repeatability study. Results indicated that TLA is a more robust index than other traditional metrics such as SUV {sub mean} or TV measurements across imaging protocols. Conclusions: The fractal procedure reported here is proposed as a simple and effective computational alternative to existing methodologies which require the incorporation of image preprocessing steps (i.e., partial volume correction and automatic segmentation) prior to quantification.« less

  18. Correction of partial volume effect in (18)F-FDG PET brain studies using coregistered MR volumes: voxel based analysis of tracer uptake in the white matter.

    PubMed

    Coello, Christopher; Willoch, Frode; Selnes, Per; Gjerstad, Leif; Fladby, Tormod; Skretting, Arne

    2013-05-15

    A voxel-based algorithm to correct for partial volume effect in PET brain volumes is presented. This method (named LoReAn) is based on MRI based segmentation of anatomical regions and accurate measurements of the effective point spread function of the PET imaging process. The objective is to correct for the spill-out of activity from high-uptake anatomical structures (e.g. grey matter) into low-uptake anatomical structures (e.g. white matter) in order to quantify physiological uptake in the white matter. The new algorithm is presented and validated against the state of the art region-based geometric transfer matrix (GTM) method with synthetic and clinical data. Using synthetic data, both bias and coefficient of variation were improved in the white matter region using LoReAn compared to GTM. An increased number of anatomical regions doesn't affect the bias (<5%) and misregistration affects equally LoReAn and GTM algorithms. The LoReAn algorithm appears to be a simple and promising voxel-based algorithm for studying metabolism in white matter regions. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. 18F-fluorocholine PET-guided target volume delineation techniques for partial prostate re-irradiation in local recurrent prostate cancer.

    PubMed

    Wang, Hui; Vees, Hansjörg; Miralbell, Raymond; Wissmeyer, Michael; Steiner, Charles; Ratib, Osman; Senthamizhchelvan, Srinivasan; Zaidi, Habib

    2009-11-01

    We evaluate the contribution of (18)F-choline PET/CT in the delineation of gross tumour volume (GTV) in local recurrent prostate cancer after initial irradiation using various PET image segmentation techniques. Seventeen patients with local-only recurrent prostate cancer (median=5.7 years) after initial irradiation were included in the study. Rebiopsies were performed in 10 patients that confirmed the local recurrence. Following injection of 300 MBq of (18)F-fluorocholine, dynamic PET frames (3 min each) were reconstructed from the list-mode acquisition. Five PET image segmentation techniques were used to delineate the (18)F-choline-based GTVs. These included manual delineation of contours (GTV(man)) by two teams consisting of a radiation oncologist and a nuclear medicine physician each, a fixed threshold of 40% and 50% of the maximum signal intensity (GTV(40%) and GTV(50%)), signal-to-background ratio-based adaptive thresholding (GTV(SBR)), and a region growing (GTV(RG)) algorithm. Geographic mismatches between the GTVs were also assessed using overlap analysis. Inter-observer variability for manual delineation of GTVs was high but not statistically significant (p=0.459). In addition, the volumes and shapes of GTVs delineated using semi-automated techniques were significantly higher than those of GTVs defined manually. Semi-automated segmentation techniques for (18)F-choline PET-guided GTV delineation resulted in substantially higher GTVs compared to manual delineation and might replace the latter for determination of recurrent prostate cancer for partial prostate re-irradiation. The selection of the most appropriate segmentation algorithm still needs to be determined.

  20. PETPVC: a toolbox for performing partial volume correction techniques in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Thomas, Benjamin A.; Cuplov, Vesna; Bousse, Alexandre; Mendes, Adriana; Thielemans, Kris; Hutton, Brian F.; Erlandsson, Kjell

    2016-11-01

    Positron emission tomography (PET) images are degraded by a phenomenon known as the partial volume effect (PVE). Approaches have been developed to reduce PVEs, typically through the utilisation of structural information provided by other imaging modalities such as MRI or CT. These methods, known as partial volume correction (PVC) techniques, reduce PVEs by compensating for the effects of the scanner resolution, thereby improving the quantitative accuracy. The PETPVC toolbox described in this paper comprises a suite of methods, both classic and more recent approaches, for the purposes of applying PVC to PET data. Eight core PVC techniques are available. These core methods can be combined to create a total of 22 different PVC techniques. Simulated brain PET data are used to demonstrate the utility of toolbox in idealised conditions, the effects of applying PVC with mismatched point-spread function (PSF) estimates and the potential of novel hybrid PVC methods to improve the quantification of lesions. All anatomy-based PVC techniques achieve complete recovery of the PET signal in cortical grey matter (GM) when performed in idealised conditions. Applying deconvolution-based approaches results in incomplete recovery due to premature termination of the iterative process. PVC techniques are sensitive to PSF mismatch, causing a bias of up to 16.7% in GM recovery when over-estimating the PSF by 3 mm. The recovery of both GM and a simulated lesion was improved by combining two PVC techniques together. The PETPVC toolbox has been written in C++, supports Windows, Mac and Linux operating systems, is open-source and publicly available.

  1. Automated measurements of metabolic tumor volume and metabolic parameters in lung PET/CT imaging

    NASA Astrophysics Data System (ADS)

    Orologas, F.; Saitis, P.; Kallergi, M.

    2017-11-01

    Patients with lung tumors or inflammatory lung disease could greatly benefit in terms of treatment and follow-up by PET/CT quantitative imaging, namely measurements of metabolic tumor volume (MTV), standardized uptake values (SUVs) and total lesion glycolysis (TLG). The purpose of this study was the development of an unsupervised or partially supervised algorithm using standard image processing tools for measuring MTV, SUV, and TLG from lung PET/CT scans. Automated metabolic lesion volume and metabolic parameter measurements were achieved through a 5 step algorithm: (i) The segmentation of the lung areas on the CT slices, (ii) the registration of the CT segmented lung regions on the PET images to define the anatomical boundaries of the lungs on the functional data, (iii) the segmentation of the regions of interest (ROIs) on the PET images based on adaptive thresholding and clinical criteria, (iv) the estimation of the number of pixels and pixel intensities in the PET slices of the segmented ROIs, (v) the estimation of MTV, SUVs, and TLG from the previous step and DICOM header data. Whole body PET/CT scans of patients with sarcoidosis were used for training and testing the algorithm. Lung area segmentation on the CT slices was better achieved with semi-supervised techniques that reduced false positive detections significantly. Lung segmentation results agreed with the lung volumes published in the literature while the agreement between experts and algorithm in the segmentation of the lesions was around 88%. Segmentation results depended on the image resolution selected for processing. The clinical parameters, SUV (either mean or max or peak) and TLG estimated by the segmented ROIs and DICOM header data provided a way to correlate imaging data to clinical and demographic data. In conclusion, automated MTV, SUV, and TLG measurements offer powerful analysis tools in PET/CT imaging of the lungs. Custom-made algorithms are often a better approach than the manufacturer’s general analysis software at much lower cost. Relatively simple processing techniques could lead to customized, unsupervised or partially supervised methods that can successfully perform the desirable analysis and adapt to the specific disease requirements.

  2. 18F-FDG PET-CT pattern in idiopathic normal pressure hydrocephalus.

    PubMed

    Townley, Ryan A; Botha, Hugo; Graff-Radford, Jonathan; Boeve, Bradley F; Petersen, Ronald C; Senjem, Matthew L; Knopman, David S; Lowe, Val; Jack, Clifford R; Jones, David T

    2018-01-01

    Idiopathic normal pressure hydrocephalus (iNPH) is an important and treatable cause of neurologic impairment. Diagnosis is complicated due to symptoms overlapping with other age related disorders. The pathophysiology underlying iNPH is not well understood. We explored FDG-PET abnormalities in iNPH patients in order to determine if FDG-PET may serve as a biomarker to differentiate iNPH from common neurodegenerative disorders. We retrospectively compared 18 F-FDG PET-CT imaging patterns from seven iNPH patients (mean age 74 ± 6 years) to age and sex matched controls, as well as patients diagnosed with clinical Alzheimer's disease dementia (AD), Dementia with Lewy Bodies (DLB) and Parkinson's Disease Dementia (PDD), and behavioral variant frontotemporal dementia (bvFTD). Partial volume corrected and uncorrected images were reviewed separately. Patients with iNPH, when compared to controls, AD, DLB/PDD, and bvFTD, had significant regional hypometabolism in the dorsal striatum, involving the caudate and putamen bilaterally. These results remained highly significant after partial volume correction. In this study, we report a FDG-PET pattern of hypometabolism in iNPH involving the caudate and putamen with preserved cortical metabolism. This pattern may differentiate iNPH from degenerative diseases and has the potential to serve as a biomarker for iNPH in future studies. These findings also further our understanding of the pathophysiology underlying the iNPH clinical presentation.

  3. Comparison of first pass bolus AIFs extracted from sequential 18F-FDG PET and DSC-MRI of mice

    NASA Astrophysics Data System (ADS)

    Evans, Eleanor; Sawiak, Stephen J.; Ward, Alexander O.; Buonincontri, Guido; Hawkes, Robert C.; Adrian Carpenter, T.

    2014-01-01

    Accurate kinetic modelling of in vivo physiological function using positron emission tomography (PET) requires determination of the tracer time-activity curve in plasma, known as the arterial input function (AIF). The AIF is usually determined by invasive blood sampling methods, which are prohibitive in murine studies due to low total blood volumes. Extracting AIFs from PET images is also challenging due to large partial volume effects (PVE). We hypothesise that in combined PET with magnetic resonance imaging (PET/MR), a co-injected bolus of MR contrast agent and PET ligand can be tracked using fast MR acquisitions. This protocol would allow extraction of a MR AIF from MR contrast agent concentration-time curves, at higher spatial and temporal resolution than an image-derived PET AIF. A conversion factor could then be applied to the MR AIF for use in PET kinetic analysis. This work has compared AIFs obtained from sequential DSC-MRI and PET with separate injections of gadolinium contrast agent and 18F-FDG respectively to ascertain the technique‧s validity. An automated voxel selection algorithm was employed to improve MR AIF reproducibility. We found that MR and PET AIFs displayed similar character in the first pass, confirmed by gamma variate fits (p<0.02). MR AIFs displayed reduced PVE compared to PET AIFs, indicating their potential use in PET/MR studies.

  4. Comparison of first pass bolus AIFs extracted from sequential 18F-FDG PET and DSC-MRI of mice.

    PubMed

    Evans, Eleanor; Sawiak, Stephen J; Ward, Alexander O; Buonincontri, Guido; Hawkes, Robert C; Carpenter, T Adrian

    2014-01-11

    Accurate kinetic modelling of in vivo physiological function using positron emission tomography (PET) requires determination of the tracer time-activity curve in plasma, known as the arterial input function (AIF). The AIF is usually determined by invasive blood sampling methods, which are prohibitive in murine studies due to low total blood volumes. Extracting AIFs from PET images is also challenging due to large partial volume effects (PVE). We hypothesise that in combined PET with magnetic resonance imaging (PET/MR), a co-injected bolus of MR contrast agent and PET ligand can be tracked using fast MR acquisitions. This protocol would allow extraction of a MR AIF from MR contrast agent concentration-time curves, at higher spatial and temporal resolution than an image-derived PET AIF. A conversion factor could then be applied to the MR AIF for use in PET kinetic analysis. This work has compared AIFs obtained from sequential DSC-MRI and PET with separate injections of gadolinium contrast agent and 18 F-FDG respectively to ascertain the technique's validity. An automated voxel selection algorithm was employed to improve MR AIF reproducibility. We found that MR and PET AIFs displayed similar character in the first pass, confirmed by gamma variate fits (p<0.02). MR AIFs displayed reduced PVE compared to PET AIFs, indicating their potential use in PET/MR studies.

  5. Applications of PET CT in clinical practice: Present and future

    NASA Astrophysics Data System (ADS)

    Costa, Durval Campos

    2007-02-01

    Radionuclide imaging and specially positron emission tomography (PET) has already demonstrated its benefits in three major medical subjects, i.e. neurology, cardiology and particularly clinical oncology. More recently the combination of PET and X-ray computed tomography (CT) as PET-CT led to a significant increment of the already large number of clinical applications of this imaging modality. This "anatomy-metabolic fusion" also known as Metabolic Imaging has its future assured if we can: (1) improve resolution reducing partial volume effect, (2) achieve very fast whole body imaging, (3) obtain accurate quantification of specific functions with higher contrast resolution and, if possible, (4) reduce exposure rates due to the unavoidable use of ionizing radiation.

  6. Fusion of multi-tracer PET images for dose painting.

    PubMed

    Lelandais, Benoît; Ruan, Su; Denœux, Thierry; Vera, Pierre; Gardin, Isabelle

    2014-10-01

    PET imaging with FluoroDesoxyGlucose (FDG) tracer is clinically used for the definition of Biological Target Volumes (BTVs) for radiotherapy. Recently, new tracers, such as FLuoroThymidine (FLT) or FluoroMisonidazol (FMiso), have been proposed. They provide complementary information for the definition of BTVs. Our work is to fuse multi-tracer PET images to obtain a good BTV definition and to help the radiation oncologist in dose painting. Due to the noise and the partial volume effect leading, respectively, to the presence of uncertainty and imprecision in PET images, the segmentation and the fusion of PET images is difficult. In this paper, a framework based on Belief Function Theory (BFT) is proposed for the segmentation of BTV from multi-tracer PET images. The first step is based on an extension of the Evidential C-Means (ECM) algorithm, taking advantage of neighboring voxels for dealing with uncertainty and imprecision in each mono-tracer PET image. Then, imprecision and uncertainty are, respectively, reduced using prior knowledge related to defects in the acquisition system and neighborhood information. Finally, a multi-tracer PET image fusion is performed. The results are represented by a set of parametric maps that provide important information for dose painting. The performances are evaluated on PET phantoms and patient data with lung cancer. Quantitative results show good performance of our method compared with other methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. A study of shape-dependent partial volume correction in pet imaging using ellipsoidal phantoms fabricated via rapid prototyping

    NASA Astrophysics Data System (ADS)

    Mille, Matthew M.

    Positron emission tomography (PET) with 2-[18F]fluoro-2-deoxy-D-glucose (FDG) is being increasingly recognized as an important tool for quantitative assessment of tumor response because of its ability to capture functional information about the tumor's metabolism. However, despite many advances in PET technology, measurements of tumor radiopharmaceutical uptake in PET are still challenged by issues of accuracy and consistency, thereby compromising the use of PET as a surrogate endpoint in clinical trials. One limiting component of the overall uncertainty in PET is the relatively poor spatial resolution of the images which directly affects the accuracy of the tumor radioactivity measurements. These spatial resolution effects, colloquially known as the partial volume effect (PVE), are a function of the characteristics of the scanner as well as the tumor being imaged. Previous efforts have shown that the PVE depends strongly on the tumor volume and the background-to-tumor activity concentration ratio. The PVE is also suspected to be a function of tumor shape, although to date no systematic study of this effect has been performed. This dissertation seeks to help fill the gap in the current knowledge about the shape-dependence of the PVE by attempting to quantify, through both theoretical calculation and experimental measurement, the magnitude of the shape effect for ellipsoidal tumors. An experimental investigation of the tumor shape effect necessarily requires tumor phantoms of multiple shapes. Hence, a prerequisite for this research was the design and fabrication of hollow tumor phantoms which could be filled uniformly with radioactivity and imaged on a PET scanner. The phantom fabrication was achieved with the aid of stereolithography and included prolate ellipsoids of various axis ratios. The primary experimental method involved filling the tumor phantoms with solutions of 18F whose activity concentrations were known and traceable to primary radioactivity standards held by the National Institute of Standards and Technology (NIST). The tumor phantoms were then placed inside a Jaszczak cylinder (representing the human body) and imaged on a PET scanner located at NIST. This experimental approach allowed for the testing of: (1) The relative difference between tumors phantoms of different shapes, but same volume; (2) The overall accuracy of the PET measurements in terms of a ground truth reference value. Theoretical calculations of the tumor shape effect were also performed by mathematically convolving the phantom shapes with a 3D Gaussian point-spread function, and the results of the calculations were compared with the experimental data. The data show that the shape effect in PET tumor imaging can be as large as 15% for ellipsoid phantoms with axis ratios of 2:1, volume of 1.15 cm 3, and tumor-to-background activity concentration ratio of 9:1. This is explained by a greater loss of counts along the minor axis direction in the ellipsoid tumors compared to that of spheres of the same volume. The results of this PhD research confirm the existence of a tumor shape effect PET imaging. However, except in the case of ellipsoids with major-to-minor axis ratio greater than 2:1, a correction for the effect using recovery coefficients is expected to be challenging because its magnitude is comparable to the repeatability of the PET measurements.

  8. Alzheimer's disease detection using 11C-PiB with improved partial volume effect correction

    NASA Astrophysics Data System (ADS)

    Raniga, Parnesh; Bourgeat, Pierrick; Fripp, Jurgen; Acosta, Oscar; Ourselin, Sebastien; Rowe, Christopher; Villemagne, Victor L.; Salvado, Olivier

    2009-02-01

    Despite the increasing use of 11C-PiB in research into Alzheimer's disease (AD), there are few standardized analysis procedures that have been reported or published. This is especially true with regards to partial volume effects (PVE) and partial volume correction. Due to the nature of PET physics and acquisition, PET images exhibit relatively low spatial resolution compared to other modalities, resulting in bias of quantitative results. Although previous studies have applied PVE correction techniques on 11C-PiB data, the results have not been quantitatively evaluated and compared against uncorrected data. The aim of this study is threefold. Firstly, a realistic synthetic phantom was created to quantify PVE. Secondly, MRI partial volume estimate segmentations were used to improve voxel-based PVE correction instead of using hard segmentations. Thirdly, quantification of PVE correction was evaluated on 34 subjects (AD=10, Normal Controls (NC)=24), including 12 PiB positive NC. Regional analysis was performed using the Anatomical Automatic Labeling (AAL) template, which was registered to each patient. Regions of interest were restricted to the gray matter (GM) defined by the MR segmentation. Average normalized intensity of the neocortex and selected regions were used to evaluate the discrimination power between AD and NC both with and without PVE correction. Receiver Operating Characteristic (ROC) curves were computed for the binary discrimination task. The phantom study revealed signal losses due to PVE between 10 to 40 % which were mostly recovered to within 5% after correction. Better classification was achieved after PVE correction, resulting in higher areas under ROC curves.

  9. Follow-up segmentation of lung tumors in PET and CT data

    NASA Astrophysics Data System (ADS)

    Opfer, Roland; Kabus, Sven; Schneider, Torben; Carlsen, Ingwer C.; Renisch, Steffen; Sabczynski, Jörg

    2009-02-01

    Early response assessment of cancer therapy is a crucial component towards a more effective and patient individualized cancer therapy. Integrated PET/CT systems provide the opportunity to combine morphologic with functional information. We have developed algorithms which allow the user to track both tumor volume and standardized uptake value (SUV) measurements during the therapy from series of CT and PET images, respectively. To prepare for tumor volume estimation we have developed a new technique for a fast, flexible, and intuitive 3D definition of meshes. This initial surface is then automatically adapted by means of a model-based segmentation algorithm and propagated to each follow-up scan. If necessary, manual corrections can be added by the user. To determine SUV measurements a prioritized region growing algorithm is employed. For an improved workflow all algorithms are embedded in a PET/CT therapy monitoring software suite giving the clinician a unified and immediate access to all data sets. Whenever the user clicks on a tumor in a base-line scan, the courses of segmented tumor volumes and SUV measurements are automatically identified and displayed to the user as a graph plot. According to each course, the therapy progress can be classified as complete or partial response or as progressive or stable disease. We have tested our methods with series of PET/CT data from 9 lung cancer patients acquired at Princess Margaret Hospital in Toronto. Each patient underwent three PET/CT scans during a radiation therapy. Our results indicate that a combination of mean metabolic activity in the tumor with the PET-based tumor volume can lead to an earlier response detection than a purely volume based (CT diameter) or purely functional based (e.g. SUV max or SUV mean) response measures. The new software seems applicable for easy, faster, and reproducible quantification to routinely monitor tumor therapy.

  10. Simulating effects of brain atrophy in longitudinal PET imaging with an anthropomorphic brain phantom

    NASA Astrophysics Data System (ADS)

    Jonasson, L. S.; Axelsson, J.; Riklund, K.; Boraxbekk, C. J.

    2017-07-01

    In longitudinal positron emission tomography (PET), the presence of volumetric changes over time can lead to an overestimation or underestimation of the true changes in the quantified PET signal due to the partial volume effect (PVE) introduced by the limited spatial resolution of existing PET cameras and reconstruction algorithms. Here, a 3D-printed anthropomorphic brain phantom with attachable striata in three sizes was designed to enable controlled volumetric changes. Using a method to eliminate the non-radioactive plastic wall, and manipulating BP levels by adding different number of events from list-mode acquisitions, we investigated the artificial volume dependence of BP due to PVE, and potential bias arising from varying BP. Comparing multiple reconstruction algorithms we found that a high-resolution ordered-subsets maximization algorithm with spatially variant point-spread function resolution modeling provided the most accurate data. For striatum, the BP changed by 0.08% for every 1% volume change, but for smaller volumes such as the posterior caudate the artificial change in BP was as high as 0.7% per 1% volume change. A simple gross correction for striatal volume is unsatisfactory, as the amplitude of the PVE on the BP differs depending on where in the striatum the change occurred. Therefore, to correctly interpret age-related longitudinal changes in the BP, we must account for volumetric changes also within a structure, rather than across the whole volume. The present 3D-printing technology, combined with the wall removal method, can be implemented to gain knowledge about the predictable bias introduced by the PVE differences in uptake regions of varying shape.

  11. Prognostic Value of [18F]-Fluoromethylcholine Positron Emission Tomography/Computed Tomography Before Stereotactic Body Radiation Therapy for Oligometastatic Prostate Cancer.

    PubMed

    Cysouw, Matthijs; Bouman-Wammes, Esther; Hoekstra, Otto; van den Eertwegh, Alfons; Piet, Maartje; van Moorselaar, Jeroen; Boellaard, Ronald; Dahele, Max; Oprea-Lager, Daniela

    2018-06-01

    To investigate the predictive value of [ 18 F]-fluoromethylcholine positron emission tomography/computed tomography (PET/CT)-derived parameters on progression-free survival (PFS) in oligometastatic prostate cancer patients treated with stereotactic body radiation therapy (SBRT). In [ 18 F]-fluoromethylcholine PET/CT scans of 40 consecutive patients with ≤4 metachronous metastases treated with SBRT we retrospectively measured the number of metastases, standardized uptake values (SUV mean , SUV max , SUV peak ), metabolically active tumor volume (MATV), and total lesion choline uptake. Partial-volume correction was applied using the iterative deconvolution Lucy-Richardson algorithm. Thirty-seven lymph node and 13 bone metastases were treated with SBRT. Thirty-three patients (82.5%) had 1 lesion, 4 (10%) had 2 lesions, and 3 (7.5%) had 3 lesions. After a median follow-up of 32.6 months (interquartile range, 35.5 months), the median PFS was 11.5 months (95% confidence interval 8.4-14.6 months). Having more than a single metastasis was a significant prognostic factor (hazard ratio 2.74; P = .03), and there was a trend in risk of progression for large MATV (hazard ratio 1.86; P = .10). No SUV or total lesion choline uptake was significantly predictive for PFS, regardless of partial-volume correction. All PET semiquantitative parameters were significantly correlated with each other (P ≤ .013). The number of choline-avid metastases was a significant prognostic factor for progression after [ 18 F]-fluormethylcholine PET/CT-guided SBRT for recurrent oligometastatic prostate cancer, and there seemed to be a trend in risk of progression for patients with large MATVs. The lesional level of [ 18 F]-fluoromethylcholine uptake was not prognostic for progression. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Methods for the correction of vascular artifacts in PET O-15 water brain-mapping studies

    NASA Astrophysics Data System (ADS)

    Chen, Kewei; Reiman, E. M.; Lawson, M.; Yun, Lang-sheng; Bandy, D.; Palant, A.

    1996-12-01

    While positron emission tomographic (PET) measurements of regional cerebral blood flow (rCBF) can be used to map brain regions that are involved in normal and pathological human behaviors, measurements in the anteromedial temporal lobe can be confounded by the combined effects of radiotracer activity in neighboring arteries and partial-volume averaging. The authors now describe two simple methods to address this vascular artifact. One method utilizes the early frames of a dynamic PET study, while the other method utilizes a coregistered magnetic resonance image (MRI) to characterize the vascular region of interest (VROI). Both methods subsequently assign a common value to each pixel in the VROI for the control (baseline) scan and the activation scan. To study the vascular artifact and to demonstrate the ability of the proposed methods correcting the vascular artifact, four dynamic PET scans were performed in a single subject during the same behavioral state. For each of the four scans, a vascular scan containing vascular activity was computed as the summation of the images acquired 0-60 s after radiotracer administration, and a control scan containing minimal vascular activity was computed as the summation of the images acquired 20-80 s after radiotracer administration. t-score maps calculated from the four pairs of vascular and control scans were used to characterize regional blood flow differences related to vascular activity before and after the application of each vascular artifact correction method. Both methods eliminated the observed differences in vascular activity, as well as the vascular artifact observed in the anteromedial temporal lobes. Using PET data from a study of normal human emotion, these methods permitted the authors to identify rCBF increases in the anteromedial temporal lobe free from the potentially confounding, combined effects of vascular activity and partial-volume averaging.

  13. Greater glucose uptake heterogeneity in knee muscles of old compared to young men during isometric contractions detected by [18F]-FDG PET/CT

    PubMed Central

    Rudroff, Thorsten; Kindred, John H.; Benson, John-Michael; Tracy, Brian L.; Kalliokoski, Kari K.

    2014-01-01

    We used positron emission tomography/computed tomography (PET/CT) and [18F]-FDG to test the hypothesis that glucose uptake (GU) heterogeneity in skeletal muscles as a measure of heterogeneity in muscle activity is greater in old than young men when they perform isometric contractions. Six young (26 ± 6 years) and six old (77 ± 6 years) men performed two types of submaximal isometric contractions that required either force or position control. [18F]-FDG was injected during the task and PET/CT scans were performed immediately after the task. Within-muscle heterogeneity of knee muscles was determined by calculating the coefficient of variation (CV) of GU in PET image voxels within the muscles of interest. The average GU heterogeneity (mean ± SD) for knee extensors and flexors was greater for the old (35.3 ± 3.3%) than the young (28.6 ± 2.4%) (P = 0.006). Muscle volume of the knee extensors were greater for the young compared to the old men (1016 ± 163 vs. 598 ± 70 cm3, P = 0.004). In a multiple regression model, knee extensor muscle volume was a predictor (partial r = −0.87; P = 0.001) of GU heterogeneity for old men (R2 = 0.78; P < 0.001), and MVC force predicted GU heterogeneity for young men (partial r = −0.95, P < 0.001). The findings demonstrate that GU is more spatially variable for old than young men and especially so for old men who exhibit greater muscle atrophy. PMID:24904432

  14. INVESTIGATION OF PARTIAL VOLUME EFFECT IN DIFFERENT PET/CT SYSTEMS: A COMPARISON OF RESULTS USING THE MADEIRA PHANTOM AND THE NEMA NU-2 2001 PHANTOM.

    PubMed

    Chipiga, L; Sydoff, M; Zvonova, I; Bernhardsson, C

    2016-06-01

    Positron emission tomography combined with computed tomography (PET/CT) is a quantitative technique used for diagnosing various diseases and for monitoring treatment response for different types of tumours. However, the accuracy of the data is limited by the spatial resolution of the system. In addition, the so-called partial volume effect (PVE) causes a blurring of image structures, which in turn may cause an underestimation of activity of a structure with high-activity content. In this study, a new phantom, MADEIRA (Minimising Activity and Dose with Enhanced Image quality by Radiopharmaceutical Administrations) for activity quantification in PET and single photon emission computed tomography (SPECT) was used to investigate the influence on the PVE by lesion size and tumour-to-background activity concentration ratio (TBR) in four different PET/CT systems. These measurements were compared with data from measurements with the NEMA NU-2 2001 phantom. The results with the MADEIRA phantom showed that the activity concentration (AC) values were closest to the true values at low ratios of TBR (<10) and reduced to 50 % of the actual AC values at high TBR (30-35). For all scanners, recovery of true values became closer to 1 with an increasing diameter of the lesion. The MADEIRA phantom showed good agreement with the results obtained from measurements with the NEMA NU-2 2001 phantom but allows for a wider range of possibilities in measuring image quality parameters. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques.

    PubMed

    Hofmann, Matthias; Pichler, Bernd; Schölkopf, Bernhard; Beyer, Thomas

    2009-03-01

    Positron emission tomography (PET) is a fully quantitative technology for imaging metabolic pathways and dynamic processes in vivo. Attenuation correction of raw PET data is a prerequisite for quantification and is typically based on separate transmission measurements. In PET/CT attenuation correction, however, is performed routinely based on the available CT transmission data. Recently, combined PET/magnetic resonance (MR) has been proposed as a viable alternative to PET/CT. Current concepts of PET/MRI do not include CT-like transmission sources and, therefore, alternative methods of PET attenuation correction must be found. This article reviews existing approaches to MR-based attenuation correction (MR-AC). Most groups have proposed MR-AC algorithms for brain PET studies and more recently also for torso PET/MR imaging. Most MR-AC strategies require the use of complementary MR and transmission images, or morphology templates generated from transmission images. We review and discuss these algorithms and point out challenges for using MR-AC in clinical routine. MR-AC is work-in-progress with potentially promising results from a template-based approach applicable to both brain and torso imaging. While efforts are ongoing in making clinically viable MR-AC fully automatic, further studies are required to realize the potential benefits of MR-based motion compensation and partial volume correction of the PET data.

  16. Quantification of FDG-PET/CT with delayed imaging in patients with newly diagnosed recurrent breast cancer.

    PubMed

    Baun, Christina; Falch, Kirsten; Gerke, Oke; Hansen, Jeanette; Nguyen, Tram; Alavi, Abass; Høilund-Carlsen, Poul-Flemming; Hildebrandt, Malene G

    2018-05-09

    Several studies have shown the advantage of delayed-time-point imaging with 18F-FDG-PET/CT to distinguish malignant from benign uptake. This may be relevant in cancer diseases with low metabolism, such as breast cancer. We aimed at examining the change in SUV from 1 h (1h) to 3 h (3h) time-point imaging in local and distant lesions in patients with recurrent breast cancer. Furthermore, we investigated the effect of partial volume correction in the different types of metastases, using semi-automatic quantitative software (ROVER™). One-hundred and two patients with suspected breast cancer recurrence underwent whole-body PET/CT scans 1h and 3h after FDG injection. Semi-quantitative standardised uptake values (SUVmax, SUVmean) and partial volume corrected SUVmean (cSUVmean), were estimated in malignant lesions, and as reference in healthy liver tissue. The change in quantitative measures from 1h to 3h was calculated, and SUVmean was compared to cSUVmean. Metastases were verified by biopsy. Of the 102 included patients, 41 had verified recurrent disease with in median 15 lesions (range 1-70) amounting to a total of 337 malignant lesions included in the analysis. SUVmax of malignant lesions increased from 6.4 ± 3.4 [0.9-19.7] (mean ± SD, min and max) at 1h to 8.1 ± 4.4 [0.7-29.7] at 3h. SUVmax in breast, lung, lymph node and bone lesions increased significantly (p < 0.0001) between 1h and 3h by on average 25, 40, 33, and 27%, respectively. A similar pattern was observed with (uncorrected) SUVmean. Partial volume correction increased SUVmean significantly, by 63 and 71% at 1h and 3h imaging, respectively. The highest impact was in breast lesions at 3h, where cSUVmean increased by 87% compared to SUVmean. SUVs increased from 1h to 3h in malignant lesions, SUVs of distant recurrence were in general about twice as high as those of local recurrence. Partial volume correction caused significant increases in these values. However, it is questionable, if these relatively modest quantitative advances of 3h imaging are sufficient to warrant delayed imaging in this patient group. ClinicalTrails.gov NCT01552655 . Registered 28 February 2012, partly retrospectively registered.

  17. Improved quantification for local regions of interest in preclinical PET imaging

    NASA Astrophysics Data System (ADS)

    Cal-González, J.; Moore, S. C.; Park, M.-A.; Herraiz, J. L.; Vaquero, J. J.; Desco, M.; Udias, J. M.

    2015-09-01

    In Positron Emission Tomography, there are several causes of quantitative inaccuracy, such as partial volume or spillover effects. The impact of these effects is greater when using radionuclides that have a large positron range, e.g. 68Ga and 124I, which have been increasingly used in the clinic. We have implemented and evaluated a local projection algorithm (LPA), originally evaluated for SPECT, to compensate for both partial-volume and spillover effects in PET. This method is based on the use of a high-resolution CT or MR image, co-registered with a PET image, which permits a high-resolution segmentation of a few tissues within a volume of interest (VOI) centered on a region within which tissue-activity values need to be estimated. The additional boundary information is used to obtain improved activity estimates for each tissue within the VOI, by solving a simple inversion problem. We implemented this algorithm for the preclinical Argus PET/CT scanner and assessed its performance using the radionuclides 18F, 68Ga and 124I. We also evaluated and compared the results obtained when it was applied during the iterative reconstruction, as well as after the reconstruction as a postprocessing procedure. In addition, we studied how LPA can help to reduce the ‘spillover contamination’, which causes inaccurate quantification of lesions in the immediate neighborhood of large, ‘hot’ sources. Quantification was significantly improved by using LPA, which provided more accurate ratios of lesion-to-background activity concentration for hot and cold regions. For 18F, the contrast was improved from 3.0 to 4.0 in hot lesions (when the true ratio was 4.0) and from 0.16 to 0.06 in cold lesions (true ratio  =  0.0), when using the LPA postprocessing. Furthermore, activity values estimated within the VOI using LPA during reconstruction were slightly more accurate than those obtained by post-processing, while also visually improving the image contrast and uniformity within the VOI.

  18. Improved quantification for local regions of interest in preclinical PET imaging

    PubMed Central

    Cal-González, J.; Moore, S. C.; Park, M.-A.; Herraiz, J. L.; Vaquero, J. J.; Desco, M.; Udias, J. M.

    2015-01-01

    In Positron Emission Tomography, there are several causes of quantitative inaccuracy, such as partial volume or spillover effects. The impact of these effects is greater when using radionuclides that have a large positron range, e.g., 68Ga and 124I, which have been increasingly used in the clinic. We have implemented and evaluated a local projection algorithm (LPA), originally evaluated for SPECT, to compensate for both partial-volume and spillover effects in PET. This method is based on the use of a high-resolution CT or MR image, co-registered with a PET image, which permits a high-resolution segmentation of a few tissues within a volume of interest (VOI) centered on a region within which tissue-activity values need to be estimated. The additional boundary information is used to obtain improved activity estimates for each tissue within the VOI, by solving a simple inversion problem. We implemented this algorithm for the preclinical Argus PET/CT scanner and assessed its performance using the radionuclides 18F, 68Ga and 124I. We also evaluated and compared the results obtained when it was applied during the iterative reconstruction, as well as after the reconstruction as a postprocessing procedure. In addition, we studied how LPA can help to reduce the “spillover contamination”, which causes inaccurate quantification of lesions in the immediate neighborhood of large, “hot” sources. Quantification was significantly improved by using LPA, which provided more accurate ratios of lesion-to-background activity concentration for hot and cold regions. For 18F, the contrast was improved from 3.0 to 4.0 in hot lesions (when the true ratio was 4.0) and from 0.16 to 0.06 in cold lesions (true ratio = 0.0), when using the LPA postprocessing. Furthermore, activity values estimated within the VOI using LPA during reconstruction were slightly more accurate than those obtained by post-processing, while also visually improving the image contrast and uniformity within the VOI. PMID:26334312

  19. Association between partial-volume corrected SUVmax and Oncotype DX recurrence score in early-stage, ER-positive/HER2-negative invasive breast cancer.

    PubMed

    Lee, Su Hyun; Ha, Seunggyun; An, Hyun Joon; Lee, Jae Sung; Han, Wonshik; Im, Seock-Ah; Ryu, Han Suk; Kim, Won Hwa; Chang, Jung Min; Cho, Nariya; Moon, Woo Kyung; Cheon, Gi Jeong

    2016-08-01

    Oncotype DX, a 21-gene expression assay, provides a recurrence score (RS) which predicts prognosis and the benefit from adjuvant chemotherapy in patients with early-stage, estrogen receptor-positive (ER-positive), and human epidermal growth factor receptor 2-negative (HER2-negative) invasive breast cancer. However, Oncotype DX tests are expensive and not readily available in all institutions. The purpose of this study was to investigate whether metabolic parameters on (18)F-FDG PET/CT are associated with the Oncotype DX RS and whether (18)F-FDG PET/CT can be used to predict the Oncotype DX RS. The study group comprised 38 women with stage I/II, ER-positive/HER2-negative invasive breast cancer who underwent pretreatment (18)F-FDG PET/CT and Oncotype DX testing. On PET/CT, maximum (SUVmax) and average standardized uptake values, metabolic tumor volume, and total lesion glycolysis were measured. Partial volume-corrected SUVmax (PVC-SUVmax) determined using the recovery coefficient method was also evaluated. Oncotype DX RS (0 - 100) was categorized as low (<18), intermediate (18 - 30), or high (≥31). The associations between metabolic parameters and RS were analyzed. Multivariate logistic regression was used to identify significant independent predictors of low versus intermediate-to-high RS. Of the 38 patients, 22 (58 %) had a low RS, 13 (34 %) had an intermediate RS, and 3 (8 %) had a high RS. In the analysis with 38 index tumors, PVC-SUVmax was higher in tumors in patients with intermediate-to-high RS than in those with low RS (5.68 vs. 4.06; P = 0.067, marginally significant). High PVC-SUVmax (≥4.96) was significantly associated with intermediate-to-high RS (odds ratio, OR, 10.556; P = 0.004) in univariate analysis. In multivariate analysis with clinicopathologic factors, PVC-SUVmax ≥4.96 (OR 8.459; P = 0.013) was a significant independent predictor of intermediate-to-high RS. High PVC-SUVmax on (18)F-FDG PET/CT was significantly associated with an intermediate-to-high Oncotype DX RS. PVC metabolic parameters on (18)F-FDG PET/CT can be used to predict the Oncotype DX RS in patients with early-stage, ER-positive/HER2-negative breast cancer.

  20. MR/PET Imaging of the Cardiovascular System.

    PubMed

    Robson, Philip M; Dey, Damini; Newby, David E; Berman, Daniel; Li, Debiao; Fayad, Zahi A; Dweck, Marc R

    2017-10-01

    Cardiovascular imaging has largely focused on identifying structural, functional, and metabolic changes in the heart. The ability to reliably assess disease activity would have major potential clinical advantages, including the identification of early disease, differentiating active from stable conditions, and monitoring disease progression or response to therapy. Positron emission tomography (PET) imaging now allows such assessments of disease activity to be acquired in the heart, whereas magnetic resonance (MR) scanning provides detailed anatomic imaging and tissue characterization. Hybrid MR/PET scanners therefore combine the strengths of 2 already powerful imaging modalities. Simultaneous acquisition of the 2 scans also provides added benefits, including improved scanning efficiency, motion correction, and partial volume correction. Radiation exposure is lower than with hybrid PET/computed tomography scanning, which might be particularly beneficial in younger patients who may need repeated scans. The present review discusses the expanding clinical literature investigating MR/PET imaging, highlights its advantages and limitations, and explores future potential applications. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Impact of motion and partial volume effects correction on PET myocardial perfusion imaging using simultaneous PET-MR

    NASA Astrophysics Data System (ADS)

    Petibon, Yoann; Guehl, Nicolas J.; Reese, Timothy G.; Ebrahimi, Behzad; Normandin, Marc D.; Shoup, Timothy M.; Alpert, Nathaniel M.; El Fakhri, Georges; Ouyang, Jinsong

    2017-01-01

    PET is an established modality for myocardial perfusion imaging (MPI) which enables quantification of absolute myocardial blood flow (MBF) using dynamic imaging and kinetic modeling. However, heart motion and partial volume effects (PVE) significantly limit the spatial resolution and quantitative accuracy of PET MPI. Simultaneous PET-MR offers a solution to the motion problem in PET by enabling MR-based motion correction of PET data. The aim of this study was to develop a motion and PVE correction methodology for PET MPI using simultaneous PET-MR, and to assess its impact on both static and dynamic PET MPI using 18F-Flurpiridaz, a novel 18F-labeled perfusion tracer. Two dynamic 18F-Flurpiridaz MPI scans were performed on healthy pigs using a PET-MR scanner. Cardiac motion was tracked using a dedicated tagged-MRI (tMR) sequence. Motion fields were estimated using non-rigid registration of tMR images and used to calculate motion-dependent attenuation maps. Motion correction of PET data was achieved by incorporating tMR-based motion fields and motion-dependent attenuation coefficients into image reconstruction. Dynamic and static PET datasets were created for each scan. Each dataset was reconstructed as (i) Ungated, (ii) Gated (end-diastolic phase), and (iii) Motion-Corrected (MoCo), each without and with point spread function (PSF) modeling for PVE correction. Myocardium-to-blood concentration ratios (MBR) and apparent wall thickness were calculated to assess image quality for static MPI. For dynamic MPI, segment- and voxel-wise MBF values were estimated by non-linear fitting of a 2-tissue compartment model to tissue time-activity-curves. MoCo and Gating respectively decreased mean apparent wall thickness by 15.1% and 14.4% and increased MBR by 20.3% and 13.6% compared to Ungated images (P  <  0.01). Combined motion and PSF correction (MoCo-PSF) yielded 30.9% (15.7%) lower wall thickness and 82.2% (20.5%) higher MBR compared to Ungated data reconstructed without (with) PSF modeling (P  <  0.01). For dynamic PET, mean MBF across all segments were comparable for MoCo (0.72  ±  0.21 ml/min/ml) and Gating (0.69  ±  0.18 ml/min/ml). Ungated data yielded significantly lower mean MBF (0.59  ±  0.16 ml/min/ml). Mean MBF for MoCo-PSF was 0.80  ±  0.22 ml/min/ml, which was 37.9% (25.0%) higher than that obtained from Ungated data without (with) PSF correction (P  <  0.01). The developed methodology holds promise to improve the image quality and sensitivity of PET MPI studies performed using PET-MR.

  2. TU-AB-202-11: Tumor Segmentation by Fusion of Multi-Tracer PET Images Using Copula Based Statistical Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapuyade-Lahorgue, J; Ruan, S; Li, H

    Purpose: Multi-tracer PET imaging is getting more attention in radiotherapy by providing additional tumor volume information such as glucose and oxygenation. However, automatic PET-based tumor segmentation is still a very challenging problem. We propose a statistical fusion approach to joint segment the sub-area of tumors from the two tracers FDG and FMISO PET images. Methods: Non-standardized Gamma distributions are convenient to model intensity distributions in PET. As a serious correlation exists in multi-tracer PET images, we proposed a new fusion method based on copula which is capable to represent dependency between different tracers. The Hidden Markov Field (HMF) model ismore » used to represent spatial relationship between PET image voxels and statistical dynamics of intensities for each modality. Real PET images of five patients with FDG and FMISO are used to evaluate quantitatively and qualitatively our method. A comparison between individual and multi-tracer segmentations was conducted to show advantages of the proposed fusion method. Results: The segmentation results show that fusion with Gaussian copula can receive high Dice coefficient of 0.84 compared to that of 0.54 and 0.3 of monomodal segmentation results based on individual segmentation of FDG and FMISO PET images. In addition, high correlation coefficients (0.75 to 0.91) for the Gaussian copula for all five testing patients indicates the dependency between tumor regions in the multi-tracer PET images. Conclusion: This study shows that using multi-tracer PET imaging can efficiently improve the segmentation of tumor region where hypoxia and glucidic consumption are present at the same time. Introduction of copulas for modeling the dependency between two tracers can simultaneously take into account information from both tracers and deal with two pathological phenomena. Future work will be to consider other families of copula such as spherical and archimedian copulas, and to eliminate partial volume effect by considering dependency between neighboring voxels.« less

  3. A software tool for automatic classification and segmentation of 2D/3D medical images

    NASA Astrophysics Data System (ADS)

    Strzelecki, Michal; Szczypinski, Piotr; Materka, Andrzej; Klepaczko, Artur

    2013-02-01

    Modern medical diagnosis utilizes techniques of visualization of human internal organs (CT, MRI) or of its metabolism (PET). However, evaluation of acquired images made by human experts is usually subjective and qualitative only. Quantitative analysis of MR data, including tissue classification and segmentation, is necessary to perform e.g. attenuation compensation, motion detection, and correction of partial volume effect in PET images, acquired with PET/MR scanners. This article presents briefly a MaZda software package, which supports 2D and 3D medical image analysis aiming at quantification of image texture. MaZda implements procedures for evaluation, selection and extraction of highly discriminative texture attributes combined with various classification, visualization and segmentation tools. Examples of MaZda application in medical studies are also provided.

  4. Patterns of age related changes for phosphodiesterase type-10A in comparison with dopamine D2/3 receptors and sub-cortical volumes in the human basal ganglia: A PET study with 18F-MNI-659 and 11C-raclopride with correction for partial volume effect.

    PubMed

    Fazio, Patrik; Schain, Martin; Mrzljak, Ladislav; Amini, Nahid; Nag, Sangram; Al-Tawil, Nabil; Fitzer-Attas, Cheryl J; Bronzova, Juliana; Landwehrmeyer, Bernhard; Sampaio, Cristina; Halldin, Christer; Varrone, Andrea

    2017-05-15

    Phosphodiesterase 10A enzyme (PDE10A) is an important striatal target that has been shown to be affected in patients with neurodegenerative disorders, particularly Huntington´s disease (HD). PDE10A is expressed on striatal neurones in basal ganglia where other known molecular targets are enriched such as dopamine D 2/3 receptors (D 2/3 R). The aim of this study was to examine the availability of PDE10A enzyme in relation with age and gender and to compare those changes with those related to D 2/3 R and volumes in different regions of the basal ganglia. As a secondary objective we examined the relative distribution of D 2/3 R and PDE10A enzyme in the striatum and globus pallidus. Forty control subjects (20F/20M; age: 44±11y, age range 27-69) from an ongoing positron emission tomography (PET) study in HD gene expansion carriers were included. Subjects were examined with PET using the high-resolution research tomograph (HRRT) and with 3T magnetic resonance imaging (MRI). The PDE10A radioligand 18 F-MNI-659 and D 2/3 R radioligand 11 C-raclopride were used. The outcome measure was the binding potential (BP ND ) estimated with the two-tissue compartment model ( 18 F-MNI-659) and the simplified reference tissue model ( 11 C-raclopride) using the cerebellum as reference region. The PET data were corrected for partial volume effects. In the striatum, PDE10A availability showed a significant age-related decline that was larger compared to the age-related decline of D 2/3 R availability and to the age-related decline of volumes measured with MRI. In the globus pallidus, a less pronounced decline of PDE10A availability was observed, whereas D 2/3 R availability and volumes seemed to be rather stable with aging. The distribution of the PDE10A enzyme was different from the distribution of D 2/3 R, with higher availability in the globus pallidus. These results indicate that aging is associated with a considerable physiological reduction of the availability of PDE10A enzyme in the striatum. Moreover as result of the analysis, in the striatum for both the molecular targets, we observed a gender effect with higher BP ND the female group. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Evaluation of multifunctional imaging parameters in gastro-oesophageal cancer using F-18-FDG-PET/CT with integrated perfusion CT.

    PubMed

    Sah, Bert-Ram; Leissing, Christian A; Delso, Gaspar; Ter Voert, Edwin E; Krieg, Stefan; Leibl, Sebastian; Schneider, Paul M; Reiner, Cäcilia S; Hüllner, Martin W; Veit-Haibach, Patrick

    2018-05-10

    Positron emission tomography (PET) / computed tomography (CT) is among the most frequently used imaging modalities for initial staging of gastro-oesophageal (GE) cancer, whereas CT-perfusion (CTP) provides different multiparametric information. This proof of concept study compares CTP- and PET-parameters in patients with GE cancer to evaluate correlations and a possible prognostic value of a combined PET/CTP imaging procedure. A total of 31 patients with F-18-FDG-PET/CT and CTP studies were prospectively analysed. Patients had adenocarcinoma (n = 22) and oesophageal squamous cell carcinoma (SCC, n = 9). Imaging was performed before start of treatment. CTP parameters [blood flow (BF), blood volume (BV), mean transit time (MTT)] and metabolic parameters [(maximum and mean standardised uptake values and standard deviation (SUVmax, SUVmean, SUVsd), metabolic tumour volume (MTV) and tumour lesion glycolysis (TLG)], as well as flow metabolic product [FMP (BF × SUVmax)] were determined and their relationship was compared. Additionally their association to clinical parameters (differentiation grading, staging, HER2-status, follow-up status) and to histopathological regression (post-neoadjuvant regression grading) was evaluated. Correlation between parameters of both modalities was significant between MTT and MTV (r = 0.375, p = 0.038); no other significant correlation was found. Patients with complete histopathological regression showed significantly lower BF and BV than patients with nearly complete or partial response. TLG and regression grading showed significant correlation with staging. All other quantitative parameters for CTP and PET data did not correlate significantly with histopathological regression grading, differentiation or staging. The combination of PET and CTP parameters (FMP) showed no significant prognostic value. Significant correlations were only found between MTT and MTV, which indicates a possible perfusional/metabolic coupling. Therefore, pre-therapeutic CTP and PET- parameters provide complementary information about the pre-therapeutic tumour status and are not interchangeable. Only CTP parameters might be able to predict complete histopathological regression. On the other hand, only PET parameters are correlated with staging.

  6. A simulation study of a C-shaped in-beam PET system for dose verification in carbon ion therapy

    NASA Astrophysics Data System (ADS)

    Jung An, Su; Beak, Cheol-Ha; Lee, Kisung; Hyun Chung, Yong

    2013-01-01

    The application of hadrons such as carbon ions is being developed for the treatment of cancer. The effectiveness of such a technique is due to the eligibility of charged particles in delivering most of their energy near the end of the range, called the Bragg peak. However, accurate verification of dose delivery is required since misalignment of the hadron beam can cause serious damage to normal tissue. PET scanners can be utilized to track the carbon beam to the tumor by imaging the trail of the hadron-induced positron emitters in the irradiated volume. In this study, we designed and evaluated (through Monte Carlo simulations) an in-beam PET scanner for monitoring patient dose in carbon beam therapy. A C-shaped PET and a partial-ring PET were designed to avoid interference between the PET detectors and the therapeutic carbon beam delivery. Their performance was compared with that of a full-ring PET scanner. The C-shaped, partial-ring, and full-ring scanners consisted of 14, 12, and 16 detector modules, respectively, with a 30.2 cm inner diameter for brain imaging. Each detector module was composed of a 13×13 array of 4.0 mm×4.0 mm×20.0 mm LYSO crystals and four round 25.4 mm diameter PMTs. To estimate the production yield of positron emitters such as 10C, 11C, and 15O, a cylindrical PMMA phantom (diameter, 20 cm; thickness, 20 cm) was irradiated with 170, 290, and 350 AMeV 12C beams using the GATE code. Phantom images of the three types of scanner were evaluated by comparing the longitudinal profile of the positron emitters, measured along the carbon beam as it passed a simulated positron emitter distribution. The results demonstrated that the development of a C-shaped PET scanner to characterize carbon dose distribution for therapy planning is feasible.

  7. Radiotherapy volume delineation using 18F-FDG-PET/CT modifies gross node volume in patients with oesophageal cancer.

    PubMed

    Jimenez-Jimenez, E; Mateos, P; Aymar, N; Roncero, R; Ortiz, I; Gimenez, M; Pardo, J; Salinas, J; Sabater, S

    2018-05-02

    Evidence supporting the use of 18F-FDG-PET/CT in the segmentation process of oesophageal cancer for radiotherapy planning is limited. Our aim was to compare the volumes and tumour lengths defined by fused PET/CT vs. CT simulation. Twenty-nine patients were analyzed. All patients underwent a single PET/CT simulation scan. Two separate GTVs were defined: one based on CT data alone and another based on fused PET/CT data. Volume sizes for both data sets were compared and the spatial overlap was assessed by the Dice similarity coefficient (DSC). The gross tumour volume (GTVtumour) and maximum tumour diameter were greater by PET/CT, and length of primary tumour was greater by CT, but differences were not statistically significant. However, the gross node volume (GTVnode) was significantly greater by PET/CT. The DSC analysis showed excellent agreement for GTVtumour, 0.72, but was very low for GTVnode, 0.25. Our study shows that the volume definition by PET/CT and CT data differs. CT simulation, without taking into account PET/CT information, might leave cancer-involved nodes out of the radiotherapy-delineated volumes.

  8. Different partial volume correction methods lead to different conclusions: An (18)F-FDG-PET study of aging.

    PubMed

    Greve, Douglas N; Salat, David H; Bowen, Spencer L; Izquierdo-Garcia, David; Schultz, Aaron P; Catana, Ciprian; Becker, J Alex; Svarer, Claus; Knudsen, Gitte M; Sperling, Reisa A; Johnson, Keith A

    2016-05-15

    A cross-sectional group study of the effects of aging on brain metabolism as measured with (18)F-FDG-PET was performed using several different partial volume correction (PVC) methods: no correction (NoPVC), Meltzer (MZ), Müller-Gärtner (MG), and the symmetric geometric transfer matrix (SGTM) using 99 subjects aged 65-87years from the Harvard Aging Brain study. Sensitivity to parameter selection was tested for MZ and MG. The various methods and parameter settings resulted in an extremely wide range of conclusions as to the effects of age on metabolism, from almost no changes to virtually all of cortical regions showing a decrease with age. Simulations showed that NoPVC had significant bias that made the age effect on metabolism appear to be much larger and more significant than it is. MZ was found to be the same as NoPVC for liberal brain masks; for conservative brain masks, MZ showed few areas correlated with age. MG and SGTM were found to be similar; however, MG was sensitive to a thresholding parameter that can result in data loss. CSF uptake was surprisingly high at about 15% of that in gray matter. The exclusion of CSF from SGTM and MG models, which is almost universally done, caused a substantial loss in the power to detect age-related changes. This diversity of results reflects the literature on the metabolism of aging and suggests that extreme care should be taken when applying PVC or interpreting results that have been corrected for partial volume effects. Using the SGTM, significant age-related changes of about 7% per decade were found in frontal and cingulate cortices as well as primary visual and insular cortices. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Different Partial Volume Correction Methods Lead to Different Conclusions: an 18F-FDG PET Study of Aging

    PubMed Central

    Greve, Douglas N.; Salat, David H.; Bowen, Spencer L.; Izquierdo-Garcia, David; Schultz, Aaron P.; Catana, Ciprian; Becker, J. Alex; Svarer, Claus; Knudsen, Gitte; Sperling, Reisa A.; Johnson, Keith A.

    2016-01-01

    A cross-sectional group study of the effects of aging on brain metabolism as measured with 18F-FDG PET was performed using several different partial volume correction (PVC) methods: no correction (NoPVC), Meltzer (MZ), Müller-Gärtner (MG), and the symmetric geometric transfer matrix (SGTM) using 99 subjects aged 65-87 from the Harvard Aging Brain study. Sensitivity to parameter selection was tested for MZ and MG. The various methods and parameter settings resulted in an extremely wide range of conclusions as to the effects of age on metabolism, from almost no changes to virtually all of cortical regions showing a decrease with age. Simulations showed that NoPVC had significant bias that made the age effect on metabolism appear to be much larger and more significant than it is. MZ was found to be the same as NoPVC for liberal brain masks; for conservative brain masks, MZ showed few areas correlated with age. MG and SGTM were found to be similar; however, MG was sensitive to a thresholding parameter that can result in data loss. CSF uptake was surprisingly high at about 15% of that in gray matter. Exclusion of CSF from SGTM and MG models, which is almost universally done, caused a substantial loss in the power to detect age-related changes. This diversity of results reflects the literature on the metabolism of aging and suggests that extreme care should be taken when applying PVC or interpreting results that have been corrected for partial volume effects. Using the SGTM, significant age-related changes of about 7% per decade were found in frontal and cingulate cortices as well as primary visual and insular cortices. PMID:26915497

  10. Validation of a 4D-PET Maximum Intensity Projection for Delineation of an Internal Target Volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callahan, Jason, E-mail: jason.callahan@petermac.org; Kron, Tomas; Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne

    2013-07-15

    Purpose: The delineation of internal target volumes (ITVs) in radiation therapy of lung tumors is currently performed by use of either free-breathing (FB) {sup 18}F-fluorodeoxyglucose-positron emission tomography-computed tomography (FDG-PET/CT) or 4-dimensional (4D)-CT maximum intensity projection (MIP). In this report we validate the use of 4D-PET-MIP for the delineation of target volumes in both a phantom and in patients. Methods and Materials: A phantom with 3 hollow spheres was prepared surrounded by air then water. The spheres and water background were filled with a mixture of {sup 18}F and radiographic contrast medium. A 4D-PET/CT scan was performed of the phantom whilemore » moving in 4 different breathing patterns using a programmable motion device. Nine patients with an FDG-avid lung tumor who underwent FB and 4D-PET/CT and >5 mm of tumor motion were included for analysis. The 3 spheres and patient lesions were contoured by 2 contouring methods (40% of maximum and PET edge) on the FB-PET, FB-CT, 4D-PET, 4D-PET-MIP, and 4D-CT-MIP. The concordance between the different contoured volumes was calculated using a Dice coefficient (DC). The difference in lung tumor volumes between FB-PET and 4D-PET volumes was also measured. Results: The average DC in the phantom using 40% and PET edge, respectively, was lowest for FB-PET/CT (DCAir = 0.72/0.67, DCBackground 0.63/0.62) and highest for 4D-PET/CT-MIP (DCAir = 0.84/0.83, DCBackground = 0.78/0.73). The average DC in the 9 patients using 40% and PET edge, respectively, was also lowest for FB-PET/CT (DC = 0.45/0.44) and highest for 4D-PET/CT-MIP (DC = 0.72/0.73). In the 9 lesions, the target volumes of the FB-PET using 40% and PET edge, respectively, were on average 40% and 45% smaller than the 4D-PET-MIP. Conclusion: A 4D-PET-MIP produces volumes with the highest concordance with 4D-CT-MIP across multiple breathing patterns and lesion sizes in both a phantom and among patients. Freebreathing PET/CT consistently underestimates ITV when compared with 4D PET/CT for a lesion affected by respiration.« less

  11. Monitoring of Tumor Growth with [(18)F]-FET PET in a Mouse Model of Glioblastoma: SUV Measurements and Volumetric Approaches.

    PubMed

    Holzgreve, Adrien; Brendel, Matthias; Gu, Song; Carlsen, Janette; Mille, Erik; Böning, Guido; Mastrella, Giorgia; Unterrainer, Marcus; Gildehaus, Franz J; Rominger, Axel; Bartenstein, Peter; Kälin, Roland E; Glass, Rainer; Albert, Nathalie L

    2016-01-01

    Noninvasive tumor growth monitoring is of particular interest for the evaluation of experimental glioma therapies. This study investigates the potential of positron emission tomography (PET) using O-(2-(18)F-fluoroethyl)-L-tyrosine ([(18)F]-FET) to determine tumor growth in a murine glioblastoma (GBM) model-including estimation of the biological tumor volume (BTV), which has hitherto not been investigated in the pre-clinical context. Fifteen GBM-bearing mice (GL261) and six control mice (shams) were investigated during 5 weeks by PET followed by autoradiographic and histological assessments. [(18)F]-FET PET was quantitated by calculation of maximum and mean standardized uptake values within a universal volume-of-interest (VOI) corrected for healthy background (SUVmax/BG, SUVmean/BG). A partial volume effect correction (PVEC) was applied in comparison to ex vivo autoradiography. BTVs obtained by predefined thresholds for VOI definition (SUV/BG: ≥1.4; ≥1.6; ≥1.8; ≥2.0) were compared to the histologically assessed tumor volume (n = 8). Finally, individual "optimal" thresholds for BTV definition best reflecting the histology were determined. In GBM mice SUVmax/BG and SUVmean/BG clearly increased with time, however at high inter-animal variability. No relevant [(18)F]-FET uptake was observed in shams. PVEC recovered signal loss of SUVmean/BG assessment in relation to autoradiography. BTV as estimated by predefined thresholds strongly differed from the histology volume. Strikingly, the individual "optimal" thresholds for BTV assessment correlated highly with SUVmax/BG (ρ = 0.97, p < 0.001), allowing SUVmax/BG-based calculation of individual thresholds. The method was verified by a subsequent validation study (n = 15, ρ = 0.88, p < 0.01) leading to extensively higher agreement of BTV estimations when compared to histology in contrast to predefined thresholds. [(18)F]-FET PET with standard SUV measurements is feasible for glioma imaging in the GBM mouse model. PVEC is beneficial to improve accuracy of [(18)F]-FET PET SUV quantification. Although SUVmax/BG and SUVmean/BG increase during the disease course, these parameters do not correlate with the respective tumor size. For the first time, we propose a histology-verified method allowing appropriate individual BTV estimation for volumetric in vivo monitoring of tumor growth with [(18)F]-FET PET and show that standardized thresholds from routine clinical practice seem to be inappropriate for BTV estimation in the GBM mouse model.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, I; Otto, M; Weichert, J

    Purpose: The focus of this work is to perform Monte Carlo-based dosimetry for several pediatric cancer xenografts in mice treated with a novel radiopharmaceutical {sup 131}I-CLR1404. Methods: Four mice for each tumor cell line were injected with 8–13 µCi/g of the {sup 124}124I-CLR1404. PET/CT images of each individual mouse were acquired at 5–6 time points over the span of 96–170 hours post-injection. Following acquisition, the images were co-registered, resampled, rescaled, corrected for partial volume effects (PVE), and masked. For this work the pre-treatment PET images of {sup 124}I-CLR1404 were used to predict therapeutic doses from {sup 131}I-CLR1404 at each timemore » point by assuming the same injection activity and accounting for the difference in physical decay rates. Tumors and normal tissues were manually contoured using anatomical and functional images. The CT and the PET images were used in the Geant4 (v9.6) Monte Carlo simulation to define the geometry and source distribution, respectively. The total cumulated absorbed dose was calculated by numerically integrating the dose-rate at each time point over all time on a voxel-by-voxel basis. Results: Spatial distributions of the absorbed dose rates and dose volume histograms as well as mean, minimum, maximum, and total dose values for each ROI were generated for each time point. Conclusion: This work demonstrates how mouse-specific MC-based dosimetry could potentially provide more accurate characterization of efficacy of novel radiopharmaceuticals in radionuclide therapy. This work is partially funded by NIH grant CA198392.« less

  13. Effect of androgen deprivation therapy on intraprostatic tumour volume identified on 18F choline PET/CT for prostate dose painting radiotherapy.

    PubMed

    Chan, Joachim; Carver, Antony; Brunt, John N H; Vinjamuri, Sobhan; Syndikus, Isabel

    2017-03-01

    Prostate dose painting radiotherapy requires the accurate identification of dominant intraprostatic lesions (DILs) to be used as boost volumes; these can be identified on multiparametric MRI (mpMRI) or choline positron emission tomography (PET)/CT. Planning scans are usually performed after 2-3 months of androgen deprivation therapy (ADT). We examine the effect of ADT on choline tracer uptake and boost volumes identified on choline PET/CT. Fluoroethylcholine ( 18 F choline) PET/CT was performed for dose painting radiotherapy planning in patients with intermediate- to high-risk prostate cancer. Initially, they were performed at planning. Owing to low visual tracer uptake, PET/CT for subsequent patients was performed at staging. We compared these two approaches on intraprostatic lesions obtained on PET using both visual and automatic threshold methods [prostate maximum standardized uptake value (SUV max ) 60%] when compared with mpMRI. PET/CT was performed during ADT in 11 patients (median duration of 85 days) and before ADT in 29 patients. ADT significantly reduced overall prostate volume by 17%. During ADT, prostate SUV max was lower although it did not reach statistical significance (4.2 vs 6.6, p = 0.06); three patients had no visually identifiable PET DIL; and visually defined PET DILs were significantly smaller than corresponding mpMRI DILs (p = 0.03). However, all patients scanned before ADT had at least one visually identifiable PET DIL, with no significant size difference between MRI and visually defined PET DILs. In both groups, threshold PET produced larger DILs than visual PET. Both PET methods have moderate sensitivity (0.50-0.68) and high specificity (0.85-0.98) for identifying MRI-defined disease. For visual contouring of boost volumes in prostate dose painting radiotherapy, 18 F choline PET/CT should be performed before ADT. For threshold contouring of boost volumes using our PET/CT scanning protocol, threshold levels of above 60% prostate SUV max may be more suitable. Additional use of PET with MRI for radiotherapy planning can significantly change the overall boost volumes compared with using MRI alone. Advances in knowledge: For prostate dose painting radiotherapy, the additional use of 18 F choline PET with MRI can significantly change the overall boost volumes, and PET should be performed before hormone therapy, especially if boost volumes are visually identified.

  14. [11C]Flumazenil PET in patients with epilepsy with dual pathology.

    PubMed

    Juhász, C; Nagy, F; Muzik, O; Watson, C; Shah, J; Chugani, H T

    1999-05-01

    Coexistence of hippocampal sclerosis and a potentially epileptogenic cortical lesion is referred to as dual pathology and can be responsible for poor surgical outcome in patients with medically intractable partial epilepsy. [11C]Flumazenil (FMZ) positron emission tomography (PET) is a sensitive method for visualizing epileptogenic foci. In this study of 12 patients with dual pathology, we addressed the sensitivity of FMZ PET to detect hippocampal abnormalities and compared magnetic resonance imaging (MRI) with visual as well as quantitative FMZ PET findings. All patients underwent volumetric MRI, prolonged video-EEG monitoring, and glucose metabolism PET before the FMZ PET. MRI-coregistered partial volume-corrected PET images were used to measure FMZ-binding asymmetries by using asymmetry indices (AIs) in the whole hippocampus and in three (anterior, middle, and posterior) hippocampal subregions. Cortical sites of decreased FMZ binding also were evaluated by using AIs for regions with MRI-verified cortical lesions as well as for non-lesional areas with visually detected asymmetry. Abnormally decreased FMZ binding could be detected by quantitative analysis in the atrophic hippocampus of all 12 patients, including three patients with discordant or inconclusive EEG findings. Decreased FMZ binding was restricted to only one subregion of the hippocampus in three patients. Areas of decreased cortical FMZ binding were obvious visually in all patients. Decreased FMZ binding was detected visually in nonlesional cortical areas in four patients. The AIs for these nonlesional regions with visual asymmetry were significantly lower than those for regions showing MRI lesions (paired t test, p = 0.0075). Visual as well as quantitative analyses of FMZ-binding asymmetry are sensitive methods to detect decreased benzodiazepine-receptor binding in the hippocampus and neocortex of patients with dual pathology. MRI-defined hippocampal atrophy is always associated with decreased FMZ binding, although the latter may be localized to only one sub-region within the hippocampus. FMZ PET abnormalities can occur in areas with normal appearance on MRI, but FMZ-binding asymmetry of these regions is lower when compared with that of lesional areas. FMZ PET can be especially helpful when MRI and EEG findings of patients with intractable epilepsy are discordant.

  15. Phantom studies investigating extravascular density imaging for partial volume correction of 3-D PET /sup 18/FDG studies

    NASA Astrophysics Data System (ADS)

    Wassenaar, R. W.; Beanlands, R. S. B.; deKemp, R. A.

    2004-02-01

    Limited scanner resolution and cardiac motion contribute to partial volume (PV) averaging of cardiac PET images. An extravascular (EV) density image, created from the subtraction of a blood pool scan from a transmission image, has been used to correct for PV averaging in H/sub 2//sup 15/O studies using 2-D imaging but not with 3-D imaging of other tracers such as /sup 18/FDG. A cardiac phantom emulating the left ventricle was used to characterize the method for use in 3-D PET studies. Measurement of the average myocardial activity showed PV losses of 32% below the true activity (p<0.001). Initial application of the EV density correction still yielded a myocardial activity 13% below the true value (p<0.001). This failure of the EV density image was due to the 1.66 mm thick plastic barrier separating the myocardial and ventricular chambers within the phantom. Upon removal of this artifact by morphological dilation of the blood pool, the corrected myocardial value was within 2% of the true value (p=ns). Spherical ROIs (diameter of 2 to 10 mm), evenly distributed about the myocardium, were also used to calculate the average activity. The EV density image was able to account for PV averaging throughout the range of diameters to within a 5% accuracy, however, a small bias was seen as the size of the ROIs increased. This indicated a slight mismatch between the emission and transmission image resolutions, a result of the difference in data acquisitions (i.e., span and ring difference) and default smoothing. These results show that the use of EV density image to correct for PV averaging is possible with 3-D PET. A method of correcting barrier effects in phantoms has been presented, as well as a process for evaluating resolution mismatch.

  16. A three-dimensional model-based partial volume correction strategy for gated cardiac mouse PET imaging

    NASA Astrophysics Data System (ADS)

    Dumouchel, Tyler; Thorn, Stephanie; Kordos, Myra; DaSilva, Jean; Beanlands, Rob S. B.; deKemp, Robert A.

    2012-07-01

    Quantification in cardiac mouse positron emission tomography (PET) imaging is limited by the imaging spatial resolution. Spillover of left ventricle (LV) myocardial activity into adjacent organs results in partial volume (PV) losses leading to underestimation of myocardial activity. A PV correction method was developed to restore accuracy of the activity distribution for FDG mouse imaging. The PV correction model was based on convolving an LV image estimate with a 3D point spread function. The LV model was described regionally by a five-parameter profile including myocardial, background and blood activities which were separated into three compartments by the endocardial radius and myocardium wall thickness. The PV correction was tested with digital simulations and a physical 3D mouse LV phantom. In vivo cardiac FDG mouse PET imaging was also performed. Following imaging, the mice were sacrificed and the tracer biodistribution in the LV and liver tissue was measured using a gamma-counter. The PV correction algorithm improved recovery from 50% to within 5% of the truth for the simulated and measured phantom data and image uniformity by 5-13%. The PV correction algorithm improved the mean myocardial LV recovery from 0.56 (0.54) to 1.13 (1.10) without (with) scatter and attenuation corrections. The mean image uniformity was improved from 26% (26%) to 17% (16%) without (with) scatter and attenuation corrections applied. Scatter and attenuation corrections were not observed to significantly impact PV-corrected myocardial recovery or image uniformity. Image-based PV correction algorithm can increase the accuracy of PET image activity and improve the uniformity of the activity distribution in normal mice. The algorithm may be applied using different tracers, in transgenic models that affect myocardial uptake, or in different species provided there is sufficient image quality and similar contrast between the myocardium and surrounding structures.

  17. A novel partial volume effects correction technique integrating deconvolution associated with denoising within an iterative PET image reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merlin, Thibaut, E-mail: thibaut.merlin@telecom-bretagne.eu; Visvikis, Dimitris; Fernandez, Philippe

    2015-02-15

    Purpose: Partial volume effect (PVE) plays an important role in both qualitative and quantitative PET image accuracy, especially for small structures. A previously proposed voxelwise PVE correction method applied on PET reconstructed images involves the use of Lucy–Richardson deconvolution incorporating wavelet-based denoising to limit the associated propagation of noise. The aim of this study is to incorporate the deconvolution, coupled with the denoising step, directly inside the iterative reconstruction process to further improve PVE correction. Methods: The list-mode ordered subset expectation maximization (OSEM) algorithm has been modified accordingly with the application of the Lucy–Richardson deconvolution algorithm to the current estimationmore » of the image, at each reconstruction iteration. Acquisitions of the NEMA NU2-2001 IQ phantom were performed on a GE DRX PET/CT system to study the impact of incorporating the deconvolution inside the reconstruction [with and without the point spread function (PSF) model] in comparison to its application postreconstruction and to standard iterative reconstruction incorporating the PSF model. The impact of the denoising step was also evaluated. Images were semiquantitatively assessed by studying the trade-off between the intensity recovery and the noise level in the background estimated as relative standard deviation. Qualitative assessments of the developed methods were additionally performed on clinical cases. Results: Incorporating the deconvolution without denoising within the reconstruction achieved superior intensity recovery in comparison to both standard OSEM reconstruction integrating a PSF model and application of the deconvolution algorithm in a postreconstruction process. The addition of the denoising step permitted to limit the SNR degradation while preserving the intensity recovery. Conclusions: This study demonstrates the feasibility of incorporating the Lucy–Richardson deconvolution associated with a wavelet-based denoising in the reconstruction process to better correct for PVE. Future work includes further evaluations of the proposed method on clinical datasets and the use of improved PSF models.« less

  18. Quantitative imaging of protein targets in the human brain with PET

    NASA Astrophysics Data System (ADS)

    Gunn, Roger N.; Slifstein, Mark; Searle, Graham E.; Price, Julie C.

    2015-11-01

    PET imaging of proteins in the human brain with high affinity radiolabelled molecules has a history stretching back over 30 years. During this period the portfolio of protein targets that can be imaged has increased significantly through successes in radioligand discovery and development. This portfolio now spans six major categories of proteins; G-protein coupled receptors, membrane transporters, ligand gated ion channels, enzymes, misfolded proteins and tryptophan-rich sensory proteins. In parallel to these achievements in radiochemical sciences there have also been significant advances in the quantitative analysis and interpretation of the imaging data including the development of methods for image registration, image segmentation, tracer compartmental modeling, reference tissue kinetic analysis and partial volume correction. In this review, we analyze the activity of the field around each of the protein targets in order to give a perspective on the historical focus and the possible future trajectory of the field. The important neurobiology and pharmacology is introduced for each of the six protein classes and we present established radioligands for each that have successfully transitioned to quantitative imaging in humans. We present a standard quantitative analysis workflow for these radioligands which takes the dynamic PET data, associated blood and anatomical MRI data as the inputs to a series of image processing and bio-mathematical modeling steps before outputting the outcome measure of interest on either a regional or parametric image basis. The quantitative outcome measures are then used in a range of different imaging studies including tracer discovery and development studies, cross sectional studies, classification studies, intervention studies and longitudinal studies. Finally we consider some of the confounds, challenges and subtleties that arise in practice when trying to quantify and interpret PET neuroimaging data including motion artifacts, partial volume effects, age effects, image registration and normalization, input functions and metabolites, parametric imaging, receptor internalization and genetic factors.

  19. 3D-segmentation of the 18F-choline PET signal for target volume definition in radiation therapy of the prostate.

    PubMed

    Ciernik, I Frank; Brown, Derek W; Schmid, Daniel; Hany, Thomas; Egli, Peter; Davis, J Bernard

    2007-02-01

    Volumetric assessment of PET signals becomes increasingly relevant for radiotherapy (RT) planning. Here, we investigate the utility of 18F-choline PET signals to serve as a structure for semi-automatic segmentation for forward treatment planning of prostate cancer. 18F-choline PET and CT scans of ten patients with histologically proven prostate cancer without extracapsular growth were acquired using a combined PET/CT scanner. Target volumes were manually delineated on CT images using standard software. Volumes were also obtained from 18F-choline PET images using an asymmetrical segmentation algorithm. PTVs were derived from CT 18F-choline PET based clinical target volumes (CTVs) by automatic expansion and comparative planning was performed. As a read-out for dose given to non-target structures, dose to the rectal wall was assessed. Planning target volumes (PTVs) derived from CT and 18F-choline PET yielded comparable results. Optimal matching of CT and 18F-choline PET derived volumes in the lateral and cranial-caudal directions was obtained using a background-subtracted signal thresholds of 23.0+/-2.6%. In antero-posterior direction, where adaptation compensating for rectal signal overflow was required, optimal matching was achieved with a threshold of 49.5+/-4.6%. 3D-conformal planning with CT or 18F-choline PET resulted in comparable doses to the rectal wall. Choline PET signals of the prostate provide adequate spatial information amendable to standardized asymmetrical region growing algorithms for PET-based target volume definition for external beam RT.

  20. Comparative evolution of oxygen, carbon dioxide, nitrogen, and sulfites during storage of a rosé wine bottled in PET and glass.

    PubMed

    Toussaint, Marie; Vidal, Jean-Claude; Salmon, Jean-Michel

    2014-04-02

    The management of dissolved and headspace gases during bottling and the choice of packaging are both key factors for the shelf life of wine. Two kinds of 75 cL polyethylene terephthalate (PET) bottles (with or without recycled PET) were compared to glass bottles filled with a rosé wine, closed with the same screwcaps and stored upright at 20 °C in light or in the dark. Analytical monitoring (aphrometric pressure, headspace volume, O2, N2, CO2, and SO2) was carried out for 372 days. After the consumption of O2 trapped during bottling, the total O2 content in glass bottles remained stable. A substantial decrease of CO2 and SO2 concentration and an increase of O2 concentration were observed in the PET bottles after 6 months because of the considerable gas permeability of monolayer PET. Light accelerated O2 consumption during the early months. Finally, the kinetic monitoring of partial pressures in gas and liquid phases in bottles showed contrasting behavior of O2 and N2 in comparison with CO2.

  1. 4D PET iterative deconvolution with spatiotemporal regularization for quantitative dynamic PET imaging.

    PubMed

    Reilhac, Anthonin; Charil, Arnaud; Wimberley, Catriona; Angelis, Georgios; Hamze, Hasar; Callaghan, Paul; Garcia, Marie-Paule; Boisson, Frederic; Ryder, Will; Meikle, Steven R; Gregoire, Marie-Claude

    2015-09-01

    Quantitative measurements in dynamic PET imaging are usually limited by the poor counting statistics particularly in short dynamic frames and by the low spatial resolution of the detection system, resulting in partial volume effects (PVEs). In this work, we present a fast and easy to implement method for the restoration of dynamic PET images that have suffered from both PVE and noise degradation. It is based on a weighted least squares iterative deconvolution approach of the dynamic PET image with spatial and temporal regularization. Using simulated dynamic [(11)C] Raclopride PET data with controlled biological variations in the striata between scans, we showed that the restoration method provides images which exhibit less noise and better contrast between emitting structures than the original images. In addition, the method is able to recover the true time activity curve in the striata region with an error below 3% while it was underestimated by more than 20% without correction. As a result, the method improves the accuracy and reduces the variability of the kinetic parameter estimates calculated from the corrected images. More importantly it increases the accuracy (from less than 66% to more than 95%) of measured biological variations as well as their statistical detectivity. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  2. Kinetic Modeling of PET Data Without Blood Sampling

    NASA Astrophysics Data System (ADS)

    Bentourkia, M.

    2005-06-01

    In positron emission tomography (PET) imaging, application of kinetic modeling always requires an input curve (IC) together with the PET data. The IC can be obtained by means of external blood sampling or, in the case of cardiac studies, by means of a region-of-interest (ROI) drawn on the blood pool. It is, however, very unsuitable to withdraw and to analyze blood samples, and in small animals, these operations become difficult, while ICs determined from ROIs are generally contaminated by emissions from neighboring sites, or they are underestimated because of partial volume effect. In this paper, we report a new method to extract kinetic parameters from dynamic PET studies without a priori knowledge of the IC. The method is applied in human brain data measured with fluorodeoxyglucose (FDG) human-brain and in cardiac-rat perfusion studies with /sup 13/N-ammonia and /sup 11/C-acetate. The tissue blood volume (TBV), usually fitted together with the rate constants, is extracted simultaneously with the tissue time activity curves for cardiac studies, while for brain gray matter, TBV is known to be about 4% to 7%. The shape of IC is obtained by means of factor analysis from an ROI drawn around a cardiac tissue or a brain artery. The results show a good correlation (p<0.05) between the cerebral metabolic rate of glucose, myocardial blood flow, and oxygen consumption obtained with the new method in comparison to the usual method. In conclusion, it is possible to apply kinetic modeling without any blood sampling, which significantly simplifies PET acquisition and data analysis.

  3. FDG-PET/CT imaging for tumor staging and definition of tumor volumes in radiation treatment planning in non-small cell lung cancer.

    PubMed

    Zheng, Yuanda; Sun, Xiaojiang; Wang, Jian; Zhang, Lingnan; DI, Xiaoyun; Xu, Yaping

    2014-04-01

    18 F-fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) has the potential to improve the staging and radiation treatment (RT) planning of various tumor sites. However, from a clinical standpoint, questions remain with regard to what extent PET/CT changes the target volume and whether PET/CT reduces interobserver variability in target volume delineation. The present study analyzed the use of FDG-PET/CT images for staging and evaluated the impact of FDG-PET/CT on the radiotherapy volume delineation compared with CT in patients with non-small cell lung cancer (NSCLC) who were candidates for radiotherapy. Intraobserver variation in delineating tumor volumes was also observed. In total, 23 patients with stage I-III NSCLC were enrolled and treated with fractionated RT-based therapy with or without chemotherapy. FDG-PET/CT scans were acquired within two weeks prior to RT. PET and CT data sets were sent to the treatment planning system, Pinnacle, through compact discs. The CT and PET images were subsequently fused by means of a dedicated RT planning system. Gross tumor volume (GTV) was contoured by four radiation oncologists on CT (GTV-CT) and PET/CT images (GTV-PET/CT). The resulting volumes were analyzed and compared. For the first phase, two radiation oncologists outlined the contours together, achieving a final consensus. Based on PET/CT, changes in tumor-node-metastasis categories occurred in 8/23 cases (35%). Radiation targeting with fused FDG-PET and CT images resulted in alterations in radiation therapy planning in 12/20 patients (60%) in comparison with CT targeting. The most prominent changes in GTV were observed in cases with atelectasis. For the second phase, the variation in delineating tumor volumes was assessed by four observers. The mean ratio of largest to smallest CT-based GTV was 2.31 (range, 1.01-5.96). The addition of the PET results reduced the mean ratio to 1.46 (range, 1.02-2.27). PET/CT fusion images may have a potential impact on tumor staging and treatment planning. Implementing matched PET/CT results reduced observer variation in delineating tumor volumes significantly with respect to CT only.

  4. Prospective feasibility trial of radiotherapy target definition for head and neck cancer using 3-dimensional PET and CT imaging.

    PubMed

    Scarfone, Christopher; Lavely, William C; Cmelak, Anthony J; Delbeke, Dominique; Martin, William H; Billheimer, Dean; Hallahan, Dennis E

    2004-04-01

    The aim of this investigation was to evaluate the influence and accuracy of (18)F-FDG PET in target volume definition as a complementary modality to CT for patients with head and neck cancer (HNC) using dedicated PET and CT scanners. Six HNC patients were custom fitted with head and neck and upper body immobilization devices, and conventional radiotherapy CT simulation was performed together with (18)F-FDG PET imaging. Gross target volume (GTV) and pathologic nodal volumes were first defined in the conventional manner based on CT. A segmentation and surface-rendering registration technique was then used to coregister the (18)F-FDG PET and CT planning image datasets. (18)F-FDG PET GTVs were determined and displayed simultaneously with the CT contours. CT GTVs were then modified based on the PET data to form final PET/CT treatment volumes. Five-field intensity-modulated radiation therapy (IMRT) was then used to demonstrate dose targeting to the CT GTV or the PET/CT GTV. One patient was PET-negative after induction chemotherapy. The CT GTV was modified in all remaining patients based on (18)F-FDG PET data. The resulting PET/CT GTV was larger than the original CT volume by an average of 15%. In 5 cases, (18)F-FDG PET identified active lymph nodes that corresponded to lymph nodes contoured on CT. The pathologically enlarged CT lymph nodes were modified to create final lymph node volumes in 3 of 5 cases. In 1 of 6 patients, (18)F-FDG-avid lymph nodes were not identified as pathologic on CT. In 2 of 6 patients, registration of the independently acquired PET and CT data using segmentation and surface rendering resulted in a suboptimal alignment and, therefore, had to be repeated. Radiotherapy planning using IMRT demonstrated the capability of this technique to target anatomic or anatomic/physiologic target volumes. In this manner, metabolically active sites can be intensified to greater daily doses. Inclusion of (18)F-FDG PET data resulted in modified target volumes in radiotherapy planning for HNC. PET and CT data acquired on separate, dedicated scanners may be coregistered for therapy planning; however, dual-acquisition PET/CT systems may be considered to reduce the need for reregistrations. It is possible to use IMRT to target dose to metabolically active sites based on coregistered PET/CT data.

  5. PET/CT detectability and classification of simulated pulmonary lesions using an SUV correction scheme

    NASA Astrophysics Data System (ADS)

    Morrow, Andrew N.; Matthews, Kenneth L., II; Bujenovic, Steven

    2008-03-01

    Positron emission tomography (PET) and computed tomography (CT) together are a powerful diagnostic tool, but imperfect image quality allows false positive and false negative diagnoses to be made by any observer despite experience and training. This work investigates PET acquisition mode, reconstruction method and a standard uptake value (SUV) correction scheme on the classification of lesions as benign or malignant in PET/CT images, in an anthropomorphic phantom. The scheme accounts for partial volume effect (PVE) and PET resolution. The observer draws a region of interest (ROI) around the lesion using the CT dataset. A simulated homogenous PET lesion of the same shape as the drawn ROI is blurred with the point spread function (PSF) of the PET scanner to estimate the PVE, providing a scaling factor to produce a corrected SUV. Computer simulations showed that the accuracy of the corrected PET values depends on variations in the CT-drawn boundary and the position of the lesion with respect to the PET image matrix, especially for smaller lesions. Correction accuracy was affected slightly by mismatch of the simulation PSF and the actual scanner PSF. The receiver operating characteristic (ROC) study resulted in several observations. Using observer drawn ROIs, scaled tumor-background ratios (TBRs) more accurately represented actual TBRs than unscaled TBRs. For the PET images, 3D OSEM outperformed 2D OSEM, 3D OSEM outperformed 3D FBP, and 2D OSEM outperformed 2D FBP. The correction scheme significantly increased sensitivity and slightly increased accuracy for all acquisition and reconstruction modes at the cost of a small decrease in specificity.

  6. PetIGA: A framework for high-performance isogeometric analysis

    DOE PAGES

    Dalcin, Lisandro; Collier, Nathaniel; Vignal, Philippe; ...

    2016-05-25

    We present PetIGA, a code framework to approximate the solution of partial differential equations using isogeometric analysis. PetIGA can be used to assemble matrices and vectors which come from a Galerkin weak form, discretized with Non-Uniform Rational B-spline basis functions. We base our framework on PETSc, a high-performance library for the scalable solution of partial differential equations, which simplifies the development of large-scale scientific codes, provides a rich environment for prototyping, and separates parallelism from algorithm choice. We describe the implementation of PetIGA, and exemplify its use by solving a model nonlinear problem. To illustrate the robustness and flexibility ofmore » PetIGA, we solve some challenging nonlinear partial differential equations that include problems in both solid and fluid mechanics. Lastly, we show strong scaling results on up to 4096 cores, which confirm the suitability of PetIGA for large scale simulations.« less

  7. Evaluation of ECG-gated [(11)C]acetate PET for measuring left ventricular volumes, mass, and myocardial external efficiency.

    PubMed

    Hansson, Nils Henrik; Tolbod, Lars; Harms, Johannes; Wiggers, Henrik; Kim, Won Yong; Hansen, Esben; Zaremba, Tomas; Frøkiær, Jørgen; Jakobsen, Steen; Sørensen, Jens

    2016-08-01

    Noninvasive estimation of myocardial external efficiency (MEE) requires measurements of left ventricular (LV) oxygen consumption with [(11)C]acetate PET in addition to LV stroke volume and mass with cardiovascular magnetic resonance (CMR). Measuring LV geometry directly from ECG-gated [(11)C]acetate PET might enable MEE evaluation from a single PET scan. Therefore, we sought to establish the accuracy of measuring LV volumes, mass, and MEE directly from ECG-gated [(11)C]acetate PET. Thirty-five subjects with aortic valve stenosis underwent ECG-gated [(11)C]acetate PET and CMR. List mode PET data were rebinned into 16-bin ECG-gated uptake images before measuring LV volumes and mass using commercial software and compared to CMR. Dynamic datasets were used for calculation of mean LV oxygen consumption and MEE. LV mass, volumes, and ejection fraction measured by CMR and PET correlated strongly (r = 0.86-0.92, P < .001 for all), but were underestimated by PET (P < .001 for all except ESV P = .79). PET-based MEE, corrected for bias, correlated fairly with PET/CMR-based MEE (r = 0.60, P < .001, bias -3 ± 21%, P = .56). PET-based MEE bias was strongly associated with LV wall thickness. Although analysis-related improvements in accuracy are recommended, LV geometry estimated from ECG-gated [(11)C]acetate PET correlate excellently with CMR and can indeed be used to evaluate MEE.

  8. Practical calculation method to estimate the absolute boron concentration in tissues using 18F-FBPA PET.

    PubMed

    Watabe, Tadashi; Hanaoka, Kohei; Naka, Sadahiro; Kanai, Yasukazu; Ikeda, Hayato; Aoki, Masanao; Shimosegawa, Eku; Kirihata, Mitsunori; Hatazawa, Jun

    2017-07-01

    The purpose of this study was to establish a practical method to estimate the absolute boron concentrations in the tissues based on the standardized uptake values (SUVs) after administration of 4-borono-phenylalanine (BPA) using 4-borono-2- 18 F-fluoro-phenylalanine ( 18 F-FBPA) PET. Rat xenograft models of C6 glioma (n = 7, body weight 241 ± 28.0 g) were used for the study. PET was performed 60 min after intravenous injection of 18 F-FBPA (30.5 ± 0.7 MBq). After the PET scanning, BPA-fructose (167.3 ± 18.65 mg/kg) was administered by slow intravenous injection to the same subjects. The rats were killed 60 min after the BPA injection and tissue samples were collected from the major organs and tumors. The absolute boron concentrations (unit: ppm) in the samples were measured by inductively coupled plasma optical emission spectrometry (ICP-OES). The boron concentrations in the tissues/tumors were also estimated from the 18 F-FBPA PET images using the following formula: estimated absolute boron concentration (ppm) = 0.0478 × [BPA dose (mg/kg)] × SUV. The measured absolute boron concentrations (mBC) by ICP-OES and the estimated boron concentrations (eBC) from the PET images were compared. The percent difference between the mBC and eBC calculated based on the SUV max was -5.2 ± 21.1% for the blood, -9.4 ± 22.3% for the brain, 1.6 ± 21.3% for the liver, -14.3 ± 16.8% for the spleen, -9.5 ± 27.5% for the pancreas, and 3.4 ± 43.2% for the tumor. Relatively large underestimation was observed for the lung (-48.4 ± 16.2%), small intestine (-37.8 ± 19.3%) and large intestine (-33.9 ± 11.0%), due to the partial volume effect arising from the air or feces contained in these organs. In contrast, relatively large overestimation was observed for the kidney (34.3 ± 29.3%), due to the influence of the high uptake in urine. The absolute boron concentrations in tissues/tumors can be estimated from the SUVs on 18 F-FBPA PET using a practical formula. Caution must be exercised in interpreting the estimated boron concentrations in the lung, small intestine and large intestine, to prevent the adverse effects of overexposure, which could occur due to underestimation by partial volume effect using PET.

  9. Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer.

    PubMed

    Schinagl, Dominic A X; Vogel, Wouter V; Hoffmann, Aswin L; van Dalen, Jorn A; Oyen, Wim J; Kaanders, Johannes H A M

    2007-11-15

    Target-volume delineation for radiation treatment to the head and neck area traditionally is based on physical examination, computed tomography (CT), and magnetic resonance imaging. Additional molecular imaging with (18)F-fluoro-deoxy-glucose (FDG)-positron emission tomography (PET) may improve definition of the gross tumor volume (GTV). In this study, five methods for tumor delineation on FDG-PET are compared with CT-based delineation. Seventy-eight patients with Stages II-IV squamous cell carcinoma of the head and neck area underwent coregistered CT and FDG-PET. The primary tumor was delineated on CT, and five PET-based GTVs were obtained: visual interpretation, applying an isocontour of a standardized uptake value of 2.5, using a fixed threshold of 40% and 50% of the maximum signal intensity, and applying an adaptive threshold based on the signal-to-background ratio. Absolute GTV volumes were compared, and overlap analyses were performed. The GTV method of applying an isocontour of a standardized uptake value of 2.5 failed to provide successful delineation in 45% of cases. For the other PET delineation methods, volume and shape of the GTV were influenced heavily by the choice of segmentation tool. On average, all threshold-based PET-GTVs were smaller than on CT. Nevertheless, PET frequently detected significant tumor extension outside the GTV delineated on CT (15-34% of PET volume). The choice of segmentation tool for target-volume definition of head and neck cancer based on FDG-PET images is not trivial because it influences both volume and shape of the resulting GTV. With adequate delineation, PET may add significantly to CT- and physical examination-based GTV definition.

  10. Automatic Extraction of Myocardial Mass and Volume Using Parametric Images from Dynamic Nongated PET.

    PubMed

    Harms, Hendrik Johannes; Stubkjær Hansson, Nils Henrik; Tolbod, Lars Poulsen; Kim, Won Yong; Jakobsen, Steen; Bouchelouche, Kirsten; Wiggers, Henrik; Frøkiaer, Jørgen; Sörensen, Jens

    2016-09-01

    Dynamic cardiac PET is used to quantify molecular processes in vivo. However, measurements of left ventricular (LV) mass and volume require electrocardiogram-gated PET data. The aim of this study was to explore the feasibility of measuring LV geometry using nongated dynamic cardiac PET. Thirty-five patients with aortic-valve stenosis and 10 healthy controls underwent a 27-min (11)C-acetate PET/CT scan and cardiac MRI (CMR). The controls were scanned twice to assess repeatability. Parametric images of uptake rate K1 and the blood pool were generated from nongated dynamic data. Using software-based structure recognition, the LV wall was automatically segmented from K1 images to derive functional assessments of LV mass (mLV) and wall thickness. End-systolic and end-diastolic volumes were calculated using blood pool images and applied to obtain stroke volume and LV ejection fraction (LVEF). PET measurements were compared with CMR. High, linear correlations were found for LV mass (r = 0.95), end-systolic volume (r = 0.93), and end-diastolic volume (r = 0.90), and slightly lower correlations were found for stroke volume (r = 0.74), LVEF (r = 0.81), and thickness (r = 0.78). Bland-Altman analyses showed significant differences for mLV and thickness only and an overestimation for LVEF at lower values. Intra- and interobserver correlations were greater than 0.95 for all PET measurements. PET repeatability accuracy in the controls was comparable to CMR. LV mass and volume are accurately and automatically generated from dynamic (11)C-acetate PET without electrocardiogram gating. This method can be incorporated in a standard routine without any additional workload and can, in theory, be extended to other PET tracers. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  11. H2(15)O or 13NH3 PET and electromagnetic tomography (LORETA) during partial status epilepticus.

    PubMed

    Zumsteg, D; Wennberg, R A; Treyer, V; Buck, A; Wieser, H G

    2005-11-22

    The authors evaluated the feasibility and source localization utility of H2(15)O or 13NH3 PET and low-resolution electromagnetic tomography (LORETA) in three patients with partial status epilepticus (SE). Results were correlated with findings from intraoperative electrocorticographic recordings and surgical outcomes. PET studies of cerebral blood flow and noninvasive source modeling with LORETA using statistical nonparametric mapping provided useful information for localizing the ictal activity in patients with partial SE.

  12. SU-C-BRA-02: Gradient Based Method of Target Delineation On PET/MR Image of Head and Neck Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dance, M; Chera, B; Falchook, A

    2015-06-15

    Purpose: Validate the consistency of a gradient-based segmentation tool to facilitate accurate delineation of PET/CT-based GTVs in head and neck cancers by comparing against hybrid PET/MR-derived GTV contours. Materials and Methods: A total of 18 head and neck target volumes (10 primary and 8 nodal) were retrospectively contoured using a gradient-based segmentation tool by two observers. Each observer independently contoured each target five times. Inter-observer variability was evaluated via absolute percent differences. Intra-observer variability was examined by percentage uncertainty. All target volumes were also contoured using the SUV percent threshold method. The thresholds were explored case by case so itsmore » derived volume matched with the gradient-based volume. Dice similarity coefficients (DSC) were calculated to determine overlap of PET/CT GTVs and PET/MR GTVs. Results: The Levene’s test showed there was no statistically significant difference of the variances between the observer’s gradient-derived contours. However, the absolute difference between the observer’s volumes was 10.83%, with a range from 0.39% up to 42.89%. PET-avid regions with qualitatively non-uniform shapes and intensity levels had a higher absolute percent difference near 25%, while regions with uniform shapes and intensity levels had an absolute percent difference of 2% between observers. The average percentage uncertainty between observers was 4.83% and 7%. As the volume of the gradient-derived contours increased, the SUV threshold percent needed to match the volume decreased. Dice coefficients showed good agreement of the PET/CT and PET/MR GTVs with an average DSC value across all volumes at 0.69. Conclusion: Gradient-based segmentation of PET volume showed good consistency in general but can vary considerably for non-uniform target shapes and intensity levels. PET/CT-derived GTV contours stemming from the gradient-based tool show good agreement with the anatomically and metabolically more accurate PET/MR-derived GTV contours, but tumor delineation accuracy can be further improved with the use PET/MR.« less

  13. High-Grade Glioma Radiation Therapy Target Volumes and Patterns of Failure Obtained From Magnetic Resonance Imaging and {sup 18}F-FDOPA Positron Emission Tomography Delineations From Multiple Observers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosztyla, Robert, E-mail: rkosztyla@bccancer.bc.ca; Chan, Elisa K.; Hsu, Fred

    Purpose: The objective of this study was to compare recurrent tumor locations after radiation therapy with pretreatment delineations of high-grade gliomas from magnetic resonance imaging (MRI) and 3,4-dihydroxy-6-[{sup 18}F]fluoro-L-phenylalanine ({sup 18}F-FDOPA) positron emission tomography (PET) using contours delineated by multiple observers. Methods and Materials: Nineteen patients with newly diagnosed high-grade gliomas underwent computed tomography (CT), gadolinium contrast-enhanced MRI, and {sup 18}F-FDOPA PET/CT. The image sets (CT, MRI, and PET/CT) were registered, and 5 observers contoured gross tumor volumes (GTVs) using MRI and PET. Consensus contours were obtained by simultaneous truth and performance level estimation (STAPLE). Interobserver variability was quantified bymore » the percentage of volume overlap. Recurrent tumor locations after radiation therapy were contoured by each observer using CT or MRI. Consensus recurrence contours were obtained with STAPLE. Results: The mean interobserver volume overlap for PET GTVs (42% ± 22%) and MRI GTVs (41% ± 22%) was not significantly different (P=.67). The mean consensus volume was significantly larger for PET GTVs (58.6 ± 52.4 cm{sup 3}) than for MRI GTVs (30.8 ± 26.0 cm{sup 3}, P=.003). More than 95% of the consensus recurrence volume was within the 95% isodose surface for 11 of 12 (92%) cases with recurrent tumor imaging. Ten (91%) of these cases extended beyond the PET GTV, and 9 (82%) were contained within a 2-cm margin on the MRI GTV. One recurrence (8%) was located outside the 95% isodose surface. Conclusions: High-grade glioma contours obtained with {sup 18}F-FDOPA PET had similar interobserver agreement to volumes obtained with MRI. Although PET-based consensus target volumes were larger than MRI-based volumes, treatment planning using PET-based volumes may not have yielded better treatment outcomes, given that all but 1 recurrence extended beyond the PET GTV and most were contained by a 2-cm margin on the MRI GTV.« less

  14. WE-AB-204-03: A Novel 3D Printed Phantom for 4D PET/CT Imaging and SIB Radiotherapy Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soultan, D; Murphy, J; Moiseenko, V

    Purpose: To construct and test a 3D printed phantom designed to mimic variable PET tracer uptake seen in lung tumor volumes. To assess segmentation accuracy of sub-volumes of the phantom following 4D PET/CT scanning with ideal and patient-specific respiratory motion. To plan, deliver and verify delivery of PET-driven, gated, simultaneous integrated boost (SIB) radiotherapy plans. Methods: A set of phantoms and inserts were designed and manufactured for a realistic representation of lung cancer gated radiotherapy steps from 4D PET/CT scanning to dose delivery. A cylindrical phantom (40x 120 mm) holds inserts for PET/CT scanning. The novel 3D printed insert dedicatedmore » to 4D PET/CT mimics high PET tracer uptake in the core and lower uptake in the periphery. This insert is a variable density porous cylinder (22.12×70 mm), ABS-P430 thermoplastic, 3D printed by uPrint SE Plus with inner void volume (5.5×42 mm). The square pores (1.8×1.8 mm2 each) fill 50% of outer volume, resulting in a 2:1 SUV ratio of PET-tracer in the void volume with respect to porous volume. A matching in size cylindrical phantom is dedicated to validate gated radiotherapy. It contains eight peripheral holes matching the location of the porous part of the 3D printed insert, and one central hole. These holes accommodate adaptors for Farmer-type ion chamber and cells vials. Results: End-to-end test were performed from 4D PET/CT scanning to transferring data to the planning system and target volume delineation. 4D PET/CT scans were acquired of the phantom with different respiratory motion patterns and gating windows. A measured 2:1 18F-FDG SUV ratio between inner void and outer volume matched the 3D printed design. Conclusion: The novel 3D printed phantom mimics variable PET tracer uptake typical of tumors. Obtained 4D PET/CT scans are suitable for segmentation, treatment planning and delivery in SIB gated treatments of NSCLC.« less

  15. Feasibility and performance of an adaptive contrast-oriented FDG PET/CT quantification technique for global disease assessment of malignant pleural mesothelioma and a brief review of the literature.

    PubMed

    Marin-Oyaga, Victor A; Salavati, Ali; Houshmand, Sina; Pasha, Ahmed Khurshid; Gharavi, Mohammad; Saboury, Babak; Basu, Sandip; Torigian, Drew A; Alavi, Abass

    2015-01-01

    Treatment of malignant pleural mesothelioma (MPM) remains very challenging. Assessment of response to treatment is necessary for modifying treatment and using new drugs. Global disease assessment (GDA) by implementing image processing methods to extract more information out of positron emission tomography (PET) images may provide reliable information. In this study we show the feasibility of this method of semi-quantification in patients with mesothelioma, and compare it with the conventional methods. We also present a review of the literature about this topic. Nineteen subjects with histologically proven MPM who had undergone fluoride-18-fluorodeoxyglucose PET/computed tomography ((18)F-FDG PET/CT) before and after treatment were included in this study. An adaptive contrast-oriented thresholding algorithm was used for the image analysis and semi-quantification. Metabolic tumor volume (MTV), maximum and mean standardized uptake volume (SUVmax, SUVmean) and total lesion glycolysis (TLG) were calculated for each region of interest. The global tumor glycolysis (GTG) was obtained by summing up all TLG. Treatment response was assessed by the European Organisation for Research and Treatment of Cancer (EORTC) criteria and the changes of GTG. Agreement between global disease assessment and conventional method was also determined. In patients with progressive disease based on EORTC criteria, GTG showed an increase of 150.7 but in patients with stable or partial response, GTG showed a decrease of 433.1. The SUVmax of patients before treatment was 5.95 (SD: 2.93) and after the treatment it increased to 6.38 (SD: 3.19). Overall concordance of conventional method with GDA method was 57%. Concordance of progression of disease based on conventional method was 44%, stable disease was 85% and partial response was 33%. Discordance was 55%, 14% and 66%. Adaptive contrast-oriented thresholding algorithm is a promising method to quantify the whole tumor glycolysis in patients with mesothelioma. We are able to assess the total metabolic lesion volume, lesion glycolysis, SUVmax, tumor SUVmean and GTG for this particular tumor. Also we were able to demonstrate the potential use of this technique in the monitoring of treatment response. More studies comparing this technique with conventional and other global disease assessment methods are needed in order to clarify its role in the assessment of treatment response and prognosis of these patients.

  16. 18F-fluorodeoxyglucose positron emission tomography/computed tomography-based radiotherapy target volume definition in non-small-cell lung cancer: delineation by radiation oncologists vs. joint outlining with a PET radiologist?

    PubMed

    Hanna, Gerard G; Carson, Kathryn J; Lynch, Tom; McAleese, Jonathan; Cosgrove, Vivian P; Eakin, Ruth L; Stewart, David P; Zatari, Ashraf; O'Sullivan, Joe M; Hounsell, Alan R

    2010-11-15

    (18)F-Fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) has benefits in target volume (TV) definition in radiotherapy treatment planning (RTP) for non-small-cell lung cancer (NSCLC); however, an optimal protocol for TV delineation has not been determined. We investigate volumetric and positional variation in gross tumor volume (GTV) delineation using a planning PET/CT among three radiation oncologists and a PET radiologist. RTP PET/CT scans were performed on 28 NSCLC patients (Stage IA-IIIB) of which 14 patients received prior induction chemotherapy. Three radiation oncologists and one PET radiologist working with a fourth radiation oncologist independently delineated the GTV on CT alone (GTV(CT)) and on fused PET/CT images (GTV(PETCT)). The mean percentage volume change (PVC) between GTV(CT) and GTV(PETCT) for the radiation oncologists and the PVC between GTV(CT) and GTV(PETCT) for the PET radiologist were compared using the Wilcoxon signed-rank test. Concordance index (CI) was used to assess both positional and volume change between GTV(CT) and GTV(PETCT) in a single measurement. For all patients, a significant difference in PVC from GTV(CT) to GTV(PETCT) exists between the radiation oncologist (median, 5.9%), and the PET radiologist (median, -0.4%, p = 0.001). However, no significant difference in median concordance index (comparing GTV(CT) and GTV(FUSED) for individual cases) was observed (PET radiologist = 0.73; radiation oncologists = 0.66; p = 0.088). Percentage volume changes from GTV(CT) to GTV(PETCT) were lower for the PET radiologist than for the radiation oncologists, suggesting a lower impact of PET/CT in TV delineation for the PET radiologist than for the oncologists. Guidelines are needed to standardize the use of PET/CT for TV delineation in RTP. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Impact of tumor size and tracer uptake heterogeneity in (18)F-FDG PET and CT non-small cell lung cancer tumor delineation.

    PubMed

    Hatt, Mathieu; Cheze-le Rest, Catherine; van Baardwijk, Angela; Lambin, Philippe; Pradier, Olivier; Visvikis, Dimitris

    2011-11-01

    The objectives of this study were to investigate the relationship between CT- and (18)F-FDG PET-based tumor volumes in non-small cell lung cancer (NSCLC) and the impact of tumor size and uptake heterogeneity on various approaches to delineating uptake on PET images. Twenty-five NSCLC cancer patients with (18)F-FDG PET/CT were considered. Seventeen underwent surgical resection of their tumor, and the maximum diameter was measured. Two observers manually delineated the tumors on the CT images and the tumor uptake on the corresponding PET images, using a fixed threshold at 50% of the maximum (T(50)), an adaptive threshold methodology, and the fuzzy locally adaptive Bayesian (FLAB) algorithm. Maximum diameters of the delineated volumes were compared with the histopathology reference when available. The volumes of the tumors were compared, and correlations between the anatomic volume and PET uptake heterogeneity and the differences between delineations were investigated. All maximum diameters measured on PET and CT images significantly correlated with the histopathology reference (r > 0.89, P < 0.0001). Significant differences were observed among the approaches: CT delineation resulted in large overestimation (+32% ± 37%), whereas all delineations on PET images resulted in underestimation (from -15% ± 17% for T(50) to -4% ± 8% for FLAB) except manual delineation (+8% ± 17%). Overall, CT volumes were significantly larger than PET volumes (55 ± 74 cm(3) for CT vs. from 18 ± 25 to 47 ± 76 cm(3) for PET). A significant correlation was found between anatomic tumor size and heterogeneity (larger lesions were more heterogeneous). Finally, the more heterogeneous the tumor uptake, the larger was the underestimation of PET volumes by threshold-based techniques. Volumes based on CT images were larger than those based on PET images. Tumor size and tracer uptake heterogeneity have an impact on threshold-based methods, which should not be used for the delineation of cases of large heterogeneous NSCLC, as these methods tend to largely underestimate the spatial extent of the functional tumor in such cases. For an accurate delineation of PET volumes in NSCLC, advanced image segmentation algorithms able to deal with tracer uptake heterogeneity should be preferred.

  18. Reproducibility of functional volume and activity concentration in 18F-FDG PET/CT of liver metastases in colorectal cancer.

    PubMed

    Heijmen, Linda; de Geus-Oei, Lioe-Fee; de Wilt, Johannes H W; Visvikis, Dimitris; Hatt, Mathieu; Visser, Eric P; Bussink, Johan; Punt, Cornelis J A; Oyen, Wim J G; van Laarhoven, Hanneke W M

    2012-12-01

    Several studies showed potential for monitoring response to systemic therapy in metastatic colorectal cancer patients with (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET). Before (18)F-FDG PET can be implemented for response evaluation the repeatability should be known. This study was performed to assess the magnitude of the changes in standardized uptake value (SUV), volume and total lesion glycolysis (TLG) in colorectal liver metastases and validate the biological basis of (18)F-FDG PET in colorectal liver metastases. Twenty patients scheduled for liver metastasectomy underwent two (18)F-FDG PET scans within 1 week. Bland-Altman analysis was performed to assess repeatability of SUV(max), SUV(mean), volume and TLG. Tumours were delineated using an adaptive threshold method (PET(SBR)) and a semiautomatic fuzzy locally adaptive Bayesian (FLAB) delineation method. Coefficient of repeatability of SUV(max) and SUV(mean) were ∼39 and ∼31 %, respectively, independent of the delineation method used and image reconstruction parameters. However, repeatability was worse in recently treated patients. The FLAB delineation method improved the repeatability of the volume and TLG measurements compared to PET(SBR), from coefficients of repeatability of over 85 % to 45 % and 57 % for volume and TLG, respectively. Glucose transporter 1 (GLUT1) expression correlated to the SUV(mean). Vascularity (CD34 expression) and tumour hypoxia (carbonic anhydrase IX expression) did not correlate with (18)F-FDG PET parameters. In conclusion, repeatability of SUV(mean) and SUV(max) was mainly affected by preceding systemic therapy. The repeatability of tumour volume and TLG could be improved using more advanced and robust delineation approaches such as FLAB, which is recommended when (18)F-FDG PET is utilized for volume or TLG measurements. Improvement of repeatability of PET measurements, for instance by dynamic PET scanning protocols, is probably necessary to effectively use PET for early response monitoring.

  19. Intra-tumour 18F-FDG uptake heterogeneity decreases the reliability on target volume definition with positron emission tomography/computed tomography imaging.

    PubMed

    Dong, Xinzhe; Wu, Peipei; Sun, Xiaorong; Li, Wenwu; Wan, Honglin; Yu, Jinming; Xing, Ligang

    2015-06-01

    This study aims to explore whether the intra-tumour (18) F-fluorodeoxyglucose (FDG) uptake heterogeneity affects the reliability of target volume definition with FDG positron emission tomography/computed tomography (PET/CT) imaging for nonsmall cell lung cancer (NSCLC) and squamous cell oesophageal cancer (SCEC). Patients with NSCLC (n = 50) or SCEC (n = 50) who received (18)F-FDG PET/CT scanning before treatments were included in this retrospective study. Intra-tumour FDG uptake heterogeneity was assessed by visual scoring, the coefficient of variation (COV) of the standardised uptake value (SUV) and the image texture feature (entropy). Tumour volumes (gross tumour volume (GTV)) were delineated on the CT images (GTV(CT)), the fused PET/CT images (GTV(PET-CT)) and the PET images, using a threshold at 40% SUV(max) (GTV(PET40%)) or the SUV cut-off value of 2.5 (GTV(PET2.5)). The correlation between the FDG uptake heterogeneity parameters and the differences in tumour volumes among GTV(CT), GTV(PET-CT), GTV(PET40%) and GTV(PET2.5) was analysed. For both NSCLC and SCEC, obvious correlations were found between uptake heterogeneity, SUV or tumour volumes. Three types of heterogeneity parameters were consistent and closely related to each other. Substantial differences between the four methods of GTV definition were found. The differences between the GTV correlated significantly with PET heterogeneity defined with the visual score, the COV or the textural feature-entropy for NSCLC and SCEC. In tumours with a high FDG uptake heterogeneity, a larger GTV delineation difference was found. Advance image segmentation algorithms dealing with tracer uptake heterogeneity should be incorporated into the treatment planning system. © 2015 The Royal Australian and New Zealand College of Radiologists.

  20. Partial volume correction and image segmentation for accurate measurement of standardized uptake value of grey matter in the brain.

    PubMed

    Bural, Gonca; Torigian, Drew; Basu, Sandip; Houseni, Mohamed; Zhuge, Ying; Rubello, Domenico; Udupa, Jayaram; Alavi, Abass

    2015-12-01

    Our aim was to explore a novel quantitative method [based upon an MRI-based image segmentation that allows actual calculation of grey matter, white matter and cerebrospinal fluid (CSF) volumes] for overcoming the difficulties associated with conventional techniques for measuring actual metabolic activity of the grey matter. We included four patients with normal brain MRI and fluorine-18 fluorodeoxyglucose (F-FDG)-PET scans (two women and two men; mean age 46±14 years) in this analysis. The time interval between the two scans was 0-180 days. We calculated the volumes of grey matter, white matter and CSF by using a novel segmentation technique applied to the MRI images. We measured the mean standardized uptake value (SUV) representing the whole metabolic activity of the brain from the F-FDG-PET images. We also calculated the white matter SUV from the upper transaxial slices (centrum semiovale) of the F-FDG-PET images. The whole brain volume was calculated by summing up the volumes of the white matter, grey matter and CSF. The global cerebral metabolic activity was calculated by multiplying the mean SUV with total brain volume. The whole brain white matter metabolic activity was calculated by multiplying the mean SUV for the white matter by the white matter volume. The global cerebral metabolic activity only reflects those of the grey matter and the white matter, whereas that of the CSF is zero. We subtracted the global white matter metabolic activity from that of the whole brain, resulting in the global grey matter metabolism alone. We then divided the grey matter global metabolic activity by grey matter volume to accurately calculate the SUV for the grey matter alone. The brain volumes ranged between 1546 and 1924 ml. The mean SUV for total brain was 4.8-7. Total metabolic burden of the brain ranged from 5565 to 9617. The mean SUV for white matter was 2.8-4.1. On the basis of these measurements we generated the grey matter SUV, which ranged from 8.1 to 11.3. The accurate metabolic activity of the grey matter can be calculated using the novel segmentation technique that we applied to MRI. By combining these quantitative data with those generated from F-FDG-PET images we were able to calculate the accurate metabolic activity of the grey matter. These types of measurements will be of great value in accurate analysis of the data from patients with neuropsychiatric disorders.

  1. Application of EARL (ResEARch 4 Life®) protocols for [18F]FDG-PET/CT clinical and research studies. A roadmap towards exact recovery coefficient

    NASA Astrophysics Data System (ADS)

    Balcerzyk, Marcin; Fernández-López, Rosa; Parrado-Gallego, Ángel; Pachón-Garrudo, Víctor Manuel; Chavero-Royan, José; Hevilla, Juan; Jiménez-Ortega, Elisa; Leal, Antonio

    2017-11-01

    Tumour uptake value is a critical result in [18F]FDG-PET/CT ([18F]fluorodeoxyglucose) quantitative scans such as the dose prescription for radiotherapy and oncology. The quantification is highly dependent on the protocol of acquisition and reconstruction of the image, especially in low activity tumours. During adjusting acquisition and reconstruction protocols available in our Siemens Biograph mCT scanner for EARL (ResEARch 4 Life®) [18F]FDG-PET/CT accreditation requirements, we developed reconstruction protocols which will be used in PET based radiotherapy planning able to reduce inter-/intra-institute variability in Standard Uptake Value (SUV) results, and to bring Recovery Coefficient to 1 as close as possible for Image Quality NEMA 2007 phantom. Primary and secondary tumours from two patients were assessed by four independent evaluators. The influence of reconstruction protocols on tumour clinical assessment was presented. We proposed the improvement route for EARL accredited protocols so that they may be developed in classes to take advantage of scanner possibilities. The application of optimized reconstruction protocol eliminates the need of partial volume corrections.

  2. Joint correction of respiratory motion artifact and partial volume effect in lung/thoracic PET/CT imaging.

    PubMed

    Chang, Guoping; Chang, Tingting; Pan, Tinsu; Clark, John W; Mawlawi, Osama R

    2010-12-01

    Respiratory motion artifacts and partial volume effects (PVEs) are two degrading factors that affect the accuracy of image quantification in PET/CT imaging. In this article, the authors propose a joint motion and PVE correction approach (JMPC) to improve PET quantification by simultaneously correcting for respiratory motion artifacts and PVE in patients with lung/thoracic cancer. The objective of this article is to describe this approach and evaluate its performance using phantom and patient studies. The proposed joint correction approach incorporates a model of motion blurring, PVE, and object size/shape. A motion blurring kernel (MBK) is then estimated from the deconvolution of the joint model, while the activity concentration (AC) of the tumor is estimated from the normalization of the derived MBK. To evaluate the performance of this approach, two phantom studies and eight patient studies were performed. In the phantom studies, two motion waveforms-a linear sinusoidal and a circular motion-were used to control the motion of a sphere, while in the patient studies, all participants were instructed to breathe regularly. For the phantom studies, the resultant MBK was compared to the true MBK by measuring a correlation coefficient between the two kernels. The measured sphere AC derived from the proposed method was compared to the true AC as well as the ACs in images exhibiting PVE only and images exhibiting both PVE and motion blurring. For the patient studies, the resultant MBK was compared to the motion extent derived from a 4D-CT study, while the measured tumor AC was compared to the AC in images exhibiting both PVE and motion blurring. For the phantom studies, the estimated MBK approximated the true MBK with an average correlation coefficient of 0.91. The tumor ACs following the joint correction technique were similar to the true AC with an average difference of 2%. Furthermore, the tumor ACs on the PVE only images and images with both motion blur and PVE effects were, on average, 75% and 47.5% (10%) of the true AC, respectively, for the linear (circular) motion phantom study. For the patient studies, the maximum and mean AC/SUV on the PET images following the joint correction are, on average, increased by 125.9% and 371.6%, respectively, when compared to the PET images with both PVE and motion. The motion extents measured from the derived MBK and 4D-CT exhibited an average difference of 1.9 mm. The proposed joint correction approach can improve the accuracy of PET quantification by simultaneously compensating for the respiratory motion artifacts and PVE in lung/thoracic PET/CT imaging.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Guang, E-mail: lig2@mskcc.org; Schmidtlein, C. Ross; Humm, John L.

    Purpose: To assess and account for the impact of respiratory motion on the variability of activity and volume determination of liver tumor in positron emission tomography (PET) through a comparison between free-breathing (FB) and respiration-suspended (RS) PET images. Methods: As part of a PET/computed tomography (CT) guided percutaneous liver ablation procedure performed on a PET/CT scanner, a patient's breathing is suspended on a ventilator, allowing the acquisition of a near-motionless PET and CT reference images of the liver. In this study, baseline RS and FB PET/CT images of 20 patients undergoing thermal ablation were acquired. The RS PET provides near-motionlessmore » reference in a human study, and thereby allows a quantitative evaluation of the effect of respiratory motion on PET images obtained under FB conditions. Two methods were applied to calculate tumor activity and volume: (1) threshold-based segmentation (TBS), estimating the total lesion glycolysis (TLG) and the segmented volume and (2) histogram-based estimation (HBE), yielding the background-subtracted lesion (BSL) activity and associated volume. The TBS method employs 50% of the maximum standardized uptake value (SUV{sub max}) as the threshold for tumors with SUV{sub max} ≥ 2× SUV{sub liver-bkg}, and tumor activity above this threshold yields TLG{sub 50%}. The HBE method determines local PET background based on a Gaussian fit of the low SUV peak in a SUV-volume histogram, which is generated within a user-defined and optimized volume of interest containing both local background and lesion uptakes. Voxels with PET intensity above the fitted background were considered to have originated from the tumor and used to calculate the BSL activity and its associated lesion volume. Results: Respiratory motion caused SUV{sub max} to decrease from RS to FB by −15% ± 11% (p = 0.01). Using TBS method, there was also a decrease in SUV{sub mean} (−18% ± 9%, p = 0.01), but an increase in TLG{sub 50%} (18% ± 36%) and in the segmented volume (47% ± 52%, p = 0.01) from RS to FB PET images. The background uptake in normal liver was stable, 1% ± 9%. In contrast, using the HBE method, the differences in both BSL activity and BSL volume from RS to FB were −8% ± 10% (p = 0.005) and 0% ± 16% (p = 0.94), respectively. Conclusions: This is the first time that almost motion-free PET images of the human liver were acquired and compared to free-breathing PET. The BSL method's results are more consistent, for the calculation of both tumor activity and volume in RS and FB PET images, than those using conventional TBS. This suggests that the BSL method might be less sensitive to motion blurring and provides an improved estimation of tumor activity and volume in the presence of respiratory motion.« less

  4. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer.

    PubMed

    Bradley, Jeffrey; Thorstad, Wade L; Mutic, Sasa; Miller, Tom R; Dehdashti, Farrokh; Siegel, Barry A; Bosch, Walter; Bertrand, Rudi J

    2004-05-01

    Locoregional failure remains a significant problem for patients receiving definitive radiation therapy alone or combined with chemotherapy for non-small-cell lung cancer (NSCLC). Positron emission tomography (PET) with [(18)F]fluoro-2-deoxy-d-glucose (FDG) has proven to be a valuable diagnostic and staging tool for NSCLC. This prospective study was performed to determine the impact of treatment simulation with FDG-PET and CT on radiation therapy target volume definition and toxicity profiles by comparison to simulation with computed tomography (CT) scanning alone. Twenty-six patients with Stages I-III NSCLC were studied. Each patient underwent sequential CT and FDG-PET simulation on the same day. Immobilization devices used for both simulations included an alpha cradle, a flat tabletop, 6 external fiducial markers, and a laser positioning system. A radiation therapist participated in both simulations to reproduce the treatment setup. Both the CT and fused PET/CT image data sets were transferred to the radiation treatment planning workstation for contouring. Each FDG-PET study was reviewed with the interpreting nuclear radiologist before tumor volumes were contoured. The fused PET/CT images were used to develop the three-dimensional conformal radiation therapy (3DCRT) plan. A second physician, blinded to the results of PET, contoured the gross tumor volumes (GTV) and planning target volumes (PTV) from the CT data sets, and these volumes were used to generate mock 3DCRT plans. The PTV was defined by a 10-mm margin around the GTV. The two 3DCRT plans for each patient were compared with respect to the GTV, PTV, mean lung dose, volume of normal lung receiving > or =20 Gy (V20), and mean esophageal dose. The FDG-PET findings altered the AJCC TNM stage in 8 of 26 (31%) patients; 2 patients were diagnosed with metastatic disease based on FDG-PET and received palliative radiation therapy. Of the 24 patients who were planned with 3DCRT, PET clearly altered the radiation therapy volume in 14 (58%), as follows. PET helped to distinguish tumor from atelectasis in all 3 patients with atelectasis. Unsuspected nodal disease was detected by PET in 10 patients, and 1 patient had a separate tumor focus detected within the same lobe of the lung. Increases in the target volumes led to increases in the mean lung dose, V20, and mean esophageal dose. Decreases in the target volumes in the patients with atelectasis led to decreases in these normal-tissue toxicity parameters. Radiation targeting with fused FDG-PET and CT images resulted in alterations in radiation therapy planning in over 50% of patients by comparison with CT targeting. The increasing availability of integrated PET/CT units will facilitate the use of this technology for radiation treatment planning. A confirmatory multicenter, cooperative group trial is planned within the Radiation Therapy Oncology Group.

  5. PET/CT-guided treatment planning for paediatric cancer patients: a simulation study of proton and conventional photon therapy

    PubMed Central

    Brodin, N P; Björk-Eriksson, T; Birk Christensen, C; Kiil-Berthelsen, A; Aznar, M C; Hollensen, C; Markova, E; Munck af Rosenschöld, P

    2015-01-01

    Objective: To investigate the impact of including fluorine-18 fludeoxyglucose (18F-FDG) positron emission tomography (PET) scanning in the planning of paediatric radiotherapy (RT). Methods: Target volumes were first delineated without and subsequently re-delineated with access to 18F-FDG PET scan information, on duplicate CT sets. RT plans were generated for three-dimensional conformal photon RT (3DCRT) and intensity-modulated proton therapy (IMPT). The results were evaluated by comparison of target volumes, target dose coverage parameters, normal tissue complication probability (NTCP) and estimated risk of secondary cancer (SC). Results: Considerable deviations between CT- and PET/CT-guided target volumes were seen in 3 out of the 11 patients studied. However, averaging over the whole cohort, CT or PET/CT guidance introduced no significant difference in the shape or size of the target volumes, target dose coverage, irradiated volumes, estimated NTCP or SC risk, neither for IMPT nor 3DCRT. Conclusion: Our results imply that the inclusion of PET/CT scans in the RT planning process could have considerable impact for individual patients. There were no general trends of increasing or decreasing irradiated volumes, suggesting that the long-term morbidity of RT in childhood would on average remain largely unaffected. Advances in knowledge: 18F-FDG PET-based RT planning does not systematically change NTCP or SC risk for paediatric cancer patients compared with CT only. 3 out of 11 patients had a distinct change of target volumes when PET-guided planning was introduced. Dice and mismatch metrics are not sufficient to assess the consequences of target volume differences in the context of RT. PMID:25494657

  6. The application of positron emission tomography/computed tomography in radiation treatment planning: effect on gross target volume definition and treatment management.

    PubMed

    Iğdem, S; Alço, G; Ercan, T; Unalan, B; Kara, B; Geceer, G; Akman, C; Zengin, F O; Atilla, S; Okkan, S

    2010-04-01

    To analyse the effect of the use of molecular imaging on gross target volume (GTV) definition and treatment management. Fifty patients with various solid tumours who underwent positron emission tomography (PET)/computed tomography (CT) simulation for radiotherapy planning from 2006 to 2008 were enrolled in this study. First, F-18 fluorodeoxyglucose (FDG)-PET and CT scans of the treatment site in the treatment position and then a whole body scan were carried out with a dedicated PET/CT scanner and fused thereafter. FDG-avid primary tumour and lymph nodes were included into the GTV. A multidisciplinary team defined the target volume, and contouring was carried out by a radiation oncologist using visual methods. To compare the PET/CT-based volumes with CT-based volumes, contours were drawn on CT-only data with the help of site-specific radiologists who were blind to the PET/CT results after a median time of 7 months. In general, our PET/CT volumes were larger than our CT-based volumes. This difference was significant in patients with head and neck cancers. Major changes (> or =25%) in GTV delineation were observed in 44% of patients. In 16% of cases, PET/CT detected incidental second primaries and metastatic disease, changing the treatment strategy from curative to palliative. Integrating functional imaging with FDG-PET/CT into the radiotherapy planning process resulted in major changes in a significant proportion of our patients. An interdisciplinary approach between imaging and radiation oncology departments is essential in defining the target volumes. Copyright 2010 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  7. The development and clinical use of a beam ON-LINE PET system mounted on a rotating gantry port in proton therapy.

    PubMed

    Nishio, Teiji; Miyatake, Aya; Ogino, Takashi; Nakagawa, Keiichi; Saijo, Nagahiro; Esumi, Hiroyasu

    2010-01-01

    To verify the usefulness of our developed beam ON-LINE positron emission tomography (PET) system mounted on a rotating gantry port (BOLPs-RGp) for dose-volume delivery-guided proton therapy (DGPT). In the proton treatment room at our facility, a BOLPs-RGp was constructed so that a planar PET apparatus could be mounted with its field of view covering the iso-center of the beam irradiation system. Activity measurements were performed in 48 patients with tumors of the head and neck, liver, lungs, prostate, and brain. The position and intensity of the activity were measured using the BOLPs-RGp during the 200 s immediately after the proton irradiation. The daily measured activity images acquired by the BOLPs-RGp showed the proton irradiation volume in each patient. Changes in the proton-irradiated volume were indicated by differences between a reference activity image (taken at the first treatment) and the daily activity-images. In the case of head-and-neck treatment, the activity distribution changed in the areas where partial tumor reduction was observed. In the case of liver treatment, it was observed that the washout effect in necrotic tumor cells was slower than in non-necrotic tumor cells. The BOLPs-RGp was developed for the DGPT. The accuracy of proton treatment was evaluated by measuring changes of daily measured activity. Information about the positron-emitting nuclei generated during proton irradiation can be used as a basis for ensuring the high accuracy of irradiation in proton treatment.

  8. An exploratory study of volumetric analysis for assessing tumor response with (18)F-FAZA PET/CT in patients with advanced non-small-cell lung cancer (NSCLC).

    PubMed

    Kerner, Gerald S M A; Bollineni, Vikram R; Hiltermann, Thijo J N; Sijtsema, Nanna M; Fischer, Alexander; Bongaerts, Alphons H H; Pruim, Jan; Groen, Harry J M

    2016-12-01

    Hypoxia is associated with resistance to chemotherapy and radiotherapy and is randomly distributed within malignancies. Characterization of changes in intratumoral hypoxic regions is possible with specially developed PET tracers such as (18)F-fluoroazomycin arabinoside ((18)F-FAZA) while tumor metabolism can be measured with 2-deoxy-2-[(18)F]fluoro-D-glucose ((18)F-FDG). The purpose of this study was to study the effects of chemotherapy on (18)F-FAZA and (18)F-FDG uptake simultaneously in non-small-cell lung cancer (NSCLC) patients At baseline and after the second chemotherapy cycle, both PET/CT with (18)F-FDG and (18)F-FAZA was performed in seven patients with metastasized NSCLC. (18)F-FAZA and (18)F-FDG scans were aligned with deformable image registration using Mirada DBx. The primary tumors were contoured, and on the (18)F-FDG scan, volumes of interest (VOI) were drawn using a 41 % adaptive threshold technique. Subsequently, the resulting VOI was transferred to the (18)F-FAZA scan. (18)F-FAZA maximum tumor-to-background (T/Bgmax) ratio and the fractional hypoxic volume (FHV) were assessed. Measurements were corrected for partial volume effects. Finally, a voxel-by-voxel analysis of the primary tumor was performed to assess regional uptake differences. In the primary tumor of all seven patients, median (18)F-FDG standard uptake value (SUVmax) decreased significantly (p = 0.03). There was no significant decrease in (18)F-FAZA uptake as measured with T/Bgmax (p = 0.24) or the FHV (p = 0.35). Additionally, volumetric voxel-by-voxel analysis showed that low hypoxic tumors did not significantly change in hypoxic status between baseline and two cycles of chemotherapy, whereas highly hypoxic tumors did. Individualized volumetric voxel-by-voxel analysis revealed that hypoxia and metabolism were not associated before and after 2 cycles of chemotherapy. Tumor hypoxia and metabolism are independent dynamic events as measured by (18)F-FAZA PET and (18)F-FDG PET, both prior to and after treatment with chemotherapy in NSCLC patients.

  9. A Prospective Study of {sup 18}FDG-PET With CT Coregistration for Radiation Treatment Planning of Lymphomas and Other Hematologic Malignancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terezakis, Stephanie A.; Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland; Schöder, Heiko

    2014-06-01

    Purpose: This prospective single-institution study examined the impact of positron emission tomography (PET) with the use of 2-[{sup 18}F] fluoro-2-deoxyglucose and computed tomography (CT) scan radiation treatment planning (TP) on target volume definition in lymphoma. Methods and Materials: 118 patients underwent PET/CT TP during June 2007 to May 2009. Gross tumor volume (GTV) was contoured on CT-only and PET/CT studies by radiation oncologists (ROs) and nuclear medicine physicians (NMPs) for 95 patients with positive PET scans. Treatment plans and dose-volume histograms were generated for CT-only and PET/CT for 95 evaluable sites. Paired t test statistics and Pearson correlation coefficients weremore » used for analysis. Results: 70 (74%) patients had non-Hodgkin lymphoma, 10 (11%) had Hodgkin lymphoma, 12 (10%) had plasma-cell neoplasm, and 3 (3%) had other hematologic malignancies. Forty-three (45%) presented with relapsed/refractory disease. Forty-five (47%) received no prior chemotherapy. The addition of PET increased GTV as defined by ROs in 38 patients (median, 27%; range, 5%-70%) and decreased GTV in 41 (median, 39.5%; range, 5%-80%). The addition of PET increased GTV as defined by NMPs in 27 patients (median, 26.5%; range, 5%-95%) and decreased GTV in 52 (median, 70%; range, 5%-99%). The intraobserver correlation between CT-GTV and PET-GTV was higher for ROs than for NMPs (0.94, P<.01 vs 0.89, P<.01). On the basis of Bland-Altman plots, the PET-GTVs defined by ROs were larger than those defined by NMPs. On evaluation of clinical TPs, only 4 (4%) patients had inadequate target coverage (D95 <95%) of the PET-GTV defined by NMPs. Conclusions: Significant differences between the RO and NMP volumes were identified when PET was coregistered to CT for radiation planning. Despite this, the PET-GTV defined by ROs and NMPs received acceptable prescription dose in nearly all patients. However, given the potential for a marginal miss, consultation with an experienced PET reader is highly encouraged when PET/CT volumes are delineated, particularly for questionable lesions and to assure complete and accurate target volume coverage.« less

  10. Combined 18F-Fluciclovine PET/MRI Shows Potential for Detection and Characterization of High-Risk Prostate Cancer.

    PubMed

    Elschot, Mattijs; Selnæs, Kirsten M; Sandsmark, Elise; Krüger-Stokke, Brage; Størkersen, Øystein; Giskeødegård, Guro F; Tessem, May-Britt; Moestue, Siver A; Bertilsson, Helena; Bathen, Tone F

    2018-05-01

    The objective of this study was to investigate whether quantitative imaging features derived from combined 18 F-fluciclovine PET/multiparametric MRI show potential for detection and characterization of primary prostate cancer. Methods: Twenty-eight patients diagnosed with high-risk prostate cancer underwent simultaneous 18 F-fluciclovine PET/MRI before radical prostatectomy. Volumes of interest (VOIs) for prostate tumors, benign prostatic hyperplasia (BPH) nodules, prostatitis, and healthy tissue were delineated on T2-weighted images, using histology as a reference. Tumor VOIs were marked as high-grade (≥Gleason grade group 3) or not. MRI and PET features were extracted on the voxel and VOI levels. Partial least-squared discriminant analysis (PLS-DA) with double leave-one-patient-out cross-validation was performed to distinguish tumors from benign tissue (BPH, prostatitis, or healthy tissue) and high-grade tumors from other tissue (low-grade tumors or benign tissue). The performance levels of PET, MRI, and combined PET/MRI features were compared using the area under the receiver-operating-characteristic curve (AUC). Results: Voxel and VOI features were extracted from 40 tumor VOIs (26 high-grade), 36 BPH VOIs, 6 prostatitis VOIs, and 37 healthy-tissue VOIs. PET/MRI performed better than MRI and PET alone for distinguishing tumors from benign tissue (AUCs of 87%, 81%, and 83%, respectively, at the voxel level and 96%, 93%, and 93%, respectively, at the VOI level) and high-grade tumors from other tissue (AUCs of 85%, 79%, and 81%, respectively, at the voxel level and 93%, 93%, and 91%, respectively, at the VOI level). T2-weighted MRI, diffusion-weighted MRI, and PET features were the most important for classification. Conclusion: Combined 18 F-fluciclovine PET/multiparametric MRI shows potential for improving detection and characterization of high-risk prostate cancer, in comparison to MRI and PET alone. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  11. Standardized added metabolic activity (SAM): a partial volume independent marker of total lesion glycolysis in liver metastases.

    PubMed

    Mertens, Jeroen; Dobbeleir, André; Ham, Hamphrey; D'Asseler, Yves; Goethals, Ingeborg; Van de Wiele, Christophe

    2012-09-01

    The standardized added metabolic activity (SAM) is a new marker of total lesion glycolysis that avoids partial volume effect (PVE) and thresholding. SAM is calculated by drawing a volume of interest (VOI(1)) around the tumour and a larger VOI (VOI(2)) around VOI(1). Subtracting the background activity in VOI(2)-VOI(1) from VOI(1) yields SAM. If VOI(1) is set at a reasonable distance from the tumour, PVE are avoided. Phantom and initial clinical validation data are presented. Spheres of a Jaszczak phantom were filled with a 5.4, 3.64 and 2.0 times higher concentration relative to background activity and positron emission tomography (PET) data were acquired during 10 min. SAM of all spheres was expressed as a percentage of the expected value (the actual activity ratio minus 1). In 15 patients a 10-min list-mode acquisition PET study centred on their primary squamous cell carcinoma (PSCC) was performed and images of 1-10 min reconstructed. SAM1-9min values of PSCC were expressed as a percentage of SAM10min. Nineteen patients suffering from liver metastases treated with chemotherapy underwent PET/CT prior to (scan 1) and after 3-6 cycles of chemotherapy (scan 2). SAM and maximum standardized uptake values (SUV(max)) of the liver lesions on scan 1 (SAM1 and SUV(max)1) and the percentage reduction between both ΔSAM and ΔSUV(max) were related to Response Evaluation Criteria in Solid Tumors (RECIST) response. For the phantom acquisitions, the mean normalized SAM/sphere volume calculated was 94.9 % (SD 5.9 %) of the expected value. In the PSCC patients, the mean difference between SAM1min and SAM10min was only 4 % (SD 5 %). SUV(max)1min and SUV(max)10min proved to be not significantly different, but the variability was slightly larger than that of SAM (SD 6.4 %). SAM1 and ΔSAM values for responders versus non-responders were, respectively, 57 (SD 119) versus 297 (SD 625) for SAM1 (p = 0.2) and 99 % (SD 3 %) versus 32 % (SD 44 %) for ΔSAM (p = 0.001). SUV(max)1 and ΔSUV(max) values in responders versus non-responders were, respectively, 3.9 (SD 2.4) versus 6.3 (SD 3.1) for SUV(max)1 (p = 0.08) and 94 % (SD 17) versus 7 % (SD 40 %) for ΔSUV(max) (p = 0.0001). The AUC of ΔSAM and ΔSUV(max) were not significantly different on receiver-operating characteristic (ROC) analysis (AUC 1.0 and 0.99, respectively, p = 0.6). SAM is a promising parameter for tumour response assessment of liver metastases by means of (18)F-fluorodeoxyglucose PET.

  12. Fat-constrained 18F-FDG PET reconstruction using Dixon MR imaging and the origin ensemble algorithm

    NASA Astrophysics Data System (ADS)

    Wülker, Christian; Heinzer, Susanne; Börnert, Peter; Renisch, Steffen; Prevrhal, Sven

    2015-03-01

    Combined PET/MR imaging allows to incorporate the high-resolution anatomical information delivered by MRI into the PET reconstruction algorithm for improvement of PET accuracy beyond standard corrections. We used the working hypothesis that glucose uptake in adipose tissue is low. Thus, our aim was to shift 18F-FDG PET signal into image regions with a low fat content. Dixon MR imaging can be used to generate fat-only images via the water/fat chemical shift difference. On the other hand, the Origin Ensemble (OE) algorithm, a novel Markov chain Monte Carlo method, allows to reconstruct PET data without the use of forward- and back projection operations. By adequate modifications to the Markov chain transition kernel, it is possible to include anatomical a priori knowledge into the OE algorithm. In this work, we used the OE algorithm to reconstruct PET data of a modified IEC/NEMA Body Phantom simulating body water/fat composition. Reconstruction was performed 1) natively, 2) informed with the Dixon MR fat image to down-weight 18F-FDG signal in fatty tissue compartments in favor of adjacent regions, and 3) informed with the fat image to up-weight 18F-FDG signal in fatty tissue compartments, for control purposes. Image intensity profiles confirmed the visibly improved contrast and reduced partial volume effect at water/fat interfaces. We observed a 17+/-2% increased SNR of hot lesions surrounded by fat, while image quality was almost completely retained in fat-free image regions. An additional in vivo experiment proved the applicability of the presented technique in practice, and again verified the beneficial impact of fat-constrained OE reconstruction on PET image quality.

  13. Salvage radiotherapy in prostate cancer patients. Planning, treatment response and prognosis using (11)C-choline PET/CT.

    PubMed

    García, J R; Cozar, M; Soler, M; Bassa, P; Riera, E; Ferrer, J

    2016-01-01

    To assess the prognostic value of the therapeutic response by (11)C-choline PET/CT in prostate cancer patients with biochemical recurrence in which (11)C-choline PET/CT indicated radio-guided radiotherapy. The study included 37 patients initially treated with prostatectomy, who were treated due to biochemical recurrence. (11)C-choline PE/CT detected infra-diaphragmatic lymph-node involvement. All were selected for intensity modulated radiation therapy, escalating the dose according to the PET findings. One year after treatment patients underwent PSA and (11)C-choline PET/CT categorizing response (complete/partial/progression). Clinical/biochemical/image monitoring was performed until appearance of second relapse or 36 months in disease-free patients. (11)C-choline PET/CT could detect lymph nodes in all 37 patients. They were 18 (48.6%) of more than a centimetre in size and 19 (51.3%) with no pathological CT morphology: 9 (24.3%) with positive lymph nodes of around one centimetre and 10 (27.0%) only less than a centimetre in size. The response by (11)C-choline PET/CT was categorised one year after radiotherapy: 16 patients (43.2%) complete response; 15 (40.5%) partial response, and 6 (16.2%) progression. The response was concordant between the PSA result and (11)C-choline PET/CT in 32 patients (86.5%), and discordant in five (13.5%). New recurrence was detected in 12 patients (80%) with partial response, and 5 (31.2%) with complete response. The mean time to recurrence was 9 months after partial response, and 18 months after complete response (significant difference, p<.0001). (11)C-choline PET/CT allows the selection of patients with recurrent prostate cancer candidates for radiotherapy and to plan the technique. The evaluation of therapeutic response by (11)C-choline PET/CT has prognostic significance. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  14. A new brain positron emission tomography scanner with semiconductor detectors for target volume delineation and radiotherapy treatment planning in patients with nasopharyngeal carcinoma.

    PubMed

    Katoh, Norio; Yasuda, Koichi; Shiga, Tohru; Hasegawa, Masakazu; Onimaru, Rikiya; Shimizu, Shinichi; Bengua, Gerard; Ishikawa, Masayori; Tamaki, Nagara; Shirato, Hiroki

    2012-03-15

    We compared two treatment planning methods for stereotactic boost for treating nasopharyngeal carcinoma (NPC): the use of conventional whole-body bismuth germanate (BGO) scintillator positron emission tomography (PET(CONV)WB) versus the new brain (BR) PET system using semiconductor detectors (PET(NEW)BR). Twelve patients with NPC were enrolled in this study. [(18)F]Fluorodeoxyglucose-PET images were acquired using both the PET(NEW)BR and the PET(CONV)WB system on the same day. Computed tomography (CT) and two PET data sets were transferred to a treatment planning system, and the PET(CONV)WB and PET(NEW)BR images were coregistered with the same set of CT images. Window width and level values for all PET images were fixed at 3000 and 300, respectively. The gross tumor volume (GTV) was visually delineated on PET images by using either PET(CONV)WB (GTV(CONV)) images or PET(NEW)BR (GTV(NEW)) images. Assuming a stereotactic radiotherapy boost of 7 ports, the prescribed dose delivered to 95% of the planning target volume (PTV) was set to 2000 cGy in 4 fractions. The average absolute volume (±standard deviation [SD]) of GTV(NEW) was 15.7 ml (±9.9) ml, and that of GTV(CONV) was 34.0 (±20.5) ml. The average GTV(NEW) was significantly smaller than that of GTV(CONV) (p = 0.0006). There was no statistically significant difference between the maximum dose (p = 0.0585) and the mean dose (p = 0.2748) of PTV. The radiotherapy treatment plan based on the new gross tumor volume (PLAN(NEW)) significantly reduced maximum doses to the cerebrum and cerebellum (p = 0.0418) and to brain stem (p = 0.0041). Results of the present study suggest that the new brain PET system using semiconductor detectors can provide more accurate tumor delineation than the conventional whole-body BGO PET system and may be an important tool for functional and molecular radiotherapy treatment planning. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. 68Ga-PSMA-PET/CT imaging of localized primary prostate cancer patients for intensity modulated radiation therapy treatment planning with integrated boost.

    PubMed

    Thomas, Lena; Kantz, Steffi; Hung, Arthur; Monaco, Debra; Gaertner, Florian C; Essler, Markus; Strunk, Holger; Laub, Wolfram; Bundschuh, Ralph A

    2018-07-01

    The purpose of our study was to show the feasibility and potential benefits of using 68 Ga-PSMA-PET/CT imaging for radiation therapy treatment planning of patients with primary prostate cancer using either integrated boost on the PET-positive volume or localized treatment of the PET-positive volume. The potential gain of such an approach, the improvement of tumor control, and reduction of the dose to organs-at-risk at the same time was analyzed using the QUANTEC biological model. Twenty-one prostate cancer patients (70 years average) without previous local therapy received 68 Ga-PSMA-PET/CT imaging. Organs-at-risk and standard prostate target volumes were manually defined on the obtained datasets. A PET active volume (PTV_PET) was segmented with a 40% of the maximum activity uptake in the lesion as threshold followed by manual adaption. Five different treatment plan variations were calculated for each patient. Analysis of derived treatment plans was done according to QUANTEC with in-house developed software. Tumor control probability (TCP) and normal tissue complication probability (NTCP) was calculated for all plan variations. Comparing the conventional plans to the plans with integrated boost and plans just treating the PET-positive tumor volume, we found that TCP increased to (95.2 ± 0.5%) for an integrated boost with 75.6 Gy, (98.1 ± 0.3%) for an integrated boost with 80 Gy, (94.7 ± 0.8%) for treatment of PET-positive volume with 75 Gy, and to (99.4 ± 0.1%) for treating PET-positive volume with 95 Gy (all p < 0.0001). For the integrated boost with 80 Gy, a significant increase of the median NTCP of the rectum was found, for all other plans no statistical significant increase in the NTCP neither of the rectum nor the bladder was found. Our study demonstrates that the use of 68 Ga-PSMA-PET/CT image information allows for more individualized prostate treatment planning. TCP values of identified active tumor volumes were increased, while rectum and bladder NTCP values either remained the same or were even lower. However, further studies need to clarify the clinical benefit for the patients applying these techniques.

  16. A phase II comparative study of gross tumor volume definition with or without PET/CT fusion in dosimetric planning for non-small-cell lung cancer (NSCLC): primary analysis of Radiation Therapy Oncology Group (RTOG) 0515.

    PubMed

    Bradley, Jeffrey; Bae, Kyounghwa; Choi, Noah; Forster, Ken; Siegel, Barry A; Brunetti, Jacqueline; Purdy, James; Faria, Sergio; Vu, Toni; Thorstad, Wade; Choy, Hak

    2012-01-01

    Radiation Therapy Oncology Group (RTOG) 0515 is a Phase II prospective trial designed to quantify the impact of positron emission tomography (PET)/computed tomography (CT) compared with CT alone on radiation treatment plans (RTPs) and to determine the rate of elective nodal failure for PET/CT-derived volumes. Each enrolled patient underwent definitive radiation therapy for non-small-cell lung cancer (≥ 60 Gy) and had two RTP datasets generated: gross tumor volume (GTV) derived with CT alone and with PET/CT. Patients received treatment using the PET/CT-derived plan. The primary end point, the impact of PET/CT fusion on treatment plans was measured by differences of the following variables for each patient: GTV, number of involved nodes, nodal station, mean lung dose (MLD), volume of lung exceeding 20 Gy (V20), and mean esophageal dose (MED). Regional failure rate was a secondary end point. The nonparametric Wilcoxon matched-pairs signed-ranks test was used with Bonferroni adjustment for an overall significance level of 0.05. RTOG 0515 accrued 52 patients, 47 of whom are evaluable. The follow-up time for all patients is 12.9 months (2.7-22.2). Tumor staging was as follows: II = 6%; IIIA = 40%; and IIIB = 54%. The GTV was statistically significantly smaller for PET/CT-derived volumes (98.7 vs. 86.2 mL; p < 0.0001). MLDs for PET/CT plans were slightly lower (19 vs. 17.8 Gy; p = 0.06). There was no significant difference in the number of involved nodes (2.1 vs. 2.4), V20 (32% vs. 30.8%), or MED (28.7 vs. 27.1 Gy). Nodal contours were altered by PET/CT for 51% of patients. One patient (2%) has developed an elective nodal failure. PET/CT-derived tumor volumes were smaller than those derived by CT alone. PET/CT changed nodal GTV contours in 51% of patients. The elective nodal failure rate for GTVs derived by PET/CT is quite low, supporting the RTOG standard of limiting the target volume to the primary tumor and involved nodes. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Influence of the partial volume correction method on 18F-fluorodeoxyglucose brain kinetic modelling from dynamic PET images reconstructed with resolution model based OSEM

    PubMed Central

    Bowen, Spencer L.; Byars, Larry G.; Michel, Christian J.; Chonde, Daniel B.; Catana, Ciprian

    2014-01-01

    Kinetic parameters estimated from dynamic 18F-fluorodeoxyglucose PET acquisitions have been used frequently to assess brain function in humans. Neglecting partial volume correction (PVC) for a dynamic series has been shown to produce significant bias in model estimates. Accurate PVC requires a space-variant model describing the reconstructed image spatial point spread function (PSF) that accounts for resolution limitations, including non-uniformities across the field of view due to the parallax effect. For OSEM, image resolution convergence is local and influenced significantly by the number of iterations, the count density, and background-to-target ratio. As both count density and background-to-target values for a brain structure can change during a dynamic scan, the local image resolution may also concurrently vary. When PVC is applied post-reconstruction the kinetic parameter estimates may be biased when neglecting the frame-dependent resolution. We explored the influence of the PVC method and implementation on kinetic parameters estimated by fitting 18F-fluorodeoxyglucose dynamic data acquired on a dedicated brain PET scanner and reconstructed with and without PSF modelling in the OSEM algorithm. The performance of several PVC algorithms was quantified with a phantom experiment, an anthropomorphic Monte Carlo simulation, and a patient scan. Using the last frame reconstructed image only for regional spread function (RSF) generation, as opposed to computing RSFs for each frame independently, and applying perturbation GTM PVC with PSF based OSEM produced the lowest magnitude bias kinetic parameter estimates in most instances, although at the cost of increased noise compared to the PVC methods utilizing conventional OSEM. Use of the last frame RSFs for PVC with no PSF modelling in the OSEM algorithm produced the lowest bias in CMRGlc estimates, although by less than 5% in most cases compared to the other PVC methods. The results indicate that the PVC implementation and choice of PSF modelling in the reconstruction can significantly impact model parameters. PMID:24052021

  18. Quantifying interictal metabolic activity in human temporal lobe epilepsy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, T.R.; Mazziotta, J.C.; Engel, J. Jr.

    1990-09-01

    The majority of patients with complex partial seizures of unilateral temporal lobe origin have interictal temporal hypometabolism on (18F)fluorodeoxyglucose positron emission tomography (FDG PET) studies. Often, this hypometabolism extends to ipsilateral extratemporal sites. The use of accurately quantified metabolic data has been limited by the absence of an equally reliable method of anatomical analysis of PET images. We developed a standardized method for visual placement of anatomically configured regions of interest on FDG PET studies, which is particularly adapted to the widespread, asymmetric, and often severe interictal metabolic alterations of temporal lobe epilepsy. This method was applied by a singlemore » investigator, who was blind to the identity of subjects, to 10 normal control and 25 interictal temporal lobe epilepsy studies. All subjects had normal brain anatomical volumes on structural neuroimaging studies. The results demonstrate ipsilateral thalamic and temporal lobe involvement in the interictal hypometabolism of unilateral temporal lobe epilepsy. Ipsilateral frontal, parietal, and basal ganglial metabolism is also reduced, although not as markedly as is temporal and thalamic metabolism.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Y; Turian, J; Templeton, A

    Purpose: PET/CT provides important functional information for radiotherapy targeting of cervical cancer. However, repeated PET/CT procedures for external beam and subsequent brachytherapy expose patients to additional radiation and are not cost effective. Our goal is to investigate the possibility of propagating PET-active volumes for brachytherapy procedures through deformable image registration (DIR) of earlier PET/CT and ultimately to minimize the number of PET/CT image sessions required. Methods: Nine cervical cancer patients each received their brachytherapy preplanning PET/CT at the end of EBRT with a Syed template in place. The planning PET/CT was acquired on the day of brachytherapy treatment with themore » actual applicator (Syed or Tandem and Ring) and rigidly registered. The PET/CT images were then deformably registered creating a third (deformed) image set for target prediction. Regions of interest with standardized uptake values (SUV) greater than 65% of maximum SUV were contoured as target volumes in all three sets of PET images. The predictive value of the registered images was evaluated by comparing the preplanning and deformed PET volumes with the planning PET volume using Dice's coefficient (DC) and center-of-mass (COM) displacement. Results: The average DCs were 0.12±0.14 and 0.19±0.16 for rigid and deformable predicted target volumes, respectively. The average COM displacements were 1.9±0.9 cm and 1.7±0.7 cm for rigid and deformable registration, respectively. The DCs were improved by deformable registration, however, both were lower than published data for DIR in other modalities and clinical sites. Anatomical changes caused by different brachytherapy applicators could have posed a challenge to the DIR algorithm. The physiological change from interstitial needle placement may also contribute to lower DC. Conclusion: The clinical use of DIR in PET/CT for cervical cancer brachytherapy appears to be limited by applicator choice and requires further investigation.« less

  20. Comparative characteristics of quantitative indexes for 18F-FDG uptake and metabolic volume in sequentially obtained PET/MRI and PET/CT.

    PubMed

    Lee, Soo Jin; Paeng, Jin Chul; Goo, Jin Mo; Lee, Jeong Min; Cheon, Gi Jeong; Lee, Dong Soo; Chung, June-Key; Kang, Keon Wook

    2017-04-01

    The purpose of this study was to compare quantitative indexes for fluorine-18 fluorodeoxyglucose uptake and metabolic volume between PET/MRI and PET/CT. Sixty-six patients with solid tumors (32 with lung cancer and 34 with pancreatic cancer) who underwent sequential fluorine-18 fluorodeoxyglucose PET/MRI and PET/CT were retrospectively enrolled. On PET images, maximum and peak standardized uptake values (SUVmax and SUVpeak, respectively), and maximum tumor-to-liver ratio (TLRmax) were measured. Metabolic tumor volume (MTV) and total-lesion glycolysis (TLG) with margin thresholds of 50% SUVmax and SUV 2.5 (MTV50%, MTV2.5; TLG50%, TLG2.5, respectively) were compared between PET/MRI and PET/CT, with patients classified into two groups using imaging protocol (the PET/MRI-first and PET/CT-first groups). There were significant correlations of all tested indexes between PET/MRI and PET/CT (r=0.867-0.987, P<0.001). SUVmax and SUVpeak were lower on PET/MRI regardless of imaging protocol (P<0.001 in the PET/MRI-first group). In contrast, TLRmax exhibited reverse results between the PET/MRI-first and PET/CT-first groups. MTV50% and TLG values varied between PET/MRI and PET/CT, as well as between the PET/MRI-first and PET/CT-first groups. However, MTV2.5 was relatively robust against imaging protocol and modality. There are significant correlations of the quantitative indexes between PET/MRI and PET/CT. However, uptake indexes of SUVmax and SUVpeak are lower on PET/MRI than on PET/CT, and volumetric indexes of MTV50% and TLG values also exhibited significant differences. It may be suggested that TLRmax and MTV2.5 are relatively more appropriate indexes than others when PET/MRI and PET/CT are used interchangeably.

  1. Radiotherapy planning: PET/CT scanner performances in the definition of gross tumour volume and clinical target volume.

    PubMed

    Brianzoni, Ernesto; Rossi, Gloria; Ancidei, Sergio; Berbellini, Alfonso; Capoccetti, Francesca; Cidda, Carla; D'Avenia, Paola; Fattori, Sara; Montini, Gian Carlo; Valentini, Gianluca; Proietti, Alfredo; Algranati, Carlo

    2005-12-01

    Positron emission tomography is the most advanced scintigraphic imaging technology and can be employed in the planning of radiation therapy (RT). The aim of this study was to evaluate the possible role of fused images (anatomical CT and functional FDG-PET), acquired with a dedicated PET/CT scanner, in delineating gross tumour volume (GTV) and clinical target volume (CTV) in selected patients and thus in facilitating RT planning. Twenty-eight patients were examined, 24 with lung cancer (17 non-small cell and seven small cell) and four with non-Hodgkin's lymphoma in the head and neck region. All patients underwent a whole-body PET scan after a CT scan. The CT images provided morphological volumetric information, and in a second step, the corresponding PET images were overlaid to define the effective target volume. The images were exported off-line via an internal network to an RT simulator. Three patient were excluded from the study owing to change in the disease stage subsequent to the PET/CT study. Among the remaining 25 patients, PET significantly altered the GTV or CTV in 11 (44%) . In five of these 11 cases there was a reduction in GTV or CTV, while in six there was an increase in GTV or CTV. FDG-PET is a highly sensitive imaging modality that offers better visualisation of local and locoregional tumour extension. This study confirmed that co-registration of CT data and FDG-PET images may lead to significant modifications of RT planning and patient management.

  2. SU-E-J-123: Assessing Segmentation Accuracy of Internal Volumes and Sub-Volumes in 4D PET/CT of Lung Tumors Using a Novel 3D Printed Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soultan, D; Murphy, J; James, C

    2015-06-15

    Purpose: To assess the accuracy of internal target volume (ITV) segmentation of lung tumors for treatment planning of simultaneous integrated boost (SIB) radiotherapy as seen in 4D PET/CT images, using a novel 3D-printed phantom. Methods: The insert mimics high PET tracer uptake in the core and 50% uptake in the periphery, by using a porous design at the periphery. A lung phantom with the insert was placed on a programmable moving platform. Seven breathing waveforms of ideal and patient-specific respiratory motion patterns were fed to the platform, and 4D PET/CT scans were acquired of each of them. CT images weremore » binned into 10 phases, and PET images were binned into 5 phases following the clinical protocol. Two scenarios were investigated for segmentation: a gate 30–70 window, and no gating. The radiation oncologist contoured the outer ITV of the porous insert with on CT images, while the internal void volume with 100% uptake was contoured on PET images for being indistinguishable from the outer volume in CT images. Segmented ITVs were compared to the expected volumes based on known target size and motion. Results: 3 ideal breathing patterns, 2 regular-breathing patient waveforms, and 2 irregular-breathing patient waveforms were used for this study. 18F-FDG was used as the PET tracer. The segmented ITVs from CT closely matched the expected motion for both no gating and gate 30–70 window, with disagreement of contoured ITV with respect to the expected volume not exceeding 13%. PET contours were seen to overestimate volumes in all the cases, up to more than 40%. Conclusion: 4DPET images of a novel 3D printed phantom designed to mimic different uptake values were obtained. 4DPET contours overestimated ITV volumes in all cases, while 4DCT contours matched expected ITV volume values. Investigation of the cause and effects of the discrepancies is undergoing.« less

  3. The impact of 18 F-FET PET-CT on target definition in image-guided stereotactic radiotherapy in patients with skull base lesions.

    PubMed

    Badakhshi, Harun; Graf, Reinhold; Prasad, Vikas; Budach, Volker

    2014-06-25

    18 F-fluoro-ethyl-tyrosine PET is gaining more indications in the field of oncology. We investigated the potentials of usage of FET-PET/CT in addition to MRI for definition of gross tumor volume (GTV) in stereotactic radiotherapy of lesions of skull base. We included in a prospective setting 21 cases. An MRI was performed, completed by FET PET/CT. Different GTV's were defined based on respective imaging tools: 1. GTVMRI, 2. GTV MRI /CT, 3. GTV composit (1 + 2), and GTVPET = GTV Boost. Lesions could be visualised by MRI and FET-PET/CT in all patients. FET tracer enhancement was found in all cases. Skull base infiltration by these lesions was observed by MRI, CT (PET/CT) and FET-PET (PET/CT) in all patients. Totally, brain tissue infiltration was seen in 10 patients. While, in 7 (out 10) cases, MRI and CT (from PET/CT) were indicating brain infiltration, FET-PET could add additional information regarding infiltrative behaviour: in 3 (out 10) patients, infiltration of the brain was displayed merely in FET-PET. An enlargement of GTVMRI/CT due to the FET-PET driven information, which revealed GTVcomposite , was necessary in 7 cases,. This enlargement was significant by definition (> 10% of GTVMRI/CT). The mean PET-effect on GTV counted for 1 ± 4 cm3. The restricted boost fields were based mainly on the GTVPET volume. In mean, about 8.5 cm3 of GTVMRI/CT, which showed no FET uptake, were excluded from target volume. GTV boost driven by only-PET-activity, was in mean by 33% smaller than the initial large treatment field, GTV composite, for those cases received boost treatment. FET-PET lead to significant (>10%) changes in the initial treatment fields in 11/21 patients and showed additional tumour volume relevant for radiation planning in 6/21 cases, and led to a subsequent decrease of more than 10% of the initial volumes for the boost fields. The implementation of FET PET into the planning procedures showed a benefit in terms of accurate definition of skull base lesions as targets for Image-guided stereotactic Radiotherapy. This has to be investigated prospectively in larger cohorts.

  4. Current Methods to Define Metabolic Tumor Volume in Positron Emission Tomography: Which One is Better?

    PubMed

    Im, Hyung-Jun; Bradshaw, Tyler; Solaiyappan, Meiyappan; Cho, Steve Y

    2018-02-01

    Numerous methods to segment tumors using 18 F-fluorodeoxyglucose positron emission tomography (FDG PET) have been introduced. Metabolic tumor volume (MTV) refers to the metabolically active volume of the tumor segmented using FDG PET, and has been shown to be useful in predicting patient outcome and in assessing treatment response. Also, tumor segmentation using FDG PET has useful applications in radiotherapy treatment planning. Despite extensive research on MTV showing promising results, MTV is not used in standard clinical practice yet, mainly because there is no consensus on the optimal method to segment tumors in FDG PET images. In this review, we discuss currently available methods to measure MTV using FDG PET, and assess the advantages and disadvantages of the methods.

  5. Quantitative Amyloid Imaging in Autosomal Dominant Alzheimer's Disease: Results from the DIAN Study Group.

    PubMed

    Su, Yi; Blazey, Tyler M; Owen, Christopher J; Christensen, Jon J; Friedrichsen, Karl; Joseph-Mathurin, Nelly; Wang, Qing; Hornbeck, Russ C; Ances, Beau M; Snyder, Abraham Z; Cash, Lisa A; Koeppe, Robert A; Klunk, William E; Galasko, Douglas; Brickman, Adam M; McDade, Eric; Ringman, John M; Thompson, Paul M; Saykin, Andrew J; Ghetti, Bernardino; Sperling, Reisa A; Johnson, Keith A; Salloway, Stephen P; Schofield, Peter R; Masters, Colin L; Villemagne, Victor L; Fox, Nick C; Förster, Stefan; Chen, Kewei; Reiman, Eric M; Xiong, Chengjie; Marcus, Daniel S; Weiner, Michael W; Morris, John C; Bateman, Randall J; Benzinger, Tammie L S

    2016-01-01

    Amyloid imaging plays an important role in the research and diagnosis of dementing disorders. Substantial variation in quantitative methods to measure brain amyloid burden exists in the field. The aim of this work is to investigate the impact of methodological variations to the quantification of amyloid burden using data from the Dominantly Inherited Alzheimer's Network (DIAN), an autosomal dominant Alzheimer's disease population. Cross-sectional and longitudinal [11C]-Pittsburgh Compound B (PiB) PET imaging data from the DIAN study were analyzed. Four candidate reference regions were investigated for estimation of brain amyloid burden. A regional spread function based technique was also investigated for the correction of partial volume effects. Cerebellar cortex, brain-stem, and white matter regions all had stable tracer retention during the course of disease. Partial volume correction consistently improves sensitivity to group differences and longitudinal changes over time. White matter referencing improved statistical power in the detecting longitudinal changes in relative tracer retention; however, the reason for this improvement is unclear and requires further investigation. Full dynamic acquisition and kinetic modeling improved statistical power although it may add cost and time. Several technical variations to amyloid burden quantification were examined in this study. Partial volume correction emerged as the strategy that most consistently improved statistical power for the detection of both longitudinal changes and across-group differences. For the autosomal dominant Alzheimer's disease population with PiB imaging, utilizing brainstem as a reference region with partial volume correction may be optimal for current interventional trials. Further investigation of technical issues in quantitative amyloid imaging in different study populations using different amyloid imaging tracers is warranted.

  6. Quantitative Amyloid Imaging in Autosomal Dominant Alzheimer’s Disease: Results from the DIAN Study Group

    PubMed Central

    Su, Yi; Blazey, Tyler M.; Owen, Christopher J.; Christensen, Jon J.; Friedrichsen, Karl; Joseph-Mathurin, Nelly; Wang, Qing; Hornbeck, Russ C.; Ances, Beau M.; Snyder, Abraham Z.; Cash, Lisa A.; Koeppe, Robert A.; Klunk, William E.; Galasko, Douglas; Brickman, Adam M.; McDade, Eric; Ringman, John M.; Thompson, Paul M.; Saykin, Andrew J.; Ghetti, Bernardino; Sperling, Reisa A.; Johnson, Keith A.; Salloway, Stephen P.; Schofield, Peter R.; Masters, Colin L.; Villemagne, Victor L.; Fox, Nick C.; Förster, Stefan; Chen, Kewei; Reiman, Eric M.; Xiong, Chengjie; Marcus, Daniel S.; Weiner, Michael W.; Morris, John C.; Bateman, Randall J.; Benzinger, Tammie L. S.

    2016-01-01

    Amyloid imaging plays an important role in the research and diagnosis of dementing disorders. Substantial variation in quantitative methods to measure brain amyloid burden exists in the field. The aim of this work is to investigate the impact of methodological variations to the quantification of amyloid burden using data from the Dominantly Inherited Alzheimer’s Network (DIAN), an autosomal dominant Alzheimer’s disease population. Cross-sectional and longitudinal [11C]-Pittsburgh Compound B (PiB) PET imaging data from the DIAN study were analyzed. Four candidate reference regions were investigated for estimation of brain amyloid burden. A regional spread function based technique was also investigated for the correction of partial volume effects. Cerebellar cortex, brain-stem, and white matter regions all had stable tracer retention during the course of disease. Partial volume correction consistently improves sensitivity to group differences and longitudinal changes over time. White matter referencing improved statistical power in the detecting longitudinal changes in relative tracer retention; however, the reason for this improvement is unclear and requires further investigation. Full dynamic acquisition and kinetic modeling improved statistical power although it may add cost and time. Several technical variations to amyloid burden quantification were examined in this study. Partial volume correction emerged as the strategy that most consistently improved statistical power for the detection of both longitudinal changes and across-group differences. For the autosomal dominant Alzheimer’s disease population with PiB imaging, utilizing brainstem as a reference region with partial volume correction may be optimal for current interventional trials. Further investigation of technical issues in quantitative amyloid imaging in different study populations using different amyloid imaging tracers is warranted. PMID:27010959

  7. Volumetric modulated arc therapy planning for primary prostate cancer with selective intraprostatic boost determined by 18F-choline PET/CT.

    PubMed

    Kuang, Yu; Wu, Lili; Hirata, Emily; Miyazaki, Kyle; Sato, Miles; Kwee, Sandi A

    2015-04-01

    This study evaluated expected tumor control and normal tissue toxicity for prostate volumetric modulated arc therapy (VMAT) with and without radiation boosts to an intraprostatically dominant lesion (IDL), defined by (18)F-choline positron emission tomography/computed tomography (PET/CT). Thirty patients with localized prostate cancer underwent (18)F-choline PET/CT before treatment. Two VMAT plans, plan79 Gy and plan100-105 Gy, were compared for each patient. The whole-prostate planning target volume (PTVprostate) prescription was 79 Gy in both plans, but plan100-105 Gy added simultaneous boost doses of 100 Gy and 105 Gy to the IDL, defined by 60% and 70% of maximum prostatic uptake on (18)F-choline PET (IDLsuv60% and IDLsuv70%, respectively, with IDLsuv70% nested inside IDLsuv60% to potentially enhance tumor specificity of the maximum point dose). Plan evaluations included histopathological correspondence, isodose distributions, dose-volume histograms, tumor control probability (TCP), and normal tissue complication probability (NTCP). Planning objectives and dose constraints proved feasible in 30 of 30 cases. Prostate sextant histopathology was available for 28 cases, confirming that IDLsuv60% adequately covered all tumor-bearing prostate sextants in 27 cases and provided partial coverage in 1 case. Plan100-105 Gy had significantly higher TCP than plan79 Gy across all prostate regions for α/β ratios ranging from 1.5 Gy to 10 Gy (P<.001 for each case). There were no significant differences in bladder and femoral head NTCP between plans and slightly lower rectal NTCP (endpoint: grade ≥ 2 late toxicity or rectal bleeding) was found for plan100-105 Gy. VMAT can potentially increase the likelihood of tumor control in primary prostate cancer while observing normal tissue tolerances through simultaneous delivery of a steep radiation boost to a (18)F-choline PET-defined IDL. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. SU-E-J-124: FDG PET Metrics Analysis in the Context of An Adaptive PET Protocol for Node Positive Gynecologic Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nawrocki, J; Chino, J; Light, K

    2014-06-01

    Purpose: To compare PET extracted metrics and investigate the role of a gradient-based PET segmentation tool, PET Edge (MIM Software Inc., Cleveland, OH), in the context of an adaptive PET protocol for node positive gynecologic cancer patients. Methods: An IRB approved protocol enrolled women with gynecological, PET visible malignancies. A PET-CT was obtained for treatment planning prescribed to 45–50.4Gy with a 55– 70Gy boost to the PET positive nodes. An intra-treatment PET-CT was obtained between 30–36Gy, and all volumes re-contoured. Standard uptake values (SUVmax, SUVmean, SUVmedian) and GTV volumes were extracted from the clinician contoured GTVs on the pre- andmore » intra-treament PET-CT for primaries and nodes and compared with a two tailed Wilcoxon signed-rank test. The differences between primary and node GTV volumes contoured in the treatment planning system and those volumes generated using PET Edge were also investigated. Bland-Altman plots were used to describe significant differences between the two contouring methods. Results: Thirteen women were enrolled in this study. The median baseline/intra-treatment primary (SUVmax, mean, median) were (30.5, 9.09, 7.83)/( 16.6, 4.35, 3.74), and nodes were (20.1, 4.64, 3.93)/( 6.78, 3.13, 3.26). The p values were all < 0.001. The clinical contours were all larger than the PET Edge generated ones, with mean difference of +20.6 ml for primary, and +23.5 ml for nodes. The Bland-Altman revealed changes between clinician/PET Edge contours to be mostly within the margins of the coefficient of variability. However, there was a proportional trend, i.e. the larger the GTV, the larger the clinical contours as compared to PET Edge contours. Conclusion: Primary and node SUV values taken from the intratreament PET-CT can be used to assess the disease response and to design an adaptive plan. The PET Edge tool can streamline the contouring process and lead to smaller, less user-dependent contours.« less

  9. Role of CO2 in the cerebral hyperemic response to incremental normoxic and hyperoxic exercise

    PubMed Central

    Wildfong, K. W.; Hoiland, R. L.; Harper, M.; Lewis, N. C.; Pool, A.; Smith, S. L.; Kuca, T.; Ainslie, P. N.

    2016-01-01

    Cerebral blood flow (CBF) is temporally related to exercise-induced changes in partial pressure of end-tidal carbon dioxide (PetCO2); hyperoxia is known to enhance this relationship. We examined the hypothesis that preventing PetCO2 from rising (isocapnia) during submaximal exercise with and without hyperoxia [end-tidal Po2 (PetO2) = 300 mmHg] would attenuate the increases in CBF. Additionally, we aimed to identify the magnitude that breathing, per se, influences the CBF response to normoxic and hyperoxic exercise. In 14 participants, CBF (intra- and extracranial) measurements were measured during exercise [20, 40, 60, and 80% of maximum workload (Wmax)] and during rest while ventilation (V̇e) was volitionally increased to mimic volumes achieved during exercise (isocapnic hyperpnea). While V̇e was uncontrolled during poikilocapnic exercise, during isocapnic exercise and isocapnic hyperpnea, V̇e was increased to prevent PetCO2 from rising above resting values (∼40 mmHg). Although PetCO2 differed by 2 ± 3 mmHg during normoxic poikilocapnic and isocapnic exercise, except for a greater poikilocapnic compared with isocapnic increase in blood velocity in the posterior cerebral artery at 60% Wmax, the between condition increases in intracranial (∼12-15%) and extracranial (15–20%) blood flow were similar at each workload. The poikilocapnic hyperoxic increases in both intra- and extracranial blood-flow (∼17–29%) were greater compared with poikilocapnic normoxia (∼8–20%) at intensities >40% Wmax (P < 0.01). During both normoxic and hyperoxic conditions, isocapnia normalized both the intracranial and extracranial blood-flow differences. Isocapnic hyperpnea did not alter CBF. Our findings demonstrate a differential effect of PetCO2 on CBF during exercise influenced by the prevailing PetO2. PMID:26769951

  10. PET imaging in adaptive radiotherapy of gastrointestinal tumours.

    PubMed

    Bulens, Philippe; Thomas, Melissa; Deroose, Christophe M; Haustermans, Karin

    2018-06-04

    Radiotherapy is the standard of care in the multimodality treatment of a variety of gastrointestinal (GI) tumours, such as oesophageal cancer, gastric cancer, rectal cancer and anal cancer. Additionally, radiotherapy has served as an alternative for surgery in patients with liver cancer, cancer of the biliary tract and pancreatic cancer. Positron-emission tomography (PET), generally in combination with computed tomography (CT), has an established role in the diagnosis, response assessment and (re-)staging of several GI tumours. However, the additional value of PET in adaptive radiotherapy, i.e. during the radiation treatment course and in the delineation process, is still unclear. When performed during radiotherapy, PET aims at assessing treatment-induced variations in functional tumour volumes to reduce the radiation target volume. Moreover, in the radiation treatment planning, tumour delineation could be more accurate by incorporating PET to identify the metabolic tumour volume. This review focuses on the additional value of PET for adaptive radiotherapy protocols as well as for the target volume adaptation for individualised treatment strategies in oesophageal, gastric, pancreatic, liver, biliary tract, rectal and anal neoplasms.

  11. Whole-tumor histogram analysis of the cerebral blood volume map: tumor volume defined by 11C-methionine positron emission tomography image improves the diagnostic accuracy of cerebral glioma grading.

    PubMed

    Wu, Rongli; Watanabe, Yoshiyuki; Arisawa, Atsuko; Takahashi, Hiroto; Tanaka, Hisashi; Fujimoto, Yasunori; Watabe, Tadashi; Isohashi, Kayako; Hatazawa, Jun; Tomiyama, Noriyuki

    2017-10-01

    This study aimed to compare the tumor volume definition using conventional magnetic resonance (MR) and 11C-methionine positron emission tomography (MET/PET) images in the differentiation of the pre-operative glioma grade by using whole-tumor histogram analysis of normalized cerebral blood volume (nCBV) maps. Thirty-four patients with histopathologically proven primary brain low-grade gliomas (n = 15) and high-grade gliomas (n = 19) underwent pre-operative or pre-biopsy MET/PET, fluid-attenuated inversion recovery, dynamic susceptibility contrast perfusion-weighted magnetic resonance imaging, and contrast-enhanced T1-weighted at 3.0 T. The histogram distribution derived from the nCBV maps was obtained by co-registering the whole tumor volume delineated on conventional MR or MET/PET images, and eight histogram parameters were assessed. The mean nCBV value had the highest AUC value (0.906) based on MET/PET images. Diagnostic accuracy significantly improved when the tumor volume was measured from MET/PET images compared with conventional MR images for the parameters of mean, 50th, and 75th percentile nCBV value (p = 0.0246, 0.0223, and 0.0150, respectively). Whole-tumor histogram analysis of CBV map provides more valuable histogram parameters and increases diagnostic accuracy in the differentiation of pre-operative cerebral gliomas when the tumor volume is derived from MET/PET images.

  12. Imaging of amyloid deposition in human brain using positron emission tomography and [18F]FACT: comparison with [11C]PIB.

    PubMed

    Ito, Hiroshi; Shinotoh, Hitoshi; Shimada, Hitoshi; Miyoshi, Michie; Yanai, Kazuhiko; Okamura, Nobuyuki; Takano, Harumasa; Takahashi, Hidehiko; Arakawa, Ryosuke; Kodaka, Fumitoshi; Ono, Maiko; Eguchi, Yoko; Higuchi, Makoto; Fukumura, Toshimitsu; Suhara, Tetsuya

    2014-04-01

    The characteristic neuropathological changes in Alzheimer's disease (AD) are deposition of amyloid senile plaques and neurofibrillary tangles. The (18)F-labeled amyloid tracer, [(18)F]2-[(2-{(E)-2-[2-(dimethylamino)-1,3-thiazol-5-yl]vinyl}-1,3-benzoxazol-6-yl)oxy]-3-fluoropropan-1-ol (FACT), one of the benzoxazole derivatives, was recently developed. In the present study, deposition of amyloid senile plaques was measured by positron emission tomography (PET) with both [(11)C]Pittsburgh compound B (PIB) and [(18)F]FACT in the same subjects, and the regional uptakes of both radiotracers were directly compared. Two PET scans, one of each with [(11)C]PIB and [(18)F]FACT, were performed sequentially on six normal control subjects, two mild cognitive impairment (MCI) patients, and six AD patients. The standardized uptake value ratio of brain regions to the cerebellum was calculated with partial volume correction using magnetic resonance (MR) images to remove the effects of white matter accumulation. No significant differences in the cerebral cortical uptake were observed between normal control subjects and AD patients in [(18)F]FACT studies without partial volume correction, while significant differences were observed in [(11)C]PIB. After partial volume correction, the cerebral cortical uptake was significantly larger in AD patients than in normal control subjects for [(18)F]FACT studies as well as [(11)C]PIB. Relatively lower uptakes of [(11)C]PIB in distribution were observed in the medial side of the temporal cortex and in the occipital cortex as compared with [(18)F]FACT. Relatively higher uptake of [(11)C]PIB in distribution was observed in the frontal and parietal cortices. Since [(18)F]FACT might bind more preferentially to dense-cored amyloid deposition, regional differences in cerebral cortical uptake between [(11)C]PIB and [(18)F]FACT might be due to differences in regional distribution between diffuse and dense-cored amyloid plaque shown in the autoradiographic and histochemical assays of postmortem AD brain sections.

  13. The impact of PET/CT scanning on the size of target volumes, radiation exposure of organs at risk, TCP and NTCP, in the radiotherapy planning of non-small cell lung cancer.

    PubMed

    Vojtíšek, Radovan; Mužík, Jan; Slampa, Pavel; Budíková, Marie; Hejsek, Jaroslav; Smolák, Petr; Ferda, Jiří; Fínek, Jindřich

    2014-05-01

    To compare radiotherapy plans made according to CT and PET/CT and to investigate the impact of changes in target volumes on tumour control probability (TCP), normal tissue complication probability (NTCP) and the impact of PET/CT on the staging and treatment strategy. Contemporary studies have proven that PET/CT attains higher sensitivity and specificity in the diagnosis of lung cancer and also leads to higher accuracy than CT alone in the process of target volume delineation in NSCLC. Between October 2009 and March 2012, 31 patients with locally advanced NSCLC, who had been referred to radical radiotherapy were involved in our study. They all underwent planning PET/CT examination. Then we carried out two separate delineations of target volumes and two radiotherapy plans and we compared the following parameters of those plans: staging, treatment purpose, the size of GTV and PTV and the exposure of organs at risk (OAR). TCP and NTCP were also compared. PET/CT information led to a significant decrease in the sizes of target volumes, which had the impact on the radiation exposure of OARs. The reduction of target volume sizes was not reflected in the significant increase of the TCP value. We found that there is a very strong direct linear relationship between all evaluated dosimetric parameters and NTCP values of all evaluated OARs. Our study found that the use of planning PET/CT in the radiotherapy planning of NSCLC has a crucial impact on the precise determination of target volumes, more precise staging of the disease and thus also on possible changes of treatment strategy.

  14. A comparative study of the target volume definition in radiotherapy with «Slow CT Scan» vs. 4D PET/CT Scan in early stages non-small cell lung cancer.

    PubMed

    Molla, M; Anducas, N; Simó, M; Seoane, A; Ramos, M; Cuberas-Borros, G; Beltran, M; Castell, J; Giralt, J

    To evaluate the use of 4D PET/CT to quantify tumor respiratory motion compared to the «Slow»-CT (CTs) in the radiotherapy planning process. A total of 25 patients with inoperable early stage non small cell lung cancer (NSCLC) were included in the study. Each patient was imaged with a CTs (4s/slice) and 4D PET/CT. The adequacy of each technique for respiratory motion capture was evaluated using the volume definition for each of the following: Internal target volume (ITV) 4D and ITVslow in relation with the volume defined by the encompassing volume of 4D PET/CT and CTs (ITVtotal). The maximum distance between the edges of the volume defined by each technique to that of the total volume was measured in orthogonal beam's eye view. The ITV4D showed less differences in relation with the ITVtotal in both the cranio-caudal and the antero-posterior axis compared to the ITVslow. The maximum differences were 0.36mm in 4D PET/CTand 0.57mm in CTs in the antero-posterior axis. 4D PET/CT resulted in the definition of more accurate (ITV4D/ITVtotal 0.78 vs. ITVs/ITVtotal 0.63), and larger ITVs (19.9 cc vs. 16.3 cc) than those obtained with CTs. Planning with 4D PET/CT in comparison with CTs, allows incorporating tumor respiratory motion and improving planning radiotherapy of patients in early stages of lung cancer. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  15. Disease quantification on PET/CT images without object delineation

    NASA Astrophysics Data System (ADS)

    Tong, Yubing; Udupa, Jayaram K.; Odhner, Dewey; Wu, Caiyun; Fitzpatrick, Danielle; Winchell, Nicole; Schuster, Stephen J.; Torigian, Drew A.

    2017-03-01

    The derivation of quantitative information from images to make quantitative radiology (QR) clinically practical continues to face a major image analysis hurdle because of image segmentation challenges. This paper presents a novel approach to disease quantification (DQ) via positron emission tomography/computed tomography (PET/CT) images that explores how to decouple DQ methods from explicit dependence on object segmentation through the use of only object recognition results to quantify disease burden. The concept of an object-dependent disease map is introduced to express disease severity without performing explicit delineation and partial volume correction of either objects or lesions. The parameters of the disease map are estimated from a set of training image data sets. The idea is illustrated on 20 lung lesions and 20 liver lesions derived from 18F-2-fluoro-2-deoxy-D-glucose (FDG)-PET/CT scans of patients with various types of cancers and also on 20 NEMA PET/CT phantom data sets. Our preliminary results show that, on phantom data sets, "disease burden" can be estimated to within 2% of known absolute true activity. Notwithstanding the difficulty in establishing true quantification on patient PET images, our results achieve 8% deviation from "true" estimates, with slightly larger deviations for small and diffuse lesions where establishing ground truth becomes really questionable, and smaller deviations for larger lesions where ground truth set up becomes more reliable. We are currently exploring extensions of the approach to include fully automated body-wide DQ, extensions to just CT or magnetic resonance imaging (MRI) alone, to PET/CT performed with radiotracers other than FDG, and other functional forms of disease maps.

  16. Interactive dual-volume rendering visualization with real-time fusion and transfer function enhancement

    NASA Astrophysics Data System (ADS)

    Macready, Hugh; Kim, Jinman; Feng, David; Cai, Weidong

    2006-03-01

    Dual-modality imaging scanners combining functional PET and anatomical CT constitute a challenge in volumetric visualization that can be limited by the high computational demand and expense. This study aims at providing physicians with multi-dimensional visualization tools, in order to navigate and manipulate the data running on a consumer PC. We have maximized the utilization of pixel-shader architecture of the low-cost graphic hardware and the texture-based volume rendering to provide visualization tools with high degree of interactivity. All the software was developed using OpenGL and Silicon Graphics Inc. Volumizer, tested on a Pentium mobile CPU on a PC notebook with 64M graphic memory. We render the individual modalities separately, and performing real-time per-voxel fusion. We designed a novel "alpha-spike" transfer function to interactively identify structure of interest from volume rendering of PET/CT. This works by assigning a non-linear opacity to the voxels, thus, allowing the physician to selectively eliminate or reveal information from the PET/CT volumes. As the PET and CT are rendered independently, manipulations can be applied to individual volumes, for instance, the application of transfer function to CT to reveal the lung boundary while adjusting the fusion ration between the CT and PET to enhance the contrast of a tumour region, with the resultant manipulated data sets fused together in real-time as the adjustments are made. In addition to conventional navigation and manipulation tools, such as scaling, LUT, volume slicing, and others, our strategy permits efficient visualization of PET/CT volume rendering which can potentially aid in interpretation and diagnosis.

  17. Simultaneous PET/MRI in assessing the response to chemo/radiotherapy in head and neck carcinoma: initial experience.

    PubMed

    Romeo, Valeria; Iorio, Brigida; Mesolella, Massimo; Ugga, Lorenzo; Verde, Francesco; Nicolai, Emanuele; Covello, Mario

    2018-06-19

    The purpose of the study was to assess by simultaneous positron emission tomography/magnetic resonance imaging (PET/MRI) the response to chemotherapy (CHT) and/or radiotherapy (RT) in patients with head and neck squamous cell carcinoma (HNSCC). Five patients with HNSCC underwent simultaneous PET/MRI examination before and after CHT and/or RT. Standard uptake volume (SUV), apparent diffusion coefficient (ADC), Ktrans, Kep, Ve, and iAUC pre- and post-treatment values were extracted and compared. The response to treatment was assessed according to RECIST criteria and classified as complete response (CR), partial response (PR), stable disease (SD), and progression disease (PD). In patient 1, PR was observed with increased ADC, Ktrans, and Ve values and reduction of SUV, iAUC, and Kep values; during clinical and instrumental follow-up, the patient experienced disease progression. Patient 2, classified as PR, showed increased ADC values and reduction of SUV and all perfusion parameters; follow-up demonstrated disease stability. Patient 3, considered as SD, showed increase of ADC and all perfusion values with a mild decrease of SUV; PD was observed during clinical and instrumental follow-up. Patients 4 and 5 showed a CR with no detectable tumor lesions at post-treatment PET/MRI examination, confirmed by 1-year follow-up. Multiparametric evaluation with simultaneous PET/MRI could be a useful tool to assess and predict the response to CHT and/or RT in patients with HNSCC.

  18. Dictionary Learning for Data Recovery in Positron Emission Tomography

    PubMed Central

    Valiollahzadeh, SeyyedMajid; Clark, John W.; Mawlawi, Osama

    2015-01-01

    Compressed sensing (CS) aims to recover images from fewer measurements than that governed by the Nyquist sampling theorem. Most CS methods use analytical predefined sparsifying domains such as Total variation (TV), wavelets, curvelets, and finite transforms to perform this task. In this study, we evaluated the use of dictionary learning (DL) as a sparsifying domain to reconstruct PET images from partially sampled data, and compared the results to the partially and fully sampled image (baseline). A CS model based on learning an adaptive dictionary over image patches was developed to recover missing observations in PET data acquisition. The recovery was done iteratively in two steps: a dictionary learning step and an image reconstruction step. Two experiments were performed to evaluate the proposed CS recovery algorithm: an IEC phantom study and five patient studies. In each case, 11% of the detectors of a GE PET/CT system were removed and the acquired sinogram data were recovered using the proposed DL algorithm. The recovered images (DL) as well as the partially sampled images (with detector gaps) for both experiments were then compared to the baseline. Comparisons were done by calculating RMSE, contrast recovery and SNR in ROIs drawn in the background, and spheres of the phantom as well as patient lesions. For the phantom experiment, the RMSE for the DL recovered images were 5.8% when compared with the baseline images while it was 17.5% for the partially sampled images. In the patients’ studies, RMSE for the DL recovered images were 3.8%, while it was 11.3% for the partially sampled images. Our proposed CS with DL is a good approach to recover partially sampled PET data. This approach has implications towards reducing scanner cost while maintaining accurate PET image quantification. PMID:26161630

  19. Dictionary learning for data recovery in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Valiollahzadeh, SeyyedMajid; Clark, John W., Jr.; Mawlawi, Osama

    2015-08-01

    Compressed sensing (CS) aims to recover images from fewer measurements than that governed by the Nyquist sampling theorem. Most CS methods use analytical predefined sparsifying domains such as total variation, wavelets, curvelets, and finite transforms to perform this task. In this study, we evaluated the use of dictionary learning (DL) as a sparsifying domain to reconstruct PET images from partially sampled data, and compared the results to the partially and fully sampled image (baseline). A CS model based on learning an adaptive dictionary over image patches was developed to recover missing observations in PET data acquisition. The recovery was done iteratively in two steps: a dictionary learning step and an image reconstruction step. Two experiments were performed to evaluate the proposed CS recovery algorithm: an IEC phantom study and five patient studies. In each case, 11% of the detectors of a GE PET/CT system were removed and the acquired sinogram data were recovered using the proposed DL algorithm. The recovered images (DL) as well as the partially sampled images (with detector gaps) for both experiments were then compared to the baseline. Comparisons were done by calculating RMSE, contrast recovery and SNR in ROIs drawn in the background, and spheres of the phantom as well as patient lesions. For the phantom experiment, the RMSE for the DL recovered images were 5.8% when compared with the baseline images while it was 17.5% for the partially sampled images. In the patients’ studies, RMSE for the DL recovered images were 3.8%, while it was 11.3% for the partially sampled images. Our proposed CS with DL is a good approach to recover partially sampled PET data. This approach has implications toward reducing scanner cost while maintaining accurate PET image quantification.

  20. Prognostic value of metabolic metrics extracted from baseline PET images in NSCLC

    PubMed Central

    Carvalho, Sara; Leijenaar, Ralph T.H.; Velazquez, Emmanuel Rios; Oberije, Cary; Parmar, Chintan; van Elmpt, Wouter; Reymen, Bart; Troost, Esther G.C.; Oellers, Michel; Dekker, Andre; Gillies, Robert; Aerts, Hugo J.W.L.; Lambin, Philippe

    2015-01-01

    Background Maximum, mean and peak SUV of primary tumor at baseline FDG-PET scans, have often been found predictive for overall survival in non-small cell lung cancer (NSCLC) patients. In this study we further investigated the prognostic power of advanced metabolic metrics derived from Intensity-Volume Histograms (IVH) extracted from PET imaging. Methods A cohort of 220 NSCLC patients (mean age, 66.6 years; 149 men, 71 women), stages I-IIIB, treated with radiotherapy with curative intent were included (NCT00522639). Each patient underwent standardized pre-treatment CT-PET imaging. Primary GTV was delineated by an experienced radiation oncologist on CT-PET images. Common PET descriptors such as maximum, mean and peak SUV, and metabolic tumor volume (MTV) were quantified. Advanced descriptors of metabolic activity were quantified by IVH. These comprised 5 groups of features: Absolute and Relative Volume above Relative Intensity threshold (AVRI and RVRI), Absolute and Relative Volume above Absolute Intensity threshold (AVAI and RVAI), and Absolute Intensity above Relative Volume threshold (AIRV). MTV was derived from the IVH curves for volumes with SUV above 2.5, 3 and 4, and of 40% and 50% maximum SUV. Univariable analysis using Cox Proportional Hazard Regression was performed for overall survival assessment. Results Relative volume above higher SUV (80 %) was an independent predictor of OS (p = 0.05). None of the possible surrogates for MTV based on volumes above SUV of 3, 40% and 50% of maximum SUV showed significant associations with OS (p (AVAI3) = 0.10, p (AVAI4) = 0.22, p (AVRI40%) = 0.15, p (AVRI50%) = 0.17). Maximum and peak SUV (r = 0.99) revealed no prognostic value for OS (p (maximum SUV) = 0.20, p (peak SUV) = 0.22). Conclusions New methods using more advanced imaging features extracted from PET were analyzed. Best prognostic value for OS of NSCLC patients was found for relative portions of the tumor above higher uptakes (80% SUV). PMID:24047338

  1. Target volume definition for 18F-FDG PET-positive lymph nodes in radiotherapy of patients with non-small cell lung cancer.

    PubMed

    Nestle, Ursula; Schaefer-Schuler, Andrea; Kremp, Stephanie; Groeschel, Andreas; Hellwig, Dirk; Rübe, Christian; Kirsch, Carl-Martin

    2007-04-01

    FDG PET is increasingly used in radiotherapy planning. Recently, we demonstrated substantial differences in target volumes when applying different methods of FDG-based contouring in primary lung tumours (Nestle et al., J Nucl Med 2005;46:1342-8). This paper focusses on FDG-positive mediastinal lymph nodes (LN(PET)). In our institution, 51 NSCLC patients who were candidates for radiotherapy prospectively underwent staging FDG PET followed by a thoracic PET scan in the treatment position and a planning CT. Eleven of them had 32 distinguishable non-confluent mediastinal or hilar nodal FDG accumulations (LN(PET)). For these, sets of gross tumour volumes (GTVs) were generated at both acquisition times by four different PET-based contouring methods (visual: GTV(vis); 40% SUVmax: GTV40; SUV=2.5: GTV2.5; target/background (T/B) algorithm: GTV(bg)). All differences concerning GTV sizes were within the range of the resolution of the PET system. The detectability and technical delineability of the GTVs were significantly better in the late scans (e.g. p = 0.02 for diagnostic application of SUVmax = 2.5; p = 0.0001 for technical delineability by GTV2.5; p = 0.003 by GTV40), favouring the GTV(bg) method owing to satisfactory overall applicability and independence of GTVs from acquisition time. Compared with CT, the majority of PET-based GTVs were larger, probably owing to resolution effects, with a possible influence of lesion movements. For nodal GTVs, different methods of contouring did not lead to clinically relevant differences in volumes. However, there were significant differences in technical delineability, especially after early acquisition. Overall, our data favour a late acquisition of FDG PET scans for radiotherapy planning, and the use of a T/B algorithm for GTV contouring.

  2. Contribution of FDOPA PET to radiotherapy planning for advanced glioma

    NASA Astrophysics Data System (ADS)

    Dowson, Nicholas; Fay, Michael; Thomas, Paul; Jeffree, Rosalind; McDowall, Robert; Winter, Craig; Coulthard, Alan; Smith, Jye; Gal, Yaniv; Bourgeat, Pierrick; Salvado, Olivier; Crozier, Stuart; Rose, Stephen

    2014-03-01

    Despite radical treatment with surgery, radiotherapy and chemotherapy, advanced gliomas recur within months. Geographic misses in radiotherapy planning may play a role in this seemingly ineluctable recurrence. Planning is typically performed on post-contrast MRIs, which are known to underreport tumour volume relative to FDOPA PET scans. FDOPA PET fused with contrast enhanced MRI has demonstrated greater sensitivity and specificity than MRI alone. One sign of potential misses would be differences between gross target volumes (GTVs) defined using MRI alone and when fused with PET. This work examined whether such a discrepancy may occur. Materials and Methods: For six patients, a 75 minute PET scan using 3,4-dihydroxy-6-18F-fluoro-L-phynel-alanine (18F-FDOPA) was taken within 2 days of gadolinium enhanced MRI scans. In addition to standard radiotherapy planning by an experienced radiotherapy oncologist, a second gross target volume (GTV) was defined by an experienced nuclear medicine specialist for fused PET and MRI, while blinded to the radiotherapy plans. The volumes from standard radiotherapy planning were compared to the PET defined GTV. Results: The comparison indicated radiotherapy planning would change in several cases if FDOPA PET data was available. PET-defined contours were external to 95% prescribed dose for several patients. However, due to the radiotherapy margins, the discrepancies were relatively small in size and all received a dose of 50 Gray or more. Conclusions: Given the limited size of the discrepancies it is uncertain that geographic misses played a major role in patient outcome. Even so, the existence of discrepancies indicates that FDOPA PET could assist in better defining margins when planning radiotherapy for advanced glioma, which could be important for highly conformal radiotherapy plans.

  3. Tumor Response and Survival Predicted by Post-Therapy FDG-PET/CT in Anal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarz, Julie K.; Siegel, Barry A.; Dehdashti, Farrokh

    2008-05-01

    Purpose: To evaluate the response to therapy for anal carcinoma using post-therapy imaging with positron emission tomography (PET)/computed tomography and F-18 fluorodeoxyglucose (FDG) and to compare the metabolic response with patient outcome. Patients and Methods: This was a prospective cohort study of 53 consecutive patients with anal cancer. All patients underwent pre- and post-treatment whole-body FDG-PET/computed tomography. Patients had been treated with external beam radiotherapy and concurrent chemotherapy. Whole-body FDG-PET was performed 0.9-5.4 months (mean, 2.1) after therapy completion. Results: The post-therapy PET scan did not show any abnormal FDG uptake (complete metabolic response) in 44 patients. Persistent abnormal FDGmore » uptake (partial metabolic response) was found in the anal tumor in 9 patients. The 2-year cause-specific survival rate was 94% for patients with a complete vs. 39% for patients with a partial metabolic response in the anal tumor (p = 0.0008). The 2-year progression-free survival rate was 95% for patients with a complete vs. 22% for patients with a partial metabolic response in the anal tumor (p < 0.0001). A Cox proportional hazards model of survival outcome indicated that a complete metabolic response was the most significant predictor of progression-free survival in our patient population (p = 0.0003). Conclusions: A partial metabolic response in the anal tumor as determined by post-therapy FDG-PET is predictive of significantly decreased progression-free and cause-specific survival after chemoradiotherapy for anal cancer.« less

  4. Correlation between standardized uptake value and apparent diffusion coefficient of neoplastic lesions evaluated with whole-body simultaneous hybrid PET/MRI.

    PubMed

    Rakheja, Rajan; Chandarana, Hersh; DeMello, Linda; Jackson, Kimberly; Geppert, Christian; Faul, David; Glielmi, Christopher; Friedman, Kent P

    2013-11-01

    The purpose of this study was to assess the correlation between standardized uptake value (SUV) and apparent diffusion coefficient (ADC) of neoplastic lesions in the use of a simultaneous PET/MRI hybrid system. Twenty-four patients with known primary malignancies underwent FDG PET/CT. They then underwent whole-body PET/MRI. Diffusion-weighted imaging was performed with free breathing and a single-shot spin-echo echo-planar imaging sequence with b values of 0, 350, and 750 s/mm(2). Regions of interest were manually drawn along the contours of neoplastic lesions larger than 1 cm, which were clearly identified on PET and diffusion-weighted images. Maximum SUV (SUVmax) on PET/MRI and PET/CT images, mean SUV (SUVmean), minimum ADC (ADCmin), and mean ADC (ADCmean) were recorded on PET/MR images for each FDG-avid neoplastic soft-tissue lesion with a maximum of three lesions per patient. Pearson correlation coefficient was used to asses the following relations: SUVmax versus ADCmin on PET/MR and PET/CT images, SUVmean versus ADCmean, and ratio of SUVmax to mean liver SUV (SUV ratio) versus ADCmin. A subanalysis of patients with progressive disease versus partial treatment response was performed with the ratio of SUVmax to ADCmin for the most metabolically active lesion. Sixty-nine neoplastic lesions (52 nonosseous lesions, 17 bone metastatic lesions) were evaluated. The mean SUVmax from PET/MRI was 7.0 ± 6.0; SUVmean, 5.6 ± 4.6; mean ADCmin, 1.10 ± 0.58; and mean ADCmean, 1.48 ± 0.72. A significant inverse Pearson correlation coefficient was found between PET/MRI SUVmax and ADCmin (r = -0.21, p = 0.04), between SUVmean and ADCmean (r = -0.18, p = 0.07), and between SUV ratio and ADCmin (r = -0.27, p = 0.01). A similar inverse Pearson correlation coefficient was found between the PET/CT SUVmax and ADCmin. Twenty of 24 patients had previously undergone PET/CT; five patients had a partial treatment response, and six had progressive disease according to Response Evaluation Criteria in Solid Tumors 1.1. The ratio between SUVmax and ADCmin was higher among patients with progressive disease than those with a partial treatment response. Simultaneous PET/MRI is a promising technology for the detection of neoplastic disease. There are inverse correlations between SUVmax and ADCmin and between SUV ratio and ADCmin. Correlation coefficients between SUVmax and ADCmin from PET/MRI were similar to values obtained with SUVmax from the same-day PET/CT. Given that both SUV and ADC are related to malignancy and that the correlation between the two biomarkers is relatively weak, SUV and ADC values may offer complementary information to aid in determination of prognosis and treatment response. The combined tumoral biomarker, ratio between SUVmax and ADCmin, may be useful for assessing progressive disease versus partial treatment response.

  5. Comparative Study With New Accuracy Metrics for Target Volume Contouring in PET Image Guided Radiation Therapy

    PubMed Central

    Shepherd, T; Teras, M; Beichel, RR; Boellaard, R; Bruynooghe, M; Dicken, V; Gooding, MJ; Julyan, PJ; Lee, JA; Lefèvre, S; Mix, M; Naranjo, V; Wu, X; Zaidi, H; Zeng, Z; Minn, H

    2017-01-01

    The impact of positron emission tomography (PET) on radiation therapy is held back by poor methods of defining functional volumes of interest. Many new software tools are being proposed for contouring target volumes but the different approaches are not adequately compared and their accuracy is poorly evaluated due to the ill-definition of ground truth. This paper compares the largest cohort to date of established, emerging and proposed PET contouring methods, in terms of accuracy and variability. We emphasize spatial accuracy and present a new metric that addresses the lack of unique ground truth. Thirty methods are used at 13 different institutions to contour functional volumes of interest in clinical PET/CT and a custom-built PET phantom representing typical problems in image guided radiotherapy. Contouring methods are grouped according to algorithmic type, level of interactivity and how they exploit structural information in hybrid images. Experiments reveal benefits of high levels of user interaction, as well as simultaneous visualization of CT images and PET gradients to guide interactive procedures. Method-wise evaluation identifies the danger of over-automation and the value of prior knowledge built into an algorithm. PMID:22692898

  6. A comparative study of quantitative assessment with fluorine-18-fluorodeoxyglucose positron-emission tomography and endoscopic ultrasound in oesophageal cancer.

    PubMed

    Borakati, Aditya; Razack, Abdul; Cawthorne, Chris; Roy, Rajarshi; Usmani, Sharjeel; Ahmed, Najeeb

    2018-07-01

    This study aims to assess the correlation between PET/CT and endoscopic ultrasound (EUS) parameters in patients with oesophageal cancer. All patients who had complete PET/CT and EUS staging performed for oesophageal cancer at our centre between 2010 and 2016 were included. Images were retrieved and analysed for a range of parameters including tumour length, volume and position relative to the aortic arch. Seventy patients were included in the main analysis. A strong correlation was found between EUS and PET/CT in the tumour length, the volume and the position of the tumour relative to the aortic arch. Regression modelling showed a reasonable predictive value for PET/CT in calculating EUS parameters, with r higher than 0.585 in some cases. Given the strong correlation between EUS and PET parameters, fluorine-18 fluorodeoxyglucose (F-FDG) PET can provide accurate information on the length and the volume of tumour in patients who either cannot tolerate EUS or have impassable strictures.

  7. Issues in quantification of registered respiratory gated PET/CT in the lung.

    PubMed

    Cuplov, Vesna; Holman, Beverley F; McClelland, Jamie; Modat, Marc; Hutton, Brian F; Thielemans, Kris

    2017-12-14

    PET/CT quantification of lung tissue is limited by several difficulties: the lung density and local volume changes during respiration, the anatomical mismatch between PET and CT and the relative contributions of tissue, air and blood to the PET signal (the tissue fraction effect). Air fraction correction (AFC) has been shown to improve PET image quantification in the lungs. Methods to correct for the movement and anatomical mismatch involve respiratory gating and image registration techniques. While conventional registration methods only account for spatial mismatch, the Jacobian determinant of the deformable registration transformation field can be used to estimate local volume changes and could therefore potentially be used to correct (i.e. Jacobian Correction, JC) the PET signal for changes in concentration due to local volume changes. This work aims to investigate the relationship between variations in the lung due to respiration, specifically density, tracer concentration and local volume changes. In particular, we study the effect of AFC and JC on PET quantitation after registration of respiratory gated PET/CT patient data. Six patients suffering from lung cancer with solitary pulmonary nodules underwent [Formula: see text]F-FDG PET/cine-CT. The PET data were gated into six respiratory gates using displacement gating based on a real-time position management (RPM) signal and reconstructed with matched gated CT. The PET tracer concentration and tissue density were extracted from registered gated PET and CT images before and after corrections (AFC or JC) and compared to the values from the reference images. Before correction, we observed a linear correlation between the PET tracer concentration values and density. Across all gates and patients, the maximum relative change in PET tracer concentration before (after) AFC was found to be 16.2% (4.1%) and the maximum relative change in tissue density and PET tracer concentration before (after) JC was found to be 17.1% (5.5%) and 16.2% (6.8%) respectively. Overall our results show that both AFC or JC largely explain the observed changes in PET tracer activity over the respiratory cycle. We also speculate that a second order effect is related to change in fluid content but this needs further investigation. Consequently, either AFC or JC is recommended when combining lung PET images from different gates to reduce noise.

  8. Issues in quantification of registered respiratory gated PET/CT in the lung

    NASA Astrophysics Data System (ADS)

    Cuplov, Vesna; Holman, Beverley F.; McClelland, Jamie; Modat, Marc; Hutton, Brian F.; Thielemans, Kris

    2018-01-01

    PET/CT quantification of lung tissue is limited by several difficulties: the lung density and local volume changes during respiration, the anatomical mismatch between PET and CT and the relative contributions of tissue, air and blood to the PET signal (the tissue fraction effect). Air fraction correction (AFC) has been shown to improve PET image quantification in the lungs. Methods to correct for the movement and anatomical mismatch involve respiratory gating and image registration techniques. While conventional registration methods only account for spatial mismatch, the Jacobian determinant of the deformable registration transformation field can be used to estimate local volume changes and could therefore potentially be used to correct (i.e. Jacobian Correction, JC) the PET signal for changes in concentration due to local volume changes. This work aims to investigate the relationship between variations in the lung due to respiration, specifically density, tracer concentration and local volume changes. In particular, we study the effect of AFC and JC on PET quantitation after registration of respiratory gated PET/CT patient data. Six patients suffering from lung cancer with solitary pulmonary nodules underwent 18 F-FDG PET/cine-CT. The PET data were gated into six respiratory gates using displacement gating based on a real-time position management (RPM) signal and reconstructed with matched gated CT. The PET tracer concentration and tissue density were extracted from registered gated PET and CT images before and after corrections (AFC or JC) and compared to the values from the reference images. Before correction, we observed a linear correlation between the PET tracer concentration values and density. Across all gates and patients, the maximum relative change in PET tracer concentration before (after) AFC was found to be 16.2% (4.1%) and the maximum relative change in tissue density and PET tracer concentration before (after) JC was found to be 17.1% (5.5%) and 16.2% (6.8%) respectively. Overall our results show that both AFC or JC largely explain the observed changes in PET tracer activity over the respiratory cycle. We also speculate that a second order effect is related to change in fluid content but this needs further investigation. Consequently, either AFC or JC is recommended when combining lung PET images from different gates to reduce noise.

  9. Impact of 4D-(18)FDG-PET/CT imaging on target volume delineation in SBRT patients with central versus peripheral lung tumors. Multi-reader comparative study.

    PubMed

    Chirindel, Alin; Adebahr, Sonja; Schuster, Daniel; Schimek-Jasch, Tanja; Schanne, Daniel H; Nemer, Ursula; Mix, Michael; Meyer, Philipp; Grosu, Anca-Ligia; Brunner, Thomas; Nestle, Ursula

    2015-06-01

    Evaluation of the effect of co-registered 4D-(18)FDG-PET/CT for SBRT target delineation in patients with central versus peripheral lung tumors. Analysis of internal target volume (ITV) delineation of central and peripheral lung lesions in 21 SBRT-patients. Manual delineation was performed by 4 observers in 2 contouring phases: on respiratory gated 4DCT with diagnostic 3DPET available aside (CT-ITV) and on co-registered 4DPET/CT (PET/CT-ITV). Comparative analysis of volumes and inter-reader agreement. 11 cases of peripheral and 10 central lesions were evaluated. In peripheral lesions, average CT-ITV was 6.2 cm(3) and PET/CT-ITV 8.6 cm(3), resembling a mean change in hypothetical radius of 2 mm. For both CT-ITVs and PET/CT-ITVs inter reader agreement was good and unchanged (0.733 and 0.716; p=0.58). All PET/CT-ITVs stayed within the PTVs derived from CT-ITVs. In central lesions, average CT-ITVs were 42.1 cm(3), PET/CT-ITVs 44.2 cm(3), without significant overall volume changes. Inter-reader agreement improved significantly (0.665 and 0.750; p<0.05). 2/10 PET/CT-ITVs exceeded the PTVs derived from CT-ITVs by >1 ml in average for all observers. The addition of co-registered 4DPET data to 4DCT based target volume delineation for SBRT of centrally located lung tumors increases the inter-observer agreement and may help to avoid geographic misses. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Streamflow Impacts of Biofuel Policy-Driven Landscape Change

    PubMed Central

    Khanal, Sami; Anex, Robert P.; Anderson, Christopher J.; Herzmann, Daryl E.

    2014-01-01

    Likely changes in precipitation (P) and potential evapotranspiration (PET) resulting from policy-driven expansion of bioenergy crops in the United States are shown to create significant changes in streamflow volumes and increase water stress in the High Plains. Regional climate simulations for current and biofuel cropping system scenarios are evaluated using the same atmospheric forcing data over the period 1979–2004 using the Weather Research Forecast (WRF) model coupled to the NOAH land surface model. PET is projected to increase under the biofuel crop production scenario. The magnitude of the mean annual increase in PET is larger than the inter-annual variability of change in PET, indicating that PET increase is a forced response to the biofuel cropping system land use. Across the conterminous U.S., the change in mean streamflow volume under the biofuel scenario is estimated to range from negative 56% to positive 20% relative to a business-as-usual baseline scenario. In Kansas and Oklahoma, annual streamflow volume is reduced by an average of 20%, and this reduction in streamflow volume is due primarily to increased PET. Predicted increase in mean annual P under the biofuel crop production scenario is lower than its inter-annual variability, indicating that additional simulations would be necessary to determine conclusively whether predicted change in P is a response to biofuel crop production. Although estimated changes in streamflow volume include the influence of P change, sensitivity results show that PET change is the significantly dominant factor causing streamflow change. Higher PET and lower streamflow due to biofuel feedstock production are likely to increase water stress in the High Plains. When pursuing sustainable biofuels policy, decision-makers should consider the impacts of feedstock production on water scarcity. PMID:25289698

  11. (18)F-FDG PET-CT simulation for non-small-cell lung cancer: effect in patients already staged by PET-CT.

    PubMed

    Hanna, Gerard G; McAleese, Jonathan; Carson, Kathryn J; Stewart, David P; Cosgrove, Vivian P; Eakin, Ruth L; Zatari, Ashraf; Lynch, Tom; Jarritt, Peter H; Young, V A Linda; O'Sullivan, Joe M; Hounsell, Alan R

    2010-05-01

    Positron emission tomography (PET), in addition to computed tomography (CT), has an effect in target volume definition for radical radiotherapy (RT) for non-small-cell lung cancer (NSCLC). In previously PET-CT staged patients with NSCLC, we assessed the effect of using an additional planning PET-CT scan for gross tumor volume (GTV) definition. A total of 28 patients with Stage IA-IIIB NSCLC were enrolled. All patients had undergone staging PET-CT to ensure suitability for radical RT. Of the 28 patients, 14 received induction chemotherapy. In place of a RT planning CT scan, patients underwent scanning on a PET-CT scanner. In a virtual planning study, four oncologists independently delineated the GTV on the CT scan alone and then on the PET-CT scan. Intraobserver and interobserver variability were assessed using the concordance index (CI), and the results were compared using the Wilcoxon signed ranks test. PET-CT improved the CI between observers when defining the GTV using the PET-CT images compared with using CT alone for matched cases (median CI, 0.57 for CT and 0.64 for PET-CT, p = .032). The median of the mean percentage of volume change from GTV(CT) to GTV(FUSED) was -5.21% for the induction chemotherapy group and 18.88% for the RT-alone group. Using the Mann-Whitney U test, this was significantly different (p = .001). PET-CT RT planning scan, in addition to a staging PET-CT scan, reduces interobserver variability in GTV definition for NSCLC. The GTV size with PET-CT compared with CT in the RT-alone group increased and was reduced in the induction chemotherapy group.

  12. PET of serotonin 1A receptors and cerebral glucose metabolism for temporal lobectomy.

    PubMed

    Theodore, William H; Martinez, Ashley R; Khan, Omar I; Liew, Clarissa J; Auh, Sungyoung; Dustin, Irene M; Heiss, John; Sato, Susumu

    2012-09-01

    The objective of this study was to compare 5-hydroxytryptamine receptor 1A (5-HT(1A)) PET with cerebral metabolic rate of glucose (CMRglc) PET for temporal lobectomy planning. We estimated 5-HT(1A) receptor binding preoperatively with (18)F-trans-4-fluoro-N-2-[4-(2-methoxyphenyl) piperazin-1-yl]ethyl-N-(2-pyridyl) cyclohexane carboxamide ((18)F-FCWAY) PET and CMRglc measurement with (18)F-FDG in regions drawn on coregistered MRI after partial-volume correction in 41 patients who had anterior temporal lobectomy with at least a 1-y follow-up. Surgery was tailored to individual preresection evaluations and intraoperative electrocorticography. Mean regional asymmetry values and the number of regions with asymmetry exceeding 2 SDs in 16 healthy volunteers were compared between seizure-free and non-seizure-free patients. (18)F-FCWAY but not (18)F-FDG and MRI data were masked for surgical decisions and outcome assessment. Twenty-six of 41 (63%) patients seizure-free since surgery had significantly different mesial temporal asymmetries, compared with 15 non-seizure-free patients for both (18)F-FCWAY (F(1,39) = 5.87; P = 0.02) and (18)F-FDG PET (F(1,38) = 5.79; P = 0.021). The probability of being seizure-free was explained by both (18)F-FDG and (18)F-FCWAY PET, but not MRI, with a significant additional (18)F-FCWAY effect (chi(2)(2) = 9.8796; P = 0.0072) after the probability of being seizure-free was explained by (18)F-FDG. Although MRI alone was not predictive, any combination of 2 lateralizing imaging studies was highly predictive of seizure freedom. Our study provides class III evidence that both 5-HT(1A) receptor PET and CMRglc PET can contribute to temporal lobectomy planning. Additional studies should explore the potential for temporal lobectomy based on interictal electroencephalography and minimally invasive imaging studies.

  13. Respiratory gating enhances imaging of pulmonary nodules and measurement of tracer uptake in FDG PET/CT.

    PubMed

    Werner, Matthias K; Parker, J Anthony; Kolodny, Gerald M; English, Jeffrey R; Palmer, Matthew R

    2009-12-01

    The aim of this study was to evaluate prospectively the effects of respiratory gating during FDG PET/CT on the determination of lesion size and the measurement of tracer uptake in patients with pulmonary nodules in a clinical setting. Eighteen patients with known pulmonary nodules (nine women, nine men; mean age, 61.4 years) underwent conventional FDG PET/CT and respiratory-gated PET acquisitions during their scheduled staging examinations. Maximum, minimum, and average standardized uptake values (SUVs) and lesion size and volume were determined with and without respiratory gating. The results were then compared using the two-tailed Student's t test and the nonparametric Wilcoxon's test to assess the effects of respiratory gating on PET acquisitions. Respiratory gating reduced the measured area of lung lesions by 15.5%, the axial dimension by 10.3%, and the volume by 44.5% (p = 0.014, p = 0.007, and p = 0.025, respectively). The lesion volumes in gated studies were closer to those assessed by standard CT (difference decreased by 126.6%, p = 0.025). Respiratory gating increased the measured maximum SUV by 22.4% and average SUV by 13.3% (p < 0.001 and p = 0.002). Our findings suggest that the use of PET respiratory gating in PET/CT results in lesion volumes closer to those assessed by CT and improved measurements of tracer uptake for lesions in the lungs.

  14. Analysis of FET-PET imaging for target volume definition in patients with gliomas treated with conformal radiotherapy.

    PubMed

    Rieken, Stefan; Habermehl, Daniel; Giesel, Frederik L; Hoffmann, Christoph; Burger, Ute; Rief, Harald; Welzel, Thomas; Haberkorn, Uwe; Debus, Jürgen; Combs, Stephanie E

    2013-12-01

    Modern radiotherapy (RT) techniques such as stereotactic RT, intensity-modulated RT, or particle irradiation allow local dose escalation with simultaneous sparing of critical organs. Several trials are currently investigating their benefit in glioma reirradiation and boost irradiation. Target volume definition is of critical importance especially when steep dose gradient techniques are employed. In this manuscript we investigate the impact of O-(2-(F-18)fluoroethyl)-l-tyrosine-positron emission tomography/computer tomography (FET-PET/CT) on target volume definition in low and high grade glioma patients undergoing either first or re-irradiation with particles. We investigated volumetric size and uniformity of magnetic resonance imaging (MRI)- vs. FET-PET/CT-derived gross tumor volumes (GTVs) and planning target volumes (PTVs) of 41 glioma patients. Clinical cases are presented to demonstrate potential benefits of integrating FET-PET/CT-planning into daily routine. Integrating FET-uptake into the delineation of GTVs yields larger volumes. Combined modality-derived PTVs are significantly enlarged in high grade glioma patients and in case of primary RT. The congruence of MRI and FET signals for the identification of glioma GTVs is poor with mean uniformity indices of 0.39. MRI-based PTVs miss 17% of FET-PET/CT-based GTVs. Non significant alterations were detected in low grade glioma patients and in those undergoing reirradiation. Target volume definition for malignant gliomas during initial RT may yield significantly differing results depending upon the imaging modality, which the contouring process is based upon. The integration of both MRI and FET-PET/CT may help to improve GTV coverage by avoiding larger incongruences between physical and biological imaging techniques. In low grade gliomas and in cases of reirradiation, more studies are needed in order to investigate a potential benefit of FET-PET/CT for planning of RT. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Performance comparison of two resolution modeling PET reconstruction algorithms in terms of physical figures of merit used in quantitative imaging.

    PubMed

    Matheoud, R; Ferrando, O; Valzano, S; Lizio, D; Sacchetti, G; Ciarmiello, A; Foppiano, F; Brambilla, M

    2015-07-01

    Resolution modeling (RM) of PET systems has been introduced in iterative reconstruction algorithms for oncologic PET. The RM recovers the loss of resolution and reduces the associated partial volume effect. While these methods improved the observer performance, particularly in the detection of small and faint lesions, their impact on quantification accuracy still requires thorough investigation. The aim of this study was to characterize the performances of the RM algorithms under controlled conditions simulating a typical (18)F-FDG oncologic study, using an anthropomorphic phantom and selected physical figures of merit, used for image quantification. Measurements were performed on Biograph HiREZ (B_HiREZ) and Discovery 710 (D_710) PET/CT scanners and reconstructions were performed using the standard iterative reconstructions and the RM algorithms associated to each scanner: TrueX and SharpIR, respectively. RM determined a significant improvement in contrast recovery for small targets (≤17 mm diameter) only for the D_710 scanner. The maximum standardized uptake value (SUVmax) increased when RM was applied using both scanners. The SUVmax of small targets was on average lower with the B_HiREZ than with the D_710. Sharp IR improved the accuracy of SUVmax determination, whilst TrueX showed an overestimation of SUVmax for sphere dimensions greater than 22 mm. The goodness of fit of adaptive threshold algorithms worsened significantly when RM algorithms were employed for both scanners. Differences in general quantitative performance were observed for the PET scanners analyzed. Segmentation of PET images using adaptive threshold algorithms should not be undertaken in conjunction with RM reconstructions. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. End-of-Treatment Positron Emission Tomography After Uniform First-Line Therapy of B-Cell Posttransplant Lymphoproliferative Disorder Identifies Patients at Low Risk of Relapse in the Prospective German PTLD Registry.

    PubMed

    Zimmermann, Heiner; Denecke, Timm; Dreyling, Martin H; Franzius, Christiane; Reinke, Petra; Subklewe, Marion; Amthauer, Holger; Kneba, Michael; Riess, Hanno; Trappe, Ralf U

    2018-05-01

    Fluorine-18 fluorodeoxyglucose (18F-FDG)-positron emission tomography (PET) is a recommended standard in the staging and response assessment of 18F-FDG-avid lymphoma. Posttransplant lymphoproliferative disorder (PTLD) can be detected by 18F-FDG-PET at diagnosis with high sensitivity and specificity. However, the role of response assessment by end-of-treatment (EOT) PET has only been addressed in small case series. We performed a retrospective, multicenter study of 37 patients with CD20-positive PTLD after solid organ transplantation treated with uniform, up-to-date, first-line protocols in the prospective German PTLD registry who had received EOT 18F-FDG-PET between 2006 and 2014. Median follow-up was 5.0 years. Any nonphysiological 18F-FDG uptake (Deauville score greater 2) was interpreted as PET-positive. By computed tomography (CT) final staging, 18 of 37 patients had a complete response, 18 had a partial response and 1 patient had stable disease. EOT PET was negative in 24 of 37 patients and positive in 13 of 37 patients. The positive predictive value of EOT PET for PTLD relapse was 38%, and the negative predictive value was 92%. Time to progression (TTP) and progression-free-survival were significantly longer in the PET negative group (P = 0.019 and P = 0.013). In the 18 patients in a partial response by CT staging, we noted highly significant differences in overall survival (P = 0.001), time to progression (P = 0.007), and progression-free survival (P < 0.001) by EOT PET. Even without baseline imaging, EOT PET in PTLD identifies patients at low risk of relapse and offers clinically relevant information, particularly in patients in a partial remission by CT staging.

  17. The relationship between subcortical brain volume and striatal dopamine D2/3 receptor availability in healthy humans assessed with [11 C]-raclopride and [11 C]-(+)-PHNO PET.

    PubMed

    Caravaggio, Fernando; Ku Chung, Jun; Plitman, Eric; Boileau, Isabelle; Gerretsen, Philip; Kim, Julia; Iwata, Yusuke; Patel, Raihaan; Chakravarty, M Mallar; Remington, Gary; Graff-Guerrero, Ariel

    2017-11-01

    Abnormalities in dopamine (DA) and brain morphology are observed in several neuropsychiatric disorders. However, it is not fully understood how these abnormalities may relate to one another. For such in vivo findings to be used as biomarkers for neuropsychiatric disease, it must be understood how variability in DA relates to brain structure under healthy conditions. We explored how the availability of striatal DA D 2/3 receptors (D 2/3 R) is related to the volume of subcortical brain structures in a sample of healthy humans. Differences in D 2/3 R availability measured with an antagonist radiotracer ([ 11 C]-raclopride) versus an agonist radiotracer ([ 11 C]-(+)-PHNO) were examined. Data from 62 subjects scanned with [ 11 C]-raclopride (mean age = 38.98 ± 14.45; 23 female) and 68 subjects scanned with [ 11 C]-(+)-PHNO (mean age = 38.54 ± 14.59; 25 female) were used. Subcortical volumes were extracted from T1-weighted images using the Multiple Automatically Generated Templates (MAGeT-Brain) algorithm. Partial correlations were used controlling for age, gender, and total brain volume. For [ 11 C]-(+)-PHNO, ventral caudate volumes were positively correlated with BP ND in the dorsal caudate and globus pallidus (GP). Ventral striatum (VS) volumes were positively correlated with BP ND in the VS. With [ 11 C]-raclopride, BP ND in the VS was negatively correlated with subiculum volume of the hippocampus. Moreover, BP ND in the GP was negatively correlated with the volume of the lateral posterior nucleus of the thalamus. Findings are purely exploratory and presented corrected and uncorrected for multiple comparisons. We hope they will help inform the interpretation of future PET studies where concurrent changes in D 2/3 R and brain morphology are observed. Hum Brain Mapp 38:5519-5534, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. The role of PET in target localization for radiotherapy treatment planning.

    PubMed

    Rembielak, Agata; Price, Pat

    2008-02-01

    Positron emission tomography (PET) is currently accepted as an important tool in oncology, mostly for diagnosis, staging and restaging purposes. It provides a new type of information in radiotherapy, functional rather than anatomical. PET imaging can also be used for target volume definition in radiotherapy treatment planning. The need for very precise target volume delineation has arisen with the increasing use of sophisticated three-dimensional conformal radiotherapy techniques and intensity modulated radiation therapy. It is expected that better delineation of the target volume may lead to a significant reduction in the irradiated volume, thus lowering the risk of treatment complications (smaller safety margins). Better tumour visualisation also allows a higher dose of radiation to be applied to the tumour, which may lead to better tumour control. The aim of this article is to review the possible use of PET imaging in the radiotherapy of various cancers. We focus mainly on non-small cell lung cancer, lymphoma and oesophageal cancer, but also include current opinion on the use of PET-based planning in other tumours including brain, uterine cervix, rectum and prostate.

  19. PET/CT aids the staging of and radiotherapy planning for early-stage extranodal natural killer/T-cell lymphoma, nasal type: A case series

    PubMed Central

    2011-01-01

    Extranodal natural killer/T-cell lymphoma (ENKTL), nasal type, is a rare form of non-Hodgkin lymphoma. Treatment of ENKTL primarily relies on radiation; thus, proper delineation of target volumes is critical. Currently, the ideal modalities for delineation of gross tumor volume for ENKTL are unknown. We describe three consecutive cases of localized ENKTL that presented to the Nova Scotia Cancer Centre in Halifax, Nova Scotia. All patients had a planning CT and MRI as well as a planning FDG-PET/CT in the radiotherapy treatment position, wearing immobilization masks. All patients received radiation alone. In two patients, PET/CT changed not only the stage, but also the target volume requiring treatment. The third patient was unable to tolerate an MRI, but was able to undergo PET/CT, which improved the accuracy of the target volume. PET/CT aided the staging of and radiotherapy planning for our patients and appears to be a promising tool in the treatment of ENKTL. PMID:22208903

  20. TH-E-BRF-10: Interim Esophageal Cancer Response Assessment Via 18FDG-PET Scanning During Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, K; Wu, Q; Perez, B

    2014-06-15

    Purpose: Local failure occurs in a large proportion of esophageal cancer patients treated with chemoradiation. The treatment strategy for non-responders could potentially be modified if they are identified during therapy. This work investigates the utility of an interim 18FDG-PET scan acquired during the course of therapy as a predictor of pathological response post-therapy. Methods: Fifteen patients underwent 18FDG-PET scanning prior to radiation therapy (RT) and once during RT, after delivery of ∼32 Gy. The physician-contoured GTV on the planning CT scan was used to automatically segment a PET-based GTV on the pre-RT PET (GTV-pre-PET) as the volume with >40% ofmore » the maximum GTV PET SUV value. The pre- and intra-RT CTs were deformably registered to each other to transfer the GTV-pre-PET to the intra-RT PET (GTV-intra-PET). The fractional decrease in the maximum SUV, mean SUV and the SUV to the highest intensity 10% – 90% volumes from GTV-pre-PET to GTV-intra-PET were compared to pathological response assessed at the time of post-RT surgery. Results: Based on post-treatment pathology of 15 patients, 7 were classified as achieving favorable response (treatment effect grade ≤ 1) and 8 as unfavorable response (treatment effect grade > 1). Neither fractional decrease in maximum SUV nor mean SUV were significant between the favorable and unfavorable groups. However, the fractional decrease in SUV20% (SUV to the highest 20% volume) was significant (p = 0.02), with an area under the Receiver Operating Characteristics (ROC) curve of 0.84. An optimal cutoff value of 0.46 for this metric was able to distinguish between the two groups with 71% sensitivity (favorable) and 88% specificity (unfavorable). Conclusion: The fractional decrease in SUV to the volume with highest 20% intensity from pre- to intra-RT 18FDG-PET imaging may be used to distinguish between favorable and unfavorable responders with high sensitivity and specificity.« less

  1. Consequences of additional use of PET information for target volume delineation and radiotherapy dose distribution for esophageal cancer.

    PubMed

    Muijs, Christina T; Schreurs, Liesbeth M; Busz, Dianne M; Beukema, Jannet C; van der Borden, Arnout J; Pruim, Jan; Van der Jagt, Eric J; Plukker, John Th; Langendijk, Johannes A

    2009-12-01

    To determine the consequences of target volume (TV) modifications, based on the additional use of PET information, on radiation planning, assuming PET/CT-imaging represents the true extent of the tumour. For 21 patients with esophageal cancer, two separate TV's were retrospectively defined based on CT (CT-TV) and co-registered PET/CT images (PET/CT-TV). Two 3D-CRT plans (prescribed dose 50.4 Gy) were constructed to cover the corresponding TV's. Subsequently, these plans were compared for target coverage, normal tissue dose-volume histograms and the corresponding normal tissue complication probability (NTCP) values. The addition of PET led to the modification of CT-TV with at least 10% in 12 of 21 patients (57%) (reduction in 9, enlargement in 3). PET/CT-TV was inadequately covered by the CT-based treatment plan in 8 patients (36%). Treatment plan modifications resulted in significant changes (p<0.05) in dose distributions to heart and lungs. Corresponding changes in NTCP values ranged from -3% to +2% for radiation pneumonitis and from -0.2% to +1.2% for cardiac mortality. This study demonstrated that TV's based on CT might exclude PET-avid disease. Consequences are under dosing and thereby possibly ineffective treatment. Moreover, the addition of PET in radiation planning might result in clinical important changes in NTCP.

  2. Influence of FDG-PET on primary nodal target volume definition for head and neck carcinomas.

    PubMed

    van Egmond, Sylvia L; Piscaer, Vera; Janssen, Luuk M; Stegeman, Inge; Hobbelink, Monique G; Grolman, Wilko; Terhaard, Chris H

    The role of 2-[ 18 F]-fluoro-2-deoxy-D-glucose (FDG)-positron emission tomography (PET)/computed tomography (CT) in routine diagnostic staging remains controversial. In case of discordance between FDG-PET and CT, a compromise has to be made between the risk of false positive FDG-PET and the risk of delaying appropriate salvage intervention. Second, with intensity modulated radiation therapy (IMRT), smaller radiation fields allow tissue sparing, but could also lead to more marginal failures. We retrospectively studied 283 patients with head and neck carcinoma scheduled for radiotherapy between 2002 and 2010. We analyzed the influence of FDG-PET/CT versus CT alone on defining nodal target volume definition and evaluated its long-term clinical results. Second, the location of nodal recurrences was related to the radiation regional dose distribution. In 92 patients, CT and FDG-PET, performed in mold, showed discordant results. In 33%, nodal staging was altered by FDG-PET. In 24%, FDG-PET also led to an alteration in nodal treatment, including a nodal upstage of 18% and downstage of 6%. In eight of these 92 patients, a regional recurrence occurred. Only two patients had a recurrence in the discordant node on FDG-PET and CT and both received a boost (high dose radiation). These results support the complementary value of FDG-PET/CT compared to CT alone in defining nodal target volume definition for radiotherapy of head and neck cancer.

  3. Influence of the partial volume correction method on 18F-fluorodeoxyglucose brain kinetic modelling from dynamic PET images reconstructed with resolution model based OSEM

    NASA Astrophysics Data System (ADS)

    Bowen, Spencer L.; Byars, Larry G.; Michel, Christian J.; Chonde, Daniel B.; Catana, Ciprian

    2013-10-01

    Kinetic parameters estimated from dynamic 18F-fluorodeoxyglucose (18F-FDG) PET acquisitions have been used frequently to assess brain function in humans. Neglecting partial volume correction (PVC) for a dynamic series has been shown to produce significant bias in model estimates. Accurate PVC requires a space-variant model describing the reconstructed image spatial point spread function (PSF) that accounts for resolution limitations, including non-uniformities across the field of view due to the parallax effect. For ordered subsets expectation maximization (OSEM), image resolution convergence is local and influenced significantly by the number of iterations, the count density, and background-to-target ratio. As both count density and background-to-target values for a brain structure can change during a dynamic scan, the local image resolution may also concurrently vary. When PVC is applied post-reconstruction the kinetic parameter estimates may be biased when neglecting the frame-dependent resolution. We explored the influence of the PVC method and implementation on kinetic parameters estimated by fitting 18F-FDG dynamic data acquired on a dedicated brain PET scanner and reconstructed with and without PSF modelling in the OSEM algorithm. The performance of several PVC algorithms was quantified with a phantom experiment, an anthropomorphic Monte Carlo simulation, and a patient scan. Using the last frame reconstructed image only for regional spread function (RSF) generation, as opposed to computing RSFs for each frame independently, and applying perturbation geometric transfer matrix PVC with PSF based OSEM produced the lowest magnitude bias kinetic parameter estimates in most instances, although at the cost of increased noise compared to the PVC methods utilizing conventional OSEM. Use of the last frame RSFs for PVC with no PSF modelling in the OSEM algorithm produced the lowest bias in cerebral metabolic rate of glucose estimates, although by less than 5% in most cases compared to the other PVC methods. The results indicate that the PVC implementation and choice of PSF modelling in the reconstruction can significantly impact model parameters.

  4. Influence of the partial volume correction method on (18)F-fluorodeoxyglucose brain kinetic modelling from dynamic PET images reconstructed with resolution model based OSEM.

    PubMed

    Bowen, Spencer L; Byars, Larry G; Michel, Christian J; Chonde, Daniel B; Catana, Ciprian

    2013-10-21

    Kinetic parameters estimated from dynamic (18)F-fluorodeoxyglucose ((18)F-FDG) PET acquisitions have been used frequently to assess brain function in humans. Neglecting partial volume correction (PVC) for a dynamic series has been shown to produce significant bias in model estimates. Accurate PVC requires a space-variant model describing the reconstructed image spatial point spread function (PSF) that accounts for resolution limitations, including non-uniformities across the field of view due to the parallax effect. For ordered subsets expectation maximization (OSEM), image resolution convergence is local and influenced significantly by the number of iterations, the count density, and background-to-target ratio. As both count density and background-to-target values for a brain structure can change during a dynamic scan, the local image resolution may also concurrently vary. When PVC is applied post-reconstruction the kinetic parameter estimates may be biased when neglecting the frame-dependent resolution. We explored the influence of the PVC method and implementation on kinetic parameters estimated by fitting (18)F-FDG dynamic data acquired on a dedicated brain PET scanner and reconstructed with and without PSF modelling in the OSEM algorithm. The performance of several PVC algorithms was quantified with a phantom experiment, an anthropomorphic Monte Carlo simulation, and a patient scan. Using the last frame reconstructed image only for regional spread function (RSF) generation, as opposed to computing RSFs for each frame independently, and applying perturbation geometric transfer matrix PVC with PSF based OSEM produced the lowest magnitude bias kinetic parameter estimates in most instances, although at the cost of increased noise compared to the PVC methods utilizing conventional OSEM. Use of the last frame RSFs for PVC with no PSF modelling in the OSEM algorithm produced the lowest bias in cerebral metabolic rate of glucose estimates, although by less than 5% in most cases compared to the other PVC methods. The results indicate that the PVC implementation and choice of PSF modelling in the reconstruction can significantly impact model parameters.

  5. Correlation of 68Ga Ventilation-Perfusion PET/CT with Pulmonary Function Test Indices for Assessing Lung Function.

    PubMed

    Le Roux, Pierre-Yves; Siva, Shankar; Steinfort, Daniel P; Callahan, Jason; Eu, Peter; Irving, Lou B; Hicks, Rodney J; Hofman, Michael S

    2015-11-01

    Pulmonary function tests (PFTs) are routinely used to assess lung function, but they do not provide information about regional pulmonary dysfunction. We aimed to assess correlation of quantitative ventilation-perfusion (V/Q) PET/CT with PFT indices. Thirty patients underwent V/Q PET/CT and PFT. Respiration-gated images were acquired after inhalation of (68)Ga-carbon nanoparticles and administration of (68)Ga-macroaggregated albumin. Functional volumes were calculated by dividing the volume of normal ventilated and perfused (%NVQ), unmatched and matched defects by the total lung volume. These functional volumes were correlated with forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), FEV1/FVC, and diffusing capacity for carbon monoxide (DLCO). All functional volumes were significantly different in patients with chronic obstructive pulmonary disease (P < 0.05). FEV1/FVC and %NVQ had the highest correlation (r = 0.82). FEV1 was also best correlated with %NVQ (r = 0.64). DLCO was best correlated with the volume of unmatched defects (r = -0.55). Considering %NVQ only, a cutoff value of 90% correctly categorized 28 of 30 patients with or without significant pulmonary function impairment. Our study demonstrates strong correlations between V/Q PET/CT functional volumes and PFT parameters. Because V/Q PET/CT is able to assess regional lung function, these data support the feasibility of its use in radiation therapy and preoperative planning and assessing pulmonary dysfunction in a variety of respiratory diseases. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  6. PET image reconstruction using multi-parametric anato-functional priors

    NASA Astrophysics Data System (ADS)

    Mehranian, Abolfazl; Belzunce, Martin A.; Niccolini, Flavia; Politis, Marios; Prieto, Claudia; Turkheimer, Federico; Hammers, Alexander; Reader, Andrew J.

    2017-08-01

    In this study, we investigate the application of multi-parametric anato-functional (MR-PET) priors for the maximum a posteriori (MAP) reconstruction of brain PET data in order to address the limitations of the conventional anatomical priors in the presence of PET-MR mismatches. In addition to partial volume correction benefits, the suitability of these priors for reconstruction of low-count PET data is also introduced and demonstrated, comparing to standard maximum-likelihood (ML) reconstruction of high-count data. The conventional local Tikhonov and total variation (TV) priors and current state-of-the-art anatomical priors including the Kaipio, non-local Tikhonov prior with Bowsher and Gaussian similarity kernels are investigated and presented in a unified framework. The Gaussian kernels are calculated using both voxel- and patch-based feature vectors. To cope with PET and MR mismatches, the Bowsher and Gaussian priors are extended to multi-parametric priors. In addition, we propose a modified joint Burg entropy prior that by definition exploits all parametric information in the MAP reconstruction of PET data. The performance of the priors was extensively evaluated using 3D simulations and two clinical brain datasets of [18F]florbetaben and [18F]FDG radiotracers. For simulations, several anato-functional mismatches were intentionally introduced between the PET and MR images, and furthermore, for the FDG clinical dataset, two PET-unique active tumours were embedded in the PET data. Our simulation results showed that the joint Burg entropy prior far outperformed the conventional anatomical priors in terms of preserving PET unique lesions, while still reconstructing functional boundaries with corresponding MR boundaries. In addition, the multi-parametric extension of the Gaussian and Bowsher priors led to enhanced preservation of edge and PET unique features and also an improved bias-variance performance. In agreement with the simulation results, the clinical results also showed that the Gaussian prior with voxel-based feature vectors, the Bowsher and the joint Burg entropy priors were the best performing priors. However, for the FDG dataset with simulated tumours, the TV and proposed priors were capable of preserving the PET-unique tumours. Finally, an important outcome was the demonstration that the MAP reconstruction of a low-count FDG PET dataset using the proposed joint entropy prior can lead to comparable image quality to a conventional ML reconstruction with up to 5 times more counts. In conclusion, multi-parametric anato-functional priors provide a solution to address the pitfalls of the conventional priors and are therefore likely to increase the diagnostic confidence in MR-guided PET image reconstructions.

  7. PET staging of amyloidosis using striatum.

    PubMed

    Hanseeuw, Bernard J; Betensky, Rebecca A; Mormino, Elizabeth C; Schultz, Aaron P; Sepulcre, Jorge; Becker, John A; Jacobs, Heidi I L; Buckley, Rachel F; LaPoint, Molly R; Vanini, Patrizia; Donovan, Nancy J; Chhatwal, Jasmeer P; Marshall, Gad A; Papp, Kathryn V; Amariglio, Rebecca E; Rentz, Dorene M; Sperling, Reisa A; Johnson, Keith A

    2018-05-21

    Amyloid PET data are commonly expressed as binary measures of cortical deposition. However, not all individuals with high cortical amyloid will experience rapid cognitive decline. Motivated by postmortem data, we evaluated a three-stage PET classification: low cortical; high cortical, low striatal; and high cortical, high striatal amyloid; hypothesizing this model could better reflect Alzheimer's dementia progression than a model based only on cortical measures. We classified PET data from 1433 participants (646 normal, 574 mild cognitive impairment, and 213 AD), explored the successive involvement of cortex and striatum using 3-year follow-up PET data, and evaluated the associations between PET stages, hippocampal volumes, and cognition. Follow-up data indicated that PET detects amyloid first in cortex and then in striatum. Our three-category staging including striatum better predicted hippocampal volumes and subsequent cognition than a three-category staging including only cortical amyloid. PET can evaluate amyloid expansion from cortex to subcortex. Using striatal signal as a marker of advanced amyloidosis may increase predictive power in Alzheimer's dementia research. Copyright © 2018. Published by Elsevier Inc.

  8. Repeatability of quantitative FDG-PET/CT and contrast-enhanced CT in recurrent ovarian carcinoma: test-retest measurements for tumor FDG uptake, diameter, and volume.

    PubMed

    Rockall, Andrea G; Avril, Norbert; Lam, Raymond; Iannone, Robert; Mozley, P David; Parkinson, Christine; Bergstrom, Donald; Sala, Evis; Sarker, Shah-Jalal; McNeish, Iain A; Brenton, James D

    2014-05-15

    Repeatability of baseline FDG-PET/CT measurements has not been tested in ovarian cancer. This dual-center, prospective study assessed variation in tumor 2[18F]fluoro-2-deoxy-D-glucose (FDG) uptake, tumor diameter, and tumor volume from sequential FDG-PET/CT and contrast-enhanced computed tomography (CECT) in patients with recurrent platinum-sensitive ovarian cancer. Patients underwent two pretreatment baseline FDG-PET/CT (n = 21) and CECT (n = 20) at two clinical sites with different PET/CT instruments. Patients were included if they had at least one target lesion in the abdomen with a standardized uptake value (SUV) maximum (SUVmax) of ≥ 2.5 and a long axis diameter of ≥ 15 mm. Two independent reading methods were used to evaluate repeatability of tumor diameter and SUV uptake: on site and at an imaging clinical research organization (CRO). Tumor volume reads were only performed by CRO. In each reading set, target lesions were independently measured on sequential imaging. Median time between FDG-PET/CT was two days (range 1-7). For site reads, concordance correlation coefficients (CCC) for SUVmean, SUVmax, and tumor diameter were 0.95, 0.94, and 0.99, respectively. Repeatability coefficients were 16.3%, 17.3%, and 8.8% for SUVmean, SUVmax, and tumor diameter, respectively. Similar results were observed for CRO reads. Tumor volume CCC was 0.99 with a repeatability coefficient of 28.1%. There was excellent test-retest repeatability for FDG-PET/CT quantitative measurements across two sites and two independent reading methods. Cutoff values for determining change in SUVmean, SUVmax, and tumor volume establish limits to determine metabolic and/or volumetric response to treatment in platinum-sensitive relapsed ovarian cancer. ©2014 American Association for Cancer Research.

  9. WE-H-207A-05: Spatial Co-Localization of F-18 NaF Vs. F-18 FDG Defined Disease Volumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferjancic, P; Harmon, S; Jeraj, R

    Purpose: Both [F-18]NaF and [F-18]FDG show promise for quantitative PET/CT assessment in metastatic prostate cancer to bone. Broad agreement between the tracers has been shown but voxel-wise correspondence has not been explored in depth. This study evaluates the spatial co-localization of [F-18]NaF PET and [F-18]FDG PET in bone lesions. Methods: Seventy-three lesion contours were identified in six patients receiving dynamic NaF PET/CT and FDG PET/CT scans two hours apart using identical fields-of-view. Tracer uptake (SUV) reflecting 60 minutes post-injection was modeled from kinetic parameters. Lesions were segmented by a physician separately on NaF PET and FDG PET. PET images weremore » rigidly aligned using skeletal references on CT images. Lesion size, degree of overlap, voxel-wise tracer uptake values (SUV), and CT density distributions were compared using Dice coefficient, Positive Predictive Value (PPV), and Spearman rank correlation tests. Results: Across all patients, 42 lesions were identified on NaF PET (median 1.4 cm{sup 3}, range <1–204 cm{sup 3}) compared to 31 using FDG PET (median 1.8 cm{sup 3}, range <1–244 cm{sup 3}). Spatial cooccurrence was found in 25 lesion pairs. Lesions on NaF PET had PPV of 0.91 and on FDG a PPV of 0.65. Overall, NaF-defined lesions were 47% (±24%) larger by volume with moderate overlap to FDG, resulting in mean Dice coefficient of 34% (±22%). In areas of overlap, voxel-wise correlation of NaF and FDG SUV was moderate (ρ=0.56). Expanding to regions of non-spatial overlap, voxels contained in FDG-only contours were almost exclusively low HU (median 118), compared to dense regions of NaF-only voxels (median 250). In sclerotic sub-volumes (HU > 300) NaF-defined contours encompassed 83% of total FDG volume. Conclusion: Moderate voxel-wise correlation of FDG and NaF PET/CT uptake was observed. Spatial discrepancies in FDG and NaF PET/CT imaging of boney metastases could be influenced by poor sensitivity of FDG PET/CT in sclerotic regions. Funded by Prostate Cancer Foundation.« less

  10. Characterizing proton-activated materials to develop PET-mediated proton range verification markers

    NASA Astrophysics Data System (ADS)

    Cho, Jongmin; Ibbott, Geoffrey S.; Kerr, Matthew D.; Amos, Richard A.; Stingo, Francesco C.; Marom, Edith M.; Truong, Mylene T.; Palacio, Diana M.; Betancourt, Sonia L.; Erasmus, Jeremy J.; DeGroot, Patricia M.; Carter, Brett W.; Gladish, Gregory W.; Sabloff, Bradley S.; Benveniste, Marcelo F.; Godoy, Myrna C.; Patil, Shekhar; Sorensen, James; Mawlawi, Osama R.

    2016-06-01

    Conventional proton beam range verification using positron emission tomography (PET) relies on tissue activation alone and therefore requires particle therapy PET whose installation can represent a large financial burden for many centers. Previously, we showed the feasibility of developing patient implantable markers using high proton cross-section materials (18O, Cu, and 68Zn) for in vivo proton range verification using conventional PET scanners. In this technical note, we characterize those materials to test their usability in more clinically relevant conditions. Two phantoms made of low-density balsa wood (~0.1 g cm-3) and beef (~1.0 g cm-3) were embedded with Cu or 68Zn foils of several volumes (10-50 mm3). The metal foils were positioned at several depths in the dose fall-off region, which had been determined from our previous study. The phantoms were then irradiated with different proton doses (1-5 Gy). After irradiation, the phantoms with the embedded foils were moved to a diagnostic PET scanner and imaged. The acquired data were reconstructed with 20-40 min of scan time using various delay times (30-150 min) to determine the maximum contrast-to-noise ratio. The resultant PET/computed tomography (CT) fusion images of the activated foils were then examined and the foils’ PET signal strength/visibility was scored on a 5 point scale by 13 radiologists experienced in nuclear medicine. For both phantoms, the visibility of activated foils increased in proportion to the foil volume, dose, and PET scan time. A linear model was constructed with visibility scores as the response variable and all other factors (marker material, phantom material, dose, and PET scan time) as covariates. Using the linear model, volumes of foils that provided adequate visibility (score 3) were determined for each dose and PET scan time. The foil volumes that were determined will be used as a guideline in developing practical implantable markers.

  11. Impact of computed tomography and {sup 18}F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small-cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deniaud-Alexandre, Elisabeth; Touboul, Emmanuel; Lerouge, Delphine

    2005-12-01

    Purpose: To report a retrospective study concerning the impact of fused {sup 18}F-fluoro-deoxy-D-glucose (FDG)-hybrid positron emission tomography (PET) and CT images on three-dimensional conformal radiotherapy planning for patients with non-small-cell lung cancer. Methods and Materials: A total of 101 patients consecutively treated for Stage I-III non-small-cell lung cancer were studied. Each patient underwent CT and FDG-hybrid PET for simulation treatment in the same treatment position. Images were coregistered using five fiducial markers. Target volume delineation was initially performed on the CT images, and the corresponding FDG-PET data were subsequently used as an overlay to the CT data to define themore » target volume. Results: {sup 18}F-fluoro-deoxy-D-glucose-PET identified previously undetected distant metastatic disease in 8 patients, making them ineligible for curative conformal radiotherapy (1 patient presented with some positive uptake corresponding to concomitant pulmonary tuberculosis). Another patient was ineligible for curative treatment because the fused PET-CT images demonstrated excessively extensive intrathoracic disease. The gross tumor volume (GTV) was decreased by CT-PET image fusion in 21 patients (23%) and was increased in 24 patients (26%). The GTV reduction was {>=}25% in 7 patients because CT-PET image fusion reduced the pulmonary GTV in 6 patients (3 patients with atelectasis) and the mediastinal nodal GTV in 1 patient. The GTV increase was {>=}25% in 14 patients owing to an increase in the pulmonary GTV in 11 patients (4 patients with atelectasis) and detection of occult mediastinal lymph node involvement in 3 patients. Of 81 patients receiving a total dose of {>=}60 Gy at the International Commission on Radiation Units and Measurements point, after CT-PET image fusion, the percentage of total lung volume receiving >20 Gy increased in 15 cases and decreased in 22. The percentage of total heart volume receiving >36 Gy increased in 8 patients and decreased in 14. The spinal cord volume receiving at least 45 Gy (2 patients) decreased. Multivariate analysis showed that tumor with atelectasis was the single independent factor that resulted in a significant effect on the modification of the size of the GTV by FDG-PET: tumor with atelectasis (with vs. without atelectasis, p = 0.0001). Conclusion: The results of our study have confirmed that integrated hybrid PET/CT in the treatment position and coregistered images have an impact on treatment planning and management of non-small-cell lung cancer. However, FDG images using dedicated PET scanners and respiration-gated acquisition protocols could improve the PET-CT image coregistration. Furthermore, the impact on treatment outcome remains to be demonstrated.« less

  12. Tumor Delineation and Quantitative Assessment of Glucose Metabolic Rate within Histologic Subtypes of Non-Small Cell Lung Cancer by Using Dynamic 18F Fluorodeoxyglucose PET.

    PubMed

    Meijer, Tineke W H; de Geus-Oei, Lioe-Fee; Visser, Eric P; Oyen, Wim J G; Looijen-Salamon, Monika G; Visvikis, Dimitris; Verhagen, Ad F T M; Bussink, Johan; Vriens, Dennis

    2017-05-01

    Purpose To assess whether dynamic fluorine 18 ( 18 F) fluorodeoxyglucose (FDG) positron emission tomography (PET) has added value over static 18 F-FDG PET for tumor delineation in non-small cell lung cancer (NSCLC) radiation therapy planning by using pathology volumes as the reference standard and to compare pharmacokinetic rate constants of 18 F-FDG metabolism, including regional variation, between NSCLC histologic subtypes. Materials and Methods The study was approved by the institutional review board. Patients gave written informed consent. In this prospective observational study, 1-hour dynamic 18 F-FDG PET/computed tomographic examinations were performed in 35 patients (36 resectable NSCLCs) between 2009 and 2014. Static and parametric images of glucose metabolic rate were obtained to determine lesion volumes by using three delineation strategies. Pathology volume was calculated from three orthogonal dimensions (n = 32). Whole tumor and regional rate constants and blood volume fraction (V B ) were computed by using compartment modeling. Results Pathology volumes were larger than PET volumes (median difference, 8.7-25.2 cm 3 ; Wilcoxon signed rank test, P < .001). Static fuzzy locally adaptive Bayesian (FLAB) volumes corresponded best with pathology volumes (intraclass correlation coefficient, 0.72; P < .001). Bland-Altman analyses showed the highest precision and accuracy for static FLAB volumes. Glucose metabolic rate and 18 F-FDG phosphorylation rate were higher in squamous cell carcinoma (SCC) than in adenocarcinoma (AC), whereas V B was lower (Mann-Whitney U test or t test, P = .003, P = .036, and P = .019, respectively). Glucose metabolic rate, 18 F-FDG phosphorylation rate, and V B were less heterogeneous in AC than in SCC (Friedman analysis of variance). Conclusion Parametric images are not superior to static images for NSCLC delineation. FLAB-based segmentation on static 18 F-FDG PET images is in best agreement with pathology volume and could be useful for NSCLC autocontouring. Differences in glycolytic rate and V B between SCC and AC are relevant for research in targeting agents and radiation therapy dose escalation. © RSNA, 2016 Online supplemental material is available for this article.

  13. SU-E-J-249: Characterization of Gynecological Tumor Heterogeneity Using Texture Analysis in the Context of An 18F-FDG PET Adaptive Protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nawrocki, J; Chino, J; Craciunescu, O

    Purpose: We propose a method to examine gynecological tumor heterogeneity using texture analysis in the context of an adaptive PET protocol in order to establish if texture metrics from baseline PET-CT predict tumor response better than SUV metrics alone as well as determine texture features correlating with tumor response during radiation therapy. Methods: This IRB approved protocol included 29 women with node positive gynecological cancers visible on FDG-PET treated with EBRT to the PET positive nodes. A baseline and intra-treatment PET-CT was obtained. Tumor outcome was determined based on RECIST on posttreatment PET-CT. Primary GTVs were segmented using 40% thresholdmore » and a semi-automatic gradient-based contouring tool, PET Edge (MIM Software Inc., Cleveland, OH). SUV histogram features, Metabolic Volume (MV), and Total Lesion Glycolysis (TLG) were calculated. Four 3D texture matrices describing local and regional relationships between voxel intensities in the GTV were generated: co-occurrence, run length, size zone, and neighborhood difference. From these, 39 texture features were calculated. Prognostic power of baseline features derived from gradientbased and threshold GTVs were determined using the Wilcoxon rank-sum test. Receiver Operating Characteristics and logistic regression was performed using JMP (SAS Institute Inc., Cary, NC) to find probabilities of predicting response. Changes in features during treatment were determined using the Wilcoxon signed-rank test. Results: Of the 29 patients, there were 16 complete responders, 7 partial responders, and 6 non-responders. Comparing CR/PR vs. NR for gradient-based GTVs, 7 texture values, TLG, and SUV kurtosis had a p < 0.05. Threshold GTVs yielded 4 texture features and TLG with p < 0.05. From baseline to intra-treatment, 14 texture features, SUVmean, SUVmax, MV, and TLG changed with p < 0.05. Conclusion: Texture analysis of PET imaged gynecological tumors is an effective method for early prognosis and should be used complimentary to SUV metrics, especially when using gradient based segmentation.« less

  14. SU-D-201-07: Exploring the Utility of 4D FDG-PET/CT Scans in Design of Radiation Therapy Planning Compared with 3D PET/CT: A Prospective Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, C; Yin, Y

    2015-06-15

    Purpose: A method using four-dimensional(4D) PET/CT in design of radiation treatment planning was proposed and the target volume and radiation dose distribution changes relative to standard three-dimensional (3D) PET/CT were examined. Methods: A target deformable registration method was used by which the whole patient’s respiration process was considered and the effect of respiration motion was minimized when designing radiotherapy planning. The gross tumor volume of a non-small-cell lung cancer was contoured on the 4D FDG-PET/CT and 3D PET/CT scans by use of two different techniques: manual contouring by an experienced radiation oncologist using a predetermined protocol; another technique using amore » constant threshold of standardized uptake value (SUV) greater than 2.5. The target volume and radiotherapy dose distribution between VOL3D and VOL4D were analyzed. Results: For all phases, the average automatic and manually GTV volume was 18.61 cm3 (range, 16.39–22.03 cm3) and 31.29 cm3 (range, 30.11–35.55 cm3), respectively. The automatic and manually volume of merged IGTV were 27.82 cm3 and 49.37 cm3, respectively. For the manual contour, compared to 3D plan the mean dose for the left, right, and total lung of 4D plan have an average decrease 21.55%, 15.17% and 15.86%, respectively. The maximum dose of spinal cord has an average decrease 2.35%. For the automatic contour, the mean dose for the left, right, and total lung have an average decrease 23.48%, 16.84% and 17.44%, respectively. The maximum dose of spinal cord has an average decrease 1.68%. Conclusion: In comparison to 3D PET/CT, 4D PET/CT may better define the extent of moving tumors and reduce the contouring tumor volume thereby optimize radiation treatment planning for lung tumors.« less

  15. PET response assessment in apatinib-treated radioactive iodine-refractory thyroid cancer.

    PubMed

    Wang, Chen; Zhang, Xin; Yang, Xue; Li, Hui; Cui, Ruixue; Guan, Wenmin; Li, Xin; Zhu, Zhaohui; Lin, Yansong

    2018-06-01

    This work evaluated the use of the positron emission tomography (PET)/computed tomography (CT) technique to assess the early therapeutic response and predict the prognosis of patients with radioactive iodine-refractory differentiated thyroid cancer (RAIR-DTC) who underwent apatinib therapy. Standardised uptake value (SUV), metabolic tumour volume (MTV) and total lesion glycolysis (TLG), derived from 18 F-FDG PET/CT and SUV from 68 Ga-NOTA-PRGD2 PET/CT were evaluated. Tumour response was evaluated using the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1. Sixteen of 20 patients achieved partial response (PR) and four of 20 had stable disease (SD) after apatinib therapy. Six progression-free survival (PFS) events occurred. A strong correlation was observed between the best change in the sum of the longest diameters of target lesions (ΔCT%) and 18 F-FDG PET/CT indices after the completion of the first treatment cycle (ΔMTV% ( P  = 0.0019), ΔTLG% ( P  = 0.0021) and ΔSUVmax% ( P  = 0.0443)). A significant difference in PFS was observed between patients with ΔMTV% <-45% and ≥-45% ( P  = 0.0019) and between patients with ΔTLG% <-80% and ≥-80% ( P  = 0.0065). Ten of 11 patients presented a decrease in SUVmax on 68 Ga-NOTA-PRGD2 PET/CT after two cycles of apatinib therapy and showed PR, whereas one patient presenting an increase in SUVmax only showed SD as the best response. When a cut-off value of the target/background ratio at -20% was used, two PFS curves showed a significant difference ( P  = 0.0016). Hence, early assessment by 18 F-FDG and 68 Ga-NOTA-PRGD2 PET/CT was effective in the prediction and evaluation of RAIR-DTC treated with apatinib. © 2018 Society for Endocrinology.

  16. Communication among neurons.

    PubMed

    Marner, Lisbeth

    2012-04-01

    The communication among neurons is the prerequisite for the working brain. To understand the cellular, neurochemical, and structural basis of this communication, and the impacts of aging and disease on brain function, quantitative measures are necessary. This thesis evaluates several quantitative neurobiological methods with respect to possible bias and methodological issues. Stereological methods are suited for the unbiased estimation of number, length, and volumes of components of the nervous system. Stereological estimates of the total length of myelinated nerve fibers were made in white matter of post mortem brains, and the impact of aging and diseases as Schizophrenia and Alzheimer's disease were evaluated. Although stereological methods are in principle unbiased, shrinkage artifacts are difficult to account for. Positron emission tomography (PET) recordings, in conjunction with kinetic modeling, permit the quantitation of radioligand binding in brain. The novel serotonin 5-HT4 antagonist [11C]SB207145 was used as an example of the validation process for quantitative PET receptor imaging. Methods based on reference tissue as well as methods based on an arterial plasma input function were evaluated with respect to precision and accuracy. It was shown that [11C]SB207145 binding had high sensitivity to occupancy by unlabeled ligand, necessitating high specific activity in the radiosynthesis to avoid bias. The established serotonin 5-HT2A ligand [18F]altanersin was evaluated in a two-year follow-up study in elderly subjects. Application of partial volume correction of the PET data diminished the reliability of the measures, but allowed for the correct distinction between changes due to brain atrophy and receptor availability. Furthermore, a PET study of patients with Alzheimer's disease with the serotonin transporter ligand [11C]DASB showed relatively preserved serotonergic projections, despite a marked decrease in 5-HT2A receptor binding. Possible confounders are considered and the relation to the prevailing beta-amyloid hypothesis is discussed.

  17. Voxel-based mapping of grey matter volume and glucose metabolism profiles in amyotrophic lateral sclerosis.

    PubMed

    Buhour, M-S; Doidy, F; Mondou, A; Pélerin, A; Carluer, L; Eustache, F; Viader, F; Desgranges, B

    2017-12-01

    Amyotrophic lateral sclerosis (ALS) is a rapidly progressive disease of the nervous system involving both upper and lower motor neurons. The patterns of structural and metabolic brain alterations are still unclear. Several studies using anatomical MRI yielded a number of discrepancies in their results, and a few PET studies investigated the effect of ALS on cerebral glucose metabolism. The aim of this study was threefold: to highlight the patterns of grey matter (GM) atrophy, hypometabolism and hypermetabolism in patients with ALS, then to understand the neurobehavioral significance of hypermetabolism and, finally, to investigate the regional differences between the morphologic and functional changes in ALS patients, using a specially designed voxel-based method. Thirty-seven patients with ALS and 37 age- and sex-matched healthy individuals underwent both structural MRI and 18 [F]-fluorodeoxyglucose (FDG) PET examinations. PET data were corrected for partial volume effects. Structural and metabolic abnormalities were examined in ALS patients compared with control subjects using two-sample t tests in statistical parametric mapping (SPM). Then, we extracted the metabolic values of clusters presenting hypermetabolism to correlate with selected cognitive scores. Finally, GM atrophy and hypometabolism patterns were directly compared with a one-paired t test in SPM. We found GM atrophy as well as hypometabolism in motor and extra motor regions and hypermetabolism in medial temporal lobe and cerebellum. We observed negative correlations between the metabolism of the right and left parahippocampal gyri and episodic memory and between the metabolism of right temporal pole and cognitive theory of mind. GM atrophy predominated in the temporal pole, left hippocampus and right thalamus, while hypometabolism predominated in a single cluster in the left frontal superior medial cortex. Our findings provide direct evidence of regional variations in the hierarchy and relationships between GM atrophy and hypometabolism in ALS. Moreover, the 18 FDG-PET investigation suggests that cerebral hypermetabolism is deleterious to cognitive function in ALS.

  18. Patterns-of-failure guided biological target volume definition for head and neck cancer patients: FDG-PET and dosimetric analysis of dose escalation candidate subregions.

    PubMed

    Mohamed, Abdallah S R; Cardenas, Carlos E; Garden, Adam S; Awan, Musaddiq J; Rock, Crosby D; Westergaard, Sarah A; Brandon Gunn, G; Belal, Abdelaziz M; El-Gowily, Ahmed G; Lai, Stephen Y; Rosenthal, David I; Fuller, Clifton D; Aristophanous, Michalis

    2017-08-01

    To identify the radio-resistant subvolumes in pretreatment FDG-PET by mapping the spatial location of the origin of tumor recurrence after IMRT for head-and-neck squamous cell cancer to the pretreatment FDG-PET/CT. Patients with local/regional recurrence after IMRT with available FDG-PET/CT and post-failure CT were included. For each patient, both pre-therapy PET/CT and recurrence CT were co-registered with the planning CT (pCT). A 4-mm radius was added to the centroid of mapped recurrence growth target volumes (rGTV's) to create recurrence nidus-volumes (NVs). The overlap between boost-tumor-volumes (BTV) representing different SUV thresholds/margins combinations and NVs was measured. Forty-seven patients were eligible. Forty-two (89.4%) had type A central high dose failure. Twenty-six (48%) of type A rGTVs were at the primary site and 28 (52%) were at the nodal site. The mean dose of type A rGTVs was 71Gy. BTV consisting of 50% of the maximum SUV plus 10mm margin was the best subvolume for dose boosting due to high coverage of primary site NVs (92.3%), low average relative volume to CTV1 (41%), and least average percent voxels outside CTV1 (19%). The majority of loco-regional recurrences originate in the regions of central-high-dose. When correlated with pretreatment FDG-PET, the majority of recurrences originated in an area that would be covered by additional 10mm margin on the volume of 50% of the maximum FDG uptake. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Metabolic Tumor Burden Assessed by Dual Time Point [18F]FDG PET/CT in Locally Advanced Breast Cancer: Relation with Tumor Biology.

    PubMed

    Garcia-Vicente, Ana María; Pérez-Beteta, Julián; Pérez-García, Víctor Manuel; Molina, David; Jiménez-Londoño, German Andrés; Soriano-Castrejón, Angel; Martínez-González, Alicia

    2017-08-01

    The aim of the study was to investigate the influence of dual time point 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) positron emission tomography/x-ray computed tomography (PET/CT) on the standard uptake value (SUV) and volume-based metabolic variables of breast lesions and their relation with biological characteristics and molecular phenotypes. Retrospective analysis including 67 patients with locally advanced breast cancer (LABC). All patients underwent a dual time point [ 18 F]FDG PET/CT, 1 h (PET-1) and 3 h (PET-2) after [ 18 F]FDG administration. Tumors were segmented following a three-dimensional methodology. Semiquantitative metabolic variables (SUV max , SUV mean , and SUV peak ) and volume-based variables (metabolic tumor volume, MTV, and total lesion glycolysis, TLG) were obtained. Biologic prognostic parameters, such as the hormone receptors status, p53, HER2 expression, proliferation rate (Ki-67), and grading were obtained. Molecular phenotypes and risk-classification [low: luminal A, intermediate: luminal B HER2 (-) or luminal B HER2 (+), and high: HER2 pure or triple negative] were established. Relations between clinical and biological variables with the metabolic parameters were studied. The relevance of each metabolic variable in the prediction of phenotype risk was assessed using a multivariate analysis. SUV-based variables and TLG obtained in the PET-1 and PET-2 showed high and significant correlations between them. MTV and SUV variables (SUV max , SUV mean , and SUV peak ) where only marginally correlated. Significant differences were found between mean SUV variables and TLG obtained in PET-1 and PET-2. High and significant associations were found between metabolic variables obtained in PET-1 and their homonymous in PET-2. Based on that, only relations of PET-1 variables with biological tumor characteristics were explored. SUV variables showed associations with hormone receptors status (p < 0.001 and p = 0.001 for estrogen and progesterone receptor, respectively) and risk-classification according to phenotype (SUV max , p = 0.003; SUV mean , p = 0.004; SUV peak , p = 0.003). As to volume-based variables, only TLG showed association with hormone receptors status (estrogen, p < 0.001; progesterone, p = 0.031), risk-classification (p = 0.007), and grade (p = 0.036). Hormone receptor negative tumors, high-grade tumors, and high-risk phenotypes showed higher TLG values. No association was found between the metabolic variables and Ki-67, HER2, or p53 expression. Statistical differences were found between mean SUV-based variables and TLG obtained in the dual time point PET/CT. Most of PET-derived parameters showed high association with molecular factors of breast cancer. However, dual time point PET/CT did not offer any added value to the single PET acquisition with respect to the relations with biological variables, based on PET-1 SUV, and volume-based variables were predictors of those obtained in PET-2.

  20. A Digital Preclinical PET/MRI Insert and Initial Results.

    PubMed

    Weissler, Bjoern; Gebhardt, Pierre; Dueppenbecker, Peter M; Wehner, Jakob; Schug, David; Lerche, Christoph W; Goldschmidt, Benjamin; Salomon, Andre; Verel, Iris; Heijman, Edwin; Perkuhn, Michael; Heberling, Dirk; Botnar, Rene M; Kiessling, Fabian; Schulz, Volkmar

    2015-11-01

    Combining Positron Emission Tomography (PET) with Magnetic Resonance Imaging (MRI) results in a promising hybrid molecular imaging modality as it unifies the high sensitivity of PET for molecular and cellular processes with the functional and anatomical information from MRI. Digital Silicon Photomultipliers (dSiPMs) are the digital evolution in scintillation light detector technology and promise high PET SNR. DSiPMs from Philips Digital Photon Counting (PDPC) were used to develop a preclinical PET/RF gantry with 1-mm scintillation crystal pitch as an insert for clinical MRI scanners. With three exchangeable RF coils, the hybrid field of view has a maximum size of 160 mm × 96.6 mm (transaxial × axial). 0.1 ppm volume-root-mean-square B 0-homogeneity is kept within a spherical diameter of 96 mm (automatic volume shimming). Depending on the coil, MRI SNR is decreased by 13% or 5% by the PET system. PET count rates, energy resolution of 12.6% FWHM, and spatial resolution of 0.73 mm (3) (isometric volume resolution at isocenter) are not affected by applied MRI sequences. PET time resolution of 565 ps (FWHM) degraded by 6 ps during an EPI sequence. Timing-optimized settings yielded 260 ps time resolution. PET and MR images of a hot-rod phantom show no visible differences when the other modality was in operation and both resolve 0.8-mm rods. Versatility of the insert is shown by successfully combining multi-nuclei MRI ((1)H/(19)F) with simultaneously measured PET ((18)F-FDG). A longitudinal study of a tumor-bearing mouse verifies the operability, stability, and in vivo capabilities of the system. Cardiac- and respiratory-gated PET/MRI motion-capturing (CINE) images of the mouse heart demonstrate the advantage of simultaneous acquisition for temporal and spatial image registration.

  1. PET-Tool: a software suite for comprehensive processing and managing of Paired-End diTag (PET) sequence data.

    PubMed

    Chiu, Kuo Ping; Wong, Chee-Hong; Chen, Qiongyu; Ariyaratne, Pramila; Ooi, Hong Sain; Wei, Chia-Lin; Sung, Wing-Kin Ken; Ruan, Yijun

    2006-08-25

    We recently developed the Paired End diTag (PET) strategy for efficient characterization of mammalian transcriptomes and genomes. The paired end nature of short PET sequences derived from long DNA fragments raised a new set of bioinformatics challenges, including how to extract PETs from raw sequence reads, and correctly yet efficiently map PETs to reference genome sequences. To accommodate and streamline data analysis of the large volume PET sequences generated from each PET experiment, an automated PET data process pipeline is desirable. We designed an integrated computation program package, PET-Tool, to automatically process PET sequences and map them to the genome sequences. The Tool was implemented as a web-based application composed of four modules: the Extractor module for PET extraction; the Examiner module for analytic evaluation of PET sequence quality; the Mapper module for locating PET sequences in the genome sequences; and the Project Manager module for data organization. The performance of PET-Tool was evaluated through the analyses of 2.7 million PET sequences. It was demonstrated that PET-Tool is accurate and efficient in extracting PET sequences and removing artifacts from large volume dataset. Using optimized mapping criteria, over 70% of quality PET sequences were mapped specifically to the genome sequences. With a 2.4 GHz LINUX machine, it takes approximately six hours to process one million PETs from extraction to mapping. The speed, accuracy, and comprehensiveness have proved that PET-Tool is an important and useful component in PET experiments, and can be extended to accommodate other related analyses of paired-end sequences. The Tool also provides user-friendly functions for data quality check and system for multi-layer data management.

  2. Increased therapeutic ratio by 18FDG-PET CT planning in patients with clinical CT stage N2-N3M0 non-small-cell lung cancer: a modeling study.

    PubMed

    van Der Wel, Antoinet; Nijsten, Sebastiaan; Hochstenbag, Monique; Lamers, Rob; Boersma, Liesbeth; Wanders, Rinus; Lutgens, Ludy; Zimny, Michael; Bentzen, Søren M; Wouters, Brad; Lambin, Philippe; De Ruysscher, Dirk

    2005-03-01

    With this modeling study, we wanted to estimate the potential gain from incorporating fluorodeoxyglucose-positron emission tomography (FDG-PET) scanning in the radiotherapy treatment planning of CT Stage N2-N3M0 non-small-cell lung cancer (NSCLC) patients. Twenty-one consecutive patients with clinical CT Stage N2-N3M0 NSCLC were studied. For each patient, two three-dimensional conformal treatment plans were made: one with a CT-based planning target volume (PTV) and one with a PET-CT-based PTV, both to deliver 60 Gy in 30 fractions. From the dose-volume histograms and dose distributions on each plan, the dosimetric factors predicting esophageal and lung toxicity were analyzed and compared. For each patient, the maximal tolerable prescribed radiation dose for the CT PTV vs. PET-CT PTV was calculated according to the constraints for the lung, esophagus, and spinal cord. From these results, the tumor control probability (TCP) was estimated, assuming a clinical dose-response curve with a median toxic dose of 84.5 Gy and a gamma(50) of 2.0. Dose-response curves were modeled, taking into account geographic misses according to the accuracy of CT and PET in our institutions. The gross tumor volume of the nodes decreased from 13.7 +/- 3.8 cm(3) on the CT scan to 9.9 +/- 4.0 cm(3) on the PET-CT scan (p = 0.011). All dose-volume characteristics for the esophagus and lungs decreased in favor of PET-CT. The esophageal V(45) (the volume of the esophagus receiving 45 Gy) decreased from 45.2% +/- 4.9% to 34.0% +/- 5.8% (p = 0.003), esophageal V(55) (the volume of the esophagus receiving 55 Gy) from 30.6% +/- 3.2% to 21.9% +/- 3.8% (p = 0.004), mean esophageal dose from 29.8 +/- 2.5 Gy to 23.7 +/- 3.1 Gy (p = 0.004), lung V(20) (the volume of the lungs minus the PTV receiving 20 Gy) from 24.9% +/- 2.3% to 22.3% +/- 2.2% (p = 0.012), and mean lung dose from 14.7 +/- 1.3 Gy to 13.6 +/- 1.3 Gy (p = 0.004). For the same toxicity levels of the lung, esophagus, and spinal cord, the dose could be increased from 56.0 +/- 5.4 Gy with CT planning to 71.0 +/- 13.7 Gy with PET planning (p = 0.038). The TCP corresponding to these doses was estimated to be 14.2% +/- 5.6% for CT and 22.8% +/- 7.1% for PET-CT planning (p = 0.026). Adjusting for geographic misses by PET-CT vs. CT planning yielded TCP estimates of 12.5% and 18.3% (p = 0.009) for CT and PET-CT planning, respectively. In this group of clinical CT Stage N2-N3 NSCLC patients, use of FDG-PET scanning information in radiotherapy planning reduced the radiation exposure of the esophagus and lung, and thus allowed significant radiation dose escalation while respecting all relevant normal tissue constraints. This, together with a reduced risk of geographic misses using PET-CT, led to an estimated increase in TCP from 13% to 18%. The results of this modeling study support clinical trials investigating incorporation of FDG-PET information in CT-based radiotherapy planning.

  3. Role of FDG-PET in the Implementation of Involved-Node Radiation Therapy for Hodgkin Lymphoma Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girinsky, Théodore; Aupérin, Anne; Ribrag, Vincent

    2014-08-01

    Purpose: This study examines the role of {sup 18}F-labeled fluorodeoxyglucose positron emission tomography (FDG-PET) in the implementation of involved-node radiation therapy (INRT) in patients treated for clinical stages (CS) I/II supradiaphragmatic Hodgkin lymphoma (HL). Methods and Material: Patients with untreated CS I/II HL enrolled in the randomized EORTC/LYSA/FIL Intergroup H10 trial and participating in a real-time prospective quality assurance program were prospectively included in this study. Data were electronically obtained from 18 French cancer centers. All patients underwent APET-computed tomography (PET-CT) and a post-chemotherapy planning CT scanning. The pre-chemotherapy gross tumor volume (GTV) and the postchemotherapy clinical target volume (CTV) weremore » first delineated on CT only by the radiation oncologist. The planning PET was then co-registered, and the delineated volumes were jointly analyzed by the radiation oncologist and the nuclear medicine physician. Lymph nodes undetected on CT but FDG-avid were recorded, and the previously determined GTV and CTV were modified according to FDG-PET results. Results: From March 2007 to February 2010, 135 patients were included in the study. PET-CT identified at least 1 additional FDG-avid lymph node in 95 of 135 patients (70.4%; 95% confidence interval [CI]: 61.9%-77.9%) and 1 additional lymph node area in 55 of 135 patients (40.7%; 95% CI: 32.4%-49.5%). The mean increases in the GTV and CTV were 8.8% and 7.1%, respectively. The systematic addition of PET to CT led to a CTV increase in 60% of the patients. Conclusions: Pre-chemotherapy FDG-PET leads to significantly better INRT delineation without necessarily increasing radiation volumes.« less

  4. SU-E-J-124: 18F-FDG PET Imaging to Improve RT Treatment Outcome for Locally Advanced Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shusharina, N; Khan, F; Sharp, G

    2015-06-15

    Purpose: To investigate spatial correlation between high uptake regions of pre- and 10-days-post therapy{sup 1} {sup 8}F-FDG PET in recurrent lung cancer and to evaluate the feasibility of dose escalation boosting only regions with high FDG uptake identified on baseline PET. Methods: Nineteen patients with stages II– IV inoperable lung cancer were selected. Volumes of interest (VOI) on pre-therapy FDG-PET were defined using an isocontour at ≥50% of SUVmax. VOI of pre- and post-therapy PET images were correlated for the extent of overlap. A highly optimized IMRT plan to 60 Gy prescribed to PTV defined on the planning CT wasmore » designed using clinical dose constraints for the organs at risk. A boost of 18 Gy was prescribed to the VOI defined on baseline PET. A composite plan of the total 78 Gy was compared with the base 60 Gy plan. Increases in dose to the lungs, spinal cord and heart were evaluated. IMRT boost plan was compared with proton RT and SBRT boost plans. Results: Overlap fraction of baseline PET VOI with the VOI on 10 days-post therapy PET was 0.8 (95% CI: 0.7 – 0.9). Using baseline VOI as a boosting volume, dose could be escalated to 78 Gy for 15 patients without compromising the dose constraints. For 4 patients, the dose limiting factors were V20Gy and Dmean for the total lung, and Dmax for the spinal cord. An increase of the dose to OARs correlated significantly with the relative size of the boost volume. Conclusion: VOI defined on baseline 18F-FDG PET by the SUVmax-≥50% isocontour may be a biological target volume for escalated radiation dose. Dose escalation to this volume may provide improved tumor control without breaching predefined dose constraints for OARs. The best treatment outcome may be achieved with proton RT for large targets and with SBRT for small targets.« less

  5. Role of computed tomography and [18F] fluorodeoxyglucose positron emission tomography image fusion in conformal radiotherapy of non-small cell lung cancer: a comparison with standard techniques with and without elective nodal irradiation.

    PubMed

    Ceresoli, Giovanni Luca; Cattaneo, Giovanni Mauro; Castellone, Pietro; Rizzos, Giovanna; Landoni, Claudio; Gregorc, Vanesa; Calandrino, Riccardo; Villa, Eugenio; Messa, Cristina; Santoro, Armando; Fazio, Ferruccio

    2007-01-01

    Mediastinal elective node irradiation (ENI) in patients with non-small cell lung cancer candidate to radical radiotherapy is controversial. In this study, the impact of co-registered [18F]fluorodeoxyglucose-positron emission tomography (PET) and standard computed tomography (CT) on definition of target volumes and toxicity parameters was evaluated, by comparison with standard CT-based simulation with and without ENI. CT-based gross tumor volume (GTVCT) was first contoured by a single observer without knowledge of PET results. Subsequently, the integrated GTV based on PET/CT coregistered images (GTVPET/CT) was defined. Each patient was planned according to three different treatment techniques: 1) radiotherapy with ENI using the CT data set alone (ENI plan); 2) radiotherapy without ENI using the CT data set alone (no ENI plan); 3) radiotherapy without ENI using PET/CT fusion data set (PET plan). Rival plans were compared for each patient with respect to dose to the normal tissues (spinal cord, healthy lungs, heart and esophagus). The addition of PET-modified TNM staging in 10/21 enrolled patients (48%); 3/21 were shifted to palliative treatment due to detection of metastatic disease or large tumor not amenable to high-dose radiotherapy. In 7/18 (39%) patients treated with radical radiotherapy, a significant (> or =25%) change in volume between GTVCT and GTVPET/CT was observed. For all the organs at risk, ENI plans had dose values significantly greater than no-ENI and PET plans. Comparing no ENI and PET plans, no statistically significant difference was observed, except for maximum point dose to the spinal cord Dmax, which was significantly lower in PET plans. Notably, even in patients in whom PET/CT planning resulted in an increased GTV, toxicity parameters were fairly acceptable, and always more favorable than with ENI plans. Our study suggests that [18F]-fluorodeoxyglucose-PET should be integrated in no-ENI techniques, as it improves target volume delineation without a major increase in predicted toxicity.

  6. Positron Emission Tomography for Pre-Clinical Sub-Volume Dose Escalation

    NASA Astrophysics Data System (ADS)

    Bass, Christopher Paul

    Purpose: This dissertation focuses on establishment of pre-clinical methods facilitating the use of PET imaging for selective sub-volume dose escalation. Specifically the problems addressed are 1.) The difficulties associated with comparing multiple PET images, 2.) The need for further validation of novel PET tracers before their implementation in dose escalation schema and 3.) The lack of concrete pre-clinical data supporting the use of PET images for guidance of selective sub-volume dose escalations. Methods and materials: In order to compare multiple PET images the confounding effects of mispositioning and anatomical change between imaging sessions needed to be alleviated. To mitigate the effects of these sources of error, deformable image registration was employed. A deformable registration algorithm was selected and the registration error was evaluated via the introduction of external fiducials to the tumor. Once a method for image registration was established, a procedure for validating the use of novel PET tracers with FDG was developed. Nude mice were used to perform in-vivo comparisons of the spatial distributions of two PET tracers, FDG and FLT. The spatial distributions were also compared across two separate tumor lines to determine the effects of tumor morphology on spatial distribution. Finally, the research establishes a method for acquiring pre-clinical data supporting the use of PET for image-guidance in selective dose escalation. Nude mice were imaged using only FDG PET/CT and the resulting images were used to plan PET-guided dose escalations to a 5 mm sub-volume within the tumor that contained the highest PET tracer uptake. These plans were then delivered using the Small Animal Radiation Research Platform (SARRP) and the efficacy of the PET-guided plans was observed. Results and Conclusions: The analysis of deformable registration algorithms revealed that the BRAINSFit B-spline deformable registration algorithm available in SLICER3D was capable of registering small animal PET/CT data sets in less than 5 minutes with an average registration error of .3 mm. The methods used in chapter 3 allowed for the comparison of the spatial distributions of multiple PET tracers imaged at different times. A comparison of FDG and FLT showed that both are positively correlated but that tumor morphology does significantly affect the correlation between the two tracers. An overlap analysis of the high intensity PET regions of FDG and FLT showed that FLT offers additional spatial information to that seen with FDG. In chapter 4 the SARRP allowed for the delivery of planned PET-guided selective dose escalations to a pre-clinical tumor model. This will facilitate future research validating the use of PET for clinical selective dose escalation.

  7. Dental artifacts in the head and neck region: implications for Dixon-based attenuation correction in PET/MR.

    PubMed

    Ladefoged, Claes N; Hansen, Adam E; Keller, Sune H; Fischer, Barbara M; Rasmussen, Jacob H; Law, Ian; Kjær, Andreas; Højgaard, Liselotte; Lauze, Francois; Beyer, Thomas; Andersen, Flemming L

    2015-12-01

    In the absence of CT or traditional transmission sources in combined clinical positron emission tomography/magnetic resonance (PET/MR) systems, MR images are used for MR-based attenuation correction (MR-AC). The susceptibility effects due to metal implants challenge MR-AC in the neck region of patients with dental implants. The purpose of this study was to assess the frequency and magnitude of subsequent PET image distortions following MR-AC. A total of 148 PET/MR patients with clear visual signal voids on the attenuation map in the dental region were included in this study. Patients were injected with [(18)F]-FDG, [(11)C]-PiB, [(18)F]-FET, or [(64)Cu]-DOTATATE. The PET/MR data were acquired over a single-bed position of 25.8 cm covering the head and neck. MR-AC was based on either standard MR-ACDIXON or MR-ACINPAINTED where the susceptibility-induced signal voids were substituted with soft tissue information. Our inpainting algorithm delineates the outer contour of signal voids breaching the anatomical volume using the non-attenuation-corrected PET image and classifies the inner air regions based on an aligned template of likely dental artifact areas. The reconstructed PET images were evaluated visually and quantitatively using regions of interests in reference regions. The volume of the artifacts and the computed relative differences in mean and max standardized uptake value (SUV) between the two PET images are reported. The MR-based volume of the susceptibility-induced signal voids on the MR-AC attenuation maps was between 1.6 and 520.8 mL. The corresponding/resulting bias of the reconstructed tracer distribution was localized mainly in the area of the signal void. The mean and maximum SUVs averaged across all patients increased after inpainting by 52% (± 11%) and 28% (± 11%), respectively, in the corrected region. SUV underestimation decreased with the distance to the signal void and correlated with the volume of the susceptibility artifact on the MR-AC attenuation map. Metallic dental work may cause severe MR signal voids. The resulting PET/MR artifacts may exceed the actual volume of the dental fillings. The subsequent bias in PET is severe in regions in and near the signal voids and may affect the conspicuity of lesions in the mandibular region.

  8. Optimal gross tumor volume definition in lung-sparing intensity modulated radiotherapy for pleural mesothelioma: an in silico study.

    PubMed

    Botticella, Angela; Defraene, Gilles; Nackaerts, Kristiaan; Deroose, Christophe M; Coolen, Johan; Nafteux, Philippe; Peeters, Stephanie; Ricardi, Umberto; De Ruysscher, Dirk

    2016-12-01

    The gross tumor volume (GTV) definition for malignant pleural mesothelioma (MPM) is ill-defined. We therefore investigated which imaging modality is optimal: computed tomography (CT) with intravenous contrast (IVC), positron emission tomography-CT (PET/CT) or magnetic resonance imaging (MRI). Sixteen consecutive patients with untreated stage I-IV MPM were included. Patients with prior pleurodesis were excluded. CT with IVC, 18FDG-PET/CT and MRI (T2 and contrast-enhanced T1) were obtained. CT was rigidly co-registered with PET/CT and with MRI. Three sets of pleural GTVs were defined: GTV CT , GTV CT+PET/CT and GTV CT+MRI . Quantitative and qualitative evaluations of the contoured GTVs were performed. Compared to CT-based GTV definition, PET/CT identified additional tumor sites (defined as either separate nodules or greater extent of a known tumor) in 12/16 patients. Compared to either CT or PET/CT, MRI identified additional tumor sites in 15/16 patients (p = .7). The mean GTV CT , GTV CT+PET/CT and GTV CT+MRI [±standard deviation (SD)] were 630.1 cm 3 (±302.81), 640.23 cm 3 (±302.83) and 660.8 cm 3 (±290.8), respectively. Differences in mean volumes were not significant. The mean Jaccard Index was significantly lower in MRI-based contours versus all the others. As MRI identified additional pleural disease sites in the majority of patients, it may play a role in optimal target volume definition.

  9. F-18-FDG-PET Confined Radiotherapy of Locally Advanced NSCLC With Concomitant Chemotherapy: Results of the PET-PLAN Pilot Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleckenstein, Jochen; Hellwig, Dirk; Kremp, Stephanie

    2011-11-15

    Purpose: The integration of fluoro-deoxy-D-glucose positron emission tomography (FDG-PET) in the process of radiotherapy (RT) planning of locally advanced non-small-cell lung cancer (NSCLC) may improve diagnostic accuracy and minimize interobserver variability compared with target volume definition solely based on computed tomography. Furthermore, irradiating only FDG-PET-positive findings and omitting elective nodal regions may allow dose escalation by treating smaller volumes. The aim of this prospective pilot trial was to evaluate the therapeutic safety of FDG-PET-based RT treatment planning with an autocontour-derived delineation of the primary tumor. Methods and Materials: Eligible patients had Stages II-III inoperable NSCLC, and simultaneous, platinum-based radiochemotherapy wasmore » indicated. FDG-PET and computed tomography acquisitions in RT treatment planning position were coregistered. The clinical target volume (CTV) included the FDG-PET-defined primary tumor, which was autodelineated with a source-to-background algorithm, plus FDG-PET-positive lymph node stations. Limited by dose restrictions for normal tissues, prescribed total doses were in the range of 66.6 to 73.8 Gy. The primary endpoint was the rate of out-of-field isolated nodal recurrences (INR). Results: As per intent to treat, 32 patients received radiochemotherapy. In 15 of these patients, dose escalation above 66.6 Gy was achieved. No Grade 4 toxicities occurred. After a median follow-up time of 27.2 months, the estimated median survival time was 19.3 months. During the observation period, one INR was observed in 23 evaluable patients. Conclusions: FDG-PET-confined target volume definition in radiochemotherapy of NSCLC, based on a contrast-oriented source-to-background algorithm, was associated with a low risk of INR. It might provide improved tumor control because of dose escalation.« less

  10. Clinical values of (18) F-FDG PET/CT in oral cavity cancer with dental artifacts on CT or MRI.

    PubMed

    Hong, Hye Ran; Jin, Soyoung; Koo, Hyun Jung; Roh, Jong-Lyel; Kim, Jae Seung; Cho, Kyung-Ja; Choi, Seung-Ho; Nam, Soon Yuhl; Kim, Sang Yoon

    2014-11-01

    2a To investigate the role of (18) F-FDG PET/CT in tumor staging, extent, and volume measurements in oral cavity squamous cell carcinoma (OSCC) patients with/without dental artifacts on CT or MRI. This study was conducted in 63 consecutive patients with OSCC who received initial workups including (18) F-FDG PET/CT and MRI. The results of the imaging modalities were compared to those of pathology, using McNemar's test and the paired t-test. Thirty-seven patients (59%) had dental or metallic artifacts obscuring primary tumors. (18) F-FDG PET/CT scanning was superior to MRI in tumor staging (weighted κ = 0.870 vs. 0.518, P = 0.004) in patients with dental artifacts. In addition, (18) F-FDG PET/CT scans were more specific than MRI in detecting sublingual gland (P = 0.014) and mouth floor (P = 0.011) involvement. In patients with dental artifacts, there was a significant discrepancy between primary tumor volume (PTV) measured by pathology and MRI (P = 0.018), but not between PTV measured from pathology and (18) F-FDG PET/CT at SUV2.5 (P = 0.245), which showed the highest intraclass correlation coefficient value (0.860). (18) F-FDG PET/CT scans provide accurate tumor staging and volume measurements in OSCC patients with CR/MRI dental artifacts, leading to improved preoperative planning. 2b CONDENSED ABSTRACT This study evaluated the clinical value of (18) F-FDG PET/CT in 63 patients with oral cavity cancers. In 37 (59%) patients with dental artifacts on CT/MRI, (18) F-FDG PET/CT showed superior results compared to MRI in tumor staging and represented the highest intraclass correlation coefficient value to tumor volume determined by pathology. © 2014 Wiley Periodicals, Inc.

  11. Image change detection using paradoxical theory for patient follow-up quantitation and therapy assessment.

    PubMed

    David, Simon; Visvikis, Dimitris; Quellec, Gwénolé; Le Rest, Catherine Cheze; Fernandez, Philippe; Allard, Michèle; Roux, Christian; Hatt, Mathieu

    2012-09-01

    In clinical oncology, positron emission tomography (PET) imaging can be used to assess therapeutic response by quantifying the evolution of semi-quantitative values such as standardized uptake value, early during treatment or after treatment. Current guidelines do not include metabolically active tumor volume (MATV) measurements and derived parameters such as total lesion glycolysis (TLG) to characterize the response to the treatment. To achieve automatic MATV variation estimation during treatment, we propose an approach based on the change detection principle using the recent paradoxical theory, which models imprecision, uncertainty, and conflict between sources. It was applied here simultaneously to pre- and post-treatment PET scans. The proposed method was applied to both simulated and clinical datasets, and its performance was compared to adaptive thresholding applied separately on pre- and post-treatment PET scans. On simulated datasets, the adaptive threshold was associated with significantly higher classification errors than the developed approach. On clinical datasets, the proposed method led to results more consistent with the known partial responder status of these patients. The method requires accurate rigid registration of both scans which can be obtained only in specific body regions and does not explicitly model uptake heterogeneity. In further investigations, the change detection of intra-MATV tracer uptake heterogeneity will be developed by incorporating textural features into the proposed approach.

  12. A new methodological approach for PET implementation in radiotherapy treatment planning.

    PubMed

    Bellan, Elena; Ferretti, Alice; Capirci, Carlo; Grassetto, Gaia; Gava, Marcello; Chondrogiannis, Sotirios; Virdis, Graziella; Marzola, Maria Cristina; Massaro, Arianna; Rubello, Domenico; Nibale, Otello

    2012-05-01

    In this paper, a new methodological approach to using PET information in radiotherapy treatment planning has been discussed. Computed tomography (CT) represents the primary modality to plan personalized radiation treatment, because it provides the basic electron density map for correct dose calculation. If PET scanning is also performed it is typically coregistered with the CT study. This operation can be executed automatically by a hybrid PET/CT scanner or, if the PET and CT imaging sets have been acquired through different equipment, by a dedicated module of the radiotherapy treatment planning system. Both approaches have some disadvantages: in the first case, the bore of a PET/CT system generally used in clinical practice often does not allow the use of certain bulky devices for patient immobilization in radiotherapy, whereas in the second case the result could be affected by limitations in window/level visualization of two different image modalities, and the displayed PET volumes can appear not to be related to the actual uptake into the patient. To overcome these problems, at our centre a specific procedure has been studied and tested in 30 patients, allowing good results of precision in the target contouring to be obtained. The process consists of segmentation of the biological target volume by a dedicated PET/CT console and its export to a dedicated radiotherapy system, where an image registration between the CT images acquired by the PET/CT scanner and a large-bore CT is performed. The planning target volume is contoured only on the large-bore CT and is used for virtual simulation, to individuate permanent skin markers on the patient.

  13. Hypoxic volume evaluated by 18F-fluoromisonidazole positron emission tomography (FMISO-PET) may be a prognostic factor in patients with oral squamous cell carcinoma: preliminary analyses.

    PubMed

    Sato, J; Kitagawa, Y; Watanabe, S; Asaka, T; Ohga, N; Hirata, K; Shiga, T; Satoh, A; Tamaki, N

    2018-05-01

    Tumour hypoxia can be detected by 18 F-fluoromisonidazole positron emission tomography (FMISO-PET). Few studies have assessed the relationships of new PET parameters, including hypoxic volume (HV), metabolic tumour volume (MTV), and total lesion glycolysis (TLG), with 5-year survival of patients treated surgically for oral squamous cell carcinoma (OSCC). This study evaluated the relationships between these PET parameters and 5-year survival in OSCC patients. Twenty-three patients (age 42-84 years; 15 male, eight female) with OSCC underwent FMISO- and 18 F-fluoro-2-deoxyglucose (FDG)-PET computed tomography before surgery. All of them underwent radical surgery and were followed up for more than 5 years. The FDG-PET maximum standardized uptake value (SUV max ), HV, MTV, and TLG were measured. The ability of PET parameters to predict disease-free survival (DFS) and loco-regional recurrence (LR) was evaluated using receiver operating characteristic curve analysis. During the follow-up period, five of the 23 patients (22%) died and six (26%) experienced LR. Although FDG-PET SUV max was not significantly associated with DFS or LR, HV correlated significantly with both DFS and LR. TLG, but not MTV, was significantly associated with DFS; however neither MTV nor TLG was related significantly to LR. In conclusion, tumour HV may predict outcomes in patients with OSCC. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  14. Metabolic response of rectal cancer assessed by 18-FDG PET following chemoradiotherapy is prognostic for patient outcome.

    PubMed

    Yeung, J M C; Kalff, V; Hicks, R J; Drummond, E; Link, E; Taouk, Y; Michael, M; Ngan, S; Lynch, A C; Heriot, A G

    2011-05-01

    Complete pathological response has proven prognostic benefits in patients with locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy. Sequential 18-FDG PET may be an early surrogate for pathological response to chemoradiotherapy. The aim of this study was to identify whether metabolic response measured by FDG PET following chemoradiotherapy is prognostic for tumor recurrence and survival following neoadjuvant therapy and surgical treatment for primary rectal cancer. Patients with primary rectal cancer treated by long-course neoadjuvant chemoradiotherapy followed by surgery had FDG PET performed before and 4 weeks after treatment, before surgical resection was performed. Retrospective chart review was undertaken for patient demographics, tumor staging, recurrence rates, and survival. : Between 2000 and 2007, 78 patients were identified (53 male, 25 female; median age, 64 y). After chemoradiotherapy, 37 patients (47%) had a complete metabolic response, 26 (33%) had a partial metabolic response, and 14 (18%) had no metabolic response as assessed by FDG PET (1 patient had missing data). However, only 4 patients (5%) had a complete pathological response. The median postoperative follow-up period was 3.1 years during which 14 patients (19%) had a recurrence: 2 local, 9 distant, and 3 with both local and distant. The estimated percentage without recurrence was 77% at 5 years (95% CI 66%-89%). There was an inverse relationship between FDG PET metabolic response and the incidence of recurrence within 3 years (P = .04). Kaplan-Meier analysis of FDG PET metabolic response and overall survival demonstrated a significant difference in survival among patients in the 3 arms: complete, partial, and no metabolic response (P = .04); the patients with complete metabolic response had the best prognosis. Complete or partial metabolic response on PET following neoadjuvant chemoradiotherapy and surgery predicts a lower local recurrence rate and improved survival compared with patients with no metabolic response. Metabolic response may be used to stratify prognosis in patients with rectal cancer.

  15. NiftyPET: a High-throughput Software Platform for High Quantitative Accuracy and Precision PET Imaging and Analysis.

    PubMed

    Markiewicz, Pawel J; Ehrhardt, Matthias J; Erlandsson, Kjell; Noonan, Philip J; Barnes, Anna; Schott, Jonathan M; Atkinson, David; Arridge, Simon R; Hutton, Brian F; Ourselin, Sebastien

    2018-01-01

    We present a standalone, scalable and high-throughput software platform for PET image reconstruction and analysis. We focus on high fidelity modelling of the acquisition processes to provide high accuracy and precision quantitative imaging, especially for large axial field of view scanners. All the core routines are implemented using parallel computing available from within the Python package NiftyPET, enabling easy access, manipulation and visualisation of data at any processing stage. The pipeline of the platform starts from MR and raw PET input data and is divided into the following processing stages: (1) list-mode data processing; (2) accurate attenuation coefficient map generation; (3) detector normalisation; (4) exact forward and back projection between sinogram and image space; (5) estimation of reduced-variance random events; (6) high accuracy fully 3D estimation of scatter events; (7) voxel-based partial volume correction; (8) region- and voxel-level image analysis. We demonstrate the advantages of this platform using an amyloid brain scan where all the processing is executed from a single and uniform computational environment in Python. The high accuracy acquisition modelling is achieved through span-1 (no axial compression) ray tracing for true, random and scatter events. Furthermore, the platform offers uncertainty estimation of any image derived statistic to facilitate robust tracking of subtle physiological changes in longitudinal studies. The platform also supports the development of new reconstruction and analysis algorithms through restricting the axial field of view to any set of rings covering a region of interest and thus performing fully 3D reconstruction and corrections using real data significantly faster. All the software is available as open source with the accompanying wiki-page and test data.

  16. Parametrically defined cerebral blood vessels as non-invasive blood input functions for brain PET studies

    NASA Astrophysics Data System (ADS)

    Asselin, Marie-Claude; Cunningham, Vincent J.; Amano, Shigeko; Gunn, Roger N.; Nahmias, Claude

    2004-03-01

    A non-invasive alternative to arterial blood sampling for the generation of a blood input function for brain positron emission tomography (PET) studies is presented. The method aims to extract the dimensions of the blood vessel directly from PET images and to simultaneously correct the radioactivity concentration for partial volume and spillover. This involves simulation of the tomographic imaging process to generate images of different blood vessel and background geometries and selecting the one that best fits, in a least-squares sense, the acquired PET image. A phantom experiment was conducted to validate the method which was then applied to eight subjects injected with 6-[18F]fluoro-L-DOPA and one subject injected with [11C]CO-labelled red blood cells. In the phantom study, the diameter of syringes filled with an 11C solution and inserted into a water-filled cylinder were estimated with an accuracy of half a pixel (1 mm). The radioactivity concentration was recovered to 100 ± 4% in the 8.7 mm diameter syringe, the one that most closely approximated the superior sagittal sinus. In the human studies, the method systematically overestimated the calibre of the superior sagittal sinus by 2-3 mm compared to measurements made in magnetic resonance venograms on the same subjects. Sources of discrepancies related to the anatomy of the blood vessel were found not to be fundamental limitations to the applicability of the method to human subjects. This method has the potential to provide accurate quantification of blood radioactivity concentration from PET images without the need for blood samples, corrections for delay and dispersion, co-registered anatomical images, or manually defined regions of interest.

  17. SU-E-I-88: Realistic Pathological Simulations of the NCAT and Zubal Anthropomorphic Models, Based on Clinical PET/CT Data.

    PubMed

    Papadimitroulas, P; Loudos, G; Le Maitre, A; Efthimiou, N; Visvikis, D; Nikiforidis, G; Kagadis, G C

    2012-06-01

    In the present study a patient-specific dataset of realistic PET simulations was created, taking into account the variability of clinical oncology data. Tumor variability was tested in the simulated results. A comparison of the produced simulated data was performed to clinical PET/CT data, for the validation and the evaluation of the procedure. Clinical PET/CT data of oncology patients were used as the basis of the simulated variability inserting patient-specific characteristics in the NCAT and the Zubal anthropomorphic phantoms. GATE Monte Carlo toolkit was used for simulating a commercial PET scanner. The standard computational anthropomorphic phantoms were adapted to the CT data (organ shapes), using a fitting algorithm. The activity map was derived from PET images. Patient tumors were segmented and inserted in the phantom, using different activity distributions. The produced simulated data were reconstructed using the STIR opensource software and compared to the original clinical ones. The accuracy of the procedure was tested in four different oncology cases. Each pathological situation was illustrated simulating a) a healthy body, b) insertion of the clinical tumor with homogenous activity, and c) insertion of the clinical tumor with variable activity (voxel-by-voxel) based on the clinical PET data. The accuracy of the presented dataset was compared to the original PET/CT data. Partial Volume Correction (PVC) was also applied in the simulated data. In this study patient-specific characteristics were used in computational anthropomorphic models for simulating realistic pathological patients. Voxel-by-voxel activity distribution with PVC within the tumor gives the most accurate results. Radiotherapy applications can utilize the benefits of the accurate realistic imaging simulations, using the anatomicaland biological information of each patient. Further work will incorporate the development of analytical anthropomorphic models with motion and cardiac correction, combined with pathological patients to achieve high accuracy in tumor imaging. This research was supported by the Joint Research and Technology Program between Greece and France; 2009-2011 (protocol ID: 09FR103). © 2012 American Association of Physicists in Medicine.

  18. Calculation of left ventricular volumes and ejection fraction from dynamic cardiac-gated 15O-water PET/CT: 5D-PET.

    PubMed

    Nordström, Jonny; Kero, Tanja; Harms, Hendrik Johannes; Widström, Charles; Flachskampf, Frank A; Sörensen, Jens; Lubberink, Mark

    2017-11-14

    Quantitative measurement of myocardial blood flow (MBF) is of increasing interest in the clinical assessment of patients with suspected coronary artery disease (CAD). 15 O-water positron emission tomography (PET) is considered the gold standard for non-invasive MBF measurements. However, calculation of left ventricular (LV) volumes and ejection fraction (EF) is not possible from standard 15 O-water uptake images. The purpose of the present work was to investigate the possibility of calculating LV volumes and LVEF from cardiac-gated parametric blood volume (V B ) 15 O-water images and from first pass (FP) images. Sixteen patients with mitral or aortic regurgitation underwent an eight-gate dynamic cardiac-gated 15 O-water PET/CT scan and cardiac MRI. V B and FP images were generated for each gate. Calculations of end-systolic volume (ESV), end-diastolic volume (EDV), stroke volume (SV) and LVEF were performed with automatic segmentation of V B and FP images, using commercially available software. LV volumes and LVEF were calculated with surface-, count-, and volume-based methods, and the results were compared with gold standard MRI. Using V B images, high correlations between PET and MRI ESV (r = 0.89, p < 0.001), EDV (r = 0.85, p < 0.001), SV (r = 0.74, p = 0.006) and LVEF (r = 0.72, p = 0.008) were found for the volume-based method. Correlations for FP images were slightly, but not significantly, lower than those for V B images when compared to MRI. Surface- and count-based methods showed no significant difference compared with the volume-based correlations with MRI. The volume-based method showed the best agreement with MRI with no significant difference on average for EDV and LVEF but with an overestimation of values for ESV (14%, p = 0.005) and SV (18%, p = 0.004) when using V B images. Using FP images, none of the parameters showed a significant difference from MRI. Inter-operator repeatability was excellent for all parameters (ICC > 0.86, p < 0.001). Calculation of LV volumes and LVEF from dynamic 15 O-water PET is feasible and shows good correlation with MRI. However, the analysis method is laborious, and future work is needed for more automation to make the method more easily applicable in a clinical setting.

  19. Image Reconstruction for a Partially Collimated Whole Body PET Scanner

    PubMed Central

    Alessio, Adam M.; Schmitz, Ruth E.; MacDonald, Lawrence R.; Wollenweber, Scott D.; Stearns, Charles W.; Ross, Steven G.; Ganin, Alex; Lewellen, Thomas K.; Kinahan, Paul E.

    2008-01-01

    Partially collimated PET systems have less collimation than conventional 2-D systems and have been shown to offer count rate improvements over 2-D and 3-D systems. Despite this potential, previous efforts have not established image-based improvements with partial collimation and have not customized the reconstruction method for partially collimated data. This work presents an image reconstruction method tailored for partially collimated data. Simulated and measured sensitivity patterns are presented and provide a basis for modification of a fully 3-D reconstruction technique. The proposed method uses a measured normalization correction term to account for the unique sensitivity to true events. This work also proposes a modified scatter correction based on simulated data. Measured image quality data supports the use of the normalization correction term for true events, and suggests that the modified scatter correction is unnecessary. PMID:19096731

  20. Image Reconstruction for a Partially Collimated Whole Body PET Scanner.

    PubMed

    Alessio, Adam M; Schmitz, Ruth E; Macdonald, Lawrence R; Wollenweber, Scott D; Stearns, Charles W; Ross, Steven G; Ganin, Alex; Lewellen, Thomas K; Kinahan, Paul E

    2008-06-01

    Partially collimated PET systems have less collimation than conventional 2-D systems and have been shown to offer count rate improvements over 2-D and 3-D systems. Despite this potential, previous efforts have not established image-based improvements with partial collimation and have not customized the reconstruction method for partially collimated data. This work presents an image reconstruction method tailored for partially collimated data. Simulated and measured sensitivity patterns are presented and provide a basis for modification of a fully 3-D reconstruction technique. The proposed method uses a measured normalization correction term to account for the unique sensitivity to true events. This work also proposes a modified scatter correction based on simulated data. Measured image quality data supports the use of the normalization correction term for true events, and suggests that the modified scatter correction is unnecessary.

  1. Multi-observation PET image analysis for patient follow-up quantitation and therapy assessment

    NASA Astrophysics Data System (ADS)

    David, S.; Visvikis, D.; Roux, C.; Hatt, M.

    2011-09-01

    In positron emission tomography (PET) imaging, an early therapeutic response is usually characterized by variations of semi-quantitative parameters restricted to maximum SUV measured in PET scans during the treatment. Such measurements do not reflect overall tumor volume and radiotracer uptake variations. The proposed approach is based on multi-observation image analysis for merging several PET acquisitions to assess tumor metabolic volume and uptake variations. The fusion algorithm is based on iterative estimation using a stochastic expectation maximization (SEM) algorithm. The proposed method was applied to simulated and clinical follow-up PET images. We compared the multi-observation fusion performance to threshold-based methods, proposed for the assessment of the therapeutic response based on functional volumes. On simulated datasets the adaptive threshold applied independently on both images led to higher errors than the ASEM fusion and on clinical datasets it failed to provide coherent measurements for four patients out of seven due to aberrant delineations. The ASEM method demonstrated improved and more robust estimation of the evaluation leading to more pertinent measurements. Future work will consist in extending the methodology and applying it to clinical multi-tracer datasets in order to evaluate its potential impact on the biological tumor volume definition for radiotherapy applications.

  2. Regional tau deposition and subregion atrophy of medial temporal structures in early Alzheimer's disease: A combined positron emission tomography/magnetic resonance imaging study.

    PubMed

    Sone, Daichi; Imabayashi, Etsuko; Maikusa, Norihide; Okamura, Nobuyuki; Furumoto, Shozo; Kudo, Yukitsuka; Ogawa, Masayo; Takano, Harumasa; Yokoi, Yuma; Sakata, Masuhiro; Tsukamoto, Tadashi; Kato, Koichi; Matsuda, Hiroshi

    2017-01-01

    Molecular imaging and selective hippocampal subfield atrophy are a focus of recent Alzheimer's disease (AD) research. Here, we investigated correlations between molecular imaging and hippocampal subfields in early AD. We investigated 18 patients with early AD and 18 healthy control subjects using 11 C-Pittsburgh compound-B (PIB) positron emission tomography (PET) and 18 F-THK5351 PET and automatic segmentation of hippocampal subfields with high-resolution T2-weighted magnetic resonance imaging. The PET images were normalized and underwent voxelwise regression analysis with each subregion volumes using SPM12. As for 18 F-THK5351 PET, the bilateral perirhinal cortex volumes were significantly associated with the ipsilateral or bilateral temporal lobar uptakes, whereas hippocampal subfields showed no correlations. 11 C-PIB PET showed relatively broad negative correlation with the right cornu ammonis 3 volumes. Regional tau deposition was correlated with extrahippocampal subregional atrophy and not with hippocampal subfields, possibly reflecting different underlying mechanisms of atrophy in early AD. Amyloid might be associated with right cornu ammonis 3 atrophy.

  3. Intra-lesional spatial correlation of static and dynamic FET-PET parameters with MRI-based cerebral blood volume in patients with untreated glioma.

    PubMed

    Göttler, Jens; Lukas, Mathias; Kluge, Anne; Kaczmarz, Stephan; Gempt, Jens; Ringel, Florian; Mustafa, Mona; Meyer, Bernhard; Zimmer, Claus; Schwaiger, Markus; Förster, Stefan; Preibisch, Christine; Pyka, Thomas

    2017-03-01

    18 F-fluorethyltyrosine-(FET)-PET and MRI-based relative cerebral blood volume (rCBV) have both been used to characterize gliomas. Recently, inter-individual correlations between peak static FET-uptake and rCBV have been reported. Herein, we assess the local intra-lesional relation between FET-PET parameters and rCBV. Thirty untreated glioma patients (27 high-grade) underwent simultaneous PET/MRI on a 3 T hybrid scanner obtaining structural and dynamic susceptibility contrast sequences. Static FET-uptake and dynamic FET-slope were correlated with rCBV within tumour hotspots across patients and intra-lesionally using a mixed-effects model to account for inter-individual variation. Furthermore, maximal congruency of tumour volumes defined by FET-uptake and rCBV was determined. While the inter-individual relationship between peak static FET-uptake and rCBV could be confirmed, our intra-lesional, voxel-wise analysis revealed significant positive correlations (median r = 0.374, p < 0.0001). Similarly, significant inter- and intra-individual correlations were observed between FET-slope and rCBV. However, rCBV explained only 12% of the static and 5% of the dynamic FET-PET variance and maximal overlap of respective tumour volumes was 37% on average. Our results show that the relation between peak values of MR-based rCBV and static FET-uptake can also be observed intra-individually on a voxel basis and also applies to a dynamic FET parameter, possibly determining hotspots of higher biological malignancy. However, just a small part of the FET-PET signal variance is explained by rCBV and tumour volumes determined by the two modalities showed only moderate overlap. These findings indicate that FET-PET and MR-based rCBV provide both congruent and complimentary information on glioma biology.

  4. Feasibility of a semi-automated contrast-oriented algorithm for tumor segmentation in retrospectively gated PET images: phantom and clinical validation.

    PubMed

    Carles, Montserrat; Fechter, Tobias; Nemer, Ursula; Nanko, Norbert; Mix, Michael; Nestle, Ursula; Schaefer, Andrea

    2015-12-21

    PET/CT plays an important role in radiotherapy planning for lung tumors. Several segmentation algorithms have been proposed for PET tumor segmentation. However, most of them do not take into account respiratory motion and are not well validated. The aim of this work was to evaluate a semi-automated contrast-oriented algorithm (COA) for PET tumor segmentation adapted to retrospectively gated (4D) images. The evaluation involved a wide set of 4D-PET/CT acquisitions of dynamic experimental phantoms and lung cancer patients. In addition, segmentation accuracy of 4D-COA was compared with four other state-of-the-art algorithms. In phantom evaluation, the physical properties of the objects defined the gold standard. In clinical evaluation, the ground truth was estimated by the STAPLE (Simultaneous Truth and Performance Level Estimation) consensus of three manual PET contours by experts. Algorithm evaluation with phantoms resulted in: (i) no statistically significant diameter differences for different targets and movements (Δφ = 0.3 ± 1.6 mm); (ii) reproducibility for heterogeneous and irregular targets independent of user initial interaction and (iii) good segmentation agreement for irregular targets compared to manual CT delineation in terms of Dice Similarity Coefficient (DSC = 0.66 ± 0.04), Positive Predictive Value (PPV  = 0.81 ± 0.06) and Sensitivity (Sen. = 0.49 ± 0.05). In clinical evaluation, the segmented volume was in reasonable agreement with the consensus volume (difference in volume (%Vol) = 40 ± 30, DSC = 0.71 ± 0.07 and PPV = 0.90 ± 0.13). High accuracy in target tracking position (ΔME) was obtained for experimental and clinical data (ΔME(exp) = 0 ± 3 mm; ΔME(clin) 0.3 ± 1.4 mm). In the comparison with other lung segmentation methods, 4D-COA has shown the highest volume accuracy in both experimental and clinical data. In conclusion, the accuracy in volume delineation, position tracking and its robustness on highly irregular target movements, make this algorithm a useful tool for 4D-PET based volume definition for radiotherapy planning of lung cancer and may help to improve the reproducibility in PET quantification for therapy response assessment and prognosis.

  5. Feasibility of a semi-automated contrast-oriented algorithm for tumor segmentation in retrospectively gated PET images: phantom and clinical validation

    NASA Astrophysics Data System (ADS)

    Carles, Montserrat; Fechter, Tobias; Nemer, Ursula; Nanko, Norbert; Mix, Michael; Nestle, Ursula; Schaefer, Andrea

    2015-12-01

    PET/CT plays an important role in radiotherapy planning for lung tumors. Several segmentation algorithms have been proposed for PET tumor segmentation. However, most of them do not take into account respiratory motion and are not well validated. The aim of this work was to evaluate a semi-automated contrast-oriented algorithm (COA) for PET tumor segmentation adapted to retrospectively gated (4D) images. The evaluation involved a wide set of 4D-PET/CT acquisitions of dynamic experimental phantoms and lung cancer patients. In addition, segmentation accuracy of 4D-COA was compared with four other state-of-the-art algorithms. In phantom evaluation, the physical properties of the objects defined the gold standard. In clinical evaluation, the ground truth was estimated by the STAPLE (Simultaneous Truth and Performance Level Estimation) consensus of three manual PET contours by experts. Algorithm evaluation with phantoms resulted in: (i) no statistically significant diameter differences for different targets and movements (Δ φ =0.3+/- 1.6 mm); (ii) reproducibility for heterogeneous and irregular targets independent of user initial interaction and (iii) good segmentation agreement for irregular targets compared to manual CT delineation in terms of Dice Similarity Coefficient (DSC  =  0.66+/- 0.04 ), Positive Predictive Value (PPV  =  0.81+/- 0.06 ) and Sensitivity (Sen.  =  0.49+/- 0.05 ). In clinical evaluation, the segmented volume was in reasonable agreement with the consensus volume (difference in volume (%Vol)  =  40+/- 30 , DSC  =  0.71+/- 0.07 and PPV  =  0.90+/- 0.13 ). High accuracy in target tracking position (Δ ME) was obtained for experimental and clinical data (Δ ME{{}\\text{exp}}=0+/- 3 mm; Δ ME{{}\\text{clin}}=0.3+/- 1.4 mm). In the comparison with other lung segmentation methods, 4D-COA has shown the highest volume accuracy in both experimental and clinical data. In conclusion, the accuracy in volume delineation, position tracking and its robustness on highly irregular target movements, make this algorithm a useful tool for 4D-PET based volume definition for radiotherapy planning of lung cancer and may help to improve the reproducibility in PET quantification for therapy response assessment and prognosis.

  6. Experimental investigation of factors affecting the absolute recovery coefficients in iodine-124 PET lesion imaging

    NASA Astrophysics Data System (ADS)

    Jentzen, Walter

    2010-04-01

    The use of recovery coefficients (RCs) in 124I PET lesion imaging is a simple method to correct the imaged activity concentration (AC) primarily for the partial-volume effect and, to a minor extent, for the prompt gamma coincidence effect. The aim of this phantom study was to experimentally investigate a number of various factors affecting the 124I RCs. Three RC-based correction approaches were considered. These approaches differ with respect to the volume of interest (VOI) drawn, which determines the imaged AC and the RCs: a single voxel VOI containing the maximum value (maximum RC), a spherical VOI with a diameter of the scanner resolution (resolution RC) and a VOI equaling the physical object volume (isovolume RC). Measurements were performed using mainly a stand-alone PET scanner (EXACT HR+) and a latest-generation PET/CT scanner (BIOGRAPH mCT). The RCs were determined using a cylindrical phantom containing spheres or rotational ellipsoids and were derived from images acquired with a reference acquisition protocol. For each type of RC, the influence of the following factors on the RC was assessed: object shape, background activity spill in and iterative image reconstruction parameters. To evaluate the robustness of the RC-based correction approaches, the percentage deviation between RC-corrected and true ACs was determined from images acquired with a clinical acquisition protocol of different AC regimes. The observed results of the shape and spill-in effects were compared with simulation data derived from a convolution-based model. The study demonstrated that the shape effect was negligible and, therefore, was in agreement with theoretical expectations. In contradiction to the simulation results, the observed spill-in effect was unexpectedly small. To avoid variations in the determination of RCs due to reconstruction parameter changes, image reconstruction with a pixel length of about one-third or less of the scanner resolution and an OSEM 1 × 32 algorithm or one with somewhat higher number of effective iterations are recommended. Using the clinical acquisition protocol, the phantom study indicated that the resolution- or isovolume-based recovery-correction approaches appeared to be more appropriate to recover the ACs from patient data; however, the application of the three RC-based correction approaches to small lesions containing low ACs was, in particular, associated with large underestimations. The phantom study had several limitations, which were discussed in detail.

  7. SU-F-R-28: Correction of FCh-PET Bladder Uptake Using Virtual Sinograms and Investigation of Its Impact On the Quantification of Prostate Textural Characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laberge, S; Beauregard, J; Archambault, L

    2016-06-15

    Purpose: Textural biomarkers as a tool for quantifying intratumoral heterogeneity hold great promise for diagnosis and early assessment of treatment response in prostate cancer. However, spill-in counts from the bladder uptake are suspected to have an impact on the textural measurements of the prostate volume. This work proposes a correction method for the FCh-PET bladder uptake and investigates its impact on intraprostatic textural properties. Methods: Two patients with PC received pre-treatment dynamic FCh-PET scans reconstructed at four time points (interval: 2 min), for which prostate and bladder contours were obtained. Projection bins affected by bladder uptake were determined by forward-projection.more » For each time point and axial position, virtual sinograms were obtained and affected bins replaced by a weighted combination of original values and values interpolated using cubic spline from non-affected bins of the current and adjacent projection angles. The process was optimized using a genetic algorithm in terms of minimization of the root-mean-square error (RMSE) within the bladder between the corrected dynamic time point volume and a reference initial uptake volume. Finally, the impact of the bladder uptake correction on the prostate region was investigated using two standard SUV metrics (1) and three texture metrics (2): 1) SUVmax, SUVmean; 2) Contrast, Homogeneity, Coarseness. Results: Without bladder uptake correction, SUVmax and SUVmean were on average overestimated in the prostate by 0%, 0%, 33.2%, 51.2%, and 3.6%, 6.0%, 2.9%, 3.2%, for each time point respectively. Contrast varied by −9.1%, −6.7%, +40.4%, +107.7%, and Homogeneity and Coarseness by +4.5%, +1.8%, −8.8%, −14.8% and +1.0%, +0.5%, −9.5%, +0.9%. Conclusion: We proposed a method for FCh-PET bladder uptake correction and showed an impact on the quantification of the prostate signal. This method achieved a large reduction of intra-prostatic SUVmax while minimizing the impact on SUVmean. Further investigation is necessary to interpret changes in textural features. SL acknowledges partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council (Grant number: 432290).« less

  8. A new integrated dual time-point amyloid PET/MRI data analysis method.

    PubMed

    Cecchin, Diego; Barthel, Henryk; Poggiali, Davide; Cagnin, Annachiara; Tiepolt, Solveig; Zucchetta, Pietro; Turco, Paolo; Gallo, Paolo; Frigo, Anna Chiara; Sabri, Osama; Bui, Franco

    2017-11-01

    In the initial evaluation of patients with suspected dementia and Alzheimer's disease, there is no consensus on how to perform semiquantification of amyloid in such a way that it: (1) facilitates visual qualitative interpretation, (2) takes the kinetic behaviour of the tracer into consideration particularly with regard to at least partially correcting for blood flow dependence, (3) analyses the amyloid load based on accurate parcellation of cortical and subcortical areas, (4) includes partial volume effect correction (PVEC), (5) includes MRI-derived topographical indexes, (6) enables application to PET/MRI images and PET/CT images with separately acquired MR images, and (7) allows automation. A method with all of these characteristics was retrospectively tested in 86 subjects who underwent amyloid ( 18 F-florbetaben) PET/MRI in a clinical setting (using images acquired 90-110 min after injection, 53 were classified visually as amyloid-negative and 33 as amyloid-positive). Early images after tracer administration were acquired between 0 and 10 min after injection, and later images were acquired between 90 and 110 min after injection. PVEC of the PET data was carried out using the geometric transfer matrix method. Parametric images and some regional output parameters, including two innovative "dual time-point" indexes, were obtained. Subjects classified visually as amyloid-positive showed a sparse tracer uptake in the primary sensory, motor and visual areas in accordance with the isocortical stage of the topographic distribution of the amyloid plaque (Braak stages V/VI). In patients classified visually as amyloid-negative, the method revealed detectable levels of tracer uptake in the basal portions of the frontal and temporal lobes, areas that are known to be sites of early deposition of amyloid plaques that probably represented early accumulation (Braak stage A) that is typical of normal ageing. There was a strong correlation between age and the indexes of the new dual time-point amyloid imaging method in amyloid-negative patients. The method can be considered a valuable tool in both routine clinical practice and in the research setting as it will standardize data regarding amyloid deposition. It could potentially also be used to identify early amyloid plaque deposition in younger subjects in whom treatment could theoretically be more effective.

  9. Using compressive sensing to recover images from PET scanners with partial detector rings.

    PubMed

    Valiollahzadeh, SeyyedMajid; Clark, John W; Mawlawi, Osama

    2015-01-01

    Most positron emission tomography/computed tomography (PET/CT) scanners consist of tightly packed discrete detector rings to improve scanner efficiency. The authors' aim was to use compressive sensing (CS) techniques in PET imaging to investigate the possibility of decreasing the number of detector elements per ring (introducing gaps) while maintaining image quality. A CS model based on a combination of gradient magnitude and wavelet domains (wavelet-TV) was developed to recover missing observations in PET data acquisition. The model was designed to minimize the total variation (TV) and L1-norm of wavelet coefficients while constrained by the partially observed data. The CS model also incorporated a Poisson noise term that modeled the observed noise while suppressing its contribution by penalizing the Poisson log likelihood function. Three experiments were performed to evaluate the proposed CS recovery algorithm: a simulation study, a phantom study, and six patient studies. The simulation dataset comprised six disks of various sizes in a uniform background with an activity concentration of 5:1. The simulated image was multiplied by the system matrix to obtain the corresponding sinogram and then Poisson noise was added. The resultant sinogram was masked to create the effect of partial detector removal and then the proposed CS algorithm was applied to recover the missing PET data. In addition, different levels of noise were simulated to assess the performance of the proposed algorithm. For the phantom study, an IEC phantom with six internal spheres each filled with F-18 at an activity-to-background ratio of 10:1 was used. The phantom was imaged twice on a RX PET/CT scanner: once with all detectors operational (baseline) and once with four detector blocks (11%) turned off at each of 0 ˚, 90 ˚, 180 ˚, and 270° (partially sampled). The partially acquired sinograms were then recovered using the proposed algorithm. For the third test, PET images from six patient studies were investigated using the same strategy of the phantom study. The recovered images using WTV and TV as well as the partially sampled images from all three experiments were then compared with the fully sampled images (the baseline). Comparisons were done by calculating the mean error (%bias), root mean square error (RMSE), contrast recovery (CR), and SNR of activity concentration in regions of interest drawn in the background as well as the disks, spheres, and lesions. For the simulation study, the mean error, RMSE, and CR for the WTV (TV) recovered images were 0.26% (0.48%), 2.6% (2.9%), 97% (96%), respectively, when compared to baseline. For the partially sampled images, these results were 22.5%, 45.9%, and 64%, respectively. For the simulation study, the average SNR for the baseline was 41.7 while for WTV (TV), recovered image was 44.2 (44.0). The phantom study showed similar trends with 5.4% (18.2%), 15.6% (18.8%), and 78% (60%), respectively, for the WTV (TV) images and 33%, 34.3%, and 69% for the partially sampled images. For the phantom study, the average SNR for the baseline was 14.7 while for WTV (TV) recovered image was 13.7 (11.9). Finally, the average of these values for the six patient studies for the WTV-recovered, TV, and partially sampled images was 1%, 7.2%, 92% and 1.3%, 15.1%, 87%, and 27%, 25.8%, 45%, respectively. CS with WTV is capable of recovering PET images with good quantitative accuracy from partially sampled data. Such an approach can be used to potentially reduce the cost of scanners while maintaining good image quality.

  10. Using compressive sensing to recover images from PET scanners with partial detector rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valiollahzadeh, SeyyedMajid, E-mail: sv4@rice.edu; Clark, John W.; Mawlawi, Osama

    2015-01-15

    Purpose: Most positron emission tomography/computed tomography (PET/CT) scanners consist of tightly packed discrete detector rings to improve scanner efficiency. The authors’ aim was to use compressive sensing (CS) techniques in PET imaging to investigate the possibility of decreasing the number of detector elements per ring (introducing gaps) while maintaining image quality. Methods: A CS model based on a combination of gradient magnitude and wavelet domains (wavelet-TV) was developed to recover missing observations in PET data acquisition. The model was designed to minimize the total variation (TV) and L1-norm of wavelet coefficients while constrained by the partially observed data. The CSmore » model also incorporated a Poisson noise term that modeled the observed noise while suppressing its contribution by penalizing the Poisson log likelihood function. Three experiments were performed to evaluate the proposed CS recovery algorithm: a simulation study, a phantom study, and six patient studies. The simulation dataset comprised six disks of various sizes in a uniform background with an activity concentration of 5:1. The simulated image was multiplied by the system matrix to obtain the corresponding sinogram and then Poisson noise was added. The resultant sinogram was masked to create the effect of partial detector removal and then the proposed CS algorithm was applied to recover the missing PET data. In addition, different levels of noise were simulated to assess the performance of the proposed algorithm. For the phantom study, an IEC phantom with six internal spheres each filled with F-18 at an activity-to-background ratio of 10:1 was used. The phantom was imaged twice on a RX PET/CT scanner: once with all detectors operational (baseline) and once with four detector blocks (11%) turned off at each of 0 °, 90 °, 180 °, and 270° (partially sampled). The partially acquired sinograms were then recovered using the proposed algorithm. For the third test, PET images from six patient studies were investigated using the same strategy of the phantom study. The recovered images using WTV and TV as well as the partially sampled images from all three experiments were then compared with the fully sampled images (the baseline). Comparisons were done by calculating the mean error (%bias), root mean square error (RMSE), contrast recovery (CR), and SNR of activity concentration in regions of interest drawn in the background as well as the disks, spheres, and lesions. Results: For the simulation study, the mean error, RMSE, and CR for the WTV (TV) recovered images were 0.26% (0.48%), 2.6% (2.9%), 97% (96%), respectively, when compared to baseline. For the partially sampled images, these results were 22.5%, 45.9%, and 64%, respectively. For the simulation study, the average SNR for the baseline was 41.7 while for WTV (TV), recovered image was 44.2 (44.0). The phantom study showed similar trends with 5.4% (18.2%), 15.6% (18.8%), and 78% (60%), respectively, for the WTV (TV) images and 33%, 34.3%, and 69% for the partially sampled images. For the phantom study, the average SNR for the baseline was 14.7 while for WTV (TV) recovered image was 13.7 (11.9). Finally, the average of these values for the six patient studies for the WTV-recovered, TV, and partially sampled images was 1%, 7.2%, 92% and 1.3%, 15.1%, 87%, and 27%, 25.8%, 45%, respectively. Conclusions: CS with WTV is capable of recovering PET images with good quantitative accuracy from partially sampled data. Such an approach can be used to potentially reduce the cost of scanners while maintaining good image quality.« less

  11. A fully automatic approach for multimodal PET and MR image segmentation in gamma knife treatment planning.

    PubMed

    Rundo, Leonardo; Stefano, Alessandro; Militello, Carmelo; Russo, Giorgio; Sabini, Maria Gabriella; D'Arrigo, Corrado; Marletta, Francesco; Ippolito, Massimo; Mauri, Giancarlo; Vitabile, Salvatore; Gilardi, Maria Carla

    2017-06-01

    Nowadays, clinical practice in Gamma Knife treatments is generally based on MRI anatomical information alone. However, the joint use of MRI and PET images can be useful for considering both anatomical and metabolic information about the lesion to be treated. In this paper we present a co-segmentation method to integrate the segmented Biological Target Volume (BTV), using [ 11 C]-Methionine-PET (MET-PET) images, and the segmented Gross Target Volume (GTV), on the respective co-registered MR images. The resulting volume gives enhanced brain tumor information to be used in stereotactic neuro-radiosurgery treatment planning. GTV often does not match entirely with BTV, which provides metabolic information about brain lesions. For this reason, PET imaging is valuable and it could be used to provide complementary information useful for treatment planning. In this way, BTV can be used to modify GTV, enhancing Clinical Target Volume (CTV) delineation. A novel fully automatic multimodal PET/MRI segmentation method for Leksell Gamma Knife ® treatments is proposed. This approach improves and combines two computer-assisted and operator-independent single modality methods, previously developed and validated, to segment BTV and GTV from PET and MR images, respectively. In addition, the GTV is utilized to combine the superior contrast of PET images with the higher spatial resolution of MRI, obtaining a new BTV, called BTV MRI . A total of 19 brain metastatic tumors, undergone stereotactic neuro-radiosurgery, were retrospectively analyzed. A framework for the evaluation of multimodal PET/MRI segmentation is also presented. Overlap-based and spatial distance-based metrics were considered to quantify similarity concerning PET and MRI segmentation approaches. Statistics was also included to measure correlation among the different segmentation processes. Since it is not possible to define a gold-standard CTV according to both MRI and PET images without treatment response assessment, the feasibility and the clinical value of BTV integration in Gamma Knife treatment planning were considered. Therefore, a qualitative evaluation was carried out by three experienced clinicians. The achieved experimental results showed that GTV and BTV segmentations are statistically correlated (Spearman's rank correlation coefficient: 0.898) but they have low similarity degree (average Dice Similarity Coefficient: 61.87 ± 14.64). Therefore, volume measurements as well as evaluation metrics values demonstrated that MRI and PET convey different but complementary imaging information. GTV and BTV could be combined to enhance treatment planning. In more than 50% of cases the CTV was strongly or moderately conditioned by metabolic imaging. Especially, BTV MRI enhanced the CTV more accurately than BTV in 25% of cases. The proposed fully automatic multimodal PET/MRI segmentation method is a valid operator-independent methodology helping the clinicians to define a CTV that includes both metabolic and morphologic information. BTV MRI and GTV should be considered for a comprehensive treatment planning. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. WE-E-17A-05: Complementary Prognostic Value of CT and 18F-FDG PET Non-Small Cell Lung Cancer Tumor Heterogeneity Features Quantified Through Texture Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desseroit, M; Cheze Le Rest, C; Tixier, F

    2014-06-15

    Purpose: Previous studies have shown that CT or 18F-FDG PET intratumor heterogeneity features computed using texture analysis may have prognostic value in Non-Small Cell Lung Cancer (NSCLC), but have been mostly investigated separately. The purpose of this study was to evaluate the potential added value with respect to prognosis regarding the combination of non-enhanced CT and 18F-FDG PET heterogeneity textural features on primary NSCLC tumors. Methods: One hundred patients with non-metastatic NSCLC (stage I–III), treated with surgery and/or (chemo)radiotherapy, that underwent staging 18F-FDG PET/CT images, were retrospectively included. Morphological tumor volumes were semi-automatically delineated on non-enhanced CT using 3D SlicerTM.more » Metabolically active tumor volumes (MATV) were automatically delineated on PET using the Fuzzy Locally Adaptive Bayesian (FLAB) method. Intratumoral tissue density and FDG uptake heterogeneities were quantified using texture parameters calculated from co-occurrence, difference, and run-length matrices. In addition to these textural features, first order histogram-derived metrics were computed on the whole morphological CT tumor volume, as well as on sub-volumes corresponding to fine, medium or coarse textures determined through various levels of LoG-filtering. Association with survival regarding all extracted features was assessed using Cox regression for both univariate and multivariate analysis. Results: Several PET and CT heterogeneity features were prognostic factors of overall survival in the univariate analysis. CT histogram-derived kurtosis and uniformity, as well as Low Grey-level High Run Emphasis (LGHRE), and PET local entropy were independent prognostic factors. Combined with stage and MATV, they led to a powerful prognostic model (p<0.0001), with median survival of 49 vs. 12.6 months and a hazard ratio of 3.5. Conclusion: Intratumoral heterogeneity quantified through textural features extracted from both CT and FDG PET images have complementary and independent prognostic value in NSCLC.« less

  13. Design study of an in situ PET scanner for use in proton beam therapy

    NASA Astrophysics Data System (ADS)

    Surti, S.; Zou, W.; Daube-Witherspoon, M. E.; McDonough, J.; Karp, J. S.

    2011-05-01

    Proton beam therapy can deliver a high radiation dose to a tumor without significant damage to surrounding healthy tissue or organs. One way of verifying the delivered dose distribution is to image the short-lived positron emitters produced by the proton beam as it travels through the patient. A potential solution to the limitations of PET imaging in proton beam therapy is the development of a high sensitivity, in situ PET scanner that starts PET imaging almost immediately after patient irradiation while the patient is still lying on the treatment bed. A partial ring PET design is needed for this application in order to avoid interference between the PET detectors and the proton beam, as well as restrictions on patient positioning on the couch. A partial ring also allows us to optimize the detector separation (and hence the sensitivity) for different patient sizes. Our goal in this investigation is to evaluate an in situ PET scanner design for use in proton therapy that provides tomographic imaging in a partial ring scanner design using time-of-flight (TOF) information and an iterative reconstruction algorithm. GEANT4 simulation of an incident proton beam was used to produce a positron emitter distribution, which was parameterized and then used as the source distribution inside a water-filled cylinder for EGS4 simulations of a PET system. Design optimization studies were performed as a function of crystal type and size, system timing resolution, scanner angular coverage and number of positron emitter decays. Data analysis was performed to measure the accuracy of the reconstructed positron emitter distribution as well as the range of the positron emitter distribution. We simulated scanners with varying crystal sizes (2-4 mm) and type (LYSO and LaBr3) and our results indicate that 4 mm wide LYSO or LaBr3 crystals (resulting in 4-5 mm spatial resolution) are adequate; for a full-ring, non-TOF scanner we predict a low bias (<0.6 mm) and a good precision (<1 mm) in the estimated range relative to the simulated positron distribution. We then varied the angular acceptance of the scanner ranging from 1/2 to 2/3 of 2π a partial ring TOF imaging with good timing resolution (<=600 ps) is necessary to produce accurate tomographic images. A two-third ring scanner with 300 ps timing resolution leads to a bias of 1.0 mm and a precision of 1.4 mm in the range estimate. With a timing resolution of 600 ps, the bias increases to 2.0 mm while the precision in the range estimate is similar. For a half-ring scanner design, more distortions are present in the image, which is characterized by the increased error in the profile difference estimate. We varied the number of positron decays imaged by the PET scanner by an order of magnitude and we observe some decrease in the precision of the range estimate for lower number of decays, but all partial ring scanner designs studied have a precision <=1.5 mm. The largest number tested, 150 M total positron decays, is considered realistic for a clinical fraction of delivered dose, while the range of positron decays investigated in this work covers a variable number of situations corresponding to delays in scan start time and the total scan time. Thus, we conclude that for partial ring systems, an angular acceptance of at least 1/2 (of 2π) together with timing resolution of 300 ps is needed to achieve accurate and precise range estimates. With 600 ps timing resolution an angular acceptance of 2/3 (of 2π) is required to achieve satisfactory range estimates. These results indicate that it would be feasible to develop a partial-ring dedicated PET scanner based on either LaBr3 or LYSO to accurately characterize the proton dose for therapy planning.

  14. Effective count rates for PET scanners with reduced and extended axial field of view

    NASA Astrophysics Data System (ADS)

    MacDonald, L. R.; Harrison, R. L.; Alessio, A. M.; Hunter, W. C. J.; Lewellen, T. K.; Kinahan, P. E.

    2011-06-01

    We investigated the relationship between noise equivalent count (NEC) and axial field of view (AFOV) for PET scanners with AFOVs ranging from one-half to twice those of current clinical scanners. PET scanners with longer or shorter AFOVs could fulfill different clinical needs depending on exam volumes and site economics. Using previously validated Monte Carlo simulations, we modeled true, scattered and random coincidence counting rates for a PET ring diameter of 88 cm with 2, 4, 6, and 8 rings of detector blocks (AFOV 7.8, 15.5, 23.3, and 31.0 cm). Fully 3D acquisition mode was compared to full collimation (2D) and partial collimation (2.5D) modes. Counting rates were estimated for a 200 cm long version of the 20 cm diameter NEMA count-rate phantom and for an anthropomorphic object based on a patient scan. We estimated the live-time characteristics of the scanner from measured count-rate data and applied that estimate to the simulated results to obtain NEC as a function of object activity. We found NEC increased as a quadratic function of AFOV for 3D mode, and linearly in 2D mode. Partial collimation provided the highest overall NEC on the 2-block system and fully 3D mode provided the highest NEC on the 8-block system for clinically relevant activities. On the 4-, and 6-block systems 3D mode NEC was highest up to ~300 MBq in the anthropomorphic phantom, above which 3D NEC dropped rapidly, and 2.5D NEC was highest. Projected total scan time to achieve NEC-density that matches current clinical practice in a typical oncology exam averaged 9, 15, 24, and 61 min for the 8-, 6-, 4-, and 2-block ring systems, when using optimal collimation. Increasing the AFOV should provide a greater than proportional increase in NEC, potentially benefiting patient throughput-to-cost ratio. Conversely, by using appropriate collimation, a two-ring (7.8 cm AFOV) system could acquire whole-body scans achieving NEC-density levels comparable to current standards within long, but feasible, scan times.

  15. Concurrent Respiratory Motion Correction of Abdominal PET and DCE-MRI using a Compressed Sensing Approach.

    PubMed

    Fuin, Niccolo; Catalano, Onofrio Antonio; Scipioni, Michele; Canjels, Lisanne P W; Izquierdo, David; Pedemonte, Stefano; Catana, Ciprian

    2018-01-25

    Purpose: We present an approach for concurrent reconstruction of respiratory motion compensated abdominal DCE-MRI and PET data in an integrated PET/MR scanner. The MR and PET reconstructions share the same motion vector fields (MVFs) derived from radial MR data; the approach is robust to changes in respiratory pattern and do not increase the total acquisition time. Methods: PET and DCE-MRI data of 12 oncological patients were simultaneously acquired for 6 minutes on an integrated PET/MR system after administration of 18 F-FDG and gadoterate meglumine. Golden-angle radial MR data were continuously acquired simultaneously with PET data and sorted into multiple motion phases based on a respiratory signal derived directly from the radial MR data. The resulting multidimensional dataset was reconstructed using a compressed sensing approach that exploits sparsity among respiratory phases. MVFs obtained using the full 6-minute (MC_6-min) and only the last 1 minute (MC_1-min) of data were incorporated into the PET reconstruction to obtain motion-corrected PET images and in an MR iterative reconstruction algorithm to produce a series of motion-corrected DCE-MRI images (moco_GRASP). The motion-correction methods (MC_6-min and MC_1-min) were evaluated by qualitative analysis of the MR images and quantitative analysis of maximum and mean standardized uptake values (SUV max , SUVmean), contrast, signal-to-noise ratio (SNR) and lesion volume in the PET images. Results: Motion corrected MC_6-min PET images demonstrated 30%, 23%, 34% and 18% increases in average SUV max , SUVmean, contrast and SNR, and an average 40% reduction in lesion volume with respect to the non-motion-corrected PET images. The changes in these figures of merit were smaller but still substantial for the MC_1-min protocol: 19%, 10%, 15% and 9% increases in average SUV max , SUVmean, contrast and SNR; and a 28% reduction in lesion volume. Moco_GRASP images were deemed of acceptable or better diagnostic image quality with respect to conventional breath hold cartesian VIBE acquisitions. Conclusion: We presented a method that allows the simultaneous acquisition of respiratory motion-corrected diagnostic quality DCE-MRI and quantitatively accurate PET data in an integrated PET/MR scanner with negligible prolongation in acquisition time compared to routine PET/DCE-MRI protocols. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  16. MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner.

    PubMed

    Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B; Michel, Christian J; El Fakhri, Georges; Schmand, Matthias; Sorensen, A Gregory

    2011-01-01

    Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MRI data can be used for motion tracking. In this work, a novel algorithm for data processing and rigid-body motion correction (MC) for the MRI-compatible BrainPET prototype scanner is described, and proof-of-principle phantom and human studies are presented. To account for motion, the PET prompt and random coincidences and sensitivity data for postnormalization were processed in the line-of-response (LOR) space according to the MRI-derived motion estimates. The processing time on the standard BrainPET workstation is approximately 16 s for each motion estimate. After rebinning in the sinogram space, the motion corrected data were summed, and the PET volume was reconstructed using the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed, and motion estimates were obtained using 2 high-temporal-resolution MRI-based motion-tracking techniques. After accounting for the misalignment between the 2 scanners, perfectly coregistered MRI and PET volumes were reproducibly obtained. The MRI output gates inserted into the PET list-mode allow the temporal correlation of the 2 datasets within 0.2 ms. The Hoffman phantom volume reconstructed by processing the PET data in the LOR space was similar to the one obtained by processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the procedure. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 s and 20 ms, respectively. Motion-deblurred PET images, with excellent delineation of specific brain structures, were obtained using these 2 MRI-based estimates. An MRI-based MC algorithm was implemented for an integrated MR-PET scanner. High-temporal-resolution MRI-derived motion estimates (obtained while simultaneously acquiring anatomic or functional MRI data) can be used for PET MC. An MRI-based MC method has the potential to improve PET image quality, increasing its reliability, reproducibility, and quantitative accuracy, and to benefit many neurologic applications.

  17. Myths and misperceptions about ingredients used in commercial pet foods.

    PubMed

    Laflamme, Dottie; Izquierdo, Oscar; Eirmann, Laura; Binder, Stephen

    2014-07-01

    Information and misinformation about pet nutrition and pet foods, including ingredients used in pet foods, is widely available through various sources. Often, this "information" raises questions or concerns among pet owners. Many pet owners will turn to their veterinarian for answers to these questions. One of the challenges that veterinarians have is keeping up with the volume of misinformation about pet foods and sorting out fact from fiction. The goal of this article is to provide facts regarding some common myths about ingredients used in commercial pet foods so as to better prepare veterinarians to address their client's questions. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Whole-body nonenhanced PET/MR versus PET/CT in the staging and restaging of cancers: preliminary observations.

    PubMed

    Huellner, Martin W; Appenzeller, Philippe; Kuhn, Félix P; Husmann, Lars; Pietsch, Carsten M; Burger, Irene A; Porto, Miguel; Delso, Gaspar; von Schulthess, Gustav K; Veit-Haibach, Patrick

    2014-12-01

    To assess the diagnostic performance of whole-body non-contrast material-enhanced positron emission tomography (PET)/magnetic resonance (MR) imaging and PET/computed tomography (CT) for staging and restaging of cancers and provide guidance for modality and sequence selection. This study was approved by the institutional review board and national government authorities. One hundred six consecutive patients (median age, 68 years; 46 female and 60 male patients) referred for staging or restaging of oncologic malignancies underwent whole-body imaging with a sequential trimodality PET/CT/MR system. The MR protocol included short inversion time inversion-recovery ( STIR short inversion time inversion-recovery ), Dixon-type liver accelerated volume acquisition ( LAVA liver accelerated volume acquisition ; GE Healthcare, Waukesha, Wis), and respiratory-gated periodically rotated overlapping parallel lines with enhanced reconstruction ( PROPELLER periodically rotated overlapping parallel lines with enhanced reconstruction ; GE Healthcare) sequences. Primary tumors (n = 43), local lymph node metastases (n = 74), and distant metastases (n = 66) were evaluated for conspicuity (scored 0-4), artifacts (scored 0-2), and reader confidence on PET/CT and PET/MR images. Subanalysis for lung lesions (n = 46) was also performed. Relevant incidental findings with both modalities were compared. Interreader agreement was analyzed with intraclass correlation coefficients and κ statistics. Lesion conspicuity, image artifacts, and incidental findings were analyzed with nonparametric tests. Primary tumors were less conspicuous on STIR short inversion time inversion-recovery (3.08, P = .016) and LAVA liver accelerated volume acquisition (2.64, P = .002) images than on CT images (3.49), while findings with the PROPELLER periodically rotated overlapping parallel lines with enhanced reconstruction sequence (3.70, P = .436) were comparable to those at CT. In distant metastases, the PROPELLER periodically rotated overlapping parallel lines with enhanced reconstruction sequence (3.84) yielded better results than CT (2.88, P < .001). Subanalysis for lung lesions yielded similar results (primary lung tumors: CT, 3.71; STIR short inversion time inversion-recovery , 3.32 [P = .014]; LAVA liver accelerated volume acquisition , 2.52 [P = .002]; PROPELLER periodically rotated overlapping parallel lines with enhanced reconstruction , 3.64 [P = .546]). Readers classified lesions more confidently with PET/MR than PET/CT. However, PET/CT showed more incidental findings than PET/MR (P = .039), especially in the lung (P < .001). MR images had more artifacts than CT images. PET/MR performs comparably to PET/CT in whole-body oncology and neoplastic lung disease, with the use of appropriate sequences. Further studies are needed to define regionalized PET/MR protocols with sequences tailored to specific tumor entities. © RSNA, 2014 Online supplemental material is available for this article.

  19. Reproducibility of 18F-FDG PET uptake measurements in head and neck squamous cell carcinoma on both PET/CT and PET/MR

    PubMed Central

    Fischer, B M; Aznar, M C; Hansen, A E; Vogelius, I R; Löfgren, J; Andersen, F L; Loft, A; Kjaer, A; Højgaard, L; Specht, L

    2015-01-01

    Objective: To investigate reproducibility of fluorine-18 fludeoxyglucose (18F-FDG) uptake on 18F-FDG positron emission tomography (PET)/CT and 18F-FDG PET/MR scans in patients with head and neck squamous cell carcinoma (HNSCC). Methods: 30 patients with HNSCC were included in this prospective study. The patients were scanned twice before radiotherapy treatment with both PET/CT and PET/MR. Patients were scanned on the same scanners, 3 days apart and according to the same protocol. Metabolic tumour activity was measured by the maximum and peak standardized uptake value (SUVmax and SUVpeak, respectively), and total lesion glycolysis from the metabolic tumour volume defined from ≥50% SUVmax. Bland–Altman analysis with limits of agreement, coefficient of variation (CV) from the two modalities were performed in order to test the reproducibility. Furthermore, CVs from SUVmax and SUVpeak were compared. The area under the curve from cumulative SUV–volume histograms were measured and tested for reproducibility of the distribution of 18F-FDG uptake. Results: 24 patients had two pre-treatment PET/CT scans and 21 patients had two pre-treatment PET/MR scans available for further analyses. Mean difference for SUVmax, peak and mean was approximately 4% for PET/CT and 3% for PET/MR, with 95% limits of agreement less than ±20%. CV was small (5–7%) for both modalities. There was no significant difference in CVs between PET/CT and PET/MR (p = 0.31). SUVmax was not more reproducible than SUVpeak (p = 0.09). Conclusion: 18F-FDG uptake in PET/CT and PET/MR is highly reproducible and we found no difference in reproducibility between PET/CT and PET/MR. Advances in knowledge: This is the first report to test reproducibility of PET/CT and PET/MR. PMID:25634069

  20. Overlap of highly FDG-avid and FMISO hypoxic tumor subvolumes in patients with head and neck cancer.

    PubMed

    Mönnich, David; Thorwarth, Daniela; Leibfarth, Sara; Pfannenberg, Christina; Reischl, Gerald; Mauz, Paul-Stefan; Nikolaou, Konstantin; la Fougère, Christian; Zips, Daniel; Welz, Stefan

    2017-11-01

    PET imaging may be used to personalize radiotherapy (RT) by identifying radioresistant tumor subvolumes for RT dose escalation. Using the tracers [ 18 F]-fluorodeoxyglucose (FDG) and [ 18 F]-fluoromisonidazole (FMISO), different aspects of tumor biology can be visualized. FDG depicts various biological aspects, e.g., proliferation, glycolysis and hypoxia, while FMISO is more hypoxia specific. In this study, we analyzed size and overlap of volumes based on the two markers for head-and-neck cancer patients (HNSCC). Twenty five HNSCC patients underwent a CT scan, as well as FDG and dynamic FMISO PET/CT prior to definitive radio-chemotherapy in a prospective FMISO dose escalation study. Three PET-based subvolumes of the primary tumor (GTV prim ) were segmented: a highly FDG-avid volume V FDG , a hypoxic volume on the static FMISO image acquired four hours post tracer injection (V H ) and a retention/perfusion volume (V M ) using pharmacokinetic modeling of dynamic FMISO data. Absolute volumes, overlaps and distances to agreement (DTA) were evaluated. Sizes of PET-based volumes and the GTV prim are significantly different (GTV prim >V FDG >V H >V M ; p < .05). V H is covered by V FDG or DTAs are small (mean coverage 74.4%, mean DTA 1.4 mm). Coverage of V M is less pronounced. With respect to V FDG and V H , the mean coverage is 48.7% and 43.1% and the mean DTA is 5.3 mm and 6.3 mm, respectively. For two patients, DTAs were larger than 2 cm. Hypoxic subvolumes from static PET imaging are typically covered by or in close proximity to highly FDG-avid subvolumes. Therefore, dose escalation to FDG positive subvolumes should cover the static hypoxic subvolumes in most patients, with the disadvantage of larger volumes, resulting in a higher risk of dose-limiting toxicity. Coverage of subvolumes from dynamic FMISO PET is less pronounced. Further studies are needed to explore the relevance of mismatches in functional imaging.

  1. [Target volume segmentation of PET images by an iterative method based on threshold value].

    PubMed

    Castro, P; Huerga, C; Glaría, L A; Plaza, R; Rodado, S; Marín, M D; Mañas, A; Serrada, A; Núñez, L

    2014-01-01

    An automatic segmentation method is presented for PET images based on an iterative approximation by threshold value that includes the influence of both lesion size and background present during the acquisition. Optimal threshold values that represent a correct segmentation of volumes were determined based on a PET phantom study that contained different sizes spheres and different known radiation environments. These optimal values were normalized to background and adjusted by regression techniques to a two-variable function: lesion volume and signal-to-background ratio (SBR). This adjustment function was used to build an iterative segmentation method and then, based in this mention, a procedure of automatic delineation was proposed. This procedure was validated on phantom images and its viability was confirmed by retrospectively applying it on two oncology patients. The resulting adjustment function obtained had a linear dependence with the SBR and was inversely proportional and negative with the volume. During the validation of the proposed method, it was found that the volume deviations respect to its real value and CT volume were below 10% and 9%, respectively, except for lesions with a volume below 0.6 ml. The automatic segmentation method proposed can be applied in clinical practice to tumor radiotherapy treatment planning in a simple and reliable way with a precision close to the resolution of PET images. Copyright © 2013 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  2. Presynaptic selectivity of a ligand for serotonin 1A receptors revealed by in vivo PET assays of rat brain.

    PubMed

    Saijo, Takeaki; Maeda, Jun; Okauchi, Takashi; Maeda, Jun-ichi; Morio, Yasunori; Kuwahara, Yasuhiro; Suzuki, Masayuki; Goto, Nobuharu; Fukumura, Toshimitsu; Suhara, Tetsuya; Higuchi, Makoto

    2012-01-01

    A novel investigational antidepressant with high affinity for the serotonin transporter and the serotonin 1A (5-HT(1A)) receptor, called Wf-516 (structural formula: (2S)-1-[4-(3,4-dichlorophenyl)piperidin-1-yl]-3-[2-(5-methyl-1,3,4-oxadiazol-2-yl)benzo[b]furan-4-yloxy]propan-2-ol monohydrochloride), has been found to exert a rapid therapeutic effect, although the mechanistic basis for this potential advantage remains undetermined. We comparatively investigated the pharmacokinetics and pharmacodynamics of Wf-516 and pindolol by positron emission tomographic (PET) and autoradiographic assays of rat brains in order to elucidate their molecular interactions with presynaptic and postsynaptic 5-HT(1A) receptors. In contrast to the full receptor occupancy by pindolol in PET measurements, the binding of Wf-516 to 5-HT(1A) receptors displayed limited capacity, with relatively high receptor occupancy being achieved in regions predominantly containing presynaptic receptors. This selectivity was further proven by PET scans of neurotoxicant-treated rats deficient in presynaptic 5-HT(1A) receptors. In addition, [(35)S]guanosine 5'-O-[γ-thio]triphosphate autoradiography indicated a partial agonistic ability of Wf-516 for 5-HT(1A) receptors. This finding has lent support to reports that diverse partial agonists for 5-HT(1A) receptors exert high sensitivity for presynaptic components. Thus, the present PET data suggest a relatively high capacity of presynaptic binding sites for partial agonists. Since our in vitro and ex vivo autoradiographies failed to illustrate these distinct features of Wf-516, in vivo PET imaging is considered to be, thus far, the sole method capable of pharmacokinetically demonstrating the unique actions of Wf-516 and similar new-generation antidepressants.

  3. Presynaptic Selectivity of a Ligand for Serotonin 1A Receptors Revealed by In Vivo PET Assays of Rat Brain

    PubMed Central

    Okauchi, Takashi; Maeda, Jun-ichi; Morio, Yasunori; Kuwahara, Yasuhiro; Suzuki, Masayuki; Goto, Nobuharu; Fukumura, Toshimitsu; Suhara, Tetsuya; Higuchi, Makoto

    2012-01-01

    A novel investigational antidepressant with high affinity for the serotonin transporter and the serotonin 1A (5-HT1A) receptor, called Wf-516 (structural formula: (2S)-1-[4-(3,4-dichlorophenyl)piperidin-1-yl]-3-[2-(5-methyl-1,3,4-oxadiazol-2-yl)benzo[b]furan-4-yloxy]propan-2-ol monohydrochloride), has been found to exert a rapid therapeutic effect, although the mechanistic basis for this potential advantage remains undetermined. We comparatively investigated the pharmacokinetics and pharmacodynamics of Wf-516 and pindolol by positron emission tomographic (PET) and autoradiographic assays of rat brains in order to elucidate their molecular interactions with presynaptic and postsynaptic 5-HT1A receptors. In contrast to the full receptor occupancy by pindolol in PET measurements, the binding of Wf-516 to 5-HT1A receptors displayed limited capacity, with relatively high receptor occupancy being achieved in regions predominantly containing presynaptic receptors. This selectivity was further proven by PET scans of neurotoxicant-treated rats deficient in presynaptic 5-HT1A receptors. In addition, [35S]guanosine 5′-O-[γ-thio]triphosphate autoradiography indicated a partial agonistic ability of Wf-516 for 5-HT1A receptors. This finding has lent support to reports that diverse partial agonists for 5-HT1A receptors exert high sensitivity for presynaptic components. Thus, the present PET data suggest a relatively high capacity of presynaptic binding sites for partial agonists. Since our in vitro and ex vivo autoradiographies failed to illustrate these distinct features of Wf-516, in vivo PET imaging is considered to be, thus far, the sole method capable of pharmacokinetically demonstrating the unique actions of Wf-516 and similar new-generation antidepressants. PMID:22880045

  4. Decreased GABA-A binding on FMZ-PET in succinic semialdehyde dehydrogenase deficiency.

    PubMed

    Pearl, P L; Gibson, K M; Quezado, Z; Dustin, I; Taylor, J; Trzcinski, S; Schreiber, J; Forester, K; Reeves-Tyer, P; Liew, C; Shamim, S; Herscovitch, P; Carson, R; Butman, J; Jakobs, C; Theodore, W

    2009-08-11

    Succinic semialdehyde dehydrogenase (SSADH) deficiency is an autosomal recessive disorder of GABA metabolism characterized by elevated levels of GABA and gamma-hydroxybutyric acid. Clinical findings include intellectual impairment, hypotonia, hyporeflexia, hallucinations, autistic behaviors, and seizures. Autoradiographic labeling and slice electrophysiology studies in the murine model demonstrate use-dependent downregulation of GABA(A) receptors. We studied GABA(A) receptor activity in human SSADH deficiency utilizing [(11)C]-flumazenil (FMZ)-PET. FMZ binding was measured in 7 patients, 10 unaffected parents, and 8 healthy controls. Data analysis was performed using a reference region compartmental model, with time-activity curve from pons as the input function. Relative parametric binding potential (BP(ND)) was derived, with MRI-based pixel by pixel partial volume correction, in regions of interest drawn on coregistered MRI. In amygdala, hippocampus, cerebellar vermis, frontal, parietal, and occipital cortex, patients with SSADH deficiency had significant reductions in FMZ BP(ND) compared to parents and controls. Mean cortical values were 6.96 +/- 0.79 (controls), 6.89 +/- 0.71 (parents), and 4.88 +/- 0.77 (patients) (F ratio 16.1; p < 0.001). There were no differences between controls and parents in any cortical region. Succinic semialdehyde dehydrogenase (SSADH) deficient patients show widespread reduction in BZPR binding on [(11)C]-flumazenil-PET. Our results suggest that high endogenous brain GABA levels in SSADH deficiency downregulate GABA(A)-BZPR binding site availability. This finding suggests a potential mechanism for neurologic dysfunction in a serious neurodevelopmental disorder, and suggests that PET may be useful to translate studies in animal models to human disease.

  5. Influence of Co-57 and CT Transmission Measurements on the Quantification Accuracy and Partial Volume Effect of a Small Animal PET Scanner.

    PubMed

    Mannheim, Julia G; Schmid, Andreas M; Pichler, Bernd J

    2017-12-01

    Non-invasive in vivo positron emission tomography (PET) provides high detection sensitivity in the nano- to picomolar range and in addition to other advantages, the possibility to absolutely quantify the acquired data. The present study focuses on the comparison of transmission data acquired with an X-ray computed tomography (CT) scanner or a Co-57 source for the Inveon small animal PET scanner (Siemens Healthcare, Knoxville, TN, USA), as well as determines their influences on the quantification accuracy and partial volume effect (PVE). A special focus included the impact of the performed calibration on the quantification accuracy. Phantom measurements were carried out to determine the quantification accuracy, the influence of the object size on the quantification, and the PVE for different sphere sizes, along the field of view and for different contrast ratios. An influence of the emission activity on the Co-57 transmission measurements was discovered (deviations up to 24.06 % measured to true activity), whereas no influence of the emission activity on the CT attenuation correction was identified (deviations <3 % for measured to true activity). The quantification accuracy was substantially influenced by the applied calibration factor and by the object size. The PVE demonstrated a dependency on the sphere size, the position within the field of view, the reconstruction and correction algorithms and the count statistics. Depending on the reconstruction algorithm, only ∼30-40 % of the true activity within a small sphere could be resolved. The iterative 3D reconstruction algorithms uncovered substantially increased recovery values compared to the analytical and 2D iterative reconstruction algorithms (up to 70.46 % and 80.82 % recovery for the smallest and largest sphere using iterative 3D reconstruction algorithms). The transmission measurement (CT or Co-57 source) to correct for attenuation did not severely influence the PVE. The analysis of the quantification accuracy and the PVE revealed an influence of the object size, the reconstruction algorithm and the applied corrections. Particularly, the influence of the emission activity during the transmission measurement performed with a Co-57 source must be considered. To receive comparable results, also among different scanner configurations, standardization of the acquisition (imaging parameters, as well as applied reconstruction and correction protocols) is necessary.

  6. SU-C-9A-03: Simultaneous Deconvolution and Segmentation for PET Tumor Delineation Using a Variational Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, L; Tan, S; Lu, W

    2014-06-01

    Purpose: To implement a new method that integrates deconvolution with segmentation under the variational framework for PET tumor delineation. Methods: Deconvolution and segmentation are both challenging problems in image processing. The partial volume effect (PVE) makes tumor boundaries in PET image blurred which affects the accuracy of tumor segmentation. Deconvolution aims to obtain a PVE-free image, which can help to improve the segmentation accuracy. Conversely, a correct localization of the object boundaries is helpful to estimate the blur kernel, and thus assist in the deconvolution. In this study, we proposed to solve the two problems simultaneously using a variational methodmore » so that they can benefit each other. The energy functional consists of a fidelity term and a regularization term, and the blur kernel was limited to be the isotropic Gaussian kernel. We minimized the energy functional by solving the associated Euler-Lagrange equations and taking the derivative with respect to the parameters of the kernel function. An alternate minimization method was used to iterate between segmentation, deconvolution and blur-kernel recovery. The performance of the proposed method was tested on clinic PET images of patients with non-Hodgkin's lymphoma, and compared with seven other segmentation methods using the dice similarity index (DSI) and volume error (VE). Results: Among all segmentation methods, the proposed one (DSI=0.81, VE=0.05) has the highest accuracy, followed by the active contours without edges (DSI=0.81, VE=0.25), while other methods including the Graph Cut and the Mumford-Shah (MS) method have lower accuracy. A visual inspection shows that the proposed method localizes the real tumor contour very well. Conclusion: The result showed that deconvolution and segmentation can contribute to each other. The proposed variational method solve the two problems simultaneously, and leads to a high performance for tumor segmentation in PET. This work was supported in part by National Natural Science Foundation of China (NNSFC), under Grant Nos. 60971112 and 61375018, and Fundamental Research Funds for the Central Universities, under Grant No. 2012QN086. Wei Lu was supported in part by the National Institutes of Health (NIH) Grant No. R01 CA172638.« less

  7. Joint reconstruction of activity and attenuation in Time-of-Flight PET: A Quantitative Analysis.

    PubMed

    Rezaei, Ahmadreza; Deroose, Christophe M; Vahle, Thomas; Boada, Fernando; Nuyts, Johan

    2018-03-01

    Joint activity and attenuation reconstruction methods from time of flight (TOF) positron emission tomography (PET) data provide an effective solution to attenuation correction when no (or incomplete/inaccurate) information on the attenuation is available. One of the main barriers limiting their use in clinical practice is the lack of validation of these methods on a relatively large patient database. In this contribution, we aim at validating the activity reconstructions of the maximum likelihood activity reconstruction and attenuation registration (MLRR) algorithm on a whole-body patient data set. Furthermore, a partial validation (since the scale problem of the algorithm is avoided for now) of the maximum likelihood activity and attenuation reconstruction (MLAA) algorithm is also provided. We present a quantitative comparison of the joint reconstructions to the current clinical gold-standard maximum likelihood expectation maximization (MLEM) reconstruction with CT-based attenuation correction. Methods: The whole-body TOF-PET emission data of each patient data set is processed as a whole to reconstruct an activity volume covering all the acquired bed positions, which helps to reduce the problem of a scale per bed position in MLAA to a global scale for the entire activity volume. Three reconstruction algorithms are used: MLEM, MLRR and MLAA. A maximum likelihood (ML) scaling of the single scatter simulation (SSS) estimate to the emission data is used for scatter correction. The reconstruction results are then analyzed in different regions of interest. Results: The joint reconstructions of the whole-body patient data set provide better quantification in case of PET and CT misalignments caused by patient and organ motion. Our quantitative analysis shows a difference of -4.2% (±2.3%) and -7.5% (±4.6%) between the joint reconstructions of MLRR and MLAA compared to MLEM, averaged over all regions of interest, respectively. Conclusion: Joint activity and attenuation estimation methods provide a useful means to estimate the tracer distribution in cases where CT-based attenuation images are subject to misalignments or are not available. With an accurate estimate of the scatter contribution in the emission measurements, the joint TOF-PET reconstructions are within clinical acceptable accuracy. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  8. Value of PET/CT and MR Lymphography in Treatment of Prostate Cancer Patients With Lymph Node Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fortuin, Ansje S., E-mail: A.Fortuin@rad.umcn.nl; Deserno, Willem M.L.L.G.; Meijer, Hanneke J.M.

    2012-11-01

    Purpose: To determine the clinical value of two novel molecular imaging techniques: {sup 11}C-choline positron emission tomography (PET)/computed tomography (CT) and ferumoxtran-10 enhanced magnetic resonance imaging (magnetic resonance lymphography [MRL]) for lymph node (LN) treatment in prostate cancer (PCa) patients. Therefore, we evaluated the ability of PET/CT and MRL to assess the number, size, and location of LN metastases in patients with primary or recurrent PCa. Methods and Materials: A total of 29 patients underwent MRL and PET/CT for LN evaluation. The MRL and PET/CT data were analyzed independently. The number, size, and location of the LN metastases were determined.more » The location was described as within or outside the standard clinical target volume for elective pelvic irradiation as defined by the Radiation Therapy Oncology Group. Subsequently, the results from MRL and PET/CT were compared. Results: Of the 738 LNs visible on MRL, 151 were positive in 23 of 29 patients. Of the 132 LNs visible on PET/CT, 34 were positive in 13 of 29 patients. MRL detected significantly more positive LNs (p < 0.001) in more patients than PET/CT (p = 0.002). The mean diameter of the detected suspicious LNs on MRL was significantly smaller than those detected by PET/CT, 4.9 mm and 8.4 mm, respectively (p < 0.0001). In 14 (61%) of 23 patients, suspicious LNs were found outside the clinical target volume with MRL and in 4 (31%) of 13 patients with PET/CT. Conclusion: In patients with PCa, both molecular imaging techniques, MRL and {sup 11}C-choline PET/CT, can detect LNs suspicious for metastasis, irrespective of the existing size and shape criteria for CT and conventional magnetic resonance imaging. On MRL and PET/CT, 61% and 31% of the suspicious LNs were located outside the conventional clinical target volume. Therefore, these techniques could help to individualize treatment selection and enable image-guided radiotherapy for patients with PCa LN metastases.« less

  9. Automatic delineation of functional lung volumes with 68Ga-ventilation/perfusion PET/CT.

    PubMed

    Le Roux, Pierre-Yves; Siva, Shankar; Callahan, Jason; Claudic, Yannis; Bourhis, David; Steinfort, Daniel P; Hicks, Rodney J; Hofman, Michael S

    2017-10-10

    Functional volumes computed from 68 Ga-ventilation/perfusion (V/Q) PET/CT, which we have shown to correlate with pulmonary function test parameters (PFTs), have potential diagnostic utility in a variety of clinical applications, including radiotherapy planning. An automatic segmentation method would facilitate delineation of such volumes. The aim of this study was to develop an automated threshold-based approach to delineate functional volumes that best correlates with manual delineation. Thirty lung cancer patients undergoing both V/Q PET/CT and PFTs were analyzed. Images were acquired following inhalation of Galligas and, subsequently, intravenous administration of 68 Ga-macroaggreted-albumin (MAA). Using visually defined manual contours as the reference standard, various cutoff values, expressed as a percentage of the maximal pixel value, were applied. The average volume difference and Dice similarity coefficient (DSC) were calculated, measuring the similarity of the automatic segmentation and the reference standard. Pearson's correlation was also calculated to compare automated volumes with manual volumes, and automated volumes optimized to PFT indices. For ventilation volumes, mean volume difference was lowest (- 0.4%) using a 15%max threshold with Pearson's coefficient of 0.71. Applying this cutoff, median DSC was 0.93 (0.87-0.95). Nevertheless, limits of agreement in volume differences were large (- 31.0 and 30.2%) with differences ranging from - 40.4 to + 33.0%. For perfusion volumes, mean volume difference was lowest and Pearson's coefficient was highest using a 15%max threshold (3.3% and 0.81, respectively). Applying this cutoff, median DSC was 0.93 (0.88-0.93). Nevertheless, limits of agreement were again large (- 21.1 and 27.8%) with volume differences ranging from - 18.6 to + 35.5%. Using the 15%max threshold, moderate correlation was demonstrated with FEV1/FVC (r = 0.48 and r = 0.46 for ventilation and perfusion images, respectively). No correlation was found between other PFT indices. To automatically delineate functional volumes with 68 Ga-V/Q PET/CT, the most appropriate cutoff was 15%max for both ventilation and perfusion images. However, using this unique threshold systematically provided unacceptable variability compared to the reference volume and relatively poor correlation with PFT parameters. Accordingly, a visually adapted semi-automatic method is favored, enabling rapid and quantitative delineation of lung functional volumes with 68 Ga-V/Q PET/CT.

  10. Healable Antifouling Films Composed of Partially Hydrolyzed Poly(2-ethyl-2-oxazoline) and Poly(acrylic acid).

    PubMed

    Li, Yixuan; Pan, Tiezheng; Ma, Benhua; Liu, Junqiu; Sun, Junqi

    2017-04-26

    Antifouling polymeric films can prevent undesirable adhesion of bacteria but are prone to accidental scratches, leading to a loss of their antifouling functions. To solve this problem, we report the fabrication of healable antifouling polymeric films by layer-by-layer assembly of partially hydrolyzed poly(2-ethyl-2-oxazoline) (PEtOx-EI-7%) and poly(acrylic acid) (PAA) based on hydrogen-bonding interaction as the driving force. The thermally cross-linked (PAA/PEtOx-EI-7%)*100 films show strong resistance to adhesion of both Gram-negative Escherichia coli and Gram-positive Bacillus subtilis bacteria due to the high surface and bulk concentration of the antifouling polymer PEtOx-EI-7%. Meanwhile, the dynamic nature of the hydrogen-bonding interactions and the high mobility of the polymers in the presence of water enable repeated healing of cuts of several tens of micrometers wide in cross-linked (PAA/PEtOx-EI-7%)*100 films to fully restore their antifouling function.

  11. Direct estimation of 17 O MR images (DIESIS) for quantification of oxygen metabolism in the human brain with partial volume correction.

    PubMed

    Kurzhunov, Dmitry; Borowiak, Robert; Reisert, Marco; Özen, Ali Caglar; Bock, Michael

    2018-05-16

    To provide a data post-processing method that corrects for partial volume effects (PVE) and fast T2* decay in dynamic 17 O MRI for the mapping of cerebral metabolic rates of oxygen consumption (CMRO 2 ). CMRO 2 is altered in neurodegenerative diseases and tumors and can be measured after 17 O gas inhalation using dynamic 17 O MRI. CMRO 2 quantification is difficult because of PVE. To correct for PVE, a direct estimation of the MR images (DIESIS) method is proposed and used in 4 dynamic 17 O MRI data sets of a healthy volunteer acquired on a 3T MRI system. With DIESIS, 17 O MR signal time curves in selected regions were directly estimated based on parcellation of a coregistered 1 H MPRAGE image. Profile likelihood analysis of the DIESIS method showed identifiability of CMRO 2 . In white matter (WM), DIESES reduced CMRO 2 from 0.97 ± 0.25 µmol/g tissue /min with Kaiser-Bessel gridding reconstruction to 0.85 ± 0.21 µmol/g tissue /min, whereas in gray matter (GM) it increases from 1.3 ± 0.31 µmol/g tissue /min to 1.86 ± 0.36 µmol/g tissue /min; both values are closer to the literature values from the 15 O-PET studies. DIESIS provided an increased separation of CMRO 2 values in GM and WM brain regions and corrected for partial volume effects in 17 O-MRI inhalation experiments. DIESIS could also be applied to more heterogeneous tissues such as glioblastomas if subregions of the tumor can be represented as additional parcels. © 2018 International Society for Magnetic Resonance in Medicine.

  12. Clinical validation of FDG-PET/CT in the radiation treatment planning for patients with oesophageal cancer.

    PubMed

    Muijs, Christina T; Beukema, Jannet C; Woutersen, Dankert; Mul, Veronique E; Berveling, Maaike J; Pruim, Jan; van der Jagt, Eric J; Hospers, Geke A P; Groen, Henk; Plukker, John Th; Langendijk, Johannes A

    2014-11-01

    The aim of this prospective study was to determine the proportion of locoregional recurrences (LRRs) that could have been prevented if radiotherapy treatment planning for oesophageal cancer was based on PET/CT instead of CT. Ninety oesophageal cancer patients, eligible for high dose (neo-adjuvant) (chemo)radiotherapy, were included. All patients underwent a planning FDG-PET/CT-scan. Radiotherapy target volumes (TVs) were delineated on CT and patients were treated according to the CT-based treatment plans. The PET images remained blinded. After treatment, TVs were adjusted based on PET/CT, when appropriate. Follow up included CT-thorax/abdomen every 6months. If LRR was suspected, a PET/CT was conducted and the site of recurrence was compared to the original TVs. If the LRR was located outside the CT-based clinical TV (CTV) and inside the PET/CT-based CTV, we considered this LRR possibly preventable. Based on PET/CT, the gross tumour volume (GTV) was larger in 23% and smaller in 27% of the cases. In 32 patients (36%), >5% of the PET/CT-based GTV would be missed if the treatment planning was based on CT. The median follow up was 29months. LRRs were seen in 10 patients (11%). There were 3 in-field recurrences, 4 regional recurrences outside both CT-based and PET/CT-based CTV and 3 recurrences at the anastomosis without changes in TV by PET/CT; none of these recurrences were considered preventable by PET/CT. No LRR was found after CT-based radiotherapy that could have been prevented by PET/CT. The value of PET/CT for radiotherapy seems limited. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Conventional 3D staging PET/CT in CT simulation for lung cancer: impact of rigid and deformable target volume alignments for radiotherapy treatment planning.

    PubMed

    Hanna, G G; Van Sörnsen De Koste, J R; Carson, K J; O'Sullivan, J M; Hounsell, A R; Senan, S

    2011-10-01

    Positron emission tomography (PET)/CT scans can improve target definition in radiotherapy for non-small cell lung cancer (NSCLC). As staging PET/CT scans are increasingly available, we evaluated different methods for co-registration of staging PET/CT data to radiotherapy simulation (RTP) scans. 10 patients underwent staging PET/CT followed by RTP PET/CT. On both scans, gross tumour volumes (GTVs) were delineated using CT (GTV(CT)) and PET display settings. Four PET-based contours (manual delineation, two threshold methods and a source-to-background ratio method) were delineated. The CT component of the staging scan was co-registered using both rigid and deformable techniques to the CT component of RTP PET/CT. Subsequently rigid registration and deformation warps were used to transfer PET and CT contours from the staging scan to the RTP scan. Dice's similarity coefficient (DSC) was used to assess the registration accuracy of staging-based GTVs following both registration methods with the GTVs delineated on the RTP PET/CT scan. When the GTV(CT) delineated on the staging scan after both rigid registration and deformation was compared with the GTV(CT)on the RTP scan, a significant improvement in overlap (registration) using deformation was observed (mean DSC 0.66 for rigid registration and 0.82 for deformable registration, p = 0.008). A similar comparison for PET contours revealed no significant improvement in overlap with the use of deformable registration. No consistent improvements in similarity measures were observed when deformable registration was used for transferring PET-based contours from a staging PET/CT. This suggests that currently the use of rigid registration remains the most appropriate method for RTP in NSCLC.

  14. MR-assisted PET Motion Correction for eurological Studies in an Integrated MR-PET Scanner

    PubMed Central

    Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B.; Michel, Christian J.; El Fakhri, Georges; Schmand, Matthias; Sorensen, A. Gregory

    2011-01-01

    Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MR data can be used for motion tracking. In this work, a novel data processing and rigid-body motion correction (MC) algorithm for the MR-compatible BrainPET prototype scanner is described and proof-of-principle phantom and human studies are presented. Methods To account for motion, the PET prompts and randoms coincidences as well as the sensitivity data are processed in the line or response (LOR) space according to the MR-derived motion estimates. After sinogram space rebinning, the corrected data are summed and the motion corrected PET volume is reconstructed from these sinograms and the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed and motion estimates were obtained using two high temporal resolution MR-based motion tracking techniques. Results After accounting for the physical mismatch between the two scanners, perfectly co-registered MR and PET volumes are reproducibly obtained. The MR output gates inserted in to the PET list-mode allow the temporal correlation of the two data sets within 0.2 s. The Hoffman phantom volume reconstructed processing the PET data in the LOR space was similar to the one obtained processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the novel MC algorithm. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 seconds and 20 ms, respectively. Substantially improved PET images with excellent delineation of specific brain structures were obtained after applying the MC using these MR-based estimates. Conclusion A novel MR-based MC algorithm was developed for the integrated MR-PET scanner. High temporal resolution MR-derived motion estimates (obtained while simultaneously acquiring anatomical or functional MR data) can be used for PET MC. An MR-based MC has the potential to improve PET as a quantitative method, increasing its reliability and reproducibility which could benefit a large number of neurological applications. PMID:21189415

  15. WE-AB-204-10: Evaluation of a Novel Dedicated Breast PET System (Mammi-PET)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Z; Swanson, T; O’Connor, M

    2015-06-15

    Purpose: To evaluate the performance characteristics of a novel dedicated breast PET system (Mammi-PET, Oncovision). The system has 2 detector rings giving axial/transaxial field of view of 8/17 cm. Each ring consists of 12 monolithic LYSO modules coupled to PSPMTs. Methods: Uniformity, sensitivity, energy and spatial resolution were measured according to NEMA standards. Count rate performance was investigated using a source of F-18 (1384uCi) decayed over 5 half-lives. A prototype PET phantom was imaged for 20 min to evaluate image quality, recovery coefficients and partial volume effects. Under an IRB-approved protocol, 11 patients who just underwent whole body PET/CT examsmore » were imaged prone with the breast pendulant at 5–10 minutes/breast. Image quality was assessed with and without scatter/attenuation correction and using different reconstruction algorithms. Results: Integral/differential uniformity were 9.8%/6.0% respectively. System sensitivity was 2.3% on axis, 2.2% and 2.8% at 3.8 cm and 7.8 cm off-axis. Mean energy resolution of all modules was 23.3%. Spatial resolution (FWHM) was 1.82 mm and 2.90 mm on axis and 5.8 cm off axis. Three cylinders (14 mm diameter) in the PET phantom were filled with activity concentration ratios of 4:1, 3:1, and 2:1 relative to the background. Measured cylinder to background ratios were 2.6, 1.8 and 1.5 (without corrections) and 3.6, 2.3 and 1.5 (with attenuation/scatter correction). Five cylinders (14, 10, 6, 4 and 2 mm diameter) each with an activity ratio of 4:1 were measured and showed recovery coefficients of 1, 0.66, 0.45, 0.18 and 0.18 (without corrections), and 1, 0.53, 0.30, 0.13 and 0 (with attenuation/scatter correction). Optimal phantom image quality was obtained with 3D MLEM algorithm, >20 iterations and without attenuation/scatter correction. Conclusion: The MAMMI system demonstrated good performance characteristics. Further work is needed to determine the optimal reconstruction parameters for qualitative and quantitative applications.« less

  16. Use of fluorine-18-BPA PET images and image registration to enhance radiation treatment planning for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Khan, Mohammad Khurram

    The Monte-Carlo based simulation environment for radiation therapy (SERA) software is used to simulate the dose administered to a patient undergoing boron neutron capture therapy (BNCT). Point sampling of tumor tissue results in an estimate of a uniform boron concentration scaling factor of 3.5. Under conventional treatment protocols, this factor is used to scale the boron component of the dose linearly and homogenously within the tumor and target volumes. The average dose to the tumor cells by such a method could be improved by better methods of quantifying the in-vivo 10B biodistribution. A better method includes radiolabeling para-Boronophenylalanine (p-BPA) with 18F and imaging the pharmaceutical using positron emission tomography (PET). This biodistribution of 18F-BPA can then be used to better predict the average dose delivered to the tumor regions. This work uses registered 18F-BPA PET images to incorporate the in-vivo boron biodistribution within current treatment planning. The registered 18F-BPA PET images are then coupled in a new computer software, PET2MRI.m, to linearly scale the boron component of the dose. A qualititative and quantitative assessment of the dose contours is presented using the two approaches. Tumor volume, tumor axial extent, and target locations are compared between using MRI or PET images to define the tumor volume. In addition, peak-to-normal brain value at tumor axial center is determined for pre and post surgery patients using 18F-BPA PET images. The differences noted between the registered GBM tumor volumes (range: 34.04--136.36%), tumor axial extent (range: 20--150%), and the beam target location (1.27--4.29 cm) are significantly different. The peak-to-normal brain values are also determined at the tumor axial center using the 18F-BPA PET images. The peak-to-normal brain values using the last frame of the pre-surgery study for the GBM patients ranged from 2.05--3.4. For post surgery time weighted PET data, the peak-to-normal brain value in the residual parts of the tumor ranged from 1.5--1.7. Qualitatively, boron dose contours are greatly shifted using PET images when compared with MRI images. Collectively, these differences can lead to significant reorientation of the beam and can significantly impact current BNCT treatment planning.

  17. Ni interferes in the Cu-regulated transcriptional switch petJ/petE in Synechocystis sp. PCC 6803.

    PubMed

    Giner-Lamia, Joaquín; López-Maury, Luis; Florencio, Francisco J

    2016-10-01

    Plastocyanin (petE) plays an essential role in photosynthesis as an electron carrier between cytochrome b 6 f and photosystem I, and in some cyanobacteria it can be replaced by the haem-containing protein, cytochrome c 6 (petJ). In Synechocystis sp. PCC 6803, transcription of petE and petJ is activated and repressed, respectively, by Cu. Here, we show that Ni can act similarly to Cu in inducing petE and repressing petJ, thus leading to a partial switch between cytochrome c 6 and plastocyanin. Transcription of these genes is only altered by Ni in Cu-depleted medium, and none of the Ni-dependent transcription factors described in Synechocystis, NrsR and InrS seem to be involved in this regulation. Finally, we show that plastocyanin is essential for growth under conditions of excess Ni. © 2016 Federation of European Biochemical Societies.

  18. Role of attachment in response to pet loss.

    PubMed

    Field, Nigel P; Orsini, Lisa; Gavish, Roni; Packman, Wendy

    2009-04-01

    This study examined the impact of attachment on grief severity following the death of a pet. Seventy-one participants who had lost a dog or cat within the past year completed a set of measures that included an attachment measure assessing individual differences in attachment anxiety and avoidance, strength of the past attachment to the pet, the continuing bond with the deceased pet, social support, and complicated grief symptoms. Attachment anxiety and strength of the past attachment to the pet were each uniquely predictive of more severe grief. Furthermore, the continuing bond to the deceased pet partially mediated the impact of strength of the past attachment to the pet on grief severity. No significant mediators of the effect of attachment anxiety on grief were found, however. The results highlight the importance of distinguishing strength of attachment from attachment security in examining the effect of attachment on response to pet loss.

  19. Structural Characteristics of the Plasmid-Encoded Toxin from Enteroaggregative Escherichia coli†

    PubMed Central

    Scaglione, Patricia; Nemec, Kathleen N.; Burlingame, Kaitlin E.; Grabon, Agnieszka; Huerta, Jazmin; Navarro-García, Fernando; Tatulian, Suren A.; Teter, Ken

    2008-01-01

    Intoxication by the plasmid-encoded toxin (Pet) of enteroaggregative Escherichia coli requires toxin translocation from the endoplasmic reticulum (ER) to the cytosol. This event involves the quality control system of ER-associated degradation (ERAD), but the molecular details of the process are poorly characterized. For many structurally distinct AB-type toxins, ERAD-mediated translocation is triggered by the spontaneous unfolding of a thermally unstable A chain. Here we show that Pet, a non-AB toxin, engages ERAD by a different mechanism that does not involve thermal unfolding. Circular dichroism and fluorescence spectroscopy measurements demonstrated that Pet maintains most of its secondary and tertiary structural features at 37°C, with significant thermal unfolding only occurring at temperatures ≥50°C. Fluorescence quenching experiments detected the partial solvent exposure of Pet aromatic amino acid residues at 37°C, and a cell-based assay suggested these changes could activate an ERAD-related event known as the unfolded protein response. We also found that HEp-2 cells were resistant to Pet intoxication when incubated with glycerol, a protein stabilizer. Altogether, our data are consistent with a model in which ERAD activity is triggered by a subtle structural destabilization of Pet and the exposure of Pet hydrophobic residues at physiological temperature. This was further supported by computer modeling analysis, which identified a surface-exposed hydrophobic loop among other accessible nonpolar residues in Pet. From our data it appears that Pet can promote its ERAD-mediated translocation into the cytosol by a distinct mechanism involving partial exposure of hydrophobic residues rather than the substantial unfolding observed for certain AB toxins. PMID:18702515

  20. Impact of PET and MRI threshold-based tumor volume segmentation on patient-specific targeted radionuclide therapy dosimetry using CLR1404.

    PubMed

    Besemer, Abigail E; Titz, Benjamin; Grudzinski, Joseph J; Weichert, Jamey P; Kuo, John S; Robins, H Ian; Hall, Lance T; Bednarz, Bryan P

    2017-07-06

    Variations in tumor volume segmentation methods in targeted radionuclide therapy (TRT) may lead to dosimetric uncertainties. This work investigates the impact of PET and MRI threshold-based tumor segmentation on TRT dosimetry in patients with primary and metastatic brain tumors. In this study, PET/CT images of five brain cancer patients were acquired at 6, 24, and 48 h post-injection of 124 I-CLR1404. The tumor volume was segmented using two standardized uptake value (SUV) threshold levels, two tumor-to-background ratio (TBR) threshold levels, and a T1 Gadolinium-enhanced MRI threshold. The dice similarity coefficient (DSC), jaccard similarity coefficient (JSC), and overlap volume (OV) metrics were calculated to compare differences in the MRI and PET contours. The therapeutic 131 I-CLR1404 voxel-level dose distribution was calculated from the 124 I-CLR1404 activity distribution using RAPID, a Geant4 Monte Carlo internal dosimetry platform. The TBR, SUV, and MRI tumor volumes ranged from 2.3-63.9 cc, 0.1-34.7 cc, and 0.4-11.8 cc, respectively. The average  ±  standard deviation (range) was 0.19  ±  0.13 (0.01-0.51), 0.30  ±  0.17 (0.03-0.67), and 0.75  ±  0.29 (0.05-1.00) for the JSC, DSC, and OV, respectively. The DSC and JSC values were small and the OV values were large for both the MRI-SUV and MRI-TBR combinations because the regions of PET uptake were generally larger than the MRI enhancement. Notable differences in the tumor dose volume histograms were observed for each patient. The mean (standard deviation) 131 I-CLR1404 tumor doses ranged from 0.28-1.75 Gy GBq -1 (0.07-0.37 Gy GBq -1 ). The ratio of maximum-to-minimum mean doses for each patient ranged from 1.4-2.0. The tumor volume and the interpretation of the tumor dose is highly sensitive to the imaging modality, PET enhancement metric, and threshold level used for tumor volume segmentation. The large variations in tumor doses clearly demonstrate the need for standard protocols for multimodality tumor segmentation in TRT dosimetry.

  1. Impact of PET and MRI threshold-based tumor volume segmentation on patient-specific targeted radionuclide therapy dosimetry using CLR1404

    NASA Astrophysics Data System (ADS)

    Besemer, Abigail E.; Titz, Benjamin; Grudzinski, Joseph J.; Weichert, Jamey P.; Kuo, John S.; Robins, H. Ian; Hall, Lance T.; Bednarz, Bryan P.

    2017-08-01

    Variations in tumor volume segmentation methods in targeted radionuclide therapy (TRT) may lead to dosimetric uncertainties. This work investigates the impact of PET and MRI threshold-based tumor segmentation on TRT dosimetry in patients with primary and metastatic brain tumors. In this study, PET/CT images of five brain cancer patients were acquired at 6, 24, and 48 h post-injection of 124I-CLR1404. The tumor volume was segmented using two standardized uptake value (SUV) threshold levels, two tumor-to-background ratio (TBR) threshold levels, and a T1 Gadolinium-enhanced MRI threshold. The dice similarity coefficient (DSC), jaccard similarity coefficient (JSC), and overlap volume (OV) metrics were calculated to compare differences in the MRI and PET contours. The therapeutic 131I-CLR1404 voxel-level dose distribution was calculated from the 124I-CLR1404 activity distribution using RAPID, a Geant4 Monte Carlo internal dosimetry platform. The TBR, SUV, and MRI tumor volumes ranged from 2.3-63.9 cc, 0.1-34.7 cc, and 0.4-11.8 cc, respectively. The average  ±  standard deviation (range) was 0.19  ±  0.13 (0.01-0.51), 0.30  ±  0.17 (0.03-0.67), and 0.75  ±  0.29 (0.05-1.00) for the JSC, DSC, and OV, respectively. The DSC and JSC values were small and the OV values were large for both the MRI-SUV and MRI-TBR combinations because the regions of PET uptake were generally larger than the MRI enhancement. Notable differences in the tumor dose volume histograms were observed for each patient. The mean (standard deviation) 131I-CLR1404 tumor doses ranged from 0.28-1.75 Gy GBq-1 (0.07-0.37 Gy GBq-1). The ratio of maximum-to-minimum mean doses for each patient ranged from 1.4-2.0. The tumor volume and the interpretation of the tumor dose is highly sensitive to the imaging modality, PET enhancement metric, and threshold level used for tumor volume segmentation. The large variations in tumor doses clearly demonstrate the need for standard protocols for multimodality tumor segmentation in TRT dosimetry.

  2. Investigating the state-of-the-art in whole-body MR-based attenuation correction: an intra-individual, inter-system, inventory study on three clinical PET/MR systems.

    PubMed

    Beyer, Thomas; Lassen, Martin L; Boellaard, Ronald; Delso, Gaspar; Yaqub, Maqsood; Sattler, Bernhard; Quick, Harald H

    2016-02-01

    We assess inter- and intra-subject variability of magnetic resonance (MR)-based attenuation maps (MRμMaps) of human subjects for state-of-the-art positron emission tomography (PET)/MR imaging systems. Four healthy male subjects underwent repeated MR imaging with a Siemens Biograph mMR, Philips Ingenuity TF and GE SIGNA PET/MR system using product-specific MR sequences and image processing algorithms for generating MRμMaps. Total lung volumes and mean attenuation values in nine thoracic reference regions were calculated. Linear regression was used for comparing lung volumes on MRμMaps. Intra- and inter-system variability was investigated using a mixed effects model. Intra-system variability was seen for the lung volume of some subjects, (p = 0.29). Mean attenuation values across subjects were significantly different (p < 0.001) due to different segmentations of the trachea. Differences in the attenuation values caused noticeable intra-individual and inter-system differences that translated into a subsequent bias of the corrected PET activity values, as verified by independent simulations. Significant differences of MRμMaps generated for the same subjects but different PET/MR systems resulted in differences in attenuation correction factors, particularly in the thorax. These differences currently limit the quantitative use of PET/MR in multi-center imaging studies.

  3. [Correlation between end-tidal carbon dioxide and partial pressure of arterial carbon dioxide in ventilated newborns].

    PubMed

    Feng, Jin-Xing; Liu, Xiao-Hong; Huang, Hui-Jun; Yu, Zhen-Zhu; Yang, Hui; He, Liu-Fang

    2014-05-01

    To study the correlation between end-tidal carbon dioxide (PetCO2) and partial pressure of arterial carbon dioxide (PaCO2) in ventilated newborns. Thirty-one ventilated newborn underwent mainstream PetCO2 monitoring; meanwhile, arterial blood gas analysis was performed. The correlation and consistency between PetCO2 and PaCO2 were assessed. A total of 85 end-tidal and arterial CO2 pairs were obtained from 31 ventilated newborns. The mean PetCO2 (41±10 mm Hg) was significantly lower than the corresponding mean PaCO2 (46±11 mm Hg) (P<0.01). There was a significant positive correlation between PetCO2 and PaCO2 (r=0.92, P<0.01). The overall PetCO2 bias was 5.1±4.3 mm Hg (95% limits of consistency, -3.3 to 13.6 mmHg), and 5% (4/85) of the points were beyond the 95%CI. When the oxygenation index (OI) was less than 300 mm Hg (n=48), there was a significant positive correlation between PetCO2 and PaCO2 (r=0.85, P<0.01); the PetCO2 bias was 5.9±4.3 mm Hg (95% limits of consistency, -2.6 to 14.5 mm Hg), and 4.2% (2/48) of the points were beyond the 95%CI. When the OI was more than 300 mm Hg (n=37), there was also a significant positive correlation between PetCO2 and PaCO2 (r=0.91, P<0.01); the PetCO2 bias was 4.1±4.1 mm Hg (95% limits of consistency, -3.9 to 12.1 mm Hg), and 5% (2/37) of the points were beyond the 95%CI. There is a good correlation and consistency between PetCO2 and PaCO2 in ventilated newborns.

  4. Sleep Transcutaneous vs. End-Tidal CO2 Monitoring for Patients with Neuromuscular Disease.

    PubMed

    Won, Yu Hui; Choi, Won Ah; Lee, Jang Woo; Bach, John Robert; Park, Jinyoung; Kang, Seong-Woong

    2016-02-01

    This study compared transcutaneous carbon dioxide partial pressure (PtcCO2) and end-tidal carbon dioxide partial pressure (PetCO2) monitoring during sleep for patients with neuromuscular disease. This is a retrospective study of patients whose PtcCO2 and PetCO2 were monitored before they began using noninvasive mechanical ventilation. The outcomes were divided into four groupings: group 1, both PtcCO2 and PetCO2 are greater than or equal to 49 mm Hg; group 2, PtcCO2 is greater than or equal to 49 mm Hg but PetCO2 is less than 49 mm Hg; group 3, PtcCO2 is less than 49 mm Hg but PetCO2 is greater than or equal to 49 mm Hg; and group 4, both PtcCO2 and PetCO2 are less than 49 mm Hg. A total of 39 subjects (mean [SD] age, 27.7 [19.3] yrs) were enrolled. PtcCO2 values were significantly higher than PetCO2 values (P < 0.001). The intraclass correlation coefficient between maximal and mean values of PtcCO2 and PetCO2 was 0.612 and 0.718, respectively. Bias and limits of agreement between PtcCO2 and PetCO2 were -7.5 mm Hg and -21.3 to 6.3 mm Hg for maximal values and -4.8 mm Hg and -14.8 to 5.3 mm Hg for mean values. Group 2 included 19 (48.7%) and group 3 included 3 (7.6%) patients who showed discrepancy of hypercapnia between two methods. Maximum PtcCO2 was significantly greater than maximum PetCO2 for both groups and, therefore, tends to be higher than PetCO2 in this population. This should be taken into consideration when assessing patients for sleep hypoventilation.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuang, Yu; Wu, Lili; Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong

    Purpose: This study evaluated expected tumor control and normal tissue toxicity for prostate volumetric modulated arc therapy (VMAT) with and without radiation boosts to an intraprostatically dominant lesion (IDL), defined by {sup 18}F-choline positron emission tomography/computed tomography (PET/CT). Methods and Materials: Thirty patients with localized prostate cancer underwent {sup 18}F-choline PET/CT before treatment. Two VMAT plans, plan{sub 79} {sub Gy} and plan{sub 100-105} {sub Gy}, were compared for each patient. The whole-prostate planning target volume (PTV{sub prostate}) prescription was 79 Gy in both plans, but plan{sub 100-105} {sub Gy} added simultaneous boost doses of 100 Gy and 105 Gy to the IDL, definedmore » by 60% and 70% of maximum prostatic uptake on {sup 18}F-choline PET (IDL{sub suv60%} and IDL{sub suv70%}, respectively, with IDL{sub suv70%} nested inside IDL{sub suv60%} to potentially enhance tumor specificity of the maximum point dose). Plan evaluations included histopathological correspondence, isodose distributions, dose-volume histograms, tumor control probability (TCP), and normal tissue complication probability (NTCP). Results: Planning objectives and dose constraints proved feasible in 30 of 30 cases. Prostate sextant histopathology was available for 28 cases, confirming that IDL{sub suv60%} adequately covered all tumor-bearing prostate sextants in 27 cases and provided partial coverage in 1 case. Plan{sub 100-105} {sub Gy} had significantly higher TCP than plan{sub 79} {sub Gy} across all prostate regions for α/β ratios ranging from 1.5 Gy to 10 Gy (P<.001 for each case). There were no significant differences in bladder and femoral head NTCP between plans and slightly lower rectal NTCP (endpoint: grade ≥ 2 late toxicity or rectal bleeding) was found for plan{sub 100-105} {sub Gy}. Conclusions: VMAT can potentially increase the likelihood of tumor control in primary prostate cancer while observing normal tissue tolerances through simultaneous delivery of a steep radiation boost to a {sup 18}F-choline PET-defined IDL.« less

  6. Biological Image-Guided Radiotherapy in Rectal Cancer: Challenges and Pitfalls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roels, Sarah; Slagmolen, Pieter; Nuyts, Johan

    2009-11-01

    Purpose: To investigate the feasibility of integrating multiple imaging modalities for image-guided radiotherapy in rectal cancer. Patients and Methods: Magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) were performed before, during, and after preoperative chemoradiotherapy (CRT) in patients with resectable rectal cancer. The FDG-PET signals were segmented with an adaptive threshold-based and a gradient-based method. Magnetic resonance tumor volumes (TVs) were manually delineated. A nonrigid registration algorithm was applied to register the images, and mismatch analyses were carried out between MR and FDG-PET TVs and between TVs over time. Tumor volumes delineated on the images after CRTmore » were compared with the pathologic TV. Results: Forty-five FDG-PET/CT and 45 MR images were analyzed from 15 patients. The mean MRI and FDG-PET TVs showed a tendency to shrink during and after CRT. In general, MRI showed larger TVs than FDG-PET. There was an approximately 50% mismatch between the FDG-PET TV and the MRI TV at baseline and during CRT. Sixty-one percent of the FDG-PET TV and 76% of the MRI TV obtained after 10 fractions of CRT remained inside the corresponding baseline TV. On MRI, residual tumor was still suspected in all 6 patients with a pathologic complete response, whereas FDG-PET showed a metabolic complete response in 3 of them. The FDG-PET TVs delineated with the gradient-based method matched closest with pathologic findings. Conclusions: Integration of MRI and FDG-PET into radiotherapy seems feasible. Gradient-based segmentation is recommended for FDG-PET. Spatial variance between MRI and FDG-PET TVs should be taken into account for target definition.« less

  7. Automatic delineation of tumor volumes by co-segmentation of combined PET/MR data

    NASA Astrophysics Data System (ADS)

    Leibfarth, S.; Eckert, F.; Welz, S.; Siegel, C.; Schmidt, H.; Schwenzer, N.; Zips, D.; Thorwarth, D.

    2015-07-01

    Combined PET/MRI may be highly beneficial for radiotherapy treatment planning in terms of tumor delineation and characterization. To standardize tumor volume delineation, an automatic algorithm for the co-segmentation of head and neck (HN) tumors based on PET/MR data was developed. Ten HN patient datasets acquired in a combined PET/MR system were available for this study. The proposed algorithm uses both the anatomical T2-weighted MR and FDG-PET data. For both imaging modalities tumor probability maps were derived, assigning each voxel a probability of being cancerous based on its signal intensity. A combination of these maps was subsequently segmented using a threshold level set algorithm. To validate the method, tumor delineations from three radiation oncologists were available. Inter-observer variabilities and variabilities between the algorithm and each observer were quantified by means of the Dice similarity index and a distance measure. Inter-observer variabilities and variabilities between observers and algorithm were found to be comparable, suggesting that the proposed algorithm is adequate for PET/MR co-segmentation. Moreover, taking into account combined PET/MR data resulted in more consistent tumor delineations compared to MR information only.

  8. FDG-PET metabolic response predicts outcomes in anal cancer managed with chemoradiotherapy.

    PubMed

    Day, F L; Link, E; Ngan, S; Leong, T; Moodie, K; Lynch, C; Michael, M; Winton, E de; Hogg, A; Hicks, R J; Heriot, A

    2011-08-09

    The aim was to investigate the correlation between (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) metabolic response to chemoradiotherapy and clinical outcomes in squamous cell carcinoma (SCC) of the anus. A total of 48 patients with biopsy-proven anal SCC underwent FDG-PET scans at baseline and post chemoradiotherapy (54 Gy, concurrent 5-FU/mitomycin). Kaplan-Meier analysis was used to determine survival outcomes according to FDG-PET metabolic response. In all, 79% patients (n=38) had a complete metabolic response (CMR) at all sites of disease, 15% (n=7) had a CMR in regional nodes but only partial response in the primary tumour (overall partial metabolic response (PMR)) and 6% (n=3) had progressive distant disease despite CMR locoregionally (overall no response (NR)). The 2-year progression-free survival (PFS) was 95% for patients with a CMR, 71% for PMR and 0% for NR (P<0.0001). The 5-year overall survival (OS) was 88% in CMR, 69% in PMR and 0% in NR (P<0.0001). Cox proportional hazards regression analyses for PFS and OS found significant associations for incomplete (PMR+NR) vs complete FDG-PET response to treatment only, (HR 4.1 (95% CI: 1.5-11.5, P=0.013) and 6.7 (95% CI: 2.1-21.6, P=0.002), respectively). FDG-PET metabolic response to chemoradiotherapy in anal cancer is significantly associated with PFS and OS, and in this cohort incomplete FDG-PET response was a stronger predictor than T or N stage.

  9. New Language and Old Problems in Breast Cancer Radiotherapy.

    PubMed

    Chiricuţă, Ion Christian

    2017-01-01

    New developments in breast cancer radiotherapy make possible new standards in treatment recommandations based on international guidelines. Developments in radiotherapy irradiation techniques from 2D to 3D-Conformal RT and to IMRT (Intensity Modulated Arc Therapy) make possible to reduce the usual side effects on the organs at risk as: skin, lung, miocard, bone, esophagus and brahial plexus. Dispite of all these progresses acute and late side effects are present. Side effects are as old as the radiotherapy was used. New solutions are available now by improving irradiation techniques. New techniques as sentinel node procedure (SNP) or partial breast irradiation (PBRT) and immediate breast reconstruction with silicon implants (IBRIS) make necessary new considerations regarding the target volume delineations. A new language for definition of gross tumor volume (GTV), clinical target volume (CTV) based on the new diagnostic methods as PET/CT,nonaparticle MRI will have real impact on target delineation and irradiation techniques. "The new common language in breast cancer therapy" would be the first step to improve the endresults and finally the quality of life of the patients. Celsius.

  10. MR-assisted PET motion correction in simultaneous PET/MRI studies of dementia subjects.

    PubMed

    Chen, Kevin T; Salcedo, Stephanie; Chonde, Daniel B; Izquierdo-Garcia, David; Levine, Michael A; Price, Julie C; Dickerson, Bradford C; Catana, Ciprian

    2018-03-08

    Subject motion in positron emission tomography (PET) studies leads to image blurring and artifacts; simultaneously acquired magnetic resonance imaging (MRI) data provides a means for motion correction (MC) in integrated PET/MRI scanners. To assess the effect of realistic head motion and MR-based MC on static [ 18 F]-fluorodeoxyglucose (FDG) PET images in dementia patients. Observational study. Thirty dementia subjects were recruited. 3T hybrid PET/MR scanner where EPI-based and T 1 -weighted sequences were acquired simultaneously with the PET data. Head motion parameters estimated from high temporal resolution MR volumes were used for PET MC. The MR-based MC method was compared to PET frame-based MC methods in which motion parameters were estimated by coregistering 5-minute frames before and after accounting for the attenuation-emission mismatch. The relative changes in standardized uptake value ratios (SUVRs) between the PET volumes processed with the various MC methods, without MC, and the PET volumes with simulated motion were compared in relevant brain regions. The absolute value of the regional SUVR relative change was assessed with pairwise paired t-tests testing at the P = 0.05 level, comparing the values obtained through different MR-based MC processing methods as well as across different motion groups. The intraregion voxelwise variability of regional SUVRs obtained through different MR-based MC processing methods was also assessed with pairwise paired t-tests testing at the P = 0.05 level. MC had a greater impact on PET data quantification in subjects with larger amplitude motion (higher than 18% in the medial orbitofrontal cortex) and greater changes were generally observed for the MR-based MC method compared to the frame-based methods. Furthermore, a mean relative change of ∼4% was observed after MC even at the group level, suggesting the importance of routinely applying this correction. The intraregion voxelwise variability of regional SUVRs was also decreased using MR-based MC. All comparisons were significant at the P = 0.05 level. Incorporating temporally correlated MR data to account for intraframe motion has a positive impact on the FDG PET image quality and data quantification in dementia patients. 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.

  11. 11C-Choline-Pet Guided Stereotactic Body Radiation Therapy for Lymph Node Metastases in Oligometastatic Prostate Cancer.

    PubMed

    Franzese, Ciro; Lopci, Egesta; Di Brina, Lucia; D'Agostino, Giuseppe Roberto; Navarria, Pierina; Mancosu, Pietro; Tomatis, Stefano; Chiti, Arturo; Scorsetti, Marta

    2017-10-21

    aim is outcome of 11C-Choline-PET guided SBRT on lymph node metastases. patients with 1 - 4 lymph node metastases detected by 11C-choline-PET were treated with SBRT. Toxicity, treated metastases control and Progression Free Survival were computed. twenty-six patients, 38 lymph node metastases were irradiated. No grade ≥ 2 toxicity. Median PSA-nadir after RT was 1.02 ng/mL. Post-treatment 11C-Choline-PET showed metabolic complete response in 17 metastases (44,7%), partial response in 9 metastases (38%). SBRT is effective and safe for lymph node metastases. PET is important in identification of gross tumor and evaluation of the response.

  12. Deformable and rigid registration of MRI and microPET images for photodynamic therapy of cancer in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fei Baowei; Wang Hesheng; Muzic, Raymond F. Jr.

    2006-03-15

    We are investigating imaging techniques to study the tumor response to photodynamic therapy (PDT). Positron emission tomography (PET) can provide physiological and functional information. High-resolution magnetic resonance imaging (MRI) can provide anatomical and morphological changes. Image registration can combine MRI and PET images for improved tumor monitoring. In this study, we acquired high-resolution MRI and microPET {sup 18}F-fluorodeoxyglucose (FDG) images from C3H mice with RIF-1 tumors that were treated with Pc 4-based PDT. We developed two registration methods for this application. For registration of the whole mouse body, we used an automatic three-dimensional, normalized mutual information algorithm. For tumor registration,more » we developed a finite element model (FEM)-based deformable registration scheme. To assess the quality of whole body registration, we performed slice-by-slice review of both image volumes; manually segmented feature organs, such as the left and right kidneys and the bladder, in each slice; and computed the distance between corresponding centroids. Over 40 volume registration experiments were performed with MRI and microPET images. The distance between corresponding centroids of organs was 1.5{+-}0.4 mm which is about 2 pixels of microPET images. The mean volume overlap ratios for tumors were 94.7% and 86.3% for the deformable and rigid registration methods, respectively. Registration of high-resolution MRI and microPET images combines anatomical and functional information of the tumors and provides a useful tool for evaluating photodynamic therapy.« less

  13. Effect of respiratory gating on reducing lung motion artifacts in PET imaging of lung cancer.

    PubMed

    Nehmeh, S A; Erdi, Y E; Ling, C C; Rosenzweig, K E; Squire, O D; Braban, L E; Ford, E; Sidhu, K; Mageras, G S; Larson, S M; Humm, J L

    2002-03-01

    Positron emission tomography (PET) has shown an increase in both sensitivity and specificity over computed tomography (CT) in lung cancer. However, motion artifacts in the 18F fluorodioxydoglucose (FDG) PET images caused by respiration persists to be an important factor in degrading PET image quality and quantification. Motion artifacts lead to two major effects: First, it affects the accuracy of quantitation, producing a reduction of the measured standard uptake value (SUV). Second, the apparent lesion volume is overestimated. Both impact upon the usage of PET images for radiation treatment planning. The first affects the visibility, or contrast, of the lesion. The second results in an increase in the planning target volume, and consequently a greater radiation dose to the normal tissues. One way to compensate for this effect is by applying a multiple-frame capture technique. The PET data are then acquired in synchronization with the respiratory motion. Reduction in smearing due to gating was investigated in both phantoms and patient studies. Phantom studies showed a dependence of the reduction in smearing on the lesion size, the motion amplitude, and the number of bins used for data acquisition. These studies also showed an improvement in the target-to-background ratio, and a more accurate measurement of the SUV. When applied to one patient, respiratory gating showed a 28% reduction in the total lesion volume, and a 56.5% increase in the SUV. This study was conducted as a proof of principle that a gating technique can effectively reduce motion artifacts in PET image acquisition.

  14. Electrical and optical properties of nitrogen doped SnO{sub 2} thin films deposited on flexible substrates by magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Feng, E-mail: fangfeng@seu.edu.cn; Zhang, Yeyu; Wu, Xiaoqin

    2015-08-15

    Graphical abstract: The best SnO{sub 2}:N TCO film: about 80% transmittance and 9.1 × 10{sup −4} Ω cm. - Highlights: • Nitrogen-doped tin oxide film was deposited on PET by RF-magnetron sputtering. • Effects of oxygen partial pressure on the properties of thin films were investigated. • For SnO{sub 2}:N film, visible light transmittance was 80% and electrical resistivity was 9.1 × 10{sup −4} Ω cm. - Abstract: Nitrogen-doped tin oxide (SnO{sub 2}:N) thin films were deposited on flexible polyethylene terephthalate (PET) substrates at room temperature by RF-magnetron sputtering. Effects of oxygen partial pressure (0–4%) on electrical and optical propertiesmore » of thin films were investigated. Experimental results showed that SnO{sub 2}:N films were amorphous state, and O/Sn ratios of SnO{sub 2}:N films were deviated from the standard stoichiometry 2:1. Optical band gap of SnO{sub 2}:N films increased from approximately 3.10 eV to 3.42 eV as oxygen partial pressure increased from 0% to 4%. For SnO{sub 2}:N thin films deposited on PET, transmittance was about 80% in the visible light region. The best transparent conductive oxide (TCO) deposited on flexible PET substrates was SnO{sub 2}:N thin films preparing at 2% oxygen partial pressure, the transmittance was about 80% and electrical conductivity was about 9.1 × 10{sup −4} Ω cm.« less

  15. Characterization of surface modified polyester fabric.

    PubMed

    Joseph, Roy; Shelma, R; Rajeev, A; Muraleedharan, C V

    2009-12-01

    Woven polyethylene terephthalate (PET) fabric has been used in the construction of vascular grafts and sewing ring of prosthetic heart valves. In an effort to improve haemocompatibility and tissue response to PET fabric, a fluoropolymer, polyvinylidine fluoride (PVDF), was coated on PET fabric by dip coating technique. The coating was found to be uniform and no significant changes occurred on physical properties such as water permeability and burst strength. Cell culture cytotoxicity studies showed that coated PET was non-cytotoxic to L929 fibroblast cell lines. In vitro studies revealed that coating improved haemocompatibility of PET fabric material. Coating reduced platelet consumption of PET fabric by 50%. Upon surface modification leukocyte consumption of PET was reduced by 24%. About 60% reduction in partial thromboplastin time (PTT) observed when PET was coated with PVDF. Results of endothelial cell proliferation studies showed that surface coating did not have any substantial impact on cell proliferation. Overall results indicate that coating has potential to improve haemocompatibility of PET fabric without affecting its mechanical performance.

  16. Metabolically active tumour volume segmentation from dynamic [(18)F]FLT PET studies in non-small cell lung cancer.

    PubMed

    Hoyng, Lieke L; Frings, Virginie; Hoekstra, Otto S; Kenny, Laura M; Aboagye, Eric O; Boellaard, Ronald

    2015-01-01

    Positron emission tomography (PET) with (18)F-3'-deoxy-3'-fluorothymidine ([(18)F]FLT) can be used to assess tumour proliferation. A kinetic-filtering (KF) classification algorithm has been suggested for segmentation of tumours in dynamic [(18)F]FLT PET data. The aim of the present study was to evaluate KF segmentation and its test-retest performance in [(18)F]FLT PET in non-small cell lung cancer (NSCLC) patients. Nine NSCLC patients underwent two 60-min dynamic [(18)F]FLT PET scans within 7 days prior to treatment. Dynamic scans were reconstructed with filtered back projection (FBP) as well as with ordered subsets expectation maximisation (OSEM). Twenty-eight lesions were identified by an experienced physician. Segmentation was performed using KF applied to the dynamic data set and a source-to-background corrected 50% threshold (A50%) was applied to the sum image of the last three frames (45- to 60-min p.i.). Furthermore, several adaptations of KF were tested. Both for KF and A50% test-retest (TRT) variability of metabolically active tumour volume and standard uptake value (SUV) were evaluated. KF performed better on OSEM- than on FBP-reconstructed PET images. The original KF implementation segmented 15 out of 28 lesions, whereas A50% segmented each lesion. Adapted KF versions, however, were able to segment 26 out of 28 lesions. In the best performing adapted versions, metabolically active tumour volume and SUV TRT variability was similar to those of A50%. KF misclassified certain tumour areas as vertebrae or liver tissue, which was shown to be related to heterogeneous [(18)F]FLT uptake areas within the tumour. For [(18)F]FLT PET studies in NSCLC patients, KF and A50% show comparable tumour volume segmentation performance. The KF method needs, however, a site-specific optimisation. The A50% is therefore a good alternative for tumour segmentation in NSCLC [(18)F]FLT PET studies in multicentre studies. Yet, it was observed that KF has the potential to subsegment lesions in high and low proliferative areas.

  17. Are We Ready for Positron Emission Tomography/Computed Tomography-based Target Volume Definition in Lymphoma Radiation Therapy?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeoh, Kheng-Wei; Mikhaeel, N. George, E-mail: George.Mikhaeel@gstt.nhs.uk

    2013-01-01

    Fluorine-18 fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) has become indispensable for the clinical management of lymphomas. With consistent evidence that it is more accurate than anatomic imaging in the staging and response assessment of many lymphoma subtypes, its utility continues to increase. There have therefore been efforts to incorporate PET/CT data into radiation therapy decision making and in the planning process. Further, there have also been studies investigating target volume definition for radiation therapy using PET/CT data. This article will critically review the literature and ongoing studies on the above topics, examining the value and methods of adding PET/CTmore » data to the radiation therapy treatment algorithm. We will also discuss the various challenges and the areas where more evidence is required.« less

  18. SU-F-J-95: Impact of Shape Complexity On the Accuracy of Gradient-Based PET Volume Delineation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dance, M; Wu, G; Gao, Y

    2016-06-15

    Purpose: Explore correlation of tumor complexity shape with PET target volume accuracy when delineated with gradient-based segmentation tool. Methods: A total of 24 clinically realistic digital PET Monte Carlo (MC) phantoms of NSCLC were used in the study. The phantom simulated 29 thoracic lesions (lung primary and mediastinal lymph nodes) of varying size, shape, location, and {sup 18}F-FDG activity. A program was developed to calculate a curvature vector along the outline and the standard deviation of this vector was used as a metric to quantify a shape’s “complexity score”. This complexity score was calculated for standard geometric shapes and MC-generatedmore » target volumes in PET phantom images. All lesions were contoured using a commercially available gradient-based segmentation tool and the differences in volume from the MC-generated volumes were calculated as the measure of the accuracy of segmentation. Results: The average absolute percent difference in volumes between the MC-volumes and gradient-based volumes was 11% (0.4%–48.4%). The complexity score showed strong correlation with standard geometric shapes. However, no relationship was found between the complexity score and the accuracy of segmentation by gradient-based tool on MC simulated tumors (R{sup 2} = 0.156). When the lesions were grouped into primary lung lesions and mediastinal/mediastinal adjacent lesions, the average absolute percent difference in volumes were 6% and 29%, respectively. The former group is more isolated and the latter is more surround by tissues with relatively high SUV background. Conclusion: The complexity shape of NSCLC lesions has little effect on the accuracy of the gradient-based segmentation method and thus is not a good predictor of uncertainty in target volume delineation. Location of lesion within a relatively high SUV background may play a more significant role in the accuracy of gradient-based segmentation.« less

  19. Towards improved hardware component attenuation correction in PET/MR hybrid imaging

    NASA Astrophysics Data System (ADS)

    Paulus, D. H.; Tellmann, L.; Quick, H. H.

    2013-11-01

    In positron emission tomography/computed tomography (PET/CT) hybrid imaging attenuation correction (AC) of the patient tissue and patient table is performed by converting the CT-based Hounsfield units (HU) to linear attenuation coefficients (LAC) of PET. When applied to the new field of hardware component AC in PET/magnetic resonance (MR) hybrid imaging, this conversion method may result in local overcorrection of PET activity values. The aim of this study thus was to optimize the conversion parameters for CT-based AC of hardware components in PET/MR. Systematic evaluation and optimization of the HU to LAC conversion parameters has been performed for the hardware component attenuation map (µ-map) of a flexible radiofrequency (RF) coil used in PET/MR imaging. Furthermore, spatial misregistration of this RF coil to its µ-map was simulated by shifting the µ-map in different directions and the effect on PET quantification was evaluated. Measurements of a PET NEMA standard emission phantom were performed on an integrated hybrid PET/MR system. Various CT parameters were used to calculate different µ-maps for the flexible RF coil and to evaluate the impact on the PET activity concentration. A 511 keV transmission scan of the local RF coil was used as standard of reference to adapt the slope of the conversion from HUs to LACs at 511 keV. The average underestimation of the PET activity concentration due to the non-attenuation corrected RF coil in place was calculated to be 5.0% in the overall phantom. When considering attenuation only in the upper volume of the phantom, the average difference to the reference scan without RF coil is 11.0%. When the PET/CT conversion is applied, an average overestimation of 3.1% (without extended CT scale) and 4.2% (with extended CT scale) is observed in the top volume of the NEMA phantom. Using the adapted conversion resulting from this study, the deviation in the top volume of the phantom is reduced to -0.5% and shows the lowest standard deviation inside the phantom in comparison to all other conversions. Simulation of a µ-map misregistration shows acceptable results for shifts below 5 mm for the flexible surface RF coil. The adapted conversion from HUs to LAC at 511 keV within this study can improve hardware component AC in PET/MR hybrid imaging as shown for a flexible RF surface coil. Furthermore, these results have a direct impact on the improvement of the hardware component AC of the examined flexible RF coil in conjunction with position determination.

  20. 68Ga-PSMA-11 PET/CT Mapping of Prostate Cancer Biochemical Recurrence After Radical Prostatectomy in 270 Patients with a PSA Level of Less Than 1.0 ng/mL: Impact on Salvage Radiotherapy Planning.

    PubMed

    Calais, Jeremie; Czernin, Johannes; Cao, Minsong; Kishan, Amar U; Hegde, John V; Shaverdian, Narek; Sandler, Kiri; Chu, Fang-I; King, Chris R; Steinberg, Michael L; Rauscher, Isabel; Schmidt-Hegemann, Nina-Sophie; Poeppel, Thorsten; Hetkamp, Philipp; Ceci, Francesco; Herrmann, Ken; Fendler, Wolfgang P; Eiber, Matthias; Nickols, Nicholas G

    2018-02-01

    Target volume delineations for prostate cancer (PCa) salvage radiotherapy (SRT) after radical prostatectomy are usually drawn in the absence of visibly recurrent disease. 68 Ga-labeled prostate-specific membrane antigen (PSMA-11) PET/CT detects recurrent PCa with sensitivity superior to standard-of-care imaging at serum prostate-specific antigen (PSA) values low enough to affect target volume delineations for routine SRT. Our objective was to map the recurrence pattern of PCa early biochemical recurrence (BCR) after radical prostatectomy with 68 Ga-PSMA-11 PET/CT in patients with serum PSA levels of less than 1 ng/mL, determine how often consensus clinical target volumes (CTVs) based on the Radiation Therapy Oncology Group (RTOG) guidelines cover 68 Ga-PSMA-11 PET/CT-defined disease, and assess the potential impact of 68 Ga-PSMA-11 PET/CT on SRT. Methods: This was a post hoc analysis of an intention-to-treat population of 270 patients who underwent 68 Ga-PSMA-11 PET/CT at 4 institutions for BCR after prostatectomy without prior radiotherapy at a PSA level of less than 1 ng/mL. RTOG consensus CTVs that included both the prostate bed and the pelvic lymph nodes were contoured on the CT dataset of the PET/CT image by a radiation oncologist masked to the PET component. 68 Ga-PSMA-11 PET/CT images were analyzed by a nuclear medicine physician. 68 Ga-PSMA-11-positive lesions not covered by planning volumes based on the consensus CTVs were considered to have a potential major impact on treatment planning. Results: The median PSA level at the time of 68 Ga-PSMA-11 PET/CT was 0.48 ng/mL (range, 0.03-1 ng/mL). One hundred thirty-two of 270 patients (49%) had a positive 68 Ga-PSMA-11 PET/CT result. Fifty-two of 270 (19%) had at least one PSMA-11-positive lesion not covered by the consensus CTVs. Thirty-three of 270 (12%) had extrapelvic PSMA-11-positive lesions, and 19 of 270 (7%) had PSMA-11-positive lesions within the pelvis but not covered by the consensus CTVs. The 2 most common 68 Ga-PSMA-11-positive lesion locations outside the consensus CTVs were bone (23/52, 44%) and perirectal lymph nodes (16/52, 31%). Conclusion: Post hoc analysis of 68 Ga-PSMA-11 PET/CT implied a major impact on SRT planning in 52 of 270 patients (19%) with PCa early BCR (PSA < 1.0 ng/mL). This finding justifies a randomized imaging trial of SRT with or without 68 Ga-PSMA-11 PET/CT investigating its potential benefit on clinical outcome. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  1. The use of zeolites to generate PET phantoms for the validation of quantification strategies in oncology.

    PubMed

    Zito, Felicia; De Bernardi, Elisabetta; Soffientini, Chiara; Canzi, Cristina; Casati, Rosangela; Gerundini, Paolo; Baselli, Giuseppe

    2012-09-01

    In recent years, segmentation algorithms and activity quantification methods have been proposed for oncological (18)F-fluorodeoxyglucose (FDG) PET. A full assessment of these algorithms, necessary for a clinical transfer, requires a validation on data sets provided with a reliable ground truth as to the imaged activity distribution, which must be as realistic as possible. The aim of this work is to propose a strategy to simulate lesions of uniform uptake and irregular shape in an anthropomorphic phantom, with the possibility to easily obtain a ground truth as to lesion activity and borders. Lesions were simulated with samples of clinoptilolite, a family of natural zeolites of irregular shape, able to absorb aqueous solutions of (18)F-FDG, available in a wide size range, and nontoxic. Zeolites were soaked in solutions of (18)F-FDG for increasing times up to 120 min and their absorptive properties were characterized as function of soaking duration, solution concentration, and zeolite dry weight. Saturated zeolites were wrapped in Parafilm, positioned inside an Alderson thorax-abdomen phantom and imaged with a PET-CT scanner. The ground truth for the activity distribution of each zeolite was obtained by segmenting high-resolution finely aligned CT images, on the basis of independently obtained volume measurements. The fine alignment between CT and PET was validated by comparing the CT-derived ground truth to a set of zeolites' PET threshold segmentations in terms of Dice index and volume error. The soaking time necessary to achieve saturation increases with zeolite dry weight, with a maximum of about 90 min for the largest sample. At saturation, a linear dependence of the uptake normalized to the solution concentration on zeolite dry weight (R(2) = 0.988), as well as a uniform distribution of the activity over the entire zeolite volume from PET imaging were demonstrated. These findings indicate that the (18)F-FDG solution is able to saturate the zeolite pores and that the concentration does not influence the distribution uniformity of both solution and solute, at least at the trace concentrations used for zeolite activation. An additional proof of uniformity of zeolite saturation was obtained observing a correspondence between uptake and adsorbed volume of solution, corresponding to about 27.8% of zeolite volume. As to the ground truth for zeolites positioned inside the phantom, the segmentation of finely aligned CT images provided reliable borders, as demonstrated by a mean absolute volume error of 2.8% with respect to the PET threshold segmentation corresponding to the maximum Dice. The proposed methodology allowed obtaining an experimental phantom data set that can be used as a feasible tool to test and validate quantification and segmentation algorithms for PET in oncology. The phantom is currently under consideration for being included in a benchmark designed by AAPM TG211, which will be available to the community to evaluate PET automatic segmentation methods.

  2. TU-AB-202-03: Prediction of PET Transfer Uncertainty by DIR Error Estimating Software, AUTODIRECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, H; Chen, J; Phillips, J

    2016-06-15

    Purpose: Deformable image registration (DIR) is a powerful tool, but DIR errors can adversely affect its clinical applications. To estimate voxel-specific DIR uncertainty, a software tool, called AUTODIRECT (automated DIR evaluation of confidence tool), has been developed and validated. This work tests the ability of this software to predict uncertainty for the transfer of standard uptake values (SUV) from positron-emission tomography (PET) with DIR. Methods: Virtual phantoms are used for this study. Each phantom has a planning computed tomography (CT) image and a diagnostic PET-CT image set. A deformation was digitally applied to the diagnostic CT to create the planningmore » CT image and establish a known deformation between the images. One lung and three rectum patient datasets were employed to create the virtual phantoms. Both of these sites have difficult deformation scenarios associated with them, which can affect DIR accuracy (lung tissue sliding and changes in rectal filling). The virtual phantoms were created to simulate these scenarios by introducing discontinuities in the deformation field at the lung rectum border. The DIR algorithm from Plastimatch software was applied to these phantoms. The SUV mapping errors from the DIR were then compared to that predicted by AUTODIRECT. Results: The SUV error distributions closely followed the AUTODIRECT predicted error distribution for the 4 test cases. The minimum and maximum PET SUVs were produced from AUTODIRECT at 95% confidence interval before applying gradient-based SUV segmentation for each of these volumes. Notably, 93.5% of the target volume warped by the true deformation was included within the AUTODIRECT-predicted maximum SUV volume after the segmentation, while 78.9% of the target volume was within the target volume warped by Plastimatch. Conclusion: The AUTODIRECT framework is able to predict PET transfer uncertainty caused by DIR, which enables an understanding of the associated target volume uncertainty.« less

  3. Predicting tumor hypoxia in non-small cell lung cancer by combining CT, FDG PET and dynamic contrast-enhanced CT.

    PubMed

    Even, Aniek J G; Reymen, Bart; La Fontaine, Matthew D; Das, Marco; Jochems, Arthur; Mottaghy, Felix M; Belderbos, José S A; De Ruysscher, Dirk; Lambin, Philippe; van Elmpt, Wouter

    2017-11-01

    Most solid tumors contain inadequately oxygenated (i.e., hypoxic) regions, which tend to be more aggressive and treatment resistant. Hypoxia PET allows visualization of hypoxia and may enable treatment adaptation. However, hypoxia PET imaging is expensive, time-consuming and not widely available. We aimed to predict hypoxia levels in non-small cell lung cancer (NSCLC) using more easily available imaging modalities: FDG-PET/CT and dynamic contrast-enhanced CT (DCE-CT). For 34 NSCLC patients, included in two clinical trials, hypoxia HX4-PET/CT, planning FDG-PET/CT and DCE-CT scans were acquired before radiotherapy. Scans were non-rigidly registered to the planning CT. Tumor blood flow (BF) and blood volume (BV) were calculated by kinetic analysis of DCE-CT images. Within the gross tumor volume, independent clusters, i.e., supervoxels, were created based on FDG-PET/CT. For each supervoxel, tumor-to-background ratios (TBR) were calculated (median SUV/aorta SUV mean ) for HX4-PET/CT and supervoxel features (median, SD, entropy) for the other modalities. Two random forest models (cross-validated: 10 folds, five repeats) were trained to predict the hypoxia TBR; one based on CT, FDG, BF and BV, and one with only CT and FDG features. Patients were split in a training (trial NCT01024829) and independent test set (trial NCT01210378). For each patient, predicted, and observed hypoxic volumes (HV) (TBR > 1.2) were compared. Fifteen patients (3291 supervoxels) were used for training and 19 patients (1502 supervoxels) for testing. The model with all features (RMSE training: 0.19 ± 0.01, test: 0.27) outperformed the model with only CT and FDG-PET features (RMSE training: 0.20 ± 0.01, test: 0.29). All tumors of the test set were correctly classified as normoxic or hypoxic (HV > 1 cm 3 ) by the best performing model. We created a data-driven methodology to predict hypoxia levels and hypoxia spatial patterns using CT, FDG-PET and DCE-CT features in NSCLC. The model correctly classifies all tumors, and could therefore, aid tumor hypoxia classification and patient stratification.

  4. FDG-PET Response Prediction in Pediatric Hodgkin's Lymphoma: Impact of Metabolically Defined Tumor Volumes and Individualized SUV Measurements on the Positive Predictive Value.

    PubMed

    Hussien, Amr Elsayed M; Furth, Christian; Schönberger, Stefan; Hundsdoerfer, Patrick; Steffen, Ingo G; Amthauer, Holger; Müller, Hans-Wilhelm; Hautzel, Hubertus

    2015-01-28

    In pediatric Hodgkin's lymphoma (pHL) early response-to-therapy prediction is metabolically assessed by (18)F-FDG PET carrying an excellent negative predictive value (NPV) but an impaired positive predictive value (PPV). Aim of this study was to improve the PPV while keeping the optimal NPV. A comparison of different PET data analyses was performed applying individualized standardized uptake values (SUV), PET-derived metabolic tumor volume (MTV) and the product of both parameters, termed total lesion glycolysis (TLG); One-hundred-eight PET datasets (PET1, n = 54; PET2, n = 54) of 54 children were analysed by visual and semi-quantitative means. SUVmax, SUVmean, MTV and TLG were obtained the results of both PETs and the relative change from PET1 to PET2 (Δ in %) were compared for their capability of identifying responders and non-responders using receiver operating characteristics (ROC)-curves. In consideration of individual variations in noise and contrasts levels all parameters were additionally obtained after threshold correction to lean body mass and background; All semi-quantitative SUV estimates obtained at PET2 were significantly superior to the visual PET2 analysis. However, ΔSUVmax revealed the best results (area under the curve, 0.92; p < 0.001; sensitivity 100%; specificity 85.4%; PPV 46.2%; NPV 100%; accuracy, 87.0%) but was not significantly superior to SUVmax-estimation at PET2 and ΔTLGmax. Likewise, the lean body mass and background individualization of the datasets did not impove the results of the ROC analyses; Sophisticated semi-quantitative PET measures in early response assessment of pHL patients do not perform significantly better than the previously proposed ΔSUVmax. All analytical strategies failed to improve the impaired PPV to a clinically acceptable level while preserving the excellent NPV.

  5. Spontaneous low frequency BOLD signal variations from resting-state fMRI are decreased in Alzheimer disease

    PubMed Central

    Manning, Kathryn Y.; Rajakumar, Nagalingam; Gómez, Francisco A.; Soddu, Andrea; Borrie, Michael J.

    2017-01-01

    Previous studies have demonstrated altered brain activity in Alzheimer's disease using task based functional MRI (fMRI), network based resting-state fMRI, and glucose metabolism from 18F fluorodeoxyglucose-PET (FDG-PET). Our goal was to define a novel indicator of neuronal activity based on a first-order textural feature of the resting state functional MRI (RS-fMRI) signal. Furthermore, we examined the association between this neuronal activity metric and glucose metabolism from 18F FDG-PET. We studied 15 normal elderly controls (NEC) and 15 probable Alzheimer disease (AD) subjects from the AD Neuroimaging Initiative. An independent component analysis was applied to the RS-fMRI, followed by template matching to identify neuronal components (NC). A regional brain activity measurement was constructed based on the variation of the RS-fMRI signal of these NC. The standardized glucose uptake values of several brain regions relative to the cerebellum (SUVR) were measured from partial volume corrected FDG-PET images. Comparing the AD and NEC groups, the mean brain activity metric was significantly lower in the accumbens, while the glucose SUVR was significantly lower in the amygdala and hippocampus. The RS-fMRI brain activity metric was positively correlated with cognitive measures and amyloid β1–42 cerebral spinal fluid levels; however, these did not remain significant following Bonferroni correction. There was a significant linear correlation between the brain activity metric and the glucose SUVR measurements. This proof of concept study demonstrates that this novel and easy to implement RS-fMRI brain activity metric can differentiate a group of healthy elderly controls from a group of people with AD. PMID:28582450

  6. Flortaucipir tau PET imaging in semantic variant primary progressive aphasia.

    PubMed

    Makaretz, Sara J; Quimby, Megan; Collins, Jessica; Makris, Nikos; McGinnis, Scott; Schultz, Aaron; Vasdev, Neil; Johnson, Keith A; Dickerson, Bradford C

    2017-10-06

    The semantic variant of primary progressive aphasia (svPPA) is typically associated with frontotemporal lobar degeneration (FTLD) with longTAR DNA-binding protein (TDP)-43-positive neuropil threads and dystrophic neurites (type C), and is only rarely due to a primary tauopathy or Alzheimer's disease. We undertook this study to investigate the localisation and magnitude of the presumed tau Positron Emission Tomography (PET) tracer [ 18 F]Flortaucipir (FTP; also known as T807 or AV1451) in patients with svPPA, hypothesising that most patients would not show tracer uptake different from controls. FTP and [ 11 C]Pittsburgh compound B PET imaging as well as MRI were performed in seven patients with svPPA and in 20 controls. FTP signal was analysed by visual inspection and by quantitative comparison to controls, with and without partial volume correction. All seven patients showed elevated FTP uptake in the anterior temporal lobe with a leftward asymmetry that was not observed in healthy controls. This elevated FTP signal, largely co-localised with atrophy, was evident on both visual inspection and quantitative cortical surface-based analysis. Five patients were amyloid negative, one was amyloid positive and one has an unknown amyloid status. In this series of patients with clinical profiles, structural MRI and amyloid PET imaging typical for svPPA, FTP signal was unexpectedly elevated with a spatial pattern localised to areas of atrophy. This raises questions about the possible off-target binding of this tracer to non-tau molecules associated with neurodegeneration. Further investigation with autopsy analysis will help illuminate the binding target(s) of FTP in cases of suspected FTLD-TDP neuropathology. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Spontaneous low frequency BOLD signal variations from resting-state fMRI are decreased in Alzheimer disease.

    PubMed

    Kazemifar, Samaneh; Manning, Kathryn Y; Rajakumar, Nagalingam; Gómez, Francisco A; Soddu, Andrea; Borrie, Michael J; Menon, Ravi S; Bartha, Robert

    2017-01-01

    Previous studies have demonstrated altered brain activity in Alzheimer's disease using task based functional MRI (fMRI), network based resting-state fMRI, and glucose metabolism from 18F fluorodeoxyglucose-PET (FDG-PET). Our goal was to define a novel indicator of neuronal activity based on a first-order textural feature of the resting state functional MRI (RS-fMRI) signal. Furthermore, we examined the association between this neuronal activity metric and glucose metabolism from 18F FDG-PET. We studied 15 normal elderly controls (NEC) and 15 probable Alzheimer disease (AD) subjects from the AD Neuroimaging Initiative. An independent component analysis was applied to the RS-fMRI, followed by template matching to identify neuronal components (NC). A regional brain activity measurement was constructed based on the variation of the RS-fMRI signal of these NC. The standardized glucose uptake values of several brain regions relative to the cerebellum (SUVR) were measured from partial volume corrected FDG-PET images. Comparing the AD and NEC groups, the mean brain activity metric was significantly lower in the accumbens, while the glucose SUVR was significantly lower in the amygdala and hippocampus. The RS-fMRI brain activity metric was positively correlated with cognitive measures and amyloid β1-42 cerebral spinal fluid levels; however, these did not remain significant following Bonferroni correction. There was a significant linear correlation between the brain activity metric and the glucose SUVR measurements. This proof of concept study demonstrates that this novel and easy to implement RS-fMRI brain activity metric can differentiate a group of healthy elderly controls from a group of people with AD.

  8. A High Resolution Monolithic Crystal, DOI, MR Compatible, PET Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert S Miyaoka

    The principle objective of this proposal is to develop a positron emission tomography (PET) detector with depth-of-interaction (DOI) positioning capability that will achieve state of the art spatial resolution and sensitivity performance for small animal PET imaging. When arranged in a ring or box detector geometry, the proposed detector module will support <1 mm3 image resolution and >15% absolute detection efficiency. The detector will also be compatible with operation in a MR scanner to support simultaneous multi-modality imaging. The detector design will utilize a thick, monolithic crystal scintillator readout by a two-dimensional array of silicon photomultiplier (SiPM) devices using amore » novel sensor on the entrance surface (SES) design. Our hypothesis is that our single-ended readout SES design will provide an effective DOI positioning performance equivalent to more expensive dual-ended readout techniques and at a significantly lower cost. Our monolithic crystal design will also lead to a significantly lower cost system. It is our goal to design a detector with state of the art performance but at a price point that is affordable so the technology can be disseminated to many laboratories. A second hypothesis is that using SiPM arrays, the detector will be able to operate in a MR scanner without any degradation in performance to support simultaneous PET/MR imaging. Having a co-registered MR image will assist in radiotracer localization and may also be used for partial volume corrections to improve radiotracer uptake quantitation. The far reaching goal of this research is to develop technology for medical research that will lead to improvements in human health care.« less

  9. 18F-Fluorodeoxyglucose PET/CT and dynamic contrast-enhanced MRI as imaging biomarkers in malignant pleural mesothelioma.

    PubMed

    Hall, David O; Hooper, Clare E; Searle, Julie; Darby, Michael; White, Paul; Harvey, John E; Braybrooke, Jeremy P; Maskell, Nick A; Masani, Vidan; Lyburn, Iain D

    2018-02-01

    The purpose of this study was to compare the use of fluorine-18-fluorodeoxyglucose (F-FDG) PET with computed tomography (CT) and dynamic contrast-enhanced (DCE) MRI to predict prognosis and monitor treatment in malignant pleural mesothelioma. F-FDG PET/CT and DCE-MRI studies carried out as part of the South West Area Mesothelioma Pemetrexed trial were used. F-FDG PET/CT and DCE-MRI studies were carried out before treatment, and after two cycles of chemotherapy, on patients treated with pemetrexed and cisplatin. A total of 73 patients were recruited, of whom 65 had PET/CT and DCE-MRI scans. Baseline measurements from F-FDG PET/CT (maximum standardized uptake value, metabolic tumour volume and total lesion glycolysis) and DCE-MRI (integrated area under the first 90s of the curve and washout slope) were compared with overall survival (OS) using Kaplan-Meier and Cox regression analyses, and changes in imaging measurements were compared with disease progression. PET/CT and DCE-MRI measurements were not correlated with each other. Maximum standardized uptake value, metabolic tumour volume and total lesion glycolysis were significantly related to OS with Cox regression analysis and Kaplan-Meir analysis, and DCE-MRI washout curve shape was significantly related to OS. DCE-MRI curve shape can be combined with F-FDG PET/CT to give additional prognostic information. Changes in measurements were not related to progression-free survival. F-FDG PET/CT and DCE-MRI give prognostic information in malignant pleural mesothelioma. Neither PET/CT nor DCE-MRI is useful for monitoring disease progression.

  10. Favorable versus unfavorable prognostic groups by post-chemoradiation FDG-PET imaging in node-positive esophageal squamous cell carcinoma patients treated with definitive chemoradiotherapy.

    PubMed

    Yap, Wing-Keen; Chang, Yu-Chuan; Hsieh, Chia-Hsun; Chao, Yin-Kai; Chen, Chien-Cheng; Shih, Ming-Chieh; Hung, Tsung-Min

    2018-05-01

    Our purpose was to examine the prognostic value of post-CRT PET based on the presence or absence of FDG-avid metastatic lymph node(s) and metabolic response of the primary tumor in patients with clinically node-positive ESCC treated with definitive chemoradiotherapy (dCRT). We identified 108 eligible patients treated by chemoradiotherapy (CRT) with or without resection from our prospectively collected database. Absence of FDG-avid metastatic lymph node with at least partial response of the primary tumor on PET scan after initial CRT was defined as the Post-CRT PET favorable group (yPET-F), and otherwise as unfavorable group (yPET-U). The Kaplan-Meier method and Cox regression were performed for survival analyses and multivariable analysis, respectively. The study cohort was comprised of 59 patients receiving dCRT. Forty-five patients receiving trimodality therapy (TMT) comprised the comparative group and four patients were excluded from further analyses for developing interval distant metastasis detected on post-CRT PET scan. The median follow-up for the study cohort was 41 months. On K-M analysis of the study cohort, yPET-F was found to have significantly better OS (2-year: 72.5% vs 13.7%, p < 0.01) and DMFS (2-year: 71.6% vs 36.6%, p = 0.01) than yPET-U. In multivariable analysis, yPET-F remained as a strong independent favorable prognosticator on both OS (HR 0.08, p < 0.01) and DMFS (HR 0.14, p = 0.02) for the dCRT cohort. Compared with TMT cohort, for yPET-U patients, TMT had better OS (p = 0.03) than dCRT-Operable and dCRT-Operable had superior OS (p = 0.04) than dCRT-Unresectable. For yPET-F patients, there was no difference in both OS (p > 0.99) and DMFS (p = 0.92) between these three groups. Absence of FDG-avid metastatic lymph node with at least partial response of the primary tumor on PET scan after CRT (i.e., yPET-F status) prognosticate for excellent OS and DMFS in cN+ ESCC patients treated with dCRT, and might be comparable to TMT.

  11. Simultaneous Tumor Segmentation, Image Restoration, and Blur Kernel Estimation in PET Using Multiple Regularizations

    PubMed Central

    Li, Laquan; Wang, Jian; Lu, Wei; Tan, Shan

    2016-01-01

    Accurate tumor segmentation from PET images is crucial in many radiation oncology applications. Among others, partial volume effect (PVE) is recognized as one of the most important factors degrading imaging quality and segmentation accuracy in PET. Taking into account that image restoration and tumor segmentation are tightly coupled and can promote each other, we proposed a variational method to solve both problems simultaneously in this study. The proposed method integrated total variation (TV) semi-blind de-convolution and Mumford-Shah segmentation with multiple regularizations. Unlike many existing energy minimization methods using either TV or L2 regularization, the proposed method employed TV regularization over tumor edges to preserve edge information, and L2 regularization inside tumor regions to preserve the smooth change of the metabolic uptake in a PET image. The blur kernel was modeled as anisotropic Gaussian to address the resolution difference in transverse and axial directions commonly seen in a clinic PET scanner. The energy functional was rephrased using the Γ-convergence approximation and was iteratively optimized using the alternating minimization (AM) algorithm. The performance of the proposed method was validated on a physical phantom and two clinic datasets with non-Hodgkin’s lymphoma and esophageal cancer, respectively. Experimental results demonstrated that the proposed method had high performance for simultaneous image restoration, tumor segmentation and scanner blur kernel estimation. Particularly, the recovery coefficients (RC) of the restored images of the proposed method in the phantom study were close to 1, indicating an efficient recovery of the original blurred images; for segmentation the proposed method achieved average dice similarity indexes (DSIs) of 0.79 and 0.80 for two clinic datasets, respectively; and the relative errors of the estimated blur kernel widths were less than 19% in the transversal direction and 7% in the axial direction. PMID:28603407

  12. Utilizing 18F-fluoroethyltyrosine (FET) positron emission tomography (PET) to define suspected nonenhancing tumor for radiation therapy planning of glioblastoma.

    PubMed

    Hayes, Aimee R; Jayamanne, Dasantha; Hsiao, Edward; Schembri, Geoffrey P; Bailey, Dale L; Roach, Paul J; Khasraw, Mustafa; Newey, Allison; Wheeler, Helen R; Back, Michael

    2018-01-31

    The authors sought to evaluate the impact of 18F-fluoroethyltyrosine (FET) positron emission tomography (PET) on radiation therapy planning for patients diagnosed with glioblastoma (GBM) and the presence of suspected nonenhancing tumors compared with standard magnetic resonance imaging (MRI). Patients with GBM and contrast-enhanced MRI scans showing regions suspicious of nonenhancing tumor underwent postoperative FET-PET before commencing radiation therapy. Two clinical target volumes (CTVs) were created using pre- and postoperative MRI: MRI fluid-attenuated inversion recovery (FLAIR) sequences (CTV FLAIR ) and MRI contrast sequences with an expansion on the surgical cavity (CTV Sx ). FET-PET was used to create biological tumor volumes (BTVs) by encompassing FET-avid regions, forming BTV FLAIR and BTV Sx . Volumetric analyses were conducted between CTVs and respective BTVs using Wilcoxon signed-rank tests. The volume increase with addition of FET was analyzed with respect to BTV FLAIR and BTV Sx . Presence of focal gadolinium contrast enhancement within previously nonenhancing tumor or within the FET-avid region was noted on MRI scans at 1 and 3 months after radiation therapy. Twenty-six patients were identified retrospectively from our database, of whom 24 had demonstrable FET uptake. The median CTV FLAIR , CTV Sx , BTV FLAIR , and BTV Sx were 57.1 mL (range, 1.1-217.4), 83.6 mL (range, 27.2-275.8), 62.8 mL (range, 1.1-307.3), and 94.7 mL (range, 27.2-285.5), respectively. When FET-PET was used, there was a mean increase in volume of 26.8% from CTV FLAIR to BTV FLAIR and 20.6% from CTV Sx to BTV Sx . A statistically significant difference was noted on Wilcoxon signed-rank test when assessing volumetric change between CTV FLAIR and BTV FLAIR (P < .0001) and CTV Sx and BTV Sx (P < .0001). Six of 24 patients (25%) with FET avidity before radiation therapy showed focal gadolinium enhancement within the radiation therapy portal. FET-PET may help improve delineation of GBM in cases with a suspected nonenhancing component. This may result in improved radiation therapy target delineation and reduce the risk of potential geographical miss. We investigated the impact of 18F-fluoroethyltyrosine (FET) positron emission tomography (PET) on radiation therapy planning for patients diagnosed with glioblastoma (GBM) and a suspected nonenhancing tumor compared with standard magnetic resonance imaging. We performed volumetric analyses between clinical target volumes and respective biological target volumes using Wilcoxon signed-rank tests. FET-PET may help improve delineation of GBM in cases with a suspected nonenhancing component and reduce the risk of potential geographical miss. Copyright © 2018 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  13. Twelve automated thresholding methods for segmentation of PET images: a phantom study.

    PubMed

    Prieto, Elena; Lecumberri, Pablo; Pagola, Miguel; Gómez, Marisol; Bilbao, Izaskun; Ecay, Margarita; Peñuelas, Iván; Martí-Climent, Josep M

    2012-06-21

    Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical (18)F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.

  14. Twelve automated thresholding methods for segmentation of PET images: a phantom study

    NASA Astrophysics Data System (ADS)

    Prieto, Elena; Lecumberri, Pablo; Pagola, Miguel; Gómez, Marisol; Bilbao, Izaskun; Ecay, Margarita; Peñuelas, Iván; Martí-Climent, Josep M.

    2012-06-01

    Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical 18F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.

  15. Cerebral blood volume in humans by NIRS and PET

    NASA Astrophysics Data System (ADS)

    Pott, Frank; Knudsen, Gitte M.; Rostrup, Egill; Ide, Kojiro; Secher, Niels H.; Paulson, Olaf B.

    1997-12-01

    Near infrared spectroscopy (NIRS) determined changes in the cerebral blood volume (CBV) were compared to those obtained by positron emission tomography (PET) in five healthy volunteers (2 females). Two NIRS optodes were placed on the left forehead and NIRS-CBV was derived from the sum of oxyhemoglobin and deoxyhemoglobin. CBV changes were induced by hyperventilation and inhalation of 6% CO2. After 2 min inhalation of labeled carbon monoxide, data were sampled during 8 min for both PET- and NIRS-CBV as well as for the arterial carbon dioxide tension (PaCO2). The region of interest for PET-CBV was `banana-shaped' with boundaries corresponding to the position of the NIRS optodes on the transmission scan and to a depth of approximately 2 cm. During hyperventilation, PaCO2 decreased from 5.2 (4.6 - 5.8) to 4.6 (4.2 - 4.9) kPa and equally PET-CBV (from 3.9 (2.5 - 5.2) to 3.6 (3.0 - 4.8) ml (DOT) 100 g-1) and NIRS-CBV were reduced (by -0.14 [-0.38 - 0.50] ml (DOT) 100 g-1). During hypercapnia PaCO2 increased to 6.0 (5.9 - 7.0) kPa accompanied by parallel changes in PET- (to 4.5 (3.9 - 4.9) ml (DOT) 100 g-1) and NIRS-CBV (by 0.04 [-0.02 - 0.30] ml (DOT) 100 g-1) and the two variables were correlated (r equals 0.78, p < 0.05). In conclusion, with a moderate change in the arterial carbon dioxide tension, the cerebral blood volumes determined by near infrared spectroscopy and by positron emission tomography change in parallel but the change in NIRS-CBV is small compared to that obtained by PET.

  16. Cerebral blood volume in humans by NIRS and PET

    NASA Astrophysics Data System (ADS)

    Pott, Frank; Knudsen, Gitte M.; Rostrup, Egill; Ide, Kojiro; Secher, Niels H.; Paulson, Olaf B.

    1998-01-01

    Near infrared spectroscopy (NIRS) determined changes in the cerebral blood volume (CBV) were compared to those obtained by positron emission tomography (PET) in five healthy volunteers (2 females). Two NIRS optodes were placed on the left forehead and NIRS-CBV was derived from the sum of oxyhemoglobin and deoxyhemoglobin. CBV changes were induced by hyperventilation and inhalation of 6% CO2. After 2 min inhalation of labeled carbon monoxide, data were sampled during 8 min for both PET- and NIRS-CBV as well as for the arterial carbon dioxide tension (PaCO2). The region of interest for PET-CBV was `banana-shaped' with boundaries corresponding to the position of the NIRS optodes on the transmission scan and to a depth of approximately 2 cm. During hyperventilation, PaCO2 decreased from 5.2 (4.6 - 5.8) to 4.6 (4.2 - 4.9) kPa and equally PET-CBV (from 3.9 (2.5 - 5.2) to 3.6 (3.0 - 4.8) ml (DOT) 100 g-1) and NIRS-CBV were reduced (by -0.14 [-0.38 - 0.50] ml (DOT) 100 g-1). During hypercapnia PaCO2 increased to 6.0 (5.9 - 7.0) kPa accompanied by parallel changes in PET- (to 4.5 (3.9 - 4.9) ml (DOT) 100 g-1) and NIRS-CBV (by 0.04 [-0.02 - 0.30] ml (DOT) 100 g-1) and the two variables were correlated (r equals 0.78, p < 0.05). In conclusion, with a moderate change in the arterial carbon dioxide tension, the cerebral blood volumes determined by near infrared spectroscopy and by positron emission tomography change in parallel but the change in NIRS-CBV is small compared to that obtained by PET.

  17. Control of end-tidal PCO2 reduces middle cerebral artery blood velocity variability: implications for physiological neuroimaging.

    PubMed

    Harris, Ashley D; Ide, Kojiro; Poulin, Marc J; Frayne, Richard

    2006-02-15

    Breath-by-breath variability of the end-tidal partial pressure of CO2 (Pet(CO2)) has been shown to be associated with cerebral blood flow (CBF) fluctuations. These fluctuations can impact neuroimaging techniques that depend on cerebrovascular blood flow. We hypothesized that controlling Pet(CO2) would reduce CBF variability. Dynamic end-tidal forcing was used to control Pet(CO2) at 1.5 mm Hg above the resting level and to hold the end-tidal partial pressure of oxygen (Pet(O2)) at the resting level. Peak blood velocity in the middle cerebral artery (MCA) was measured by transcranial Doppler ultrasound (TCD) as an index of CBF. Blood velocity parameters and timing features were determined on each waveform and the variance of these parameters was compared between Normal (air breathing) and Forcing (end-tidal gas control) sessions. The variability of all velocity parameters was significantly reduced in the Forcing session. In particular, the variability of the average velocity over the cardiac cycle was decreased by 18.2% (P < 0.001). For the most part, the variability of the timing parameters was unchanged. Thus, we conclude that controlling Pet(CO2) is effective in reducing CBF variability, which would have important implications for physiologic neuroimaging.

  18. How to use PET/CT in the evaluation of response to radiotherapy.

    PubMed

    Decazes, Pierre; Thureau, Sébastien; Dubray, Bernard; Vera, Pierre

    2018-06-01

    Radiotherapy is a major treatment modality for many cancers. Tumor response after radiotherapy determines the subsequent steps of the patient's management (surveillance, adjuvant or salvage treatment and palliative care). Tumor response assessed during radiotherapy offers a promising opportunity to adapt the treatment plan to reduced or increased target volume, to specifically target sub-volumes with relevant biological characteristics (metabolism, hypoxia, proliferation, etc.) and to further spare the organs at risk. In addition to its role in the diagnosis and the initial staging, Positron Emission Tomography combined with a Computed Tomography (PET/CT) provides functional information and is therefore attractive to evaluate tumor response. The aim of this paper is to review the published data addressing PET/CT as an evaluation tool in irradiated tumors. Reports on PET/CT acquired at various times (during radiotherapy, after initial (chemo-) radiotherapy, after definitive radiotherapy and during posttreatment follow-up) in solid tumors (lung, head-and-neck, cervix, esophagus, prostate and rectum) were collected and reviewed. Various tracers and technical aspects are also discussed. 18F-FDG PET/CT has a well-established role in clinical routine after definitive chemo-radiotherapy for locally advanced head-and-neck cancers. 18F-choline PET/CT is indicated in prostate cancer patients with biochemical failure. 18F-FDG PET/CT is optional in many other circumstances and the clinical benefits of assessing tumor response with PET/CT remain a field of very active research. The combination of PET with Magnetic Resonance Imaging (PET/MRI) may prove to be valuable in irradiated rectal and cervix cancers. Tumor response can be evaluated by PET/CT with clinical consequences in multiple situations, notably in head and neck and prostate cancers, after radiotherapy. Further clinical evaluation for most cancers is still needed, possibly in association to MRI.

  19. Effects of hyperoxia on 18F-fluoro-misonidazole brain uptake and tissue oxygen tension following middle cerebral artery occlusion in rodents: Pilot studies

    PubMed Central

    Jensen-Kondering, Ulf; Williamson, David J.; Sitnikov, Sergey; Sawiak, Stephen J.; Aigbirhio, Franklin I.; Hong, Young T.

    2017-01-01

    Purpose Mapping brain hypoxia is a major goal for stroke diagnosis, pathophysiology and treatment monitoring. 18F-fluoro-misonidazole (FMISO) positron emission tomography (PET) is the gold standard hypoxia imaging method. Normobaric hyperoxia (NBO) is a promising therapy in acute stroke. In this pilot study, we tested the straightforward hypothesis that NBO would markedly reduce FMISO uptake in ischemic brain in Wistar and spontaneously hypertensive rats (SHRs), two rat strains with distinct vulnerability to brain ischemia, mimicking clinical heterogeneity. Methods Thirteen adult male rats were randomized to distal middle cerebral artery occlusion under either 30% O2 or 100% O2. FMISO was administered intravenously and PET data acquired dynamically for 3hrs, after which magnetic resonance imaging (MRI) and tetrazolium chloride (TTC) staining were carried out to map the ischemic lesion. Both FMISO tissue uptake at 2-3hrs and FMISO kinetic rate constants, determined based on previously published kinetic modelling, were obtained for the hypoxic area. In a separate group (n = 9), tissue oxygen partial pressure (PtO2) was measured in the ischemic tissue during both control and NBO conditions. Results As expected, the FMISO PET, MRI and TTC lesion volumes were much larger in SHRs than Wistar rats in both the control and NBO conditions. NBO did not appear to substantially reduce FMISO lesion size, nor affect the FMISO kinetic rate constants in either strain. Likewise, MRI and TTC lesion volumes were unaffected. The parallel study showed the expected increases in ischemic cortex PtO2 under NBO, although these were small in some SHRs with very low baseline PtO2. Conclusions Despite small samples, the apparent lack of marked effects of NBO on FMISO uptake suggests that in permanent ischemia the cellular mechanisms underlying FMISO trapping in hypoxic cells may be disjointed from PtO2. Better understanding of FMISO trapping processes will be important for future applications of FMISO imaging. PMID:29091934

  20. Effects of hyperoxia on 18F-fluoro-misonidazole brain uptake and tissue oxygen tension following middle cerebral artery occlusion in rodents: Pilot studies.

    PubMed

    Fryer, Tim D; Ejaz, Sohail; Jensen-Kondering, Ulf; Williamson, David J; Sitnikov, Sergey; Sawiak, Stephen J; Aigbirhio, Franklin I; Hong, Young T; Baron, Jean-Claude

    2017-01-01

    Mapping brain hypoxia is a major goal for stroke diagnosis, pathophysiology and treatment monitoring. 18F-fluoro-misonidazole (FMISO) positron emission tomography (PET) is the gold standard hypoxia imaging method. Normobaric hyperoxia (NBO) is a promising therapy in acute stroke. In this pilot study, we tested the straightforward hypothesis that NBO would markedly reduce FMISO uptake in ischemic brain in Wistar and spontaneously hypertensive rats (SHRs), two rat strains with distinct vulnerability to brain ischemia, mimicking clinical heterogeneity. Thirteen adult male rats were randomized to distal middle cerebral artery occlusion under either 30% O2 or 100% O2. FMISO was administered intravenously and PET data acquired dynamically for 3hrs, after which magnetic resonance imaging (MRI) and tetrazolium chloride (TTC) staining were carried out to map the ischemic lesion. Both FMISO tissue uptake at 2-3hrs and FMISO kinetic rate constants, determined based on previously published kinetic modelling, were obtained for the hypoxic area. In a separate group (n = 9), tissue oxygen partial pressure (PtO2) was measured in the ischemic tissue during both control and NBO conditions. As expected, the FMISO PET, MRI and TTC lesion volumes were much larger in SHRs than Wistar rats in both the control and NBO conditions. NBO did not appear to substantially reduce FMISO lesion size, nor affect the FMISO kinetic rate constants in either strain. Likewise, MRI and TTC lesion volumes were unaffected. The parallel study showed the expected increases in ischemic cortex PtO2 under NBO, although these were small in some SHRs with very low baseline PtO2. Despite small samples, the apparent lack of marked effects of NBO on FMISO uptake suggests that in permanent ischemia the cellular mechanisms underlying FMISO trapping in hypoxic cells may be disjointed from PtO2. Better understanding of FMISO trapping processes will be important for future applications of FMISO imaging.

  1. Quantitative performance evaluation of 124I PET/MRI lesion dosimetry in differentiated thyroid cancer

    NASA Astrophysics Data System (ADS)

    Wierts, R.; Jentzen, W.; Quick, H. H.; Wisselink, H. J.; Pooters, I. N. A.; Wildberger, J. E.; Herrmann, K.; Kemerink, G. J.; Backes, W. H.; Mottaghy, F. M.

    2018-01-01

    The aim was to investigate the quantitative performance of 124I PET/MRI for pre-therapy lesion dosimetry in differentiated thyroid cancer (DTC). Phantom measurements were performed on a PET/MRI system (Biograph mMR, Siemens Healthcare) using 124I and 18F. The PET calibration factor and the influence of radiofrequency coil attenuation were determined using a cylindrical phantom homogeneously filled with radioactivity. The calibration factor was 1.00  ±  0.02 for 18F and 0.88  ±  0.02 for 124I. Near the radiofrequency surface coil an underestimation of less than 5% in radioactivity concentration was observed. Soft-tissue sphere recovery coefficients were determined using the NEMA IEC body phantom. Recovery coefficients were systematically higher for 18F than for 124I. In addition, the six spheres of the phantom were segmented using a PET-based iterative segmentation algorithm. For all 124I measurements, the deviations in segmented lesion volume and mean radioactivity concentration relative to the actual values were smaller than 15% and 25%, respectively. The effect of MR-based attenuation correction (three- and four-segment µ-maps) on bone lesion quantification was assessed using radioactive spheres filled with a K2HPO4 solution mimicking bone lesions. The four-segment µ-map resulted in an underestimation of the imaged radioactivity concentration of up to 15%, whereas the three-segment µ-map resulted in an overestimation of up to 10%. For twenty lesions identified in six patients, a comparison of 124I PET/MRI to PET/CT was performed with respect to segmented lesion volume and radioactivity concentration. The interclass correlation coefficients showed excellent agreement in segmented lesion volume and radioactivity concentration (0.999 and 0.95, respectively). In conclusion, it is feasible that accurate quantitative 124I PET/MRI could be used to perform radioiodine pre-therapy lesion dosimetry in DTC.

  2. Utility of Gallium-68 DOTANOC PET/CT in the localization of Tumour-induced osteomalacia.

    PubMed

    Bhavani, Nisha; Reena Asirvatham, Adlyne; Kallur, Kumar; Menon, Arun S; Pavithran, Praveen V; Nair, Vasantha; Vasukutty, Jayakumar R; Menon, Usha; Kumar, Harish

    2016-01-01

    Tumour-induced osteomalacia (TIO) is a rare disorder characterized by hypophosphataemic osteomalacia caused by small mesenchymal tumours secreting fibroblast growth factor 23 (FGF 23). The most difficult part in the management of these patients is the localization of tumours causing TIO. We describe the utility of Gallium (Ga)-68 DOTANOC PET/CT in the localization of tumours causing TIO. The study was conducted in a single tertiary referral university teaching hospital in India. Ten patients with TIO who underwent Ga-68 DOTANOC PET/CT from the time period 2009 to 2014 were included in this study. Their detailed clinical history, biochemical parameters, imaging modalities, surgical interventions, histopathology and outcomes were reviewed. Ga-68 DOTANOC PET/CT could correctly localize the tumours in TIO in 9 of the 10 cases in which it was performed. Complete resection of the tumour led to full clinical recovery in six of the ten patients; two patients who had partial resection and one patient who underwent radiofrequency ablation showed partial remission. One patient in whom Ga-68 DOTANOC PET/CT was positive in vertebral body with a low standardized uptake value (SUV) did not show up the tumour on surgery. We conclude that Ga-68 DOTANOC PET/CT can be used as the first imaging modality in patients diagnosed with TIO. The extremely good outcome following the resection of these small otherwise undiagnosed tumours far outweighs its cost even in resource limited settings. © 2015 John Wiley & Sons Ltd.

  3. SU-C-9A-06: The Impact of CT Image Used for Attenuation Correction in 4D-PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Y; Bowsher, J; Yan, S

    2014-06-01

    Purpose: To evaluate the appropriateness of using 3D non-gated CT image for attenuation correction (AC) in a 4D-PET (gated PET) imaging protocol used in radiotherapy treatment planning simulation. Methods: The 4D-PET imaging protocol in a Siemens PET/CT simulator (Biograph mCT, Siemens Medical Solutions, Hoffman Estates, IL) was evaluated. CIRS Dynamic Thorax Phantom (CIRS Inc., Norfolk, VA) with a moving glass sphere (8 mL) in the middle of its thorax portion was used in the experiments. The glass was filled with {sup 18}F-FDG and was in a longitudinal motion derived from a real patient breathing pattern. Varian RPM system (Varian Medicalmore » Systems, Palo Alto, CA) was used for respiratory gating. Both phase-gating and amplitude-gating methods were tested. The clinical imaging protocol was modified to use three different CT images for AC in 4D-PET reconstruction: first is to use a single-phase CT image to mimic actual clinical protocol (single-CT-PET); second is to use the average intensity projection CT (AveIP-CT) derived from 4D-CT scanning (AveIP-CT-PET); third is to use 4D-CT image to do the phase-matched AC (phase-matching- PET). Maximum SUV (SUVmax) and volume of the moving target (glass sphere) with threshold of 40% SUVmax were calculated for comparison between 4D-PET images derived with different AC methods. Results: The SUVmax varied 7.3%±6.9% over the breathing cycle in single-CT-PET, compared to 2.5%±2.8% in AveIP-CT-PET and 1.3%±1.2% in phasematching PET. The SUVmax in single-CT-PET differed by up to 15% from those in phase-matching-PET. The target volumes measured from single- CT-PET images also presented variations up to 10% among different phases of 4D PET in both phase-gating and amplitude-gating experiments. Conclusion: Attenuation correction using non-gated CT in 4D-PET imaging is not optimal process for quantitative analysis. Clinical 4D-PET imaging protocols should consider phase-matched 4D-CT image if available to achieve better accuracy.« less

  4. Impact of tumour motion compensation and delineation methods on FDG PET-based dose painting plan quality for NSCLC radiation therapy.

    PubMed

    Thomas, Hannah Mary; Kinahan, Paul E; Samuel, James Jebaseelan E; Bowen, Stephen R

    2018-02-01

    To quantitatively estimate the impact of different methods for both boost volume delineation and respiratory motion compensation of [18F] FDG PET/CT images on the fidelity of planned non-uniform 'dose painting' plans to the prescribed boost dose distribution. Six locally advanced non-small cell lung cancer (NSCLC) patients were retrospectively reviewed. To assess the impact of respiratory motion, time-averaged (3D AVG), respiratory phase-gated (4D GATED) and motion-encompassing (4D MIP) PET images were used. The boost volumes were defined using manual contour (MANUAL), fixed threshold (FIXED) and gradient search algorithm (GRADIENT). The dose painting prescription of 60 Gy base dose to the planning target volume and an integral dose of 14 Gy (total 74 Gy) was discretized into seven treatment planning substructures and linearly redistributed according to the relative SUV at every voxel in the boost volume. Fifty-four dose painting plan combinations were generated and conformity was evaluated using quality index VQ0.95-1.05, which represents the sum of planned dose voxels within 5% deviation from the prescribed dose. Trends in plan quality and magnitude of achievable dose escalation were recorded. Different segmentation techniques produced statistically significant variations in maximum planned dose (P < 0.02), as well as plan quality between segmentation methods for 4D GATED and 4D MIP PET images (P < 0.05). No statistically significant differences in plan quality and maximum dose were observed between motion-compensated PET-based plans (P > 0.75). Low variability in plan quality was observed for FIXED threshold plans, while MANUAL and GRADIENT plans achieved higher dose with lower plan quality indices. The dose painting plans were more sensitive to segmentation of boost volumes than PET motion compensation in this study sample. Careful consideration of boost target delineation and motion compensation strategies should guide the design of NSCLC dose painting trials. © 2017 The Royal Australian and New Zealand College of Radiologists.

  5. Target Volume Delineation in Oropharyngeal Cancer: Impact of PET, MRI, and Physical Examination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thiagarajan, Anuradha, E-mail: anu_thiagarajan@hotmail.com; Caria, Nicola; Schoeder, Heiko

    2012-05-01

    Introduction: Sole utilization of computed tomography (CT) scans in gross tumor volume (GTV) delineation for head-and-neck cancers is subject to inaccuracies. This study aims to evaluate contributions of magnetic resonance imaging (MRI), positron emission tomography (PET), and physical examination (PE) to GTV delineation in oropharyngeal cancer (OPC). Methods: Forty-one patients with OPC were studied. All underwent contrast-enhanced CT simulation scans (CECTs) that were registered with pretreatment PETs and MRIs. For each patient, three sets of primary and nodal GTV were contoured. First, reference GTVs (GTVref) were contoured by the treating radiation oncologist (RO) using CT, MRI, PET, and PE findings.more » Additional GTVs were created using fused CT/PET scans (GTVctpet) and CT/MRI scans (GTVctmr) by two other ROs blinded to GTVref. To compare GTVs, concordance indices (CI) were calculated by dividing the respective overlap volumes by overall volumes. To evaluate the contribution of PE, composite GTVs derived from CT, MRI, and PET (GTVctpetmr) were compared with GTVref. Results: For primary tumors, GTVref was significantly larger than GTVctpet and GTVctmr (p < 0.001). Although no significant difference in size was noted between GTVctpet and GTVctmr (p = 0.39), there was poor concordance between them (CI = 0.62). In addition, although CI (ctpetmr vs. ref) was low, it was significantly higher than CI (ctpet vs. ref) and CI (ctmr vs. ref) (p < 0.001), suggesting that neither modality should be used alone. Qualitative analyses to explain the low CI (ctpetmr vs. ref) revealed underestimation of mucosal disease when GTV was contoured without knowledge of PE findings. Similar trends were observed for nodal GTVs. However, CI (ctpet vs. ref), CI (ctmr vs. ref), and CI (ctpetmr vs. ref) were high (>0.75), indicating that although the modalities were complementary, the added benefit was small in the context of CECTs. In addition, PE did not aid greatly in nodal GTV delineation. Conclusion: PET and MRI are complementary and combined use is ideal. However, the low CI (ctpetmr vs. ref) particularly for primary tumors underscores the limitations of defining GTVs using imaging alone. PE is invaluable and must be incorporated.« less

  6. Multi-layer cube sampling for liver boundary detection in PET-CT images.

    PubMed

    Liu, Xinxin; Yang, Jian; Song, Shuang; Song, Hong; Ai, Danni; Zhu, Jianjun; Jiang, Yurong; Wang, Yongtian

    2018-06-01

    Liver metabolic information is considered as a crucial diagnostic marker for the diagnosis of fever of unknown origin, and liver recognition is the basis of automatic diagnosis of metabolic information extraction. However, the poor quality of PET and CT images is a challenge for information extraction and target recognition in PET-CT images. The existing detection method cannot meet the requirement of liver recognition in PET-CT images, which is the key problem in the big data analysis of PET-CT images. A novel texture feature descriptor called multi-layer cube sampling (MLCS) is developed for liver boundary detection in low-dose CT and PET images. The cube sampling feature is proposed for extracting more texture information, which uses a bi-centric voxel strategy. Neighbour voxels are divided into three regions by the centre voxel and the reference voxel in the histogram, and the voxel distribution information is statistically classified as texture feature. Multi-layer texture features are also used to improve the ability and adaptability of target recognition in volume data. The proposed feature is tested on the PET and CT images for liver boundary detection. For the liver in the volume data, mean detection rate (DR) and mean error rate (ER) reached 95.15 and 7.81% in low-quality PET images, and 83.10 and 21.08% in low-contrast CT images. The experimental results demonstrated that the proposed method is effective and robust for liver boundary detection.

  7. Synthetic polymers blend used in the production of high activated carbon for pesticides removals from liquid phase.

    PubMed

    Belo, Cristóvão Ramiro; Cansado, Isabel Pestana da Paixão; Mourão, Paulo Alexandre Mira

    2017-02-01

    For the activated carbon (AC) production, we used the most common industrial and consumer solid waste, namely polyethyleneterephthalate (PET), alone or blended with other synthetic polymer such polyacrylonitrile (PAN). By mixing PET, with PAN, an improvement in the yield of the AC production was found and the basic character and some textural and chemical properties were enhanced. The PET-PAN mixture was subjected to carbonisation, with a pyrolysis yield of 31.9%, between that obtained with PET (16.9%) or PAN (42.6%) separately. The AC revealed a high surface area (1400, 1230 and 1117 m 2  g -1 ) and pore volume (0.46, 0.56 and 0.50 cm 3  g -1 ), respectively, for PET, PAN and PET-PAN precursors. Selected ACs were successfully tested for 4-chloro-2-methylphenoxyacetic acid (MCPA) and diuron removal from the liquid phase, showing a higher adsorption capacity (1.7 and 1.2 mmol g -1 , respectively, for MCPA and diuron) and good fits with the Langmuir (PET) and Freundlich equation (PAN and PET-PAN blend). With MCPA, the controlling factor to the adsorption capacity was the porous volume and the average pore size. Concerning diuron, the adsorption was controlled essentially by the external diffusion. A remarkable result is the use of different synthetic polymers wastes, as precursors for the production of carbon materials, with high potential application on the pesticides removals from the liquid phase.

  8. Impact of [18F]fluorodeoxyglucose PET-CT staging on treatment planning in radiotherapy incorporating elective nodal irradiation for non-small-cell lung cancer: a prospective study.

    PubMed

    Kolodziejczyk, Milena; Kepka, Lucyna; Dziuk, Miroslaw; Zawadzka, Anna; Szalus, Norbert; Gizewska, Agnieszka; Bujko, Krzysztof

    2011-07-15

    To evaluate prospectively how positron emission tomography (PET) information changes treatment plans for non-small-cell lung cancer (NSCLC) patients receiving or not receiving elective nodal irradiation (ENI). One hundred consecutive patients referred for curative radiotherapy were included in the study. Treatment plans were carried out with CT data sets only. For stage III patients, mediastinal ENI was planned. Then, patients underwent PET-CT for diagnostic/planning purposes. PET/CT was fused with the CT data for final planning. New targets were delineated. For stage III patients with minimal N disease (N0-N1, single N2), the ENI was omitted in the new plans. Patients were treated according to the PET-based volumes and plans. The gross tumor volume (GTV)/planning tumor volume (PTV) and doses for critical structures were compared for both data sets. The doses for areas of potential geographical misses derived with the CT data set alone were compared in patients with and without initially planned ENI. In the 75 patients for whom the decision about curative radiotherapy was maintained after PET/CT, there would have been 20 cases (27%) with potential geographical misses by using the CT data set alone. Among them, 13 patients would receive ENI; of those patients, only 2 patients had the PET-based PTV covered by 90% isodose by using the plans based on CT alone, and the mean of the minimum dose within the missed GTV was 55% of the prescribed dose, while for 7 patients without ENI, it was 10% (p = 0.006). The lung, heart, and esophageal doses were significantly lower for plans with ENI omission than for plans with ENI use based on CT alone. PET/CT should be incorporated in the planning of radiotherapy for NSCLC, even in the setting of ENI. However, if PET/CT is unavailable, ENI may to some extent compensate for an inadequate dose coverage resulting from diagnostic uncertainties. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Correlation of {sup 18}F-FDG Avid Volumes on Pre–Radiation Therapy and Post–Radiation Therapy FDG PET Scans in Recurrent Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shusharina, Nadya, E-mail: nshusharina@partners.org; Cho, Joseph; Sharp, Gregory C.

    2014-05-01

    Purpose: To investigate the spatial correlation between high uptake regions of 2-deoxy-2-[{sup 18}F]-fluoro-D-glucose positron emission tomography ({sup 18}F-FDG PET) before and after therapy in recurrent lung cancer. Methods and Materials: We enrolled 106 patients with inoperable lung cancer into a prospective study whose primary objectives were to determine first, the earliest time point when the maximum decrease in FDG uptake representing the maximum metabolic response (MMR) is attainable and second, the optimum cutoff value of MMR based on its predicted tumor control probability, sensitivity, and specificity. Of those patients, 61 completed the required 4 serial {sup 18}F-FDG PET examinations aftermore » therapy. Nineteen of 61 patients experienced local recurrence at the primary tumor and underwent analysis. The volumes of interest (VOI) on pretherapy FDG-PET were defined by use of an isocontour at ≥50% of maximum standard uptake value (SUV{sub max}) (≥50% of SUV{sub max}) with correction for heterogeneity. The VOI on posttherapy images were defined at ≥80% of SUV{sub max}. The VOI of pretherapy and posttherapy {sup 18}F-FDG PET images were correlated for the extent of overlap. Results: The size of VOI at pretherapy images was on average 25.7% (range, 8.8%-56.3%) of the pretherapy primary gross tumor volume (GTV), and their overlap fractions were 0.8 (95% confidence interval [CI]: 0.7-0.9), 0.63 (95% CI: 0.49-0.77), and 0.38 (95% CI: 0.19-0.57) of VOI of posttherapy FDG PET images at 10 days, 3 months, and 6 months, respectively. The residual uptake originated from the pretherapy VOI in 15 of 17 cases. Conclusions: VOI defined by the SUV{sub max}-≥50% isocontour may be a biological target volume for escalated radiation dose.« less

  10. SU-E-J-250: A Methodology for Active Bone Marrow Protection for Cervical Cancer Intensity-Modulated Radiotherapy Using 18F-FLT PET/CT Image

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, C; Yin, Y

    Purpose: The purpose of this study was to compare a radiation therapy treatment planning that would spare active bone marrow and whole pelvic bone marrow using 18F FLT PET/CT image. Methods: We have developed an IMRT planning methodology to incorporate functional PET imaging using 18F FLT/CT scans. Plans were generated for two cervical cancer patients, where pelvicactive bone marrow region was incorporated as avoidance regions based on the range: SUV>2., another region was whole pelvic bone marrow. Dose objectives were set to reduce the volume of active bone marrow and whole bone marraw. The volumes of received 10 (V10) andmore » 20 (V20) Gy for active bone marrow were evaluated. Results: Active bone marrow regions identified by 18F FLT with an SUV>2 represented an average of 48.0% of the total osseous pelvis for the two cases studied. Improved dose volume histograms for identified bone marrow SUV volumes and decreases in V10(average 18%), and V20(average 14%) were achieved without clinically significant changes to PTV or OAR doses. Conclusion: Incorporation of 18F FLT/CT PET in IMRT planning provides a methodology to reduce radiation dose to active bone marrow without compromising PTV or OAR dose objectives in cervical cancer.« less

  11. Integrated PET/MR breast cancer imaging: Attenuation correction and implementation of a 16-channel RF coil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oehmigen, Mark, E-mail: mark.oehmigen@uni-due.de

    Purpose: This study aims to develop, implement, and evaluate a 16-channel radiofrequency (RF) coil for integrated positron emission tomography/magnetic resonance (PET/MR) imaging of breast cancer. The RF coil is designed for optimized MR imaging performance and PET transparency and attenuation correction (AC) is applied for accurate PET quantification. Methods: A 16-channel breast array RF coil was designed for integrated PET/MR hybrid imaging of breast cancer lesions. The RF coil features a lightweight rigid design and is positioned with a spacer at a defined position on the patient table of an integrated PET/MR system. Attenuation correction is performed by generating andmore » applying a dedicated 3D CT-based template attenuation map. Reposition accuracy of the RF coil on the system patient table while using the positioning frame was tested in repeated measurements using MR-visible markers. The MR, PET, and PET/MR imaging performances were systematically evaluated using modular breast phantoms. Attenuation correction of the RF coil was evaluated with difference measurements of the active breast phantoms filled with radiotracer in the PET detector with and without the RF coil in place, serving as a standard of reference measurement. The overall PET/MR imaging performance and PET quantification accuracy of the new 16-channel RF coil and its AC were then evaluated in first clinical examinations on ten patients with local breast cancer. Results: The RF breast array coil provides excellent signal-to-noise ratio and signal homogeneity across the volume of the breast phantoms in MR imaging and visualizes small structures in the phantoms down to 0.4 mm in plane. Difference measurements with PET revealed a global loss and thus attenuation of counts by 13% (mean value across the whole phantom volume) when the RF coil is placed in the PET detector. Local attenuation ranging from 0% in the middle of the phantoms up to 24% was detected in the peripheral regions of the phantoms at positions closer to attenuating hardware structures of the RF coil. The position accuracy of the RF coil on the patient table when using the positioning frame was determined well below 1 mm for all three spatial dimensions. This ensures perfect position match between the RF coil and its three-dimensional attenuation template during the PET data reconstruction process. When applying the CT-based AC of the RF coil, the global attenuation bias was mostly compensated to ±0.5% across the entire breast imaging volume. The patient study revealed high quality MR, PET, and combined PET/MR imaging of breast cancer. Quantitative activity measurements in all 11 breast cancer lesions of the ten patients resulted in increased mean difference values of SUV{sub max} 11.8% (minimum 3.2%; maximum 23.2%) between nonAC images and images when AC of the RF breast coil was applied. This supports the quantitative results of the phantom study as well as successful attenuation correction of the RF coil. Conclusions: A 16-channel breast RF coil was designed for optimized MR imaging performance and PET transparency and was successfully integrated with its dedicated attenuation correction template into a whole-body PET/MR system. Systematic PET/MR imaging evaluation with phantoms and an initial study on patients with breast cancer provided excellent MR and PET image quality and accurate PET quantification.« less

  12. Does Choline PET/CT Change the Management of Prostate Cancer Patients With Biochemical Failure?

    PubMed

    Goldstein, Jeffrey; Even-Sapir, Einat; Ben-Haim, Simona; Saad, Akram; Spieler, Benjamin; Davidson, Tima; Berger, Raanan; Weiss, Ilana; Appel, Sarit; Lawrence, Yaacov R; Symon, Zvi

    2017-06-01

    The FDA approved C-11 choline PET/computed tomography (CT) for imaging patients with recurrent prostate cancer in 2012. Subsequently, the 2014 NCCN guidelines have introduced labeled choline PET/CT in the imaging algorithm of patients with suspected recurrent disease. However, there is only scarce data on the impact of labeled choline PET/CT findings on disease management. We hypothesized that labeled-choline PET/CT studies showing local or regional recurrence or distant metastases will have a direct role in selection of appropriate patient management and improve radiation planning in patients with disease that can be controlled using this mode of therapy. This retrospective study was approved by the Tel Aviv Sourasky and Sheba Medical Center's Helsinki ethical review committees. Patient characteristics including age, PSA, stage, prior treatments, and pre-PET choline treatment recommendations based on NCCN guidelines were recorded. Patients with biochemical failure and without evidence of recurrence on physical examination or standard imaging were offered the option of additional imaging with labeled choline PET/CT. Treatment recommendations post-PET/CT were compared with pre-PET/CT ones. Pathologic confirmation was obtained before prostate retreatment. A nonparametric χ test was used to compare the initial and final treatment recommendations following choline PET/CT. Between June 2010 and January 2014, 34 labeled-choline PET/CT studies were performed on 33 patients with biochemical failure following radical prostatectomy (RP) (n=6), radiation therapy (RT) (n=6), brachytherapy (n=2), RP+salvage prostate fossa RT (n=14), and RP+salvage prostate fossa/lymph node RT (n=6). Median PSA level before imaging was 2 ng/mL (range, 0.16 to 79). Labeled choline PET/CT showed prostate, prostate fossa, or pelvic lymph node increased uptake in 17 studies, remote metastatic disease in 9 studies, and failed to identify the cause for biochemical failure in 7 scans.PET/CT altered treatment approach in 18 of 33 (55%) patients (P=0.05). Sixteen of 27 patients (59%) treated previously with radiation were retreated with RT and delayed or eliminated androgen deprivation therapy: 1 received salvage brachytherapy, 10 received salvage pelvic lymph node or prostate fossa irradiation, 2 brachytherapy failures received salvage prostate and lymph nodes IMRT, and 3 with solitary bone metastasis were treated with radiosurgery. Eleven of 16 patients retreated responded to salvage therapy with a significant PSA response (<0.2 ng/mL), 2 patients had partial biochemical responses, and 3 patients failed. The median duration of response was 500±447 days. Two of 6 patients with no prior RT were referred for salvage prostatic fossa RT: 1 received dose escalation for disease identified in the prostate fossa and another had inclusion of "hot" pelvic lymph nodes in the treatment volume. These early results suggest that labeled choline PET/CT imaging performed according to current NCCN guidelines may change management and improve care in prostate cancer patients with biochemical failure by identifying patients for referral for salvage radiation therapy, improving radiation planning, and delaying or avoiding use of androgen deprivation therapy.

  13. Complete Metabolic Response of Advanced Melanoma to Vemurafenib Assessed with FDG-PET-CT at 85 Hours.

    PubMed

    Pascal, Pierre; Dercle, Laurent; Weyts, Kathleen; Meyer, Nicolas; Courbon, Fréderic

    2018-05-01

    Vemurafenib improves the management of advanced melanoma due to selective inhibition of the mutated BRAF V600E kinase. FDG-PET-CT is a tool for the evaluation of the biologic impact of inhibiting mutant BRAF. With vemurafenib at day 15, all the patients had at least partial metabolic response. Reductions in uptake correlate with longer progression free survival. In this case, incomplete information provided by the patient led to the performance of his third PET 85 hours after the introduction of vemurafenib. This early case of complete metabolic response suggests that FDG-PET-CT is a useful marker of early biologic response to vemurafenib.

  14. SU-D-201-02: Prediction of Delivered Dose Based On a Joint Histogram of CT and FDG PET Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, M; Choi, Y; Cho, A

    2015-06-15

    Purpose: To investigate whether pre-treatment images can be used in predicting microsphere distribution in tumors. When intra-arterial radioembolization using Y90 microspheres was performed, the microspheres were often delivered non-uniformly within the tumor, which could lead to an inefficient therapy. Therefore, it is important to estimate the distribution of microspheres. Methods: Early arterial phase CT and FDG PET images were acquired for patients with primary liver cancer prior to radioembolization (RE) using Y90 microspheres. Tumor volume was delineated on CT images and fused with FDG PET images. From each voxel (3.9×3.9×3.3 mm3) in the tumor, the Hounsfield unit (HU) from themore » CT and SUV values from the FDG PET were harvested. We binned both HU and SUV into 11 bins and then calculated a normalized joint-histogram in an 11×11 array.Patients also underwent a post-treatment Y90 PET imaging. Radiation dose for the tumor was estimated using convolution of the Y90 distribution with a dose-point kernel. We also calculated a fraction of the tumor volume that received a radiation dose great than 100Gy. Results: Averaged over 40 patients, 55% of tumor volume received a dose greater than 100Gy (range : 1.1 – 100%). The width of the joint histogram was narrower for patients with a high dose. For patients with a low dose, the width was wider and a larger fraction of tumor volume had low HU. Conclusion: We have shown the pattern of joint histogram of the HU and SUV depends on delivered dose. The patterns can predict the efficacy of uniform intra-arterial delivery of Y90 microspheres.« less

  15. Utilization of PET-CT in target volume delineation for three-dimensional conformal radiotherapy in patients with non-small cell lung cancer and atelectasis.

    PubMed

    Yin, Li-Jie; Yu, Xiao-Bin; Ren, Yan-Gang; Gu, Guang-Hai; Ding, Tian-Gui; Lu, Zhi

    2013-03-18

    To investigate the utilization of PET-CT in target volume delineation for three-dimensional conformal radiotherapy in patients with non-small cell lung cancer (NSCLC) and atelectasis. Thirty NSCLC patients who underwent radical radiotherapy from August 2010 to March 2012 were included in this study. All patients were pathologically confirmed to have atelectasis by imaging examination. PET-CT scanning was performed in these patients. According to the PET-CT scan results, the gross tumor volume (GTV) and organs at risk (OARs, including the lungs, heart, esophagus and spinal cord) were delineated separately both on CT and PET-CT images. The clinical target volume (CTV) was defined as the GTV plus a margin of 6-8 mm, and the planning target volume (PTV) as the GTV plus a margin of 10-15mm. An experienced physician was responsible for designing treatment plans PlanCT and PlanPET-CT on CT image sets. 95% of the PTV was encompassed by the 90% isodose curve, and the two treatment plans kept the same beam direction, beam number, gantry angle, and position of the multi-leaf collimator as much as possible. The GTV was compared using a target delineation system, and doses distributions to OARs were compared on the basis of dose-volume histogram (DVH) parameters. The GTVCT and GTVPET-CT had varying degrees of change in all 30 patients, and the changes in the GTVCT and GTVPET-CT exceeded 25% in 12 (40%) patients. The GTVPET-CT decreased in varying degrees compared to the GTVCT in 22 patients. Their median GTVPET-CT and median GTVPET-CT were 111.4 cm3 (range, 37.8 cm3-188.7 cm3) and 155.1 cm3 (range, 76.2 cm3-301.0 cm3), respectively, and the former was 43.7 cm3 (28.2%) less than the latter. The GTVPET-CT increased in varying degrees compared to the GTVCT in 8 patients. Their median GTVPET-CT and median GTVPET-CT were 144.7 cm3 (range, 125.4 cm3-178.7 cm3) and 125.8 cm3 (range, 105.6 cm3-153.5 cm3), respectively, and the former was 18.9 cm3 (15.0%) greater than the latter. Compared to PlanCT parameters, PlanPET-CT parameters showed varying degrees of changes. The changes in lung V20, V30, esophageal V50 and V55 were statistically significant (Ps< 0.05 for all), while the differences in mean lung dose, lung V5, V10, V15, heart V30, mean esophageal dose, esophagus Dmax, and spinal cord Dmax were not significant (Ps> 0.05 for all). PET-CT allows a better distinction between the collapsed lung tissue and tumor tissue, improving the accuracy of radiotherapy target delineation, and reducing radiation damage to the surrounding OARs in NSCLC patients with atelectasis.

  16. Clinical evaluation of respiration-induced attenuation uncertainties in pulmonary 3D PET/CT.

    PubMed

    Kruis, Matthijs F; van de Kamer, Jeroen B; Vogel, Wouter V; Belderbos, José Sa; Sonke, Jan-Jakob; van Herk, Marcel

    2015-12-01

    In contemporary positron emission tomography (PET)/computed tomography (CT) scanners, PET attenuation correction is performed by means of a CT-based attenuation map. Respiratory motion can however induce offsets between the PET and CT data. Studies have demonstrated that these offsets can cause errors in quantitative PET measures. The purpose of this study is to quantify the effects of respiration-induced CT differences on the attenuation correction of pulmonary 18-fluordeoxyglucose (FDG) 3D PET/CT in a patient population and to investigate contributing factors. For 32 lung cancer patients, 3D-CT, 4D-PET and 4D-CT data were acquired. The 4D FDG PET data were attenuation corrected (AC) using a free-breathing 3D-CT (3D-AC), the end-inspiration CT (EI-AC), the end-expiration CT (EE-AC) or phase-by-phase (P-AC). After reconstruction and AC, the 4D-PET data were averaged. In the 4Davg data, we measured maximum tumour standardised uptake value (SUV)max in the tumour, SUVmean in a lung volume of interest (VOI) and average SUV (SUVmean) in a muscle VOI. On the 4D-CT, we measured the lung volume differences and CT number changes between inhale and exhale in the lung VOI. Compared to P-AC, we found -2.3% (range -9.7% to 1.2%) lower tumour SUVmax in EI-AC and 2.0% (range -0.9% to 9.5%) higher SUVmax in EE-AC. No differences in the muscle SUV were found. The use of 3D-AC led to respiration-induced SUVmax differences up to 20% compared to the use of P-AC. SUVmean differences in the lung VOI between EI-AC and EE-AC correlated to average CT differences in this region (ρ = 0.83). SUVmax differences in the tumour correlated to the volume changes of the lungs (ρ = -0.55) and the motion amplitude of the tumour (ρ = 0.53), both as measured on the 4D-CT. Respiration-induced CT variations in clinical data can in extreme cases lead to SUV effects larger than 10% on PET attenuation correction. These differences were case specific and correlated to differences in CT number in the lungs.

  17. Radiomics in Oncological PET/CT: Clinical Applications.

    PubMed

    Lee, Jeong Won; Lee, Sang Mi

    2018-06-01

    18 F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) is widely used for staging, evaluating treatment response, and predicting prognosis in malignant diseases. FDG uptake and volumetric PET parameters such as metabolic tumor volume have been used and are still used as conventional PET parameters to assess biological characteristics of tumors. However, in recent years, additional features derived from PET images by computational processing have been found to reflect intratumoral heterogeneity, which is related to biological tumor features, and to provide additional predictive and prognostic information, which leads to the concept of radiomics. In this review, we focus on recent clinical studies of malignant diseases that investigated intratumoral heterogeneity on PET/CT, and we discuss its clinical role in various cancers.

  18. Modeling and predicting tumor response in radioligand therapy.

    PubMed

    Kletting, Peter; Thieme, Anne; Eberhardt, Nina; Rinscheid, Andreas; D'Alessandria, Calogero; Allmann, Jakob; Wester, Hans-Jürgen; Tauber, Robert; Beer, Ambros J; Glatting, Gerhard; Eiber, Matthias

    2018-05-10

    The aim of this work was to develop a theranostic method that allows predicting PSMA-positive tumor volume after radioligand therapy (RLT) based on a pre-therapeutic PET/CT measurement and physiologically based pharmacokinetic/dynamic (PBPK/PD) modeling at the example of RLT using 177 Lu-labeled PSMA for imaging and therapy (PSMA I&T). Methods: A recently developed PBPK model for 177 Lu PSMA I&T RLT was extended to account for tumor (exponential) growth and reduction due to irradiation (linear quadratic model). Data of 13 patients with metastatic castration-resistant prostate cancer (mCRPC) were retrospectively analyzed. Pharmacokinetic/dynamic parameters were simultaneously fitted in a Bayesian framework to PET/CT activity concentrations, planar scintigraphy data and tumor volumes prior and post (6 weeks) therapy. The method was validated using the leave-one-out Jackknife method. The tumor volume post therapy was predicted based on pre-therapy PET/CT imaging and PBPK/PD modeling. Results: The relative deviation of the predicted and measured tumor volume for PSMA-positive tumor cells (6 weeks post therapy) was 1±40% excluding one patient (PSA negative) from the population. The radiosensitivity for the PSA positive patients was determined to be 0.0172±0.0084 Gy-1. Conclusion: The proposed method is the first attempt to solely use PET/CT and modeling methods to predict the PSMA-positive tumor volume after radioligand therapy. Internal validation shows that this is feasible with an acceptable accuracy. Improvement of the method and external validation of the model is ongoing. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  19. Skeletal Muscle Metrics on Clinical 18F-FDG PET/CT Predict Health Outcomes in Patients with Sarcoma

    PubMed Central

    Foster, Brent; Boutin, Robert D.; Lenchik, Leon; Gedeon, David; Liu, Yu; Nittur, Vinay; Badawi, Ramsey D.; Li, Chin-Shang; Canter, Robert J.; Chaudhari, Abhijit J.

    2018-01-01

    The aim of this study was to determine the association of measures of skeletal muscle determined from 18F-FDG PET/CT with health outcomes in patients with soft-tissue sarcoma. 14 patients (8 women and 6 men; mean age 66.5 years) with sarcoma had PET/CT examinations. On CTs of the abdomen and pelvis, skeletal muscle was segmented, and cross-sectional muscle area, muscle volume, and muscle attenuation were determined. Within the segmented muscle, intramuscular fat area, volume, and density were derived. On PET images, the standardized uptake value (SUV) of muscle was determined. Regression analyses were conducted to determine the association between the imaging measures and health outcomes including overall survival (OS), local recurrence-free survival (LRFS), distant cancer recurrence (DCR), and major surgical complications (MSC). The association between imaging metrics and pre-therapy levels of serum C-reactive protein (CRP), creatinine, hemoglobin, and albumin was determined. Decreased volumetric muscle CT attenuation was associated with increased DCR. Increased PET SUV of muscle was associated with decreased OS and LRFS. Lower muscle SUV was associated with lower serum hemoglobin and albumin. Muscle measurements obtained on routine 18F-FDG PET/CT are associated with outcomes and serum hemoglobin and albumin in patients with sarcoma. PMID:29756042

  20. Skeletal Muscle Metrics on Clinical 18F-FDG PET/CT Predict Health Outcomes in Patients with Sarcoma.

    PubMed

    Foster, Brent; Boutin, Robert D; Lenchik, Leon; Gedeon, David; Liu, Yu; Nittur, Vinay; Badawi, Ramsey D; Li, Chin-Shang; Canter, Robert J; Chaudhari, Abhijit J

    2018-01-01

    The aim of this study was to determine the association of measures of skeletal muscle determined from 18 F-FDG PET/CT with health outcomes in patients with soft-tissue sarcoma. 14 patients (8 women and 6 men; mean age 66.5 years) with sarcoma had PET/CT examinations. On CTs of the abdomen and pelvis, skeletal muscle was segmented, and cross-sectional muscle area, muscle volume, and muscle attenuation were determined. Within the segmented muscle, intramuscular fat area, volume, and density were derived. On PET images, the standardized uptake value (SUV) of muscle was determined. Regression analyses were conducted to determine the association between the imaging measures and health outcomes including overall survival (OS), local recurrence-free survival (LRFS), distant cancer recurrence (DCR), and major surgical complications (MSC). The association between imaging metrics and pre-therapy levels of serum C-reactive protein (CRP), creatinine, hemoglobin, and albumin was determined. Decreased volumetric muscle CT attenuation was associated with increased DCR. Increased PET SUV of muscle was associated with decreased OS and LRFS. Lower muscle SUV was associated with lower serum hemoglobin and albumin. Muscle measurements obtained on routine 18 F-FDG PET/CT are associated with outcomes and serum hemoglobin and albumin in patients with sarcoma.

  1. [Role of 18FDG-PET/CT in the management and gross tumor volume definition for radiotherapy of head and neck cancer; single institution experiences based on long-term follow-up].

    PubMed

    Hideghéty, Katalin; Cserháti, Adrienne; Besenyi, Zsuzsanna; Zag, Levente; Gaál, Szilvia; Együd, Zsófia; Mózes, Petra; Szántó, Erika; Csenki, Melinda; Rusz, Orsolya; Varga, Zoltán; Dobi, Ágnes; Maráz, Anikó; Pávics, László; Lengyel, Zsolt

    2015-06-01

    The purpose of our work is evaluation of the impact of 18FDG-PET/CT on the complex management of locoregionally advanced (T3-4N1-3) head and neck squamous cell cancer (LAHNSC), and on the target definition for 3D conformal (3DCRT) and intensity-modulated radiotherapy (IMRT). 18FDG-PET/CT were performed on 185 patients with LAHNSC prior to radiotherapy/chemoradiation in the treatment position between 2006 and 2011. Prior to it 91 patients received induction chemotherapy (in 20 cases of these, baseline PET/CT was also available). The independently delineated CT-based gross tumor volume (GTVct) and PET/CT based ones (GTVpet) were compared. Impact of PET/CT on the treatment strategy, on tumor response evaluation to ICT, on GTV definition furthermore on overall and disease-specific survival (OS, DSS) was analysed. PET/CT revealed 10 head and neck, 2 lung cancers for 15 patients with carcinoma of unknown primary (CUP) while 3 remained unknown. Second tumors were detected in 8 (4.4%), distant metastasis in 15 (8.2%) cases. The difference between GTVct and GTVpet was significant (p=0.001). In 16 patients (14%) the GTVpet were larger than GTVct due to multifocal manifestations in the laryngo-pharyngeal regions (4 cases) or lymph node metastases (12 cases). In the majority of the cases (82 pts, 72%) PET/CT-based conturing resulted in remarkable decrease in the volume (15-20%: 4 cases, 20-50%: 46 cases, >50%: 32 cases). On the basis of the initial and post-ICT PET/CT comparison in 15/20 patients more than 50% volume reduction and in 6/20 cases complete response were achieved. After an average of 6.4 years of follow-up the OS (median: 18.3±2.6 months) and DSS (median: 25.0±4.0 months) exhibited close correlation (p=0.0001) to the GTVpet. In cases with GTVpet <10 cm3 prior to RT, DSS did not reach the median, the mean is 82.1±6.1 months, while in cases with GTVpet 10-40 cm3 the median of the DSS was 28.8±4.9 months (HR = 3.57; 95% CI: 1.5-8.3), and in those with GTVpet >40 cm3 the median DSS was 8.4±0.96 months (HR= 11.48; 95% CI: 5.3-24.9). Our results suggest that 18FDG-PET/CT plays an important role for patient with LAHNSC, by modifying the treatment concept and improving the target definition for selective RT modalities. Volumetric PET/CT-based assessment of the tumor response after ICT gives valuable contribution to further therapy planning.

  2. Repeatability of Quantitative Whole-Body 18F-FDG PET/CT Uptake Measures as Function of Uptake Interval and Lesion Selection in Non-Small Cell Lung Cancer Patients.

    PubMed

    Kramer, Gerbrand Maria; Frings, Virginie; Hoetjes, Nikie; Hoekstra, Otto S; Smit, Egbert F; de Langen, Adrianus Johannes; Boellaard, Ronald

    2016-09-01

    Change in (18)F-FDG uptake may predict response to anticancer treatment. The PERCIST suggest a threshold of 30% change in SUV to define partial response and progressive disease. Evidence underlying these thresholds consists of mixed stand-alone PET and PET/CT data with variable uptake intervals and no consensus on the number of lesions to be assessed. Additionally, there is increasing interest in alternative (18)F-FDG uptake measures such as metabolically active tumor volume and total lesion glycolysis (TLG). The aim of this study was to comprehensively investigate the repeatability of various quantitative whole-body (18)F-FDG metrics in non-small cell lung cancer (NSCLC) patients as a function of tracer uptake interval and lesion selection strategies. Eleven NSCLC patients, with at least 1 intrathoracic lesion 3 cm or greater, underwent double baseline whole-body (18)F-FDG PET/CT scans at 60 and 90 min after injection within 3 d. All (18)F-FDG-avid tumors were delineated with an 50% threshold of SUVpeak adapted for local background. SUVmax, SUVmean, SUVpeak, TLG, metabolically active tumor volume, and tumor-to-blood and -liver ratios were evaluated, as well as the influence of lesion selection and 2 methods for correction of uptake time differences. The best repeatability was found using the SUV metrics of the averaged PERCIST target lesions (repeatability coefficients < 10%). The correlation between test and retest scans was strong for all uptake measures at either uptake interval (intraclass correlation coefficient > 0.97 and R(2) > 0.98). There were no significant differences in repeatability between data obtained 60 and 90 min after injection. When only PERCIST-defined target lesions were included (n = 34), repeatability improved for all uptake values. Normalization to liver or blood uptake or glucose correction did not improve repeatability. However, after correction for uptake time the correlation of SUV measures and TLG between the 60- and 90-min data significantly improved without affecting test-retest performance. This study suggests that a 15% change of SUVmean/SUVpeak at 60 min after injection can be used to assess response in advanced NSCLC patients if up to 5 PERCIST target lesions are assessed. Lower thresholds could be used in averaged PERCIST target lesions (<10%). © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  3. Comparison of the image-derived radioactivity and blood-sample radioactivity for estimating the clinical indicators of the efficacy of boron neutron capture therapy (BNCT): 4-borono-2-18F-fluoro-phenylalanine (FBPA) PET study.

    PubMed

    Isohashi, Kayako; Shimosegawa, Eku; Naka, Sadahiro; Kanai, Yasukazu; Horitsugi, Genki; Mochida, Ikuko; Matsunaga, Keiko; Watabe, Tadashi; Kato, Hiroki; Tatsumi, Mitsuaki; Hatazawa, Jun

    2016-12-01

    In boron neutron capture therapy (BNCT), positron emission tomography (PET) with 4-borono-2- 18 F-fluoro-phenylalanine (FBPA) is the only method to estimate an accumulation of 10 B to target tumor and surrounding normal tissue after administering 10 B carrier of L-paraboronophenylalanine and to search the indication of BNCT for individual patient. Absolute concentration of 10 B in tumor has been estimated by multiplying 10 B concentration in blood during BNCT by tumor to blood radioactivity (T/B) ratio derived from FBPA PET. However, the method to measure blood radioactivity either by blood sampling or image data has not been standardized. We compared image-derived blood radioactivity of FBPA with blood sampling data and studied appropriate timing and location for measuring image-derived blood counts. We obtained 7 repeated whole-body PET scans in five healthy subjects. Arterialized venous blood samples were obtained from the antecubital vein, heated in a heating blanket. Time-activity curves (TACs) of image-derived blood radioactivity were obtained using volumes of interest (VOIs) over ascending aorta, aortic arch, pulmonary artery, left and right ventricles, inferior vena cava, and abdominal aorta. Image-derived blood radioactivity was compared with those measured by blood sampling data in each location. Both the TACs of blood sampling radioactivity in each subject, and the TACs of image-derived blood radioactivity showed a peak within 5 min after the tracer injection, and promptly decreased soon thereafter. Linear relationship was found between blood sampling radioactivity and image-derived blood radioactivity in all the VOIs at any timing of data sampling (p < 0.001). Image-derived radioactivity measured in the left and right ventricles 30 min after injection showed high correlation with blood radioactivity. Image-derived blood radioactivity was lower than blood sampling radioactivity data by 20 %. Reduction of blood radioactivity of FBPA in left ventricle after 30 min of FBPA injection was minimal. We conclude that the image-derived T/B ratio can be reliably used by setting the VOI on the left ventricle at 30 min after FBPA administration and correcting for underestimation due to partial volume effect and reduction of FBPA blood radioactivity.

  4. 18F-FDG PET independently predicts survival in patients with cholangiocellular carcinoma treated with 90Y microspheres.

    PubMed

    Haug, Alexander R; Heinemann, Volker; Bruns, Christiane J; Hoffmann, Ralf; Jakobs, Tobias; Bartenstein, Peter; Hacker, Marcus

    2011-06-01

    (90)Y radioembolization has emerged as a valuable therapy for intrahepatic cholangiocellular carcinomas (ICC). We aimed to evaluate the prognostic power of FDG PET/CT and that of pretherapeutic scintigraphy with (99m)Tc-labelled macroagglutinated albumin (MAA), an index of tumour vascularization. The study group comprised 26 consecutive patients suffering from nonresectable ICC. Before treatment with radioembolization, all patients underwent MRI of the liver, as well as MAA scintigraphy, which was followed immediately by SPECT(/CT) to quantify the liver-lung shunt fraction. Using image fusion, regions of interest were drawn around the tumours and the entire liver, and the tumour-to-liver quotient was calculated. In addition, FDG PET/CT was performed at baseline and 3 months after radioembolization, and the percentage changes in peak (ΔSUV(max)) and mean (ΔSUV(mean)) FDG uptake and in metabolic tumour volume (ΔVol(2SD)) relative to baseline were calculated. Treatment response at 3 months was also assessed using contrast-enhanced MRI and CT on the basis of standard criteria. Of 23 patients in whom follow-up MRI was available, 5 (22%) showed a partial response, 15 (65%) stable disease and 3 (13%) progressive disease. The change in all FDG values significantly predicted survival by Kaplan-Meier analysis after radioembolization; ΔVol(2SD) responders had a median survival of 97 weeks versus 30 weeks in nonresponders (P = 0.02), whereas ΔSUV(max) and ΔSUV(mean) responders had a median survival of 114 weeks (responder) versus 19 weeks (nonresponder) and 69 weeks in patients with stable disease (P < 0.05). Pretherapeutic MAA scintigraphy or MRI did not predict survival, nor did the presence of extrahepatic metastases, or prior therapies. Only ΔVol(2SD) was significantly associated with survival by univariate analysis (hazard ratio 0.25; P = 0.04) and multivariate analysis (hazard ratio 0.20, P = 0.04). FDG PET/CT was able to predict patient outcome after radioembolization treatment, with the change in metabolically active tumour volume at 3 months being the best independent predictor. High tumour vascularization, as indicated by MAA scintigraphy, was not a prerequisite for successful radioembolization and was even associated with a tendency towards shorter survival.

  5. Multimodal Classification of Mild Cognitive Impairment Based on Partial Least Squares.

    PubMed

    Wang, Pingyue; Chen, Kewei; Yao, Li; Hu, Bin; Wu, Xia; Zhang, Jiacai; Ye, Qing; Guo, Xiaojuan

    2016-08-10

    In recent years, increasing attention has been given to the identification of the conversion of mild cognitive impairment (MCI) to Alzheimer's disease (AD). Brain neuroimaging techniques have been widely used to support the classification or prediction of MCI. The present study combined magnetic resonance imaging (MRI), 18F-fluorodeoxyglucose PET (FDG-PET), and 18F-florbetapir PET (florbetapir-PET) to discriminate MCI converters (MCI-c, individuals with MCI who convert to AD) from MCI non-converters (MCI-nc, individuals with MCI who have not converted to AD in the follow-up period) based on the partial least squares (PLS) method. Two types of PLS models (informed PLS and agnostic PLS) were built based on 64 MCI-c and 65 MCI-nc from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The results showed that the three-modality informed PLS model achieved better classification accuracy of 81.40%, sensitivity of 79.69%, and specificity of 83.08% compared with the single-modality model, and the three-modality agnostic PLS model also achieved better classification compared with the two-modality model. Moreover, combining the three modalities with clinical test score (ADAS-cog), the agnostic PLS model (independent data: florbetapir-PET; dependent data: FDG-PET and MRI) achieved optimal accuracy of 86.05%, sensitivity of 81.25%, and specificity of 90.77%. In addition, the comparison of PLS, support vector machine (SVM), and random forest (RF) showed greater diagnostic power of PLS. These results suggested that our multimodal PLS model has the potential to discriminate MCI-c from the MCI-nc and may therefore be helpful in the early diagnosis of AD.

  6. Serotonin 1A receptors, depression, and memory in temporal lobe epilepsy.

    PubMed

    Theodore, William H; Wiggs, Edythe A; Martinez, Ashley R; Dustin, Irene H; Khan, Omar I; Appel, Shmuel; Reeves-Tyer, Pat; Sato, Susumu

    2012-01-01

    Memory deficits and depression are common in patients with temporal lobe epilepsy (TLE). Previous positron emission tomography (PET) studies have shown reduced mesial temporal 5HT1A-receptor binding in these patients. We examined the relationships among verbal memory performance, depression, and 5HT1A-receptor binding measured with 18F-trans-4-fluoro-N-2-[4-(2-methoxyphenyl)piperazin-1-yl]ethyl-N-(2-pyridyl) cyclohexane carboxamide (18FCWAY) PET in a cross-sectional study. We studied 40 patients (24 male; mean age 34.5 ± 10.7 years) with TLE. Seizure diagnosis and focus localization were based on ictal video-electroencephalography (EEG) recording. Patients had neuropsychological testing with Wechsler Adult Intelligence Score III (WAIS III) and Wechsler Memory Score III (WMS III) on stable antiepileptic drug (AED) regimens at least 24 h since the last seizure. Beck Depression Inventory (BDI) scores were obtained. We performed interictal PET with 18FCWAY, a fluorinated derivative of WAY 100635, a highly specific 5HT1A ligand, and structural magnetic resonance imaging (MRI) scans to estimate partial volume and plasma free fraction corrected 18FCWAY volume of distribution (V/f1). Hippocampal V/f1 was significantly lower in area ipsilateral than contralateral to the epileptic focus (73.7 ± 27.3 vs. 95.4 ± 28.4; p < 0.001). We found a significant relation between both left hippocampal 18FCWAY V/f1 (r = 0.41; p < 0.02) and left hippocampal volume (r = 0.36; p < 0.03) and delayed auditory memory score. On multiple regression, there was a significant effect of the interaction of left hippocampal 18FCWAY V/f1 and left hippocampal volume on delayed auditory memory, but not of either alone. High collinearity was present. In an analysis of variance including the side of the seizure focus, the effect of left hippocampal 18FCWAY V/f1 but not focus laterality retained significance. Mean BDI was 8.3 ± 7.0. There was a significant inverse relation between BDI and 18FCWAY V/f1 ipsilateral to the patient's epileptic focus (r = 0.38 p < 0.02). There was no difference between patients with a right or left temporal focus. There was no relation between BDI and immediate or delayed auditory memory. Our study suggests that reduced left hippocampal 5HT1A-receptor binding may play a role in memory impairment in patients with TLE. Wiley Periodicals, Inc. © 2011 International League Against Epilepsy.

  7. Repeat Gamma Knife surgery for vestibular schwannomas

    PubMed Central

    Lonneville, Sarah; Delbrouck, Carine; Renier, Cécile; Devriendt, Daniel; Massager, Nicolas

    2015-01-01

    Background: Gamma Knife (GK) surgery is a recognized treatment option for the management of small to medium-sized vestibular schwannoma (VS) associated with high-tumor control and low morbidity. When a radiosurgical treatment fails to stop tumor growth, repeat GK surgery can be proposed in selected cases. Methods: A series of 27 GK retreatments was performed in 25 patients with VS; 2 patients underwent three procedures. The median time interval between GK treatments was 45 months. The median margin dose used for the first, second, and third GK treatments was 12 Gy, 12 Gy, and 14 Gy, respectively. Six patients (4 patients for the second irradiation and 2 patients for the third irradiation) with partial tumor regrowth were treated only on the growing part of the tumor using a median margin dose of 13 Gy. The median tumor volume was 0.9, 2.3, and 0.7 cc for the first, second, and third treatments, respectively. Stereotactic positron emission tomography (PET) guidance was used for dose planning in 6 cases. Results: Mean follow-up duration was 46 months (range 24–110). At the last follow-up, 85% of schwannomas were controlled. The tumor volume decreased, remained unchanged, or increased after retreatment in 15, 8, and 4 cases, respectively. Four patients had PET during follow-up, and all showed a significant metabolic decrease of the tumor. Hearing was not preserved after retreatment in any patients. New facial or trigeminal palsy did not occur after retreatment. Conclusions: Our results support the long-term efficacy and low morbidity of repeat GK treatment for selected patients with tumor growth after initial treatment. PMID:26500799

  8. Influence of content and particle size of waste pet bottles on concrete behavior at different w/c ratios.

    PubMed

    Albano, C; Camacho, N; Hernández, M; Matheus, A; Gutiérrez, A

    2009-10-01

    The goal of this work was to study the mechanical behavior of concrete with recycled Polyethylene Therephtalate (PET), varying the water/cement ratio (0.50 and 0.60), PET content (10 and 20 vol%) and the particle size. Also, the influence of the thermal degradation of PET in the concrete was studied, when the blends were exposed to different temperatures (200, 400, 600 degrees C). Results indicate that PET-filled concrete, when volume proportion and particle size of PET increased, showed a decrease in compressive strength, splitting tensile strength, modulus of elasticity and ultrasonic pulse velocity; however, the water absorption increased. On the other hand, the flexural strength of concrete-PET when exposed to a heat source was strongly dependent on the temperature, water/cement ratio, as well as on the PET content and particle size. Moreover, the activation energy was affected by the temperature, PET particles location on the slabs and water/cement ratio.

  9. Focal dose escalation for prostate cancer using 68Ga-HBED-CC PSMA PET/CT and MRI: a planning study based on histology reference.

    PubMed

    Zamboglou, Constantinos; Thomann, Benedikt; Koubar, Khodor; Bronsert, Peter; Krauss, Tobias; Rischke, Hans C; Sachpazidis, Ilias; Drendel, Vanessa; Salman, Nasr; Reichel, Kathrin; Jilg, Cordula A; Werner, Martin; Meyer, Philipp T; Bock, Michael; Baltas, Dimos; Grosu, Anca L

    2018-05-02

    Focal radiation therapy has gained of interest in treatment of patients with primary prostate cancer (PCa). The question of how to define the intraprostatic boost volume is still open. Previous studies showed that multiparametric MRI (mpMRI) or PSMA PET alone could be used for boost volume definition. However, other studies proposed that the combined usage of both has the highest sensitivity in detection of intraprostatic lesions. The aim of this study was to demonstrate the feasibility and to evaluate the tumour control probability (TCP) and normal tissue complication probability (NTCP) of radiation therapy dose painting using 68 Ga-HBED-CC PSMA PET/CT, mpMRI or the combination of both in primary PCa. Ten patients underwent PSMA PET/CT and mpMRI followed by prostatectomy. Three gross tumour volumes (GTVs) were created based on PET (GTV-PET), mpMRI (GTV-MRI) and the union of both (GTV-union). Two plans were generated for each GTV. Plan95 consisted of whole-prostate IMRT to 77 Gy in 35 fractions and a simultaneous boost to 95 Gy (Plan95 PET /Plan95 MRI /Plan95 union ). Plan80 consisted of whole-prostate IMRT to 76 Gy in 38 fractions and a simultaneous boost to 80 Gy (Plan80 PET /Plan80 MRI /Plan80 union ). TCPs were calculated for GTV-histo (TCP-histo), which was delineated based on PCa distribution in co-registered histology slices. NTCPs were assessed for bladder and rectum. Dose constraints of published protocols were reached in every treatment plan. Mean TCP-histo were 99.7% (range: 97%-100%) and 75.5% (range: 33%-95%) for Plan95 union and Plan80 union , respectively. Plan95 union had significantly higher TCP-histo values than Plan95 MRI (p = 0.008) and Plan95 PET (p = 0.008). Plan80 union had significantly higher TCP-histo values than Plan80 MRI (p = 0.012), but not than Plan80 PET (p = 0.472). Plan95 MRI had significantly lower NTCP-rectum than Plan95 union (p = 0.012). No significant differences in NTCP-rectum and NTCP-bladder were observed for all other plans (p > 0.05). IMRT dose escalation on GTVs based on mpMRI, PSMA PET/CT and the combination of both was feasible. Boosting GTV-union resulted in significantly higher TCP-histo with no or minimal increase of NTCPs compared to the other plans.

  10. Neocortical temporal FDG-PET hypometabolism correlates with temporal lobe atrophy in hippocampal sclerosis associated with microscopic cortical dysplasia.

    PubMed

    Diehl, Beate; LaPresto, Eric; Najm, Imad; Raja, Shanker; Rona, Sabine; Babb, Thomas; Ying, Zhong; Bingaman, William; Lüders, Hans O; Ruggieri, Paul

    2003-04-01

    Medically intractable temporal lobe epilepsy (TLE) due to hippocampal sclerosis (HS), with or without cortical dysplasia (CD), is associated with atrophy of the hippocampal formation and regional fluorodeoxyglucose positron-emission tomography (FDG-PET) hypometabolism. The relation between areas of functional and structural abnormalities is not well understood. We investigate the relation between FDG-PET metabolism and temporal lobe (TL) and hippocampal atrophy in patients with histologically proven isolated HS and HS associated with CD. Twenty-three patients underwent en bloc resection of the mesial and anterolateral neocortical structures. Ten patients were diagnosed with isolated HS; 13 patients had associated microscopic CD. Temporal lobe volumes (TLVs) and hippocampal volumes were measured. Magnetic resonance imaging (MRI) and PET were co-registered, and regions of interest (ROIs) determined as gray matter of the mesial, lateral, and anterior temporal lobe. All patients (HS with or without CD) had significant ipsilateral PET hypometabolism in all three regions studied (p < 0.0001). In patients with isolated HS, the most prominent hypometabolism was in the anterior and mesial temporal lobe, whereas in dual pathology, it was in the lateral temporal lobe. TLVs and hippocampal volumes were significantly smaller on the epileptogenic side (p < 0.05). The PET asymmetries ipsilateral/contralateral to the epileptogenic zone and TLV asymmetries correlated significantly for the anterior and lateral temporal lobes (p < 0.05) in the HS+CD group, but not in the isolated HS group. Mesial temporal hypometabolism was not significantly different between the two groups. Temporal neocortical microscopic CD with concurrent HS is associated with more prominent lateral temporal metabolic dysfunction compared with isolated HS in TL atrophy. Further studies are needed to confirm these findings and correlate the PET hypometabolic patterns with outcome data in patients operated on for HS with or without CD.

  11. FDG-PET-based differential uptake volume histograms: a possible approach towards definition of biological target volumes.

    PubMed

    Devic, Slobodan; Mohammed, Huriyyah; Tomic, Nada; Aldelaijan, Saad; De Blois, François; Seuntjens, Jan; Lehnert, Shirley; Faria, Sergio

    2016-06-01

    Integration of fluorine-18 fludeoxyglucose ((18)F-FDG)-positron emission tomography (PET) functional data into conventional anatomically based gross tumour volume delineation may lead to optimization of dose to biological target volumes (BTV) in radiotherapy. We describe a method for defining tumour subvolumes using (18)F-FDG-PET data, based on the decomposition of differential uptake volume histograms (dUVHs). For 27 patients with histopathologically proven non-small-cell lung carcinoma (NSCLC), background uptake values were sampled within the healthy lung contralateral to a tumour in those image slices containing tumour and then scaled by the ratio of mass densities between the healthy lung and tumour. Signal-to-background (S/B) uptake values within volumes of interest encompassing the tumour were used to reconstruct the dUVHs. These were subsequently decomposed into the minimum number of analytical functions (in the form of differential uptake values as a function of S/B) that yielded acceptable net fits, as assessed by χ(2) values. Six subvolumes consistently emerged from the fitted dUVHs over the sampled volume of interest on PET images. Based on the assumption that each function used to decompose the dUVH may correspond to a single subvolume, the intersection between the two adjacent functions could be interpreted as a threshold value that differentiates them. Assuming that the first two subvolumes spread over the tumour boundary, we concentrated on four subvolumes with the highest uptake values, and their S/B thresholds [mean ± standard deviation (SD)] were 2.88 ± 0.98, 4.05 ± 1.55, 5.48 ± 2.06 and 7.34 ± 2.89 for adenocarcinoma, 3.01 ± 0.71, 4.40 ± 0.91, 5.99 ± 1.31 and 8.17 ± 2.42 for large-cell carcinoma and 4.54 ± 2.11, 6.46 ± 2.43, 8.87 ± 5.37 and 12.11 ± 7.28 for squamous cell carcinoma, respectively. (18)F-FDG-based PET data may potentially be used to identify BTV within the tumour in patients with NSCLC. Using the one-way analysis of variance statistical tests, we found a significant difference among all threshold levels among adenocarcinomas, large-cell carcinoma and squamous cell carcinomas. On the other hand, the observed significant variability in threshold values throughout the patient cohort (expressed as large SDs) can be explained as a consequence of differences in the physiological status of the tumour volume for each patient at the time of the PET/CT scan. This further suggests that patient-specific threshold values for the definition of BTVs could be determined by creation and curve fitting of dUVHs on a patient-by-patient basis. The method of (18)F-FDG-PET-based dUVH decomposition described in this work may lead to BTV segmentation in tumours.

  12. The Application of Transcutaneous CO2 Pressure Monitoring in the Anesthesia of Obese Patients Undergoing Laparoscopic Bariatric Surgery

    PubMed Central

    Liu, Shijiang; Sun, Jie; Chen, Xing; Yu, Yingying; Liu, Xuan; Liu, Cunming

    2014-01-01

    To investigate the correlation and accuracy of transcutaneous carbon dioxide partial pressure (PTCCO2) with regard to arterial carbon dioxide partial pressure (PaCO2) in severe obese patients undergoing laparoscopic bariatric surgery. Twenty-one patients with BMI>35 kg/m2 were enrolled in our study. Their PaCO2, end-tidal carbon dioxide partial pressure (PetCO2), as well as PTCCO2 values were measured at before pneumoperitoneum and 30 min, 60 min, 120 min after pneumoperitoneum respectively. Then the differences between each pair of values (PetCO2–PaCO2) and. (PTCCO2–PaCO2) were calculated. Bland–Altman method, correlation and regression analysis, as well as exact probability method and two way contingency table were employed for the data analysis. 21 adults (aged 19–54 yr, mean 29, SD 9 yr; weight 86–160 kg, mean119.3, SD 22.1 kg; BMI 35.3–51.1 kg/m2, mean 42.1,SD 5.4 kg/m2) were finally included in this study. One patient was eliminated due to the use of vaso-excitor material phenylephrine during anesthesia induction. Eighty-four sample sets were obtained. The average PaCO2–PTCCO2 difference was 0.9±1.3 mmHg (mean±SD). And the average PaCO2–PetCO2 difference was 10.3±2.3 mmHg (mean±SD). The linear regression equation of PaCO2–PetCO2 is PetCO2 = 11.58+0.57×PaCO2 (r2 = 0.64, P<0.01), whereas the one of PaCO2–PTCCO2 is PTCCO2 = 0.60+0.97×PaCO2 (r2 = 0.89). The LOA (limits of agreement) of 95% average PaCO2–PetCO2 difference is 10.3±4.6 mmHg (mean±1.96 SD), while the LOA of 95% average PaCO2–PTCCO2 difference is 0.9±2.6 mmHg (mean±1.96 SD). In conclusion, transcutaneous carbon dioxide monitoring provides a better estimate of PaCO2 than PetCO2 in severe obese patients undergoing laparoscopic bariatric surgery. PMID:24699267

  13. P04.02 Analysis of 18F-DOPA PET imaging for target volume definition in patients with recurrent glioblastoma treated with proton therapy

    PubMed Central

    Amelio, D.; Scartoni, D.; Palucci, A.; Vennarini, S.; Giacomelli, I.; Lemoine, S.; Donner, D.; Farace, P.; Chierichetti, F.; Amichetti, M.

    2017-01-01

    Abstract Introduction: Target volume definition is of critical relevance when re-irradiation is delivered and steep dose gradient irradiation techniques, such as proton therapy (PT), are employed. Aim of the study is to investigate the impact of 18F-DOPA on target volume contouring in recurrent glioblastoma (rGBM) patients (pts) undergoing re-irradiation with PT. MATERIAL AND METHODS: We investigated the differences in volume and relationship of magnetic resonance imaging (MRI)- vs. DOPA PET-derived gross tumor volumes (GTVs) of 14 rGBM pts re-irradiated with PT between January and November 2016. All pts had been previously treated with photon radiotherapy (60 Gy) with concomitant and adjuvant temozolomide. All the pts received morphological MRI with contrast enhancement medium administration and 18F-DOPA PET-CT study. We used the pathological distribution of 18F-DOPA in brain tissue to identify the so-called Biological Tumor Volume (BTV). Such areas were assessed using a tumor to normal brain ratio > 2. Moreover, any area of contrast enhancement on MRI was used to identify the MRI-based GTV (MRGTV). Definitive GTV included MRGTV plus BTV. Clinical target volume was generated by adding to GTV a 3-mm uniform margin manually corrected in proximity of anatomical barriers. CTV was expanded by 4 mm to create planning target volume. All pts received 36 GyRBE in 18 fractions. Mean values of differently delineated GTVs were compared each other by paired Student’s t-test; p < 0.05 was considered significant. To further compare MRGTV and BTV, the overlapping (MRGTV ^ BTV) and the composite (MRGTV U BTV) volumes were calculated, and a concordance index (CI) was defined as the ratio between the overlap and composite volumes. Results: MRGTV (mean 14.9 ± 14.5 cc) was larger than BTV (mean 10.9 ± 9.8 cc) although this difference was not statistically significant. The composite volume (mean 20.9 ± 14.7 cc) was significantly larger than each single volume (p < 0.006). The overlapping volume (mean 5.7 ± 3.3 cc) was quite small compared to each single volume and suggest that relevant part of MRIGTV is not covered by BTV as well as that relevant part of BTV is not covered by MRGTV. In line with such results we recorded also a low CI (mean 0.26 ± 0.2). The PT irradiation of PET-integrated target volumes provided a median progression-free survival (PFS) of 6 months, while the 6-month PFS rate was 57%; median survival after PT was 8.7 months, while 9-month survival rate was 60%. Conclusions: Target volume definition for rGBM undergoing PT re-irradiation may yield significantly differing results depending upon the imaging modality used for target contouring. Our data suggest that 18F-DOPA PET can detect relevant non-enhancing pathological areas outside the conventional MRGTV ultimately yielding to larger volumes to be irradiated. Influence on clinical outcomes deserves further evaluation.

  14. An algorithm for longitudinal registration of PET/CT images acquired during neoadjuvant chemotherapy in breast cancer: preliminary results.

    PubMed

    Li, Xia; Abramson, Richard G; Arlinghaus, Lori R; Chakravarthy, Anuradha Bapsi; Abramson, Vandana; Mayer, Ingrid; Farley, Jaime; Delbeke, Dominique; Yankeelov, Thomas E

    2012-11-16

    By providing estimates of tumor glucose metabolism, 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) can potentially characterize the response of breast tumors to treatment. To assess therapy response, serial measurements of FDG-PET parameters (derived from static and/or dynamic images) can be obtained at different time points during the course of treatment. However, most studies track the changes in average parameter values obtained from the whole tumor, thereby discarding all spatial information manifested in tumor heterogeneity. Here, we propose a method whereby serially acquired FDG-PET breast data sets can be spatially co-registered to enable the spatial comparison of parameter maps at the voxel level. The goal is to optimally register normal tissues while simultaneously preventing tumor distortion. In order to accomplish this, we constructed a PET support device to enable PET/CT imaging of the breasts of ten patients in the prone position and applied a mutual information-based rigid body registration followed by a non-rigid registration. The non-rigid registration algorithm extended the adaptive bases algorithm (ABA) by incorporating a tumor volume-preserving constraint, which computed the Jacobian determinant over the tumor regions as outlined on the PET/CT images, into the cost function. We tested this approach on ten breast cancer patients undergoing neoadjuvant chemotherapy. By both qualitative and quantitative evaluation, our constrained algorithm yielded significantly less tumor distortion than the unconstrained algorithm: considering the tumor volume determined from standard uptake value maps, the post-registration median tumor volume changes, and the 25th and 75th quantiles were 3.42% (0%, 13.39%) and 16.93% (9.21%, 49.93%) for the constrained and unconstrained algorithms, respectively (p = 0.002), while the bending energy (a measure of the smoothness of the deformation) was 0.0015 (0.0005, 0.012) and 0.017 (0.005, 0.044), respectively (p = 0.005). The results indicate that the constrained ABA algorithm can accurately align prone breast FDG-PET images acquired at different time points while keeping the tumor from being substantially compressed or distorted. NCT00474604.

  15. 18-Fluorodeoxy-Glucose Positron Emission Tomography- Computed Tomography (18-FDG-PET/CT) for Gross Tumor Volume (GTV) Delineation in Gastric Cancer Radiotherapy

    PubMed

    Dębiec, Kinga; Wydmański, Jerzy; Gorczewska, Izabela; Leszczyńska, Paulina; Gorczewski, Kamil; Leszczyński, Wojciech; d’Amico, Andrea; Kalemba, Michał

    2017-11-26

    Purpose: Evaluation of the 18-fluorodeoxy-glucose positron emission tomography-computed tomography (18-FDGPET/ CT) for gross tumor volume (GTV) delineation in gastric cancer patients undergoing radiotherapy. Methods: In this study, 29 gastric cancer patients (17 unresectable and 7 inoperable) were initially enrolled for radical chemoradiotherapy (45Gy/25 fractions + chemotherapy based on 5 fluorouracil) or radiotherapy alone (45Gy/25 fractions) with planning based on the 18-FDG-PET/CT images. Five patients were excluded due to excess blood glucose levels (1), false-negative positron emission tomography (1) and distant metastases revealed by 18-FDG-PET/CT (3). The analysis involved measurement of metabolic tumor volumes (MTVs) performed on PET/CT workstations. Different threshold levels of the standardized uptake value (SUV) and liver uptake were set to obtain MTVs. Secondly, GTVPET values were derived manually using the positron emission tomography (PET) dataset blinded to the computed tomography (CT) data. Subsequently, GTVCT values were delineated using a radiotherapy planning system based on the CT scans blinded to the PET data. The referenced GTVCT values were correlated with the GTVPET and were compared with a conformality index (CI). Results: The mean CI was 0.52 (range, 0.12-0.85). In 13/24 patients (54%), the GTVPET was larger than GTVCT, and in the remainder, GTVPET was smaller. Moreover, the cranio-caudal diameter of GTVPET in 16 cases (64%) was larger than that of GTVCT, smaller in 7 cases (29%), and unchanged in one case. Manual PET delineation (GTVPET) achieved the best correlation with GTVCT (Pearson correlation = 0.76, p <0.0001). Among the analyzed MTVs, a statistically significant correlation with GTVCT was revealed for MTV10%SUVmax (r = 0.63; p = 0.0014), MTVliv (r = 0.60; p = 0.0021), MTVSUV2.5 (r = 0.54; p = 0.0063); MTV20%SUVmax (r = 0.44; p = 0.0344); MTV30%SUVmax (r = 0.44; p = 0.0373). Conclusion: 18-FDG-PET/CT in gastric cancer radiotherapy planning may affect the GTV delineation. https://www.ncbi.nlm.nih.gov/pubmed/management

  16. Evaluation of a new motion correction algorithm in PET/CT: combining the entire acquired PET data to create a single three-dimensional motion-corrected PET/CT image.

    PubMed

    Minamimoto, Ryogo; Mitsumoto, Takuya; Miyata, Yoko; Sunaoka, Fumio; Morooka, Miyako; Okasaki, Momoko; Iagaru, Andrei; Kubota, Kazuo

    2016-02-01

    This study evaluated the potential of Q.Freeze algorithm for reducing motion artifacts, in comparison with ungated imaging (UG) and respiratory-gated imaging (RG). Twenty-nine patients with 53 lesions who had undergone RG F-FDG PET/CT were included in this study. Using PET list mode data, five series of PET images [UG, RG, and QF images with an acquisition duration of 3 min (QF3), 5 min (QF5), and 10 min (QF10)] were reconstructed retrospectively. The image quality was evaluated first. Next, quantitative metrics [maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), SD, metabolic tumor volume, signal to noise ratio, or lesion to background ratio] were calculated for the liver, background, and each lesion, and the results were compared across the series. QF10 and QF5 showed better image quality compared with all other images. SUVmax in the liver, background, and lesions was lower with QF10 and QF5 than with the others, but there were no statistically significant differences in SUVmean and the lesion to background ratios. The SD with UG and RG was significantly higher than that with QF5 and QF10. The metabolic tumor volume in QF3 and QF5 was significantly lower than that in UG. The Q.Freeze algorithm can improve the quality of PET imaging compared with RG and UG.

  17. Absolute quantification of regional cerebral glucose utilization in mice by 18F-FDG small animal PET scanning and 2-14C-DG autoradiography.

    PubMed

    Toyama, Hiroshi; Ichise, Masanori; Liow, Jeih-San; Modell, Kendra J; Vines, Douglass C; Esaki, Takanori; Cook, Michelle; Seidel, Jurgen; Sokoloff, Louis; Green, Michael V; Innis, Robert B

    2004-08-01

    The purpose of this study was to evaluate the feasibility of absolute quantification of regional cerebral glucose utilization (rCMR(glc)) in mice by use of (18)F-FDG and a small animal PET scanner. rCMR(glc) determined with (18)F-FDG PET was compared with values determined simultaneously by the autoradiographic 2-(14)C-DG method. In addition, we compared the rCMR(glc) values under isoflurane, ketamine and xylazine anesthesia, and awake states. Immediately after injection of (18)F-FDG and 2-(14)C-DG into mice, timed arterial samples were drawn over 45 min to determine the time courses of (18)F-FDG and 2-(14)C-DG. Animals were euthanized at 45 min and their brain was imaged with the PET scanner. The brains were then processed for 2-(14)C-DG autoradiography. Regions of interest were manually placed over cortical regions on corresponding coronal (18)F-FDG PET and 2-(14)C-DG autoradiographic images. rCMR(glc) values were calculated for both tracers by the autoradiographic 2-(14)C-DG method with modifications for the different rate and lumped constants for the 2 tracers. Average rCMR(glc) values in cerebral cortex with (18)F-FDG PET under normoglycemic conditions (isoflurane and awake) were generally lower (by 8.3%) but strongly correlated with those of 2-(14)C-DG (r(2) = 0.95). On the other hand, under hyperglycemic conditions (ketamine/xylazine) average cortical rCMR(glc) values with (18)F-FDG PET were higher (by 17.3%) than those with 2-(14)C-DG. Values for rCMR(glc) and uptake (percentage injected dose per gram [%ID/g]) with (18)F-FDG PET were significantly lower under both isoflurane and ketamine/xylazine anesthesia than in the awake mice. However, the reductions of rCMR(glc) were markedly greater under isoflurane (by 57%) than under ketamine and xylazine (by 19%), whereas more marked reductions of %ID/g were observed with ketamine/xylazine (by 54%) than with isoflurane (by 37%). These reverse differences between isoflurane and ketamine/xylazine may be due to competitive effect of (18)F-FDG and glucose uptake to the brain under hyperglycemia. We were able to obtain accurate absolute quantification of rCMR(glc) with mouse (18)F-FDG PET imaging as confirmed by concurrent use of the autoradiographic 2-(14)C-DG method. Underestimation of rCMR(glc) by (18)F-FDG in normoglycemic conditions may be due to partial-volume effects. Computation of rCMR(glc) from (18)F-FDG data in hyperglycemic animals may require, however, alternative rate and lumped constants for (18)F-FDG.

  18. High-speed digitization readout of silicon photomultipliers for time of flight positron emission tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronzhin, A.; Los, S.; Martens, M.

    2011-02-01

    We report on work to develop a system with about 100 picoseconds (ps) time resolution for time of flight positron emission tomography [TOF-PET]. The chosen photo detectors for the study were Silicon Photomultipliers (SiPM's). This study was based on extensive experience in studying timing properties of SiPM's. The readout of these devices used the commercial high speed digitizer DRS4. We applied different algorithms to get the best time resolution of 155 ps Guassian (sigma) for a LYSO crystal coupled to a SiPM. We consider the work as a first step in building a prototype TOF-PET module. The field of positron-emission-tomographymore » (PET) has been rapidly developing. But there are significant limitations in how well current PET scanners can reconstruct images, related to how fast data can be acquired, how much volume they can image, and the spatial and temporal resolution of the generated photons. Typical modern scanners now include multiple rings of detectors, which can image a large volume of the patient. In this type of scanner, one can treat each ring as a separate detector and require coincidences only within the ring, or treat the entire region viewed by the scanner as a single 3 dimensional volume. This 3d technique has significantly better sensitivity since more photon pair trajectories are accepted. However, the scattering of photons within the volume of the patient, and the effect of random coincidences limits the technique. The advent of sub-nanosecond timing resolution detectors means that there is potentially much better rejection of scattered photon events and random coincidence events in the 3D technique. In addition, if the timing is good enough, then the origin of photons pairs can be determined better, resulting in improved spatial resolution - so called 'Time-of-Flight' PET, or TOF-PET. Currently a lot of activity has occurred in applications of SiPMs for TOF-PET. This is due to the devices very good time resolution, low profile, lack of high voltage needed, and their non-sensitivity to magnetic fields. While investigations into this technique have begun elsewhere, we feel that the extensive SiPM characterization and data acquisition expertise of Fermilab, and the historical in-depth research of PET imaging at University of Chicago will combine to make significant strides in this field. We also benefit by a working relationship with the SiPM producer STMicroelectronics (STM).« less

  19. MO-DE-207B-11: Reliability of PET/CT Radiomics Features in Functional and Morphological Components of NSCLC Lesions: A Repeatability Analysis in a Prospective Multicenter Cohort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desseroit, M; EE DACTIM, CHU de Poitiers, Poitiers; Tixier, F

    2016-06-15

    Purpose: The goal of this study was to evaluate the repeatability of radiomics features (intensity, shape and heterogeneity) in both PET and low-dose CT components of test-retest FDG-PET/CT images in a prospective multicenter cohort of 74 NSCLC patients from ACRIN 6678 and a similar Merck trial. Methods: Seventy-four patients with stage III-IV NCSLC were prospectively included. The primary tumor and up to 3 additional lesions per patient were analyzed. The Fuzzy Locally Adaptive Bayesian algorithm was used to automatically delineate metabolically active volume (MAV) in PET. The 3D SlicerTM software was exploited to delineate anatomical volumes (AV) in CT. Tenmore » intensity first-order features, as well as 26 textural features and four 3D shape descriptors were calculated from tumour volumes in both modalities. The repeatability of each metric was assessed by Bland-Altman analysis. Results: One hundred and five lesions (primary tumors and nodal or distant metastases) were delineated and characterized. The MAV and AV determination had a repeatability of −1.4±11.0% and −1.2±18.7% respectively. Several shape and heterogeneity features were found to be highly or moderately repeatable (e.g., sphericity, co-occurrence entropy or intensity size-zone matrix zone percentage), whereas others were confirmed as unreliable with much higher variability (more than twice that of the corresponding volume determination). Conclusion: Our results in this large multicenter cohort with more than 100 measurements confirm the PET findings in previous studies (with <30 lesions). In addition, our study is the first to explore the repeatability of radiomics features in the low-dose CT component of PET/CT acquisitions (previous studies considered dosimetry CT, CE-CT or CBCT). Several features were identified as reliable in both PET and CT components and could be used to build prognostic models. This work has received a French government support granted to the CominLabs excellence laboratory and managed by the National Research Agency in the “Investing for the Future” program under reference ANR-10-LABX-07-01, and support from the city of Brest.« less

  20. WE-FG-202-04: Decomposition of FDG-PET Based Differential Uptake Volume Histograms in Rectal Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, J; Vuong, T; Tomic, N

    2016-06-15

    Purpose: The goal of this study is to test the possible use of the analytical decomposition of differential uptake volume histograms (dUVHs) obtained from FDG-PET/CT data to isolate sub-volumes within a tumor known as biological target volumes (BTVs). Methods: : A retrospective study was conducted on a cohort of 20 histo-pathologically confirmed rectal adenocarcinoma patients having PET/CT scans for staging. All patients (T3N0) underwent pre-operative endorectal brachytherapy. After surgery, patients were restaged: 10 patients were T0N0 and 10 were restaged as remaining T3N0. The extent of the disease was sampled in order to create dUVHs; subsequently decomposed into the fewestmore » number of analytical Gaussian functions. Results: With the assumption that each function fit corresponded to a single sub-volume within the tumor, six sub-volumes were found to consistently emerge. The first two sub-volumes were influenced by contouring and were not considered in the analysis. For the T3N0 population, abundances for volumes V3-V6 were 63.6%±11.3%, 25.7%±8.4%, 6.1%±4.9%, and 4.7%±2.6%. For the T0N0 population, they were 50.2%±6.8%, 33.4%±4.3%, 11.8%±7.6%, and 4.7%±2.4%. The two populations were compared using two tailed T-tests: volumes 3 and 4 were statistically different with p values of 0.021 and 0.056 respectively. V6 was located at 8.63 ± 2.2 for T0N0 and 6.14 ± 0.78 for T3N0 group (p=0.016). Conclusion: We described a method for dUVH decomposition using FDG-PET images of rectal adenocarcinoma patients that subsequently went for pre-operative brachytherapy. In addition to extracting different sub-volumes corresponding to different FDG uptake levels, we observed different abundances of two sub-volumes as well as positions of the maximum uptake between the two patient groups. In addition to opening the door to further investigation into underlying physiological phenotypes of segmented subvolumes and their use for biological radiotherapy treatment planning, this method may also provide parameters that could correlate to clinical outcomes in radiotherapy patients.« less

  1. A custom-built PET phantom design for quantitative imaging of printed distributions.

    PubMed

    Markiewicz, P J; Angelis, G I; Kotasidis, F; Green, M; Lionheart, W R; Reader, A J; Matthews, J C

    2011-11-07

    This note presents a practical approach to a custom-made design of PET phantoms enabling the use of digital radioactive distributions with high quantitative accuracy and spatial resolution. The phantom design allows planar sources of any radioactivity distribution to be imaged in transaxial and axial (sagittal or coronal) planes. Although the design presented here is specially adapted to the high-resolution research tomograph (HRRT), the presented methods can be adapted to almost any PET scanner. Although the presented phantom design has many advantages, a number of practical issues had to be overcome such as positioning of the printed source, calibration, uniformity and reproducibility of printing. A well counter (WC) was used in the calibration procedure to find the nonlinear relationship between digital voxel intensities and the actual measured radioactive concentrations. Repeated printing together with WC measurements and computed radiography (CR) using phosphor imaging plates (IP) were used to evaluate the reproducibility and uniformity of such printing. Results show satisfactory printing uniformity and reproducibility; however, calibration is dependent on the printing mode and the physical state of the cartridge. As a demonstration of the utility of using printed phantoms, the image resolution and quantitative accuracy of reconstructed HRRT images are assessed. There is very good quantitative agreement in the calibration procedure between HRRT, CR and WC measurements. However, the high resolution of CR and its quantitative accuracy supported by WC measurements made it possible to show the degraded resolution of HRRT brain images caused by the partial-volume effect and the limits of iterative image reconstruction.

  2. Evaluation of in vivo quantification accuracy of the Ingenuity-TF PET/MR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maus, Jens, E-mail: j.maus@hzdr.de; Schramm, Georg; Hofheinz, Frank

    2015-10-15

    Purpose: The quantitative accuracy of standardized uptake values (SUVs) and tracer kinetic uptake parameters in patient investigations strongly depends on accurate determination of regional activity concentrations in positron emission tomography (PET) data. This determination rests on the assumption that the given scanner calibration is valid in vivo. In a previous study, we introduced a method to test this assumption. This method allows to identify discrepancies in quantitative accuracy in vivo by comparison of activity concentrations of urine samples measured in a well-counter with activity concentrations extracted from PET images of the bladder. In the present study, we have applied thismore » method to the Philips Ingenuity-TF PET/MR since at the present stage, absolute quantitative accuracy of combined PET/MR systems is still under investigation. Methods: Twenty one clinical whole-body F18-FDG scans were included in this study. The bladder region was imaged as the last bed position and urine samples were collected afterward. PET images were reconstructed including MR-based attenuation correction with and without truncation compensation and 3D regions-of-interest (ROIs) of the bladder were delineated by three observers. To exclude partial volume effects, ROIs were concentrically shrunk by 8–10 mm. Then, activity concentrations were determined in the PET images for the bladder and for the urine by measuring the samples in a calibrated well-counter. In addition, linearity measurements of SUV vs singles rate and measurements of the stability of the coincidence rate of “true” events of the PET/MR system were performed over a period of 4 months. Results: The measured in vivo activity concentrations were significantly lower in PET/MR than in the well-counter with a ratio of the former to the latter of 0.756 ± 0.060 (mean ± std. dev.), a range of 0.604–0.858, and a P value of 3.9 ⋅ 10{sup −14}. While the stability measurements of the coincidence rate of “true” events showed no relevant deviation over time, the linearity scans revealed a systematic error of 8%–11% (avg. 9%) for the range of singles rates present in the bladder scans. After correcting for this systematic bias caused by shortcomings of the manufacturers calibration procedure, the PET to well-counter ratio increased to 0.832 ± 0.064 (0.668 –0.941), P = 1.1 ⋅ 10{sup −10}. After compensating for truncation of the upper extremities in the MR-based attenuation maps, the ratio further improved to 0.871 ± 0.069 (0.693–0.992), P = 3.9 ⋅ 10{sup −8}. Conclusions: Our results show that the Philips PET/MR underestimates activity concentrations in the bladder by 17%, which is 7 percentage points (pp.) larger than in the previously investigated PET and PET/CT systems. We attribute this increased underestimation to remaining limitations of the MR-based attenuation correction. Our results suggest that only a 2 pp. larger underestimation of activity concentrations compared to PET/CT can be observed if compensation of attenuation truncation of the upper extremities is applied. Thus, quantification accuracy of the Philips Ingenuity-TF PET/MR can be considered acceptable for clinical purposes given the ±10% error margin in the EANM guidelines. The comparison of PET images from the bladder region with urine samples has proven a useful method. It might be interesting for evaluation and comparison of the in vivo quantitative accuracy of PET, PET/CT, and especially PET/MR systems from different manufacturers or in multicenter trials.« less

  3. MR-compatibility assessment of MADPET4: a study of interferences between an SiPM-based PET insert and a 7 T MRI system.

    PubMed

    Omidvari, Negar; Topping, Geoffrey; Cabello, Jorge; Paul, Stephan; Schwaiger, Markus; Ziegler, Sibylle I

    2018-05-01

    Compromises in the design of a positron emission tomography (PET) insert for a magnetic resonance imaging (MRI) system should minimize the deterioration of image quality in both modalities, particularly when simultaneous demanding acquisitions are performed. In this work, the advantages of using individually read-out crystals with high-gain silicon photomultipliers (SiPMs) were studied with a small animal PET insert for a 7 T MRI system, in which the SiPM charge was transferred to outside the MRI scanner using coaxial cables. The interferences between the two systems were studied with three radio-frequency (RF) coil configurations. The effects of PET on the static magnetic field, flip angle distribution, RF noise, and image quality of various MRI sequences (gradient echo, spin echo, and echo planar imaging (EPI) at 1 H frequency, and chemical shift imaging at 13 C frequency) were investigated. The effects of fast-switching gradient fields and RF pulses on PET count rate were studied, while the PET insert and the readout electronics were not shielded. Operating the insert inside a 1 H volume coil, used for RF transmission and reception, limited the MRI to T1-weighted imaging, due to coil detuning and RF attenuation, and resulted in significant PET count loss. Using a surface receive coil allowed all tested MR sequences to be used with the insert, with 45-59% signal-to-noise ratio (SNR) degradation, compared to without PET. With a 1 H/ 13 C volume coil inside the insert and shielded by a copper tube, the SNR degradation was limited to 23-30% with all tested sequences. The insert did not introduce any discernible distortions into images of two tested EPI sequences. Use of truncated sinc shaped RF excitation pulses and gradient field switching had negligible effects on PET count rate. However, PET count rate was substantially affected by high-power RF block pulses and temperature variations due to high gradient duty cycles.

  4. Biological imaging in radiation therapy: role of positron emission tomography.

    PubMed

    Nestle, Ursula; Weber, Wolfgang; Hentschel, Michael; Grosu, Anca-Ligia

    2009-01-07

    In radiation therapy (RT), staging, treatment planning, monitoring and evaluation of response are traditionally based on computed tomography (CT) and magnetic resonance imaging (MRI). These radiological investigations have the significant advantage to show the anatomy with a high resolution, being also called anatomical imaging. In recent years, so called biological imaging methods which visualize metabolic pathways have been developed. These methods offer complementary imaging of various aspects of tumour biology. To date, the most prominent biological imaging system in use is positron emission tomography (PET), whose diagnostic properties have clinically been evaluated for years. The aim of this review is to discuss the valences and implications of PET in RT. We will focus our evaluation on the following topics: the role of biological imaging for tumour tissue detection/delineation of the gross tumour volume (GTV) and for the visualization of heterogeneous tumour biology. We will discuss the role of fluorodeoxyglucose-PET in lung and head and neck cancer and the impact of amino acids (AA)-PET in target volume delineation of brain gliomas. Furthermore, we summarize the data of the literature about tumour hypoxia and proliferation visualized by PET. We conclude that, regarding treatment planning in radiotherapy, PET offers advantages in terms of tumour delineation and the description of biological processes. However, to define the real impact of biological imaging on clinical outcome after radiotherapy, further experimental, clinical and cost/benefit analyses are required.

  5. TOPICAL REVIEW: Biological imaging in radiation therapy: role of positron emission tomography

    NASA Astrophysics Data System (ADS)

    Nestle, Ursula; Weber, Wolfgang; Hentschel, Michael; Grosu, Anca-Ligia

    2009-01-01

    In radiation therapy (RT), staging, treatment planning, monitoring and evaluation of response are traditionally based on computed tomography (CT) and magnetic resonance imaging (MRI). These radiological investigations have the significant advantage to show the anatomy with a high resolution, being also called anatomical imaging. In recent years, so called biological imaging methods which visualize metabolic pathways have been developed. These methods offer complementary imaging of various aspects of tumour biology. To date, the most prominent biological imaging system in use is positron emission tomography (PET), whose diagnostic properties have clinically been evaluated for years. The aim of this review is to discuss the valences and implications of PET in RT. We will focus our evaluation on the following topics: the role of biological imaging for tumour tissue detection/delineation of the gross tumour volume (GTV) and for the visualization of heterogeneous tumour biology. We will discuss the role of fluorodeoxyglucose-PET in lung and head and neck cancer and the impact of amino acids (AA)-PET in target volume delineation of brain gliomas. Furthermore, we summarize the data of the literature about tumour hypoxia and proliferation visualized by PET. We conclude that, regarding treatment planning in radiotherapy, PET offers advantages in terms of tumour delineation and the description of biological processes. However, to define the real impact of biological imaging on clinical outcome after radiotherapy, further experimental, clinical and cost/benefit analyses are required.

  6. The influence of CT based attenuation correction on PET/CT registration: an evaluation study

    NASA Astrophysics Data System (ADS)

    Yaniv, Ziv; Wong, Kenneth H.; Banovac, Filip; Levy, Elliot; Cleary, Kevin

    2007-03-01

    We are currently developing a PET/CT based navigation system for guidance of biopsies and radiofrequency ablation (RFA) of early stage hepatic tumors. For these procedures, combined PET/CT data can potentially improve current interventions. The diagnostic efficacy of biopsies can potentially be improved by accurately targeting the region within the tumor that exhibits the highest metabolic activity. For RFA procedures the system can potentially enable treatment of early stage tumors, targeting tumors before structural abnormalities are clearly visible on CT. In both cases target definition is based on the metabolic data (PET), and navigation is based on the spatial data (CT), making the system highly dependent upon accurate spatial alignment between these data sets. In our institute all clinical data sets include three image volumes: one CT, and two PET volumes, with and without CT-based attenuation correction. This paper studies the effect of the CT-based attenuation correction on the registration process. From comparing the pairs of registrations from five data sets we observe that the point motion magnitude difference between registrations is on the same scale as the point motion magnitude in each one of the registrations, and that visual inspection cannot identify this discrepancy. We conclude that using non-rigid registration to align the PET and CT data sets is too variable, and most likely does not provide sufficient accuracy for interventional procedures.

  7. Reference ranges for LVEF and LV volumes from electrocardiographically gated 82Rb cardiac PET/CT using commercially available software.

    PubMed

    Bravo, Paco E; Chien, David; Javadi, Mehrbod; Merrill, Jennifer; Bengel, Frank M

    2010-06-01

    Electrocardiographic gating is increasingly used for (82)Rb cardiac PET/CT, but reference ranges for global functional parameters are not well defined. We sought to establish reference values for left ventricular ejection fraction (LVEF), end systolic volume (ESV), and end diastolic volume (EDV) using 4 different commercial software packages. Additionally, we compared 2 different approaches for the definition of a healthy individual. Sixty-two subjects (mean age +/- SD, 49 +/- 9 y; 85% women; mean body mass index +/- SD, 34 +/- 10 kg/m(2)) who underwent (82)Rb-gated myocardial perfusion PET/CT were evaluated. All subjects had normal myocardial perfusion and no history of coronary artery disease (CAD) or cardiomyopathy. Subgroup 1 consisted of 34 individuals with low pretest probability of CAD (<10%), and subgroup 2 comprised 28 subjects who had no atherosclerosis on a coronary CT angiogram obtained concurrently during the PET/CT session. LVEF, ESV, and EDV were calculated at rest and during dipyridamole-induced stress, using CardIQ Physio (a dedicated PET software) and the 3 major SPECT software packages (Emory Cardiac Toolbox, Quantitative Gated SPECT, and 4DM-SPECT). Mean LVEF was significantly different among all 4 software packages. LVEF was most comparable between CardIQ Physio (62% +/- 6% and 54% +/- 7% at stress and rest, respectively) and 4DM-SPECT (64% +/- 7% and 56% +/- 8%, respectively), whereas Emory Cardiac Toolbox yielded higher values (71% +/- 6% and 65% +/- 6%, respectively, P < 0.001) and Quantitated Gated SPECT lower values (56% +/- 8% and 50% +/- 8%, respectively, P < 0.001). Subgroup 1 (low likelihood) demonstrated higher LVEF values than did subgroup 2 (normal CT angiography findings), using all software packages (P < 0.05). However, mean ESV and EDV at stress and rest were comparable between both subgroups (p = NS). Intra- and interobserver agreement were excellent for all methods. The reference range of LVEF and LV volumes from gated (82)Rb PET/CT varies significantly among available software programs and therefore cannot be used interchangeably. LVEF results were higher when healthy subjects were defined by a low pretest probability of CAD than by normal CT angiography results.

  8. Properties of concrete modified with waste Low Density Polyethylene and saw dust ash

    NASA Astrophysics Data System (ADS)

    Srimanikandan, P.; Sreenath, S.

    2017-07-01

    The increase in industrialization creates need for disposal of large quantity of by-products. To overcome the difficulty of disposal, these by-products can be used as a replacement for raw material. In this concern, non-conventional industrial wastes such as plastic bags, PET bottles, pulverized waste Low Density Polyethylene (LDPE) and biological waste such as saw-dust ash, coconut coir were used as a replacement in concrete. In this project, saw-dust ash and pulverized waste LDPE were introduced as the partial replacement for cement and fine aggregates respectively. 0%, 5%, 10%, 15% and 20% of sand by volume was replaced with LDPE and 0%, 1%, 3%, 5% and 10% of cement by volume was replaced with saw dust ash. Standard cube, cylinder and prism specimens were cast to assess the compressive strength, split tensile strength and flexural strength of modified concrete after 28 days of curing. Optimum percentage of replacement was found by comparing the test results. The mix with 5% of LDPE and 3% of saw dust ash showed a better result among the other mixes.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, E; Yuan, F; Templeton, A

    Purpose: The ultimate goal of radiotherapy treatment planning is to find a treatment that will yield a high tumor-control-probability(TCP) with an acceptable normal-tissue-complication probability(NTCP). Yet most treatment planning today is not based upon optimization of TCPs and NTCPs, but rather upon meeting physical dose and volume constraints defined by the planner. We design treatment plans that optimize TCP directly and contrast them with the clinical dose-based plans. PET image is incorporated to evaluate gain in TCP for dose escalation. Methods: We build a nonlinear mixed integer programming optimization model that maximizes TCP directly while satisfying the dose requirements on themore » targeted organ and healthy tissues. The solution strategy first fits the TCP function with a piecewise-linear approximation, then solves the problem that maximizes the piecewise linear approximation of TCP, and finally performs a local neighborhood search to improve the TCP value. To gauge the feasibility, characteristics, and potential benefit of PET-image guided dose escalation, initial validation consists of fifteen cervical cancer HDR patient cases. These patients have all received prior 45Gy of external radiation dose. For both escalated strategies, we consider 35Gy PTV-dose, and two variations (37Gy-boost to BTV vs 40Gy-boost) to PET-image-pockets. Results: TCP for standard clinical plans range from 59.4% - 63.6%. TCP for dose-based PET-guided escalated-dose-plan ranges from 63.8%–98.6% for all patients; whereas TCP-optimized plans achieves over 91% for all patients. There is marginal difference in TCP among those with 37Gy-boosted vs 40Gy-boosted. There is no increase in rectum and bladder dose among all plans. Conclusion: Optimizing TCP directly results in highly conformed treatment plans. The TCP-optimized plan is individualized based on the biological PET-image of the patients. The TCP-optimization framework is generalizable and has been applied successfully to other external-beam delivery modalities. A clinical trial is on-going to gauge the clinical significance. Partially supported by the National Science Foundation.« less

  10. [Target volume margins for lung cancer: internal target volume/clinical target volume].

    PubMed

    Jouin, A; Pourel, N

    2013-10-01

    The aim of this study was to carry out a review of margins that should be used for the delineation of target volumes in lung cancer, with a focus on margins from gross tumour volume (GTV) to clinical target volume (CTV) and internal target volume (ITV) delineation. Our review was based on a PubMed literature search with, as a cornerstone, the 2010 European Organisation for Research and Treatment of Cancer (EORTC) recommandations by De Ruysscher et al. The keywords used for the search were: radiotherapy, lung cancer, clinical target volume, internal target volume. The relevant information was categorized under the following headings: gross tumour volume definition (GTV), CTV-GTV margin (first tumoural CTV then nodal CTV definition), in field versus elective nodal irradiation, metabolic imaging role through the input of the PET scanner for tumour target volume and limitations of PET-CT imaging for nodal target volume definition, postoperative radiotherapy target volume definition, delineation of target volumes after induction chemotherapy; then the internal target volume is specified as well as tumoural mobility for lung cancer and respiratory gating techniques. Finally, a chapter is dedicated to planning target volume definition and another to small cell lung cancer. For each heading, the most relevant and recent clinical trials and publications are mentioned. Copyright © 2013. Published by Elsevier SAS.

  11. Imaging and dosimetric errors in 4D PET/CT-guided radiotherapy from patient-specific respiratory patterns: a dynamic motion phantom end-to-end study

    NASA Astrophysics Data System (ADS)

    Bowen, S. R.; Nyflot, M. J.; Herrmann, C.; Groh, C. M.; Meyer, J.; Wollenweber, S. D.; Stearns, C. W.; Kinahan, P. E.; Sandison, G. A.

    2015-05-01

    Effective positron emission tomography / computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [18F]FDG. The lung lesion insert was driven by six different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy were optimized for fixed normal lung and spinal cord objectives and variable PET-based target objectives. Resulting plans were delivered to a cylindrical diode array at rest, in motion on a platform driven by the same respiratory patterns (3D), or motion-compensated by a robotic couch with an infrared camera tracking system (4D). Errors were estimated relative to the static ground truth condition for mean target-to-background (T/Bmean) ratios, target volumes, planned equivalent uniform target doses, and 2%-2 mm gamma delivery passing rates. Relative to motionless ground truth conditions, PET/CT imaging errors were on the order of 10-20%, treatment planning errors were 5-10%, and treatment delivery errors were 5-30% without motion compensation. Errors from residual motion following compensation methods were reduced to 5-10% in PET/CT imaging, <5% in treatment planning, and <2% in treatment delivery. We have demonstrated that estimation of respiratory motion uncertainty and its propagation from PET/CT imaging to RT planning, and RT delivery under a dose painting paradigm is feasible within an integrated respiratory motion phantom workflow. For a limited set of cases, the magnitude of errors was comparable during PET/CT imaging and treatment delivery without motion compensation. Errors were moderately mitigated during PET/CT imaging and significantly mitigated during RT delivery with motion compensation. This dynamic motion phantom end-to-end workflow provides a method for quality assurance of 4D PET/CT-guided radiotherapy, including evaluation of respiratory motion compensation methods during imaging and treatment delivery.

  12. Imaging and dosimetric errors in 4D PET/CT-guided radiotherapy from patient-specific respiratory patterns: a dynamic motion phantom end-to-end study.

    PubMed

    Bowen, S R; Nyflot, M J; Herrmann, C; Groh, C M; Meyer, J; Wollenweber, S D; Stearns, C W; Kinahan, P E; Sandison, G A

    2015-05-07

    Effective positron emission tomography / computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [(18)F]FDG. The lung lesion insert was driven by six different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy were optimized for fixed normal lung and spinal cord objectives and variable PET-based target objectives. Resulting plans were delivered to a cylindrical diode array at rest, in motion on a platform driven by the same respiratory patterns (3D), or motion-compensated by a robotic couch with an infrared camera tracking system (4D). Errors were estimated relative to the static ground truth condition for mean target-to-background (T/Bmean) ratios, target volumes, planned equivalent uniform target doses, and 2%-2 mm gamma delivery passing rates. Relative to motionless ground truth conditions, PET/CT imaging errors were on the order of 10-20%, treatment planning errors were 5-10%, and treatment delivery errors were 5-30% without motion compensation. Errors from residual motion following compensation methods were reduced to 5-10% in PET/CT imaging, <5% in treatment planning, and <2% in treatment delivery. We have demonstrated that estimation of respiratory motion uncertainty and its propagation from PET/CT imaging to RT planning, and RT delivery under a dose painting paradigm is feasible within an integrated respiratory motion phantom workflow. For a limited set of cases, the magnitude of errors was comparable during PET/CT imaging and treatment delivery without motion compensation. Errors were moderately mitigated during PET/CT imaging and significantly mitigated during RT delivery with motion compensation. This dynamic motion phantom end-to-end workflow provides a method for quality assurance of 4D PET/CT-guided radiotherapy, including evaluation of respiratory motion compensation methods during imaging and treatment delivery.

  13. Imaging and dosimetric errors in 4D PET/CT-guided radiotherapy from patient-specific respiratory patterns: a dynamic motion phantom end-to-end study

    PubMed Central

    Bowen, S R; Nyflot, M J; Hermann, C; Groh, C; Meyer, J; Wollenweber, S D; Stearns, C W; Kinahan, P E; Sandison, G A

    2015-01-01

    Effective positron emission tomography/computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [18F]FDG. The lung lesion insert was driven by 6 different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy (VMAT) were optimized for fixed normal lung and spinal cord objectives and variable PET-based target objectives. Resulting plans were delivered to a cylindrical diode array at rest, in motion on a platform driven by the same respiratory patterns (3D), or motion-compensated by a robotic couch with an infrared camera tracking system (4D). Errors were estimated relative to the static ground truth condition for mean target-to-background (T/Bmean) ratios, target volumes, planned equivalent uniform target doses (EUD), and 2%-2mm gamma delivery passing rates. Relative to motionless ground truth conditions, PET/CT imaging errors were on the order of 10–20%, treatment planning errors were 5–10%, and treatment delivery errors were 5–30% without motion compensation. Errors from residual motion following compensation methods were reduced to 5–10% in PET/CT imaging, < 5% in treatment planning, and < 2% in treatment delivery. We have demonstrated that estimation of respiratory motion uncertainty and its propagation from PET/CT imaging to RT planning, and RT delivery under a dose painting paradigm is feasible within an integrated respiratory motion phantom workflow. For a limited set of cases, the magnitude of errors was comparable during PET/CT imaging and treatment delivery without motion compensation. Errors were moderately mitigated during PET/CT imaging and significantly mitigated during RT delivery with motion compensation. This dynamic motion phantom end-to-end workflow provides a method for quality assurance of 4D PET/CT-guided radiotherapy, including evaluation of respiratory motion compensation methods during imaging and treatment delivery. PMID:25884892

  14. Increasing the Accuracy of Volume and ADC Delineation for Heterogeneous Tumor on Diffusion-Weighted MRI: Correlation with PET/CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Nan-Jie; Wong, Chun-Sing, E-mail: drcswong@gmail.com; Chu, Yiu-Ching

    2013-10-01

    Purpose: To improve the accuracy of volume and apparent diffusion coefficient (ADC) measurements in diffusion-weighted magnetic resonance imaging (MRI), we proposed a method based on thresholding both the b0 images and the ADC maps. Methods and Materials: In 21 heterogeneous lesions from patients with metastatic gastrointestinal stromal tumors (GIST), gross lesion were manually contoured, and corresponding volumes and ADCs were denoted as gross tumor volume (GTV) and gross ADC (ADC{sub g}), respectively. Using a k-means clustering algorithm, the probable high-cellularity tumor tissues were selected based on b0 images and ADC maps. ADC and volume of the tissues selected using themore » proposed method were denoted as thresholded ADC (ADC{sub thr}) and high-cellularity tumor volume (HCTV), respectively. The metabolic tumor volume (MTV) in positron emission tomography (PET)/computed tomography (CT) was measured using 40% maximum standard uptake value (SUV{sub max}) as the lower threshold, and corresponding mean SUV (SUV{sub mean}) was also measured. Results: HCTV had excellent concordance with MTV according to Pearson's correlation (r=0.984, P<.001) and linear regression (slope = 1.085, intercept = −4.731). In contrast, GTV overestimated the volume and differed significantly from MTV (P=.005). ADC{sub thr} correlated significantly and strongly with SUV{sub mean} (r=−0.807, P<.001) and SUV{sub max} (r=−0.843, P<.001); both were stronger than those of ADC{sub g}. Conclusions: The proposed lesion-adaptive semiautomatic method can help segment high-cellularity tissues that match hypermetabolic tissues in PET/CT and enables more accurate volume and ADC delineation on diffusion-weighted MR images of GIST.« less

  15. The Influence of Changes in Tumor Hypoxia on Dose-Painting Treatment Plans Based on {sup 18}F-FMISO Positron Emission Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin Zhixiong; Mechalakos, James; Nehmeh, Sadek

    2008-03-15

    Purpose: To evaluate how changes in tumor hypoxia, according to serial fluorine-18-labeled fluoro-misonidazole ({sup 18}F-FMISO) positron emission tomography (PET) imaging, affect the efficacy of intensity-modulated radiotherapy (IMRT) dose painting. Methods and Materials: Seven patients with head and neck cancers were imaged twice with FMISO PET, separated by 3 days, before radiotherapy. Intensity-modulated radiotherapy plans were designed, on the basis of the first FMISO scan, to deliver a boost dose of 14 Gy to the hypoxic volume, in addition to the 70-Gy prescription dose. The same plans were then applied to hypoxic volumes from the second FMISO scan, and the efficacymore » of dose painting evaluated by assessing coverage of the hypoxic volumes using D{sub max}, D{sub min}, D{sub mean}, D{sub 95}, and equivalent uniform dose (EUD). Results: Similar hypoxic volumes were observed in the serial scans for 3 patients but dissimilar ones for the other 4. There was reduced coverage of hypoxic volumes of the second FMISO scan relative to that of the first scan (e.g., the average EUD decreased from 87 Gy to 80 Gy). The decrease was dependent on the similarity of the hypoxic volumes of the two scans (e.g., the average EUD decrease was approximately 4 Gy for patients with similar hypoxic volumes and approximately 12 Gy for patients with dissimilar ones). Conclusions: The changes in spatial distribution of tumor hypoxia, as detected in serial FMISO PET imaging, compromised the coverage of hypoxic tumor volumes achievable by dose-painting IMRT. However, dose painting always increased the EUD of the hypoxic volumes.« less

  16. Evaluation of tumor hypoxia prior to radiotherapy in intermediate-risk prostate cancer using 18F-fluoromisonidazole PET/CT: a pilot study.

    PubMed

    Supiot, Stéphane; Rousseau, Caroline; Dore, Mélanie; Cheze-Le-Rest, Catherine; Kandel-Aznar, Christine; Potiron, Vincent; Guerif, Stéphane; Paris, François; Ferrer, Ludovic; Campion, Loïc; Meingan, Philippe; Delpon, Gregory; Hatt, Mathieu; Visvikis, Dimitris

    2018-02-09

    Hypoxia is a major factor in prostate cancer aggressiveness and radioresistance. Predicting which patients might be bad candidates for radiotherapy may help better personalize treatment decisions in intermediate-risk prostate cancer patients. We assessed spatial distribution of 18 F-Misonidazole (FMISO) PET/CT uptake in the prostate prior to radiotherapy treatment. Intermediate-risk prostate cancer patients about to receive high-dose (>74 Gy) radiotherapy to the prostate without hormonal treatment were prospectively recruited between 9/2012 and 10/2014. Prior to radiotherapy, all patients underwent a FMISO PET/CT as well as a MRI and 18 F-choline-PET. 18 F-choline and FMISO-positive volumes were semi-automatically determined using the fuzzy locally adaptive Bayesian (FLAB) method. In FMISO-positive patients, a dynamic analysis of early tumor uptake was performed. Group differences were assessed using the Wilcoxon signed rank test. Parameters were correlated using Spearman rank correlation. Of 27 patients (median age 76) recruited to the study, 7 and 9 patients were considered positive at 2.5h and 3.5h FMISO PET/CT respectively. Median SUV max and SUV max tumor to muscle (T/M) ratio were respectively 3.4 and 3.6 at 2.5h, and 3.2 and 4.4 at 3.5h. The median FMISO-positive volume was 1.1 ml. This is the first study regarding hypoxia imaging using FMISO in prostate cancer showing that a small FMISO-positive volume was detected in one third of intermediate-risk prostate cancer patients.

  17. A fast rebinning algorithm for 3D positron emission tomography using John's equation

    NASA Astrophysics Data System (ADS)

    Defrise, Michel; Liu, Xuan

    1999-08-01

    Volume imaging in positron emission tomography (PET) requires the inversion of the three-dimensional (3D) x-ray transform. The usual solution to this problem is based on 3D filtered-backprojection (FBP), but is slow. Alternative methods have been proposed which factor the 3D data into independent 2D data sets corresponding to the 2D Radon transforms of a stack of parallel slices. Each slice is then reconstructed using 2D FBP. These so-called rebinning methods are numerically efficient but are approximate. In this paper a new exact rebinning method is derived by exploiting the fact that the 3D x-ray transform of a function is the solution to the second-order partial differential equation first studied by John. The method is proposed for two sampling schemes, one corresponding to a pair of infinite plane detectors and another one corresponding to a cylindrical multi-ring PET scanner. The new FORE-J algorithm has been implemented for this latter geometry and was compared with the approximate Fourier rebinning algorithm FORE and with another exact rebinning algorithm, FOREX. Results with simulated data demonstrate a significant improvement in accuracy compared to FORE, while the reconstruction time is doubled. Compared to FOREX, the FORE-J algorithm is slightly less accurate but more than three times faster.

  18. Dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Hasegawa, Bruce; Tang, H. Roger; Da Silva, Angela J.; Wong, Kenneth H.; Iwata, Koji; Wu, Max C.

    2001-09-01

    In comparison to conventional medical imaging techniques, dual-modality imaging offers the advantage of correlating anatomical information from X-ray computed tomography (CT) with functional measurements from single-photon emission computed tomography (SPECT) or with positron emission tomography (PET). The combined X-ray/radionuclide images from dual-modality imaging can help the clinician to differentiate disease from normal uptake of radiopharmaceuticals, and to improve diagnosis and staging of disease. In addition, phantom and animal studies have demonstrated that a priori structural information from CT can be used to improve quantification of tissue uptake and organ function by correcting the radionuclide data for errors due to photon attenuation, partial volume effects, scatter radiation, and other physical effects. Dual-modality imaging therefore is emerging as a method of improving the visual quality and the quantitative accuracy of radionuclide imaging for diagnosis of patients with cancer and heart disease.

  19. Copper-64-diacetyl-bis(N(4)-methylthiosemicarbazone) Pharmacokinetics in FaDu Xenograft Tumors and Correlation With Microscopic Markers of Hypoxia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCall, Keisha C.; Humm, John L.; Bartlett, Rachel

    Purpose: The behavior of copper-64-diacetyl-bis(N(4)-methylthiosemicarbazone) ({sup 64}Cu-ATSM) in hypoxic tumors was examined through a combination of in vivo dynamic positron emission tomography (PET) and ex vivo autoradiographic and histologic evaluation using a xenograft model of head-and-neck squamous cell carcinoma. Methods and Materials: {sup 64}Cu-ATSM was administered during dynamic PET imaging, and temporal changes in {sup 64}Cu-ATSM distribution within tumors were evaluated for at least 1 hour and up to 18 hours. Animals were sacrificed at either 1 hour (cohort A) or after 18 hours (cohort B) postinjection of radiotracer and autoradiography performed. Ex vivo analysis of microenvironment subregions was conductedmore » by immunohistochemical staining for markers of hypoxia (pimonidazole hydrochloride) and blood flow (Hoechst-33342). Results: Kinetic analysis revealed rapid uptake of radiotracer by tumors. The net influx (K{sub i}) constant was 12-fold that of muscle, whereas the distribution volume (V{sub d}) was 5-fold. PET images showed large tumor-to-muscle ratios, which continually increased over the entire 18-hour course of imaging. However, no spatial changes in {sup 64}Cu-ATSM distribution occurred in PET imaging at 20 minutes postinjection. Microscopic intratumoral distribution of {sup 64}Cu-ATSM and pimonidazole were not correlated at 1 hour or after 18 hours postinjection, nor was {sup 64}Cu-ATSM and Hoechst-33342. Conclusions: The oxygen partial pressures at which {sup 64}Cu-ATSM and pimonidazole are reduced and bound in cells are theorized to be distinct and separable. However, this study demonstrated that microscopic distributions of these tracers within tumors are independent. Researchers have shown {sup 64}Cu-ATSM uptake to be specific to malignant expression, and this work has also demonstrated clear tumor targeting by the radiotracer.« less

  20. Dynamic contrast-enhanced perfusion area-detector CT assessed with various mathematical models: Its capability for therapeutic outcome prediction for non-small cell lung cancer patients with chemoradiotherapy as compared with that of FDG-PET/CT.

    PubMed

    Ohno, Yoshiharu; Fujisawa, Yasuko; Koyama, Hisanobu; Kishida, Yuji; Seki, Shinichiro; Sugihara, Naoki; Yoshikawa, Takeshi

    2017-01-01

    To directly compare the capability of dynamic first-pass contrast-enhanced (CE-) perfusion area-detector CT (ADCT) and PET/CT for early prediction of treatment response, disease progression and overall survival of non-small cell carcinoma (NSCLC) patients treated with chemoradiotherapy. Fifty-three consecutive Stage IIIB NSCLC patients who had undergone PET/CT, dynamic first-pass CE-perfusion ADCT, chemoradiotherapy, and follow-up examination were enrolled in this study. They were divided into two groups: 1) complete or partial response (CR+PR) and 2) stable or progressive disease (SD+PD). Pulmonary arterial and systemic arterial perfusions and total perfusion were assessed at targeted lesions with the dual-input maximum slope method, permeability surface and distribution volume with the Patlak plot method, tumor perfusion with the single-input maximum slope method, and SUV max , and results were averaged to determine final values for each patient. Next, step-wise regression analysis was used to determine which indices were the most useful for predicting therapeutic effect. Finally, overall survival of responders and non-responders assessed by using the indices that had a significant effect on prediction of therapeutic outcome was statistically compared. The step-wise regression test showed that therapeutic effect (r 2 =0.63, p=0.01) was significantly affected by the following three factors in order of magnitude of impact: systemic arterial perfusion, total perfusion, and SUV max . Mean overall survival showed a significant difference for total perfusion (p=0.003) and systemic arterial perfusion (p=0.04). Dynamic first-pass CE-perfusion ADCT as well as PET/CT are useful for treatment response prediction in NSCLC patients treated with chemoradiotherapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fried, D; Meier, J; Mawlawi, O

    Purpose: Use a NEMA-IEC PET phantom to assess the robustness of FDG-PET-based radiomics features to changes in reconstruction parameters across different scanners. Methods: We scanned a NEMA-IEC PET phantom on 3 different scanners (GE Discovery VCT, GE Discovery 710, and Siemens mCT) using a FDG source-to-background ratio of 10:1. Images were retrospectively reconstructed using different iterations (2–3), subsets (21–24), Gaussian filter widths (2, 4, 6mm), and matrix sizes (128,192,256). The 710 and mCT used time-of-flight and point-spread-functions in reconstruction. The axial-image through the center of the 6 active spheres was used for analysis. A region-of-interest containing all spheres was ablemore » to simulate a heterogeneous lesion due to partial volume effects. Maximum voxel deviations from all retrospectively reconstructed images (18 per scanner) was compared to our standard clinical protocol. PET Images from 195 non-small cell lung cancer patients were used to compare feature variation. The ratio of a feature’s standard deviation from the patient cohort versus the phantom images was calculated to assess for feature robustness. Results: Across all images, the percentage of voxels differing by <1SUV and <2SUV ranged from 61–92% and 88–99%, respectively. Voxel-voxel similarity decreased when using higher resolution image matrices (192/256 versus 128) and was comparable across scanners. Taking the ratio of patient and phantom feature standard deviation was able to identify features that were not robust to changes in reconstruction parameters (e.g. co-occurrence correlation). Metrics found to be reasonably robust (standard deviation ratios > 3) were observed for routinely used SUV metrics (e.g. SUVmean and SUVmax) as well as some radiomics features (e.g. co-occurrence contrast, co-occurrence energy, standard deviation, and uniformity). Similar standard deviation ratios were observed across scanners. Conclusions: Our method enabled a comparison of feature variability across scanners and was able to identify features that were not robust to changes in reconstruction parameters.« less

  2. Positron emission tomography imaging approaches for external beam radiation therapies: current status and future developments

    PubMed Central

    Price, P M; Green, M M

    2011-01-01

    In an era in which it is possible to deliver radiation with high precision, there is a heightened need for enhanced imaging capabilities to improve tumour localisation for diagnostic, planning and delivery purposes. This is necessary to increase the accuracy and overall efficacy of all types of external beam radiotherapy (RT), including particle therapies. Positron emission tomography (PET) has the potential to fulfil this need by imaging fundamental aspects of tumour biology. The key areas in which PET may support the RT process include improving disease diagnosis and staging; assisting tumour volume delineation; defining tumour phenotype or biological tumour volume; assessment of treatment response; and in-beam monitoring of radiation dosimetry. The role of PET and its current developmental status in these key areas are overviewed in this review, highlighting the advantages and drawbacks. PMID:21427180

  3. IMPROVED DERIVATION OF INPUT FUNCTION IN DYNAMIC MOUSE [18F]FDG PET USING BLADDER RADIOACTIVITY KINETICS

    PubMed Central

    Wong, Koon-Pong; Zhang, Xiaoli; Huang, Sung-Cheng

    2013-01-01

    Purpose Accurate determination of the plasma input function (IF) is essential for absolute quantification of physiological parameters in positron emission tomography (PET). However, it requires an invasive and tedious procedure of arterial blood sampling that is challenging in mice because of the limited blood volume. In this study, a hybrid modeling approach is proposed to estimate the plasma IF of 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) in mice using accumulated radioactivity in urinary bladder together with a single late-time blood sample measurement. Methods Dynamic PET scans were performed on nine isoflurane-anesthetized male C57BL/6 mice after a bolus injection of [18F]FDG at the lateral caudal vein. During a 60- or 90-min scan, serial blood samples were taken from the femoral artery. Image data were reconstructed using filtered backprojection with CT-based attenuation correction. Total accumulated radioactivity in the urinary bladder was fitted to a renal compartmental model with the last blood sample and a 1-exponential function that described the [18F]FDG clearance in blood. Multiple late-time blood sample estimates were calculated by the blood [18F]FDG clearance equation. A sum of 4-exponentials was assumed for the plasma IF that served as a forcing function to all tissues. The estimated plasma IF was obtained by simultaneously fitting the [18F]FDG model to the time-activity curves (TACs) of liver and muscle and the forcing function to early (0–1 min) left-ventricle data (corrected for delay, dispersion, partial-volume effects and erythrocytes uptake) and the late-time blood estimates. Using only the blood sample acquired at the end of the study to estimate the IF and the use of liver TAC as an alternative IF were also investigated. Results The area under the plasma TACs calculated for all studies using the hybrid approach was not significantly different from that using all blood samples. [18F]FDG uptake constants in brain, myocardium, skeletal muscle and liver computed by the Patlak analysis using estimated and measured plasma TACs were in excellent agreement (slope ~ 1; R2 > 0.938). The IF estimated using only the last blood sample acquired at the end of the study and the use of liver TAC as plasma IF provided less reliable results. Conclusions The estimated plasma IFs obtained with the hybrid model agreed well with those derived from arterial blood sampling. Importantly, the proposed method obviates the need of arterial catheterization, making it possible to perform repeated dynamic [18F]FDG PET studies on the same animal. Liver TAC is unsuitable as an input function for absolute quantification of [18F]FDG PET data. PMID:23322346

  4. Functional Characterization of 5-HT1B Receptor Drugs in Nonhuman Primates Using Simultaneous PET-MR.

    PubMed

    Hansen, Hanne D; Mandeville, Joseph B; Sander, Christin Y; Hooker, Jacob M; Catana, Ciprian; Rosen, Bruce R; Knudsen, Gitte M

    2017-11-01

    In the present study, we used a simultaneous PET-MR experimental design to investigate the effects of functionally different compounds (agonist, partial agonist, and antagonist) on 5-HT 1B receptor (5-HT 1B R) occupancy and the associated hemodynamic responses. In anesthetized male nonhuman primates ( n = 3), we used positron emission tomography (PET) imaging with the radioligand [ 11 C]AZ10419369 administered as a bolus followed by constant infusion to measure changes in 5-HT 1B R occupancy. Simultaneously, we measured changes in cerebral blood volume (CBV) as a proxy of drug effects on neuronal activity. The 5-HT 1B R partial agonist AZ10419369 elicited a dose-dependent biphasic hemodynamic response that was related to the 5-HT 1B R occupancy. The magnitude of the response was spatially overlapping with high cerebral 5-HT 1B R densities. High doses of AZ10419369 exerted an extracranial tissue vasoconstriction that was comparable to the less blood-brain barrier-permeable 5-HT 1B R agonist sumatriptan. By contrast, injection of the antagonist GR127935 did not elicit significant hemodynamic responses, even at a 5-HT 1B R cerebral occupancy similar to the one obtained with a high dose of AZ10419369. Given the knowledge we have of the 5-HT 1B R and its function and distribution in the brain, the hemodynamic response informs us about the functionality of the given drug: changes in CBV are only produced when the receptor is stimulated by the partial agonist AZ10419369 and not by the antagonist GR127935, consistent with low basal occupancy by endogenous serotonin. SIGNIFICANCE STATEMENT We here show that combined simultaneous positron emission tomography and magnetic resonance imaging uniquely enables the assessment of CNS active compounds. We conducted a series of pharmacological interventions to interrogate 5-HT 1B receptor binding and function and determined blood-brain barrier passage of drugs and demonstrate target involvement. Importantly, we show how the spatial and temporal effects on brain hemodynamics provide information about pharmacologically driven downstream CNS drug effects; the brain hemodynamic response shows characteristic dose-related effects that differ depending on agonistic or antagonistic drug characteristics and on local 5-HT 1B receptor density. The technique lends itself to a comprehensive in vivo investigation and understanding of drugs' effects in the brain. Copyright © 2017 the authors 0270-6474/17/3710671-08$15.00/0.

  5. 18F-Fluoromisonidazole positron emission tomography (FMISO-PET) may reflect hypoxia and cell proliferation activity in oral squamous cell carcinoma.

    PubMed

    Sato, Jun; Kitagawa, Yoshimasa; Watanabe, Shiro; Asaka, Takuya; Ohga, Noritaka; Hirata, Kenji; Okamoto, Shozo; Shiga, Tohru; Shindoh, Masanobu; Kuge, Yuji; Tamaki, Nagara

    2017-09-01

    Hypoxia is a common feature and prognostic factor in cancer. 18 F-fluoromisonidazole (FMISO) positron emission tomography (PET) can detect tumor hypoxia noninvasively. The aim of this study was to assess the correlations between FMISO-PET and 18 F-fluorodexyglucose (FDG)-PET parameters with cell proliferation and hypoxia in patients with oral squamous cell carcinoma (OSCC). Twenty-three preoperative patients with OSCC were included. The tumor/muscle ratio (TMR) of FMISO-PET, the maximum standardized uptake values (SUV max ) of FDG-PET, metabolic tumor volume, and total lesion glycolysis were measured. Ki-67 and hypoxia-inducible factor-1α (HIF-1α) expression was immunohistochemically evaluated. FMISO TMR (P = .003) and FDG SUV max (P = .04) were significantly higher in patients with high expression of Ki-67 compared with those with low expression of Ki-67. FMISO TMR (P = .006) and FDG SUV max (P = .01) were also significantly higher in patients with HIF-1α expression than in those without HIF-1α expression. Metabolic tumor volume was not significantly related to either Ki-67 or HIF-1α expression. Multivariate analysis showed that FMISO TMR was independently predictive of Ki-67 (P = .002; odds ratio 31.1) and HIF-1α (P = .049; odds ratio 10.5) expression. FMISO-PET showed significant relationships with Ki-67 and HIF-1α expression, which are key features of cell proliferation and hypoxia in OSCC. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. [11C]choline uptake in regenerating liver after partial hepatectomy or CCl4-administration.

    PubMed

    Sasaki, Toru

    2004-02-01

    To characterize [methyl-(11)C]choline ([(11)C]choline) as an oncologic PET radiopharmaceutical, [(11)C]choline uptake in regenerating livers after partial hepatectomy as a model of typical proliferating tissue and after CCl(4) insult as that of proliferating tissue with inflammation, was studied in rats. [(11)C]Choline, [(18)F]2-fluoro-2-deoxy-D-glucose ([(18)F]FDG) and [2-(14)C]thymidine ([(14)C]TdR) uptake was studied in regenerating rat liver after 70% partial hepatectomy or CCl(4)-administration. [(11)C]Choline uptake in regenerating liver after partial hepatectomy was significantly increased with [(14)C]TdR uptake as a marker of DNA synthesis at 18 hours after surgery. On the other hand, the uptake was not accelerated by CCl(4)-administration, though it significantly increased [(14)C]TdR uptake. There were no differences of [(11)C]choline uptake acceleration following partial hepatectomy among the three parts of the regenerating liver. [(18)F]FDG uptake was accelerated in the regenerating liver on either partial hepatectomy or CCl(4)-administration. The magnitude of the increase in [(18)F]FDG uptake in the regenerating liver induced by partial hepatectomy was greater than that for [(11)C]choline. [(11)C]Choline uptake in the liver was accelerated by partial hepatectomy, but not by CCl(4)-administration. This might be expected given that the differentiation between proliferating tissues such as tumor and inflammatory tissue was possible by [(11)C]choline-PET.

  7. Quantitative Assessment of Heterogeneity in Tumor Metabolism Using FDG-PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vriens, Dennis, E-mail: d.vriens@nucmed.umcn.nl; Disselhorst, Jonathan A.; Oyen, Wim J.G.

    2012-04-01

    Purpose: [{sup 18}F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) images are usually quantitatively analyzed in 'whole-tumor' volumes of interest. Also parameters determined with dynamic PET acquisitions, such as the Patlak glucose metabolic rate (MR{sub glc}) and pharmacokinetic rate constants of two-tissue compartment modeling, are most often derived per lesion. We propose segmentation of tumors to determine tumor heterogeneity, potentially useful for dose-painting in radiotherapy and elucidating mechanisms of FDG uptake. Methods and Materials: In 41 patients with 104 lesions, dynamic FDG-PET was performed. On MR{sub glc} images, tumors were segmented in quartiles of background subtracted maximum MR{sub glc} (0%-25%, 25%-50%, 50%-75%, and 75%-100%).more » Pharmacokinetic analysis was performed using an irreversible two-tissue compartment model in the three segments with highest MR{sub glc} to determine the rate constants of FDG metabolism. Results: From the highest to the lowest quartile, significant decreases of uptake (K{sub 1}), washout (k{sub 2}), and phosphorylation (k{sub 3}) rate constants were seen with significant increases in tissue blood volume fraction (V{sub b}). Conclusions: Tumor regions with highest MR{sub glc} are characterized by high cellular uptake and phosphorylation rate constants with relatively low blood volume fractions. In regions with less metabolic activity, the blood volume fraction increases and cellular uptake, washout, and phosphorylation rate constants decrease. These results support the hypothesis that regional tumor glucose phosphorylation rate is not dependent on the transport of nutrients (i.e., FDG) to the tumor.« less

  8. Prognostic value of 18F-choline PET/CT metabolic parameters in patients with metastatic castration-resistant prostate cancer treated with abiraterone or enzalutamide.

    PubMed

    Caroli, Paola; De Giorgi, Ugo; Scarpi, Emanuela; Fantini, Lorenzo; Moretti, Andrea; Galassi, Riccardo; Celli, Monica; Conteduca, Vincenza; Rossi, Lorena; Bianchi, Emanuela; Paganelli, Giovanni; Matteucci, Federica

    2018-03-01

    The role of 18F-choline positron emission tomography/computed tomography (FCH-PET/CT) in patients with metastatic castration-resistant prostate cancer (mCRPC) has been firmly established in recent years. We analyzed the prognostic value of functional parameters such as mean standardized uptake volume (SUVmean), maximum standardized uptake volume (SUVmax), metabolic total volume (MTV; the volume of interest consisting of all spatially connected voxels within a fixed threshold of 40% of the SUVmax), and total lesion activity (TLA: the product of MTV and mean standardized uptake value) estimated with FCH-PET/CT in mCRPC patients in progression after docetaxel and treated with new antiandrogen receptor therapies, abiraterone or enzalutamide. We retrospectively studied 94 mCRPC patients, mean age 74 years (range 42-90), previously treated with docetaxel who were treated with either abiraterone (n = 52) or enzalutamide (n = 42). An FCH-PET/CT was performed at baseline, and patients were evaluated on a monthly basis for serological PSA response and every 3 months for radiological response. We measured MTV, SUVmean, SUVmax and TLA for each lesion and analyzed the sum of MTV (SMTV), SUVmean (SSUVmean), SUVmax (SSUVmax) and TLA (STLA) values for a maximum of 20 lesions. Univariate analysis was used to correlate these data with PFS and OS. We observed a median SMTV of 130 cm 3 , median SSUVmax of 106.5 and a median STLA of 495,070. All of these parameters were significant for PFS and OS in univariate analysis, while only STLA was significant for PFS and OS in multivariate analysis after adjusting for lesion and age (p < 0.0001 and p = 0.001, respectively). Baseline PSA values maintained a certain reliability for OS (p = 0.034). Semiquantitative parameters of FCH-PET/CT play a prognostic role in mCRCP patients treated with abiraterone or enzalutamide.

  9. Predictive and prognostic value of 18F-DOPA PET/CT in patients affected by recurrent medullary carcinoma of the thyroid.

    PubMed

    Caobelli, Federico; Chiaravalloti, Agostino; Evangelista, Laura; Saladini, Giorgio; Schillaci, Orazio; Vadrucci, Manuela; Scalorbi, Federica; Donner, Davide; Alongi, Pierpaolo

    2018-01-01

    Medullary thyroid carcinoma (MTC) is a malignancy accounting for about 5-8% of thyroid cancers. Serum calcitonin and carcinoembryonic antigen (CEA) levels are widely used to monitor disease progression. However, prognostic factors able to predict outcomes are highly desirable. We, therefore, aimed to assess the prognostic role of 18 F-DOPA PET/CT in patients with recurrent MTC. 60 patients (mean age 64 ± 13 years, range 44-82) with recurrent MTC were eligible from a multicenter database. All patients underwent a restaging 18 F-DOPA PET/CT, performed at least 6 months after surgery. CEA/calcitonin levels, local recurrences, nodal involvement and metastases at PET/CT were recorded. SUVmax, SUVmean (also normalized to mediastinal uptake) and metabolic tumor volume were automatically calculated for each lesion, by placing a volume of interest around the lesion with 40% of peak activity as threshold for the automatic contouring. The patients were clinically and radiologically followed up for 21 ± 11 months. Rate of progression-free survival (PFS), disease-specific survival (DSS) and incremental prognostic value of 18 F-DOPA PET/CT over conventional imaging modalities were assessed by Kaplan-Meier curves and Log-Rank test. Cox regression univariate and multivariate analyses were performed for assessing predictors of prognosis. 18 F-DOPA PET/CT showed abnormal findings in 27 patients (45%) and resulted unremarkable in 33 (55%). PFS was significantly longer in patients with an unremarkable PET/CT scan (p = 0.018). Similarly, an unremarkable PET/CT study was associated with a significantly longer DSS (p = 0.04). 18 F-DOPA PET/CT added prognostic value over other imaging modalities both for PFS and for DSS (p < 0.001 and p = 0.012, respectively). Neither semiquantitative PET parameters nor clinical or laboratory data were predictive of a worse PFS and DSS in patients with recurrent MTC. 18 F-DOPA PET/CT scan has an important prognostic value in predicting disease progression and mortality rate.

  10. Impact of 18F-fluorodeoxyglucose positron emission tomography before and after definitive radiation therapy in patients with apparently solitary plasmacytoma.

    PubMed

    Kim, Paul J; Hicks, Rodney J; Wirth, Andrew; Ryan, Gail; Seymour, John F; Prince, H Miles; Mac Manus, Michael P

    2009-07-01

    To evaluate the impact of (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) on management of patients with apparently isolated plasmacytoma. Twenty-one patients with apparently solitary plasmacytoma who underwent FDG-PET for staging or restaging were identified from a central PET database. They were either candidates for or had received definitive radiation therapy (RT). Seventeen patients had initial staging scans for bone (n = 11) or soft tissue (n = 6) plasmacytomas, and 11 had PET scans after RT. Only 1 of 14 known untreated sites of plasmacytoma was not identified on staging PET (lesion sensitivity = 93%). Three plasmacytomas were excised before PET. Staging PET influenced management in 6 of 17 patients (35%) by showing multiple myeloma (n = 1), discouraging RT after complete resection (n = 1), excluding plasmacytoma at a second site (n = 1), by increasing RT fields (n = 2), or by suggesting sarcoidosis (n = 1). Fifteen of 17 patients with initial staging PET scans received definitive RT. Restaging PET scans after RT showed complete metabolic response in 8 of 11 cases and progressive disease in 2. Two patients with either no response or partial metabolic response had late responses. Staging sestamibi and PET scans were concordant in five of six occasions (one sestamibi scan was false negative). FDG-PET has value for staging and RT planning in plasmacytoma and potentially could have a role in response-assessment after RT. Slow resolution of FDG uptake posttreatment does not necessarily imply an adverse prognosis.

  11. PET motion correction in context of integrated PET/MR: Current techniques, limitations, and future projections.

    PubMed

    Gillman, Ashley; Smith, Jye; Thomas, Paul; Rose, Stephen; Dowson, Nicholas

    2017-12-01

    Patient motion is an important consideration in modern PET image reconstruction. Advances in PET technology mean motion has an increasingly important influence on resulting image quality. Motion-induced artifacts can have adverse effects on clinical outcomes, including missed diagnoses and oversized radiotherapy treatment volumes. This review aims to summarize the wide variety of motion correction techniques available in PET and combined PET/CT and PET/MR, with a focus on the latter. A general framework for the motion correction of PET images is presented, consisting of acquisition, modeling, and correction stages. Methods for measuring, modeling, and correcting motion and associated artifacts, both in literature and commercially available, are presented, and their relative merits are contrasted. Identified limitations of current methods include modeling of aperiodic and/or unpredictable motion, attaining adequate temporal resolution for motion correction in dynamic kinetic modeling acquisitions, and maintaining availability of the MR in PET/MR scans for diagnostic acquisitions. Finally, avenues for future investigation are discussed, with a focus on improvements that could improve PET image quality, and that are practical in the clinical environment. © 2017 American Association of Physicists in Medicine.

  12. Reduced ventilation-perfusion (V/Q) mismatch following endobronchial valve insertion demonstrated by Gallium-68 V/Q photon emission tomography/computed tomography.

    PubMed

    Leong, Paul; Le Roux, Pierre-Yves; Callahan, Jason; Siva, Shankar; Hofman, Michael S; Steinfort, Daniel P

    2017-09-01

    Endobronchial valves (EBVs) are increasingly deployed in the management of severe emphysema. Initial studies focussed on volume reduction as the mechanism, with subsequent improvement in forced expiratory volume in 1 s (FEV 1 ). More recent studies have emphasized importance of perfusion on predicting outcomes, though findings have been inconsistent. Gallium-68 ventilation-perfusion (V/Q) photon emission tomography (PET)/computed tomography (CT) is a novel imaging modality with advantages in spatial resolution, quantitation, and speed over conventional V/Q scintigraphy. We report a pilot case in which V/Q-PET/CT demonstrated discordant findings compared with quantitative CT analysis, and directed left lower lobe EBV placement. The patient experienced a significant improvement in 6-min walk distance (6MWD) without change in spirometry. Post-EBV V/Q-PET/CT demonstrated a marked decrease in unmatched (detrimental) V/Q areas and improvement in overall V/Q matching on post-EBV V/Q-PET/CT. These preliminary novel findings suggest that EBVs improve V/Q matching and may explain the observed functional improvements.

  13. Role of New Functional MRI Techniques in the Diagnosis, Staging, and Followup of Gynecological Cancer: Comparison with PET-CT

    PubMed Central

    Alvarez Moreno, Elena; Jimenez de la Peña, Mar; Cano Alonso, Raquel

    2012-01-01

    Recent developments in diagnostic imaging techniques have magnified the role and potential of both MRI and PET-CT in female pelvic imaging. This article reviews the techniques and clinical applications of new functional MRI (fMRI) including diffusion-weighted MRI (DWI), dynamic contrast-enhanced (DCE)-MRI, comparing with PET-CT. These new emerging provide not only anatomic but also functional imaging, allowing detection of small volumes of active tumor at diagnosis and early disease relapse, which may not result in detectable morphological changes at conventional imaging. This information is useful in distinguishing between recurrent/residual tumor and post-treatment changes and assessing treatment response, with a clear impact on patient management. Both PET-CT and now fMRI have proved to be very valuable tools for evaluation of gynecologic tumors. Most papers try to compare these techniques, but in our experience both are complementary in management of these patients. Meanwhile PET-CT is superior in diagnosis of ganglionar disease; fMRI presents higher accuracy in local preoperative staging. Both techniques can be used as biomarkers of tumor response and present high accuracy in diagnosis of local recurrence and peritoneal dissemination, with complementary roles depending on histological type, anatomic location and tumoral volume. PMID:22315683

  14. Model-free quantification of dynamic PET data using nonparametric deconvolution

    PubMed Central

    Zanderigo, Francesca; Parsey, Ramin V; Todd Ogden, R

    2015-01-01

    Dynamic positron emission tomography (PET) data are usually quantified using compartment models (CMs) or derived graphical approaches. Often, however, CMs either do not properly describe the tracer kinetics, or are not identifiable, leading to nonphysiologic estimates of the tracer binding. The PET data are modeled as the convolution of the metabolite-corrected input function and the tracer impulse response function (IRF) in the tissue. Using nonparametric deconvolution methods, it is possible to obtain model-free estimates of the IRF, from which functionals related to tracer volume of distribution and binding may be computed, but this approach has rarely been applied in PET. Here, we apply nonparametric deconvolution using singular value decomposition to simulated and test–retest clinical PET data with four reversible tracers well characterized by CMs ([11C]CUMI-101, [11C]DASB, [11C]PE2I, and [11C]WAY-100635), and systematically compare reproducibility, reliability, and identifiability of various IRF-derived functionals with that of traditional CMs outcomes. Results show that nonparametric deconvolution, completely free of any model assumptions, allows for estimates of tracer volume of distribution and binding that are very close to the estimates obtained with CMs and, in some cases, show better test–retest performance than CMs outcomes. PMID:25873427

  15. Sex Moderates the Impact of Diagnosis and Amyloid PET Positivity on Hippocampal Subfield Volume.

    PubMed

    Caldwell, Jessica Z K; Berg, Jody-Lynn; Shan, Guogen; Cummings, Jeffrey L; Banks, Sarah J

    2018-01-01

    We examined moderation effects of sex and diagnosis on the effect of positive florbetapir positron emission tomography (PET) amyloid-β (Aβ) scan (A+) on hippocampus subfield volumes in 526 normal control (NC) and early mild cognitive impairment (eMCI) participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI2; ADNI-GO). Regression moderation models showed that women- but not men- with NC designation did not show reduced subiculum volumes despite A+. At the eMCI stage, A+ was detrimental across sexes. Findings were significant while accounting for the effects of age, cognition at screening, education, and APOE4 carrier status. These findings suggest that women with A+ have early neural resistance to Alzheimer's disease-related amyloid burden.

  16. Automated tumour boundary delineation on 18F-FDG PET images using active contour coupled with shifted-optimal thresholding method

    NASA Astrophysics Data System (ADS)

    Khamwan, Kitiwat; Krisanachinda, Anchali; Pluempitiwiriyawej, Charnchai

    2012-10-01

    This study presents an automatic method to trace the boundary of the tumour in positron emission tomography (PET) images. It has been discovered that Otsu's threshold value is biased when the within-class variances between the object and the background are significantly different. To solve the problem, a double-stage threshold search that minimizes the energy between the first Otsu's threshold and the maximum intensity value is introduced. Such shifted-optimal thresholding is embedded into a region-based active contour so that both algorithms are performed consecutively. The efficiency of the method is validated using six sphere inserts (0.52-26.53 cc volume) of the IEC/2001 torso phantom. Both spheres and phantom were filled with 18F solution with four source-to-background ratio (SBR) measurements of PET images. The results illustrate that the tumour volumes segmented by combined algorithm are of higher accuracy than the traditional active contour. The method had been clinically implemented in ten oesophageal cancer patients. The results are evaluated and compared with the manual tracing by an experienced radiation oncologist. The advantage of the algorithm is the reduced erroneous delineation that improves the precision and accuracy of PET tumour contouring. Moreover, the combined method is robust, independent of the SBR threshold-volume curves, and it does not require prior lesion size measurement.

  17. Radiotherapy volume delineation using dynamic [18F]-FDG PET/CT imaging in patients with oropharyngeal cancer: a pilot study.

    PubMed

    Silvoniemi, Antti; Din, Mueez U; Suilamo, Sami; Shepherd, Tony; Minn, Heikki

    2016-11-01

    Delineation of gross tumour volume in 3D is a critical step in the radiotherapy (RT) treatment planning for oropharyngeal cancer (OPC). Static [ 18 F]-FDG PET/CT imaging has been suggested as a method to improve the reproducibility of tumour delineation, but it suffers from low specificity. We undertook this pilot study in which dynamic features in time-activity curves (TACs) of [ 18 F]-FDG PET/CT images were applied to help the discrimination of tumour from inflammation and adjacent normal tissue. Five patients with OPC underwent dynamic [ 18 F]-FDG PET/CT imaging in treatment position. Voxel-by-voxel analysis was performed to evaluate seven dynamic features developed with the knowledge of differences in glucose metabolism in different tissue types and visual inspection of TACs. The Gaussian mixture model and K-means algorithms were used to evaluate the performance of the dynamic features in discriminating tumour voxels compared to the performance of standardized uptake values obtained from static imaging. Some dynamic features showed a trend towards discrimination of different metabolic areas but lack of consistency means that clinical application is not recommended based on these results alone. Impact of inflammatory tissue remains a problem for volume delineation in RT of OPC, but a simple dynamic imaging protocol proved practicable and enabled simple data analysis techniques that show promise for complementing the information in static uptake values.

  18. Automatic extraction of forward stroke volume using dynamic PET/CT: a dual-tracer and dual-scanner validation in patients with heart valve disease.

    PubMed

    Harms, Hendrik Johannes; Tolbod, Lars Poulsen; Hansson, Nils Henrik Stubkjær; Kero, Tanja; Orndahl, Lovisa Holm; Kim, Won Yong; Bjerner, Tomas; Bouchelouche, Kirsten; Wiggers, Henrik; Frøkiær, Jørgen; Sörensen, Jens

    2015-12-01

    The aim of this study was to develop and validate an automated method for extracting forward stroke volume (FSV) using indicator dilution theory directly from dynamic positron emission tomography (PET) studies for two different tracers and scanners. 35 subjects underwent a dynamic (11)C-acetate PET scan on a Siemens Biograph TruePoint-64 PET/CT (scanner I). In addition, 10 subjects underwent both dynamic (15)O-water PET and (11)C-acetate PET scans on a GE Discovery-ST PET/CT (scanner II). The left ventricular (LV)-aortic time-activity curve (TAC) was extracted automatically from PET data using cluster analysis. The first-pass peak was isolated by automatic extrapolation of the downslope of the TAC. FSV was calculated as the injected dose divided by the product of heart rate and the area under the curve of the first-pass peak. Gold standard FSV was measured using phase-contrast cardiovascular magnetic resonance (CMR). FSVPET correlated highly with FSVCMR (r = 0.87, slope = 0.90 for scanner I, r = 0.87, slope = 1.65, and r = 0.85, slope = 1.69 for scanner II for (15)O-water and (11)C-acetate, respectively) although a systematic bias was observed for both scanners (p < 0.001 for all). FSV based on (11)C-acetate and (15)O-water correlated highly (r = 0.99, slope = 1.03) with no significant difference between FSV estimates (p = 0.14). FSV can be obtained automatically using dynamic PET/CT and cluster analysis. Results are almost identical for (11)C-acetate and (15)O-water. A scanner-dependent bias was observed, and a scanner calibration factor is required for multi-scanner studies. Generalization of the method to other tracers and scanners requires further validation.

  19. Verification of the tumor volume delineation method using a fixed threshold of peak standardized uptake value.

    PubMed

    Koyama, Kazuya; Mitsumoto, Takuya; Shiraishi, Takahiro; Tsuda, Keisuke; Nishiyama, Atsushi; Inoue, Kazumasa; Yoshikawa, Kyosan; Hatano, Kazuo; Kubota, Kazuo; Fukushi, Masahiro

    2017-09-01

    We aimed to determine the difference in tumor volume associated with the reconstruction model in positron-emission tomography (PET). To reduce the influence of the reconstruction model, we suggested a method to measure the tumor volume using the relative threshold method with a fixed threshold based on peak standardized uptake value (SUV peak ). The efficacy of our method was verified using 18 F-2-fluoro-2-deoxy-D-glucose PET/computed tomography images of 20 patients with lung cancer. The tumor volume was determined using the relative threshold method with a fixed threshold based on the SUV peak . The PET data were reconstructed using the ordered-subset expectation maximization (OSEM) model, the OSEM + time-of-flight (TOF) model, and the OSEM + TOF + point-spread function (PSF) model. The volume differences associated with the reconstruction algorithm (%VD) were compared. For comparison, the tumor volume was measured using the relative threshold method based on the maximum SUV (SUV max ). For the OSEM and TOF models, the mean %VD values were -0.06 ± 8.07 and -2.04 ± 4.23% for the fixed 40% threshold according to the SUV max and the SUV peak, respectively. The effect of our method in this case seemed to be minor. For the OSEM and PSF models, the mean %VD values were -20.41 ± 14.47 and -13.87 ± 6.59% for the fixed 40% threshold according to the SUV max and SUV peak , respectively. Our new method enabled the measurement of tumor volume with a fixed threshold and reduced the influence of the changes in tumor volume associated with the reconstruction model.

  20. Characterization of age/sex and the regional distribution of mGluR5 availability in the healthy human brain measured by high-resolution [(11)C]ABP688 PET.

    PubMed

    DuBois, Jonathan M; Rousset, Olivier G; Rowley, Jared; Porras-Betancourt, Manuel; Reader, Andrew J; Labbe, Aurelie; Massarweh, Gassan; Soucy, Jean-Paul; Rosa-Neto, Pedro; Kobayashi, Eliane

    2016-01-01

    Metabotropic glutamate receptor type 5 (mGluR5) is a G protein-coupled receptor that has been implicated in several psychiatric and neurological diseases. The radiopharmaceutical [(11)C]ABP688 allows for in vivo quantification of mGluR5 availability using positron emission tomography (PET). In this study, we aimed to detail the regional distribution of [(11)C]ABP688 binding potential (BPND) and the existence of age/sex effects in healthy individuals. Thirty-one healthy individuals aged 20 to 77 years (men, n = 18, 45.3 ± 18.2 years; females, n = 13, 41.5 ± 19.6 years) underwent imaging with [(11)C]ABP688 using the high-resolution research tomograph (HRRT). We developed an advanced partial volume correction (PVC) method using surface-based analysis in order to accurately estimate the regional variation of radioactivity. BPND was calculated using the simplified reference tissue model, with the cerebellum as the reference region. Surface-based and volume-based analyses were performed for 39 cortical and subcortical regions of interest per hemisphere. We found the highest [(11)C]ABP688 BPND in the lateral prefrontal and anterior cingulate cortices. The lowest [(11)C]ABP688 BPND was observed in the pre- and post-central gyri as well as the occipital lobes and the thalami. No sex effect was observed. Associations between age and [(11)C]ABP688 BPND without PVC were observed in the right amygdala and left putamen, but were not significant after multiple comparisons correction. The present results highlight complexities underlying brain adaptations during the aging process, and support the notion that certain aspects of neurotransmission remain stable during the adult life span.

  1. Correlation of intra-tumor 18F-FDG uptake heterogeneity indices with perfusion CT derived parameters in colorectal cancer.

    PubMed

    Tixier, Florent; Groves, Ashley M; Goh, Vicky; Hatt, Mathieu; Ingrand, Pierre; Le Rest, Catherine Cheze; Visvikis, Dimitris

    2014-01-01

    Thirty patients with proven colorectal cancer prospectively underwent integrated 18F-FDG PET/DCE-CT to assess the metabolic-flow phenotype. Both CT blood flow parametric maps and PET images were analyzed. Correlations between PET heterogeneity and perfusion CT were assessed by Spearman's rank correlation analysis. Blood flow visualization provided by DCE-CT images was significantly correlated with 18F-FDG PET metabolically active tumor volume as well as with uptake heterogeneity for patients with stage III/IV tumors (|ρ|:0.66 to 0.78; p-value<0.02). The positive correlation found with tumor blood flow indicates that intra-tumor heterogeneity of 18F-FDG PET accumulation reflects to some extent tracer distribution and consequently indicates that 18F-FDG PET intra-tumor heterogeneity may be associated with physiological processes such as tumor vascularization.

  2. WE-E-17A-02: Predictive Modeling of Outcome Following SABR for NSCLC Based On Radiomics of FDG-PET Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, R; Aguilera, T; Shultz, D

    2014-06-15

    Purpose: This study aims to develop predictive models of patient outcome by extracting advanced imaging features (i.e., Radiomics) from FDG-PET images. Methods: We acquired pre-treatment PET scans for 51 stage I NSCLC patients treated with SABR. We calculated 139 quantitative features from each patient PET image, including 5 morphological features, 8 statistical features, 27 texture features, and 100 features from the intensity-volume histogram. Based on the imaging features, we aim to distinguish between 2 risk groups of patients: those with regional failure or distant metastasis versus those without. We investigated 3 pattern classification algorithms: linear discriminant analysis (LDA), naive Bayesmore » (NB), and logistic regression (LR). To avoid the curse of dimensionality, we performed feature selection by first removing redundant features and then applying sequential forward selection using the wrapper approach. To evaluate the predictive performance, we performed 10-fold cross validation with 1000 random splits of the data and calculated the area under the ROC curve (AUC). Results: Feature selection identified 2 texture features (homogeneity and/or wavelet decompositions) for NB and LR, while for LDA SUVmax and one texture feature (correlation) were identified. All 3 classifiers achieved statistically significant improvements over conventional PET imaging metrics such as tumor volume (AUC = 0.668) and SUVmax (AUC = 0.737). Overall, NB achieved the best predictive performance (AUC = 0.806). This also compares favorably with MTV using the best threshold at an SUV of 11.6 (AUC = 0.746). At a sensitivity of 80%, NB achieved 69% specificity, while SUVmax and tumor volume only had 36% and 47% specificity. Conclusion: Through a systematic analysis of advanced PET imaging features, we are able to build models with improved predictive value over conventional imaging metrics. If validated in a large independent cohort, the proposed techniques could potentially aid in identifying patients who might benefit from adjuvant therapy.« less

  3. SU-F-J-223: Patterns of Failure for Laryngeal Cancer Patients Treated with Definitive IMRT: Comparing Two Different Methods for Determining the Origin of Recurrence From Follow-Up PET/CT Scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodin, P; Guha, C; Tome, W

    Purpose: To determine patterns of failure in laryngeal cancer treated with definitive IMRT by comparing two different methods for identifying the recurrence epicenter on follow-up PET/CT. Methods: We identified 20 patients treated for laryngeal squamous cell carcinoma with definitive IMRT who had loco-regional recurrence diagnosed on PET/CT. Recurrence PET/CT scans were co-registered with the original treatment planning CT using deformable image registration with the VoxAlign deformation engine in MIM Software. Recurrence volumes were delineated on co-registered follow-up scans using a semi-automatic PETedge tool and two separate methods were used to identify the recurrence point of origin: a) Finding the pointmore » within the recurrence volume for which the maximum distance to the surface of the surrounding recurrence volume is smaller than for any other point. b) Finding the point within the recurrence volume with the maximum standardized uptake value (SUVmax), without geometric restrictions.For each method the failure pattern was determined as whether the recurrence origin fell within the original high-dose target volumes GTV70, CTV70, PTV70 (receiving 70Gy), intermediate-risk PTV59 (receiving 59.4Gy) or low-risk PTV54 (receiving 54.1Gy), in the original treatment planning CT. Results: 23 primary/nodal recurrences from the 20 patients were analyzed. The three-dimensional distance between the two different origins was on average 10.5mm (std.dev. 10mm). Most recurrences originated in the high-dose target volumes for both methods with 13 (57%) and 11 (48%) in the GTV70 and 20 (87%) and 20 (87%) in the PTV70 for method a) and b), respectively. There was good agreement between the two methods in classifying the origin target volumes with 69% concordance for GTV70, 89% for CTV70 and 100% for PTV70. Conclusion: With strong agreement in patterns of failure between two separate methods for determining recurrence origin, we conclude that most recurrences occurred within the high-dose treatment region, which influences potential risk-adaptive treatment strategies.« less

  4. A multimodality segmentation framework for automatic target delineation in head and neck radiotherapy.

    PubMed

    Yang, Jinzhong; Beadle, Beth M; Garden, Adam S; Schwartz, David L; Aristophanous, Michalis

    2015-09-01

    To develop an automatic segmentation algorithm integrating imaging information from computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) to delineate target volume in head and neck cancer radiotherapy. Eleven patients with unresectable disease at the tonsil or base of tongue who underwent MRI, CT, and PET/CT within two months before the start of radiotherapy or chemoradiotherapy were recruited for the study. For each patient, PET/CT and T1-weighted contrast MRI scans were first registered to the planning CT using deformable and rigid registration, respectively, to resample the PET and magnetic resonance (MR) images to the planning CT space. A binary mask was manually defined to identify the tumor area. The resampled PET and MR images, the planning CT image, and the binary mask were fed into the automatic segmentation algorithm for target delineation. The algorithm was based on a multichannel Gaussian mixture model and solved using an expectation-maximization algorithm with Markov random fields. To evaluate the algorithm, we compared the multichannel autosegmentation with an autosegmentation method using only PET images. The physician-defined gross tumor volume (GTV) was used as the "ground truth" for quantitative evaluation. The median multichannel segmented GTV of the primary tumor was 15.7 cm(3) (range, 6.6-44.3 cm(3)), while the PET segmented GTV was 10.2 cm(3) (range, 2.8-45.1 cm(3)). The median physician-defined GTV was 22.1 cm(3) (range, 4.2-38.4 cm(3)). The median difference between the multichannel segmented and physician-defined GTVs was -10.7%, not showing a statistically significant difference (p-value = 0.43). However, the median difference between the PET segmented and physician-defined GTVs was -19.2%, showing a statistically significant difference (p-value =0.0037). The median Dice similarity coefficient between the multichannel segmented and physician-defined GTVs was 0.75 (range, 0.55-0.84), and the median sensitivity and positive predictive value between them were 0.76 and 0.81, respectively. The authors developed an automated multimodality segmentation algorithm for tumor volume delineation and validated this algorithm for head and neck cancer radiotherapy. The multichannel segmented GTV agreed well with the physician-defined GTV. The authors expect that their algorithm will improve the accuracy and consistency in target definition for radiotherapy.

  5. Prospective evaluation of [11C]Choline PET/CT in therapy response assessment of standardized docetaxel first-line chemotherapy in patients with advanced castration refractory prostate cancer.

    PubMed

    Schwarzenböck, Sarah M; Eiber, Matthias; Kundt, Günther; Retz, Margitta; Sakretz, Monique; Kurth, Jens; Treiber, Uwe; Nawroth, Roman; Rummeny, Ernst J; Gschwend, Jürgen E; Schwaiger, Markus; Thalgott, Mark; Krause, Bernd J

    2016-11-01

    The aim of this study was to prospectively evaluate the value of [ 11 C] Choline PET/CT in monitoring early and late response to a standardized first-line docetaxel chemotherapy in castration refractory prostate cancer (mCRPC) patients. Thirty-two patients were referred for [ 11 C] Choline PET/CT before the start of docetaxel chemotherapy, after one and ten chemotherapy cycles (or - in case of discontinuation - after the last administered cycle) for therapy response assessment. [ 11 C] Choline uptake (SUV max , SUV mean ), CT derived Houndsfield units (HU max , HU mean ), and volume of bone, lung, and nodal metastases and local recurrence were measured semi-automatically at these timepoints. Change in SUV max , SUV mean , HU max , HU mean, and volume was assessed between PET 2 and 1 (early response assessment, ERA) and PET 3 and 1 (late response assessment, LRA) on a patient and lesion basis. Results of PET/CT were compared to clinically used RECIST 1.1 and clinical criteria based therapy response assessment including PSA for defining progressive disease (PD) and non-progressive disease (nPD), respectively. Relationships between changes of SUV max and SUV mean (early and late) and changes of PSA early and PSA late were evaluated. Prognostic value of initial SUV max and SUV mean was assessed. Statistical analyses were performed using SPSS. In the patient-based ERA and LRA there were no statistically significant differences in change of choline uptake, HU, and volume between PD and nPD applying RECIST or clinical response criteria. In the lesion-based ERA, decrease in choline uptake of bone metastases was even higher in PD (applying RECIST criteria), whereas in LRA the decrease was higher in nPD (applying clinical criteria). There were only significant correlations between change in choline uptake and PSA in ERA in PD, in LRA no significant correlations were discovered. Initial SUV max and SUV mean were statistically significantly higher in nPD (applying clinical criteria). There is no significant correlation between change in choline uptake in [ 11 C] Choline PET/CT and clinically routinely used objective response assessment during the early and late course of docetaxel chemotherapy. Therefore, [ 11 C] Choline PET/CT seems to be of limited use in therapy response assessment in standardized first-line chemotherapy in mCRPC patients.

  6. Technical Note: A new zeolite PET phantom to test segmentation algorithms on heterogeneous activity distributions featured with ground-truth contours.

    PubMed

    Soffientini, Chiara D; De Bernardi, Elisabetta; Casati, Rosangela; Baselli, Giuseppe; Zito, Felicia

    2017-01-01

    Design, realization, scan, and characterization of a phantom for PET Automatic Segmentation (PET-AS) assessment are presented. Radioactive zeolites immersed in a radioactive heterogeneous background simulate realistic wall-less lesions with known irregular shape and known homogeneous or heterogeneous internal activity. Three different zeolite families were evaluated in terms of radioactive uptake homogeneity, necessary to define activity and contour ground truth. Heterogeneous lesions were simulated by the perfect matching of two portions of a broken zeolite, soaked in two different 18 F-FDG radioactive solutions. Heterogeneous backgrounds were obtained with tissue paper balls and sponge pieces immersed into radioactive solutions. Natural clinoptilolite proved to be the most suitable zeolite for the construction of artificial objects mimicking homogeneous and heterogeneous uptakes in 18 F-FDG PET lesions. Heterogeneous backgrounds showed a coefficient of variation equal to 269% and 443% of a uniform radioactive solution. Assembled phantom included eight lesions with volumes ranging from 1.86 to 7.24 ml and lesion to background contrasts ranging from 4.8:1 to 21.7:1. A novel phantom for the evaluation of PET-AS algorithms was developed. It is provided with both reference contours and activity ground truth, and it covers a wide range of volumes and lesion to background contrasts. The dataset is open to the community of PET-AS developers and utilizers. © 2016 American Association of Physicists in Medicine.

  7. Clinical utility of flumazenil-PET versus [18F]fluorodeoxyglucose-PET and MRI in refractory partial epilepsy. A prospective study in 100 patients.

    PubMed

    Ryvlin, P; Bouvard, S; Le Bars, D; De Lamérie, G; Grégoire, M C; Kahane, P; Froment, J C; Mauguière, F

    1998-11-01

    We assessed the clinical utility of [11C]flumazenil-PET (FMZ-PET) prospectively in 100 epileptic patients undergoing a pre-surgical evaluation, and defined the specific contribution of this neuro-imaging technique with respect to those of MRI and [18F]fluorodeoxyglucose-PET (FDG-PET). All patients benefited from a long term video-EEG monitoring, whereas an intracranial EEG investigation was performed in 40 cases. Most of our patients (73%) demonstrated a FMZ-PET abnormality; this hit rate was significantly higher in temporal lobe epilepsy (94%) than in other types of epilepsy (50%) (P < 0.001). Most FMZ-PET findings coexisted with a MRI abnormality (81%), including hippocampal atrophy (35%) and focal hypometabolism on FDG-PET (89%). The area of decreased FMZ binding was often smaller than that of glucose hypometabolism (48%) or larger than that of the MRI abnormality (28%). FMZ-PET did not prove superior to FDG-PET in assessing the extent of the ictal onset zone, as defined by intracranial EEG recordings. However, it provided useful data which were complementary to those of MRI and FDG-PET in three situations: (i) in temporal lobe epilepsy associated with MRI signs of hippocampal sclerosis, FMZ-PET abnormalities delineated the site of seizure onset precisely, whenever they were coextensive with FDG-PET abnormalities; (ii) in bi-temporal epilepsy, FMZ-PET helped to confirm the bilateral origin of seizures by showing a specific pattern of decreased FMZ binding in both temporal lobes in 33% of cases; (iii) in patients with a unilateral cryptogenic frontal lobe epilepsy, FMZ-PET provided further evidence of the side and site of seizure onset in 55% of cases. Thus, FMZ-PET deserves to be included in the pre-surgical evaluation of these specific categories of epileptic patients, representing approximately half of the population considered for epilepsy surgery.

  8. Recommendations of the Spanish Societies of Radiation Oncology (SEOR), Nuclear Medicine & Molecular Imaging (SEMNiM), and Medical Physics (SEFM) on (18)F-FDG PET-CT for radiotherapy treatment planning.

    PubMed

    Caballero Perea, Begoña; Villegas, Antonio Cabrera; Rodríguez, José Miguel Delgado; Velloso, María José García; Vicente, Ana María García; Cabrerizo, Carlos Huerga; López, Rosa Morera; Romasanta, Luis Alberto Pérez; Beltrán, Moisés Sáez

    2012-01-01

    Positron emission tomography (PET) with (18)F-fluorodeoxyglucose (FDG) is a valuable tool for diagnosing and staging malignant lesions. The fusion of PET and computed tomography (CT) yields images that contain both metabolic and morphological information, which, taken together, have improved the diagnostic precision of PET in oncology. The main imaging modality for planning radiotherapy treatment is CT. However, PET-CT is an emerging modality for use in planning treatments because it allows for more accurate treatment volume definition. The use of PET-CT for treatment planning is highly complex, and protocols and standards for its use are still being developed. It seems probable that PET-CT will eventually replace current CT-based planning methods, but this will require a full understanding of the relevant technical aspects of PET-CT planning. The aim of the present document is to review these technical aspects and to provide recommendations for clinical use of this imaging modality in the radiotherapy planning process.

  9. Recommendations of the Spanish Societies of Radiation Oncology (SEOR), Nuclear Medicine & Molecular Imaging (SEMNiM), and Medical Physics (SEFM) on 18F-FDG PET-CT for radiotherapy treatment planning

    PubMed Central

    Caballero Perea, Begoña; Villegas, Antonio Cabrera; Rodríguez, José Miguel Delgado; Velloso, María José García; Vicente, Ana María García; Cabrerizo, Carlos Huerga; López, Rosa Morera; Romasanta, Luis Alberto Pérez; Beltrán, Moisés Sáez

    2012-01-01

    Positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) is a valuable tool for diagnosing and staging malignant lesions. The fusion of PET and computed tomography (CT) yields images that contain both metabolic and morphological information, which, taken together, have improved the diagnostic precision of PET in oncology. The main imaging modality for planning radiotherapy treatment is CT. However, PET-CT is an emerging modality for use in planning treatments because it allows for more accurate treatment volume definition. The use of PET-CT for treatment planning is highly complex, and protocols and standards for its use are still being developed. It seems probable that PET-CT will eventually replace current CT-based planning methods, but this will require a full understanding of the relevant technical aspects of PET-CT planning. The aim of the present document is to review these technical aspects and to provide recommendations for clinical use of this imaging modality in the radiotherapy planning process. PMID:24377032

  10. Multi-modality imaging of tumor phenotype and response to therapy

    NASA Astrophysics Data System (ADS)

    Nyflot, Matthew J.

    2011-12-01

    Imaging and radiation oncology have historically been closely linked. However, the vast majority of techniques used in the clinic involve anatomical imaging. Biological imaging offers the potential for innovation in the areas of cancer diagnosis and staging, radiotherapy target definition, and treatment response assessment. Some relevant imaging techniques are FDG PET (for imaging cellular metabolism), FLT PET (proliferation), CuATSM PET (hypoxia), and contrast-enhanced CT (vasculature and perfusion). Here, a technique for quantitative spatial correlation of tumor phenotype is presented for FDG PET, FLT PET, and CuATSM PET images. Additionally, multimodality imaging of treatment response with FLT PET, CuATSM, and dynamic contrast-enhanced CT is presented, in a trial of patients receiving an antiangiogenic agent (Avastin) combined with cisplatin and radiotherapy. Results are also presented for translational applications in animal models, including quantitative assessment of proliferative response to cetuximab with FLT PET and quantification of vascular volume with a blood-pool contrast agent (Fenestra). These techniques have clear applications to radiobiological research and optimized treatment strategies, and may eventually be used for personalized therapy for patients.

  11. Associations Between PET Textural Features and GLUT1 Expression, and the Prognostic Significance of Textural Features in Lung Adenocarcinoma.

    PubMed

    Koh, Young Wha; Park, Seong Yong; Hyun, Seung Hyup; Lee, Su Jin

    2018-02-01

    We evaluated the association between positron emission tomography (PET) textural features and glucose transporter 1 (GLUT1) expression level and further investigated the prognostic significance of textural features in lung adenocarcinoma. We evaluated 105 adenocarcinoma patients. We extracted texture-based PET parameters of primary tumors. Conventional PET parameters were also measured. The relationships between PET parameters and GLUT1 expression levels were evaluated. The association between PET parameters and overall survival (OS) was assessed using Cox's proportional hazard regression models. In terms of PET textural features, tumors expressing high levels of GLUT1 exhibited significantly lower coarseness, contrast, complexity, and strength, but significantly higher busyness. On univariate analysis, the metabolic tumor volume, total lesion glycolysis, contrast, busyness, complexity, and strength were significant predictors of OS. Multivariate analysis showed that lower complexity (HR=2.017, 95%CI=1.032-3.942, p=0.040) was independently associated with poorer survival. PET textural features may aid risk stratification in lung adenocarcinoma patients. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  12. TU-H-CAMPUS-JeP2-02: Interobserver Variability of CT, PET-CT and MRI Based Primary Tumor Delineation for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karki, K; Hugo, G; Saraiya, S

    Purpose: Target delineation in lung cancer radiotherapy has, in general, large variability. MRI has so far not been investigated in detail for lung cancer delineation variability. The purpose of this study is to investigate delineation variability for lung tumors using MRI and compare it to CT alone and PET-CT based delineations. Methods: Seven physicians delineated the primary tumor volumes of nine patients for the following scenarios: (1) CT only; (2) post-contrast T1-weighted MRI registered with diffusion-weighted MRI; and (3) PET-CT fusion images. To compute interobserver variability, the median surface was generated from all observers’ contours and used as the referencemore » surface. A single physician labeled the interface types (tumor to lung, atelectasis (collapsed lung), hilum, mediastinum, or chest-wall) on the median surface. Volume variation (normalized to PET-CT volume), minimum distance (MD), and bidirectional local distance (BLD) between individual observers’ contours and the reference contour were measured. Results: CT- and MRI-based normalized volumes were 1.61±0.76 (mean±SD) and 1.38±0.44, respectively, both significantly larger than PET-CT (p<0.05, paired t-test). The overall uncertainty (root mean square of SD values over all points) of both BLD and MD measures of the observers for the interfaces were not significantly different (p>0.05, two-samples t-test) for all imaging modalities except between tumor-mediastinum and tumor-atelectasis in PET-CT. The largest mean overall uncertainty was observed for tumor-atelectasis interface, the smallest for tumor-mediastinum and tumor-lung interfaces for all modalities. The whole tumor uncertainties for both BLD and MD were not significantly different between any two modalities (p>0.05, paired t-test). Overall uncertainties for the interfaces using BLD were similar to using MD. Conclusion: Large volume variations were observed between the three imaging modalities. Contouring variability appeared to depend on the interface type. This study will be useful for understanding the delineation uncertainty for radiotherapy planning of lung cancer using different imaging modalities. Disclosures: Research agreement with Phillips Healthcare (GH and EW), National Institutes of Health Licensing agreement with Varian Medical Systems (GH and EW), research grants from the National Institute of Health (GH and EW), UpToDate royalties (EW), and none (others). Authors have no potential conflicts of interest to disclose.« less

  13. Status gelasticus after temporal lobectomy: ictal FDG-PET findings and the question of dual pathology involving hypothalamic hamartomas.

    PubMed

    Palmini, Andre; Van Paesschen, Wim; Dupont, Patrick; Van Laere, Koen; Van Driel, Guido

    2005-08-01

    To present the first ictal fluorodeoxyglucose-positron emission tomography (FDG-PET) evidence of the hypothalamic origin of gelastic seizures in a patient with a hypothalamic hamartoma (HH) and to raise the issue of true dual pathology related to this entity. Ictal FDG-PET was acquired during an episode of status gelasticus with preserved consciousness, in a patient previously operated on for complex partial seizures (CPSs) due to a temporal lobe epileptogenic cyst. Ictal hypermetabolism was localized to the region of the HH during the status gelasticus. CPSs had been completely eliminated after temporal lobe surgery. Ictal FDG-PET independently confirmed that gelastic seizures in patients with HH do originate in the diencephalic lesion. An HH may coexist with another epileptogenic lesion, in a context of dual pathology.

  14. Potential impact of 68Ga-PSMA-11 PET/CT on prostate cancer definitive radiation therapy planning.

    PubMed

    Calais, Jérémie; Kishan, Amar U; Cao, Minsong; Fendler, Wolfgang P; Eiber, Matthias; Herrmann, Ken; Ceci, Francesco; Reiter, Robert E; Rettig, Matthew B; Hegde, John V; Shaverdian, Narek; King, Christopher R; Steinberg, Michael L; Czernin, Johannes; Nickols, Nicholas G

    2018-04-13

    Background: Standard-of-care imaging for initial staging of prostate cancer (PCa) underestimates disease burden. Prostate specific membrane antigen (PSMA) positron emission tomography/ computed tomography (PET/CT) detects PCa metastasis with superior accuracy with potential impact definitive radiation therapy (RT) planning for non-metastatic PCa. Objectives: i) To determine how often definitive PCa RT planning based on standard target volumes cover 68 Ga-PSMA-11 PET/CT defined disease, and ii) To assess the potential impact of 68 Ga-PSMA-11 PET/CT on definitive PCa RT planning. Patients and Methods: This is a post-hoc analysis of an intention to treat population of 73 patients with localized PCa without prior local therapy who underwent 68 Ga-PSMA PET/CT for initial staging as part of an Investigational New Drug trial. 11/73 were intermediate-risk (15%), 33/73 were high-risk (45%), 22/73 were very high risk (30%), and 7/73 were N1 (9.5%). Clinical target volumes (CTVs) that included the prostate, seminal vesicles, and pelvic lymph nodes (LNs) using Radiation Therapy Oncology Group (RTOG) consensus guidelines were contoured on the CT portion of the PET/CT by a radiation oncologist blinded to the PET findings. 68 Ga-PSMA-11 PET/CT images were analyzed by a nuclear medicine physician. PSMA-positive lesions not covered by planning volumes based on the CTVs were considered to have a major potential impact on treatment planning. Results: All patients had PSMA-positive primary prostate lesion(s). 25/73 (34%) and 7/73 (9.5%) had PSMA-positive pelvic nodal and distant metastases, respectively. The sites of nodal metastases in decreasing order of frequency were external iliac (20.5%), common iliac (13.5%), internal iliac (12.5%) obturator (12.5%), perirectal (4%), abdominal (4%), upper-diaphragm (4%), and presacral (1.5%). The median size of the nodal lesions was 6 mm (range 4-24 mm). RT planning based on the CTVs covered 69/73 (94.5%) of primary disease and 20/25 (80%) of pelvic nodal disease, on a per-patient analysis. Conclusion: 68 Ga-PSMA-11 PET/CT had a major impact on intended definitive PCa RT planning in 12/73 of patients (16.5%) when RT fields covered the prostate, seminal vesicles and the pelvic LNs, and in 25/66 of patients (37%) when RT fields covered only the prostate and seminal vesicles (without pelvic LNs). Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  15. Repeatability of FDG PET/CT metrics assessed in free breathing and deep inspiration breath hold in lung cancer patients.

    PubMed

    Nygård, Lotte; Aznar, Marianne C; Fischer, Barbara M; Persson, Gitte F; Christensen, Charlotte B; Andersen, Flemming L; Josipovic, Mirjana; Langer, Seppo W; Kjær, Andreas; Vogelius, Ivan R; Bentzen, Søren M

    2018-01-01

    We measured the repeatability of FDG PET/CT uptake metrics when acquiring scans in free breathing (FB) conditions compared with deep inspiration breath hold (DIBH) for locally advanced lung cancer. Twenty patients were enrolled in this prospective study. Two FDG PET/CT scans per patient were conducted few days apart and in two breathing conditions (FB and DIBH). This resulted in four scans per patient. Up to four FDG PET avid lesions per patient were contoured. The following FDG metrics were measured in all lesions and in all four scans: Standardized uptake value (SUV) peak , SUV max , SUV mean , metabolic tumor volume (MTV) and total lesion glycolysis (TLG), based on an isocontur of 50% of SUV max . FDG PET avid volumes were delineated by a nuclear medicine physician. The gross tumor volumes (GTV) were contoured on the corresponding CT scans. Nineteen patients were available for analysis. Test-retest standard deviations of FDG uptake metrics in FB and DIBH were: SUV peak FB/DIBH: 16.2%/16.5%; SUV max : 18.2%/22.1%; SUV mean : 18.3%/22.1%; TLG: 32.4%/40.5%. DIBH compared to FB resulted in higher values with mean differences in SUV max of 12.6%, SUV peak 4.4% and SUV mean 11.9%. MTV, TLG and GTV were all significantly smaller on day 1 in DIBH compared to FB. However, the differences between metrics under FB and DIBH were in all cases smaller than 1 SD of the day to day repeatability. FDG acquisition in DIBH does not have a clinically relevant impact on the uptake metrics and does not improve the test-retest repeatability of FDG uptake metrics in lung cancer patients.

  16. [11C]Choline PET/CT in therapy response assessment of a neoadjuvant therapy in locally advanced and high risk prostate cancer before radical prostatectomy.

    PubMed

    Schwarzenböck, Sarah M; Knieling, Anna; Souvatzoglou, Michael; Kurth, Jens; Steiger, Katja; Eiber, Matthias; Esposito, Irene; Retz, Margitta; Kübler, Hubert; Gschwend, Jürgen E; Schwaiger, Markus; Krause, Bernd J; Thalgott, Mark

    2016-09-27

    Recent studies have shown promising results of neoadjuvant therapy in prostate cancer (PC). The aim of this study was to evaluate the potential of [11C]Choline PET/CT in therapy response monitoring after combined neoadjuvant docetaxel chemotherapy and complete androgen blockade in locally advanced and high risk PC patients. In [11C]Choline PET/CT there was a significant decrease of SUVmax and SUVmean (p = 0.004, each), prostate volume (p = 0.005) and PSA value (p = 0.003) after combined neoadjuvant therapy. MRI showed a significant prostate and tumor volume reduction (p = 0.003 and 0.005, respectively). Number of apoptotic cells was significantly higher in prostatectomy specimens of the therapy group compared to pretherapeutic biopsies and the control group (p = 0.02 and 0.003, respectively). 11 patients received two [11C]Choline PET/CT and MRI scans before and after combined neoadjuvant therapy followed by radical prostatectomy and pelvic lymph node dissection. [11C]Choline uptake, prostate and tumor volume, PSA value (before/after neoadjuvant therapy) and apoptosis (of pretherapeutic biopsy/posttherapeutic prostatectomy specimens of the therapy group and prostatectomy specimens of a matched control group without neoadjuvant therapy) were assessed and tested for differences and correlation using SPSS. The results showing a decrease in choline uptake after combined neoadjuvant therapy (paralleled by regressive and apoptotic changes in histopathology) confirm the potential of [11C]Choline PET/CT to monitor effects of neoadjuvant therapy in locally advanced and high risk PC patients. Further studies are recommended to evaluate its use during the course of neoadjuvant therapy for early response assessment.

  17. 4D-Listmode-PET-CT and 4D-CT for optimizing PTV margins in gastric lymphoma : Determination of intra- and interfractional gastric motion.

    PubMed

    Reinartz, Gabriele; Haverkamp, Uwe; Wullenkord, Ramona; Lehrich, Philipp; Kriz, Jan; Büther, Florian; Schäfers, Klaus; Schäfers, Michael; Eich, Hans Theodor

    2016-05-01

    New imaging protocols for radiotherapy in localized gastric lymphoma were evaluated to optimize planning target volume (PTV) margin and determine intra-/interfractional variation of the stomach. Imaging of 6 patients was explored prospectively. Intensity-modulated radiotherapy (IMRT) planning was based on 4D/3D imaging of computed tomography (CT) and positron-emission tomography (PET)-CT. Static and motion gross tumor volume (sGTV and mGTV, respectively) were distinguished by defining GTV (empty stomach), clinical target volume (CTV = GTV + 5 mm margin), PTV (GTV + 10/15/20/25 mm margins)  plus paraaortic lymph nodes and proximal duodenum. Overlap of 4D-Listmode-PET-based mCTV with 3D-CT-based PTV (increasing margins) and V95/D95 of mCTV were evaluated. Gastric shifts were determined using online cone-beam CT. Dose contribution to organs at risk was assessed. The 4D data demonstrate considerable intra-/interfractional variation of the stomach, especially along the vertical axis. Conventional 3D-CT planning utilizing advancing PTV margins of 10/15/20/25 mm resulted in rising dose coverage of mCTV (4D-Listmode-PET-Summation-CT) and rising D95 and V95 of mCTV. A PTV margin of 15 mm was adequate in 3 of 6 patients, a PTV margin of 20 mm was adequate in 4 of 6 patients, and a PTV margin of 25 mm was adequate in 5 of 6 patients. IMRT planning based on 4D-PET-CT/4D-CT together with online cone-beam CT is advisable to individualize the PTV margin and optimize target coverage in gastric lymphoma.

  18. A systematic investigation of PET Radionuclide Specific Activity on Miniaturization of Radiochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeanne M Link, PhD

    2012-03-08

    The PET radionuclides, 18F and 11C consist of very high radiation to mass amounts and should be easily adapted to new technologies such as chip chemistry with nanofluidics. However, environmental contamination with nonradioactive fluorine, carbon and other trace contaminants add sufficient mass, micrograms to milligrams, to prevent adapting PET radiochemistry to the nanochip technologies. In addition, the large volumes of material required for beam irradiation make it necessary to also remove the 18F and 11C from their chemical matrices. These steps add contaminants. The work described in this report was a systematic investigation of sources of these contaminants and methodsmore » to reduce these contaminants and the reaction volumes for radiochemical synthesis. Several methods were found to lower the contaminants and matrices to within a factor of 2 to 100 of those needed to fully implement chip technology but further improvements are needed.« less

  19. Multi-atlas attenuation correction supports full quantification of static and dynamic brain PET data in PET-MR

    NASA Astrophysics Data System (ADS)

    Mérida, Inés; Reilhac, Anthonin; Redouté, Jérôme; Heckemann, Rolf A.; Costes, Nicolas; Hammers, Alexander

    2017-04-01

    In simultaneous PET-MR, attenuation maps are not directly available. Essential for absolute radioactivity quantification, they need to be derived from MR or PET data to correct for gamma photon attenuation by the imaged object. We evaluate a multi-atlas attenuation correction method for brain imaging (MaxProb) on static [18F]FDG PET and, for the first time, on dynamic PET, using the serotoninergic tracer [18F]MPPF. A database of 40 MR/CT image pairs (atlases) was used. The MaxProb method synthesises subject-specific pseudo-CTs by registering each atlas to the target subject space. Atlas CT intensities are then fused via label propagation and majority voting. Here, we compared these pseudo-CTs with the real CTs in a leave-one-out design, contrasting the MaxProb approach with a simplified single-atlas method (SingleAtlas). We evaluated the impact of pseudo-CT accuracy on reconstructed PET images, compared to PET data reconstructed with real CT, at the regional and voxel levels for the following: radioactivity images; time-activity curves; and kinetic parameters (non-displaceable binding potential, BPND). On static [18F]FDG, the mean bias for MaxProb ranged between 0 and 1% for 73 out of 84 regions assessed, and exceptionally peaked at 2.5% for only one region. Statistical parametric map analysis of MaxProb-corrected PET data showed significant differences in less than 0.02% of the brain volume, whereas SingleAtlas-corrected data showed significant differences in 20% of the brain volume. On dynamic [18F]MPPF, most regional errors on BPND ranged from -1 to  +3% (maximum bias 5%) for the MaxProb method. With SingleAtlas, errors were larger and had higher variability in most regions. PET quantification bias increased over the duration of the dynamic scan for SingleAtlas, but not for MaxProb. We show that this effect is due to the interaction of the spatial tracer-distribution heterogeneity variation over time with the degree of accuracy of the attenuation maps. This work demonstrates that inaccuracies in attenuation maps can induce bias in dynamic brain PET studies. Multi-atlas attenuation correction with MaxProb enables quantification on hybrid PET-MR scanners, eschewing the need for CT.

  20. Multi-atlas attenuation correction supports full quantification of static and dynamic brain PET data in PET-MR.

    PubMed

    Mérida, Inés; Reilhac, Anthonin; Redouté, Jérôme; Heckemann, Rolf A; Costes, Nicolas; Hammers, Alexander

    2017-04-07

    In simultaneous PET-MR, attenuation maps are not directly available. Essential for absolute radioactivity quantification, they need to be derived from MR or PET data to correct for gamma photon attenuation by the imaged object. We evaluate a multi-atlas attenuation correction method for brain imaging (MaxProb) on static [ 18 F]FDG PET and, for the first time, on dynamic PET, using the serotoninergic tracer [ 18 F]MPPF. A database of 40 MR/CT image pairs (atlases) was used. The MaxProb method synthesises subject-specific pseudo-CTs by registering each atlas to the target subject space. Atlas CT intensities are then fused via label propagation and majority voting. Here, we compared these pseudo-CTs with the real CTs in a leave-one-out design, contrasting the MaxProb approach with a simplified single-atlas method (SingleAtlas). We evaluated the impact of pseudo-CT accuracy on reconstructed PET images, compared to PET data reconstructed with real CT, at the regional and voxel levels for the following: radioactivity images; time-activity curves; and kinetic parameters (non-displaceable binding potential, BP ND ). On static [ 18 F]FDG, the mean bias for MaxProb ranged between 0 and 1% for 73 out of 84 regions assessed, and exceptionally peaked at 2.5% for only one region. Statistical parametric map analysis of MaxProb-corrected PET data showed significant differences in less than 0.02% of the brain volume, whereas SingleAtlas-corrected data showed significant differences in 20% of the brain volume. On dynamic [ 18 F]MPPF, most regional errors on BP ND ranged from -1 to  +3% (maximum bias 5%) for the MaxProb method. With SingleAtlas, errors were larger and had higher variability in most regions. PET quantification bias increased over the duration of the dynamic scan for SingleAtlas, but not for MaxProb. We show that this effect is due to the interaction of the spatial tracer-distribution heterogeneity variation over time with the degree of accuracy of the attenuation maps. This work demonstrates that inaccuracies in attenuation maps can induce bias in dynamic brain PET studies. Multi-atlas attenuation correction with MaxProb enables quantification on hybrid PET-MR scanners, eschewing the need for CT.

  1. Validating and improving CT ventilation imaging by correlating with ventilation 4D-PET/CT using {sup 68}Ga-labeled nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kipritidis, John, E-mail: john.kipritidis@sydney.edu.au; Keall, Paul J.; Siva, Shankar

    Purpose: CT ventilation imaging is a novel functional lung imaging modality based on deformable image registration. The authors present the first validation study of CT ventilation using positron emission tomography with{sup 68}Ga-labeled nanoparticles (PET-Galligas). The authors quantify this agreement for different CT ventilation metrics and PET reconstruction parameters. Methods: PET-Galligas ventilation scans were acquired for 12 lung cancer patients using a four-dimensional (4D) PET/CT scanner. CT ventilation images were then produced by applying B-spline deformable image registration between the respiratory correlated phases of the 4D-CT. The authors test four ventilation metrics, two existing and two modified. The two existing metricsmore » model mechanical ventilation (alveolar air-flow) based on Hounsfield unit (HU) change (V{sub HU}) or Jacobian determinant of deformation (V{sub Jac}). The two modified metrics incorporate a voxel-wise tissue-density scaling (ρV{sub HU} and ρV{sub Jac}) and were hypothesized to better model the physiological ventilation. In order to assess the impact of PET image quality, comparisons were performed using both standard and respiratory-gated PET images with the former exhibiting better signal. Different median filtering kernels (σ{sub m} = 0 or 3 mm) were also applied to all images. As in previous studies, similarity metrics included the Spearman correlation coefficient r within the segmented lung volumes, and Dice coefficient d{sub 20} for the (0 − 20)th functional percentile volumes. Results: The best agreement between CT and PET ventilation was obtained comparing standard PET images to the density-scaled HU metric (ρV{sub HU}) with σ{sub m} = 3 mm. This leads to correlation values in the ranges 0.22 ⩽ r ⩽ 0.76 and 0.38 ⩽ d{sub 20} ⩽ 0.68, with r{sup ¯}=0.42±0.16 and d{sup ¯}{sub 20}=0.52±0.09 averaged over the 12 patients. Compared to Jacobian-based metrics, HU-based metrics lead to statistically significant improvements in r{sup ¯} and d{sup ¯}{sub 20} (p < 0.05), with density scaled metrics also showing higher r{sup ¯} than for unscaled versions (p < 0.02). r{sup ¯} and d{sup ¯}{sub 20} were also sensitive to image quality, with statistically significant improvements using standard (as opposed to gated) PET images and with application of median filtering. Conclusions: The use of modified CT ventilation metrics, in conjunction with PET-Galligas and careful application of image filtering has resulted in improved correlation compared to earlier studies using nuclear medicine ventilation. However, CT ventilation and PET-Galligas do not always provide the same functional information. The authors have demonstrated that the agreement can improve for CT ventilation metrics incorporating a tissue density scaling, and also with increasing PET image quality. CT ventilation imaging has clear potential for imaging regional air volume change in the lung, and further development is warranted.« less

  2. Patient motion effects on the quantification of regional myocardial blood flow with dynamic PET imaging.

    PubMed

    Hunter, Chad R R N; Klein, Ran; Beanlands, Rob S; deKemp, Robert A

    2016-04-01

    Patient motion is a common problem during dynamic positron emission tomography (PET) scans for quantification of myocardial blood flow (MBF). The purpose of this study was to quantify the prevalence of body motion in a clinical setting and evaluate with realistic phantoms the effects of motion on blood flow quantification, including CT attenuation correction (CTAC) artifacts that result from PET-CT misalignment. A cohort of 236 sequential patients was analyzed for patient motion under resting and peak stress conditions by two independent observers. The presence of motion, affected time-frames, and direction of motion was recorded; discrepancy between observers was resolved by consensus review. Based on these results, patient body motion effects on MBF quantification were characterized using the digital NURBS-based cardiac-torso phantom, with characteristic time activity curves (TACs) assigned to the heart wall (myocardium) and blood regions. Simulated projection data were corrected for attenuation and reconstructed using filtered back-projection. All simulations were performed without noise added, and a single CT image was used for attenuation correction and aligned to the early- or late-frame PET images. In the patient cohort, mild motion of 0.5 ± 0.1 cm occurred in 24% and moderate motion of 1.0 ± 0.3 cm occurred in 38% of patients. Motion in the superior/inferior direction accounted for 45% of all detected motion, with 30% in the superior direction. Anterior/posterior motion was predominant (29%) in the posterior direction. Left/right motion occurred in 24% of cases, with similar proportions in the left and right directions. Computer simulation studies indicated that errors in MBF can approach 500% for scans with severe patient motion (up to 2 cm). The largest errors occurred when the heart wall was shifted left toward the adjacent lung region, resulting in a severe undercorrection for attenuation of the heart wall. Simulations also indicated that the magnitude of MBF errors resulting from motion in the superior/inferior and anterior/posterior directions was similar (up to 250%). Body motion effects were more detrimental for higher resolution PET imaging (2 vs 10 mm full-width at half-maximum), and for motion occurring during the mid-to-late time-frames. Motion correction of the reconstructed dynamic image series resulted in significant reduction in MBF errors, but did not account for the residual PET-CTAC misalignment artifacts. MBF bias was reduced further using global partial-volume correction, and using dynamic alignment of the PET projection data to the CT scan for accurate attenuation correction during image reconstruction. Patient body motion can produce MBF estimation errors up to 500%. To reduce these errors, new motion correction algorithms must be effective in identifying motion in the left/right direction, and in the mid-to-late time-frames, since these conditions produce the largest errors in MBF, particularly for high resolution PET imaging. Ideally, motion correction should be done before or during image reconstruction to eliminate PET-CTAC misalignment artifacts.

  3. (11)C-Choline PET/CT as a guide to radiation treatment planning of lymph-node relapses in prostate cancer patients.

    PubMed

    Picchio, M; Berardi, G; Fodor, A; Busnardo, E; Crivellaro, C; Giovacchini, G; Fiorino, C; Kirienko, M; Incerti, E; Messa, C; Gianolli, L; Di Muzio, N

    2014-07-01

    To evaluate, in prostate cancer (PCa) patients the potential of (11)C-choline PET/CT as a guide to helical tomotherapy (HTT) of lymph-node (LN) relapses with simultaneous integrated boost (SIB). The efficacy and feasibility of HTT in terms of acute toxicity were assessed. We enrolled 83 PCa patients (mean age 68 years, range 51 - 82 years) with biochemical recurrence after radical primary treatment (mean serum PSA 7.61 ng/ml, range 0.37 - 187.00 ng/ml; PSA0) who showed pathological findings on (11)C-choline PET/CT only at the LN site. (11)C-Choline PET/CT was performed for restaging and then for radiation treatment planning (PET/CT0). Of the 83 patients, 8 experienced further LN relapse, of whom 5 were retreated once and 3 were retreated twice (total 94 radiotherapy treatments). All pelvic and/or abdominal LNs positive on PET/CT0 were treated with high doses using SIB. Doses were in the range 36 - 74 Gy administered in 28 fractions. After the end of HTT (mean 83 days, range 16 - 365 days), serum PSA was measured in all patients (PSA1) and compared with PSA0 to evaluate early biochemical response. In 47 patients PET/CT was repeated (PET/CT1) to assess metabolic responses at the treated areas. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) were used to assess acute toxicity. PET/CT0 revealed pathological LNs in the pelvis in 49 patients, pathological LNs in the abdomen in 15 patients pathological LNs in both the pelvis and abdomen in 18 patients, and pathological LNs in the pelvis or abdomen and other sites in 12 patients. All these sites were treated with HTT. With respect to PSA0, PSA1 (mean 6.28 ng/ml, range 0.00 - 220.46 ng/ml) showed a complete biochemical response after 66 of the 94 HTT treatments, a partial response after 12 treatments, stable disease after 1 treatment and progression of disease after 15 treatments. Of the 47 patients receiving PET/CT1, 20 showed a complete metabolic response at the treated area, 22 a partial metabolic response, 3 progression of disease and 2 stable disease. HTT with SIB was well tolerated in all patients. Grade 3 acute toxicity in the genitourinary tract was observed in two patients. (11)C-Choline PET/CT is a valuable tool for planning and monitoring HTT in LN relapse after primary treatment. High-dose hypofractionated (11)C-choline PET/CT-guided HTT with SIB is well tolerated and is associated with a high early biochemical response rate.

  4. Influence of Elevated Temperatures on Pet-Concrete Properties

    NASA Astrophysics Data System (ADS)

    Albano, C.; Camacho, N.; Hernández, M.; Matheus, A.; Gutiérrez, A.

    2008-08-01

    Lightweight aggregate is an important material in reducing the unit weight of concrete complying with special concrete structures of large high-rise buildings. Besides, the use of recycled PET bottles as lightweight aggregate in concrete is an effective contribution for environment preservation. So, the objective of the present work was to study experimentally the flexural strength of the PET -concrete blends and the thermal degradation of the PET in the concrete, when the blends with 10 and 20% in volume of PET were exposed to different temperatures (200, 400, 600 °C). The flexural strength of concrete-PET exposed to a heat source is strongly dependent on the temperature, water/cement ratio, as well as the content and particle size of PET. However, the activation energy is affected by the temperature, location of the PET particles on the slabs and the water/cement ratio. Higher water content originates thermal and hydrolytic degradation on the PET, while on the concrete, a higher vapor pressure which causes an increase in crack formation. The values of the activation energy are higher on the center of the slabs than on the surface, since concrete is a poor heat conductor.

  5. MR-compatibility assessment of MADPET4: a study of interferences between an SiPM-based PET insert and a 7 T MRI system

    NASA Astrophysics Data System (ADS)

    Omidvari, Negar; Topping, Geoffrey; Cabello, Jorge; Paul, Stephan; Schwaiger, Markus; Ziegler, Sibylle I.

    2018-05-01

    Compromises in the design of a positron emission tomography (PET) insert for a magnetic resonance imaging (MRI) system should minimize the deterioration of image quality in both modalities, particularly when simultaneous demanding acquisitions are performed. In this work, the advantages of using individually read-out crystals with high-gain silicon photomultipliers (SiPMs) were studied with a small animal PET insert for a 7 T MRI system, in which the SiPM charge was transferred to outside the MRI scanner using coaxial cables. The interferences between the two systems were studied with three radio-frequency (RF) coil configurations. The effects of PET on the static magnetic field, flip angle distribution, RF noise, and image quality of various MRI sequences (gradient echo, spin echo, and echo planar imaging (EPI) at 1H frequency, and chemical shift imaging at 13C frequency) were investigated. The effects of fast-switching gradient fields and RF pulses on PET count rate were studied, while the PET insert and the readout electronics were not shielded. Operating the insert inside a 1H volume coil, used for RF transmission and reception, limited the MRI to T1-weighted imaging, due to coil detuning and RF attenuation, and resulted in significant PET count loss. Using a surface receive coil allowed all tested MR sequences to be used with the insert, with 45–59% signal-to-noise ratio (SNR) degradation, compared to without PET. With a 1H/13C volume coil inside the insert and shielded by a copper tube, the SNR degradation was limited to 23–30% with all tested sequences. The insert did not introduce any discernible distortions into images of two tested EPI sequences. Use of truncated sinc shaped RF excitation pulses and gradient field switching had negligible effects on PET count rate. However, PET count rate was substantially affected by high-power RF block pulses and temperature variations due to high gradient duty cycles.

  6. Tumour functional sphericity from PET images: prognostic value in NSCLC and impact of delineation method.

    PubMed

    Hatt, Mathieu; Laurent, Baptiste; Fayad, Hadi; Jaouen, Vincent; Visvikis, Dimitris; Le Rest, Catherine Cheze

    2018-04-01

    Sphericity has been proposed as a parameter for characterizing PET tumour volumes, with complementary prognostic value with respect to SUV and volume in both head and neck cancer and lung cancer. The objective of the present study was to investigate its dependency on tumour delineation and the resulting impact on its prognostic value. Five segmentation methods were considered: two thresholds (40% and 50% of SUV max ), ant colony optimization, fuzzy locally adaptive Bayesian (FLAB), and gradient-aided region-based active contour. The accuracy of each method in extracting sphericity was evaluated using a dataset of 176 simulated, phantom and clinical PET images of tumours with associated ground truth. The prognostic value of sphericity and its complementary value with respect to volume for each segmentation method was evaluated in a cohort of 87 patients with stage II/III lung cancer. Volume and associated sphericity values were dependent on the segmentation method. The correlation between segmentation accuracy and sphericity error was moderate (|ρ| from 0.24 to 0.57). The accuracy in measuring sphericity was not dependent on volume (|ρ| < 0.4). In the patients with lung cancer, sphericity had prognostic value, although lower than that of volume, except for that derived using FLAB for which when combined with volume showed a small improvement over volume alone (hazard ratio 2.67, compared with 2.5). Substantial differences in patient prognosis stratification were observed depending on the segmentation method used. Tumour functional sphericity was found to be dependent on the segmentation method, although the accuracy in retrieving the true sphericity was not dependent on tumour volume. In addition, even accurate segmentation can lead to an inaccurate sphericity value, and vice versa. Sphericity had similar or lower prognostic value than volume alone in the patients with lung cancer, except when determined using the FLAB method for which there was a small improvement in stratification when the parameters were combined.

  7. Comparison of O-(2-18F-Fluoroethyl)-L-Tyrosine Positron Emission Tomography and Perfusion-Weighted Magnetic Resonance Imaging in the Diagnosis of Patients with Progressive and Recurrent Glioma: A Hybrid Positron Emission Tomography/Magnetic Resonance Study.

    PubMed

    Verger, Antoine; Filss, Christian P; Lohmann, Philipp; Stoffels, Gabriele; Sabel, Michael; Wittsack, Hans-J; Kops, Elena Rota; Galldiks, Norbert; Fink, Gereon R; Shah, Nadim J; Langen, Karl-Josef

    2018-05-01

    To compare the diagnostic performance of O-(2- 18 F-fluoroethyl)-L-tyrosine ( 18 F-FET) positron emission tomography (PET) and perfusion-weighted magnetic resonance imaging (PWI) for the diagnosis of progressive or recurrent glioma. Thirty-two pretreated gliomas (25 progressive or recurrent tumors, 7 treatment-related changes) were investigated with 18 F-FET PET and PWI via a hybrid PET/magnetic resonance scanner. Volumes of interest with a diameter of 16 mm were centered on the maximum of abnormality in the tumor area in PET and PWI maps (relative cerebral blood volume, relative cerebral blood flow, mean transit time) and the contralateral unaffected hemisphere. Mean and maximum tumor-to-brain ratios as well as dynamic data for 18 F-FET uptake were calculated. Diagnostic accuracies were evaluated by receiver operating characteristic analyses, calculating the area under the curve. 18 F-FET PET showed a significant greater sensitivity to detect abnormalities in pretreated gliomas than PWI (76% vs. 52%, P = 0.03). The maximum tumor-to-brain ratio of 18 F-FET PET was the only parameter that discriminated treatment-related changes from progressive or recurrent gliomas (area under the curve, 0.78; P = 0.03, best cut-off 2.61; sensitivity 80%, specificity 86%, accuracy 81%). Among patients with signal abnormality in both modalities, 75% revealed spatially incongruent local hot spots. This pilot study suggests that 18 F-FET PET is superior to PWI to diagnose progressive or recurrent glioma. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Impact of {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography Before and After Definitive Radiation Therapy in Patients With Apparently Solitary Plasmacytoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Paul J.; Hicks, Rodney J.; Wirth, Andrew

    2009-07-01

    Purpose: To evaluate the impact of {sup 18}F-fluorodeoxyglucose positron emission tomography (FDG-PET) on management of patients with apparently isolated plasmacytoma. Methods and Materials: Twenty-one patients with apparently solitary plasmacytoma who underwent FDG-PET for staging or restaging were identified from a central PET database. They were either candidates for or had received definitive radiation therapy (RT). Results: Seventeen patients had initial staging scans for bone (n = 11) or soft tissue (n = 6) plasmacytomas, and 11 had PET scans after RT. Only 1 of 14 known untreated sites of plasmacytoma was not identified on staging PET (lesion sensitivity = 93%).more » Three plasmacytomas were excised before PET. Staging PET influenced management in 6 of 17 patients (35%) by showing multiple myeloma (n = 1), discouraging RT after complete resection (n = 1), excluding plasmacytoma at a second site (n = 1), by increasing RT fields (n = 2), or by suggesting sarcoidosis (n = 1). Fifteen of 17 patients with initial staging PET scans received definitive RT. Restaging PET scans after RT showed complete metabolic response in 8 of 11 cases and progressive disease in 2. Two patients with either no response or partial metabolic response had late responses. Staging sestamibi and PET scans were concordant in five of six occasions (one sestamibi scan was false negative). Conclusions: FDG-PET has value for staging and RT planning in plasmacytoma and potentially could have a role in response-assessment after RT. Slow resolution of FDG uptake posttreatment does not necessarily imply an adverse prognosis.« less

  9. Enhancing ejection fraction measurement through 4D respiratory motion compensation in cardiac PET imaging

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Wang, Xinhui; Gao, Xiangzhen; Segars, W. Paul; Lodge, Martin A.; Rahmim, Arman

    2017-06-01

    ECG gated cardiac PET imaging measures functional parameters such as left ventricle (LV) ejection fraction (EF), providing diagnostic and prognostic information for management of patients with coronary artery disease (CAD). Respiratory motion degrades spatial resolution and affects the accuracy in measuring the LV volumes for EF calculation. The goal of this study is to systematically investigate the effect of respiratory motion correction on the estimation of end-diastolic volume (EDV), end-systolic volume (ESV), and EF, especially on the separation of normal and abnormal EFs. We developed a respiratory motion incorporated 4D PET image reconstruction technique which uses all gated-frame data to acquire a motion-suppressed image. Using the standard XCAT phantom and two individual-specific volunteer XCAT phantoms, we simulated dual-gated myocardial perfusion imaging data for normally and abnormally beating hearts. With and without respiratory motion correction, we measured the EDV, ESV, and EF from the cardiac-gated reconstructed images. For all the phantoms, the estimated volumes increased and the biases significantly reduced with motion correction compared with those without. Furthermore, the improvement of ESV measurement in the abnormally beating heart led to better separation of normal and abnormal EFs. The simulation study demonstrated the significant effect of respiratory motion correction on cardiac imaging data with motion amplitude as small as 0.7 cm. The larger the motion amplitude the more improvement respiratory motion correction brought about on the EF measurement. Using data-driven respiratory gating, we also demonstrated the effect of respiratory motion correction on estimating the above functional parameters from list mode patient data. Respiratory motion correction has been shown to improve the accuracy of EF measurement in clinical cardiac PET imaging.

  10. Comparison of lesion detection and quantitation of tracer uptake between PET from a simultaneously acquiring whole-body PET/MR hybrid scanner and PET from PET/CT.

    PubMed

    Wiesmüller, Marco; Quick, Harald H; Navalpakkam, Bharath; Lell, Michael M; Uder, Michael; Ritt, Philipp; Schmidt, Daniela; Beck, Michael; Kuwert, Torsten; von Gall, Carl C

    2013-01-01

    PET/MR hybrid scanners have recently been introduced, but not yet validated. The aim of this study was to compare the PET components of a PET/CT hybrid system and of a simultaneous whole-body PET/MR hybrid system with regard to reproducibility of lesion detection and quantitation of tracer uptake. A total of 46 patients underwent a whole-body PET/CT scan 1 h after injection and an average of 88 min later a second scan using a hybrid PET/MR system. The radioactive tracers used were (18)F-deoxyglucose (FDG), (18)F-ethylcholine (FEC) and (68)Ga-DOTATATE (Ga-DOTATATE). The PET images from PET/CT (PET(CT)) and from PET/MR (PET(MR)) were analysed for tracer-positive lesions. Regional tracer uptake in these foci was quantified using volumes of interest, and maximal and average standardized uptake values (SUV(max) and SUV(avg), respectively) were calculated. Of the 46 patients, 43 were eligible for comparison and statistical analysis. All lesions except one identified by PET(CT) were identified by PET(MR) (99.2 %). In 38 patients (88.4 %), the same number of foci were identified by PET(CT) and by PET(MR). In four patients, more lesions were identified by PET(MR) than by PET(CT), in one patient PET(CT) revealed an additional focus compared to PET(MR). The mean SUV(max) and SUV(avg) of all lesions determined by PET(MR) were by 21 % and 11 % lower, respectively, than the values determined by PET(CT) (p < 0.05), and a strong correlation between these variables was identified (Spearman rho 0.835; p < 0.01). PET/MR showed equivalent performance in terms of qualitative lesion detection to PET/CT. The differences demonstrated in quantitation of tracer uptake between PET(CT) and PET(MR) were minor, but statistically significant. Nevertheless, a more detailed study of the quantitative accuracy of PET(MR) and the factors governing it is needed to ultimately assess its accuracy in measuring tissue tracer concentrations.

  11. [Clinical target volume delineation for radiotherapy of the esophagus].

    PubMed

    Lazarescu, I; Thureau, S; Nkhali, L; Pradier, O; Dubray, B

    2013-10-01

    The dense lymphatic network of the esophagus facilitates tumour spreading along the cephalo-caudal axis and to locoregional lymph nodes. A better understanding of microscopic invasion by tumour cells, based on histological analysis of surgical specimens and analysis of recurrence sites, has justified a reduction in radiotherapy target volumes. The delineation of the clinical target volume (CTV) depends on tumour characteristics (site, histology) and on its spread as assessed on endoscopic ultrasonography and ((18)F)-fluorodeoxyglucose positron-emission tomography (FDG-PET). We propose that positive and negative predictive values for FDG-PET should be used to adapt the CTV according to the risk of nodal involvement. Copyright © 2013 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  12. Breath-hold [68Ga]DOTA-TOC PET/CT in neuroendocrine tumors: detection of additional lesions and effects on quantitative parameters.

    PubMed

    Zirnsak, Mariana; Bärwolf, Robert; Freesmeyer, Martin

    2016-11-08

    Respiratory motion during PET/CT acquisition generates artifacts in the form of breath-related blurring, which influences the lesion detectability and diagnostic accuracy. The goal of this study was to verify whether breath-hold [68Ga]DOTA-TOC PET/CT (bhPET) allows detection of additional foci compared to free-breathing PET/CT (fbPET), and to assess the impact of breath-holding on standard uptake values (SUV) and isocontoured volume (Vic40) in patients with neuroendocrine tumors (NET). Patients with NET (n=39) were included in this study. BhPET and fbPET characteristics of 96 lesions were compared, and correlated with standard contrast-enhanced (ce) CT and MRI for lesion verification. Quantitative parameters SUV (max and mean) and Vic40 were assessed for both methods and evaluated by linear regression and Spearman's correlation. The impact of lesion size, localization and time interval between investigations was also analyzed. bhPET identified one additional metastasis not seen at fbPET but visible at ceMRI. Another additional bhPET focus did not have a morphological correlate. At bhPET, the SUVmax and SUVmean proved significantly higher and the Vic40 significantly lower than at fbPET. Lesion size, localization and time intervals did not impact significantly on SUV or Vic40. Currently, routine use of breath-hold [68Ga]DOTA-TOC PET/CT cannot be recommended as only one additional lesion was identified. Therefore, bhPET has currently no indication in patients with NET. If technical improvements regarding PET/CT scanner sensitivity are available, bhPET should be reevaluated in the future.

  13. Partial molar volumes of proteins: amino acid side-chain contributions derived from the partial molar volumes of some tripeptides over the temperature range 10-90 degrees C.

    PubMed

    Häckel, M; Hinz, H J; Hedwig, G R

    1999-11-15

    The partial molar volumes of tripeptides of sequence glycyl-X-glycine, where X is one of the amino acids alanine, leucine, threonine, glutamine, phenylalanine, histidine, cysteine, proline, glutamic acid, and arginine, have been determined in aqueous solution over the temperature range 10-90 degrees C using differential scanning densitometry . These data, together with those reported previously, have been used to derive the partial molar volumes of the side-chains of all 20 amino acids. The side-chain volumes are critically compared with literature values derived using partial molar volumes for alternative model compounds. The new amino acid side-chain volumes, along with that for the backbone glycyl group, were used to calculate the partial specific volumes of several proteins in aqueous solution. The results obtained are compared with those observed experimentally. The new side-chain volumes have also been used to re-determine residue volume changes upon protein folding.

  14. Regional Lymph Node Uptake of [{sup 18}F]Fluorodeoxyglucose After Definitive Chemoradiation Therapy Predicts Local-Regional Failure of Locally Advanced Non-Small Cell Lung Cancer: Results of ACRIN 6668/RTOG 0235

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markovina, Stephanie; Duan, Fenghai; Snyder, Bradley S.

    2015-11-01

    Purpose: The American College of Radiology Imaging Network (ACRIN) 6668/Radiation Therapy Oncology Group (RTOG) 0235 study demonstrated that standardized uptake values (SUV) on post-treatment [{sup 18}F]fluorodeoxyglucose-positron emission tomography (FDG-PET) correlated with survival in locally advanced non-small cell lung cancer (NSCLC). This secondary analysis determined whether SUV of regional lymph nodes (RLNs) on post-treatment FDG-PET correlated with patient outcomes. Methods and Materials: Included for analysis were patients treated with concurrent chemoradiation therapy, using radiation doses ≥60 Gy, with identifiable FDG-avid RLNs (distinct from primary tumor) on pretreatment FDG-PET, and post-treatment FDG-PET data. ACRIN core laboratory SUV measurements were used. Event time was calculatedmore » from the date of post-treatment FDG-PET. Local-regional failure was defined as failure within the treated RT volume and reported by the treating institution. Statistical analyses included Wilcoxon signed rank test, Kaplan-Meier curves (log rank test), and Cox proportional hazards regression modeling. Results: Of 234 trial-eligible patients, 139 (59%) had uptake in both primary tumor and RLNs on pretreatment FDG-PET and had SUV data from post-treatment FDG-PET. Maximum SUV was greater for primary tumor than for RLNs before treatment (P<.001) but not different post-treatment (P=.320). Post-treatment SUV of RLNs was not associated with overall survival. However, elevated post-treatment SUV of RLNs, both the absolute value and the percentage of residual activity compared to the pretreatment SUV were associated with inferior local-regional control (P<.001). Conclusions: High residual metabolic activity in RLNs on post-treatment FDG-PET is associated with worse local-regional control. Based on these data, future trials evaluating a radiation therapy boost should consider inclusion of both primary tumor and FDG-avid RLNs in the boost volume to maximize local-regional control.« less

  15. In vivo PET/CT in a human glioblastoma chicken chorioallantoic membrane model: a new tool for oncology and radiotracer development.

    PubMed

    Warnock, Geoff; Turtoi, Andrei; Blomme, Arnaud; Bretin, Florian; Bahri, Mohamed Ali; Lemaire, Christian; Libert, Lionel Cyrille; Seret, Alain E J J; Luxen, André; Castronovo, Vincenzo; Plenevaux, Alain R E G

    2013-10-01

    For many years the laboratory mouse has been used as the standard model for in vivo oncology research, particularly in the development of novel PET tracers, but the growth of tumors on chicken chorioallantoic membrane (CAM) provides a more rapid, low cost, and ethically sustainable alternative. For the first time, to our knowledge, we demonstrate the feasibility of in vivo PET and CT imaging in a U87 glioblastoma tumor model on chicken CAM, with the aim of applying this model for screening of novel PET tracers. U87 glioblastoma cells were implanted on the CAM at day 11 after fertilization and imaged at day 18. A small-animal imaging cell was used to maintain incubation and allow anesthesia using isoflurane. Radiotracers were injected directly into the exposed CAM vasculature. Sodium (18)F-fluoride was used to validate the imaging protocol, demonstrating that image-degrading motion can be removed with anesthesia. Tumor glucose metabolism was imaged using (18)F-FDG, and tumor protein synthesis was imaged using 2-(18)F-fluoro-l-tyrosine. Anatomic images were obtained by contrast-enhanced CT, facilitating clear delineation of the tumor, delineation of tracer uptake in tumor versus embryo, and accurate volume measurements. PET imaging of tumor glucose metabolism and protein synthesis was successfully demonstrated in the CAM U87 glioblastoma model. Catheterization of CAM blood vessels facilitated dynamic imaging of glucose metabolism with (18)F-FDG and demonstrated the ability to study PET tracer uptake over time in individual tumors, and CT imaging improved the accuracy of tumor volume measurements. We describe the novel application of PET/CT in the CAM tumor model, with optimization of typical imaging protocols. PET imaging in this valuable tumor model could prove particularly useful for rapid, high-throughput screening of novel radiotracers.

  16. Multiparametric [18F]Fluorodeoxyglucose/ [18F]Fluoromisonidazole Positron Emission Tomography/ Magnetic Resonance Imaging of Locally Advanced Cervical Cancer for the Non-Invasive Detection of Tumor Heterogeneity: A Pilot Study

    PubMed Central

    Andrzejewski, Piotr; Baltzer, Pascal; Polanec, Stephan H.; Sturdza, Alina; Georg, Dietmar; Helbich, Thomas H.; Karanikas, Georgios; Grimm, Christoph; Polterauer, Stephan; Poetter, Richard; Wadsak, Wolfgang; Mitterhauser, Markus; Georg, Petra

    2016-01-01

    Objectives To investigate fused multiparametric positron emission tomography/magnetic resonance imaging (MP PET/MRI) at 3T in patients with locally advanced cervical cancer, using high-resolution T2-weighted, contrast-enhanced MRI (CE-MRI), diffusion-weighted imaging (DWI), and the radiotracers [18F]fluorodeoxyglucose ([18F]FDG) and [18F]fluoromisonidazol ([18F]FMISO) for the non-invasive detection of tumor heterogeneity for an improved planning of chemo-radiation therapy (CRT). Materials and Methods Sixteen patients with locally advanced cervix were enrolled in this IRB approved and were examined with fused MP [18F]FDG/ [18F]FMISO PET/MRI and in eleven patients complete data sets were acquired. MP PET/MRI was assessed for tumor volume, enhancement (EH)-kinetics, diffusivity, and [18F]FDG/ [18F]FMISO-avidity. Descriptive statistics and voxel-by-voxel analysis of MRI and PET parameters were performed. Correlations were assessed using multiple correlation analysis. Results All tumors displayed imaging parameters concordant with cervix cancer, i.e. type II/III EH-kinetics, restricted diffusivity (median ADC 0.80x10-3mm2/sec), [18F]FDG- (median SUVmax16.2) and [18F]FMISO-avidity (median SUVmax3.1). In all patients, [18F]FMISO PET identified the hypoxic tumor subvolume, which was independent of tumor volume. A voxel-by-voxel analysis revealed only weak correlations between the MRI and PET parameters (0.05–0.22), indicating that each individual parameter yields independent information and the presence of tumor heterogeneity. Conclusion MP [18F]FDG/ [18F]FMISO PET/MRI in patients with cervical cancer facilitates the acquisition of independent predictive and prognostic imaging parameters. MP [18F]FDG/ [18F]FMISO PET/MRI enables insights into tumor biology on multiple levels and provides information on tumor heterogeneity, which has the potential to improve the planning of CRT. PMID:27167829

  17. Quantifying the robustness of [18F]FDG-PET/CT radiomic features with respect to tumor delineation in head and neck and pancreatic cancer patients.

    PubMed

    Belli, Maria Luisa; Mori, Martina; Broggi, Sara; Cattaneo, Giovanni Mauro; Bettinardi, Valentino; Dell'Oca, Italo; Fallanca, Federico; Passoni, Paolo; Vanoli, Emilia Giovanna; Calandrino, Riccardo; Di Muzio, Nadia; Picchio, Maria; Fiorino, Claudio

    2018-05-01

    To investigate the robustness of PET radiomic features (RF) against tumour delineation uncertainty in two clinically relevant situations. Twenty-five head-and-neck (HN) and 25 pancreatic cancer patients previously treated with 18 F-Fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT)-based planning optimization were considered. Seven FDG-based contours were delineated for tumour (T) and positive lymph nodes (N, for HN patients only) following manual (2 observers), semi-automatic (based on SUV maximum gradient: PET_Edge) and automatic (40%, 50%, 60%, 70% SUV_max thresholds) methods. Seventy-three RF (14 of first order and 59 of higher order) were extracted using the CGITA software (v.1.4). The impact of delineation on volume agreement and RF was assessed by DICE and Intra-class Correlation Coefficients (ICC). A large disagreement between manual and SUV_max method was found for thresholds  ≥50%. Inter-observer variability showed median DICE values between 0.81 (HN-T) and 0.73 (pancreas). Volumes defined by PET_Edge were better consistent with the manual ones compared to SUV40%. Regarding RF, 19%/19%/47% of the features showed ICC < 0.80 between observers for HN-N/HN-T/pancreas, mostly in the Voxel-alignment matrix and in the intensity-size zone matrix families. RFs with ICC < 0.80 against manual delineation (taking the worst value) increased to 44%/36%/61% for PET_Edge and to 69%/53%/75% for SUV40%. About 80%/50% of 72 RF were consistent between observers for HN/pancreas patients. PET_edge was sufficiently robust against manual delineation while SUV40% showed a worse performance. This result suggests the possibility to replace manual with semi-automatic delineation of HN and pancreas tumours in studies including PET radiomic analyses. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. Prognosis Related to Metastatic Burden Measured by 18F-Fluorocholine PET/CT in Castrate Resistant Prostate Cancer

    PubMed Central

    Kwee, Sandi A.; Lim, John; Watanabe, Alex; Kromer-Baker, Kathleen; Coel, Marc N.

    2015-01-01

    This study investigates the prognostic significance of metabolically active tumor volume (MATV) measurements applied to fluorine-18 fluorocholine (FC) PET/CT in castrate-resistant prostate cancer (CRPC). Methods FC PET/CT imaging was performed in 30 patients with CRPC. Metastatic disease was quantified on the basis of maximum standardized uptake value (SUVmax), MATV, and total lesion activity (TLA = MATV × mean SUV). Tumor burden indices derived from whole-body summation of PET tumor volume measurements (ie. net MATV and net TLA) were evaluated as variables in Cox regression and Kaplan-Meier survival analyses. Results Net MATV ranged from 0.12 cm3 to 1543.9 cm3 (median 52.6 cm3). Net TLA ranged from 0.40g to 6688.7g (median 225.1g). PSA level at the time of PET correlated significantly with net MATV (Pearson r = 0.65, p = 0.0001) and net TLA (r = 0.60, p = 0.0005) but not highest lesional SUVmax of each scan. Survivors were followed for a median 23 months (range 6 – 38 months). On Cox regression analyses, overall survival was significantly associated with net MATV (p = 0.0068), net TLA (p = 0.0072), and highest lesion SUVmax (p = 0.0173), and borderline associated with PSA level (p = 0.0458). Only net MATV and net TLA remained significant in univariate-adjusted survival analyses. Kaplan-Meier analysis demonstrated significant differences in survival between groups stratified by median net MATV (log-rank P = 0.0371), net TLA (log-rank P = 0.0371), and highest lesion SUVmax (log-rank P = 0.0223). Conclusions Metastatic prostate cancer detected by FC PET/CT can be quantified based on volumetric measurements of tumor metabolic activity. The prognostic value of FC PET/CT may stem from this capacity to assess whole-body tumor burden. With further clinical validation, FC PET-based indices of global disease activity and mortality risk could prove useful in patient-individualized treatment of CRPC. PMID:24676753

  19. Multiparametric [18F]Fluorodeoxyglucose/ [18F]Fluoromisonidazole Positron Emission Tomography/ Magnetic Resonance Imaging of Locally Advanced Cervical Cancer for the Non-Invasive Detection of Tumor Heterogeneity: A Pilot Study.

    PubMed

    Pinker, Katja; Andrzejewski, Piotr; Baltzer, Pascal; Polanec, Stephan H; Sturdza, Alina; Georg, Dietmar; Helbich, Thomas H; Karanikas, Georgios; Grimm, Christoph; Polterauer, Stephan; Poetter, Richard; Wadsak, Wolfgang; Mitterhauser, Markus; Georg, Petra

    2016-01-01

    To investigate fused multiparametric positron emission tomography/magnetic resonance imaging (MP PET/MRI) at 3T in patients with locally advanced cervical cancer, using high-resolution T2-weighted, contrast-enhanced MRI (CE-MRI), diffusion-weighted imaging (DWI), and the radiotracers [18F]fluorodeoxyglucose ([18F]FDG) and [18F]fluoromisonidazol ([18F]FMISO) for the non-invasive detection of tumor heterogeneity for an improved planning of chemo-radiation therapy (CRT). Sixteen patients with locally advanced cervix were enrolled in this IRB approved and were examined with fused MP [18F]FDG/ [18F]FMISO PET/MRI and in eleven patients complete data sets were acquired. MP PET/MRI was assessed for tumor volume, enhancement (EH)-kinetics, diffusivity, and [18F]FDG/ [18F]FMISO-avidity. Descriptive statistics and voxel-by-voxel analysis of MRI and PET parameters were performed. Correlations were assessed using multiple correlation analysis. All tumors displayed imaging parameters concordant with cervix cancer, i.e. type II/III EH-kinetics, restricted diffusivity (median ADC 0.80x10-3mm2/sec), [18F]FDG- (median SUVmax16.2) and [18F]FMISO-avidity (median SUVmax3.1). In all patients, [18F]FMISO PET identified the hypoxic tumor subvolume, which was independent of tumor volume. A voxel-by-voxel analysis revealed only weak correlations between the MRI and PET parameters (0.05-0.22), indicating that each individual parameter yields independent information and the presence of tumor heterogeneity. MP [18F]FDG/ [18F]FMISO PET/MRI in patients with cervical cancer facilitates the acquisition of independent predictive and prognostic imaging parameters. MP [18F]FDG/ [18F]FMISO PET/MRI enables insights into tumor biology on multiple levels and provides information on tumor heterogeneity, which has the potential to improve the planning of CRT.

  20. Quantitative assessment of the hepatic metabolic volume product in patients with diffuse hepatic steatosis and normal controls through use of FDG-PET and MR imaging: a novel concept.

    PubMed

    Bural, Gonca G; Torigian, Drew A; Burke, Anne; Houseni, Mohamed; Alkhawaldeh, Khaled; Cucchiara, Andrew; Basu, Sandip; Alavi, Abass

    2010-06-01

    The aim of this study was to compare hepatic standardized uptake values (SUVs) and hepatic metabolic volumetric products (HMVP) between patients of diffuse hepatic steatosis and control subjects with normal livers. Twenty-seven subjects were included in the study (13 men and 14 women; age range, 34-72 years). All had 18F-2-fluoro-2-D-deoxyglucose-positron emission tomography (FDG-PET) and magnetic resonance imaging (MRI) scans with an interscan interval of 0-5 months. Twelve of 27 subjects had diffuse hepatic steatosis on MRI. The remaining 15 were selected as age-matched controls based on normal liver parenchyma on MRI. Mean and maximum hepatic SUVs were calculated for both patient groups on FDG-PET images. Hepatic volumes were measured from MRI. HMVP in each subject was subsequently calculated by multiplication of hepatic volume by mean hepatic SUV. HMVPs as well as mean and maximum hepatic SUVs were compared between the two study groups. HMVPs, mean hepatic SUVs, and maximum hepatic SUVs were greater (statistically significant, p < 0.05) in subjects with diffuse hepatic steatosis compared to those in the control group. The increase in HMVP is the result of increased hepatic metabolic activity likely related to the diffuse hepatic steatosis. The active inflammatory process related to the diffuse hepatic steatosis is the probable explanation for the increase in hepatic metabolic activity on FDG-PET study.

  1. Metabolic monitoring of advanced uterine cervical cancer neoadjuvant chemotherapy by using [F-18]-Fluorodeoxyglucose positron emission tomography: preliminary results in three patients.

    PubMed

    Yoshida, Yoshio; Kurokawa, Tetsuji; Kawahara, Kazumi; Yagihara, Akira; Tsuchida, Tatsuro; Okazawa, Hidehiko; Fujibayashi, Yasuhisa; Yonekura, Yoshiharu; Kotsuji, Fumikazu

    2004-12-01

    The aim of this report is to describe the potential clinical utility of tracer [F-18]-Fluorodeoxyglucose (FDG) uptake, quantitated as a standardized uptake value (SUV) by positron emission tomography (PET), to evaluate treatment response to neoadjuvant chemotherapy (NAC) in advanced uterine cervical cancer. We briefly describe the clinical courses of three women with advanced cervical cancer who were treated with neoadjuvant chemotherapy (NAC) prior to radical hysterectomy and who were analyzed for correlation with the decrease in tumor volume by magnetic resonance imaging (MRI), in SUV by FDG-PET, and by histologic response. In these individuals, tumor volume and SUV were decreased by NAC. The decrease in SUV by FDG-PET was better correlated to histologic response for NAC than MRI was in advanced cervical cancer. Measurement of SUV by FDG-PET has clinical utility in evaluating treatment response for NAC in advanced cervical cancer. Although work in this field is still in the early stages, this report demonstrates that SUV by FDG-PET has the potential to become the new standard for monitoring the treatment response of NAC in cervical cancer. This monitoring approach must be proven in a larger number of patients for both primary and secondary lesions and should be further explored in another gynecologic cancer.

  2. Quantitative agreement between [(15)O]H2O PET and model free QUASAR MRI-derived cerebral blood flow and arterial blood volume.

    PubMed

    Heijtel, D F R; Petersen, E T; Mutsaerts, H J M M; Bakker, E; Schober, P; Stevens, M F; van Berckel, B N M; Majoie, C B L M; Booij, J; van Osch, M J P; van Bavel, E T; Boellaard, R; Lammertsma, A A; Nederveen, A J

    2016-04-01

    The purpose of this study was to assess whether there was an agreement between quantitative cerebral blood flow (CBF) and arterial cerebral blood volume (CBVA) measurements by [(15)O]H2O positron emission tomography (PET) and model-free QUASAR MRI. Twelve healthy subjects were scanned within a week in separate MRI and PET imaging sessions, after which quantitative and qualitative agreement between both modalities was assessed for gray matter, white matter and whole brain region of interests (ROI). The correlation between CBF measurements obtained with both modalities was moderate to high (r(2): 0.28-0.60, P < 0.05), although QUASAR significantly underestimated CBF by 30% (P < 0.001). CBVA was moderately correlated (r(2): 0.28-0.43, P < 0.05), with QUASAR yielding values that were only 27% of the [(15)O]H2O-derived values (P < 0.001). Group-wise voxel statistics identified minor areas with significant contrast differences between [(15)O]H2O PET and QUASAR MRI, indicating similar qualitative CBVA and CBF information by both modalities. In conclusion, the results of this study demonstrate that QUASAR MRI and [(15)O]H2O PET provide similar CBF and CBVA information, but with systematic quantitative discrepancies. Copyright © 2016 John Wiley & Sons, Ltd.

  3. MO-G-BRF-01: BEST IN PHYSICS (JOINT IMAGING-THERAPY) - Sensitivity of PET-Based Texture Features to Respiratory Motion in Non-Small Cell Lung Cancer (NSCLC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yip, S; Aerts, H; Berbeco, R

    2014-06-15

    Purpose: PET-based texture features are used to quantify tumor heterogeneity due to their predictive power in treatment outcome. We investigated the sensitivity of texture features to tumor motion by comparing whole body (3D) and respiratory-gated (4D) PET imaging. Methods: Twenty-six patients (34 lesions) received 3D and 4D [F-18]FDG-PET scans before chemo-radiotherapy. The acquired 4D data were retrospectively binned into five breathing phases to create the 4D image sequence. Four texture features (Coarseness, Contrast, Busyness, and Complexity) were computed within the the physician-defined tumor volume. The relative difference (δ) in each measure between the 3D- and 4D-PET imaging was calculated. Wilcoxonmore » signed-rank test (p<0.01) was used to determine if δ was significantly different from zero. Coefficient of variation (CV) was used to determine the variability in the texture features between all 4D-PET phases. Pearson correlation coefficient was used to investigate the impact of tumor size and motion amplitude on δ. Results: Significant differences (p<<0.01) between 3D and 4D imaging were found for Coarseness, Busyness, and Complexity. The difference for Contrast was not significant (p>0.24). 4D-PET increased Busyness (∼20%) and Complexity (∼20%), and decreased Coarseness (∼10%) and Contrast (∼5%) compared to 3D-PET. Nearly negligible variability (CV=3.9%) was found between the 4D phase bins for Coarseness and Complexity. Moderate variability was found for Contrast and Busyness (CV∼10%). Poor correlation was found between the tumor volume and δ for the texture features (R=−0.34−0.34). Motion amplitude had moderate impact on δ for Contrast and Busyness (R=−0.64− 0.54) and no impact for Coarseness and Complexity (R=−0.29−0.17). Conclusion: Substantial differences in textures were found between 3D and 4D-PET imaging. Moreover, the variability between phase bins for Coarseness and Complexity was negligible, suggesting that similar quantification can be obtained from all phases. Texture features, blurred out by respiratory motion during 3D-PET acquisition, can be better resolved by 4D-PET imaging with any phase.« less

  4. Three dimensional image correlation of CT, MR, and PET studies in radiotherapy treatment planning of brain tumors.

    PubMed

    Schad, L R; Boesecke, R; Schlegel, W; Hartmann, G H; Sturm, V; Strauss, L G; Lorenz, W J

    1987-01-01

    A treatment planning system for stereotactic convergent beam irradiation of deeply localized brain tumors is reported. The treatment technique consists of several moving field irradiations in noncoplanar planes at a linear accelerator facility. Using collimated narrow beams, a high concentration of dose within small volumes with a dose gradient of 10-15%/mm was obtained. The dose calculation was based on geometrical information of multiplanar CT or magnetic resonance (MR) imaging data. The patient's head was fixed in a stereotactic localization system, which is usable at CT, MR, and positron emission tomography (PET) installations. Special computer programs for correction of the geometrical MR distortions allowed a precise correlation of the different imaging modalities. The therapist can use combinations of CT, MR, and PET data for defining target volume. For instance, the superior soft tissue contrast of MR coupled with the metabolic features of PET may be a useful addition in the radiation treatment planning process. Furthermore, other features such as calculated dose distribution to critical structures can also be transferred from one set of imaging data to another and can be displayed as three-dimensional shaded structures.

  5. Model-independent plot of dynamic PET data facilitates data interpretation and model selection.

    PubMed

    Munk, Ole Lajord

    2012-02-21

    When testing new PET radiotracers or new applications of existing tracers, the blood-tissue exchange and the metabolism need to be examined. However, conventional plots of measured time-activity curves from dynamic PET do not reveal the inherent kinetic information. A novel model-independent volume-influx plot (vi-plot) was developed and validated. The new vi-plot shows the time course of the instantaneous distribution volume and the instantaneous influx rate. The vi-plot visualises physiological information that facilitates model selection and it reveals when a quasi-steady state is reached, which is a prerequisite for the use of the graphical analyses by Logan and Gjedde-Patlak. Both axes of the vi-plot have direct physiological interpretation, and the plot shows kinetic parameter in close agreement with estimates obtained by non-linear kinetic modelling. The vi-plot is equally useful for analyses of PET data based on a plasma input function or a reference region input function. The vi-plot is a model-independent and informative plot for data exploration that facilitates the selection of an appropriate method for data analysis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. In vivo spatial correlation between (18)F-BPA and (18)F-FDG uptakes in head and neck cancer.

    PubMed

    Kobayashi, Kazuma; Kurihara, Hiroaki; Watanabe, Yoshiaki; Murakami, Naoya; Inaba, Koji; Nakamura, Satoshi; Wakita, Akihisa; Okamoto, Hiroyuki; Umezawa, Rei; Takahashi, Kana; Igaki, Hiroshi; Ito, Yoshinori; Yoshimoto, Seiichi; Shigematsu, Naoyuki; Itami, Jun

    2016-09-01

    Borono-2-(18)F-fluoro-phenylalanine ((18)F-BPA) has been used to estimate the therapeutic effects of boron neutron capture therapy (BNCT), while (18)F-fluorodeoxyglucose ((18)F-FDG) is the most commonly used positron emission tomography (PET) radiopharmaceutical in a routine clinical use. The aim of the present study was to evaluate spatial correlation between (18)F-BPA and (18)F-FDG uptakes using a deformable image registration-based technique. Ten patients with head and neck cancer were recruited from January 2014 to December 2014. All patients underwent whole-body (18)F-BPA PET/computed tomography (CT) and (18)F-FDG PET/CT within a 2-week period. For each patient, (18)F-BPA PET/CT and (18)F-FDG PET/CT images were aligned based on a deformable image registration framework. The voxel-by-voxel spatial correlation of standardized uptake value (SUV) within the tumor was analyzed. Our image processing framework achieved accurate and validated registration results for each PET/CT image. In 9/10 patients, the spatial distribution of SUVs between (18)F-BPA and (18)F-FDG showed a significant, positive correlation in the tumor volume. Deformable image registration-based voxel-wise analysis demonstrated a spatial correlation between (18)F-BPA and (18)F-FDG uptakes in the head and neck cancer. A tumor sub-volume with a high (18)F-FDG uptake may predict high accumulation of (18)F-BPA. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. An algorithm for automated ROI definition in water or epoxy-filled NEMA NU-2 image quality phantoms.

    PubMed

    Pierce, Larry A; Byrd, Darrin W; Elston, Brian F; Karp, Joel S; Sunderland, John J; Kinahan, Paul E

    2016-01-08

    Drawing regions of interest (ROIs) in positron emission tomography/computed tomography (PET/CT) scans of the National Electrical Manufacturers Association (NEMA) NU-2 Image Quality (IQ) phantom is a time-consuming process that allows for interuser variability in the measurements. In order to reduce operator effort and allow batch processing of IQ phantom images, we propose a fast, robust, automated algorithm for performing IQ phantom sphere localization and analysis. The algorithm is easily altered to accommodate different configurations of the IQ phantom. The proposed algorithm uses information from both the PET and CT image volumes in order to overcome the challenges of detecting the smallest spheres in the PET volume. This algorithm has been released as an open-source plug-in to the Osirix medical image viewing software package. We test the algorithm under various noise conditions, positions within the scanner, air bubbles in the phantom spheres, and scanner misalignment conditions. The proposed algorithm shows run-times between 3 and 4 min and has proven to be robust under all tested conditions, with expected sphere localization deviations of less than 0.2 mm and variations of PET ROI mean and maximum values on the order of 0.5% and 2%, respectively, over multiple PET acquisitions. We conclude that the proposed algorithm is stable when challenged with a variety of physical and imaging anomalies, and that the algorithm can be a valuable tool for those who use the NEMA NU-2 IQ phantom for PET/CT scanner acceptance testing and QA/QC.

  8. Statistical Model of Dynamic Markers of the Alzheimer's Pathological Cascade.

    PubMed

    Balsis, Steve; Geraci, Lisa; Benge, Jared; Lowe, Deborah A; Choudhury, Tabina K; Tirso, Robert; Doody, Rachelle S

    2018-05-05

    Alzheimer's disease (AD) is a progressive disease reflected in markers across assessment modalities, including neuroimaging, cognitive testing, and evaluation of adaptive function. Identifying a single continuum of decline across assessment modalities in a single sample is statistically challenging because of the multivariate nature of the data. To address this challenge, we implemented advanced statistical analyses designed specifically to model complex data across a single continuum. We analyzed data from the Alzheimer's Disease Neuroimaging Initiative (ADNI; N = 1,056), focusing on indicators from the assessments of magnetic resonance imaging (MRI) volume, fluorodeoxyglucose positron emission tomography (FDG-PET) metabolic activity, cognitive performance, and adaptive function. Item response theory was used to identify the continuum of decline. Then, through a process of statistical scaling, indicators across all modalities were linked to that continuum and analyzed. Findings revealed that measures of MRI volume, FDG-PET metabolic activity, and adaptive function added measurement precision beyond that provided by cognitive measures, particularly in the relatively mild range of disease severity. More specifically, MRI volume, and FDG-PET metabolic activity become compromised in the very mild range of severity, followed by cognitive performance and finally adaptive function. Our statistically derived models of the AD pathological cascade are consistent with existing theoretical models.

  9. Image Guided Planning for Prostate Carcinomas With Incorporation of Anti-3-[18F]FACBC (Fluciclovine) Positron Emission Tomography: Workflow and Initial Findings From a Randomized Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreibmann, Eduard, E-mail: eschre2@emory.edu; Schuster, David M.; Rossi, Peter J.

    Purpose: {sup 18}F-Fluciclovine (anti-1-amino-3-[{sup 18}F]fluorocyclobutane-1-carboxylic acid) is a novel positron emission tomography (PET)/computed tomography (CT) radiotracer that has demonstrated utility for detection of prostate cancer. Our goal is to report the initial results from a randomized controlled trial of the integration of {sup 18}F-fluciclovine PET-CT into treatment planning for defining prostate bed and lymph node target volumes. Methods and Materials: We report our initial findings from a cohort of 41 patients, of the first enrolled on a randomized controlled trial, who were randomized to the {sup 18}F-fluciclovine arm. All patients underwent {sup 18}F-fluciclovine PET-CT for the detection of metabolic abnormalitiesmore » and high-resolution CT for treatment planning. The 2 datasets were registered first by use of a rigid registration. If soft tissue displacement was observable, the rigid registration was improved with a deformable registration. Each {sup 18}F-fluciclovine abnormality was segmented as a percentage of the maximum standard uptake value (SUV) within a small region of interest around the lesion. The percentage best describing the SUV falloff was integrated in planning by expanding standard target volumes with the PET abnormality. Results: In 21 of 55 abnormalities, a deformable registration was needed to map the {sup 18}F-fluciclovine activity into the simulation CT. The most selected percentage was 50% of maximum SUV, although values ranging from 15% to 70% were used for specific patients, illustrating the need for a per-patient selection of a threshold SUV value. The inclusion of {sup 18}F-fluciclovine changed the planning volumes for 46 abnormalities (83%) of the total 55, with 28 (51%) located in the lymph nodes, 11 (20%) in the prostate bed, 10 (18%) in the prostate, and 6 (11%) in the seminal vesicles. Only 9 PET abnormalities were fully contained in the standard target volumes based on the CT-based segmentations and did not necessitate expansion. Conclusions: The use of {sup 18}F-fluciclovine in postprostatectomy radiation therapy planning was feasible and led to augmentation of the target volumes in the majority (30 of 41) of the patients studied.« less

  10. SU-E-J-224: Multimodality Segmentation of Head and Neck Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aristophanous, M; Yang, J; Beadle, B

    2014-06-01

    Purpose: Develop an algorithm that is able to automatically segment tumor volume in Head and Neck cancer by integrating information from CT, PET and MR imaging simultaneously. Methods: Twenty three patients that were recruited under an adaptive radiotherapy protocol had MR, CT and PET/CT scans within 2 months prior to start of radiotherapy. The patients had unresectable disease and were treated either with chemoradiotherapy or radiation therapy alone. Using the Velocity software, the PET/CT and MR (T1 weighted+contrast) scans were registered to the planning CT using deformable and rigid registration respectively. The PET and MR images were then resampled accordingmore » to the registration to match the planning CT. The resampled images, together with the planning CT, were fed into a multi-channel segmentation algorithm, which is based on Gaussian mixture models and solved with the expectation-maximization algorithm and Markov random fields. A rectangular region of interest (ROI) was manually placed to identify the tumor area and facilitate the segmentation process. The auto-segmented tumor contours were compared with the gross tumor volume (GTV) manually defined by the physician. The volume difference and Dice similarity coefficient (DSC) between the manual and autosegmented GTV contours were calculated as the quantitative evaluation metrics. Results: The multimodality segmentation algorithm was applied to all 23 patients. The volumes of the auto-segmented GTV ranged from 18.4cc to 32.8cc. The average (range) volume difference between the manual and auto-segmented GTV was −42% (−32.8%–63.8%). The average DSC value was 0.62, ranging from 0.39 to 0.78. Conclusion: An algorithm for the automated definition of tumor volume using multiple imaging modalities simultaneously was successfully developed and implemented for Head and Neck cancer. This development along with more accurate registration algorithms can aid physicians in the efforts to interpret the multitude of imaging information available in radiotherapy today. This project was supported by a grant by Varian Medical Systems.« less

  11. Textural features and SUV-based variables assessed by dual time point 18F-FDG PET/CT in locally advanced breast cancer.

    PubMed

    Garcia-Vicente, Ana María; Molina, David; Pérez-Beteta, Julián; Amo-Salas, Mariano; Martínez-González, Alicia; Bueno, Gloria; Tello-Galán, María Jesús; Soriano-Castrejón, Ángel

    2017-12-01

    To study the influence of dual time point 18F-FDG PET/CT in textural features and SUV-based variables and their relation among them. Fifty-six patients with locally advanced breast cancer (LABC) were prospectively included. All of them underwent a standard 18F-FDG PET/CT (PET-1) and a delayed acquisition (PET-2). After segmentation, SUV variables (SUVmax, SUVmean, and SUVpeak), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were obtained. Eighteen three-dimensional (3D) textural measures were computed including: run-length matrices (RLM) features, co-occurrence matrices (CM) features, and energies. Differences between all PET-derived variables obtained in PET-1 and PET-2 were studied. Significant differences were found between the SUV-based parameters and MTV obtained in the dual time point PET/CT, with higher values of SUV-based variables and lower MTV in the PET-2 with respect to the PET-1. In relation with the textural parameters obtained in dual time point acquisition, significant differences were found for the short run emphasis, low gray-level run emphasis, short run high gray-level emphasis, run percentage, long run emphasis, gray-level non-uniformity, homogeneity, and dissimilarity. Textural variables showed relations with MTV and TLG. Significant differences of textural features were found in dual time point 18F-FDG PET/CT. Thus, a dynamic behavior of metabolic characteristics should be expected, with higher heterogeneity in delayed PET acquisition compared with the standard PET. A greater heterogeneity was found in bigger tumors.

  12. Metastatic squamous cell carcinoma of the gingiva appearing as a solitary branchial cyst carcinoma: diagnostic role of PET/CT.

    PubMed

    Zhang, Xiong-Xin; Zhao, Kui; Zhou, Shui-Hong; Wang, Qin-Ying; Liu, Jian-Hua; Lu, Zhong-Jie

    2014-01-01

    We herein present a case of a left cervical cystic mass, for which the initial pathological diagnosis was branchial cleft cyst carcinoma (following complete mass excision). Thorough postoperative examinations, including with FDG positron emission tomography/computed tomography (PET/CT), revealed a primary tumor in the retromolar region of the left mandible. A 52-year-old female presented with a 2-month history of a painless, progressively enlarged left-sided neck mass. Fine-needle aspiration biopsy suggested a branchial cleft cyst. Physical examination revealed a 3 × 3-cm smooth, tender mass in the upper-left neck and anterior border of the sternocleidomastoid muscle. Examination using nasendoscopy and a strobolaryngoscope revealed no abnormalities of the nasal cavity, nasopharynx, oropharynx, hypopharynx or larynx. MRI of the neck revealed a solitary, round, cystic mass under the left parotid gland. The mass was excised completely. Pathologic results indicated a branchial cleft cyst carcinoma. According to the diagnostic criteria for a branchial cleft cystic carcinoma, PET/CT was performed to detect the occult primary site. PET/CT revealed high FDG uptake in the tooth root of the left mandible. Frozen sections of the mass were indicative of moderate, differentiated squamous cell carcinoma. The carcinoma in the retromolar region of the left mandible was locally excised under general anesthesia. A partial left maxillectomy, partial mandibulectomy, and left radical neck dissection were performed. The patient received postoperative concurrent chemoradiotherapy, and was disease-free at the 8-month follow-up. True branchial cleft cyst carcinoma is rare: once diagnosed, it should be distinguished from metastatic cystic cervical lymph and occult primary carcinoma. FDG PET/CT is useful in the identification of occult primary tumor.

  13. Agreement between arterial partial pressure of carbon dioxide and saturation of hemoglobin with oxygen values obtained by direct arterial blood measurements versus noninvasive methods in conscious healthy and ill foals.

    PubMed

    Wong, David M; Alcott, Cody J; Wang, Chong; Bornkamp, Jennifer L; Young, Jessica L; Sponseller, Brett A

    2011-11-15

    To determine agreement between indirect measurements of end-tidal partial pressure of carbon dioxide (PetCO(2)) and saturation of hemoglobin with oxygen as measured by pulse oximetry (SpO(2)) with direct measurements of PaCO(2) and calculated saturation of hemoglobin with oxygen in arterial blood (SaO(2)) in conscious healthy and ill foals. Validation study. 10 healthy and 21 ill neonatal foals. Arterial blood gas analysis was performed on healthy and ill foals examined at a veterinary teaching hospital to determine direct measurements of PaCO(2) and PaO(2) along with SaO(2). Concurrently, PetCO(2) was measured with a capnograph inserted into a naris, and SpO(2) was measured with a reflectance probe placed at the base of the tail. Paired values were compared by use of Pearson correlation coefficients, and level of agreement was assessed with the Bland-Altman method. Mean ± SD difference between PaCO(2) and PetCO(2) was 0.1 ± 5.0 mm Hg. There was significant strong correlation (r = 0.779) and good agreement between PaCO(2) and PetCO(2). Mean ± SD difference between SaO(2) and SpO(2) was 2.5 ± 3.5%. There was significant moderate correlation (r = 0.499) and acceptable agreement between SaO(2) and SpO(2). Both PetCO(2) obtained by use of nasal capnography and SpO(2) obtained with a reflectance probe are clinically applicable and accurate indirect methods of estimating and monitoring PaCO(2) and SaO(2) in neonatal foals. Indirect methods should not replace periodic direct measurement of corresponding parameters.

  14. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer.

    PubMed

    Tixier, Florent; Le Rest, Catherine Cheze; Hatt, Mathieu; Albarghach, Nidal; Pradier, Olivier; Metges, Jean-Philippe; Corcos, Laurent; Visvikis, Dimitris

    2011-03-01

    (18)F-FDG PET is often used in clinical routine for diagnosis, staging, and response to therapy assessment or prediction. The standardized uptake value (SUV) in the primary or regional area is the most common quantitative measurement derived from PET images used for those purposes. The aim of this study was to propose and evaluate new parameters obtained by textural analysis of baseline PET scans for the prediction of therapy response in esophageal cancer. Forty-one patients with newly diagnosed esophageal cancer treated with combined radiochemotherapy were included in this study. All patients underwent pretreatment whole-body (18)F-FDG PET. Patients were treated with radiotherapy and alkylatinlike agents (5-fluorouracil-cisplatin or 5-fluorouracil-carboplatin). Patients were classified as nonresponders (progressive or stable disease), partial responders, or complete responders according to the Response Evaluation Criteria in Solid Tumors. Different image-derived indices obtained from the pretreatment PET tumor images were considered. These included usual indices such as maximum SUV, peak SUV, and mean SUV and a total of 38 features (such as entropy, size, and magnitude of local and global heterogeneous and homogeneous tumor regions) extracted from the 5 different textures considered. The capacity of each parameter to classify patients with respect to response to therapy was assessed using the Kruskal-Wallis test (P < 0.05). Specificity and sensitivity (including 95% confidence intervals) for each of the studied parameters were derived using receiver-operating-characteristic curves. Relationships between pairs of voxels, characterizing local tumor metabolic nonuniformities, were able to significantly differentiate all 3 patient groups (P < 0.0006). Regional measures of tumor characteristics, such as size of nonuniform metabolic regions and corresponding intensity nonuniformities within these regions, were also significant factors for prediction of response to therapy (P = 0.0002). Receiver-operating-characteristic curve analysis showed that tumor textural analysis can provide nonresponder, partial-responder, and complete-responder patient identification with higher sensitivity (76%-92%) than any SUV measurement. Textural features of tumor metabolic distribution extracted from baseline (18)F-FDG PET images allow for the best stratification of esophageal carcinoma patients in the context of therapy-response prediction.

  15. Comparison of PET/CT with Sequential PET/MRI Using an MR-Compatible Mobile PET System.

    PubMed

    Nakamoto, Ryusuke; Nakamoto, Yuji; Ishimori, Takayoshi; Fushimi, Yasutaka; Kido, Aki; Togashi, Kaori

    2018-05-01

    The current study tested a newly developed flexible PET (fxPET) scanner prototype. This fxPET system involves dual arc-shaped detectors based on silicon photomultipliers that are designed to fit existing MRI devices, allowing us to obtain fused PET and MR images by sequential PET and MR scanning. This prospective study sought to evaluate the image quality, lesion detection rate, and quantitative values of fxPET in comparison with conventional whole-body (WB) PET and to assess the accuracy of registration. Methods: Seventeen patients with suspected or known malignant tumors were analyzed. Approximately 1 h after intravenous injection of 18 F-FDG, WB PET/CT was performed, followed by fxPET and MRI. For reconstruction of fxPET images, MRI-based attenuation correction was applied. The quality of fxPET images was visually assessed, and the number of detected lesions was compared between the 2 imaging methods. SUV max and maximum average SUV within a 1 cm 3 spheric volume (SUV peak ) of lesions were also compared. In addition, the magnitude of misregistration between fxPET and MR images was evaluated. Results: The image quality of fxPET was acceptable for diagnosis of malignant tumors. There was no significant difference in detectability of malignant lesions between fxPET and WB PET ( P > 0.05). However, the fxPET system did not exhibit superior performance to the WB PET system. There were strong positive correlations between the 2 imaging modalities in SUV max (ρ = 0.88) and SUV peak (ρ = 0.81). SUV max and SUV peak measured with fxPET were approximately 1.1-fold greater than measured with WB PET. The average misregistration between fxPET and MR images was 5.5 ± 3.4 mm. Conclusion: Our preliminary data indicate that running an fxPET scanner near an existing MRI system provides visually and quantitatively acceptable fused PET/MR images for diagnosis of malignant lesions. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  16. Validation of Simple Quantification Methods for (18)F-FP-CIT PET Using Automatic Delineation of Volumes of Interest Based on Statistical Probabilistic Anatomical Mapping and Isocontour Margin Setting.

    PubMed

    Kim, Yong-Il; Im, Hyung-Jun; Paeng, Jin Chul; Lee, Jae Sung; Eo, Jae Seon; Kim, Dong Hyun; Kim, Euishin E; Kang, Keon Wook; Chung, June-Key; Lee, Dong Soo

    2012-12-01

    (18)F-FP-CIT positron emission tomography (PET) is an effective imaging for dopamine transporters. In usual clinical practice, (18)F-FP-CIT PET is analyzed visually or quantified using manual delineation of a volume of interest (VOI) for the striatum. In this study, we suggested and validated two simple quantitative methods based on automatic VOI delineation using statistical probabilistic anatomical mapping (SPAM) and isocontour margin setting. Seventy-five (18)F-FP-CIT PET images acquired in routine clinical practice were used for this study. A study-specific image template was made and the subject images were normalized to the template. Afterwards, uptakes in the striatal regions and cerebellum were quantified using probabilistic VOI based on SPAM. A quantitative parameter, QSPAM, was calculated to simulate binding potential. Additionally, the functional volume of each striatal region and its uptake were measured in automatically delineated VOI using isocontour margin setting. Uptake-volume product (QUVP) was calculated for each striatal region. QSPAM and QUVP were compared with visual grading and the influence of cerebral atrophy on the measurements was tested. Image analyses were successful in all the cases. Both the QSPAM and QUVP were significantly different according to visual grading (P < 0.001). The agreements of QUVP or QSPAM with visual grading were slight to fair for the caudate nucleus (κ = 0.421 and 0.291, respectively) and good to perfect to the putamen (κ = 0.663 and 0.607, respectively). Also, QSPAM and QUVP had a significant correlation with each other (P < 0.001). Cerebral atrophy made a significant difference in QSPAM and QUVP of the caudate nuclei regions with decreased (18)F-FP-CIT uptake. Simple quantitative measurements of QSPAM and QUVP showed acceptable agreement with visual grading. Although QSPAM in some group may be influenced by cerebral atrophy, these simple methods are expected to be effective in the quantitative analysis of (18)F-FP-CIT PET in usual clinical practice.

  17. Development of dose delivery verification by PET imaging of photonuclear reactions following high energy photon therapy

    NASA Astrophysics Data System (ADS)

    Janek, S.; Svensson, R.; Jonsson, C.; Brahme, A.

    2006-11-01

    A method for dose delivery monitoring after high energy photon therapy has been investigated based on positron emission tomography (PET). The technique is based on the activation of body tissues by high energy bremsstrahlung beams, preferably with energies well above 20 MeV, resulting primarily in 11C and 15O but also 13N, all positron-emitting radionuclides produced by photoneutron reactions in the nuclei of 12C, 16O and 14N. A PMMA phantom and animal tissue, a frozen hind leg of a pig, were irradiated to 10 Gy and the induced positron activity distributions were measured off-line in a PET camera a couple of minutes after irradiation. The accelerator used was a Racetrack Microtron at the Karolinska University Hospital using 50 MV scanned photon beams. From photonuclear cross-section data integrated over the 50 MV photon fluence spectrum the predicted PET signal was calculated and compared with experimental measurements. Since measured PET images change with time post irradiation, as a result of the different decay times of the radionuclides, the signals from activated 12C, 16O and 14N within the irradiated volume could be separated from each other. Most information is obtained from the carbon and oxygen radionuclides which are the most abundant elements in soft tissue. The predicted and measured overall positron activities are almost equal (-3%) while the predicted activity originating from nitrogen is overestimated by almost a factor of two, possibly due to experimental noise. Based on the results obtained in this first feasibility study the great value of a combined radiotherapy-PET-CT unit is indicated in order to fully exploit the high activity signal from oxygen immediately after treatment and to avoid patient repositioning. With an RT-PET-CT unit a high signal could be collected even at a dose level of 2 Gy and the acquisition time for the PET could be reduced considerably. Real patient dose delivery verification by means of PET imaging seems to be applicable provided that biological transport processes such as capillary blood flow containing mobile 15O and 11C in the activated tissue volume can be accounted for.

  18. Chemotherapy Response Assessment by FDG-PET-CT in Early-stage Classical Hodgkin Lymphoma: Moving Beyond the Five-Point Deauville Score

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milgrom, Sarah A., E-mail: samilgrom@mdanderson.org; Dong, Wenli; Akhtari, Mani

    Purpose: In early-stage classical Hodgkin lymphoma, fluorodeoxyglucose positron emission tomography (PET)-computed tomography (CT) scans are performed routinely after chemotherapy, and the 5-point Deauville score is used to report the disease response. We hypothesized that other PET-CT parameters, considered in combination with Deauville score, would improve risk stratification. Methods and Materials: Patients treated for stage I to II Hodgkin lymphoma from 2003 to 2013, who were aged ≥18 years and had analyzable PET-CT scans performed before and after chemotherapy, were eligible. The soft tissue volume (STV), maximum standardized uptake value, metabolic tumor volume, and total lesion glycolysis were recorded from the PET-CTmore » scans before and after chemotherapy. Reductions were defined as 1 − (final PET-CT value)/(corresponding initial PET-CT value). The primary endpoint was freedom from progression (FFP). Results: For 202 patients treated with chemotherapy with or without radiation therapy, the 5-year FFP was 89% (95% confidence interval 85%-93%). All PET-CT parameters were strongly associated with the Deauville score (P<.001) and FFP (P<.0001) on univariate analysis. The Deauville score was highly predictive of FFP (C-index 0.89) but was less discriminating in the Deauville 1 to 4 subset (C-index 0.67). Therefore, we aimed to identify PET-CT parameters that would improve risk stratification for this subgroup (n=187). STV reduction was predictive of outcome (C-index 0.71) and was dichotomized with an optimal cutoff of 0.65 (65% reduction in STV). A model incorporating the Deauville score and STV reduction predicted FFP more accurately than either measurement alone in the Deauville 1 to 4 subset (C-index 0.83). The improvement in predictive accuracy of this composite measure compared with the Deauville score alone met statistical significance (P=.045). Conclusions: The relative reduction in tumor size is an independent predictor of outcome. Combined with the Deauville score, it might improve risk stratification and contribute to response-adapted individualization of therapy.« less

  19. Low-activity 124I-PET/low-dose CT versus 99mTc-pertechnetate planar scintigraphy or 99mTc-pertechnetate single-photon emission computed tomography of the thyroid: a pilot comparison.

    PubMed

    Darr, Andreas M; Opfermann, Thomas; Niksch, Tobias; Driesch, Dominik; Marlowe, Robert J; Freesmeyer, Martin

    2013-10-01

    The standard thyroid functional imaging method, 99mTc-pertechnetate (99mTc-PT) planar scintigraphy, has technical drawbacks decreasing its sensitivity in detecting nodules or anatomical pathology. 124I-PET, lacking these disadvantages and allowing simultaneous CT, may have greater sensitivity for these purposes. We performed a blinded pilot comparison of 124I-PET(/CT) versus 99mTc-PT planar scintigraphy or its cross-sectional enhancement, 99mTc-PT single-photon emission CT (SPECT), in characterizing the thyroid gland with benign disease. Twenty-one consecutive adults with goiter underwent low-activity (1 MBq/0.027 mCi) 124I-PET/low-dose (30 mAs) CT, 99mTc-PT planar scintigraphy, and 99mTc-PT-SPECT. Endpoints included the numbers of “hot spots” with/without central photopenia and “cold spots” detected, the proportion of these lesions with morphological correlates, the mean volume and diameter of visualized nodules, and the number of cases of lobus pyramidalis or retrosternal thyroid tissue identified. 124I-PET detected significantly more “hot spots” with/without central photopenia (P < 0.001), significantly more nodules (P < 0.001), and more “cold spots” than did 99mTc-PT planar scintigraphy or 99mTc-PT-SPECT, including all lesions seen on the 99mTc-PT modalities. Ultrasonographic correlates were found for all nodules visualized on all 3 modalities and 92.5% of nodules seen only on 124I-PET. Nodules discernible only on 124I-PET had significantly smaller mean volume or diameter (P < 0.001) than did those visualized on 99mTc-PT planar scintigraphy or 99mTc-PT-SPECT. 124I-PET(/CT) identified significantly more patients with a lobus pyramidalis (P < 0.001) or retrosternal thyroid tissue (P < 0.05). 124I-PET(/CT) may provide superior imaging of benign thyroid disease compared to planar or cross-sectional 99mTc-PT scintigraphy.

  20. Quantitative PET/CT scanner performance characterization based upon the society of nuclear medicine and molecular imaging clinical trials network oncology clinical simulator phantom.

    PubMed

    Sunderland, John J; Christian, Paul E

    2015-01-01

    The Clinical Trials Network (CTN) of the Society of Nuclear Medicine and Molecular Imaging (SNMMI) operates a PET/CT phantom imaging program using the CTN's oncology clinical simulator phantom, designed to validate scanners at sites that wish to participate in oncology clinical trials. Since its inception in 2008, the CTN has collected 406 well-characterized phantom datasets from 237 scanners at 170 imaging sites covering the spectrum of commercially available PET/CT systems. The combined and collated phantom data describe a global profile of quantitative performance and variability of PET/CT data used in both clinical practice and clinical trials. Individual sites filled and imaged the CTN oncology PET phantom according to detailed instructions. Standard clinical reconstructions were requested and submitted. The phantom itself contains uniform regions suitable for scanner calibration assessment, lung fields, and 6 hot spheric lesions with diameters ranging from 7 to 20 mm at a 4:1 contrast ratio with primary background. The CTN Phantom Imaging Core evaluated the quality of the phantom fill and imaging and measured background standardized uptake values to assess scanner calibration and maximum standardized uptake values of all 6 lesions to review quantitative performance. Scanner make-and-model-specific measurements were pooled and then subdivided by reconstruction to create scanner-specific quantitative profiles. Different makes and models of scanners predictably demonstrated different quantitative performance profiles including, in some cases, small calibration bias. Differences in site-specific reconstruction parameters increased the quantitative variability among similar scanners, with postreconstruction smoothing filters being the most influential parameter. Quantitative assessment of this intrascanner variability over this large collection of phantom data gives, for the first time, estimates of reconstruction variance introduced into trials from allowing trial sites to use their preferred reconstruction methodologies. Predictably, time-of-flight-enabled scanners exhibited less size-based partial-volume bias than non-time-of-flight scanners. The CTN scanner validation experience over the past 5 y has generated a rich, well-curated phantom dataset from which PET/CT make-and-model and reconstruction-dependent quantitative behaviors were characterized for the purposes of understanding and estimating scanner-based variances in clinical trials. These results should make it possible to identify and recommend make-and-model-specific reconstruction strategies to minimize measurement variability in cancer clinical trials. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  1. Cerebral blood flow with [15O]water PET studies using an image-derived input function and MR-defined carotid centerlines

    NASA Astrophysics Data System (ADS)

    Fung, Edward K.; Carson, Richard E.

    2013-03-01

    Full quantitative analysis of brain PET data requires knowledge of the arterial input function into the brain. Such data are normally acquired by arterial sampling with corrections for delay and dispersion to account for the distant sampling site. Several attempts have been made to extract an image-derived input function (IDIF) directly from the internal carotid arteries that supply the brain and are often visible in brain PET images. We have devised a method of delineating the internal carotids in co-registered magnetic resonance (MR) images using the level-set method and applying the segmentations to PET images using a novel centerline approach. Centerlines of the segmented carotids were modeled as cubic splines and re-registered in PET images summed over the early portion of the scan. Using information from the anatomical center of the vessel should minimize partial volume and spillover effects. Centerline time-activity curves were taken as the mean of the values for points along the centerline interpolated from neighboring voxels. A scale factor correction was derived from calculation of cerebral blood flow (CBF) using gold standard arterial blood measurements. We have applied the method to human subject data from multiple injections of [15O]water on the HRRT. The method was assessed by calculating the area under the curve (AUC) of the IDIF and the CBF, and comparing these to values computed using the gold standard arterial input curve. The average ratio of IDIF to arterial AUC (apparent recovery coefficient: aRC) across 9 subjects with multiple (n = 69) injections was 0.49 ± 0.09 at 0-30 s post tracer arrival, 0.45 ± 0.09 at 30-60 s, and 0.46 ± 0.09 at 60-90 s. Gray and white matter CBF values were 61.4 ± 11.0 and 15.6 ± 3.0 mL/min/100 g tissue using sampled blood data. Using IDIF centerlines scaled by the average aRC over each subjects’ injections, gray and white matter CBF values were 61.3 ± 13.5 and 15.5 ± 3.4 mL/min/100 g tissue. Using global average aRC values, the means were unchanged, and intersubject variability was noticeably reduced. This MR-based centerline method with local re-registration to [15O]water PET yields a consistent IDIF over multiple injections in the same subject, thus permitting the absolute quantification of CBF without arterial input function measurements.

  2. The current status of positron emission tomography.

    PubMed

    Digby, W; Keppler, J

    2000-01-01

    Positron emission tomography (PET), invented over 25 years ago, is the only imaging technique that provides images of the biological basis of disease. Since disease is a biological process, PET routinely detects disease when other imaging studies, such as CT and MRI, are normal. In addition to its clinical effectiveness, PET has been shown to reduce costs, primarily due to the elimination of other less accurate diagnostic tests and ineffective surgeries. PET has been determined to be applicable to a number of specific applications in the areas of: imaging cancer patients, characterizing myocardial blood flow and viability, and brain imaging in various physiological and pathologic conditions. Tremendous progress has been made in resolving the regulatory and reimbursement issues facing the field of PET. Working with HCFA, representatives of the Institute for Clinical PET and the Society of Nuclear Medicine have brought about expanded HCFA coverage for PET. When HCFA first authorized payment for PET, all coverage decisions were restricted to HCFA and an expanded national coverage policy. HCFA revised its national coverage policy in 1997; this was the first of several steps taken by HCFA towards careful expansion of PET reimbursement. In March 1999, three new indications for whole-body PET scans were added to Medicare's coverage policy. The Institute for Clinical PET is continuing to work with HCFA on continued, appropriate expansion of the coverage policy. This article is partially excerpted from a written statement made by Terry Douglass, Ph.D., president of CTI, Inc., on May 12, 1999, before the Senate Committee on Commerce, Science and Transportation and its Subcommittee on Science, Technology and Space. This was part of the committee's study of "Emerging Technologies in the New Millennium."

  3. PET attenuation correction for flexible MRI surface coils in hybrid PET/MRI using a 3D depth camera

    NASA Astrophysics Data System (ADS)

    Frohwein, Lynn J.; Heß, Mirco; Schlicher, Dominik; Bolwin, Konstantin; Büther, Florian; Jiang, Xiaoyi; Schäfers, Klaus P.

    2018-01-01

    PET attenuation correction for flexible MRI radio frequency surface coils in hybrid PET/MRI is still a challenging task, as position and shape of these coils conform to large inter-patient variabilities. The purpose of this feasibility study is to develop a novel method for the incorporation of attenuation information about flexible surface coils in PET reconstruction using the Microsoft Kinect V2 depth camera. The depth information is used to determine a dense point cloud of the coil’s surface representing the shape of the coil. From a CT template—acquired once in advance—surface information of the coil is extracted likewise and converted into a point cloud. The two point clouds are then registered using a combination of an iterative-closest-point (ICP) method and a partially rigid registration step. Using the transformation derived through the point clouds, the CT template is warped and thereby adapted to the PET/MRI scan setup. The transformed CT template is converted into an attenuation map from Hounsfield units into linear attenuation coefficients. The resulting fitted attenuation map is then integrated into the MRI-based patient-specific DIXON-based attenuation map of the actual PET/MRI scan. A reconstruction of phantom PET data acquired with the coil present in the field-of-view (FoV), but without the corresponding coil attenuation map, shows large artifacts in regions close to the coil. The overall count loss is determined to be around 13% compared to a PET scan without the coil present in the FoV. A reconstruction using the new μ-map resulted in strongly reduced artifacts as well as increased overall PET intensities with a remaining relative difference of about 1% to a PET scan without the coil in the FoV.

  4. The role of respiratory measures to assess mental load in pilot selection.

    PubMed

    Grassmann, Mariel; Vlemincx, Elke; von Leupoldt, Andreas; Van den Bergh, Omer

    2016-06-01

    While cardiovascular measures have a long tradition of being used to determine operator load, responsiveness of the respiratory system to mental load has rarely been investigated. In this study, we assessed basic and variability measures of respiration rate (RR), partial pressure of end-tidal carbon dioxide (petCO2) as well as performance measures in 63 male pilot candidates during completion of a complex cognitive task and subsequent recovery. Mental load was associated with an increase in RR and a decrease in respiratory variability. A significant decrease was also found for petCO2. RR and respiratory variability showed partial and complete effects of recovery, respectively, whereas petCO2 did not return to baseline level. Overall, a good performance was related to a stronger reactivity in RR. Our findings suggest that respiratory parameters would be a useful supplement to common measures for the assessment of mental load in pilot selection. Practitioner Summary: Respiratory measures are a promising yet poorly investigated approach to monitor operator load. For pilot selection, we assessed respiration in response to multitasking in 63 candidates. Task-related changes as well as covariation with performance strongly support the consideration of respiratory parameters when evaluating reactivity to mental load.

  5. Evidence for the use PET for radiation therapy planning in patients with cervical cancer: a systematic review.

    PubMed

    Salem, A; Salem, A F; Al-Ibraheem, A; Lataifeh, I; Almousa, A; Jaradat, I

    2011-01-01

    In recent years, the role of positron emission tomography (PET) in the staging and management of gynecological cancers has been increasing. The aim of this study was to systematically review the role of PET in radiotherapy planning and brachytherapy treatment optimization in patients with cervical cancer. Systematic literature review. Systematic review of relevant literature addressing the utilization of PET and/or PET-computed tomography (CT) in external-beam radiotherapy planning and brachytherapy treatment optimization. We performed an extensive PubMed database search on 20 April 2011. Nineteen studies, including 759 patients, formed the basis of this systematic review. PET/ PET-CT is the most sensitive imaging modality for detecting nodal metastases in patients with cervical cancer and has been shown to impact external-beam radiotherapy planning by modifying the treatment field and customizing the radiation dose. This particularly applies to detection of previously uncovered para-aortic and inguinal nodal metastases. Furthermore, PET/ PET-CT guided intensity-modulated radiation therapy (IMRT) allows delivery of higher doses of radiation to the primary tumor, if brachytherapy is unsuitable, and to grossly involved nodal disease while minimizing treatment-related toxicity. PET/ PET-CT based brachytherapy optimization allows improved tumor-volume dose distribution and detailed 3D dosimetric evaluation of risk organs. Sequential PET/ PET-CT imaging performed during the course of brachytherapy form the basis of “adaptive” brachytherapy in cervical cancer. This review demonstrates the effectiveness of pretreatment PET/ PET-CT in cervical cancer patients treated by radiotherapy. Further prospective studies are required to define the group of patients who would benefit the most from this procedure.

  6. T156. IN VIVO CHARACTERIZATION OF THE FIRST AGONIST DOPAMINE D1 RECEPTORS PET IMAGING TRACER [18F]MNI-968 IN HUMAN

    PubMed Central

    Tamagnan, Gilles; Barret, Olivier; Alagille, David; Carroll, Vincent; Madonia, Jennifer; Constantinescu, Cristian; SanDiego, Christine; Papin, Caroline; Morley, Thomas; Russell, David; McCarthy, Timothy; Zhang, Lei; Gray, David; Villalobos, Anna; Lee, Chewah; Chen, Jianqing; Seibyl, John; Marek, Kenneth

    2018-01-01

    Abstract Background D1 receptors, which couple to inhibitory G-proteins, have been shown to regulate neuronal growth and development, mediate some behavioral responses. Its function has been shown to be altered in both neurologic and psychiatric disorders. To date, there is a lack of agonist PET tracers for the D1 receptors labeled with 18F with relevance in clinical studies. We report the evaluation in non-human primates of [18F]MNI-968 (PF-06730110), a novel PET radiotracer of the D1 receptors Methods Four brain PET studies, 2 baselines and 2 blockade studies using PF-2562, a D1 partial agonist compound, were conducted for 90 min in two rhesus monkeys with [18F]MNI-968 (169 ± 31 MBq). [18F]PF-06730110 was administered at the same dose level for both monkeys as a bolus followed by a 2-hour infusion, with [18F]MNI-968 administered 30 min into the infusion. Additionally, six brain PET studies were conducted over 180 min (317 ± 49 MBq) in 6 healthy human volunteers (3 test/retest and 3 test). PET data were modeled with 2-tissue compartmental model (2T), Logan graphical analysis (LGA), and non-invasive Logan graphical analysis (NI-LGA) with cerebellar cortex as reference region to estimate total distribution volume VT, and binding potential BPND. For the blockade studies in rhesus monkeys, occupancy was estimated from BPND at baseline and post blockade. Results In rhesus monkeys, [18F]MNI-968 (PF-06730110), penetrated the brain with a peak whole-brain uptake up to ~3% of the injected dose at ~ 6 min post injection and showed a fast washout. The highest signal was found in the caudate, putamen, with moderate extrastriatal uptake. The lowest signal was in the cerebellum. BPND values were up to ~1.4 in the putamen. All three quantification methods (2T, LGA and NI-LGA) were in excellent agreement, with a similar estimated D1 receptors occupancy of PF-06730110 of ~40% for both monkeys in the caudate and putamen. In human, [18F]MNI-968 kinetics appeared to be faster compared to non-human primates, with a BPND in the putamen of ~0.8. Initial measurement of test-retest reproducibility was ≤ 7% for BPND in the striatal regions. Discussion Our work showed that [18F]MNI-968 ([18F]PF-06730110), is a promising agonist PET radiotracer for imaging D1agnist receptors that can be quantified non-invasively. Studies are currently ongoing both in non-human and human primates to further characterize the tracer.

  7. A multimodality segmentation framework for automatic target delineation in head and neck radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jinzhong; Aristophanous, Michalis, E-mail: MAristophanous@mdanderson.org; Beadle, Beth M.

    2015-09-15

    Purpose: To develop an automatic segmentation algorithm integrating imaging information from computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) to delineate target volume in head and neck cancer radiotherapy. Methods: Eleven patients with unresectable disease at the tonsil or base of tongue who underwent MRI, CT, and PET/CT within two months before the start of radiotherapy or chemoradiotherapy were recruited for the study. For each patient, PET/CT and T1-weighted contrast MRI scans were first registered to the planning CT using deformable and rigid registration, respectively, to resample the PET and magnetic resonance (MR) images to themore » planning CT space. A binary mask was manually defined to identify the tumor area. The resampled PET and MR images, the planning CT image, and the binary mask were fed into the automatic segmentation algorithm for target delineation. The algorithm was based on a multichannel Gaussian mixture model and solved using an expectation–maximization algorithm with Markov random fields. To evaluate the algorithm, we compared the multichannel autosegmentation with an autosegmentation method using only PET images. The physician-defined gross tumor volume (GTV) was used as the “ground truth” for quantitative evaluation. Results: The median multichannel segmented GTV of the primary tumor was 15.7 cm{sup 3} (range, 6.6–44.3 cm{sup 3}), while the PET segmented GTV was 10.2 cm{sup 3} (range, 2.8–45.1 cm{sup 3}). The median physician-defined GTV was 22.1 cm{sup 3} (range, 4.2–38.4 cm{sup 3}). The median difference between the multichannel segmented and physician-defined GTVs was −10.7%, not showing a statistically significant difference (p-value = 0.43). However, the median difference between the PET segmented and physician-defined GTVs was −19.2%, showing a statistically significant difference (p-value =0.0037). The median Dice similarity coefficient between the multichannel segmented and physician-defined GTVs was 0.75 (range, 0.55–0.84), and the median sensitivity and positive predictive value between them were 0.76 and 0.81, respectively. Conclusions: The authors developed an automated multimodality segmentation algorithm for tumor volume delineation and validated this algorithm for head and neck cancer radiotherapy. The multichannel segmented GTV agreed well with the physician-defined GTV. The authors expect that their algorithm will improve the accuracy and consistency in target definition for radiotherapy.« less

  8. TU-AB-202-07: A Novel Method for Registration of Mid-Treatment PET/CT Images Under Conditions of Tumor Regression for Patients with Locally Advanced Lung Cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharifi, Hoda; Department of Physics, Oakland University, Rochester, MI; Zhang, Hong

    Purpose: In PET-guided adaptive radiotherapy (RT), changes in the metabolic activity at individual voxels cannot be derived until the duringtreatment CT images are appropriately registered to pre-treatment CT images. However, deformable image registration (DIR) usually does not preserve tumor volume. This may induce errors when comparing to the target. The aim of this study was to develop a DIR-integrated mechanical modeling technique to track radiation-induced metabolic changes on PET images. Methods: Three patients with non-small cell lung cancer (NSCLC) were treated with adaptive radiotherapy under RTOG 1106. Two PET/CT image sets were acquired 2 weeks before RT and 18 fractionsmore » after the start of treatment. DIR was performed to register the during-RT CT to the pre-RT CT using a B-spline algorithm and the resultant displacements in the region of tumor were remodeled using a hybrid finite element method (FEM). Gross tumor volume (GTV) was delineated on the during-RT PET/CT image sets and deformed using the 3D deformation vector fields generated by the CT-based registrations. Metabolic tumor volume (MTV) was calculated using the pre- and during–RT image set. The quality of the PET mapping was evaluated based on the constancy of the mapped MTV and landmark comparison. Results: The B-spline-based registrations changed MTVs by 7.3%, 4.6% and −5.9% for the 3 patients and the correspondent changes for the hybrid FEM method −2.9%, 1% and 6.3%, respectively. Landmark comparisons were used to evaluate the Rigid, B-Spline, and hybrid FEM registrations with the mean errors of 10.1 ± 1.6 mm, 4.4 ± 0.4 mm, and 3.6 ± 0.4 mm for three patients. The hybrid FEM method outperforms the B-Spline-only registration for patients with tumor regression Conclusion: The hybrid FEM modeling technique improves the B-Spline registrations in tumor regions. This technique may help compare metabolic activities between two PET/CT images with regressing tumors. The author gratefully acknowledges the financial support from the National Institutes of Health Grant.« less

  9. Adaptive template generation for amyloid PET using a deep learning approach.

    PubMed

    Kang, Seung Kwan; Seo, Seongho; Shin, Seong A; Byun, Min Soo; Lee, Dong Young; Kim, Yu Kyeong; Lee, Dong Soo; Lee, Jae Sung

    2018-05-11

    Accurate spatial normalization (SN) of amyloid positron emission tomography (PET) images for Alzheimer's disease assessment without coregistered anatomical magnetic resonance imaging (MRI) of the same individual is technically challenging. In this study, we applied deep neural networks to generate individually adaptive PET templates for robust and accurate SN of amyloid PET without using matched 3D MR images. Using 681 pairs of simultaneously acquired 11 C-PIB PET and T1-weighted 3D MRI scans of AD, MCI, and cognitively normal subjects, we trained and tested two deep neural networks [convolutional auto-encoder (CAE) and generative adversarial network (GAN)] that produce adaptive best PET templates. More specifically, the networks were trained using 685,100 pieces of augmented data generated by rotating 527 randomly selected datasets and validated using 154 datasets. The input to the supervised neural networks was the 3D PET volume in native space and the label was the spatially normalized 3D PET image using the transformation parameters obtained from MRI-based SN. The proposed deep learning approach significantly enhanced the quantitative accuracy of MRI-less amyloid PET assessment by reducing the SN error observed when an average amyloid PET template is used. Given an input image, the trained deep neural networks rapidly provide individually adaptive 3D PET templates without any discontinuity between the slices (in 0.02 s). As the proposed method does not require 3D MRI for the SN of PET images, it has great potential for use in routine analysis of amyloid PET images in clinical practice and research. © 2018 Wiley Periodicals, Inc.

  10. Standardized added metabolic activity (SAM) IN ¹⁸F-FDG PET assessment of treatment response in colorectal liver metastases.

    PubMed

    Mertens, Jeroen; De Bruyne, S; Van Damme, N; Smeets, P; Ceelen, W; Troisi, R; Laurent, S; Geboes, K; Peeters, M; Goethals, I; Van de Wiele, C

    2013-08-01

    Standardized added metabolic activity (SAM) is a PET parameter for assessing the total metabolic load of malignant processes, avoiding partial volume effects and lesion segmentation. The potential role of this parameter in the assessment of response to chemotherapy and bevacizumab was tested in patients with metastatic colorectal cancer with potentially resectable liver metastases (mCRC). (18)F-FDG PET/CT was performed in 18 mCRC patients with liver metastases before treatment and after five cycles of FOLFOX/FOLFIRI and bevacizumab. Of the 18 patients, 16 subsequently underwent resection of liver metastases. Baseline and follow-up SUVmax, and SAM as well as reduction in SUVmax (∆SUVmax) and SAM (∆SAM) of all liver metastases were correlated with morphological response, and progression-free and overall survival (PFS and OS). A significant reduction in metabolic activity of the liver metastases was seen after chemotherapy with a median ∆SUVmax of 25.3% and ∆SAM of 94.5% (p = 0.033 and 0.003). Median baseline SUVmax and SAM values were significantly different between morphological responders and nonresponders (3.8 vs. 7.2, p = 0.021; and 34 vs. 211, p = 0.002, respectively), but neither baseline PET parameters nor morphological response was correlated with PFS or OS. Follow-up SUVmax and SAM as well as ∆SAM were found to be prognostic factors. The median PFS and OS in the patient group with a high follow-up SUVmax were 10.4 months and 32 months, compared to a median PFS of 14.7 months and a median OS which had not been reached in the group with a low follow-up SUVmax (p = 0.01 and 0.003, respectively). The patient group with a high follow-up SAM and a low ∆SAM had a median PFS and OS of 9.4 months and 32 months, whereas the other group had a median PFS of 14.7 months and a median OS which had not been reached (p = 0.002 for both PFS and OS). (18)F-FDG PET imaging is a useful tool to assess treatment response and predict clinical outcome in patients with mCRC who undergo chemotherapy before liver metastasectomy. Follow-up SUVmax, follow-up SAM and ∆SAM were found to be significant prognostic factors for PFS and OS.

  11. Dose escalation to high-risk sub-volumes based on non-invasive imaging of hypoxia and glycolytic activity in canine solid tumors: a feasibility study

    PubMed Central

    2013-01-01

    Introduction Glycolytic activity and hypoxia are associated with poor prognosis and radiation resistance. Including both the tumor uptake of 2-deoxy-2-[18 F]-fluorodeoxyglucose (FDG) and the proposed hypoxia tracer copper(II)diacetyl-bis(N4)-methylsemithio-carbazone (Cu-ATSM) in targeted therapy planning may therefore lead to improved tumor control. In this study we analyzed the overlap between sub-volumes of FDG and hypoxia assessed by the uptake of 64Cu-ATSM in canine solid tumors, and evaluated the possibilities for dose redistribution within the gross tumor volume (GTV). Materials and methods Positron emission tomography/computed tomography (PET/CT) scans of five spontaneous canine solid tumors were included. FDG-PET/CT was obtained at day 1, 64Cu-ATSM at day 2 and 3 (3 and 24 h pi.). GTV was delineated and CT images were co-registered. Sub-volumes for 3 h and 24 h 64Cu-ATSM (Cu3 and Cu24) were defined by a threshold based method. FDG sub-volumes were delineated at 40% (FDG40) and 50% (FDG50) of SUVmax. The size of sub-volumes, intersection and biological target volume (BTV) were measured in a treatment planning software. By varying the average dose prescription to the tumor from 66 to 85 Gy, the possible dose boost (D B ) was calculated for the three scenarios that the optimal target for the boost was one, the union or the intersection of the FDG and 64Cu-ATSM sub-volumes. Results The potential boost volumes represented a fairly large fraction of the total GTV: Cu3 49.8% (26.8-72.5%), Cu24 28.1% (2.4-54.3%), FDG40 45.2% (10.1-75.2%), and FDG50 32.5% (2.6-68.1%). A BTV including the union (∪) of Cu3 and FDG would involve boosting to a larger fraction of the GTV, in the case of Cu3∪FDG40 63.5% (51.8-83.8) and Cu3∪FDG50 48.1% (43.7-80.8). The union allowed only a very limited D B whereas the intersection allowed a substantial dose escalation. Conclusions FDG and 64Cu-ATSM sub-volumes were only partly overlapping, suggesting that the tracers offer complementing information on tumor physiology. Targeting the combined PET positive volume (BTV) for dose escalation within the GTV results in a limited D B . This suggests a more refined dose redistribution based on a weighted combination of the PET tracers in order to obtain an improved tumor control. PMID:24199939

  12. A study of the radiobiological modeling of the conformal radiation therapy in cancer treatment

    NASA Astrophysics Data System (ADS)

    Pyakuryal, Anil Prasad

    Cancer is one of the leading causes of mortalities in the world. The precise diagnosis of the disease helps the patients to select the appropriate modality of the treatments such as surgery, chemotherapy and radiation therapy. The physics of X-radiation and the advanced imaging technologies such as positron emission tomography (PET) and computed tomography (CT) plays an important role in the efficient diagnosis and therapeutic treatments in cancer. However, the accuracy of the measurements of the metabolic target volumes (MTVs) in the PET/CT dual-imaging modality is always limited. Similarly the external beam radiation therapy (XRT) such as 3D conformal radiotherapy (3DCRT) and intensity modulated radiation therapy (IMRT) is the most common modality in the radiotherapy treatment. These treatments are simulated and evaluated using the XRT plans and the standard methodologies in the commercial planning system. However, the normal organs are always susceptible to the radiation toxicity in these treatments due to lack of knowledge of the appropriate radiobiological models to estimate the clinical outcomes. We explored several methodologies to estimate MTVs by reviewing various techniques of the target volume delineation using the static phantoms in the PET scans. The review suggests that the more precise and practical method of delineating PET MTV should be an intermediate volume between the volume coverage for the standardized uptake value (SUV; 2.5) of glucose and the 50% (40%) threshold of the maximum SUV for the smaller (larger) volume delineations in the radiotherapy applications. Similarly various types of optimal XRT plans were designed using the CT and PET/CT scans for the treatment of various types of cancer patients. The qualities of these plans were assessed using the universal plan-indices. The dose-volume criteria were also examined in the targets and organs by analyzing the conventional dose-volume histograms (DVHs). The biological models such as tumor control probability based on Poisson statistics model, and normal tissue complication probabilities based on Lyman-Kutcher-Burman model, were efficient to estimate the radiobiological outcomes of the treatments by taking into account of the dose-volume effects in the organs. Furthermore, a novel technique of spatial DVH analysis was also found to be useful to determine the primary cause of the complications in the critical organs in the treatments. The study also showed that the 3DCRT and IMRT techniques offer the promising results in the XRT treatment of the left-breast and the prostate cancer patients respectively. Unfortunately, several organs such as salivary glands and larynx, and esophagus, were found to be significantly vulnerable to the radiation toxicity in the treatment of the head and neck (HN), and left-lung cancer patients respectively. The radiobiological outcomes were also found to be consistent with the clinical results of the IMRT based treatments of a significant number of the HN cancer patients.

  13. In Vivo Assessment of Brain White Matter Inflammation in Multiple Sclerosis with (18)F-PBR111 PET.

    PubMed

    Colasanti, Alessandro; Guo, Qi; Muhlert, Nils; Giannetti, Paolo; Onega, Mayca; Newbould, Rexford D; Ciccarelli, Olga; Rison, Stuart; Thomas, Charlotte; Nicholas, Richard; Muraro, Paolo A; Malik, Omar; Owen, David R; Piccini, Paola; Gunn, Roger N; Rabiner, Eugenii A; Matthews, Paul M

    2014-07-01

    PET radioligand binding to the 18-kD translocator protein (TSPO) in the brains of patients with multiple sclerosis (MS) primarily reflects activated microglia and macrophages. We previously developed genetic stratification for accurate quantitative estimation of TSPO using second-generation PET radioligands. In this study, we used (18)F-PBR111 PET and MR imaging to measure relative binding in the lesional, perilesional, and surrounding normal-appearing white matter of MS patients, as an index of the innate immune response. (18)F-PBR111 binding was quantified in 11 MS patients and 11 age-matched healthy volunteers, stratified according to the rs6971 TSPO gene polymorphism. Fluid-attenuated inversion recovery and magnetization transfer ratio (MTR) MR imaging were used to segment the white matter in MS patients as lesions, perilesional volumes, nonlesional white matter with reduced MTR, and nonlesional white matter with normal MTR. (18)F-PBR111 binding was higher in the white matter lesions and perilesional volumes of MS patients than in white matter of healthy controls (P < 0.05). Although there was substantial heterogeneity in binding between different lesions, a within-subject analysis showed higher (18)F-PBR111 binding in MS lesions (P < 0.05) and in perilesional (P < 0.05) and nonlesional white matter with reduced MTR (P < 0.005) than in nonlesional white matter with a normal MTR. A positive correlation was observed between the mean (18)F-PBR111 volume of distribution increase in lesions relative to nonlesional white matter with a normal MTR and the MS severity score (Spearman ρ = 0.62, P < 0.05). This study demonstrates that quantitative TSPO PET with a second-generation radioligand can be used to characterize innate immune responses in MS in vivo and provides further evidence supporting an association between the white matter TSPO PET signal in lesions and disease severity. Our approach is practical for extension to studies of the role of the innate immune response in MS for differentiation of antiinflammatory effects of new medicines and their longer term impact on clinical outcome. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  14. Tumor Metabolism and Perfusion in Head and Neck Squamous Cell Carcinoma: Pretreatment Multimodality Imaging With {sup 1}H Magnetic Resonance Spectroscopy, Dynamic Contrast-Enhanced MRI, and [{sup 18}F]FDG-PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansen, Jacobus F.A.; Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Radiology, Maastricht University Medical Center, Maastricht

    2012-01-01

    Purpose: To correlate proton magnetic resonance spectroscopy ({sup 1}H-MRS), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), and {sup 18}F-labeled fluorodeoxyglucose positron emission tomography ([{sup 18}F]FDG PET) of nodal metastases in patients with head and neck squamous cell carcinoma (HNSCC) for assessment of tumor biology. Additionally, pretreatment multimodality imaging was evaluated for its efficacy in predicting short-term response to treatment. Methods and Materials: Metastatic neck nodes were imaged with {sup 1}H-MRS, DCE-MRI, and [{sup 18}F]FDG PET in 16 patients with newly diagnosed HNSCC, before treatment. Short-term patient radiological response was evaluated at 3 to 4 months. Correlations among {sup 1}H-MRS (choline concentrationmore » relative to water [Cho/W]), DCE-MRI (volume transfer constant [K{sup trans}]; volume fraction of the extravascular extracellular space [v{sub e}]; and redistribution rate constant [k{sub ep}]), and [{sup 18}F]FDG PET (standard uptake value [SUV] and total lesion glycolysis [TLG]) were calculated using nonparametric Spearman rank correlation. To predict short-term responses, logistic regression analysis was performed. Results: A significant positive correlation was found between Cho/W and TLG ({rho} = 0.599; p = 0.031). Cho/W correlated negatively with heterogeneity measures of standard deviation std(v{sub e}) ({rho} = -0.691; p = 0.004) and std(k{sub ep}) ({rho} = -0.704; p = 0.003). Maximum SUV (SUVmax) values correlated strongly with MRI tumor volume ({rho} = 0.643; p = 0.007). Logistic regression indicated that std(K{sup trans}) and SUVmean were significant predictors of short-term response (p < 0.07). Conclusion: Pretreatment multimodality imaging using {sup 1}H-MRS, DCE-MRI, and [{sup 18}F]FDG PET is feasible in HNSCC patients with nodal metastases. Additionally, combined DCE-MRI and [{sup 18}F]FDG PET parameters were predictive of short-term response to treatment.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradshaw, Tyler J.; Bowen, Stephen R.; Deveau, Michael A.

    Purpose: Imaging biomarkers of resistance to radiation therapy can inform and guide treatment management. Most studies have so far focused on assessing a single imaging biomarker. The goal of this study was to explore a number of different molecular imaging biomarkers as surrogates of resistance to radiation therapy. Methods and Materials: Twenty-two canine patients with spontaneous sinonasal tumors were treated with accelerated hypofractionated radiation therapy, receiving either 10 fractions of 4.2 Gy each or 10 fractions of 5.0 Gy each to the gross tumor volume. Patients underwent fluorodeoxyglucose (FDG)-, fluorothymidine (FLT)-, and Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM)-labeled positron emission tomography/computed tomography (PET/CT) imaging before therapymore » and FLT and Cu-ATSM PET/CT imaging during therapy. In addition to conventional maximum and mean standardized uptake values (SUV{sub max}; SUV{sub mean}) measurements, imaging metrics providing response and spatiotemporal information were extracted for each patient. Progression-free survival was assessed according to response evaluation criteria in solid tumor. The prognostic value of each imaging biomarker was evaluated using univariable Cox proportional hazards regression. Multivariable analysis was also performed but was restricted to 2 predictor variables due to the limited number of patients. The best bivariable model was selected according to pseudo-R{sup 2}. Results: The following variables were significantly associated with poor clinical outcome following radiation therapy according to univariable analysis: tumor volume (P=.011), midtreatment FLT SUV{sub mean} (P=.018), and midtreatment FLT SUV{sub max} (P=.006). Large decreases in FLT SUV{sub mean} from pretreatment to midtreatment were associated with worse clinical outcome (P=.013). In the bivariable model, the best 2-variable combination for predicting poor outcome was high midtreatment FLT SUV{sub max} (P=.022) in combination with large FLT response from pretreatment to midtreatment (P=.041). Conclusions: In addition to tumor volume, pronounced tumor proliferative response quantified using FLT PET, especially when associated with high residual FLT PET at midtreatment, is a negative prognostic biomarker of outcome in canine tumors following radiation therapy. Neither FDG PET nor Cu-ATSM PET were predictive of outcome.« less

  16. TU-AB-BRA-05: Repeatability of [F-18]-NaF PET Imaging Biomarkers for Bone Lesions: A Multicenter Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, C; Bradshaw, T; Perk, T

    2015-06-15

    Purpose: Quantifying the repeatability of imaging biomarkers is critical for assessing therapeutic response. While therapeutic efficacy has been traditionally quantified by SUV metrics, imaging texture features have shown potential for use as quantitative biomarkers. In this study we evaluated the repeatability of quantitative {sup 18}F-NaF PET-derived SUV metrics and texture features in bone lesions from patients in a multicenter study. Methods: Twenty-nine metastatic castrate-resistant prostate cancer patients received whole-body test-retest NaF PET/CT scans from one of three harmonized imaging centers. Bone lesions of volume greater than 1.5 cm{sup 3} were identified and automatically segmented using a SUV>15 threshold. From eachmore » lesion, 55 NaF PET-derived texture features (including first-order, co-occurrence, grey-level run-length, neighbor gray-level, and neighbor gray-tone difference matrix) were extracted. The test-retest repeatability of each SUV metric and texture feature was assessed with Bland-Altman analysis. Results: A total of 315 bone lesions were evaluated. Of the traditional SUV metrics, the repeatability coefficient (RC) was 12.6 SUV for SUVmax, 2.5 SUV for SUVmean, and 4.3 cm{sup 3} for volume. Their respective intralesion coefficients of variation (COVs) were 12%, 17%, and 6%. Of the texture features, COV was lowest for entropy (0.03%) and highest for kurtosis (105%). Lesion intraclass correlation coefficient (ICC) was lowest for maximum correlation coefficient (ICC=0.848), and highest for entropy (ICC=0.985). Across imaging centers, repeatability of texture features and SUV varied. For example, across imaging centers, COV for SUVmax ranged between 11–23%. Conclusion: Many NaF PET-derived SUV metrics and texture features for bone lesions demonstrated high repeatability, such as SUVmax, entropy, and volume. Several imaging texture features demonstrated poor repeatability, such as SUVtotal and SUVstd. These results can be used to establish response criteria for NaF PET-based treatment response assessment. Prostate Cancer Foundation (PCF)« less

  17. Molecular imaging biomarkers of resistance to radiation therapy for spontaneous nasal tumors in canines.

    PubMed

    Bradshaw, Tyler J; Bowen, Stephen R; Deveau, Michael A; Kubicek, Lyndsay; White, Pamela; Bentzen, Søren M; Chappell, Richard J; Forrest, Lisa J; Jeraj, Robert

    2015-03-15

    Imaging biomarkers of resistance to radiation therapy can inform and guide treatment management. Most studies have so far focused on assessing a single imaging biomarker. The goal of this study was to explore a number of different molecular imaging biomarkers as surrogates of resistance to radiation therapy. Twenty-two canine patients with spontaneous sinonasal tumors were treated with accelerated hypofractionated radiation therapy, receiving either 10 fractions of 4.2 Gy each or 10 fractions of 5.0 Gy each to the gross tumor volume. Patients underwent fluorodeoxyglucose (FDG)-, fluorothymidine (FLT)-, and Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM)-labeled positron emission tomography/computed tomography (PET/CT) imaging before therapy and FLT and Cu-ATSM PET/CT imaging during therapy. In addition to conventional maximum and mean standardized uptake values (SUV(max); SUV(mean)) measurements, imaging metrics providing response and spatiotemporal information were extracted for each patient. Progression-free survival was assessed according to response evaluation criteria in solid tumor. The prognostic value of each imaging biomarker was evaluated using univariable Cox proportional hazards regression. Multivariable analysis was also performed but was restricted to 2 predictor variables due to the limited number of patients. The best bivariable model was selected according to pseudo-R(2). The following variables were significantly associated with poor clinical outcome following radiation therapy according to univariable analysis: tumor volume (P=.011), midtreatment FLT SUV(mean) (P=.018), and midtreatment FLT SUV(max) (P=.006). Large decreases in FLT SUV(mean) from pretreatment to midtreatment were associated with worse clinical outcome (P=.013). In the bivariable model, the best 2-variable combination for predicting poor outcome was high midtreatment FLT SUV(max) (P=.022) in combination with large FLT response from pretreatment to midtreatment (P=.041). In addition to tumor volume, pronounced tumor proliferative response quantified using FLT PET, especially when associated with high residual FLT PET at midtreatment, is a negative prognostic biomarker of outcome in canine tumors following radiation therapy. Neither FDG PET nor Cu-ATSM PET were predictive of outcome. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Use of Flutemetamol F 18-Labeled Positron Emission Tomography and Other Biomarkers to Assess Risk of Clinical Progression in Patients With Amnestic Mild Cognitive Impairment.

    PubMed

    Wolk, David A; Sadowsky, Carl; Safirstein, Beth; Rinne, Juha O; Duara, Ranjan; Perry, Richard; Agronin, Marc; Gamez, Jose; Shi, Jiong; Ivanoiu, Adrian; Minthon, Lennart; Walker, Zuzana; Hasselbalch, Steen; Holmes, Clive; Sabbagh, Marwan; Albert, Marilyn; Fleisher, Adam; Loughlin, Paul; Triau, Eric; Frey, Kirk; Høgh, Peter; Bozoki, Andrea; Bullock, Roger; Salmon, Eric; Farrar, Gillian; Buckley, Christopher J; Zanette, Michelle; Sherwin, Paul F; Cherubini, Andrea; Inglis, Fraser

    2018-05-14

    Patients with amnestic mild cognitive impairment (aMCI) may progress to clinical Alzheimer disease (AD), remain stable, or revert to normal. Earlier progression to AD among patients who were β-amyloid positive vs those who were β-amyloid negative has been previously observed. Current research now accepts that a combination of biomarkers could provide greater refinement in the assessment of risk for clinical progression. To evaluate the ability of flutemetamol F 18 and other biomarkers to assess the risk of progression from aMCI to probable AD. In this multicenter cohort study, from November 11, 2009, to January 16, 2014, patients with aMCI underwent positron emission tomography (PET) at baseline followed by local clinical assessments every 6 months for up to 3 years. Patients with aMCI (365 screened; 232 were eligible) were recruited from 28 clinical centers in Europe and the United States. Physicians remained strictly blinded to the results of PET, and the standard of truth was an independent clinical adjudication committee that confirmed or refuted local assessments. Flutemetamol F 18-labeled PET scans were read centrally as either negative or positive by 5 blinded readers with no knowledge of clinical status. Statistical analysis was conducted from February 19, 2014, to January 26, 2018. Flutemetamol F 18-labeled PET at baseline followed by up to 6 clinical visits every 6 months, as well as magnetic resonance imaging and multiple cognitive measures. Time from PET to probable AD or last follow-up was plotted as a Kaplan-Meier survival curve; PET scan results, age, hippocampal volume, and aMCI stage were entered into Cox proportional hazards logistic regression analyses to identify variables associated with progression to probable AD. Of 232 patients with aMCI (118 women and 114 men; mean [SD] age, 71.1 [8.6] years), 98 (42.2%) had positive results detected on PET scan. By 36 months, the rates of progression to probable AD were 36.2% overall (81 of 224 patients), 53.6% (52 of 97) for patients with positive results detected on PET scan, and 22.8% (29 of 127) for patients with negative results detected on PET scan. Hazard ratios for association with progression were 2.51 (95% CI, 1.57-3.99; P < .001) for a positive β-amyloid scan alone (primary outcome measure), 5.60 (95% CI, 3.14-9.98; P < .001) with additional low hippocampal volume, and 8.45 (95% CI, 4.40-16.24; P < .001) when poorer cognitive status was added to the model. A combination of positive results of flutemetamol F 18-labeled PET, low hippocampal volume, and cognitive status corresponded with a high probability of risk of progression from aMCI to probable AD within 36 months.

  19. Simultaneous whole-body 18F-PSMA-1007-PET/MRI with integrated high-resolution multiparametric imaging of the prostatic fossa for comprehensive oncological staging of patients with prostate cancer: a pilot study.

    PubMed

    Freitag, Martin T; Kesch, Claudia; Cardinale, Jens; Flechsig, Paul; Floca, Ralf; Eiber, Matthias; Bonekamp, David; Radtke, Jan P; Kratochwil, Clemens; Kopka, Klaus; Hohenfellner, Markus; Stenzinger, Albrecht; Schlemmer, Heinz-Peter; Haberkorn, Uwe; Giesel, Frederik

    2018-03-01

    The aim of the present study was to explore the clinical feasibility and reproducibility of a comprehensive whole-body 18 F-PSMA-1007-PET/MRI protocol for imaging prostate cancer (PC) patients. Eight patients with high-risk biopsy-proven PC underwent a whole-body PET/MRI (3 h p.i.) including a multi-parametric prostate MRI after 18 F-PSMA-1007-PET/CT (1 h p.i.) which served as reference. Seven patients presented with non-treated PC, whereas one patient presented with biochemical recurrence. SUV mean -quantification was performed using a 3D-isocontour volume-of-interest. Imaging data was consulted for TNM-staging and compared with histopathology. PC was confirmed in 4/7 patients additionally by histopathology after surgery. PET-artifacts, co-registration of pelvic PET/MRI and MRI-data were assessed (PI-RADS 2.0). The examinations were well accepted by patients and comprised 1 h. SUV mean -values between PET/CT (1 h p.i.) and PET/MRI (3 h p.i.) were significantly correlated (p < 0.0001, respectively) and similar to literature of 18 F-PSMA-1007-PET/CT 1 h vs 3 h p.i. The dominant intraprostatic lesion could be detected in all seven patients in both PET and MRI. T2c, T3a, T3b and T4 features were detected complimentarily by PET and MRI in five patients. PET/MRI demonstrated moderate photopenic PET-artifacts surrounding liver and kidneys representing high-contrast areas, no PET-artifacts were observed for PET/CT. Simultaneous PET-readout during prostate MRI achieved optimal co-registration results. The presented 18 F-PSMA-1007-PET/MRI protocol combines efficient whole-body assessment with high-resolution co-registered PET/MRI of the prostatic fossa for comprehensive oncological staging of patients with PC.

  20. MULTIMODAL CLASSIFICATION OF DEMENTIA USING FUNCTIONAL DATA, ANATOMICAL FEATURES AND 3D INVARIANT SHAPE DESCRIPTORS

    PubMed Central

    Mikhno, Arthur; Nuevo, Pablo Martinez; Devanand, Davangere P.; Parsey, Ramin V.; Laine, Andrew F.

    2013-01-01

    Multimodality classification of Alzheimer’s disease (AD) and its prodromal stage, Mild Cognitive Impairment (MCI), is of interest to the medical community. We improve on prior classification frameworks by incorporating multiple features from MRI and PET data obtained with multiple radioligands, fluorodeoxyglucose (FDG) and Pittsburg compound B (PIB). We also introduce a new MRI feature, invariant shape descriptors based on 3D Zernike moments applied to the hippocampus region. Classification performance is evaluated on data from 17 healthy controls (CTR), 22 MCI, and 17 AD subjects. Zernike significantly outperforms volume, accuracy (Zernike to volume): CTR/AD (90.7% to 71.6%), CTR/MCI (76.2% to 60.0%), MCI/AD (84.3% to 65.5%). Zernike also provides comparable and complementary performance to PET. Optimal accuracy is achieved when Zernike and PET features are combined (accuracy, specificity, sensitivity), CTR/AD (98.8%, 99.5%, 98.1%), CTR/MCI (84.3%, 82.9%, 85.9%) and MCI/AD (93.3%, 93.6%, 93.3%). PMID:24576927

  1. MULTIMODAL CLASSIFICATION OF DEMENTIA USING FUNCTIONAL DATA, ANATOMICAL FEATURES AND 3D INVARIANT SHAPE DESCRIPTORS.

    PubMed

    Mikhno, Arthur; Nuevo, Pablo Martinez; Devanand, Davangere P; Parsey, Ramin V; Laine, Andrew F

    2012-01-01

    Multimodality classification of Alzheimer's disease (AD) and its prodromal stage, Mild Cognitive Impairment (MCI), is of interest to the medical community. We improve on prior classification frameworks by incorporating multiple features from MRI and PET data obtained with multiple radioligands, fluorodeoxyglucose (FDG) and Pittsburg compound B (PIB). We also introduce a new MRI feature, invariant shape descriptors based on 3D Zernike moments applied to the hippocampus region. Classification performance is evaluated on data from 17 healthy controls (CTR), 22 MCI, and 17 AD subjects. Zernike significantly outperforms volume, accuracy (Zernike to volume): CTR/AD (90.7% to 71.6%), CTR/MCI (76.2% to 60.0%), MCI/AD (84.3% to 65.5%). Zernike also provides comparable and complementary performance to PET. Optimal accuracy is achieved when Zernike and PET features are combined (accuracy, specificity, sensitivity), CTR/AD (98.8%, 99.5%, 98.1%), CTR/MCI (84.3%, 82.9%, 85.9%) and MCI/AD (93.3%, 93.6%, 93.3%).

  2. A tracer kinetic model for 18F-FHBG for quantitating herpes simplex virus type 1 thymidine kinase reporter gene expression in living animals using PET.

    PubMed

    Green, Leeta Alison; Nguyen, Khoi; Berenji, Bijan; Iyer, Meera; Bauer, Eileen; Barrio, Jorge R; Namavari, Mohammad; Satyamurthy, Nagichettiar; Gambhir, Sanjiv S

    2004-09-01

    Reporter probe 9-(4-18F-fluoro-3-[hydroxymethyl]butyl)guanine (18F-FHBG) and reporter gene mutant herpes simplex virus type 1 thymidine kinase (HSV1-sr39tk) have been used for imaging reporter gene expression with PET. Current methods for quantitating the images using the percentage injected dose per gram of tissue do not distinguish between the effects of probe transport and subsequent phosphorylation. We therefore investigated tracer kinetic models for 18F-FHBG dynamic microPET data and noninvasive methods for determining blood time-activity curves in an adenoviral gene delivery model in mice. 18F-FHBG (approximately 7.4 MBq [approximately 200 microCi]) was injected into 4 mice; 18F-FHBG concentrations in plasma and whole blood were measured from mouse heart left ventricle (LV) direct sampling. Replication-incompetent adenovirus (0-2 x 10(9) plaque-forming units) with the E1 region deleted (n = 8) or replaced by HSV1-sr39tk (n = 18) was tail-vein injected into mice. Mice were dynamically scanned using microPET (approximately 7.4 MBq [approximately 200 microCi] 18F-FHBG) over 1 h; regions of interest were drawn on images of the heart and liver. Serial whole blood 18F-FHBG concentrations were measured in 6 of the mice by LV sampling, and 1 least-squares ratio of the heart image to the LV time-activity curve was calculated for all 6 mice. For 2 control mice and 9 mice expressing HSV1-sr39tk, heart image (input function) and liver image time-activity curves (tissue curves) were fit to 2- and 3-compartment models using Levenberg-Marquardt nonlinear regression. The models were compared using an F statistic. HSV1-sr39TK enzyme activity was determined from liver samples and compared with model parameter estimates. For another 3 control mice and 6 HSV1-sr39TK-positive mice, the model-predicted relative percentage of metabolites was compared with high-performance liquid chromatography analysis. The ratio of 18F-FHBG in plasma to whole blood was 0.84 +/- 0.05 (mean +/- SE) by 30 s after injection. The least-squares ratio of the heart image time-activity curve to the LV time-activity curve was 0.83 +/- 0.02, consistent with the recovery coefficient for the partial-volume effect (0.81) based on independent measures of heart geometry. A 3-compartment model best described 18F-FHBG kinetics in mice expressing HSV1-sr39tk in the liver; a 2-compartment model best described the kinetics in control mice. The 3-compartment model parameter, k3, correlated well with the HSV1-sr39TK enzyme activity (r2 = 0.88). 18F-FHBG equilibrates rapidly between plasma and whole blood in mice. Heart image time-activity curves corrected for partial-volume effects well approximate LV time-activity curves and can be used as input functions for 2- and 3-compartment models. The model parameter k3 from the 3-compartment model can be used as a noninvasive estimate for HSV1-sr39TK reporter protein activity and can predict the relative percentage of metabolites.

  3. Four-Dimensional Positron Emission Tomography: Implications for Dose Painting of High-Uptake Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aristophanous, Michalis, E-mail: maristophanous@lroc.harvard.edu; Yap, Jeffrey T.; Killoran, Joseph H.

    Purpose: To investigate the behavior of tumor subvolumes of high [18F]-fluorodeoxyglucose (FDG) uptake as seen on clinical four-dimensional (4D) FDG-positron emission tomography (PET) scans. Methods and Materials: Four-dimensional FDG-PET/computed tomography scans from 13 patients taken before radiotherapy were available. The analysis was focused on regions of high uptake that are potential dose-painting targets. A total of 17 lesions (primary tumors and lymph nodes) were analyzed. On each one of the five phases of the 4D scan a classification algorithm was applied to obtain the region of highest uptake and segment the tumor volume. We looked at the behavior of bothmore » the high-uptake subvolume, called 'Boost,' and the segmented tumor volume, called 'Target.' We measured several quantities that characterize the Target and Boost volumes and quantified correlations between them. Results: The behavior of the Target could not always predict the behavior of the Boost. The shape deformation of the Boost regions was on average 133% higher than that of the Target. The gross to internal target volume expansion was on average 27.4% for the Target and 64% for the Boost, a statistically significant difference (p < 0.05). Finally, the inhale-to-exhale phase (20%) had the highest shape deformation for the Boost regions. Conclusions: A complex relationship between the measured quantities for the Boost and Target volumes is revealed. The results suggest that in cases in which advanced therapy techniques such as dose painting are being used, a close examination of the 4D PET scan should be performed.« less

  4. Evaluation of Atlas-Based Attenuation Correction for Integrated PET/MR in Human Brain: Application of a Head Atlas and Comparison to True CT-Based Attenuation Correction.

    PubMed

    Sekine, Tetsuro; Buck, Alfred; Delso, Gaspar; Ter Voert, Edwin E G W; Huellner, Martin; Veit-Haibach, Patrick; Warnock, Geoffrey

    2016-02-01

    Attenuation correction (AC) for integrated PET/MR imaging in the human brain is still an open problem. In this study, we evaluated a simplified atlas-based AC (Atlas-AC) by comparing (18)F-FDG PET data corrected using either Atlas-AC or true CT data (CT-AC). We enrolled 8 patients (median age, 63 y). All patients underwent clinically indicated whole-body (18)F-FDG PET/CT for staging, restaging, or follow-up of malignant disease. All patients volunteered for an additional PET/MR of the head (additional tracer was not injected). For each patient, 2 AC maps were generated: an Atlas-AC map registered to a patient-specific liver accelerated volume acquisition-Flex MR sequence and using a vendor-provided head atlas generated from multiple CT head images and a CT-based AC map. For comparative AC, the CT-AC map generated from PET/CT was superimposed on the Atlas-AC map. PET images were reconstructed from the list-mode raw data from the PET/MR imaging scanner using each AC map. All PET images were normalized to the SPM5 PET template, and (18)F-FDG accumulation was quantified in 67 volumes of interest (VOIs; automated anatomic labeling atlas). Relative difference (%diff) between images based on Atlas-AC and CT-AC was calculated, and averaged difference images were generated. (18)F-FDG uptake in all VOIs was compared using Bland-Altman analysis. The range of error in all 536 VOIs was -3.0%-7.3%. Whole-brain (18)F-FDG uptake based on Atlas-AC was slightly underestimated (%diff = 2.19% ± 1.40%). The underestimation was most pronounced in the regions below the anterior/posterior commissure line, such as the cerebellum, temporal lobe, and central structures (%diff = 3.69% ± 1.43%, 3.25% ± 1.42%, and 3.05% ± 1.18%), suggesting that Atlas-AC tends to underestimate the attenuation values of the skull base bone. When compared with the gold-standard CT-AC, errors introduced using Atlas-AC did not exceed 8% in any brain region investigated. Underestimation of (18)F-FDG uptake was minor (<4%) but significant in regions near the skull base. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  5. Improved estimation of parametric images of cerebral glucose metabolic rate from dynamic FDG-PET using volume-wise principle component analysis

    NASA Astrophysics Data System (ADS)

    Dai, Xiaoqian; Tian, Jie; Chen, Zhe

    2010-03-01

    Parametric images can represent both spatial distribution and quantification of the biological and physiological parameters of tracer kinetics. The linear least square (LLS) method is a well-estimated linear regression method for generating parametric images by fitting compartment models with good computational efficiency. However, bias exists in LLS-based parameter estimates, owing to the noise present in tissue time activity curves (TTACs) that propagates as correlated error in the LLS linearized equations. To address this problem, a volume-wise principal component analysis (PCA) based method is proposed. In this method, firstly dynamic PET data are properly pre-transformed to standardize noise variance as PCA is a data driven technique and can not itself separate signals from noise. Secondly, the volume-wise PCA is applied on PET data. The signals can be mostly represented by the first few principle components (PC) and the noise is left in the subsequent PCs. Then the noise-reduced data are obtained using the first few PCs by applying 'inverse PCA'. It should also be transformed back according to the pre-transformation method used in the first step to maintain the scale of the original data set. Finally, the obtained new data set is used to generate parametric images using the linear least squares (LLS) estimation method. Compared with other noise-removal method, the proposed method can achieve high statistical reliability in the generated parametric images. The effectiveness of the method is demonstrated both with computer simulation and with clinical dynamic FDG PET study.

  6. Comparison of 68Ga-HBED-CC PSMA-PET/CT and multiparametric MRI for gross tumour volume detection in patients with primary prostate cancer based on slice by slice comparison with histopathology

    PubMed Central

    Zamboglou, Constantinos; Drendel, Vanessa; Jilg, Cordula A.; Rischke, Hans C.; Beck, Teresa I.; Schultze-Seemann, Wolfgang; Krauss, Tobias; Mix, Michael; Schiller, Florian; Wetterauer, Ulrich; Werner, Martin; Langer, Mathias; Bock, Michael; Meyer, Philipp T.; Grosu, Anca L.

    2017-01-01

    Purpose: The exact detection and delineation of the intraprostatic tumour burden is crucial for treatment planning in primary prostate cancer (PCa). We compared 68Ga-HBED-CC-PSMA PET/CT with multiparametric MRI (mpMRI) for diagnosis and tumour delineation in patients with primary PCa based on slice by slice correlation with histopathological reference material. Methodology: Seven patients with histopathologically proven primary PCa underwent 68Ga-HBED-CC-PSMA PET/CT and MRI followed by radical prostatectomy. Resected prostates were scanned by ex-vivo CT in a special localizer and prepared for histopathology. Invasive PCa was delineated on a HE stained histologic tissue slide and matched to ex-vivo CT to obtain gross tumor volume (GTV-)histo. Ex-vivo CT including GTV-histo and MRI data were matched to in-vivo CT(PET). Consensus contours based on MRI (GTV-MRI), PSMA PET (GTV-PET) or the combination of both (GTV-union/-intersection) were created. In each in-vivo CT slice the prostate was separated into 4 equal segments and sensitivity and specificity for PSMA PET and mpMRI were assessed by comparison with histological reference material. Furthermore, the spatial overlap between GTV-histo and GTV-PET/-MRI and the Sørensen-Dice coefficient (DSC) were calculated. In the case of multifocal PCa (4/7 patients), SUV values (PSMA PET) and ADC-values (diffusion weighted MRI) were obtained for each lesion. Results: PSMA PET and mpMRI detected PCa in all patients. GTV-histo was detected in 225 of 340 segments (66.2%). Sensitivity and specificity for GTV-PET, GTV-MRI, GTV-union and GTV-intersection were 75% and 87%, 70% and 82%, 82% and 67%, 55% and 99%, respectively. GTV-histo had on average the highest overlap with GTV-union (57±22%), which was significantly higher than overlap with GTV-MRI (p=0.016) and GTV-PET (p=0.016), respectively. The mean DSC for GTV-union, GTV-PET and GTV-MRI was 0.51 (±0.18), 0.45 (±0.17) and 0.48 (±0.19), respectively. In every patient with multifocal PCa there was one lesion which had both the highest SUV and the lowest ADC-value (mean and max). Conclusion: In a slice by slice analysis with histopathology, 68Ga-HBED-CC-PSMA PET/CT and mpMRI showed high sensitivity and specificity in detection of primary PCa. A combination of both methods performed even better in terms of sensitivity (GTV-union) and specificity (GTV-intersection). A moderate to good spatial overlap with GTV-histo was observed for PSMA PET/CT and mpMRI alone which was significantly improved by GTV-union. Further studies are warranted to analyse the impact of these preliminary findings for diagnostic (multimodal guided TRUS biopsy) and therapeutic (focal therapy) strategies in primary PCa. PMID:28042330

  7. [18F]DPA-714 PET imaging shows immunomodulatory effect of intravenous administration of bone marrow stromal cells after transient focal ischemia.

    PubMed

    Tan, Chengbo; Zhao, Songji; Higashikawa, Kei; Wang, Zifeng; Kawabori, Masahito; Abumiya, Takeo; Nakayama, Naoki; Kazumata, Ken; Ukon, Naoyuki; Yasui, Hironobu; Tamaki, Nagara; Kuge, Yuji; Shichinohe, Hideo; Houkin, Kiyohiro

    2018-05-02

    The potential application of bone marrow stromal cell (BMSC) therapy in stroke has been anticipated due to its immunomodulatory effects. Recently, positron emission tomography (PET) with [ 18 F]DPA-714, a translocator protein (TSPO) ligand, has become available for use as a neural inflammatory indicator. We aimed to evaluate the effects of BMSC administration after transient middle cerebral artery occlusion (MCAO) using [ 18 F]DPA-714 PET. The BMSCs or vehicle were administered intravenously to rat MCAO models at 3 h after the insult. Neurological deficits, body weight, infarct volume, and histology were analyzed. [ 18 F]DPA-714 PET was performed 3 and 10 days after MCAO. Rats had severe neurological deficits and body weight loss after MCAO. Cell administration ameliorated these effects as well as the infarct volume. Although weight loss occurred in the spleen and thymus, cell administration suppressed it. In both vehicle and BMSC groups, [ 18 F]DPA-714 PET showed a high standardized uptake value (SUV) around the ischemic area 3 days after MCAO. Although SUV was increased further 10 days after MCAO in both groups, the increase was inhibited in the BMSC group, significantly. Histological analysis showed that an inflammatory reaction occurred in the lymphoid organs and brain after MCAO, which was suppressed in the BMSC group. The present results suggest that BMSC therapy could be effective in ischemic stroke due to modulation of systemic inflammatory responses. The [ 18 F]DPA-714 PET/CT system can accurately demonstrate brain inflammation and evaluate the BMSC therapeutic effect in an imaging context. It has great potential for clinical application.

  8. Stereotaxic 18F-FDG PET and MRI templates with three-dimensional digital atlas for statistical parametric mapping analysis of tree shrew brain.

    PubMed

    Huang, Qi; Nie, Binbin; Ma, Chen; Wang, Jing; Zhang, Tianhao; Duan, Shaofeng; Wu, Shang; Liang, Shengxiang; Li, Panlong; Liu, Hua; Sun, Hua; Zhou, Jiangning; Xu, Lin; Shan, Baoci

    2018-01-01

    Tree shrews are proposed as an alternative animal model to nonhuman primates due to their close affinity to primates. Neuroimaging techniques are widely used to study brain functions and structures of humans and animals. However, tree shrews are rarely applied in neuroimaging field partly due to the lack of available species specific analysis methods. In this study, 10 PET/CT and 10 MRI images of tree shrew brain were used to construct PET and MRI templates; based on histological atlas we reconstructed a three-dimensional digital atlas with 628 structures delineated; then the digital atlas and templates were aligned into a stereotaxic space. Finally, we integrated the digital atlas and templates into a toolbox for tree shrew brain spatial normalization, statistical analysis and results localization. We validated the feasibility of the toolbox by simulated data with lesions in laterodorsal thalamic nucleus (LD). The lesion volumes of simulated PET and MRI images were (12.97±3.91)mm 3 and (7.04±0.84)mm 3 . Statistical results at p<0.005 showed the lesion volumes of PET and MRI were 13.18mm 3 and 8.06mm 3 in LD. To our knowledge, we report the first PET template and digital atlas of tree shrew brain. Compared to the existing MRI templates, our MRI template was aligned into stereotaxic space. And the toolbox is the first software dedicated for tree shrew brain analysis. The templates and digital atlas of tree shrew brain, as well as the toolbox, facilitate the use of tree shrews in neuroimaging field. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Clinical Evaluation of Zero-Echo-Time Attenuation Correction for Brain 18F-FDG PET/MRI: Comparison with Atlas Attenuation Correction.

    PubMed

    Sekine, Tetsuro; Ter Voert, Edwin E G W; Warnock, Geoffrey; Buck, Alfred; Huellner, Martin; Veit-Haibach, Patrick; Delso, Gaspar

    2016-12-01

    Accurate attenuation correction (AC) on PET/MR is still challenging. The purpose of this study was to evaluate the clinical feasibility of AC based on fast zero-echo-time (ZTE) MRI by comparing it with the default atlas-based AC on a clinical PET/MR scanner. We recruited 10 patients with malignant diseases not located on the brain. In all patients, a clinically indicated whole-body 18 F-FDG PET/CT scan was acquired. In addition, a head PET/MR scan was obtained voluntarily. For each patient, 2 AC maps were generated from the MR images. One was atlas-AC, derived from T1-weighted liver acquisition with volume acceleration flex images (clinical standard). The other was ZTE-AC, derived from proton-density-weighted ZTE images by applying tissue segmentation and assigning continuous attenuation values to the bone. The AC map generated by PET/CT was used as a silver standard. On the basis of each AC map, PET images were reconstructed from identical raw data on the PET/MR scanner. All PET images were normalized to the SPM5 PET template. After that, these images were qualified visually and quantified in 67 volumes of interest (VOIs; automated anatomic labeling, atlas). Relative differences and absolute relative differences between PET images based on each AC were calculated. 18 F-FDG uptake in all 670 VOIs and generalized merged VOIs were compared using a paired t test. Qualitative analysis shows that ZTE-AC was robust to patient variability. Nevertheless, misclassification of air and bone in mastoid and nasal areas led to the overestimation of PET in the temporal lobe and cerebellum (%diff of ZTE-AC, 2.46% ± 1.19% and 3.31% ± 1.70%, respectively). The |%diff| of all 670 VOIs on ZTE was improved by approximately 25% compared with atlas-AC (ZTE-AC vs. atlas-AC, 1.77% ± 1.41% vs. 2.44% ± 1.63%, P < 0.01). In 2 of 7 generalized VOIs, |%diff| on ZTE-AC was significantly smaller than atlas-AC (ZTE-AC vs. atlas-AC: insula and cingulate, 1.06% ± 0.67% vs. 2.22% ± 1.10%, P < 0.01; central structure, 1.03% ± 0.99% vs. 2.54% ± 1.20%, P < 0.05). The ZTE-AC could provide more accurate AC than clinical atlas-AC by improving the estimation of head-skull attenuation. The misclassification in mastoid and nasal areas must be addressed to prevent the overestimation of PET in regions near the skull base. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  10. Improved estimates of partial volume coefficients from noisy brain MRI using spatial context.

    PubMed

    Manjón, José V; Tohka, Jussi; Robles, Montserrat

    2010-11-01

    This paper addresses the problem of accurate voxel-level estimation of tissue proportions in the human brain magnetic resonance imaging (MRI). Due to the finite resolution of acquisition systems, MRI voxels can contain contributions from more than a single tissue type. The voxel-level estimation of this fractional content is known as partial volume coefficient estimation. In the present work, two new methods to calculate the partial volume coefficients under noisy conditions are introduced and compared with current similar methods. Concretely, a novel Markov Random Field model allowing sharp transitions between partial volume coefficients of neighbouring voxels and an advanced non-local means filtering technique are proposed to reduce the errors due to random noise in the partial volume coefficient estimation. In addition, a comparison was made to find out how the different methodologies affect the measurement of the brain tissue type volumes. Based on the obtained results, the main conclusions are that (1) both Markov Random Field modelling and non-local means filtering improved the partial volume coefficient estimation results, and (2) non-local means filtering was the better of the two strategies for partial volume coefficient estimation. Copyright 2010 Elsevier Inc. All rights reserved.

  11. The potential advantages of (18)FDG PET/CT-based target volume delineation in radiotherapy planning of head and neck cancer.

    PubMed

    Moule, Russell N; Kayani, Irfan; Moinuddin, Syed A; Meer, Khalda; Lemon, Catherine; Goodchild, Kathleen; Saunders, Michele I

    2010-11-01

    This study investigated two fixed threshold methods to delineate the target volume using (18)FDG PET/CT before and during a course of radical radiotherapy in locally advanced squamous cell carcinoma of the head and neck. Patients were enrolled into the study between March 2006 and May 2008. (18)FDG PET/CT scans were carried out 72h prior to the start of radiotherapy and then at 10, 44 and 66Gy. Functional volumes were delineated according to the SUV Cut Off (SUVCO) (2.5, 3.0, 3.5, and 4.0bwg/ml) and percentage of the SUVmax (30%, 35%, 40%, 45%, and 50%) thresholds. The background (18)FDG uptake and the SUVmax within the volumes were also assessed. Primary and lymph node volumes for the eight patients significantly reduced with each increase in the delineation threshold (for example 2.5-3.0bwg/ml SUVCO) compared to the baseline threshold at each imaging point. There was a significant reduction in the volume (p⩽0.0001-0.01) after 36Gy compared to the 0Gy by the SUVCO method. There was a negative correlation between the SUVmax within the primary and lymph node volumes and delivered radiation dose (p⩽0.0001-0.011) but no difference in the SUV within the background reference region. The volumes delineated by the PTSUVmax method increased with the increase in the delivered radiation dose after 36Gy because the SUVmax within the region of interest used to define the edge of the volume was equal or less than the background (18)FDG uptake and the software was unable to effectively differentiate between tumour and background uptake. The changes in the target volumes delineated by the SUVCO method were less susceptible to background (18)FDG uptake compared to those delineated by the PTSUVmax and may be more helpful in radiotherapy planning. The best method and threshold have still to be determined within institutions, both nationally and internationally. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Attenuation correction in emission tomography using the emission data—A review

    PubMed Central

    Li, Yusheng

    2016-01-01

    The problem of attenuation correction (AC) for quantitative positron emission tomography (PET) had been considered solved to a large extent after the commercial availability of devices combining PET with computed tomography (CT) in 2001; single photon emission computed tomography (SPECT) has seen a similar development. However, stimulated in particular by technical advances toward clinical systems combining PET and magnetic resonance imaging (MRI), research interest in alternative approaches for PET AC has grown substantially in the last years. In this comprehensive literature review, the authors first present theoretical results with relevance to simultaneous reconstruction of attenuation and activity. The authors then look back at the early history of this research area especially in PET; since this history is closely interwoven with that of similar approaches in SPECT, these will also be covered. We then review algorithmic advances in PET, including analytic and iterative algorithms. The analytic approaches are either based on the Helgason–Ludwig data consistency conditions of the Radon transform, or generalizations of John’s partial differential equation; with respect to iterative methods, we discuss maximum likelihood reconstruction of attenuation and activity (MLAA), the maximum likelihood attenuation correction factors (MLACF) algorithm, and their offspring. The description of methods is followed by a structured account of applications for simultaneous reconstruction techniques: this discussion covers organ-specific applications, applications specific to PET/MRI, applications using supplemental transmission information, and motion-aware applications. After briefly summarizing SPECT applications, we consider recent developments using emission data other than unscattered photons. In summary, developments using time-of-flight (TOF) PET emission data for AC have shown promising advances and open a wide range of applications. These techniques may both remedy deficiencies of purely MRI-based AC approaches in PET/MRI and improve standalone PET imaging. PMID:26843243

  13. Prototype positron emission tomography insert with electro-optical signal transmission for simultaneous operation with MRI.

    PubMed

    Olcott, Peter; Kim, Ealgoo; Hong, Keyjo; Lee, Brian J; Grant, Alexander M; Chang, Chen-Ming; Glover, Gary; Levin, Craig S

    2015-05-07

    The simultaneous acquisition of PET and MRI data shows promise to provide powerful capabilities to study disease processes in human subjects, guide the development of novel treatments, and monitor therapy response and disease progression. A brain-size PET detector ring insert for an MRI system is being developed that, if successful, can be inserted into any existing MRI system to enable simultaneous PET and MRI images of the brain to be acquired without mutual interference. The PET insert uses electro-optical coupling to relay all the signals from the PET detectors out of the MRI system using analog modulated lasers coupled to fiber optics. Because the fibers use light instead of electrical signals, the PET detector can be electrically decoupled from the MRI making it partially transmissive to the RF field of the MRI. The SiPM devices and low power lasers were powered using non-magnetic MRI compatible batteries. Also, the number of laser-fiber channels in the system was reduced using techniques adapted from the field of compressed sensing. Using the fact that incoming PET data is sparse in time and space, electronic circuits implementing constant weight codes uniquely encode the detector signals in order to reduce the number of electro-optical readout channels by 8-fold. Two out of a total of sixteen electro-optical detector modules have been built and tested with the entire RF-shielded detector gantry for the PET ring insert. The two detectors have been tested outside and inside of a 3T MRI system to study mutual interference effects and simultaneous performance with MRI. Preliminary results show that the PET insert is feasible for high resolution simultaneous PET/MRI imaging for applications in the brain.

  14. Prototype positron emission tomography insert with electro-optical signal transmission for simultaneous operation with MRI

    NASA Astrophysics Data System (ADS)

    Olcott, Peter; Kim, Ealgoo; Hong, Keyjo; Lee, Brian J.; Grant, Alexander M.; Chang, Chen-Ming; Glover, Gary; Levin, Craig S.

    2015-05-01

    The simultaneous acquisition of PET and MRI data shows promise to provide powerful capabilities to study disease processes in human subjects, guide the development of novel treatments, and monitor therapy response and disease progression. A brain-size PET detector ring insert for an MRI system is being developed that, if successful, can be inserted into any existing MRI system to enable simultaneous PET and MRI images of the brain to be acquired without mutual interference. The PET insert uses electro-optical coupling to relay all the signals from the PET detectors out of the MRI system using analog modulated lasers coupled to fiber optics. Because the fibers use light instead of electrical signals, the PET detector can be electrically decoupled from the MRI making it partially transmissive to the RF field of the MRI. The SiPM devices and low power lasers were powered using non-magnetic MRI compatible batteries. Also, the number of laser-fiber channels in the system was reduced using techniques adapted from the field of compressed sensing. Using the fact that incoming PET data is sparse in time and space, electronic circuits implementing constant weight codes uniquely encode the detector signals in order to reduce the number of electro-optical readout channels by 8-fold. Two out of a total of sixteen electro-optical detector modules have been built and tested with the entire RF-shielded detector gantry for the PET ring insert. The two detectors have been tested outside and inside of a 3T MRI system to study mutual interference effects and simultaneous performance with MRI. Preliminary results show that the PET insert is feasible for high resolution simultaneous PET/MRI imaging for applications in the brain.

  15. Attenuation correction in emission tomography using the emission data—A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berker, Yannick, E-mail: berker@mail.med.upenn.edu; Li, Yusheng

    2016-02-15

    The problem of attenuation correction (AC) for quantitative positron emission tomography (PET) had been considered solved to a large extent after the commercial availability of devices combining PET with computed tomography (CT) in 2001; single photon emission computed tomography (SPECT) has seen a similar development. However, stimulated in particular by technical advances toward clinical systems combining PET and magnetic resonance imaging (MRI), research interest in alternative approaches for PET AC has grown substantially in the last years. In this comprehensive literature review, the authors first present theoretical results with relevance to simultaneous reconstruction of attenuation and activity. The authors thenmore » look back at the early history of this research area especially in PET; since this history is closely interwoven with that of similar approaches in SPECT, these will also be covered. We then review algorithmic advances in PET, including analytic and iterative algorithms. The analytic approaches are either based on the Helgason–Ludwig data consistency conditions of the Radon transform, or generalizations of John’s partial differential equation; with respect to iterative methods, we discuss maximum likelihood reconstruction of attenuation and activity (MLAA), the maximum likelihood attenuation correction factors (MLACF) algorithm, and their offspring. The description of methods is followed by a structured account of applications for simultaneous reconstruction techniques: this discussion covers organ-specific applications, applications specific to PET/MRI, applications using supplemental transmission information, and motion-aware applications. After briefly summarizing SPECT applications, we consider recent developments using emission data other than unscattered photons. In summary, developments using time-of-flight (TOF) PET emission data for AC have shown promising advances and open a wide range of applications. These techniques may both remedy deficiencies of purely MRI-based AC approaches in PET/MRI and improve standalone PET imaging.« less

  16. Cyst infection in hospital-admitted autosomal dominant polycystic kidney disease patients is predominantly multifocal and associated with kidney and liver volume

    PubMed Central

    Balbo, B.E.P.; Sapienza, M.T.; Ono, C.R.; Jayanthi, S.K.; Dettoni, J.B.; Castro, I.; Onuchic, L.F.

    2014-01-01

    Positron-emission tomography/computed tomography (PET/CT) has improved cyst infection (CI) management in autosomal dominant polycystic kidney disease (ADPKD). The determinants of kidney and/or liver involvement, however, remain uncertain. In this study, we evaluated clinical and imaging factors associated with CI in kidney (KCI) and liver (LCI) in ADPKD. A retrospective cohort study was performed in hospital-admitted ADPKD patients with suspected CI. Clinical, imaging and surgical data were analyzed. Features of infected cysts were evaluated by PET/CT. Total kidney (TKV) and liver (TLV) volumes were measured by CT-derived multiplanar reconstruction. CI was detected in 18 patients who experienced 24 episodes during an interval of 30 months (LCI in 12, KCI in 10 and concomitant infection in 2). Sensitivities of CT, magnetic resonance imaging and PET/CT were 25.0, 71.4, and 95.0%. Dysuria (P<0.05), positive urine culture (P<0.01), and previous hematuria (P<0.05) were associated with KCI. Weight loss (P<0.01) and increased C-reactive protein levels (P<0.05) were associated with LCI. PET/CT revealed that three or more infected cysts were present in 70% of the episodes. TKV was higher in kidney-affected than in LCI patients (AUC=0.91, P<0.05), with a cut-off of 2502 mL (72.7% sensitivity, 100.0% specificity). TLV was higher in liver-affected than in KCI patients (AUC=0.89, P<0.01) with a cut-off of 2815 mL (80.0% sensitivity, 87.5% specificity). A greater need for invasive procedures was observed in LCI (P<0.01), and the overall mortality was 20.8%. This study supports PET/CT as the most sensitive imaging method for diagnosis of cyst infection, confirms the multifocal nature of most hospital-admitted episodes, and reveals an association of kidney and liver volumes with this complication. PMID:24919173

  17. FDG-PET Assessment of the Effect of Head and Neck Radiotherapy on Parotid Gland Glucose Metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roach, Michael C.; Turkington, Timothy G.; Department of Biomedical Engineering, Duke University Medical Center, Duke University, Durham, NC

    Purpose: Functional imaging with [F-18]-fluorodeoxyglucose positron emission tomography (FDG-PET) provides the opportunity to define the physiology of the major salivary glands before and after radiation therapy. The goal of this retrospective study was to identify the radiation dose-response relationship of parotid gland glucose metabolism in patients with head and neck squamous cell carcinoma (HNSCC). Materials and Methods: Forty-nine adults with HNSCC were identified who had curative intent intensity-modulated radiation therapy (IMRT) and FDG-PET imaging before and after treatment. Using a graphical user interface, contours were delineated for the parotid glands on axial CT slices while all authors were blinded tomore » paired PET slices. Average and maximal standard uptake values (SUV) were measured within these anatomic regions. Changes in SUV and volume after radiation therapy were correlated with parotid gland dose-volume histograms from IMRT plans. Results: The average parotid gland volume was 30.7 mL and contracted 3.9 {+-} 1.9% with every increase of 10 Gy in mean dose (p = 0.04). However, within the first 3 months after treatment, there was a uniform reduction of 16.5% {+-} 7.3% regardless of dose. The average SUV{sub mean} of the glands was 1.63 {+-} 0.48 pretreatment and declined by 5.2% {+-} 2.5% for every increase of 10 Gy in mean dose (p = 0.04). The average SUV{sub max} was 4.07 {+-} 2.85 pretreatment and decreased in a sigmoid manner with mean dose. A threshold of 32 Gy for mean dose existed, after which SUV{sub max} declined rapidly. Conclusion: Radiation dose responses of the parotid glands can be measured by integrated CT/FDG-PET scans. Retrospective analysis showed sigmoidal declines in the maximum metabolism but linear declines in the average metabolism of the glands with dose. Future studies should correlate this decline in FDG uptake with saliva production to improve treatment planning.« less

  18. SU-F-R-14: PET Based Radiomics to Predict Outcomes in Patients with Hodgkin Lymphoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J; Aristophanous, M; Akhtari, M

    Purpose: To identify PET-based radiomics features associated with high refractory/relapsed disease risk for Hodgkin lymphoma patients. Methods: A total of 251 Hodgkin lymphoma patients including 19 primary refractory and 9 relapsed patients were investigated. All patients underwent an initial pre-treatment diagnostic FDG PET/CT scan. All cancerous lymph node regions (ROIs) were delineated by an experienced physician based on thresholding each volume of disease in the anatomical regions to SUV>2.5. We extracted 122 image features and evaluated the effect of ROI selection (the largest ROI, the ROI with highest mean SUV, merged ROI, and a single anatomic region [e.g. mediastinum]) onmore » classification accuracy. Random forest was used as a classifier and ROC analysis was used to assess the relationship between selected features and patient’s outcome status. Results: Each patient had between 1 and 9 separate ROIs, with much intra-patient variability in PET features. The best model, which used features from a single anatomic region (the mediastinal ROI, only volumes>5cc: 169 patients with 12 primary refractory) had a classification accuracy of 80.5% for primary refractory disease. The top five features, based on Gini index, consist of shape features (max 3D-diameter and volume) and texture features (correlation and information measure of correlation1&2). In the ROC analysis, sensitivity and specificity of the best model were 0.92 and 0.80, respectively. The area under the ROC (AUC) and the accuracy were 0.86 and 0.86, respectively. The classification accuracy was less than 60% for other ROI models or when ROIs less than 5cc were included. Conclusion: This study showed that PET-based radiomics features from the mediastinal lymph region are associated with primary refractory disease and therefore may play an important role in predicting outcomes in Hodgkin lymphoma patients. These features could be additive beyond baseline tumor and clinical characteristics, and may warrant more aggressive treatment.« less

  19. Correlation between tumour characteristics, SUV measurements, metabolic tumour volume, TLG and textural features assessed with 18F-FDG PET in a large cohort of oestrogen receptor-positive breast cancer patients.

    PubMed

    Lemarignier, Charles; Martineau, Antoine; Teixeira, Luis; Vercellino, Laetitia; Espié, Marc; Merlet, Pascal; Groheux, David

    2017-07-01

    The study was designed to evaluate 1) the relationship between PET image textural features (TFs) and SUVs, metabolic tumour volume (MTV), total lesion glycolysis (TLG) and tumour characteristics in a large prospective and homogenous cohort of oestrogen receptor-positive (ER+) breast cancer (BC) patients, and 2) the capability of those parameters to predict response to neoadjuvant chemotherapy (NAC). 171 consecutive patients with large or locally advanced ER+ BC without distant metastases underwent an 18 F-FDG PET examination before NAC. The primary tumour was delineated with an adaptive threshold segmentation method. Parameters of volume, intensity and texture (entropy, homogeneity, contrast and energy) were measured and compared with tumour characteristics determined on pre-treatment breast biopsy (Wilcoxon rank-sum test). The correlation between PET-derived parameters was determined using Spearman's coefficient. The relationship between PET features and pathological findings was determined using the Wilcoxon rank-sum test. Spearman's coefficients between SUV max and TFs were 0.43, 0.24, -0.43 and -0.15 respectively for entropy, homogeneity, energy and contrast; they were higher between MTV and TFs: 0.99, 0.86, -0.99 and -0.87. All TFs showed a significant association with the histological type (IDC vs. ILC; 0.02 < P < 0.03) but didn't with immunohistochemical characteristics. SUV max and TLG predicted the pathological response (P = 0.0021 and P = 0.02 respectively); TFs didn't (P: 0.27, 0.19, 0.94, 0.19 respectively for entropy, homogeneity, energy and contrast). The correlation of TFs was poor with SUV parameters and high with MTV. TFs showed a significant association with the histological type. Finally, while SUV max and TLG were able to predict response to NAC, TFs failed.

  20. Assessment of Lymph Nodes and Prostate Status Using Early Dynamic Curves with (18)F-Choline PET/CT in Prostate Cancer.

    PubMed

    Mathieu, Cédric; Ferrer, Ludovic; Carlier, Thomas; Colombié, Mathilde; Rusu, Daniela; Kraeber-Bodéré, Françoise; Campion, Loic; Rousseau, Caroline

    2015-01-01

    Dynamic image acquisition with (18)F-Choline [fluorocholine (FCH)] PET/CT in prostate cancer is mostly used to overcome the bladder repletion, which could obstruct the loco-regional analysis. The aim of our study was to analyze early dynamic FCH acquisitions to define pelvic lymph node or prostate pathological status. Retrospective analysis was performed on 39 patients for initial staging (n = 18), or after initial treatment (n = 21). Patients underwent 10-min dynamic acquisitions centered on the pelvis, after injection of 3-4 MBq/kg of FCH. Whole-body images were acquired about 1 h after injection using a PET/CT GE Discovery LS (GE-LS) or Siemens Biograph mCT (mCT). Maximum and mean SUV according to time were measured on nodal and prostatic lesions. SUVmean was corrected for partial volume effect (PVEC) with suitable recovery coefficients. The status of each lesion was based on histological results or patient follow-up (>6 months). A Mann-Whitney test and ANOVA were used to compare mean and receiver operating characteristic (ROC) curve analysis. The median PSA was 8.46 ng/mL and the median Gleason score was 3 + 4. Ninety-two lesions (43 lymph nodes and 49 prostate lesions) were analyzed, including 63 malignant lesions. In early dynamic acquisitions, the maximum and mean SUV were significantly higher, respectively, on mCT and GE-LS, in malignant versus benign lesions (p < 0.001, p < 0.001). Mean SUV without PVEC, allowed better discrimination of benign from malignant lesions, in comparison with maximum and mean SUV (with PVEC), for both early and late acquisitions. For patients acquired on mCT, area under the ROC curve showed a trend to better sensitivity and specificity for early acquisitions, compared with late acquisitions (SUVmax AUC 0.92 versus 0.85, respectively). Assessment of lymph nodes and prostate pathological status with early dynamic imaging using PET/CT FCH allowed prostate cancer detection in situations where proof of malignancy is difficult to obtain.

  1. Rapid Contour-based Segmentation for 18F-FDG PET Imaging of Lung Tumors by Using ITK-SNAP: Comparison to Expert-based Segmentation.

    PubMed

    Besson, Florent L; Henry, Théophraste; Meyer, Céline; Chevance, Virgile; Roblot, Victoire; Blanchet, Elise; Arnould, Victor; Grimon, Gilles; Chekroun, Malika; Mabille, Laurence; Parent, Florence; Seferian, Andrei; Bulifon, Sophie; Montani, David; Humbert, Marc; Chaumet-Riffaud, Philippe; Lebon, Vincent; Durand, Emmanuel

    2018-04-03

    Purpose To assess the performance of the ITK-SNAP software for fluorodeoxyglucose (FDG) positron emission tomography (PET) segmentation of complex-shaped lung tumors compared with an optimized, expert-based manual reference standard. Materials and Methods Seventy-six FDG PET images of thoracic lesions were retrospectively segmented by using ITK-SNAP software. Each tumor was manually segmented by six raters to generate an optimized reference standard by using the simultaneous truth and performance level estimate algorithm. Four raters segmented 76 FDG PET images of lung tumors twice by using ITK-SNAP active contour algorithm. Accuracy of ITK-SNAP procedure was assessed by using Dice coefficient and Hausdorff metric. Interrater and intrarater reliability were estimated by using intraclass correlation coefficients of output volumes. Finally, the ITK-SNAP procedure was compared with currently recommended PET tumor delineation methods on the basis of thresholding at 41% volume of interest (VOI; VOI 41 ) and 50% VOI (VOI 50 ) of the tumor's maximal metabolism intensity. Results Accuracy estimates for the ITK-SNAP procedure indicated a Dice coefficient of 0.83 (95% confidence interval: 0.77, 0.89) and a Hausdorff distance of 12.6 mm (95% confidence interval: 9.82, 15.32). Interrater reliability was an intraclass correlation coefficient of 0.94 (95% confidence interval: 0.91, 0.96). The intrarater reliabilities were intraclass correlation coefficients above 0.97. Finally, VOI 41 and VOI 50 accuracy metrics were as follows: Dice coefficient, 0.48 (95% confidence interval: 0.44, 0.51) and 0.34 (95% confidence interval: 0.30, 0.38), respectively, and Hausdorff distance, 25.6 mm (95% confidence interval: 21.7, 31.4) and 31.3 mm (95% confidence interval: 26.8, 38.4), respectively. Conclusion ITK-SNAP is accurate and reliable for active-contour-based segmentation of heterogeneous thoracic PET tumors. ITK-SNAP surpassed the recommended PET methods compared with ground truth manual segmentation. © RSNA, 2018.

  2. SU-E-J-275: Review - Computerized PET/CT Image Analysis in the Evaluation of Tumor Response to Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, W; Wang, J; Zhang, H

    Purpose: To review the literature in using computerized PET/CT image analysis for the evaluation of tumor response to therapy. Methods: We reviewed and summarized more than 100 papers that used computerized image analysis techniques for the evaluation of tumor response with PET/CT. This review mainly covered four aspects: image registration, tumor segmentation, image feature extraction, and response evaluation. Results: Although rigid image registration is straightforward, it has been shown to achieve good alignment between baseline and evaluation scans. Deformable image registration has been shown to improve the alignment when complex deformable distortions occur due to tumor shrinkage, weight loss ormore » gain, and motion. Many semi-automatic tumor segmentation methods have been developed on PET. A comparative study revealed benefits of high levels of user interaction with simultaneous visualization of CT images and PET gradients. On CT, semi-automatic methods have been developed for only tumors that show marked difference in CT attenuation between the tumor and the surrounding normal tissues. Quite a few multi-modality segmentation methods have been shown to improve accuracy compared to single-modality algorithms. Advanced PET image features considering spatial information, such as tumor volume, tumor shape, total glycolytic volume, histogram distance, and texture features have been found more informative than the traditional SUVmax for the prediction of tumor response. Advanced CT features, including volumetric, attenuation, morphologic, structure, and texture descriptors, have also been found advantage over the traditional RECIST and WHO criteria in certain tumor types. Predictive models based on machine learning technique have been constructed for correlating selected image features to response. These models showed improved performance compared to current methods using cutoff value of a single measurement for tumor response. Conclusion: This review showed that computerized PET/CT image analysis holds great potential to improve the accuracy in evaluation of tumor response. This work was supported in part by the National Cancer Institute Grant R01CA172638.« less

  3. Automatic co-segmentation of lung tumor based on random forest in PET-CT images

    NASA Astrophysics Data System (ADS)

    Jiang, Xueqing; Xiang, Dehui; Zhang, Bin; Zhu, Weifang; Shi, Fei; Chen, Xinjian

    2016-03-01

    In this paper, a fully automatic method is proposed to segment the lung tumor in clinical 3D PET-CT images. The proposed method effectively combines PET and CT information to make full use of the high contrast of PET images and superior spatial resolution of CT images. Our approach consists of three main parts: (1) initial segmentation, in which spines are removed in CT images and initial connected regions achieved by thresholding based segmentation in PET images; (2) coarse segmentation, in which monotonic downhill function is applied to rule out structures which have similar standardized uptake values (SUV) to the lung tumor but do not satisfy a monotonic property in PET images; (3) fine segmentation, random forests method is applied to accurately segment the lung tumor by extracting effective features from PET and CT images simultaneously. We validated our algorithm on a dataset which consists of 24 3D PET-CT images from different patients with non-small cell lung cancer (NSCLC). The average TPVF, FPVF and accuracy rate (ACC) were 83.65%, 0.05% and 99.93%, respectively. The correlation analysis shows our segmented lung tumor volumes has strong correlation ( average 0.985) with the ground truth 1 and ground truth 2 labeled by a clinical expert.

  4. Use of PET and Other Functional Imaging to Guide Target Delineation in Radiation Oncology.

    PubMed

    Verma, Vivek; Choi, J Isabelle; Sawant, Amit; Gullapalli, Rao P; Chen, Wengen; Alavi, Abass; Simone, Charles B

    2018-06-01

    Molecular and functional imaging is increasingly being used to guide radiotherapy (RT) management and target delineation. This review summarizes existing data in several disease sites of various functional imaging modalities, chiefly positron emission tomography/computed tomography (PET/CT), with respect to RT target definition and management. For gliomas, differentiation between postoperative changes and viable tumor is discussed, as well as focal dose escalation and reirradiation. Head and neck neoplasms may also benefit from precise PET/CT-based target delineation, especially for cancers of unknown primary; focal dose escalation is also described. In lung cancer, PET/CT can influence coverage of tumor volumes, dose escalation, and adaptive management. For cervical cancer, PET/CT as an adjunct to magnetic resonance imaging planning is discussed, as are dose escalation and delineation of avoidance targets such as the bone marrow. The emerging role of choline-based PET for prostate cancer and its impact on dose escalation is also described. Lastly, given the essential role of PET/CT for target definition in lymphoma, phase III trials of PET-directed management are reviewed, along with novel imaging modalities. Taken together, molecular and functional imaging approaches offer a major step to individualize radiotherapeutic care going forward. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. 18 F-FDG PET/CT for planning external beam radiotherapy alters therapy in 11% of 581 patients.

    PubMed

    Birk Christensen, Charlotte; Loft-Jakobsen, Annika; Munck Af Rosenschöld, Per; Højgaard, Liselotte; Roed, Henrik; Berthelsen, Anne K

    2018-03-01

    18 F-FDG PET/CT (FDG PET/CT) used in radiotherapy planning for extra-cerebral malignancy may reveal metastases to distant sites that may affect the choice of therapy. To investigate the role of FDG PET/CT on treatment strategy changes induced by the use of PET/CT as part of the radiotherapy planning. 'A major change of treatment strategy' was defined as either including more lesions in the gross tumour volume (GTV) distant from the primary tumour or a change in treatment modalities. The study includes 581 consecutive patients who underwent an FDG PET/CT scan for radiotherapy planning in our institution in the year 2008. All PET/CT scans were performed with the patient in treatment position with the use of immobilization devices according to the intended radiotherapy treatment. All scans were evaluated by a nuclear medicine physician together with a radiologist to delineate PET-positive GTV (GTV-PET). For 63 of the patients (11%), the PET/CT simulation scans resulted in a major change in treatment strategy because of the additional diagnostic information. Changes were most frequently observed in patients with lung cancer (20%) or upper gastrointestinal cancer (12%). In 65% of the patients for whom the PET/CT simulation scan revealed unexpected dissemination, radiotherapy was given - changed (n = 38) or unchanged (n = 13) according to the findings on the FDG PET/CT. Unexpected dissemination on the FDG PET/CT scanning performed for radiotherapy planning caused a change in treatment strategy in 11% of 581 patients. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  6. Performance of composite sand cement brick containing recycle concrete aggregate and waste polyethylene terephthalate with different mix design ratio

    NASA Astrophysics Data System (ADS)

    Azmi, N. B.; Khalid, F. S.; Irwan, J. M.; Mazenan, P. N.; Zahir, Z.; Shahidan, S.

    2018-04-01

    This study is focuses to the performance of composite sand cement brick containing recycle concrete aggregate and waste polyethylene terephthalate. The objective is to determine the mechanical properties such as compressive strength and water absorption of composite brick containing recycled concrete aggregate and polyethylene terephthalate waste and to determine the optimum mix ratio of bricks containing recycled concrete aggregate and polyethylene terephthalate waste. The bricks specimens were prepared by using 100% natural sand, they were then replaced by RCA at 25%, 50% and 75% with proportions of PET consists of 1.0%, 1.5%, 2.0% and 2.5% by weight of natural sand. Based on the results of compressive strength, it indicates that the replacement of RCA shows an increasing strength as the strength starts to increase from 25% to 50% for both mix design ratio. The strength for RCA 75% volume of replacement started to decrease as the volume of PET increase. However, the result of water absorption with 50% RCA and 1.0% PET show less permeable compared to control brick at both mix design ratio. Thus, one would expect the density of brick decrease and the water absorption to increase as the RCA and PET content is increased.

  7. Technical aspects of positron emission tomography/computed tomography in radiotherapy treatment planning.

    PubMed

    Scripes, Paola G; Yaparpalvi, Ravindra

    2012-09-01

    The usage of functional data in radiation therapy (RT) treatment planning (RTP) process is currently the focus of significant technical, scientific, and clinical development. Positron emission tomography (PET) using ((18)F) fluorodeoxyglucose is being increasingly used in RT planning in recent years. Fluorodeoxyglucose is the most commonly used radiotracer for diagnosis, staging, recurrent disease detection, and monitoring of tumor response to therapy (Lung Cancer 2012;76:344-349; Lung Cancer 2009;64:301-307; J Nucl Med 2008;49:532-540; J Nucl Med 2007;48:58S-67S). All the efforts to improve both PET and computed tomography (CT) image quality and, consequently, lesion detectability have a common objective to increase the accuracy in functional imaging and thus of coregistration into RT planning systems. In radiotherapy, improvement in target localization permits reduction of tumor margins, consequently reducing volume of normal tissue irradiated. Furthermore, smaller treated target volumes create the possibility of dose escalation, leading to increased chances of tumor cure and control. This article focuses on the technical aspects of PET/CT image acquisition, fusion, usage, and impact on the physics of RTP. The authors review the basic elements of RTP, modern radiation delivery, and the technical parameters of coregistration of PET/CT into RT computerized planning systems. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Quantitative Evaluation of Atlas-based Attenuation Correction for Brain PET in an Integrated Time-of-Flight PET/MR Imaging System.

    PubMed

    Yang, Jaewon; Jian, Yiqiang; Jenkins, Nathaniel; Behr, Spencer C; Hope, Thomas A; Larson, Peder E Z; Vigneron, Daniel; Seo, Youngho

    2017-07-01

    Purpose To assess the patient-dependent accuracy of atlas-based attenuation correction (ATAC) for brain positron emission tomography (PET) in an integrated time-of-flight (TOF) PET/magnetic resonance (MR) imaging system. Materials and Methods Thirty recruited patients provided informed consent in this institutional review board-approved study. All patients underwent whole-body fluorodeoxyglucose PET/computed tomography (CT) followed by TOF PET/MR imaging. With use of TOF PET data, PET images were reconstructed with four different attenuation correction (AC) methods: PET with patient CT-based AC (CTAC), PET with ATAC (air and bone from an atlas), PET with ATAC patientBone (air and tissue from the atlas with patient bone), and PET with ATAC boneless (air and tissue from the atlas without bone). For quantitative evaluation, PET mean activity concentration values were measured in 14 1-mL volumes of interest (VOIs) distributed throughout the brain and statistical significance was tested with a paired t test. Results The mean overall difference (±standard deviation) of PET with ATAC compared with PET with CTAC was -0.69 kBq/mL ± 0.60 (-4.0% ± 3.2) (P < .001). The results were patient dependent (range, -9.3% to 0.57%) and VOI dependent (range, -5.9 to -2.2). In addition, when bone was not included for AC, the overall difference of PET with ATAC boneless (-9.4% ± 3.7) was significantly worse than that of PET with ATAC (-4.0% ± 3.2) (P < .001). Finally, when patient bone was used for AC instead of atlas bone, the overall difference of PET with ATAC patientBone (-1.5% ± 1.5) improved over that of PET with ATAC (-4.0% ± 3.2) (P < .001). Conclusion ATAC in PET/MR imaging achieves similar quantification accuracy to that from CTAC by means of atlas-based bone compensation. However, patient-specific anatomic differences from the atlas causes bone attenuation differences and misclassified sinuses, which result in patient-dependent performance variation of ATAC. © RSNA, 2017 Online supplemental material is available for this article.

  9. The role of interim 18F-FDG PET/CT in prediction of response to ipilimumab treatment in metastatic melanoma.

    PubMed

    Sachpekidis, Christos; Anwar, Hoda; Winkler, Julia; Kopp-Schneider, Annette; Larribere, Lionel; Haberkorn, Uwe; Hassel, Jessica C; Dimitrakopoulou-Strauss, Antonia

    2018-07-01

    The aim of the present study was to assess the value of interim 18 F-FDG PET/CT performed after the first two cycles of ipilimumab treatment in the prediction of the final clinical response to this type of immunotherapy. The study group comprised 41 patients with unresectable metastatic melanoma scheduled for ipilimumab therapy. Whole-body 18 F-FDG PET/CT was performed before the start of ipilimumab treatment (baseline PET/CT) and after the initial two cycles of ipilimumab treatment (interim PET/CT). Evaluation of patient response to treatment was based on the European Organization for Research and Treatment of Cancer (EORTC) 1999 criteria for PET as well as the recently proposed PET Response Evaluation Criteria for Immunotherapy (PERCIMT). The patients' best clinical response, assessed at a median of 21.4 months (range 6.3-41.9 months) was used as reference. According to their best clinical response, the patients were divided into two groups: those showing clinical benefit (CB) including stable disease, partial response and complete response (31 patients), and those showing no clinical benefit (no-CB including progressive disease (10 patients). According to the EORTC criteria, interim PET/CT demonstrated progressive metabolic disease (PMD) in 20 patients, stable metabolic disease (SMD) in 11 patients, partial metabolic response (PMR) in 8 patients, and complete metabolic response (CMR) in 2 patients. According to the PERCIMT, interim PET/CT demonstrated PMD in 9 patients, SMD in 24 patients, PMR in 6 patients and CMR in 2 patients. On the basis of the interim PET, the patients were divided in a similar manner to the division according to clinical response into those showing metabolic benefit (MB) including SMD, PMR and CMR, and those showing no metabolic benefit (no-MB) including PMD. According to this dichotomization, the EORTC criteria showed a sensitivity (correctly predicting CB) of 64.5%, a specificity (correctly predicting no-CB) of 90.0%, a positive predictive value (PPV) of 95.2%, a negative predictive value (NPV) of 45.0% and an accuracy of 70.7% in predicting best clinical response. The PERCIMT showed a sensitivity of 93.6%, a specificity of 70.0%, a PPV of 90.6%, a NPV of 77.8% and an accuracy of 87.8%. The McNemar test showed that the PERCIMT had a significantly higher sensitivity than EORTC criteria (p = 0.004), while there was no significant difference in specificity (p = 0.5). The agreement between the two sets of criteria was poor (McNemar test p = 0.001, and accordingly kappa = 0.46). The application of the recently proposed PERCIMT to interim 18 F-FDG PET/CT provides a more sensitive predictor of final clinical response to immunotherapy than the application of the EORTC criteria in patients with metastatic melanoma.

  10. A computational pipeline for quantification of pulmonary infections in small animal models using serial PET-CT imaging.

    PubMed

    Bagci, Ulas; Foster, Brent; Miller-Jaster, Kirsten; Luna, Brian; Dey, Bappaditya; Bishai, William R; Jonsson, Colleen B; Jain, Sanjay; Mollura, Daniel J

    2013-07-23

    Infectious diseases are the second leading cause of death worldwide. In order to better understand and treat them, an accurate evaluation using multi-modal imaging techniques for anatomical and functional characterizations is needed. For non-invasive imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), there have been many engineering improvements that have significantly enhanced the resolution and contrast of the images, but there are still insufficient computational algorithms available for researchers to use when accurately quantifying imaging data from anatomical structures and functional biological processes. Since the development of such tools may potentially translate basic research into the clinic, this study focuses on the development of a quantitative and qualitative image analysis platform that provides a computational radiology perspective for pulmonary infections in small animal models. Specifically, we designed (a) a fast and robust automated and semi-automated image analysis platform and a quantification tool that can facilitate accurate diagnostic measurements of pulmonary lesions as well as volumetric measurements of anatomical structures, and incorporated (b) an image registration pipeline to our proposed framework for volumetric comparison of serial scans. This is an important investigational tool for small animal infectious disease models that can help advance researchers' understanding of infectious diseases. We tested the utility of our proposed methodology by using sequentially acquired CT and PET images of rabbit, ferret, and mouse models with respiratory infections of Mycobacterium tuberculosis (TB), H1N1 flu virus, and an aerosolized respiratory pathogen (necrotic TB) for a total of 92, 44, and 24 scans for the respective studies with half of the scans from CT and the other half from PET. Institutional Administrative Panel on Laboratory Animal Care approvals were obtained prior to conducting this research. First, the proposed computational framework registered PET and CT images to provide spatial correspondences between images. Second, the lungs from the CT scans were segmented using an interactive region growing (IRG) segmentation algorithm with mathematical morphology operations to avoid false positive (FP) uptake in PET images. Finally, we segmented significant radiotracer uptake from the PET images in lung regions determined from CT and computed metabolic volumes of the significant uptake. All segmentation processes were compared with expert radiologists' delineations (ground truths). Metabolic and gross volume of lesions were automatically computed with the segmentation processes using PET and CT images, and percentage changes in those volumes over time were calculated. (Continued on next page)(Continued from previous page) Standardized uptake value (SUV) analysis from PET images was conducted as a complementary quantitative metric for disease severity assessment. Thus, severity and extent of pulmonary lesions were examined through both PET and CT images using the aforementioned quantification metrics outputted from the proposed framework. Each animal study was evaluated within the same subject class, and all steps of the proposed methodology were evaluated separately. We quantified the accuracy of the proposed algorithm with respect to the state-of-the-art segmentation algorithms. For evaluation of the segmentation results, dice similarity coefficient (DSC) as an overlap measure and Haussdorf distance as a shape dissimilarity measure were used. Significant correlations regarding the estimated lesion volumes were obtained both in CT and PET images with respect to the ground truths (R2=0.8922,p<0.01 and R2=0.8664,p<0.01, respectively). The segmentation accuracy (DSC (%)) was 93.4±4.5% for normal lung CT scans and 86.0±7.1% for pathological lung CT scans. Experiments showed excellent agreements (all above 85%) with expert evaluations for both structural and functional imaging modalities. Apart from quantitative analysis of each animal, we also qualitatively showed how metabolic volumes were changing over time by examining serial PET/CT scans. Evaluation of the registration processes was based on precisely defined anatomical landmark points by expert clinicians. An average of 2.66, 3.93, and 2.52 mm errors was found in rabbit, ferret, and mouse data (all within the resolution limits), respectively. Quantitative results obtained from the proposed methodology were visually related to the progress and severity of the pulmonary infections as verified by the participating radiologists. Moreover, we demonstrated that lesions due to the infections were metabolically active and appeared multi-focal in nature, and we observed similar patterns in the CT images as well. Consolidation and ground glass opacity were the main abnormal imaging patterns and consistently appeared in all CT images. We also found that the gross and metabolic lesion volume percentage follow the same trend as the SUV-based evaluation in the longitudinal analysis. We explored the feasibility of using PET and CT imaging modalities in three distinct small animal models for two diverse pulmonary infections. We concluded from the clinical findings, derived from the proposed computational pipeline, that PET-CT imaging is an invaluable hybrid modality for tracking pulmonary infections longitudinally in small animals and has great potential to become routinely used in clinics. Our proposed methodology showed that automated computed-aided lesion detection and quantification of pulmonary infections in small animal models are efficient and accurate as compared to the clinical standard of manual and semi-automated approaches. Automated analysis of images in pre-clinical applications can increase the efficiency and quality of pre-clinical findings that ultimately inform downstream experimental design in human clinical studies; this innovation will allow researchers and clinicians to more effectively allocate study resources with respect to research demands without compromising accuracy.

  11. A statistical method for lung tumor segmentation uncertainty in PET images based on user inference.

    PubMed

    Zheng, Chaojie; Wang, Xiuying; Feng, Dagan

    2015-01-01

    PET has been widely accepted as an effective imaging modality for lung tumor diagnosis and treatment. However, standard criteria for delineating tumor boundary from PET are yet to develop largely due to relatively low quality of PET images, uncertain tumor boundary definition, and variety of tumor characteristics. In this paper, we propose a statistical solution to segmentation uncertainty on the basis of user inference. We firstly define the uncertainty segmentation band on the basis of segmentation probability map constructed from Random Walks (RW) algorithm; and then based on the extracted features of the user inference, we use Principle Component Analysis (PCA) to formulate the statistical model for labeling the uncertainty band. We validated our method on 10 lung PET-CT phantom studies from the public RIDER collections [1] and 16 clinical PET studies where tumors were manually delineated by two experienced radiologists. The methods were validated using Dice similarity coefficient (DSC) to measure the spatial volume overlap. Our method achieved an average DSC of 0.878 ± 0.078 on phantom studies and 0.835 ± 0.039 on clinical studies.

  12. Lung tumor segmentation in PET images using graph cuts.

    PubMed

    Ballangan, Cherry; Wang, Xiuying; Fulham, Michael; Eberl, Stefan; Feng, David Dagan

    2013-03-01

    The aim of segmentation of tumor regions in positron emission tomography (PET) is to provide more accurate measurements of tumor size and extension into adjacent structures, than is possible with visual assessment alone and hence improve patient management decisions. We propose a segmentation energy function for the graph cuts technique to improve lung tumor segmentation with PET. Our segmentation energy is based on an analysis of the tumor voxels in PET images combined with a standardized uptake value (SUV) cost function and a monotonic downhill SUV feature. The monotonic downhill feature avoids segmentation leakage into surrounding tissues with similar or higher PET tracer uptake than the tumor and the SUV cost function improves the boundary definition and also addresses situations where the lung tumor is heterogeneous. We evaluated the method in 42 clinical PET volumes from patients with non-small cell lung cancer (NSCLC). Our method improves segmentation and performs better than region growing approaches, the watershed technique, fuzzy-c-means, region-based active contour and tumor customized downhill. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. The unfolding effects on the protein hydration shell and partial molar volume: a computational study.

    PubMed

    Del Galdo, Sara; Amadei, Andrea

    2016-10-12

    In this paper we apply the computational analysis recently proposed by our group to characterize the solvation properties of a native protein in aqueous solution, and to four model aqueous solutions of globular proteins in their unfolded states thus characterizing the protein unfolded state hydration shell and quantitatively evaluating the protein unfolded state partial molar volumes. Moreover, by using both the native and unfolded protein partial molar volumes, we obtain the corresponding variations (unfolding partial molar volumes) to be compared with the available experimental estimates. We also reconstruct the temperature and pressure dependence of the unfolding partial molar volume of Myoglobin dissecting the structural and hydration effects involved in the process.

  14. Neonatal polycythaemia: critical review and a consensus statement of the Israeli Neonatology Association.

    PubMed

    Mimouni, Francis B; Merlob, Paul; Dollberg, Shaul; Mandel, Dror

    2011-10-01

    The aim of this paper is to critically review neonatal polycythaemia (NP) literature, in terms of definition, diagnosis and management. We reviewed all Medline articles on NP up to December 2009. (i) The textbook definition of NP [venous haematocrit (HCT) > 65%] is empirical and not based on statistical definition, symptoms or complications. (ii) Measurement of viscosity is not better than HCT in predicting complications. (iii) Normovolaemic NP because of increased erythropoiesis may be different from hypervolaemic polycythaemia because of excessive foetal transfusion. (iv) Coexisting hypoglycaemia may worsen long-term outcome. (v) Four clinical trials (CTs) studied partial exchange transfusion (PET) on outcomes. In all trials, PET was performed after 6 h of life. There is no evidence that PET improves neurodevelopmental outcome of asymptomatic NP, and it might increase the risk of necrotizing enterocolitis. These CTs have inherent design flaws: (a) CNS 'damage' may occur before PET. (b) Confounding variables that may affect outcome have not been studied. (vi) If PET is performed, normal saline is the best alternative. (vii) The long-term effect of PET on symptomatic infants has not been studied. Current definition and management of NP are little evidence based, thus the need for a consensus based on expert opinion. © 2011 The Author(s)/Acta Paediatrica © 2011 Foundation Acta Paediatrica.

  15. The Utilisation of Shredded PET as Aggregate Replacement for Interlocking Concrete Block

    NASA Astrophysics Data System (ADS)

    Mokhtar, M.; Kaamin, M.; Sahat, S.; Hamid, N. B.

    2018-03-01

    The consumption of plastic has grown substantially all over the world in recent years and this has created huge quantities of plastic-based waste. Plastic waste is now a serious environmental threat to the modern way of living, although steps were taken to reduce its consumption. This creates substantial garbage every day, which is much unhealthy. Plastic bottles such as Polyethylene terephthalate (PET) was use as the partially component in this making of interlocking blocks concrete. This project investigates the strength and workability of the interlocking block concrete by replacing course aggregate with % PET. The suitability of recycled plastics (PET) as course aggregate in interlocking block concrete and its advantages are discussed here. Moreover, there were more benefits when using interlocking block than using conventional block such as it easy for construction because they are aligning, easy to place, high speed stacking and they offer more resistance to shear and buildings would be even stronger. Based on the test perform, the failure parameter were discussed .From the compressive strength test result, it shows that the strength of concrete block decreased with increased of PET used. From the results, it shows that higher compressive strength was found with 5% natural course aggregate replaced with PET compared to other percentages.

  16. PET imaging: implications for the future of therapy monitoring with PET/CT in oncology.

    PubMed

    Tomasi, Giampaolo; Rosso, Lula

    2012-10-01

    Among the methods based on molecular imaging, the measure of the tracer uptake variation between a baseline and follow-up scan with the SUV and [(18)F]FDG-PET/CT is a very powerful tool for assessing response to treatment in oncology. However, the development of new targeted therapeutics and tissue pharmacokinetic evaluation of existing ones are increasingly requiring therapy monitoring with alternative tracers and indicators. In parallel, the potential predictive and prognostic value of other image-derived parameters, such as tumour volume and textural features, relating to tumoral heterogeneity, has recently emerged from several works. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. TU-D-207B-03: Early Assessment of Response to Chemoradiotherapy Based On Textural Analysis of Pre and Mid-Treatment FDG-PET Image in Locally Advanced Head and Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Y; Pollom, E; Loo, B

    Purpose: To evaluate whether tumor textural features extracted from both pre- and mid-treatment FDG-PET images predict early response to chemoradiotherapy in locally advanced head and neck cancer, and investigate whether they provide complementary value to conventional volume-based measurements. Methods: Ninety-four patients with locally advanced head and neck cancers were retrospectively studied. All patients received definitive chemoradiotherapy and underwent FDG-PET planning scans both before and during treatment. Within the primary tumor we extracted 6 textural features based on gray-level co-occurrence matrices (GLCM): entropy, dissimilarity, contrast, correlation, energy, and homogeneity. These image features were evaluated for their predictive power of treatment responsemore » to chemoradiotherapy in terms of local recurrence free survival (LRFS) and progression free survival (PFS). Logrank test were used to assess the statistical significance of the stratification between low- and high-risk groups. P-values were adjusted for multiple comparisons by the false discovery rate (FDR) method. Results: All six textural features extracted from pre-treatment PET images significantly differentiated low- and high-risk patient groups for LRFS (P=0.011–0.038) and PFS (P=0.029–0.034). On the other hand, none of the textural features on mid-treatment PET images was statistically significant in stratifying LRFS (P=0.212–0.445) or PFS (P=0.168–0.299). An imaging signature that combines textural feature (GLCM homogeneity) and metabolic tumor volume showed an improved performance for predicting LRFS (hazard ratio: 22.8, P<0.0001) and PFS (hazard ratio: 13.9, P=0.0005) in leave-one-out cross validation. Intra-tumor heterogeneity measured by textural features was significantly lower in mid-treatment PET images than in pre-treatment PET images (T-test: P<1.4e-6). Conclusion: Tumor textural features on pretreatment FDG-PET images are predictive for response to chemoradiotherapy in locally advanced head and neck cancer. The complementary information offered by textural features improves patient stratification and may potentially aid in personalized risk-adaptive therapy.« less

  18. Prognosis Related to Metastatic Burden Measured by ¹⁸F-Fluorocholine PET/CT in Castration-Resistant Prostate Cancer.

    PubMed

    Kwee, Sandi A; Lim, John; Watanabe, Alex; Kromer-Baker, Kathleen; Coel, Marc N

    2014-06-01

    This study investigated the prognostic significance of metabolically active tumor volume (MATV) measurements applied to (18)F-fluorocholine PET/CT in castration-resistant prostate cancer (CRPC). (18)F-fluorocholine PET/CT imaging was performed on 30 patients with CRPC. Metastatic disease was quantified on the basis of maximum standardized uptake value (SUV(max)), MATV, and total lesion activity (TLA = MATV × mean standardized uptake value). Tumor burden indices derived from whole-body summation of PET tumor volume measurements (i.e., net MATV and net TLA) were evaluated as variables in Cox regression and Kaplan-Meier survival analyses. Net MATV ranged from 0.12 cm(3) to 1,543.9 cm(3) (median, 52.6 cm(3)). Net TLA ranged from 0.40 to 6,688.7 g (median, 225.1 g). Prostate-specific antigen level at the time of PET correlated significantly with net MATV (Pearson r = 0.65, P = 0.0001) and net TLA (r = 0.60, P = 0.0005) but not highest lesional SUV(max) of each scan. Survivors were followed for a median 23 mo (range, 6-38 mo). On Cox regression analyses, overall survival had a significant association with net MATV (P = 0.0068), net TLA (P = 0.0072), and highest lesion SUV(max) (P = 0.0173) and a borderline association with prostate-specific antigen level (P = 0.0458). Only net MATV and net TLA remained significant in univariate-adjusted survival analyses. Kaplan-Meier analysis demonstrated significant differences in survival between groups stratified by median net MATV (log-rank P = 0.0371), net TLA (log-rank P = 0.0371), and highest lesion SUV(max) (log-rank P = 0.0223). Metastatic prostate cancer detected by (18)F-fluorocholine PET/CT can be quantified on the basis of volumetric measurements of tumor metabolic activity. The prognostic value of (18)F-fluorocholine PET/CT may stem from this capacity to assess whole-body tumor burden. With further clinical validation, (18)F-fluorocholine PET-based indices of global disease activity and mortality risk could prove useful in patient-individualized treatment of CRPC. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  19. SU-F-R-13: Decoding 18F-FDG Uptake Heterogeneity for Primary and Lymphoma Tumors by Using Texture Analysis in PET Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, C; Yin, Y

    Purpose: To explore 18F-FDG uptake heterogeneity of primary tumor and lymphoma tumor by texture features of PET image and quantify the heterogeneity difference between primary tumor and lymphoma tumor. Methods: 18 patients with primary tumor and lymphoma tumor in lung cancer were enrolled. All patients underwent whole-body 18F-FDG PET/CT scans before treatment. Texture features, based on Gray-level Co-occurrence Matrix, second and high order matrices are extracted from code using MATLAB software to quantify 18F-FDG uptake heterogeneity. The relationships of volume between energy, entropy, correlation, homogeneity and contrast were analyzed. Results: For different cases, tumor heterogeneity was not the same. Texturemore » parameters (contrast, entropy, and correlation) of lymphoma were lower than primary tumor. On the contrast, the texture parameters (energy, homogeneity and inverse different moment) of lymphoma were higher than primary tumor. Significantly, correlations were observed between volume and energy (primary, r=−0.194, p=0.441; lymphoma, r=−0.339, p=0.582), homogeneity (primary, r=−0.146, p=0.382; lymphoma, r=−0.193, p=0.44), inverse difference moment (primary, r=−0.14, p=0.374; lymphoma, r=−0.172, p=0.414) and a positive correlation between volume and entropy (primary, r=0.233, p=0.483; lymphoma, r=0.462, p=0.680), contrast (primary, r=0.159, p=0.399; lymphoma, r=0.341, p=0.584), correlation (primary, r=0.027, p=0.165; lymphoma, r=0.046, p=0.215). For the same patient, energy for primary and lymphoma tumor is equal. The volume of lymphoma is smaller than primary tumor, but the homogeneity were higher than primary tumor. Conclusion: This study showed that there were effective heterogeneity differences between primary and lymphoma tumor by FDG-PET image texture analysis.« less

  20. Adaptive Dose Painting by Numbers for Head-and-Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duprez, Frederic, E-mail: frederic.duprez@ugent.be; De Neve, Wilfried; De Gersem, Werner

    Purpose: To investigate the feasibility of adaptive intensity-modulated radiation therapy (IMRT) using dose painting by numbers (DPBN) for head-and-neck cancer. Methods and Materials: Each patient's treatment used three separate treatment plans: fractions 1-10 used a DPBN ([{sup 18}-F]fluoro-2-deoxy-D-glucose positron emission tomography [{sup 18}F-FDG-PET]) voxel intensity-based IMRT plan based on a pretreatment {sup 18}F-FDG-PET/computed tomography (CT) scan; fractions 11-20 used a DPBN plan based on a {sup 18}F-FDG-PET/CT scan acquired after the eighth fraction; and fractions 21-32 used a conventional (uniform dose) IMRT plan. In a Phase I trial, two dose prescription levels were tested: a median dose of 80.9 Gymore » to the high-dose clinical target volume (CTV{sub highdose}) (dose level I) and a median dose of 85.9 Gy to the gross tumor volume (GTV) (dose level II). Between February 2007 and August 2009, 7 patients at dose level I and 14 patients at dose level II were enrolled. Results: All patients finished treatment without a break, and no Grade 4 acute toxicity was observed. Treatment adaptation (i.e., plans based on the second {sup 18}F-FDG-PET/CT scan) reduced the volumes for the GTV (41%, p = 0.01), CTV{sub highdose} (18%, p = 0.01), high-dose planning target volume (14%, p = 0.02), and parotids (9-12%, p < 0.05). Because the GTV was much smaller than the CTV{sub highdose} and target adaptation, further dose escalation at dose level II resulted in less severe toxicity than that observed at dose level I. Conclusion: To our knowledge, this represents the first clinical study that combines adaptive treatments with dose painting by numbers. Treatment as described above is feasible.« less

  1. Variability of Target and Normal Structure Delineation Using Multimodality Imaging for Radiation Therapy of Pancreatic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalah, Entesar; Moraru, Ion; Paulson, Eric

    Purpose: To explore the potential of multimodality imaging (dynamic contrast–enhanced magnetic resonance imaging [DCE-MRI], apparent diffusion-coefficient diffusion-weighted imaging [ADC-DWI], fluorodeoxyglucose positron emission tomography [FDG-PET], and computed tomography) to define the gross tumor volume (GTV) and organs at risk in radiation therapy planning for pancreatic cancer. Delineated volumetric changes of DCE-MRI, ADC-DWI, and FDG-PET were assessed in comparison with the finding on 3-dimensional/4-dimensional CT with and without intravenous contrast, and with pathology specimens for resectable and borderline resectable cases of pancreatic cancer. Methods and Materials: We studied a total of 19 representative patients, whose DCE-MRI, ADC-DWI, and FDG-PET data were reviewed.more » Gross tumor volume and tumor burden/active region inside pancreatic head/neck or body were delineated on MRI (denoted GTV{sub DCE}, and GTV{sub ADC}), a standardized uptake value (SUV) of 2.5, 40%SUVmax, and 50%SUVmax on FDG-PET (GTV2.5, GTV{sub 40%}, and GTV{sub 50%}). Volumes of the pancreas, duodenum, stomach, liver, and kidneys were contoured according to CT (V{sub CT}), T1-weighted MRI (V{sub T1}), and T2-weighted MRI (V{sub T2}) for 7 patients. Results: Significant statistical differences were found between the GTVs from DCE-MRI, ADC-DW, and FDG-PET, with a mean and range of 4.73 (1.00-9.79), 14.52 (3.21-25.49), 22.04 (1.00-45.69), 19.10 (4.84-45.59), and 9.80 (0.32-35.21) cm{sup 3} for GTV{sub DCE}, GTV{sub ADC}, GTV2.5, GTV{sub 40%}, and GTV{sub 50%}, respectively. The mean difference and range in the measurements of maximum dimension of tumor on DCE-MRI, ADC-DW, SUV2.5, 40%SUVmax, and 50%SUVmax compared with pathologic specimens were −0.84 (−2.24 to 0.9), 0.41 (−0.15 to 2.3), 0.58 (−1.41 to 3.69), 0.66 (−0.67 to 1.32), and 0.15 (−1.53 to 2.38) cm, respectively. The T1- and T2-based volumes for pancreas, duodenum, stomach, and liver were generally smaller compared with those from CT, except for the kidneys. Conclusions: Differences exists between DCE-, ADC-, and FDG-PET–defined target volumes for RT of pancreatic cancer. Organ at risk volumes based on MRI are generally smaller than those based on CT. Further studies combined with pathologic specimens are required to identify the optimal imaging modality or sequence to define GTV.« less

  2. Sweet Polymers: Poly(2-ethyl-2-oxazoline) Glycopolymers by Reductive Amination.

    PubMed

    Mees, Maarten A; Effenberg, Christiane; Appelhans, Dietmar; Hoogenboom, Richard

    2016-12-12

    Carbohydrates are important in signaling, energy storage, and metabolism. Depending on their function, carbohydrates can be part of larger structures, such as glycoproteins, glycolipids, or other functionalities (glycoside). To this end, polymers can act as carriers of carbohydrates in so-called glycopolymers, which mimic the multivalent carbohydrate functionalities. We chose a biocompatible poly(2-ethyl-2-oxazoline) (PEtOx) as the basis for making glycopolymers. Via the partial hydrolysis of PEtOx, a copolymer of PEtOx and polyethylenimine (PEI) was obtained; the subsequent reductive amination with the linear forms of glucose and maltose yielded the glycopolymers. The ratios of PEtOx and carbohydrates were varied systematically, and the solution behaviors of the resulting glycoconjugates are discussed. Dynamic light scattering (DLS) revealed that, depending on the carbohydrate ratio, the glycopolymers were either fully water-soluble or formed agglomerates in a temperature-dependent manner. Finally, these polymers were tested for their biological availability by studying their lectin binding ability with Concanavalin A.

  3. Reproducibility of Quantitative Brain Imaging Using a PET-Only and a Combined PET/MR System

    PubMed Central

    Lassen, Martin L.; Muzik, Otto; Beyer, Thomas; Hacker, Marcus; Ladefoged, Claes Nøhr; Cal-González, Jacobo; Wadsak, Wolfgang; Rausch, Ivo; Langer, Oliver; Bauer, Martin

    2017-01-01

    The purpose of this study was to test the feasibility of migrating a quantitative brain imaging protocol from a positron emission tomography (PET)-only system to an integrated PET/MR system. Potential differences in both absolute radiotracer concentration as well as in the derived kinetic parameters as a function of PET system choice have been investigated. Five healthy volunteers underwent dynamic (R)-[11C]verapamil imaging on the same day using a GE-Advance (PET-only) and a Siemens Biograph mMR system (PET/MR). PET-emission data were reconstructed using a transmission-based attenuation correction (AC) map (PET-only), whereas a standard MR-DIXON as well as a low-dose CT AC map was applied to PET/MR emission data. Kinetic modeling based on arterial blood sampling was performed using a 1-tissue-2-rate constant compartment model, yielding kinetic parameters (K1 and k2) and distribution volume (VT). Differences for parametric values obtained in the PET-only and the PET/MR systems were analyzed using a 2-way Analysis of Variance (ANOVA). Comparison of DIXON-based AC (PET/MR) with emission data derived from the PET-only system revealed average inter-system differences of −33 ± 14% (p < 0.05) for the K1 parameter and −19 ± 9% (p < 0.05) for k2. Using a CT-based AC for PET/MR resulted in slightly lower systematic differences of −16 ± 18% for K1 and −9 ± 10% for k2. The average differences in VT were −18 ± 10% (p < 0.05) for DIXON- and −8 ± 13% for CT-based AC. Significant systematic differences were observed for kinetic parameters derived from emission data obtained from PET/MR and PET-only imaging due to different standard AC methods employed. Therefore, a transfer of imaging protocols from PET-only to PET/MR systems is not straightforward without application of proper correction methods. Clinical Trial Registration: www.clinicaltrialsregister.eu, identifier 2013-001724-19 PMID:28769742

  4. [Radiotherapy volume delineation based on (18F)-fluorodeoxyglucose positron emission tomography for locally advanced or inoperable oesophageal cancer].

    PubMed

    Encaoua, J; Abgral, R; Leleu, C; El Kabbaj, O; Caradec, P; Bourhis, D; Pradier, O; Schick, U

    2017-06-01

    To study the impact on radiotherapy planning of an automatically segmented target volume delineation based on ( 18 F)-fluorodeoxy-D-glucose (FDG)-hybrid positron emission tomography-computed tomography (PET-CT) compared to a manually delineation based on computed tomography (CT) in oesophageal carcinoma patients. Fifty-eight patients diagnosed with oesophageal cancer between September 2009 and November 2014 were included. The majority had squamous cell carcinoma (84.5 %), and advanced stage (37.9 % were stade IIIA) and 44.8 % had middle oesophageal lesion. Gross tumour volumes were retrospectively defined based either manually on CT or automatically on coregistered PET/CT images using three different threshold methods: standard-uptake value (SUV) of 2.5, 40 % of maximum intensity and signal-to-background ratio. Target volumes were compared in length, volume and using the index of conformality. Radiotherapy plans to the dose of 50Gy and 66Gy using intensity-modulated radiotherapy were generated and compared for both data sets. Planification target volume coverage and doses delivered to organs at risk (heart, lung and spinal cord) were compared. The gross tumour volume based manually on CT was significantly longer than that automatically based on signal-to-background ratio (6.4cm versus 5.3cm; P<0.008). Doses to the lungs (V20, D mean ), heart (V40), and spinal cord (D max ) were significantly lower on plans using the PTV SBR . The PTV SBR coverage was statistically better than the PTV CT coverage on both plans. (50Gy: P<0.0004 and 66Gy: P<0.0006). The automatic PET segmentation algorithm based on the signal-to-background ratio method for the delineation of oesophageal tumours is interesting, and results in better target volume coverage and decreased dose to organs at risk. This may allow dose escalation up to 66Gy to the gross tumour volume. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  5. FDG-PET response of skeletal (bone marrow and bone) involvement after induction chemotherapy in pediatric Hodgkin lymphoma - Are specific response criteria required?

    PubMed

    Georgi, Thomas Walter; Kluge, Regine; Kurch, Lars; Chavdarova, Lidia; Hasenclever, Dirk; Stoevesandt, Dietrich; Pelz, Tanja; Landman-Parker, Judith; Wallace, Hamish; Karlen, Jonas; Fernandez-Teijeiro, Ana; Cepelova, Michaela; Fossa, Alexander; Balwierz, Walentyna; Attarbaschi, Andishe; Ammann, Roland A; Pears, Jane; Hraskova, Andrea; Uyttebroeck, Anne; Beishuizen, Auke; Dieckmann, Karin; Leblanc, Thierry; Daw, Stephen; Baumann, Julia; Körholz, Dieter; Sabri, Osama; Mauz-Körholz, Christine

    2018-04-13

    Purpose: This study focused on skeletal involvement in FDG-PET (PET) in Hodgkin lymphoma (HL). We aimed at a systematic evaluation of the different types of skeletal involvement and their PET response after two cycles of chemotherapy (PET-2), to answer the question whether the current PET response criterion for skeletal involvement is suitable. A secondary objective was to observe the influence of initial uptake intensity and metabolic tumor volume (MTV) of skeletal lesions on the PET-2 response. Methods: Initial PET scans (PET-0) of 1068 pediatric HL patients from the EuroNet-PHL-C1 (C1) trial were evaluated by central review for skeletal involvement. Three types of skeletal lesions were distinguished: skeletal lesions detected only in PET (PETonly), bone marrow (BM) lesions confirmed by MRI or BM biopsy and bone lesions. Uptake intensity (measured as qPET value) and MTV were calculated for each skeletal lesion. All PET-2 scans were assessed for residual tumor activity. The rates of complete metabolic response in PET-2 of skeletal and nodal involvement were compared. Results: 139/1068 (13%) C1 patients showed skeletal involvement (44/139 PETonly patients, 32/139 BM patients and 63/139 bone patients). 101/139 (73%) patients became PET-2 negative in the skeleton while lymph node involvement was PET-2 negative in 94/139 (68%) patients. Highest skeletal PET-2 negative rate was seen in 42/44 (95%) PETonly patients, followed by 22/32 (69%) BM patients and 37/63 (59%) bone patients. Skeletal lesions who became PET-2 negative showed lower median values for initial qPET (2.74) and MTV (2ml) than lesions who remained PET-2 positive (3.84; 7ml). Conclusion: In this study with pediatric HL patients, the complete response rate in PET-2 of skeletal and nodal involvement was similar. Bone flare seemed to be irrelevant. Overall, the current skeletal PET response criterion - comparison with the local skeletal background - is well suited. Initial uptake intensity and MTV of skeletal lesions were predictive for the PET-2 result. Higher values for both parameters were associated with a worse PET-2 response. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  6. TU-H-CAMPUS-IeP3-01: Simultaneous PET Restoration and PET/CT Co-Segmentation Using a Variational Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, L; Tan, S; Lu, W

    Purpose: PET images are usually blurred due to the finite spatial resolution, while CT images suffer from low contrast. Segment a tumor from either a single PET or CT image is thus challenging. To make full use of the complementary information between PET and CT, we propose a novel variational method for simultaneous PET image restoration and PET/CT images co-segmentation. Methods: The proposed model was constructed based on the Γ-convergence approximation of Mumford-Shah (MS) segmentation model for PET/CT co-segmentation. Moreover, a PET de-blur process was integrated into the MS model to improve the segmentation accuracy. An interaction edge constraint termmore » over the two modalities were specially designed to share the complementary information. The energy functional was iteratively optimized using an alternate minimization (AM) algorithm. The performance of the proposed method was validated on ten lung cancer cases and five esophageal cancer cases. The ground truth were manually delineated by an experienced radiation oncologist using the complementary visual features of PET and CT. The segmentation accuracy was evaluated by Dice similarity index (DSI) and volume error (VE). Results: The proposed method achieved an expected restoration result for PET image and satisfactory segmentation results for both PET and CT images. For lung cancer dataset, the average DSI (0.72) increased by 0.17 and 0.40 than single PET and CT segmentation. For esophageal cancer dataset, the average DSI (0.85) increased by 0.07 and 0.43 than single PET and CT segmentation. Conclusion: The proposed method took full advantage of the complementary information from PET and CT images. This work was supported in part by the National Cancer Institute Grants R01CA172638. Shan Tan and Laquan Li were supported in part by the National Natural Science Foundation of China, under Grant Nos. 60971112 and 61375018.« less

  7. Automated movement correction for dynamic PET/CT images: evaluation with phantom and patient data.

    PubMed

    Ye, Hu; Wong, Koon-Pong; Wardak, Mirwais; Dahlbom, Magnus; Kepe, Vladimir; Barrio, Jorge R; Nelson, Linda D; Small, Gary W; Huang, Sung-Cheng

    2014-01-01

    Head movement during a dynamic brain PET/CT imaging results in mismatch between CT and dynamic PET images. It can cause artifacts in CT-based attenuation corrected PET images, thus affecting both the qualitative and quantitative aspects of the dynamic PET images and the derived parametric images. In this study, we developed an automated retrospective image-based movement correction (MC) procedure. The MC method first registered the CT image to each dynamic PET frames, then re-reconstructed the PET frames with CT-based attenuation correction, and finally re-aligned all the PET frames to the same position. We evaluated the MC method's performance on the Hoffman phantom and dynamic FDDNP and FDG PET/CT images of patients with neurodegenerative disease or with poor compliance. Dynamic FDDNP PET/CT images (65 min) were obtained from 12 patients and dynamic FDG PET/CT images (60 min) were obtained from 6 patients. Logan analysis with cerebellum as the reference region was used to generate regional distribution volume ratio (DVR) for FDDNP scan before and after MC. For FDG studies, the image derived input function was used to generate parametric image of FDG uptake constant (Ki) before and after MC. Phantom study showed high accuracy of registration between PET and CT and improved PET images after MC. In patient study, head movement was observed in all subjects, especially in late PET frames with an average displacement of 6.92 mm. The z-direction translation (average maximum = 5.32 mm) and x-axis rotation (average maximum = 5.19 degrees) occurred most frequently. Image artifacts were significantly diminished after MC. There were significant differences (P<0.05) in the FDDNP DVR and FDG Ki values in the parietal and temporal regions after MC. In conclusion, MC applied to dynamic brain FDDNP and FDG PET/CT scans could improve the qualitative and quantitative aspects of images of both tracers.

  8. Automated Movement Correction for Dynamic PET/CT Images: Evaluation with Phantom and Patient Data

    PubMed Central

    Ye, Hu; Wong, Koon-Pong; Wardak, Mirwais; Dahlbom, Magnus; Kepe, Vladimir; Barrio, Jorge R.; Nelson, Linda D.; Small, Gary W.; Huang, Sung-Cheng

    2014-01-01

    Head movement during a dynamic brain PET/CT imaging results in mismatch between CT and dynamic PET images. It can cause artifacts in CT-based attenuation corrected PET images, thus affecting both the qualitative and quantitative aspects of the dynamic PET images and the derived parametric images. In this study, we developed an automated retrospective image-based movement correction (MC) procedure. The MC method first registered the CT image to each dynamic PET frames, then re-reconstructed the PET frames with CT-based attenuation correction, and finally re-aligned all the PET frames to the same position. We evaluated the MC method's performance on the Hoffman phantom and dynamic FDDNP and FDG PET/CT images of patients with neurodegenerative disease or with poor compliance. Dynamic FDDNP PET/CT images (65 min) were obtained from 12 patients and dynamic FDG PET/CT images (60 min) were obtained from 6 patients. Logan analysis with cerebellum as the reference region was used to generate regional distribution volume ratio (DVR) for FDDNP scan before and after MC. For FDG studies, the image derived input function was used to generate parametric image of FDG uptake constant (Ki) before and after MC. Phantom study showed high accuracy of registration between PET and CT and improved PET images after MC. In patient study, head movement was observed in all subjects, especially in late PET frames with an average displacement of 6.92 mm. The z-direction translation (average maximum = 5.32 mm) and x-axis rotation (average maximum = 5.19 degrees) occurred most frequently. Image artifacts were significantly diminished after MC. There were significant differences (P<0.05) in the FDDNP DVR and FDG Ki values in the parietal and temporal regions after MC. In conclusion, MC applied to dynamic brain FDDNP and FDG PET/CT scans could improve the qualitative and quantitative aspects of images of both tracers. PMID:25111700

  9. EEG, PET, SPET and MRI in intractable childhood epilepsies: possible surgical correlations.

    PubMed

    Fois, A; Farnetani, M A; Balestri, P; Buoni, S; Di Cosmo, G; Vattimo, A; Guazzelli, M; Guzzardi, R; Salvadori, P A

    1995-12-01

    Magnetic resonance imaging (MRI), single photon emission tomography (SPET), and positron emission tomography (PET) using [18F]fluorodeoxyglucose were used in combination with scalp and scalp-video EEGs in a group of 30 pediatric patients with drug resistant epilepsy (DRE) in order to identify patients who could benefit from neurosurgical approach. Seizures were classified according to the consensus criteria of The International League Against Epilepsy. In three patients infantile spasms (IS) were diagnosed; 13 subjects were affected by different types of generalized seizures, associated with complex partial seizures (CPS) in three. In the other 14 patients partial seizures, either simple (SPS) or complex, were present. A localized abnormality was demonstrated in one patient with IS and in three patients with generalized seizures. Of the group of 14 subjects with CPS, MRI and CT were normal in 7, but SPET or PET indicated focal hypoperfusion or hypometabolism concordant with the localization of the EEG abnormalities. In 5 of the other 7 patients anatomical and functional imaging and EEG findings were concordant for a localized abnormality. It can be concluded that functional imaging combined with scalp EEGs appears to be superior to the use of only CT and MRI for selecting children with epilepsy in whom a surgical approach can be considered, in particular when CPS resistant to therapy are present.

  10. Distribution, Complications, and Outcome of Footpad Injuries in Pet and Military Working Dogs.

    PubMed

    Hansen, Lane A; Hazenfield, Kurt M; Olea-Popelka, Francisco; Smeak, Dan D

    2015-01-01

    This study reports the findings of 120 traumatic pad injuries in pet and military dogs. Most dogs (68%) presented with a laceration to a thoracic limb footpad, and one-third of dogs were middle-aged castrated males. Metacarpal pads were most commonly injured. Short-term complications were noted in 27% of dogs. No long-term complications were identified. No disability from pad injury was present at the completion of healing. Concurrent injuries to adjacent structures were uncommon and did not affect outcome. Dogs with full-thickness pad lacerations were at greater risk for major short-term complications compared to dogs with partial-thickness pad lacerations (odds ratio, 7.27; P = .001). Military working dogs with full-thickness pad lacerations were at greater risk for major short-term complications than pet dogs with a similar injury. When major complications developed in dogs with full-thickness pad injuries, time to final healing was significantly longer (by a median of 12 days). The partial-thickness pad lesions healed uneventfully regardless of whether they were bandaged, surgically repaired, or left to heal by second intention. Suture repair and bandaging of full-thickness lesions could not be shown to either decrease the risk for complications or improve healing. Future work should focus on establishing standards for footpad treatment to reduce complications.

  11. Effects of elevated oxygen and carbon dioxide partial pressures on respiratory function and cognitive performance.

    PubMed

    Gill, Matthew; Natoli, Michael J; Vacchiano, Charles; MacLeod, David B; Ikeda, Keita; Qin, Michael; Pollock, Neal W; Moon, Richard E; Pieper, Carl; Vann, Richard D

    2014-08-15

    Hyperoxia during diving has been suggested to exacerbate hypercapnic narcosis and promote unconsciousness. We tested this hypothesis in male volunteers (12 at rest, 10 at 75 W cycle ergometer exercise) breathing each of four gases in a hyperbaric chamber. Inspired Po2 (PiO2 ) was 0.21 and 1.3 atmospheres (atm) without or with an individual subject's maximum tolerable inspired CO2 (PiO2 = 0.055-0.085 atm). Measurements included end-tidal CO2 partial pressure (PetCO2 ), rating of perceived discomfort (RPD), expired minute ventilation (V̇e), and cognitive function assessed by auditory n-back test. The most prominent finding was, irrespective of PetCO2 , that minute ventilation was 8-9 l/min greater for rest or exercise with a PiO2 of 1.3 atm compared with 0.21 atm (P < 0.0001). For hyperoxic gases, PetCO2 was consistently less than for normoxic gases (P < 0.01). For hyperoxic hypercapnic gases, n-back scores were higher than for normoxic gases (P < 0.01), and RPD was lower for exercise but not rest (P < 0.02). Subjects completed 66 hyperoxic hypercapnic trials without incident, but five stopped prematurely because of serious symptoms (tunnel vision, vision loss, dizziness, panic, exhaustion, or near syncope) during 69 normoxic hypercapnic trials (P = 0.0582). Serious symptoms during hypercapnic trials occurred only during normoxia. We conclude serious symptoms with hyperoxic hypercapnia were absent because of decreased PetCO2 consequent to increased ventilation. Copyright © 2014 the American Physiological Society.

  12. Intensity Modulated Radiation Therapy Dose Painting for Localized Prostate Cancer Using {sup 11}C-choline Positron Emission Tomography Scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Joe H.; University of Melbourne, Victoria; Lim Joon, Daryl

    Purpose: To demonstrate the technical feasibility of intensity modulated radiation therapy (IMRT) dose painting using {sup 11}C-choline positron emission tomography PET scans in patients with localized prostate cancer. Methods and Materials: This was an RT planning study of 8 patients with prostate cancer who had {sup 11}C-choline PET scans prior to radical prostatectomy. Two contours were semiautomatically generated on the basis of the PET scans for each patient: 60% and 70% of the maximum standardized uptake values (SUV{sub 60%} and SUV{sub 70%}). Three IMRT plans were generated for each patient: PLAN{sub 78}, which consisted of whole-prostate radiation therapy to 78more » Gy; PLAN{sub 78-90}, which consisted of whole-prostate RT to 78 Gy, a boost to the SUV{sub 60%} to 84 Gy, and a further boost to the SUV{sub 70%} to 90 Gy; and PLAN{sub 72-90}, which consisted of whole-prostate RT to 72 Gy, a boost to the SUV{sub 60%} to 84 Gy, and a further boost to the SUV{sub 70%} to 90 Gy. The feasibility of these plans was judged by their ability to reach prescription doses while adhering to published dose constraints. Tumor control probabilities based on PET scan-defined volumes (TCP{sub PET}) and on prostatectomy-defined volumes (TCP{sub path}), and rectal normal tissue complication probabilities (NTCP) were compared between the plans. Results: All plans for all patients reached prescription doses while adhering to dose constraints. TCP{sub PET} values for PLAN{sub 78}, PLAN{sub 78-90}, and PLAN{sub 72-90} were 65%, 97%, and 96%, respectively. TCP{sub path} values were 71%, 97%, and 89%, respectively. Both PLAN{sub 78-90} and PLAN{sub 72-90} had significantly higher TCP{sub PET} (P=.002 and .001) and TCP{sub path} (P<.001 and .014) values than PLAN{sub 78}. PLAN{sub 78-90} and PLAN{sub 72-90} were not significantly different in terms of TCP{sub PET} or TCP{sub path}. There were no significant differences in rectal NTCPs between the 3 plans. Conclusions: IMRT dose painting for localized prostate cancer using {sup 11}C-choline PET scans is technically feasible. Dose painting results in higher TCPs without higher NTCPs.« less

  13. Multicellular Tumour Spheroid as a model for evaluation of [18F]FDG as biomarker for breast cancer treatment monitoring

    PubMed Central

    Monazzam, Azita; Razifar, Pasha; Simonsson, Martin; Qvarnström, Fredrik; Josephsson, Raymond; Blomqvist, Carl; Långström, Bengt; Bergström, Mats

    2006-01-01

    Background In order to explore a pre-clinical method to evaluate if [18F]FDG is valid for monitoring early response, we investigated the uptake of FDG in Multicellular tumour spheroids (MTS) without and with treatment with five routinely used chemotherapy agents in breast cancer. Methods The response to each anticancer treatment was evaluated by measurement of the [18F]FDG uptake and viable volume of the MTSs after 2 and 3 days of treatment. Results The effect of Paclitaxel and Docetaxel on [18F]FDG uptake per viable volume was more evident in BT474 (up to 55% decrease) than in MCF-7 (up to 25% decrease). Doxorubicin reduced the [18F]FDG uptake per viable volume more noticeable in MCF-7 (25%) than in BT474 MTSs. Tamoxifen reduced the [18F]FDG uptake per viable volume only in MCF-7 at the highest dose of 1 μM. No effect of Imatinib was observed. Conclusion MTS was shown to be appropriate to investigate the potential of FDG-PET for early breast cancer treatment monitoring; the treatment effect can be observed before any tumour size changes occur. The combination of PET radiotracers and image analysis in MTS provides a good model to evaluate the relationship between tumour volume and the uptake of metabolic tracer before and after chemotherapy. This feature could be used for screening and selecting PET-tracers for early assessment of treatment response. In addition, this new method gives a possibility to assess quickly, and in vitro, a good preclinical profile of existing and newly developed anti-cancer drugs. PMID:16556298

  14. LOR-interleaving image reconstruction for PET imaging with fractional-crystal collimation

    NASA Astrophysics Data System (ADS)

    Li, Yusheng; Matej, Samuel; Karp, Joel S.; Metzler, Scott D.

    2015-01-01

    Positron emission tomography (PET) has become an important modality in medical and molecular imaging. However, in most PET applications, the resolution is still mainly limited by the physical crystal sizes or the detector’s intrinsic spatial resolution. To achieve images with better spatial resolution in a central region of interest (ROI), we have previously proposed using collimation in PET scanners. The collimator is designed to partially mask detector crystals to detect lines of response (LORs) within fractional crystals. A sequence of collimator-encoded LORs is measured with different collimation configurations. This novel collimated scanner geometry makes the reconstruction problem challenging, as both detector and collimator effects need to be modeled to reconstruct high-resolution images from collimated LORs. In this paper, we present a LOR-interleaving (LORI) algorithm, which incorporates these effects and has the advantage of reusing existing reconstruction software, to reconstruct high-resolution images for PET with fractional-crystal collimation. We also develop a 3D ray-tracing model incorporating both the collimator and crystal penetration for simulations and reconstructions of the collimated PET. By registering the collimator-encoded LORs with the collimator configurations, high-resolution LORs are restored based on the modeled transfer matrices using the non-negative least-squares method and EM algorithm. The resolution-enhanced images are then reconstructed from the high-resolution LORs using the MLEM or OSEM algorithm. For validation, we applied the LORI method to a small-animal PET scanner, A-PET, with a specially designed collimator. We demonstrate through simulated reconstructions with a hot-rod phantom and MOBY phantom that the LORI reconstructions can substantially improve spatial resolution and quantification compared to the uncollimated reconstructions. The LORI algorithm is crucial to improve overall image quality of collimated PET, which can have significant implications in preclinical and clinical ROI imaging applications.

  15. TU-F-12A-03: Using 18F-FDG-PET-CT and Deformable Registration During Head-And-Neck Cancer (HNC) Intensity Modulated Radiotherapy (IMRT) to Predict Treatment Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vergalasova, I; Mowery, Y; Yoo, D

    2014-06-15

    Purpose: To evaluate the effect of deformable vs. rigid registration of pre-treatment 18F-FDG-PET-CT to intra-treatment 18F-FDG-PET-CT on different standardized uptake value (SUV) parameters and investigate which parameters correlate best with post-treatment response in patients undergoing IMRT for HNC. Methods: Pre-treatment and intra-treatment PET-CT (after 20Gy) scans were acquired, in addition to a 12 week post-treatment PET-CT to assess treatment response. Primary and lymph node gross tumor volumes (GTV-PRI and GTV-LN) were contoured on the pre-treatment CT. These contours were then mapped to intra-treatment PET images via rigid and deformable registration. Absolute changes from pre- to intra-treatment scans for rigid andmore » deformable registration were extracted for the following parameters: SUV-MAX, SUV-MEAN, SUV-20%, SUV-40%, and SUV-60% (SUV-X% is the minimum SUV to the highest-intensity X% volume). Results: Thirty-eight patients were evaluated, with 27 available for classification as complete or incomplete response (CR/ICR). The pre-treatment average tumor volumes for the patients were 24.05cm{sup 3} for GTV-PRI and 23.4cm{sup 3} for GTV-LN. For GTV-PRI, there was no statistically significant difference between rigid vs. deformable registration across all ΔSUV parameters. For GTV-LN contours, all parameters were significantly different except for ΔSUV-MAX. For deformably-registered GTV-PRI, changes in the following metrics were significantly different for CR vs. ICR: SUV-MEAN(p=0.003), SUV-20%(p=0.02), SUV-40%(p=0.02), and SUV-60%(p=0.008). The following cutoff values separated CR from ICR with high sensitivity and specificity: ΔSUV-MEAN=1.49, ΔSUV-20%=2.39, ΔSUV-40%=1.80 and ΔSUV-60%=1.31. Corresponding areas under the Receiver Operating Characteristics curve were 0.90, 0.81, 0.81, and 0.85, respectively. Conclusion: Rigidly and deformably registered contours yielded statistically similar SUV parameters for GTV-PRI, but not GTV-LN. This implies that neither registration should be solely relied upon for nodal GTVs. Of the four SUV parameters found to be predictive of CR vs. ICR, SUV-MEAN was the strongest. Preliminary results show promise for using intra-treatment 18F-FDG-PET-CT with deformable registration to predict treatment response.« less

  16. Relapse Analysis of Irradiated Patients Within the HD15 Trial of the German Hodgkin Study Group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriz, Jan; Reinartz, Gabriele; Dietlein, Markus

    2015-05-01

    Purpose: To determine, in the setting of advanced-stage of Hodgkin lymphoma (HL), whether relapses occur in the irradiated planning target volume and whether the definition of local radiation therapy (RT) used by the German Hodgkin Study Group (GHSG) is adequate, because there is no harmonization of field and volume definitions among the large cooperative groups in the treatment of advanced-stage HL. Methods and Materials: All patients with residual disease of ≥2.5 cm after multiagent chemotherapy (CTX) were evaluated using additional positron emission tomography (PET), and those with a PET-positive result were irradiated with 30 Gy to the site of residual disease. We re-evaluatedmore » all sites of disease before and after CTX, as well as the PET-positive residual tumor that was treated in all relapsed patients. Documentation of radiation therapy (RT), treatment planning procedures, and portal images were carefully analyzed and compared with the centrally recommended RT prescription. The irradiated sites were compared with sites of relapse using follow-up computed tomography scans. Results: A total of 2126 patients were enrolled, and 225 patients (11%) received RT. Radiation therapy documents of 152 irradiated patients (68%) were analyzed, with 28 irradiated patients (11%) relapsing subsequently. Eleven patients (39%) had an in-field relapse, 7 patients (25%) relapsed outside the irradiated volume, and an additional 10 patients (36%) showed mixed in- and out-field relapses. Of 123 patients, 20 (16%) with adequately performed RT relapsed, compared with 7 of 29 patients (24%) with inadequate RT. Conclusions: The frequency and pattern of relapses suggest that local RT to PET-positive residual disease is sufficient for patients in advanced-stage HL. Insufficient safety margins of local RT may contribute to in-field relapses.« less

  17. The effect of low-GDP solution on ultrafiltration and solute transport in continuous ambulatory peritoneal dialysis patients.

    PubMed

    Cho, Kyu-Hyang; Do, Jun-Young; Park, Jong-Won; Yoon, Kyung-Woo; Kim, Yong-Lim

    2013-01-01

    Several studies have reported benefits for human peritoneal mesothelial cell function of a neutral-pH dialysate low in glucose degradation products (GDPs). However, the effects of low-GDP solution on ultrafiltration (UF), transport of solutes, and control of body water remain elusive. We therefore investigated the effect of low-GDP solution on UF, solute transport, and control of body water. Among 79 new continuous ambulatory peritoneal dialysis (CAPD) patients, 60 completed a 12-month protocol (28 in a lactate-based high-GDP solution group, 32 in a lactate-based low-GDP solution group). Clinical indices--including 24-hour UF volume (UFV), 24-hour urine volume (UV), residual renal function, and dialysis adequacy--were measured at months 1, 6, and 12. At months 1, 6, and 12, UFV, glucose absorption, 4-hour dialysate-to-plasma (D/P) creatinine, and 1-hour D/P Na(+) were assessed during a modified 4.25% peritoneal equilibration test (PET). Body composition by bioelectric impedance analysis was measured at months 1 and 12 in 26 CAPD patients. Daily UFV was lower in the low-GDP group. Despite similar solute transport and aquaporin function, the low-GDP group also showed lower UFV and higher glucose absorption during the PET. Factors associated with UFV during the PET were lactate-based high-GDP solution and 1-hour D/P Na(+). No differences in volume status and obesity at month 12 were observed, and improvements in hypervolemia were equal in both groups. Compared with the high-GDP group, the low-GDP group had a lower UFV during a PET and a lower daily UFV during the first year after peritoneal dialysis initiation. Although the low-GDP group had a lower daily UFV, no difficulties in controlling edema were encountered.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Besemer, A; Marsh, I; Bednarz, B

    Purpose: The calculation of 3D internal dose calculations in targeted radionuclide therapy requires the acquisition and temporal coregistration of a serial PET/CT or SPECT/CT images. This work investigates the dosimetric impact of different temporal coregistration methods commonly used for 3D internal dosimetry. Methods: PET/CT images of four mice were acquired at 1, 24, 48, 72, 96, 144 hrs post-injection of {sup 124}I-CLR1404. The therapeutic {sup 131}I-CLR1404 absorbed dose rate (ADR) was calculated at each time point using a Geant4-based MC dosimetry platform using three temporal image coregistration Methods: (1) no coregistration (NC), whole body sequential CT-CT affine coregistration (WBAC), andmore » individual sequential ROI-ROI affine coregistration (IRAC). For NC, only the ROI mean ADR was integrated to obtain ROI mean doses. For WBAC, the CT at each time point was coregistered to a single reference CT. The CT transformations were applied to the corresponding ADR images and the dose was calculated on a voxel-basis within the whole CT volume. For IRAC, each individual ROI was isolated and sequentially coregistered to a single reference ROI. The ROI transformations were applied to the corresponding ADR images and the dose was calculated on a voxel-basis within the ROI volumes. Results: The percent differences in the ROI mean doses were as large as 109%, 88%, and 32%, comparing the WBAC vs. IRAC, NC vs. IRAC, and NC vs. WBAC methods, respectively. The CoV in the mean dose between the all three methods ranged from 2–36%. The pronounced curvature of the spinal cord was not adequately coregistered using WBAC which resulted in large difference between the WBAC and IRAC. Conclusion: The method used for temporal image coregistration can result in large differences in 3D internal dosimetry calculations. Care must be taken to choose the most appropriate method depending on the imaging conditions, clinical site, and specific application. This work is partially funded by NIH Grant R21 CA198392-01.« less

  19. Textural analysis of pre-therapeutic [18F]-FET-PET and its correlation with tumor grade and patient survival in high-grade gliomas.

    PubMed

    Pyka, Thomas; Gempt, Jens; Hiob, Daniela; Ringel, Florian; Schlegel, Jürgen; Bette, Stefanie; Wester, Hans-Jürgen; Meyer, Bernhard; Förster, Stefan

    2016-01-01

    Amino acid positron emission tomography (PET) with [18F]-fluoroethyl-L-tyrosine (FET) is well established in the diagnostic work-up of malignant brain tumors. Analysis of FET-PET data using tumor-to-background ratios (TBR) has been shown to be highly valuable for the detection of viable hypermetabolic brain tumor tissue; however, it has not proven equally useful for tumor grading. Recently, textural features in 18-fluorodeoxyglucose-PET have been proposed as a method to quantify the heterogeneity of glucose metabolism in a variety of tumor entities. Herein we evaluate whether textural FET-PET features are of utility for grading and prognostication in patients with high-grade gliomas. One hundred thirteen patients (70 men, 43 women) with histologically proven high-grade gliomas were included in this retrospective study. All patients received static FET-PET scans prior to first-line therapy. TBR (max and mean), volumetric parameters and textural parameters based on gray-level neighborhood difference matrices were derived from static FET-PET images. Receiver operating characteristic (ROC) and discriminant function analyses were used to assess the value for tumor grading. Kaplan-Meier curves and univariate and multivariate Cox regression were employed for analysis of progression-free and overall survival. All FET-PET textural parameters showed the ability to differentiate between World Health Organization (WHO) grade III and IV tumors (p < 0.001; AUC 0.775). Further improvement in discriminatory power was possible through a combination of texture and metabolic tumor volume, classifying 85 % of tumors correctly (AUC 0.830). TBR and volumetric parameters alone were correlated with tumor grade, but showed lower AUC values (0.644 and 0.710, respectively). Furthermore, a correlation of FET-PET texture but not TBR was shown with patient PFS and OS, proving significant in multivariate analysis as well. Volumetric parameters were predictive for OS, but this correlation did not hold in multivariate analysis. Determination of uptake heterogeneity in pre-therapeutic FET-PET using textural features proved valuable for the (sub-)grading of high-grade glioma as well as prediction of tumor progression and patient survival, and showed improved performance compared to standard parameters such as TBR and tumor volume. Our results underscore the importance of intratumoral heterogeneity in the biology of high-grade glial cell tumors and may contribute to individual therapy planning in the future, although they must be confirmed in prospective studies before incorporation into clinical routine.

  20. Prospective evaluation of 18F-FACBC PET/CT and PET/MRI versus multiparametric MRI in intermediate- to high-risk prostate cancer patients (FLUCIPRO trial).

    PubMed

    Jambor, Ivan; Kuisma, Anna; Kähkönen, Esa; Kemppainen, Jukka; Merisaari, Harri; Eskola, Olli; Teuho, Jarmo; Perez, Ileana Montoya; Pesola, Marko; Aronen, Hannu J; Boström, Peter J; Taimen, Pekka; Minn, Heikki

    2018-03-01

    The purpose of this study was to evaluate 18 F-FACBC PET/CT, PET/MRI, and multiparametric MRI (mpMRI) in detection of primary prostate cancer (PCa). Twenty-six men with histologically confirmed PCa underwent PET/CT immediately after injection of 369 ± 10 MBq 18 F-FACBC (fluciclovine) followed by PET/MRI started 55 ± 7 min from injection. Maximum standardized uptake values (SUV max ) were measured for both hybrid PET acquisitions. A separate mpMRI was acquired within a week of the PET scans. Logan plots were used to calculate volume of distribution (V T ). The presence of PCa was estimated in 12 regions with radical prostatectomy findings as ground truth. For each imaging modality, area under the curve (AUC) for detection of PCa was determined to predict diagnostic performance. The clinical trial registration number is NCT02002455. In the visual analysis, 164/312 (53%) regions contained PCa, and 41 tumor foci were identified. PET/CT demonstrated the highest sensitivity at 87% while its specificity was low at 56%. The AUC of both PET/MRI and mpMRI significantly (p < 0.01) outperformed that of PET/CT while no differences were detected between PET/MRI and mpMRI. SUV max and V T of Gleason score (GS) >3 + 4 tumors were significantly (p < 0.05) higher than those for GS 3 + 3 and benign hyperplasia. A total of 442 lymph nodes were evaluable for staging, and PET/CT and PET/MRI demonstrated true-positive findings in only 1/7 patients with metastatic lymph nodes. Quantitative 18 F-FACBC imaging significantly correlated with GS but failed to outperform MRI in lesion detection. 18 F-FACBC may assist in targeted biopsies in the setting of hybrid imaging with MRI.

  1. Distinct [18F]THK5351 binding patterns in primary progressive aphasia variants.

    PubMed

    Schaeverbeke, Jolien; Evenepoel, Charlotte; Declercq, Lieven; Gabel, Silvy; Meersmans, Karen; Bruffaerts, Rose; Adamczuk, Kate; Dries, Eva; Van Bouwel, Karen; Sieben, Anne; Pijnenburg, Yolande; Peeters, Ronald; Bormans, Guy; Van Laere, Koen; Koole, Michel; Dupont, Patrick; Vandenberghe, Rik

    2018-06-26

    To assess the binding of the PET tracer [ 18 F]THK5351 in patients with different primary progressive aphasia (PPA) variants and its correlation with clinical deficits. The majority of patients with nonfluent variant (NFV) and logopenic variant (LV) PPA have underlying tauopathy of the frontotemporal lobar or Alzheimer disease type, respectively, while patients with the semantic variant (SV) have predominantly transactive response DNA binding protein 43-kDa pathology. The study included 20 PPA patients consecutively recruited through a memory clinic (12 NFV, 5 SV, 3 LV), and 20 healthy controls. All participants received an extensive neurolinguistic assessment, magnetic resonance imaging and amyloid biomarker tests. [ 18 F]THK5351 binding patterns were assessed on standardized uptake value ratio (SUVR) images with the cerebellar grey matter as the reference using statistical parametric mapping. Whole-brain voxel-wise regression analysis was performed to evaluate the association between [ 18 F]THK5351 SUVR images and neurolinguistic scores. Analyses were performed with and without partial volume correction. Patients with NFV showed increased binding in the supplementary motor area, left premotor cortex, thalamus, basal ganglia and midbrain compared with controls and patients with SV. Patients with SV had increased binding in the temporal lobes bilaterally and in the right ventromedial frontal cortex compared with controls and patients with NFV. The whole-brain voxel-wise regression analysis revealed a correlation between agrammatism and motor speech impairment, and [ 18 F]THK5351 binding in the left supplementary motor area and left postcentral gyrus. Analysis of [ 18 F]THK5351 scans without partial volume correction revealed similar results. [ 18 F]THK5351 imaging shows a topography closely matching the anatomical distribution of predicted underlying pathology characteristic of NFV and SV PPA. [ 18 F]THK5351 binding correlates with the severity of clinical impairment.

  2. Evaluation of a 3D local multiresolution algorithm for the correction of partial volume effects in positron emission tomography.

    PubMed

    Le Pogam, Adrien; Hatt, Mathieu; Descourt, Patrice; Boussion, Nicolas; Tsoumpas, Charalampos; Turkheimer, Federico E; Prunier-Aesch, Caroline; Baulieu, Jean-Louis; Guilloteau, Denis; Visvikis, Dimitris

    2011-09-01

    Partial volume effects (PVEs) are consequences of the limited spatial resolution in emission tomography leading to underestimation of uptake in tissues of size similar to the point spread function (PSF) of the scanner as well as activity spillover between adjacent structures. Among PVE correction methodologies, a voxel-wise mutual multiresolution analysis (MMA) was recently introduced. MMA is based on the extraction and transformation of high resolution details from an anatomical image (MR/CT) and their subsequent incorporation into a low-resolution PET image using wavelet decompositions. Although this method allows creating PVE corrected images, it is based on a 2D global correlation model, which may introduce artifacts in regions where no significant correlation exists between anatomical and functional details. A new model was designed to overcome these two issues (2D only and global correlation) using a 3D wavelet decomposition process combined with a local analysis. The algorithm was evaluated on synthetic, simulated and patient images, and its performance was compared to the original approach as well as the geometric transfer matrix (GTM) method. Quantitative performance was similar to the 2D global model and GTM in correlated cases. In cases where mismatches between anatomical and functional information were present, the new model outperformed the 2D global approach, avoiding artifacts and significantly improving quality of the corrected images and their quantitative accuracy. A new 3D local model was proposed for a voxel-wise PVE correction based on the original mutual multiresolution analysis approach. Its evaluation demonstrated an improved and more robust qualitative and quantitative accuracy compared to the original MMA methodology, particularly in the absence of full correlation between anatomical and functional information.

  3. Evaluation of a 3D local multiresolution algorithm for the correction of partial volume effects in positron emission tomography

    PubMed Central

    Le Pogam, Adrien; Hatt, Mathieu; Descourt, Patrice; Boussion, Nicolas; Tsoumpas, Charalampos; Turkheimer, Federico E.; Prunier-Aesch, Caroline; Baulieu, Jean-Louis; Guilloteau, Denis; Visvikis, Dimitris

    2011-01-01

    Purpose Partial volume effects (PVE) are consequences of the limited spatial resolution in emission tomography leading to under-estimation of uptake in tissues of size similar to the point spread function (PSF) of the scanner as well as activity spillover between adjacent structures. Among PVE correction methodologies, a voxel-wise mutual multi-resolution analysis (MMA) was recently introduced. MMA is based on the extraction and transformation of high resolution details from an anatomical image (MR/CT) and their subsequent incorporation into a low resolution PET image using wavelet decompositions. Although this method allows creating PVE corrected images, it is based on a 2D global correlation model which may introduce artefacts in regions where no significant correlation exists between anatomical and functional details. Methods A new model was designed to overcome these two issues (2D only and global correlation) using a 3D wavelet decomposition process combined with a local analysis. The algorithm was evaluated on synthetic, simulated and patient images, and its performance was compared to the original approach as well as the geometric transfer matrix (GTM) method. Results Quantitative performance was similar to the 2D global model and GTM in correlated cases. In cases where mismatches between anatomical and functional information were present the new model outperformed the 2D global approach, avoiding artefacts and significantly improving quality of the corrected images and their quantitative accuracy. Conclusions A new 3D local model was proposed for a voxel-wise PVE correction based on the original mutual multi-resolution analysis approach. Its evaluation demonstrated an improved and more robust qualitative and quantitative accuracy compared to the original MMA methodology, particularly in the absence of full correlation between anatomical and functional information. PMID:21978037

  4. Sequential peritoneal equilibration test: a new method for assessment and modelling of peritoneal transport.

    PubMed

    Galach, Magda; Antosiewicz, Stefan; Baczynski, Daniel; Wankowicz, Zofia; Waniewski, Jacek

    2013-02-01

    In spite of many peritoneal tests proposed, there is still a need for a simple and reliable new approach for deriving detailed information about peritoneal membrane characteristics, especially those related to fluid transport. The sequential peritoneal equilibration test (sPET) that includes PET (glucose 2.27%, 4 h) followed by miniPET (glucose 3.86%, 1 h) was performed in 27 stable continuous ambulatory peritoneal dialysis patients. Ultrafiltration volumes, glucose absorption, ratio of concentration in dialysis fluid to concentration in plasma (D/P), sodium dip (Dip D/P Sodium), free water fraction (FWF60) and the ultrafiltration passing through small pores at 60 min (UFSP60), were calculated using clinical data. Peritoneal transport parameters were estimated using the three-pore model (3p model) and clinical data. Osmotic conductance for glucose was calculated from the parameters of the model. D/P creatinine correlated with diffusive mass transport parameters for all considered solutes, but not with fluid transport characteristics. Hydraulic permeability (L(p)S) correlated with net ultrafiltration from miniPET, UFSP60, FWF60 and sodium dip. The fraction of ultrasmall pores correlated with FWF60 and sodium dip. The sequential PET described and interpreted mechanisms of ultrafiltration and solute transport. Fluid transport parameters from the 3p model were independent of the PET D/P creatinine, but correlated with fluid transport characteristics from PET and miniPET.

  5. Optimal Co-segmentation of Tumor in PET-CT Images with Context Information

    PubMed Central

    Song, Qi; Bai, Junjie; Han, Dongfeng; Bhatia, Sudershan; Sun, Wenqing; Rockey, William; Bayouth, John E.; Buatti, John M.

    2014-01-01

    PET-CT images have been widely used in clinical practice for radiotherapy treatment planning of the radiotherapy. Many existing segmentation approaches only work for a single imaging modality, which suffer from the low spatial resolution in PET or low contrast in CT. In this work we propose a novel method for the co-segmentation of the tumor in both PET and CT images, which makes use of advantages from each modality: the functionality information from PET and the anatomical structure information from CT. The approach formulates the segmentation problem as a minimization problem of a Markov Random Field (MRF) model, which encodes the information from both modalities. The optimization is solved using a graph-cut based method. Two sub-graphs are constructed for the segmentation of the PET and the CT images, respectively. To achieve consistent results in two modalities, an adaptive context cost is enforced by adding context arcs between the two subgraphs. An optimal solution can be obtained by solving a single maximum flow problem, which leads to simultaneous segmentation of the tumor volumes in both modalities. The proposed algorithm was validated in robust delineation of lung tumors on 23 PET-CT datasets and two head-and-neck cancer subjects. Both qualitative and quantitative results show significant improvement compared to the graph cut methods solely using PET or CT. PMID:23693127

  6. 2-[18F]fluoro-2-deoxyglucose positron-emission tomography in staging, response evaluation, and treatment planning of lymphomas.

    PubMed

    Specht, Lena

    2007-07-01

    2-[18F]fluoro-2-deoxyglucose positron-emission tomography (FDG-PET) is used increasingly in the clinical management of lymphomas. With regard to staging, FDG-PET is more sensitive and specific than conventional staging methods in FDG avid lymphomas (ie, Hodgkin lymphoma and most aggressive non-Hodgkin lymphomas). Despite methodological problems, in particular the lack of a valid reference test, FDG-PET is approved and generally used for this purpose. With regard to response evaluation, FDG-PET at the end of treatment seems to aid considerably in differentiating between residual masses with or without residual lymphoma. Hence, new revised response criteria have been proposed, incorporating the result of FDG-PET at the end of treatment. An early interim FDG-PET scan after 1 to 3 cycles of chemotherapy is a very strong predictor of outcome, and trials are now in progress testing treatment modifications on this basis. With regard to treatment planning, in the context of combined-modality therapy, radiotherapy for lymphomas is moving toward more conformal techniques reducing the irradiated volume to include only the macroscopic lymphoma. In this situation, accurate imaging is essential, and FDG-PET coregistered with the planning computed tomography (CT) scan is used increasingly. The availability of PET/CT scanners suited for virtual simulation has aided this process. However, clinical data evaluating this technique are at present sparse.

  7. Imaging for metabotropic glutamate receptor subtype 1 in rat and monkey brains using PET with [18F]FITM.

    PubMed

    Yamasaki, Tomoteru; Fujinaga, Masayuki; Maeda, Jun; Kawamura, Kazunori; Yui, Joji; Hatori, Akiko; Yoshida, Yuichiro; Nagai, Yuji; Tokunaga, Masaki; Higuchi, Makoto; Suhara, Tetsuya; Fukumura, Toshimitsu; Zhang, Ming-Rong

    2012-04-01

    In this study, we evaluate the utility of 4-[(18)F]fluoro-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methylbenzamide ([(18)F]FITM) as a positron emission tomography (PET) ligand for imaging of the metabotropic glutamate receptor subtype 1 (mGluR1) in rat and monkey brains. In vivo distribution of [(18)F]FITM in brains was evaluated by PET scans with or without the mGluR1-selective antagonist (JNJ16259685). Kinetic parameters of monkey PET data were obtained using the two-tissue compartment model with arterial blood sampling. In PET studies in rat and monkey brains, the highest uptake of radioactivity was in the cerebellum, followed by moderate uptake in the thalamus, hippocampus and striatum. The lowest uptake of radioactivity was detected in the pons. These uptakes in all brain regions were dramatically decreased by pre-administration of JNJ16259685. In kinetic analysis of monkey PET, the highest volume of distribution (V(T)) was detected in the cerebellum (V(T) = 11.5). [(18)F]FITM has an excellent profile as a PET ligand for mGluR1 imaging. PET with [(18)F]FITM may prove useful for determining the regional distribution and density of mGluR1 and the mGluR1 occupancy of drugs in human brains.

  8. 18FDG-PET based radiation planning of mediastinal lymph nodes in limited disease small cell lung cancer changes radiotherapy fields: a planning study.

    PubMed

    van Loon, Judith; Offermann, Claudia; Bosmans, Geert; Wanders, Rinus; Dekker, André; Borger, Jacques; Oellers, Michel; Dingemans, Anne-Marie; van Baardwijk, Angela; Teule, Jaap; Snoep, Gabriel; Hochstenbag, Monique; Houben, Ruud; Lambin, Philippe; De Ruysscher, Dirk

    2008-04-01

    To investigate the influence of selective irradiation of 18FDG-PET positive mediastinal nodes on radiation fields and normal tissue exposure in limited disease small cell lung cancer (LD-SCLC). Twenty-one patients with LD-SCLC, of whom both CT and PET images were available, were studied. For each patient, two three-dimensional conformal treatment plans were made with selective irradiation of involved lymph nodes, based on CT and on PET, respectively. Changes in treatment plans as well as dosimetric factors associated with lung and esophageal toxicity were analyzed and compared. FDG-PET information changed the treatment field in 5 patients (24%). In 3 patients, this was due to a decrease and in 2 patients to an increase in the number of involved nodal areas. However, there were no significant differences in gross tumor volume (GTV), lung, and esophageal parameters between CT- and PET-based plans. Incorporating FDG-PET information in radiotherapy planning for patients with LD-SCLC changed the treatment plan in 24% of patients compared to CT. Both increases and decreases of the GTV were observed, theoretically leading to the avoidance of geographical miss or a decrease of radiation exposure of normal tissues, respectively. Based on these findings, a phase II trial, evaluating PET-scan based selective nodal irradiation, is ongoing in our department.

  9. Parsing partial molar volumes of small molecules: a molecular dynamics study.

    PubMed

    Patel, Nisha; Dubins, David N; Pomès, Régis; Chalikian, Tigran V

    2011-04-28

    We used molecular dynamics (MD) simulations in conjunction with the Kirkwood-Buff theory to compute the partial molar volumes for a number of small solutes of various chemical natures. We repeated our computations using modified pair potentials, first, in the absence of the Coulombic term and, second, in the absence of the Coulombic and the attractive Lennard-Jones terms. Comparison of our results with experimental data and the volumetric results of Monte Carlo simulation with hard sphere potentials and scaled particle theory-based computations led us to conclude that, for small solutes, the partial molar volume computed with the Lennard-Jones potential in the absence of the Coulombic term nearly coincides with the cavity volume. On the other hand, MD simulations carried out with the pair interaction potentials containing only the repulsive Lennard-Jones term produce unrealistically large partial molar volumes of solutes that are close to their excluded volumes. Our simulation results are in good agreement with the reported schemes for parsing partial molar volume data on small solutes. In particular, our determined interaction volumes() and the thickness of the thermal volume for individual compounds are in good agreement with empirical estimates. This work is the first computational study that supports and lends credence to the practical algorithms of parsing partial molar volume data that are currently in use for molecular interpretations of volumetric data.

  10. SU-E-J-136: Multimodality-Image-Based Target Delineation for Dose Painting of Pancreatic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalah, E; Paulson, E; Erickson, B

    Purpose: Dose escalated RT may provide improved disease local-control for selected unresectable pancreatic cancer. Accurate delineation of the gross tumor volume (GTV) inside pancreatic head or body would allow safe dose escalation considering the tolerances of adjacent organs at risk (OAR). Here we explore the potential of multi-modality imaging (DCE-MRI, ADC-MRI, and FDG-PET) to define the GTV for dose painting of pancreatic cancer. Volumetric variations of DCE-MRI, ADC-MRI and FDG-PET defined GTVs were assessed in comparison to the findings on CT, and to pathology specimens for resectable and borderline reseactable cases of pancreatic cancer. Methods: A total of 19 representativemore » patients with DCE-MRI, ADC-MRI and FDG-PET data were analyzed. Of these, 8 patients had pathological specimens. GTV, inside pancreatic head/neck, or body, were delineated on MRI (denoted GTVDCE, and GTVADC), on FDG-PET using SUV of 2.5, 40% SUVmax, and 50% SUVmax (denoted GTV2.5, GTV40%, and GTV50%). A Kruskal-Wallis test was used to determine whether significant differences existed between GTV volumes. Results: Significant statistical differences were found between the GTVs defined by DCE-MRI, ADC-MRI, and FDG-PET, with a mean and range of 4.73 (1.00–9.79), 14.52 (3.21–25.49), 22.04 (1.00–45.69), 19.10 (4.84–45.59), and 9.80 (0.32–35.21) cm3 (p<0.0001) for GTVDCE, GTVADC, GTV2.5, GTV40%, and GTV50%, respectively. The mean difference and range in the measurements of maximum dimension of GTVs based on DCE-MRI, ADC-MRI, SUV2.5, 40% SUVmax, and 50% SUVmax compared with pathologic specimens were −0.84 (−2.24 to 0.9), 0.41 (−0.15 to 2.3), 0.58 (−1.41 to 3.69), 0.66 (−0.67 to 1.32), and 0.15 (−1.53 to 2.38) cm, respectively. Conclusion: Differences exists between DCE, ADC, and PET defined target volumes for RT of pancreatic cancer. Further studies combined with pathological specimens are required to identify the optimal imaging modality and/or acquisition method to define the GTV.« less

  11. TU-G-BRA-02: Can We Extract Lung Function Directly From 4D-CT Without Deformable Image Registration?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kipritidis, J; Woodruff, H; Counter, W

    Purpose: Dynamic CT ventilation imaging (CT-VI) visualizes air volume changes in the lung by evaluating breathing-induced lung motion using deformable image registration (DIR). Dynamic CT-VI could enable functionally adaptive lung cancer radiation therapy, but its sensitivity to DIR parameters poses challenges for validation. We hypothesize that a direct metric using CT parameters derived from Hounsfield units (HU) alone can provide similar ventilation images without DIR. We compare the accuracy of Direct and Dynamic CT-VIs versus positron emission tomography (PET) images of inhaled {sup 68}Ga-labelled nanoparticles (‘Galligas’). Methods: 25 patients with lung cancer underwent Galligas 4D-PET/CT scans prior to radiation therapy.more » For each patient we produced three CT- VIs. (i) Our novel method, Direct CT-VI, models blood-gas exchange as the product of air and tissue density at each lung voxel based on time-averaged 4D-CT HU values. Dynamic CT-VIs were produced by evaluating: (ii) regional HU changes, and (iii) regional volume changes between the exhale and inhale 4D-CT phase images using a validated B-spline DIR method. We assessed the accuracy of each CT-VI by computing the voxel-wise Spearman correlation with free-breathing Galligas PET, and also performed a visual analysis. Results: Surprisingly, Direct CT-VIs exhibited better global correlation with Galligas PET than either of the dynamic CT-VIs. The (mean ± SD) correlations were (0.55 ± 0.16), (0.41 ± 0.22) and (0.29 ± 0.27) for Direct, Dynamic HU-based and Dynamic volume-based CT-VIs respectively. Visual comparison of Direct CT-VI to PET demonstrated similarity for emphysema defects and ventral-to-dorsal gradients, but inability to identify decreased ventilation distal to tumor-obstruction. Conclusion: Our data supports the hypothesis that Direct CT-VIs are as accurate as Dynamic CT-VIs in terms of global correlation with Galligas PET. Visual analysis, however, demonstrated that different CT-VI algorithms might have varying accuracy depending on the underlying cause of ventilation abnormality. This research was supported by a National Health and Medical Research Council (NHMRC) Australia Fellowship, an Cancer Institute New South Wales Early Career Fellowship 13-ECF-1/15 and NHMRC scholarship APP1038399. No commercial funding was received for this work.« less

  12. Partial molar volume of n-alcohols at infinite dilution in water calculated by means of scaled particle theory.

    PubMed

    Graziano, Giuseppe

    2006-04-07

    The partial molar volume of n-alcohols at infinite dilution in water is smaller than the molar volume in the neat liquid phase. It is shown that the formula for the partial molar volume at infinite dilution obtained from the scaled particle theory equation of state for binary hard sphere mixtures is able to reproduce in a satisfactory manner the experimental data over a large temperature range. This finding implies that the packing effects play the fundamental role in determining the partial molar volume at infinite dilution in water also for solutes, such as n-alcohols, forming H bonds with water molecules. Since the packing effects in water are largely related to the small size of its molecules, the latter feature is the ultimate cause of the decrease in partial molar volume associated with the hydrophobic effect.

  13. Role of PET/CT for precision medicine in lung cancer: perspective of the Society of Nuclear Medicine and Molecular Imaging.

    PubMed

    Greenspan, Bennett S

    2017-12-01

    This article discusses the role of PET/CT in contributing to precision medicine in lung cancer, and provides the perspective of the Society of Nuclear Medicine and Molecular Imaging (SNMMI) on this process. The mission and vision of SNMMI are listed, along with the guidance provided by SNMMI to promote best practice in precision medicine. Basic principles of PET/CT are presented. An overview of the use of PET/CT imaging in lung cancer is discussed. In lung cancer patients, PET/CT is vitally important for optimal patient management. PET/CT is essential in determining staging and re-staging of disease, detecting recurrent or residual disease, evaluating response to therapy, and providing prognostic information. PET/CT is also critically important in radiation therapy planning by determining the extent of active disease, including an assessment of functional tumor volume. The current approach in tumor imaging is a significant advance over conventional imaging. However, recent advances suggest that therapeutic response criteria in the near future will be based on metabolic characteristics and will include the evaluation of biologic characteristics of tumors to further enhance the effectiveness of precision medicine in lung cancer, producing improved patient outcomes with less morbidity.

  14. Application of fluorodeoxyglucose positron emission tomography in the management of head and neck cancers

    PubMed Central

    Siddiqui, Farzan; Yao, Min

    2014-01-01

    The use of fluorodeoxyglucose positron emission tomography (FDG PET) scan technology in the management of head and neck cancers continues to increase. We discuss the biology of FDG uptake in malignant lesions and also discuss the physics of PET imaging. The various parameters described to quantify FDG uptake in cancers including standardized uptake value, metabolic tumor volume and total lesion glycolysis are presented. PET scans have found a significant role in the diagnosis and staging of head and neck cancers. They are also being increasingly used in radiation therapy treatment planning. Many groups have also used PET derived values to serve as prognostic indicators of outcomes including loco-regional control and overall survival. FDG PET scans are also proving very useful in assessing the efficacy of treatment and management and follow-up of head and neck cancer patients. This review article focuses on the role of FDG-PET computed tomography scans in these areas for squamous cell carcinoma of the head and neck. We present the current state of the art and speculate on the future applications of this technology including protocol development, newer imaging methods such as combined magnetic resonance and PET imaging and novel radiopharmaceuticals that can be used to further study tumor biology. PMID:24976927

  15. Preliminary results of a prototype C-shaped PET designed for an in-beam PET system

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Il; Chung, Yong Hyun; Lee, Kisung; Kim, Kyeong Min; Kim, Yongkwon; Joung, Jinhun

    2016-06-01

    Positron emission tomography (PET) can be utilized in particle beam therapy to verify the dose distribution of the target volume as well as the accuracy of the treatment. We present an in-beam PET scanner that can be integrated into a particle beam therapy system. The proposed PET scanner consisted of 14 detector modules arranged in a C-shape to avoid blockage of the particle beam line by the detector modules. Each detector module was composed of a 9×9 array of 4.0 mm×4.0 mm×20.0 mm LYSO crystals optically coupled to four 29-mm-diameter PMTs using the photomultiplier-quadrant-sharing (PQS) technique. In this study, a Geant4 Application for Tomographic Emission (GATE) simulation study was conducted to design a C-shaped PET scanner and then experimental evaluation of the proposed design was performed. The spatial resolution and sensitivity were measured according to NEMA NU2-2007 standards and were 6.1 mm and 5.61 cps/kBq, respectively, which is in good agreement with our simulation, with an error rate of 12.0%. Taken together, our results demonstrate the feasibility of the proposed C-shaped in-beam PET system, which we expect will be useful for measuring dose distribution in particle therapy.

  16. Pilot biomonitoring of adults and children following use of chlorpyrifos shampoo and flea collars on dogs.

    PubMed

    Dyk, Melinda Bigelow; Chen, Zhenshan; Mosadeghi, Sasan; Vega, Helen; Krieger, Robert

    2011-01-01

    Pesticide handlers and pet owners who use products such as shampoos and dips and insecticide-impregnated collars to treat and control fleas on companion animals are exposed to a variety of active ingredients. Chlorpyrifos exposures of adults and children were measured using urine biomonitoring following use of over-the-counter products on dogs. Age and gender-specific measurements of urinary 3, 5, 6-trichloro-2-pyridinol (TCPy) revealed modest elevations of biomarker excretion following shampoo/dips. Smaller TCPy increments were measured following application of impregnated dog collars. The extent of indoor activity and potential pet contact were important determinants of urine biomarker level. Children without direct pet contact excreted more TCPy following collar application. Pet collars may be a source of indoor surface contamination and human exposure. Children excreted up to 4 times more TCPy than adults when urine volumes were adjusted using age-specific creatinine excretion levels. Although chlorpyrifos is no longer used in the United States in pet care products, results of this research provide perspective on the extent of human exposure from similar pet care products. These pilot studies demonstrated that pet care products such as insecticidal shampoos and dips and impregnated collars may expose family members to low levels of insecticide relative to toxic levels of concern.

  17. Longer-Term Investigation of the Value of 18F-FDG-PET and Magnetic Resonance Imaging for Predicting the Conversion of Mild Cognitive Impairment to Alzheimer's Disease: A Multicenter Study.

    PubMed

    Inui, Yoshitaka; Ito, Kengo; Kato, Takashi

    2017-01-01

    The value of fluorine-18-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) and magnetic resonance imaging (MRI) for predicting conversion of mild cognitive impairment (MCI) to Alzheimer's disease (AD) in longer-term is unclear. To evaluate longer-term prediction of MCI to AD conversion using 18F-FDG-PET and MRI in a multicenter study. One-hundred and fourteen patients with MCI were followed for 5 years. They underwent clinical and neuropsychological examinations, 18F-FDG-PET, and MRI at baseline. PET images were visually classified into predefined dementia patterns. PET scores were calculated as a semi quantitative index. For structural MRI, z-scores in medial temporal area were calculated by automated volume-based morphometry (VBM). Overall, 72% patients with amnestic MCI progressed to AD during the 5-year follow-up. The diagnostic accuracy of PET scores over 5 years was 60% with 53% sensitivity and 84% specificity. Visual interpretation of PET images predicted conversion to AD with an overall 82% diagnostic accuracy, 94% sensitivity, and 53% specificity. The accuracy of VBM analysis presented little fluctuation through 5 years and it was highest (73%) at the 5-year follow-up, with 79% sensitivity and 63% specificity. The best performance (87.9% diagnostic accuracy, 89.8% sensitivity, and 82.4% specificity) was with a combination identified using multivariate logistic regression analysis that included PET visual interpretation, educational level, and neuropsychological tests as predictors. 18F-FDG-PET visual assessment showed high performance for predicting conversion to AD from MCI, particularly in combination with neuropsychological tests. PET scores showed high diagnostic specificity. Structural MRI focused on the medial temporal area showed stable predictive value throughout the 5-year course.

  18. PET imaging in the assessment of normal and impaired cognitive function.

    PubMed

    Silverman, Daniel H S; Alavi, Abass

    2005-01-01

    PET has been used to directly quantify several processes relevant to the status of cerebral health and function, including cerebral blood flow, cerebral blood volume, cerebral rate of oxygen metabolism, and cerebral glucose use. Clinically, the most commonly performed PET studies of the brain are performed with fluorine-18-fluorodeoxyglucose as the imaged radiopharmaceutical. Such scans have demonstrated diagnostic and prognostic use in evaluating patients who have cognitive impairment, and in distinguishing among primary neurodegenerative dementias and other causes of cognitive decline. In certain pathologic circumstances, the normal coupling between blood flow and metabolic needs may be disturbed, and changes in oxygen extraction fraction can have significant prognostic value.

  19. A unified Fourier theory for time-of-flight PET data

    PubMed Central

    Li, Yusheng; Matej, Samuel; Metzler, Scott D

    2016-01-01

    Fully 3D time-of-flight (TOF) PET scanners offer the potential of previously unachievable image quality in clinical PET imaging. TOF measurements add another degree of redundancy for cylindrical PET scanners and make photon-limited TOF-PET imaging more robust than non-TOF PET imaging. The data space for 3D TOF-PET data is five-dimensional with two degrees of redundancy. Previously, consistency equations were used to characterize the redundancy of TOF-PET data. In this paper, we first derive two Fourier consistency equations and Fourier-John equation for 3D TOF PET based on the generalized projection-slice theorem; the three partial differential equations (PDEs) are the dual of the sinogram consistency equations and John's equation. We then solve the three PDEs using the method of characteristics. The two degrees of entangled redundancy of the TOF-PET data can be explicitly elicited and exploited by the solutions of the PDEs along the characteristic curves, which gives a complete understanding of the rich structure of the 3D X-ray transform with TOF measurement. Fourier rebinning equations and other mapping equations among different types of PET data are special cases of the general solutions. We also obtain new Fourier rebinning and consistency equations (FORCEs) from other special cases of the general solutions, and thus we obtain a complete scheme to convert among different types of PET data: 3D TOF, 3D non-TOF, 2D TOF and 2D non-TOF data. The new FORCEs can be used as new Fourier-based rebinning algorithms for TOF-PET data reduction, inverse rebinnings for designing fast projectors, or consistency conditions for estimating missing data. Further, we give a geometric interpretation of the general solutions—the two families of characteristic curves can be obtained by respectively changing the azimuthal and co-polar angles of the biorthogonal coordinates in Fourier space. We conclude the unified Fourier theory by showing that the Fourier consistency equations are necessary and sufficient for 3D X-ray transform with TOF measurement. Finally, we give numerical examples of inverse rebinning for a 3D TOF PET and Fourier-based rebinning for a 2D TOF PET using the FORCEs to show the efficacy of the unified Fourier solutions. PMID:26689836

  20. A unified Fourier theory for time-of-flight PET data.

    PubMed

    Li, Yusheng; Matej, Samuel; Metzler, Scott D

    2016-01-21

    Fully 3D time-of-flight (TOF) PET scanners offer the potential of previously unachievable image quality in clinical PET imaging. TOF measurements add another degree of redundancy for cylindrical PET scanners and make photon-limited TOF-PET imaging more robust than non-TOF PET imaging. The data space for 3D TOF-PET data is five-dimensional with two degrees of redundancy. Previously, consistency equations were used to characterize the redundancy of TOF-PET data. In this paper, we first derive two Fourier consistency equations and Fourier-John equation for 3D TOF PET based on the generalized projection-slice theorem; the three partial differential equations (PDEs) are the dual of the sinogram consistency equations and John's equation. We then solve the three PDEs using the method of characteristics. The two degrees of entangled redundancy of the TOF-PET data can be explicitly elicited and exploited by the solutions of the PDEs along the characteristic curves, which gives a complete understanding of the rich structure of the 3D x-ray transform with TOF measurement. Fourier rebinning equations and other mapping equations among different types of PET data are special cases of the general solutions. We also obtain new Fourier rebinning and consistency equations (FORCEs) from other special cases of the general solutions, and thus we obtain a complete scheme to convert among different types of PET data: 3D TOF, 3D non-TOF, 2D TOF and 2D non-TOF data. The new FORCEs can be used as new Fourier-based rebinning algorithms for TOF-PET data reduction, inverse rebinnings for designing fast projectors, or consistency conditions for estimating missing data. Further, we give a geometric interpretation of the general solutions--the two families of characteristic curves can be obtained by respectively changing the azimuthal and co-polar angles of the biorthogonal coordinates in Fourier space. We conclude the unified Fourier theory by showing that the Fourier consistency equations are necessary and sufficient for 3D x-ray transform with TOF measurement. Finally, we give numerical examples of inverse rebinning for a 3D TOF PET and Fourier-based rebinning for a 2D TOF PET using the FORCEs to show the efficacy of the unified Fourier solutions.

Top