Free-running ADC- and FPGA-based signal processing method for brain PET using GAPD arrays
NASA Astrophysics Data System (ADS)
Hu, Wei; Choi, Yong; Hong, Key Jo; Kang, Jihoon; Jung, Jin Ho; Huh, Youn Suk; Lim, Hyun Keong; Kim, Sang Su; Kim, Byung-Tae; Chung, Yonghyun
2012-02-01
Currently, for most photomultiplier tube (PMT)-based PET systems, constant fraction discriminators (CFD) and time to digital converters (TDC) have been employed to detect gamma ray signal arrival time, whereas anger logic circuits and peak detection analog-to-digital converters (ADCs) have been implemented to acquire position and energy information of detected events. As compared to PMT the Geiger-mode avalanche photodiodes (GAPDs) have a variety of advantages, such as compactness, low bias voltage requirement and MRI compatibility. Furthermore, the individual read-out method using a GAPD array coupled 1:1 with an array scintillator can provide better image uniformity than can be achieved using PMT and anger logic circuits. Recently, a brain PET using 72 GAPD arrays (4×4 array, pixel size: 3 mm×3 mm) coupled 1:1 with LYSO scintillators (4×4 array, pixel size: 3 mm×3 mm×20 mm) has been developed for simultaneous PET/MRI imaging in our laboratory. Eighteen 64:1 position decoder circuits (PDCs) were used to reduce GAPD channel number and three off-the-shelf free-running ADC and field programmable gate array (FPGA) combined data acquisition (DAQ) cards were used for data acquisition and processing. In this study, a free-running ADC- and FPGA-based signal processing method was developed for the detection of gamma ray signal arrival time, energy and position information all together for each GAPD channel. For the method developed herein, three DAQ cards continuously acquired 18 channels of pre-amplified analog gamma ray signals and 108-bit digital addresses from 18 PDCs. In the FPGA, the digitized gamma ray pulses and digital addresses were processed to generate data packages containing pulse arrival time, baseline value, energy value and GAPD channel ID. Finally, these data packages were saved to a 128 Mbyte on-board synchronous dynamic random access memory (SDRAM) and then transferred to a host computer for coincidence sorting and image reconstruction. In order to evaluate the functionality of the developed signal processing method, energy and timing resolutions for brain PET were measured via the placement of a 6 μCi 22Na point source at the center of the PET scanner. Furthermore the PET image of the hot rod phantom (rod diameter: from 2.5 mm to 6.5 mm) with activity of 1 mCi was simulated, and then image acquisition experiment was performed using the brain PET. Measured average energy resolution for 1152 GAPD channels and system timing resolution were 19.5% (FWHM%) and 2.7 ns (FWHM), respectively. With regard to the acquisition of the hot rod phantom image, rods could be resolved down to a diameter of 2.5 mm, which was similar to simulated results. The experimental results demonstrated that the signal processing method developed herein was successfully implemented for brain PET. This reduced the complexity, cost and developing duration for PET system relative to normal PET electronics, and it will obviously be useful for the development of high-performance investigational PET systems.
Extracting a respiratory signal from raw dynamic PET data that contain tracer kinetics.
Schleyer, P J; Thielemans, K; Marsden, P K
2014-08-07
Data driven gating (DDG) methods provide an alternative to hardware based respiratory gating for PET imaging. Several existing DDG approaches obtain a respiratory signal by observing the change in PET-counts within specific regions of acquired PET data. Currently, these methods do not allow for tracer kinetics which can interfere with the respiratory signal and introduce error. In this work, we produced a DDG method for dynamic PET studies that exhibit tracer kinetics. Our method is based on an existing approach that uses frequency-domain analysis to locate regions within raw PET data that are subject to respiratory motion. In the new approach, an optimised non-stationary short-time Fourier transform was used to create a time-varying 4D map of motion affected regions. Additional processing was required to ensure that the relationship between the sign of the respiratory signal and the physical direction of movement remained consistent for each temporal segment of the 4D map. The change in PET-counts within the 4D map during the PET acquisition was then used to generate a respiratory curve. Using 26 min dynamic cardiac NH3 PET acquisitions which included a hardware derived respiratory measurement, we show that tracer kinetics can severely degrade the respiratory signal generated by the original DDG method. In some cases, the transition of tracer from the liver to the lungs caused the respiratory signal to invert. The new approach successfully compensated for tracer kinetics and improved the correlation between the data-driven and hardware based signals. On average, good correlation was maintained throughout the PET acquisitions.
A front-end readout Detector Board for the OpenPET electronics system
NASA Astrophysics Data System (ADS)
Choong, W.-S.; Abu-Nimeh, F.; Moses, W. W.; Peng, Q.; Vu, C. Q.; Wu, J.-Y.
2015-08-01
We present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, which allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is ``time stamped'' by a time-to-digital converter (TDC) implemented inside the FPGA . This digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.
A front-end readout Detector Board for the OpenPET electronics system
Choong, W. -S.; Abu-Nimeh, F.; Moses, W. W.; ...
2015-08-12
Here, we present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, whichmore » allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is "time stamped" by a time-to-digital converter (TDC) implemented inside the FPGA. In conclusion, this digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.« less
Robust real-time extraction of respiratory signals from PET list-mode data
NASA Astrophysics Data System (ADS)
Salomon, André; Zhang, Bin; Olivier, Patrick; Goedicke, Andreas
2018-06-01
Respiratory motion, which typically cannot simply be suspended during PET image acquisition, affects lesions’ detection and quantitative accuracy inside or in close vicinity to the lungs. Some motion compensation techniques address this issue via pre-sorting (‘binning’) of the acquired PET data into a set of temporal gates, where each gate is assumed to be minimally affected by respiratory motion. Tracking respiratory motion is typically realized using dedicated hardware (e.g. using respiratory belts and digital cameras). Extracting respiratory signals directly from the acquired PET data simplifies the clinical workflow as it avoids handling additional signal measurement equipment. We introduce a new data-driven method ‘combined local motion detection’ (CLMD). It uses the time-of-flight (TOF) information provided by state-of-the-art PET scanners in order to enable real-time respiratory signal extraction without additional hardware resources. CLMD applies center-of-mass detection in overlapping regions based on simple back-positioned TOF event sets acquired in short time frames. Following a signal filtering and quality-based pre-selection step, the remaining extracted individual position information over time is then combined to generate a global respiratory signal. The method is evaluated using seven measured FDG studies from single and multiple scan positions of the thorax region, and it is compared to other software-based methods regarding quantitative accuracy and statistical noise stability. Correlation coefficients around 90% between the reference and the extracted signal have been found for those PET scans where motion affected features such as tumors or hot regions were present in the PET field-of-view. For PET scans with a quarter of typically applied radiotracer doses, the CLMD method still provides similar high correlation coefficients which indicates its robustness to noise. Each CLMD processing needed less than 0.4 s in total on a standard multi-core CPU and thus provides a robust and accurate approach enabling real-time processing capabilities using standard PC hardware.
A small animal PET based on GAPDs and charge signal transmission approach for hybrid PET-MR imaging
NASA Astrophysics Data System (ADS)
Kang, Jihoon; Choi, Yong; Hong, Key Jo; Hu, Wei; Jung, Jin Ho; Huh, Yoonsuk; Kim, Byung-Tae
2011-08-01
Positron emission tomography (PET) employing Geiger-mode avalanche photodiodes (GAPDs) and charge signal transmission approach was developed for small animal imaging. Animal PET contained 16 LYSO and GAPD detector modules that were arranged in a 70 mm diameter ring with an axial field of view of 13 mm. The GAPDs charge output signals were transmitted to a preamplifier located remotely using 300 cm flexible flat cables. The position decoder circuits (PDCs) were used to multiplex the PET signals from 256 to 4 channels. The outputs of the PDCs were digitized and further-processed in the data acquisition unit. The cross-compatibilities of the PET detectors and MRI were assessed outside and inside the MRI. Experimental studies of the developed full ring PET were performed to examine the spatial resolution and sensitivity. Phantom and mouse images were acquired to examine the imaging performance. The mean energy and time resolution of the PET detector were 17.6% and 1.5 ns, respectively. No obvious degradation on PET and MRI was observed during simultaneous PET-MRI data acquisition. The measured spatial resolution and sensitivity at the CFOV were 2.8 mm and 0.7%, respectively. In addition, a 3 mm diameter line source was clearly resolved in the hot-sphere phantom images. The reconstructed transaxial PET images of the mouse brain and tumor displaying the glucose metabolism patterns were imaged well. These results demonstrate GAPD and the charge signal transmission approach can allow the development of high performance small animal PET with improved MR compatibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choong, W. -S.; Abu-Nimeh, F.; Moses, W. W.
Here, we present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, whichmore » allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is "time stamped" by a time-to-digital converter (TDC) implemented inside the FPGA. In conclusion, this digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.« less
Robust real-time extraction of respiratory signals from PET list-mode data.
Salomon, Andre; Zhang, Bin; Olivier, Patrick; Goedicke, Andreas
2018-05-01
Respiratory motion, which typically cannot simply be suspended during PET image acquisition, affects lesions' detection and quantitative accuracy inside or in close vicinity to the lungs. Some motion compensation techniques address this issue via pre-sorting ("binning") of the acquired PET data into a set of temporal gates, where each gate is assumed to be minimally affected by respiratory motion. Tracking respiratory motion is typically realized using dedicated hardware (e.g. using respiratory belts and digital cameras). Extracting respiratory signalsdirectly from the acquired PET data simplifies the clinical workflow as it avoids to handle additional signal measurement equipment. We introduce a new data-driven method "Combined Local Motion Detection" (CLMD). It uses the Time-of-Flight (TOF) information provided by state-of-the-art PET scanners in order to enable real-time respiratory signal extraction without additional hardware resources. CLMD applies center-of-mass detection in overlapping regions based on simple back-positioned TOF event sets acquired in short time frames. Following a signal filtering and quality-based pre-selection step, the remaining extracted individual position information over time is then combined to generate a global respiratory signal. The method is evaluated using 7 measured FDG studies from single and multiple scan positions of the thorax region, and it is compared to other software-based methods regarding quantitative accuracy and statistical noise stability. Correlation coefficients around 90% between the reference and the extracted signal have been found for those PET scans where motion affected features such as tumors or hot regions were present in the PET field-of-view. For PET scans with a quarter of typically applied radiotracer doses, the CLMD method still provides similar high correlation coefficients which indicates its robustness to noise. Each CLMD processing needed less than 0.4s in total on a standard multi-core CPU and thus provides a robust and accurate approach enabling real-time processing capabilities using standard PC hardware. © 2018 Institute of Physics and Engineering in Medicine.
Calculation of the time resolution of the J-PET tomograph using kernel density estimation
NASA Astrophysics Data System (ADS)
Raczyński, L.; Wiślicki, W.; Krzemień, W.; Kowalski, P.; Alfs, D.; Bednarski, T.; Białas, P.; Curceanu, C.; Czerwiński, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Gorgol, M.; Hiesmayr, B.; Jasińska, B.; Kamińska, D.; Korcyl, G.; Kozik, T.; Krawczyk, N.; Kubicz, E.; Mohammed, M.; Pawlik-Niedźwiecka, M.; Niedźwiecki, S.; Pałka, M.; Rudy, Z.; Rundel, O.; Sharma, N. G.; Silarski, M.; Smyrski, J.; Strzelecki, A.; Wieczorek, A.; Zgardzińska, B.; Zieliński, M.; Moskal, P.
2017-06-01
In this paper we estimate the time resolution of the J-PET scanner built from plastic scintillators. We incorporate the method of signal processing using the Tikhonov regularization framework and the kernel density estimation method. We obtain simple, closed-form analytical formulae for time resolution. The proposed method is validated using signals registered by means of the single detection unit of the J-PET tomograph built from a 30 cm long plastic scintillator strip. It is shown that the experimental and theoretical results obtained for the J-PET scanner equipped with vacuum tube photomultipliers are consistent.
NASA Astrophysics Data System (ADS)
Martinez, J. D.; Benlloch, J. M.; Cerda, J.; Lerche, Ch. W.; Pavon, N.; Sebastia, A.
2004-06-01
This paper is framed into the Positron Emission Mammography (PEM) project, whose aim is to develop an innovative gamma ray sensor for early breast cancer diagnosis. Currently, breast cancer is detected using low-energy X-ray screening. However, functional imaging techniques such as PET/FDG could be employed to detect breast cancer and track disease changes with greater sensitivity. Furthermore, a small and less expensive PET camera can be utilized minimizing main problems of whole body PET. To accomplish these objectives, we are developing a new gamma ray sensor based on a newly released photodetector. However, a dedicated PEM detector requires an adequate data acquisition (DAQ) and processing system. The characterization of gamma events needs a free-running analog-to-digital converter (ADC) with sampling rates of more than 50 Ms/s and must achieve event count rates up to 10 MHz. Moreover, comprehensive data processing must be carried out to obtain event parameters necessary for performing the image reconstruction. A new generation digital signal processor (DSP) has been used to comply with these requirements. This device enables us to manage the DAQ system at up to 80 Ms/s and to execute intensive calculi over the detector signals. This paper describes our designed DAQ and processing architecture whose main features are: very high-speed data conversion, multichannel synchronized acquisition with zero dead time, a digital triggering scheme, and high throughput of data with an extensive optimization of the signal processing algorithms.
Methodology for quantitative rapid multi-tracer PET tumor characterizations.
Kadrmas, Dan J; Hoffman, John M
2013-10-04
Positron emission tomography (PET) can image a wide variety of functional and physiological parameters in vivo using different radiotracers. As more is learned about the molecular basis for disease and treatment, the potential value of molecular imaging for characterizing and monitoring disease status has increased. Characterizing multiple aspects of tumor physiology by imaging multiple PET tracers in a single patient provides additional complementary information, and there is a significant body of literature supporting the potential value of multi-tracer PET imaging in oncology. However, imaging multiple PET tracers in a single patient presents a number of challenges. A number of techniques are under development for rapidly imaging multiple PET tracers in a single scan, where signal-recovery processing algorithms are employed to recover various imaging endpoints for each tracer. Dynamic imaging is generally used with tracer injections staggered in time, and kinetic constraints are utilized to estimate each tracers' contribution to the multi-tracer imaging signal. This article summarizes past and ongoing work in multi-tracer PET tumor imaging, and then organizes and describes the main algorithmic approaches for achieving multi-tracer PET signal-recovery. While significant advances have been made, the complexity of the approach necessitates protocol design, optimization, and testing for each particular tracer combination and application. Rapid multi-tracer PET techniques have great potential for both research and clinical cancer imaging applications, and continued research in this area is warranted.
Methodology for Quantitative Rapid Multi-Tracer PET Tumor Characterizations
Kadrmas, Dan J.; Hoffman, John M.
2013-01-01
Positron emission tomography (PET) can image a wide variety of functional and physiological parameters in vivo using different radiotracers. As more is learned about the molecular basis for disease and treatment, the potential value of molecular imaging for characterizing and monitoring disease status has increased. Characterizing multiple aspects of tumor physiology by imaging multiple PET tracers in a single patient provides additional complementary information, and there is a significant body of literature supporting the potential value of multi-tracer PET imaging in oncology. However, imaging multiple PET tracers in a single patient presents a number of challenges. A number of techniques are under development for rapidly imaging multiple PET tracers in a single scan, where signal-recovery processing algorithms are employed to recover various imaging endpoints for each tracer. Dynamic imaging is generally used with tracer injections staggered in time, and kinetic constraints are utilized to estimate each tracers' contribution to the multi-tracer imaging signal. This article summarizes past and ongoing work in multi-tracer PET tumor imaging, and then organizes and describes the main algorithmic approaches for achieving multi-tracer PET signal-recovery. While significant advances have been made, the complexity of the approach necessitates protocol design, optimization, and testing for each particular tracer combination and application. Rapid multi-tracer PET techniques have great potential for both research and clinical cancer imaging applications, and continued research in this area is warranted. PMID:24312149
Olcott, Peter; Kim, Ealgoo; Hong, Keyjo; Lee, Brian J; Grant, Alexander M; Chang, Chen-Ming; Glover, Gary; Levin, Craig S
2015-05-07
The simultaneous acquisition of PET and MRI data shows promise to provide powerful capabilities to study disease processes in human subjects, guide the development of novel treatments, and monitor therapy response and disease progression. A brain-size PET detector ring insert for an MRI system is being developed that, if successful, can be inserted into any existing MRI system to enable simultaneous PET and MRI images of the brain to be acquired without mutual interference. The PET insert uses electro-optical coupling to relay all the signals from the PET detectors out of the MRI system using analog modulated lasers coupled to fiber optics. Because the fibers use light instead of electrical signals, the PET detector can be electrically decoupled from the MRI making it partially transmissive to the RF field of the MRI. The SiPM devices and low power lasers were powered using non-magnetic MRI compatible batteries. Also, the number of laser-fiber channels in the system was reduced using techniques adapted from the field of compressed sensing. Using the fact that incoming PET data is sparse in time and space, electronic circuits implementing constant weight codes uniquely encode the detector signals in order to reduce the number of electro-optical readout channels by 8-fold. Two out of a total of sixteen electro-optical detector modules have been built and tested with the entire RF-shielded detector gantry for the PET ring insert. The two detectors have been tested outside and inside of a 3T MRI system to study mutual interference effects and simultaneous performance with MRI. Preliminary results show that the PET insert is feasible for high resolution simultaneous PET/MRI imaging for applications in the brain.
NASA Astrophysics Data System (ADS)
Olcott, Peter; Kim, Ealgoo; Hong, Keyjo; Lee, Brian J.; Grant, Alexander M.; Chang, Chen-Ming; Glover, Gary; Levin, Craig S.
2015-05-01
The simultaneous acquisition of PET and MRI data shows promise to provide powerful capabilities to study disease processes in human subjects, guide the development of novel treatments, and monitor therapy response and disease progression. A brain-size PET detector ring insert for an MRI system is being developed that, if successful, can be inserted into any existing MRI system to enable simultaneous PET and MRI images of the brain to be acquired without mutual interference. The PET insert uses electro-optical coupling to relay all the signals from the PET detectors out of the MRI system using analog modulated lasers coupled to fiber optics. Because the fibers use light instead of electrical signals, the PET detector can be electrically decoupled from the MRI making it partially transmissive to the RF field of the MRI. The SiPM devices and low power lasers were powered using non-magnetic MRI compatible batteries. Also, the number of laser-fiber channels in the system was reduced using techniques adapted from the field of compressed sensing. Using the fact that incoming PET data is sparse in time and space, electronic circuits implementing constant weight codes uniquely encode the detector signals in order to reduce the number of electro-optical readout channels by 8-fold. Two out of a total of sixteen electro-optical detector modules have been built and tested with the entire RF-shielded detector gantry for the PET ring insert. The two detectors have been tested outside and inside of a 3T MRI system to study mutual interference effects and simultaneous performance with MRI. Preliminary results show that the PET insert is feasible for high resolution simultaneous PET/MRI imaging for applications in the brain.
Quantitative assessment of the physical potential of proton beam range verification with PET/CT.
Knopf, A; Parodi, K; Paganetti, H; Cascio, E; Bonab, A; Bortfeld, T
2008-08-07
A recent clinical pilot study demonstrated the feasibility of offline PET/CT range verification for proton therapy treatments. In vivo PET measurements are challenged by blood perfusion, variations of tissue compositions, patient motion and image co-registration uncertainties. Besides these biological and treatment specific factors, the accuracy of the method is constrained by the underlying physical processes. This phantom study distinguishes physical factors from other factors, assessing the reproducibility, consistency and sensitivity of the PET/CT range verification method. A spread-out Bragg-peak (SOBP) proton field was delivered to a phantom consisting of poly-methyl methacrylate (PMMA), lung and bone equivalent material slabs. PET data were acquired in listmode at a commercial PET/CT scanner available within 10 min walking distance from the proton therapy unit. The measured PET activity distributions were compared to simulations of the PET signal based on Geant4 and FLUKA Monte Carlo (MC) codes. To test the reproducibility of the measured PET signal, data from two independent measurements at the same geometrical position in the phantom were compared. Furthermore, activation depth profiles within identical material arrangements but at different positions within the irradiation field were compared to test the consistency of the measured PET signal. Finally, activation depth profiles through air/lung, air/bone and lung/bone interfaces parallel as well as at 6 degrees to the beam direction were studied to investigate the sensitivity of the PET/CT range verification method. The reproducibility and the consistency of the measured PET signal were found to be of the same order of magnitude. They determine the physical accuracy of the PET measurement to be about 1 mm. However, range discrepancies up to 2.6 mm between two measurements and range variations up to 2.6 mm within one measurement were found at the beam edge and at the edge of the field of view (FOV) of the PET scanner. PET/CT range verification was found to be able to detect small range modifications in the presence of complex tissue inhomogeneities. This study indicates the physical potential of the PET/CT verification method to detect the full-range characteristic of the delivered dose in the patient.
Quantitative assessment of the physical potential of proton beam range verification with PET/CT
NASA Astrophysics Data System (ADS)
Knopf, A.; Parodi, K.; Paganetti, H.; Cascio, E.; Bonab, A.; Bortfeld, T.
2008-08-01
A recent clinical pilot study demonstrated the feasibility of offline PET/CT range verification for proton therapy treatments. In vivo PET measurements are challenged by blood perfusion, variations of tissue compositions, patient motion and image co-registration uncertainties. Besides these biological and treatment specific factors, the accuracy of the method is constrained by the underlying physical processes. This phantom study distinguishes physical factors from other factors, assessing the reproducibility, consistency and sensitivity of the PET/CT range verification method. A spread-out Bragg-peak (SOBP) proton field was delivered to a phantom consisting of poly-methyl methacrylate (PMMA), lung and bone equivalent material slabs. PET data were acquired in listmode at a commercial PET/CT scanner available within 10 min walking distance from the proton therapy unit. The measured PET activity distributions were compared to simulations of the PET signal based on Geant4 and FLUKA Monte Carlo (MC) codes. To test the reproducibility of the measured PET signal, data from two independent measurements at the same geometrical position in the phantom were compared. Furthermore, activation depth profiles within identical material arrangements but at different positions within the irradiation field were compared to test the consistency of the measured PET signal. Finally, activation depth profiles through air/lung, air/bone and lung/bone interfaces parallel as well as at 6° to the beam direction were studied to investigate the sensitivity of the PET/CT range verification method. The reproducibility and the consistency of the measured PET signal were found to be of the same order of magnitude. They determine the physical accuracy of the PET measurement to be about 1 mm. However, range discrepancies up to 2.6 mm between two measurements and range variations up to 2.6 mm within one measurement were found at the beam edge and at the edge of the field of view (FOV) of the PET scanner. PET/CT range verification was found to be able to detect small range modifications in the presence of complex tissue inhomogeneities. This study indicates the physical potential of the PET/CT verification method to detect the full-range characteristic of the delivered dose in the patient.
Simultaneous PET/MR imaging with a radio frequency-penetrable PET insert
Grant, Alexander M.; Lee, Brian J.; Chang, Chen-Ming; Levin, Craig S.
2017-01-01
Purpose A brain sized radio-frequency (RF)-penetrable PET insert has been designed for simultaneous operation with MRI systems. This system takes advantage of electro-optical coupling and battery power to electrically float the PET insert relative to the MRI ground, permitting RF signals to be transmitted through small gaps between the modules that form the PET ring. This design facilitates the use of the built-in body coil for RF transmission, and thus could be inserted into any existing MR site wishing to achieve simultaneous PET/MR imaging. The PET detectors employ non-magnetic silicon photomultipliers in conjunction with a compressed sensing signal multiplexing scheme, and optical fibers to transmit analog PET detector signals out of the MRI room for decoding, processing, and image reconstruction. Methods The PET insert was first constructed and tested in a laboratory benchtop setting, where tomographic images of a custom resolution phantom were successfully acquired. The PET insert was then placed within a 3T body MRI system, and tomographic resolution/contrast phantom images were acquired both with only the B0 field present, and under continuous pulsing from different MR imaging sequences. Results The resulting PET images have comparable contrast-to-noise ratios (CNR) under all MR pulsing conditions: the maximum percent CNR relative difference for each rod type among all four PET images acquired in the MRI system has a mean of 14.0±7.7%. MR images were successfully acquired through the RF-penetrable PET shielding using only the built-in MR body coil, suggesting that simultaneous imaging is possible without significant mutual interference. Conclusions These results show promise for this technology as an alternative to costly integrated PET/MR scanners; a PET insert that is compatible with any existing clinical MRI system could greatly increase the availability, accessibility, and dissemination of PET/MR. PMID:28102949
A contactless approach for respiratory gating in PET using continuous-wave radar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ersepke, Thomas, E-mail: Thomas.Ersepke@rub.de; Büther, Florian; Heß, Mirco
Purpose: Respiratory gating is commonly used to reduce motion artifacts in positron emission tomography (PET). Clinically established methods for respiratory gating in PET require contact to the patient or a direct optical line between the sensor and the patient’s torso and time consuming preparation. In this work, a contactless method for capturing a respiratory signal during PET is presented based on continuous-wave radar. Methods: The proposed method relies on the principle of emitting an electromagnetic wave and detecting the phase shift of the reflected wave, modulated due to the respiratory movement of the patient’s torso. A 24 GHz carrier frequencymore » was chosen allowing wave propagation through plastic and clothing with high reflections at the skin surface. A detector module and signal processing algorithms were developed to extract a quantitative respiratory signal. The sensor was validated using a high precision linear table. During volunteer measurements and [{sup 18}F] FDG PET scans, the radar sensor was positioned inside the scanner bore of a PET/computed tomography scanner. As reference, pressure belt (one volunteer), depth camera-based (two volunteers, two patients), and PET data-driven (six patients) signals were acquired simultaneously and the signal correlation was quantified. Results: The developed system demonstrated a high measurement accuracy for movement detection within the submillimeter range. With the proposed method, small displacements of 25 μm could be detected, not considerably influenced by clothing or blankets. From the patient studies, the extracted respiratory radar signals revealed high correlation (Pearson correlation coefficient) to those derived from the external pressure belt and depth camera signals (r = 0.69–0.99) and moderate correlation to those of the internal data-driven signals (r = 0.53–0.70). In some cases, a cardiac signal could be visualized, due to the representation of the mechanical heart motion on the skin. Conclusions: Accurate respiratory signals were obtained successfully by the proposed method with high spatial and temporal resolution. By working without contact and passing through clothing and blankets, this approach minimizes preparation time and increases the convenience of the patient during the scan.« less
Kesner, Adam Leon; Kuntner, Claudia
2010-10-01
Respiratory gating in PET is an approach used to minimize the negative effects of respiratory motion on spatial resolution. It is based on an initial determination of a patient's respiratory movements during a scan, typically using hardware based systems. In recent years, several fully automated databased algorithms have been presented for extracting a respiratory signal directly from PET data, providing a very practical strategy for implementing gating in the clinic. In this work, a new method is presented for extracting a respiratory signal from raw PET sinogram data and compared to previously presented automated techniques. The acquisition of respiratory signal from PET data in the newly proposed method is based on rebinning the sinogram data into smaller data structures and then analyzing the time activity behavior in the elements of these structures. From this analysis, a 1D respiratory trace is produced, analogous to a hardware derived respiratory trace. To assess the accuracy of this fully automated method, respiratory signal was extracted from a collection of 22 clinical FDG-PET scans using this method, and compared to signal derived from several other software based methods as well as a signal derived from a hardware system. The method presented required approximately 9 min of processing time for each 10 min scan (using a single 2.67 GHz processor), which in theory can be accomplished while the scan is being acquired and therefore allowing a real-time respiratory signal acquisition. Using the mean correlation between the software based and hardware based respiratory traces, the optimal parameters were determined for the presented algorithm. The mean/median/range of correlations for the set of scans when using the optimal parameters was found to be 0.58/0.68/0.07-0.86. The speed of this method was within the range of real-time while the accuracy surpassed the most accurate of the previously presented algorithms. PET data inherently contains information about patient motion; information that is not currently being utilized. We have shown that a respiratory signal can be extracted from raw PET data in potentially real-time and in a fully automated manner. This signal correlates well with hardware based signal for a large percentage of scans, and avoids the efforts and complications associated with hardware. The proposed method to extract a respiratory signal can be implemented on existing scanners and, if properly integrated, can be applied without changes to routine clinical procedures.
Spatio-temporal diffusion of dynamic PET images
NASA Astrophysics Data System (ADS)
Tauber, C.; Stute, S.; Chau, M.; Spiteri, P.; Chalon, S.; Guilloteau, D.; Buvat, I.
2011-10-01
Positron emission tomography (PET) images are corrupted by noise. This is especially true in dynamic PET imaging where short frames are required to capture the peak of activity concentration after the radiotracer injection. High noise results in a possible bias in quantification, as the compartmental models used to estimate the kinetic parameters are sensitive to noise. This paper describes a new post-reconstruction filter to increase the signal-to-noise ratio in dynamic PET imaging. It consists in a spatio-temporal robust diffusion of the 4D image based on the time activity curve (TAC) in each voxel. It reduces the noise in homogeneous areas while preserving the distinct kinetics in regions of interest corresponding to different underlying physiological processes. Neither anatomical priors nor the kinetic model are required. We propose an automatic selection of the scale parameter involved in the diffusion process based on a robust statistical analysis of the distances between TACs. The method is evaluated using Monte Carlo simulations of brain activity distributions. We demonstrate the usefulness of the method and its superior performance over two other post-reconstruction spatial and temporal filters. Our simulations suggest that the proposed method can be used to significantly increase the signal-to-noise ratio in dynamic PET imaging.
Prototype design of singles processing unit for the small animal PET
NASA Astrophysics Data System (ADS)
Deng, P.; Zhao, L.; Lu, J.; Li, B.; Dong, R.; Liu, S.; An, Q.
2018-05-01
Position Emission Tomography (PET) is an advanced clinical diagnostic imaging technique for nuclear medicine. Small animal PET is increasingly used for studying the animal model of disease, new drugs and new therapies. A prototype of Singles Processing Unit (SPU) for a small animal PET system was designed to obtain the time, energy, and position information. The energy and position is actually calculated through high precison charge measurement, which is based on amplification, shaping, A/D conversion and area calculation in digital signal processing domian. Analysis and simulations were also conducted to optimize the key parameters in system design. Initial tests indicate that the charge and time precision is better than 3‰ FWHM and 350 ps FWHM respectively, while the position resolution is better than 3.5‰ FWHM. Commination tests of the SPU prototype with the PET detector indicate that the system time precision is better than 2.5 ns, while the flood map and energy spectra concored well with the expected.
Ciernik, I Frank; Brown, Derek W; Schmid, Daniel; Hany, Thomas; Egli, Peter; Davis, J Bernard
2007-02-01
Volumetric assessment of PET signals becomes increasingly relevant for radiotherapy (RT) planning. Here, we investigate the utility of 18F-choline PET signals to serve as a structure for semi-automatic segmentation for forward treatment planning of prostate cancer. 18F-choline PET and CT scans of ten patients with histologically proven prostate cancer without extracapsular growth were acquired using a combined PET/CT scanner. Target volumes were manually delineated on CT images using standard software. Volumes were also obtained from 18F-choline PET images using an asymmetrical segmentation algorithm. PTVs were derived from CT 18F-choline PET based clinical target volumes (CTVs) by automatic expansion and comparative planning was performed. As a read-out for dose given to non-target structures, dose to the rectal wall was assessed. Planning target volumes (PTVs) derived from CT and 18F-choline PET yielded comparable results. Optimal matching of CT and 18F-choline PET derived volumes in the lateral and cranial-caudal directions was obtained using a background-subtracted signal thresholds of 23.0+/-2.6%. In antero-posterior direction, where adaptation compensating for rectal signal overflow was required, optimal matching was achieved with a threshold of 49.5+/-4.6%. 3D-conformal planning with CT or 18F-choline PET resulted in comparable doses to the rectal wall. Choline PET signals of the prostate provide adequate spatial information amendable to standardized asymmetrical region growing algorithms for PET-based target volume definition for external beam RT.
NASA Astrophysics Data System (ADS)
Janek, S.; Svensson, R.; Jonsson, C.; Brahme, A.
2006-11-01
A method for dose delivery monitoring after high energy photon therapy has been investigated based on positron emission tomography (PET). The technique is based on the activation of body tissues by high energy bremsstrahlung beams, preferably with energies well above 20 MeV, resulting primarily in 11C and 15O but also 13N, all positron-emitting radionuclides produced by photoneutron reactions in the nuclei of 12C, 16O and 14N. A PMMA phantom and animal tissue, a frozen hind leg of a pig, were irradiated to 10 Gy and the induced positron activity distributions were measured off-line in a PET camera a couple of minutes after irradiation. The accelerator used was a Racetrack Microtron at the Karolinska University Hospital using 50 MV scanned photon beams. From photonuclear cross-section data integrated over the 50 MV photon fluence spectrum the predicted PET signal was calculated and compared with experimental measurements. Since measured PET images change with time post irradiation, as a result of the different decay times of the radionuclides, the signals from activated 12C, 16O and 14N within the irradiated volume could be separated from each other. Most information is obtained from the carbon and oxygen radionuclides which are the most abundant elements in soft tissue. The predicted and measured overall positron activities are almost equal (-3%) while the predicted activity originating from nitrogen is overestimated by almost a factor of two, possibly due to experimental noise. Based on the results obtained in this first feasibility study the great value of a combined radiotherapy-PET-CT unit is indicated in order to fully exploit the high activity signal from oxygen immediately after treatment and to avoid patient repositioning. With an RT-PET-CT unit a high signal could be collected even at a dose level of 2 Gy and the acquisition time for the PET could be reduced considerably. Real patient dose delivery verification by means of PET imaging seems to be applicable provided that biological transport processes such as capillary blood flow containing mobile 15O and 11C in the activated tissue volume can be accounted for.
Retrospective data-driven respiratory gating for PET/CT
NASA Astrophysics Data System (ADS)
Schleyer, Paul J.; O'Doherty, Michael J.; Barrington, Sally F.; Marsden, Paul K.
2009-04-01
Respiratory motion can adversely affect both PET and CT acquisitions. Respiratory gating allows an acquisition to be divided into a series of motion-reduced bins according to the respiratory signal, which is typically hardware acquired. In order that the effects of motion can potentially be corrected for, we have developed a novel, automatic, data-driven gating method which retrospectively derives the respiratory signal from the acquired PET and CT data. PET data are acquired in listmode and analysed in sinogram space, and CT data are acquired in cine mode and analysed in image space. Spectral analysis is used to identify regions within the CT and PET data which are subject to respiratory motion, and the variation of counts within these regions is used to estimate the respiratory signal. Amplitude binning is then used to create motion-reduced PET and CT frames. The method was demonstrated with four patient datasets acquired on a 4-slice PET/CT system. To assess the accuracy of the data-derived respiratory signal, a hardware-based signal was acquired for comparison. Data-driven gating was successfully performed on PET and CT datasets for all four patients. Gated images demonstrated respiratory motion throughout the bin sequences for all PET and CT series, and image analysis and direct comparison of the traces derived from the data-driven method with the hardware-acquired traces indicated accurate recovery of the respiratory signal.
Sun, Xishan; Lan, Allan K.; Bircher, Chad; Deng, Zhi; Liu, Yinong; Shao, Yiping
2011-01-01
A new signal processing method for PET application has been developed, with discrete circuit components to measure energy and timing of a gamma interaction based solely on digital timing processing without using an amplitude-to-digital convertor (ADC) or a constant fraction discriminator (CFD). A single channel discrete component time-based readout (TBR) circuit was implemented in a PC board. Initial circuit functionality and performance evaluations have been conducted. Accuracy and linearity of signal amplitude measurement were excellent, as measured with test pulses. The measured timing accuracy from test pulses reached to less than 300 ps, a value limited mainly by the timing jitter of the prototype electronics circuit. Both suitable energy and coincidence timing resolutions (~18% and ~1.0 ns) have been achieved with 3 × 3 × 20 mm3 LYSO scintillator and photomultiplier tube-based detectors. With its relatively simple circuit and low cost, TBR is expected to be a suitable front-end signal readout electronics for compact PET or other radiation detectors requiring the reading of a large number of detector channels and demanding high performance for energy and timing measurement. PMID:21743761
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tixier, F; INSERM UMR1101 LaTIM, Brest; Cheze-Le-Rest, C
2015-06-15
Purpose: Several quantitative features can be extracted from 18F-FDG PET images, such as standardized uptake values (SUVs), metabolic tumor volume (MTV), shape characterization (SC) or intra-tumor radiotracer heterogeneity quantification (HQ). Some of these features calculated from baseline 18F-FDG PET images have shown a prognostic and predictive clinical value. It has been hypothesized that these features highlight underlying tumor patho-physiological processes at smaller scales. The objective of this study was to investigate the ability of recovering alterations of signaling pathways from FDG PET image-derived features. Methods: 52 patients were prospectively recruited from two medical centers (Brest and Poitiers). All patients underwentmore » an FDG PET scan for staging and biopsies of both healthy and primary tumor tissues. Biopsies went through a transcriptomic analysis performed in four spates on 4×44k chips (Agilent™). Primary tumors were delineated in the PET images using the Fuzzy Locally Adaptive Bayesian algorithm and characterized using 10 features including SUVs, SC and HQ. A module network algorithm followed by functional annotation was exploited in order to link PET features with signaling pathways alterations. Results: Several PET-derived features were found to discriminate differentially expressed genes between tumor and healthy tissue (fold-change >2, p<0.01) into 30 co-regulated groups (p<0.05). Functional annotations applied to these groups of genes highlighted associations with well-known pathways involved in cancer processes, such as cell proliferation and apoptosis, as well as with more specific ones such as unsaturated fatty acids. Conclusion: Quantitative features extracted from baseline 18F-FDG PET images usually exploited only for diagnosis and staging, were identified in this work as being related to specific altered pathways and may show promise as tools for personalizing treatment decisions.« less
Towards a high sensitivity small animal PET system based on CZT detectors (Conference Presentation)
NASA Astrophysics Data System (ADS)
Abbaszadeh, Shiva; Levin, Craig
2017-03-01
Small animal positron emission tomography (PET) is a biological imaging technology that allows non-invasive interrogation of internal molecular and cellular processes and mechanisms of disease. New PET molecular probes with high specificity are under development to target, detect, visualize, and quantify subtle molecular and cellular processes associated with cancer, heart disease, and neurological disorders. However, the limited uptake of these targeted probes leads to significant reduction in signal. There is a need to advance the performance of small animal PET system technology to reach its full potential for molecular imaging. Our goal is to assemble a small animal PET system based on CZT detectors and to explore methods to enhance its photon sensitivity. In this work, we reconstruct an image from a phantom using a two-panel subsystem consisting of six CZT crystals in each panel. For image reconstruction, coincidence events with energy between 450 and 570 keV were included. We are developing an algorithm to improve sensitivity of the system by including multiple interaction events.
NASA Astrophysics Data System (ADS)
Rinnerbauer, V.; Schmidegg, K.; Hohage, M.; Sun, L. D.; Flores-Camacho, J. M.; Zeppenfeld, P.
2009-06-01
We have used reflectance difference spectroscopy (RDS) and its extension, azimuth-dependent RDS (ADRDS), to study the properties of sputtered and evaporated nickel films on biaxially oriented poly(ethylene terephtalate) (PET) films in a roll to roll web-coating process. From the full set of ADRDS spectra we extract and analyze both the intrinsic RDS spectra and the azimuthal orientation of the effective optical anisotropy of the samples. From the latter, contributions to the RDS spectra arising from the nickel layer and the PET substrate with different orientations of the optical eigenaxes can be inferred. We find an attenuation of the characteristic RDS signal of the PET substrate with increasing nickel film thickness which is in good agreement with the theoretical prediction. For film thicknesses above 20 nm another contribution to the RDS signal attributed to the optical anisotropy of the deposited nickel layers can be observed. Its strength depends on the deposition method, and is considerably larger for evaporated films than for sputtered ones. With increasing nickel film thickness, the azimuthal orientation of the sample anisotropy changes from the initial value of the PET substrate by about 20° toward the machine direction of the foil. We demonstrate that RDS is also a valuable tool for inline monitoring in the roll to roll process, as the attenuation of the RDS signal, under proper consideration of the orientation of the effective anisotropy, is a function of the film thickness and characteristic for the deposited material.
NASA Astrophysics Data System (ADS)
Mönnich, David; Troost, Esther G. C.; Kaanders, Johannes H. A. M.; Oyen, Wim J. G.; Alber, Markus; Thorwarth, Daniela
2011-04-01
Hypoxia can be assessed non-invasively by positron emission tomography (PET) using radiotracers such as [18F]fluoromisonidazole (Fmiso) accumulating in poorly oxygenated cells. Typical features of dynamic Fmiso PET data are high signal variability in the first hour after tracer administration and slow formation of a consistent contrast. The purpose of this study is to investigate whether these characteristics can be explained by the current conception of the underlying microscopic processes and to identify fundamental effects. This is achieved by modelling and simulating tissue oxygenation and tracer dynamics on the microscopic scale. In simulations, vessel structures on histology-derived maps act as sources and sinks for oxygen as well as tracer molecules. Molecular distributions in the extravascular space are determined by reaction-diffusion equations, which are solved numerically using a two-dimensional finite element method. Simulated Fmiso time activity curves (TACs), though not directly comparable to PET TACs, reproduce major characteristics of clinical curves, indicating that the microscopic model and the parameter values are adequate. Evidence for dependence of the early PET signal on the vascular fraction is found. Further, possible effects leading to late contrast formation and potential implications on the quantification of Fmiso PET data are discussed.
Characterization of PET preforms using spectral domain optical coherence tomography
NASA Astrophysics Data System (ADS)
Hosseiny, Hamid; Ferreira, Manuel João.; Martins, Teresa; Carmelo Rosa, Carla
2013-11-01
Polyethylene terephthalate (PET) preforms are massively produced nowadays with the purpose of producing food and beverages packaging and liquid containers. Some varieties of these preforms are produced as multilayer structures, where very thin inner film(s) act as a barrier for nutrients leakage. The knowledge of the thickness of this thin inner layer is important in the production line. The quality control of preforms production requires a fast approach and normally the thickness control is performed by destructive means out of the production line. A spectral domain optical coherence tomography (SD-OCT) method was proposed to examine the thin layers in real time. This paper describes a nondestructive approach and all required signal processing steps to characterize the thin inner layers and also to improve the imaging speed and the signal to noise ratio. The algorithm was developed by using graphics processing unit (GPU) with computer unified device architecture (CUDA). This GPU-accelerated white light interferometry technique nondestructively assesses the samples and has high imaging speed advantage, overcoming the bottlenecks in PET performs quality control.
Zhu, Lei; Guo, Ning; Li, Quanzheng; Ma, Ying; Jacboson, Orit; Lee, Seulki; Choi, Hak Soo; Mansfield, James R.; Niu, Gang; Chen, Xiaoyuan
2012-01-01
Purpose: The aim of this study is to determine if dynamic optical imaging could provide comparable kinetic parameters to that of dynamic PET imaging by a near-infrared dye/64Cu dual-labeled cyclic RGD peptide. Methods: The integrin αvβ3 binding RGD peptide was conjugated with a macrocyclic chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for copper labeling and PET imaging and a near-infrared dye ZW-1 for optical imaging. The in vitro biological activity of RGD-C(DOTA)-ZW-1 was characterized by cell staining and receptor binding assay. Sixty-min dynamic PET and optical imaging were acquired on a MDA-MB-435 tumor model. Singular value decomposition (SVD) method was applied to compute the dynamic optical signal from the two-dimensional optical projection images. Compartment models were used to quantitatively analyze and compare the dynamic optical and PET data. Results: The dual-labeled probe 64Cu-RGD-C(DOTA)-ZW-1 showed integrin specific binding in vitro and in vivo. The binding potential (Bp) derived from dynamic optical imaging (1.762 ± 0.020) is comparable to that from dynamic PET (1.752 ± 0.026). Conclusion: The signal un-mixing process using SVD improved the accuracy of kinetic modeling of 2D dynamic optical data. Our results demonstrate that 2D dynamic optical imaging with SVD analysis could achieve comparable quantitative results as dynamic PET imaging in preclinical xenograft models. PMID:22916074
Zhu, Lei; Guo, Ning; Li, Quanzheng; Ma, Ying; Jacboson, Orit; Lee, Seulki; Choi, Hak Soo; Mansfield, James R; Niu, Gang; Chen, Xiaoyuan
2012-01-01
The aim of this study is to determine if dynamic optical imaging could provide comparable kinetic parameters to that of dynamic PET imaging by a near-infrared dye/(64)Cu dual-labeled cyclic RGD peptide. The integrin α(v)β(3) binding RGD peptide was conjugated with a macrocyclic chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for copper labeling and PET imaging and a near-infrared dye ZW-1 for optical imaging. The in vitro biological activity of RGD-C(DOTA)-ZW-1 was characterized by cell staining and receptor binding assay. Sixty-min dynamic PET and optical imaging were acquired on a MDA-MB-435 tumor model. Singular value decomposition (SVD) method was applied to compute the dynamic optical signal from the two-dimensional optical projection images. Compartment models were used to quantitatively analyze and compare the dynamic optical and PET data. The dual-labeled probe (64)Cu-RGD-C(DOTA)-ZW-1 showed integrin specific binding in vitro and in vivo. The binding potential (Bp) derived from dynamic optical imaging (1.762 ± 0.020) is comparable to that from dynamic PET (1.752 ± 0.026). The signal un-mixing process using SVD improved the accuracy of kinetic modeling of 2D dynamic optical data. Our results demonstrate that 2D dynamic optical imaging with SVD analysis could achieve comparable quantitative results as dynamic PET imaging in preclinical xenograft models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lecomte, Roger; Arpin, Louis; Beaudoin, Jean-Franç
Purpose: LabPET II is a new generation APD-based PET scanner designed to achieve sub-mm spatial resolution using truly pixelated detectors and highly integrated parallel front-end processing electronics. Methods: The basic element uses a 4×8 array of 1.12×1.12 mm{sup 2} Lu{sub 1.9}Y{sub 0.1}SiO{sub 5}:Ce (LYSO) scintillator pixels with one-to-one coupling to a 4×8 pixelated monolithic APD array mounted on a ceramic carrier. Four detector arrays are mounted on a daughter board carrying two flip-chip, 64-channel, mixed-signal, application-specific integrated circuits (ASIC) on the backside interfacing to two detector arrays each. Fully parallel signal processing was implemented in silico by encoding time andmore » energy information using a dual-threshold Time-over-Threshold (ToT) scheme. The self-contained 128-channel detector module was designed as a generic component for ultra-high resolution PET imaging of small to medium-size animals. Results: Energy and timing performance were optimized by carefully setting ToT thresholds to minimize the noise/slope ratio. ToT spectra clearly show resolved 511 keV photopeak and Compton edge with ToT resolution well below 10%. After correction for nonlinear ToT response, energy resolution is typically 24±2% FWHM. Coincidence time resolution between opposing 128-channel modules is below 4 ns FWHM. Initial imaging results demonstrate that 0.8 mm hot spots of a Derenzo phantom can be resolved. Conclusion: A new generation PET scanner featuring truly pixelated detectors was developed and shown to achieve a spatial resolution approaching the physical limit of PET. Future plans are to integrate a small-bore dedicated mouse version of the scanner within a PET/CT platform.« less
Sex steroid hormones and brain function: PET imaging as a tool for research.
Moraga-Amaro, R; van Waarde, A; Doorduin, J; de Vries, E F J
2018-02-01
Sex steroid hormones are major regulators of sexual characteristic among species. These hormones, however, are also produced in the brain. Steroidal hormone-mediated signalling via the corresponding hormone receptors can influence brain function at the cellular level and thus affect behaviour and higher brain functions. Altered steroid hormone signalling has been associated with psychiatric disorders, such as anxiety and depression. Neurosteroids are also considered to have a neuroprotective effect in neurodegenerative diseases. So far, the role of steroid hormone receptors in physiological and pathological conditions has mainly been investigated post mortem on animal or human brain tissues. To study the dynamic interplay between sex steroids, their receptors, brain function and behaviour in psychiatric and neurological disorders in a longitudinal manner, however, non-invasive techniques are needed. Positron emission tomography (PET) is a non-invasive imaging tool that is used to quantitatively investigate a variety of physiological and biochemical parameters in vivo. PET uses radiotracers aimed at a specific target (eg, receptor, enzyme, transporter) to visualise the processes of interest. In this review, we discuss the current status of the use of PET imaging for studying sex steroid hormones in the brain. So far, PET has mainly been investigated as a tool to measure (changes in) sex hormone receptor expression in the brain, to measure a key enzyme in the steroid synthesis pathway (aromatase) and to evaluate the effects of hormonal treatment by imaging specific downstream processes in the brain. Although validated radiotracers for a number of targets are still warranted, PET can already be a useful technique for steroid hormone research and facilitate the translation of interesting findings in animal studies to clinical trials in patients. © 2017 The Authors. Journal of Neuroendocrinology published by John Wiley & Sons Ltd on behalf of British Society for Neuroendocrinology.
A prototype MR insertable brain PET using tileable GAPD arrays.
Hong, Key Jo; Choi, Yong; Jung, Jin Ho; Kang, Jihoon; Hu, Wei; Lim, Hyun Keong; Huh, Yoonsuk; Kim, Sangsu; Jung, Ji Woong; Kim, Kyu Bom; Song, Myung Sung; Park, Hyun-Wook
2013-04-01
The aim of this study was to develop a prototype magnetic resonance (MR)-compatible positron emission tomography (PET) that can be inserted into a MR imager and that allows simultaneous PET and MR imaging of the human brain. This paper reports the initial results of the authors' prototype brain PET system operating within a 3-T magnetic resonance imaging (MRI) system using newly developed Geiger-mode avalanche photodiode (GAPD)-based PET detectors, long flexible flat cables, position decoder circuit with high multiplexing ratio, and digital signal processing with field programmable gate array-based analog to digital converter boards. A brain PET with 72 detector modules arranged in a ring was constructed and mounted in a 3-T MRI. Each PET module was composed of cerium-doped lutetium yttrium orthosilicate (LYSO) crystals coupled to a tileable GAPD. The GAPD output charge signals were transferred to preamplifiers using 3 m long flat cables. The LYSO and GAPD were located inside the MR bore and all electronics were positioned outside the MR bore. The PET detector performance was investigated both outside and inside the MRI, and MR image quality was evaluated with and without the PET system. The performance of the PET detector when operated inside the MRI during MR image acquisition showed no significant change in energy resolution and count rates, except for a slight degradation in timing resolution with an increase from 4.2 to 4.6 ns. Simultaneous PET/MR images of a hot-rod and Hoffman brain phantom were acquired in a 3-T MRI. Rods down to a diameter of 3.5 mm were resolved in the hot-rod PET image. The activity distribution patterns between the white and gray matter in the Hoffman brain phantom were well imaged. The hot-rod and Hoffman brain phantoms on the simultaneously acquired MR images obtained with standard sequences were observed without any noticeable artifacts, although MR image quality requires some improvement. These results demonstrate that the simultaneous acquisition of PET and MR images is feasible using the MR insertable PET developed in this study.
Feasibility of Rapid Multitracer PET Tumor Imaging
NASA Astrophysics Data System (ADS)
Kadrmas, D. J.; Rust, T. C.
2005-10-01
Positron emission tomography (PET) can characterize different aspects of tumor physiology using various tracers. PET scans are usually performed using only one tracer since there is no explicit signal for distinguishing multiple tracers. We tested the feasibility of rapidly imaging multiple PET tracers using dynamic imaging techniques, where the signals from each tracer are separated based upon differences in tracer half-life, kinetics, and distribution. Time-activity curve populations for FDG, acetate, ATSM, and PTSM were simulated using appropriate compartment models, and noisy dual-tracer curves were computed by shifting and adding the single-tracer curves. Single-tracer components were then estimated from dual-tracer data using two methods: principal component analysis (PCA)-based fits of single-tracer components to multitracer data, and parallel multitracer compartment models estimating single-tracer rate parameters from multitracer time-activity curves. The PCA analysis found that there is information content present for separating multitracer data, and that tracer separability depends upon tracer kinetics, injection order and timing. Multitracer compartment modeling recovered rate parameters for individual tracers with good accuracy but somewhat higher statistical uncertainty than single-tracer results when the injection delay was >10 min. These approaches to processing rapid multitracer PET data may potentially provide a new tool for characterizing multiple aspects of tumor physiology in vivo.
Data-driven gating in PET: Influence of respiratory signal noise on motion resolution.
Büther, Florian; Ernst, Iris; Frohwein, Lynn Johann; Pouw, Joost; Schäfers, Klaus Peter; Stegger, Lars
2018-05-21
Data-driven gating (DDG) approaches for positron emission tomography (PET) are interesting alternatives to conventional hardware-based gating methods. In DDG, the measured PET data themselves are utilized to calculate a respiratory signal, that is, subsequently used for gating purposes. The success of gating is then highly dependent on the statistical quality of the PET data. In this study, we investigate how this quality determines signal noise and thus motion resolution in clinical PET scans using a center-of-mass-based (COM) DDG approach, specifically with regard to motion management of target structures in future radiotherapy planning applications. PET list mode datasets acquired in one bed position of 19 different radiotherapy patients undergoing pretreatment [ 18 F]FDG PET/CT or [ 18 F]FDG PET/MRI were included into this retrospective study. All scans were performed over a region with organs (myocardium, kidneys) or tumor lesions of high tracer uptake and under free breathing. Aside from the original list mode data, datasets with progressively decreasing PET statistics were generated. From these, COM DDG signals were derived for subsequent amplitude-based gating of the original list mode file. The apparent respiratory shift d from end-expiration to end-inspiration was determined from the gated images and expressed as a function of signal-to-noise ratio SNR of the determined gating signals. This relation was tested against additional 25 [ 18 F]FDG PET/MRI list mode datasets where high-precision MR navigator-like respiratory signals were available as reference signal for respiratory gating of PET data, and data from a dedicated thorax phantom scan. All original 19 high-quality list mode datasets demonstrated the same behavior in terms of motion resolution when reducing the amount of list mode events for DDG signal generation. Ratios and directions of respiratory shifts between end-respiratory gates and the respective nongated image were constant over all statistic levels. Motion resolution d/d max could be modeled as d/dmax=1-e-1.52(SNR-1)0.52, with d max as the actual respiratory shift. Determining d max from d and SNR in the 25 test datasets and the phantom scan demonstrated no significant differences to the MR navigator-derived shift values and the predefined shift, respectively. The SNR can serve as a general metric to assess the success of COM-based DDG, even in different scanners and patients. The derived formula for motion resolution can be used to estimate the actual motion extent reasonably well in cases of limited PET raw data statistics. This may be of interest for individualized radiotherapy treatment planning procedures of target structures subjected to respiratory motion. © 2018 American Association of Physicists in Medicine.
Ladefoged, Claes N; Hansen, Adam E; Keller, Sune H; Fischer, Barbara M; Rasmussen, Jacob H; Law, Ian; Kjær, Andreas; Højgaard, Liselotte; Lauze, Francois; Beyer, Thomas; Andersen, Flemming L
2015-12-01
In the absence of CT or traditional transmission sources in combined clinical positron emission tomography/magnetic resonance (PET/MR) systems, MR images are used for MR-based attenuation correction (MR-AC). The susceptibility effects due to metal implants challenge MR-AC in the neck region of patients with dental implants. The purpose of this study was to assess the frequency and magnitude of subsequent PET image distortions following MR-AC. A total of 148 PET/MR patients with clear visual signal voids on the attenuation map in the dental region were included in this study. Patients were injected with [(18)F]-FDG, [(11)C]-PiB, [(18)F]-FET, or [(64)Cu]-DOTATATE. The PET/MR data were acquired over a single-bed position of 25.8 cm covering the head and neck. MR-AC was based on either standard MR-ACDIXON or MR-ACINPAINTED where the susceptibility-induced signal voids were substituted with soft tissue information. Our inpainting algorithm delineates the outer contour of signal voids breaching the anatomical volume using the non-attenuation-corrected PET image and classifies the inner air regions based on an aligned template of likely dental artifact areas. The reconstructed PET images were evaluated visually and quantitatively using regions of interests in reference regions. The volume of the artifacts and the computed relative differences in mean and max standardized uptake value (SUV) between the two PET images are reported. The MR-based volume of the susceptibility-induced signal voids on the MR-AC attenuation maps was between 1.6 and 520.8 mL. The corresponding/resulting bias of the reconstructed tracer distribution was localized mainly in the area of the signal void. The mean and maximum SUVs averaged across all patients increased after inpainting by 52% (± 11%) and 28% (± 11%), respectively, in the corrected region. SUV underestimation decreased with the distance to the signal void and correlated with the volume of the susceptibility artifact on the MR-AC attenuation map. Metallic dental work may cause severe MR signal voids. The resulting PET/MR artifacts may exceed the actual volume of the dental fillings. The subsequent bias in PET is severe in regions in and near the signal voids and may affect the conspicuity of lesions in the mandibular region.
Sci—Thur AM: YIS - 08: Constructing an Attenuation map for a PET/MR Breast coil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patrick, John C.; Imaging, Lawson Health Research Institute, Knoxville, TN; London Regional Cancer Program, Knoxville, TN
2014-08-15
In 2013, around 23000 Canadian women and 200 Canadian men were diagnosed with breast cancer. An estimated 5100 women and 55 men died from the disease. Using the sensitivity of MRI with the selectivity of PET, PET/MRI combines anatomical and functional information within the same scan and could help with early detection in high-risk patients. MRI requires radiofrequency coils for transmitting energy and receiving signal but the breast coil attenuates PET signal. To correct for this PET attenuation, a 3-dimensional map of linear attenuation coefficients (μ-map) of the breast coil must be created and incorporated into the PET reconstruction process.more » Several approaches have been proposed for building hardware μ-maps, some of which include the use of conventional kVCT and Dual energy CT. These methods can produce high resolution images based on the electron densities of materials that can be converted into μ-maps. However, imaging hardware containing metal components with photons in the kV range is susceptible to metal artifacts. These artifacts can compromise the accuracy of the resulting μ-map and PET reconstruction; therefore high-Z components should be removed. We propose a method for calculating μ-maps without removing coil components, based on megavoltage (MV) imaging with a linear accelerator that has been detuned for imaging at 1.0MeV. Containers of known geometry with F18 were placed in the breast coil for imaging. A comparison between reconstructions based on the different μ-map construction methods was made. PET reconstructions with our method show a maximum of 6% difference over the existing kVCT-based reconstructions.« less
Sparsity-constrained PET image reconstruction with learned dictionaries
NASA Astrophysics Data System (ADS)
Tang, Jing; Yang, Bao; Wang, Yanhua; Ying, Leslie
2016-09-01
PET imaging plays an important role in scientific and clinical measurement of biochemical and physiological processes. Model-based PET image reconstruction such as the iterative expectation maximization algorithm seeking the maximum likelihood solution leads to increased noise. The maximum a posteriori (MAP) estimate removes divergence at higher iterations. However, a conventional smoothing prior or a total-variation (TV) prior in a MAP reconstruction algorithm causes over smoothing or blocky artifacts in the reconstructed images. We propose to use dictionary learning (DL) based sparse signal representation in the formation of the prior for MAP PET image reconstruction. The dictionary to sparsify the PET images in the reconstruction process is learned from various training images including the corresponding MR structural image and a self-created hollow sphere. Using simulated and patient brain PET data with corresponding MR images, we study the performance of the DL-MAP algorithm and compare it quantitatively with a conventional MAP algorithm, a TV-MAP algorithm, and a patch-based algorithm. The DL-MAP algorithm achieves improved bias and contrast (or regional mean values) at comparable noise to what the other MAP algorithms acquire. The dictionary learned from the hollow sphere leads to similar results as the dictionary learned from the corresponding MR image. Achieving robust performance in various noise-level simulation and patient studies, the DL-MAP algorithm with a general dictionary demonstrates its potential in quantitative PET imaging.
Byrd, Darrin; Christopfel, Rebecca; Arabasz, Grae; Catana, Ciprian; Karp, Joel; Lodge, Martin A; Laymon, Charles; Moros, Eduardo G; Budzevich, Mikalai; Nehmeh, Sadek; Scheuermann, Joshua; Sunderland, John; Zhang, Jun; Kinahan, Paul
2018-01-01
Positron emission tomography (PET) is a quantitative imaging modality, but the computation of standardized uptake values (SUVs) requires several instruments to be correctly calibrated. Variability in the calibration process may lead to unreliable quantitation. Sealed source kits containing traceable amounts of [Formula: see text] were used to measure signal stability for 19 PET scanners at nine hospitals in the National Cancer Institute's Quantitative Imaging Network. Repeated measurements of the sources were performed on PET scanners and in dose calibrators. The measured scanner and dose calibrator signal biases were used to compute the bias in SUVs at multiple time points for each site over a 14-month period. Estimation of absolute SUV accuracy was confounded by bias from the solid phantoms' physical properties. On average, the intrascanner coefficient of variation for SUV measurements was 3.5%. Over the entire length of the study, single-scanner SUV values varied over a range of 11%. Dose calibrator bias was not correlated with scanner bias. Calibration factors from the image metadata were nearly as variable as scanner signal, and were correlated with signal for many scanners. SUVs often showed low intrascanner variability between successive measurements but were also prone to shifts in apparent bias, possibly in part due to scanner recalibrations that are part of regular scanner quality control. Biases of key factors in the computation of SUVs were not correlated and their temporal variations did not cancel out of the computation. Long-lived sources and image metadata may provide a check on the recalibration process.
OpenPET: A Flexible Electronics System for Radiotracer Imaging
NASA Astrophysics Data System (ADS)
Moses, W. W.; Buckley, S.; Vu, C.; Peng, Q.; Pavlov, N.; Choong, W.-S.; Wu, J.; Jackson, C.
2010-10-01
We present the design for OpenPET, an electronics readout system designed for prototype radiotracer imaging instruments. The critical requirements are that it has sufficient performance, channel count, channel density, and power consumption to service a complete camera, and yet be simple, flexible, and customizable enough to be used with almost any detector or camera design. An important feature of this system is that each analog input is processed independently. Each input can be configured to accept signals of either polarity as well as either differential or ground referenced signals. Each signal is digitized by a continuously sampled ADC, which is processed by an FPGA to extract pulse height information. A leading edge discriminator creates a timing edge that is “time stamped” by a TDC implemented inside the FPGA. This digital information from each channel is sent to an FPGA that services 16 analog channels, and information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc. As all of this processing is controlled by firmware and software, it can be modified/customized easily. The system is open source, meaning that all technical data (specifications, schematics and board layout files, source code, and instructions) will be publicly available.
High-performance electronics for time-of-flight PET systems
NASA Astrophysics Data System (ADS)
Choong, W.-S.; Peng, Q.; Vu, C. Q.; Turko, B. T.; Moses, W. W.
2013-01-01
We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr3 crystals respectively.
NASA Astrophysics Data System (ADS)
Yang, J.; Kim, K. B.; Choi, Y.; Kang, J.
2018-04-01
A depth-encoding positron emission tomography (PET) detector inserting a horizontal-striped glass between pixilated scintillation crystal layers was developed and experimentally evaluated. The detector consists of 2-layers of 4×4 LYSO array arranged with a 3.37 mm pitch. Horizontal-striped glasses with 1×4 array with different thickness of 3, 4 and 5 mm were inserted between top- and bottom-crystal layers. Bottom surface of bottom-layer was optically coupled to a 4×4 GAPD array. Sixteen output signals from DOI-PET detector were multiplexed by modified resistive charge division (RCD) networks and multiplexed signals were fed into custom-made charge-sensitive preamplifiers. The four amplified signals were digitized and recorded by the custom-made DAQ system based on FPGA. The four digitized outputs were post-processed and converted to flood histograms for each interaction event. Experimental results revealed that all crystal pixels were clearly identified on the 2D flood histogram without overlapping. Patterns of the 2D flood histogram were constituted with arrangements of [bottom–top–bottom–top–\\ldots–top–bottom–top–bottom] crystal responses in X-direction. These could be achieved by employing horizontal-striped glass that controlled the extent of light dispersion towards the X-direction in crystal layers for generation of a different position mapping for each layer and the modified RCD network that controls degree of charge sharing in readout electronics for reduction of identification error. This study demonstrated the proposed DOI-PET detector can extract the 3D γ-ray interaction position without considerable performance degradation of PET detector from the 2D flood histogram.
High-performance electronics for time-of-flight PET systems.
Choong, W-S; Peng, Q; Vu, C Q; Turko, B T; Moses, W W
2013-01-01
We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr 3 crystals respectively.
Architecture and Implementation of OpenPET Firmware and Embedded Software
Abu-Nimeh, Faisal T.; Ito, Jennifer; Moses, William W.; Peng, Qiyu; Choong, Woon-Seng
2016-01-01
OpenPET is an open source, modular, extendible, and high-performance platform suitable for multi-channel data acquisition and analysis. Due to the flexibility of the hardware, firmware, and software architectures, the platform is capable of interfacing with a wide variety of detector modules not only in medical imaging but also in homeland security applications. Analog signals from radiation detectors share similar characteristics – a pulse whose area is proportional to the deposited energy and whose leading edge is used to extract a timing signal. As a result, a generic design method of the platform is adopted for the hardware, firmware, and software architectures and implementations. The analog front-end is hosted on a module called a Detector Board, where each board can filter, combine, timestamp, and process multiple channels independently. The processed data is formatted and sent through a backplane bus to a module called Support Board, where 1 Support Board can host up to eight Detector Board modules. The data in the Support Board, coming from 8 Detector Board modules, can be aggregated or correlated (if needed) depending on the algorithm implemented or runtime mode selected. It is then sent out to a computer workstation for further processing. The number of channels (detector modules), to be processed, mandates the overall OpenPET System Configuration, which is designed to handle up to 1,024 channels using 16-channel Detector Boards in the Standard System Configuration and 16,384 channels using 32-channel Detector Boards in the Large System Configuration. PMID:27110034
Compressive sensing of signals generated in plastic scintillators in a novel J-PET instrument
NASA Astrophysics Data System (ADS)
Raczyński, L.; Moskal, P.; Kowalski, P.; Wiślicki, W.; Bednarski, T.; Białas, P.; Czerwiński, E.; Gajos, A.; Kapłon, Ł.; Kochanowski, A.; Korcyl, G.; Kowal, J.; Kozik, T.; Krzemień, W.; Kubicz, E.; Niedźwiecki, Sz.; Pałka, M.; Rudy, Z.; Rundel, O.; Salabura, P.; Sharma, N. G.; Silarski, M.; Słomski, A.; Smyrski, J.; Strzelecki, A.; Wieczorek, A.; Zieliński, M.; Zoń, N.
2015-06-01
The J-PET scanner, which allows for single bed imaging of the whole human body, is currently under development at the Jagiellonian University. The discussed detector offers improvement of the Time of Flight (TOF) resolution due to the use of fast plastic scintillators and dedicated electronics allowing for sampling in the voltage domain of signals with durations of few nanoseconds. In this paper we show that recovery of the whole signal, based on only a few samples, is possible. In order to do that, we incorporate the training signals into the Tikhonov regularization framework and we perform the Principal Component Analysis decomposition, which is well known for its compaction properties. The method yields a simple closed form analytical solution that does not require iterative processing. Moreover, from the Bayes theory the properties of regularized solution, especially its covariance matrix, may be easily derived. This is the key to introduce and prove the formula for calculations of the signal recovery error. In this paper we show that an average recovery error is approximately inversely proportional to the number of acquired samples.
Development of brain PET using GAPD arrays.
Jung, Jin Ho; Choi, Yong; Hong, Key Jo; Kang, Jihoon; Hu, Wei; Lim, Hyun Keong; Huh, Yoonsuk; Kim, Sangsu; Jung, Jiwoong; Kim, Kyu Bom
2012-03-01
In recent times, there has been great interest in the use of Geiger-mode avalanche photodiodes (GAPDs) as scintillator readout in positron emission tomography (PET) detectors because of their advantages, such as high gain, compact size, low power consumption, and magnetic field insensitivity. The purpose of this study was to develop a novel PET system based on GAPD arrays for brain imaging. The PET consisted of 72 detector modules arranged in a ring of 330 mm diameter. Each PET module was composed of a 4 × 4 matrix of 3 × 3 × 20 mm(3) cerium-doped lutetium yttrium orthosilicate (LYSO) crystals coupled with a 4 × 4 array three-side tileable GAPD. The signals from each PET module were fed into preamplifiers using a 3 m long flat cable and then sent to a position decoder circuit (PDC), which output a digital address and an analog pulse of the interacted channel among 64 preamplifier signals transmitted from four PET detector modules. The PDC outputs were fed into field programmable gate array (FPGA)-embedded data acquisition (DAQ) boards. The analog signal was then digitized, and arrival time and energy of the signal were calculated and stored. The energy and coincidence timing resolutions measured for 511 keV gamma rays were 18.4 ± 3.1% and 2.6 ns, respectively. The transaxial spatial resolution and sensitivity in the center of field of view (FOV) were 3.1 mm and 0.32% cps/Bq, respectively. The rods down to a diameter of 2.5 mm were resolved in a hot-rod phantom image, and activity distribution patterns between the white and gray matters in the Hoffman brain phantom were well imaged. Experimental results indicate that a PET system can be developed using GAPD arrays and the GAPD-based PET system can provide high-quality PET imaging.
MR-compatibility of a high-resolution small animal PET insert operating inside a 7 T MRI.
Thiessen, J D; Shams, E; Stortz, G; Schellenberg, G; Bishop, D; Khan, M S; Kozlowski, P; Retière, F; Sossi, V; Thompson, C J; Goertzen, A L
2016-11-21
A full-ring PET insert consisting of 16 PET detector modules was designed and constructed to fit within the 114 mm diameter gradient bore of a Bruker 7 T MRI. The individual detector modules contain two silicon photomultiplier (SiPM) arrays, dual-layer offset LYSO crystal arrays, and high-definition multimedia interface (HDMI) cables for both signal and power transmission. Several different RF shielding configurations were assessed prior to construction of a fully assembled PET insert using a combination of carbon fibre and copper foil for RF shielding. MR-compatibility measurements included field mapping of the static magnetic field (B 0 ) and the time-varying excitation field (B 1 ) as well as acquisitions with multiple pulse sequences: spin echo (SE), rapid imaging with refocused echoes (RARE), fast low angle shot (FLASH) gradient echo, and echo planar imaging (EPI). B 0 field maps revealed a small degradation in the mean homogeneity (+0.1 ppm) when the PET insert was installed and operating. No significant change was observed in the B 1 field maps or the image homogeneity of various MR images, with a 9% decrease in the signal-to-noise ratio (SNR) observed only in EPI images acquired with the PET insert installed and operating. PET detector flood histograms, photopeak amplitudes, and energy resolutions were unchanged in individual PET detector modules when acquired during MRI operation. There was a small baseline shift on the PET detector signals due to the switching amplifiers used to power MRI gradient pulses. This baseline shift was observable when measured with an oscilloscope and varied as a function of the gradient duty cycle, but had no noticeable effect on the performance of the PET detector modules. Compact front-end electronics and effective RF shielding led to minimal cross-interference between the PET and MRI systems. Both PET detector and MRI performance was excellent, whether operating as a standalone system or a hybrid PET/MRI.
MR-compatibility of a high-resolution small animal PET insert operating inside a 7 T MRI
NASA Astrophysics Data System (ADS)
Thiessen, J. D.; Shams, E.; Stortz, G.; Schellenberg, G.; Bishop, D.; Khan, M. S.; Kozlowski, P.; Retière, F.; Sossi, V.; Thompson, C. J.; Goertzen, A. L.
2016-11-01
A full-ring PET insert consisting of 16 PET detector modules was designed and constructed to fit within the 114 mm diameter gradient bore of a Bruker 7 T MRI. The individual detector modules contain two silicon photomultiplier (SiPM) arrays, dual-layer offset LYSO crystal arrays, and high-definition multimedia interface (HDMI) cables for both signal and power transmission. Several different RF shielding configurations were assessed prior to construction of a fully assembled PET insert using a combination of carbon fibre and copper foil for RF shielding. MR-compatibility measurements included field mapping of the static magnetic field (B 0) and the time-varying excitation field (B 1) as well as acquisitions with multiple pulse sequences: spin echo (SE), rapid imaging with refocused echoes (RARE), fast low angle shot (FLASH) gradient echo, and echo planar imaging (EPI). B 0 field maps revealed a small degradation in the mean homogeneity (+0.1 ppm) when the PET insert was installed and operating. No significant change was observed in the B 1 field maps or the image homogeneity of various MR images, with a 9% decrease in the signal-to-noise ratio (SNR) observed only in EPI images acquired with the PET insert installed and operating. PET detector flood histograms, photopeak amplitudes, and energy resolutions were unchanged in individual PET detector modules when acquired during MRI operation. There was a small baseline shift on the PET detector signals due to the switching amplifiers used to power MRI gradient pulses. This baseline shift was observable when measured with an oscilloscope and varied as a function of the gradient duty cycle, but had no noticeable effect on the performance of the PET detector modules. Compact front-end electronics and effective RF shielding led to minimal cross-interference between the PET and MRI systems. Both PET detector and MRI performance was excellent, whether operating as a standalone system or a hybrid PET/MRI.
NASA Astrophysics Data System (ADS)
Yousefzadeh, Hoorvash Camilia; Lecomte, Roger; Fontaine, Réjean
2012-06-01
A fast Wiener filter-based crystal identification (WFCI) algorithm was recently developed to discriminate crystals with close scintillation decay times in phoswich detectors. Despite the promising performance of WFCI, the influence of various physical factors and electrical noise sources of the data acquisition chain (DAQ) on the crystal identification process was not fully investigated. This paper examines the effect of different noise sources, such as photon statistics, avalanche photodiode (APD) excess multiplication noise, and front-end electronic noise, as well as the influence of different shaping filters on the performance of the WFCI algorithm. To this end, a PET-like signal simulator based on a model of the LabPET DAQ, a small animal APD-based digital PET scanner, was developed. Simulated signals were generated under various noise conditions with CR-RC shapers of order 1, 3, and 5 having different time constants (τ). Applying the WFCI algorithm to these simulated signals showed that the non-stationary Poisson photon statistics is the main contributor to the identification error of WFCI algorithm. A shaping filter of order 1 with τ = 50 ns yielded the best WFCI performance (error 1%), while a longer shaping time of τ = 100 ns slightly degraded the WFCI performance (error 3%). Filters of higher orders with fast shaping time constants (10-33 ns) also produced good WFCI results (error 1.4% to 1.6%). This study shows the advantage of the pulse simulator in evaluating various DAQ conditions and confirms the influence of the detection chain on the WFCI performance.
Architecture and Implementation of OpenPET Firmware and Embedded Software
Abu-Nimeh, Faisal T.; Ito, Jennifer; Moses, William W.; ...
2016-01-11
OpenPET is an open source, modular, extendible, and high-performance platform suitable for multi-channel data acquisition and analysis. Due to the versatility of the hardware, firmware, and software architectures, the platform is capable of interfacing with a wide variety of detector modules not only in medical imaging but also in homeland security applications. Analog signals from radiation detectors share similar characteristics-a pulse whose area is proportional to the deposited energy and whose leading edge is used to extract a timing signal. As a result, a generic design method of the platform is adopted for the hardware, firmware, and software architectures andmore » implementations. The analog front-end is hosted on a module called a Detector Board, where each board can filter, combine, timestamp, and process multiple channels independently. The processed data is formatted and sent through a backplane bus to a module called Support Board, where 1 Support Board can host up to eight Detector Board modules. The data in the Support Board, coming from 8 Detector Board modules, can be aggregated or correlated (if needed) depending on the algorithm implemented or runtime mode selected. It is then sent out to a computer workstation for further processing. The number of channels (detector modules), to be processed, mandates the overall OpenPET System Configuration, which is designed to handle up to 1,024 channels using 16-channel Detector Boards in the Standard System Configuration and 16,384 channels using 32-channel Detector Boards in the Large System Configuration.« less
Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain.
Jung, Jin Ho; Choi, Yong; Jung, Jiwoong; Kim, Sangsu; Lim, Hyun Keong; Im, Ki Chun; Oh, Chang Hyun; Park, Hyun-wook; Kim, Kyung Min; Kim, Jong Guk
2015-05-01
The purpose of this study was to develop a dual-modality positron emission tomography (PET)/magnetic resonance imaging (MRI) with insertable PET for simultaneous PET and MR imaging of the human brain. The PET detector block was composed of a 4 × 4 matrix of detector modules, each consisting of a 4 × 4 array LYSO coupled to a 4 × 4 Geiger-mode avalanche photodiode (GAPD) array. The PET insert consisted of 18 detector blocks, circularly mounted on a custom-made plastic base to form a ring with an inner diameter of 390 mm and axial length of 60 mm. The PET gantry was shielded with gold-plated conductive fabric tapes with a thickness of 0.1 mm. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuit. The flat cables were shielded with a mesh-type aluminum sheet with a thickness of 0.24 mm. The position decoder circuit and field programmable gate array-embedded DAQ modules were enclosed in an aluminum box with a thickness of 10 mm and located at the rear of the MR bore inside the MRI room. A 3-T human MRI system with a Larmor frequency of 123.7 MHz and inner bore diameter of 60 cm was used as the PET/MRI hybrid system. A custom-made radio frequency (RF) coil with an inner diameter of 25 cm was fabricated. The PET was positioned between gradient and the RF coils. PET performance was measured outside and inside the MRI scanner using echo planar imaging, spin echo, turbo spin echo, and gradient echo sequences. MRI performance was also evaluated with and without the PET insert. The stability of the newly developed PET insert was evaluated and simultaneous PET and MR images of a brain phantom were acquired. No significant degradation of the PET performance caused by MR was observed when the PET was operated using various MR imaging sequences. The signal-to-noise ratio of MR images was slightly degraded due to the PET insert installed inside the MR bore while the homogeneity was maintained. The change of gain of the 256 GAPD/scintillator elements of a detector block was <3% for 60 min, and simultaneous PET and MR images of a brain phantom were successfully acquired. Experimental results indicate that a compact and lightweight PET insert for hybrid PET/MRI can be developed using GAPD arrays and charge signal transmission method proposed in this study without significant interference.
Bell, Christopher; Puttick, Simon; Rose, Stephen; Smith, Jye; Thomas, Paul; Dowson, Nicholas
2017-06-21
Imaging using more than one biological process using PET could be of great utility, but despite previously proposed approaches to dual-tracer imaging, it is seldom performed. The alternative of performing multiple scans is often infeasible for clinical practice or even in research studies. Dual-tracer PET scanning allows for multiple PET radiotracers to be imaged within the same imaging session. In this paper we describe our approach to utilise the basis pursuit method to aid in the design of dual-tracer PET imaging experiments, and later in separation of the signals. The advantage of this approach is that it does not require a compartment model architecture to be specified or even that both signals are distinguishable in all cases. This means the method for separating dual-tracer signals can be used for many feasible and useful combinations of biology or radiotracer, once an appropriate scanning protocol has been decided upon. Following a demonstration in separating the signals from two consecutively injected radionuclides in a controlled experiment, phantom and list-mode mouse experiments demonstrated the ability to test the feasibility of dual-tracer imaging protocols for multiple injection delays. Increases in variances predicted for kinetic macro-parameters V D and K I in brain and tumoral tissue were obtained when separating the synthetically combined data. These experiments confirmed previous work using other approaches that injections delays of 10-20 min ensured increases in variance were kept minimal for the test tracers used. On this basis, an actual dual-tracer experiment using a 20 min delay was performed using these radio tracers, with the kinetic parameters (V D and K I ) extracted for each tracer in agreement with the literature. This study supports previous work that dual-tracer PET imaging can be accomplished provided certain constraints are adhered to. The utilisation of basis pursuit techniques, with its removed need to specify a model architecture, allows the feasibility of a range of imaging protocols to be investigated via simulation in a straight-forward manner for a wide range of possible scenarios. The hope is that the ease of utilising this approach during feasibility studies and in practice removes any perceived technical barrier to performing dual-tracer imaging.
NASA Astrophysics Data System (ADS)
Bell, Christopher; Puttick, Simon; Rose, Stephen; Smith, Jye; Thomas, Paul; Dowson, Nicholas
2017-06-01
Imaging using more than one biological process using PET could be of great utility, but despite previously proposed approaches to dual-tracer imaging, it is seldom performed. The alternative of performing multiple scans is often infeasible for clinical practice or even in research studies. Dual-tracer PET scanning allows for multiple PET radiotracers to be imaged within the same imaging session. In this paper we describe our approach to utilise the basis pursuit method to aid in the design of dual-tracer PET imaging experiments, and later in separation of the signals. The advantage of this approach is that it does not require a compartment model architecture to be specified or even that both signals are distinguishable in all cases. This means the method for separating dual-tracer signals can be used for many feasible and useful combinations of biology or radiotracer, once an appropriate scanning protocol has been decided upon. Following a demonstration in separating the signals from two consecutively injected radionuclides in a controlled experiment, phantom and list-mode mouse experiments demonstrated the ability to test the feasibility of dual-tracer imaging protocols for multiple injection delays. Increases in variances predicted for kinetic macro-parameters V D and K I in brain and tumoral tissue were obtained when separating the synthetically combined data. These experiments confirmed previous work using other approaches that injections delays of 10-20 min ensured increases in variance were kept minimal for the test tracers used. On this basis, an actual dual-tracer experiment using a 20 min delay was performed using these radio tracers, with the kinetic parameters (V D and K I) extracted for each tracer in agreement with the literature. This study supports previous work that dual-tracer PET imaging can be accomplished provided certain constraints are adhered to. The utilisation of basis pursuit techniques, with its removed need to specify a model architecture, allows the feasibility of a range of imaging protocols to be investigated via simulation in a straight-forward manner for a wide range of possible scenarios. The hope is that the ease of utilising this approach during feasibility studies and in practice removes any perceived technical barrier to performing dual-tracer imaging.
Song, Jae-Jin; Vanneste, Sven; Lazard, Diane S; Van de Heyning, Paul; Park, Joo Hyun; Oh, Seung Ha; De Ridder, Dirk
2015-05-01
Previous positron emission tomography (PET) studies have shown that various cortical areas are activated to process speech signal in cochlear implant (CI) users. Nonetheless, differences in task dimension among studies and low statistical power preclude from understanding sound processing mechanism in CI users. Hence, we performed activation likelihood estimation meta-analysis of PET studies in CI users and normal hearing (NH) controls to compare the two groups. Eight studies (58 CI subjects/92 peak coordinates; 45 NH subjects/40 peak coordinates) were included and analyzed, retrieving areas significantly activated by lexical and nonlexical stimuli. For lexical and nonlexical stimuli, both groups showed activations in the components of the dual-stream model such as bilateral superior temporal gyrus/sulcus, middle temporal gyrus, left posterior inferior frontal gyrus, and left insula. However, CI users displayed additional unique activation patterns by lexical and nonlexical stimuli. That is, for the lexical stimuli, significant activations were observed in areas comprising salience network (SN), also known as the intrinsic alertness network, such as the left dorsal anterior cingulate cortex (dACC), left insula, and right supplementary motor area in the CI user group. Also, for the nonlexical stimuli, CI users activated areas comprising SN such as the right insula and left dACC. Previous episodic observations on lexical stimuli processing using the dual auditory stream in CI users were reconfirmed in this study. However, this study also suggests that dual-stream auditory processing in CI users may need supports from the SN. In other words, CI users need to pay extra attention to cope with degraded auditory signal provided by the implant. © 2015 Wiley Periodicals, Inc.
Stegger, Lars; Martirosian, Petros; Schwenzer, Nina; Bisdas, Sotirios; Kolb, Armin; Pfannenberg, Christina; Claussen, Claus D; Pichler, Bernd; Schick, Fritz; Boss, Andreas
2012-11-01
Hybrid positron emission tomography/magnetic resonance imaging (PET/MRI) with simultaneous data acquisition promises a comprehensive evaluation of cerebral pathophysiology on a molecular, anatomical, and functional level. Considering the necessary changes to the MR scanner design the feasibility of arterial spin labeling (ASL) is unclear. To evaluate whether cerebral blood flow imaging with ASL is feasible using a prototype PET/MRI device. ASL imaging of the brain with Flow-sensitive Alternating Inversion Recovery (FAIR) spin preparation and true fast imaging in steady precession (TrueFISP) data readout was performed in eight healthy volunteers sequentially on a prototype PET/MRI and a stand-alone MR scanner with 128 × 128 and 192 × 192 matrix sizes. Cerebral blood flow values for gray matter, signal-to-noise and contrast-to-noise ratios, and relative signal change were compared. Additionally, the feasibility of ASL as part of a clinical hybrid PET/MRI protocol was demonstrated in five patients with intracerebral tumors. Blood flow maps showed good delineation of gray and white matter with no discernible artifacts. The mean blood flow values of the eight volunteers on the PET/MR system were 51 ± 9 and 51 ± 7 mL/100 g/min for the 128 × 128 and 192 × 192 matrices (stand-alone MR, 57 ± 2 and 55 ± 5, not significant). The value for signal-to-noise (SNR) was significantly higher for the PET/MRI system using the 192 × 192 matrix size (P < 0.01), the relative signal change (δS) was significantly lower for the 192 × 192 matrix size (P = 0.02). ASL imaging as part of a clinical hybrid PET/MRI protocol could successfully be accomplished in all patients in diagnostic image quality. ASL brain imaging is feasible with a prototype hybrid PET/MRI scanner, thus adding to the value of this novel imaging technique.
Compact pulse width modulation circuitry for silicon photomultiplier readout.
Bieniosek, M F; Olcott, P D; Levin, C S
2013-08-07
The adoption of solid-state photodetectors for positron emission tomography (PET) system design and the interest in 3D interaction information from PET detectors has lead to an increasing number of readout channels in PET systems. To handle these additional readout channels, PET readout electronics should be simplified to reduce the power consumption, cost, and size of the electronics for a single channel. Pulse-width modulation (PWM), where detector pulses are converted to digital pulses with width proportional to the detected photon energy, promises to simplify PET readout by converting the signals to digital form at the beginning of the processing chain, and allowing a single time-to-digital converter to perform the data acquisition for many channels rather than routing many analogue channels and digitizing in the back end. Integrator based PWM systems, also known as charge-to-time converters (QTCs), are especially compact, reducing the front-end electronics to an op-amp integrator with a resistor discharge, and a comparator. QTCs, however, have a long dead-time during which dark count noise is integrated, reducing the output signal-to-noise ratio. This work presents a QTC based PWM circuit with a gated integrator that shows performance improvements over existing QTC based PWM. By opening and closing an analogue switch on the input of the integrator, the circuit can be controlled to integrate only the portions of the signal with a high signal-to-noise ratio. It also allows for multiplexing different detectors into the same PWM circuit while avoiding uncorrelated noise propagation between photodetector channels. Four gated integrator PWM circuits were built to readout the spatial channels of two position sensitive solid-state photomultiplier (PS-SSPM). Results show a 4 × 4 array 0.9 mm × 0.9 mm × 15 mm of LYSO crystals being identified on the 5 mm × 5 mm PS-SSPM at room temperature with no degradation for twofold multiplexing. In principle, much larger multiplexing ratios are possible, limited only by count rate issues.
Zapata, Claudia P; Cuglievan, Branko; Zapata, Catalina M; Olavarrieta, Raquel; Raskin, Scott; Desai, Kavita; De Angulo, Guillermo
2018-02-01
Accurate staging is essential in the prognosis and management of pediatric malignancies. Current protocols require screening for marrow infiltration with bone marrow biopsy (BMB) as the gold standard. Positron emission tomography-computed tomography (PET-CT) is commonly used to complete the staging process and can also be used to evaluate marrow infiltration. To compare PET-CT and BMB in the initial evaluation of bone marrow infiltration in pediatric cancers. We retrospectively reviewed new cases of EWS, rhabdomyosarcoma, neuroblastoma, and lymphoma diagnosed between January 2009 and October 2014. Each case had undergone both PET-CT and BMB within 4 weeks without treatment in the interval between screening modalities. We reviewed 69 cases. Bone marrow infiltration was demonstrated in 34 cases by PET-CT and in 18 cases by BMB. The sensitivity and negative predictive value of PET-CT were both 100%. Interestingly, the cases in which infiltration was not detected on BMB had an abnormal marrow signal on PET-CT focal or distant to iliac crest. PET-CT has a high sensitivity when assessing marrow infiltration in pediatric malignancies. Advances in radiologic modalities may obviate the use of invasive, painful, and costly procedures like BMB. Furthermore, biopsy results are limited by insufficient tissue or the degree of marrow infiltration (diffuse vs. focal disease). PET-CT can improve the precision of biopsy when used as a guiding tool. This study proposes the use of PET-CT as first-line screening for bone marrow infiltration to improve the accuracy of staging in new diagnoses. © 2017 Wiley Periodicals, Inc.
FPGA-based RF interference reduction techniques for simultaneous PET-MRI.
Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, P K; Schulz, V
2016-05-07
The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II (D) PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector.
Issues in quantification of registered respiratory gated PET/CT in the lung.
Cuplov, Vesna; Holman, Beverley F; McClelland, Jamie; Modat, Marc; Hutton, Brian F; Thielemans, Kris
2017-12-14
PET/CT quantification of lung tissue is limited by several difficulties: the lung density and local volume changes during respiration, the anatomical mismatch between PET and CT and the relative contributions of tissue, air and blood to the PET signal (the tissue fraction effect). Air fraction correction (AFC) has been shown to improve PET image quantification in the lungs. Methods to correct for the movement and anatomical mismatch involve respiratory gating and image registration techniques. While conventional registration methods only account for spatial mismatch, the Jacobian determinant of the deformable registration transformation field can be used to estimate local volume changes and could therefore potentially be used to correct (i.e. Jacobian Correction, JC) the PET signal for changes in concentration due to local volume changes. This work aims to investigate the relationship between variations in the lung due to respiration, specifically density, tracer concentration and local volume changes. In particular, we study the effect of AFC and JC on PET quantitation after registration of respiratory gated PET/CT patient data. Six patients suffering from lung cancer with solitary pulmonary nodules underwent [Formula: see text]F-FDG PET/cine-CT. The PET data were gated into six respiratory gates using displacement gating based on a real-time position management (RPM) signal and reconstructed with matched gated CT. The PET tracer concentration and tissue density were extracted from registered gated PET and CT images before and after corrections (AFC or JC) and compared to the values from the reference images. Before correction, we observed a linear correlation between the PET tracer concentration values and density. Across all gates and patients, the maximum relative change in PET tracer concentration before (after) AFC was found to be 16.2% (4.1%) and the maximum relative change in tissue density and PET tracer concentration before (after) JC was found to be 17.1% (5.5%) and 16.2% (6.8%) respectively. Overall our results show that both AFC or JC largely explain the observed changes in PET tracer activity over the respiratory cycle. We also speculate that a second order effect is related to change in fluid content but this needs further investigation. Consequently, either AFC or JC is recommended when combining lung PET images from different gates to reduce noise.
Issues in quantification of registered respiratory gated PET/CT in the lung
NASA Astrophysics Data System (ADS)
Cuplov, Vesna; Holman, Beverley F.; McClelland, Jamie; Modat, Marc; Hutton, Brian F.; Thielemans, Kris
2018-01-01
PET/CT quantification of lung tissue is limited by several difficulties: the lung density and local volume changes during respiration, the anatomical mismatch between PET and CT and the relative contributions of tissue, air and blood to the PET signal (the tissue fraction effect). Air fraction correction (AFC) has been shown to improve PET image quantification in the lungs. Methods to correct for the movement and anatomical mismatch involve respiratory gating and image registration techniques. While conventional registration methods only account for spatial mismatch, the Jacobian determinant of the deformable registration transformation field can be used to estimate local volume changes and could therefore potentially be used to correct (i.e. Jacobian Correction, JC) the PET signal for changes in concentration due to local volume changes. This work aims to investigate the relationship between variations in the lung due to respiration, specifically density, tracer concentration and local volume changes. In particular, we study the effect of AFC and JC on PET quantitation after registration of respiratory gated PET/CT patient data. Six patients suffering from lung cancer with solitary pulmonary nodules underwent 18 F-FDG PET/cine-CT. The PET data were gated into six respiratory gates using displacement gating based on a real-time position management (RPM) signal and reconstructed with matched gated CT. The PET tracer concentration and tissue density were extracted from registered gated PET and CT images before and after corrections (AFC or JC) and compared to the values from the reference images. Before correction, we observed a linear correlation between the PET tracer concentration values and density. Across all gates and patients, the maximum relative change in PET tracer concentration before (after) AFC was found to be 16.2% (4.1%) and the maximum relative change in tissue density and PET tracer concentration before (after) JC was found to be 17.1% (5.5%) and 16.2% (6.8%) respectively. Overall our results show that both AFC or JC largely explain the observed changes in PET tracer activity over the respiratory cycle. We also speculate that a second order effect is related to change in fluid content but this needs further investigation. Consequently, either AFC or JC is recommended when combining lung PET images from different gates to reduce noise.
FPGA-based RF interference reduction techniques for simultaneous PET-MRI
NASA Astrophysics Data System (ADS)
Gebhardt, P.; Wehner, J.; Weissler, B.; Botnar, R.; Marsden, P. K.; Schulz, V.
2016-05-01
The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II D PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector.
Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Jin Ho; Choi, Yong, E-mail: ychoi.image@gmail.com; Jung, Jiwoong
2015-05-15
Purpose: The purpose of this study was to develop a dual-modality positron emission tomography (PET)/magnetic resonance imaging (MRI) with insertable PET for simultaneous PET and MR imaging of the human brain. Methods: The PET detector block was composed of a 4 × 4 matrix of detector modules, each consisting of a 4 × 4 array LYSO coupled to a 4 × 4 Geiger-mode avalanche photodiode (GAPD) array. The PET insert consisted of 18 detector blocks, circularly mounted on a custom-made plastic base to form a ring with an inner diameter of 390 mm and axial length of 60 mm. Themore » PET gantry was shielded with gold-plated conductive fabric tapes with a thickness of 0.1 mm. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuit. The flat cables were shielded with a mesh-type aluminum sheet with a thickness of 0.24 mm. The position decoder circuit and field programmable gate array-embedded DAQ modules were enclosed in an aluminum box with a thickness of 10 mm and located at the rear of the MR bore inside the MRI room. A 3-T human MRI system with a Larmor frequency of 123.7 MHz and inner bore diameter of 60 cm was used as the PET/MRI hybrid system. A custom-made radio frequency (RF) coil with an inner diameter of 25 cm was fabricated. The PET was positioned between gradient and the RF coils. PET performance was measured outside and inside the MRI scanner using echo planar imaging, spin echo, turbo spin echo, and gradient echo sequences. MRI performance was also evaluated with and without the PET insert. The stability of the newly developed PET insert was evaluated and simultaneous PET and MR images of a brain phantom were acquired. Results: No significant degradation of the PET performance caused by MR was observed when the PET was operated using various MR imaging sequences. The signal-to-noise ratio of MR images was slightly degraded due to the PET insert installed inside the MR bore while the homogeneity was maintained. The change of gain of the 256 GAPD/scintillator elements of a detector block was <3% for 60 min, and simultaneous PET and MR images of a brain phantom were successfully acquired. Conclusions: Experimental results indicate that a compact and lightweight PET insert for hybrid PET/MRI can be developed using GAPD arrays and charge signal transmission method proposed in this study without significant interference.« less
Hara, Tetsuya; Truelove, Jessica; Tawakol, Ahmed; Wojtkiewicz, Gregory R; Hucker, William J; MacNabb, Megan H; Brownell, Anna-Liisa; Jokivarsi, Kimmo; Kessinger, Chase W; Jaff, Michael R; Henke, Peter K; Weissleder, Ralph; Jaffer, Farouc A
2014-09-23
Accurate detection of recurrent same-site deep vein thrombosis (DVT) is a challenging clinical problem. Because DVT formation and resolution are associated with a preponderance of inflammatory cells, we investigated whether noninvasive (18)F-fluorodeoxyglucose (FDG)-positron emission tomography (PET) imaging could identify inflamed, recently formed thrombi and thereby improve the diagnosis of recurrent DVT. We established a stasis-induced DVT model in murine jugular veins and also a novel model of recurrent stasis DVT in mice. C57BL/6 mice (n=35) underwent ligation of the jugular vein to induce stasis DVT. FDG-PET/computed tomography (CT) was performed at DVT time points of day 2, 4, 7, 14, or 2+16 (same-site recurrent DVT at day 2 overlying a primary DVT at day 16). Antibody-based neutrophil depletion was performed in a subset of mice before DVT formation and FDG-PET/CT. In a clinical study, 38 patients with lower extremity DVT or controls undergoing FDG-PET were analyzed. Stasis DVT demonstrated that the highest FDG signal occurred at day 2, followed by a time-dependent decrease (P<0.05). Histological analyses demonstrated that thrombus neutrophils (P<0.01), but not macrophages, correlated with thrombus PET signal intensity. Neutrophil depletion decreased FDG signals in day 2 DVT in comparison with controls (P=0.03). Recurrent DVT demonstrated significantly higher FDG uptake than organized day 14 DVT (P=0.03). The FDG DVT signal in patients also exhibited a time-dependent decrease (P<0.01). Noninvasive FDG-PET/CT identifies neutrophil-dependent thrombus inflammation in murine DVT, and demonstrates a time-dependent signal decrease in both murine and clinical DVT. FDG-PET/CT may offer a molecular imaging strategy to accurately diagnose recurrent DVT. © 2014 American Heart Association, Inc.
FPGA-Based Front-End Electronics for Positron Emission Tomography
Haselman, Michael; DeWitt, Don; McDougald, Wendy; Lewellen, Thomas K.; Miyaoka, Robert; Hauck, Scott
2010-01-01
Modern Field Programmable Gate Arrays (FPGAs) are capable of performing complex discrete signal processing algorithms with clock rates above 100MHz. This combined with FPGA’s low expense, ease of use, and selected dedicated hardware make them an ideal technology for a data acquisition system for positron emission tomography (PET) scanners. Our laboratory is producing a high-resolution, small-animal PET scanner that utilizes FPGAs as the core of the front-end electronics. For this next generation scanner, functions that are typically performed in dedicated circuits, or offline, are being migrated to the FPGA. This will not only simplify the electronics, but the features of modern FPGAs can be utilizes to add significant signal processing power to produce higher resolution images. In this paper two such processes, sub-clock rate pulse timing and event localization, will be discussed in detail. We show that timing performed in the FPGA can achieve a resolution that is suitable for small-animal scanners, and will outperform the analog version given a low enough sampling period for the ADC. We will also show that the position of events in the scanner can be determined in real time using a statistical positioning based algorithm. PMID:21961085
NASA Astrophysics Data System (ADS)
Didierlaurent, D.; Ribes, S.; Batatia, H.; Jaudet, C.; Dierickx, L. O.; Zerdoud, S.; Brillouet, S.; Caselles, O.; Courbon, F.
2012-12-01
This study assesses the accuracy of prospective phase-gated PET/CT data binning and presents a retrospective data binning method that improves image quality and consistency. Respiratory signals from 17 patients who underwent 4D PET/CT were analysed to evaluate the reproducibility of temporal triggers used for the standard phase-based gating method. Breathing signals were reprocessed to implement retrospective PET data binning. The mean and standard deviation of time lags between automatic triggers provided by the Real-time Position Management (RPM, Varian) gating device and inhalation peaks derived from respiratory curves were computed for each patient. The total number of respiratory cycles available for 4D PET/CT according to the binning mode (prospective versus retrospective) was compared. The maximum standardized uptake value (SUVmax), biological tumour volume (BTV) and tumour trajectory measures were determined from the PET/CT images of five patients. Compared to retrospective binning (RB), prospective gating approach led to (i) a significant loss in breathing cycles (15%) and (ii) the inconsistency of data binning due to temporal dispersion of triggers (average 396 ms). Consequently, tumour characterization could be impacted. In retrospective mode, SUVmax was up to 27% higher, where no significant difference appeared in BTV. In addition, prospective mode gave an inconsistent spatial location of the tumour throughout the bins. Improved consistency with breathing patterns and greater motion amplitude of the tumour centroid were observed with retrospective mode. The detection of the tumour motion and trajectory was improved also for small temporal dispersion of triggers. This study shows that the binning mode could have a significant impact on 4D PET images. The consistency of triggers with breathing signals should be checked before clinical use of gated PET/CT images, and our RB method improves 4D PET/CT image quantification.
Yamashita, Shozo; Yokoyama, Kunihiko; Onoguchi, Masahisa; Yamamoto, Haruki; Hiko, Shigeaki; Horita, Akihiro; Nakajima, Kenichi
2014-01-01
Deep-inspiration breath-hold (DIBH) PET/CT with short-time acquisition and respiratory-gated (RG) PET/CT are performed for pulmonary lesions to reduce the respiratory motion artifacts, and to obtain more accurate standardized uptake value (SUV). DIBH PET/CT demonstrates significant advantages in terms of rapid examination, good quality of CT images and low radiation exposure. On the other hand, the image quality of DIBH PET is generally inferior to that of RG PET because of short-time acquisition resulting in poor signal-to-noise ratio. In this study, RG PET has been regarded as a gold standard, and its detectability between DIBH and RG PET studies was compared using each of the most optimal reconstruction parameters. In the phantom study, the most optimal reconstruction parameters for DIBH and RG PET were determined. In the clinical study, 19 cases were examined using each of the most optimal reconstruction parameters. In the phantom study, the most optimal reconstruction parameters for DIBH and RG PET were different. Reconstruction parameters of DIBH PET could be obtained by reducing the number of subsets for those of RG PET in the state of fixing the number of iterations. In the clinical study, high correlation in the maximum SUV was observed between DIBH and RG PET studies. The clinical result was consistent with that of the phantom study surrounded by air since most of the lesions were located in the low pulmonary radioactivity. DIBH PET/CT may be the most practical method which can be the first choice to reduce respiratory motion artifacts if the detectability of DIBH PET is equivalent with that of RG PET. Although DIBH PET may have limitations in suboptimal signal-to-noise ratio, most of the lesions surrounded by low background radioactivity could provide nearly equivalent image quality between DIBH and RG PET studies when each of the most optimal reconstruction parameters was used.
FPGA-based RF interference reduction techniques for simultaneous PET–MRI
Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, P K; Schulz, V
2016-01-01
Abstract The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET–MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling–decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion IID PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector. PMID:27049898
Noninvasive imaging of islet grafts using positron-emission tomography
NASA Astrophysics Data System (ADS)
Lu, Yuxin; Dang, Hoa; Middleton, Blake; Zhang, Zesong; Washburn, Lorraine; Stout, David B.; Campbell-Thompson, Martha; Atkinson, Mark A.; Phelps, Michael; Gambhir, Sanjiv Sam; Tian, Jide; Kaufman, Daniel L.
2006-07-01
Islet transplantation offers a potential therapy to restore glucose homeostasis in type 1 diabetes patients. However, islet transplantation is not routinely successful because most islet recipients gradually lose graft function. Furthermore, serological markers of islet function are insensitive to islet loss until the latter stages of islet graft rejection. A noninvasive method of monitoring islet grafts would aid in the assessment of islet graft survival and the evaluation of interventions designed to prolong graft survival. Here, we show that recombinant adenovirus can engineer isolated islets to express a positron-emission tomography (PET) reporter gene and that these islets can be repeatedly imaged by using microPET after transplantation into mice. The magnitude of signal from engineered islets implanted into the axillary cavity was directly related to the implanted islet mass. PET signals attenuated over the following weeks because of the transient nature of adenovirus-mediated gene expression. Because the liver is the preferred site for islet implantation in humans, we also tested whether islets could be imaged after transfusion into the mouse liver. Control studies revealed that both intrahepatic islet transplantation and hyperglycemia altered the biodistribution kinetics of the PET probe systemically. Although transplanted islets were dispersed throughout the liver, clear signals from the liver region of mice receiving PET reporter-expressing islets were detectable for several weeks. Viral transduction, PET reporter expression, and repeated microPET imaging had no apparent deleterious effects on islet function after implantation. These studies lay a foundation for noninvasive quantitative assessments of islet graft survival using PET. diabetes | transplantation
A novel dual gating approach using joint inertial sensors: implications for cardiac PET imaging
NASA Astrophysics Data System (ADS)
Jafari Tadi, Mojtaba; Teuho, Jarmo; Lehtonen, Eero; Saraste, Antti; Pänkäälä, Mikko; Koivisto, Tero; Teräs, Mika
2017-10-01
Positron emission tomography (PET) is a non-invasive imaging technique which may be considered as the state of art for the examination of cardiac inflammation due to atherosclerosis. A fundamental limitation of PET is that cardiac and respiratory motions reduce the quality of the achieved images. Current approaches for motion compensation involve gating the PET data based on the timing of quiescent periods of cardiac and respiratory cycles. In this study, we present a novel gating method called microelectromechanical (MEMS) dual gating which relies on joint non-electrical sensors, i.e. tri-axial accelerometer and gyroscope. This approach can be used for optimized selection of quiescent phases of cardiac and respiratory cycles. Cardiomechanical activity according to echocardiography observations was investigated to confirm whether this dual sensor solution can provide accurate trigger timings for cardiac gating. Additionally, longitudinal chest motions originating from breathing were measured by accelerometric- and gyroscopic-derived respiratory (ADR and GDR) tracking. The ADR and GDR signals were evaluated against Varian real-time position management (RPM) signals in terms of amplitude and phase. Accordingly, high linear correlation and agreement were achieved between the reference electrocardiography, RPM, and measured MEMS signals. We also performed a Ge-68 phantom study to evaluate possible metal artifacts caused by the integrated read-out electronics including mechanical sensors and semiconductors. The reconstructed phantom images did not reveal any image artifacts. Thus, it was concluded that MEMS-driven dual gating can be used in PET studies without an effect on the quantitative or visual accuracy of the PET images. Finally, the applicability of MEMS dual gating for cardiac PET imaging was investigated with two atherosclerosis patients. Dual gated PET images were successfully reconstructed using only MEMS signals and both qualitative and quantitative assessments revealed encouraging results that warrant further investigation of this method.
Positron emission tomography wrist detector
Schlyer, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois
2006-08-15
A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal representing a time-of-occurrence of an annihilation event, generating an address signal representing a channel detecting the annihilation event, and generating a channel signal including the time and address signals. The method also includes generating a composite signal including the channel signal and another similarly generated channel signal concerning another annihilation event. An apparatus that serially transfers annihilation information includes a time signal generator, address signal generator, channel signal generator, and composite signal generator. The time signal is asynchronous and the address signal is synchronous to a clock signal. A PET scanner includes a scintillation array, detection array, front-end array, and a serial encoder. The serial encoders include the time signal generator, address signal generator, channel signal generator, and composite signal generator.
Zhang, Wei; Ma, Zhao; Du, Lupei; Li, Minyong
2014-06-07
As the cardinal support of innumerable biological processes, biomacromolecules such as proteins, nucleic acids and polysaccharides are of importance to living systems. The key to understanding biological processes is to realize the role of these biomacromolecules in thte localization, distribution, conformation and interaction with other molecules. With the current development and adaptation of fluorescent technologies in biomedical and pharmaceutical fields, the fluorescence imaging (FLI) approach of using small-molecule fluorescent probes is becoming an up-to-the-minute method for the detection and monitoring of these imperative biomolecules in life sciences. However, conventional small-molecule fluorescent probes may provide undesirable results because of their intrinsic deficiencies such as low signal-to-noise ratio (SNR) and false-positive errors. Recently, small-molecule fluorescent probes with a photoinduced electron transfer (PET) "on/off" switch for biomacromolecules have been thoroughly considered. When recognized by the biomacromolecules, these probes turn on/off the PET switch and change the fluorescence intensity to present a high SNR result. It should be emphasized that these PET-based fluorescent probes could be advantageous for understanding the pathogenesis of various diseases caused by abnormal expression of biomacromolecules. The discussion of this successful strategy involved in this review will be a valuable guide for the further development of new PET-based small-molecule fluorescent probes for biomacromolecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oehmigen, Mark, E-mail: mark.oehmigen@uni-due.de
Purpose: This study aims to develop, implement, and evaluate a 16-channel radiofrequency (RF) coil for integrated positron emission tomography/magnetic resonance (PET/MR) imaging of breast cancer. The RF coil is designed for optimized MR imaging performance and PET transparency and attenuation correction (AC) is applied for accurate PET quantification. Methods: A 16-channel breast array RF coil was designed for integrated PET/MR hybrid imaging of breast cancer lesions. The RF coil features a lightweight rigid design and is positioned with a spacer at a defined position on the patient table of an integrated PET/MR system. Attenuation correction is performed by generating andmore » applying a dedicated 3D CT-based template attenuation map. Reposition accuracy of the RF coil on the system patient table while using the positioning frame was tested in repeated measurements using MR-visible markers. The MR, PET, and PET/MR imaging performances were systematically evaluated using modular breast phantoms. Attenuation correction of the RF coil was evaluated with difference measurements of the active breast phantoms filled with radiotracer in the PET detector with and without the RF coil in place, serving as a standard of reference measurement. The overall PET/MR imaging performance and PET quantification accuracy of the new 16-channel RF coil and its AC were then evaluated in first clinical examinations on ten patients with local breast cancer. Results: The RF breast array coil provides excellent signal-to-noise ratio and signal homogeneity across the volume of the breast phantoms in MR imaging and visualizes small structures in the phantoms down to 0.4 mm in plane. Difference measurements with PET revealed a global loss and thus attenuation of counts by 13% (mean value across the whole phantom volume) when the RF coil is placed in the PET detector. Local attenuation ranging from 0% in the middle of the phantoms up to 24% was detected in the peripheral regions of the phantoms at positions closer to attenuating hardware structures of the RF coil. The position accuracy of the RF coil on the patient table when using the positioning frame was determined well below 1 mm for all three spatial dimensions. This ensures perfect position match between the RF coil and its three-dimensional attenuation template during the PET data reconstruction process. When applying the CT-based AC of the RF coil, the global attenuation bias was mostly compensated to ±0.5% across the entire breast imaging volume. The patient study revealed high quality MR, PET, and combined PET/MR imaging of breast cancer. Quantitative activity measurements in all 11 breast cancer lesions of the ten patients resulted in increased mean difference values of SUV{sub max} 11.8% (minimum 3.2%; maximum 23.2%) between nonAC images and images when AC of the RF breast coil was applied. This supports the quantitative results of the phantom study as well as successful attenuation correction of the RF coil. Conclusions: A 16-channel breast RF coil was designed for optimized MR imaging performance and PET transparency and was successfully integrated with its dedicated attenuation correction template into a whole-body PET/MR system. Systematic PET/MR imaging evaluation with phantoms and an initial study on patients with breast cancer provided excellent MR and PET image quality and accurate PET quantification.« less
EXPLORER: Changing the molecular imaging paradigm with total-body PET/CT (Conference Presentation)
NASA Astrophysics Data System (ADS)
Cherry, Simon R.; Badawi, Ramsey D.; Jones, Terry
2016-04-01
Positron emission tomography (PET) is the highest sensitivity technique for human whole-body imaging studies. However, current clinical PET scanners do not make full use of the available signal, as they only permit imaging of a 15-25 cm segment of the body at one time. Given the limited sensitive region, whole-body imaging with clinical PET scanners requires relatively long scan times and subjects the patient to higher than necessary radiation doses. The EXPLORER initiative aims to build a 2-meter axial length PET scanner to allow imaging the entire subject at once, capturing nearly the entire available PET signal. EXPLORER will acquire data with ~40-fold greater sensitivity leading to a six-fold increase in reconstructed signal-to-noise ratio for imaging the total body. Alternatively, total-body images with the EXPLORER scanner will be able to be acquired in ~30 seconds or with ~0.15 mSv injected dose, while maintaining current PET image quality. The superior sensitivity will open many new avenues for biomedical research. Specifically for cancer applications, high sensitivity PET will enable detection of smaller lesions. Additionally, greater sensitivity will allow imaging out to 10 half-lives of positron emitting radiotracers. This will enable 1) metabolic ultra-staging with FDG by extending the uptake and clearance time to 3-5 hours to significantly improve contrast and 2) improved kinetic imaging with short-lived radioisotopes such as C-11, crucial for drug development studies. Frequent imaging studies of the same subject to study disease progression or to track response to therapy will be possible with the low dose capabilities of the EXPLORER scanner. The low dose capabilities will also open up new imaging possibilities in pediatrics and adolescents to better study developmental disorders. This talk will review the basis for developing total-body PET, potential applications, and review progress to date in developing EXPLORER, the first total-body PET scanner.
Bérard, P; Bergeron, M; Pepin, C M; Cadorette, J; Tétrault, M-A; Viscogliosi, N; Fontaine, R; Dautet, H; Davies, M; Lecomte, R
2008-07-01
Visualization and quantification of biological processes in mice, the preferred animal model in most preclinical studies, require the best possible spatial resolution in positron emission tomography (PET). A new 64-channel avalanche photodiode (APD) detector module was developed to achieve submillimeter spatial resolution for this purpose. The module consists of dual 4 × 8 APD arrays mounted in a custom ceramic holder. Individual APD pixels having an active area of 1.1 × 1.1 mm2 at a 1.2 mm pitch can be fitted to an 8 × 8 LYSO scintillator block designed to accommodate one-to-one coupling. An analog test board with four 16-channel preamplifier ASICs was designed to be interfaced with the existing LabPET digital processing electronics. At a standard APD operating bias, a mean energy resolution of 27.5 ± 0.6% was typically obtained at 511 keV with a relative standard deviation of 13.8% in signal amplitude for the 64 individual pixels. Crosstalk between pixels was found to be well below the typical lower energy threshold used for PET imaging applications. With two modules in coincidence, a global timing resolution of 5.0 ns FWHM was measured. Finally, an intrinsic spatial resolution of 0.8 mm FWHM was measured by sweeping a 22Na point source between two detector arrays. The proposed detector module demonstrates promising characteristics for dedicated mouse PET imaging at submillimiter resolution. © 2008 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Jiao, Jieqing; Salinas, Cristian A.; Searle, Graham E.; Gunn, Roger N.; Schnabel, Julia A.
2012-02-01
Dynamic Positron Emission Tomography is a powerful tool for quantitative imaging of in vivo biological processes. The long scan durations necessitate motion correction, to maintain the validity of the dynamic measurements, which can be particularly challenging due to the low signal-to-noise ratio (SNR) and spatial resolution, as well as the complex tracer behaviour in the dynamic PET data. In this paper we develop a novel automated expectation-maximisation image registration framework that incorporates temporal tracer kinetic information to correct for inter-frame subject motion during dynamic PET scans. We employ the Zubal human brain phantom to simulate dynamic PET data using SORTEO (a Monte Carlo-based simulator), in order to validate the proposed method for its ability to recover imposed rigid motion. We have conducted a range of simulations using different noise levels, and corrupted the data with a range of rigid motion artefacts. The performance of our motion correction method is compared with pairwise registration using normalised mutual information as a voxel similarity measure (an approach conventionally used to correct for dynamic PET inter-frame motion based solely on intensity information). To quantify registration accuracy, we calculate the target registration error across the images. The results show that our new dynamic image registration method based on tracer kinetics yields better realignment of the simulated datasets, halving the target registration error when compared to the conventional method at small motion levels, as well as yielding smaller residuals in translation and rotation parameters. We also show that our new method is less affected by the low signal in the first few frames, which the conventional method based on normalised mutual information fails to realign.
Neural correlates of the popular music phenomenon: evidence from functional MRI and PET imaging.
Chen, Qiaozhen; Zhang, Ying; Hou, Haifeng; Du, Fenglei; Wu, Shuang; Chen, Lin; Shen, Yehua; Chao, Fangfang; Chung, June-Key; Zhang, Hong; Tian, Mei
2017-06-01
Music can induce different emotions. However, its neural mechanism remains unknown. The aim of this study was to use functional magnetic resonance imaging (fMRI) and position emission tomography (PET) imaging for mapping of neural changes under the most popular music in healthy volunteers. Blood-oxygen-level-dependent (BOLD) fMRI and monoamine receptor PET imaging with 11 C-N-methylspiperone ( 11 C-NMSP) were conducted under the popular music Gangnam Style and light music A Comme Amour in healthy subjects. PET and fMRI images were analyzed by using the Statistical Parametric Mapping software (SPM). Significantly increased fMRI BOLD signals were found in the bilateral superior temporal cortices, left cerebellum, left putamen and right thalamus cortex. Monoamine receptor availability was increased significantly in the left superior temporal gyrus and left putamen, but decreased in the bilateral superior occipital cortices under the Gangnam Style compared with the light music condition. Significant positive correlation was found between 11 C-NMSP binding and fMRI BOLD signals in the left temporal cortex. Furthermore, increased 11 C-NMSP binding in the left putamen was positively correlated with the mood arousal level score under the Gangnam Style condition. Popular music Gangnam Style can arouse pleasure experience and strong emotional response. The left putamen is positively correlated with the mood arousal level score under the Gangnam Style condition. Our results revealed characteristic patterns of brain activity associated with Gangnam Style, and may also provide more general insights into the music-induced emotional processing.
Fat-constrained 18F-FDG PET reconstruction using Dixon MR imaging and the origin ensemble algorithm
NASA Astrophysics Data System (ADS)
Wülker, Christian; Heinzer, Susanne; Börnert, Peter; Renisch, Steffen; Prevrhal, Sven
2015-03-01
Combined PET/MR imaging allows to incorporate the high-resolution anatomical information delivered by MRI into the PET reconstruction algorithm for improvement of PET accuracy beyond standard corrections. We used the working hypothesis that glucose uptake in adipose tissue is low. Thus, our aim was to shift 18F-FDG PET signal into image regions with a low fat content. Dixon MR imaging can be used to generate fat-only images via the water/fat chemical shift difference. On the other hand, the Origin Ensemble (OE) algorithm, a novel Markov chain Monte Carlo method, allows to reconstruct PET data without the use of forward- and back projection operations. By adequate modifications to the Markov chain transition kernel, it is possible to include anatomical a priori knowledge into the OE algorithm. In this work, we used the OE algorithm to reconstruct PET data of a modified IEC/NEMA Body Phantom simulating body water/fat composition. Reconstruction was performed 1) natively, 2) informed with the Dixon MR fat image to down-weight 18F-FDG signal in fatty tissue compartments in favor of adjacent regions, and 3) informed with the fat image to up-weight 18F-FDG signal in fatty tissue compartments, for control purposes. Image intensity profiles confirmed the visibly improved contrast and reduced partial volume effect at water/fat interfaces. We observed a 17+/-2% increased SNR of hot lesions surrounded by fat, while image quality was almost completely retained in fat-free image regions. An additional in vivo experiment proved the applicability of the presented technique in practice, and again verified the beneficial impact of fat-constrained OE reconstruction on PET image quality.
Clinical evaluation of the radiolanthanide terbium-152: first-in-human PET/CT with 152Tb-DOTATOC.
Baum, Richard P; Singh, Aviral; Benešová, Martina; Vermeulen, Christiaan; Gnesin, Silvano; Köster, Ulli; Johnston, Karl; Müller, Dirk; Senftleben, Stefan; Kulkarni, Harshad R; Türler, Andreas; Schibli, Roger; Prior, John O; van der Meulen, Nicholas P; Müller, Cristina
2017-10-31
The existence of theragnostic pairs of radionuclides allows the preparation of radiopharmaceuticals for diagnostic and therapeutic purposes. Radiolanthanides, such as 177 Lu, are successfully used for therapeutic purposes; however, a perfect diagnostic match is currently not available for clinical use. A unique, multi-disciplinary study was performed using 152 Tb (T 1/2 = 17.5 h, Eβ + average = 1140 keV, Iβ + = 20.3%), which resulted in the first-in-human PET/CT images with this promising radionuclide. For this purpose, 152 Tb was produced via a spallation process followed by mass separation at ISOLDE, CERN. The chemical separation and quality control, performed at PSI, resulted in a pure product in sufficient yields. Clinical PET phantom studies revealed an increased image noise level, because of the smaller β + branching ratio of 152 Tb as compared to standard PET nuclides at matched activity concentrations; however, the expected recovery would be comparable at matched signal-to-noise ratios in clinical PET. 152 Tb was used for labeling DOTATOC, at Zentralklinik Bad Berka, and administered to a patient for a first-in-human clinical study. PET scans were performed over a period of 24 h, allowing the visualization of even small metastases with increased tumor-to-background contrast over time. Based on the results obtained in this work, it can be deduced that PET/CT imaging with 152 Tb-labeled targeting agents has promise for clinical application and may be particularly interesting for pre-therapeutic dosimetry.
Hawe, David; Hernández Fernández, Francisco R; O'Suilleabháin, Liam; Huang, Jian; Wolsztynski, Eric; O'Sullivan, Finbarr
2012-05-01
In dynamic mode, positron emission tomography (PET) can be used to track the evolution of injected radio-labelled molecules in living tissue. This is a powerful diagnostic imaging technique that provides a unique opportunity to probe the status of healthy and pathological tissue by examining how it processes substrates. The spatial aspect of PET is well established in the computational statistics literature. This article focuses on its temporal aspect. The interpretation of PET time-course data is complicated because the measured signal is a combination of vascular delivery and tissue retention effects. If the arterial time-course is known, the tissue time-course can typically be expressed in terms of a linear convolution between the arterial time-course and the tissue residue. In statistical terms, the residue function is essentially a survival function - a familiar life-time data construct. Kinetic analysis of PET data is concerned with estimation of the residue and associated functionals such as flow, flux, volume of distribution and transit time summaries. This review emphasises a nonparametric approach to the estimation of the residue based on a piecewise linear form. Rapid implementation of this by quadratic programming is described. The approach provides a reference for statistical assessment of widely used one- and two-compartmental model forms. We illustrate the method with data from two of the most well-established PET radiotracers, (15)O-H(2)O and (18)F-fluorodeoxyglucose, used for assessment of blood perfusion and glucose metabolism respectively. The presentation illustrates the use of two open-source tools, AMIDE and R, for PET scan manipulation and model inference.
NASA Astrophysics Data System (ADS)
Moteabbed, M.; España, S.; Paganetti, H.
2011-02-01
The purpose of this work was to compare the clinical adaptation of prompt gamma (PG) imaging and positron emission tomography (PET) as independent tools for non-invasive proton beam range verification and treatment validation. The PG range correlation and its differences with PET have been modeled for the first time in a highly heterogeneous tissue environment, using different field sizes and configurations. Four patients with different tumor locations (head and neck, prostate, spine and abdomen) were chosen to compare the site-specific behaviors of the PG and PET images, using both passive scattered and pencil beam fields. Accurate reconstruction of dose, PG and PET distributions was achieved by using the planning computed tomography (CT) image in a validated GEANT4-based Monte Carlo code capable of modeling the treatment nozzle and patient anatomy in detail. The physical and biological washout phenomenon and decay half-lives for PET activity for the most abundant isotopes such as 11C, 15O, 13N, 30P and 38K were taken into account in the data analysis. The attenuation of the gamma signal after traversing the patient geometry and respective detection efficiencies were estimated for both methods to ensure proper comparison. The projected dose, PG and PET profiles along many lines in the beam direction were analyzed to investigate the correlation consistency across the beam width. For all subjects, the PG method showed on average approximately 10 times higher gamma production rates than the PET method before, and 60 to 80 times higher production after including the washout correction and acquisition time delay. This rate strongly depended on tissue density and elemental composition. For broad passive scattered fields, it was demonstrated that large differences exist between PG and PET signal falloff positions and the correlation with the dose distribution for different lines in the beam direction. These variations also depended on the treatment site and the particular subject. Thus, similar to PET, direct range verification with PG in passive scattering is not easily viable. However, upon development of an optimized 3D PG detector, indirect range verification by comparing measured and simulated PG distributions (currently being explored for the PET method) would be more beneficial because it can avoid the inherent biological challenges of the PET imaging. The improved correlation of PG and PET with dose when using pencil beams was evident. PG imaging was found to be potentially advantageous especially for small tumors in the presence of high tissue heterogeneities. Including the effects of detector acceptance and efficiency may hold PET superior in terms of the amplitude of the detected signal (depending on the future development of PG detection technology), but the ability to perform online measurements and avoid signal disintegration (due to washout) with PG are important factors that can outweigh the benefits of higher detection sensitivity.
Moteabbed, M; España, S; Paganetti, H
2011-02-21
The purpose of this work was to compare the clinical adaptation of prompt gamma (PG) imaging and positron emission tomography (PET) as independent tools for non-invasive proton beam range verification and treatment validation. The PG range correlation and its differences with PET have been modeled for the first time in a highly heterogeneous tissue environment, using different field sizes and configurations. Four patients with different tumor locations (head and neck, prostate, spine and abdomen) were chosen to compare the site-specific behaviors of the PG and PET images, using both passive scattered and pencil beam fields. Accurate reconstruction of dose, PG and PET distributions was achieved by using the planning computed tomography (CT) image in a validated GEANT4-based Monte Carlo code capable of modeling the treatment nozzle and patient anatomy in detail. The physical and biological washout phenomenon and decay half-lives for PET activity for the most abundant isotopes such as (11)C, (15)O, (13)N, (30)P and (38)K were taken into account in the data analysis. The attenuation of the gamma signal after traversing the patient geometry and respective detection efficiencies were estimated for both methods to ensure proper comparison. The projected dose, PG and PET profiles along many lines in the beam direction were analyzed to investigate the correlation consistency across the beam width. For all subjects, the PG method showed on average approximately 10 times higher gamma production rates than the PET method before, and 60 to 80 times higher production after including the washout correction and acquisition time delay. This rate strongly depended on tissue density and elemental composition. For broad passive scattered fields, it was demonstrated that large differences exist between PG and PET signal falloff positions and the correlation with the dose distribution for different lines in the beam direction. These variations also depended on the treatment site and the particular subject. Thus, similar to PET, direct range verification with PG in passive scattering is not easily viable. However, upon development of an optimized 3D PG detector, indirect range verification by comparing measured and simulated PG distributions (currently being explored for the PET method) would be more beneficial because it can avoid the inherent biological challenges of the PET imaging. The improved correlation of PG and PET with dose when using pencil beams was evident. PG imaging was found to be potentially advantageous especially for small tumors in the presence of high tissue heterogeneities. Including the effects of detector acceptance and efficiency may hold PET superior in terms of the amplitude of the detected signal (depending on the future development of PG detection technology), but the ability to perform online measurements and avoid signal disintegration (due to washout) with PG are important factors that can outweigh the benefits of higher detection sensitivity.
Comparison of multiple tau-PET measures as biomarkers in aging and Alzheimer's disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maass, Anne; Landau, Susan; Baker, Suzanne L.
The recent development of tau-specific positron emission tomography (PET) tracers enables in vivo quantification of regional tau pathology, one of the key lesions in Alzheimer's disease (AD). Tau PET imaging may become a useful biomarker for clinical diagnosis and tracking of disease progression but there is no consensus yet on how tau PET signal is best quantified. The goal of the current paper was to evaluate multiple whole-brain and region-specific approaches to detect clinically relevant tau PET signal. Two independent cohorts of cognitively normal adults and amyloid-positive (Aβ +) patients with mild cognitive impairment (MCI) or AD-dementia underwent [ 18F]AV-1451more » PET. Methods for tau tracer quantification included: (i) in vivo Braak staging, (ii) regional uptake in Braak composite regions, (iii) several whole-brain measures of tracer uptake, (iv) regional uptake in AD-vulnerable voxels, and (v) uptake in a priori defined regions. Receiver operating curves characterized accuracy in distinguishing Aβ - controls from AD/MCI patients and yielded tau positivity cutoffs. Clinical relevance of tau PET measures was assessed by regressions against cognition and MR imaging measures. Key tracer uptake patterns were identified by a factor analysis and voxel-wise contrasts. Braak staging, global and region-specific tau measures yielded similar diagnostic accuracies, which differed between cohorts. While all tau measures were related to amyloid and global cognition, memory and hippocampal/entorhinal volume/thickness were associated with regional tracer retention in the medial temporal lobe. Key regions of tau accumulation included medial temporal and inferior/middle temporal regions, retrosplenial cortex, and banks of the superior temporal sulcus. Finally, our data indicate that whole-brain tau PET measures might be adequate biomarkers to detect AD-related tau pathology. However, regional measures covering AD-vulnerable regions may increase sensitivity to early tau PET signal, atrophy and memory decline.« less
Compact conscious animal positron emission tomography scanner
Schyler, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois; Volkow, Nora
2006-10-24
A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal for an event, generating an address signal representing a detecting channel, generating a detector channel signal including the time and address signals, and generating a composite signal including the channel signal and similarly generated signals. The composite signal includes events from detectors in a block and is serially output. An apparatus that serially transfers annihilation information from a block includes time signal generators for detectors in a block and an address and channel signal generator. The PET scanner includes a ring tomograph that mounts onto a portion of an animal, which includes opposing block pairs. Each of the blocks in a block pair includes a scintillator layer, detection array, front-end array, and a serial encoder. The serial encoder includes time signal generators and an address signal and channel signal generator.
Highly-Integrated CMOS Interface Circuits for SiPM-Based PET Imaging Systems.
Dey, Samrat; Lewellen, Thomas K; Miyaoka, Robert S; Rudell, Jacques C
2012-01-01
Recent developments in the area of Positron Emission Tomography (PET) detectors using Silicon Photomultipliers (SiPMs) have demonstrated the feasibility of higher resolution PET scanners due to a significant reduction in the detector form factor. The increased detector density requires a proportionally larger number of channels to interface the SiPM array with the backend digital signal processing necessary for eventual image reconstruction. This work presents a CMOS ASIC design for signal reducing readout electronics in support of an 8×8 silicon photomultiplier array. The row/column/diagonal summation circuit significantly reduces the number of required channels, reducing the cost of subsequent digitizing electronics. Current amplifiers are used with a single input from each SiPM cathode. This approach helps to reduce the detector loading, while generating all the necessary row, column and diagonal addressing information. In addition, the single current amplifier used in our Pulse-Positioning architecture facilitates the extraction of pulse timing information. Other components under design at present include a current-mode comparator which enables threshold detection for dark noise current reduction, a transimpedance amplifier and a variable output impedance I/O driver which adapts to a wide range of loading conditions between the ASIC and lines with the off-chip Analog-to-Digital Converters (ADCs).
Highly-Integrated CMOS Interface Circuits for SiPM-Based PET Imaging Systems
Dey, Samrat; Lewellen, Thomas K.; Miyaoka, Robert S.; Rudell, Jacques C.
2013-01-01
Recent developments in the area of Positron Emission Tomography (PET) detectors using Silicon Photomultipliers (SiPMs) have demonstrated the feasibility of higher resolution PET scanners due to a significant reduction in the detector form factor. The increased detector density requires a proportionally larger number of channels to interface the SiPM array with the backend digital signal processing necessary for eventual image reconstruction. This work presents a CMOS ASIC design for signal reducing readout electronics in support of an 8×8 silicon photomultiplier array. The row/column/diagonal summation circuit significantly reduces the number of required channels, reducing the cost of subsequent digitizing electronics. Current amplifiers are used with a single input from each SiPM cathode. This approach helps to reduce the detector loading, while generating all the necessary row, column and diagonal addressing information. In addition, the single current amplifier used in our Pulse-Positioning architecture facilitates the extraction of pulse timing information. Other components under design at present include a current-mode comparator which enables threshold detection for dark noise current reduction, a transimpedance amplifier and a variable output impedance I/O driver which adapts to a wide range of loading conditions between the ASIC and lines with the off-chip Analog-to-Digital Converters (ADCs). PMID:24301987
NASA Astrophysics Data System (ADS)
Cho, M.; Lim, K.-t.; Kim, H.; Yeom, J.-y.; Kim, J.; Lee, C.; Choi, H.; Cho, G.
2017-01-01
In most cases, a PET system has numerous electrical components and channel circuits and thus it would rather be a bulky product. Also, most existing systems receive analog signals from detectors which make them vulnerable to signal distortions. For these reasons, channel reduction techniques are important. In this work, an ASIC for PET module is being proposed. An ASIC chip for 16 PET detector channels, VSSPDC, has been designed and simulated. The main function of the chip is 16-to-1 channel reduction, i.e., finding the position of only the valid signals, signal timing, and magnitudes in all 16 channels at every recorded event. The ASIC comprises four of 4-channel modules and a 2nd 4-to-1 router. A single channel module comprises a transimpedance amplifier for the silicon photomultipliers, dual comparators with high and low level references, and a logic circuitry. While the high level reference was used to test the validity of the signal, the low level reference was used for the timing. The 1-channel module of the ASIC produced an energy pulse by time-over-threshold method and it also produced a time pulse with a fixed delayed time. Since the ASIC chip outputs only a few digital pulses and does not require an external clock, it has an advantage over noise properties. The cadence simulation showed the good performance of the chip as designed.
NASA Astrophysics Data System (ADS)
Pierre, Cynthia; Torkelson, John
2009-03-01
A major challenge for the most effective recycling of poly(ethylene terephthalate) concerns the fact that initial melt processing of PET into a product leads to substantial degradation of molecular weight. Thus, recycled PET has insufficient melt viscosity for reuse in high-value applications such as melt-blowing of PET bottles. Academic and industrial research has tried to remedy this situation by synthesis and use of ``chain extenders'' that can lead to branched PET (with higher melt viscosity than the linear recycled PET) via condensation reactions with functional groups on the PET. Here we show that simple processing of PET via solid-state shear pulverization (SSSP) leads to enhanced PET melt viscosity without need for chemical additives. We hypothesize that this branching results from low levels of chain scission accompanying SSSP, leading to formation of polymeric radicals that participate in chain transfer and combination reactions with other PET chains and thereby to in situ branch formation. The pulverized PET exhibits vastly enhanced crystallization kinetics, eliminating the need to employ cold crystallization to achieve maximum PET crystallinity. Results of SSSP processing of PET will be compared to results obtained with poly(butylene terephthalate).
Falling Person Detection Using Multi-Sensor Signal Processing
NASA Astrophysics Data System (ADS)
Toreyin, B. Ugur; Soyer, A. Birey; Onaran, Ibrahim; Cetin, E. Enis
2007-12-01
Falls are one of the most important problems for frail and elderly people living independently. Early detection of falls is vital to provide a safe and active lifestyle for elderly. Sound, passive infrared (PIR) and vibration sensors can be placed in a supportive home environment to provide information about daily activities of an elderly person. In this paper, signals produced by sound, PIR and vibration sensors are simultaneously analyzed to detect falls. Hidden Markov Models are trained for regular and unusual activities of an elderly person and a pet for each sensor signal. Decisions of HMMs are fused together to reach a final decision.
FPGA-Based Pulse Pile-Up Correction With Energy and Timing Recovery.
Haselman, M D; Pasko, J; Hauck, S; Lewellen, T K; Miyaoka, R S
2012-10-01
Modern field programmable gate arrays (FPGAs) are capable of performing complex discrete signal processing algorithms with clock rates well above 100 MHz. This, combined with FPGA's low expense, ease of use, and selected dedicated hardware make them an ideal technology for a data acquisition system for a positron emission tomography (PET) scanner. The University of Washington is producing a high-resolution, small-animal PET scanner that utilizes FPGAs as the core of the front-end electronics. For this scanner, functions that are typically performed in dedicated circuits, or offline, are being migrated to the FPGA. This will not only simplify the electronics, but the features of modern FPGAs can be utilized to add significant signal processing power to produce higher quality images. In this paper we report on an all-digital pulse pile-up correction algorithm that has been developed for the FPGA. The pile-up mitigation algorithm will allow the scanner to run at higher count rates without incurring large data losses due to the overlapping of scintillation signals. This correction technique utilizes a reference pulse to extract timing and energy information for most pile-up events. Using pulses acquired from a Zecotech Photonics MAPD-N with an LFS-3 scintillator, we show that good timing and energy information can be achieved in the presence of pile-up utilizing a moderate amount of FPGA resources.
Multimodal imaging approach to monitor browning of adipose tissue in vivo.
Chan, Xin Hui Derryn; Balasundaram, Ghayathri; Attia, Amalina Binte Ebrahim; Goggi, Julian L; Ramasamy, Boominathan; Han, Weiping; Olivo, Malini; Sugii, Shigeki
2018-06-01
The discovery that white adipocytes can undergo a browning process to become metabolically active beige cells has attracted significant interest in the fight against obesity. However, the study of adipose browning has been impeded by a lack of imaging tools that allow longitudinal and noninvasive monitoring of this process in vivo. Here, we report a preclinical imaging approach to detect development of beige adipocytes during adrenergic stimulation. In this approach, we expressed near-infrared fluorescent protein, iRFP720, driven under an uncoupling protein-1 ( Ucp1 ) promoter in mice by viral transduction, and used multispectral optoacoustic imaging technology with ultrasound tomography (MSOT-US) to assess adipose beiging during adrenergic stimulation. We observed increased photoacoustic signal at 720 nm, coupled with attenuated lipid signals in stimulated animals. As a proof of concept, we validated our approach against hybrid positron emission tomography combined with magnetic resonance (PET/MR) imaging modality, and quantified the extent of adipose browning by MRI-guided segmentation of 2-deoxy-2- 18 F-fluoro-d-glucose uptake signals. The browning extent detected by MSOT-US and PET/MR are well correlated with Ucp1 induction. Taken together, these systems offer great opportunities for preclinical screening aimed at identifying compounds that promote adipose browning and translation of these discoveries into clinical studies of humans. Copyright © 2018 Chan et al.
PET/CT and MRI of intra-osseous haemangioma of the tibia
Cha, J G; Yoo, J H; Kim, H K; Park, J M; Paik, S H; Park, S J
2012-01-01
Intra-osseous haemangioma is a rare, benign neoplasm that usually involves the vertebrae and craniofacial bones. Furthermore, its occurrence in the long bones is extremely rare. We report the findings of fluorine-18-fludeoxyglucose (18F-FDG) positron emission tomography (PET)/CT and MRI in a patient with intra-osseous haemangioma in the proximal tibia, who was initially misdiagnosed as having a malignancy based on 18F-FDG PET/CT. 18F-FDG PET/CT showed a well-marginated osteolytic lesion with abnormal FDG uptake. The mass demonstrated low signal intensity on T1 weighted MRI. On T2 weighted images, the lesion appeared as a cluster of high signal intensity lobules and showed strong enhancement on contrast-enhanced T1 weighted images. Surgical curettage was performed and histopathological examination of the excised tissue confirmed a cavernous haemangioma. PMID:22457416
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blais, AR; Dekaban, M; Lee, T-Y
2014-08-15
Quantitative analysis of dynamic positron emission tomography (PET) data usually involves minimizing a cost function with nonlinear regression, wherein the choice of starting parameter values and the presence of local minima affect the bias and variability of the estimated kinetic parameters. These nonlinear methods can also require lengthy computation time, making them unsuitable for use in clinical settings. Kinetic modeling of PET aims to estimate the rate parameter k{sub 3}, which is the binding affinity of the tracer to a biological process of interest and is highly susceptible to noise inherent in PET image acquisition. We have developed linearized kineticmore » models for kinetic analysis of dynamic contrast enhanced computed tomography (DCE-CT)/PET imaging, including a 2-compartment model for DCE-CT and a 3-compartment model for PET. Use of kinetic parameters estimated from DCE-CT can stabilize the kinetic analysis of dynamic PET data, allowing for more robust estimation of k{sub 3}. Furthermore, these linearized models are solved with a non-negative least squares algorithm and together they provide other advantages including: 1) only one possible solution and they do not require a choice of starting parameter values, 2) parameter estimates are comparable in accuracy to those from nonlinear models, 3) significantly reduced computational time. Our simulated data show that when blood volume and permeability are estimated with DCE-CT, the bias of k{sub 3} estimation with our linearized model is 1.97 ± 38.5% for 1,000 runs with a signal-to-noise ratio of 10. In summary, we have developed a computationally efficient technique for accurate estimation of k{sub 3} from noisy dynamic PET data.« less
Bimodal MR-PET agent for quantitative pH imaging
Frullano, Luca; Catana, Ciprian; Benner, Thomas; Sherry, A. Dean; Caravan, Peter
2010-01-01
Activatable or “smart” magnetic resonance contrast agents have relaxivities that depend on environmental factors such as pH or enzymatic activity, but the MR signal depends on relaxivity and agent concentration – two unknowns. A bimodal approach, incorporating a positron emitter, solves this problem. Simultaneous positron emission tomography (PET) and MR imaging with the biomodal, pH-responsive MR-PET agent GdDOTA-4AMP-F allows direct determination of both concentration (PET) and T1 (MRI), and hence pH. PMID:20191650
Chiu, Kuo Ping; Wong, Chee-Hong; Chen, Qiongyu; Ariyaratne, Pramila; Ooi, Hong Sain; Wei, Chia-Lin; Sung, Wing-Kin Ken; Ruan, Yijun
2006-08-25
We recently developed the Paired End diTag (PET) strategy for efficient characterization of mammalian transcriptomes and genomes. The paired end nature of short PET sequences derived from long DNA fragments raised a new set of bioinformatics challenges, including how to extract PETs from raw sequence reads, and correctly yet efficiently map PETs to reference genome sequences. To accommodate and streamline data analysis of the large volume PET sequences generated from each PET experiment, an automated PET data process pipeline is desirable. We designed an integrated computation program package, PET-Tool, to automatically process PET sequences and map them to the genome sequences. The Tool was implemented as a web-based application composed of four modules: the Extractor module for PET extraction; the Examiner module for analytic evaluation of PET sequence quality; the Mapper module for locating PET sequences in the genome sequences; and the Project Manager module for data organization. The performance of PET-Tool was evaluated through the analyses of 2.7 million PET sequences. It was demonstrated that PET-Tool is accurate and efficient in extracting PET sequences and removing artifacts from large volume dataset. Using optimized mapping criteria, over 70% of quality PET sequences were mapped specifically to the genome sequences. With a 2.4 GHz LINUX machine, it takes approximately six hours to process one million PETs from extraction to mapping. The speed, accuracy, and comprehensiveness have proved that PET-Tool is an important and useful component in PET experiments, and can be extended to accommodate other related analyses of paired-end sequences. The Tool also provides user-friendly functions for data quality check and system for multi-layer data management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fried, Jack
The TSPM receives and processes ASIC signals and transmits processed data over to the PC using an Ethernet cable. The data is given a location and a time stamp. This is the heart of the device as it gathers and stamps the timing and location of events on each of the ASICs. The five files for the TSPM are needed to manufacture Pet scanners that are based on the RatCAP (Rat Conscious Animal PET). They include a TSPM schematic, a raw data file to build the RatCAP TSPM, an output file that along with the assay file is used bymore » an assembly house to build the RatCAP TSPM, an assay file that provides the part list and XY location for the components that go on the RatCAP TSPM, firmware that includes the source code to program the FPGA, and a realized program on the TSPM based on the firmware.« less
NASA Astrophysics Data System (ADS)
Böning, Guido; Todica, Andrei; Vai, Alessandro; Lehner, Sebastian; Xiong, Guoming; Mille, Erik; Ilhan, Harun; la Fougère, Christian; Bartenstein, Peter; Hacker, Marcus
2013-11-01
The assessment of left ventricular function, wall motion and myocardial viability using electrocardiogram (ECG)-gated [18F]-FDG positron emission tomography (PET) is widely accepted in human and in preclinical small animal studies. The nonterminal and noninvasive approach permits repeated in vivo evaluations of the same animal, facilitating the assessment of temporal changes in disease or therapy response. Although well established, gated small animal PET studies can contain erroneous gating information, which may yield to blurred images and false estimation of functional parameters. In this work, we present quantitative and visual quality control (QC) methods to evaluate the accuracy of trigger events in PET list-mode and physiological data. Left ventricular functional analysis is performed to quantify the effect of gating errors on the end-systolic and end-diastolic volumes, and on the ejection fraction (EF). We aim to recover the cardiac functional parameters by the application of the commonly established heart rate filter approach using fixed ranges based on a standardized population. In addition, we propose a fully reprocessing approach which retrospectively replaces the gating information of the PET list-mode file with appropriate list-mode decoding and encoding software. The signal of a simultaneously acquired ECG is processed using standard MATLAB vector functions, which can be individually adapted to reliably detect the R-peaks. Finally, the new trigger events are inserted into the PET list-mode file. A population of 30 mice with various health statuses was analyzed and standard cardiac parameters such as mean heart rate (119 ms ± 11.8 ms) and mean heart rate variability (1.7 ms ± 3.4 ms) derived. These standard parameter ranges were taken into account in the QC methods to select a group of nine optimal gated and a group of eight sub-optimal gated [18F]-FDG PET scans of mice from our archive. From the list-mode files of the optimal gated group, we randomly deleted various fractions (5% to 60%) of contained trigger events to generate a corrupted group. The filter approach was capable to correct the corrupted group and yield functional parameters with no significant difference to the optimal gated group. We successfully demonstrated the potential of the fully reprocessing approach by applying it to the sub-optimal group, where the functional parameters were significantly improved after reprocessing (mean EF from 41% ± 16% to 60% ± 13%). When applied to the optimal gated group the fully reprocessing approach did not alter the functional parameters significantly (mean EF from 64% ± 8% to 64 ± 7%). This work presents methods to determine and quantify erroneous gating in small animal gated [18F]-FDG PET scans. We demonstrate the importance of a quality check for cardiac triggering contained in PET list-mode data and the benefit of optionally reprocessing the fully recorded physiological information to retrospectively modify or fully replace the cardiac triggering in PET list-mode data. We aim to provide a preliminary guideline of how to proceed in the presence of errors and demonstrate that offline reprocessing by filtering erroneous trigger events and retrospective gating by ECG processing is feasible. Future work will focus on the extension by additional QC methods, which may exploit the amplitude of trigger events and ECG signal by means of pattern recognition. Furthermore, we aim to transfer the proposed QC methods and the fully reprocessing approach to human myocardial PET/CT.
Franz, R; Welle, F
2002-05-01
Of all the plastics used for packaging, due to its low diffusivity and chemical inertness, poly(ethylene terephthalate) (PET) is one of the favoured candidate plastics for closed-loop recycling for new packaging applications. In the work reported here, a PET-recycling process was investigated with respect to its cleaning efficiency and compliance of the PET recyclate with food law. The key technology of the investigated PET-recycling process to remove contaminants consists of a predecontamination-extruder combination. At the end of the recycling process, there is either a pelletizing system or downstream equipment to produce preforms or flat sheets. Therefore, the process has two process options, an inline production of PET preforms and a batch option producing PET pellets. In the case of possible misuse of PET bottles by the consumer, the inline process produces higher concentrations in the bottle wall of the recyclate containing preforms. Owing to the dilution of the PET output material by large amounts of uncontaminated PET, the batch option is the less critical process in terms of consumer protection. Regarding an appropriate testing procedure for the evaluation of a bottle-to-bottle recycling process, both process options have their own specific requirements with respect to the design of a challenge test. A novel challenge test approach to the inline mode of a recycling process is presented here.
Schinagl, Dominic A X; Vogel, Wouter V; Hoffmann, Aswin L; van Dalen, Jorn A; Oyen, Wim J; Kaanders, Johannes H A M
2007-11-15
Target-volume delineation for radiation treatment to the head and neck area traditionally is based on physical examination, computed tomography (CT), and magnetic resonance imaging. Additional molecular imaging with (18)F-fluoro-deoxy-glucose (FDG)-positron emission tomography (PET) may improve definition of the gross tumor volume (GTV). In this study, five methods for tumor delineation on FDG-PET are compared with CT-based delineation. Seventy-eight patients with Stages II-IV squamous cell carcinoma of the head and neck area underwent coregistered CT and FDG-PET. The primary tumor was delineated on CT, and five PET-based GTVs were obtained: visual interpretation, applying an isocontour of a standardized uptake value of 2.5, using a fixed threshold of 40% and 50% of the maximum signal intensity, and applying an adaptive threshold based on the signal-to-background ratio. Absolute GTV volumes were compared, and overlap analyses were performed. The GTV method of applying an isocontour of a standardized uptake value of 2.5 failed to provide successful delineation in 45% of cases. For the other PET delineation methods, volume and shape of the GTV were influenced heavily by the choice of segmentation tool. On average, all threshold-based PET-GTVs were smaller than on CT. Nevertheless, PET frequently detected significant tumor extension outside the GTV delineated on CT (15-34% of PET volume). The choice of segmentation tool for target-volume definition of head and neck cancer based on FDG-PET images is not trivial because it influences both volume and shape of the resulting GTV. With adequate delineation, PET may add significantly to CT- and physical examination-based GTV definition.
Development of a Dual Tracer PET Method for Imaging Dopaminergic Neuromodulation
NASA Astrophysics Data System (ADS)
Converse, Alexander K.; Dejesus, Onofre T.; Flores, Leo G.; Holden, James E.; Kelley, Ann E.; Moirano, Jeffrey M.; Nickles, Robert J.; Oakes, Terrence R.; Roberts, Andrew D.; Ruth, Thomas J.; Vandehey, Nicholas T.; Davidson, Richard J.
2006-04-01
The modulatory neurotransmittor dopamine (DA) is involved in movement and reward behaviors, and malfunctions in the dopamine system are implicated in a variety of prevalent and debilitating pathologies including Parkinson's disease, attention deficit/hyperactivity disorder, schizophrenia, and addiction. Positron emission tomography (PET) has been used to separately measure changes in DA receptor occupancy and blood flow in response to various interventions. Here we describe a dual tracer PET method to simultaneously measure both responses with the aim of comparing DA release in particular areas of the brain and associated alterations in neural activity throughout the brain. Significant correlations between reductions in DA receptor occupancy and blood flow alterations would be potential signs of dopaminergic modulation, i.e. modifications in signal processing due to increased levels of extracellular DA. Methodological development has begun with rats undergoing an amphetamine challenge while being scanned with the blood flow tracer [17F]fluoromethane and the dopamine D2 receptor tracer [18F]desmethoxyfallypride.
NASA Astrophysics Data System (ADS)
Reilhac, Anthonin; Boisson, Frédéric; Wimberley, Catriona; Parmar, Arvind; Zahra, David; Hamze, Hasar; Davis, Emma; Arthur, Andrew; Bouillot, Caroline; Charil, Arnaud; Grégoire, Marie-Claude
2016-02-01
In PET imaging, research groups have recently proposed different experimental set ups allowing multiple animals to be simultaneously imaged in a scanner in order to reduce the costs and increase the throughput. In those studies, the technical feasibility was demonstrated and the signal degradation caused by additional mice in the FOV characterized, however, the impact of the signal degradation on the outcome of a PET study has not yet been studied. Here we thoroughly investigated, using Monte Carlo simulated [18F]FDG and [11C]Raclopride PET studies, different experimental designs for whole-body and brain acquisitions of two mice and assessed the actual impact on the detection of biological variations as compared to a single-mouse setting. First, we extended the validation of the PET-SORTEO Monte Carlo simulation platform for the simultaneous simulation of two animals. Then, we designed [18F]FDG and [11C]Raclopride input mouse models for the simulation of realistic whole-body and brain PET studies. Simulated studies allowed us to accurately estimate the differences in detection between single- and dual-mode acquisition settings that are purely the result of having two animals in the FOV. Validation results showed that PET-SORTEO accurately reproduced the spatial resolution and noise degradations that were observed with actual dual phantom experiments. The simulated [18F]FDG whole-body study showed that the resolution loss due to the off-center positioning of the mice was the biggest contributing factor in signal degradation at the pixel level and a minimal inter-animal distance as well as the use of reconstruction methods with resolution modeling should be preferred. Dual mode acquisition did not have a major impact on ROI-based analysis except in situations where uptake values in organs from the same subject were compared. The simulated [11C]Raclopride study however showed that dual-mice imaging strongly reduced the sensitivity to variations when mice were positioned side-by-side while no sensitivity reduction was observed when they were facing each other. This is the first study showing the impact of different experimental designs for whole-body and brain acquisitions of two mice on the quality of the results using Monte Carlo simulated [18F]FDG and [11C]Raclopride PET studies.
SBML-PET: a Systems Biology Markup Language-based parameter estimation tool.
Zi, Zhike; Klipp, Edda
2006-11-01
The estimation of model parameters from experimental data remains a bottleneck for a major breakthrough in systems biology. We present a Systems Biology Markup Language (SBML) based Parameter Estimation Tool (SBML-PET). The tool is designed to enable parameter estimation for biological models including signaling pathways, gene regulation networks and metabolic pathways. SBML-PET supports import and export of the models in the SBML format. It can estimate the parameters by fitting a variety of experimental data from different experimental conditions. SBML-PET has a unique feature of supporting event definition in the SMBL model. SBML models can also be simulated in SBML-PET. Stochastic Ranking Evolution Strategy (SRES) is incorporated in SBML-PET for parameter estimation jobs. A classic ODE Solver called ODEPACK is used to solve the Ordinary Differential Equation (ODE) system. http://sysbio.molgen.mpg.de/SBML-PET/. The website also contains detailed documentation for SBML-PET.
NASA Astrophysics Data System (ADS)
Magri, Alphonso William
This study was undertaken to develop a nonsurgical breast biopsy from Gd-DTPA Contrast Enhanced Magnetic Resonance (CE-MR) images and F-18-FDG PET/CT dynamic image series. A five-step process was developed to accomplish this. (1) Dynamic PET series were nonrigidly registered to the initial frame using a finite element method (FEM) based registration that requires fiducial skin markers to sample the displacement field between image frames. A commercial FEM package (ANSYS) was used for meshing and FEM calculations. Dynamic PET image series registrations were evaluated using similarity measurements SAVD and NCC. (2) Dynamic CE-MR series were nonrigidly registered to the initial frame using two registration methods: a multi-resolution free-form deformation (FFD) registration driven by normalized mutual information, and a FEM-based registration method. Dynamic CE-MR image series registrations were evaluated using similarity measurements, localization measurements, and qualitative comparison of motion artifacts. FFD registration was found to be superior to FEM-based registration. (3) Nonlinear curve fitting was performed for each voxel of the PET/CT volume of activity versus time, based on a realistic two-compartmental Patlak model. Three parameters for this model were fitted; two of them describe the activity levels in the blood and in the cellular compartment, while the third characterizes the washout rate of F-18-FDG from the cellular compartment. (4) Nonlinear curve fitting was performed for each voxel of the MR volume of signal intensity versus time, based on a realistic two-compartment Brix model. Three parameters for this model were fitted: rate of Gd exiting the compartment, representing the extracellular space of a lesion; rate of Gd exiting a blood compartment; and a parameter that characterizes the strength of signal intensities. Curve fitting used for PET/CT and MR series was accomplished by application of the Levenburg-Marquardt nonlinear regression algorithm. The best-fit parameters were used to create 3D parametric images. Compartmental modeling evaluation was based on the ability of parameter values to differentiate between tissue types. This evaluation was used on registered and unregistered image series and found that registration improved results. (5) PET and MR parametric images were registered through FEM- and FFD-based registration. Parametric image registration was evaluated using similarity measurements, target registration error, and qualitative comparison. Comparing FFD and FEM-based registration results showed that the FEM method is superior. This five-step process constitutes a novel multifaceted approach to a nonsurgical breast biopsy that successfully executes each step. Comparison of this method to biopsy still needs to be done with a larger set of subject data.
Silicon detectors for combined MR-PET and MR-SPECT imaging
NASA Astrophysics Data System (ADS)
Studen, A.; Brzezinski, K.; Chesi, E.; Cindro, V.; Clinthorne, N. H.; Cochran, E.; Grošičar, B.; Grkovski, M.; Honscheid, K.; Kagan, H.; Lacasta, C.; Llosa, G.; Mikuž, M.; Stankova, V.; Weilhammer, P.; Žontar, D.
2013-02-01
Silicon based devices can extend PET-MR and SPECT-MR imaging to applications, where their advantages in performance outweigh benefits of high statistical counts. Silicon is in many ways an excellent detector material with numerous advantages, among others: excellent energy and spatial resolution, mature processing technology, large signal to noise ratio, relatively low price, availability, versatility and malleability. The signal in silicon is also immune to effects of magnetic field at the level normally used in MR devices. Tests in fields up to 7 T were performed in a study to determine effects of magnetic field on positron range in a silicon PET device. The curvature of positron tracks in direction perpendicular to the field's orientation shortens the distance between emission and annihilation point of the positron. The effect can be fully appreciated for a rotation of the sample for a fixed field direction, compressing range in all dimensions. A popular Ga-68 source was used showing a factor of 2 improvement in image noise compared to zero field operation. There was also a little increase in noise as the reconstructed resolution varied between 2.5 and 1.5 mm. A speculative applications can be recognized in both emission modalities, SPECT and PET. Compton camera is a subspecies of SPECT, where a silicon based scatter as a MR compatible part could inserted into the MR bore and the secondary detector could operate in less constrained environment away from the magnet. Introducing a Compton camera also relaxes requirements of the radiotracers used, extending the range of conceivable photon energies beyond 140.5 keV of the Tc-99m. In PET, one could exploit the compressed sub-millimeter range of positrons in the magnetic field. To exploit the advantage, detectors with spatial resolution commensurate to the effect must be used with silicon being an excellent candidate. Measurements performed outside of the MR achieving spatial resolution below 1 mm are reported.
Vallabhajosula, Shankar
2007-11-01
Molecular imaging is the visualization, characterization, and measurement of biological processes at the molecular and cellular levels in a living system. At present, positron emission tomography/computed tomography (PET/CT) is one the most rapidly growing areas of medical imaging, with many applications in the clinical management of patients with cancer. Although [(18)F]fluorodeoxyglucose (FDG)-PET/CT imaging provides high specificity and sensitivity in several kinds of cancer and has many applications, it is important to recognize that FDG is not a "specific" radiotracer for imaging malignant disease. Highly "tumor-specific" and "tumor cell signal-specific" PET radiopharmaceuticals are essential to meet the growing demand of radioisotope-based molecular imaging technology. In the last 15 years, many alternative PET tracers have been proposed and evaluated in preclinical and clinical studies to characterize the tumor biology more appropriately. The potential clinical utility of several (18)F-labeled radiotracers (eg, fluoride, FDOPA, FLT, FMISO, FES, and FCH) is being reviewed by several investigators in this issue. An overview of design and development of (18)F-labeled PET radiopharmaceuticals, radiochemistry, and mechanism(s) of tumor cell uptake and localization of radiotracers are presented here. The approval of clinical indications for FDG-PET in the year 2000 by the Food and Drug Administration, based on a review of literature, was a major breakthrough to the rapid incorporation of PET into nuclear medicine practice, particularly in oncology. Approval of a radiopharmaceutical typically involves submission of a "New Drug Application" by a manufacturer or a company clearly documenting 2 major aspects of the drug: (1) manufacturing of PET drug using current good manufacturing practices and (2) the safety and effectiveness of a drug with specific indications. The potential routine clinical utility of (18)F-labeled PET radiopharmaceuticals depends also on regulatory compliance in addition to documentation of potential safety and efficacy by various investigators.
PET/MRI for neurologic applications.
Catana, Ciprian; Drzezga, Alexander; Heiss, Wolf-Dieter; Rosen, Bruce R
2012-12-01
PET and MRI provide complementary information in the study of the human brain. Simultaneous PET/MRI data acquisition allows the spatial and temporal correlation of the measured signals, creating opportunities impossible to realize using stand-alone instruments. This paper reviews the methodologic improvements and potential neurologic and psychiatric applications of this novel technology. We first present methods for improving the performance and information content of each modality by using the information provided by the other technique. On the PET side, we discuss methods that use the simultaneously acquired MRI data to improve the PET data quantification. On the MRI side, we present how improved PET quantification can be used to validate several MRI techniques. Finally, we describe promising research, translational, and clinical applications that can benefit from these advanced tools.
Wang, Yingcheng; Jin, Yuanhao; Xiao, Xiaoyang; Zhang, Tianfu; Yang, Haitao; Zhao, Yudan; Wang, Jiaping; Jiang, Kaili; Fan, Shoushan; Li, Qunqing
2018-05-30
A flexible and transparent film assembled from the cross-nanoporous structures of Au on PET (CNS of Au@PET) is developed as a versatile and effective SERS substrate for rapid, on-site trace analysis with high sensitivity. The fabrication of the CNS of Au can be achieved on a large scale at low cost by employing an etching process with super-aligned carbon nanotubes as a mask, followed by metal deposition. A strongly enhanced Raman signal with good uniformity can be obtained, which is attributed to the excitation of "hot spots" around the metal nanogaps and sharp edges. Using the CNS of Au@PET film as a SERS platform, real-time and on-site SERS detection of the food contaminant crystal violet (CV) is achieved, with a detection limit of CV solution on a tomato skin of 10-7 M. Owing to its ability to efficiently extract trace analytes, the resulting substrate also achieves detection of 4-ATP contaminants and thiram pesticides by swabbing the skin of an apple. A SERS detection signal for 4-ATP has a relative standard deviation of less than 10%, revealing the excellent reproducibility of the substrate. The flexible, transparent and highly sensitive substrates fabricated using this simple and cost-effective strategy are promising for practical application in rapid, on-site SERS-based detection.
Olcott, Peter D; Peng, Hao; Levin, Craig S
2009-01-01
A new magnetic resonance imaging (MRI)-compatible positron emission tomography (PET) detector design is being developed that uses electro-optical coupling to bring the amplitude and arrival time information of high-speed PET detector scintillation pulses out of an MRI system. The electro-optical coupling technology consists of a magnetically insensitive photodetector output signal connected to a nonmagnetic vertical cavity surface emitting laser (VCSEL) diode that is coupled to a multimode optical fiber. This scheme essentially acts as an optical wire with no influence on the MRI system. To test the feasibility of this approach, a lutetium-yttrium oxyorthosilicate crystal coupled to a single pixel of a solid-state photomultiplier array was placed in coincidence with a lutetium oxyorthosilicate crystal coupled to a fast photomultiplier tube with both the new nonmagnetic VCSEL coupling and the standard coaxial cable signal transmission scheme. No significant change was observed in 511 keV photopeak energy resolution and coincidence time resolution. This electro-optical coupling technology enables an MRI-compatible PET block detector to have a reduced electromagnetic footprint compared with the signal transmission schemes deployed in the current MRI/PET designs.
Gong, Kuang; Cheng-Liao, Jinxiu; Wang, Guobao; Chen, Kevin T; Catana, Ciprian; Qi, Jinyi
2018-04-01
Positron emission tomography (PET) is a functional imaging modality widely used in oncology, cardiology, and neuroscience. It is highly sensitive, but suffers from relatively poor spatial resolution, as compared with anatomical imaging modalities, such as magnetic resonance imaging (MRI). With the recent development of combined PET/MR systems, we can improve the PET image quality by incorporating MR information into image reconstruction. Previously, kernel learning has been successfully embedded into static and dynamic PET image reconstruction using either PET temporal or MRI information. Here, we combine both PET temporal and MRI information adaptively to improve the quality of direct Patlak reconstruction. We examined different approaches to combine the PET and MRI information in kernel learning to address the issue of potential mismatches between MRI and PET signals. Computer simulations and hybrid real-patient data acquired on a simultaneous PET/MR scanner were used to evaluate the proposed methods. Results show that the method that combines PET temporal information and MRI spatial information adaptively based on the structure similarity index has the best performance in terms of noise reduction and resolution improvement.
Quantifying hypoxia in human cancers using static PET imaging.
Taylor, Edward; Yeung, Ivan; Keller, Harald; Wouters, Bradley G; Milosevic, Michael; Hedley, David W; Jaffray, David A
2016-11-21
Compared to FDG, the signal of 18 F-labelled hypoxia-sensitive tracers in tumours is low. This means that in addition to the presence of hypoxic cells, transport properties contribute significantly to the uptake signal in static PET images. This sensitivity to transport must be minimized in order for static PET to provide a reliable standard for hypoxia quantification. A dynamic compartmental model based on a reaction-diffusion formalism was developed to interpret tracer pharmacokinetics and applied to static images of FAZA in twenty patients with pancreatic cancer. We use our model to identify tumour properties-well-perfused without substantial necrosis or partitioning-for which static PET images can reliably quantify hypoxia. Normalizing the measured activity in a tumour voxel by the value in blood leads to a reduction in the sensitivity to variations in 'inter-corporal' transport properties-blood volume and clearance rate-as well as imaging study protocols. Normalization thus enhances the correlation between static PET images and the FAZA binding rate K 3 , a quantity which quantifies hypoxia in a biologically significant way. The ratio of FAZA uptake in spinal muscle and blood can vary substantially across patients due to long muscle equilibration times. Normalized static PET images of hypoxia-sensitive tracers can reliably quantify hypoxia for homogeneously well-perfused tumours with minimal tissue partitioning. The ideal normalizing reference tissue is blood, either drawn from the patient before PET scanning or imaged using PET. If blood is not available, uniform, homogeneously well-perfused muscle can be used. For tumours that are not homogeneously well-perfused or for which partitioning is significant, only an analysis of dynamic PET scans can reliably quantify hypoxia.
Morimoto, Emiko; Okada, Tomohisa; Kanagaki, Mitsunori; Yamamoto, Akira; Fushimi, Yasutaka; Matsumoto, Riki; Takaya, Shigetoshi; Ikeda, Akio; Kunieda, Takeharu; Kikuchi, Takayuki; Paul, Dominik; Miyamoto, Susumu; Takahashi, Ryosuke; Togashi, Kaori
2013-12-01
To quantitatively compare the diagnostic capability of double inversion-recovery (DIR) with F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) for detection of seizure focus laterality in temporal lobe epilepsy (TLE). This study was approved by the institutional review board, and written informed consent was obtained. Fifteen patients with TLE and 38 healthy volunteers were enrolled. All magnetic resonance (MR) images were acquired using a 3T-MRI system. Voxel-based analysis (VBA) was conducted for FDG-PET images and white matter segments of DIR images (DIR-WM) focused on the whole temporal lobe (TL) and the anterior part of the temporal lobe (ATL). Distribution of hypometabolic areas on FDG-PET and increased signal intensity areas on DIR-WM were evaluated, and their laterality was compared with clinically determined seizure focus laterality. Correct diagnostic rates of laterality were evaluated, and agreement between DIR-WM and FDG-PET was assessed using κ statistics. Increased signal intensity areas on DIR-WM were located at the vicinity of the hypometabolic areas on FDG-PET, especially in the ATL. Correct diagnostic rates of seizure focus laterality for DIR-WM (0.80 and 0.67 for the TL and the ATL, respectively) were slightly higher than those for FDG-PET (0.67 and 0.60 for the TL and the ATL, respectively). Agreement of laterality between DIR-WM and FDG-PET was substantial for the TL and almost perfect for the ATL (κ = 0.67 and 0.86, respectively). High agreement in localization between DIR-WM and FDG-PET and nearly equivalent detectability of them show us an additional role of MRI in TLE. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.
Quantifying hypoxia in human cancers using static PET imaging
NASA Astrophysics Data System (ADS)
Taylor, Edward; Yeung, Ivan; Keller, Harald; Wouters, Bradley G.; Milosevic, Michael; Hedley, David W.; Jaffray, David A.
2016-11-01
Compared to FDG, the signal of 18F-labelled hypoxia-sensitive tracers in tumours is low. This means that in addition to the presence of hypoxic cells, transport properties contribute significantly to the uptake signal in static PET images. This sensitivity to transport must be minimized in order for static PET to provide a reliable standard for hypoxia quantification. A dynamic compartmental model based on a reaction-diffusion formalism was developed to interpret tracer pharmacokinetics and applied to static images of FAZA in twenty patients with pancreatic cancer. We use our model to identify tumour properties—well-perfused without substantial necrosis or partitioning—for which static PET images can reliably quantify hypoxia. Normalizing the measured activity in a tumour voxel by the value in blood leads to a reduction in the sensitivity to variations in ‘inter-corporal’ transport properties—blood volume and clearance rate—as well as imaging study protocols. Normalization thus enhances the correlation between static PET images and the FAZA binding rate K 3, a quantity which quantifies hypoxia in a biologically significant way. The ratio of FAZA uptake in spinal muscle and blood can vary substantially across patients due to long muscle equilibration times. Normalized static PET images of hypoxia-sensitive tracers can reliably quantify hypoxia for homogeneously well-perfused tumours with minimal tissue partitioning. The ideal normalizing reference tissue is blood, either drawn from the patient before PET scanning or imaged using PET. If blood is not available, uniform, homogeneously well-perfused muscle can be used. For tumours that are not homogeneously well-perfused or for which partitioning is significant, only an analysis of dynamic PET scans can reliably quantify hypoxia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehranian, Abolfazl; Arabi, Hossein; Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch
Attenuation correction is an essential component of the long chain of data correction techniques required to achieve the full potential of quantitative positron emission tomography (PET) imaging. The development of combined PET/magnetic resonance imaging (MRI) systems mandated the widespread interest in developing novel strategies for deriving accurate attenuation maps with the aim to improve the quantitative accuracy of these emerging hybrid imaging systems. The attenuation map in PET/MRI should ideally be derived from anatomical MR images; however, MRI intensities reflect proton density and relaxation time properties of biological tissues rather than their electron density and photon attenuation properties. Therefore, inmore » contrast to PET/computed tomography, there is a lack of standardized global mapping between the intensities of MRI signal and linear attenuation coefficients at 511 keV. Moreover, in standard MRI sequences, bones and lung tissues do not produce measurable signals owing to their low proton density and short transverse relaxation times. MR images are also inevitably subject to artifacts that degrade their quality, thus compromising their applicability for the task of attenuation correction in PET/MRI. MRI-guided attenuation correction strategies can be classified in three broad categories: (i) segmentation-based approaches, (ii) atlas-registration and machine learning methods, and (iii) emission/transmission-based approaches. This paper summarizes past and current state-of-the-art developments and latest advances in PET/MRI attenuation correction. The advantages and drawbacks of each approach for addressing the challenges of MR-based attenuation correction are comprehensively described. The opportunities brought by both MRI and PET imaging modalities for deriving accurate attenuation maps and improving PET quantification will be elaborated. Future prospects and potential clinical applications of these techniques and their integration in commercial systems will also be discussed.« less
Mehranian, Abolfazl; Arabi, Hossein; Zaidi, Habib
2016-03-01
Attenuation correction is an essential component of the long chain of data correction techniques required to achieve the full potential of quantitative positron emission tomography (PET) imaging. The development of combined PET/magnetic resonance imaging (MRI) systems mandated the widespread interest in developing novel strategies for deriving accurate attenuation maps with the aim to improve the quantitative accuracy of these emerging hybrid imaging systems. The attenuation map in PET/MRI should ideally be derived from anatomical MR images; however, MRI intensities reflect proton density and relaxation time properties of biological tissues rather than their electron density and photon attenuation properties. Therefore, in contrast to PET/computed tomography, there is a lack of standardized global mapping between the intensities of MRI signal and linear attenuation coefficients at 511 keV. Moreover, in standard MRI sequences, bones and lung tissues do not produce measurable signals owing to their low proton density and short transverse relaxation times. MR images are also inevitably subject to artifacts that degrade their quality, thus compromising their applicability for the task of attenuation correction in PET/MRI. MRI-guided attenuation correction strategies can be classified in three broad categories: (i) segmentation-based approaches, (ii) atlas-registration and machine learning methods, and (iii) emission/transmission-based approaches. This paper summarizes past and current state-of-the-art developments and latest advances in PET/MRI attenuation correction. The advantages and drawbacks of each approach for addressing the challenges of MR-based attenuation correction are comprehensively described. The opportunities brought by both MRI and PET imaging modalities for deriving accurate attenuation maps and improving PET quantification will be elaborated. Future prospects and potential clinical applications of these techniques and their integration in commercial systems will also be discussed.
NASA Astrophysics Data System (ADS)
Couceiro, Miguel; Crespo, Paulo; Marques, Rui F.; Fonte, Paulo
2014-06-01
Scatter Fraction (SF) and Noise Equivalent Count Rate (NECR) of a 2400 mm wide axial field-of-view Positron Emission Tomography (PET) system based on Resistive Plate Chamber (RPC) detectors with 300 ps Time Of Flight (TOF) resolution were studied by simulation using Geant4. The study followed the NEMA NU2-2001 standards, using the standard 700 mm long phantom and an axially extended one with 1800 mm, modeling the foreseeable use of this PET system. Data was processed based on the actual RPC readout, which requires a 0.2 μs non-paralyzable dead time for timing signals and a paralyzable dead time (τps) for position signals. For NECR, the best coincidence trigger consisted of a multiple time window coincidence sorter retaining single coincidence pairs (involving only two photons) and all possible coincidence pairs obtained from Multiple coincidences, keeping only those for which the direct TOF-reconstructed point falls inside a tight region surrounding the phantom. For the 700 mm phantom, the SF was 51.8% and, with τps = 3.0 μs, the peak NECR was 167 kcps at 7.6 kBq/cm3. Using τps = 1.0 μs the NECR was 349 kcps at 7.6 kBq/cm3, and no peak was found. For the 1800 mm phantom, the SF was slightly higher, and the NECR curves were identical to those obtained with the standard phantom, but shifted to lower activity concentrations. Although the higher SF, the values obtained for NECR allow concluding that the proposed scanner is expected to outperform current commercial PET systems.
A front-end readout mixed chip for high-efficiency small animal PET imaging
NASA Astrophysics Data System (ADS)
Ollivier-Henry, N.; Berst, J. D.; Colledani, C.; Hu-Guo, Ch.; Mbow, N. A.; Staub, D.; Guyonnet, J. L.; Hu, Y.
2007-02-01
Today, the main challenge of Positron Emission Tomography (PET) systems dedicated to small animal imaging is to obtain high detection efficiency and a highly accurate localization of radioisotopes. If we focus only on the PET characteristics such as the spatial resolution, its accuracy depends on the design of detector and on the electronics readout system as well. In this paper, we present a new design of such readout system with full custom submicrometer CMOS implementation. The front end chip consists of two main blocks from which the energy information and the time stamp with subnanosecond resolution can be obtained. In our A Multi-Modality Imaging System for Small Animal (AMISSA) PET system design, a matrix of LYSO crystals has to be read at each end by a 64 channels multianode photomultiplier tube. A specific readout electronic has been developed at the Hubert Curien Multidisciplinary Institute (IPHC, France). The architecture of this readout for the energy information detection is composed of a low-noise preamplifier, a CR-RC shaper and an analogue memory. In order to obtain the required dynamic range from 15 to 650 photoelectrons with good linearity, a current mode approach has been chosen for the preamplifier. To detect the signal with a temporal resolution of 1 ns, a comparator with a very low threshold (˜0.3 photoelectron) has been implemented. It gives the time reference of arrival signal coming from the detector. In order to obtain the time coincidence with a temporal resolution of 1 ns, a Time-to-Digital Converter (TDC) based on a Delay-Locked-Loop (DLL) has been designed. The chip is fabricated with AMS 0.35 μm process. The ASIC architecture and some simulation results will be presented in the paper.
Munoz, Camila; Kunze, Karl P; Neji, Radhouene; Vitadello, Teresa; Rischpler, Christoph; Botnar, René M; Nekolla, Stephan G; Prieto, Claudia
2018-05-12
Cardiac PET-MR has shown potential for the comprehensive assessment of coronary heart disease. However, image degradation due to physiological motion remains a challenge that could hinder the adoption of this technology in clinical practice. The purpose of this study was to validate a recently proposed respiratory motion-corrected PET-MR framework for the simultaneous visualisation of myocardial viability ( 18 F-FDG PET) and coronary artery anatomy (coronary MR angiography, CMRA) in patients with chronic total occlusion (CTO). A cohort of 14 patients was scanned with the proposed PET-CMRA framework. PET and CMRA images were reconstructed with and without the proposed motion correction approach for comparison purposes. Metrics of image quality including visible vessel length and sharpness were obtained for CMRA for both the right and left anterior descending coronary arteries (RCA, LAD), and relative increase in 18 F-FDG PET signal after motion correction for standard 17-segment polar maps was computed. Resulting coronary anatomy by CMRA and myocardial integrity by PET were visually compared against X-ray angiography and conventional Late Gadolinium Enhancement (LGE) MRI, respectively. Motion correction increased CMRA visible vessel length by 49.9% and 32.6% (RCA, LAD) and vessel sharpness by 12.3% and 18.9% (RCA, LAD) on average compared to uncorrected images. Coronary lumen delineation on motion-corrected CMRA images was in good agreement with X-ray angiography findings. For PET, motion correction resulted in an average 8% increase in 18 F-FDG signal in the inferior and inferolateral segments of the myocardial wall. An improved delineation of myocardial viability defects and reduced noise in the 18 F-FDG PET images was observed, improving correspondence to subendocardial LGE-MRI findings compared to uncorrected images. The feasibility of the PET-CMRA framework for simultaneous cardiac PET-MR imaging in a short and predictable scan time (~11 min) has been demonstrated in 14 patients with CTO. Motion correction increased visible length and sharpness of the coronary arteries by CMRA, and improved delineation of the myocardium by 18 F-FDG PET, resulting in good agreement with X-ray angiography and LGE-MRI.
In Vivo PET Imaging of Myelin Damage and Repair in the Spinal Cord
2012-10-01
oligodendrocyte precursor cells ( OPCs ) that are subsequently activated and distributed to the damaged axons. However, the remyelination process is often...We hypothesize that myelin repair can be achieved by therapeutic agents that stimulate the endogenous promotion of remyelination by host OPCs ...specific uptake signal; 5) Rapid clearance of radiotracer from other organs (e.g, lung, heart, liver , etc) to ensure optimal dosimetry; 6) Minimal probe
Fuin, Niccolo; Catalano, Onofrio Antonio; Scipioni, Michele; Canjels, Lisanne P W; Izquierdo, David; Pedemonte, Stefano; Catana, Ciprian
2018-01-25
Purpose: We present an approach for concurrent reconstruction of respiratory motion compensated abdominal DCE-MRI and PET data in an integrated PET/MR scanner. The MR and PET reconstructions share the same motion vector fields (MVFs) derived from radial MR data; the approach is robust to changes in respiratory pattern and do not increase the total acquisition time. Methods: PET and DCE-MRI data of 12 oncological patients were simultaneously acquired for 6 minutes on an integrated PET/MR system after administration of 18 F-FDG and gadoterate meglumine. Golden-angle radial MR data were continuously acquired simultaneously with PET data and sorted into multiple motion phases based on a respiratory signal derived directly from the radial MR data. The resulting multidimensional dataset was reconstructed using a compressed sensing approach that exploits sparsity among respiratory phases. MVFs obtained using the full 6-minute (MC_6-min) and only the last 1 minute (MC_1-min) of data were incorporated into the PET reconstruction to obtain motion-corrected PET images and in an MR iterative reconstruction algorithm to produce a series of motion-corrected DCE-MRI images (moco_GRASP). The motion-correction methods (MC_6-min and MC_1-min) were evaluated by qualitative analysis of the MR images and quantitative analysis of maximum and mean standardized uptake values (SUV max , SUVmean), contrast, signal-to-noise ratio (SNR) and lesion volume in the PET images. Results: Motion corrected MC_6-min PET images demonstrated 30%, 23%, 34% and 18% increases in average SUV max , SUVmean, contrast and SNR, and an average 40% reduction in lesion volume with respect to the non-motion-corrected PET images. The changes in these figures of merit were smaller but still substantial for the MC_1-min protocol: 19%, 10%, 15% and 9% increases in average SUV max , SUVmean, contrast and SNR; and a 28% reduction in lesion volume. Moco_GRASP images were deemed of acceptable or better diagnostic image quality with respect to conventional breath hold cartesian VIBE acquisitions. Conclusion: We presented a method that allows the simultaneous acquisition of respiratory motion-corrected diagnostic quality DCE-MRI and quantitatively accurate PET data in an integrated PET/MR scanner with negligible prolongation in acquisition time compared to routine PET/DCE-MRI protocols. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
PET/MRI for Neurological Applications
Catana, Ciprian; Drzezga, Alexander; Heiss, Wolf-Dieter; Rosen, Bruce R.
2013-01-01
PET and MRI provide complementary information in the study of the human brain. Simultaneous PET/MR data acquisition allows the spatial and temporal correlation of the measured signals, opening up opportunities impossible to realize using stand-alone instruments. This paper reviews the methodological improvements and potential neurological and psychiatric applications of this novel technology. We first present methods for improving the performance and information content of each modality by using the information provided by the other technique. On the PET side, we discuss methods that use the simultaneously acquired MR data to improve the PET data quantification. On the MR side, we present how improved PET quantification could be used to validate a number of MR techniques. Finally, we describe promising research, translational and clinical applications that could benefit from these advanced tools. PMID:23143086
Geoscientific process monitoring with positron emission tomography (GeoPET)
NASA Astrophysics Data System (ADS)
Kulenkampff, Johannes; Gründig, Marion; Zakhnini, Abdelhamid; Lippmann-Pipke, Johanna
2016-08-01
Transport processes in geomaterials can be observed with input-output experiments, which yield no direct information on the impact of heterogeneities, or they can be assessed by model simulations based on structural imaging using µ-CT. Positron emission tomography (PET) provides an alternative experimental observation method which directly and quantitatively yields the spatio-temporal distribution of tracer concentration. Process observation with PET benefits from its extremely high sensitivity together with a resolution that is acceptable in relation to standard drill core sizes. We strongly recommend applying high-resolution PET scanners in order to achieve a resolution on the order of 1 mm. We discuss the particularities of PET applications in geoscientific experiments (GeoPET), which essentially are due to high material density. Although PET is rather insensitive to matrix effects, mass attenuation and Compton scattering have to be corrected thoroughly in order to derive quantitative values. Examples of process monitoring of advection and diffusion processes with GeoPET illustrate the procedure and the experimental conditions, as well as the benefits and limits of the method.
Hirano, Yoshiyuki; Nitta, Munetaka; Nishikido, Fumihiko; Yoshida, Eiji; Inadama, Naoko; Yamaya, Taiga
2016-07-07
The accumulation of induced radioactivity within in-beam PET scanner scintillators is of concern for its long-term clinical usage in particle therapy. To estimate the effects on OpenPET which we are developing for in-beam PET based on GSOZ (Zi doped Gd2SiO5), we measured the induced radioactivity of GSO activated by secondary fragments in a water phantom irradiation by a (12)C beam with an energy of 290 MeV u(-1). Radioisotopes of Na, Ce, Eu, Gd, Nd, Pm and Tb including positron emitters were observed in the gamma ray spectra of the activated GSO with a high purity Ge detector and their absolute radioactivities were calculated. We used the Monte Carlo simulation platform, Geant4 in which the observed radioactivity was assigned to the scintillators of a precisely reproduced OpenPET and the single and coincidence rates immediately after one treatment and after one-year usage were estimated for the most severe conditions. Comparing the highest coincidence rate originating from the activated scintillators (background) and the expected coincidence rate from an imaging object (signal), we determined the expected signal-to-noise ratio to be more than 7 within 3 min and more than 10 within 1 min from the scan start time. We concluded the effects of scintillator activation and their accumulation on the OpenPET imaging were small and clinical long-term usage of the OpenPET was feasible.
NASA Astrophysics Data System (ADS)
Hirano, Yoshiyuki; Nitta, Munetaka; Nishikido, Fumihiko; Yoshida, Eiji; Inadama, Naoko; Yamaya, Taiga
2016-07-01
The accumulation of induced radioactivity within in-beam PET scanner scintillators is of concern for its long-term clinical usage in particle therapy. To estimate the effects on OpenPET which we are developing for in-beam PET based on GSOZ (Zi doped Gd2SiO5), we measured the induced radioactivity of GSO activated by secondary fragments in a water phantom irradiation by a 12C beam with an energy of 290 MeV u-1. Radioisotopes of Na, Ce, Eu, Gd, Nd, Pm and Tb including positron emitters were observed in the gamma ray spectra of the activated GSO with a high purity Ge detector and their absolute radioactivities were calculated. We used the Monte Carlo simulation platform, Geant4 in which the observed radioactivity was assigned to the scintillators of a precisely reproduced OpenPET and the single and coincidence rates immediately after one treatment and after one-year usage were estimated for the most severe conditions. Comparing the highest coincidence rate originating from the activated scintillators (background) and the expected coincidence rate from an imaging object (signal), we determined the expected signal-to-noise ratio to be more than 7 within 3 min and more than 10 within 1 min from the scan start time. We concluded the effects of scintillator activation and their accumulation on the OpenPET imaging were small and clinical long-term usage of the OpenPET was feasible.
Cates, Joshua W; Bieniosek, Matthew F; Levin, Craig S
2017-01-01
Maintaining excellent timing resolution in the generation of silicon photomultiplier (SiPM)-based time-of-flight positron emission tomography (TOF-PET) systems requires a large number of high-speed, high-bandwidth electronic channels and components. To minimize the cost and complexity of a system's back-end architecture and data acquisition, many analog signals are often multiplexed to fewer channels using techniques that encode timing, energy, and position information. With progress in the development SiPMs having lower dark noise, after pulsing, and cross talk along with higher photodetection efficiency, a coincidence timing resolution (CTR) well below 200 ps FWHM is now easily achievable in single pixel, bench-top setups using 20-mm length, lutetium-based inorganic scintillators. However, multiplexing the output of many SiPMs to a single channel will significantly degrade CTR without appropriate signal processing. We test the performance of a PET detector readout concept that multiplexes 16 SiPMs to two channels. One channel provides timing information with fast comparators, and the second channel encodes both position and energy information in a time-over-threshold-based pulse sequence. This multiplexing readout concept was constructed with discrete components to process signals from a [Formula: see text] array of SensL MicroFC-30035 SiPMs coupled to [Formula: see text] Lu 1.8 Gd 0.2 SiO 5 (LGSO):Ce (0.025 mol. %) scintillators. This readout method yielded a calibrated, global energy resolution of 15.3% FWHM at 511 keV with a CTR of [Formula: see text] FWHM between the 16-pixel multiplexed detector array and a [Formula: see text] LGSO-SiPM reference detector. In summary, results indicate this multiplexing scheme is a scalable readout technique that provides excellent coincidence timing performance.
An integrated system for the online monitoring of particle therapy treatment accuracy
NASA Astrophysics Data System (ADS)
Fiorina, E.; INSIDE Collaboration
2016-07-01
Quality assurance in hadrontherapy remains an open issue that can be addressed with reliable monitoring of treatment accuracy. The INSIDE (INnovative SolutIons for DosimEtry in hadrontherapy) project aims to develop an integrated online monitoring system based on two dedicated PET panels and a tracking system, called Dose Profiler. The proposed solution is designed to operate in-beam and provide an immediate feedback on the particle range acquiring both photons produced by β+ decays and prompt secondary particle signals. Monte Carlo simulations cover an important role both in the system development, by confirming the design feasibility, and in the system operation, by understanding data. A FLUKA-based integrated simulation was developed taking into account the hadron beam structure, the phantom/patient features and the PET detector and Dose Profiler specifications. In addition, to reduce simulation time in signal generation on PET detectors, a two-step technique has been implemented and validated. The first PET modules were tested in May 2015 at the Centro Nazionale Adroterapia Oncologica (CNAO) in Pavia (Italy) with very satisfactory results: in-spill, inter-spill and post-treatment PET images were reconstructed and a quantitative agreement between data and simulation was found.
NASA Astrophysics Data System (ADS)
Fang, X. C.; Hu-Guo, Ch.; Ollivier-Henry, N.; Brasse, D.; Hu, Y.
2010-06-01
This paper represents the design of a low-noise, wide band multi-channel readout integrated circuit (IC) used as front end readout electronics of avalanche photo diodes (APD) dedicated to a small animal positron emission tomography (PET) system. The first ten-channel prototype chip (APD-Chip) of the analog parts has been designed and fabricated in a 0.35 μm CMOS process. Every channel of the APD_Chip includes a charge-sensitive preamplifier (CSA), a CR-(RC)2 shaper, and an analog buffer. In a channel, the CSA reads charge signals (10 bits dynamic range) from an APD array having 10 pF of capacitance per pixel. A linearized degenerated differential pair which ensures high linearity in all dynamical range is used as the high feedback resistor for preventing pile up of signals. The designed CSA has the capability of compensating automatically up to 200 nA leakage current from the detector. The CR-(RC)2 shaper filters and shapes the output signal of the CSA. An equivalent input noise charge obtained from test is 275 e -+ 10 e-/pF. In this paper the prototype is presented for both its theoretical analysis and its test results.
PET staging of amyloidosis using striatum.
Hanseeuw, Bernard J; Betensky, Rebecca A; Mormino, Elizabeth C; Schultz, Aaron P; Sepulcre, Jorge; Becker, John A; Jacobs, Heidi I L; Buckley, Rachel F; LaPoint, Molly R; Vanini, Patrizia; Donovan, Nancy J; Chhatwal, Jasmeer P; Marshall, Gad A; Papp, Kathryn V; Amariglio, Rebecca E; Rentz, Dorene M; Sperling, Reisa A; Johnson, Keith A
2018-05-21
Amyloid PET data are commonly expressed as binary measures of cortical deposition. However, not all individuals with high cortical amyloid will experience rapid cognitive decline. Motivated by postmortem data, we evaluated a three-stage PET classification: low cortical; high cortical, low striatal; and high cortical, high striatal amyloid; hypothesizing this model could better reflect Alzheimer's dementia progression than a model based only on cortical measures. We classified PET data from 1433 participants (646 normal, 574 mild cognitive impairment, and 213 AD), explored the successive involvement of cortex and striatum using 3-year follow-up PET data, and evaluated the associations between PET stages, hippocampal volumes, and cognition. Follow-up data indicated that PET detects amyloid first in cortex and then in striatum. Our three-category staging including striatum better predicted hippocampal volumes and subsequent cognition than a three-category staging including only cortical amyloid. PET can evaluate amyloid expansion from cortex to subcortex. Using striatal signal as a marker of advanced amyloidosis may increase predictive power in Alzheimer's dementia research. Copyright © 2018. Published by Elsevier Inc.
Engineering Analysis of Thermal-Load Components in the Process of Heating of Pet Preforms
NASA Astrophysics Data System (ADS)
Sidorov, D. É.; Kolosov, A. E.; Kazak, I. A.; Pogorelyi, A. V.
2018-05-01
The influence of thermal-load components (convection, collimated and uncollimated components of infrared radiation) in the process of production of PET packaging on the heating of PET preforms has been assessed. It has been established that the collimated component of infrared radiation ensures most (up to 70%) of the thermal energy in the process of heating of a PET preform.
ERIC Educational Resources Information Center
Kavanagh, Kim
1994-01-01
This resource guide presents information on a variety of ways that animals can be used as a therapeutic modality with people having disabilities. Aspects addressed include: pet ownership and selection criteria; dogs (including service dogs, hearing/signal dogs, seeing leader dogs, and social/specialty dogs); horseriding for both therapy and fun;…
NASA Astrophysics Data System (ADS)
Raczyński, L.; Moskal, P.; Kowalski, P.; Wiślicki, W.; Bednarski, T.; Białas, P.; Czerwiński, E.; Kapłon, Ł.; Kochanowski, A.; Korcyl, G.; Kowal, J.; Kozik, T.; Krzemień, W.; Kubicz, E.; Molenda, M.; Moskal, I.; Niedźwiecki, Sz.; Pałka, M.; Pawlik-Niedźwiecka, M.; Rudy, Z.; Salabura, P.; Sharma, N. G.; Silarski, M.; Słomski, A.; Smyrski, J.; Strzelecki, A.; Wieczorek, A.; Zieliński, M.; Zoń, N.
2014-11-01
Currently inorganic scintillator detectors are used in all commercial Time of Flight Positron Emission Tomograph (TOF-PET) devices. The J-PET collaboration investigates a possibility of construction of a PET scanner from plastic scintillators which would allow for single bed imaging of the whole human body. This paper describes a novel method of hit-position reconstruction based on sampled signals and an example of an application of the method for a single module with a 30 cm long plastic strip, read out on both ends by Hamamatsu R4998 photomultipliers. The sampling scheme to generate a vector with samples of a PET event waveform with respect to four user-defined amplitudes is introduced. The experimental setup provides irradiation of a chosen position in the plastic scintillator strip with an annihilation gamma quanta of energy 511 keV. The statistical test for a multivariate normal (MVN) distribution of measured vectors at a given position is developed, and it is shown that signals sampled at four thresholds in a voltage domain are approximately normally distributed variables. With the presented method of a vector analysis made out of waveform samples acquired with four thresholds, we obtain a spatial resolution of about 1 cm and a timing resolution of about 80 ps (σ).
Antibody-based PET imaging of amyloid beta in mouse models of Alzheimer's disease
Sehlin, Dag; Fang, Xiaotian T.; Cato, Linda; Antoni, Gunnar; Lannfelt, Lars; Syvänen, Stina
2016-01-01
Owing to their specificity and high-affinity binding, monoclonal antibodies have potential as positron emission tomography (PET) radioligands and are currently used to image various targets in peripheral organs. However, in the central nervous system, antibody uptake is limited by the blood–brain barrier (BBB). Here we present a PET ligand to be used for diagnosis and evaluation of treatment effects in Alzheimer's disease. The amyloid β (Aβ) antibody mAb158 is radiolabelled and conjugated to a transferrin receptor antibody to enable receptor-mediated transcytosis across the BBB. PET imaging of two different mouse models with Aβ pathology clearly visualize Aβ in the brain. The PET signal increases with age and correlates closely with brain Aβ levels. Thus, we demonstrate that antibody-based PET ligands can be successfully used for brain imaging. PMID:26892305
Schwaab, Julia; Kurz, Christopher; Sarti, Cristina; Bongers, André; Schoenahl, Frédéric; Bert, Christoph; Debus, Jürgen; Parodi, Katia; Jenne, Jürgen Walter
2015-01-01
Target motion, particularly in the abdomen, due to respiration or patient movement is still a challenge in many diagnostic and therapeutic processes. Hence, methods to detect and compensate this motion are required. Diagnostic ultrasound (US) represents a non-invasive and dose-free alternative to fluoroscopy, providing more information about internal target motion than respiration belt or optical tracking. The goal of this project is to develop an US-based motion tracking for real-time motion correction in radiation therapy and diagnostic imaging, notably in 4D positron emission tomography (PET). In this work, a workflow is established to enable the transformation of US tracking data to the coordinates of the treatment delivery or imaging system – even if the US probe is moving due to respiration. It is shown that the US tracking signal is equally adequate for 4D PET image reconstruction as the clinically used respiration belt and provides additional opportunities in this concern. Furthermore, it is demonstrated that the US probe being within the PET field of view generally has no relevant influence on the image quality. The accuracy and precision of all the steps in the calibration workflow for US tracking-based 4D PET imaging are found to be in an acceptable range for clinical implementation. Eventually, we show in vitro that an US-based motion tracking in absolute room coordinates with a moving US transducer is feasible. PMID:26649277
NASA Astrophysics Data System (ADS)
Wang, Yonggang; Xiao, Yong; Cheng, Xinyi; Li, Deng; Wang, Liwei
2016-02-01
For the continuous crystal-based positron emission tomography (PET) detector built in our lab, a maximum likelihood algorithm adapted for implementation on a field programmable gate array (FPGA) is proposed to estimate the three-dimensional (3D) coordinate of interaction position with the single-end detected scintillation light response. The row-sum and column-sum readout scheme organizes the 64 channels of photomultiplier (PMT) into eight row signals and eight column signals to be readout for X- and Y-coordinates estimation independently. By the reference events irradiated in a known oblique angle, the probability density function (PDF) for each depth-of-interaction (DOI) segment is generated, by which the reference events in perpendicular irradiation are assigned to DOI segments for generating the PDFs for X and Y estimation in each DOI layer. Evaluated by the experimental data, the algorithm achieves an average X resolution of 1.69 mm along the central X-axis, and DOI resolution of 3.70 mm over the whole thickness (0-10 mm) of crystal. The performance improvements from 2D estimation to the 3D algorithm are also presented. Benefiting from abundant resources of FPGA and a hierarchical storage arrangement, the whole algorithm can be implemented into a middle-scale FPGA. By a parallel structure in pipelines, the 3D position estimator on the FPGA can achieve a processing throughput of 15 M events/s, which is sufficient for the requirement of real-time PET imaging.
Combining MRI With PET for Partial Volume Correction Improves Image-Derived Input Functions in Mice
NASA Astrophysics Data System (ADS)
Evans, Eleanor; Buonincontri, Guido; Izquierdo, David; Methner, Carmen; Hawkes, Rob C.; Ansorge, Richard E.; Krieg, Thomas; Carpenter, T. Adrian; Sawiak, Stephen J.
2015-06-01
Accurate kinetic modelling using dynamic PET requires knowledge of the tracer concentration in plasma, known as the arterial input function (AIF). AIFs are usually determined by invasive blood sampling, but this is prohibitive in murine studies due to low total blood volumes. As a result of the low spatial resolution of PET, image-derived input functions (IDIFs) must be extracted from left ventricular blood pool (LVBP) ROIs of the mouse heart. This is challenging because of partial volume and spillover effects between the LVBP and myocardium, contaminating IDIFs with tissue signal. We have applied the geometric transfer matrix (GTM) method of partial volume correction (PVC) to 12 mice injected with 18F - FDG affected by a Myocardial Infarction (MI), of which 6 were treated with a drug which reduced infarction size [1]. We utilised high resolution MRI to assist in segmenting mouse hearts into 5 classes: LVBP, infarcted myocardium, healthy myocardium, lungs/body and background. The signal contribution from these 5 classes was convolved with the point spread function (PSF) of the Cambridge split magnet PET scanner and a non-linear fit was performed on the 5 measured signal components. The corrected IDIF was taken as the fitted LVBP component. It was found that the GTM PVC method could recover an IDIF with less contamination from spillover than an IDIF extracted from PET data alone. More realistic values of Ki were achieved using GTM IDIFs, which were shown to be significantly different (p <; 0.05) between the treated and untreated groups.
NASA Astrophysics Data System (ADS)
Habte, Frezghi; Natarajan, Arutselvan; Paik, David S.; Gambhir, Sanjiv S.
2014-03-01
Cerenkov luminescence imaging (CLI) is an emerging cost effective modality that uses conventional small animal optical imaging systems and clinically available radionuclide probes for light emission. CLI has shown good correlation with PET for organs of high uptake such as kidney, spleen, thymus and subcutaneous tumors in mouse models. However, CLI has limitations for deep tissue quantitative imaging since the blue-weighted spectral characteristics of Cerenkov radiation attenuates highly by mammalian tissue. Large organs such as the liver have also shown higher signal due to the contribution of emission of light from a greater thickness of tissue. In this study, we developed a simple model that estimates the effective tissue attenuation coefficient in order to correct the CLI signal intensity with a priori estimated depth and thickness of specific organs. We used several thin slices of ham to build a phantom with realistic attenuation. We placed radionuclide sources inside the phantom at different tissue depths and imaged it using an IVIS Spectrum (Perkin-Elmer, Waltham, MA, USA) and Inveon microPET (Preclinical Solutions Siemens, Knoxville, TN). We also performed CLI and PET of mouse models and applied the proposed attenuation model to correct CLI measurements. Using calibration factors obtained from phantom study that converts the corrected CLI measurements to %ID/g, we obtained an average difference of less that 10% for spleen and less than 35% for liver compared to conventional PET measurements. Hence, the proposed model has a capability of correcting the CLI signal to provide comparable measurements with PET data.
Middleware Design for Swarm-Driving Robots Accompanying Humans.
Kim, Min Su; Kim, Sang Hyuck; Kang, Soon Ju
2017-02-17
Research on robots that accompany humans is being continuously studied. The Pet-Bot provides walking-assistance and object-carrying services without any specific controls through interaction between the robot and the human in real time. However, with Pet-Bot, there is a limit to the number of robots a user can use. If this limit is overcome, the Pet-Bot can provide services in more areas. Therefore, in this study, we propose a swarm-driving middleware design adopting the concept of a swarm, which provides effective parallel movement to allow multiple human-accompanying robots to accomplish a common purpose. The functions of middleware divide into three parts: a sequence manager for swarm process, a messaging manager, and a relative-location identification manager. This middleware processes the sequence of swarm-process of robots in the swarm through message exchanging using radio frequency (RF) communication of an IEEE 802.15.4 MAC protocol and manages an infrared (IR) communication module identifying relative location with IR signal strength. The swarm in this study is composed of the master interacting with the user and the slaves having no interaction with the user. This composition is intended to control the overall swarm in synchronization with the user activity, which is difficult to predict. We evaluate the accuracy of the relative-location estimation using IR communication, the response time of the slaves to a change in user activity, and the time to organize a network according to the number of slaves.
Middleware Design for Swarm-Driving Robots Accompanying Humans
Kim, Min Su; Kim, Sang Hyuck; Kang, Soon Ju
2017-01-01
Research on robots that accompany humans is being continuously studied. The Pet-Bot provides walking-assistance and object-carrying services without any specific controls through interaction between the robot and the human in real time. However, with Pet-Bot, there is a limit to the number of robots a user can use. If this limit is overcome, the Pet-Bot can provide services in more areas. Therefore, in this study, we propose a swarm-driving middleware design adopting the concept of a swarm, which provides effective parallel movement to allow multiple human-accompanying robots to accomplish a common purpose. The functions of middleware divide into three parts: a sequence manager for swarm process, a messaging manager, and a relative-location identification manager. This middleware processes the sequence of swarm-process of robots in the swarm through message exchanging using radio frequency (RF) communication of an IEEE 802.15.4 MAC protocol and manages an infrared (IR) communication module identifying relative location with IR signal strength. The swarm in this study is composed of the master interacting with the user and the slaves having no interaction with the user. This composition is intended to control the overall swarm in synchronization with the user activity, which is difficult to predict. We evaluate the accuracy of the relative-location estimation using IR communication, the response time of the slaves to a change in user activity, and the time to organize a network according to the number of slaves. PMID:28218650
Shedding new light on viral photosynthesis.
Puxty, Richard J; Millard, Andrew D; Evans, David J; Scanlan, David J
2015-10-01
Viruses infecting the environmentally important marine cyanobacteria Prochlorococcus and Synechococcus encode 'auxiliary metabolic genes' (AMGs) involved in the light and dark reactions of photosynthesis. Here, we discuss progress on the inventory of such AMGs in the ever-increasing number of viral genome sequences as well as in metagenomic datasets. We contextualise these gene acquisitions with reference to a hypothesised fitness gain to the phage. We also report new evidence with regard to the sequence and predicted structural properties of viral petE genes encoding the soluble electron carrier plastocyanin. Viral copies of PetE exhibit extensive modifications to the N-terminal signal peptide and possess several novel residues in a region responsible for interaction with redox partners. We also highlight potential knowledge gaps in this field and discuss future opportunities to discover novel phage-host interactions involved in the photosynthetic process.
WE-C-217BCD-10: Development of High Performance PET for Animal Imaging and Therapy Applications.
Shao, Y; Sun, X; Lan, K; Bircher, C
2012-06-01
A prototype small animal PET is developed with several novel technologies to measure 3D gamma-interaction positions and to substantially improve imaging performance. Each new detector has an 8×8 array of 1.95×1.95×30 mm̂3 LYSO scintillators, with each end optically connected to a solid-state photo multiplier (SSPM) array through a light guide. This dual-ended-readout enables the depth-of-interaction (DOI) measurement. Each SSPM array has 16 SSPMs arranged in a 4×4 matrix. Each SSPM has active area about 3×3 mm̂2, with its output read by an ASIC electronics that directly converts analog signals to digital timing pulses which encode the interaction information for energy, timing, crystal of interaction, and DOI calculations. These digital pulses are transferred to and decoded by FPGA-based TDC for coincident event selection and data acquisition. This independent readout of each SSPM and parallel signal process significantly improve signal-to-noise ratio and permit applying flexible data processing algorithms. The current prototype system consists of two rotating detector panels on a portable gantry, with 4 detectors linearly packed together in each panel to provide ∼16 mm axial and variable trans- axial FOV with adjustable panel-to-panel distance. List-mode OSEM-based image reconstruction with resolution modeling was implemented. Both Na- 22 point source and phantom were used to evaluate the system performance. The measured energy, timing, spatial and DOI resolutions for each crystal were around 16%, 2.6 ns, 2.0 mm and 5.0 mm, respectively. The measured spatial resolutions with DOI were ∼1.7 mm across the entire FOV in all direction, while those without DOI were much worse and non-uniform across the FOV, in the range predominately around 3.0 to 4.0 mm. In addition, images from a F-18 hot-rod phantom with DOI show significantly improved quality compared to those without DOI. DOI- measurable PET shows substantially improved image performance for a compact system. National Institute of Health. University of Texas MD Anderson Cancer Center. © 2012 American Association of Physicists in Medicine.
Wellman, Cara L; Camp, Marguerite; Jones, V Morgan; MacPherson, Kathryn P; Ihne, Jessica; Fitzgerald, Paul; Maroun, Mouna; Drabant, Emily; Bogdan, Ryan; Hariri, Ahmad R; Holmes, Andrew
2013-12-01
Serotonin is critical for shaping the development of neural circuits regulating emotion. Pet-1 (FEV-1) is an ETS-domain transcription factor essential for differentiation and forebrain targeting of serotonin neurons. Constitutive Pet-1 knockout (KO) causes major loss of serotonin neurons and forebrain serotonin availability, and behavioral abnormalities. We phenotyped Pet-1 KO mice for fear conditioning and extinction, and on a battery of assays for anxiety- and depression-related behaviors. Morphology of Golgi-stained neurons in basolateral amygdala (BLA) and prelimbic cortex was examined. Using human imaging genetics, a common variant (rs860573) in the PET-1 (FEV) gene was tested for effects on threat-related amygdala reactivity and psychopathology in 88 Asian-ancestry subjects. Pet-1 KO mice exhibited increased acquisition and expression of fear, and elevated fear recovery following extinction, relative to wild-type (WT). BLA dendrites of Pet-1 KO mice were significantly longer than in WT. Human PET-1 variation associated with differences in amygdala threat processing and psychopathology. This novel evidence for the role of Pet-1 in fear processing and dendritic organization of amygdala neurons and in human amygdala threat processing extends a growing literature demonstrating the influence of genetic variation in the serotonin system on emotional regulation via effects on structure and function of underlying corticolimbic circuitry. © 2013.
Wisdom, Jennifer P; Saedi, Goal Auzeen; Green, Carla A
2009-07-01
This study elucidates the role of pets in recovery processes among adults with serious mental illness. Data derive from interviews with 177 HMO members with serious mental illness (52.2% women, average age 48.8 years) in the Study of Transitions and Recovery Strategies (STARS). Interviews and questionnaires addressed factors affecting recovery processes and included questions about pet ownership. Data were analyzed using a modified grounded theory method to identify the roles pets play in the recovery process. Primary themes indicate pets assist individuals in recovery from serious mental illness by (a) providing empathy and "therapy"; (b) providing connections that can assist in redeveloping social avenues; (c) serving as "family" in the absence of or in addition to human family members; and (d) supporting self-efficacy and strengthening a sense of empowerment. Pets appear to provide more benefits than merely companionship. Participants' reports of pet-related contributions to their well-being provide impetus to conduct more formal research on the mechanisms by which pets contribute to recovery and to develop pet-based interventions.
Wisdom, Jennifer P.; Saedi, Goal Auzeen; Green, Carla A.
2010-01-01
This study elucidates the role of pets in recovery processes among adults with serious mental illness. Data derive from interviews with 177 HMO members with serious mental illness (52.2% women, average age 48.8). Interviews and questionnaires addressed factors affecting recovery processes and included questions about pet ownership. Data were analyzed using a modified grounded theory method to identify the roles pets play in the recovery process. Primary themes indicate pets assist individuals in recovery from serious mental illness by (a) providing empathy and “therapy”; (b) providing connections that can assist in redeveloping social avenues; (c) serving as “family” in the absence of or in addition to human family members; and (d) supporting self-efficacy and strengthening a sense of empowerment. Pets appear to provide more benefits than merely companionship. Participants’ reports of pet-related contributions to their well-being provide impetus to conduct more formal research on the mechanisms by which pets contribute to recovery and to develop pet-based interventions. PMID:19839680
Targeted Lymphoma Cell Death by Novel Signal Transduction Modifications
2009-07-01
metabolic activity), and iPET imaging (a highly sensitive method to assess in vivo tumor-targeting). We have b egun to de velop the DOTA conj...inhibition augmented the cytotoxic potential of peptide 5. • We have begun to develop DOTA -c onjugated peptide 5 and 41 in anticipation of immuno-PET
NASA Astrophysics Data System (ADS)
Li, H.; Wong, Wai-Hoi; Zhang, N.; Wang, J.; Uribe, J.; Baghaei, H.; Yokoyama, S.
1999-06-01
Electronics for a prototype high-resolution PET camera with eight position-sensitive detector modules has been developed. Each module has 16 BGO (Bi/sub 4/Ge/sub 3/O/sub 12/) blocks (each block is composed of 49 crystals). The design goals are component and space reduction. The electronics is composed of five parts: front-end analog processing, digital position decoding, fast timing, coincidence processing and master data acquisition. The front-end analog circuit is a zone-based structure (each zone has 3/spl times/3 PMTs). Nine ADCs digitize integration signals of an active zone identified by eight trigger clusters; each cluster is composed of six photomultiplier tubes (PMTs). A trigger corresponding to a gamma ray is sent to a fast timing board to obtain a time-mark, and the nine digitized signals are passed to the position decoding board, where a real block (four PMTs) can be picked out from the zone for position decoding. Lookup tables are used for energy discrimination and to identify the gamma-hit crystal location. The coincidence board opens a 70-ns initial timing window, followed by two 20-ns true/accidental time-mark lookup table windows. The data output from the coincidence board can be acquired either in sinogram mode or in list mode with a Motorola/IRONICS VME-based system.
Positron Emission Tomography (PET)
DOE R&D Accomplishments Database
Welch, M. J.
1990-01-01
Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.
MO-F-CAMPUS-J-03: Development of a Human Brain PET for On-Line Proton Beam-Range Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Yiping
Purpose: To develop a prototype PET for verifying proton beam-range before each fractionated therapy that will enable on-line re-planning proton therapy. Methods: Latest “edge-less” silicon photomultiplier arrays and customized ASIC readout electronics were used to develop PET detectors with depth-of-interaction (DOI) measurement capability. Each detector consists of one LYSO array with each end coupled to a SiPM array. Multiple detectors can be seamlessly tiled together to form a large detector panel. Detectors with 1.5×1.5 and 2.0×2.0 mm crystals at 20 or 30 mm lengths were studied. Readout of individual SiPM or signal multiplexing was used to transfer 3D interaction position-codedmore » analog signals through flexible-print-circuit cables or PCB board to dedicated ASIC front-end electronics to output digital timing pulses that encode interaction information. These digital pulses can be transferred to, through standard LVDS cables, and decoded by a FPGA-based data acquisition of coincidence events and data transfer. The modular detector and scalable electronics/data acquisition will enable flexible PET system configuration for different imaging geometry. Results: Initial detector performance measurement shows excellent crystal identification even with 30 mm long crystals, ∼18% and 2.8 ns energy and timing resolutions, and around 2–3 mm DOI resolution. A small prototype PET scanner with one detector ring has been built and evaluated, validating the technology and design. A large size detector panel has been fabricated by scaling up from modular detectors. Different designs of resistor and capacitor based signal multiplexing boards were tested and selected based on optimal crystal identification and timing performance. Stackable readout electronics boards and FPGA-based data acquisition boards were developed and tested. A brain PET is under construction. Conclusion: Technology of large-size DOI detector based on SiPM array and advanced readout has been developed. PET imaging performance and initial phantom studies of on-line proton beam-range measurement will be conducted and reported. NIH grant R21CA187717; Cancer Prevention and Research Institute of Texas grant RP120326.« less
Axelsson, Jan; Riklund, Katrine; Nyberg, Lars; Dayan, Peter; Bäckman, Lars
2017-01-01
Probabilistic reward learning is characterised by individual differences that become acute in aging. This may be due to age-related dopamine (DA) decline affecting neural processing in striatum, prefrontal cortex, or both. We examined this by administering a probabilistic reward learning task to younger and older adults, and combining computational modelling of behaviour, fMRI and PET measurements of DA D1 availability. We found that anticipatory value signals in ventromedial prefrontal cortex (vmPFC) were attenuated in older adults. The strength of this signal predicted performance beyond age and was modulated by D1 availability in nucleus accumbens. These results uncover that a value-anticipation mechanism in vmPFC declines in aging, and that this mechanism is associated with DA D1 receptor availability. PMID:28870286
Evaluating pet foods: how confident are you when you recommend a commercial pet food?
Zicker, Steven C
2008-08-01
The safety, adequacy, and efficacy of pet foods are important considerations for veterinarians and consumers. Manufacturers of pet foods in the United States are required to comply with multiple regulations from a variety of governmental and state agencies to market foods in the public sector. However, consumers and veterinarians may not be aware of the multiple systems in place that help ensure the safety and adequacy of foods for their pets. Since the veterinarian occupies a key role to make recommendations to consumers regarding pet foods, it is the purpose of this article to review the processes of pet food manufacturing, as well as the processes that have been developed to help ensure safety and adequacy of pet foods in the United States.
NASA Astrophysics Data System (ADS)
Davis, Paul B.; Abidi, Mongi A.
1989-05-01
PET is the only imaging modality that provides doctors with early analytic and quantitative biochemical assessment and precise localization of pathology. In PET images, boundary information as well as local pixel intensity are both crucial for manual and/or automated feature tracing, extraction, and identification. Unfortunately, the present PET technology does not provide the necessary image quality from which such precise analytic and quantitative measurements can be made. PET images suffer from significantly high levels of radial noise present in the form of streaks caused by the inexactness of the models used in image reconstruction. In this paper, our objective is to model PET noise and remove it without altering dominant features in the image. The ultimate goal here is to enhance these dominant features to allow for automatic computer interpretation and classification of PET images by developing techniques that take into consideration PET signal characteristics, data collection, and data reconstruction. We have modeled the noise steaks in PET images in both rectangular and polar representations and have shown both analytically and through computer simulation that it exhibits consistent mapping patterns. A class of filters was designed and applied successfully. Visual inspection of the filtered images show clear enhancement over the original images.
Feasibility of hydrogel fiducial markers for in vivo proton range verification using PET
NASA Astrophysics Data System (ADS)
Cho, Jongmin; Campbell, Patrick; Wang, Min; Alqathami, Mamdooh; Mawlawi, Osama; Kerr, Matthew; Cho, Sang Hyun
2016-03-01
Biocompatible/biodegradable hydrogel polymers were immersed in 18O-enriched water and 16O-water to create 18O-water hydrogels and 16O-water hydrogels. In both cases, the hydrogels were made of ~91 wt% water and ~9 wt% polymer. In addition, 5-8 μm Zn powder was suspended in 16O-water and 18O-enriched water and cross-linked with hydrogel polymers to create Zn/16O-water hydrogels (30/70 wt%, ~9 wt% polymer) and Zn/18O-water hydrogels (10/90 wt%), respectively. A block of extra-firm ‘wet’ tofu (12.3 × 8.8 × 4.9 cm, ρ ≈ 1.05 g cm-3) immersed in water was injected with Zn/16O-water hydrogels (0.9 ml each) at four different depths using an 18-gauge needle. Similarly, Zn/18O-water hydrogels (0.9 ml) were injected into a second tofu phantom. As a reference, both 16O-water hydrogels (1.8 ml) and 18O-water hydrogels (0.9 ml) in Petri dishes were irradiated in a ‘dry’ environment. The hydrogels in the wet tofu phantoms and dry Petri dishes were scanned via CT and images were used for treatment planning. Then, they were positioned at the proton distal dose fall-off region and irradiated (2 Gy) followed by PET/CT imaging. Notably high PET signals were observed only in 18O-water hydrogels in the dry environment. The visibility of the Zn/16O-water hydrogels injected into the tofu phantom was outstanding in CT images, but these hydrogels provided no noticeable PET signals. The visibility of the Zn/18O-water hydrogels in the wet tofu were excellent on CT and moderate on PET; however, the PET signals were weaker than those in the dry environment, possibly owing to 18O-water leaching out. The hydrogel markers studied here could be used to develop universal PET/CT fiducial markers. Their PET visibility (attributed more to activated 18O-water than Zn) after proton irradiation can be used for proton therapy/range verification. More investigation is needed to slow down the leaching of 18O-water.
NASA Astrophysics Data System (ADS)
Ahn, Sangtae; Cheng, Lishui; Shanbhag, Dattesh D.; Qian, Hua; Kaushik, Sandeep S.; Jansen, Floris P.; Wiesinger, Florian
2018-02-01
Accurate and robust attenuation correction remains challenging in hybrid PET/MR particularly for torsos because it is difficult to segment bones, lungs and internal air in MR images. Additionally, MR suffers from susceptibility artifacts when a metallic implant is present. Recently, joint estimation (JE) of activity and attenuation based on PET data, also known as maximum likelihood reconstruction of activity and attenuation, has gained considerable interest because of (1) its promise to address the challenges in MR-based attenuation correction (MRAC), and (2) recent advances in time-of-flight (TOF) technology, which is known to be the key to the success of JE. In this paper, we implement a JE algorithm using an MR-based prior and evaluate the algorithm using whole-body PET/MR patient data, for both FDG and non-FDG tracers, acquired from GE SIGNA PET/MR scanners with TOF capability. The weight of the MR-based prior is spatially modulated, based on MR signal strength, to control the balance between MRAC and JE. Large prior weights are used in strong MR signal regions such as soft tissue and fat (i.e. MR tissue classification with a high degree of certainty) and small weights are used in low MR signal regions (i.e. MR tissue classification with a low degree of certainty). The MR-based prior is pragmatic in the sense that it is convex and does not require training or population statistics while exploiting synergies between MRAC and JE. We demonstrate the JE algorithm has the potential to improve the robustness and accuracy of MRAC by recovering the attenuation of metallic implants, internal air and some bones and by better delineating lung boundaries, not only for FDG but also for more specific non-FDG tracers such as 68Ga-DOTATOC and 18F-Fluoride.
Rieken, Stefan; Habermehl, Daniel; Giesel, Frederik L; Hoffmann, Christoph; Burger, Ute; Rief, Harald; Welzel, Thomas; Haberkorn, Uwe; Debus, Jürgen; Combs, Stephanie E
2013-12-01
Modern radiotherapy (RT) techniques such as stereotactic RT, intensity-modulated RT, or particle irradiation allow local dose escalation with simultaneous sparing of critical organs. Several trials are currently investigating their benefit in glioma reirradiation and boost irradiation. Target volume definition is of critical importance especially when steep dose gradient techniques are employed. In this manuscript we investigate the impact of O-(2-(F-18)fluoroethyl)-l-tyrosine-positron emission tomography/computer tomography (FET-PET/CT) on target volume definition in low and high grade glioma patients undergoing either first or re-irradiation with particles. We investigated volumetric size and uniformity of magnetic resonance imaging (MRI)- vs. FET-PET/CT-derived gross tumor volumes (GTVs) and planning target volumes (PTVs) of 41 glioma patients. Clinical cases are presented to demonstrate potential benefits of integrating FET-PET/CT-planning into daily routine. Integrating FET-uptake into the delineation of GTVs yields larger volumes. Combined modality-derived PTVs are significantly enlarged in high grade glioma patients and in case of primary RT. The congruence of MRI and FET signals for the identification of glioma GTVs is poor with mean uniformity indices of 0.39. MRI-based PTVs miss 17% of FET-PET/CT-based GTVs. Non significant alterations were detected in low grade glioma patients and in those undergoing reirradiation. Target volume definition for malignant gliomas during initial RT may yield significantly differing results depending upon the imaging modality, which the contouring process is based upon. The integration of both MRI and FET-PET/CT may help to improve GTV coverage by avoiding larger incongruences between physical and biological imaging techniques. In low grade gliomas and in cases of reirradiation, more studies are needed in order to investigate a potential benefit of FET-PET/CT for planning of RT. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
21 CFR 212.50 - What production and process controls must I have?
Code of Federal Regulations, 2012 CFR
2012-04-01
... must have adequate production and process controls to ensure the consistent production of a PET drug... all steps in the PET drug production process. The master production and control records must include the following information: (1) The name and strength of the PET drug; (2) If applicable, the name and...
21 CFR 212.50 - What production and process controls must I have?
Code of Federal Regulations, 2014 CFR
2014-04-01
... must have adequate production and process controls to ensure the consistent production of a PET drug... all steps in the PET drug production process. The master production and control records must include the following information: (1) The name and strength of the PET drug; (2) If applicable, the name and...
21 CFR 212.50 - What production and process controls must I have?
Code of Federal Regulations, 2013 CFR
2013-04-01
... must have adequate production and process controls to ensure the consistent production of a PET drug... all steps in the PET drug production process. The master production and control records must include the following information: (1) The name and strength of the PET drug; (2) If applicable, the name and...
Quantitative characterization of brain β-amyloid using a joint PiB/FDG PET image histogram
NASA Astrophysics Data System (ADS)
Camp, Jon J.; Hanson, Dennis P.; Holmes, David R.; Kemp, Bradley J.; Senjem, Matthew L.; Murray, Melissa E.; Dickson, Dennis W.; Parisi, Joseph; Petersen, Ronald C.; Lowe, Val J.; Robb, Richard A.
2014-03-01
A complex analysis performed by spatial registration of PiB and MRI patient images in order to localize the PiB signal to specific cortical brain regions has been proven effective in identifying imaging characteristics associated with underlying Alzheimer's Disease (AD) and Lewy Body Disease (LBD) pathology. This paper presents an original method of image analysis and stratification of amyloid-related brain disease based on the global spatial correlation of PiB PET images with 18F-FDG PET images (without MR images) to categorize the PiB signal arising from the cortex. Rigid registration of PiB and 18F-FDG images is relatively straightforward, and in registration the 18F-FDG signal serves to identify the cortical region in which the PiB signal is relevant. Cortical grey matter demonstrates the highest levels of amyloid accumulation and therefore the greatest PiB signal related to amyloid pathology. The highest intensity voxels in the 18F-FDG image are attributed to the cortical grey matter. The correlation of the highest intensity PiB voxels with the highest 18F-FDG values indicates the presence of β-amyloid protein in the cortex in disease states, while correlation of the highest intensity PiB voxels with mid-range 18F-FDG values indicates only nonspecific binding in the white matter.
Todica, Andrei; Lehner, Sebastian; Wang, Hao; Zacherl, Mathias J; Nekolla, Katharina; Mille, Erik; Xiong, Guoming; Bartenstein, Peter; la Fougère, Christian; Hacker, Marcus; Böning, Guido
2016-02-01
Raw PET list-mode data contains motion artifacts causing image blurring and decreased spatial resolution. Unless corrected, this leads to underestimation of the tracer uptake and overestimation of the lesion size, as well as inaccuracies with regard to left ventricular volume and ejection fraction (LVEF), especially in small animal imaging. A respiratory trigger signal from respiration-induced variations in the electro-cardiogram (ECG) was detected. Original and revised list-mode PET data were used for calculation of left ventricular function parameters using both respiratory gating techniques. For adequately triggered datasets we saw no difference in mean respiratory cycle period between the reference standard (RRS) and the ECG-based (ERS) methods (1120 ± 159 ms vs 1120 ± 159 ms; P = n.s.). While the ECG-based method showed somewhat higher signal noise (66 ± 22 ms vs 51 ± 29 ms; P < .001), both respiratory triggering techniques yielded similar estimates for EDV, ESV, LVEF (RRS: 387 ± 56 µL, 162 ± 34 µL, 59 ± 5%; ERS: 389 ± 59 µL, 163 ± 35 µL, 59 ± 4%; P = n.s.). This study showed that respiratory gating signals can be accurately derived from cardiac trigger information alone, without the additional requirement for dedicated measurement of the respiratory motion in rats.
Vigouroux, M; Bertrand, B; Farget, V; Plailly, J; Royet, J P
2005-03-15
A design for a semi-automatic olfactometric system is described for PET and fMRI experiments. The olfactometer presents several advantages because it enables the use of an 'infinite' number of odorants and the synchronization of stimuli with breathing. These advantages mean that the subject is recorded while breathing normally during olfactory judgment tasks. In addition, the design includes a system for recording the behavioral (rating scale) and physiological (breathing, electrodermal reaction (ED), plethysmography (PL)) signals given by the subject. Both systems present the advantage of being compatible with fMRI magnetic fields since no ferrous material is used in the Faraday cage and signals are transmitted via an optical transmission interface to an acquisition system.
Schlyer, David; Woody, Craig L.; Rooney, William; Vaska, Paul; Stoll, Sean; Pratte, Jean-Francois; O'Connor, Paul
2007-10-23
A combined PET/MRI scanner generally includes a magnet for producing a magnetic field suitable for magnetic resonance imaging, a radiofrequency (RF) coil disposed within the magnetic field produced by the magnet and a ring tomograph disposed within the magnetic field produced by the magnet. The ring tomograph includes a scintillator layer for outputting at least one photon in response to an annihilation event, a detection array coupled to the scintillator layer for detecting the at least one photon outputted by the scintillator layer and for outputting a detection signal in response to the detected photon and a front-end electronic array coupled to the detection array for receiving the detection signal, wherein the front-end array has a preamplifier and a shaper network for conditioning the detection signal.
The influence of pets on infants' processing of cat and dog images.
Hurley, Karinna B; Kovack-Lesh, Kristine A; Oakes, Lisa M
2010-12-01
We examined how experience at home with pets is related to infants' processing of animal stimuli in a standard laboratory procedure. We presented 6-month-old infants with photographs of cats or dogs and found that infants with pets at home (N=40) responded differently to the pictures than infants without pets (N=40). These results suggest that infants' experience in one context (at home) contributes to their processing of similar stimuli in a different context (the laboratory), and have implications for how infants' early experience shapes basic cognitive processing. Copyright © 2010 Elsevier Inc. All rights reserved.
The Influence of Pets on Infants’ Processing of Cat and Dog Images
Hurley, Karinna B.; Kovack-Lesh, Kristine A.; Oakes, Lisa M.
2010-01-01
We examined how experience at home with pets is related to infants’ processing of animal stimuli in a standard laboratory procedure. We presented 6-month-old infants with photographs of cats or dogs and found that infants with pets at home (N = 40) responded differently to the pictures than infants without pets (N = 40). These results suggest that infants’ experience in one context (at home) contributes to their processing of similar stimuli in a different context (the lab), and have implications for how infants’ early experience shapes basic cognitive processing. PMID:20728223
Molecular imaging in the framework of personalized cancer medicine.
Belkić, Dzevad; Belkić, Karen
2013-11-01
With our increased understanding of cancer cell biology, molecular imaging offers a strategic bridge to oncology. This complements anatomic imaging, particularly magnetic resonance (MR) imaging, which is sensitive but not specific. Among the potential harms of false positive findings is lowered adherence to recommended surveillance post-therapy and by persons at increased cancer risk. Positron emission tomography (PET) plus computerized tomography (CT) is the molecular imaging modality most widely used in oncology. In up to 40% of cases, PET-CT leads to changes in therapeutic management. Newer PET tracers can detect tumor hypoxia, bone metastases in androgen-sensitive prostate cancer, and human epidermal growth factor receptor type 2 (HER2)-expressive tumors. Magnetic resonance spectroscopy provides insight into several metabolites at the same time. Combined with MRI, this yields magnetic resonance spectroscopic imaging (MRSI), which does not entail ionizing radiation and is thus suitable for repeated monitoring. Using advanced signal processing, quantitative information can be gleaned about molecular markers of brain, breast, prostate and other cancers. Radiation oncology has benefited from molecular imaging via PET-CT and MRSI. Advanced mathematical approaches can improve dose planning in stereotactic radiosurgery, stereotactic body radiotherapy and high dose-rate brachytherapy. Molecular imaging will likely impact profoundly on clinical decision making in oncology. Molecular imaging via MR could facilitate early detection especially in persons at high risk for specific cancers.
NASA Astrophysics Data System (ADS)
Ladefoged, Claes N.; Benoit, Didier; Law, Ian; Holm, Søren; Kjær, Andreas; Højgaard, Liselotte; Hansen, Adam E.; Andersen, Flemming L.
2015-10-01
The reconstruction of PET brain data in a PET/MR hybrid scanner is challenging in the absence of transmission sources, where MR images are used for MR-based attenuation correction (MR-AC). The main challenge of MR-AC is to separate bone and air, as neither have a signal in traditional MR images, and to assign the correct linear attenuation coefficient to bone. The ultra-short echo time (UTE) MR sequence was proposed as a basis for MR-AC as this sequence shows a small signal in bone. The purpose of this study was to develop a new clinically feasible MR-AC method with patient specific continuous-valued linear attenuation coefficients in bone that provides accurate reconstructed PET image data. A total of 164 [18F]FDG PET/MR patients were included in this study, of which 10 were used for training. MR-AC was based on either standard CT (reference), UTE or our method (RESOLUTE). The reconstructed PET images were evaluated in the whole brain, as well as regionally in the brain using a ROI-based analysis. Our method segments air, brain, cerebral spinal fluid, and soft tissue voxels on the unprocessed UTE TE images, and uses a mapping of R2* values to CT Hounsfield Units (HU) to measure the density in bone voxels. The average error of our method in the brain was 0.1% and less than 1.2% in any region of the brain. On average 95% of the brain was within ±10% of PETCT, compared to 72% when using UTE. The proposed method is clinically feasible, reducing both the global and local errors on the reconstructed PET images, as well as limiting the number and extent of the outliers.
Recovery and normalization of triple coincidences in PET.
Lage, Eduardo; Parot, Vicente; Moore, Stephen C; Sitek, Arkadiusz; Udías, Jose M; Dave, Shivang R; Park, Mi-Ae; Vaquero, Juan J; Herraiz, Joaquin L
2015-03-01
Triple coincidences in positron emission tomography (PET) are events in which three γ-rays are detected simultaneously. These events, though potentially useful for enhancing the sensitivity of PET scanners, are discarded or processed without special consideration in current systems, because there is not a clear criterion for assigning them to a unique line-of-response (LOR). Methods proposed for recovering such events usually rely on the use of highly specialized detection systems, hampering general adoption, and/or are based on Compton-scatter kinematics and, consequently, are limited in accuracy by the energy resolution of standard PET detectors. In this work, the authors propose a simple and general solution for recovering triple coincidences, which does not require specialized detectors or additional energy resolution requirements. To recover triple coincidences, the authors' method distributes such events among their possible LORs using the relative proportions of double coincidences in these LORs. The authors show analytically that this assignment scheme represents the maximum-likelihood solution for the triple-coincidence distribution problem. The PET component of a preclinical PET/CT scanner was adapted to enable the acquisition and processing of triple coincidences. Since the efficiencies for detecting double and triple events were found to be different throughout the scanner field-of-view, a normalization procedure specific for triple coincidences was also developed. The effect of including triple coincidences using their method was compared against the cases of equally weighting the triples among their possible LORs and discarding all the triple events. The authors used as figures of merit for this comparison sensitivity, noise-equivalent count (NEC) rates and image quality calculated as described in the NEMA NU-4 protocol for the assessment of preclinical PET scanners. The addition of triple-coincidence events with the authors' method increased peak NEC rates of the scanner by 26.6% and 32% for mouse- and rat-sized objects, respectively. This increase in NEC-rate performance was also reflected in the image-quality metrics. Images reconstructed using double and triple coincidences recovered using their method had better signal-to-noise ratio than those obtained using only double coincidences, while preserving spatial resolution and contrast. Distribution of triple coincidences using an equal-weighting scheme increased apparent system sensitivity but degraded image quality. The performance boost provided by the inclusion of triple coincidences using their method allowed to reduce the acquisition time of standard imaging procedures by up to ∼25%. Recovering triple coincidences with the proposed method can effectively increase the sensitivity of current clinical and preclinical PET systems without compromising other parameters like spatial resolution or contrast.
NASA Astrophysics Data System (ADS)
Black, Noel F.; McJames, Scott; Rust, Thomas C.; Kadrmas, Dan J.
2008-01-01
We are developing methods for imaging multiple PET tracers in a single scan with staggered injections, where imaging measures for each tracer are separated and recovered using differences in tracer kinetics and radioactive decay. In this work, signal separation performance for rapid dual-tracer 62Cu-PTSM (blood flow) + 62Cu-ATSM (hypoxia) tumor imaging was evaluated in a large animal model. Four dogs with pre-existing tumors received a series of dynamic PET scans with 62Cu-PTSM and 62Cu-ATSM, permitting evaluation of a rapid dual-tracer protocol designed by previous simulation work. Several imaging measures were computed from the dual-tracer data and compared with those from separate, single-tracer imaging. Static imaging measures (e.g. SUV) for each tracer were accurately recovered from dual-tracer data. The wash-in (k1) and wash-out (k2) rate parameters for both tracers were likewise well recovered (r = 0.87-0.99), but k3 was not accurately recovered for PTSM (r = 0.19) and moderately well recovered for ATSM (r = 0.70). Some degree of bias was noted, however, which may potentially be overcome through further refinement of the signal separation algorithms. This work demonstrates that complementary information regarding tumor blood flow and hypoxia can be acquired by a single dual-tracer PET scan, and also that the signal separation procedure works effectively for real physiologic data with realistic levels of kinetic model mismatch. Rapid multi-tracer PET has the potential to improve tumor assessment for image-guide therapy and monitoring, and further investigation with these and other tracers is warranted.
Black, Noel F.; McJames, Scott; Rust, Thomas C.; Kadrmas, Dan J.
2013-01-01
We are developing methods for imaging multiple PET tracers in a single scan with staggered injections, where imaging measures for each tracer are separated and recovered using differences in tracer kinetics and radioactive decay. In this work, signal-separation performance for rapid dual-tracer 62Cu-PTSM (blood flow) + 62Cu-ATSM (hypoxia) tumor imaging was evaluated in a large animal model. Four dogs with pre-existing tumors received a series of dynamic PET scans with 62Cu-PTSM and 62Cu-ATSM, permitting evaluation of a rapid dual-tracer protocol designed by previous simulation work. Several imaging measures were computed from the dual-tracer data and compared with those from separate, single-tracer imaging. Static imaging measures (e.g. SUV) for each tracer were accurately recovered from dual-tracer data. The wash-in (k1) and wash-out (k2) rate parameters for both tracers were likewise well recovered (r = 0.87 – 0.99), but k3 was not accurately recovered for PTSM (r = 0.19) and moderately well recovered for ATSM (r = 0.70). Some degree of bias was noted, however, which may potentially be overcome through further refinement of the signal-separation algorithms. This work demonstrates that complementary information regarding tumor blood flow and hypoxia can be acquired by a single dual-tracer PET scan, and also that the signal-separation procedure works effectively for real physiologic data with realistic levels of kinetic model-mismatch. Rapid multi-tracer PET has the potential to improve tumor assessment for image-guide therapy and monitoring, and further investigation with these and other tracers is warranted. PMID:18182698
Sign determination methods for the respiratory signal in data-driven PET gating
NASA Astrophysics Data System (ADS)
Bertolli, Ottavia; Arridge, Simon; Wollenweber, Scott D.; Stearns, Charles W.; Hutton, Brian F.; Thielemans, Kris
2017-04-01
Patient respiratory motion during PET image acquisition leads to blurring in the reconstructed images and may cause significant artifacts, resulting in decreased lesion detectability, inaccurate standard uptake value calculation and incorrect treatment planning in radiation therapy. To reduce these effects data can be regrouped into (nearly) ‘motion-free’ gates prior to reconstruction by selecting the events with respect to the breathing phase. This gating procedure therefore needs a respiratory signal: on current scanners it is obtained from an external device, whereas with data driven (DD) methods it can be directly obtained from the raw PET data. DD methods thus eliminate the use of external equipment, which is often expensive, needs prior setup and can cause patient discomfort, and they could also potentially provide increased fidelity to the internal movement. DD methods have been recently applied on PET data showing promising results. However, many methods provide signals whose direction with respect to the physical motion is uncertain (i.e. their sign is arbitrary), therefore a maximum in the signal could refer either to the end-inspiration or end-expiration phase, possibly causing inaccurate motion correction. In this work we propose two novel methods, CorrWeights and CorrSino, to detect the correct direction of the motion represented by the DD signal, that is obtained by applying principal component analysis (PCA) on the acquired data. They only require the PET raw data, and they rely on the assumption that one of the major causes of change in the acquired data related to the chest is respiratory motion in the axial direction, that generates a cranio-caudal motion of the internal organs. We also implemented two versions of a published registration-based method, that require image reconstruction. The methods were first applied on XCAT simulations, and later evaluated on cancer patient datasets monitored by the Varian Real-time Position ManagementTM (RPM) device, selecting the lower chest bed positions. For each patient different time intervals were evaluated ranging from 50 to 300 s in duration. The novel methods proved to be generally more accurate than the registration-based ones in detecting the correct sign of the respiratory signal, and their failure rates are lower than 3% when the DD signal is highly correlated with the RPM. They also have the advantage of faster computation time, avoiding reconstruction. Moreover, CorrWeights is not specifically related to PCA and considering its simple implementation, it could easily be applied together with any DD method in clinical practice.
MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner.
Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B; Michel, Christian J; El Fakhri, Georges; Schmand, Matthias; Sorensen, A Gregory
2011-01-01
Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MRI data can be used for motion tracking. In this work, a novel algorithm for data processing and rigid-body motion correction (MC) for the MRI-compatible BrainPET prototype scanner is described, and proof-of-principle phantom and human studies are presented. To account for motion, the PET prompt and random coincidences and sensitivity data for postnormalization were processed in the line-of-response (LOR) space according to the MRI-derived motion estimates. The processing time on the standard BrainPET workstation is approximately 16 s for each motion estimate. After rebinning in the sinogram space, the motion corrected data were summed, and the PET volume was reconstructed using the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed, and motion estimates were obtained using 2 high-temporal-resolution MRI-based motion-tracking techniques. After accounting for the misalignment between the 2 scanners, perfectly coregistered MRI and PET volumes were reproducibly obtained. The MRI output gates inserted into the PET list-mode allow the temporal correlation of the 2 datasets within 0.2 ms. The Hoffman phantom volume reconstructed by processing the PET data in the LOR space was similar to the one obtained by processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the procedure. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 s and 20 ms, respectively. Motion-deblurred PET images, with excellent delineation of specific brain structures, were obtained using these 2 MRI-based estimates. An MRI-based MC algorithm was implemented for an integrated MR-PET scanner. High-temporal-resolution MRI-derived motion estimates (obtained while simultaneously acquiring anatomic or functional MRI data) can be used for PET MC. An MRI-based MC method has the potential to improve PET image quality, increasing its reliability, reproducibility, and quantitative accuracy, and to benefit many neurologic applications.
A dual-Kinect approach to determine torso surface motion for respiratory motion correction in PET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heß, Mirco, E-mail: mirco.hess@uni-muenster.de; Büther, Florian; Dawood, Mohammad
2015-05-15
Purpose: Respiratory gating is commonly used to reduce blurring effects and attenuation correction artifacts in positron emission tomography (PET). Established clinically available methods that employ body-attached hardware for acquiring respiration signals rely on the assumption that external surface motion and internal organ motion are well correlated. In this paper, the authors present a markerless method comprising two Microsoft Kinects for determining the motion on the whole torso surface and aim to demonstrate its validity and usefulness—including the potential to study the external/internal correlation and to provide useful information for more advanced correction approaches. Methods: The data of two Kinects aremore » used to calculate 3D representations of a patient’s torso surface with high spatial coverage. Motion signals can be obtained for any position by tracking the mean distance to a virtual camera with a view perpendicular to the surrounding surface. The authors have conducted validation experiments including volunteers and a moving high-precision platform to verify the method’s suitability for providing meaningful data. In addition, the authors employed it during clinical {sup 18}F-FDG-PET scans and exemplarily analyzed the acquired data of ten cancer patients. External signals of abdominal and thoracic regions as well as data-driven signals were used for gating and compared with respect to detected displacement of present lesions. Additionally, the authors quantified signal similarities and time shifts by analyzing cross-correlation sequences. Results: The authors’ results suggest a Kinect depth resolution of approximately 1 mm at 75 cm distance. Accordingly, valid signals could be obtained for surface movements with small amplitudes in the range of only few millimeters. In this small sample of ten patients, the abdominal signals were better suited for gating the PET data than the thoracic signals and the correlation of data-driven signals was found to be stronger with abdominal signals than with thoracic signals (average Pearson correlation coefficients of 0.74 ± 0.17 and 0.45 ± 0.23, respectively). In all cases, except one, the abdominal respiratory motion preceded the thoracic motion—a maximum delay of approximately 600 ms was detected. Conclusions: The method provides motion information with sufficiently high spatial and temporal resolution. Thus, it enables meaningful analysis in the form of comparisons between amplitudes and phase shifts of signals from different regions. In combination with a large field-of-view, as given by combining the data of two Kinect cameras, it yields surface representations that might be useful in the context of motion correction and motion modeling.« less
Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI
NASA Astrophysics Data System (ADS)
Harsha Maramraju, Sri; Smith, S. David; Junnarkar, Sachin S.; Schulz, Daniela; Stoll, Sean; Ravindranath, Bosky; Purschke, Martin L.; Rescia, Sergio; Southekal, Sudeepti; Pratte, Jean-François; Vaska, Paul; Woody, Craig L.; Schlyer, David J.
2011-04-01
We developed a non-magnetic positron-emission tomography (PET) device based on the rat conscious animal PET that operates in a small-animal magnetic resonance imaging (MRI) scanner, thereby enabling us to carry out simultaneous PET/MRI studies. The PET detector comprises 12 detector blocks, each being a 4 × 8 array of lutetium oxyorthosilicate crystals (2.22 × 2.22 × 5 mm3) coupled to a matching non-magnetic avalanche photodiode array. The detector blocks, housed in a plastic case, form a 38 mm inner diameter ring with an 18 mm axial extent. Custom-built MRI coils fit inside the positron-emission tomography (PET) device, operating in transceiver mode. The PET insert is integrated with a Bruker 9.4 T 210 mm clear-bore diameter MRI scanner. We acquired simultaneous PET/MR images of phantoms, of in vivo rat brain, and of cardiac-gated mouse heart using [11C]raclopride and 2-deoxy-2-[18F]fluoro-d-glucose PET radiotracers. There was minor interference between the PET electronics and the MRI during simultaneous operation, and small effects on the signal-to-noise ratio in the MR images in the presence of the PET, but no noticeable visual artifacts. Gradient echo and high-duty-cycle spin echo radio frequency (RF) pulses resulted in a 7% and a 28% loss in PET counts, respectively, due to high PET counts during the RF pulses that had to be gated out. The calibration of the activity concentration of PET data during MR pulsing is reproducible within less than 6%. Our initial results demonstrate the feasibility of performing simultaneous PET and MRI studies in adult rats and mice using the same PET insert in a small-bore 9.4 T MRI.
Code of Federal Regulations, 2012 CFR
2012-04-01
... I test components, in-process materials, and finished PET drug products? 212.60 Section 212.60 Food... finished PET drug products? (a) Testing procedures. Each laboratory used to conduct testing of components, in-process materials, and finished PET drug products must have and follow written procedures for the...
Code of Federal Regulations, 2010 CFR
2010-04-01
... I test components, in-process materials, and finished PET drug products? 212.60 Section 212.60 Food... materials, and finished PET drug products? (a) Testing procedures. Each laboratory used to conduct testing of components, in-process materials, and finished PET drug products must have and follow written...
Code of Federal Regulations, 2014 CFR
2014-04-01
... I test components, in-process materials, and finished PET drug products? 212.60 Section 212.60 Food... finished PET drug products? (a) Testing procedures. Each laboratory used to conduct testing of components, in-process materials, and finished PET drug products must have and follow written procedures for the...
Code of Federal Regulations, 2013 CFR
2013-04-01
... I test components, in-process materials, and finished PET drug products? 212.60 Section 212.60 Food... finished PET drug products? (a) Testing procedures. Each laboratory used to conduct testing of components, in-process materials, and finished PET drug products must have and follow written procedures for the...
Code of Federal Regulations, 2011 CFR
2011-04-01
... I test components, in-process materials, and finished PET drug products? 212.60 Section 212.60 Food... finished PET drug products? (a) Testing procedures. Each laboratory used to conduct testing of components, in-process materials, and finished PET drug products must have and follow written procedures for the...
Jiang, Jia; Ai, Chengchong; Zhan, Zufeng; Zhang, Peng; Wan, Fang; Chen, Jun; Hao, Wei; Wang, Yaxian; Yao, Jinrong; Shao, Zhengzhong; Chen, Tianwu; Zhou, Liang; Chen, Shiyi
2016-04-01
Artificial ligaments utilized in reconstruction of anterior cruciate ligament (ACL) are usually made of polyethylene terepthalate (PET) because of its good mechanical properties in vivo. However, it was found that the deficiencies in hydrophilicity and biocompatibility of PET hindered the process of ligamentization. Therefore, surface modification of the PET is deemed as a solution in resolving such problem. Silk fibroin (SF), which is characterized by good biocompatibility and low immunogenicity in clinical applications, was utilized to prepare a coating on the PET ligament (PET+SF) in this work. At first, decrease of hydrophobicity and appearance of amino groups were found on the surface of artificial PET ligament after coating with SF. Second, mouse fibroblasts were cultured on the two different kinds of ligament in order to clarify the possible effect of SF coating. It was proved that mouse fibroblasts display better adhesion and proliferation on PET+SF than PET ligament according to the results of several technical methods including SEM observation, cell adhesive force and spread area test, and mRNA analysis. Meanwhile, methylthiazolyldiphenyl-tetrazolium bromide and DNA content tests showed that biocompatibility of PET+SF is better than PET ligament. In addition, collagen deposition tests also indicated that the quantity of collagen in PET+SF is higher than PET ligament. Based on these results, it can be concluded that SF coating is suggested to be an effective approach to modify the surface of PET ligament and enhance the "ligamentization" process in vivo accordingly. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
External radioactive markers for PET data-driven respiratory gating in positron emission tomography.
Büther, Florian; Ernst, Iris; Hamill, James; Eich, Hans T; Schober, Otmar; Schäfers, Michael; Schäfers, Klaus P
2013-04-01
Respiratory gating is an established approach to overcoming respiration-induced image artefacts in PET. Of special interest in this respect are raw PET data-driven gating methods which do not require additional hardware to acquire respiratory signals during the scan. However, these methods rely heavily on the quality of the acquired PET data (statistical properties, data contrast, etc.). We therefore combined external radioactive markers with data-driven respiratory gating in PET/CT. The feasibility and accuracy of this approach was studied for [(18)F]FDG PET/CT imaging in patients with malignant liver and lung lesions. PET data from 30 patients with abdominal or thoracic [(18)F]FDG-positive lesions (primary tumours or metastases) were included in this prospective study. The patients underwent a 10-min list-mode PET scan with a single bed position following a standard clinical whole-body [(18)F]FDG PET/CT scan. During this scan, one to three radioactive point sources (either (22)Na or (18)F, 50-100 kBq) in a dedicated holder were attached the patient's abdomen. The list mode data acquired were retrospectively analysed for respiratory signals using established data-driven gating approaches and additionally by tracking the motion of the point sources in sinogram space. Gated reconstructions were examined qualitatively, in terms of the amount of respiratory displacement and in respect of changes in local image intensity in the gated images. The presence of the external markers did not affect whole-body PET/CT image quality. Tracking of the markers led to characteristic respiratory curves in all patients. Applying these curves for gated reconstructions resulted in images in which motion was well resolved. Quantitatively, the performance of the external marker-based approach was similar to that of the best intrinsic data-driven methods. Overall, the gain in measured tumour uptake from the nongated to the gated images indicating successful removal of respiratory motion was correlated with the magnitude of the respiratory displacement of the respective tumour lesion, but not with lesion size. Respiratory information can be assessed from list-mode PET/CT through PET data-derived tracking of external radioactive markers. This information can be successfully applied to respiratory gating to reduce motion-related image blurring. In contrast to other previously described PET data-driven approaches, the external marker approach is independent of tumour uptake and thereby applicable even in patients with poor uptake and small tumours.
A multi-threshold sampling method for TOF-PET signal processing
NASA Astrophysics Data System (ADS)
Kim, H.; Kao, C. M.; Xie, Q.; Chen, C. T.; Zhou, L.; Tang, F.; Frisch, H.; Moses, W. W.; Choong, W. S.
2009-04-01
As an approach to realizing all-digital data acquisition for positron emission tomography (PET), we have previously proposed and studied a multi-threshold sampling method to generate samples of a PET event waveform with respect to a few user-defined amplitudes. In this sampling scheme, one can extract both the energy and timing information for an event. In this paper, we report our prototype implementation of this sampling method and the performance results obtained with this prototype. The prototype consists of two multi-threshold discriminator boards and a time-to-digital converter (TDC) board. Each of the multi-threshold discriminator boards takes one input and provides up to eight threshold levels, which can be defined by users, for sampling the input signal. The TDC board employs the CERN HPTDC chip that determines the digitized times of the leading and falling edges of the discriminator output pulses. We connect our prototype electronics to the outputs of two Hamamatsu R9800 photomultiplier tubes (PMTs) that are individually coupled to a 6.25×6.25×25 mm3 LSO crystal. By analyzing waveform samples generated by using four thresholds, we obtain a coincidence timing resolution of about 340 ps and an ˜18% energy resolution at 511 keV. We are also able to estimate the decay-time constant from the resulting samples and obtain a mean value of 44 ns with an ˜9 ns FWHM. In comparison, using digitized waveforms obtained at a 20 GSps sampling rate for the same LSO/PMT modules we obtain ˜300 ps coincidence timing resolution, ˜14% energy resolution at 511 keV, and ˜5 ns FWHM for the estimated decay-time constant. Details of the results on the timing and energy resolutions by using the multi-threshold method indicate that it is a promising approach for implementing digital PET data acquisition.
2014-01-01
Introduction Evaluation of disease severity in experimental models of rheumatoid arthritis is inevitably associated with assessment of structural bone damage. A noninvasive imaging technology allowing objective quantification of pathophysiological alterations of bone structure in rodents could substantially extend the methods used to date in preclinical arthritis research for staging of autoimmune disease severity or efficacy of therapeutical intervention. Sodium 18 F-fluoride (18 F-NaF) is a bone-seeking tracer well-suited for molecular imaging. Therefore, we systematically examined the use of 18 F-NaF positron emission tomography/computed tomography (PET/CT) in mice with glucose-6-phosphate isomerase (G6PI)–induced arthritis for quantification of pathological bone metabolism. Methods F-fluoride was injected into mice before disease onset and at various time points of progressing experimental arthritis. Radioisotope accumulation in joints in the fore- and hindpaws was analyzed by PET measurements. For validation of bone metabolism quantified by 18 F-fluoride PET, bone surface parameters of high-resolution μCT measurements were used. Results Before clinical arthritis onset, no distinct accumulation of 18 F-fluoride was detectable in the fore- and hindlimbs of mice immunized with G6PI. In the course of experimental autoimmune disease, 18 F-fluoride bone uptake was increased at sites of enhanced bone metabolism caused by pathophysiological processes of autoimmune disease. Moreover, 18 F-fluoride signaling at different stages of G6PI-induced arthritis was significantly correlated with the degree of bone destruction. CT enabled identification of exact localization of 18 F-fluoride signaling in bone and soft tissue. Conclusions The results of this study suggest that small-animal PET/CT using 18 F-fluoride as a tracer is a feasible method for quantitative assessment of pathophysiological bone metabolism in experimental arthritis. Furthermore, the possibility to perform repeated noninvasive measurements in vivo allows longitudinal study of therapeutical intervention monitoring. PMID:25053370
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welch, M.J.
Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy inmore » PET, and the futures of PET. 22 figs.« less
A New Statistics-Based Online Baseline Restorer for a High Count-Rate Fully Digital System.
Li, Hongdi; Wang, Chao; Baghaei, Hossain; Zhang, Yuxuan; Ramirez, Rocio; Liu, Shitao; An, Shaohui; Wong, Wai-Hoi
2010-04-01
The goal of this work is to develop a novel, accurate, real-time digital baseline restorer using online statistical processing for a high count-rate digital system such as positron emission tomography (PET). In high count-rate nuclear instrumentation applications, analog signals are DC-coupled for better performance. However, the detectors, pre-amplifiers and other front-end electronics would cause a signal baseline drift in a DC-coupling system, which will degrade the performance of energy resolution and positioning accuracy. Event pileups normally exist in a high-count rate system and the baseline drift will create errors in the event pileup-correction. Hence, a baseline restorer (BLR) is required in a high count-rate system to remove the DC drift ahead of the pileup correction. Many methods have been reported for BLR from classic analog methods to digital filter solutions. However a single channel BLR with analog method can only work under 500 kcps count-rate, and normally an analog front-end application-specific integrated circuits (ASIC) is required for the application involved hundreds BLR such as a PET camera. We have developed a simple statistics-based online baseline restorer (SOBLR) for a high count-rate fully digital system. In this method, we acquire additional samples, excluding the real gamma pulses, from the existing free-running ADC in the digital system, and perform online statistical processing to generate a baseline value. This baseline value will be subtracted from the digitized waveform to retrieve its original pulse with zero-baseline drift. This method can self-track the baseline without a micro-controller involved. The circuit consists of two digital counter/timers, one comparator, one register and one subtraction unit. Simulation shows a single channel works at 30 Mcps count-rate with pileup condition. 336 baseline restorer circuits have been implemented into 12 field-programmable-gate-arrays (FPGA) for our new fully digital PET system.
Lanthanum halide scintillators for time-of-flight 3-D pet
Karp, Joel S [Glenside, PA; Surti, Suleman [Philadelphia, PA
2008-06-03
A Lanthanum Halide scintillator (for example LaCl.sub.3 and LaBr.sub.3) with fast decay time and good timing resolution, as well as high light output and good energy resolution, is used in the design of a PET scanner. The PET scanner includes a cavity for accepting a patient and a plurality of PET detector modules arranged in an approximately cylindrical configuration about the cavity. Each PET detector includes a Lanthanum Halide scintillator having a plurality of Lanthanum Halide crystals, a light guide, and a plurality of photomultiplier tubes arranged respectively peripherally around the cavity. The good timing resolution enables a time-of-flight (TOF) PET scanner to be developed that exhibits a reduction in noise propagation during image reconstruction and a gain in the signal-to-noise ratio. Such a PET scanner includes a time stamp circuit that records the time of receipt of gamma rays by respective PET detectors and provides timing data outputs that are provided to a processor that, in turn, calculates time-of-flight (TOF) of gamma rays through a patient in the cavity and uses the TOF of gamma rays in the reconstruction of images of the patient.
Ramanan, Vijay K; Risacher, Shannon L; Nho, Kwangsik; Kim, Sungeun; Shen, Li; McDonald, Brenna C; Yoder, Karmen K; Hutchins, Gary D; West, John D; Tallman, Eileen F; Gao, Sujuan; Foroud, Tatiana M; Farlow, Martin R; De Jager, Philip L; Bennett, David A; Aisen, Paul S; Petersen, Ronald C; Jack, Clifford R; Toga, Arthur W; Green, Robert C; Jagust, William J; Weiner, Michael W; Saykin, Andrew J
2015-10-01
Brain amyloid deposition is thought to be a seminal event in Alzheimer's disease. To identify genes influencing Alzheimer's disease pathogenesis, we performed a genome-wide association study of longitudinal change in brain amyloid burden measured by (18)F-florbetapir PET. A novel association with higher rates of amyloid accumulation independent from APOE (apolipoprotein E) ε4 status was identified in IL1RAP (interleukin-1 receptor accessory protein; rs12053868-G; P = 1.38 × 10(-9)) and was validated by deep sequencing. IL1RAP rs12053868-G carriers were more likely to progress from mild cognitive impairment to Alzheimer's disease and exhibited greater longitudinal temporal cortex atrophy on MRI. In independent cohorts rs12053868-G was associated with accelerated cognitive decline and lower cortical (11)C-PBR28 PET signal, a marker of microglial activation. These results suggest a crucial role of activated microglia in limiting amyloid accumulation and nominate the IL-1/IL1RAP pathway as a potential target for modulating this process. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Engineering carbon nanomaterials for future applications: energy and bio-sensor
NASA Astrophysics Data System (ADS)
Das, Santanu; Lahiri, Indranil; Kang, Chiwon; Choi, Wonbong
2011-06-01
This paper presents our recent results on carbon nanomaterials for applications in energy storage and bio-sensor. More specifically: (i) A novel binder-free carbon nanotubes (CNTs) structure as anode in Li-ion batteries. The interfacecontrolled CNT structure, synthesized through a two-step chemical vapor deposition (CVD) and directly grown on copper current collector, showed very high specific capacity - almost three times as that of graphite, excellent rate capability. (ii) A large scale graphene film was grown on Cu foil by thermal chemical vapor deposition and transferred to various substrates including PET, glass and silicon by using hot press lamination and etching process. The graphene/PET film shows high quality, flexible transparent conductive structure with unique electrical-mechanical properties; ~88.80 % light transmittance and ~ 100 Ω/sq sheet resistance. We demonstrate application of graphene/PET film as flexible and transparent electrode for field emission displays. (iii) Application of individual carbon nanotube as nanoelectrode for high sensitivity electrochemical sensor and device miniaturization. An individual CNT is split into a pair of nanoelectrodes with a gap between them. Single molecular-level detection of DNA hybridization was studied. Hybridization of the probe with its complementary strand results in an appreciable change in the electrical output signal.
Quantitative imaging of disease signatures through radioactive decay signal conversion
Thorek, Daniel LJ; Ogirala, Anuja; Beattie, Bradley J; Grimm, Jan
2013-01-01
In the era of personalized medicine there is an urgent need for in vivo techniques able to sensitively detect and quantify molecular activities. Sensitive imaging of gamma rays is widely used, but radioactive decay is a physical constant and signal is independent of biological interactions. Here we introduce a framework of novel targeted and activatable probes excited by a nuclear decay-derived signal to identify and measure molecular signatures of disease. This was accomplished utilizing Cerenkov luminescence (CL), the light produced by β-emitting radionuclides such as clinical positron emission tomography (PET) tracers. Disease markers were detected using nanoparticles to produce secondary Cerenkov-induced fluorescence. This approach reduces background signal compared to conventional fluorescence imaging. In addition to information from a PET scan, we demonstrate novel medical utility by quantitatively determining prognostically relevant enzymatic activity. This technique can be applied to monitor other markers and facilitates a shift towards activatable nuclear medicine agents. PMID:24013701
Application of Timepix3 based CdTe spectral sensitive photon counting detector for PET imaging
NASA Astrophysics Data System (ADS)
Turecek, Daniel; Jakubek, Jan; Trojanova, Eliska; Sefc, Ludek; Kolarova, Vera
2018-07-01
Positron emission tomography (PET) is a nuclear medicine functional imaging technique. It is used in clinical oncology (medical imaging of tumors and the search for metastases), and pre-clinical studies using animals. PET uses small amounts of radioactive materials (radiotracers) and a special photon sensitive camera. Most of these cameras use scintillators with photomultipliers as detectors. However, these detectors have limited energy sensitivity and large pixels. Therefore, the false signal caused by a scattering poses a significant problem. In this work we study properties of position, energy and time sensitive semiconductor detector of Timepix3 type and its applicability for PET measurements. This work presents an initial study and evaluation of two Timepix3 detectors with 2 mm thick CdTe sensors used in simplified geometry for PET imaging. The study is performed on 2 samples - a capillary tube and a cylindrical plexiglass phantom with cavities. Both samples are filled with fluodeoxyglucose (FDG) solution that is used as a radiotracer. The Timepix3 offers better properties compared to conventional detectors - high granularity (55 μm pixel pitch), good energy resolution (1 keV at 60 keV) and sufficient time resolution (1.6 ns). The spectral sensitivity of Timepix3 together with coincidence/anticoincidence technique allows for significant reduction of background signal caused by Compton scattering and internal X-ray fluorescence of Cd and Te.
Wang, Hui; Vees, Hansjörg; Miralbell, Raymond; Wissmeyer, Michael; Steiner, Charles; Ratib, Osman; Senthamizhchelvan, Srinivasan; Zaidi, Habib
2009-11-01
We evaluate the contribution of (18)F-choline PET/CT in the delineation of gross tumour volume (GTV) in local recurrent prostate cancer after initial irradiation using various PET image segmentation techniques. Seventeen patients with local-only recurrent prostate cancer (median=5.7 years) after initial irradiation were included in the study. Rebiopsies were performed in 10 patients that confirmed the local recurrence. Following injection of 300 MBq of (18)F-fluorocholine, dynamic PET frames (3 min each) were reconstructed from the list-mode acquisition. Five PET image segmentation techniques were used to delineate the (18)F-choline-based GTVs. These included manual delineation of contours (GTV(man)) by two teams consisting of a radiation oncologist and a nuclear medicine physician each, a fixed threshold of 40% and 50% of the maximum signal intensity (GTV(40%) and GTV(50%)), signal-to-background ratio-based adaptive thresholding (GTV(SBR)), and a region growing (GTV(RG)) algorithm. Geographic mismatches between the GTVs were also assessed using overlap analysis. Inter-observer variability for manual delineation of GTVs was high but not statistically significant (p=0.459). In addition, the volumes and shapes of GTVs delineated using semi-automated techniques were significantly higher than those of GTVs defined manually. Semi-automated segmentation techniques for (18)F-choline PET-guided GTV delineation resulted in substantially higher GTVs compared to manual delineation and might replace the latter for determination of recurrent prostate cancer for partial prostate re-irradiation. The selection of the most appropriate segmentation algorithm still needs to be determined.
NASA Astrophysics Data System (ADS)
Maramraju, Sri Harsha; Smith, S. David; Rescia, Sergio; Stoll, Sean; Budassi, Michael; Vaska, Paul; Woody, Craig; Schlyer, David
2012-10-01
We previously integrated a magnetic resonance-(MR-) compatible small-animal positron emission tomograph (PET) in a Bruker 9.4 T microMRI system to obtain simultaneous PET/MR images of a rat's brain and of a gated mouse-heart. To minimize electromagnetic interactions in our MR-PET system, viz., the effect of radiofrequency (RF) pulses on the PET, we tested our modular front-end PET electronics with various shield configurations, including a solid aluminum shield and one of thin segmented layers of copper. We noted that the gradient-echo RF pulses did not affect PET data when the PET electronics were shielded with either the aluminum- or the segmented copper-shields. However, there were spurious counts in the PET data resulting from high-intensity fast spin-echo RF pulses. Compared to the unshielded condition, they were attenuated effectively by the aluminum shield ( 97%) and the segmented copper shield ( 90%). We noted a decline in the noise rates as a function of increasing PET energy-discriminator threshold. In addition, we observed a notable decrease in the signal-to-noise ratio in spin-echo MR images with the segmented copper shields in place; however, this did not substantially degrade the quality of the MR images we obtained. Our results demonstrate that by surrounding a compact PET scanner with thin layers of segmented copper shields and integrating it inside a 9.4 T MR system, we can mitigate the impact of the RF on PET, while acquiring good-quality MR images.
Preparation of ZnO nanorods on conductive PET-ITO-Ag fibers
NASA Astrophysics Data System (ADS)
Li, Yiwen; Ji, Shuai; Chen, Yuanyu; Zhang, Hong; Gong, Yumei; Guo, Jing
2016-12-01
We studied the vertical ZnO nanorods grown on conductive conventional polyethylene terephthalate (PET) fibers which are prepared by electroless silver depositing on tin-doped indium oxide (ITO) coated PET fibers through an efficient and low-cost green approach. The PET fibers were firstly functionalized with a layer of ITO gel synthesized through a sol-gel process at rather low temperature, simply by immersing the fibers into ITO sol for several minutes followed by gelation at 120 °C. Once the ITO gel layer surface was activated by SnCl2, a continuous, uniform, and compact layer of silver was carried out on the surface of the PET-ITO fibers through electroless plating operation at room temperature. The as-prepared PET-ITO-Ag fibers had good electrical conductivity, with surface resistivity as low as 0.23 mΩ cm. The overall procedure is simple, efficient, nontoxic, and controllable. The conductive PET-ITO-Ag fiber was used successfully as a flexible basal material to plant vertical ZnO nanorods through controlling the seeding and growth processes. The morphology of the PET-ITO, PET-ITO-Ag, and PET-ITO-Ag-ZnO fibers were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Undergone the whole process, although the tensile strength of the fiber decreased slightly, they may still exert their applications in flexible electronic such as photovoltaic and piezoelectric devices.
Fabrication of Flexible Microneedle Array Electrodes for Wearable Bio-Signal Recording.
Ren, Lei; Xu, Shujia; Gao, Jie; Lin, Zi; Chen, Zhipeng; Liu, Bin; Liang, Liang; Jiang, Lelun
2018-04-13
Laser-direct writing (LDW) and magneto-rheological drawing lithography (MRDL) have been proposed for the fabrication of a flexible microneedle array electrode (MAE) for wearable bio-signal monitoring. Conductive patterns were directly written onto the flexible polyethylene terephthalate (PET) substrate by LDW. The microneedle array was rapidly drawn and formed from the droplets of curable magnetorheological fluid with the assistance of an external magnetic field by MRDL. A flexible MAE can maintain a stable contact interface with curved human skin due to the flexibility of the PET substrate. Compared with Ag/AgCl electrodes and flexible dry electrodes (FDE), the electrode-skin interface impedance of flexible MAE was the minimum even after a 50-cycle bending test. Flexible MAE can record electromyography (EMG), electroencephalography (EEG) and static electrocardiography (ECG) signals with good fidelity. The main features of the dynamic ECG signal recorded by flexible MAE are the most distinguishable with the least moving artifacts. Flexible MAE is an attractive candidate electrode for wearable bio-signal monitoring.
Fabrication of Flexible Microneedle Array Electrodes for Wearable Bio-Signal Recording
Ren, Lei; Xu, Shujia; Gao, Jie; Lin, Zi; Chen, Zhipeng; Liu, Bin; Liang, Liang; Jiang, Lelun
2018-01-01
Laser-direct writing (LDW) and magneto-rheological drawing lithography (MRDL) have been proposed for the fabrication of a flexible microneedle array electrode (MAE) for wearable bio-signal monitoring. Conductive patterns were directly written onto the flexible polyethylene terephthalate (PET) substrate by LDW. The microneedle array was rapidly drawn and formed from the droplets of curable magnetorheological fluid with the assistance of an external magnetic field by MRDL. A flexible MAE can maintain a stable contact interface with curved human skin due to the flexibility of the PET substrate. Compared with Ag/AgCl electrodes and flexible dry electrodes (FDE), the electrode–skin interface impedance of flexible MAE was the minimum even after a 50-cycle bending test. Flexible MAE can record electromyography (EMG), electroencephalography (EEG) and static electrocardiography (ECG) signals with good fidelity. The main features of the dynamic ECG signal recorded by flexible MAE are the most distinguishable with the least moving artifacts. Flexible MAE is an attractive candidate electrode for wearable bio-signal monitoring. PMID:29652835
A 31-channel MR brain array coil compatible with positron emission tomography.
Sander, Christin Y; Keil, Boris; Chonde, Daniel B; Rosen, Bruce R; Catana, Ciprian; Wald, Lawrence L
2015-06-01
Simultaneous acquisition of MR and positron emission tomography (PET) images requires the placement of the MR detection coil inside the PET detector ring where it absorbs and scatters photons. This constraint is the principal barrier to achieving optimum sensitivity on each modality. Here, we present a 31-channel PET-compatible brain array coil with reduced attenuation but improved MR sensitivity. A series of component tests were performed to identify tradeoffs between PET and MR performance. Aspects studied include the remote positioning of preamplifiers, coax size, coil trace size/material, and plastic housing. We then maximized PET performance at minimal cost to MR sensitivity. The coil was evaluated for MR performance (signal to noise ratio [SNR], g-factor) and PET attenuation. The coil design showed an improvement in attenuation by 190% (average) compared with conventional 32-channel arrays, and no loss in MR SNR. Moreover, the 31-channel coil displayed an SNR improvement of 230% (cortical region of interest) compared with a PET-optimized 8-channel array with similar attenuation properties. Implementing attenuation correction of the 31-channel array successfully removed PET artifacts, which were comparable to those of the 8-channel array. The design of the 31-channel PET-compatible coil enables higher sensitivity for PET/MR imaging, paving the way for novel applications in this hybrid-imaging domain. © 2014 Wiley Periodicals, Inc.
Qualification test of a MPPC-based PET module for future MRI-PET scanners
NASA Astrophysics Data System (ADS)
Kurei, Y.; Kataoka, J.; Kato, T.; Fujita, T.; Funamoto, H.; Tsujikawa, T.; Yamamoto, S.
2014-11-01
We have developed a high-resolution, compact Positron Emission Tomography (PET) module for future use in MRI-PET scanners. The module consists of large-area, 4×4 ch MPPC arrays (Hamamatsu S11827-3344MG) optically coupled with Ce:LYSO scintillators fabricated into 12×12 matrices of 1×1 mm2 pixels. At this stage, a pair of module and coincidence circuits was assembled into an experimental prototype gantry arranged in a ring of 90 mm in diameter to form the MPPC-based PET system. The PET detector ring was then positioned around the RF coil of the 4.7 T MRI system. We took an image of a point 22Na source under fast spin echo (FSE) and gradient echo (GE), in order to measure interference between the MPPC-based PET and the MRI. We only found a slight degradation in the spatial resolution of the PET image from 1.63 to 1.70 mm (FWHM; x-direction), or 1.48-1.55 mm (FWHM; y-direction) when operating with the MRI, while the signal-to-noise ratio (SNR) of the MRI image was only degraded by 5%. These results encouraged us to develop a more advanced version of the MRI-PET gantry with eight MPPC-based PET modules, whose detailed design and first qualification test are also presented in this paper.
NASA Astrophysics Data System (ADS)
Muraro, S.; Battistoni, G.; Belcari, N.; Bisogni, M. G.; Camarlinghi, N.; Cristoforetti, L.; Del Guerra, A.; Ferrari, A.; Fracchiolla, F.; Morrocchi, M.; Righetto, R.; Sala, P.; Schwarz, M.; Sportelli, G.; Topi, A.; Rosso, V.
2017-12-01
Ion beam irradiations can deliver conformal dose distributions minimizing damage to healthy tissues thanks to their characteristic dose profiles. Nevertheless, the location of the Bragg peak can be affected by different sources of range uncertainties: a critical issue is the treatment verification. During the treatment delivery, nuclear interactions between the ions and the irradiated tissues generate β+ emitters: the detection of this activity signal can be used to perform the treatment monitoring if an expected activity distribution is available for comparison. Monte Carlo (MC) codes are widely used in the particle therapy community to evaluate the radiation transport and interaction with matter. In this work, FLUKA MC code was used to simulate the experimental conditions of irradiations performed at the Proton Therapy Center in Trento (IT). Several mono-energetic pencil beams were delivered on phantoms mimicking human tissues. The activity signals were acquired with a PET system (DoPET) based on two planar heads, and designed to be installed along the beam line to acquire data also during the irradiation. Different acquisitions are analyzed and compared with the MC predictions, with a special focus on validating the PET detectors response for activity range verification.
Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer’s disease
Gray, Katherine R.; Wolz, Robin; Heckemann, Rolf A.; Aljabar, Paul; Hammers, Alexander; Rueckert, Daniel
2012-01-01
Imaging biomarkers for Alzheimer’s disease are desirable for improved diagnosis and monitoring, as well as drug discovery. Automated image-based classification of individual patients could provide valuable diagnostic support for clinicians, when considered alongside cognitive assessment scores. We investigate the value of combining cross-sectional and longitudinal multi-region FDG-PET information for classification, using clinical and imaging data from the Alzheimer’s Disease Neuroimaging Initiative. Whole-brain segmentations into 83 anatomically defined regions were automatically generated for baseline and 12-month FDG-PET images. Regional signal intensities were extracted at each timepoint, as well as changes in signal intensity over the follow-up period. Features were provided to a support vector machine classifier. By combining 12-month signal intensities and changes over 12 months, we achieve significantly increased classification performance compared with using any of the three feature sets independently. Based on this combined feature set, we report classification accuracies of 88% between patients with Alzheimer’s disease and elderly healthy controls, and 65% between patients with stable mild cognitive impairment and those who subsequently progressed to Alzheimer’s disease. We demonstrate that information extracted from serial FDG-PET through regional analysis can be used to achieve state-of-the-art classification of diagnostic groups in a realistic multi-centre setting. This finding may be usefully applied in the diagnosis of Alzheimer’s disease, predicting disease course in individuals with mild cognitive impairment, and in the selection of participants for clinical trials. PMID:22236449
Cates, Joshua W.; Bieniosek, Matthew F.; Levin, Craig S.
2017-01-01
Abstract. Maintaining excellent timing resolution in the generation of silicon photomultiplier (SiPM)-based time-of-flight positron emission tomography (TOF-PET) systems requires a large number of high-speed, high-bandwidth electronic channels and components. To minimize the cost and complexity of a system’s back-end architecture and data acquisition, many analog signals are often multiplexed to fewer channels using techniques that encode timing, energy, and position information. With progress in the development SiPMs having lower dark noise, after pulsing, and cross talk along with higher photodetection efficiency, a coincidence timing resolution (CTR) well below 200 ps FWHM is now easily achievable in single pixel, bench-top setups using 20-mm length, lutetium-based inorganic scintillators. However, multiplexing the output of many SiPMs to a single channel will significantly degrade CTR without appropriate signal processing. We test the performance of a PET detector readout concept that multiplexes 16 SiPMs to two channels. One channel provides timing information with fast comparators, and the second channel encodes both position and energy information in a time-over-threshold-based pulse sequence. This multiplexing readout concept was constructed with discrete components to process signals from a 4×4 array of SensL MicroFC-30035 SiPMs coupled to 2.9×2.9×20 mm3 Lu1.8Gd0.2SiO5 (LGSO):Ce (0.025 mol. %) scintillators. This readout method yielded a calibrated, global energy resolution of 15.3% FWHM at 511 keV with a CTR of 198±2 ps FWHM between the 16-pixel multiplexed detector array and a 2.9×2.9×20 mm3 LGSO-SiPM reference detector. In summary, results indicate this multiplexing scheme is a scalable readout technique that provides excellent coincidence timing performance. PMID:28382312
High-performance polymer/layered silicate nanocomposites
NASA Astrophysics Data System (ADS)
Heidecker, Matthew J.
High-performance layered-silicate nanocomposites of Polycarbonate (PC), poly(ethylene terephthalate) (PET), and their blends were produced via conventional melt-blending techniques. The focus of this thesis was on the fundamentals of dispersion, control of thermal stability, maintenance of melt-blending processing conditions, and on optimization of the composites' mechanical properties via the design of controlled and thermodynamically favorable nano-filler dispersions within the polymer matrices. PET and PC require high temperatures for melt-processing, rendering impractical the use of conventional/commercial organically-modified layered-silicates, since the thermal degradation temperatures of their ammonium surfactants lies below the typical processing temperatures. Thus, different surfactant chemistries must be employed in order to develop melt-processable nanocomposites, also accounting for polymer matrix degradation due to water (PET) or amine compounds (PC). Novel high thermal-stability surfactants were developed and employed in montmorillonite nanocomposites of PET, PC, and PC/PET blends, and were compared to the respective nanocomposites based on conventional quaternary-ammonium modified montmorillonites. Favorable dispersion was achieved in all cases, however, the overall material behavior -- i.e., the combination of crystallization, mechanical properties, and thermal degradation -- was better for the nanocomposites based on the thermally-stable surfactant fillers. Studies were also done to trace, and ultimately limit, the matrix degradation of Polycarbonate/montmorillonite nanocomposites, through varying the montmorillonite surfactant chemistry, processing conditions, and processing additives. Molecular weight degradation was, maybe surprisingly, better controlled in the conventional quaternary ammonium based nanocomposites -- even though the thermal stability of the organically modified montmorillonites was in most cases the lowest. Dependence of the resultant nanocomposites' mechanical properties on the preferential alignment of the montmorillonite nano-platelet was also evaluated. Highly aligned filler platelets did not result in an additional enhancement in mechanical properties. PC/PET blends and their respective PC/PET/montmorillonite nanocomposites were synthesized and compared. The dispersion of the organically modified nano-fillers in the PC/PET blends was controlled via thermodynamic considerations, realized through proper surfactant choice: Nanocomposites in which the layered silicate was preferentially sequestered in the PET phase were designed and synthesized. This preferential dispersion of the nano-filler in the PET phase of the PC/PET blend was insensitive to processing conditions, including approaches employing a master-batch (filler concentrate); regardless of the master-batch matrix, both PC and PET were employed, thermodynamics drove the layered silicate to preferentially migrate to the PET phase of the PC/PET blend. In a second approach, the development of a nanocomposite with controlled PC/PET compatibilization near the montmorillonite platelets, in absence of appreciable transesterification reactions, led to the formation of very high performance nanocomposites. These latter systems, point to an exciting new avenue of future considerations for nanocomposite blends with selective nano-filler dispersions, where performance can be tailored via the controlled preferential dispersion of nano-fillers in one phase, or by filler-induced polymer compatibilization.
Pulmonary imaging using respiratory motion compensated simultaneous PET/MR
Dutta, Joyita; Huang, Chuan; Li, Quanzheng; El Fakhri, Georges
2015-01-01
Purpose: Pulmonary positron emission tomography (PET) imaging is confounded by blurring artifacts caused by respiratory motion. These artifacts degrade both image quality and quantitative accuracy. In this paper, the authors present a complete data acquisition and processing framework for respiratory motion compensated image reconstruction (MCIR) using simultaneous whole body PET/magnetic resonance (MR) and validate it through simulation and clinical patient studies. Methods: The authors have developed an MCIR framework based on maximum a posteriori or MAP estimation. For fast acquisition of high quality 4D MR images, the authors developed a novel Golden-angle RAdial Navigated Gradient Echo (GRANGE) pulse sequence and used it in conjunction with sparsity-enforcing k-t FOCUSS reconstruction. The authors use a 1D slice-projection navigator signal encapsulated within this pulse sequence along with a histogram-based gate assignment technique to retrospectively sort the MR and PET data into individual gates. The authors compute deformation fields for each gate via nonrigid registration. The deformation fields are incorporated into the PET data model as well as utilized for generating dynamic attenuation maps. The framework was validated using simulation studies on the 4D XCAT phantom and three clinical patient studies that were performed on the Biograph mMR, a simultaneous whole body PET/MR scanner. Results: The authors compared MCIR (MC) results with ungated (UG) and one-gate (OG) reconstruction results. The XCAT study revealed contrast-to-noise ratio (CNR) improvements for MC relative to UG in the range of 21%–107% for 14 mm diameter lung lesions and 39%–120% for 10 mm diameter lung lesions. A strategy for regularization parameter selection was proposed, validated using XCAT simulations, and applied to the clinical studies. The authors’ results show that the MC image yields 19%–190% increase in the CNR of high-intensity features of interest affected by respiratory motion relative to UG and a 6%–51% increase relative to OG. Conclusions: Standalone MR is not the traditional choice for lung scans due to the low proton density, high magnetic susceptibility, and low T2∗ relaxation time in the lungs. By developing and validating this PET/MR pulmonary imaging framework, the authors show that simultaneous PET/MR, unique in its capability of combining structural information from MR with functional information from PET, shows promise in pulmonary imaging. PMID:26133621
Pulmonary imaging using respiratory motion compensated simultaneous PET/MR.
Dutta, Joyita; Huang, Chuan; Li, Quanzheng; El Fakhri, Georges
2015-07-01
Pulmonary positron emission tomography (PET) imaging is confounded by blurring artifacts caused by respiratory motion. These artifacts degrade both image quality and quantitative accuracy. In this paper, the authors present a complete data acquisition and processing framework for respiratory motion compensated image reconstruction (MCIR) using simultaneous whole body PET/magnetic resonance (MR) and validate it through simulation and clinical patient studies. The authors have developed an MCIR framework based on maximum a posteriori or MAP estimation. For fast acquisition of high quality 4D MR images, the authors developed a novel Golden-angle RAdial Navigated Gradient Echo (GRANGE) pulse sequence and used it in conjunction with sparsity-enforcing k-t FOCUSS reconstruction. The authors use a 1D slice-projection navigator signal encapsulated within this pulse sequence along with a histogram-based gate assignment technique to retrospectively sort the MR and PET data into individual gates. The authors compute deformation fields for each gate via nonrigid registration. The deformation fields are incorporated into the PET data model as well as utilized for generating dynamic attenuation maps. The framework was validated using simulation studies on the 4D XCAT phantom and three clinical patient studies that were performed on the Biograph mMR, a simultaneous whole body PET/MR scanner. The authors compared MCIR (MC) results with ungated (UG) and one-gate (OG) reconstruction results. The XCAT study revealed contrast-to-noise ratio (CNR) improvements for MC relative to UG in the range of 21%-107% for 14 mm diameter lung lesions and 39%-120% for 10 mm diameter lung lesions. A strategy for regularization parameter selection was proposed, validated using XCAT simulations, and applied to the clinical studies. The authors' results show that the MC image yields 19%-190% increase in the CNR of high-intensity features of interest affected by respiratory motion relative to UG and a 6%-51% increase relative to OG. Standalone MR is not the traditional choice for lung scans due to the low proton density, high magnetic susceptibility, and low T2 (∗) relaxation time in the lungs. By developing and validating this PET/MR pulmonary imaging framework, the authors show that simultaneous PET/MR, unique in its capability of combining structural information from MR with functional information from PET, shows promise in pulmonary imaging.
NASA Astrophysics Data System (ADS)
Khalighi, Mohammad Mehdi; Delso, Gaspar; Maramraju, Sri Harsha; Deller, Timothy W.; Levin, Craig S.; Glover, Gary H.
2016-10-01
A silicon photomultiplier (SiPM)-based time-of-flight capable PET detector has been integrated with a 70 cm wide-bore 3T MR scanner for simultaneous whole-body imaging (MR750w, GE Healthcare, Waukesha, WI). After insertion of the PET detector, the final PET/MR bore is 60 cm wide (SIGNA PET/MR, GE Healthcare, Waukesha, WI). The MR performance was compared before and after the PET ring insertion. B0 homogeneity, B1+ uniformity of the body coil along with peak B1+, coherent noise, and FBIRN (Function Biomedical Informatics Research Network) tests are used to compare the MR performance. It is shown that B0 homogeneity and coherent noise have not changed according to the system specifications. Peak B1+ is increased by 33% and B1+ inhomogeneity is increased by 4% after PET ring insertion due to a smaller diameter body coil design. The FBIRN test shows similar temporal stability before and after PET ring insertion. Due to a smaller body coil on the PET/MR system, the signal fluctuation to noise ratio (SFNR) and SNR for body receive coil, are improved by 40% and 160% for Echo Planar Imaging (EPI) and spiral sequences respectively. Comparison using RF- and gradient-intensive clinical sequences shows inserting the PET detectors into the wide-bore MRI has not compromised the MR image quality according to these tests.
Sun, Hongzan; Xin, Jun; Zhou, Jinyuan; Lu, Zaiming; Guo, Qiyong
2018-06-01
The purpose of this study is to evaluate the diagnostic concordance and metric correlations of amide proton transfer (APT) imaging with gadolinium-enhanced magnetic resonance imaging (MRI) and 2-deoxy-2-[ 18 F-]fluoro-D-glucose ([ 18 F]FDG) positron emission tomography (PET), using hybrid brain PET/MRI. Twenty-one subjects underwent brain gadolinium-enhanced [ 18 F]FDG PET/MRI prospectively. Imaging accuracy was compared between unenhanced MRI, MRI with enhancement, APT-weighted (APTW) images, and PET based on six diagnostic criteria. Among tumors, the McNemar test was further used for concordance assessment between gadolinium-enhanced imaging, APT imaging, and [ 18 F]FDG PET. As well, the relation of metrics between APT imaging and PET was analyzed by the Pearson correlation analysis. APT imaging and gadolinium-enhanced MRI showed superior and similar diagnostic accuracy. APTW signal intensity and gadolinium enhancement were concordant in 19 tumors (100 %), while high [ 18 F]FDG avidity was shown in only 12 (63.2 %). For the metrics from APT imaging and PET, there was significant correlation for 13 hypermetabolic tumors (P < 0.05) and no correlation for the remaining six [ 18 F]FDG-avid tumors. APT imaging can be used to increase diagnostic accuracy with no need to administer gadolinium chelates. APT imaging may provide an added value to [ 18 F]FDG PET in the evaluation of tumor metabolic activity during brain PET/MR studies.
Single-scan dual-tracer FLT+FDG PET tumor characterization.
Kadrmas, Dan J; Rust, Thomas C; Hoffman, John M
2013-02-07
Rapid multi-tracer PET aims to image two or more tracers in a single scan, simultaneously characterizing multiple aspects of physiology and function without the need for repeat imaging visits. Using dynamic imaging with staggered injections, constraints on the kinetic behavior of each tracer are applied to recover individual-tracer measures from the multi-tracer PET signal. The ability to rapidly and reliably image both (18)F-fluorodeoxyglucose (FDG) and (18)F-fluorothymidine (FLT) would provide complementary measures of tumor metabolism and proliferative activity, with important applications in guiding oncologic treatment decisions and assessing response. However, this tracer combination presents one of the most challenging dual-tracer signal-separation problems--both tracers have the same radioactive half-life, and the injection delay is short relative to the half-life and tracer kinetics. This work investigates techniques for single-scan dual-tracer FLT+FDG PET tumor imaging, characterizing the performance of recovering static and dynamic imaging measures for each tracer from dual-tracer datasets. Simulation studies were performed to characterize dual-tracer signal-separation performance for imaging protocols with both injection orders and injection delays of 10-60 min. Better performance was observed when FLT was administered first, and longer delays before administration of FDG provided more robust signal-separation and recovery of the single-tracer imaging measures. An injection delay of 30 min led to good recovery (R > 0.96) of static image values (e.g. SUV), K(net), and K(1) as compared to values from separate, single-tracer time-activity curves. Recovery of higher order rate parameters (k(2), k(3)) was less robust, indicating that information regarding these parameters was harder to recover in the presence of statistical noise and dual-tracer effects. Performance of the dual-tracer FLT(0 min)+FDG(32 min) technique was further evaluated using PET/CT imaging studies in five patients with primary brain tumors where the data from separate scans of each tracer were combined to synthesize dual-tracer scans with known single-tracer components; results demonstrated similar dual-tracer signal recovery performance. We conclude that rapid dual-tracer FLT+FDG tumor imaging is feasible and can provide quantitative tumor imaging measures comparable to those from conventional separate-scan imaging.
Single-scan dual-tracer FLT+FDG PET tumor characterization
NASA Astrophysics Data System (ADS)
Kadrmas, Dan J.; Rust, Thomas C.; Hoffman, John M.
2013-02-01
Rapid multi-tracer PET aims to image two or more tracers in a single scan, simultaneously characterizing multiple aspects of physiology and function without the need for repeat imaging visits. Using dynamic imaging with staggered injections, constraints on the kinetic behavior of each tracer are applied to recover individual-tracer measures from the multi-tracer PET signal. The ability to rapidly and reliably image both 18F-fluorodeoxyglucose (FDG) and 18F-fluorothymidine (FLT) would provide complementary measures of tumor metabolism and proliferative activity, with important applications in guiding oncologic treatment decisions and assessing response. However, this tracer combination presents one of the most challenging dual-tracer signal-separation problems—both tracers have the same radioactive half-life, and the injection delay is short relative to the half-life and tracer kinetics. This work investigates techniques for single-scan dual-tracer FLT+FDG PET tumor imaging, characterizing the performance of recovering static and dynamic imaging measures for each tracer from dual-tracer datasets. Simulation studies were performed to characterize dual-tracer signal-separation performance for imaging protocols with both injection orders and injection delays of 10-60 min. Better performance was observed when FLT was administered first, and longer delays before administration of FDG provided more robust signal-separation and recovery of the single-tracer imaging measures. An injection delay of 30 min led to good recovery (R > 0.96) of static image values (e.g. SUV), Knet, and K1 as compared to values from separate, single-tracer time-activity curves. Recovery of higher order rate parameters (k2, k3) was less robust, indicating that information regarding these parameters was harder to recover in the presence of statistical noise and dual-tracer effects. Performance of the dual-tracer FLT(0 min)+FDG(32 min) technique was further evaluated using PET/CT imaging studies in five patients with primary brain tumors where the data from separate scans of each tracer were combined to synthesize dual-tracer scans with known single-tracer components; results demonstrated similar dual-tracer signal recovery performance. We conclude that rapid dual-tracer FLT+FDG tumor imaging is feasible and can provide quantitative tumor imaging measures comparable to those from conventional separate-scan imaging.
Single-scan dual-tracer FLT+FDG PET tumor characterization
Kadrmas, Dan J; Rust, Thomas C; Hoffman, John M
2013-01-01
Rapid multi-tracer PET aims to image two or more tracers in a single scan, simultaneously characterizing multiple aspects of physiology and function without the need for repeat imaging visits. Using dynamic imaging with staggered injections, constraints on the kinetic behavior of each tracer are applied to recover individual-tracer measures from the multi-tracer PET signal. The ability to rapidly and reliably image both 18F-fluorodeoxyglucose (FDG) and 18F-fluorothymidine (FLT) would provide complementary measures of tumor metabolism and proliferative activity, with important applications in guiding oncologic treatment decisions and assessing response. However, this tracer combination presents one of the most challenging dual-tracer signal-separation problems—both tracers have the same radioactive half-life, and the injection delay is short relative to the half-life and tracer kinetics. This work investigates techniques for single-scan dual-tracer FLT+FDG PET tumor imaging, characterizing the performance of recovering static and dynamic imaging measures for each tracer from dual-tracer datasets. Simulation studies were performed to characterize dual-tracer signal-separation performance for imaging protocols with both injection orders and injection delays of 10–60 min. Better performance was observed when FLT was administered first, and longer delays before administration of FDG provided more robust signal-separation and recovery of the single-tracer imaging measures. An injection delay of 30 min led to good recovery (R > 0.96) of static image values (e.g. SUV), Knet, and K1 as compared to values from separate, single-tracer time-activity curves. Recovery of higher order rate parameters (k2, k3) was less robust, indicating that information regarding these parameters was harder to recover in the presence of statistical noise and dual-tracer effects. Performance of the dual-tracer FLT(0 min)+FDG(32 min) technique was further evaluated using PET/CT imaging studies in five patients with primary brain tumors where the data from separate scans of each tracer were combined to synthesize dual-tracer scans with known single-tracer components; results demonstrated similar dual-tracer signal recovery performance. We conclude that rapid dual-tracer FLT+FDG tumor imaging is feasible and can provide quantitative tumor imaging measures comparable to those from conventional separate-scan imaging. PMID:23296314
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, W.; Yin, J.; Li, C.
This paper presents a novel front-end electronics based on a front-end ASIC with post digital filtering and calibration dedicated to CZT detectors for PET imaging. A cascade amplifier based on split-leg topology is selected to realize the charge-sensitive amplifier (CSA) for the sake of low noise performances and the simple scheme of the power supplies. The output of the CSA is connected to a variable-gain amplifier to generate the compatible signals for the A/D conversion. A multi-channel single-slope ADC is designed to sample multiple points for the digital filtering and shaping. The digital signal processing algorithms are implemented by amore » FPGA. To verify the proposed scheme, a front-end readout prototype ASIC is designed and implemented in 0.35 μm CMOS process. In a single readout channel, a CSA, a VGA, a 10-bit ADC and registers are integrated. Two dummy channels, bias circuits, and time controller are also integrated. The die size is 2.0 mm x 2.1 mm. The input range of the ASIC is from 2000 e{sup -} to 100000 e{sup -}, which is suitable for the detection of the X-and gamma ray from 11.2 keV to 550 keV. The linearity of the output voltage is less than 1 %. The gain of the readout channel is 40.2 V/pC. The static power dissipation is about 10 mW/channel. The above tested results show that the electrical performances of the ASIC can well satisfy PET imaging applications. (authors)« less
ChIA-PET2: a versatile and flexible pipeline for ChIA-PET data analysis
Li, Guipeng; Chen, Yang; Snyder, Michael P.; Zhang, Michael Q.
2017-01-01
ChIA-PET2 is a versatile and flexible pipeline for analyzing different types of ChIA-PET data from raw sequencing reads to chromatin loops. ChIA-PET2 integrates all steps required for ChIA-PET data analysis, including linker trimming, read alignment, duplicate removal, peak calling and chromatin loop calling. It supports different kinds of ChIA-PET data generated from different ChIA-PET protocols and also provides quality controls for different steps of ChIA-PET analysis. In addition, ChIA-PET2 can use phased genotype data to call allele-specific chromatin interactions. We applied ChIA-PET2 to different ChIA-PET datasets, demonstrating its significantly improved performance as well as its ability to easily process ChIA-PET raw data. ChIA-PET2 is available at https://github.com/GuipengLi/ChIA-PET2. PMID:27625391
Natural pet food: a review of natural diets and their impact on canine and feline physiology.
Buff, P R; Carter, R A; Bauer, J E; Kersey, J H
2014-09-01
The purpose of this review is to clarify the definition of "natural" as it pertains to commercial pet food and to summarize the scientific findings related to natural ingredients in pet foods and natural diets on the impact of pet health and physiology. The term "natural," when used to market commercial pet foods or pet food ingredients in the United States, has been defined by the Association of American Feed Control Officials and requires, at minimum, that the pet food be preserved with natural preservatives. However, pet owners may consider natural as something different than the regulatory definition. The natural pet food trend has focused on the inclusion of whole ingredients, including meats, fruits, and vegetables; avoiding ingredients perceived as heavily processed, including refined grains, fiber sources, and byproducts; and feeding according to ancestral or instinctual nutritional philosophies. Current scientific evidence supporting nutritional benefits of natural pet food products is limited to evaluations of dietary macronutrient profiles, fractionation of ingredients, and the processing of ingredients and final product. Domestic cats select a macronutrient profile (52% of ME from protein) similar to the diet of wild cats. Dogs have evolved much differently in their ability to metabolize carbohydrates and select a diet lower in protein (30% of ME from protein) than the diet of wild wolves. The inclusion of whole food ingredients in natural pet foods as opposed to fractionated ingredients may result in higher nutrient concentrations, including phytonutrients. Additionally, the processing of commercial pet food can impact digestibility, nutrient bioavailability, and safety, which are particularly important considerations with new product formats in the natural pet food category. Future opportunities exist to better understand the effect of natural diets on health and nutrition outcomes and to better integrate sustainable practices in the production of natural pet foods.
Bayer, Forrest L
2002-01-01
Studies were undertaken to determine the composition of five different types of post-consumer polyethylene terephthalate (PET) feedstreams to ascertain the relative amounts of food containers and non-food containers. Deposit post-consumer PET feedstreams contained approximately 100% food containers, whereas curbside feedstreams contained from 0.04 to 6% non-food containers. Analysis of the PET containers from the different type feedstreams after the containers were subjected to a commercial PET wash system and after processing with a proprietary decontamination technology was accomplished to determine the levels of compounds in the post-consumer PET after the various stages of processing. Comprehensive thermal desorption/GC/MS, purge and trap GC/MS purge and trap GC quantitation, PET dissolution and extraction GC analysis and PET dissolution HPLC analysis established the types and concentrations of compounds that absorb in the PET from the various types of postconsumer feedstreams. A total of 121 compounds were identified in the five different feedstreams. The concentration of absorbed compounds remaining in the deposit material and the non-food applications material after the commercial wash was 28 and 39mgkg(-1) respectively. Analysis of the feedstreams after subjecting the material to a proprietary decontamination process demonstrated the ability of removing all the absorbed compounds to a level below the level of the threshold of regulation. The safety of sourcing of post-consumer PET from food use applications verses non-food use applications of PET has been established.
Biological Image-Guided Radiotherapy in Rectal Cancer: Challenges and Pitfalls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roels, Sarah; Slagmolen, Pieter; Nuyts, Johan
2009-11-01
Purpose: To investigate the feasibility of integrating multiple imaging modalities for image-guided radiotherapy in rectal cancer. Patients and Methods: Magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) were performed before, during, and after preoperative chemoradiotherapy (CRT) in patients with resectable rectal cancer. The FDG-PET signals were segmented with an adaptive threshold-based and a gradient-based method. Magnetic resonance tumor volumes (TVs) were manually delineated. A nonrigid registration algorithm was applied to register the images, and mismatch analyses were carried out between MR and FDG-PET TVs and between TVs over time. Tumor volumes delineated on the images after CRTmore » were compared with the pathologic TV. Results: Forty-five FDG-PET/CT and 45 MR images were analyzed from 15 patients. The mean MRI and FDG-PET TVs showed a tendency to shrink during and after CRT. In general, MRI showed larger TVs than FDG-PET. There was an approximately 50% mismatch between the FDG-PET TV and the MRI TV at baseline and during CRT. Sixty-one percent of the FDG-PET TV and 76% of the MRI TV obtained after 10 fractions of CRT remained inside the corresponding baseline TV. On MRI, residual tumor was still suspected in all 6 patients with a pathologic complete response, whereas FDG-PET showed a metabolic complete response in 3 of them. The FDG-PET TVs delineated with the gradient-based method matched closest with pathologic findings. Conclusions: Integration of MRI and FDG-PET into radiotherapy seems feasible. Gradient-based segmentation is recommended for FDG-PET. Spatial variance between MRI and FDG-PET TVs should be taken into account for target definition.« less
Contractor, Kaiyumars; Aboagye, Eric O; Jacob, Jimmy; Challapalli, Amarnath; Coombes, R Charles; Stebbing, Justin
2012-04-01
Early markers of response to chemotherapy, measured by blood markers and imaging, may ultimately lead to tailored therapies that avoid cumulative toxicity. We performed a small pilot study to compare early changes in levels of circulatory tumor cells (CTCs) with changes in tumor proliferation, using metabolic imaging with [(18)F] 3´-deoxy-3´-fluorothymidine PET (FLT-PET) in women with advanced breast cancer, before and during docetaxel therapy. In those individuals in whom we could detect CTCs, a decrease in CTC count correlated with a decrease in FLT-PET signal, within 2 weeks. Combined, these two technologies are likely to provide a powerful, albeit expensive, tool to assess immediate responses to therapy.
Copper Loading of Preformed Nanoparticles for PET-Imaging Applications.
Lu, Hoang D; Wang, Leon Z; Wilson, Brian K; McManus, Simon A; Jumai'an, Jenny; Padakanti, Prashanth K; Alavi, Abass; Mach, Robert H; Prud'homme, Robert K
2018-01-31
Nanoparticles (NP) are promising contrast agents for positron emission tomography (PET) radionuclide imaging that can increase signal intensity by localizing clusters of PET radionuclides together. However, methods to load NPs with PET radionuclides suffer from harsh loading conditions or poor loading efficacies or result in NP surface modifications that alter targeting in vivo. We present the formation of water-dispersible, polyethylene glycol coated NPs that encapsulate phthalocyanines into NP cores at greater than 50 wt % loading, using the self-assembly technique Flash NanoPrecipitation. Particles from 70 to 160 nm are produced. Phthalocyanine NPs rapidly and spontaneously chelate metals under mild conditions and can act as sinks for PET radionuclides such as 64-Cu to produce PET-active NPs. NPs chelate copper(II) with characteristic rates of 1845 M -1 h -1 at pH 6 and 37 °C, which produced >90% radionuclide chelation within 1 h. NP physical properties, such as core composition, core fluidity, and size, can be tuned to modulate chelation kinetics. These NPs retain 64 Cu even in the presence of the strong chelator ethylene diamine tetraacetic acid. The development of these constructs for rapid and facile radionuclide labeling expands the applications of NP-based PET imaging.
Automatic delineation of tumor volumes by co-segmentation of combined PET/MR data
NASA Astrophysics Data System (ADS)
Leibfarth, S.; Eckert, F.; Welz, S.; Siegel, C.; Schmidt, H.; Schwenzer, N.; Zips, D.; Thorwarth, D.
2015-07-01
Combined PET/MRI may be highly beneficial for radiotherapy treatment planning in terms of tumor delineation and characterization. To standardize tumor volume delineation, an automatic algorithm for the co-segmentation of head and neck (HN) tumors based on PET/MR data was developed. Ten HN patient datasets acquired in a combined PET/MR system were available for this study. The proposed algorithm uses both the anatomical T2-weighted MR and FDG-PET data. For both imaging modalities tumor probability maps were derived, assigning each voxel a probability of being cancerous based on its signal intensity. A combination of these maps was subsequently segmented using a threshold level set algorithm. To validate the method, tumor delineations from three radiation oncologists were available. Inter-observer variabilities and variabilities between the algorithm and each observer were quantified by means of the Dice similarity index and a distance measure. Inter-observer variabilities and variabilities between observers and algorithm were found to be comparable, suggesting that the proposed algorithm is adequate for PET/MR co-segmentation. Moreover, taking into account combined PET/MR data resulted in more consistent tumor delineations compared to MR information only.
Gatidis, Sergios; Würslin, Christian; Seith, Ferdinand; Schäfer, Jürgen F; la Fougère, Christian; Nikolaou, Konstantin; Schwenzer, Nina F; Schmidt, Holger
2016-01-01
Optimization of tracer dose regimes in positron emission tomography (PET) imaging is a trade-off between diagnostic image quality and radiation exposure. The challenge lies in defining minimal tracer doses that still result in sufficient diagnostic image quality. In order to find such minimal doses, it would be useful to simulate tracer dose reduction as this would enable to study the effects of tracer dose reduction on image quality in single patients without repeated injections of different amounts of tracer. The aim of our study was to introduce and validate a method for simulation of low-dose PET images enabling direct comparison of different tracer doses in single patients and under constant influencing factors. (18)F-fluoride PET data were acquired on a combined PET/magnetic resonance imaging (MRI) scanner. PET data were stored together with the temporal information of the occurrence of single events (list-mode format). A predefined proportion of PET events were then randomly deleted resulting in undersampled PET data. These data sets were subsequently reconstructed resulting in simulated low-dose PET images (retrospective undersampling of list-mode data). This approach was validated in phantom experiments by visual inspection and by comparison of PET quality metrics contrast recovery coefficient (CRC), background-variability (BV) and signal-to-noise ratio (SNR) of measured and simulated PET images for different activity concentrations. In addition, reduced-dose PET images of a clinical (18)F-FDG PET dataset were simulated using the proposed approach. (18)F-PET image quality degraded with decreasing activity concentrations with comparable visual image characteristics in measured and in corresponding simulated PET images. This result was confirmed by quantification of image quality metrics. CRC, SNR and BV showed concordant behavior with decreasing activity concentrations for measured and for corresponding simulated PET images. Simulation of dose-reduced datasets based on clinical (18)F-FDG PET data demonstrated the clinical applicability of the proposed data. Simulation of PET tracer dose reduction is possible with retrospective undersampling of list-mode data. Resulting simulated low-dose images have equivalent characteristics with PET images actually measured at lower doses and can be used to derive optimal tracer dose regimes.
Cherry, Simon R; Jones, Terry; Karp, Joel S; Qi, Jinyi; Moses, William W; Badawi, Ramsey D
2018-01-01
PET is widely considered the most sensitive technique available for noninvasively studying physiology, metabolism, and molecular pathways in the living human being. However, the utility of PET, being a photon-deficient modality, remains constrained by factors including low signal-to-noise ratio, long imaging times, and concerns about radiation dose. Two developments offer the potential to dramatically increase the effective sensitivity of PET. First by increasing the geometric coverage to encompass the entire body, sensitivity can be increased by a factor of about 40 for total-body imaging or a factor of about 4-5 for imaging a single organ such as the brain or heart. The world's first total-body PET/CT scanner is currently under construction to demonstrate how this step change in sensitivity affects the way PET is used both in clinical research and in patient care. Second, there is the future prospect of significant improvements in timing resolution that could lead to further effective sensitivity gains. When combined with total-body PET, this could produce overall sensitivity gains of more than 2 orders of magnitude compared with existing state-of-the-art systems. In this article, we discuss the benefits of increasing body coverage, describe our efforts to develop a first-generation total-body PET/CT scanner, discuss selected application areas for total-body PET, and project the impact of further improvements in time-of-flight PET. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-10
.... FDA-2012-F-0178] Irradiation in the Production, Processing, and Handling of Animal Feed and Pet Food; Electron Beam and X-Ray Sources for Irradiation of Poultry Feed and Poultry Feed Ingredients; Correction... Administration (FDA) is correcting a document amending the regulations for irradiation of animal feed and pet...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-10
...-0178] Irradiation in the Production, Processing, and Handling of Animal Feed and Pet Food; Electron Beam and X-Ray Sources for Irradiation of Poultry Feed and Poultry Feed Ingredients AGENCY: Food and... amending the regulations for irradiation of animal feed and pet food to provide for the safe use of...
MR-assisted PET Motion Correction for eurological Studies in an Integrated MR-PET Scanner
Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B.; Michel, Christian J.; El Fakhri, Georges; Schmand, Matthias; Sorensen, A. Gregory
2011-01-01
Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MR data can be used for motion tracking. In this work, a novel data processing and rigid-body motion correction (MC) algorithm for the MR-compatible BrainPET prototype scanner is described and proof-of-principle phantom and human studies are presented. Methods To account for motion, the PET prompts and randoms coincidences as well as the sensitivity data are processed in the line or response (LOR) space according to the MR-derived motion estimates. After sinogram space rebinning, the corrected data are summed and the motion corrected PET volume is reconstructed from these sinograms and the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed and motion estimates were obtained using two high temporal resolution MR-based motion tracking techniques. Results After accounting for the physical mismatch between the two scanners, perfectly co-registered MR and PET volumes are reproducibly obtained. The MR output gates inserted in to the PET list-mode allow the temporal correlation of the two data sets within 0.2 s. The Hoffman phantom volume reconstructed processing the PET data in the LOR space was similar to the one obtained processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the novel MC algorithm. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 seconds and 20 ms, respectively. Substantially improved PET images with excellent delineation of specific brain structures were obtained after applying the MC using these MR-based estimates. Conclusion A novel MR-based MC algorithm was developed for the integrated MR-PET scanner. High temporal resolution MR-derived motion estimates (obtained while simultaneously acquiring anatomical or functional MR data) can be used for PET MC. An MR-based MC has the potential to improve PET as a quantitative method, increasing its reliability and reproducibility which could benefit a large number of neurological applications. PMID:21189415
Recovery and normalization of triple coincidences in PET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lage, Eduardo, E-mail: elage@mit.edu; Parot, Vicente; Dave, Shivang R.
2015-03-15
Purpose: Triple coincidences in positron emission tomography (PET) are events in which three γ-rays are detected simultaneously. These events, though potentially useful for enhancing the sensitivity of PET scanners, are discarded or processed without special consideration in current systems, because there is not a clear criterion for assigning them to a unique line-of-response (LOR). Methods proposed for recovering such events usually rely on the use of highly specialized detection systems, hampering general adoption, and/or are based on Compton-scatter kinematics and, consequently, are limited in accuracy by the energy resolution of standard PET detectors. In this work, the authors propose amore » simple and general solution for recovering triple coincidences, which does not require specialized detectors or additional energy resolution requirements. Methods: To recover triple coincidences, the authors’ method distributes such events among their possible LORs using the relative proportions of double coincidences in these LORs. The authors show analytically that this assignment scheme represents the maximum-likelihood solution for the triple-coincidence distribution problem. The PET component of a preclinical PET/CT scanner was adapted to enable the acquisition and processing of triple coincidences. Since the efficiencies for detecting double and triple events were found to be different throughout the scanner field-of-view, a normalization procedure specific for triple coincidences was also developed. The effect of including triple coincidences using their method was compared against the cases of equally weighting the triples among their possible LORs and discarding all the triple events. The authors used as figures of merit for this comparison sensitivity, noise-equivalent count (NEC) rates and image quality calculated as described in the NEMA NU-4 protocol for the assessment of preclinical PET scanners. Results: The addition of triple-coincidence events with the authors’ method increased peak NEC rates of the scanner by 26.6% and 32% for mouse- and rat-sized objects, respectively. This increase in NEC-rate performance was also reflected in the image-quality metrics. Images reconstructed using double and triple coincidences recovered using their method had better signal-to-noise ratio than those obtained using only double coincidences, while preserving spatial resolution and contrast. Distribution of triple coincidences using an equal-weighting scheme increased apparent system sensitivity but degraded image quality. The performance boost provided by the inclusion of triple coincidences using their method allowed to reduce the acquisition time of standard imaging procedures by up to ∼25%. Conclusions: Recovering triple coincidences with the proposed method can effectively increase the sensitivity of current clinical and preclinical PET systems without compromising other parameters like spatial resolution or contrast.« less
First full-beam PET acquisitions in proton therapy with a modular dual-head dedicated system
NASA Astrophysics Data System (ADS)
Sportelli, G.; Belcari, N.; Camarlinghi, N.; Cirrone, G. A. P.; Cuttone, G.; Ferretti, S.; Kraan, A.; Ortuño, J. E.; Romano, F.; Santos, A.; Straub, K.; Tramontana, A.; Del Guerra, A.; Rosso, V.
2014-01-01
During particle therapy irradiation, positron emitters with half-lives ranging from 2 to 20 min are generated from nuclear processes. The half-lives are such that it is possible either to detect the positron signal in the treatment room using an in-beam positron emission tomography (PET) system, right after the irradiation, or to quickly transfer the patient to a close PET/CT scanner. Since the activity distribution is spatially correlated with the dose, it is possible to use PET imaging as an indirect method to assure the quality of the dose delivery. In this work, we present a new dedicated PET system able to operate in-beam. The PET apparatus consists in two 10 cm × 10 cm detector heads. Each detector is composed of four scintillating matrices of 23 × 23 LYSO crystals. The crystal size is 1.9 mm × 1.9 mm × 16 mm. Each scintillation matrix is read out independently with a modularized acquisition system. The distance between the two opposing detector heads was set to 20 cm. The system has very low dead time per detector area and a 3 ns coincidence window, which is capable to sustain high single count rates and to keep the random counts relatively low. This allows a new full-beam monitoring modality that includes data acquisition also while the beam is on. The PET system was tested during the irradiation at the CATANA (INFN, Catania, Italy) cyclotron-based proton therapy facility. Four acquisitions with different doses and dose rates were analysed. In all cases the random to total coincidences ratio was equal or less than 25%. For each measurement we estimated the accuracy and precision of the activity range on a set of voxel lines within an irradiated PMMA phantom. Results show that the inclusion of data acquired during the irradiation, referred to as beam-on data, improves both the precision and accuracy of the range measurement with respect to data acquired only after irradiation. Beam-on data alone are enough to give precisions better than 1 mm when at least 5 Gy are delivered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schramm, Georg, E-mail: georg.schramm@kuleuven.be; Maus, Jens; Hofheinz, Frank
Purpose: MR-based attenuation correction (MRAC) in routine clinical whole-body positron emission tomography and magnetic resonance imaging (PET/MRI) is based on tissue type segmentation. Due to lack of MR signal in cortical bone and the varying signal of spongeous bone, standard whole-body segmentation-based MRAC ignores the higher attenuation of bone compared to the one of soft tissue (MRAC{sub nobone}). The authors aim to quantify and reduce the bias introduced by MRAC{sub nobone} in the standard uptake value (SUV) of spinal and pelvic lesions in 20 PET/MRI examinations with [{sup 18}F]NaF. Methods: The authors reconstructed 20 PET/MR [{sup 18}F]NaF patient data setsmore » acquired with a Philips Ingenuity TF PET/MRI. The PET raw data were reconstructed with two different attenuation images. First, the authors used the vendor-provided MRAC algorithm that ignores the higher attenuation of bone to reconstruct PET{sub nobone}. Second, the authors used a threshold-based algorithm developed in their group to automatically segment bone structures in the [{sup 18}F]NaF PET images. Subsequently, an attenuation coefficient of 0.11 cm{sup −1} was assigned to the segmented bone regions in the MRI-based attenuation image (MRAC{sub bone}) which was used to reconstruct PET{sub bone}. The automatic bone segmentation algorithm was validated in six PET/CT [{sup 18}F]NaF examinations. Relative SUV{sub mean} and SUV{sub max} differences between PET{sub bone} and PET{sub nobone} of 8 pelvic and 41 spinal lesions, and of other regions such as lung, liver, and bladder, were calculated. By varying the assigned bone attenuation coefficient from 0.11 to 0.13 cm{sup −1}, the authors investigated its influence on the reconstructed SUVs of the lesions. Results: The comparison of [{sup 18}F]NaF-based and CT-based bone segmentation in the six PET/CT patients showed a Dice similarity of 0.7 with a true positive rate of 0.72 and a false discovery rate of 0.33. The [{sup 18}F]NaF-based bone segmentation worked well in the pelvis and spine. However, it showed artifacts in the skull and in the extremities. The analysis of the 20 [{sup 18}F]NaF PET/MRI examinations revealed relative SUV{sub max} differences between PET{sub nobone} and PET{sub bone} of (−8.8% ± 2.7%, p = 0.01) and (−8.1% ± 1.9%, p = 2.4 × 10{sup −8}) in pelvic and spinal lesions, respectively. A maximum SUV{sub max} underestimation of −13.7% was found in lesion in the third cervical spine. The averaged SUV{sub mean} differences in volumes of interests in lung, liver, and bladder were below 3%. The average SUV{sub max} differences in pelvic and spinal lesions increased from −9% to −18% and −8% to −17%, respectively, when increasing the assigned bone attenuation coefficient from 0.11 to 0.13 cm{sup −1}. Conclusions: The developed automatic [{sup 18}F]NaF PET-based bone segmentation allows to include higher bone attenuation in whole-body MRAC and thus improves quantification accuracy for pelvic and spinal lesions in [{sup 18}F]NaF PET/MRI examinations. In nonbone structures (e.g., lung, liver, and bladder), MRAC{sub nobone} yields clinically acceptable accuracy.« less
40 CFR 63.1320 - PET and polystyrene affected sources-reporting provisions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 12 2012-07-01 2011-07-01 true PET and polystyrene affected sources... § 63.1320 PET and polystyrene affected sources—reporting provisions. (a) Except as specified in... PET Affected Sources Using a Dimethyl Terephthalate Process. Owners or operators complying with § 63...
40 CFR 63.1320 - PET and polystyrene affected sources-reporting provisions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 12 2013-07-01 2013-07-01 false PET and polystyrene affected sources... and Resins § 63.1320 PET and polystyrene affected sources—reporting provisions. (a) Except as...) Reporting for PET Affected Sources Using a Dimethyl Terephthalate Process. Owners or operators complying...
40 CFR 63.1320 - PET and polystyrene affected sources-reporting provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 11 2010-07-01 2010-07-01 true PET and polystyrene affected sources... § 63.1320 PET and polystyrene affected sources—reporting provisions. (a) Except as specified in... PET Affected Sources Using a Dimethyl Terephthalate Process. Owners or operators complying with § 63...
40 CFR 63.1320 - PET and polystyrene affected sources-reporting provisions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 11 2011-07-01 2011-07-01 false PET and polystyrene affected sources... § 63.1320 PET and polystyrene affected sources—reporting provisions. (a) Except as specified in... PET Affected Sources Using a Dimethyl Terephthalate Process. Owners or operators complying with § 63...
Shulman, Robert G; Hyder, Fahmeed; Rothman, Douglas L
2014-01-01
Functional neuroimaging measures quantitative changes in neurophysiological parameters coupled to neuronal activity during observable behavior. These results have usually been interpreted by assuming that mental causation of behavior arises from the simultaneous actions of distinct psychological mechanisms or modules. However, reproducible localization of these modules in the brain using functional magnetic resonance imaging (MRI) and positron emission tomography (PET) imaging has been elusive other than for sensory systems. In this paper, we show that neuroenergetic studies using PET, calibrated functional magnetic resonance imaging (fMRI), 13C magnetic resonance spectroscopy, and electrical recordings do not support the standard approach, which identifies the location of mental modules from changes in brain activity. Of importance in reaching this conclusion is that changes in neuronal activities underlying the fMRI signal are many times smaller than the high ubiquitous, baseline neuronal activity, or energy in resting, awake humans. Furthermore, the incremental signal depends on the baseline activity contradicting theoretical assumptions about linearity and insertion of mental modules. To avoid these problems, while making use of these valuable results, we propose that neuroimaging should be used to identify observable brain activities that are necessary for a person's observable behavior rather than being used to seek hypothesized mental processes. PMID:25160670
The Adventures of a Guinea Pig: Sharing a Class Pet with Children and Their Families.
ERIC Educational Resources Information Center
Boyer, Becky
2000-01-01
Recounts the use of pets in a kindergarten classroom for children to experience pet ownership and to share the care of animals. Outlines the entire process of pet selection, program implementation, and reactions to the program. Notes that in addition to exposure to pet care, children quickly learned the days of the week and recycling concepts. (SD)
Marciniak-Emmons, Marta Barbara; Sterliński, Maciej; Syska, Paweł; Maciąg, Aleksander; Farkowski, Michał Mirosław; Firek, Bohdan; Dziuk, Mirosław; Zając, Dariusz; Pytkowski, Mariusz; Szwed, Hanna
2016-01-01
Cardiovascular implantable electronic device (CIED) infection is a complication of increasing incidence. We present a protocol of an observational case control clinical trial "Positron Emission Tomography Combined With Computed Tomography (PET CT) in Suspected Cardiac Implantable Electronic Device Infection, a Pilot Study - PET Guidance I" (NCT02196753). The aim of this observational clinical trial is to assess and standardise diagnostic algorithms for CIED infections (lead-dependent infective endocarditis, generator pocket infection, fever of unknown origin) with PET CT in Poland. Study group will consist of 20 patients with initial diagnosis of CIED-related infection paired with a control group of 20 patients with implanted CIEDs, who underwent PET CT due to other non-infectious indications and have no data for infectious process in follow-up. All patients included in the study will undergo standard diagnostic pro-cess. Conventional/standard diagnostic and therapeutic process will consist of: medical interview, physical examination, laboratory tests, blood cultures; imaging studies: echocardiography: transthoracic (TTE), and, if there are no contraindications transoesophageal, computed tomography scan for pulmonary embolism if indicated; if there are abnormalities in other systems, decisions concerning further diagnostics will be made at the physician's discretion. As well as standard diagnostic procedures, patients will undergo whole body PET CT scan to localise infection or inflammation. Diagnosis and therapeutic decision will be obtained from the Study Committee. Follow-up will be held within six months with control visits at three and six months. During each follow-up visit, all patients will undergo laboratory tests, two blood cultures collected 1 h apart, and TTE. In case of actual clinical suspicion of infective endocarditis or local generator pocket infection, patients will be referred for further diagnostics. Endpoints for the results assessment - primary endpoints are to standardise PET CT in the diagnostic process: sensitivity, specificity, positive predictive value, and negative predictive value of the diagnosis made by PET CT; secondary endpoints are: assessment of usefulness of PET CT for detection of remote infective complications (metastatic abscesses, infected pulmonary emboli), incidence of particular localisations of infection, influence of PET CT on therapeutic decision: confirmation or change of decision based on PET CT, safety and complications of diagnostic process of CIED-related infections with PET CT. Evaluation of PET CT use for device-related infections in a case control study may be conclusive and improve diagnostic pathway.
Effects of Artificial Ligaments with Different Porous Structures on the Migration of BMSCs
Wang, Chun-Hui; Hou, Wei; Yan, Ming; Guo, Zhong-shang; Wu, Qi; Bi, Long; Han, Yi-Sheng
2015-01-01
Polyethylene terephthalate- (PET-) based artificial ligaments (PET-ALs) are commonly used in anterior cruciate ligament (ACL) reconstruction surgery. The effects of different porous structures on the migration of bone marrow mesenchymal stem cells (BMSCs) on artificial ligaments and the underlying mechanisms are unclear. In this study, a cell migration model was utilized to observe the migration of BMSCs on PET-ALs with different porous structures. A rabbit extra-articular graft-to-bone healing model was applied to investigate the in vivo effects of four types of PET-ALs, and a mechanical test and histological observation were performed at 4 weeks and 12 weeks. The BMSC migration area of the 5A group was significantly larger than that of the other three groups. The migration of BMSCs in the 5A group was abolished by blocking the RhoA/ROCK signaling pathway with Y27632. The in vivo study demonstrated that implantation of 5A significantly improved osseointegration. Our study explicitly demonstrates that the migration ability of BMSCs can be regulated by varying the porous structures of the artificial ligaments and suggests that this regulation is related to the RhoA/ROCK signaling pathway. Artificial ligaments prepared using a proper knitting method and line density may exhibit improved biocompatibility and clinical performance. PMID:26106429
Finite Element Modeling of Reheat Stretch Blow Molding of PET
NASA Astrophysics Data System (ADS)
Krishnan, Dwarak; Dupaix, Rebecca B.
2004-06-01
Poly (ethylene terephthalate) or PET is a polymer used as a packaging material for consumer products such as beverages, food or other liquids, and in other applications including drawn fibers and stretched films. Key features that make it widely used are its transparency, dimensional stability, gas impermeability, impact resistance, and high stiffness and strength in certain preferential directions. These commercially useful properties arise from the fact that PET crystallizes upon deformation above the glass transition temperature. Additionally, this strain-induced crystallization causes the deformation behavior of PET to be highly sensitive to processing conditions. It is thus crucial for engineers to be able to predict its performance at various process temperatures, strain rates and strain states so as to optimize the manufacturing process. In addressing these issues; a finite element analysis of the reheat blow molding process with PET has been carried out using ABAQUS. The simulation employed a constitutive model for PET developed by Dupaix and Boyce et al.. The model includes the combined effects of molecular orientation and strain-induced crystallization on strain hardening when the material is deformed above the glass transition temperature. The simulated bottles were also compared with actual blow molded bottles to evaluate the validity of the simulation.
Thermal Inactivation of Feline Calicivirus in Pet Food Processing.
Haines, J; Patel, M; Knight, A I; Corley, D; Gibson, G; Schaaf, J; Moulin, J; Zuber, S
2015-12-01
Extrusion is the most common manufacturing process used to produce heat-treated dry dog and cat food (pet food) for domestic use and international trade. Due to reoccurring outbreaks of notifiable terrestrial animal diseases and their impact on international trade, experiments were undertaken to demonstrate the effectiveness of heat-treated extruded pet food on virus inactivation. The impact of extrusion processing in a pet food matrix on virus inactivation has not been previously reported and very few inactivation studies have examined the thermal inactivation of viruses in complex food matrices. The feline calicivirus vaccine strain FCV F-9 was used as a surrogate model RNA virus pathogen. Small-scale heat inactivation experiments using animal-derived pet food raw materials showed that a > 4 log10 reduction (log10 R) in infectivity occurred at 70 °C prior to reaching the minimum extrusion manufacturing operating temperature of 100 °C. As anticipated, small-scale pressure studies at extrusion pressure (1.6 MPa) showed no apparent effect on FCV F-9 inactivation. Additionally, FCV F-9 was shown not to survive the acidic conditions used to produce pet food palatants of animal origin that are typically used as a coating after the extrusion process.
NASA Astrophysics Data System (ADS)
Yang, Zhao-Ping; Xin, Chun-Ling; Guo, Ya-Feng; Luo, Yi-Wei; He, Ya-Dong
2016-05-01
Improving the melt viscoelasticity of poly(ethylene terephthalate) (PET) is a well-known method to obtain foamable PET. The aim of this study is to prepare high melt strength PET and evaluate the influence of rheological properties of PET on the foaming behavior. For this purpose, pyromelliticdianhydride was used as the chain extender to modify a linear PET through melt reactive processing. The rheological properties of the unmodified and modified PETs were measured by a dynamic rheometer. Results showed that the modified PET had higher complex viscosity than the unmodified one. Furthermore, the batch foaming by using supercritical CO2 as a blowing agent was carried to evaluate the foamability of modified PETs. It was found that an enlarged foaming temperature window was obtained for modified PETs compared to unmodified PET. Moreover, the modified PETs foams exhibited higher expansion ratio, smaller cell size and higher cell density at high temperatures than the neat PET.
Low-count PET image restoration using sparse representation
NASA Astrophysics Data System (ADS)
Li, Tao; Jiang, Changhui; Gao, Juan; Yang, Yongfeng; Liang, Dong; Liu, Xin; Zheng, Hairong; Hu, Zhanli
2018-04-01
In the field of positron emission tomography (PET), reconstructed images are often blurry and contain noise. These problems are primarily caused by the low resolution of projection data. Solving this problem by improving hardware is an expensive solution, and therefore, we attempted to develop a solution based on optimizing several related algorithms in both the reconstruction and image post-processing domains. As sparse technology is widely used, sparse prediction is increasingly applied to solve this problem. In this paper, we propose a new sparse method to process low-resolution PET images. Two dictionaries (D1 for low-resolution PET images and D2 for high-resolution PET images) are learned from a group real PET image data sets. Among these two dictionaries, D1 is used to obtain a sparse representation for each patch of the input PET image. Then, a high-resolution PET image is generated from this sparse representation using D2. Experimental results indicate that the proposed method exhibits a stable and superior ability to enhance image resolution and recover image details. Quantitatively, this method achieves better performance than traditional methods. This proposed strategy is a new and efficient approach for improving the quality of PET images.
Xia, Yong; Eberl, Stefan; Wen, Lingfeng; Fulham, Michael; Feng, David Dagan
2012-01-01
Dual medical imaging modalities, such as PET-CT, are now a routine component of clinical practice. Medical image segmentation methods, however, have generally only been applied to single modality images. In this paper, we propose the dual-modality image segmentation model to segment brain PET-CT images into gray matter, white matter and cerebrospinal fluid. This model converts PET-CT image segmentation into an optimization process controlled simultaneously by PET and CT voxel values and spatial constraints. It is innovative in the creation and application of the modality discriminatory power (MDP) coefficient as a weighting scheme to adaptively combine the functional (PET) and anatomical (CT) information on a voxel-by-voxel basis. Our approach relies upon allowing the modality with higher discriminatory power to play a more important role in the segmentation process. We compared the proposed approach to three other image segmentation strategies, including PET-only based segmentation, combination of the results of independent PET image segmentation and CT image segmentation, and simultaneous segmentation of joint PET and CT images without an adaptive weighting scheme. Our results in 21 clinical studies showed that our approach provides the most accurate and reliable segmentation for brain PET-CT images. Copyright © 2011 Elsevier Ltd. All rights reserved.
40 CFR 63.1316 - PET and polystyrene affected sources-emissions control provisions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 12 2012-07-01 2011-07-01 true PET and polystyrene affected sources... and Resins § 63.1316 PET and polystyrene affected sources—emissions control provisions. (a) The owner or operator of an affected source producing PET using a continuous process shall comply with...
40 CFR 63.1316 - PET and polystyrene affected sources-emissions control provisions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 12 2013-07-01 2013-07-01 false PET and polystyrene affected sources... Polymers and Resins § 63.1316 PET and polystyrene affected sources—emissions control provisions. (a) The owner or operator of an affected source producing PET using a continuous process shall comply with...
40 CFR 63.1316 - PET and polystyrene affected sources-emissions control provisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 12 2014-07-01 2014-07-01 false PET and polystyrene affected sources... Polymers and Resins § 63.1316 PET and polystyrene affected sources—emissions control provisions. (a) The owner or operator of an affected source producing PET using a continuous process shall comply with...
Supercritical methanol for polyethylene terephthalate depolymerization: Observation using simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genta, Minoru; Iwaya, Tomoko; Sasaki, Mitsuru
2007-07-01
To apply PET depolymerization in supercritical methanol to commercial recycling, the benefits of supercritical methanol usage in PET depolymerization was investigated from the viewpoint of the reaction rate and energy demands. PET was depolymerized in a batch reactor at 573 K in supercritical methanol under 14.7 MPa and in vapor methanol under 0.98 MPa in our previous work. The main products of both reactions were the PET monomers of dimethyl terephthalate (DMT) and ethylene glycol (EG). The rate of PET depolymerization in supercritical methanol was faster than that of PET depolymerization in vapor methanol. This indicates supercritical fluid is beneficialmore » in reducing reaction time without the use of a catalyst. We depicted the simple process flow of PET depolymerization in supercritical methanol and in vapor methanol, and by simulation evaluated the total heat demand of each process. In this simulation, bis-hydroxyethyl terephthalate (BHET) was used as a model component of PET. The total heat demand of PET depolymerization in supercritical methanol was 2.35 x 10{sup 6} kJ/kmol Produced-DMT. That of PET depolymerization in vapor methanol was 2.84 x 10{sup 6} kJ/kmol Produced-DMT. The smaller total heat demand of PET depolymerization in supercritical methanol clearly reveals the advantage of using supercritical fluid in terms of energy savings.« less
Photo-detectors for time of flight positron emission tomography (ToF-PET).
Spanoudaki, Virginia Ch; Levin, Craig S
2010-01-01
We present the most recent advances in photo-detector design employed in time of flight positron emission tomography (ToF-PET). PET is a molecular imaging modality that collects pairs of coincident (temporally correlated) annihilation photons emitted from the patient body. The annihilation photon detector typically comprises a scintillation crystal coupled to a fast photo-detector. ToF information provides better localization of the annihilation event along the line formed by each detector pair, resulting in an overall improvement in signal to noise ratio (SNR) of the reconstructed image. Apart from the demand for high luminosity and fast decay time of the scintillation crystal, proper design and selection of the photo-detector and methods for arrival time pick-off are a prerequisite for achieving excellent time resolution required for ToF-PET. We review the two types of photo-detectors used in ToF-PET: photomultiplier tubes (PMTs) and silicon photo-multipliers (SiPMs) with a special focus on SiPMs.
Photo-Detectors for Time of Flight Positron Emission Tomography (ToF-PET)
Spanoudaki, Virginia Ch.; Levin⋆, Craig S.
2010-01-01
We present the most recent advances in photo-detector design employed in time of flight positron emission tomography (ToF-PET). PET is a molecular imaging modality that collects pairs of coincident (temporally correlated) annihilation photons emitted from the patient body. The annihilation photon detector typically comprises a scintillation crystal coupled to a fast photo-detector. ToF information provides better localization of the annihilation event along the line formed by each detector pair, resulting in an overall improvement in signal to noise ratio (SNR) of the reconstructed image. Apart from the demand for high luminosity and fast decay time of the scintillation crystal, proper design and selection of the photo-detector and methods for arrival time pick-off are a prerequisite for achieving excellent time resolution required for ToF-PET. We review the two types of photo-detectors used in ToF-PET: photomultiplier tubes (PMTs) and silicon photo-multipliers (SiPMs) with a special focus on SiPMs. PMID:22163482
Nishikido, Fumihiko; Tachibana, Atsushi; Obata, Takayuki; Inadama, Naoko; Yoshida, Eiji; Suga, Mikio; Murayama, Hideo; Yamaya, Taiga
2015-01-01
Recently, various types of PET-MRI systems have been developed by a number of research groups. However, almost all of the PET detectors used in these PET-MRI systems have no depth-of-interaction (DOI) capability. The DOI detector can reduce the parallax error and lead to improvement of the performance. We are developing a new PET-MRI system which consists of four-layer DOI detectors positioned close to the measured object to achieve high spatial resolution and high scanner sensitivity. As a first step, we are investigating influences the PET detector and the MRI system have on each other using a prototype four-layer DOI-PET detector. This prototype detector consists of a lutetium yttrium orthosilicate crystal block and a 4 × 4 multi-pixel photon counter array. The size of each crystal element is 1.45 mm × 1.45 mm × 4.5 mm, and the crystals are arranged in 6 × 6 elements × 4 layers with reflectors. The detector and some electric components are packaged in an aluminum shielding box. Experiments were carried out with 3.0 T MRI (GE, Signa HDx) and a birdcage-type RF coil. We demonstrated that the DOI-PET detector was normally operated in simultaneous measurements with no influence of the MRI measurement. A slight influence of the PET detector on the static magnetic field of the MRI was observed near the PET detector. The signal-to-noise ratio was decreased by presence of the PET detector due to environmental noise entering the MRI room through the cables, even though the PET detector was not powered up. On the other hand, no influence of electric noise from the PET detector in the simultaneous measurement on the MRI images was observed, even though the PET detector was positioned near the RF coil.
Kagna, Olga; Kurash, Marina; Ghanem-Zoubi, Nesrin; Keidar, Zohar; Israel, Ora
2017-11-01
18 F-FDG PET/CT plays a significant role in the assessment of various infectious processes. Patients with suspected or known sites of infection are often referred for 18 F-FDG imaging while already receiving antibiotic treatment. The current study assessed whether antibiotic therapy affected the detectability rate of infectious processes by 18 F-FDG PET/CT. Methods: A 5-y retrospective study of all adult patients who underwent 18 F-FDG PET/CT in search of a focal source of infection was performed. The presence, duration, and appropriateness of antibiotic treatment before 18 F-FDG imaging were recorded. Diagnosis of an infectious process was based on microbiologic or pathologic data as well as on clinical and radiologic follow-up. Results: Two hundred seventeen patients underwent 243 PET/CT studies in search of a focal source of infection and were included in the study. Sixty-seven studies were excluded from further analysis because of a final noninfectious etiology or lack of further follow-up or details regarding the antibiotic treatment. The final study population included 176 18 F-FDG PET/CT studies in 153 patients (107 men, 46 women; age range, 18-86 y). One hundred nineteen studies (68%) were performed in patients receiving antibiotic therapy for a range of 1-73 d. A diagnosis of infection was made in 107 true-positive cases (61%), including 63 studies (59%) in patients receiving appropriate antibiotic therapy started before the performance of the 18 F-FDG PET/CT study. There were 52 true-negative (29%) and 17 false-positive (10%) 18 F-FDG PET/CT studies. No false-negative results were found. Conclusion: 18 F-FDG PET/CT correctly identified foci of increased uptake compatible with infection in most patients, including all patients receiving appropriate antimicrobial therapy, with no false-negative cases. On the basis of the current study results, the administration of antibiotics appears to have no clinically significant impact on the diagnostic accuracy of 18 F-FDG PET/CT performed for evaluation of known or suspected infectious processes. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
In vivo evaluation of (64)Cu-labeled magnetic nanoparticles as a dual-modality PET/MR imaging agent.
Glaus, Charles; Rossin, Raffaella; Welch, Michael J; Bao, Gang
2010-04-21
A novel nanoparticle-based dual-modality positron emission tomograph/magnetic resonance imaging (PET/MRI) contrast agent was developed. The probe consisted of a superparamagnetic iron oxide (SPIO) core coated with PEGylated phospholipids. The chelator 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid (DOTA) was conjugated to PEG termini to allow labeling with positron-emitting (64)Cu. Radiolabeling with (64)Cu at high yield and high purity was readily achieved. The (64)Cu-SPIO probes produced strong MR and PET signals and were stable in mouse serum for 24 h at 37 degrees C. Biodistribution and in vivo PET/CT imaging studies of the probes showed a circulation half-life of 143 min and high initial blood retention with moderate liver uptake, making them an attractive contrast agent for disease studies.
Visualisation and Quantification of Transport in Barrier Rocks with Positron Emission Tomography
NASA Astrophysics Data System (ADS)
Kulenkampff, J.; Gajewski, C.; Gründig, M.; Lippmann-Pipke, J.; Mittmann, H.; Richter, M.; Wolf, M.
2009-04-01
In tight barrier rocks laboratory observation of radionuclide transport and determination of transport parameters is a demanding and interminable task, because of slow rates, small concentrations, and intricate chemical interactions. The validity of results from common laboratory methods, like flow- and diffusion experiments on small samples, is limited by the heterogeneity of the pathways and adherent upscaling issues, because homogeneous conditions have to be presumed for these input-output investigations. But nano-pores or micro-fractures could be present, which would provide pathways for heterogeneous transport processes. Transport properties of these pathways are most influential boundary conditions for reactions between fluid components and crystal surfaces. We propose Positron Emission Tomography (GEO-PET) as an appropriate method for direct observation of heterogeneous transport of radiotracers in tight material on the laboratory scale. With high-resolution PET scanners, which are common instruments of biomedical research ("small animal PET"), it is possible to determine the spatio-temporal distribution of the tracer activity with a resolution of almost 1 mm during about three periods of the tracer half-life (half-lives of some applicable PET tracers: 18F: 1.8 h, 124I: 4.2 days, 58Co: 70.8 days). The PET tracer is applied as ion in solution or as marker for compounds, like colloids. The most considerable difference between PET applications on geomaterial compared to biological tissue is the stronger attenuation and scattering of radiation because of the higher density of rock material. After travelling the positron attenuation length in dense material (about 1 mm), the positron annihilates in contact with an electron, transmitting two photons with 511 keV, propagating in antiparallel direction. The sample size of geomaterial is limited by the attenuation length of these photons. By applying an appropriate attenuation correction it is possible to investigate transport processes in rock cores with diameters up to 10 cm. Then at least 20% of the initial annihilation events are recorded as coincidences. However, one single photon of the annihilation radiation may be recorded while the other is absorbed; therefore, the signal to noise ratio is degraded by attenuation. Other sources of noise are scattered events, and the loss of one coinciding photon due to gaps between the detectors and other detection probability reasons. Also, the ratio of random coincidences increases with the noise level and impairs the image quality of the tomographic reconstruction. The reduction of these reconstruction artefacts by enhanced data correction methods is an important requirement for the development of the GEO-PET method. An other problem is the development of special methods for the quantitative evaluation of the extensive spatio-temporal data sets. We present results from high-resolution PET for tomographic process observation during transport of colloids and conservative tracers in macroscopic samples of clays, saline rocks, and granites (diameter 5 to 10 cm, length 5 to 20 cm). In most cases we observed localized zones of transport, even in a homogenized compressed clay sample. This reflects the non-representative sample volume, which probably is not achievable for any laboratory method. However, at least the PET tomograms reveal these deviations from representativeness. Up to now, break-through-curve parameters can be determined from spatially resolved tracer concentration measurements at distinct regions of the sample, without mandatory penetration of the complete sample extension. A multiscale model-based inversion scheme for continuous scale-dependent parameter determination is currently developed.
The Role of Chemistry in Positron Emission Tomography.
ERIC Educational Resources Information Center
Feliu, Anthony L.
1988-01-01
Investigates use of positron emission tomography (PET) to study in-vivo metabolic processes. Discusses methodology of PET and medical uses. Outlines the production of different radioisotopes used in PET radiotracers. Includes selected bibliography. (ML)
Bunka, Maruta; Müller, Cristina; Vermeulen, Christiaan; Haller, Stephanie; Türler, Andreas; Schibli, Roger; van der Meulen, Nicholas P
2016-04-01
PET is the favored nuclear imaging technique because of the high sensitivity and resolution it provides, as well as the possibility for quantification of accumulated radioactivity. (44)Sc (T1/2=3.97h, Eβ(+)=632keV) was recently proposed as a potentially interesting radionuclide for PET. The aim of this study was to investigate the image quality, which can be obtained with (44)Sc, and compare it with five other, frequently employed PET nuclides using Derenzo phantoms and a small-animal PET scanner. The radionuclides were produced at the medical cyclotron at CRS, ETH Zurich ((11)C, (18)F), at the Injector II research cyclotron at CRS, PSI ((64)Cu, (89)Zr, (44)Sc), as well as via a generator system ((68)Ga). Derenzo phantoms, containing solutions of each of these radionuclides, were scanned using a GE Healthcare eXplore VISTA small-animal PET scanner. The image resolution was determined for each nuclide by analysis of the intensity signal using the reconstructed PET data of a hole diameter of 1.3mm. The image quality of (44)Sc was compared to five frequently-used PET radionuclides. In agreement with the positron range, an increasing relative resolution was determined in the sequence of (68)Ga<(44)Sc<(89)Zr<(11)C<(64)Cu<(18)F. The performance of (44)Sc was in agreement with the theoretical expectations based on the energy of the emitted positrons. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kunze, Karl P; Nekolla, Stephan G; Rischpler, Christoph; Zhang, Shelley HuaLei; Hayes, Carmel; Langwieser, Nicolas; Ibrahim, Tareq; Laugwitz, Karl-Ludwig; Schwaiger, Markus
2018-04-19
Systematic differences with respect to myocardial perfusion quantification exist between DCE-MRI and PET. Using the potential of integrated PET/MRI, this study was conceived to compare perfusion quantification on the basis of simultaneously acquired 13 NH 3 -ammonia PET and DCE-MRI data in patients at rest and stress. Twenty-nine patients were examined on a 3T PET/MRI scanner. DCE-MRI was implemented in dual-sequence design and additional T 1 mapping for signal normalization. Four different deconvolution methods including a modified version of the Fermi technique were compared against 13 NH 3 -ammonia results. Cohort-average flow comparison yielded higher resting flows for DCE-MRI than for PET and, therefore, significantly lower DCE-MRI perfusion ratios under the common assumption of equal arterial and tissue hematocrit. Absolute flow values were strongly correlated in both slice-average (R 2 = 0.82) and regional (R 2 = 0.7) evaluations. Different DCE-MRI deconvolution methods yielded similar flow result with exception of an unconstrained Fermi method exhibiting outliers at high flows when compared with PET. Thresholds for Ischemia classification may not be directly tradable between PET and MRI flow values. Differences in perfusion ratios between PET and DCE-MRI may be lifted by using stress/rest-specific hematocrit conversion. Proper physiological constraints are advised in model-constrained deconvolution. © 2018 International Society for Magnetic Resonance in Medicine.
Simultaneous in vivo positron emission tomography and magnetic resonance imaging.
Catana, Ciprian; Procissi, Daniel; Wu, Yibao; Judenhofer, Martin S; Qi, Jinyi; Pichler, Bernd J; Jacobs, Russell E; Cherry, Simon R
2008-03-11
Positron emission tomography (PET) and magnetic resonance imaging (MRI) are widely used in vivo imaging technologies with both clinical and biomedical research applications. The strengths of MRI include high-resolution, high-contrast morphologic imaging of soft tissues; the ability to image physiologic parameters such as diffusion and changes in oxygenation level resulting from neuronal stimulation; and the measurement of metabolites using chemical shift imaging. PET images the distribution of biologically targeted radiotracers with high sensitivity, but images generally lack anatomic context and are of lower spatial resolution. Integration of these technologies permits the acquisition of temporally correlated data showing the distribution of PET radiotracers and MRI contrast agents or MR-detectable metabolites, with registration to the underlying anatomy. An MRI-compatible PET scanner has been built for biomedical research applications that allows data from both modalities to be acquired simultaneously. Experiments demonstrate no effect of the MRI system on the spatial resolution of the PET system and <10% reduction in the fraction of radioactive decay events detected by the PET scanner inside the MRI. The signal-to-noise ratio and uniformity of the MR images, with the exception of one particular pulse sequence, were little affected by the presence of the PET scanner. In vivo simultaneous PET and MRI studies were performed in mice. Proof-of-principle in vivo MR spectroscopy and functional MRI experiments were also demonstrated with the combined scanner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Z; Gong, G
2014-06-01
Purpose: To design an external marking body (EMB) that could be visible on computed tomography (CT), magnetic resonance (MR), positron emission tomography (PET) and single-photon emission computed tomography (SPECT) images and to investigate the use of the EMB for multiple medical images registration and fusion in the clinic. Methods: We generated a solution containing paramagnetic metal ions and iodide ions (CT'MR dual-visible solution) that could be viewed on CT and MR images and multi-mode image visible solution (MIVS) that could be obtained by mixing radioactive nuclear material. A globular plastic theca (diameter: 3–6 mm) that mothball the MIVS and themore » EMB was brought by filling MIVS. The EMBs were fixed on the patient surface and CT, MR, PET and SPECT scans were obtained. The feasibility of clinical application and the display and registration error of EMB among different image modalities were investigated. Results: The dual-visible solution was highly dense on CT images (HU>700). A high signal was also found in all MR scanning (T1, T2, STIR and FLAIR) images, and the signal was higher than subcutaneous fat. EMB with radioactive nuclear material caused a radionuclide concentration area on PET and SPECT images, and the signal of EMB was similar to or higher than tumor signals. The theca with MIVS was clearly visible on all the images without artifact, and the shape was round or oval with a sharp edge. The maximum diameter display error was 0.3 ± 0.2mm on CT and MRI images, and 1.0 ± 0.3mm on PET and SPECT images. In addition, the registration accuracy of the theca center among multi-mode images was less than 1mm. Conclusion: The application of EMB with MIVS improves the registration and fusion accuracy of multi-mode medical images. Furthermore, it has the potential to ameliorate disease diagnosis and treatment outcome.« less
Sub-band denoising and spline curve fitting method for hemodynamic measurement in perfusion MRI
NASA Astrophysics Data System (ADS)
Lin, Hong-Dun; Huang, Hsiao-Ling; Hsu, Yuan-Yu; Chen, Chi-Chen; Chen, Ing-Yi; Wu, Liang-Chi; Liu, Ren-Shyan; Lin, Kang-Ping
2003-05-01
In clinical research, non-invasive MR perfusion imaging is capable of investigating brain perfusion phenomenon via various hemodynamic measurements, such as cerebral blood volume (CBV), cerebral blood flow (CBF), and mean trasnit time (MTT). These hemodynamic parameters are useful in diagnosing brain disorders such as stroke, infarction and periinfarct ischemia by further semi-quantitative analysis. However, the accuracy of quantitative analysis is usually affected by poor signal-to-noise ratio image quality. In this paper, we propose a hemodynamic measurement method based upon sub-band denoising and spline curve fitting processes to improve image quality for better hemodynamic quantitative analysis results. Ten sets of perfusion MRI data and corresponding PET images were used to validate the performance. For quantitative comparison, we evaluate gray/white matter CBF ratio. As a result, the hemodynamic semi-quantitative analysis result of mean gray to white matter CBF ratio is 2.10 +/- 0.34. The evaluated ratio of brain tissues in perfusion MRI is comparable to PET technique is less than 1-% difference in average. Furthermore, the method features excellent noise reduction and boundary preserving in image processing, and short hemodynamic measurement time.
Huisingh, Carrie; Levitan, Emily B; Irvin, Marguerite R; Owsley, Cynthia; McGwin, Gerald
2016-03-01
Distracted driving is a major cause of motor vehicle collision (MVC) involvement. Pets have been identified as potential distraction to drivers, particularly in the front. This type of distraction could be worse for those with impairment in the cognitive aspects of visual processing. The purpose of this study is to evaluate the association between driving with pets and rates of motor vehicle collision involvement in a cohort of older drivers. A three-year prospective study was conducted in a population-based sample of 2000 licensed drivers aged 70 years and older. At the baseline visit, a trained interviewer asked participants about pet ownership, whether they drive with pets, how frequently, and where the pet sits in the vehicle. Motor vehicle collision (MVC) involvement during the three-year study period was obtained from the Alabama Department of Public Safety. At-fault status was determined by the police officer who arrived on the scene. Participants were followed until the earliest of death, driving cessation, or end of the study period. Poisson regression was used to calculate crude and adjusted rate ratios (RR) examining the association between pet ownership, presence of a pet in a vehicle, frequency of driving with a pet, and location of the pet inside with vehicle with any and at-fault MVC involvement. We examined whether the associations differed by higher order visual processing impairment status, as measured by Useful Field of View, Trails B, and Motor-free Visual Perception Test. Rates of crash involvement were similar for older adults who have ever driven with a pet compared to those who never drove with their pet (RR=1.15, 95% CI 0.76-1.75). Drivers who reported always or sometimes driving with their pet had higher MVC rates compared to pet owners who never drive with a pet, but this association was not statistically significant (RR=1.39, 95% CI 0.86-2.24). In terms of location, those reporting having a pet frequently ride in the front of the vehicle had similar rates of MVC involvement compared to those who did not drive with a pet in the front. A similar pattern of results was observed for at-fault MVCs. This association was not modified by visual processing impairment status. The current study demonstrates a positive but non-significant association between frequently driving with pets and MVC involvement. More research is needed, particularly on restraint use and whether the pet was in the car at the time of the crash, to help characterize the public safety benefit of regulations on driving with pets. Copyright © 2015 Elsevier Ltd. All rights reserved.
Twelve automated thresholding methods for segmentation of PET images: a phantom study.
Prieto, Elena; Lecumberri, Pablo; Pagola, Miguel; Gómez, Marisol; Bilbao, Izaskun; Ecay, Margarita; Peñuelas, Iván; Martí-Climent, Josep M
2012-06-21
Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical (18)F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.
Twelve automated thresholding methods for segmentation of PET images: a phantom study
NASA Astrophysics Data System (ADS)
Prieto, Elena; Lecumberri, Pablo; Pagola, Miguel; Gómez, Marisol; Bilbao, Izaskun; Ecay, Margarita; Peñuelas, Iván; Martí-Climent, Josep M.
2012-06-01
Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical 18F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.
Design study of dedicated brain PET with polyhedron geometry.
Shi, Han; Du, Dong; Xu, JianFeng; Su, Zhihong; Peng, Qiyu
2015-01-01
Despite being the conventional choice, whole body PET cameras with a 76 cm diameter ring are not the optimal means of human brain imaging. In fact, a dedicated brain PET with a better geometrical structure has the potential to achieve a higher sensitivity, a higher signal-to-noise ratio, and a better imaging performance. In this study, a polyhedron geometrical dedicated brain PET (a dodecahedron design) is compared to three other candidates via their geometrical efficiencies by calculating the Solid Angle Fractions (SAF); the three other candidates include a spherical cap design, a cylindrical design, and the conventional whole body PET. The spherical cap and the dodecahedron have an identical SAF that is 58.4% higher than that of a 30 cm diameter cylinder and 5.44 times higher than that of a 76 cm diameter cylinder. The conceptual polygon-shape detectors (including pentagon and hexagon detectors based on the PMT-light-sharing scheme instead of the conventional square-shaped block detector module) are presented for the polyhedron PET design. Monte Carlo simulations are performed in order to validate the detector decoding. The results show that crystals in a pentagon-shape detector can be successfully decoded by Anger Logic. The new detector designs support the polyhedron PET investigation.
PET Image Reconstruction Incorporating 3D Mean-Median Sinogram Filtering
NASA Astrophysics Data System (ADS)
Mokri, S. S.; Saripan, M. I.; Rahni, A. A. Abd; Nordin, A. J.; Hashim, S.; Marhaban, M. H.
2016-02-01
Positron Emission Tomography (PET) projection data or sinogram contained poor statistics and randomness that produced noisy PET images. In order to improve the PET image, we proposed an implementation of pre-reconstruction sinogram filtering based on 3D mean-median filter. The proposed filter is designed based on three aims; to minimise angular blurring artifacts, to smooth flat region and to preserve the edges in the reconstructed PET image. The performance of the pre-reconstruction sinogram filter prior to three established reconstruction methods namely filtered-backprojection (FBP), Maximum likelihood expectation maximization-Ordered Subset (OSEM) and OSEM with median root prior (OSEM-MRP) is investigated using simulated NCAT phantom PET sinogram as generated by the PET Analytical Simulator (ASIM). The improvement on the quality of the reconstructed images with and without sinogram filtering is assessed according to visual as well as quantitative evaluation based on global signal to noise ratio (SNR), local SNR, contrast to noise ratio (CNR) and edge preservation capability. Further analysis on the achieved improvement is also carried out specific to iterative OSEM and OSEM-MRP reconstruction methods with and without pre-reconstruction filtering in terms of contrast recovery curve (CRC) versus noise trade off, normalised mean square error versus iteration, local CNR versus iteration and lesion detectability. Overall, satisfactory results are obtained from both visual and quantitative evaluations.
Conteduca, V; Scarpi, E; Caroli, P; Salvi, S; Lolli, C; Burgio, S L; Menna, C; Schepisi, G; Testoni, S; Gurioli, G; Paganelli, G; Casadio, V; Matteucci, F; De Giorgi, U
2017-11-14
The association between choline uptake and androgen receptor (AR) expression is suggested by the upregulation of choline kinase-alpha in prostate cancer. Recently, detection of AR aberration in cell-free DNA as well as early 18F-fluorocholine positron emission tomography/computed tomography (FCH-PET/CT) were associated with outcome in metastatic castration-resistant prostate cancer (mCRPC) patients treated with abiraterone and enzalutamide. We aimed to make a direct comparison between circulating AR copy number (CN) and choline uptake at FCH-PET/CT. We analysed 80 mCRPC patients progressing after docetaxel treated with abiraterone (n = 47) or enzalutamide (n = 33). We analysed AR CN from plasma samples using digital PCR and Taqman CN assays and total lesion activity (TLA) and metabolic tumor volume (MTV) on FCH-PET/CT at baseline. A meaningful correlation was showed among AR gain and TLA/MTV compared to AR non-gained cases (P = 0.001 and P = 0.004, respectively), independently from type of treatment. Multivariate analysis revealed that AR CN and only TLA were associated with both shorter PFS (P < 0.0009 and P = 0.026, respectively) and OS (P < 0.031 and P = 0.039, respectively). AR gain appeared significantly correlated with choline uptake represented mainly by TLA. Further prospective studies are warranted to better address this pathway of AR-signalling and to identify multiplex biomarker strategies including plasma AR and FCH-PET/CT in mCRPC patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Bernardi, E., E-mail: elisabetta.debernardi@unimib.it; Ricotti, R.; Riboldi, M.
2016-02-15
Purpose: An innovative strategy to improve the sensitivity of positron emission tomography (PET)-based treatment verification in ion beam radiotherapy is proposed. Methods: Low counting statistics PET images acquired during or shortly after the treatment (Measured PET) and a Monte Carlo estimate of the same PET images derived from the treatment plan (Expected PET) are considered as two frames of a 4D dataset. A 4D maximum likelihood reconstruction strategy was adapted to iteratively estimate the annihilation events distribution in a reference frame and the deformation motion fields that map it in the Expected PET and Measured PET frames. The outputs generatedmore » by the proposed strategy are as follows: (1) an estimate of the Measured PET with an image quality comparable to the Expected PET and (2) an estimate of the motion field mapping Expected PET to Measured PET. The details of the algorithm are presented and the strategy is preliminarily tested on analytically simulated datasets. Results: The algorithm demonstrates (1) robustness against noise, even in the worst conditions where 1.5 × 10{sup 4} true coincidences and a random fraction of 73% are simulated; (2) a proper sensitivity to different kind and grade of mismatches ranging between 1 and 10 mm; (3) robustness against bias due to incorrect washout modeling in the Monte Carlo simulation up to 1/3 of the original signal amplitude; and (4) an ability to describe the mismatch even in presence of complex annihilation distributions such as those induced by two perpendicular superimposed ion fields. Conclusions: The promising results obtained in this work suggest the applicability of the method as a quantification tool for PET-based treatment verification in ion beam radiotherapy. An extensive assessment of the proposed strategy on real treatment verification data is planned.« less
NASA Astrophysics Data System (ADS)
Thomas, Benjamin A.; Cuplov, Vesna; Bousse, Alexandre; Mendes, Adriana; Thielemans, Kris; Hutton, Brian F.; Erlandsson, Kjell
2016-11-01
Positron emission tomography (PET) images are degraded by a phenomenon known as the partial volume effect (PVE). Approaches have been developed to reduce PVEs, typically through the utilisation of structural information provided by other imaging modalities such as MRI or CT. These methods, known as partial volume correction (PVC) techniques, reduce PVEs by compensating for the effects of the scanner resolution, thereby improving the quantitative accuracy. The PETPVC toolbox described in this paper comprises a suite of methods, both classic and more recent approaches, for the purposes of applying PVC to PET data. Eight core PVC techniques are available. These core methods can be combined to create a total of 22 different PVC techniques. Simulated brain PET data are used to demonstrate the utility of toolbox in idealised conditions, the effects of applying PVC with mismatched point-spread function (PSF) estimates and the potential of novel hybrid PVC methods to improve the quantification of lesions. All anatomy-based PVC techniques achieve complete recovery of the PET signal in cortical grey matter (GM) when performed in idealised conditions. Applying deconvolution-based approaches results in incomplete recovery due to premature termination of the iterative process. PVC techniques are sensitive to PSF mismatch, causing a bias of up to 16.7% in GM recovery when over-estimating the PSF by 3 mm. The recovery of both GM and a simulated lesion was improved by combining two PVC techniques together. The PETPVC toolbox has been written in C++, supports Windows, Mac and Linux operating systems, is open-source and publicly available.
Huisingh, Carrie; Levitan, Emily B.; Irvin, Marguerite R.; Owsley, Cynthia; McGwin, Gerald
2016-01-01
Objective Distracted driving is a major cause of motor vehicle collision (MVC) involvement. Pets have been identified as potential distraction to drivers, particularly in the front. This type of distraction could be worse for those with impairment in the cognitive aspects of visual processing. The purpose of this study is to evaluate the association between driving with pets and rates of motor vehicle collision involvementin a cohort of older drivers. Methods A three-year prospective was conducted in a population-based sample of 2000 licensed drivers aged 70 years and older. At the baseline visit, a trained interviewer asked participants about pet ownership, whether they drive with pets, how frequently, and where the pet sits in the vehicle. Motor vehicle collision (MVC) involvement during the three-year study period was obtained from the Alabama Department of Public Safety. At-fault status was determined by the police officer who arrived on the scene. Participants were followed until the earliest of death, driving cessation, or end of the study period. Poisson regression was used to calculate crude and adjusted rate ratios (RR) examining the association between pet ownership, presence of a pet in a vehicle, frequency of driving with a pet, and location of the pet inside with vehicle with any and at-fault MVC involvement. We examined whether the associations differed by higher order visual processing impairment status, as measured by Useful Field Of View, Trails B, and Motor-free Visual Perception Test. Results Rates of crash involvement were similar for older adults who have ever driven with a pet compared to those who never drove with their pet (RR=1.15, 95% CI 0.76-1.75). Drivers who reported always or sometimes driving with their pet had higherMVC rates compared topet owners who never drive with a pet, but this association was not statistically significant (RR=1.39, 95% CI 0.86-2.24). In terms of location, those reporting having a pet frequently ride in the front of the vehicle had similar rates of MVC involvement compared to those who did not drive with a pet in the front. A similar pattern of results was observed for at-fault MVCs. This association was not modified by visual processing impairment status. Conclusion The current study demonstrates a positive but non-significant association between frequently driving with pets and MVC involvement. More research is needed, particularly on restraint use and whether the pet was in the car at the time of the crash, to help characterize the public safety benefit of regulations on driving with pets. PMID:26774042
Martínez-Rovira, Immaculada; Boisgard, Raphaël; Pottier, Géraldine; Kuhnast, Bertrand; Jan, Sébastien
2016-01-01
The development of a reliable dose monitoring system in hadron therapy is essential in order to control the treatment plan delivery. Positron Emission Tomography (PET) is the only method used in clinics nowadays for quality assurance. However, the accuracy of this method is limited by the loss of signal due to the biological washout processes. Up to the moment, very few studies measured the washout processes and there is no database of washout data as a function of the tissue and radioisotope. One of the main difficulties is related to the complexity of such measurements, along with the limited time slots available in hadron therapy facilities. Thus, in this work, we proposed an alternative in vivo methodology for the measurement and modeling of the biological washout parameters without any radiative devices. It consists in the implementation of a point-like radioisotope source by direct injection on the tissues of interest and its measurement by means of high-resolution preclinical PET systems. In particular, the washout of 11C carbonate radioisotopes was assessed, considering that 11C is is the most abundant β+ emitter produced by carbon beams. 11C washout measurements were performed in several tissues of interest (brain, muscle and 9L tumor xenograf) in rodents (Wistar rat). Results show that the methodology presented is sensitive to the washout variations depending on the selected tissue. Finally, a first qualitative correlation between 11C tumor washout properties and tumor metabolism (via 18F-FDG tracer uptake) was found.
Heusch, Philipp; Köhler, Jens; Wittsack, Hans-Joerg; Heusner, Till A; Buchbender, Christian; Poeppel, Thorsten D; Nensa, Felix; Wetter, Axel; Gauler, Thomas; Hartung, Verena; Lanzman, Rotem S
2013-11-01
To assess the feasibility of non-Gaussian DWI as part of a FDG-PET/MRI protocol in patients with histologically proven non-small cell lung cancer. 15 consecutive patients with histologically proven NSCLC (mean age 61 ± 11 years) were included in this study and underwent whole-body FDG-PET/MRI following whole-body FDG-PET/CT. As part of the whole-body FDG-PET/MRI protocol, an EPI-sequence with 5 b-values (0, 100, 500, 1000 and 2000 s/mm(2)) was acquired for DWI of the thorax during free-breathing. Volume of interest (VOI) measurements were performed to determine the maximum and mean standardized uptake value (SUV(max); SUV(mean)). A region of interest (ROI) was manually drawn around the tumor on b=0 images and then transferred to the corresponding parameter maps to assess ADC(mono), D(app) and K(app). To assess the goodness of the mathematical fit R(2) was calculated for monoexponential and non-Gaussian analysis. Spearman's correlation coefficients were calculated to compare SUV values and diffusion coefficients. A Student's t-test was performed to compare the monoexponential and non-Gaussian diffusion fitting (R(2)). T staging was equal between FDG-PET/CT and FDG-PET/MRI in 12 of 15 patients. For NSCLC, mean ADC(mono) was 2.11 ± 1.24 × 10(-3) mm(2)/s, Dapp was 2.46 ± 1.29 × 10(-3) mm(2)/s and mean Kapp was 0.70 ± 0.21. The non-Gaussian diffusion analysis (R(2)=0.98) provided a significantly better mathematical fitting to the DWI signal decay than the monoexponetial analysis (R(2)=0.96) (p<0.001). SUV(max) and SUV(mean) of NSCLC was 13.5 ± 7.6 and 7.9 ± 4.3 for FDG-PET/MRI. ADC(mono) as well as Dapp exhibited a significant inverse correlation with the SUV(max) (ADC(mono): R=-0.67; p<0.01; Dapp: R=-0.69; p<0.01) as well as with SUV(mean) assessed by FDG-PET/MRI (ADC(mono): R=-0.66; p<0.01; Dapp: R=-0.69; p<0.01). Furthermore, Kapp exhibited a significant correlation with SUV(max) (R=0.72; p<0.05) and SUV(mean) as assessed by FDG-PET/MRI (R=0.71; p<0.005). Simultaneous PET and non-Gaussian diffusion acquisitions are feasible. Non-Gaussian diffusion parameters show a good correlation with SUV and might provide additional information beyond monoexponential ADC, especially as non-Gaussian diffusion exhibits better mathematical fitting to the decay of the diffusion signal than monoexponential DWI. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Manning, Kathryn Y.; Rajakumar, Nagalingam; Gómez, Francisco A.; Soddu, Andrea; Borrie, Michael J.
2017-01-01
Previous studies have demonstrated altered brain activity in Alzheimer's disease using task based functional MRI (fMRI), network based resting-state fMRI, and glucose metabolism from 18F fluorodeoxyglucose-PET (FDG-PET). Our goal was to define a novel indicator of neuronal activity based on a first-order textural feature of the resting state functional MRI (RS-fMRI) signal. Furthermore, we examined the association between this neuronal activity metric and glucose metabolism from 18F FDG-PET. We studied 15 normal elderly controls (NEC) and 15 probable Alzheimer disease (AD) subjects from the AD Neuroimaging Initiative. An independent component analysis was applied to the RS-fMRI, followed by template matching to identify neuronal components (NC). A regional brain activity measurement was constructed based on the variation of the RS-fMRI signal of these NC. The standardized glucose uptake values of several brain regions relative to the cerebellum (SUVR) were measured from partial volume corrected FDG-PET images. Comparing the AD and NEC groups, the mean brain activity metric was significantly lower in the accumbens, while the glucose SUVR was significantly lower in the amygdala and hippocampus. The RS-fMRI brain activity metric was positively correlated with cognitive measures and amyloid β1–42 cerebral spinal fluid levels; however, these did not remain significant following Bonferroni correction. There was a significant linear correlation between the brain activity metric and the glucose SUVR measurements. This proof of concept study demonstrates that this novel and easy to implement RS-fMRI brain activity metric can differentiate a group of healthy elderly controls from a group of people with AD. PMID:28582450
Flortaucipir tau PET imaging in semantic variant primary progressive aphasia.
Makaretz, Sara J; Quimby, Megan; Collins, Jessica; Makris, Nikos; McGinnis, Scott; Schultz, Aaron; Vasdev, Neil; Johnson, Keith A; Dickerson, Bradford C
2017-10-06
The semantic variant of primary progressive aphasia (svPPA) is typically associated with frontotemporal lobar degeneration (FTLD) with longTAR DNA-binding protein (TDP)-43-positive neuropil threads and dystrophic neurites (type C), and is only rarely due to a primary tauopathy or Alzheimer's disease. We undertook this study to investigate the localisation and magnitude of the presumed tau Positron Emission Tomography (PET) tracer [ 18 F]Flortaucipir (FTP; also known as T807 or AV1451) in patients with svPPA, hypothesising that most patients would not show tracer uptake different from controls. FTP and [ 11 C]Pittsburgh compound B PET imaging as well as MRI were performed in seven patients with svPPA and in 20 controls. FTP signal was analysed by visual inspection and by quantitative comparison to controls, with and without partial volume correction. All seven patients showed elevated FTP uptake in the anterior temporal lobe with a leftward asymmetry that was not observed in healthy controls. This elevated FTP signal, largely co-localised with atrophy, was evident on both visual inspection and quantitative cortical surface-based analysis. Five patients were amyloid negative, one was amyloid positive and one has an unknown amyloid status. In this series of patients with clinical profiles, structural MRI and amyloid PET imaging typical for svPPA, FTP signal was unexpectedly elevated with a spatial pattern localised to areas of atrophy. This raises questions about the possible off-target binding of this tracer to non-tau molecules associated with neurodegeneration. Further investigation with autopsy analysis will help illuminate the binding target(s) of FTP in cases of suspected FTLD-TDP neuropathology. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Kazemifar, Samaneh; Manning, Kathryn Y; Rajakumar, Nagalingam; Gómez, Francisco A; Soddu, Andrea; Borrie, Michael J; Menon, Ravi S; Bartha, Robert
2017-01-01
Previous studies have demonstrated altered brain activity in Alzheimer's disease using task based functional MRI (fMRI), network based resting-state fMRI, and glucose metabolism from 18F fluorodeoxyglucose-PET (FDG-PET). Our goal was to define a novel indicator of neuronal activity based on a first-order textural feature of the resting state functional MRI (RS-fMRI) signal. Furthermore, we examined the association between this neuronal activity metric and glucose metabolism from 18F FDG-PET. We studied 15 normal elderly controls (NEC) and 15 probable Alzheimer disease (AD) subjects from the AD Neuroimaging Initiative. An independent component analysis was applied to the RS-fMRI, followed by template matching to identify neuronal components (NC). A regional brain activity measurement was constructed based on the variation of the RS-fMRI signal of these NC. The standardized glucose uptake values of several brain regions relative to the cerebellum (SUVR) were measured from partial volume corrected FDG-PET images. Comparing the AD and NEC groups, the mean brain activity metric was significantly lower in the accumbens, while the glucose SUVR was significantly lower in the amygdala and hippocampus. The RS-fMRI brain activity metric was positively correlated with cognitive measures and amyloid β1-42 cerebral spinal fluid levels; however, these did not remain significant following Bonferroni correction. There was a significant linear correlation between the brain activity metric and the glucose SUVR measurements. This proof of concept study demonstrates that this novel and easy to implement RS-fMRI brain activity metric can differentiate a group of healthy elderly controls from a group of people with AD.
Simultaneous water activation and glucose metabolic rate imaging with PET
NASA Astrophysics Data System (ADS)
Verhaeghe, Jeroen; Reader, Andrew J.
2013-02-01
A novel imaging and signal separation strategy is proposed to be able to separate [18F]FDG and multiple [15O]H2O signals from a simultaneously acquired dynamic PET acquisition of the two tracers. The technique is based on the fact that the dynamics of the two tracers are very distinct. By adopting an appropriate bolus injection strategy and by defining tailored sets of basis functions that model either the FDG or water component, it is possible to separate the FDG and water signal. The basis functions are inspired from the spectral analysis description of dynamic PET studies and are defined as the convolution of estimated generating functions (GFs) with a set of decaying exponential functions. The GFs are estimated from the overall measured head curve, while the decaying exponential functions are pre-determined. In this work, the time activity curves (TACs) are modelled post-reconstruction but the model can be incorporated in a global 4D reconstruction strategy. Extensive PET simulation studies are performed considering single [18F]FDG and 6 [15O]H2O bolus injections for a total acquisition time of 75 min. The proposed method is evaluated at multiple noise levels and different parameters were estimated such as [18F]FDG uptake and blood flow estimated from the [15O]H2O component, requiring a full dynamic analysis of the two components, static images of [18F]FDG and the water components as well as [15O]H2O activation. It is shown that the resulting images and parametric values in ROIs are comparable to images obtained from separate imaging, illustrating the feasibility of simultaneous imaging of [18F]FDG and [15O]H2O components. For more information on this article, see medicalphysicsweb.org
NASA Astrophysics Data System (ADS)
Tai, Yuan-Chuan; Chatziioannou, Arion F.; Yang, Yongfeng; Silverman, Robert W.; Meadors, Ken; Siegel, Stefan; Newport, Danny F.; Stickel, Jennifer R.; Cherry, Simon R.
2003-06-01
MicroPET II is a second-generation animal PET scanner designed for high-resolution imaging of small laboratory rodents. The system consists of 90 scintillation detector modules arranged in three contiguous axial rings with a ring diameter of 16.0 cm and an axial length of 4.9 cm. Each detector module consists of a 14 × 14 array of lutetium oxyorthosilicate (LSO) crystals coupled to a multi-channel photomultiplier tube (MC-PMT) through a coherent optical fibre bundle. Each LSO crystal element measures 0.975 mm × 0.975 mm in cross section by 12.5 mm in length. A barium sulphate reflector material was used between LSO elements leading to a detector pitch of 1.15 mm in both axial and transverse directions. Fused optical fibre bundles were made from 90 µm diameter glass fibres with a numerical aperture of 0.56. Interstitial extramural absorber was added between the fibres to reduce optical cross talk. A charge-division readout circuit was implemented on printed circuit boards to decode the 196 crystals in each array from the outputs of the 64 anode signals of the MC-PMT. Electronics from Concorde Microsystems Inc. (Knoxville, TN) were used for signal amplification, digitization, event qualification, coincidence processing and data capture. Coincidence data were passed to a host PC that recorded events in list mode. Following acquisition, data were sorted into sinograms and reconstructed using Fourier rebinning and filtered backprojection algorithms. Basic evaluation of the system has been completed. The absolute sensitivity of the microPET II scanner was 2.26% at the centre of the field of view (CFOV) for an energy window of 250-750 keV and a timing window of 10 ns. The intrinsic spatial resolution of the detectors in the system averaged 1.21 mm full width at half maximum (FWHM) when measured with a 22Na point source 0.5 mm in diameter. Reconstructed image resolution ranged from 0.83 mm FWHM at the CFOV to 1.47 mm FWHM in the radial direction, 1.17 mm FWHM in the tangential direction and 1.42 mm FWHM in the axial direction at 1 cm offset from the CFOV. These values represent highly significant improvements over our earlier microPET scanner (approximately fourfold sensitivity increase and 25-35% improvement in linear spatial resolution under equivalent operating conditions) and are expected to be further improved when the system is fully optimized. This work was originally conducted at UCLA, Crump Institute for Molecular Imaging, and was continued and completed at UC Davis, Department of Biomedical Engineering.
Detection of pion-induced radioactivity by autoradiography and positron emission tomography.
Shirato, H; Harrison, R; Kornelsen, R O; Lam, G K; Gaffney, C C; Goodman, G B; Grochowski, E; Pate, B
1989-01-01
An autoradiographic technique incorporating a new imaging system was used to detect pion-induced radioactivity in Plexiglass and the results were compared with aluminium activation and PET imaging. The activity distribution in the region of the pion-stopping peak was similar in all three cases. Another large signal in the entrance region due to in-flight interactions [12C(pi-, pi- n) 11C] was detected by autoradiography and by PET but was not reflected in the aluminium activation measurements. This new technique is capable of defining the stopping region in phantoms with a better resolution than PET scanning and is useful as a complementary technique to other methods of pion dosimetry.
Cerenkov luminescence imaging of medical isotopes
Ruggiero, Alessandro; Holland, Jason P.; Lewis, Jason S.; Grimm, Jan
2011-01-01
The development of novel multimodality imaging agents and techniques represents the current frontier of research in the field of medical imaging science. However, the combination of nuclear tomography with optical techniques has yet to be established. Here, we report the use of the inherent optical emissions from the decay of radiopharmaceuticals for Cerenkov luminescence imaging (CLI) of tumors in vivo and correlate the results with those obtained from concordant immuno-PET studies. Methods In vitro phantom studies were used to validate the visible light emission observed from a range of radionuclides including the positron emitters 18F, 64Cu, 89Zr, and 124I; β-emitter 131I; and α-particle emitter 225Ac for potential use in CLI. The novel radiolabeled monoclonal antibody 89Zr-desferrioxamine B-[DFO-J591 for immuno-PET of prostate-specific membrane antigen (PSMA) expression was used to coregister and correlate the CLI signal observed with the immuno-PET images and biodistribution studies. Results Phantom studies confirmed that Cerenkov radiation can be observed from a range of positron-,β-, and α-emitting radionuclides using standard optical imaging devices. The change in light emission intensity versus time was concordant with radionuclide decay and was also found to correlate linearly with both the activity concentration and the measured PET signal (percentage injected dose per gram). In vivo studies conducted in male severe combined immune deficient mice bearing PSMA-positive, subcutaneous LNCaP tumors demonstrated that tumor-specific uptake of 89Zr-DFO-J591 could be visualized by both immuno-PET and CLI. Optical and immuno-PET signal intensities were found to increase over time from 24 to 96 h, and biodistribution studies were found to correlate well with both imaging modalities. Conclusion These studies represent the first, to our knowledge, quantitative assessment of CLI for measuring radiotracer uptake in vivo. Many radionuclides common to both nuclear tomographic imaging and radiotherapy have the potential to be used in CLI. The value of CLI lies in its ability to image radionuclides that do not emit either positrons or γ-rays and are, thus, unsuitable for use with current nuclear imaging modalities. Optical imaging of Cerenkov radiation emission shows excellent promise as a potential new imaging modality for the rapid, high-throughput screening of radiopharmaceuticals PMID:20554722
Yamamoto, Seiichi; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Ichikawa, Kazuhiro; Nakao, Motonao; Kato, Katsuhiko; Hatazawa, Jun
2016-10-01
Positron emission tomography (PET) has high sensitivity for imaging radioactive tracer distributions in subjects. However, it is not possible to image free radical distribution in a subject by PET. Since free radicals are quite reactive, they are related to many diseases, including but not limited to cancer, inflammation, strokes, and heart disease. The Overhauser enhanced magnetic resonance imaging (OMRI) is so far the only method that images free radical distribution in vivo. By combining PET and OMRI, a new hybrid imaging modality might be developed that can simultaneously image the radioactive tracer and free radical distributions. For this purpose, the authors developed a PET/OMRI combined system for small animals. The developed PET/OMRI system used an optical fiber-based PET system combined with a permanent magnet-based OMRI system. The optical fiber-based PET system uses flexible optical fiber bundles. Eight optical fiber-based block detectors were arranged in a 56 mm diameter ring to form a PET system. The LGSO blocks were located inside the field-of-view (FOV) of the OMRI, and the position sensitive photomultiplier tubes were positioned behind the OMRI to minimize the interference between the PET and the OMRI. The OMRI system used a 0.0165 T permanent magnet. The system has an electron spin resonance coil to enhance the MRI signal using the Overhauser effect to image the free radical in the FOV of the PET/OMRI system. The spatial resolution and sensitivity of the optical fiber-based PET system were 1.2 mm FWHM and 1.2% at the central FOV, respectively. The OMRI system imaged the distribution of a nitroxyl radical (NXR) solution. The interference between PET and OMRI was small. Simultaneous imaging of the positron radiotracer and the NXR solution was successfully conducted with the developed PET/OMRI system for phantom and small animal studies. The authors developed a PET/OMRI combined system with the potential to provide interesting new results in molecular imaging research, such as in vivo molecular and free radical distributions.
PD-L1 is an activation-independent marker of brown adipocytes.
Ingram, Jessica R; Dougan, Michael; Rashidian, Mohammad; Knoll, Marko; Keliher, Edmund J; Garrett, Sarah; Garforth, Scott; Blomberg, Olga S; Espinosa, Camilo; Bhan, Atul; Almo, Steven C; Weissleder, Ralph; Lodish, Harvey; Dougan, Stephanie K; Ploegh, Hidde L
2017-09-21
Programmed death ligand 1 (PD-L1) is expressed on a number of immune and cancer cells, where it can downregulate antitumor immune responses. Its expression has been linked to metabolic changes in these cells. Here we develop a radiolabeled camelid single-domain antibody (anti-PD-L1 VHH) to track PD-L1 expression by immuno-positron emission tomography (PET). PET-CT imaging shows a robust and specific PD-L1 signal in brown adipose tissue (BAT). We confirm expression of PD-L1 on brown adipocytes and demonstrate that signal intensity does not change in response to cold exposure or β-adrenergic activation. This is the first robust method of visualizing murine brown fat independent of its activation state.Current approaches to visualise brown adipose tissue (BAT) rely primarily on markers that reflect its metabolic activity. Here, the authors show that PD-L1 is expressed on brown adipocytes, does not change upon BAT activation, and that BAT volume in mice can be measured by PET-CT with a radiolabeled anti-PD-L1 antibody.
Automatic correction of dental artifacts in PET/MRI
Ladefoged, Claes N.; Andersen, Flemming L.; Keller, Sune. H.; Beyer, Thomas; Law, Ian; Højgaard, Liselotte; Darkner, Sune; Lauze, Francois
2015-01-01
Abstract. A challenge when using current magnetic resonance (MR)-based attenuation correction in positron emission tomography/MR imaging (PET/MRI) is that the MRIs can have a signal void around the dental fillings that is segmented as artificial air-regions in the attenuation map. For artifacts connected to the background, we propose an extension to an existing active contour algorithm to delineate the outer contour using the nonattenuation corrected PET image and the original attenuation map. We propose a combination of two different methods for differentiating the artifacts within the body from the anatomical air-regions by first using a template of artifact regions, and second, representing the artifact regions with a combination of active shape models and k-nearest-neighbors. The accuracy of the combined method has been evaluated using 25 F18-fluorodeoxyglucose PET/MR patients. Results showed that the approach was able to correct an average of 97±3% of the artifact areas. PMID:26158104
21 CFR 212.30 - What requirements must my facilities and equipment meet?
Code of Federal Regulations, 2014 CFR
2014-04-01
... could reasonably be expected to adversely affect the identity, strength, quality, or purity of a PET..., in-process materials, or PET drugs are not reactive, additive, or absorptive so as to alter the quality of PET drugs. ...
21 CFR 212.30 - What requirements must my facilities and equipment meet?
Code of Federal Regulations, 2012 CFR
2012-04-01
... could reasonably be expected to adversely affect the identity, strength, quality, or purity of a PET..., in-process materials, or PET drugs are not reactive, additive, or absorptive so as to alter the quality of PET drugs. ...
21 CFR 212.30 - What requirements must my facilities and equipment meet?
Code of Federal Regulations, 2013 CFR
2013-04-01
... could reasonably be expected to adversely affect the identity, strength, quality, or purity of a PET..., in-process materials, or PET drugs are not reactive, additive, or absorptive so as to alter the quality of PET drugs. ...
İntepe, Yavuz Selim; Metin, Bayram; Şahin, Sevinç; Kaya, Buğra; Okur, Aylin
2016-08-01
The objective of this study was to compare the results of transthoracic biopsies performed through the use of FDG PET/CT imaging with the results of transthoracic needle biopsy performed without using the FDG PET/CT imaging. The medical files of a total of 58 patients with pulmonary and mediastinal masses. A total of 20 patients, who were suspected of malignancy with the SUVmax value of over 2.5 in FDG PET/CT, underwent a biopsy process. Twelve patients with no suspicion of malignancy in accordance with CT images and with the SUVmax value below 2.5 underwent no biopsy procedure, and hence, they were excluded from the study. On the other hand, 26 patients directly went through a biopsy process with the suspicion of malignancy according to CT imaging, regardless of performing any FDG PET/CT imaging. According to the biopsy results, the number of the patients diagnosed with cancer was 20 (43.5%), while the number of non-cancerous patients was 26 (56.5%). When these findings were considered, it was determined that the sensitivity of the whole TTNB (transthoracic needle biopsy) was 80.8%, and the specificity was found as 100%. The positive predictive value of the whole TTNB was 100%, while its negative predictive value was found to be 80%. The sensitivity in TTNB performed together with FDG PET/CT was 90.9%, whereas the specificity was 100%. The positive predictive value of TTNB with FDG PET/CT was 100%, while its negative predictive value was found to be 81.8%. The sensitivity in TTNB performed without the use of FDG PET/CT was 73.3%, whereas the specificity was determined as 100%. Performing FDG PET/CT imaging process prior to a transthoracic biopsy as well as preferring FDG PET/CT for the spot on which the biopsy will be performed during the transthoracic biopsy procedure increases the rate of receiving accurate diagnosis.
Huang, Shih-Ying; Savic, Dragana; Yang, Jaewon; Shrestha, Uttam; Seo, Youngho
2014-11-01
Simultaneous imaging systems combining positron emission tomography (PET) and magnetic resonance imaging (MRI) have been actively investigated. A PET/MR imaging system (GE Healthcare) comprised of a time-of-flight (TOF) PET system utilizing silicon photomultipliers (SiPMs) and 3-tesla (3T) MRI was recently installed at our institution. The small-ring (60 cm diameter) TOF PET subsystem of this PET/MRI system can generate images with higher spatial resolution compared with conventional PET systems. We have examined theoretically and experimentally the effect of uniform magnetic fields on the spatial resolution for high-energy positron emitters. Positron emitters including 18 F, 124 I, and 68 Ga were simulated in water using the Geant4 Monte Carlo toolkit in the presence of a uniform magnetic field (0, 3, and 7 Tesla). The positron annihilation position was tracked to determine the 3D spatial distribution of the 511-keV gammy ray emission. The full-width at tenth maximum (FWTM) of the positron point spread function (PSF) was determined. Experimentally, 18 F and 68 Ga line source phantoms in air and water were imaged with an investigational PET/MRI system and a PET/CT system to investigate the effect of magnetic field on the spatial resolution of PET. The full-width half maximum (FWHM) of the line spread function (LSF) from the line source was determined as the system spatial resolution. Simulations and experimental results show that the in-plane spatial resolution was slightly improved at field strength as low as 3 Tesla, especially when resolving signal from high-energy positron emitters in the air-tissue boundary.
Added Value of Including Entire Brain on Body Imaging With FDG PET/MRI.
Franceschi, Ana M; Matthews, Robert; Bangiyev, Lev; Relan, Nand; Chaudhry, Ammar; Franceschi, Dinko
2018-05-24
FDG PET/MRI examination of the body is routinely performed from the skull base to the mid thigh. Many types of brain abnormalities potentially could be detected on PET/MRI if the head was included. The objective of this study was therefore to identify and characterize brain findings incidentally detected on PET/MRI of the body with the head included. We retrospectively identified 269 patients with FDG PET/MRI whole-body scans that included the head. PET/MR images of the brain were reviewed by a nuclear medicine physician and neuroradiologist, first individually and then concurrently. Both PET and MRI findings were identified, including abnormal FDG uptake, standardized uptake value, lesion size, and MRI signal characteristics. For each patient, relevant medical history and prior imaging were reviewed. Of the 269 subjects, 173 were women and 96 were men (mean age, 57.4 years). Only the initial PET/MR image of each patient was reviewed. A total of 37 of the 269 patients (13.8%) had abnormal brain findings noted on the PET/MRI whole-body scan. Sixteen patients (5.9%) had vascular disease, nine patients (3.3%) had posttherapy changes, and two (0.7%) had benign cystic lesions in the brain. Twelve patients (4.5%) had serious nonvascular brain abnormalities, including cerebral metastasis in five patients and pituitary adenomas in two patients. Only nine subjects (3.3%) had a new neurologic or cognitive symptom suggestive of a brain abnormality. Routine body imaging with FDG PET/MRI of the area from the skull base to the mid thigh may miss important brain abnormalities when the head is not included. The additional brain abnormalities identified on whole-body imaging may provide added clinical value to the management of oncology patients.
Dopamine D3 Receptor Availability Is Associated with Inflexible Decision Making.
Groman, Stephanie M; Smith, Nathaniel J; Petrullli, J Ryan; Massi, Bart; Chen, Lihui; Ropchan, Jim; Huang, Yiyun; Lee, Daeyeol; Morris, Evan D; Taylor, Jane R
2016-06-22
Dopamine D2/3 receptor signaling is critical for flexible adaptive behavior; however, it is unclear whether D2, D3, or both receptor subtypes modulate precise signals of feedback and reward history that underlie optimal decision making. Here, PET with the radioligand [(11)C]-(+)-PHNO was used to quantify individual differences in putative D3 receptor availability in rodents trained on a novel three-choice spatial acquisition and reversal-learning task with probabilistic reinforcement. Binding of [(11)C]-(+)-PHNO in the midbrain was negatively related to the ability of rats to adapt to changes in rewarded locations, but not to the initial learning. Computational modeling of choice behavior in the reversal phase indicated that [(11)C]-(+)-PHNO binding in the midbrain was related to the learning rate and sensitivity to positive, but not negative, feedback. Administration of a D3-preferring agonist likewise impaired reversal performance by reducing the learning rate and sensitivity to positive feedback. These results demonstrate a previously unrecognized role for D3 receptors in select aspects of reinforcement learning and suggest that individual variation in midbrain D3 receptors influences flexible behavior. Our combined neuroimaging, behavioral, pharmacological, and computational approach implicates the dopamine D3 receptor in decision-making processes that are altered in psychiatric disorders. Flexible decision-making behavior is dependent upon dopamine D2/3 signaling in corticostriatal brain regions. However, the role of D3 receptors in adaptive, goal-directed behavior has not been thoroughly investigated. By combining PET imaging with the D3-preferring radioligand [(11)C]-(+)-PHNO, pharmacology, a novel three-choice probabilistic discrimination and reversal task and computational modeling of behavior in rats, we report that naturally occurring variation in [(11)C]-(+)-PHNO receptor availability relates to specific aspects of flexible decision making. We confirm these relationships using a D3-preferring agonist, thus identifying a unique role of midbrain D3 receptors in decision-making processes. Copyright © 2016 the authors 0270-6474/16/366732-10$15.00/0.
Lethality of Rendang packaged in multilayer retortable pouch with sterilization process
NASA Astrophysics Data System (ADS)
Praharasti, A. S.; Kusumaningrum, A.; Frediansyah, A.; Nurhikmat, A.; Khasanah, Y.; Suprapedi
2017-01-01
Retort Pouch had become a choice to preserve foods nowadays, besides the used of the can. Both had their own advantages, and Retort Pouch became more popular for the reason of cheaper and easier to recycle. General Method usually used to estimate the lethality of commercial heat sterilization process. Lethality value wa s used for evaluating the efficacy of the thermal process. This study aimed to find whether different layers of pouch materials affect the lethality value and to find differences lethality in two types of multilayer retort pouch, PET/Aluminum Foil/Nylon/RCPP and PET/Nylon/Modified Aluminum/CPP. The result showed that the different layer arrangement was resulted different Sterilization Value (SV). PET/Nylon/Modified Aluminum/CPP had better heat penetration, implied by the higher value of lethality. PET/Nylon/Modified Aluminum/CPP had the lethality value of 6,24 minutes, whereas the lethality value of PET/Aluminum Foil/Nylon/RCPP was 3,54 minutes.
NASA Astrophysics Data System (ADS)
Fujihara, Kento; Emoto, Yusaku; Ito, Hiroshi; Kaneko, Naomi; Kaneko, Hideyuki; Kawai, Hideyuki; Kobayashi, Atsushi; Mizuno, Takahiro
2018-01-01
Existing PET (Positron Emission Tomography) systems make clear images in demonstration (measuring small PET reagent in pure water), however images in real diagnosis become unclear. The authors suspected that this problem was caused by Compton scattering in a detector. When PET systems observe plural photomultiplier tube outputs, an original emission point is regarded as centroid of the outputs. However, even if plural emission in Compton scattering occur, these systems calculate original point in the same way as single emission. Therefore, the authors considered that rejecting Compton scattering events makes PET systems much better, and made prototype counter. Main components of the prototype counter are plate-like high-growth-rate (HGR) La-GPS scintillators and wavelength shifting fibers (WLSF). HGR crystals grow 10 times as fast as a mono-crystal (a normal mono-crystal grows at 2 - 3 mm an hour). Thus, it includes microbubble and its transparency get worth. Consequently, HGR crystals usually are not used in radiation measuring instruments. However, this time they are used on the purpose. Because of their low transparency, scintillation lights come out right above and right under of emission position. Therefore, Compton scattering events is rejected easily. The prototype detector has an effective area of 300 by 300 square mm. The detector consists of 24 layers. One layer consists of HGR La-GPS scintillator of 1 mm thickness. Top and bottom surface of scintillator were covered by dual sheets of WLSF with a diameter of 0.2 mm. Sheets of WLSF on top and bottom of the scintillator make a right angle with each other, and measure X- and Y-components. Z-component is measured by difference of WLSF outputs between top and bottom. If plural layers output signals, this counter regards the event as Compton scattering event, and reject the event. Even if only a layer output signals, the event is rejected when number output signals from WLSF is more than 1.5 times of single emission. Material cost of this system is, 0.2M for HGR La-GPS, 0.03M for WLSF, 0.03M for 600 units of 6 by 6 mm SiPM's, 0.12M for 12000 units of 1 by 1 mm SiPM's, and 0.09M for 1800 channel of signal readout circuits. Considering total cost, price of this PET will be set 1M or less. This idea was confirmed with numerical simulation and experimentation. In experimentation, position resolution in photoelectric absorption was 0.2 mm, and minimum distance that this detector could recognize plural emission in Compton scattering was 1 mm. In parallel, three kinds of model were made: a prototype detector, all the signals readout method, and resistance delay method. Simulation setting was 2 MBq/L in normal tissue and 10 MBq/L in cancer. As a result of simulation, a prototype detector identified 3 mm cancer, however the others made unclear image and was not able to identified cancer. That is to say, the prototype detector is able to reject Compton scattering events and inexpensive. Therefore, whole-body PET system with this detector must diagnose cancer with a diameter of 3 mm or more and be priced 1M or less
Winter, René M; Leibfarth, Sara; Schmidt, Holger; Zwirner, Kerstin; Mönnich, David; Welz, Stefan; Schwenzer, Nina F; la Fougère, Christian; Nikolaou, Konstantin; Gatidis, Sergios; Zips, Daniel; Thorwarth, Daniela
2018-05-07
Functional PET/MRI has great potential to improve radiotherapy planning (RTP). However, data integration requires imaging with radiotherapy-specific patient positioning. Here, we investigated the feasibility and image quality of radiotherapy-customized PET/MRI in head-and-neck cancer (HNC) patients using a dedicated hardware setup. Ten HNC patients were examined with simultaneous PET/MRI before treatment, with radiotherapy and diagnostic scan setup, respectively. We tested feasibility of radiotherapy-specific patient positioning and compared the image quality between both setups by pairwise image analysis of 18 F-FDG-PET, T1/T2-weighted and diffusion-weighted MRI. For image quality assessment, similarity measures including average symmetric surface distance (ASSD) of PET and MR-based tumor contours, MR signal-to-noise ratio (SNR) and mean apparent diffusion coefficient (ADC) value were used. PET/MRI in radiotherapy position was feasible - all patients were successfully examined. ASSD (median/range) of PET and MR contours was 0.6 (0.4-1.2) and 0.9 (0.5-1.3) mm, respectively. For T2-weighted MRI, a reduced SNR of -26.2% (-39.0--11.7) was observed with radiotherapy setup. No significant difference in mean ADC was found. Simultaneous PET/MRI in HNC patients using radiotherapy positioning aids is clinically feasible. Though SNR was reduced, the image quality obtained with a radiotherapy setup meets RTP requirements and the data can thus be used for personalized RTP. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Aklan, B.; Jakoby, B. W.; Watson, C. C.; Braun, H.; Ritt, P.; Quick, H. H.
2015-06-01
A simulation toolkit, GATE (Geant4 Application for Tomographic Emission), was used to develop an accurate Monte Carlo (MC) simulation of a fully integrated 3T PET/MR hybrid imaging system (Siemens Biograph mMR). The PET/MR components of the Biograph mMR were simulated in order to allow a detailed study of variations of the system design on the PET performance, which are not easy to access and measure on a real PET/MR system. The 3T static magnetic field of the MR system was taken into account in all Monte Carlo simulations. The validation of the MC model was carried out against actual measurements performed on the PET/MR system by following the NEMA (National Electrical Manufacturers Association) NU 2-2007 standard. The comparison of simulated and experimental performance measurements included spatial resolution, sensitivity, scatter fraction, and count rate capability. The validated system model was then used for two different applications. The first application focused on investigating the effect of an extension of the PET field-of-view on the PET performance of the PET/MR system. The second application deals with simulating a modified system timing resolution and coincidence time window of the PET detector electronics in order to simulate time-of-flight (TOF) PET detection. A dedicated phantom was modeled to investigate the impact of TOF on overall PET image quality. Simulation results showed that the overall divergence between simulated and measured data was found to be less than 10%. Varying the detector geometry showed that the system sensitivity and noise equivalent count rate of the PET/MR system increased progressively with an increasing number of axial detector block rings, as to be expected. TOF-based PET reconstructions of the modeled phantom showed an improvement in signal-to-noise ratio and image contrast to the conventional non-TOF PET reconstructions. In conclusion, the validated MC simulation model of an integrated PET/MR system with an overall accuracy error of less than 10% can now be used for further MC simulation applications such as development of hardware components as well as for testing of new PET/MR software algorithms, such as assessment of point-spread function-based reconstruction algorithms.
Busk, Morten; Munk, Ole L; Jakobsen, Steen; Frøkiær, Jørgen; Overgaard, Jens; Horsman, Michael R
2017-05-01
Current [F-18]-fluorodeoxyglucose positron emission tomography (FDG-PET) procedures in tumor-bearing mice typically includes fasting, anesthesia, and standardized uptake value (SUV)-based quantification. Such procedures may be inappropriate for prolonged multiscan experiments. We hypothesize that normalization of tumor FDG retention relative to a suitable reference tissue may improve accuracy as this method may be less susceptible to uncontrollable day-to-day changes in blood glucose levels, physical activity, or unnoticed imperfect tail vein injections. Fed non-anesthetized tumor-bearing mice were administered FDG intravenously (i.v.) or intraperitoneally (i.p.) and PET scanned on consecutive days using a Mediso nanoScan PET/magnetic resonance imaging (MRI). Reproducibility of various PET-deduced measures of tumor FDG retention, including normalization to FDG signal in reference organs and a conventional SUV approach, was evaluated. Day-to-day variability in i.v. injected mice was lower when tumor FDG retention was normalized to brain signal (T/B), compared to normalization to other tissues or when using SUV-based normalization. Assessment of tissue radioactivity in dissected tissues confirmed the validity of PET-derived T/B ratios. Mean T/B and SUV values were similar in i.v. and i.p. administered animals, but SUV normalization was more robust in the i.p. group than in the i.v. group. Multimodality scanners allow tissue delineation and normalization of tumor FDG uptake relative to reference tissues. Normalization to brain, but not liver or kidney, improved scan reproducibility considerably and was superior to traditional SUV quantification in i.v. tracer-injected animals. Day-to-day variability in SUV's was lower in i.p. than in i.v. injected animals, and i.p. injections may therefore be a valuable alternative in prolonged rodent studies, where repeated vein injections are undesirable.
Baller, Erica B.; Wei, Shau-Ming; Kohn, Philip D.; Rubinow, David R.; Alarcón, Gabriela; Schmidt, Peter J.; Berman, Karen F.
2014-01-01
Objective To investigate the neural substrate of premenstrual dysphoric disorder (PMDD), the authors used [15O]H2O positron emission tomography (PET) regional cerebral blood flow (rCBF) and blood-oxygen-level-dependent (BOLD) functional MRI (fMRI) signal measurements during working memory in conjunction with a 6-month hormone manipulation protocol. Method PET and fMRI scans were obtained from women with prospectively confirmed PMDD and asymptomatic comparison subjects while they completed the n-back task during three hormone conditions: ovarian suppression induced by the gonadotropin-releasing hormone agonist leuprolide acetate, leuprolide plus estradiol, and leuprolide plus progesterone. Fifteen patients and 15 matched comparison subjects underwent PET imaging. Fourteen patients and 14 comparison subjects underwent fMRI. For each hormone condition, rCBF was measured with [15O]H2O PET, and BOLD signal was measured with fMRI, both during an n-back working memory paradigm. Global Assessment of Functioning Scale (GAF) scores and clinical characteristics were obtained for each patient before hormone manipulation, and symptoms were measured before and during the protocol. Results In both the PET and fMRI studies, a main effect of diagnosis was observed, with PMDD patients showing greater prefrontal activation than comparison subjects. In the patient group, the degree to which dorsolateral prefrontal cortex activation was abnormally increased correlated with several dimensions of disease: disability as indicated by GAF scores, age at symptom onset, duration of PMDD, and differences in pre- and postmenses PMDD symptoms. Conclusions Abnormal working memory activation in PMDD, specifically in the dorsolateral prefrontal cortex, is related to PMDD severity, symptoms, age at onset, and disease burden. These results support the clinical relevance of the findings and the proposal that dorsolateral prefrontal cortex dysfunction represents a substrate of risk for PMDD. The concordance of the fMRI and PET data attests to the neurobiological validity of the results. PMID:23361612
Baller, Erica B; Wei, Shau-Ming; Kohn, Philip D; Rubinow, David R; Alarcón, Gabriela; Schmidt, Peter J; Berman, Karen F
2013-03-01
To investigate the neural substrate of premenstrual dysphoric disorder (PMDD), the authors used [15O]H2O positron emission tomography (PET) regional cerebral blood flow (rCBF) and blood-oxygen-level-dependent (BOLD) functional MRI (fMRI) signal measurements during working memory in conjunction with a 6-month hormone manipulation protocol. PET and fMRI scans were obtained from women with prospectively confirmed PMDD and asymptomatic comparison subjects while they completed the n-back task during three hormone conditions: ovarian suppression induced by the gonadotropin-releasing hormone agonist leuprolide acetate, leuprolide plus estradiol, and leuprolide plus progesterone. Fifteen patients and 15 matched comparison subjects underwent PET imaging. Fourteen patients and 14 comparison subjects underwent fMRI. For each hormone condition, rCBF was measured with [15O]H2O PET, and BOLD signal was measured with fMRI, both during an n-back working memory paradigm. Global Assessment of Functioning Scale (GAF) scores and clinical characteristics were obtained for each patient before hormone manipulation, and symptoms were measured before and during the protocol. In both the PET and fMRI studies, a main effect of diagnosis was observed, with PMDD patients showing greater prefrontal activation than comparison subjects. In the patient group, the degree to which dorsolateral prefrontal cortex activation was abnormally increased correlated with several dimensions of disease: disability as indicated by GAF scores, age at symptom onset, duration of PMDD, and differences in pre- and postmenses PMDD symptoms. Abnormal working memory activation in PMDD, specifically in the dorsolateral prefrontal cortex, is related to PMDD severity, symptoms, age at onset, and disease burden. These results support the clinical relevance of the findings and the proposal that dorsolateral prefrontal cortex dysfunction represents a substrate of risk for PMDD. The concordance of the fMRI and PET data attests to the neurobiological validity of the results.
Kawai, Shigeyuki; Urban, Jörg; Piccolis, Manuele; Panchaud, Nicolas; De Virgilio, Claudio; Loewith, Robbie
2011-10-01
TORC1-dependent phosphorylation of Saccharomyces cerevisiae Sch9 was dramatically reduced upon exposure to a protonophore or in respiration-incompetent ρ(0) cells but not in respiration-incompetent pet mutants, providing important insight into the molecular mechanisms governing interorganellar signaling in general and retrograde signaling in particular.
Monte Carlo simulation of efficient data acquisition for an entire-body PET scanner
NASA Astrophysics Data System (ADS)
Isnaini, Ismet; Obi, Takashi; Yoshida, Eiji; Yamaya, Taiga
2014-07-01
Conventional PET scanners can image the whole body using many bed positions. On the other hand, an entire-body PET scanner with an extended axial FOV, which can trace whole-body uptake images at the same time and improve sensitivity dynamically, has been desired. The entire-body PET scanner would have to process a large amount of data effectively. As a result, the entire-body PET scanner has high dead time at a multiplex detector grouping process. Also, the entire-body PET scanner has many oblique line-of-responses. In this work, we study an efficient data acquisition for the entire-body PET scanner using the Monte Carlo simulation. The simulated entire-body PET scanner based on depth-of-interaction detectors has a 2016-mm axial field-of-view (FOV) and an 80-cm ring diameter. Since the entire-body PET scanner has higher single data loss than a conventional PET scanner at grouping circuits, the NECR of the entire-body PET scanner decreases. But, single data loss is mitigated by separating the axially arranged detector into multiple parts. Our choice of 3 groups of axially-arranged detectors has shown to increase the peak NECR by 41%. An appropriate choice of maximum ring difference (MRD) will also maintain the same high performance of sensitivity and high peak NECR while at the same time reduces the data size. The extremely-oblique line of response for large axial FOV does not contribute much to the performance of the scanner. The total sensitivity with full MRD increased only 15% than that with about half MRD. The peak NECR was saturated at about half MRD. The entire-body PET scanner promises to provide a large axial FOV and to have sufficient performance values without using the full data.
Preclinical Characterization of the Phosphodiesterase 10A PET Tracer [(11)C]MK-8193.
Hostetler, Eric D; Fan, Hong; Joshi, Aniket D; Zeng, Zhizhen; Eng, Waisi; Gantert, Liza; Holahan, Marie; Meng, Xianjun; Miller, Patricia; O'Malley, Stacey; Purcell, Mona; Riffel, Kerry; Salinas, Cristian; Williams, Mangay; Ma, Bennett; Buist, Nicole; Smith, Sean M; Coleman, Paul J; Cox, Christopher D; Flores, Brock A; Raheem, Izzat T; Cook, Jacquelynn J; Evelhoch, Jeffrey L
2016-08-01
A positron emission tomography (PET) tracer for the enzyme phosphodiesterase 10A (PDE10A) is desirable to guide the discovery and development of PDE10A inhibitors as potential therapeutics. The preclinical characterization of the PDE10A PET tracer [(11)C]MK-8193 is described. In vitro binding studies with [(3)H]MK-8193 were conducted in rat, monkey, and human brain tissue. PET studies with [(11)C]MK-8193 were conducted in rats and rhesus monkeys at baseline and following administration of a PDE10A inhibitor. [(3)H]MK-8193 is a high-affinity, selective PDE10A radioligand in rat, monkey, and human brain tissue. In vivo, [(11)C]MK-8193 displays rapid kinetics, low test-retest variability, and a large specific signal that is displaced by a structurally diverse PDE10A inhibitor, enabling the determination of pharmacokinetic/enzyme occupancy relationships. [(11)C]MK-8193 is a useful PET tracer for the preclinical characterization of PDE10A therapeutic candidates in rat and monkey. Further evaluation of [(11)C]MK-8193 in humans is warranted.
Triroc: A Multi-Channel SiPM Read-Out ASIC for PET/PET-ToF Application
NASA Astrophysics Data System (ADS)
Ahmad, Salleh; Fleury, Julien; de la Taille, Christophe; Seguin-Moreau, Nathalie; Dulucq, Frederic; Martin-Chassard, Gisele; Callier, Stephane; Thienpont, Damien; Raux, Ludovic
2015-06-01
Triroc is the latest addition to SiPM readout ASICs family developed at Weeroc, a start-up company from the Omega microelectronics group of IN2P3/CNRS. This chip is developed under the framework TRIMAGE European project which is aimed for building a cost effective tri-modal PET/MR/EEG brain scan. To ensure the flexibility and compatibility with any SiPM in the market, the ASIC is designed to be capable of accepting negative and positive polarity input signals. This 64-channel ASIC, is suitable for SiPM readout which requires high accuracy timing and charge measurements. Targeted applications would be PET prototyping with time-of-flight capability. Main features of Triroc includes high dynamic range ADC up to 2500 photoelectrons and TDC fine time binning of 40 ps. Triroc requires very minimal external components which means it is a good contender for compact multichannel PET prototyping. Triroc is designed by using AMS 0.35 μm SiGe technology and it was submitted in March 2014. The detail design of this chip will be presented.
Garrido, Victoria; Collantes, María; Barberán, Montserrat; Peñuelas, Iván; Arbizu, Javier; Amorena, Beatriz
2014-01-01
A mouse model was developed for in vivo monitoring of infection and the effect of antimicrobial treatment against Staphylococcus aureus biofilms, using the [18F]fluoro-deoxyglucose–MicroPET ([18F]FDG-MicroPET) image technique. In the model, sealed Vialon catheters were briefly precolonized with S. aureus strains ATCC 15981 or V329, which differ in cytotoxic properties and biofilm matrix composition. After subcutaneous implantation of catheters in mice, the S. aureus strain differences found in bacterial counts and the inflammatory reaction triggered were detected by the regular bacteriological and histological procedures and also by [18F]FDG-MicroPET image signal intensity determinations in the infection area and regional lymph node. Moreover, [18F]FDG-MicroPET imaging allowed the monitoring of the rifampin treatment effect, identifying the periods of controlled infection and those of reactivated infection due to the appearance of bacteria naturally resistant to rifampin. Overall, the mouse model developed may be useful for noninvasive in vivo determinations in studies on S. aureus biofilm infections and assessment of new therapeutic approaches. PMID:25155589
Dienel, Gerald A; Behar, Kevin L; Rothman, Douglas L
2017-12-01
Ceftriaxone stimulates astrocytic uptake of the excitatory neurotransmitter glutamate, and it is used to treat glutamatergic excitotoxicity that becomes manifest during many brain diseases. Ceftriaxone-stimulated glutamate transport was reported to drive signals underlying [ 18 F]fluorodeoxyglucose-positron emission tomographic ([ 18 F]FDG-PET) metabolic images of brain glucose utilization and interpreted as supportive of the notion of lactate shuttling from astrocytes to neurons. This study draws attention to critical roles of astrocytes in the energetics and imaging of brain activity, but the results are provocative because (1) the method does not have cellular resolution or provide information about downstream pathways of glucose metabolism, (2) neuronal and astrocytic [ 18 F]FDG uptake were not separately measured, and (3) strong evidence against lactate shuttling was not discussed. Evaluation of potential metabolic responses to ceftriaxone suggests lack of astrocytic specificity and significant contributions by pre- and postsynaptic neuronal compartments. Indeed, astrocytic glycolysis may not make a strong contribution to the [ 18 F]FDG-PET signal because partial or complete oxidation of one glutamate molecule on its uptake generates enough ATP to fuel uptake of 3 to 10 more glutamate molecules, diminishing reliance on glycolysis. The influence of ceftriaxone on energetics of glutamate-glutamine cycling must be determined in astrocytes and neurons to elucidate its roles in excitotoxicity treatment.
Potential of PET-MRI for imaging of non-oncologic musculoskeletal disease.
Kogan, Feliks; Fan, Audrey P; Gold, Garry E
2016-12-01
Early detection of musculoskeletal disease leads to improved therapies and patient outcomes, and would benefit greatly from imaging at the cellular and molecular level. As it becomes clear that assessment of multiple tissues and functional processes are often necessary to study the complex pathogenesis of musculoskeletal disorders, the role of multi-modality molecular imaging becomes increasingly important. New positron emission tomography-magnetic resonance imaging (PET-MRI) systems offer to combine high-resolution MRI with simultaneous molecular information from PET to study the multifaceted processes involved in numerous musculoskeletal disorders. In this article, we aim to outline the potential clinical utility of hybrid PET-MRI to these non-oncologic musculoskeletal diseases. We summarize current applications of PET molecular imaging in osteoarthritis (OA), rheumatoid arthritis (RA), metabolic bone diseases and neuropathic peripheral pain. Advanced MRI approaches that reveal biochemical and functional information offer complementary assessment in soft tissues. Additionally, we discuss technical considerations for hybrid PET-MR imaging including MR attenuation correction, workflow, radiation dose, and quantification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kemp, B.
2016-06-15
Digital radiography, CT, PET, and MR are complicated imaging modalities which are composed of many hardware and software components. These components work together in a highly coordinated chain of events with the intent to produce high quality images. Acquisition, processing and reconstruction of data must occur in a precise way for optimum image quality to be achieved. Any error or unexpected event in the entire process can produce unwanted pixel intensities in the final images which may contribute to visible image artifacts. The diagnostic imaging physicist is uniquely qualified to investigate and contribute to resolution of image artifacts. This coursemore » will teach the participant to identify common artifacts found clinically in digital radiography, CT, PET, and MR, to determine the causes of artifacts, and to make recommendations for how to resolve artifacts. Learning Objectives: Identify common artifacts found clinically in digital radiography, CT, PET and MR. Determine causes of various clinical artifacts from digital radiography, CT, PET and MR. Describe how to resolve various clinical artifacts from digital radiography, CT, PET and MR.« less
Photophysical and photochemical effects of UV and VUV photo-oxidation and photolysis on PET and PEN
NASA Astrophysics Data System (ADS)
Morgan, Andrew
Polyethylene Terephthalate (PET) is a widely used polymer in the bottling, packaging, and clothing industry. In recent years an increasing global demand for PET has taken place due to the Solar Disinfection (SODIS) process. SODIS is a method of sterilizing fresh water into drinkable water. The PET bottles are used in the process to contain the water during solar irradiation due to its highly transparent optical property. Alongside PET, polyethylene 2,6-napthalate (PEN) is used in bottling and flexible electronic applications. The surface of PEN would need to be modified to control the hydrophilicity and the interaction it exudes as a substrate. The UV light absorption properties of PET and PEN are of great importance for many applications, and thus needs to be studied along with its photochemical resistance. The optical and chemical nature of PET was studied as it was treated by UV photo-oxidation, photo-ozonation, and photolysis under atmospheric pressure. Another investigation was also used to study PEN and PET as they are treated by vacuum UV (VUV) photo-oxidation, VUV photolysis, and remote oxygen reactions. The extent of the photoreactions' effect into the depth of the polymers is examined as treatment conditions are changed. The different experimental methods established the rate of several competing photoreactions on PET and PEN during irradiance, and their effect on the optical quality of the polymers.
Frisch, Kim; Stimson, Damion H R; Venkatachalam, Taracad; Pierens, Gregory K; Keiding, Susanne; Reutens, David; Bhalla, Rajiv
2018-05-04
Enterohepatic circulation (EHC) of conjugated bile acids is an important physiological process crucial for regulation of intracellular concentrations of bile acids and their function as detergents and signal carriers. Only few bile acid-derived imaging agents have been synthesized and hitherto none have been evaluated for studies of EHC. We hypothesized that N-(4-[ 18 F]fluorobenzyl)cholylglycine ([ 18 F]FBCGly), a novel fluorine-18 labeled derivative of endogenous cholylglycine, would be a suitable tracer for PET of the EHC of conjugated bile acids, and we report here a radiosynthesis of [ 18 F]FBCGly and a proof-of-concept study by PET/MR in rats. A radiosynthesis of [ 18 F]FBCGly was developed based on reductive alkylation of glycine with 4-[ 18 F]fluorobenzaldehyde followed by coupling to cholic acid. [ 18 F]FBCGly was investigated in vivo by dynamic PET/MR in anesthetized rats; untreated or treated with cholyltaurine or rifampicin. Possible in vivo metabolites of [ 18 F]FBCGly were investigated by analysis of blood and bile samples, and the stability of [ 18 F]FBCGly towards enzymatic de-conjugation by Cholylglycine Hydrolase was tested in vitro. [ 18 F]FBCGly was produced with a radiochemical purity of 96% ± 1% and a non-decay corrected radiochemical yield of 1.0% ± 0.3% (mean ± SD; n = 12). PET/MR studies showed that i.v.-administrated [ 18 F]FBCGly underwent EHC within 40-60 min with a rapid transhepatic transport from blood to bile. In untreated rats, the radioactivity concentration of [ 18 F]FBCGly was approximately 15 times higher in bile than in liver tissue. Cholyltaurine and rifampicin inhibited the biliary secretion of [ 18 F]FBCGly. No fluorine-18 metabolites of [ 18 F]FBCGly were observed. We have developed a radiosynthesis of a novel fluorine-18 labeled bile acid derivative, [ 18 F]FBCGly, and shown by PET/MR that [ 18 F]FBCGly undergoes continuous EHC in rats without metabolizing. This novel tracer may prove useful in PET studies on the effect of drugs or diseases on the EHC of conjugated bile acids. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Stützer, K.; Bert, C.; Enghardt, W.; Helmbrecht, S.; Parodi, K.; Priegnitz, M.; Saito, N.; Fiedler, F.
2013-08-01
In-beam positron emission tomography (PET) has been proven to be a reliable technique in ion beam radiotherapy for the in situ and non-invasive evaluation of the correct dose deposition in static tumour entities. In the presence of intra-fractional target motion an appropriate time-resolved (four-dimensional, 4D) reconstruction algorithm has to be used to avoid reconstructed activity distributions suffering from motion-related blurring artefacts and to allow for a dedicated dose monitoring. Four-dimensional reconstruction algorithms from diagnostic PET imaging that can properly handle the typically low counting statistics of in-beam PET data have been adapted and optimized for the characteristics of the double-head PET scanner BASTEI installed at GSI Helmholtzzentrum Darmstadt, Germany (GSI). Systematic investigations with moving radioactive sources demonstrate the more effective reduction of motion artefacts by applying a 4D maximum likelihood expectation maximization (MLEM) algorithm instead of the retrospective co-registration of phasewise reconstructed quasi-static activity distributions. Further 4D MLEM results are presented from in-beam PET measurements of irradiated moving phantoms which verify the accessibility of relevant parameters for the dose monitoring of intra-fractionally moving targets. From in-beam PET listmode data sets acquired together with a motion surrogate signal, valuable images can be generated by the 4D MLEM reconstruction for different motion patterns and motion-compensated beam delivery techniques.
Comparison of DWI and PET/CT in evaluation of lymph node metastasis in uterine cancer
Kitajima, Kazuhiro; Yamasaki, Erena; Kaji, Yasushi; Murakami, Koji; Sugimura, Kazuro
2012-01-01
AIM: To investigate diffusion-weighted imaging (DWI) and positron emission tomography and computed tomography (PET/CT) with IV contrast for the preoperative evaluation of pelvic lymph node (LN) metastasis in uterine cancer. METHODS: Twenty-five patients with endometrial or cervical cancer who underwent both DWI and PET/CT before pelvic lymphadenectomy were included in this study. For area specific analysis, LNs were divided into eight regions: both common iliac, external iliac, internal iliac areas, and obturator areas. The classification for malignancy on DWI was a focally abnormal signal intensity in a location that corresponded to the LN chains on the T1WI and T2WI. The criterion for malignancy on PET/CT images was increased tracer uptake by the LN. RESULTS: A total of 36 pathologically positive LN areas were found in 9 patients. With DWI, the sensitivity, specificity, positive predictive value, negative predictive value and accuracy for detecting metastatic LNs on an LN area-by-area analysis were 83.3%, 51.2%, 27.3%, 93.3% and 57.0%, respectively, while the corresponding values for PET/CT were 38.9%, 96.3%, 70.0%, 87.8% and 86.0%. Differences in sensitivity, specificity and accuracy were significant (P < 0.0005). CONCLUSION: DWI showed higher sensitivity and lower specificity than PET/CT. Neither DWI nor PET/CT were sufficiently accurate to replace lymphadenectomy. PMID:22761980
Schreiner, Simon J.; Liu, Xinyang; Gietl, Anton F.; Wyss, Michael; Steininger, Stefanie C.; Gruber, Esmeralda; Treyer, Valerie; Meier, Irene B.; Kälin, Andrea M.; Leh, Sandra E.; Buck, Alfred; Nitsch, Roger M.; Pruessmann, Klaas P.; Hock, Christoph; Unschuld, Paul G.
2014-01-01
Background: Accumulation of amyloid beta (Aβ) may occur during healthy aging and is a risk factor for Alzheimer Disease (AD). While individual Aβ-accumulation can be measured non-invasively using Pittsburgh Compund-B positron emission tomography (PiB-PET), Fluid-attenuated inversion recovery (FLAIR) is a Magnetic Resonance Imaging (MRI) sequence, capable of indicating heterogeneous age-related brain pathologies associated with tissue-edema. In the current study cognitively normal elderly subjects were investigated for regional correlation of PiB- and FLAIR intensity. Methods: Fourteen healthy elderly subjects without known history of cognitive impairment received 11C-PiB-PET for estimation of regional Aβ-load. In addition, whole brain T1-MPRAGE and FLAIR-MRI sequences were acquired at high field strength of 7 Tesla (7T). Volume-normalized intensities of brain regions were assessed by applying an automated subcortical segmentation algorithm for spatial definition of brain structures. Statistical dependence between FLAIR- and PiB-PET intensities was tested using Spearman's rank correlation coefficient (rho), followed by Holm–Bonferroni correction for multiple testing. Results: Neuropsychological testing revealed normal cognitive performance levels in all participants. Mean regional PiB-PET and FLAIR intensities were normally distributed and independent. Significant correlation between volume-normalized PiB-PET signals and FLAIR intensities resulted for Hippocampus (right: rho = 0.86; left: rho = 0.84), Brainstem (rho = 0.85) and left Basal Ganglia vessel region (rho = 0.82). Conclusions: Our finding of a significant relationship between PiB- and FLAIR intensity mainly observable in the Hippocampus and Brainstem, indicates regional Aβ associated tissue-edema in cognitively normal elderly subjects. Further studies including clinical populations are necessary to clarify the relevance of our findings for estimating individual risk for age-related neurodegenerative processes such as AD. PMID:25249977
Selected PET radiomic features remain the same.
Tsujikawa, Tetsuya; Tsuyoshi, Hideaki; Kanno, Masafumi; Yamada, Shizuka; Kobayashi, Masato; Narita, Norihiko; Kimura, Hirohiko; Fujieda, Shigeharu; Yoshida, Yoshio; Okazawa, Hidehiko
2018-04-17
We investigated whether PET radiomic features are affected by differences in the scanner, scan protocol, and lesion location using 18 F-FDG PET/CT and PET/MR scans. SUV, TMR, skewness, kurtosis, entropy, and homogeneity strongly correlated between PET/CT and PET/MR images. SUVs were significantly higher on PET/MR 0-2 min and PET/MR 0-10 min than on PET/CT in gynecological cancer ( p = 0.008 and 0.008, respectively), whereas no significant difference was observed between PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min images in oral cavity/oropharyngeal cancer. TMRs on PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min increased in this order in gynecological cancer and oral cavity/oropharyngeal cancer. In contrast to conventional and histogram indices, 4 textural features (entropy, homogeneity, SRE, and LRE) were not significantly different between PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min images. 18 F-FDG PET radiomic features strongly correlated between PET/CT and PET/MR images. Dixon-based attenuation correction on PET/MR images underestimated tumor tracer uptake more significantly in oral cavity/oropharyngeal cancer than in gynecological cancer. 18 F-FDG PET textural features were affected less by differences in the scanner and scan protocol than conventional and histogram features, possibly due to the resampling process using a medium bin width. Eight patients with gynecological cancer and 7 with oral cavity/oropharyngeal cancer underwent a whole-body 18 F-FDG PET/CT scan and regional PET/MR scan in one day. PET/MR scans were performed for 10 minutes in the list mode, and PET/CT and 0-2 min and 0-10 min PET/MR images were reconstructed. The standardized uptake value (SUV), tumor-to-muscle SUV ratio (TMR), skewness, kurtosis, entropy, homogeneity, short-run emphasis (SRE), and long-run emphasis (LRE) were compared between PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min images.
SU-E-I-81: Targeting of HER2-Expressing Tumors with Dual PET-MR Imaging Probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, P; Peng, Y; Sun, M
2015-06-15
Purpose: The detection of human epidermal growth factor receptor type 2 (HER2) expression in malignant tumors provides important information influencing patient management. Radionuclide in vivo imaging of HER2 may permit the detection of HER2 in both primary tumors and metastases by a single noninvasive procedure. Trastuzumab, effective in about 15 % of women with breast cancer, downregulates signalling through the Akt/PI3K and MAPK pathways.These pathways modulate metabolism which can be monitored by positron emission tomography (PET) and magnetic resonance imaging (MRI). Methods: The relationship between response of HER2 overexpressing tumours and changes in imaging PET or SPECT and MRI willmore » be examined by a integrated bimodal imaging probe.Small (7 kDa) high-affinity anti-HER2 Affibody molecules and KCCYSL targeting peptide may be suitable tracers for visualization of HER2-expressing tumors. Peptide-conjugated iron oxide nanoparticles (Fe3O4 NPs) as MRI imaging and CB-TE2A as PET imaging are integrated into a single synthetic molecule in the HER2 positive cancer. Results: One of targeted contrast bimodal imaging probe agents was synthesized and evaluated to target HER2-expressing tumors in a HER2 positive rat model. We will report the newest results regarding the development of bimodal imaging probes. Conclusion: The preliminary results of the bimodal imaging probe presents high correlation of MRI signal and PET imaging intensity in vivo. This unique feature can hardly be obtained by single model contrast agents. It is envisioned that this bimodal agents can hold great potential for accurate detection of HER2-expressing tumors which are critical for clinical management of the disease.« less
A phantom design for assessment of detectability in PET imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wollenweber, Scott D., E-mail: scott.wollenweber@g
2016-09-15
Purpose: The primary clinical role of positron emission tomography (PET) imaging is the detection of anomalous regions of {sup 18}F-FDG uptake, which are often indicative of malignant lesions. The goal of this work was to create a task-configurable fillable phantom for realistic measurements of detectability in PET imaging. Design goals included simplicity, adjustable feature size, realistic size and contrast levels, and inclusion of a lumpy (i.e., heterogeneous) background. Methods: The detection targets were hollow 3D-printed dodecahedral nylon features. The exostructure sphere-like features created voids in a background of small, solid non-porous plastic (acrylic) spheres inside a fillable tank. The featuresmore » filled at full concentration while the background concentration was reduced due to filling only between the solid spheres. Results: Multiple iterations of feature size and phantom construction were used to determine a configuration at the limit of detectability for a PET/CT system. A full-scale design used a 20 cm uniform cylinder (head-size) filled with a fixed pattern of features at a contrast of approximately 3:1. Known signal-present and signal-absent PET sub-images were extracted from multiple scans of the same phantom and with detectability in a challenging (i.e., useful) range. These images enabled calculation and comparison of the quantitative observer detectability metrics between scanner designs and image reconstruction methods. The phantom design has several advantages including filling simplicity, wall-less contrast features, the control of the detectability range via feature size, and a clinically realistic lumpy background. Conclusions: This phantom provides a practical method for testing and comparison of lesion detectability as a function of imaging system, acquisition parameters, and image reconstruction methods and parameters.« less
Liu, Yan; Song, Yang; Madahar, Vipul; Liao, Jiayu
2012-03-01
Förster resonance energy transfer (FRET) technology has been widely used in biological and biomedical research, and it is a very powerful tool for elucidating protein interactions in either dynamic or steady state. SUMOylation (the process of SUMO [small ubiquitin-like modifier] conjugation to substrates) is an important posttranslational protein modification with critical roles in multiple biological processes. Conjugating SUMO to substrates requires an enzymatic cascade. Sentrin/SUMO-specific proteases (SENPs) act as an endopeptidase to process the pre-SUMO or as an isopeptidase to deconjugate SUMO from its substrate. To fully understand the roles of SENPs in the SUMOylation cycle, it is critical to understand their kinetics. Here, we report a novel development of a quantitative FRET-based protease assay for SENP1 kinetic parameter determination. The assay is based on the quantitative analysis of the FRET signal from the total fluorescent signal at acceptor emission wavelength, which consists of three components: donor (CyPet-SUMO1) emission, acceptor (YPet) emission, and FRET signal during the digestion process. Subsequently, we developed novel theoretical and experimental procedures to determine the kinetic parameters, k(cat), K(M), and catalytic efficiency (k(cat)/K(M)) of catalytic domain SENP1 toward pre-SUMO1. Importantly, the general principles of this quantitative FRET-based protease kinetic determination can be applied to other proteases. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Boisson, F.; Wimberley, C. J.; Lehnert, W.; Zahra, D.; Pham, T.; Perkins, G.; Hamze, H.; Gregoire, M.-C.; Reilhac, A.
2013-10-01
Monte Carlo-based simulation of positron emission tomography (PET) data plays a key role in the design and optimization of data correction and processing methods. Our first aim was to adapt and configure the PET-SORTEO Monte Carlo simulation program for the geometry of the widely distributed Inveon PET preclinical scanner manufactured by Siemens Preclinical Solutions. The validation was carried out against actual measurements performed on the Inveon PET scanner at the Australian Nuclear Science and Technology Organisation in Australia and at the Brain & Mind Research Institute and by strictly following the NEMA NU 4-2008 standard. The comparison of simulated and experimental performance measurements included spatial resolution, sensitivity, scatter fraction and count rates, image quality and Derenzo phantom studies. Results showed that PET-SORTEO reliably reproduces the performances of this Inveon preclinical system. In addition, imaging studies showed that the PET-SORTEO simulation program provides raw data for the Inveon scanner that can be fully corrected and reconstructed using the same programs as for the actual data. All correction techniques (attenuation, scatter, randoms, dead-time, and normalization) can be applied on the simulated data leading to fully quantitative reconstructed images. In the second part of the study, we demonstrated its ability to generate fast and realistic biological studies. PET-SORTEO is a workable and reliable tool that can be used, in a classical way, to validate and/or optimize a single PET data processing step such as a reconstruction method. However, we demonstrated that by combining a realistic simulated biological study ([11C]Raclopride here) involving different condition groups, simulation allows one also to assess and optimize the data correction, reconstruction and data processing line flow as a whole, specifically for each biological study, which is our ultimate intent.
MR-assisted PET motion correction in simultaneous PET/MRI studies of dementia subjects.
Chen, Kevin T; Salcedo, Stephanie; Chonde, Daniel B; Izquierdo-Garcia, David; Levine, Michael A; Price, Julie C; Dickerson, Bradford C; Catana, Ciprian
2018-03-08
Subject motion in positron emission tomography (PET) studies leads to image blurring and artifacts; simultaneously acquired magnetic resonance imaging (MRI) data provides a means for motion correction (MC) in integrated PET/MRI scanners. To assess the effect of realistic head motion and MR-based MC on static [ 18 F]-fluorodeoxyglucose (FDG) PET images in dementia patients. Observational study. Thirty dementia subjects were recruited. 3T hybrid PET/MR scanner where EPI-based and T 1 -weighted sequences were acquired simultaneously with the PET data. Head motion parameters estimated from high temporal resolution MR volumes were used for PET MC. The MR-based MC method was compared to PET frame-based MC methods in which motion parameters were estimated by coregistering 5-minute frames before and after accounting for the attenuation-emission mismatch. The relative changes in standardized uptake value ratios (SUVRs) between the PET volumes processed with the various MC methods, without MC, and the PET volumes with simulated motion were compared in relevant brain regions. The absolute value of the regional SUVR relative change was assessed with pairwise paired t-tests testing at the P = 0.05 level, comparing the values obtained through different MR-based MC processing methods as well as across different motion groups. The intraregion voxelwise variability of regional SUVRs obtained through different MR-based MC processing methods was also assessed with pairwise paired t-tests testing at the P = 0.05 level. MC had a greater impact on PET data quantification in subjects with larger amplitude motion (higher than 18% in the medial orbitofrontal cortex) and greater changes were generally observed for the MR-based MC method compared to the frame-based methods. Furthermore, a mean relative change of ∼4% was observed after MC even at the group level, suggesting the importance of routinely applying this correction. The intraregion voxelwise variability of regional SUVRs was also decreased using MR-based MC. All comparisons were significant at the P = 0.05 level. Incorporating temporally correlated MR data to account for intraframe motion has a positive impact on the FDG PET image quality and data quantification in dementia patients. 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.
40 CFR 63.1317 - PET and polystyrene affected sources-monitoring provisions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 12 2013-07-01 2013-07-01 false PET and polystyrene affected sources-monitoring provisions. 63.1317 Section 63.1317 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... and Resins § 63.1317 PET and polystyrene affected sources—monitoring provisions. Continuous process...
40 CFR 63.1317 - PET and polystyrene affected sources-monitoring provisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 12 2014-07-01 2014-07-01 false PET and polystyrene affected sources-monitoring provisions. 63.1317 Section 63.1317 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... and Resins § 63.1317 PET and polystyrene affected sources—monitoring provisions. Continuous process...
Diagnosis of non-osseous spinal metastatic disease: the role of PET/CT and PET/MRI.
Batouli, Ali; Braun, John; Singh, Kamal; Gholamrezanezhad, Ali; Casagranda, Bethany U; Alavi, Abass
2018-06-01
The spine is the third most common site for distant metastasis in cancer patients with approximately 70% of patients with metastatic cancer having spinal involvement. Positron emission tomography (PET), combined with computed tomography (CT) or magnetic resonance imaging (MRI), has been deeply integrated in modern clinical oncology as a pivotal component of the diagnostic work-up of patients with cancer. PET is able to diagnose several neoplastic processes before any detectable morphological changes can be identified by anatomic imaging modalities alone. In this review, we discuss the role of PET/CT and PET/MRI in the diagnostic management of non-osseous metastatic disease of the spinal canal. While sometimes subtle, recognizing such disease on FDG PET/CT and PET/MRI imaging done routinely in cancer patients can guide treatment strategies to potentially prevent irreversible neurological damage.
Wehner, J; Weissler, B; Dueppenbecker, P M; Gebhardt, P; Goldschmidt, B; Schug, D; Kiessling, F; Schulz, V
2015-03-21
PET (positron emission tomography) with its high sensitivity in combination with MRI (magnetic resonance imaging) providing anatomic information with good soft-tissue contrast is considered to be a promising hybrid imaging modality. However, the integration of a PET detector into an MRI system is a challenging task since the MRI system is a sensitive device for external disturbances and provides a harsh environment for electronic devices. Consequently, the PET detector has to be transparent for the MRI system and insensitive to electromagnetic disturbances. Due to the variety of MRI protocols imposing a wide range of requirements regarding the MR-compatibility, an extensive study is mandatory to reliably assess worst-case interference phenomena between the PET detector and the MRI scanner. We have built the first preclinical PET insert, designed for a clinical 3 T MRI, using digital silicon photomultipliers (digital SiPM, type DPC 3200-22, Philips Digital Photon Counting). Since no thorough interference investigation with this new digital sensor has been reported so far, we present in this work such a comprehensive MR-compatibility study. Acceptable distortion of the B0 field homogeneity (volume RMS = 0.08 ppm, peak-to-peak value = 0.71 ppm) has been found for the PET detector installed. The signal-to-noise ratio degradation stays between 2-15% for activities up to 21 MBq. Ghosting artifacts were only found for demanding EPI (echo planar imaging) sequences with read-out gradients in Z direction caused by additional eddy currents originated from the PET detector. On the PET side, interference mainly between the gradient system and the PET detector occurred: extreme gradient tests were executed using synthetic sequences with triangular pulse shape and maximum slew rate. Under this condition, a relative degradation of the energy (⩽10%) and timing (⩽15%) resolution was noticed. However, barely measurable performance deterioration occurred when morphological MRI protocols are conducted certifying that the overall PET performance parameters remain unharmed.
Imaging Alzheimer's disease pathophysiology with PET
Schilling, Lucas Porcello; Zimmer, Eduardo R.; Shin, Monica; Leuzy, Antoine; Pascoal, Tharick A.; Benedet, Andréa L.; Borelli, Wyllians Vendramini; Palmini, André; Gauthier, Serge; Rosa-Neto, Pedro
2016-01-01
ABSTRACT Alzheimer's disease (AD) has been reconceptualised as a dynamic pathophysiological process characterized by preclinical, mild cognitive impairment (MCI), and dementia stages. Positron emission tomography (PET) associated with various molecular imaging agents reveals numerous aspects of dementia pathophysiology, such as brain amyloidosis, tau accumulation, neuroreceptor changes, metabolism abnormalities and neuroinflammation in dementia patients. In the context of a growing shift toward presymptomatic early diagnosis and disease-modifying interventions, PET molecular imaging agents provide an unprecedented means of quantifying the AD pathophysiological process, monitoring disease progression, ascertaining whether therapies engage their respective brain molecular targets, as well as quantifying pharmacological responses. In the present study, we highlight the most important contributions of PET in describing brain molecular abnormalities in AD. PMID:29213438
40 CFR 63.1317 - PET and polystyrene affected sources-monitoring provisions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 12 2012-07-01 2011-07-01 true PET and polystyrene affected sources-monitoring provisions. 63.1317 Section 63.1317 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 63.1317 PET and polystyrene affected sources—monitoring provisions. Continuous process vents using a...
40 CFR 63.1317 - PET and polystyrene affected sources-monitoring provisions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 11 2011-07-01 2011-07-01 false PET and polystyrene affected sources-monitoring provisions. 63.1317 Section 63.1317 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 63.1317 PET and polystyrene affected sources—monitoring provisions. Continuous process vents using a...
40 CFR 63.1317 - PET and polystyrene affected sources-monitoring provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 11 2010-07-01 2010-07-01 true PET and polystyrene affected sources-monitoring provisions. 63.1317 Section 63.1317 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 63.1317 PET and polystyrene affected sources—monitoring provisions. Continuous process vents using a...
MRI-guided brain PET image filtering and partial volume correction
NASA Astrophysics Data System (ADS)
Yan, Jianhua; Chu-Shern Lim, Jason; Townsend, David W.
2015-02-01
Positron emission tomography (PET) image quantification is a challenging problem due to limited spatial resolution of acquired data and the resulting partial volume effects (PVE), which depend on the size of the structure studied in relation to the spatial resolution and which may lead to over or underestimation of the true tissue tracer concentration. In addition, it is usually necessary to perform image smoothing either during image reconstruction or afterwards to achieve a reasonable signal-to-noise ratio. Typically, an isotropic Gaussian filtering (GF) is used for this purpose. However, the noise suppression is at the cost of deteriorating spatial resolution. As hybrid imaging devices such as PET/MRI have become available, the complementary information derived from high definition morphologic images could be used to improve the quality of PET images. In this study, first of all, we propose an MRI-guided PET filtering method by adapting a recently proposed local linear model and then incorporate PVE into the model to get a new partial volume correction (PVC) method without parcellation of MRI. In addition, both the new filtering and PVC are voxel-wise non-iterative methods. The performance of the proposed methods were investigated with simulated dynamic FDG brain dataset and 18F-FDG brain data of a cervical cancer patient acquired with a simultaneous hybrid PET/MR scanner. The initial simulation results demonstrated that MRI-guided PET image filtering can produce less noisy images than traditional GF and bias and coefficient of variation can be further reduced by MRI-guided PET PVC. Moreover, structures can be much better delineated in MRI-guided PET PVC for real brain data.
Youland, Ryan S; Pafundi, Deanna H; Brinkmann, Debra H; Lowe, Val J; Morris, Jonathan M; Kemp, Bradley J; Hunt, Christopher H; Giannini, Caterina; Parney, Ian F; Laack, Nadia N
2018-05-01
Treatment-related changes can be difficult to differentiate from progressive glioma using MRI with contrast (CE). The purpose of this study is to compare the sensitivity and specificity of 18F-DOPA-PET and MRI in patients with recurrent glioma. Thirteen patients with MRI findings suspicious for recurrent glioma were prospectively enrolled and underwent 18F-DOPA-PET and MRI for neurosurgical planning. Stereotactic biopsies were obtained from regions of concordant and discordant PET and MRI CE, all within regions of T2/FLAIR signal hyperintensity. The sensitivity and specificity of 18F-DOPA-PET and CE were calculated based on histopathologic analysis. Receiver operating characteristic curve analysis revealed optimal tumor to normal (T/N) and SUVmax thresholds. In the 37 specimens obtained, 51% exhibited MRI contrast enhancement (M+) and 78% demonstrated 18F-DOPA-PET avidity (P+). Imaging characteristics included M-P- in 16%, M-P+ in 32%, M+P+ in 46% and M+P- in 5%. Histopathologic review of biopsies revealed grade II components in 16%, grade III in 43%, grade IV in 30% and no tumor in 11%. MRI CE sensitivity for recurrent tumor was 52% and specificity was 50%. PET sensitivity for tumor was 82% and specificity was 50%. A T/N threshold > 2.0 altered sensitivity to 76% and specificity to 100% and SUVmax > 1.36 improved sensitivity and specificity to 94 and 75%, respectively. 18F-DOPA-PET can provide increased sensitivity and specificity compared with MRI CE for visualizing the spatial distribution of recurrent gliomas. Future studies will incorporate 18F-DOPA-PET into re-irradiation target volume delineation for RT planning.
Barthélémy, E; Spyropoulos, D; Milana, M-R; Pfaff, K; Gontard, N; Lampi, E; Castle, L
2014-01-01
The development of a scheme for the safety evaluation of mechanical recycling processes for polyethylene terephthalate (PET) is described. The starting point is the adoption of a threshold of toxicological concern such that migration from the recycled PET should not give rise to a dietary exposure exceeding 0.0025 μg kg(-1) bw day(-1), the exposure threshold value for chemicals with structural alerts raising concern for potential genotoxicity, below which the risk to human health would be negligible. It is practically impossible to test every batch of incoming recovered PET and every production batch of recycled PET for all the different chemical contaminants that could theoretically arise. Consequently, the principle of the safety evaluation is to measure the cleaning efficiency of a recycling process by using a challenge test with surrogate contaminants. This cleaning efficiency is then applied to reduce a reference contamination level for post-consumer PET, conservatively set at 3 mg kg(-1) PET for a contaminant resulting from possible misuse by consumers. The resulting residual concentration of each contaminant in recycled PET is used in conservative migration models to calculate migration levels, which are then used along with food consumption data to give estimates of potential dietary exposure. The default scenario, when the recycled PET is intended for general use, is that of an infant weighing 5 kg and consuming every day powdered infant formula reconstituted with 0.75 L of water coming from water bottles manufactured with 100% recycled PET. According to this scenario, it can be derived that the highest concentration of a substance in water that would ensure that the dietary exposure of 0.0025 µg kg(-1) bw day(-1) is not exceeded, is 0.017 μg kg(-1) food. The maximum residual content that would comply with this migration limit depends on molecular weight and is in the range 0.09-0.32 mg kg(-1) PET for the typical surrogate contaminants.
MAP Reconstruction for Fourier Rebinned TOF-PET Data
Bai, Bing; Lin, Yanguang; Zhu, Wentao; Ren, Ran; Li, Quanzheng; Dahlbom, Magnus; DiFilippo, Frank; Leahy, Richard M.
2014-01-01
Time-of-flight (TOF) information improves signal to noise ratio in Positron Emission Tomography (PET). Computation cost in processing TOF-PET sinograms is substantially higher than for nonTOF data because the data in each line of response is divided among multiple time of flight bins. This additional cost has motivated research into methods for rebinning TOF data into lower dimensional representations that exploit redundancies inherent in TOF data. We have previously developed approximate Fourier methods that rebin TOF data into either 3D nonTOF or 2D nonTOF formats. We refer to these methods respectively as FORET-3D and FORET-2D. Here we describe maximum a posteriori (MAP) estimators for use with FORET rebinned data. We first derive approximate expressions for the variance of the rebinned data. We then use these results to rescale the data so that the variance and mean are approximately equal allowing us to use the Poisson likelihood model for MAP reconstruction. MAP reconstruction from these rebinned data uses a system matrix in which the detector response model accounts for the effects of rebinning. Using these methods we compare performance of FORET-2D and 3D with TOF and nonTOF reconstructions using phantom and clinical data. Our phantom results show a small loss in contrast recovery at matched noise levels using FORET compared to reconstruction from the original TOF data. Clinical examples show FORET images that are qualitatively similar to those obtained from the original TOF-PET data but a small increase in variance at matched resolution. Reconstruction time is reduced by a factor of 5 and 30 using FORET3D+MAP and FORET2D+MAP respectively compared to 3D TOF MAP, which makes these methods attractive for clinical applications. PMID:24504374
Presotto, L; Bettinardi, V; De Bernardi, E; Belli, M L; Cattaneo, G M; Broggi, S; Fiorino, C
2018-06-01
The analysis of PET images by textural features, also known as radiomics, shows promising results in tumor characterization. However, radiomic metrics (RMs) analysis is currently not standardized and the impact of the whole processing chain still needs deep investigation. We characterized the impact on RM values of: i) two discretization methods, ii) acquisition statistics, and iii) reconstruction algorithm. The influence of tumor volume and standardized-uptake-value (SUV) on RM was also investigated. The Chang-Gung-Image-Texture-Analysis (CGITA) software was used to calculate 39 RMs using phantom data. Thirty noise realizations were acquired to measure statistical effect size indicators for each RM. The parameter η 2 (fraction of variance explained by the nuisance factor) was used to assess the effect of categorical variables, considering η 2 < 20% and 20% < η 2 < 40% as representative of a "negligible" and a "small" dependence respectively. The Cohen's d was used as discriminatory power to quantify the separation of two distributions. We found the discretization method based on fixed-bin-number (FBN) to outperform the one based on fixed-bin-size in units of SUV (FBS), as the latter shows a higher SUV dependence, with 30 RMs showing η 2 > 20%. FBN was also less influenced by the acquisition and reconstruction setup:with FBN 37 RMs had η 2 < 40%, only 20 with FBS. Most RMs showed a good discriminatory power among heterogeneous PET signals (for FBN: 29 out of 39 RMs with d > 3). For RMs analysis, FBN should be preferred. A group of 21 RMs was suggested for PET radiomics analysis. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Liang, Yicheng; Peng, Hao
2015-02-07
Depth-of-interaction (DOI) poses a major challenge for a PET system to achieve uniform spatial resolution across the field-of-view, particularly for small animal and organ-dedicated PET systems. In this work, we implemented an analytical method to model system matrix for resolution recovery, which was then incorporated in PET image reconstruction on a graphical processing unit platform, due to its parallel processing capacity. The method utilizes the concepts of virtual DOI layers and multi-ray tracing to calculate the coincidence detection response function for a given line-of-response. The accuracy of the proposed method was validated for a small-bore PET insert to be used for simultaneous PET/MR breast imaging. In addition, the performance comparisons were studied among the following three cases: 1) no physical DOI and no resolution modeling; 2) two physical DOI layers and no resolution modeling; and 3) no physical DOI design but with a different number of virtual DOI layers. The image quality was quantitatively evaluated in terms of spatial resolution (full-width-half-maximum and position offset), contrast recovery coefficient and noise. The results indicate that the proposed method has the potential to be used as an alternative to other physical DOI designs and achieve comparable imaging performances, while reducing detector/system design cost and complexity.
Macis, Giuseppe; Di Giovanni, Silvia; Di Franco, Davide; Bonomo, Lorenzo
2013-01-01
The future approach of diagnostic imaging in urology follows the technological progress, which made the visualization of in vivo molecular processes possible. From anatomo-morphological diagnostic imaging and through functional imaging molecular radiology is reached. Based on molecular probes, imaging is aimed at assessing the in vivo molecular processes, their physiology and function at cellular level. The future imaging will investigate the complex tumor functioning as metabolism, aerobic glycolysis in particular, angiogenesis, cell proliferation, metastatic potential, hypoxia, apoptosis and receptors expressed by neoplastic cells. Methods for performing molecular radiology are CT, MRI, PET-CT, PET-MRI, SPECT and optical imaging. Molecular ultrasound combines technological advancement with targeted contrast media based on microbubbles, this allowing the selective registration of microbubble signal while that of stationary tissues is suppressed. An experimental study was carried out where the ultrasound molecular probe BR55 strictly bound to prostate tumor results in strong enhancement in the early phase after contrast, this contrast being maintained in the late phase. This late enhancement is markedly significant for the detection of prostatic cancer foci and to guide the biopsy sampling. The 124I-cG250 molecular antibody which is strictly linked to cellular carbonic anhydrase IX of clear cell renal carcinoma, allows the acquisition of diagnostic PET images of clear cell renal carcinoma without biopsy. This WG-250 (RENCAREX) antibody was used as a therapy in metastatic clear cell renal carcinoma. Future advancements and applications will result in early cancer diagnosis, personalized therapy that will be specific according to the molecular features of cancer and leading to the development of catheter-based multichannel molecular imaging devices for cystoscopy-based molecular imaging diagnosis and intervention.
Watson, Jeanne C; Bedard, Danielle L
2006-02-01
The authors compared clients' emotional processing in good and bad outcome cases in cognitive behavioral therapy (CBT) and process-experiential therapy (PET) and investigated whether clients' emotional processing increases over the course of therapy. Twenty minutes from each of 3 sessions from 40 clients were rated on the Experiencing Scale. A 2x2x3 analysis of variance showed a significant difference between outcome and therapy groups, with clients in the good outcome and PET groups showing significantly higher levels of emotional processing than those in the poor outcome and CBT groups, respectively. Clients' level of emotional processing significantly increased from the beginning to the midpoint of therapy. The results indicate that CBT clients are more distant and disengaged from their emotional experience than clients in PET. Copyright (c) 2006 APA, all rights reserved.
Hybrid charge division multiplexing method for silicon photomultiplier based PET detectors
NASA Astrophysics Data System (ADS)
Park, Haewook; Ko, Guen Bae; Lee, Jae Sung
2017-06-01
Silicon photomultiplier (SiPM) is widely utilized in various positron emission tomography (PET) detectors and systems. However, the individual recording of SiPM output signals is still challenging owing to the high granularity of the SiPM; thus, charge division multiplexing is commonly used in PET detectors. Resistive charge division method is well established for reducing the number of output channels in conventional multi-channel photosensors, but it degrades the timing performance of SiPM-based PET detectors by yielding a large resistor-capacitor (RC) constant. Capacitive charge division method, on the other hand, yields a small RC constant and provides a faster timing response than the resistive method, but it suffers from an output signal undershoot. Therefore, in this study, we propose a hybrid charge division method which can be implemented by cascading the parallel combination of a resistor and a capacitor throughout the multiplexing network. In order to compare the performance of the proposed method with the conventional methods, a 16-channel Hamamatsu SiPM (S11064-050P) was coupled with a 4 × 4 LGSO crystal block (3 × 3 × 20 mm3) and a 9 × 9 LYSO crystal block (1.2 × 1.2 × 10 mm3). In addition, we tested a time-over-threshold (TOT) readout using the digitized position signals to further demonstrate the feasibility of the time-based readout of multiplexed signals based on the proposed method. The results indicated that the proposed method exhibited good energy and timing performance, thus inheriting only the advantages of conventional resistive and capacitive methods. Moreover, the proposed method showed excellent pulse shape uniformity that does not depend on the position of the interacted crystal. Accordingly, we can conclude that the hybrid charge division method is useful for effectively reducing the number of output channels of the SiPM array.
WHOLE BODY NONRIGID CT-PET REGISTRATION USING WEIGHTED DEMONS.
Suh, J W; Kwon, Oh-K; Scheinost, D; Sinusas, A J; Cline, Gary W; Papademetris, X
2011-03-30
We present a new registration method for whole-body rat computed tomography (CT) image and positron emission tomography (PET) images using a weighted demons algorithm. The CT and PET images are acquired in separate scanners at different times and the inherent differences in the imaging protocols produced significant nonrigid changes between the two acquisitions in addition to heterogeneous image characteristics. In this situation, we utilized both the transmission-PET and the emission-PET images in the deformable registration process emphasizing particular regions of the moving transmission-PET image using the emission-PET image. We validated our results with nine rat image sets using M-Hausdorff distance similarity measure. We demonstrate improved performance compared to standard methods such as Demons and normalized mutual information-based non-rigid FFD registration.
Holstila, Milja; Pesola, Marko; Saari, Teemu; Koskensalo, Kalle; Raiko, Juho; Borra, Ronald J H; Nuutila, Pirjo; Parkkola, Riitta; Virtanen, Kirsi A
2017-05-01
Brown adipose tissue (BAT) is compositionally distinct from white adipose tissue (WAT) in terms of triglyceride and water content. In adult humans, the most significant BAT depot is localized in the supraclavicular area. Our aim is to differentiate brown adipose tissue from white adipose tissue using fat T2* relaxation time mapping and signal-fat-fraction (SFF) analysis based on a commercially available modified 2-point-Dixon (mDixon) water-fat separation method. We hypothesize that magnetic resonance (MR) imaging can reliably measure BAT regardless of the cold-induced metabolic activation, with BAT having a significantly higher water and iron content compared to WAT. The supraclavicular area of 13 volunteers was studied on 3T PET-MRI scanner using T2* relaxation time and SFF mapping both during cold exposure and at ambient temperature; and 18 F-FDG PET during cold exposure. Volumes of interest (VOIs) were defined semiautomatically in the supraclavicular fat depot, subcutaneous WAT and muscle. The supraclavicular fat depot (assumed to contain BAT) had a significantly lower SFF and fat T2* relaxation time compared to subcutaneous WAT. Cold exposure did not significantly affect MR-based measurements. SFF and T2* values measured during cold exposure and at ambient temperature correlated inversely with the glucose uptake measured by 18 F-FDG PET. Human BAT can be reliably and safely assessed using MRI without cold activation and PET-related radiation exposure. Copyright © 2017 Elsevier Inc. All rights reserved.
Polymeric nanoparticle PET/MR imaging allows macrophage detection in atherosclerotic plaques
Majmudar, Maulik D.; Yoo, Jeongsoo; Keliher, Edmund J.; Truelove, Jessica; Iwamoto, Yoshiko; Sena, Brena; Dutta, Partha; Borodovsky, Anna; Fitzgerald, Kevin; Di Carli, Marcelo; Libby, Peter; Anderson, Daniel G.; Swirski, Filip K.; Weissleder, Ralph; Nahrendorf, Matthias
2013-01-01
Rationale Myeloid cell content in atherosclerotic plaques associates with rupture and thrombosis. Thus, imaging of lesional monocyte and macrophages (Mo/Mϕ) could serve as a biomarker of disease progression and therapeutic intervention. Objective To noninvasively assess plaque inflammation with dextran nanoparticle-facilitated hybrid PET/MR imaging. Methods and Results Using clinically approved building blocks, we systematically developed 13nm polymeric nanoparticles consisting of crosslinked short chain dextrans which were modified with desferoxamine for zirconium-89 radiolabeling (89Zr-DNP) and a near infrared fluorochrome (VT680) for microscopic and cellular validation. Flow cytometry of cells isolated from excised aortas showed DNP uptake predominantly in Mo/Mϕ (76.7%) and lower signal originating from other leukocytes such as neutrophils and lymphocytes (11.8% and 0.7%, p<0.05 versus Mo/Mϕ). DNP colocalized with the myeloid cell marker CD11b on immunohistochemistry. PET/MRI revealed high uptake of 89Zr-DNP in the aortic root of ApoE−/− mice (standard uptake value, ApoE−/− mice versus wild type controls, 1.9±0.28 versus 1.3±0.03, p<0.05), corroborated by ex vivo scintillation counting and autoradiography. Therapeutic silencing of the monocyte-recruiting receptor CCR2 with siRNA decreased 89Zr-DNP plaque signal (p<0.05) and inflammatory gene expression (p<0.05). Conclusions Hybrid PET/MR imaging with a 13nm DNP enables noninvasive assessment of inflammation in experimental atherosclerotic plaques and reports on therapeutic efficacy of anti-inflammatory therapy. PMID:23300273
NASA Astrophysics Data System (ADS)
Peng, Hao
2015-10-01
A fundamental challenge for PET block detector designs is to deploy finer crystal elements while limiting the number of readout channels. The standard Anger-logic scheme including light sharing (an 8 by 8 crystal array coupled to a 2×2 photodetector array with an optical diffuser, multiplexing ratio: 16:1) has been widely used to address such a challenge. Our work proposes a generalized model to study the impacts of two critical parameters on spatial resolution performance of a PET block detector: multiple interaction events and signal-to-noise ratio (SNR). The study consists of the following three parts: (1) studying light output profile and multiple interactions of 511 keV photons within crystal arrays of different crystal widths (from 4 mm down to 1 mm, constant height: 20 mm); (2) applying the Anger-logic positioning algorithm to investigate positioning/decoding uncertainties (i.e., "block effect") in terms of peak-to-valley ratio (PVR), with light sharing, multiple interactions and photodetector SNR taken into account; and (3) studying the dependency of spatial resolution on SNR in the context of modulation transfer function (MTF). The proposed model can be used to guide the development and evaluation of a standard Anger-logic based PET block detector including: (1) selecting/optimizing the configuration of crystal elements for a given photodetector SNR; and (2) predicting to what extent additional electronic multiplexing may be implemented to further reduce the number of readout channels.
Bringing New PET Drugs to Clinical Practice - A Regulatory Perspective
Hung, Joseph C.
2013-01-01
The regulatory framework for radioactive drugs, in particular those used in positron emission tomography (PET) scans, has been gradually established since the release of the Food and Drug Administration Modernization Act in 1997. Various guidances specially tailored to accommodate special properties of PET drugs have been issued by the Food and Drug Administration (FDA) in order to ensure this valuable technology (i.e., PET molecular imaging) will continue to be available to patients and yet the safety and efficacy of PET drugs are well regulated so that public health will be protected. This article presents several key elements of this regulatory framework for PET drugs. New regulatory avenues proposed by the FDA to facilitate the research and development process to bring more new PET drugs to clinical practice, as well as to foster the opportunity of using “orphan” PET drugs in clinical practice are also discussed in this paper. PMID:24312157
Tensile properties of interwoven hemp/PET (Polyethylene Terephthalate) epoxy hybrid composites
NASA Astrophysics Data System (ADS)
Ahmad, M. A. A.; Majid, M. S. A.; Ridzuan, M. J. M.; Firdaus, A. Z. A.; Amin, N. A. M.
2017-10-01
This paper describes the experimental investigation of the tensile properties of interwoven Hemp/PET hybrid composites. The effect of hybridization of hemp (warp) with PET fibres (weft) on tensile properties was of interest. Hemp and PET fibres were selected as the reinforcing material while epoxy resin was chosen as the matrix. The interwoven Hemp/PET fabric was used to produce hybrid composite using a vacuum infusion process. The tensile test was conducted using Universal Testing Machine in accordance to the ASTM D638. The tensile properties of the interwoven Hemp/PET hybrid composite were then compared with the neat woven hemp/epoxy composite. The results show that the strength of hemp/PET with the warp direction was increased by 8% compared to the neat woven hemp composite. This enhancement of tensile strength was due to the improved interlocking structure of interwoven Hemp/PET hybrid fabric.
Xu, Hai; Koo, Hyun Jung; Lim, Soyeoun; Lee, Jae Wook; Lee, Han Na; Kim, Dong Kwan; Song, Joon Seon; Kim, Mi Young
2015-09-01
The purpose of this study was to describe the radiologic findings of computed tomography (CT), magnetic resonance (MR) imaging, and ¹⁸F-fluorodeoxy glucose positron emission tomography (FDG PET) in desmoid-type fibromatosis of the thorax. We retrospectively evaluated 47 consecutive patients with pathologically proven desmoid-type fibromatosis from January 2005 to March 2015. Patients underwent CT (n = 36) and/or MR (n = 32), and 13 patients also underwent FDG PET. Based on CT and MR, the sizes, locations, margins, contours, presence of surrounding fat, extra-compartment extension, bone involvement, and neurovascular involvement of the tumors were recorded. The attenuation, signal intensity, enhancement pattern, and presence of internal low signal band or signal void of the tumors were evaluated. Initial image findings were then compared between 2 groups of tumors: group 1 with recurrence or progression, and group 2 with no recurrence or stable without treatment. Median age at diagnosis of the tumors was 45 years, range 4 to 96, female-to-male ratio 1.8. Median tumor long diameter was 65 mm (range, 22-126 mm). The most common locations were chest wall (42.6%), followed by supraclavicular area, shoulder or axillary area, and mediastinum. The tumors had well-defined margins (83.0%), lobulated in contours (66.0%) surrounding fat (63.8%), extra-compartment extensions (42.6%), bone involvements (42.6%), and neurovascular involvements (27.7%). On CT, tumors had low attenuation (60.0%) with mild enhancement (median 24 HU, range 0-52). On MR, they showed iso-signal intensity (SI) (96.9%) on T1-weighted images (WI), and high SI (90.6%) on T2WI images, with strong (87.5%) and heterogeneous (96.9%) enhancement. Internal low signal bands (84.4%) and signal voids (68.8%) were noted. The median value of maxSUV was 3.1 (range, 2.0-7.3). In group 1 (n = 19, 40.4%), 13 patients suffered recurrence and 6 experienced progression. Group 2 (n = 28, 59.6%) consisted of 21 patients with no recurrence and 7 stable patients receiving no treatment. Partially ill-defined margins (OR, 0.167; 95% CI 0.029-0.943; P = 0.043) was the independent predictor for recurrence or progression of tumor. Knowledge of the radiological findings in desmoid-type fibromatosis on CT, MR, and FDG PET may help to improve diagnosis. Tumors with partially ill-defined margins have a tendency to recur or progress.
Xu, Hai; Koo, Hyun Jung; Lim, Soyeoun; Lee, Jae Wook; Lee, Han Na; Kim, Dong Kwan; Song, Joon Seon; Kim, Mi Young
2015-01-01
Abstract The purpose of this study was to describe the radiologic findings of computed tomography (CT), magnetic resonance (MR) imaging, and 18F-fluorodeoxy glucose positron emission tomography (FDG PET) in desmoid-type fibromatosis of the thorax. We retrospectively evaluated 47 consecutive patients with pathologically proven desmoid-type fibromatosis from January 2005 to March 2015. Patients underwent CT (n = 36) and/or MR (n = 32), and 13 patients also underwent FDG PET. Based on CT and MR, the sizes, locations, margins, contours, presence of surrounding fat, extra-compartment extension, bone involvement, and neurovascular involvement of the tumors were recorded. The attenuation, signal intensity, enhancement pattern, and presence of internal low signal band or signal void of the tumors were evaluated. Initial image findings were then compared between 2 groups of tumors: group 1 with recurrence or progression, and group 2 with no recurrence or stable without treatment. Median age at diagnosis of the tumors was 45 years, range 4 to 96, female-to-male ratio 1.8. Median tumor long diameter was 65 mm (range, 22–126 mm). The most common locations were chest wall (42.6%), followed by supraclavicular area, shoulder or axillary area, and mediastinum. The tumors had well-defined margins (83.0%), lobulated in contours (66.0%) surrounding fat (63.8%), extra-compartment extensions (42.6%), bone involvements (42.6%), and neurovascular involvements (27.7%). On CT, tumors had low attenuation (60.0%) with mild enhancement (median 24 HU, range 0–52). On MR, they showed iso-signal intensity (SI) (96.9%) on T1-weighted images (WI), and high SI (90.6%) on T2WI images, with strong (87.5%) and heterogeneous (96.9%) enhancement. Internal low signal bands (84.4%) and signal voids (68.8%) were noted. The median value of maxSUV was 3.1 (range, 2.0–7.3). In group 1 (n = 19, 40.4%), 13 patients suffered recurrence and 6 experienced progression. Group 2 (n = 28, 59.6%) consisted of 21 patients with no recurrence and 7 stable patients receiving no treatment. Partially ill-defined margins (OR, 0.167; 95% CI 0.029–0.943; P = 0.043) was the independent predictor for recurrence or progression of tumor. Knowledge of the radiological findings in desmoid-type fibromatosis on CT, MR, and FDG PET may help to improve diagnosis. Tumors with partially ill-defined margins have a tendency to recur or progress. PMID:26402812
NASA Astrophysics Data System (ADS)
Moskal, P.; Zoń, N.; Bednarski, T.; Białas, P.; Czerwiński, E.; Gajos, A.; Kamińska, D.; Kapłon, Ł.; Kochanowski, A.; Korcyl, G.; Kowal, J.; Kowalski, P.; Kozik, T.; Krzemień, W.; Kubicz, E.; Niedźwiecki, Sz.; Pałka, M.; Raczyński, L.; Rudy, Z.; Rundel, O.; Salabura, P.; Sharma, N. G.; Silarski, M.; Słomski, A.; Smyrski, J.; Strzelecki, A.; Wieczorek, A.; Wiślicki, W.; Zieliński, M.
2015-03-01
A novel method of hit time and hit position reconstruction in scintillator detectors is described. The method is based on comparison of detector signals with results stored in a library of synchronized model signals registered for a set of well-defined positions of scintillation points. The hit position is reconstructed as the one corresponding to the signal from the library which is most similar to the measurement signal. The time of the interaction is determined as a relative time between the measured signal and the most similar one in the library. A degree of similarity of measured and model signals is defined as the distance between points representing the measurement- and model-signal in the multi-dimensional measurement space. Novelty of the method lies also in the proposed way of synchronization of model signals enabling direct determination of the difference between time-of-flights (TOF) of annihilation quanta from the annihilation point to the detectors. The introduced method was validated using experimental data obtained by means of the double strip prototype of the J-PET detector and 22Na sodium isotope as a source of annihilation gamma quanta. The detector was built out from plastic scintillator strips with dimensions of 5 mm×19 mm×300 mm, optically connected at both sides to photomultipliers, from which signals were sampled by means of the Serial Data Analyzer. Using the introduced method, the spatial and TOF resolution of about 1.3 cm (σ) and 125 ps (σ) were established, respectively.
Transmission of Bacterial Zoonotic Pathogens between Pets and Humans: The Role of Pet Food.
Lambertini, Elisabetta; Buchanan, Robert L; Narrod, Clare; Pradhan, Abani K
2016-01-01
Recent Salmonella outbreaks associated with dry pet food and treats raised the level of concern for these products as vehicle of pathogen exposure for both pets and their owners. The need to characterize the microbiological and risk profiles of this class of products is currently not supported by sufficient specific data. This systematic review summarizes existing data on the main variables needed to support an ingredients-to-consumer quantitative risk model to (1) describe the microbial ecology of bacterial pathogens in the dry pet food production chain, (2) estimate pet exposure to pathogens through dry food consumption, and (3) assess human exposure and illness incidence due to contact with pet food and pets in the household. Risk models populated with the data here summarized will provide a tool to quantitatively address the emerging public health concerns associated with pet food and the effectiveness of mitigation measures. Results of such models can provide a basis for improvements in production processes, risk communication to consumers, and regulatory action.
21 CFR 212.20 - What activities must I perform to ensure drug quality?
Code of Federal Regulations, 2014 CFR
2014-04-01
... operations. You must oversee production operations to ensure that each PET drug meets the requirements of the... of a PET drug. (c) Specifications and processes. You must approve or reject, before implementation..., and purity of a PET drug. You must demonstrate that any change does not adversely affect the identity...
21 CFR 212.20 - What activities must I perform to ensure drug quality?
Code of Federal Regulations, 2012 CFR
2012-04-01
... operations. You must oversee production operations to ensure that each PET drug meets the requirements of the... of a PET drug. (c) Specifications and processes. You must approve or reject, before implementation..., and purity of a PET drug. You must demonstrate that any change does not adversely affect the identity...
21 CFR 212.20 - What activities must I perform to ensure drug quality?
Code of Federal Regulations, 2013 CFR
2013-04-01
... operations. You must oversee production operations to ensure that each PET drug meets the requirements of the... of a PET drug. (c) Specifications and processes. You must approve or reject, before implementation..., and purity of a PET drug. You must demonstrate that any change does not adversely affect the identity...
Sweet Polymers: Poly(2-ethyl-2-oxazoline) Glycopolymers by Reductive Amination.
Mees, Maarten A; Effenberg, Christiane; Appelhans, Dietmar; Hoogenboom, Richard
2016-12-12
Carbohydrates are important in signaling, energy storage, and metabolism. Depending on their function, carbohydrates can be part of larger structures, such as glycoproteins, glycolipids, or other functionalities (glycoside). To this end, polymers can act as carriers of carbohydrates in so-called glycopolymers, which mimic the multivalent carbohydrate functionalities. We chose a biocompatible poly(2-ethyl-2-oxazoline) (PEtOx) as the basis for making glycopolymers. Via the partial hydrolysis of PEtOx, a copolymer of PEtOx and polyethylenimine (PEI) was obtained; the subsequent reductive amination with the linear forms of glucose and maltose yielded the glycopolymers. The ratios of PEtOx and carbohydrates were varied systematically, and the solution behaviors of the resulting glycoconjugates are discussed. Dynamic light scattering (DLS) revealed that, depending on the carbohydrate ratio, the glycopolymers were either fully water-soluble or formed agglomerates in a temperature-dependent manner. Finally, these polymers were tested for their biological availability by studying their lectin binding ability with Concanavalin A.
Resolution improvement in positron emission tomography using anatomical Magnetic Resonance Imaging.
Chu, Yong; Su, Min-Ying; Mandelkern, Mark; Nalcioglu, Orhan
2006-08-01
An ideal imaging system should provide information with high-sensitivity, high spatial, and temporal resolution. Unfortunately, it is not possible to satisfy all of these desired features in a single modality. In this paper, we discuss methods to improve the spatial resolution in positron emission imaging (PET) using a priori information from Magnetic Resonance Imaging (MRI). Our approach uses an image restoration algorithm based on the maximization of mutual information (MMI), which has found significant success for optimizing multimodal image registration. The MMI criterion is used to estimate the parameters in the Sharpness-Constrained Wiener filter. The generated filter is then applied to restore PET images of a realistic digital brain phantom. The resulting restored images show improved resolution and better signal-to-noise ratio compared to the interpolated PET images. We conclude that a Sharpness-Constrained Wiener filter having parameters optimized from a MMI criterion may be useful for restoring spatial resolution in PET based on a priori information from correlated MRI.
Utilization of NASA Lewis mobile terminals for the Hermes satellite
NASA Technical Reports Server (NTRS)
Edelman, E. A.; Fiala, J. L.; Rizzolla, L.
1977-01-01
The paper describes the portable earth terminal (PET) and the transportable earth terminal (TET) which enable two-way television and voice communication. Both terminals were developed by NASA and utilize the high power of the Hermes satellite. PET is a bus-type vehicle which has receiving equipment for full duplex color television and which can transmit programs originating in either the on-board PET studio or in nearby buildings. PET has a collapsible 2.4-m diameter parabolic antenna interfacing with a 500-watt 14-GHz wideband TV transmitter and a 12-GHz wideband TV receiver system. TET uses two parabolic reflector antennas, 3 m and 1.2 m in diameter, mounted on a flat trailer towed by a truck. TET can receive and relay color TV signals, and its narrowband transmitter can serve as a return audio link permitting a question-and-answer format. Also described are uplink and downlink performance characteristics, operation procedures, and field demonstrations which enabled personnel at several hospitals to participate in a distant medical conference.
Student Perception of Teachers' Pets and Class Victims.
ERIC Educational Resources Information Center
Martin, Wilfred B.
1984-01-01
Uses the concepts of "identity" and "situational identity," to focus on student-perceived consequences of teachers' pet and class victim phenomena in the high school setting. Analyzes five classes of consequences: being left out, the marking process, the disciplinary process, disliking teachers, and antipathy and empathy among…
Minamimoto, Ryogo; Mitsumoto, Takuya; Miyata, Yoko; Sunaoka, Fumio; Morooka, Miyako; Okasaki, Momoko; Iagaru, Andrei; Kubota, Kazuo
2016-02-01
This study evaluated the potential of Q.Freeze algorithm for reducing motion artifacts, in comparison with ungated imaging (UG) and respiratory-gated imaging (RG). Twenty-nine patients with 53 lesions who had undergone RG F-FDG PET/CT were included in this study. Using PET list mode data, five series of PET images [UG, RG, and QF images with an acquisition duration of 3 min (QF3), 5 min (QF5), and 10 min (QF10)] were reconstructed retrospectively. The image quality was evaluated first. Next, quantitative metrics [maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), SD, metabolic tumor volume, signal to noise ratio, or lesion to background ratio] were calculated for the liver, background, and each lesion, and the results were compared across the series. QF10 and QF5 showed better image quality compared with all other images. SUVmax in the liver, background, and lesions was lower with QF10 and QF5 than with the others, but there were no statistically significant differences in SUVmean and the lesion to background ratios. The SD with UG and RG was significantly higher than that with QF5 and QF10. The metabolic tumor volume in QF3 and QF5 was significantly lower than that in UG. The Q.Freeze algorithm can improve the quality of PET imaging compared with RG and UG.
Mollet, Pieter; Keereman, Vincent; Bini, Jason; Izquierdo-Garcia, David; Fayad, Zahi A; Vandenberghe, Stefaan
2014-02-01
Quantitative PET imaging relies on accurate attenuation correction. Recently, there has been growing interest in combining state-of-the-art PET systems with MR imaging in a sequential or fully integrated setup. As CT becomes unavailable for these systems, an alternative approach to the CT-based reconstruction of attenuation coefficients (μ values) at 511 keV must be found. Deriving μ values directly from MR images is difficult because MR signals are related to the proton density and relaxation properties of tissue. Therefore, most research groups focus on segmentation or atlas registration techniques. Although studies have shown that these methods provide viable solutions in particular applications, some major drawbacks limit their use in whole-body PET/MR. Previously, we used an annulus-shaped PET transmission source inside the field of view of a PET scanner to measure attenuation coefficients at 511 keV. In this work, we describe the use of this method in studies of patients with the sequential time-of-flight (TOF) PET/MR scanner installed at the Icahn School of Medicine at Mount Sinai, New York, NY. Five human PET/MR and CT datasets were acquired. The transmission-based attenuation correction method was compared with conventional CT-based attenuation correction and the 3-segment, MR-based attenuation correction available on the TOF PET/MR imaging scanner. The transmission-based method overcame most problems related to the MR-based technique, such as truncation artifacts of the arms, segmentation artifacts in the lungs, and imaging of cortical bone. Additionally, the TOF capabilities of the PET detectors allowed the simultaneous acquisition of transmission and emission data. Compared with the MR-based approach, the transmission-based method provided average improvements in PET quantification of 6.4%, 2.4%, and 18.7% in volumes of interest inside the lung, soft tissue, and bone tissue, respectively. In conclusion, a transmission-based technique with an annulus-shaped transmission source will be more accurate than a conventional MR-based technique for measuring attenuation coefficients at 511 keV in future whole-body PET/MR studies.
Characterizing proton-activated materials to develop PET-mediated proton range verification markers
NASA Astrophysics Data System (ADS)
Cho, Jongmin; Ibbott, Geoffrey S.; Kerr, Matthew D.; Amos, Richard A.; Stingo, Francesco C.; Marom, Edith M.; Truong, Mylene T.; Palacio, Diana M.; Betancourt, Sonia L.; Erasmus, Jeremy J.; DeGroot, Patricia M.; Carter, Brett W.; Gladish, Gregory W.; Sabloff, Bradley S.; Benveniste, Marcelo F.; Godoy, Myrna C.; Patil, Shekhar; Sorensen, James; Mawlawi, Osama R.
2016-06-01
Conventional proton beam range verification using positron emission tomography (PET) relies on tissue activation alone and therefore requires particle therapy PET whose installation can represent a large financial burden for many centers. Previously, we showed the feasibility of developing patient implantable markers using high proton cross-section materials (18O, Cu, and 68Zn) for in vivo proton range verification using conventional PET scanners. In this technical note, we characterize those materials to test their usability in more clinically relevant conditions. Two phantoms made of low-density balsa wood (~0.1 g cm-3) and beef (~1.0 g cm-3) were embedded with Cu or 68Zn foils of several volumes (10-50 mm3). The metal foils were positioned at several depths in the dose fall-off region, which had been determined from our previous study. The phantoms were then irradiated with different proton doses (1-5 Gy). After irradiation, the phantoms with the embedded foils were moved to a diagnostic PET scanner and imaged. The acquired data were reconstructed with 20-40 min of scan time using various delay times (30-150 min) to determine the maximum contrast-to-noise ratio. The resultant PET/computed tomography (CT) fusion images of the activated foils were then examined and the foils’ PET signal strength/visibility was scored on a 5 point scale by 13 radiologists experienced in nuclear medicine. For both phantoms, the visibility of activated foils increased in proportion to the foil volume, dose, and PET scan time. A linear model was constructed with visibility scores as the response variable and all other factors (marker material, phantom material, dose, and PET scan time) as covariates. Using the linear model, volumes of foils that provided adequate visibility (score 3) were determined for each dose and PET scan time. The foil volumes that were determined will be used as a guideline in developing practical implantable markers.
Omidvari, Negar; Topping, Geoffrey; Cabello, Jorge; Paul, Stephan; Schwaiger, Markus; Ziegler, Sibylle I
2018-05-01
Compromises in the design of a positron emission tomography (PET) insert for a magnetic resonance imaging (MRI) system should minimize the deterioration of image quality in both modalities, particularly when simultaneous demanding acquisitions are performed. In this work, the advantages of using individually read-out crystals with high-gain silicon photomultipliers (SiPMs) were studied with a small animal PET insert for a 7 T MRI system, in which the SiPM charge was transferred to outside the MRI scanner using coaxial cables. The interferences between the two systems were studied with three radio-frequency (RF) coil configurations. The effects of PET on the static magnetic field, flip angle distribution, RF noise, and image quality of various MRI sequences (gradient echo, spin echo, and echo planar imaging (EPI) at 1 H frequency, and chemical shift imaging at 13 C frequency) were investigated. The effects of fast-switching gradient fields and RF pulses on PET count rate were studied, while the PET insert and the readout electronics were not shielded. Operating the insert inside a 1 H volume coil, used for RF transmission and reception, limited the MRI to T1-weighted imaging, due to coil detuning and RF attenuation, and resulted in significant PET count loss. Using a surface receive coil allowed all tested MR sequences to be used with the insert, with 45-59% signal-to-noise ratio (SNR) degradation, compared to without PET. With a 1 H/ 13 C volume coil inside the insert and shielded by a copper tube, the SNR degradation was limited to 23-30% with all tested sequences. The insert did not introduce any discernible distortions into images of two tested EPI sequences. Use of truncated sinc shaped RF excitation pulses and gradient field switching had negligible effects on PET count rate. However, PET count rate was substantially affected by high-power RF block pulses and temperature variations due to high gradient duty cycles.
Parodi, Katia; Paganetti, Harald; Cascio, Ethan; Flanz, Jacob B.; Bonab, Ali A.; Alpert, Nathaniel M.; Lohmann, Kevin; Bortfeld, Thomas
2008-01-01
The feasibility of off-line positron emission tomography/computed tomography (PET/CT) for routine three dimensional in-vivo treatment verification of proton radiation therapy is currently under investigation at Massachusetts General Hospital in Boston. In preparation for clinical trials, phantom experiments were carried out to investigate the sensitivity and accuracy of the method depending on irradiation and imaging parameters. Furthermore, they addressed the feasibility of PET/CT as a robust verification tool in the presence of metallic implants. These produce x-ray CT artifacts and fluence perturbations which may compromise the accuracy of treatment planning algorithms. Spread-out Bragg peak proton fields were delivered to different phantoms consisting of polymethylmethacrylate (PMMA), PMMA stacked with lung and bone equivalent materials, and PMMA with titanium rods to mimic implants in patients. PET data were acquired in list mode starting within 20 min after irradiation at a commercial luthetium-oxyorthosilicate (LSO)-based PET/CT scanner. The amount and spatial distribution of the measured activity could be well reproduced by calculations based on the GEANT4 and FLUKA Monte Carlo codes. This phantom study supports the potential of millimeter accuracy for range monitoring and lateral field position verification even after low therapeutic dose exposures of 2 Gy, despite the delay between irradiation and imaging. It also indicates the value of PET for treatment verification in the presence of metallic implants, demonstrating a higher sensitivity to fluence perturbations in comparison to a commercial analytical treatment planning system. Finally, it addresses the suitability of LSO-based PET detectors for hadron therapy monitoring. This unconventional application of PET involves countrates which are orders of magnitude lower than in diagnostic tracer imaging, i.e., the signal of interest is comparable to the noise originating from the intrinsic radioactivity of the detector itself. In addition to PET alone, PET/CT imaging provides accurate information on the position of the imaged object and may assess possible anatomical changes during fractionated radiotherapy in clinical applications. PMID:17388158
O' Doherty, Jim; Schleyer, Paul
2017-12-01
Simultaneous cardiac perfusion studies are an increasing trend in PET-MR imaging. During dynamic PET imaging, the introduction of gadolinium-based MR contrast agents (GBCA) at high concentrations during a dual injection of GBCA and PET radiotracer may cause increased attenuation effects of the PET signal, and thus errors in quantification of PET images. We thus aimed to calculate the change in linear attenuation coefficient (LAC) of a mixture of PET radiotracer and increasing concentrations of GBCA in solution and furthermore, to investigate if this change in LAC produced a measurable effect on the image-based PET activity concentration when attenuation corrected by three different AC strategies. We performed simultaneous PET-MR imaging of a phantom in a static scenario using a fixed activity of 40 MBq [18 F]-NaF, water, and an increasing GBCA concentration from 0 to 66 mM (based on an assumed maximum possible concentration of GBCA in the left ventricle in a clinical study). This simulated a range of clinical concentrations of GBCA. We investigated two methods to calculate the LAC of the solution mixture at 511 keV: (1) a mathematical mixture rule and (2) CT imaging of each concentration step and subsequent conversion to LAC at 511 keV. This comparison showed that the ranges of LAC produced by both methods are equivalent with an increase in LAC of the mixed solution of approximately 2% over the range of 0-66 mM. We then employed three different attenuation correction methods to the PET data: (1) each PET scan at a specific millimolar concentration of GBCA corrected by its corresponding CT scan, (2) each PET scan corrected by a CT scan with no GBCA present (i.e., at 0 mM GBCA), and (3) a manually generated attenuation map, whereby all CT voxels in the phantom at 0 mM were replaced by LAC = 0.1 cm -1 . All attenuation correction methods (1-3) were accurate to the true measured activity concentration within 5%, and there were no trends in image-based activity concentrations upon increasing the GBCA concentration of the solution. The presence of high GBCA concentration (representing a worst-case scenario in dynamic cardiac studies) in solution with PET radiotracer produces a minimal effect on attenuation-corrected PET quantification.
Implement of the Owner Distinction Function for Healing-Type Pet Robots
NASA Astrophysics Data System (ADS)
Nambo, Hidetaka; Kimura, Haruhiko; Hirose, Sadaki
In recent years, a robotics technology is extremely progressive, and robots are widely applied in many fields. One of the most typical robots is a pet robot. The pet robot is based on an animal pet, such as a dog or a cat. Also, it is known that an animal pet has a healing effect. Therefore, the study to apply pet robots to Animal Assisted Therapy instead of an animal pet has begun to be investigated. We, also, have investigated a method of an owner distinction for pet robot, to emphasize a healing effect of pet robots. In this paper, taking account of implementation into pet robots, a real-time owner distinction method is proposed. In the concrete, the method provides a real-time matching algorithm and an oblivion mechanism. The real-time matching means that a matching and a data acquisition are processed simultaneously. The oblivion mechanism is deleting features of owners in the database of the pet robots. Additionally, the mechanism enables to reduce matching costs or size of database and it enables to follow a change of owners. Furthermore, effectivity and a practicality of the method are evaluated by experiments.
Bagci, Ulas; Udupa, Jayaram K.; Mendhiratta, Neil; Foster, Brent; Xu, Ziyue; Yao, Jianhua; Chen, Xinjian; Mollura, Daniel J.
2013-01-01
We present a novel method for the joint segmentation of anatomical and functional images. Our proposed methodology unifies the domains of anatomical and functional images, represents them in a product lattice, and performs simultaneous delineation of regions based on random walk image segmentation. Furthermore, we also propose a simple yet effective object/background seed localization method to make the proposed segmentation process fully automatic. Our study uses PET, PET-CT, MRI-PET, and fused MRI-PET-CT scans (77 studies in all) from 56 patients who had various lesions in different body regions. We validated the effectiveness of the proposed method on different PET phantoms as well as on clinical images with respect to the ground truth segmentation provided by clinicians. Experimental results indicate that the presented method is superior to threshold and Bayesian methods commonly used in PET image segmentation, is more accurate and robust compared to the other PET-CT segmentation methods recently published in the literature, and also it is general in the sense of simultaneously segmenting multiple scans in real-time with high accuracy needed in routine clinical use. PMID:23837967
Queiroz, Marcelo A; Barbosa, Felipe de Galiza; Buchpiguel, Carlos Alberto; Cerri, Giovanni Guido
2018-01-01
The new technology of PET/MRI is a prototype of hybrid imaging, allowing for the combination of molecular data from PET scanning and morphofunctional information derived from MRI scanning. Recent advances regarding the technical aspects of this device, especially after the development of MRI-compatible silicon photomultipliers of PET, permitted an increase in the diagnostic performance of PET/MRI translated into dose reduction and higher imaging quality. Among several clinical applications, PET/MRI gains ground initially in oncology, where MRI per se plays an essential role in the assessment of primary tumors (which is limited in the case of PET/CT), including prostate, rectal and gynecological tumors. On the other hand, the evaluation of the lungs remains an enigma although new MRI sequences are being designed to overcome this. More clinical indications of PET/MRI are seen in the fields of neurology, cardiology and inflammatory processes, and the use of PET/MRI also opens perspectives for pediatric populations as it involves very low radiation exposure. Our review aimed to highlight the current indications of PET/MRI and discuss the challenges and perspectives of PET/MRI at HC-FMUSP.
Salabert, Anne-Sophie; Vaysse, Laurence; Beaurain, Marie; Alonso, Mathieu; Arribarat, Germain; Lotterie, Jean-Albert; Loubinoux, Isabelle; Tafani, Mathieu; Payoux, Pierre
2017-01-01
Cell transplantation is an innovative therapeutic approach after brain injury to compensate for tissue damage. To have real-time longitudinal monitoring of intracerebrally grafted cells, we explored the feasibility of a molecular imaging approach using thymidine kinase HSV1-TK gene encoding and [18F]FHBG as a reporter probe to image enzyme expression. A stable neuronal cell line expressing HSV1-TK was developed with an optimised mammalian expression vector to ensure long-term transgene expression. After [18F]FHBG incubation under defined parameters, calibration ranges from 1 X 104 to 3 X 106 Neuro2A-TK cells were analysed by gamma counter or by PET-camera. In parallel, grafting with different quantities of [18F]FHBG prelabelled Neuro2A-TK cells was carried out in a rat brain injury model induced by stereotaxic injection of malonate toxin. Image acquisition of the rats was then performed with PET/CT camera to study the [18F]FHBG signal of transplanted cells in vivo. Under the optimised incubation conditions, [18F]FHBG cell uptake rate was around 2.52%. In-vitro calibration range analysis shows a clear linear correlation between the number of cells and the signal intensity. The PET signal emitted into rat brain correlated well with the number of cells injected and the number of surviving grafted cells was recorded via the in-vitro calibration range. PET/CT acquisitions also allowed validation of the stereotaxic injection procedure. Technique sensitivity was evaluated under 5 X 104 grafted cells in vivo. No [18F]FHBG or [18F]metabolite release was observed showing a stable cell uptake even 2 h post-graft. The development of this kind of approach will allow grafting to be controlled and ensure longitudinal follow-up of cell viability and biodistribution after intracerebral injection.
Radiomics in Oncological PET/CT: Clinical Applications.
Lee, Jeong Won; Lee, Sang Mi
2018-06-01
18 F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) is widely used for staging, evaluating treatment response, and predicting prognosis in malignant diseases. FDG uptake and volumetric PET parameters such as metabolic tumor volume have been used and are still used as conventional PET parameters to assess biological characteristics of tumors. However, in recent years, additional features derived from PET images by computational processing have been found to reflect intratumoral heterogeneity, which is related to biological tumor features, and to provide additional predictive and prognostic information, which leads to the concept of radiomics. In this review, we focus on recent clinical studies of malignant diseases that investigated intratumoral heterogeneity on PET/CT, and we discuss its clinical role in various cancers.
Human-animal bonds II: the role of pets in family systems and family therapy.
Walsh, Froma
2009-12-01
The vast majority of pet owners regard their companion animals as family members, yet the role of pets in family systems and family therapy has received little attention in research, training, and practice. This article first notes the benefits of family pets and their importance for resilience. It then examines their role in couple and family processes and their involvement in relational dynamics and tensions. Next, it addresses bereavement in the loss of a cherished pet, influences complicating grief, and facilitation of mourning and adaptation. Finally, it explores the ways that clients' pets and the use of therapists' companion animals in animal-assisted therapy can inform and enrich couple and family therapy as valuable resources in healing.
Practical guide for implementing hybrid PET/MR clinical service: lessons learned from our experience
Parikh, Nainesh; Friedman, Kent P.; Shah, Shetal N.; Chandarana, Hersh
2015-01-01
Positron emission tomography (PET) and magnetic resonance imaging, until recently, have been performed on separate PET and MR systems with varying temporal delay between the two acquisitions. The interpretation of these two separately acquired studies requires cognitive fusion by radiologists/nuclear medicine physicians or dedicated and challenging post-processing. Recent advances in hardware and software with introduction of hybrid PET/MR systems have made it possible to acquire the PET and MR images simultaneously or near simultaneously. This review article serves as a road-map for clinical implementation of hybrid PET/MR systems and briefly discusses hardware systems, the personnel needs, safety and quality issues, and reimbursement topics based on experience at NYU Langone Medical Center and Cleveland Clinic. PMID:25985966
Basic study of entire whole-body PET scanners based on the OpenPET geometry
NASA Astrophysics Data System (ADS)
Yoshida, Eiji; Yamaya, Taiga; Nishikido, Fumihiko; Inadama, Naoko; Murayama, Hideo
2010-09-01
A conventional PET scanner has a 15-25 cm axial field-of-view (FOV) and images a whole body using about six bed positions. An OpenPET geometry can extend the axial FOV with a limited number of detectors. The entire whole-body PET scanner must be able to process a large amount of data effectively. In this work, we study feasibility of the fully 3D entire whole-body PET scanner using the GATE simulation. The OpenPET has 12 block detector rings with the ring diameter of 840 mm and each block detector ring consists of 48 depth-of-interaction (DOI) detectors. The OpenPET has the axial length of 895.95 mm with five parts of 58.95 mm open gaps. The OpenPET has higher single data loss than a conventional PET scanner at grouping circuits. NECR of the OpenPET decreases by single data loss. But single data loss is mitigated by separating the axially arranged detector into two parts. Also, multiple coincidences are found to be important for the entire whole-body PET scanner. The entire whole-body PET scanner with the OpenPET geometry promises to provide a large axial FOV with the open space and to have sufficient performance values. But single data loss at the grouping circuits and multiple coincidences are limited to the peak noise equivalent count rate (NECR) for the entire whole-body PET scanner.
Disselhorst, Jonathan A; Bezrukov, Ilja; Kolb, Armin; Parl, Christoph; Pichler, Bernd J
2014-06-01
Hybrid PET/MR systems have rapidly progressed from the prototype stage to systems that are increasingly being used in the clinics. This review provides an overview of developments in hybrid PET/MR systems and summarizes the current state of the art in PET/MR instrumentation, correction techniques, and data analysis. The strong magnetic field requires considerable changes in the manner by which PET images are acquired and has led, among others, to the development of new PET detectors, such as silicon photomultipliers. During more than a decade of active PET/MR development, several system designs have been described. The technical background of combined PET/MR systems is explained and related challenges are discussed. The necessity for PET attenuation correction required new methods based on MR data. Therefore, an overview of recent developments in this field is provided. Furthermore, MR-based motion correction techniques for PET are discussed, as integrated PET/MR systems provide a platform for measuring motion with high temporal resolution without additional instrumentation. The MR component in PET/MR systems can provide functional information about disease processes or brain function alongside anatomic images. Against this background, we point out new opportunities for data analysis in this new field of multimodal molecular imaging. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Deep-learning-based classification of FDG-PET data for Alzheimer's disease categories
NASA Astrophysics Data System (ADS)
Singh, Shibani; Srivastava, Anant; Mi, Liang; Caselli, Richard J.; Chen, Kewei; Goradia, Dhruman; Reiman, Eric M.; Wang, Yalin
2017-11-01
Fluorodeoxyglucose (FDG) positron emission tomography (PET) measures the decline in the regional cerebral metabolic rate for glucose, offering a reliable metabolic biomarker even on presymptomatic Alzheimer's disease (AD) patients. PET scans provide functional information that is unique and unavailable using other types of imaging. However, the computational efficacy of FDG-PET data alone, for the classification of various Alzheimers Diagnostic categories, has not been well studied. This motivates us to correctly discriminate various AD Diagnostic categories using FDG-PET data. Deep learning has improved state-of-the-art classification accuracies in the areas of speech, signal, image, video, text mining and recognition. We propose novel methods that involve probabilistic principal component analysis on max-pooled data and mean-pooled data for dimensionality reduction, and multilayer feed forward neural network which performs binary classification. Our experimental dataset consists of baseline data of subjects including 186 cognitively unimpaired (CU) subjects, 336 mild cognitive impairment (MCI) subjects with 158 Late MCI and 178 Early MCI, and 146 AD patients from Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. We measured F1-measure, precision, recall, negative and positive predictive values with a 10-fold cross validation scheme. Our results indicate that our designed classifiers achieve competitive results while max pooling achieves better classification performance compared to mean-pooled features. Our deep model based research may advance FDG-PET analysis by demonstrating their potential as an effective imaging biomarker of AD.
NASA Astrophysics Data System (ADS)
Oh, Jungsu S.; Kim, Jae Seung; Chae, Sun Young; Oh, Minyoung; Oh, Seung Jun; Cha, Seung Nam; Chang, Ho-Jong; Lee, Chong Sik; Lee, Jae Hong
2017-03-01
We present an optimized voxelwise statistical parametric mapping (SPM) of partial-volume (PV)-corrected positron emission tomography (PET) of 11C Pittsburgh Compound B (PiB), incorporating the anatomical precision of magnetic resonance image (MRI) and amyloid β (A β) burden-specificity of PiB PET. First, we applied region-based partial-volume correction (PVC), termed the geometric transfer matrix (GTM) method, to PiB PET, creating MRI-based lobar parcels filled with mean PiB uptakes. Then, we conducted a voxelwise PVC by multiplying the original PET by the ratio of a GTM-based PV-corrected PET to a 6-mm-smoothed PV-corrected PET. Finally, we conducted spatial normalizations of the PV-corrected PETs onto the study-specific template. As such, we increased the accuracy of the SPM normalization and the tissue specificity of SPM results. Moreover, lobar smoothing (instead of whole-brain smoothing) was applied to increase the signal-to-noise ratio in the image without degrading the tissue specificity. Thereby, we could optimize a voxelwise group comparison between subjects with high and normal A β burdens (from 10 patients with Alzheimer's disease, 30 patients with Lewy body dementia, and 9 normal controls). Our SPM framework outperformed than the conventional one in terms of the accuracy of the spatial normalization (85% of maximum likelihood tissue classification volume) and the tissue specificity (larger gray matter, and smaller cerebrospinal fluid volume fraction from the SPM results). Our SPM framework optimized the SPM of a PV-corrected A β PET in terms of anatomical precision, normalization accuracy, and tissue specificity, resulting in better detection and localization of A β burdens in patients with Alzheimer's disease and Lewy body dementia.
18F-FDOPA PET/CT imaging of MAX-related pheochromocytoma.
Taïeb, David; Jha, Abhishek; Guerin, Carole; Pang, Ying; Adams, Karen T; Chen, Clara C; Romanet, Pauline; Roche, Philippe; Essamet, Wassim; Ling, Alexander; Quezado, Martha M; Castinetti, Frédéric; Sebag, Fréderic; Pacak, Karel
2018-03-08
MYC associated factor X (MAX) has been recently described as a new susceptibility pheochromocytoma (PHEO) gene with a total of approximately 40 reported cases. At present, no study has specifically described the functional imaging phenotype of MAX-related PHEO. The objective of this study was to present our experience with contrast-enhanced CT and 18F-FDOPA PET/CT imaging in 6 consecutive patients (4 at initial diagnosis and 2 at follow-up evaluation) with rare but clinically important MAX-related PHEOs. In 5 patients, 18F-FDOPA was also compared to other radiopharmaceuticals. Patients had 5 different mutations in the MAX gene that caused disruption of Max/Myc interaction and/or abolished interaction with DNA based on in-silico analyses. All but one patient developed bilateral PHEOs during their lifetime. In all cases, 18F-FDOPA PET/CT accurately visualized PHEOs that were often multiple within the same gland or bilateral and detected more adrenal and extradrenal lesions than CT (per lesion sensitivity 90.5% vs 52.4% for CT/MRI). The 2 missed PHEO on 18F-FDOPA PET/CT were <1cm, corresponding to nodular adrenomedullary hyperplasia. 68Ga-DOTATATE PET/CT detected fewer lesions than 18F-FDOPA PET/CT in 1/3 patients and 18F-FDG PET/CT was only faintly positive in 2/4 patients with underestimation of extraadrenal lesions in 1 patient. MAX-related PHEO exihibit a marked 18F-FDOPA uptake, a finding that illustrates the common well-differentiated chromaffin pattern of PHEO associated with activation of kinase signaling pathways. 18F-FDOPA PET/CT should be considered as the first-line functional imaging modality for diagnostic or follow-up evaluation in these patients.
Translocator protein as an imaging marker of macrophage and stromal activation in RA pannus.
Narayan, Nehal; Owen, David; Mandhair, Harpreet; Smyth, Erica; Carlucci, Francesco; Saleem, Azeem; Gunn, Roger; Rabiner, Eugenii Ilan A; Wells, Lisa; Dakin, Stephanie; Sabokbar, Afsie; Taylor, Peter
2018-01-04
Positron Emission Tomography (PET) radioligands targeted to Translocator protein (TSPO), offer a highly sensitive and specific means of imaging joint inflammation in rheumatoid arthritis (RA). Through high expression of TSPO on activated macrophages, TSPO PET has been widely reported in several studies of RA as a means of imaging synovial macrophages in vivo. However, this premise does not take into account the ubiquitous expression of TSPO. This study aimed to investigate TSPO expression in major cellular constituents of RA pannus; monocytes, macrophages, fibroblast-like synoviocytes (FLS) and CD4+ T lymphocytes, to more accurately interpret TSPO PET signal from RA synovium. Methods: 3 RA patients and 3 healthy volunteers underwent PET both knees using the TSPO radioligand 11 C-PBR28. Through synovial tissue 3H-PBR28 autoradiography and immunostaining of 6 RA patients and 6 healthy volunteers, cellular expression of TSPO in synovial tissue was evaluated. TSPO mRNA expression and 3H-PBR28 radioligand binding was assessed using in vitro monocytes, macrophages, FLS and CD4+ T-lymphocytes. Results: 11 C-PBR28 PET signal was significantly higher in RA compared to healthy joints (average SUV 0.82± 0.12 compared to 0.03± 0.004 respectively, p<0.01). Further, 3H-PBR28 specific binding in synovial tissue was approximately 10-fold higher in RA compared to healthy controls. Immunofluorescence revealed TSPO expression on macrophages, FLS and CD4+ T cells. In vitro study demonstrated highest TSPO mRNA expression and 3H-PBR28 specific binding, in activated FLS, non-activated and activated 'M2' reparative macrophages, with least TSPO expression in activated and non-activated CD4+ T lymphocytes. Conclusion: This study is the first evaluation of cellular TSPO expression in synovium, finding highest TSPO expression and PBR28 binding on activated synovial FLS and M2 phenotype macrophages. TSPO targeted PET may therefore have unique sensitivity to detect FLS and macrophage predominant inflammation in RA, with potential utility to assess treatment response in trials using novel FLS-targeted therapies. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Photoinduced Electron Transfer from Various Aniline Derivatives to Graphene Quantum Dots.
Ghosh, Tufan; Chatterjee, Swarupa; Prasad, Edamana
2015-12-10
The present study utilizes the luminescence nature of the graphene quantum dots (GQDs) to analyze the mechanistic aspects of the photoinduced electron transfer (PET) processes between GQDs and aniline derivatives. A systematic investigation of PET from various aniline derivatives to GQDs has been presented. Solution-processable GQDs have been synthesized from graphene oxide (GO) at 200 °C. The as-synthesized GQDs exhibit a strong green luminescence at 510 nm, upon photoexcitation at 440 nm. Various aniline derivatives (aniline, N-methylaniline, N,N'-dimethylaniline, N-ethylaniline, N,N'-diethylaniline, and N,N'-diphenylaniline) have been utilized as electron donors to probe the PET process. Results from UV-visible absorption and steady-state and time-resolve luminescence spectroscopy suggest that the GQDs interact with the aniline derivatives in the excited state, which results in a significant luminescence quenching of the GQDs. The bimolecular rate constants of the dynamic quenching have been deduced for various donor-acceptor systems, and the values are in the range of (1.06-2.68) × 10(9) M(-1) s(-1). The negative values of the free energy change of the electron transfer process suggest that PET from aniline derivatives to GQDs is feasible and could be responsible for the luminescence quenching. The PET has been confirmed by detecting radical cations for certain aniline derivatives, using a nanosecond laser flash photolysis setup. The present study shows that among the various types of graphene systems, GQDs are better candidates for understanding the mechanism of PET in graphene-based donor-acceptor systems.
Accelerating image reconstruction in dual-head PET system by GPU and symmetry properties.
Chou, Cheng-Ying; Dong, Yun; Hung, Yukai; Kao, Yu-Jiun; Wang, Weichung; Kao, Chien-Min; Chen, Chin-Tu
2012-01-01
Positron emission tomography (PET) is an important imaging modality in both clinical usage and research studies. We have developed a compact high-sensitivity PET system that consisted of two large-area panel PET detector heads, which produce more than 224 million lines of response and thus request dramatic computational demands. In this work, we employed a state-of-the-art graphics processing unit (GPU), NVIDIA Tesla C2070, to yield an efficient reconstruction process. Our approaches ingeniously integrate the distinguished features of the symmetry properties of the imaging system and GPU architectures, including block/warp/thread assignments and effective memory usage, to accelerate the computations for ordered subset expectation maximization (OSEM) image reconstruction. The OSEM reconstruction algorithms were implemented employing both CPU-based and GPU-based codes, and their computational performance was quantitatively analyzed and compared. The results showed that the GPU-accelerated scheme can drastically reduce the reconstruction time and thus can largely expand the applicability of the dual-head PET system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kofler, J.
2016-06-15
Digital radiography, CT, PET, and MR are complicated imaging modalities which are composed of many hardware and software components. These components work together in a highly coordinated chain of events with the intent to produce high quality images. Acquisition, processing and reconstruction of data must occur in a precise way for optimum image quality to be achieved. Any error or unexpected event in the entire process can produce unwanted pixel intensities in the final images which may contribute to visible image artifacts. The diagnostic imaging physicist is uniquely qualified to investigate and contribute to resolution of image artifacts. This coursemore » will teach the participant to identify common artifacts found clinically in digital radiography, CT, PET, and MR, to determine the causes of artifacts, and to make recommendations for how to resolve artifacts. Learning Objectives: Identify common artifacts found clinically in digital radiography, CT, PET and MR. Determine causes of various clinical artifacts from digital radiography, CT, PET and MR. Describe how to resolve various clinical artifacts from digital radiography, CT, PET and MR.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pooley, R.
2016-06-15
Digital radiography, CT, PET, and MR are complicated imaging modalities which are composed of many hardware and software components. These components work together in a highly coordinated chain of events with the intent to produce high quality images. Acquisition, processing and reconstruction of data must occur in a precise way for optimum image quality to be achieved. Any error or unexpected event in the entire process can produce unwanted pixel intensities in the final images which may contribute to visible image artifacts. The diagnostic imaging physicist is uniquely qualified to investigate and contribute to resolution of image artifacts. This coursemore » will teach the participant to identify common artifacts found clinically in digital radiography, CT, PET, and MR, to determine the causes of artifacts, and to make recommendations for how to resolve artifacts. Learning Objectives: Identify common artifacts found clinically in digital radiography, CT, PET and MR. Determine causes of various clinical artifacts from digital radiography, CT, PET and MR. Describe how to resolve various clinical artifacts from digital radiography, CT, PET and MR.« less
NASA Astrophysics Data System (ADS)
Gebhardt, Pierre; Wehner, Jakob; Weissler, Bjoern; Frach, Thomas; Marsden, Paul K.; Schulz, Volkmar
2015-06-01
Devices aiming at combined Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) to enable simultaneous PET/MR image acquisition have to fulfill demanding requirements to avoid mutual magneticas well as electromagnetic-field-related interferences which lead to image quality degradation. Particularly Radio-Frequency (RF)-field-related interferences between PET and MRI may lead to MRI SNR reduction, thereby deteriorating MR image quality. RF shielding of PET electronics is therefore commonly applied to reduce RF emission and lower the potential coupling into MRI RF coil(s). However, shields introduce eddy-current-induced MRI field distortions and should thus be minimized or ideally omitted. Although the MRI noise floor increase caused by a PET system might be acceptable for many MRI applications, some MRI protocols, such as fast or high-resolution MRI scans, typically suffer from low SNR and might need more attention regarding RF silence to preserve the intrinsic MRI SNR. For such cases, we propose RESCUE, an MRI-synchronously-gated PET data acquisition technique: By interrupting the PET acquisition during MR signal receive phases, PET-related RF emission may be minimized, leading to MRI SNR preservation. Our PET insert Hyperion IID using Philips Digital Photon Counting (DPC) sensors serves as the platform to demonstrate RESCUE. To make the DPC sensor suitable for RESCUE to be applied for many MRI sequences with acquisition time windows in the range of a few milliseconds, we present in this paper a new technique which enables rapid DPC sensor operation interruption by dramatically lowering the overhead time to interrupt and restart the sensor operation. Procedures to enter and leave gated PET data acquisition may imply sensitivity losses which add to the ones occurring during MRI RF acquisition. For the case of our PET insert, the new DPC quick-interruption technique yields a PET sensitivity loss reduction by a factor of 78 when compared to the loss introduced with the standard start/stop procedure. For instance, PET sensitivity losses related to overhead time are 2.9% in addition to the loss related to PET gating being equal to the MRI RF acquisition duty cycle (14.7%) for an exemplary T1-weighted 3D-FFE MRI sequence. MRI SNR measurement results obtained with one Singles Detection Module (SDM) using no RF shield demonstrate a noise floor reduction by a factor of 2.1, getting close to the noise floor level of the SNR reference scan (SDM off-powered) when RESCUE was active.
Image reconstruction for PET/CT scanners: past achievements and future challenges
Tong, Shan; Alessio, Adam M; Kinahan, Paul E
2011-01-01
PET is a medical imaging modality with proven clinical value for disease diagnosis and treatment monitoring. The integration of PET and CT on modern scanners provides a synergy of the two imaging modalities. Through different mathematical algorithms, PET data can be reconstructed into the spatial distribution of the injected radiotracer. With dynamic imaging, kinetic parameters of specific biological processes can also be determined. Numerous efforts have been devoted to the development of PET image reconstruction methods over the last four decades, encompassing analytic and iterative reconstruction methods. This article provides an overview of the commonly used methods. Current challenges in PET image reconstruction include more accurate quantitation, TOF imaging, system modeling, motion correction and dynamic reconstruction. Advances in these aspects could enhance the use of PET/CT imaging in patient care and in clinical research studies of pathophysiology and therapeutic interventions. PMID:21339831
Ziegler, Susanne; Jakoby, Bjoern W; Braun, Harald; Paulus, Daniel H; Quick, Harald H
2015-12-01
In integrated PET/MR hybrid imaging the evaluation of PET performance characteristics according to the NEMA standard NU 2-2007 is challenging because of incomplete MR-based attenuation correction (AC) for phantom imaging. In this study, a strategy for CT-based AC of the NEMA image quality (IQ) phantom is assessed. The method is systematically evaluated in NEMA IQ phantom measurements on an integrated PET/MR system. NEMA IQ measurements were performed on the integrated 3.0 Tesla PET/MR hybrid system (Biograph mMR, Siemens Healthcare). AC of the NEMA IQ phantom was realized by an MR-based and by a CT-based method. The suggested CT-based AC uses a template μ-map of the NEMA IQ phantom and a phantom holder for exact repositioning of the phantom on the systems patient table. The PET image quality parameters contrast recovery, background variability, and signal-to-noise ratio (SNR) were determined and compared for both phantom AC methods. Reconstruction parameters of an iterative 3D OP-OSEM reconstruction were optimized for highest lesion SNR in NEMA IQ phantom imaging. Using a CT-based NEMA IQ phantom μ-map on the PET/MR system is straightforward and allowed performing accurate NEMA IQ measurements on the hybrid system. MR-based AC was determined to be insufficient for PET quantification in the tested NEMA IQ phantom because only photon attenuation caused by the MR-visible phantom filling but not the phantom housing is considered. Using the suggested CT-based AC, the highest SNR in this phantom experiment for small lesions (<= 13 mm) was obtained with 3 iterations, 21 subsets and 4 mm Gaussian filtering. This study suggests CT-based AC for the NEMA IQ phantom when performing PET NEMA IQ measurements on an integrated PET/MR hybrid system. The superiority of CT-based AC for this phantom is demonstrated by comparison to measurements using MR-based AC. Furthermore, optimized PET image reconstruction parameters are provided for the highest lesion SNR in NEMA IQ phantom measurements.
21 CFR 212.1 - What are the meanings of the technical terms used in these regulations?
Code of Federal Regulations, 2010 CFR
2010-04-01
... active pharmaceutical ingredient. In-process material means any material fabricated, compounded, blended...-process material, packaging material, or labeling in the production of a PET drug. PET means positron... the Federal Food, Drug, and Cosmetic Act, as amended (21 U.S.C. 321 et seq.). Active pharmaceutical...
Ogundele, Olalekan M; Ebenezer, Philip J; Lee, Charles C; Francis, Joseph
2017-06-14
Traumatic stress patients showed significant improvement in behavior after a prolonged exposure to an unrelated stimulus. This treatment method attempts to promote extinction of the fear memory associated with the initial traumatic experience. However, the subsequent prolonged exposure to such stimulus creates an additional layer of neural stress. Although the mechanism remains unclear, prolonged exposure therapy (PET) likely involves changes in synaptic plasticity, neurotransmitter function and inflammation; especially in parts of the brain concerned with the formation and retrieval of fear memory (Hippocampus and Prefrontal Cortex: PFC). Since certain synaptic proteins are also involved in danger-associated molecular pattern signaling (DAMP), we identified the significance of IGF-1/IGF-1R/CaMKIIα expression as a potential link between the concurrent progression of synaptic and inflammatory changes in stress. Thus, a comparison between IGF-1/IGF-1R/CaMKIIα, synaptic and DAMP proteins in stress and PET may highlight the significance of PET on synaptic morphology and neuronal inflammatory response. In behaviorally characterized Sprague-Dawley rats, there was a significant decline in neural IGF-1 (p<0.001), hippocampal (p<0.001) and cortical (p<0.05) IGF-1R expression. These animals showed a significant loss of presynaptic markers (synaptophysin; p<0.001), and changes in neurotransmitters (VGLUT2, Tyrosine hydroxylase, GABA, ChAT). Furthermore, naïve stressed rats recorded a significant decrease in post-synaptic marker (PSD-95; p<0.01) and synaptic regulator (CaMKIIα; p<0.001). As part of the synaptic response to a decrease in brain CaMKIIα, small ion conductance channel (KCa2.2) was upregulated in the brain of naïve stressed rats (p<0.01). After a PET, an increase in IGF-1 (p<0.05) and IGF-1R was recorded in the Stress-PET group (p<0.001). As such, hippocampal (p<0.001), but not cortical (ns) synaptophysin expression increased in Stress-PET. Although PSD-95 was relatively unchanged in the hippocampus and PFC, CaMKIIα (p<0.001) and KCa2.2 (p<0.01) were upregulated in Stress-PET, and may be involved in extinction of fear memory-related synaptic potentials. These changes were also associated with a normalized neurotransmitter function, and a significant reduction in open space avoidance; when the animals were assessed in elevated plus maze (EPM). In addition to a decrease in IGF-1/IGF-1R, an increase in activated hippocampal and cortical microglia was seen in stress (p<0.05) and after a PET (Stress-PET; p<0.001). Furthermore, this was linked with a significant increase in HMGB1 (Hippocampus: p<0.001, PFC: p<0.05) and TLR4 expression (Hippocampus: p<0.01; PFC: ns) in the neurons. Taken together, this study showed that traumatic stress and subsequent PET involves an event-dependent alteration of IGF1/IGF-1R/CaMKIIα. Firstly, we showed a direct relationship between IGF-1/IGF-1R expression, presynaptic function (synaptophysin) and neurotransmitter activity in stress and PET. Secondly, we identified the possible role of CaMKIIα in post-synaptic function and regulation of small ion conductance channels. Lastly, we highlighted some of the possible links between IGF1/IGF-1R/CaMKIIα, the expression of DAMP proteins, Microglia activation, and its implication on synaptic plasticity during stress and PET. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
A sub-millimeter resolution PET detector module using a multi-pixel photon counter array
NASA Astrophysics Data System (ADS)
Song, Tae Yong; Wu, Heyu; Komarov, Sergey; Siegel, Stefan B.; Tai, Yuan-Chuan
2010-05-01
A PET block detector module using an array of sub-millimeter lutetium oxyorthosilicate (LSO) crystals read out by an array of surface-mount, semiconductor photosensors has been developed. The detector consists of a LSO array, a custom acrylic light guide, a 3 × 3 multi-pixel photon counter (MPPC) array (S10362-11-050P, Hamamatsu Photonics, Japan) and a readout board with a charge division resistor network. The LSO array consists of 100 crystals, each measuring 0.8 × 0.8 × 3 mm3 and arranged in 0.86 mm pitches. A Monte Carlo simulation was used to aid the design and fabrication of a custom light guide to control distribution of scintillation light over the surface of the MPPC array. The output signals of the nine MPPC are multiplexed by a charge division resistor network to generate four position-encoded analog outputs. Flood image, energy resolution and timing resolution measurements were performed using standard NIM electronics. The linearity of the detector response was investigated using gamma-ray sources of different energies. The 10 × 10 array of 0.8 mm LSO crystals was clearly resolved in the flood image. The average energy resolution and standard deviation were 20.0% full-width at half-maximum (FWHM) and ±5.0%, respectively, at 511 keV. The timing resolution of a single MPPC coupled to a LSO crystal was found to be 857 ps FWHM, and the value for the central region of detector module was 1182 ps FWHM when ±10% energy window was applied. The nonlinear response of a single MPPC when used to read out a single LSO was observed among the corner crystals of the proposed detector module. However, the central region of the detector module exhibits significantly less nonlinearity (6.5% for 511 keV). These results demonstrate that (1) a charge-sharing resistor network can effectively multiplex MPPC signals and reduce the number of output signals without significantly degrading the performance of a PET detector and (2) a custom light guide to permit light sharing among multiple MPPC and to diffuse and direct scintillation light can reduce the nonlinearity of the detector response within the limited dynamic range of a typical MPPC. As a result, the proposed PET detector module has the potential to be refined for use in high-resolution PET insert applications.
A sub-millimeter resolution PET detector module using a multi-pixel photon counter array.
Song, Tae Yong; Wu, Heyu; Komarov, Sergey; Siegel, Stefan B; Tai, Yuan-Chuan
2010-05-07
A PET block detector module using an array of sub-millimeter lutetium oxyorthosilicate (LSO) crystals read out by an array of surface-mount, semiconductor photosensors has been developed. The detector consists of a LSO array, a custom acrylic light guide, a 3 x 3 multi-pixel photon counter (MPPC) array (S10362-11-050P, Hamamatsu Photonics, Japan) and a readout board with a charge division resistor network. The LSO array consists of 100 crystals, each measuring 0.8 x 0.8 x 3 mm(3) and arranged in 0.86 mm pitches. A Monte Carlo simulation was used to aid the design and fabrication of a custom light guide to control distribution of scintillation light over the surface of the MPPC array. The output signals of the nine MPPC are multiplexed by a charge division resistor network to generate four position-encoded analog outputs. Flood image, energy resolution and timing resolution measurements were performed using standard NIM electronics. The linearity of the detector response was investigated using gamma-ray sources of different energies. The 10 x 10 array of 0.8 mm LSO crystals was clearly resolved in the flood image. The average energy resolution and standard deviation were 20.0% full-width at half-maximum (FWHM) and +/-5.0%, respectively, at 511 keV. The timing resolution of a single MPPC coupled to a LSO crystal was found to be 857 ps FWHM, and the value for the central region of detector module was 1182 ps FWHM when +/-10% energy window was applied. The nonlinear response of a single MPPC when used to read out a single LSO was observed among the corner crystals of the proposed detector module. However, the central region of the detector module exhibits significantly less nonlinearity (6.5% for 511 keV). These results demonstrate that (1) a charge-sharing resistor network can effectively multiplex MPPC signals and reduce the number of output signals without significantly degrading the performance of a PET detector and (2) a custom light guide to permit light sharing among multiple MPPC and to diffuse and direct scintillation light can reduce the nonlinearity of the detector response within the limited dynamic range of a typical MPPC. As a result, the proposed PET detector module has the potential to be refined for use in high-resolution PET insert applications.
A sub-millimeter resolution PET detector module using a multi-pixel photon counter array
Song, Tae Yong; Wu, Heyu; Komarov, Sergey; Siegel, Stefan B; Tai, Yuan-Chuan
2010-01-01
A PET block detector module using an array of sub-millimeter lutetium oxyorthosilicate (LSO) crystals read out by an array of surface-mount, semiconductor photosensors has been developed. The detector consists of a LSO array, a custom acrylic light guide, a 3 × 3 multi-pixel photon counter (MPPC) array (S10362-11-050P, Hamamatsu Photonics, Japan) and a readout board with a charge division resistor network. The LSO array consists of 100 crystals, each measuring 0.8 × 0.8 × 3 mm3 and arranged in 0.86 mm pitches. A Monte Carlo simulation was used to aid the design and fabrication of a custom light guide to control distribution of scintillation light over the surface of the MPPC array. The output signals of the nine MPPC are multiplexed by a charge division resistor network to generate four position-encoded analog outputs. Flood image, energy resolution and timing resolution measurements were performed using standard NIM electronics. The linearity of the detector response was investigated using gamma-ray sources of different energies. The 10 × 10 array of 0.8 mm LSO crystals was clearly resolved in the flood image. The average energy resolution and standard deviation were 20.0% full-width at half-maximum (FWHM) and ±5.0%, respectively, at 511 keV. The timing resolution of a single MPPC coupled to a LSO crystal was found to be 857 ps FWHM, and the value for the central region of detector module was 1182 ps FWHM when ±10% energy window was applied. The nonlinear response of a single MPPC when used to read out a single LSO was observed among the corner crystals of the proposed detector module. However, the central region of the detector module exhibits significantly less nonlinearity (6.5% for 511 keV). These results demonstrate that (1) a charge-sharing resistor network can effectively multiplex MPPC signals and reduce the number of output signals without significantly degrading the performance of a PET detector and (2) a custom light guide to permit light sharing among multiple MPPC and to diffuse and direct scintillation light can reduce the nonlinearity of the detector response within the limited dynamic range of a typical MPPC. As a result, the proposed PET detector module has the potential to be refined for use in high-resolution PET insert applications. PMID:20393236
Kinetic modeling in PET imaging of hypoxia
Li, Fan; Joergensen, Jesper T; Hansen, Anders E; Kjaer, Andreas
2014-01-01
Tumor hypoxia is associated with increased therapeutic resistance leading to poor treatment outcome. Therefore the ability to detect and quantify intratumoral oxygenation could play an important role in future individual personalized treatment strategies. Positron Emission Tomography (PET) can be used for non-invasive mapping of tissue oxygenation in vivo and several hypoxia specific PET tracers have been developed. Evaluation of PET data in the clinic is commonly based on visual assessment together with semiquantitative measurements e.g. standard uptake value (SUV). However, dynamic PET contains additional valuable information on the temporal changes in tracer distribution. Kinetic modeling can be used to extract relevant pharmacokinetic parameters of tracer behavior in vivo that reflects relevant physiological processes. In this paper, we review the potential contribution of kinetic analysis for PET imaging of hypoxia. PMID:25250200
NASA Astrophysics Data System (ADS)
Dai, Xiaoqian; Tian, Jie; Chen, Zhe
2010-03-01
Parametric images can represent both spatial distribution and quantification of the biological and physiological parameters of tracer kinetics. The linear least square (LLS) method is a well-estimated linear regression method for generating parametric images by fitting compartment models with good computational efficiency. However, bias exists in LLS-based parameter estimates, owing to the noise present in tissue time activity curves (TTACs) that propagates as correlated error in the LLS linearized equations. To address this problem, a volume-wise principal component analysis (PCA) based method is proposed. In this method, firstly dynamic PET data are properly pre-transformed to standardize noise variance as PCA is a data driven technique and can not itself separate signals from noise. Secondly, the volume-wise PCA is applied on PET data. The signals can be mostly represented by the first few principle components (PC) and the noise is left in the subsequent PCs. Then the noise-reduced data are obtained using the first few PCs by applying 'inverse PCA'. It should also be transformed back according to the pre-transformation method used in the first step to maintain the scale of the original data set. Finally, the obtained new data set is used to generate parametric images using the linear least squares (LLS) estimation method. Compared with other noise-removal method, the proposed method can achieve high statistical reliability in the generated parametric images. The effectiveness of the method is demonstrated both with computer simulation and with clinical dynamic FDG PET study.
Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques.
Hofmann, Matthias; Pichler, Bernd; Schölkopf, Bernhard; Beyer, Thomas
2009-03-01
Positron emission tomography (PET) is a fully quantitative technology for imaging metabolic pathways and dynamic processes in vivo. Attenuation correction of raw PET data is a prerequisite for quantification and is typically based on separate transmission measurements. In PET/CT attenuation correction, however, is performed routinely based on the available CT transmission data. Recently, combined PET/magnetic resonance (MR) has been proposed as a viable alternative to PET/CT. Current concepts of PET/MRI do not include CT-like transmission sources and, therefore, alternative methods of PET attenuation correction must be found. This article reviews existing approaches to MR-based attenuation correction (MR-AC). Most groups have proposed MR-AC algorithms for brain PET studies and more recently also for torso PET/MR imaging. Most MR-AC strategies require the use of complementary MR and transmission images, or morphology templates generated from transmission images. We review and discuss these algorithms and point out challenges for using MR-AC in clinical routine. MR-AC is work-in-progress with potentially promising results from a template-based approach applicable to both brain and torso imaging. While efforts are ongoing in making clinically viable MR-AC fully automatic, further studies are required to realize the potential benefits of MR-based motion compensation and partial volume correction of the PET data.
An update on technical and methodological aspects for cardiac PET applications.
Presotto, Luca; Busnardo, Elena; Gianolli, Luigi; Bettinardi, Valentino
2016-12-01
Positron emission tomography (PET) is indicated for a large number of cardiac diseases: perfusion and viability studies are commonly used to evaluate coronary artery disease; PET can also be used to assess sarcoidosis and endocarditis, as well as to investigate amyloidosis. Furthermore, a hot topic for research is plaque characterization. Most of these studies are technically very challenging. High count rates and short acquisition times characterize perfusion scans while very small targets have to be imaged in inflammation/infection and plaques examinations. Furthermore, cardiac PET suffers from respiratory and cardiac motion blur. Each type of studies has specific requirements from the technical and methodological point of view, thus PET systems with overall high performances are required. Furthermore, in the era of hybrid PET/computed tomography (CT) and PET/Magnetic Resonance Imaging (MRI) systems, the combination of complementary functional and anatomical information can be used to improve diagnosis and prognosis. Moreover, PET images can be qualitatively and quantitatively improved exploiting information from the other modality, using advanced algorithms. In this review we will report the latest technological and methodological innovations for PET cardiac applications, with particular reference to the state of the art of the hybrid PET/CT and PET/MRI. We will also report the most recent advancements in software, from reconstruction algorithms to image processing and analysis programs.
Kinetic filtering of [18F]Fluorothymidine in positron emission tomography studies
NASA Astrophysics Data System (ADS)
Gray, Katherine R.; Contractor, Kaiyumars B.; Kenny, Laura M.; Al-Nahhas, Adil; Shousha, Sami; Stebbing, Justin; Wasan, Harpreet S.; Coombes, R. Charles; Aboagye, Eric O.; Turkheimer, Federico E.; Rosso, Lula
2010-02-01
[18F]Fluorothymidine (FLT) is a cell proliferation marker that undergoes predominantly hepatic metabolism and therefore shows a high level of accumulation in the liver, as well as in rapidly proliferating tumours. Furthermore, the tracer's uptake is substantial in other organs including the heart. We present a nonlinear kinetic filtering technique which enhances the visualization of tumours imaged with FLT positron emission tomography (FLT-PET). A classification algorithm to isolate cancerous tissue from healthy organs was developed and validated using 29 scan data from patients with locally advanced or metastatic breast cancer. A large reduction in signal from the liver and heart of 80% was observed following application of the kinetic filter, whilst the majority of signal from both primary tumours and metastases was retained. A scan acquisition time of 60 min has been shown to be sufficient to obtain the necessary kinetic data. The algorithm extends utility of FLT-PET imaging in oncology research.
Implementing fluid dynamics obtained from GeoPET in reactive transport models
NASA Astrophysics Data System (ADS)
Lippmann-Pipke, Johanna; Eichelbaum, Sebastian; Kulenkampff, Johannes
2016-04-01
Flow and transport simulations in geomaterials are commonly conducted on high-resolution tomograms (μCT) of the pore structure or stochastic models that are calibrated with measured integral quantities, like break through curves (BTC). Yet, there existed virtually no method for experimental verification of the simulated velocity distribution results. Positron emission tomography (PET) has unrivaled sensitivity and robustness for non-destructive, quantitative, spatio-temporal measurement of tracer concentrations in body tissue. In the past decade, we empowered PET for its applicability in opaque/geological media - GeoPET (Kulenkampff et al.; Kulenkampff et al., 2008; Zakhnini et al., 2013) and have developed detailed correction schemes to bring the images into sharp focus. Thereby it is the appropriate method for experimental verification and calibration of computer simulations of pore-scale transport by means of the observed propagation of a tracer pulse, c_PET(x,y,z,t). In parallel, we aimed at deriving velocity and porosity distributions directly from our concentration time series of fluid flow processes in geomaterials. This would allow us to directly benefit from lab scale observations and to parameterize respective numerical transport models. For this we have developed a robust spatiotemporal (3D+t) parameter extraction algorithm. Here, we will present its functionality, and demonstrate the use of obtained velocity distributions in finite element simulations of reactive transport processes on drill core scale. Kulenkampff, J., Gruendig, M., Zakhnini, A., Gerasch, R., and Lippmann-Pipke, J.: Process tomography of diffusion with PET for evaluating anisotropy and heterogeneity, Clay Minerals, in press. Kulenkampff, J., Gründig, M., Richter, M., and Enzmann, F.: Evaluation of positron emission tomography for visualisation of migration processes in geomaterials, Physics and Chemistry of the Earth, 33, 937-942, 2008. Zakhnini, A., Kulenkampff, J., Sauerzapf, S., Pietrzyk, U., and Lippmann-Pipke, J.: Monte Carlo simulations of GeoPET experiments: 3D images of tracer distributions (18-F, 124-I and 58-Co) in Opalinus Clay, anhydrite and quartz, Computers and Geosciences, 57 183-196, 2013.
Khalifé, Maya; Fernandez, Brice; Jaubert, Olivier; Soussan, Michael; Brulon, Vincent; Buvat, Irène; Comtat, Claude
2017-09-21
In brain PET/MR applications, accurate attenuation maps are required for accurate PET image quantification. An implemented attenuation correction (AC) method for brain imaging is the single-atlas approach that estimates an AC map from an averaged CT template. As an alternative, we propose to use a zero echo time (ZTE) pulse sequence to segment bone, air and soft tissue. A linear relationship between histogram normalized ZTE intensity and measured CT density in Hounsfield units ([Formula: see text]) in bone has been established thanks to a CT-MR database of 16 patients. Continuous AC maps were computed based on the segmented ZTE by setting a fixed linear attenuation coefficient (LAC) to air and soft tissue and by using the linear relationship to generate continuous μ values for the bone. Additionally, for the purpose of comparison, four other AC maps were generated: a ZTE derived AC map with a fixed LAC for the bone, an AC map based on the single-atlas approach as provided by the PET/MR manufacturer, a soft-tissue only AC map and, finally, the CT derived attenuation map used as the gold standard (CTAC). All these AC maps were used with different levels of smoothing for PET image reconstruction with and without time-of-flight (TOF). The subject-specific AC map generated by combining ZTE-based segmentation and linear scaling of the normalized ZTE signal into [Formula: see text] was found to be a good substitute for the measured CTAC map in brain PET/MR when used with a Gaussian smoothing kernel of [Formula: see text] corresponding to the PET scanner intrinsic resolution. As expected TOF reduces AC error regardless of the AC method. The continuous ZTE-AC performed better than the other alternative MR derived AC methods, reducing the quantification error between the MRAC corrected PET image and the reference CTAC corrected PET image.
Development of capacitive multiplexing circuit for SiPM-based time-of-flight (TOF) PET detector
NASA Astrophysics Data System (ADS)
Choe, Hyeok-Jun; Choi, Yong; Hu, Wei; Yan, Jianhua; Jung, Jin Ho
2017-04-01
There has been great interest in developing a time-of-flight (TOF) PET to improve the signal-to-noise ratio of PET image relative to that of non-TOF PET. Silicon photomultiplier (SiPM) arrays have attracted attention for use as a fast TOF PET photosensor. Since numerous SiPM arrays are needed to construct a modern human PET, a multiplexing method providing both good timing performance and high channel reduction capability is required to develop a SiPM-based TOF PET. The purpose of this study was to develop a capacitive multiplexing circuit for the SiPM-based TOF PET. The proposed multiplexing circuit was evaluated by measuring the coincidence resolving time (CRT) and the energy resolution as a function of the overvoltage using three different capacitor values of 15, 30, and 51 pF. A flood histogram was also obtained and quantitatively assessed. Experiments were performed using a 4× 4 array of 3× 3 mm2 SiPMs. Regarding the capacitor values, the multiplexing circuit using a smaller capacitor value showed the best timing performance. On the other hand, the energy resolution and flood histogram quality of the multiplexing circuit deteriorated as the capacitor value became smaller. The proposed circuit was able to achieve a CRT of 260+/- 4 ps FWHM and an energy resolution of 17.1 % with a pair of 2× 2× 20 mm3 LYSO crystals using a capacitor value of 30 pF at an overvoltage of 3.0 V. It was also possible to clearly resolve a 6× 6 array of LYSO crystals in the flood histogram using the multiplexing circuit. The experiment results indicate that the proposed capacitive multiplexing circuit is useful to obtain an excellent timing performance and a crystal-resolving capability in the flood histogram with a minimal degradation of the energy resolution, as well as to reduce the number of the readout channels of the SiPM-based TOF PET detector.
NASA Astrophysics Data System (ADS)
Khalifé, Maya; Fernandez, Brice; Jaubert, Olivier; Soussan, Michael; Brulon, Vincent; Buvat, Irène; Comtat, Claude
2017-10-01
In brain PET/MR applications, accurate attenuation maps are required for accurate PET image quantification. An implemented attenuation correction (AC) method for brain imaging is the single-atlas approach that estimates an AC map from an averaged CT template. As an alternative, we propose to use a zero echo time (ZTE) pulse sequence to segment bone, air and soft tissue. A linear relationship between histogram normalized ZTE intensity and measured CT density in Hounsfield units (HU ) in bone has been established thanks to a CT-MR database of 16 patients. Continuous AC maps were computed based on the segmented ZTE by setting a fixed linear attenuation coefficient (LAC) to air and soft tissue and by using the linear relationship to generate continuous μ values for the bone. Additionally, for the purpose of comparison, four other AC maps were generated: a ZTE derived AC map with a fixed LAC for the bone, an AC map based on the single-atlas approach as provided by the PET/MR manufacturer, a soft-tissue only AC map and, finally, the CT derived attenuation map used as the gold standard (CTAC). All these AC maps were used with different levels of smoothing for PET image reconstruction with and without time-of-flight (TOF). The subject-specific AC map generated by combining ZTE-based segmentation and linear scaling of the normalized ZTE signal into HU was found to be a good substitute for the measured CTAC map in brain PET/MR when used with a Gaussian smoothing kernel of 4~mm corresponding to the PET scanner intrinsic resolution. As expected TOF reduces AC error regardless of the AC method. The continuous ZTE-AC performed better than the other alternative MR derived AC methods, reducing the quantification error between the MRAC corrected PET image and the reference CTAC corrected PET image.
Silk-based anisotropical 3D biotextiles for bone regeneration.
Ribeiro, Viviana P; Silva-Correia, Joana; Nascimento, Ana I; da Silva Morais, Alain; Marques, Alexandra P; Ribeiro, Ana S; Silva, Carla J; Bonifácio, Graça; Sousa, Rui A; Oliveira, Joaquim M; Oliveira, Ana L; Reis, Rui L
2017-04-01
Bone loss in the craniofacial complex can been treated using several conventional therapeutic strategies that face many obstacles and limitations. In this work, novel three-dimensional (3D) biotextile architectures were developed as a possible strategy for flat bone regeneration applications. As a fully automated processing route, this strategy as potential to be easily industrialized. Silk fibroin (SF) yarns were processed into weft-knitted fabrics spaced by a monofilament of polyethylene terephthalate (PET). A comparative study with a similar 3D structure made entirely of PET was established. Highly porous scaffolds with homogeneous pore distribution were observed using micro-computed tomography analysis. The wet state dynamic mechanical analysis revealed a storage modulus In the frequency range tested, the storage modulus values obtained for SF-PET scaffolds were higher than for the PET scaffolds. Human adipose-derived stem cells (hASCs) cultured on the SF-PET spacer structures showed the typical pattern for ALP activity under osteogenic culture conditions. Osteogenic differentiation of hASCs on SF-PET and PET constructs was also observed by extracellular matrix mineralization and expression of osteogenic-related markers (osteocalcin, osteopontin and collagen type I) after 28 days of osteogenic culture, in comparison to the control basal medium. The quantification of convergent macroscopic blood vessels toward the scaffolds by a chick chorioallantoic membrane assay, showed higher angiogenic response induced by the SF-PET textile scaffolds than PET structures and gelatin sponge controls. Subcutaneous implantation in CD-1 mice revealed tissue ingrowth's accompanied by blood vessels infiltration in both spacer constructs. The structural adaptability of textile structures combined to the structural similarities of the 3D knitted spacer fabrics to craniofacial bone tissue and achieved biological performance, make these scaffolds a possible solution for tissue engineering approaches in this area. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rodríguez Chialanza, Mauricio; Sierra, Ignacio; Pérez Parada, Andrés; Fornaro, Laura
2018-06-01
There are several techniques used to analyze microplastics. These are often based on a combination of visual and spectroscopic techniques. Here we introduce an alternative workflow for identification and mass quantitation through a combination of optical microscopy with image analysis (IA) and differential scanning calorimetry (DSC). We studied four synthetic polymers with environmental concern: low and high density polyethylene (LDPE and HDPE, respectively), polypropylene (PP), and polyethylene terephthalate (PET). Selected experiments were conducted to investigate (i) particle characterization and counting procedures based on image analysis with open-source software, (ii) chemical identification of microplastics based on DSC signal processing, (iii) dependence of particle size on DSC signal, and (iv) quantitation of microplastics mass based on DSC signal. We describe the potential and limitations of these techniques to increase reliability for microplastic analysis. Particle size demonstrated to have particular incidence in the qualitative and quantitative performance of DSC signals. Both, identification (based on characteristic onset temperature) and mass quantitation (based on heat flow) showed to be affected by particle size. As a result, a proper sample treatment which includes sieving of suspended particles is particularly required for this analytical approach.
Jin, Shuo; Li, Dengwang; Wang, Hongjun; Yin, Yong
2013-01-07
Accurate registration of 18F-FDG PET (positron emission tomography) and CT (computed tomography) images has important clinical significance in radiation oncology. PET and CT images are acquired from (18)F-FDG PET/CT scanner, but the two acquisition processes are separate and take a long time. As a result, there are position errors in global and deformable errors in local caused by respiratory movement or organ peristalsis. The purpose of this work was to implement and validate a deformable CT to PET image registration method in esophageal cancer to eventually facilitate accurate positioning the tumor target on CT, and improve the accuracy of radiation therapy. Global registration was firstly utilized to preprocess position errors between PET and CT images, achieving the purpose of aligning these two images on the whole. Demons algorithm, based on optical flow field, has the features of fast process speed and high accuracy, and the gradient of mutual information-based demons (GMI demons) algorithm adds an additional external force based on the gradient of mutual information (GMI) between two images, which is suitable for multimodality images registration. In this paper, GMI demons algorithm was used to achieve local deformable registration of PET and CT images, which can effectively reduce errors between internal organs. In addition, to speed up the registration process, maintain its robustness, and avoid the local extremum, multiresolution image pyramid structure was used before deformable registration. By quantitatively and qualitatively analyzing cases with esophageal cancer, the registration scheme proposed in this paper can improve registration accuracy and speed, which is helpful for precisely positioning tumor target and developing the radiation treatment planning in clinical radiation therapy application.
Jin, Shuo; Li, Dengwang; Yin, Yong
2013-01-01
Accurate registration of 18F−FDG PET (positron emission tomography) and CT (computed tomography) images has important clinical significance in radiation oncology. PET and CT images are acquired from 18F−FDG PET/CT scanner, but the two acquisition processes are separate and take a long time. As a result, there are position errors in global and deformable errors in local caused by respiratory movement or organ peristalsis. The purpose of this work was to implement and validate a deformable CT to PET image registration method in esophageal cancer to eventually facilitate accurate positioning the tumor target on CT, and improve the accuracy of radiation therapy. Global registration was firstly utilized to preprocess position errors between PET and CT images, achieving the purpose of aligning these two images on the whole. Demons algorithm, based on optical flow field, has the features of fast process speed and high accuracy, and the gradient of mutual information‐based demons (GMI demons) algorithm adds an additional external force based on the gradient of mutual information (GMI) between two images, which is suitable for multimodality images registration. In this paper, GMI demons algorithm was used to achieve local deformable registration of PET and CT images, which can effectively reduce errors between internal organs. In addition, to speed up the registration process, maintain its robustness, and avoid the local extremum, multiresolution image pyramid structure was used before deformable registration. By quantitatively and qualitatively analyzing cases with esophageal cancer, the registration scheme proposed in this paper can improve registration accuracy and speed, which is helpful for precisely positioning tumor target and developing the radiation treatment planning in clinical radiation therapy application. PACS numbers: 87.57.nj, 87.57.Q‐, 87.57.uk PMID:23318381
Dodd, Emily; Cheston, Richard; Procter, Charlie; Heneker, Sarah; Gray, Richard; Fox, Chris; Nolan, Fiona
2018-04-01
During protected engagement time (PET), ward routines are adjusted so that staff can spend time together with patients without interruption. The aim of PET is to increase staff and patient interaction on wards, and ultimately patient well-being. Although PET has been implemented on inpatient wards within the UK, including older adult wards, there is no systematic evidence as to how PET is carried out or how it is experienced by staff, patients, and families. Semistructured interviews were conducted with 28 participants (8 patients, 10 family members, and 10 ward staff) from three different wards with PET, and transcriptions were analysed using thematic analysis. Three themes were identified: (i) the patient is at the heart of care; (ii) PET depends on staff; and (iii) tensions in how PET operates. There was support in our sample for the principles of PET and its potential for a positive impact on patient well-being. However, the implementation of PET was identified as challenging, highlighting an existing tension between an individual's needs and the wider needs of patients on the ward as a whole. The impact of PET was generally described as being dependent on how PET was organized and the level of staff commitment to PET. Participants emphasized that if PET is to be successful, then it should be a fluid process that fits in with the local context. © 2017 Australian College of Mental Health Nurses Inc.
NASA Astrophysics Data System (ADS)
Poitry-Yamate, C.; Gianoncelli, A.; Kourousias, G.; Kaulich, B.; Lepore, M.; Gruetter, R.; Kiskinova, M.
2013-10-01
Low energy x-ray fluorescence (LEXRF) detection was optimized for imaging cerebral glucose metabolism by mapping the fluorine LEXRF signal of 19F in 19FDG, trapped as intracellular 19F-deoxyglucose-6-phosphate (19FDG-6P) at 1μm spatial resolution from 3μm thick brain slices. 19FDG metabolism was evaluated in brain structures closely resembling the general cerebral cytoarchitecture following formalin fixation of brain slices and their inclusion in an epon matrix. 2-dimensional distribution maps of 19FDG-6P were placed in a cytoarchitectural and morphological context by simultaneous LEXRF mapping of N and O, and scanning transmission x-ray (STXM) imaging. A disproportionately high uptake and metabolism of glucose was found in neuropil relative to intracellular domains of the cell body of hypothalamic neurons, showing directly that neurons, like glial cells, also metabolize glucose. As 19F-deoxyglucose-6P is structurally identical to 18F-deoxyglucose-6P, LEXRF of subcellular 19F provides a link to in vivo 18FDG PET, forming a novel basis for understanding the physiological mechanisms underlying the 18FDG PET image, and the contribution of neurons and glia to the PET signal.
Cinelli, Patrizia; Schmid, Markus; Bugnicourt, Elodie; Coltelli, Maria Beatrice; Lazzeri, Andrea
2016-06-14
Multilayer plastic films provide a range of properties, which cannot be obtained from monolayer films but, at present, their recyclability is an open issue and should be improved. Research to date has shown the possibility of using whey protein as a layer material with the property of acting as an excellent barrier against oxygen and moisture, replacing petrochemical non-recyclable materials. The innovative approach of the present research was to achieve the recyclability of the substrate films by separating them, with a simple process compatible with industrial procedures, in order to promote recycling processes leading to obtain high value products that will beneficially impact the packaging and food industries. Hence, polyethyleneterephthalate (PET)/polyethylene (PE) multi-layer film was prepared based on PET coated with a whey protein layer, and then the previous structure was laminated with PE. Whey proteins, constituting the coating, can be degraded by enzymes so that the coating films can be washed off from the plastic substrate layer. Enzyme types, dosage, time, and temperature optima, which are compatible with procedures adopted in industrial waste recycling, were determined for a highly-efficient process. The washing of samples based on PET/whey and PET/whey/PE were efficient when performed with enzymatic detergent containing protease enzymes, as an alternative to conventional detergents used in recycling facilities. Different types of enzymatic detergents tested presented positive results in removing the protein layer from the PET substrate and from the PET/whey/PE multilayer films at room temperature. These results attested to the possibility of organizing the pre-treatment of the whey-based multilayer film by washing with different available commercial enzymatic detergents in order to separate PET and PE, thus allowing a better recycling of the two different polymers. Mechanical properties of the plastic substrate, such as stress at yield, stress and elongation at break, evaluated by tensile testing on films before and after cleaning, were are not significantly affected by washing with enzymatic detergents.
Li, Hong; Li, Jinyan; Jiang, Jia; Lv, Fang; Chang, Jiang; Chen, Shiyi; Wu, Chengtie
2017-05-01
To solve the poor healing of polyethylene terephthalate (PET) artificial ligament in bone tunnel, copper-containing bioactive glass (Cu-BG) nanocoatings on PET artificial ligaments were successfully prepared by pulsed laser deposition (PLD). It was hypothesized that Cu-BG coated PET (Cu-BG/PET) grafts could enhance the in vitro osteogenic and angiogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs) and in vivo graft-bone healing after anterior cruciate ligament (ACL) reconstruction in a goat model. Scanning electron microscope and EDS mapping analysis revealed that the prepared nanocoatings had uniform element distribution (Cu, Ca, Si and P) and nanostructure. The surface hydrophilicity of PET grafts was significantly improved after depositing Cu-BG nanocoatings. The in vitro study displayed that the Cu-BG/PET grafts supported the attachment and proliferation of rBMSCs, and significantly promoted the expression of HIF-1α gene, which up-regulated the osteogenesis-related genes (S100A10, BMP2, OCN) and angiogenesis-related genes (VEGF) in comparison with PET or BG coated PET (BG/PET) grafts which do not contain Cu element. Meanwhile, Cu-BG/PET grafts promoted the bone regeneration at the graft-host bone interface and decreased graft-bone interface width, thus enhancing the bonding strength as well as angiogenesis (as indicated by CD31 expression) in the goat model as compared with BG/PET and pure PET grafts. The study demonstrates that the Cu-containing biomaterials significantly promote osteogenesis and angiogenesis in the repair of bone defects of large animals and thus offering a promising method for ACL reconstruction by using Cu-containing nanobioglass modified PET grafts. It remains a significant challenge to develop an artificial graft with distinct osteogenetic/angiogenetic activity to enhance graft-bone healing for ligament reconstruction. To solve these problems, copper-containing bioactive glass (Cu-BG) nanocoatings on PET artificial ligaments were successfully prepared by pulsed laser deposition (PLD). It was found that the prepared Cu-BG/PET grafts significantly stimulated the proliferation and osteogenic/angiogenic differentiation of bone marrow stromal cells (BMSCs) through activating HIF-1α/S100A10/Ca 2+ signal pathway. The most important is that the in vivo bone-forming ability of Cu-containing biomaterials was, for the first time, elucidated in a large animal model, revealing the enhanced capacity of osteogenesis and angiogenesis with incorporation of bioactive Cu element. It is suggested that the copper-containing biomaterials significantly promote osteogenesis and angiogenesis in large animal defects and thus offering a promising method for ACL reconstruction by using Cu-containing nanobioglass modification of PET grafts, paving the way to apply Cu-containing biomaterials for tissue engineering and regenerative medicine. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Motion and Emotional Behavior Design for Pet Robot Dog
NASA Astrophysics Data System (ADS)
Cheng, Chi-Tai; Yang, Yu-Ting; Miao, Shih-Heng; Wong, Ching-Chang
A pet robot dog with two ears, one mouth, one facial expression plane, and one vision system is designed and implemented so that it can do some emotional behaviors. Three processors (Inter® Pentium® M 1.0 GHz, an 8-bit processer 8051, and embedded soft-core processer NIOS) are used to control the robot. One camera, one power detector, four touch sensors, and one temperature detector are used to obtain the information of the environment. The designed robot with 20 DOF (degrees of freedom) is able to accomplish the walking motion. A behavior system is built on the implemented pet robot so that it is able to choose a suitable behavior for different environmental situation. From the practical test, we can see that the implemented pet robot dog can do some emotional interaction with the human.
Measuring the significance of pearlescence in real-time bottle forming
NASA Astrophysics Data System (ADS)
Nixon, J.; Menary, G.; Yan, S.
2018-05-01
This work examines the optical properties of polyethylene terephthalate (PET) bottles during the stretch-blow-moulding (SBM) process. PET has a relatively large process window with regards to process parameters, however if the boundaries are pushed, the resultant bottle can become insufficient for consumer requirements. One aspect of this process is the onset of pearlescence in the bottle material, where the bottle becomes opaque due to elevated stress whitening. Experimental trials were carried out using a modified free-stretch-blow machine where the deforming bottle was examined in free air. The strain values of the deformation were measured using digital image correlation (DIC) and the optical properties were measured relative to the initial amorphous PET preform. The results reveal that process parameters can significantly affect pearlescence. The detrimental level of pearlescence may be predicted therefore reducing the probability of poorly formed bottles.
3D multiplayer virtual pets game using Google Card Board
NASA Astrophysics Data System (ADS)
Herumurti, Darlis; Riskahadi, Dimas; Kuswardayan, Imam
2017-08-01
Virtual Reality (VR) is a technology which allows user to interact with the virtual environment. This virtual environment is generated and simulated by computer. This technology can make user feel the sensation when they are in the virtual environment. The VR technology provides real virtual environment view for user and it is not viewed from screen. But it needs another additional device to show the view of virtual environment. This device is known as Head Mounted Device (HMD). Oculust Rift and Microsoft Hololens are the most famous HMD devices used in VR. And in 2014, Google Card Board was introduced at Google I/O developers conference. Google Card Board is VR platform which allows user to enjoy the VR with simple and cheap way. In this research, we explore Google Card Board to develop simulation game of raising pet. The Google Card Board is used to create view for the VR environment. The view and control in VR environment is built using Unity game engine. And the simulation process is designed using Finite State Machine (FSM). This FSM can help to design the process clearly. So the simulation process can describe the simulation of raising pet well. Raising pet is fun activity. But sometimes, there are many conditions which cause raising pet become difficult to do, i.e. environment condition, disease, high cost, etc. this research aims to explore and implement Google Card Board in simulation of raising pet.
NASA Astrophysics Data System (ADS)
Kolstein, M.; Chmeissani, M.
2016-01-01
The Voxel Imaging PET (VIP) Pathfinder project presents a novel design using pixelated semiconductor detectors for nuclear medicine applications to achieve the intrinsic image quality limits set by physics. The conceptual design can be extended to a Compton gamma camera. The use of a pixelated CdTe detector with voxel sizes of 1 × 1 × 2 mm3 guarantees optimal energy and spatial resolution. However, the limited time resolution of semiconductor detectors makes it impossible to use Time Of Flight (TOF) with VIP PET. TOF is used in order to improve the signal to noise ratio (SNR) by using only the most probable portion of the Line-Of-Response (LOR) instead of its entire length. To overcome the limitation of CdTe time resolution, we present in this article a simulation study using β+-γ emitting isotopes with a Compton-PET scanner. When the β+ annihilates with an electron it produces two gammas which produce a LOR in the PET scanner, while the additional gamma, when scattered in the scatter detector, provides a Compton cone that intersects with the aforementioned LOR. The intersection indicates, within a few mm of uncertainty along the LOR, the origin of the beta-gamma decay. Hence, one can limit the part of the LOR used by the image reconstruction algorithm.
Towards time-of-flight PET with a semiconductor detector.
Ariño-Estrada, Gerard; Mitchell, Gregory S; Kwon, Sun Il; Du, Junwei; Kim, Hadong; Cirignano, Leonard J; Shah, Kanai S; Cherry, Simon R
2018-02-16
The feasibility of using Cerenkov light, generated by energetic electrons following 511 keV photon interactions in the semiconductor TlBr, to obtain fast timing information for positron emission tomography (PET) was evaluated. Due to its high refractive index, TlBr is a relatively good Cerenkov radiator and with its wide bandgap, has good optical transparency across most of the visible spectrum. Coupling an SiPM photodetector to a slab of TlBr (TlBr-SiPM) yielded a coincidence timing resolution of 620 ps FWHM between the TlBr-SiPM detector and a LFS reference detector. This value improved to 430 ps FWHM by applying a high pulse amplitude cut based on the TlBr-SiPM and reference detector signal amplitudes. These results are the best ever achieved with a semiconductor PET detector and already approach the performance required for time-of-flight. As TlBr has higher stopping power and better energy resolution than the conventional scintillation detectors currently used in PET scanners, a hybrid TlBr-SiPM detector with fast timing capability becomes an interesting option for further development.
NASA Astrophysics Data System (ADS)
Kolstein, M.; De Lorenzo, G.; Mikhaylova, E.; Chmeissani, M.; Ariño, G.; Calderón, Y.; Ozsahin, I.; Uzun, D.
2013-04-01
The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated solid-state technology for nuclear medicine applications. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 106). For PET scanners, conventional algorithms like Filtered Back-Projection (FBP) and Ordered Subset Expectation Maximization (OSEM) are straightforward to use and give good results. However, FBP presents difficulties for detectors with limited angular coverage like PEM and Compton gamma cameras, whereas OSEM has an impractically large time and memory consumption for a Compton gamma camera with a large number of channels. In this article, the Origin Ensemble (OE) algorithm is evaluated as an alternative algorithm for image reconstruction. Monte Carlo simulations of the PET design are used to compare the performance of OE, FBP and OSEM in terms of the bias, variance and average mean squared error (MSE) image quality metrics. For the PEM and Compton camera designs, results obtained with OE are presented.
Towards time-of-flight PET with a semiconductor detector
NASA Astrophysics Data System (ADS)
Ariño-Estrada, Gerard; Mitchell, Gregory S.; Kwon, Sun Il; Du, Junwei; Kim, Hadong; Cirignano, Leonard J.; Shah, Kanai S.; Cherry, Simon R.
2018-02-01
The feasibility of using Cerenkov light, generated by energetic electrons following 511 keV photon interactions in the semiconductor TlBr, to obtain fast timing information for positron emission tomography (PET) was evaluated. Due to its high refractive index, TlBr is a relatively good Cerenkov radiator and with its wide bandgap, has good optical transparency across most of the visible spectrum. Coupling an SiPM photodetector to a slab of TlBr (TlBr-SiPM) yielded a coincidence timing resolution of 620 ps FWHM between the TlBr-SiPM detector and a LFS reference detector. This value improved to 430 ps FWHM by applying a high pulse amplitude cut based on the TlBr-SiPM and reference detector signal amplitudes. These results are the best ever achieved with a semiconductor PET detector and already approach the performance required for time-of-flight. As TlBr has higher stopping power and better energy resolution than the conventional scintillation detectors currently used in PET scanners, a hybrid TlBr-SiPM detector with fast timing capability becomes an interesting option for further development.
Robust identification of polyethylene terephthalate (PET) plastics through Bayesian decision.
Zulkifley, Mohd Asyraf; Mustafa, Mohd Marzuki; Hussain, Aini; Mustapha, Aouache; Ramli, Suzaimah
2014-01-01
Recycling is one of the most efficient methods for environmental friendly waste management. Among municipal wastes, plastics are the most common material that can be easily recycled and polyethylene terephthalate (PET) is one of its major types. PET material is used in consumer goods packaging such as drinking bottles, toiletry containers, food packaging and many more. Usually, a recycling process is tailored to a specific material for optimal purification and decontamination to obtain high grade recyclable material. The quantity and quality of the sorting process are limited by the capacity of human workers that suffer from fatigue and boredom. Several automated sorting systems have been proposed in the literature that include using chemical, proximity and vision sensors. The main advantages of vision based sensors are its environmentally friendly approach, non-intrusive detection and capability of high throughput. However, the existing methods rely heavily on deterministic approaches that make them less accurate as the variations in PET plastic waste appearance are too high. We proposed a probabilistic approach of modeling the PET material by analyzing the reflection region and its surrounding. Three parameters are modeled by Gaussian and exponential distributions: color, size and distance of the reflection region. The final classification is made through a supervised training method of likelihood ratio test. The main novelty of the proposed method is the probabilistic approach in integrating various PET material signatures that are contaminated by stains under constant lighting changes. The system is evaluated by using four performance metrics: precision, recall, accuracy and error. Our system performed the best in all evaluation metrics compared to the benchmark methods. The system can be further improved by fusing all neighborhood information in decision making and by implementing the system in a graphics processing unit for faster processing speed.
Robust Identification of Polyethylene Terephthalate (PET) Plastics through Bayesian Decision
Zulkifley, Mohd Asyraf; Mustafa, Mohd Marzuki; Hussain, Aini; Mustapha, Aouache; Ramli, Suzaimah
2014-01-01
Recycling is one of the most efficient methods for environmental friendly waste management. Among municipal wastes, plastics are the most common material that can be easily recycled and polyethylene terephthalate (PET) is one of its major types. PET material is used in consumer goods packaging such as drinking bottles, toiletry containers, food packaging and many more. Usually, a recycling process is tailored to a specific material for optimal purification and decontamination to obtain high grade recyclable material. The quantity and quality of the sorting process are limited by the capacity of human workers that suffer from fatigue and boredom. Several automated sorting systems have been proposed in the literature that include using chemical, proximity and vision sensors. The main advantages of vision based sensors are its environmentally friendly approach, non-intrusive detection and capability of high throughput. However, the existing methods rely heavily on deterministic approaches that make them less accurate as the variations in PET plastic waste appearance are too high. We proposed a probabilistic approach of modeling the PET material by analyzing the reflection region and its surrounding. Three parameters are modeled by Gaussian and exponential distributions: color, size and distance of the reflection region. The final classification is made through a supervised training method of likelihood ratio test. The main novelty of the proposed method is the probabilistic approach in integrating various PET material signatures that are contaminated by stains under constant lighting changes. The system is evaluated by using four performance metrics: precision, recall, accuracy and error. Our system performed the best in all evaluation metrics compared to the benchmark methods. The system can be further improved by fusing all neighborhood information in decision making and by implementing the system in a graphics processing unit for faster processing speed. PMID:25485630
Technical Considerations on Scanning and Image Analysis for Amyloid PET in Dementia.
Akamatsu, Go; Ohnishi, Akihito; Aita, Kazuki; Ikari, Yasuhiko; Yamamoto, Yasuji; Senda, Michio
2017-01-01
Brain imaging techniques, such as computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and positron emission tomography (PET), can provide essential and objective information for the early and differential diagnosis of dementia. Amyloid PET is especially useful to evaluate the amyloid-β pathological process as a biomarker of Alzheimer's disease. This article reviews critical points about technical considerations on the scanning and image analysis methods for amyloid PET. Each amyloid PET agent has its own proper administration instructions and recommended uptake time, scan duration, and the method of image display and interpretation. In addition, we have introduced general scanning information, including subject positioning, reconstruction parameters, and quantitative and statistical image analysis. We believe that this article could make amyloid PET a more reliable tool in clinical study and practice.
Photoinduced Electron Transfer Based Ion Sensing within an Optical Fiber
Englich, Florian V.; Foo, Tze Cheung; Richardson, Andrew C.; Ebendorff-Heidepriem, Heike; Sumby, Christopher J.; Monro, Tanya M.
2011-01-01
We combine suspended-core microstructured optical fibers with the photoinduced electron transfer (PET) effect to demonstrate a new type of fluorescent optical fiber-dip sensing platform for small volume ion detection. A sensor design based on a simple model PET-fluoroionophore system and small core microstructured optical fiber capable of detecting sodium ions is demonstrated. The performance of the dip sensor operating in a high sodium concentration regime (925 ppm Na+) and for lower sodium concentration environments (18.4 ppm Na+) is explored and future approaches to improving the sensor’s signal stability, sensitivity and selectivity are discussed. PMID:22163712
NASA Astrophysics Data System (ADS)
Zakhnini, Abdelhamid; Kulenkampff, Johannes; Sauerzapf, Sophie; Pietrzyk, Uwe; Lippmann-Pipke, Johanna
2013-08-01
Understanding conservative fluid flow and reactive tracer transport in soils and rock formations requires quantitative transport visualization methods in 3D+t. After a decade of research and development we established the GeoPET as a non-destructive method with unrivalled sensitivity and selectivity, with due spatial and temporal resolution by applying Positron Emission Tomography (PET), a nuclear medicine imaging method, to dense rock material. Requirements for reaching the physical limit of image resolution of nearly 1 mm are (a) a high-resolution PET-camera, like our ClearPET scanner (Raytest), and (b) appropriate correction methods for scatter and attenuation of 511 keV—photons in the dense geological material. The latter are by far more significant in dense geological material than in human and small animal body tissue (water). Here we present data from Monte Carlo simulations (MCS) reflecting selected GeoPET experiments. The MCS consider all involved nuclear physical processes of the measurement with the ClearPET-system and allow us to quantify the sensitivity of the method and the scatter fractions in geological media as function of material (quartz, Opalinus clay and anhydrite compared to water), PET isotope (18F, 58Co and 124I), and geometric system parameters. The synthetic data sets obtained by MCS are the basis for detailed performance assessment studies allowing for image quality improvements. A scatter correction method is applied exemplarily by subtracting projections of simulated scattered coincidences from experimental data sets prior to image reconstruction with an iterative reconstruction process.
Rucher, Guillaume; Cameliere, Lucie; Fendri, Jihene; Abbas, Ahmed; Dupont, Kevin; Kamel, Said; Delcroix, Nicolas; Dupont, Axel; Berger, Ludovic; Manrique, Alain
2018-04-30
The purpose of this study was to assess the impact of positron emission tomography/X-ray computed tomography (PET/CT) acquisition and reconstruction parameters on the assessment of mineralization process in a mouse model of atherosclerosis. All experiments were performed on a dedicated preclinical PET/CT system. CT was evaluated using five acquisition configurations using both a tungsten wire phantom for in-plane resolution assessment and a bar pattern phantom for cross-plane resolution. Furthermore, the radiation dose of these acquisition configurations was calculated. The PET system was assessed using longitudinal line sources to determine the optimal reconstruction parameters by measuring central resolution and its coefficient of variation. An in vivo PET study was performed using uremic ApoE -/- , non-uremic ApoE -/- , and control mice to evaluate optimal PET reconstruction parameters for the detection of sodium [ 18 F]fluoride (Na[ 18 F]F) aortic uptake and for quantitative measurement of Na[ 18 F]F bone influx (Ki) with a Patlak analysis. For CT, the use of 1 × 1 and 2 × 2 binning detector mode increased both in-plane and cross-plane resolution. However, resolution improvement (163 to 62 μm for in-plane resolution) was associated with an important radiation dose increase (1.67 to 32.78 Gy). With PET, 3D-ordered subset expectation maximization (3D-OSEM) algorithm increased the central resolution compared to filtered back projection (1.42 ± 0.35 mm vs. 1.91 ± 0.08, p < 0.001). The use of 3D-OSEM with eight iterations and a zoom factor 2 yielded optimal PET resolution for preclinical study (FWHM = 0.98 mm). These PET reconstruction parameters allowed the detection of Na[ 18 F]F aortic uptake in 3/14 ApoE -/- mice and demonstrated a decreased Ki in uremic ApoE -/- compared to non-uremic ApoE -/- and control mice (p < 0.006). Optimizing reconstruction parameters significantly impacted on the assessment of mineralization process in a preclinical model of accelerated atherosclerosis using Na[ 18 F]F PET. In addition, improving the CT resolution was associated with a dramatic radiation dose increase.
Parallel image reconstruction for 3D positron emission tomography from incomplete 2D projection data
NASA Astrophysics Data System (ADS)
Guerrero, Thomas M.; Ricci, Anthony R.; Dahlbom, Magnus; Cherry, Simon R.; Hoffman, Edward T.
1993-07-01
The problem of excessive computational time in 3D Positron Emission Tomography (3D PET) reconstruction is defined, and we present an approach for solving this problem through the construction of an inexpensive parallel processing system and the adoption of the FAVOR algorithm. Currently, the 3D reconstruction of the 610 images of a total body procedure would require 80 hours and the 3D reconstruction of the 620 images of a dynamic study would require 110 hours. An inexpensive parallel processing system for 3D PET reconstruction is constructed from the integration of board level products from multiple vendors. The system achieves its computational performance through the use of 6U VME four i860 processor boards, the processor boards from five manufacturers are discussed from our perspective. The new 3D PET reconstruction algorithm FAVOR, FAst VOlume Reconstructor, that promises a substantial speed improvement is adopted. Preliminary results from parallelizing FAVOR are utilized in formulating architectural improvements for this problem. In summary, we are addressing the problem of excessive computational time in 3D PET image reconstruction, through the construction of an inexpensive parallel processing system and the parallelization of a 3D reconstruction algorithm that uses the incomplete data set that is produced by current PET systems.
Dang, Yu; Luo, Xiaolan; Wang, Feng; Li, Yebo
2016-06-01
A sustainable process of value-added utilization of wastes including waste cooking oil (WCO) and post-consumer PET bottles for the production of biodiesel and polyurethane (PU) foams was developed. WCO collected from campus cafeteria was firstly converted into biodiesel, which can be used as vehicle fuel. Then crude glycerol (CG), a byproduct of the above biodiesel process, was incorporated into the glycolysis process of post-consumer PET bottles collected from campus to produce polyols. Thirdly, PU foams were synthesized through the reaction of the above produced polyols with isocyanate in the presence of catalysts and other additives. The characterization of the produced biodiesel demonstrated that its properties meet the specification of biodiesel standard. The effect of crude glycerol loading on the properties of polyols and PU foams were investigated. All the polyols showed satisfactory properties for the production of rigid PU foams which had performance comparable to those of some petroleum-based analogs. A mass balance and a cost analysis for the conversion of WCO and waste PET into biodiesel and PU foams were also discussed. This study demonstrated the potential of WCO and PET waste for the production of value-added products. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pet RX: Implications for Good Health.
ERIC Educational Resources Information Center
Wilkes, C. Newton; And Others
1989-01-01
Studies reveal that potential health values exist in use of pets in the rehabilitation process. Animal therapy can be a salutary form of rehabilitation if the program is organized, supervised, and implemented in a professional manner. (JD)
Quantitative observation of tracer transport with high-resolution PET
NASA Astrophysics Data System (ADS)
Kulenkampff, Johannes; Gruendig, Marion; Zakhnini, Abdelhamid; Lippmann-Pipke, Johanna
2016-04-01
Transport processes in natural porous media are typically heterogeneous over various scales. This heterogeneity is caused by the complexity of pore geometry and molecular processes. Heterogeneous processes, like diffusive transport, conservative advective transport, mixing and reactive transport, can be observed and quantified with quantitative tomography of tracer transport patterns. Positron Emission Tomography (PET) is by far the most sensitive method and perfectly selective for positron-emitting radiotracers, therefore it is suited as reference method for spatiotemporal tracer transport observations. The number of such PET-applications is steadily increasing. However, many applications are afflicted by the low spatial resolution (3 - 5 mm) of the clinical scanners from cooperating nuclear medical departments. This resolution is low in relation to typical sample dimensions of 10 cm, which are restricted by the mass attenuation of the material. In contrast, our GeoPET-method applies a high-resolution scanner with a resolution of 1 mm, which is the physical limit of the method and which is more appropriate for samples of the size of soil columns or drill cores. This higher resolution is achieved at the cost of a more elaborate image reconstruction procedure, especially considering the effects of Compton scatter. The result of the quantitative image reconstruction procedure is a suite of frames of the quantitative tracer distribution with adjustable frame rates from minutes to months. The voxel size has to be considered as reference volume of the tracer concentration. This continuous variable includes contributions from structures far below the spatial resolution, as far as a detection threshold, in the pico-molar range, is exceeded. Examples from a period of almost 10 years (Kulenkampff et al. 2008a, Kulenkampff et al. 2008b) of development and application of quantitative GeoPET-process tomography are shown. These examples include different transport processes, like conservative flow, reative transport, and diffusion (Kulenkampff et al, 2015). Such experimental data are complementary to the outcome of model simulations based upon structural μCT-images. The PET-data can be evaluated with respect to specific process parameters, like effective volume and flow velocity distribution. They can further serve as a basis for establishing intermediate-scale simulation models which directly incorporate the observed specific response functions, without requiring modeling on the pore scale at the highest possible spatial resolution. Kulenkampff, J., Gründig, M., Richter, M., Wolf, M., Dietzel, O.: First applications of a small-animal-PET scanner for process monitoring in rocks and soils. Geophysical Research Abstracts, Vol. 10, EGU2008-A-03727, 2008a. Kulenkampff, J., Gründig, M., Richter, M., and Enzmann, F.: Evaluation of positron emission tomography for visualisation of migration processes in geomaterials, Physics and Chemistry of the Earth, 33, 937-942, 2008b. Kulenkampff, J., Gruendig, M., Zakhnini, A., Gerasch, R., and Lippmann-Pipke, J.: Process tomography of diffusion with PET for evaluating anisotropy and heterogeneity, Clay Minerals, accepted 2015, 2015.
Jimenez-Jimenez, E; Mateos, P; Aymar, N; Roncero, R; Ortiz, I; Gimenez, M; Pardo, J; Salinas, J; Sabater, S
2018-05-02
Evidence supporting the use of 18F-FDG-PET/CT in the segmentation process of oesophageal cancer for radiotherapy planning is limited. Our aim was to compare the volumes and tumour lengths defined by fused PET/CT vs. CT simulation. Twenty-nine patients were analyzed. All patients underwent a single PET/CT simulation scan. Two separate GTVs were defined: one based on CT data alone and another based on fused PET/CT data. Volume sizes for both data sets were compared and the spatial overlap was assessed by the Dice similarity coefficient (DSC). The gross tumour volume (GTVtumour) and maximum tumour diameter were greater by PET/CT, and length of primary tumour was greater by CT, but differences were not statistically significant. However, the gross node volume (GTVnode) was significantly greater by PET/CT. The DSC analysis showed excellent agreement for GTVtumour, 0.72, but was very low for GTVnode, 0.25. Our study shows that the volume definition by PET/CT and CT data differs. CT simulation, without taking into account PET/CT information, might leave cancer-involved nodes out of the radiotherapy-delineated volumes.
NASA Astrophysics Data System (ADS)
Bahn, Y. K.; Park, H. H.; Lee, C. H.; Kim, H. S.; Lyu, K. Y.; Dong, K. R.; Chung, W. K.; Cho, J. H.
2014-04-01
In this study, phantom was used to evaluate attenuation correction computed tomography (CT) dose and image in case of pediatric positron emission tomography (PET)/CT scan. Three PET/CT scanners were used along with acryl phantom in the size for infant and ion-chamber dosimeter. The CT image acquisition conditions were changed from 10 to 20, 40, 80, 100 and 160 mA and from 80 to 100, 120 and 140 kVp, which aimed at evaluating penetrate dose and computed tomography dose indexvolume (CTDIvol) value. And NEMA PET Phantom™ was used to obtain PET image under the same CT conditions in order to evaluate each attenuation-corrected PET image based on standard uptake value (SUV) value and signal-to-noise ratio (SNR). In general, the penetrate dose was reduced by around 92% under the minimum CT conditions (80 kVp and 10 mA) with the decrease in CTDIvol value by around 88%, compared with the pediatric abdomen CT conditions (100 kVp and 100 mA). The PET image with its attenuation corrected according to each CT condition showed no change in SUV value and no influence on the SNR. In conclusion, if the minimum dose CT that is properly applied to body of pediatric patient is corrected for attenuation to ensure that the effective dose is reduced by around 90% or more compared with that for adult patient, this will be useful to reduce radiation exposure level.
NASA Astrophysics Data System (ADS)
Kamińska, D.; Gajos, A.; Czerwiński, E.; Alfs, D.; Bednarski, T.; Białas, P.; Curceanu, C.; Dulski, K.; Głowacz, B.; Gupta-Sharma, N.; Gorgol, M.; Hiesmayr, B. C.; Jasińska, B.; Korcyl, G.; Kowalski, P.; Krzemień, W.; Krawczyk, N.; Kubicz, E.; Mohammed, M.; Niedźwiecki, Sz.; Pawlik-Niedźwiecka, M.; Raczyński, L.; Rudy, Z.; Silarski, M.; Wieczorek, A.; Wiślicki, W.; Zgardzińska, B.; Zieliński, M.; Moskal, P.
2016-08-01
We present a study of the application of the Jagiellonian positron emission tomograph (J-PET) for the registration of gamma quanta from decays of ortho-positronium (o-Ps). The J-PET is the first positron emission tomography scanner based on organic scintillators in contrast to all current PET scanners based on inorganic crystals. Monte Carlo simulations show that the J-PET as an axially symmetric and high acceptance scanner can be used as a multi-purpose detector well suited to pursue research including e.g. tests of discrete symmetries in decays of ortho-positronium in addition to the medical imaging. The gamma quanta originating from o-Ps decay interact in the plastic scintillators predominantly via the Compton effect, making the direct measurement of their energy impossible. Nevertheless, it is shown in this paper that the J-PET scanner will enable studies of the { o-Ps }→ 3γ decays with angular and energy resolution equal to σ (θ ) ≈ {0.4°} and σ (E) ≈ 4.1 {keV}, respectively. An order of magnitude shorter decay time of signals from plastic scintillators with respect to the inorganic crystals results not only in better timing properties crucial for the reduction of physical and instrumental background, but also suppresses significantly the pile-ups, thus enabling compensation of the lower efficiency of the plastic scintillators by performing measurements with higher positron source activities.
Caballero Perea, Begoña; Villegas, Antonio Cabrera; Rodríguez, José Miguel Delgado; Velloso, María José García; Vicente, Ana María García; Cabrerizo, Carlos Huerga; López, Rosa Morera; Romasanta, Luis Alberto Pérez; Beltrán, Moisés Sáez
2012-01-01
Positron emission tomography (PET) with (18)F-fluorodeoxyglucose (FDG) is a valuable tool for diagnosing and staging malignant lesions. The fusion of PET and computed tomography (CT) yields images that contain both metabolic and morphological information, which, taken together, have improved the diagnostic precision of PET in oncology. The main imaging modality for planning radiotherapy treatment is CT. However, PET-CT is an emerging modality for use in planning treatments because it allows for more accurate treatment volume definition. The use of PET-CT for treatment planning is highly complex, and protocols and standards for its use are still being developed. It seems probable that PET-CT will eventually replace current CT-based planning methods, but this will require a full understanding of the relevant technical aspects of PET-CT planning. The aim of the present document is to review these technical aspects and to provide recommendations for clinical use of this imaging modality in the radiotherapy planning process.
Caballero Perea, Begoña; Villegas, Antonio Cabrera; Rodríguez, José Miguel Delgado; Velloso, María José García; Vicente, Ana María García; Cabrerizo, Carlos Huerga; López, Rosa Morera; Romasanta, Luis Alberto Pérez; Beltrán, Moisés Sáez
2012-01-01
Positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) is a valuable tool for diagnosing and staging malignant lesions. The fusion of PET and computed tomography (CT) yields images that contain both metabolic and morphological information, which, taken together, have improved the diagnostic precision of PET in oncology. The main imaging modality for planning radiotherapy treatment is CT. However, PET-CT is an emerging modality for use in planning treatments because it allows for more accurate treatment volume definition. The use of PET-CT for treatment planning is highly complex, and protocols and standards for its use are still being developed. It seems probable that PET-CT will eventually replace current CT-based planning methods, but this will require a full understanding of the relevant technical aspects of PET-CT planning. The aim of the present document is to review these technical aspects and to provide recommendations for clinical use of this imaging modality in the radiotherapy planning process. PMID:24377032
NASA Astrophysics Data System (ADS)
Omidvari, Negar; Topping, Geoffrey; Cabello, Jorge; Paul, Stephan; Schwaiger, Markus; Ziegler, Sibylle I.
2018-05-01
Compromises in the design of a positron emission tomography (PET) insert for a magnetic resonance imaging (MRI) system should minimize the deterioration of image quality in both modalities, particularly when simultaneous demanding acquisitions are performed. In this work, the advantages of using individually read-out crystals with high-gain silicon photomultipliers (SiPMs) were studied with a small animal PET insert for a 7 T MRI system, in which the SiPM charge was transferred to outside the MRI scanner using coaxial cables. The interferences between the two systems were studied with three radio-frequency (RF) coil configurations. The effects of PET on the static magnetic field, flip angle distribution, RF noise, and image quality of various MRI sequences (gradient echo, spin echo, and echo planar imaging (EPI) at 1H frequency, and chemical shift imaging at 13C frequency) were investigated. The effects of fast-switching gradient fields and RF pulses on PET count rate were studied, while the PET insert and the readout electronics were not shielded. Operating the insert inside a 1H volume coil, used for RF transmission and reception, limited the MRI to T1-weighted imaging, due to coil detuning and RF attenuation, and resulted in significant PET count loss. Using a surface receive coil allowed all tested MR sequences to be used with the insert, with 45–59% signal-to-noise ratio (SNR) degradation, compared to without PET. With a 1H/13C volume coil inside the insert and shielded by a copper tube, the SNR degradation was limited to 23–30% with all tested sequences. The insert did not introduce any discernible distortions into images of two tested EPI sequences. Use of truncated sinc shaped RF excitation pulses and gradient field switching had negligible effects on PET count rate. However, PET count rate was substantially affected by high-power RF block pulses and temperature variations due to high gradient duty cycles.
Maynard, Juliana; Emmas, Sally-Ann; Ble, Francois-Xavier; Barjat, Herve; Lawrie, Emily; Hancox, Urs; Polanska, Urszula M.; Pritchard, Alison; Hudson, Kevin
2017-01-01
Background The phosphatidyl inositol 3 kinase (PI3K), AKT and mammalian target of rapamycin (mTOR) signal transduction pathway is frequently de-regulated and activated in human cancer and is an important therapeutic target. AZD8835 is a PI3K inhibitor, with selectivity against PI3K α and δ isoforms, which is currently in Phase 1 clinical trials. 18F-Fluoro-deoxy-glucose positron emission tomography (18F-FDG PET) is a non-invasive pharmacodynamic imaging biomarker that has become an integral part of drug development. It has been used widely with PI3K inhibitors both clinically and pre-clinically because of the role of the PI3K pathway in glucose metabolism. In this study we investigated the potential of 18F-FDG PET as a non-invasive pharmacodynamic biomarker for AZD8835. We sought to understand if 18F-FDG PET could determine the minimally effective dose of AZD8835 and correlate with other pharmacodynamic biomarkers for validation of its use in clinical development. 18F-FDG PET scans were performed in nude mice in the BT474C breast xenograft model. Mice were fasted prior to imaging and static 18F-FDG PET was performed. Treatment groups received AZD8835 by oral gavage at a dose volume of 10ml/kg. Treatment groups received either 3, 6, 12.5, 25 or 50mg/kg AZD8835. Tumour growth was monitored throughout the study, and at the end of the imaging procedure, tumours were taken and a full pharmacodynamic analysis was performed. Results Results showed that AZD8835 reduced 18F-FDG uptake at a dose of 12.5, 25 and 50mg/kg with no significant reduction at doses of 3 and 6mg/kg. These results were consistent with other pharmacodynamics biomarkers measured and show 18F-FDG PET as a sensitive biomarker with the ability to determine the minimal effective dose of AZD8835. Conclusions Our pre-clinical studies support the use of 18F-FDG PET imaging as a sensitive and non- invasive pharmacodynamic biomarker (understanding the role of PI3K signalling in glucose uptake) for AZD8835 with a decrease in 18F-FDG uptake observed at only two hours post treatment. The decrease in 18F-FDG uptake was dose dependent and data showed excellent PK/PD correlation. This data supports and parallels observations obtained with this class of compounds in patients PMID:28806782
Wang, Yan; Ma, Guangkai; An, Le; Shi, Feng; Zhang, Pei; Lalush, David S.; Wu, Xi; Pu, Yifei; Zhou, Jiliu; Shen, Dinggang
2017-01-01
Objective To obtain high-quality positron emission tomography (PET) image with low-dose tracer injection, this study attempts to predict the standard-dose PET (S-PET) image from both its low-dose PET (L-PET) counterpart and corresponding magnetic resonance imaging (MRI). Methods It was achieved by patch-based sparse representation (SR), using the training samples with a complete set of MRI, L-PET and S-PET modalities for dictionary construction. However, the number of training samples with complete modalities is often limited. In practice, many samples generally have incomplete modalities (i.e., with one or two missing modalities) that thus cannot be used in the prediction process. In light of this, we develop a semi-supervised tripled dictionary learning (SSTDL) method for S-PET image prediction, which can utilize not only the samples with complete modalities (called complete samples) but also the samples with incomplete modalities (called incomplete samples), to take advantage of the large number of available training samples and thus further improve the prediction performance. Results Validation was done on a real human brain dataset consisting of 18 subjects, and the results show that our method is superior to the SR and other baseline methods. Conclusion This work proposed a new S-PET prediction method, which can significantly improve the PET image quality with low-dose injection. Significance The proposed method is favorable in clinical application since it can decrease the potential radiation risk for patients. PMID:27187939
WE-G-209-00: Identifying Image Artifacts, Their Causes, and How to Fix Them
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Digital radiography, CT, PET, and MR are complicated imaging modalities which are composed of many hardware and software components. These components work together in a highly coordinated chain of events with the intent to produce high quality images. Acquisition, processing and reconstruction of data must occur in a precise way for optimum image quality to be achieved. Any error or unexpected event in the entire process can produce unwanted pixel intensities in the final images which may contribute to visible image artifacts. The diagnostic imaging physicist is uniquely qualified to investigate and contribute to resolution of image artifacts. This coursemore » will teach the participant to identify common artifacts found clinically in digital radiography, CT, PET, and MR, to determine the causes of artifacts, and to make recommendations for how to resolve artifacts. Learning Objectives: Identify common artifacts found clinically in digital radiography, CT, PET and MR. Determine causes of various clinical artifacts from digital radiography, CT, PET and MR. Describe how to resolve various clinical artifacts from digital radiography, CT, PET and MR.« less
WE-G-209-01: Digital Radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schueler, B.
Digital radiography, CT, PET, and MR are complicated imaging modalities which are composed of many hardware and software components. These components work together in a highly coordinated chain of events with the intent to produce high quality images. Acquisition, processing and reconstruction of data must occur in a precise way for optimum image quality to be achieved. Any error or unexpected event in the entire process can produce unwanted pixel intensities in the final images which may contribute to visible image artifacts. The diagnostic imaging physicist is uniquely qualified to investigate and contribute to resolution of image artifacts. This coursemore » will teach the participant to identify common artifacts found clinically in digital radiography, CT, PET, and MR, to determine the causes of artifacts, and to make recommendations for how to resolve artifacts. Learning Objectives: Identify common artifacts found clinically in digital radiography, CT, PET and MR. Determine causes of various clinical artifacts from digital radiography, CT, PET and MR. Describe how to resolve various clinical artifacts from digital radiography, CT, PET and MR.« less
Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation.
Joo, Seongjoon; Cho, In Jin; Seo, Hogyun; Son, Hyeoncheol Francis; Sagong, Hye-Young; Shin, Tae Joo; Choi, So Young; Lee, Sang Yup; Kim, Kyung-Jin
2018-01-26
Plastics, including poly(ethylene terephthalate) (PET), possess many desirable characteristics and thus are widely used in daily life. However, non-biodegradability, once thought to be an advantage offered by plastics, is causing major environmental problem. Recently, a PET-degrading bacterium, Ideonella sakaiensis, was identified and suggested for possible use in degradation and/or recycling of PET. However, the molecular mechanism of PET degradation is not known. Here we report the crystal structure of I. sakaiensis PETase (IsPETase) at 1.5 Å resolution. IsPETase has a Ser-His-Asp catalytic triad at its active site and contains an optimal substrate binding site to accommodate four monohydroxyethyl terephthalate (MHET) moieties of PET. Based on structural and site-directed mutagenesis experiments, the detailed process of PET degradation into MHET, terephthalic acid, and ethylene glycol is suggested. Moreover, other PETase candidates potentially having high PET-degrading activities are suggested based on phylogenetic tree analysis of 69 PETase-like proteins.
Wang, Haixia; Wu, Haixia; Xue, Lin; Shi, Yan; Li, Xiyou
2011-08-07
A novel 4-amino-1,8-naphthalimide (NDI) with two different metal cation receptors connected at 4-amino or imide nitrogen positions respectively was designed and prepared. Significant internal charge transfer (ICT) as well as photoinduced electron transfer (PET) from the receptors to NDI is revealed by the shifted UV-vis absorption spectra and significant fluorescence quenching. Both Zn(2+) and Cu(2+) can coordinate selectively with the two cation receptors in this molecule with different affinities. The coordination of Zn(2+) with the receptor at imide nitrogen hindered the PET process and accordingly restored the quenched fluorescence of NDI. But the coordination of Zn(2+) at 4-amino position blocked the ICT process and caused significant blue-shift on the absorption peak with the fluorescence intensity unaffected. Similarly, coordination of Cu(2+) with the receptor at imide nitrogen can block the PET process, but can not restore the quenched fluorescence of compound 3 due to the paramagnetic properties of Cu(2+), which quench the fluorescence significantly instead. With Cu(2+) and Zn(2+) as two chemical inputs and absorption or fluorescence as output, several logic gate operations, such as OR, NOR and INHIBIT, can be achieved.
Commercial and PET radioisotope manufacturing with a medical cyclotron
NASA Astrophysics Data System (ADS)
Boothe, T. E.; McLeod, T. F.; Plitnikas, M.; Kinney, D.; Tavano, E.; Feijoo, Y.; Smith, P.; Szelecsényi, F.
1993-06-01
Mount Sinai has extensive experience in producing radionuclides for commercial sales and for incorporation into radiopharmaceuticals, including PET. Currently, an attempt is being made to supply radiochemicals to radiopharmaceutical manufacturers outside the hospital, to prepare radiopharmaceuticals for in-house use, and to prepare PET radiopharmaceuticals, such as 2-[F-18] FDG, for outside sales. This use for both commercial and PET manufacturing is atypical for a hospital-based cyclotron. To accomplish PET radiopharmaceutical sales, the hospital operates a nuclear pharmacy. A review of operational details for the past several years shows a continuing dependence on commercial sales which is reflected in research and developmental aspects and in staffing. Developmental efforts have centered primarily on radionuclide production, target development, and radiochemical processing optimization.
Wyler, Steven C; Spencer, W Clay; Green, Noah H; Rood, Benjamin D; Crawford, LaTasha; Craige, Caryne; Gresch, Paul; McMahon, Douglas G; Beck, Sheryl G; Deneris, Evan
2016-02-03
Newborn neurons enter an extended maturation stage, during which they acquire excitability characteristics crucial for development of presynaptic and postsynaptic connectivity. In contrast to earlier specification programs, little is known about the regulatory mechanisms that control neuronal maturation. The Pet-1 ETS (E26 transformation-specific) factor is continuously expressed in serotonin (5-HT) neurons and initially acts in postmitotic precursors to control acquisition of 5-HT transmitter identity. Using a combination of RNA sequencing, electrophysiology, and conditional targeting approaches, we determined gene expression patterns in maturing flow-sorted 5-HT neurons and the temporal requirements for Pet-1 in shaping these patterns for functional maturation of mouse 5-HT neurons. We report a profound disruption of postmitotic expression trajectories in Pet-1(-/-) neurons, which prevented postnatal maturation of 5-HT neuron passive and active intrinsic membrane properties, G-protein signaling, and synaptic responses to glutamatergic, lysophosphatidic, and adrenergic agonists. Unexpectedly, conditional targeting revealed a postnatal stage-specific switch in Pet-1 targets from 5-HT synthesis genes to transmitter receptor genes required for afferent modulation of 5-HT neuron excitability. Five-HT1a autoreceptor expression depended transiently on Pet-1, thus revealing an early postnatal sensitive period for control of 5-HT excitability genes. Chromatin immunoprecipitation followed by sequencing revealed that Pet-1 regulates 5-HT neuron maturation through direct gene activation and repression. Moreover, Pet-1 directly regulates the 5-HT neuron maturation factor Engrailed 1, which suggests Pet-1 orchestrates maturation through secondary postmitotic regulatory factors. The early postnatal switch in Pet-1 targets uncovers a distinct neonatal stage-specific function for Pet-1, during which it promotes maturation of 5-HT neuron excitability. The regulatory mechanisms that control functional maturation of neurons are poorly understood. We show that in addition to inducing brain serotonin (5-HT) synthesis and reuptake, the Pet-1 ETS (E26 transformation-specific) factor subsequently globally coordinates postmitotic expression trajectories of genes necessary for maturation of 5-HT neuron excitability. Further, Pet-1 switches its transcriptional targets as 5-HT neurons mature from 5-HT synthesis genes to G-protein-coupled receptors, which are necessary for afferent synaptic modulation of 5-HT neuron excitability. Our findings uncover gene-specific switching of downstream targets as a previously unrecognized regulatory strategy through which continuously expressed transcription factors control acquisition of neuronal identity at different stages of development. Copyright © 2016 the authors 0270-6474/16/361758-17$15.00/0.
Increased (18)F-FDG uptake in the trapezius muscle in patients with spinal accessory neuropathy.
Lee, Seung Hak; Seo, Han Gil; Oh, Byung-Mo; Choi, Hongyoon; Cheon, Gi Jeong; Lee, Shi-Uk
2016-03-15
To investigate (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET) signal changes of denervated muscles in patients with electrophysiologically confirmed neuropathy. This is a case series of three cancer patients who were referred to the electromyography laboratory in 2013 due to shoulder discomfort after surgery including neck dissection. Spinal accessory neuropathy was diagnosed based on electrophysiological studies. Patients' medical history, electrophysiological data, and FDG-PET images were reviewed retrospectively. Mean standard uptake values (SUV) of trapezius muscles were measured. The patients (3 men, aged 61-78years) showed spinal accessory neuropathy with different degrees of severity. In all patients, preoperative or postoperative FDG-PET showed increased FDG uptake in the ipsilateral trapezius muscle. These results were compatible with previously reported glucose hypermetabolism in denervated skeletal muscles. This is the first clinical report of increased FDG uptake by denervated muscles in electrophysiologically confirmed neuropathy. Copyright © 2016 Elsevier B.V. All rights reserved.
A versatile scalable PET processing system
DOE Office of Scientific and Technical Information (OSTI.GOV)
H. Dong, A. Weisenberger, J. McKisson, Xi Wenze, C. Cuevas, J. Wilson, L. Zukerman
2011-06-01
Positron Emission Tomography (PET) historically has major clinical and preclinical applications in cancerous oncology, neurology, and cardiovascular diseases. Recently, in a new direction, an application specific PET system is being developed at Thomas Jefferson National Accelerator Facility (Jefferson Lab) in collaboration with Duke University, University of Maryland at Baltimore (UMAB), and West Virginia University (WVU) targeted for plant eco-physiology research. The new plant imaging PET system is versatile and scalable such that it could adapt to several plant imaging needs - imaging many important plant organs including leaves, roots, and stems. The mechanical arrangement of the detectors is designed tomore » accommodate the unpredictable and random distribution in space of the plant organs without requiring the plant be disturbed. Prototyping such a system requires a new data acquisition system (DAQ) and data processing system which are adaptable to the requirements of these unique and versatile detectors.« less
Cheng, Xiaoyin; Li, Zhoulei; Liu, Zhen; Navab, Nassir; Huang, Sung-Cheng; Keller, Ulrich; Ziegler, Sibylle; Shi, Kuangyu
2015-02-12
The separation of multiple PET tracers within an overlapping scan based on intrinsic differences of tracer pharmacokinetics is challenging, due to limited signal-to-noise ratio (SNR) of PET measurements and high complexity of fitting models. In this study, we developed a direct parametric image reconstruction (DPIR) method for estimating kinetic parameters and recovering single tracer information from rapid multi-tracer PET measurements. This is achieved by integrating a multi-tracer model in a reduced parameter space (RPS) into dynamic image reconstruction. This new RPS model is reformulated from an existing multi-tracer model and contains fewer parameters for kinetic fitting. Ordered-subsets expectation-maximization (OSEM) was employed to approximate log-likelihood function with respect to kinetic parameters. To incorporate the multi-tracer model, an iterative weighted nonlinear least square (WNLS) method was employed. The proposed multi-tracer DPIR (MTDPIR) algorithm was evaluated on dual-tracer PET simulations ([18F]FDG and [11C]MET) as well as on preclinical PET measurements ([18F]FLT and [18F]FDG). The performance of the proposed algorithm was compared to the indirect parameter estimation method with the original dual-tracer model. The respective contributions of the RPS technique and the DPIR method to the performance of the new algorithm were analyzed in detail. For the preclinical evaluation, the tracer separation results were compared with single [18F]FDG scans of the same subjects measured 2 days before the dual-tracer scan. The results of the simulation and preclinical studies demonstrate that the proposed MT-DPIR method can improve the separation of multiple tracers for PET image quantification and kinetic parameter estimations.
Poster - 40: Treatment Verification of a 3D-printed Eye Phantom for Proton Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunning, Chelsea; Lindsay, Clay; Unick, Nick
Purpose: Ocular melanoma is a form of eye cancer which is often treated using proton therapy. The benefit of the steep proton dose gradient can only be leveraged for accurate patient eye alignment. A treatment-planning program was written to plan on a 3D-printed anatomical eye-phantom, which was then irradiated to demonstrate the feasibility of verifying in vivo dosimetry for proton therapy using PET imaging. Methods: A 3D CAD eye model with critical organs was designed and voxelized into the Monte-Carlo transport code FLUKA. Proton dose and PET isotope production were simulated for a treatment plan of a test tumour, generatedmore » by a 2D treatment-planning program developed using NumPy and proton range tables. Next, a plastic eye-phantom was 3D-printed from the CAD model, irradiated at the TRIUMF Proton Therapy facility, and imaged using a PET scanner. Results: The treatment-planning program prediction of the range setting and modulator wheel was verified in FLUKA to treat the tumour with at least 90% dose coverage for both tissue and plastic. An axial isotope distribution of the PET isotopes was simulated in FLUKA and converted to PET scan counts. Meanwhile, the 3D-printed eye-phantom successfully yielded a PET signal. Conclusions: The 2D treatment-planning program can predict required parameters to sufficiently treat an eye tumour, which was experimentally verified using commercial 3D-printing hardware to manufacture eye-phantoms. Comparison between the simulated and measured PET isotope distribution could provide a more realistic test of eye alignment, and a variation of the method using radiographic film is being developed.« less
Chen, Yasheng; Juttukonda, Meher; Su, Yi; Benzinger, Tammie; Rubin, Brian G.; Lee, Yueh Z.; Lin, Weili; Shen, Dinggang; Lalush, David
2015-01-01
Purpose To develop a positron emission tomography (PET) attenuation correction method for brain PET/magnetic resonance (MR) imaging by estimating pseudo computed tomographic (CT) images from T1-weighted MR and atlas CT images. Materials and Methods In this institutional review board–approved and HIPAA-compliant study, PET/MR/CT images were acquired in 20 subjects after obtaining written consent. A probabilistic air segmentation and sparse regression (PASSR) method was developed for pseudo CT estimation. Air segmentation was performed with assistance from a probabilistic air map. For nonair regions, the pseudo CT numbers were estimated via sparse regression by using atlas MR patches. The mean absolute percentage error (MAPE) on PET images was computed as the normalized mean absolute difference in PET signal intensity between a method and the reference standard continuous CT attenuation correction method. Friedman analysis of variance and Wilcoxon matched-pairs tests were performed for statistical comparison of MAPE between the PASSR method and Dixon segmentation, CT segmentation, and population averaged CT atlas (mean atlas) methods. Results The PASSR method yielded a mean MAPE ± standard deviation of 2.42% ± 1.0, 3.28% ± 0.93, and 2.16% ± 1.75, respectively, in the whole brain, gray matter, and white matter, which were significantly lower than the Dixon, CT segmentation, and mean atlas values (P < .01). Moreover, 68.0% ± 16.5, 85.8% ± 12.9, and 96.0% ± 2.5 of whole-brain volume had within ±2%, ±5%, and ±10% percentage error by using PASSR, respectively, which was significantly higher than other methods (P < .01). Conclusion PASSR outperformed the Dixon, CT segmentation, and mean atlas methods by reducing PET error owing to attenuation correction. © RSNA, 2014 PMID:25521778
Fiorina, E; Ferrero, V; Pennazio, F; Baroni, G; Battistoni, G; Belcari, N; Cerello, P; Camarlinghi, N; Ciocca, M; Del Guerra, A; Donetti, M; Ferrari, A; Giordanengo, S; Giraudo, G; Mairani, A; Morrocchi, M; Peroni, C; Rivetti, A; Da Rocha Rolo, M D; Rossi, S; Rosso, V; Sala, P; Sportelli, G; Tampellini, S; Valvo, F; Wheadon, R; Bisogni, M G
2018-05-07
Hadrontherapy is a method for treating cancer with very targeted dose distributions and enhanced radiobiological effects. To fully exploit these advantages, in vivo range monitoring systems are required. These devices measure, preferably during the treatment, the secondary radiation generated by the beam-tissue interactions. However, since correlation of the secondary radiation distribution with the dose is not straightforward, Monte Carlo (MC) simulations are very important for treatment quality assessment. The INSIDE project constructed an in-beam PET scanner to detect signals generated by the positron-emitting isotopes resulting from projectile-target fragmentation. In addition, a FLUKA-based simulation tool was developed to predict the corresponding reference PET images using a detailed scanner model. The INSIDE in-beam PET was used to monitor two consecutive proton treatment sessions on a patient at the Italian Center for Oncological Hadrontherapy (CNAO). The reconstructed PET images were updated every 10 s providing a near real-time quality assessment. By half-way through the treatment, the statistics of the measured PET images were already significant enough to be compared with the simulations with average differences in the activity range less than 2.5 mm along the beam direction. Without taking into account any preferential direction, differences within 1 mm were found. In this paper, the INSIDE MC simulation tool is described and the results of the first in vivo agreement evaluation are reported. These results have justified a clinical trial, in which the MC simulation tool will be used on a daily basis to study the compliance tolerances between the measured and simulated PET images. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Verger, Antoine; Filss, Christian P; Lohmann, Philipp; Stoffels, Gabriele; Sabel, Michael; Wittsack, Hans-J; Kops, Elena Rota; Galldiks, Norbert; Fink, Gereon R; Shah, Nadim J; Langen, Karl-Josef
2018-05-01
To compare the diagnostic performance of O-(2- 18 F-fluoroethyl)-L-tyrosine ( 18 F-FET) positron emission tomography (PET) and perfusion-weighted magnetic resonance imaging (PWI) for the diagnosis of progressive or recurrent glioma. Thirty-two pretreated gliomas (25 progressive or recurrent tumors, 7 treatment-related changes) were investigated with 18 F-FET PET and PWI via a hybrid PET/magnetic resonance scanner. Volumes of interest with a diameter of 16 mm were centered on the maximum of abnormality in the tumor area in PET and PWI maps (relative cerebral blood volume, relative cerebral blood flow, mean transit time) and the contralateral unaffected hemisphere. Mean and maximum tumor-to-brain ratios as well as dynamic data for 18 F-FET uptake were calculated. Diagnostic accuracies were evaluated by receiver operating characteristic analyses, calculating the area under the curve. 18 F-FET PET showed a significant greater sensitivity to detect abnormalities in pretreated gliomas than PWI (76% vs. 52%, P = 0.03). The maximum tumor-to-brain ratio of 18 F-FET PET was the only parameter that discriminated treatment-related changes from progressive or recurrent gliomas (area under the curve, 0.78; P = 0.03, best cut-off 2.61; sensitivity 80%, specificity 86%, accuracy 81%). Among patients with signal abnormality in both modalities, 75% revealed spatially incongruent local hot spots. This pilot study suggests that 18 F-FET PET is superior to PWI to diagnose progressive or recurrent glioma. Copyright © 2018 Elsevier Inc. All rights reserved.
Hamdy, Samar; Haddadi, Azita; Somayaji, Vishwa; Ruan, David; Samuel, John
2007-08-15
The present study had two main objectives. First, was to compare the immune stimulatory effect of two synthetic lipid A analogues (7-acyl lipid A and pentaerythritol-based lipid A (PET lipid A)) on maturation/stimulation of bone marrow derived dendritic cells (DCs). Our second objective was to develop a liquid chromatography/mass spectrometry (LC-MS) method for the quantitative analysis of lipid A-based vaccine adjuvants. Treatment of immature DCs with 7-acyl lipid A and PET lipid A up regulated the surface expression of CD86 and CD40 molecules, and also induced similar profile of pro-inflammatory cytokine secretion. LC-MS analyses were performed using a Waters Micromass ZQ 4000 spectrometer, coupled to a Waters 2795 separations module with an autosampler. Calibration curves with R(2)>0.999 were constructed over the concentration range of 1.25-20 microg/ml for the solution of 7-acyl lipid A and PET lipid A. The method was tested in a 3 day validation protocol. The accuracy of the assay at different concentrations tested ranged from 89 to 108% and from 92 to 107% for 7-acyl lipid A and PET lipid A, respectively. The limit of quantification for both 7-acyl lipid A and PET lipid A was 1.25 microg/ml (signal/noise (S/N)) ratio >15:1. The sensitivity of the method (the limit of detection) was 0.35 and 0.15 ng for 7-acyl lipid A and PET lipid A, respectively (S/N ratio between 4:1 or 3:1). As a preliminary application, this method has been successfully applied to the determination of 7-acyl lipid A and PET lipid A content in poly (D,L-lactic-co-glycolic acid) nanoparticles (PLGA-NP).
Xia, Chenjie; Makaretz, Sara J; Caso, Christina; McGinnis, Scott; Gomperts, Stephen N; Sepulcre, Jorge; Gomez-Isla, Teresa; Hyman, Bradley T; Schultz, Aaron; Vasdev, Neil; Johnson, Keith A; Dickerson, Bradford C
2017-04-01
Previous postmortem studies have long demonstrated that neurofibrillary tangles made of hyperphosphorylated tau proteins are closely associated with Alzheimer disease clinical phenotype and neurodegeneration pattern. Validating these associations in vivo will lead to new diagnostic tools for Alzheimer disease and better understanding of its neurobiology. To examine whether topographical distribution and severity of hyperphosphorylated tau pathologic findings measured by fluorine 18-labeled AV-1451 ([18F]AV-1451) positron emission tomographic (PET) imaging are linked with clinical phenotype and cortical atrophy in patients with Alzheimer disease. This observational case series, conducted from July 1, 2012, to July 30, 2015, in an outpatient referral center for patients with neurodegenerative diseases, included 6 patients: 3 with typical amnesic Alzheimer disease and 3 with atypical variants (posterior cortical atrophy, logopenic variant primary progressive aphasia, and corticobasal syndrome). Patients underwent [18F]AV-1451 PET imaging to measure tau burden, carbon 11-labeled Pittsburgh Compound B ([11C]PiB) PET imaging to measure amyloid burden, and structural magnetic resonance imaging to measure cortical thickness. Seventy-seven age-matched controls with normal cognitive function also underwent structural magnetic resonance imaging but not tau or amyloid PET imaging. Tau burden, amyloid burden, and cortical thickness. In all 6 patients (3 women and 3 men; mean age 61.8 years), the underlying clinical phenotype was associated with the regional distribution of the [18F]AV-1451 signal. Furthermore, within 68 cortical regions of interest measured from each patient, the magnitude of cortical atrophy was strongly correlated with the magnitude of [18F]AV-1451 binding (3 patients with amnesic Alzheimer disease, r = -0.82; P < .001; r = -0.70; P < .001; r = -0.58; P < .001; and 3 patients with nonamnesic Alzheimer disease, r = -0.51; P < .001; r = -0.63; P < .001; r = -0.70; P < .001), but not of [11C]PiB binding. These findings provide further in vivo evidence that distribution of the [18F]AV-1451 signal as seen on results of PET imaging is a valid marker of clinical symptoms and neurodegeneration. By localizing and quantifying hyperphosphorylated tau in vivo, results of tau PET imaging will likely serve as a key biomarker that links a specific type of molecular Alzheimer disease neuropathologic condition with clinically significant neurodegeneration, which will likely catalyze additional efforts to develop disease-modifying therapeutics.
Imaging B Cells in a Mouse Model of Multiple Sclerosis Using 64Cu-Rituximab PET.
James, Michelle L; Hoehne, Aileen; Mayer, Aaron T; Lechtenberg, Kendra; Moreno, Monica; Gowrishankar, Gayatri; Ilovich, Ohad; Natarajan, Arutselvan; Johnson, Emily M; Nguyen, Joujou; Quach, Lisa; Han, May; Buckwalter, Marion; Chandra, Sudeep; Gambhir, Sanjiv S
2017-11-01
B lymphocytes are a key pathologic feature of multiple sclerosis (MS) and are becoming an important therapeutic target for this condition. Currently, there is no approved technique to noninvasively visualize B cells in the central nervous system (CNS) to monitor MS disease progression and response to therapies. Here, we evaluated 64 Cu-rituximab, a radiolabeled antibody specifically targeting the human B cell marker CD20, for its ability to image B cells in a mouse model of MS using PET. Methods: To model CNS infiltration by B cells, experimental autoimmune encephalomyelitis (EAE) was induced in transgenic mice that express human CD20 on B cells. EAE mice were given subcutaneous injections of myelin oligodendrocyte glycoprotein fragment 1-125 emulsified in complete Freund adjuvant. Control mice received complete Freund adjuvant alone. PET imaging of EAE and control mice was performed 1, 4, and 19 h after 64 Cu-rituximab administration. Mice were perfused and sacrificed after the final PET scan, and radioactivity in dissected tissues was measured with a γ-counter. CNS tissues from these mice were immunostained to quantify B cells or were further analyzed via digital autoradiography. Results: Lumbar spinal cord PET signal was significantly higher in EAE mice than in controls at all evaluated time points (e.g., 1 h after injection: 5.44 ± 0.37 vs. 3.33 ± 0.20 percentage injected dose [%ID]/g, P < 0.05). 64 Cu-rituximab PET signal in brain regions ranged between 1.74 ± 0.11 and 2.93 ± 0.15 %ID/g for EAE mice, compared with 1.25 ± 0.08 and 2.24 ± 0.11 %ID/g for controls ( P < 0.05 for all regions except striatum and thalamus at 1 h after injection). Similarly, ex vivo biodistribution results revealed notably higher 64 Cu-rituximab uptake in the brain and spinal cord of huCD20tg EAE, and B220 immunostaining verified that increased 64 Cu-rituximab uptake in CNS tissues corresponded with elevated B cells. Conclusion: B cells can be detected in the CNS of EAE mice using 64 Cu-rituximab PET. Results from these studies warrant further investigation of 64 Cu-rituximab in EAE models and consideration of use in MS patients to evaluate its potential for detecting and monitoring B cells in the progression and treatment of this disease. These results represent an initial step toward generating a platform to evaluate B cell-targeted therapeutics en route to the clinic. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Automatic delineation of brain regions on MRI and PET images from the pig.
Villadsen, Jonas; Hansen, Hanne D; Jørgensen, Louise M; Keller, Sune H; Andersen, Flemming L; Petersen, Ida N; Knudsen, Gitte M; Svarer, Claus
2018-01-15
The increasing use of the pig as a research model in neuroimaging requires standardized processing tools. For example, extraction of regional dynamic time series from brain PET images requires parcellation procedures that benefit from being automated. Manual inter-modality spatial normalization to a MRI atlas is operator-dependent, time-consuming, and can be inaccurate with lack of cortical radiotracer binding or skull uptake. A parcellated PET template that allows for automatic spatial normalization to PET images of any radiotracer. MRI and [ 11 C]Cimbi-36 PET scans obtained in sixteen pigs made the basis for the atlas. The high resolution MRI scans allowed for creation of an accurately averaged MRI template. By aligning the within-subject PET scans to their MRI counterparts, an averaged PET template was created in the same space. We developed an automatic procedure for spatial normalization of the averaged PET template to new PET images and hereby facilitated transfer of the atlas regional parcellation. Evaluation of the automatic spatial normalization procedure found the median voxel displacement to be 0.22±0.08mm using the MRI template with individual MRI images and 0.92±0.26mm using the PET template with individual [ 11 C]Cimbi-36 PET images. We tested the automatic procedure by assessing eleven PET radiotracers with different kinetics and spatial distributions by using perfusion-weighted images of early PET time frames. We here present an automatic procedure for accurate and reproducible spatial normalization and parcellation of pig PET images of any radiotracer with reasonable blood-brain barrier penetration. Copyright © 2017 Elsevier B.V. All rights reserved.
Positron emission tomography (PET) advances in neurological applications
NASA Astrophysics Data System (ADS)
Sossi, V.
2003-09-01
Positron Emission Tomography (PET) is a functional imaging modality used in brain research to map in vivo neurotransmitter and receptor activity and to investigate glucose utilization or blood flow patterns both in healthy and disease states. Such research is made possible by the wealth of radiotracers available for PET, by the fact that metabolic and kinetic parameters of particular processes can be extracted from PET data and by the continuous development of imaging techniques. In recent years great advancements have been made in the areas of PET instrumentation, data quantification and image reconstruction that allow for more detailed and accurate biological information to be extracted from PET data. It is now possible to quantitatively compare data obtained either with different tracers or with the same tracer under different scanning conditions. These sophisticated imaging approaches enable detailed investigation of disease mechanisms and system response to disease and/or therapy.
Efficient robust reconstruction of dynamic PET activity maps with radioisotope decay constraints.
Gao, Fei; Liu, Huafeng; Shi, Pengcheng
2010-01-01
Dynamic PET imaging performs sequence of data acquisition in order to provide visualization and quantification of physiological changes in specific tissues and organs. The reconstruction of activity maps is generally the first step in dynamic PET. State space Hinfinity approaches have been proved to be a robust method for PET image reconstruction where, however, temporal constraints are not considered during the reconstruction process. In addition, the state space strategies for PET image reconstruction have been computationally prohibitive for practical usage because of the need for matrix inversion. In this paper, we present a minimax formulation of the dynamic PET imaging problem where a radioisotope decay model is employed as physics-based temporal constraints on the photon counts. Furthermore, a robust steady state Hinfinity filter is developed to significantly improve the computational efficiency with minimal loss of accuracy. Experiments are conducted on Monte Carlo simulated image sequences for quantitative analysis and validation.
The upcycling of post-industrial PP/PET waste streams through in-situ microfibrillar preparation
NASA Astrophysics Data System (ADS)
Delva, Laurens; Ragaert, Kim; Cardon, Ludwig
2015-12-01
Post-industrial plastic waste streams can be re-used as secondary material streams for polymer processing by extrusion or injection moulding. One of the major commercially available waste stream contains polypropylene (PP) contaminated with polyesters (mostly polyethylene tereftalate - PET). An important practical hurdle for the direct implementation of this waste stream is the immiscibility of PP and PET in the melt, which leads to segregation within the polymer structure and adversely affects the reproducibility and mechanical properties of the manufactured parts. It has been indicated in literature that the creation of PET microfibrils in the PP matrix could undo these drawbacks and upcycle the PP/PET combination. Within the current research, a commercially available virgin PP/PET was evaluated for the microfibrillar preparation. The mechanical (tensile and impact) properties, thermal properties and morphology of the composites were characterized at different stages of the microfibrillar preparation.
Tixier, Florent; Groves, Ashley M; Goh, Vicky; Hatt, Mathieu; Ingrand, Pierre; Le Rest, Catherine Cheze; Visvikis, Dimitris
2014-01-01
Thirty patients with proven colorectal cancer prospectively underwent integrated 18F-FDG PET/DCE-CT to assess the metabolic-flow phenotype. Both CT blood flow parametric maps and PET images were analyzed. Correlations between PET heterogeneity and perfusion CT were assessed by Spearman's rank correlation analysis. Blood flow visualization provided by DCE-CT images was significantly correlated with 18F-FDG PET metabolically active tumor volume as well as with uptake heterogeneity for patients with stage III/IV tumors (|ρ|:0.66 to 0.78; p-value<0.02). The positive correlation found with tumor blood flow indicates that intra-tumor heterogeneity of 18F-FDG PET accumulation reflects to some extent tracer distribution and consequently indicates that 18F-FDG PET intra-tumor heterogeneity may be associated with physiological processes such as tumor vascularization.
Yusufi, Nahid; Mall, Sabine; Bianchi, Henrique de Oliveira; Steiger, Katja; Reder, Sybille; Klar, Richard; Audehm, Stefan; Mustafa, Mona; Nekolla, Stephan; Peschel, Christian; Schwaiger, Markus; Krackhardt, Angela M; D'Alessandria, Calogero
2017-01-01
A number of different technologies have been developed to monitor in vivo the distribution of gene-modified T cells used in immunotherapy. Nevertheless, in-depth characterization of novel approaches with respect to sensitivity and clinical applicability are so far missing. We have previously described a novel method to track engineered human T cells in tumors using 89 Zr-Df-aTCRmu-F(ab') 2 targeting the murinized part of the TCR beta domain (TCRmu) of a transgenic TCR. Here, we performed an in-depth in vitro characterization of the tracer in terms of antigen affinity, immunoreactivity, influence on T-cell functionality and stability in vitro and in vivo . Of particular interest, we have developed diverse experimental settings to quantify TCR-transgenic T cells in vivo . Local application of 89 Zr-Df-aTCRmu-F(ab') 2 -labeled T cells in a spot-assay revealed signal detection down to approximately 1.8x10 4 cells. In a more clinically relevant model, NSG mice were intravenously injected with different numbers of transgenic T cells, followed by injection of the 89 Zr-Df-aTCRmu-F(ab') 2 tracer, PET/CT imaging and subsequent ex vivo T-cell quantification in the tumor. Using this setting, we defined a comparable detection limit of 1.0x10 4 T cells. PET signals correlated well to total numbers of transgenic T cells detected ex vivo independently of the engraftment rates observed in different individual experiments. Thus, these findings confirm the high sensitivity of our novel PET/CT T-cell tracking method and provide critical information about the quantity of transgenic T cells in the tumor environment suggesting our technology being highly suitable for further clinical translation.
A phantom design and assessment of lesion detectability in PET imaging
NASA Astrophysics Data System (ADS)
Wollenweber, Scott D.; Kinahan, Paul E.; Alessio, Adam M.
2017-03-01
The early detection of abnormal regions with increased tracer uptake in positron emission tomography (PET) is a key driver of imaging system design and optimization as well as choice of imaging protocols. Detectability, however, remains difficult to assess due to the need for realistic objects mimicking the clinical scene, multiple lesion-present and lesion-absent images and multiple observers. Fillable phantoms, with tradeoffs between complexity and utility, provide a means to quantitatively test and compare imaging systems under truth-known conditions. These phantoms, however, often focus on quantification rather than detectability. This work presents extensions to a novel phantom design and analysis techniques to evaluate detectability in the context of realistic, non-piecewise constant backgrounds. The design consists of a phantom filled with small solid plastic balls and a radionuclide solution to mimic heterogeneous background uptake. A set of 3D-printed regular dodecahedral `features' were included at user-defined locations within the phantom to create `holes' within the matrix of chaotically-packed balls. These features fill at approximately 3:1 contrast to the lumpy background. A series of signal-known-present (SP) and signal-known-absent (SA) sub-images were generated and used as input for observer studies. This design was imaged in a head-like 20 cm diameter, 20 cm long cylinder and in a body-like 36 cm wide by 21 cm tall by 40 cm long tank. A series of model observer detectability indices were compared across scan conditions (count levels, number of scan replicates), PET image reconstruction methods (with/without TOF and PSF) and between PET/CT scanner system designs using the same phantom imaged on multiple systems. The detectability index was further compared to the noise-equivalent count (NEC) level to characterize the relationship between NEC and observer SNR.
Qiao, Hui; Zhang, Hualei; Zheng, Yuanjie; Ponde, Datta E; Shen, Dinggang; Gao, Fabao; Bakken, Ashley B; Schmitz, Alexander; Kung, Hank F; Ferrari, Victor A; Zhou, Rong
2009-03-01
To use magnetic resonance (MR) imaging and positron emission tomography (PET) dual detection of cardiac-grafted embryonic stem cells (ESCs) to examine (a) survival and proliferation of ESCs in normal and infarcted myocardium, (b) host macrophage versus grafted ESC contribution to serial MR imaging signal over time, and (c) cardiac function associated with the formation of grafts and whether improvement in cardiac function is related to cardiac differentiation of ESCs. All animal procedures were approved by the institutional animal care and use committee. Murine ESCs were stably transfected with a mutant version of herpes simplex virus type 1 thymidine kinase, HSV1-sr39tk, and also were labeled with superparamagnetic iron oxide (SPIO) particles. Cells were injected directly in the border zone of the infarcted heart or in corresponding regions of normal hearts in athymic rats. PET and MR imaging were performed longitudinally for 4 weeks in the same animals. ESCs survived and underwent proliferation in the infarcted and normal hearts, as demonstrated by serial increases in 9-(4-[(18)F]fluoro-3-hydroxymethylbutyl) guanine PET signals. In parallel, the hypointense areas on MR images at the injection sites decreased over time. Double staining for host macrophages and SPIO particles revealed that the majority of SPIO-containing cells were macrophages at week 4 after injection. Left ventricular ejection fraction increased in the ESC-treated rats but decreased in culture media-treated rats, and border-zone function was preserved in ESC-treated animals; however, cardiac differentiation of ESCs was less than 0.5%. Dual-modality imaging permits complementary information in regard to cell survival and proliferation, graft formation, and effects on cardiac function. http://radiology.rsnajnls.org/cgi/content/full/250/3/821/DC1. RSNA, 2009
A Gain-Programmable Transit-Time-Stable and Temperature-Stable PMT Voltage Divider
NASA Astrophysics Data System (ADS)
Liu, Yaqiang; Li, Hongdi; Wang, Yu; Xing, Tao; Xie, Shuping; Uribe, J.; Baghaei, H.; Ramirez, R.; Kim, Soonseok; Wong, Wai-Hoi
2004-10-01
A gain-programmable, transit-time-stable, temperature-stable photomultiplier (PMT) voltage divider design is described in this paper. The signal-to-noise ratio can be increased by changing a PMT gain directly instead of adjusting the gain of the preamplifier. PMT gain can be changed only by adjusting the voltages for the dynodes instead of changing the total high voltage between the anode and the photocathode, which can cause a significant signal transit-time variation that cannot be accepted by an application with a critical timing requirement, such as positron emission tomography (PET) or time-of-flight (TOF) detection/PET. The dynode voltage can be controlled by a digital analog converter isolated with a linear optocoupler. The optocoupler consists of an infrared light emission diode (LED) optically coupled with two phototransistors, and one is used in a servo feedback circuit to control the LED drive current for compensating temperature characteristics. The results showed that a six times gain range could be achieved; the gain drift was <0.5% over a 20/spl deg/C temperature range; 250 ps transit-time variation was measured over the entire gain range. A compact print circuit board (PCB) for the voltage divider integrated with a fixed-gain preamplifier has been designed and constructed. It can save about $30 per PMT channel compared with a commercial PMT voltage divider along with a variable gain amplifier. The preamplifier can be totally disabled, therefore in a system with a large amount of PMTs, only one channel can be enabled for calibrating the PMT gain. This new PMT voltage divider design is being applied to our animal PET camera and TOF/PET research.
Li, Deling; Zhang, Jingjing; Chi, Chongwei; Xiao, Xiong; Wang, Junmei; Lang, Lixin; Ali, Iqbal; Niu, Gang; Zhang, Liwei; Tian, Jie; Ji, Nan; Zhu, Zhaohui; Chen, Xiaoyuan
2018-01-01
Purpose : Despite the use of fluorescence-guided surgery (FGS), maximum safe resection of glioblastoma multiforme (GBM) remains a major challenge. It has restricted surgeons between preoperative diagnosis and intraoperative treatment. Currently, an integrated approach combining preoperative assessment with intraoperative guidance would be a significant step in this direction. Experimental design : We developed a novel 68 Ga-IRDye800CW-BBN PET/near-infrared fluorescence (NIRF) dual-modality imaging probe targeting gastrin-releasing peptide receptor (GRPR) in GBM. The preclinical in vivo tumor imaging and FGS were first evaluated using an orthotopic U87MG glioma xenograft model. Subsequently, the first-in-human prospective cohort study (NCT 02910804) of GBM patients were conducted with preoperative PET assessment and intraoperative FGS. Results : The orthotopic tumors in mice could be precisely resected using the near-infrared intraoperative system. Translational cohort research in 14 GBM patients demonstrated an excellent correlation between preoperative positive PET uptake and intraoperative NIRF signal. The tumor fluorescence signals were significantly higher than those from adjacent brain tissue in vivo and ex vivo (p < 0.0001). Compared with pathology, the sensitivity and specificity of fluorescence using 42 loci of fluorescence-guided sampling were 93.9% (95% CI 79.8%-99.3%) and 100% (95% CI 66.4%-100%), respectively. The tracer was safe and the extent of resection was satisfactory without newly developed neurologic deficits. Progression-free survival (PFS) at 6 months was 80% and two newly diagnosed patients achieved long PFS. Conclusions: This initial study has demonstrated that the novel dual-modality imaging technique is feasible for integrated pre- and intraoperative targeted imaging via the same molecular receptor and improved intraoperative GBM visualization and maximum safe resection.
Social Behavior of Pet Dogs Is Associated with Peripheral OXTR Methylation.
Cimarelli, Giulia; Virányi, Zsófia; Turcsán, Borbála; Rónai, Zsolt; Sasvári-Székely, Mária; Bánlaki, Zsófia
2017-01-01
Oxytocin is a key modulator of emotional processing and social cognitive function. In line with this, polymorphisms of genes involved in oxytocin signaling, like the oxytocin receptor ( OXTR ) gene, are known to influence social behavior in various species. However, to date, no study has investigated environmental factors possibly influencing the epigenetic variation of the OXTR gene and its behavioral effects in dogs. Pet dogs form individualized and strong relationships with their owners who are central figures in the social environment of their dogs and therefore might influence the methylation levels of their OXTR gene. Here we set out to investigate whether DNA methylation within the OXTR promoter region of pet dogs is linked to their owner's interaction style and to the social behavior of the dogs. To be able to do so, we collected buccal epithelial cells and, in Study 1, we used pyrosequencing techniques to look for differentially methylated CpG sites in the canine OXTR promoter region on a heterogeneous sample of dogs and wolves of different ages and keeping conditions. Four identified sites (at positions -727, -751, -1371, and -1383 from transcription start site) showing more than 10% methylation variation were then, in Study 2, measured in triplicate in 217 pet Border Collies previously tested for reactions to an adverse social situation (i.e., approach by a threatening human) and with available data on their owners' interaction styles. We found that CpG methylation was significantly associated with the behavior of the dogs, in particular with the likelihood that dogs would hide behind their owner or remain passive when approached by a threatening human. On the other hand, CpG methylation was not related to the owners' behavior but to dog sex (at position -1371). Our findings underpin the complex relationship between epigenetics and behavior and highlight the importance of including epigenetic methods in the analysis of dog behavioral development. Further research is needed to investigate which environmental factors influence the epigenetic variation of the OXTR gene.
Anizan, Nadège; Carlier, Thomas; Hindorf, Cecilia; Barbet, Jacques; Bardiès, Manuel
2012-02-13
Noninvasive multimodality imaging is essential for preclinical evaluation of the biodistribution and pharmacokinetics of radionuclide therapy and for monitoring tumor response. Imaging with nonstandard positron-emission tomography [PET] isotopes such as 124I is promising in that context but requires accurate activity quantification. The decay scheme of 124I implies an optimization of both acquisition settings and correction processing. The PET scanner investigated in this study was the Inveon PET/CT system dedicated to small animal imaging. The noise equivalent count rate [NECR], the scatter fraction [SF], and the gamma-prompt fraction [GF] were used to determine the best acquisition parameters for mouse- and rat-sized phantoms filled with 124I. An image-quality phantom as specified by the National Electrical Manufacturers Association NU 4-2008 protocol was acquired and reconstructed with two-dimensional filtered back projection, 2D ordered-subset expectation maximization [2DOSEM], and 3DOSEM with maximum a posteriori [3DOSEM/MAP] algorithms, with and without attenuation correction, scatter correction, and gamma-prompt correction (weighted uniform distribution subtraction). Optimal energy windows were established for the rat phantom (390 to 550 keV) and the mouse phantom (400 to 590 keV) by combining the NECR, SF, and GF results. The coincidence time window had no significant impact regarding the NECR curve variation. Activity concentration of 124I measured in the uniform region of an image-quality phantom was underestimated by 9.9% for the 3DOSEM/MAP algorithm with attenuation and scatter corrections, and by 23% with the gamma-prompt correction. Attenuation, scatter, and gamma-prompt corrections decreased the residual signal in the cold insert. The optimal energy windows were chosen with the NECR, SF, and GF evaluation. Nevertheless, an image quality and an activity quantification assessment were required to establish the most suitable reconstruction algorithm and corrections for 124I small animal imaging.
Soil-release behaviour of polyester fabrics after chemical modification with polyethylene glycol
NASA Astrophysics Data System (ADS)
Miranda, T. M. R.; Santos, J.; Soares, G. M. B.
2017-10-01
The fibres cleanability depends, among other characteristics, on their hydrophilicity. Hydrophilic fibres are easy-wash materials but hydrophobic fibres are difficult to clean due to their higher water-repellent surfaces. This type of surfaces, like polyester (PET), produce an accumulation of electrostatic charges, which favors adsorption and retention of dirt. Thus, the polyester soil-release properties can be increased by finishing processes that improve fiber hydrophilicity. In present study, PET fabric modification was described by using poly(ethylene glycol) (PEG) and N,N´-dimethylol-4,5-dihydroxyethylene urea (DMDHEU) chemically modified resin. Briefly, the modification process was carried out in two steps, one to hydrolyse the polyester and create hydroxyl and carboxylic acid groups on the surface and other to crosslink the PEG chains. The resulting materials were characterized by contact angle, DSC and FTIR-ATR methods. Additionally, the soil release behavior and the mechanical properties of modified PET were evaluated. For the best process conditions, the treated PET presented 0° contact angle, grade 5 stain release and acceptable mechanical performance.
Imaging in Central Nervous System Drug Discovery.
Gunn, Roger N; Rabiner, Eugenii A
2017-01-01
The discovery and development of central nervous system (CNS) drugs is an extremely challenging process requiring large resources, timelines, and associated costs. The high risk of failure leads to high levels of risk. Over the past couple of decades PET imaging has become a central component of the CNS drug-development process, enabling decision-making in phase I studies, where early discharge of risk provides increased confidence to progress a candidate to more costly later phase testing at the right dose level or alternatively to kill a compound through failure to meet key criteria. The so called "3 pillars" of drug survival, namely; tissue exposure, target engagement, and pharmacologic activity, are particularly well suited for evaluation by PET imaging. This review introduces the process of CNS drug development before considering how PET imaging of the "3 pillars" has advanced to provide valuable tools for decision-making on the critical path of CNS drug development. Finally, we review the advances in PET science of biomarker development and analysis that enable sophisticated drug-development studies in man. Copyright © 2017 Elsevier Inc. All rights reserved.
2016-01-01
Translation of new 18F-fluorination reactions to produce radiotracers for human positron emission tomography (PET) imaging is rare because the chemistry must have useful scope and the process for 18F-labeled tracer production must be robust and simple to execute. The application of transition metal mediators has enabled impactful 18F-fluorination methods, but to date none of these reactions have been applied to produce a human-injectable PET tracer. In this article we present chemistry and process innovations that culminate in the first production from [18F]fluoride of human doses of [18F]5-fluorouracil, a PET tracer for cancer imaging in humans. The first preparation of nickel σ-aryl complexes by transmetalation from arylboronic acids or esters was developed and enabled the synthesis of the [18F]5-fluorouracil precursor. Routine production of >10 mCi doses of [18F]5-fluorouracil was accomplished with a new instrument for azeotrope-free [18F]fluoride concentration in a process that leverages the tolerance of water in nickel-mediated 18F-fluorination. PMID:27087736
Hoover, Andrew J; Lazari, Mark; Ren, Hong; Narayanam, Maruthi Kumar; Murphy, Jennifer M; van Dam, R Michael; Hooker, Jacob M; Ritter, Tobias
2016-04-11
Translation of new 18 F-fluorination reactions to produce radiotracers for human positron emission tomography (PET) imaging is rare because the chemistry must have useful scope and the process for 18 F-labeled tracer production must be robust and simple to execute. The application of transition metal mediators has enabled impactful 18 F-fluorination methods, but to date none of these reactions have been applied to produce a human-injectable PET tracer. In this article we present chemistry and process innovations that culminate in the first production from [ 18 F]fluoride of human doses of [ 18 F]5-fluorouracil, a PET tracer for cancer imaging in humans. The first preparation of nickel σ-aryl complexes by transmetalation from arylboronic acids or esters was developed and enabled the synthesis of the [ 18 F]5-fluorouracil precursor. Routine production of >10 mCi doses of [ 18 F]5-fluorouracil was accomplished with a new instrument for azeotrope-free [ 18 F]fluoride concentration in a process that leverages the tolerance of water in nickel-mediated 18 F-fluorination.
Fisher, Patrick MacDonald; Haahr, Mette Ewers; Jensen, Christian Gaden; Frokjaer, Vibe Gedsoe; Siebner, Hartwig Roman; Knudsen, Gitte Moos
2015-01-01
Serotonin critically affects the neural processing of emotionally salient stimuli, including indices of threat; however, how alterations in serotonin signaling contribute to changes in brain function is not well understood. Recently, we showed in a placebo-controlled study of 32 healthy males that brain serotonin 4 receptor (5-HT4) binding, assessed with [11C]SB207145 PET, was sensitive to a 3-week intervention with the selective serotonin reuptake inhibitor fluoxetine, supporting it as an in vivo model for fluctuations in central serotonin levels. Participants also underwent functional magnetic resonance imaging while performing a gender discrimination task of fearful, angry, and neutral faces. This offered a unique opportunity to evaluate whether individual fluctuations in central serotonin levels, indexed by change in [11C]SB207145 binding, predicted changes in threat-related reactivity (ie, fear and angry vs neutral faces) within a corticolimbic circuit including the amygdala and medial prefrontal and anterior cingulate cortex. We observed a significant association such that decreased brain-wide [11C]SB207145 binding (ie, increased brain serotonin levels) was associated with lower threat-related amygdala reactivity, whereas intervention group status did not predict change in corticolimbic reactivity. This suggests that in the healthy brain, interindividual responses to pharmacologically induced and spontaneously occurring fluctuations in [11C]SB207145 binding, a putative marker of brain serotonin levels, affect amygdala reactivity to threat. Our finding also supports that change in brain [11C]SB207145 binding may be a relevant marker for evaluating neurobiological mechanisms underlying sensitivity to threat and serotonin signaling. PMID:25560201
Wang, Xiaoyan; Yu, Jialuo; Wu, Xiaqing; Fu, Junqing; Kang, Qi; Shen, Dazhong; Li, Jinhua; Chen, Lingxin
2016-07-15
A novel molecular imprinting-based turn-on ratiometric fluorescence sensor was constructed via a facile sol-gel polymerization for detection of 2,4-dichlorophenoxyacetic acid (2,4-D) on the basis of photoinduced electron transfer (PET) by using nitrobenzoxadiazole (NBD) as detection signal source and quantum dots (QDs) as reference signal source. With the presence and increase of 2,4-D, the amine groups on the surface of QDs@SiO2 could bind with 2,4-D and thereby the NBD fluorescence intensities could be significantly enhanced since the PET process was inhibited, while the QDs maintained constant intensities. Accordingly, the ratio of the dual-emission intensities of green NBD and red QDs could be utilized for turn-on fluorescent detection of 2,4-D, along with continuous color changes from orange-red to green readily observed by the naked eye. The as-prepared fluorescence sensor obtained high sensitivity with a low detection limit of 0.14μM within 5min, and distinguished recognition selectivity for 2,4-D over its analogs. Moreover, the sensor was successfully applied to determine 2,4-D in real water samples, and high recoveries at three spiking levels of 2,4-D ranged from 95.0% to 110.1% with precisions below 4.5%. The simple, rapid and reliable visual sensing strategy would not only provide potential applications for high selective ultratrace analysis of complicated matrices, but also greatly enrich the research connotations of molecularly imprinted sensors. Copyright © 2016 Elsevier B.V. All rights reserved.
Functional brain imaging of episodic memory decline in ageing.
Nyberg, L
2017-01-01
The episodic long-term memory system supports remembering of events. It is considered to be the most age-sensitive system, with an average onset of decline around 60 years of age. However, there is marked interindividual variability, such that some individuals show faster than average change and others show no or very little change. This variability may be related to the risk of developing dementia, with elevated risk for individuals with accelerated episodic memory decline. Brain imaging with functional magnetic resonance imaging (MRI) of blood oxygen level-dependent (BOLD) signalling or positron emission tomography (PET) has been used to reveal the brain bases of declining episodic memory in ageing. Several studies have demonstrated a link between age-related episodic memory decline and the hippocampus during active mnemonic processing, which is further supported by studies of hippocampal functional connectivity in the resting state. The hippocampus interacts with anterior and posterior neocortical regions to support episodic memory, and alterations in hippocampus-neocortex connectivity have been shown to contribute to impaired episodic memory. Multimodal MRI studies and more recently hybrid MRI/PET studies allow consideration of various factors that can influence the association between the hippocampal BOLD signal and memory performance. These include neurovascular factors, grey and white matter structural alterations, dopaminergic neurotransmission, amyloid-Β and glucose metabolism. Knowledge about the brain bases of episodic memory decline can guide interventions to strengthen memory in older adults, particularly in those with an elevated risk of developing dementia, with promising results for combinations of cognitive and physical stimulation. © 2016 The Association for the Publication of the Journal of Internal Medicine.
Code of Federal Regulations, 2010 CFR
2010-07-01
... production process for the manufacture of low density polyethylene in which a reaction pressure of about 15... terephthalate) (PET) manufacture using dimethyl terephthalate means the manufacturing of poly(ethylene.... Poly(ethylene terephthalate) (PET) manufacture using terephthalic acid means the manufacturing of poly...
SU-F-J-197: A Novel Intra-Beam Range Detection and Adaptation Strategy for Particle Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, M; Jiang, S; Shao, Y
2016-06-15
Purpose: In-vivo range detection/verification is crucial in particle therapy for effective and safe delivery. The state-of-art techniques are not sufficient for in-vivo on-line range verification due to conflicts among patient dose, signal statistics and imaging time. We propose a novel intra-beam range detection and adaptation strategy for particle therapy. Methods: This strategy uses the planned mid-range spots as probing beams without adding extra radiation to patients. Such choice of probing beams ensures the Bragg peaks to remain inside the tumor even with significant range variation from the plan. It offers sufficient signal statistics for in-beam positron emission tomography (PET) duemore » to high positron activity of therapeutic dose. The probing beam signal can be acquired and reconstructed using in-beam PET that allows for delineation of the Bragg peaks and detection of range shift with ease of detection enabled by single-layered spots. If the detected range shift is within a pre-defined tolerance, the remaining spots will be delivered as the original plan. Otherwise, a fast re-optimization using range-shifted beamlets and accounting for the probing beam dose is applied to consider the tradeoffs posed by the online anatomy. Simulated planning and delivery studies were used to demonstrate the effectiveness of the proposed techniques. Results: Simulations with online range variations due to shifts of various foreign objects into the beam path showed successful delineation of the Bragg peaks as a result of delivering probing beams. Without on-line delivery adaptation, dose distribution was significantly distorted. In contrast, delivery adaptation incorporating detected range shift recovered well the planned dose. Conclusion: The proposed intra-beam range detection and adaptation utilizing the planned mid-range spots as probing beams, which illuminate the beam range with strong and accurate PET signals, is a safe, practical, yet effective approach to address range uncertainty issues in particle therapy.« less
Ubeda, Sara; Aznar, Margarita; Nerín, Cristina
2018-03-01
An oligomer is a molecule that consists of a few monomer units. It can be formed during polymer manufacturing and also due to polymer degradation processes or even during use conditions. Since oligomers are not included in chemical databases, their identification is a complex process. In this work, the oligomers present in 20 different PET pellet samples have been determined. Two different sample treatment procedures, solvent extraction and total dissolution, were applied in order to select the most efficient one. The analyses were carried out by UPLC-MS-QTOF. The use of high resolution mass spectrometry allowed the structural elucidation of these compounds and their correct identification. The main oligomers identified were cyclic as well as lineal from the first, second, and third series. All of them were composed of terephthalic acid (TPA), diethylene glycol (DEG), and ethylene glycol (EG). Quantitative values were very different in both procedures. In total dissolution of PET samples, the concentration of oligomers was always, at least, 10 times higher than in solvent extraction; some of the compounds were only detected when total dissolution was used. Results showed that the oligomers with the highest concentration values were dimers and trimers, cyclic, as well as lineal, from the first and second series. The oligomer with the maximum concentration value was TPA 2 -EG-DEG that was found in all the samples in a concentration range from 2493 to 19,290 ng/g PET. No differences between virgin and recycled PET were found. Migration experiments were performed in two PET bottles, and results showed the transference of most of these oligomers to a fat food simulant (ethanol 95%). Graphical abstract Graphical abstract of the two procedures developd and optimized for identifying oligomers in PET pellets and in migration form PET bottles.
Toledo, Jon B; Bjerke, Maria; Da, Xiao; Landau, Susan M; Foster, Norman L; Jagust, William; Jack, Clifford; Weiner, Michael; Davatzikos, Christos; Shaw, Leslie M; Trojanowski, John Q
2015-05-01
Cerebrospinal fluid (CSF) and positron emission tomographic (PET) amyloid biomarkers have been proposed for the detection of Alzheimer disease (AD) pathology in living patients and for the tracking of longitudinal changes, but the relation between biomarkers needs further study. To determine the association between CSF and PET amyloid biomarkers (cross-sectional and longitudinal measures) and compare the cutoffs for these measures. Longitudinal clinical cohort study from 2005 to 2014 including 820 participants with at least 1 florbetapir F-18 (hereafter referred to as simply florbetapir)-PET scan and at least 1 CSF β-amyloid 1-42 (Aβ1-42) sample obtained within 30 days of each other (501 participants had a second PET scan after 2 years, including 150 participants with CSF Aβ1-42 measurements). Data were obtained from the Alzheimer's Disease Neuroimaging Initiative database. Four different PET scans processing pipelines from 2 different laboratories were compared. The PET cutoff values were established using a mixture-modeling approach, and different mathematical models were applied to define the association between CSF and PET amyloid measures. The values of the CSF Aβ1-42 samples and florbetapir-PET scans showed a nonlinear association (R2 = 0.48-0.66), with the strongest association for values in the middle range. The presence of a larger dynamic range of florbetapir-PET scan values in the higher range compared with the CSF Aβ1-42 plateau explained the differences in correlation with cognition (R2 = 0.36 and R2 = 0.25, respectively). The APOE genotype significantly modified the association between both biomarkers. The PET cutoff values derived from an unsupervised classifier converged with previous PET cutoff values and the established CSF Aβ1-42 cutoff levels. There was no association between longitudinal Aβ1-42 levels and standardized uptake value ratios during follow-up. The association between both biomarkers is limited to a middle range of values, is modified by the APOE genotype, and is absent for longitudinal changes; 4 different approaches in 2 different platforms converge on similar pathological Aβ cutoff levels; and different pipelines to process PET scans showed correlated but not identical results. Our findings suggest that both biomarkers measure different aspects of AD Aβ pathology.
Tulsyan, Shruti; Das, Chandan J; Tripathi, Madhavi; Seth, Amlesh; Kumar, Rajeev; Bal, Chandrasekhar
2017-12-01
We carried out this study to compare Glu-NH-CO-NH-Lys-(Ahx) [Ga(HBED-CC)] [Ga prostate-specific membrane antigen-11 (PSMA-11)] PET with multiparametric MRI (mpMRI) for the staging of high-risk prostate cancer. This was a prospective study in which 36 patients with high-risk prostate cancer were included. The criteria for inclusion were biopsy-proven prostate cancer with a serum prostate specific antigen of at least 20 and/or Gleason's score of at least 8. Each patient then underwent both gallium-68 (Ga)-PSMA PET/computed tomography (CT) and mpMRI including diffusion-weighted whole-body imaging with background body signal suppression within an interval of 1 week and both modalities were compared for staging of primary disease, lymph node, and distant metastasis. The median age of the 36 patients included was 65 years (range: 44-80 years) and the median prostate specific antigen was 94.3 ng/ml (range: 20-19005 ng/ml). Concordance for localization of primary on Ga-PSMA PET/CT and MRI was observed in 19/36 (52.7%) patients. Concurrence for T staging on Ga-PSMA and MRI was observed in 58.3% of patients. Ga-PSMA PET/CT detected higher numbers of patients with regional (29) and nonregional (15) lymph nodes in comparison with MRI (20 and 5, respectively). Concurrence for regional and nonregional lymph node staging was observed in 72.2% of patients. Additional sites of metastatic disease reported on Ga-PSMA PET/CT were to the skeleton in one patient, the lung in two patients, and the liver in one patient. This study suggests that Ga-PSMA PET/CT is useful for lymph node and metastases staging in high-risk prostate cancers, whereas its utility for staging of disease in the prostate is limited.
Hedden, Trey; Mormino, Elizabeth C.; Huijbers, Willem; LaPoint, Molly; Buckley, Rachel F.
2017-01-01
Alzheimer's disease (AD) is characterized by two hallmark molecular pathologies: amyloid aβ1–42 and Tau neurofibrillary tangles. To date, studies of functional connectivity MRI (fcMRI) in individuals with preclinical AD have relied on associations with in vivo measures of amyloid pathology. With the recent advent of in vivo Tau-PET tracers it is now possible to extend investigations on fcMRI in a sample of cognitively normal elderly humans to regional measures of Tau. We modeled fcMRI measures across four major cortical association networks [default-mode network (DMN), salience network (SAL), dorsal attention network, and frontoparietal control network] as a function of global cortical amyloid [Pittsburgh Compound B (PiB)-PET] and regional Tau (AV1451-PET) in entorhinal, inferior temporal (IT), and inferior parietal cortex. Results showed that the interaction term between PiB and IT AV1451 was significantly associated with connectivity in the DMN and salience. The interaction revealed that amyloid-positive (aβ+) individuals show increased connectivity in the DMN and salience when neocortical Tau levels are low, whereas aβ+ individuals demonstrate decreased connectivity in these networks as a function of elevated Tau-PET signal. This pattern suggests a hyperconnectivity phase followed by a hypoconnectivity phase in the course of preclinical AD. SIGNIFICANCE STATEMENT This article offers a first look at the relationship between Tau-PET imaging with F18-AV1451 and functional connectivity MRI (fcMRI) in the context of amyloid-PET imaging. The results suggest a nonlinear relationship between fcMRI and both Tau-PET and amyloid-PET imaging. The pattern supports recent conjecture that the AD fcMRI trajectory is characterized by periods of both hyperconnectivity and hypoconnectivity. Furthermore, this nonlinear pattern can account for the sometimes conflicting reports of associations between amyloid and fcMRI in individuals with preclinical Alzheimer's disease. PMID:28314821
MRI-Based Nonrigid Motion Correction in Simultaneous PET/MRI
Chun, Se Young; Reese, Timothy G.; Ouyang, Jinsong; Guerin, Bastien; Catana, Ciprian; Zhu, Xuping; Alpert, Nathaniel M.; El Fakhri, Georges
2014-01-01
Respiratory and cardiac motion is the most serious limitation to whole-body PET, resulting in spatial resolution close to 1 cm. Furthermore, motion-induced inconsistencies in the attenuation measurements often lead to significant artifacts in the reconstructed images. Gating can remove motion artifacts at the cost of increased noise. This paper presents an approach to respiratory motion correction using simultaneous PET/MRI to demonstrate initial results in phantoms, rabbits, and nonhuman primates and discusses the prospects for clinical application. Methods Studies with a deformable phantom, a free-breathing primate, and rabbits implanted with radioactive beads were performed with simultaneous PET/MRI. Motion fields were estimated from concurrently acquired tagged MR images using 2 B-spline nonrigid image registration methods and incorporated into a PET list-mode ordered-subsets expectation maximization algorithm. Using the measured motion fields to transform both the emission data and the attenuation data, we could use all the coincidence data to reconstruct any phase of the respiratory cycle. We compared the resulting SNR and the channelized Hotelling observer (CHO) detection signal-to-noise ratio (SNR) in the motion-corrected reconstruction with the results obtained from standard gating and uncorrected studies. Results Motion correction virtually eliminated motion blur without reducing SNR, yielding images with SNR comparable to those obtained by gating with 5–8 times longer acquisitions in all studies. The CHO study in dynamic phantoms demonstrated a significant improvement (166%–276%) in lesion detection SNR with MRI-based motion correction as compared with gating (P < 0.001). This improvement was 43%–92% for large motion compared with lesion detection without motion correction (P < 0.001). CHO SNR in the rabbit studies confirmed these results. Conclusion Tagged MRI motion correction in simultaneous PET/MRI significantly improves lesion detection compared with respiratory gating and no motion correction while reducing radiation dose. In vivo primate and rabbit studies confirmed the improvement in PET image quality and provide the rationale for evaluation in simultaneous whole-body PET/MRI clinical studies. PMID:22743250
Schultz, Aaron P; Chhatwal, Jasmeer P; Hedden, Trey; Mormino, Elizabeth C; Hanseeuw, Bernard J; Sepulcre, Jorge; Huijbers, Willem; LaPoint, Molly; Buckley, Rachel F; Johnson, Keith A; Sperling, Reisa A
2017-04-19
Alzheimer's disease (AD) is characterized by two hallmark molecular pathologies: amyloid aβ 1-42 and Tau neurofibrillary tangles. To date, studies of functional connectivity MRI (fcMRI) in individuals with preclinical AD have relied on associations with in vivo measures of amyloid pathology. With the recent advent of in vivo Tau-PET tracers it is now possible to extend investigations on fcMRI in a sample of cognitively normal elderly humans to regional measures of Tau. We modeled fcMRI measures across four major cortical association networks [default-mode network (DMN), salience network (SAL), dorsal attention network, and frontoparietal control network] as a function of global cortical amyloid [Pittsburgh Compound B (PiB)-PET] and regional Tau (AV1451-PET) in entorhinal, inferior temporal (IT), and inferior parietal cortex. Results showed that the interaction term between PiB and IT AV1451 was significantly associated with connectivity in the DMN and salience. The interaction revealed that amyloid-positive (aβ + ) individuals show increased connectivity in the DMN and salience when neocortical Tau levels are low, whereas aβ + individuals demonstrate decreased connectivity in these networks as a function of elevated Tau-PET signal. This pattern suggests a hyperconnectivity phase followed by a hypoconnectivity phase in the course of preclinical AD. SIGNIFICANCE STATEMENT This article offers a first look at the relationship between Tau-PET imaging with F 18 -AV1451 and functional connectivity MRI (fcMRI) in the context of amyloid-PET imaging. The results suggest a nonlinear relationship between fcMRI and both Tau-PET and amyloid-PET imaging. The pattern supports recent conjecture that the AD fcMRI trajectory is characterized by periods of both hyperconnectivity and hypoconnectivity. Furthermore, this nonlinear pattern can account for the sometimes conflicting reports of associations between amyloid and fcMRI in individuals with preclinical Alzheimer's disease. Copyright © 2017 the authors 0270-6474/17/374324-09$15.00/0.
Mittra, Erik S.; Fan-Minogue, Hua; Lin, Frank I.; Karamchandani, Jason; Sriram, Venkataraman; Han, May; Gambhir, Sanjiv S.
2016-01-01
Purpose Ficlatuzumab is a novel therapeutic agent targeting the hepatocyte growth factor (HGF)/c-MET pathway. We summarize extensive preclinical work using this agent in a mouse brain orthotopic model of glioblastoma. Experimental Design Sequential experiments were done using eight- to nine-week-old nude mice injected with 3 × 105 U87 MG (glioblastoma) cells into the brain. Evaluation of ficlatuzumab dose response for this brain tumor model and comparison of its response to ficlatuzumab and to temozolamide were conducted first. Subsequently, various small-animal imaging modalities, including bioluminescence imaging (BLI), positron emission tomography (PET), and MRI, were used with a U87 MG-Luc 2 stable cell line, with and without the use of ficlatuzumab, to evaluate the ability to non-invasively assess tumor growth and response to therapy. ANOVA was conducted to evaluate for significant differences in the response. Results There was a survival benefit with ficlatuzumab alone or in combination with temozolamide. BLI was more sensitive than PET in detecting tumor cells. Fluoro-D-thymidine (FLT) PET provided a better signal-to-background ratio than 2[18F]fluoro-2-deoxy-D-glucose (FDG) PET. In addition, both BLI and FLT PET showed significant changes over time in the control group as well as with response to therapy. MRI does not disclose any time-dependent change. Also, the MRI results showed a temporal delay in comparison to the BLI and FLT PET findings, showing similar results one drug cycle later. Conclusions Targeting the HGF/c-MET pathway with the novel agent ficlatuzumab appears promising for the treatment of glioblastoma. Various clinically applicable imaging modalities including FLT, PET, and MRI provide reliable ways of assessing tumor growth and response to therapy. Given the clinical applicability of these findings, future studies on patients with glioblastoma may be appropriate. PMID:23983258
NASA Astrophysics Data System (ADS)
Polycarpou, Irene; Tsoumpas, Charalampos; King, Andrew P.; Marsden, Paul K.
2014-02-01
The aim of this study is to investigate the impact of respiratory motion correction and spatial resolution on lesion detectability in PET as a function of lesion size and tracer uptake. Real respiratory signals describing different breathing types are combined with a motion model formed from real dynamic MR data to simulate multiple dynamic PET datasets acquired from a continuously moving subject. Lung and liver lesions were simulated with diameters ranging from 6 to 12 mm and lesion to background ratio ranging from 3:1 to 6:1. Projection data for 6 and 3 mm PET scanner resolution were generated using analytic simulations and reconstructed without and with motion correction. Motion correction was achieved using motion compensated image reconstruction. The detectability performance was quantified by a receiver operating characteristic (ROC) analysis obtained using a channelized Hotelling observer and the area under the ROC curve (AUC) was calculated as the figure of merit. The results indicate that respiratory motion limits the detectability of lung and liver lesions, depending on the variation of the breathing cycle length and amplitude. Patients with large quiescent periods had a greater AUC than patients with regular breathing cycles and patients with long-term variability in respiratory cycle or higher motion amplitude. In addition, small (less than 10 mm diameter) or low contrast (3:1) lesions showed the greatest improvement in AUC as a result of applying motion correction. In particular, after applying motion correction the AUC is improved by up to 42% with current PET resolution (i.e. 6 mm) and up to 51% for higher PET resolution (i.e. 3 mm). Finally, the benefit of increasing the scanner resolution is small unless motion correction is applied. This investigation indicates high impact of respiratory motion correction on lesion detectability in PET and highlights the importance of motion correction in order to benefit from the increased resolution of future PET scanners.
Validation of a Monte Carlo simulation of the Philips Allegro/GEMINI PET systems using GATE
NASA Astrophysics Data System (ADS)
Lamare, F.; Turzo, A.; Bizais, Y.; Cheze LeRest, C.; Visvikis, D.
2006-02-01
A newly developed simulation toolkit, GATE (Geant4 Application for Tomographic Emission), was used to develop a Monte Carlo simulation of a fully three-dimensional (3D) clinical PET scanner. The Philips Allegro/GEMINI PET systems were simulated in order to (a) allow a detailed study of the parameters affecting the system's performance under various imaging conditions, (b) study the optimization and quantitative accuracy of emission acquisition protocols for dynamic and static imaging, and (c) further validate the potential of GATE for the simulation of clinical PET systems. A model of the detection system and its geometry was developed. The accuracy of the developed detection model was tested through the comparison of simulated and measured results obtained with the Allegro/GEMINI systems for a number of NEMA NU2-2001 performance protocols including spatial resolution, sensitivity and scatter fraction. In addition, an approximate model of the system's dead time at the level of detected single events and coincidences was developed in an attempt to simulate the count rate related performance characteristics of the scanner. The developed dead-time model was assessed under different imaging conditions using the count rate loss and noise equivalent count rates performance protocols of standard and modified NEMA NU2-2001 (whole body imaging conditions) and NEMA NU2-1994 (brain imaging conditions) comparing simulated with experimental measurements obtained with the Allegro/GEMINI PET systems. Finally, a reconstructed image quality protocol was used to assess the overall performance of the developed model. An agreement of <3% was obtained in scatter fraction, with a difference between 4% and 10% in the true and random coincidence count rates respectively, throughout a range of activity concentrations and under various imaging conditions, resulting in <8% differences between simulated and measured noise equivalent count rates performance. Finally, the image quality validation study revealed a good agreement in signal-to-noise ratio and contrast recovery coefficients for a number of different volume spheres and two different (clinical level based) tumour-to-background ratios. In conclusion, these results support the accurate modelling of the Philips Allegro/GEMINI PET systems using GATE in combination with a dead-time model for the signal flow description, which leads to an agreement of <10% in coincidence count rates under different imaging conditions and clinically relevant activity concentration levels.
Search methods that people use to find owners of lost pets.
Lord, Linda K; Wittum, Thomas E; Ferketich, Amy K; Funk, Julie A; Rajala-Schultz, Päivi J
2007-06-15
To characterize the process by which people who find lost pets search for the owners. Cross-sectional study. Sample Population-188 individuals who found a lost pet in Dayton, Ohio, between March 1 and June 30, 2006. Procedures-Potential participants were identified as a result of contact with a local animal agency or placement of an advertisement in the local newspaper. A telephone survey was conducted to identify methods participants used to find the pets' owners. 156 of 188 (83%) individuals completed the survey. Fifty-nine of the 156 (38%) pets were reunited with their owners; median time to reunification was 2 days (range, 0.5 to 45 days). Only 1 (3%) cat owner was found, compared with 58 (46%) dog owners. Pet owners were found as a result of information provided by an animal agency (25%), placement of a newspaper advertisement (24%), walking the neighborhood (19%), signs in the neighborhood (15%), information on a pet tag (10%), and other methods (7%). Most finders (87%) considered it extremely important to find the owner, yet only 13 (8%) initially surrendered the found pet to an animal agency. The primary reason people did not surrender found pets was fear of euthanasia (57%). Only 97 (62%) individuals were aware they could run a found-pet advertisement in the newspaper at no charge, and only 1 person who was unaware of the no-charge policy placed an advertisement. Veterinarians and shelters can help educate people who find lost pets about methods to search for the pets' owners.
Positron emission tomography to assess hypoxia and perfusion in lung cancer
Verwer, Eline E; Boellaard, Ronald; van der Veldt, Astrid AM
2014-01-01
In lung cancer, tumor hypoxia is a characteristic feature, which is associated with a poor prognosis and resistance to both radiation therapy and chemotherapy. As the development of tumor hypoxia is associated with decreased perfusion, perfusion measurements provide more insight into the relation between hypoxia and perfusion in malignant tumors. Positron emission tomography (PET) is a highly sensitive nuclear imaging technique that is suited for non-invasive in vivo monitoring of dynamic processes including hypoxia and its associated parameter perfusion. The PET technique enables quantitative assessment of hypoxia and perfusion in tumors. To this end, consecutive PET scans can be performed in one scan session. Using different hypoxia tracers, PET imaging may provide insight into the prognostic significance of hypoxia and perfusion in lung cancer. In addition, PET studies may play an important role in various stages of personalized medicine, as these may help to select patients for specific treatments including radiation therapy, hypoxia modifying therapies, and antiangiogenic strategies. In addition, specific PET tracers can be applied for monitoring therapy. The present review provides an overview of the clinical applications of PET to measure hypoxia and perfusion in lung cancer. Available PET tracers and their characteristics as well as the applications of combined hypoxia and perfusion PET imaging are discussed. PMID:25493221
Electromagnetic signatures of the preclinical and prodromal stages of Alzheimer's disease.
Nakamura, Akinori; Cuesta, Pablo; Fernández, Alberto; Arahata, Yutaka; Iwata, Kaori; Kuratsubo, Izumi; Bundo, Masahiko; Hattori, Hideyuki; Sakurai, Takashi; Fukuda, Koji; Washimi, Yukihiko; Endo, Hidetoshi; Takeda, Akinori; Diers, Kersten; Bajo, Ricardo; Maestú, Fernando; Ito, Kengo; Kato, Takashi
2018-05-01
Biomarkers useful for the predementia stages of Alzheimer's disease are needed. Electroencephalography and magnetoencephalography (MEG) are expected to provide potential biomarker candidates for evaluating the predementia stages of Alzheimer's disease. However, the physiological relevance of EEG/MEG signal changes and their role in pathophysiological processes such as amyloid-β deposition and neurodegeneration need to be elucidated. We evaluated 28 individuals with mild cognitive impairment and 38 cognitively normal individuals, all of whom were further classified into amyloid-β-positive mild cognitive impairment (n = 17, mean age 74.7 ± 5.4 years, nine males), amyloid-β-negative mild cognitive impairment (n = 11, mean age 73.8 ± 8.8 years, eight males), amyloid-β-positive cognitively normal (n = 13, mean age 71.8 ± 4.4 years, seven males), and amyloid-β-negative cognitively normal (n = 25, mean age 72.5 ± 3.4 years, 11 males) individuals using Pittsburgh compound B-PET. We measured resting state MEG for 5 min with the eyes closed, and investigated regional spectral patterns of MEG signals using atlas-based region of interest analysis. Then, the relevance of the regional spectral patterns and their associations with pathophysiological backgrounds were analysed by integrating information from Pittsburgh compound B-PET, fluorodeoxyglucose-PET, structural MRI, and cognitive tests. The results demonstrated that regional spectral patterns of resting state activity could be separated into several types of MEG signatures as follows: (i) the effects of amyloid-β deposition were expressed as the alpha band power augmentation in medial frontal areas; (ii) the delta band power increase in the same region was associated with disease progression within the Alzheimer's disease continuum and was correlated with entorhinal atrophy and an Alzheimer's disease-like regional decrease in glucose metabolism; and (iii) the global theta power augmentation, which was previously considered to be an Alzheimer's disease-related EEG/MEG signature, was associated with general cognitive decline and hippocampal atrophy, but was not specific to Alzheimer's disease because these changes could be observed in the absence of amyloid-β deposition. The results suggest that these MEG signatures may be useful as unique biomarkers for the predementia stages of Alzheimer's disease.
NASA Astrophysics Data System (ADS)
Raylman, Raymond R.; Majewski, Stan; Velan, S. Sendhil; Lemieux, Susan; Kross, Brian; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.
2007-06-01
Multi-modality imaging (such as PET-CT) is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET, fused with anatomical images created by MRI, allow the correlation of form with function. Perhaps more exciting than the combination of anatomical MRI with PET, is the melding of PET with MR spectroscopy (MRS). Thus, two aspects of physiology could be combined in novel ways to produce new insights into the physiology of normal and pathological processes. Our team is developing a system to acquire MRI images and MRS spectra, and PET images contemporaneously. The prototype MR-compatible PET system consists of two opposed detector heads (appropriate in size for small animal imaging), operating in coincidence mode with an active field-of-view of ˜14 cm in diameter. Each detector consists of an array of LSO detector elements coupled through a 2-m long fiber optic light guide to a single position-sensitive photomultiplier tube. The use of light guides allows these magnetic field-sensitive elements of the PET imager to be positioned outside the strong magnetic field of our 3T MRI scanner. The PET scanner imager was integrated with a 12-cm diameter, 12-leg custom, birdcage coil. Simultaneous MRS spectra and PET images were successfully acquired from a multi-modality phantom consisting of a sphere filled with 17 brain relevant substances and a positron-emitting radionuclide. There were no significant changes in MRI or PET scanner performance when both were present in the MRI magnet bore. This successful initial test demonstrates the potential for using such a multi-modality to obtain complementary MRS and PET data.
PeneloPET, a Monte Carlo PET simulation tool based on PENELOPE: features and validation
NASA Astrophysics Data System (ADS)
España, S; Herraiz, J L; Vicente, E; Vaquero, J J; Desco, M; Udias, J M
2009-03-01
Monte Carlo simulations play an important role in positron emission tomography (PET) imaging, as an essential tool for the research and development of new scanners and for advanced image reconstruction. PeneloPET, a PET-dedicated Monte Carlo tool, is presented and validated in this work. PeneloPET is based on PENELOPE, a Monte Carlo code for the simulation of the transport in matter of electrons, positrons and photons, with energies from a few hundred eV to 1 GeV. PENELOPE is robust, fast and very accurate, but it may be unfriendly to people not acquainted with the FORTRAN programming language. PeneloPET is an easy-to-use application which allows comprehensive simulations of PET systems within PENELOPE. Complex and realistic simulations can be set by modifying a few simple input text files. Different levels of output data are available for analysis, from sinogram and lines-of-response (LORs) histogramming to fully detailed list mode. These data can be further exploited with the preferred programming language, including ROOT. PeneloPET simulates PET systems based on crystal array blocks coupled to photodetectors and allows the user to define radioactive sources, detectors, shielding and other parts of the scanner. The acquisition chain is simulated in high level detail; for instance, the electronic processing can include pile-up rejection mechanisms and time stamping of events, if desired. This paper describes PeneloPET and shows the results of extensive validations and comparisons of simulations against real measurements from commercial acquisition systems. PeneloPET is being extensively employed to improve the image quality of commercial PET systems and for the development of new ones.
Kamlet, Adam S.; Neumann, Constanze N.; Lee, Eunsung; Carlin, Stephen M.; Moseley, Christian K.; Stephenson, Nickeisha; Hooker, Jacob M.; Ritter, Tobias
2013-01-01
New chemistry methods for the synthesis of radiolabeled small molecules have the potential to impact clinical positron emission tomography (PET) imaging, if they can be successfully translated. However, progression of modern reactions from the stage of synthetic chemistry development to the preparation of radiotracer doses ready for use in human PET imaging is challenging and rare. Here we describe the process of and the successful translation of a modern palladium-mediated fluorination reaction to non-human primate (NHP) baboon PET imaging–an important milestone on the path to human PET imaging. The method, which transforms [18F]fluoride into an electrophilic fluorination reagent, provides access to aryl–18F bonds that would be challenging to synthesize via conventional radiochemistry methods. PMID:23554994
The Effects of Cooking Process and Meat Inclusion on Pet Food Flavor and Texture Characteristics
Koppel, Kadri; Gibson, Michael; Alavi, Sajid; Aldrich, Greg
2014-01-01
Simple Summary The results of this research indicate that processing (baked vs. extruded) plays an important role in determining pet food product texture. In addition, raw ingredients (fresh meat vs. meal-based) did not consistently affect product sensory characteristics. These results may help pet food technologists better understand factors that affect palatability. Abstract The pet food industry is an important portion of the food and feed industries in the US. The objectives of this study were (1) to determine cooking method (baking or extrusion), meat inclusion (0 or 20%), and extrusion thermal to mechanical energy ratios (low, medium, and high) effects on sensory and volatile properties of pet foods, and (2) to determine associations among sensory and volatile characteristics of baked and extruded pet foods. Descriptive sensory analysis and gas chromatography-mass spectrometry were used to analyze the pet food samples. It was found that baked samples were lighter in color (2.0–2.6 baked vs. 3.5–4.3 extruded, color intensity scale 0–15), and had lower levels of attributes that indicated rancidity (i.e., fishy flavor; 0.3–0.6 baked, 0.6–1.5 extruded, scale 0–15), whereas extruded pet foods were more cohesive in mass, more friable, hard, and crisp, but less powdery than baked samples. Fresh meat inclusion tended to decrease bitterness and increase fishy flavor and cohesiveness of pet foods. High thermal to mechanical energy ratio during extrusion resulted in less musty and more porous kibbles. The main volatile compounds included aldehydes, such as hexanal and heptanal, ketones, and alcohols. Extruded samples did not contain methylpyrazine, while baked samples did not contain 2-butyl furan. Future studies should consider evaluating the relationship between sensory results and animal palatability for these types of foods. PMID:26480040
Recyclability assessment of nano-reinforced plastic packaging.
Sánchez, C; Hortal, M; Aliaga, C; Devis, A; Cloquell-Ballester, V A
2014-12-01
Packaging is expected to become the leading application for nano-composites by 2020 due to the great advantages on mechanical and active properties achieved with these substances. As novel materials, and although there are some current applications in the market, there is still unknown areas under development. One key issue to be addressed is to know more about the implications of the nano-composite packaging materials once they become waste. The present study evaluates the extrusion process of four nanomaterials (Layered silicate modified nanoclay (Nanoclay1), Calcium Carbonate (CaCO3), Silver (Ag) and Zinc Oxide (ZnO) as part of different virgin polymer matrices of polyethylene (PE), Polypropylene (PP) and Polyethyleneterephtalate (PET). Thus, the following film plastic materials: (PE-Nanoclay1, PE-CaCO3, PP-Ag, PET-ZnO, PET-Ag, PET-Nanoclay1) have been processed considering different recycling scenarios. Results on recyclability show that for PE and PP, in general terms and except for some minor variations in yellowness index, tensile modulus, tensile strength and tear strength (PE with Nanoclay1, PP with Ag), the introduction of nanomaterial in the recycling streams for plastic films does not affect the final recycled plastic material in terms of mechanical properties and material quality compared to conventional recycled plastic. Regarding PET, results show that the increasing addition of nanomaterial into the recycled PET matrix (especially PET-Ag) could influence important properties of the recycled material, due to a slight degradation of the polymer, such as increasing pinholes, degradation fumes and elongation at break. Moreover, it should be noted that colour deviations were visible in most of the samples (PE, PP and PET) in levels higher than 0.3 units (limit perceivable by the human eye). The acceptance of these changes in the properties of recycled PE, PP and PET will depend on the specific applications considered (e.g. packaging applications are more strict in material quality that urban furniture or construction products). Copyright © 2014 Elsevier Ltd. All rights reserved.
In vivo PET imaging of neuroinflammation in Alzheimer's disease.
Lagarde, Julien; Sarazin, Marie; Bottlaender, Michel
2018-05-01
Increasing evidence suggests that neuroinflammation contributes to the pathophysiology of many neurodegenerative diseases, especially Alzheimer's disease (AD). Molecular imaging by PET may be a useful tool to assess neuroinflammation in vivo, thus helping to decipher the complex role of inflammatory processes in the pathophysiology of neurodegenerative diseases and providing a potential means of monitoring the effect of new therapeutic approaches. For this objective, the main target of PET studies is the 18 kDa translocator protein (TSPO), as it is overexpressed by activated microglia. In the present review, we describe the most widely used PET tracers targeting the TSPO, the methodological issues in tracer quantification and summarize the results obtained by TSPO PET imaging in AD, as well as in neurodegenerative disorders associated with AD, in psychiatric disorders and ageing. We also briefly describe alternative PET targets and imaging modalities to study neuroinflammation. Lastly, we question the meaning of PET imaging data in the context of a highly complex and multifaceted role of neuroinflammation in neurodegenerative diseases. This overview leads to the conclusion that PET imaging of neuroinflammation is a promising way of deciphering the enigma of the pathophysiology of AD and of monitoring the effect of new therapies.
Encoding-related brain activity during deep processing of verbal materials: a PET study.
Fujii, Toshikatsu; Okuda, Jiro; Tsukiura, Takashi; Ohtake, Hiroya; Suzuki, Maki; Kawashima, Ryuta; Itoh, Masatoshi; Fukuda, Hiroshi; Yamadori, Atsushi
2002-12-01
The recent advent of neuroimaging techniques provides an opportunity to examine brain regions related to a specific memory process such as episodic memory encoding. There is, however, a possibility that areas active during an assumed episodic memory encoding task, compared with a control task, involve not only areas directly relevant to episodic memory encoding processes but also areas associated with other cognitive processes for on-line information. We used positron emission tomography (PET) to differentiate these two kinds of regions. Normal volunteers were engaged in deep (semantic) or shallow (phonological) processing of new or repeated words during PET. Results showed that deep processing, compared with shallow processing, resulted in significantly better recognition performance and that this effect was associated with activation of various brain areas. Further analyses revealed that there were regions directly relevant to episodic memory encoding in the anterior part of the parahippocampal gyrus, inferior frontal gyrus, supramarginal gyrus, anterior cingulate gyrus, and medial frontal lobe in the left hemisphere. Our results demonstrated that several regions, including the medial temporal lobe, play a role in episodic memory encoding.
Antibodies and antimatter: the resurgence of immuno-PET.
Wu, Anna M
2009-01-01
The completion of the human genome, coupled with parallel major research efforts in proteomics and systems biology, has led to a flood of information on the roles of individual genes and proteins in normal physiologic processes and their disruptions in disease. In practical terms, this information has opened the door to increasingly targeted therapies as specific molecular markers are identified and validated. The ongoing transition from empiric to molecular medicine has engendered a need for corresponding molecular diagnostics, including noninvasive molecular imaging. Convergence of knowledge regarding key biomarkers that define normal biologic processes and disease with protein and imaging technology makes this an opportune time to revisit the combination of antibodies and PET, or immuno-PET.
Evaluation of Matrix9 silicon photomultiplier array for small-animal PET.
Du, Junwei; Schmall, Jeffrey P; Yang, Yongfeng; Di, Kun; Roncali, Emilie; Mitchell, Gregory S; Buckley, Steve; Jackson, Carl; Cherry, Simon R
2015-02-01
The MatrixSL-9-30035-OEM (Matrix9) from SensL is a large-area silicon photomultiplier (SiPM) photodetector module consisting of a 3 × 3 array of 4 × 4 element SiPM arrays (total of 144 SiPM pixels) and incorporates SensL's front-end electronics board and coincidence board. Each SiPM pixel measures 3.16 × 3.16 mm(2) and the total size of the detector head is 47.8 × 46.3 mm(2). Using 8 × 8 polished LSO/LYSO arrays (pitch 1.5 mm) the performance of this detector system (SiPM array and readout electronics) was evaluated with a view for its eventual use in small-animal positron emission tomography (PET). Measurements of noise, signal, signal-to-noise ratio, energy resolution, flood histogram quality, timing resolution, and array trigger error were obtained at different bias voltages (28.0-32.5 V in 0.5 V intervals) and at different temperatures (5 °C-25 °C in 5 °C degree steps) to find the optimal operating conditions. The best measured signal-to-noise ratio and flood histogram quality for 511 keV gamma photons were obtained at a bias voltage of 30.0 V and a temperature of 5 °C. The energy resolution and timing resolution under these conditions were 14.2% ± 0.1% and 4.2 ± 0.1 ns, respectively. The flood histograms show that all the crystals in the 1.5 mm pitch LSO array can be clearly identified and that smaller crystal pitches can also be resolved. Flood histogram quality was also calculated using different center of gravity based positioning algorithms. Improved and more robust results were achieved using the local 9 pixels for positioning along with an energy offset calibration. To evaluate the front-end detector readout, and multiplexing efficiency, an array trigger error metric is introduced and measured at different lower energy thresholds. Using a lower energy threshold greater than 150 keV effectively eliminates any mispositioning between SiPM arrays. In summary, the Matrix9 detector system can resolve high-resolution scintillator arrays common in small-animal PET with adequate energy resolution and timing resolution over a large detector area. The modular design of the Matrix9 detector allows it to be used as a building block for simple, low channel-count, yet high performance, small animal PET or PET/MRI systems.
Evaluation of Matrix9 silicon photomultiplier array for small-animal PET
Du, Junwei; Schmall, Jeffrey P.; Yang, Yongfeng; Di, Kun; Roncali, Emilie; Mitchell, Gregory S.; Buckley, Steve; Jackson, Carl; Cherry, Simon R.
2015-01-01
Purpose: The MatrixSL-9-30035-OEM (Matrix9) from SensL is a large-area silicon photomultiplier (SiPM) photodetector module consisting of a 3 × 3 array of 4 × 4 element SiPM arrays (total of 144 SiPM pixels) and incorporates SensL’s front-end electronics board and coincidence board. Each SiPM pixel measures 3.16 × 3.16 mm2 and the total size of the detector head is 47.8 × 46.3 mm2. Using 8 × 8 polished LSO/LYSO arrays (pitch 1.5 mm) the performance of this detector system (SiPM array and readout electronics) was evaluated with a view for its eventual use in small-animal positron emission tomography (PET). Methods: Measurements of noise, signal, signal-to-noise ratio, energy resolution, flood histogram quality, timing resolution, and array trigger error were obtained at different bias voltages (28.0–32.5 V in 0.5 V intervals) and at different temperatures (5 °C–25 °C in 5 °C degree steps) to find the optimal operating conditions. Results: The best measured signal-to-noise ratio and flood histogram quality for 511 keV gamma photons were obtained at a bias voltage of 30.0 V and a temperature of 5 °C. The energy resolution and timing resolution under these conditions were 14.2% ± 0.1% and 4.2 ± 0.1 ns, respectively. The flood histograms show that all the crystals in the 1.5 mm pitch LSO array can be clearly identified and that smaller crystal pitches can also be resolved. Flood histogram quality was also calculated using different center of gravity based positioning algorithms. Improved and more robust results were achieved using the local 9 pixels for positioning along with an energy offset calibration. To evaluate the front-end detector readout, and multiplexing efficiency, an array trigger error metric is introduced and measured at different lower energy thresholds. Using a lower energy threshold greater than 150 keV effectively eliminates any mispositioning between SiPM arrays. Conclusions: In summary, the Matrix9 detector system can resolve high-resolution scintillator arrays common in small-animal PET with adequate energy resolution and timing resolution over a large detector area. The modular design of the Matrix9 detector allows it to be used as a building block for simple, low channel-count, yet high performance, small animal PET or PET/MRI systems. PMID:25652479
Evaluation of Matrix9 silicon photomultiplier array for small-animal PET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Junwei, E-mail: jwdu@ucdavis.edu; Schmall, Jeffrey P.; Yang, Yongfeng
Purpose: The MatrixSL-9-30035-OEM (Matrix9) from SensL is a large-area silicon photomultiplier (SiPM) photodetector module consisting of a 3 × 3 array of 4 × 4 element SiPM arrays (total of 144 SiPM pixels) and incorporates SensL’s front-end electronics board and coincidence board. Each SiPM pixel measures 3.16 × 3.16 mm{sup 2} and the total size of the detector head is 47.8 × 46.3 mm{sup 2}. Using 8 × 8 polished LSO/LYSO arrays (pitch 1.5 mm) the performance of this detector system (SiPM array and readout electronics) was evaluated with a view for its eventual use in small-animal positron emission tomographymore » (PET). Methods: Measurements of noise, signal, signal-to-noise ratio, energy resolution, flood histogram quality, timing resolution, and array trigger error were obtained at different bias voltages (28.0–32.5 V in 0.5 V intervals) and at different temperatures (5 °C–25 °C in 5 °C degree steps) to find the optimal operating conditions. Results: The best measured signal-to-noise ratio and flood histogram quality for 511 keV gamma photons were obtained at a bias voltage of 30.0 V and a temperature of 5 °C. The energy resolution and timing resolution under these conditions were 14.2% ± 0.1% and 4.2 ± 0.1 ns, respectively. The flood histograms show that all the crystals in the 1.5 mm pitch LSO array can be clearly identified and that smaller crystal pitches can also be resolved. Flood histogram quality was also calculated using different center of gravity based positioning algorithms. Improved and more robust results were achieved using the local 9 pixels for positioning along with an energy offset calibration. To evaluate the front-end detector readout, and multiplexing efficiency, an array trigger error metric is introduced and measured at different lower energy thresholds. Using a lower energy threshold greater than 150 keV effectively eliminates any mispositioning between SiPM arrays. Conclusions: In summary, the Matrix9 detector system can resolve high-resolution scintillator arrays common in small-animal PET with adequate energy resolution and timing resolution over a large detector area. The modular design of the Matrix9 detector allows it to be used as a building block for simple, low channel-count, yet high performance, small animal PET or PET/MRI systems.« less
Markiewicz, Pawel J; Ehrhardt, Matthias J; Erlandsson, Kjell; Noonan, Philip J; Barnes, Anna; Schott, Jonathan M; Atkinson, David; Arridge, Simon R; Hutton, Brian F; Ourselin, Sebastien
2018-01-01
We present a standalone, scalable and high-throughput software platform for PET image reconstruction and analysis. We focus on high fidelity modelling of the acquisition processes to provide high accuracy and precision quantitative imaging, especially for large axial field of view scanners. All the core routines are implemented using parallel computing available from within the Python package NiftyPET, enabling easy access, manipulation and visualisation of data at any processing stage. The pipeline of the platform starts from MR and raw PET input data and is divided into the following processing stages: (1) list-mode data processing; (2) accurate attenuation coefficient map generation; (3) detector normalisation; (4) exact forward and back projection between sinogram and image space; (5) estimation of reduced-variance random events; (6) high accuracy fully 3D estimation of scatter events; (7) voxel-based partial volume correction; (8) region- and voxel-level image analysis. We demonstrate the advantages of this platform using an amyloid brain scan where all the processing is executed from a single and uniform computational environment in Python. The high accuracy acquisition modelling is achieved through span-1 (no axial compression) ray tracing for true, random and scatter events. Furthermore, the platform offers uncertainty estimation of any image derived statistic to facilitate robust tracking of subtle physiological changes in longitudinal studies. The platform also supports the development of new reconstruction and analysis algorithms through restricting the axial field of view to any set of rings covering a region of interest and thus performing fully 3D reconstruction and corrections using real data significantly faster. All the software is available as open source with the accompanying wiki-page and test data.
Promising New Photon Detection Concepts for High-Resolution Clinical and Preclinical PET
Levin, Craig S.
2013-01-01
The ability of PET to visualize and quantify regions of low concentration of PET tracer representing subtle cellular and molecular signatures of disease depends on relatively complex biochemical, biologic, and physiologic factors that are challenging to control, as well as on instrumentation performance parameters that are, in principle, still possible to improve on. Thus, advances to the latter can somewhat offset barriers of the former. PET system performance parameters such as spatial resolution, contrast resolution, and photon sensitivity contribute significantly to PET’s ability to visualize and quantify lower concentrations of signal in the presence of background. In this report we present some technology innovations under investigation toward improving these PET system performance parameters. We focus particularly on a promising advance known as 3-dimensional position-sensitive detectors, which are detectors capable of distinguishing and measuring the position, energy, and arrival time of individual interactions of multi-interaction photon events in 3 dimensions. If successful, these new strategies enable enhancements such as the detection of fewer diseased cells in tissue or the ability to characterize lower-abundance molecular targets within cells. Translating these advanced capabilities to the clinic might allow expansion of PET’s roles in disease management, perhaps to earlier stages of disease. In preclinical research, such enhancements enable more sensitive and accurate studies of disease biology in living subjects. PMID:22302960
NASA Astrophysics Data System (ADS)
Badea, C. T.; Ghaghada, K.; Espinosa, G.; Strong, L.; Annapragada, A.
2011-03-01
Multi-modality PET-CT imaging is playing an important role in the field of oncology. While PET imaging facilitates functional interrogation of tumor status, the use of CT imaging is primarily limited to anatomical reference. In an attempt to extract comprehensive information about tumor cells and its microenvironment, we used a nanoparticle xray contrast agent to image tumor vasculature and vessel 'leakiness' and 18F-FDG to investigate the metabolic status of tumor cells. In vivo PET/CT studies were performed in mice implanted with 4T1 mammary breast cancer cells.Early-phase micro-CT imaging enabled visualization 3D vascular architecture of the tumors whereas delayedphase micro-CT demonstrated highly permeable vessels as evident by nanoparticle accumulation within the tumor. Both imaging modalities demonstrated the presence of a necrotic core as indicated by a hypo-enhanced region in the center of the tumor. At early time-points, the CT-derived fractional blood volume did not correlate with 18F-FDG uptake. At delayed time-points, the tumor enhancement in 18F-FDG micro-PET images correlated with the delayed signal enhanced due to nanoparticle extravasation seen in CT images. The proposed hybrid imaging approach could be used to better understand tumor angiogenesis and to be the basis for monitoring and evaluating anti-angiogenic and nano-chemotherapies.
O'Farrell, Alice C; Evans, Rhys; Silvola, Johanna M U; Miller, Ian S; Conroy, Emer; Hector, Suzanne; Cary, Maurice; Murray, David W; Jarzabek, Monika A; Maratha, Ashwini; Alamanou, Marina; Udupi, Girish Mallya; Shiels, Liam; Pallaud, Celine; Saraste, Antti; Liljenbäck, Heidi; Jauhiainen, Matti; Oikonen, Vesa; Ducret, Axel; Cutler, Paul; McAuliffe, Fionnuala M; Rousseau, Jacques A; Lecomte, Roger; Gascon, Suzanne; Arany, Zoltan; Ky, Bonnie; Force, Thomas; Knuuti, Juhani; Gallagher, William M; Roivainen, Anne; Byrne, Annette T
2017-01-01
Sunitinib is a tyrosine kinase inhibitor approved for the treatment of multiple solid tumors. However, cardiotoxicity is of increasing concern, with a need to develop rational mechanism driven approaches for the early detection of cardiac dysfunction. We sought to interrogate changes in cardiac energy substrate usage during sunitinib treatment, hypothesising that these changes could represent a strategy for the early detection of cardiotoxicity. Balb/CJ mice or Sprague-Dawley rats were treated orally for 4 weeks with 40 or 20 mg/kg/day sunitinib. Cardiac positron emission tomography (PET) was implemented to investigate alterations in myocardial glucose and oxidative metabolism. Following treatment, blood pressure increased, and left ventricular ejection fraction decreased. Cardiac [18F]-fluorodeoxyglucose (FDG)-PET revealed increased glucose uptake after 48 hours. [11C]Acetate-PET showed decreased myocardial perfusion following treatment. Electron microscopy revealed significant lipid accumulation in the myocardium. Proteomic analyses indicated that oxidative metabolism, fatty acid β-oxidation and mitochondrial dysfunction were among the top myocardial signalling pathways perturbed. Sunitinib treatment results in an increased reliance on glycolysis, increased myocardial lipid deposition and perturbed mitochondrial function, indicative of a fundamental energy crisis resulting in compromised myocardial energy metabolism and function. Our findings suggest that a cardiac PET strategy may represent a rational approach to non-invasively monitor metabolic pathway remodeling following sunitinib treatment.
Silvola, Johanna M. U.; Miller, Ian S.; Conroy, Emer; Hector, Suzanne; Cary, Maurice; Murray, David W.; Jarzabek, Monika A.; Maratha, Ashwini; Alamanou, Marina; Udupi, Girish Mallya; Shiels, Liam; Pallaud, Celine; Saraste, Antti; Liljenbäck, Heidi; Jauhiainen, Matti; Oikonen, Vesa; Ducret, Axel; Cutler, Paul; McAuliffe, Fionnuala M.; Rousseau, Jacques A.; Lecomte, Roger; Gascon, Suzanne; Arany, Zoltan; Ky, Bonnie; Force, Thomas; Knuuti, Juhani; Gallagher, William M.; Roivainen, Anne; Byrne, Annette T.
2017-01-01
Sunitinib is a tyrosine kinase inhibitor approved for the treatment of multiple solid tumors. However, cardiotoxicity is of increasing concern, with a need to develop rational mechanism driven approaches for the early detection of cardiac dysfunction. We sought to interrogate changes in cardiac energy substrate usage during sunitinib treatment, hypothesising that these changes could represent a strategy for the early detection of cardiotoxicity. Balb/CJ mice or Sprague-Dawley rats were treated orally for 4 weeks with 40 or 20 mg/kg/day sunitinib. Cardiac positron emission tomography (PET) was implemented to investigate alterations in myocardial glucose and oxidative metabolism. Following treatment, blood pressure increased, and left ventricular ejection fraction decreased. Cardiac [18F]-fluorodeoxyglucose (FDG)-PET revealed increased glucose uptake after 48 hours. [11C]Acetate-PET showed decreased myocardial perfusion following treatment. Electron microscopy revealed significant lipid accumulation in the myocardium. Proteomic analyses indicated that oxidative metabolism, fatty acid β-oxidation and mitochondrial dysfunction were among the top myocardial signalling pathways perturbed. Sunitinib treatment results in an increased reliance on glycolysis, increased myocardial lipid deposition and perturbed mitochondrial function, indicative of a fundamental energy crisis resulting in compromised myocardial energy metabolism and function. Our findings suggest that a cardiac PET strategy may represent a rational approach to non-invasively monitor metabolic pathway remodeling following sunitinib treatment. PMID:28129334
Smid, Lojze M; Kepe, Vladimir; Vinters, Harry V; Bresjanac, Mara; Toyokuni, Tatsushi; Satyamurthy, Nagichettiar; Wong, Koon-Pong; Huang, Sung-Cheng; Silverman, Daniel H S; Miller, Karen; Small, Gary W; Barrio, Jorge R
2013-01-01
This work is aimed at correlating pre-mortem [18F]FDDNP positron emission tomography (PET) scan results in a patient with dementia with Lewy bodies (DLB), with cortical neuropathology distribution determined postmortem in three physical dimensions in whole brain coronal sections. Analysis of total amyloid-β (Aβ) distribution in frontal cortex and posterior cingulate gyrus confirmed its statistically significant correlation with cortical [18F]FDDNP PET binding values (distribution volume ratios, DVR) (p < 0.001, R = 0.97, R2 = 0.94). Neurofibrillary tangle (NFT) distribution correlated significantly with cortical [18F]FDDNP PET DVR in the temporal lobe (p < 0.001, R = 0.87, R2 = 0.76). Linear combination of Aβ and NFT densities was highly predictive of [18F]FDDNP PET DVR through all analyzed regions of interest (p < 0.0001, R = 0.92, R2 = 0.85), and both densities contributed significantly to the model. Lewy bodies were present at a much lower level than either Aβ or NFTs and did not significantly contribute to the in vivo signal. [18F]FDG PET scan results in this patient were consistent with the distinctive DLB pattern of hypometabolism. This work offers a mapping brain model applicable to all imaging probes for verification of imaging results with Aβ and/or tau neuropathology brain distribution using immunohistochemistry, fluorescence microscopy, and autoradiography.
Meier, Silvio R; Syvänen, Stina; Hultqvist, Greta; Fang, Xiaotian T; Roshanbin, Sahar; Lannfelt, Lars; Neumann, Ulf; Sehlin, Dag
2018-05-31
Positron emission tomography (PET) used for visualizing amyloid-β (Aβ) pathology has become an important tool for specific clinical diagnosis of Alzheimer's disease (AD). However, all available amyloid PET radioligands, such as [ 11 C]PiB, reflect levels of insoluble Aβ plaques, but do not capture soluble and protofibrillar Aβ forms. When measured with current PET ligands, the plaque load appears to be fairly static during clinical stages of AD, and may not be affected by Aβ reducing treatments. The aim of the present study was to investigate if a novel PET radioligand, based on an antibody directed towards soluble aggregates of Aβ, could be used to detect changes in Aβ levels during disease progression and after treatment with a β-secretase (BACE-1) inhibitor. Methods: One set of transgenic mice (tg-ArcSwe, model of Aβ pathology) aged between 7 and 16 months were PET scanned with the Aβ protofibril selective radioligand [ 124 I]RmAb158-scFv8D3 to follow progression of Aβ pathology in the brain. A second set of tg-ArcSwe mice, aged 10 months, were treated with BACE-1 inhibitor NB-360 for 3 months and compared to an untreated control group. A set of 10 months old tg-ArcSwe mice also underwent PET scanning, acting as a baseline group. Brain tissue was isolated after PET to determine levels of Aβ by ELISA and immunohistochemistry. Results: Concentration of [ 124 I]RmAb158-scFv8D3 in tg-ArcSwe mice, measured in vivo with PET, increased with age and corresponded well with ex vivo autoradiography and Aβ immunohistochemistry. Tg-ArcSwe mice treated with NB-360 showed significantly lower in vivo PET signals than untreated animals, and were similar to the baseline 10 month old animals. The decreased [ 124 I]RmAb158-scFv8D3 concentrations in NB-360 treated mice, quantified with PET, corresponded well with decreased Aβ levels measured in post mortem brain. Conclusion: A number of treatments for AD are currently studied in phase 2 and 3 clinical trials but there are limited possibilities to study their effects on the important, non-fibrillar Aβ forms in vivo. This study demonstrates the ability of the Aβ protofibril selective radioligand [ 124 I]RmAb158-scFv8D3 to follow disease progression and detect treatment effects with PET imaging in tg-ArcSwe mice. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Cinelli, Patrizia; Schmid, Markus; Bugnicourt, Elodie; Coltelli, Maria Beatrice; Lazzeri, Andrea
2016-01-01
Multilayer plastic films provide a range of properties, which cannot be obtained from monolayer films but, at present, their recyclability is an open issue and should be improved. Research to date has shown the possibility of using whey protein as a layer material with the property of acting as an excellent barrier against oxygen and moisture, replacing petrochemical non-recyclable materials. The innovative approach of the present research was to achieve the recyclability of the substrate films by separating them, with a simple process compatible with industrial procedures, in order to promote recycling processes leading to obtain high value products that will beneficially impact the packaging and food industries. Hence, polyethyleneterephthalate (PET)/polyethylene (PE) multi-layer film was prepared based on PET coated with a whey protein layer, and then the previous structure was laminated with PE. Whey proteins, constituting the coating, can be degraded by enzymes so that the coating films can be washed off from the plastic substrate layer. Enzyme types, dosage, time, and temperature optima, which are compatible with procedures adopted in industrial waste recycling, were determined for a highly-efficient process. The washing of samples based on PET/whey and PET/whey/PE were efficient when performed with enzymatic detergent containing protease enzymes, as an alternative to conventional detergents used in recycling facilities. Different types of enzymatic detergents tested presented positive results in removing the protein layer from the PET substrate and from the PET/whey/PE multilayer films at room temperature. These results attested to the possibility of organizing the pre-treatment of the whey-based multilayer film by washing with different available commercial enzymatic detergents in order to separate PET and PE, thus allowing a better recycling of the two different polymers. Mechanical properties of the plastic substrate, such as stress at yield, stress and elongation at break, evaluated by tensile testing on films before and after cleaning, were are not significantly affected by washing with enzymatic detergents. PMID:28773592
Automated measurements of metabolic tumor volume and metabolic parameters in lung PET/CT imaging
NASA Astrophysics Data System (ADS)
Orologas, F.; Saitis, P.; Kallergi, M.
2017-11-01
Patients with lung tumors or inflammatory lung disease could greatly benefit in terms of treatment and follow-up by PET/CT quantitative imaging, namely measurements of metabolic tumor volume (MTV), standardized uptake values (SUVs) and total lesion glycolysis (TLG). The purpose of this study was the development of an unsupervised or partially supervised algorithm using standard image processing tools for measuring MTV, SUV, and TLG from lung PET/CT scans. Automated metabolic lesion volume and metabolic parameter measurements were achieved through a 5 step algorithm: (i) The segmentation of the lung areas on the CT slices, (ii) the registration of the CT segmented lung regions on the PET images to define the anatomical boundaries of the lungs on the functional data, (iii) the segmentation of the regions of interest (ROIs) on the PET images based on adaptive thresholding and clinical criteria, (iv) the estimation of the number of pixels and pixel intensities in the PET slices of the segmented ROIs, (v) the estimation of MTV, SUVs, and TLG from the previous step and DICOM header data. Whole body PET/CT scans of patients with sarcoidosis were used for training and testing the algorithm. Lung area segmentation on the CT slices was better achieved with semi-supervised techniques that reduced false positive detections significantly. Lung segmentation results agreed with the lung volumes published in the literature while the agreement between experts and algorithm in the segmentation of the lesions was around 88%. Segmentation results depended on the image resolution selected for processing. The clinical parameters, SUV (either mean or max or peak) and TLG estimated by the segmented ROIs and DICOM header data provided a way to correlate imaging data to clinical and demographic data. In conclusion, automated MTV, SUV, and TLG measurements offer powerful analysis tools in PET/CT imaging of the lungs. Custom-made algorithms are often a better approach than the manufacturer’s general analysis software at much lower cost. Relatively simple processing techniques could lead to customized, unsupervised or partially supervised methods that can successfully perform the desirable analysis and adapt to the specific disease requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, L; Tan, S; Lu, W
Purpose: PET images are usually blurred due to the finite spatial resolution, while CT images suffer from low contrast. Segment a tumor from either a single PET or CT image is thus challenging. To make full use of the complementary information between PET and CT, we propose a novel variational method for simultaneous PET image restoration and PET/CT images co-segmentation. Methods: The proposed model was constructed based on the Γ-convergence approximation of Mumford-Shah (MS) segmentation model for PET/CT co-segmentation. Moreover, a PET de-blur process was integrated into the MS model to improve the segmentation accuracy. An interaction edge constraint termmore » over the two modalities were specially designed to share the complementary information. The energy functional was iteratively optimized using an alternate minimization (AM) algorithm. The performance of the proposed method was validated on ten lung cancer cases and five esophageal cancer cases. The ground truth were manually delineated by an experienced radiation oncologist using the complementary visual features of PET and CT. The segmentation accuracy was evaluated by Dice similarity index (DSI) and volume error (VE). Results: The proposed method achieved an expected restoration result for PET image and satisfactory segmentation results for both PET and CT images. For lung cancer dataset, the average DSI (0.72) increased by 0.17 and 0.40 than single PET and CT segmentation. For esophageal cancer dataset, the average DSI (0.85) increased by 0.07 and 0.43 than single PET and CT segmentation. Conclusion: The proposed method took full advantage of the complementary information from PET and CT images. This work was supported in part by the National Cancer Institute Grants R01CA172638. Shan Tan and Laquan Li were supported in part by the National Natural Science Foundation of China, under Grant Nos. 60971112 and 61375018.« less
Joint MR-PET reconstruction using a multi-channel image regularizer
Koesters, Thomas; Otazo, Ricardo; Bredies, Kristian; Sodickson, Daniel K
2016-01-01
While current state of the art MR-PET scanners enable simultaneous MR and PET measurements, the acquired data sets are still usually reconstructed separately. We propose a new multi-modality reconstruction framework using second order Total Generalized Variation (TGV) as a dedicated multi-channel regularization functional that jointly reconstructs images from both modalities. In this way, information about the underlying anatomy is shared during the image reconstruction process while unique differences are preserved. Results from numerical simulations and in-vivo experiments using a range of accelerated MR acquisitions and different MR image contrasts demonstrate improved PET image quality, resolution, and quantitative accuracy. PMID:28055827
Dual acquisition of 18F-FMISO and 18F-FDOPA
NASA Astrophysics Data System (ADS)
Bell, Christopher; Rose, Stephen; Puttick, Simon; Pagnozzi, Alex; Poole, Christopher M.; Gal, Yaniv; Thomas, Paul; Fay, Michael; Jeffree, Rosalind L.; Dowson, Nicholas
2014-07-01
Metabolic imaging using positron emission tomography (PET) has found increasing clinical use for the management of infiltrating tumours such as glioma. However, the heterogeneous biological nature of tumours and intrinsic treatment resistance in some regions means that knowledge of multiple biological factors is needed for effective treatment planning. For example, the use of 18F-FDOPA to identify infiltrative tumour and 18F-FMISO for localizing hypoxic regions. Performing multiple PET acquisitions is impractical in many clinical settings, but previous studies suggest multiplexed PET imaging could be viable. The fidelity of the two signals is affected by the injection interval, scan timing and injected dose. The contribution of this work is to propose a framework to explicitly trade-off signal fidelity with logistical constraints when designing the imaging protocol. The particular case of estimating 18F-FMISO from a single frame prior to injection of 18F-FDOPA is considered. Theoretical experiments using simulations for typical biological scenarios in humans demonstrate that results comparable to a pair of single-tracer acquisitions can be obtained provided protocol timings are carefully selected. These results were validated using a pre-clinical data set that was synthetically multiplexed. The results indicate that the dual acquisition of 18F-FMISO and 18F-FDOPA could be feasible in the clinical setting. The proposed framework could also be used to design protocols for other tracers.
Design and performance of a high spatial resolution, time-of-flight PET detector
Krishnamoorthy, Srilalan; LeGeyt, Benjamin; Werner, Matthew E.; Kaul, Madhuri; Newcomer, F. M.; Karp, Joel S.; Surti, Suleman
2014-01-01
This paper describes the design and performance of a high spatial resolution PET detector with time-of-flight capabilities. With an emphasis on high spatial resolution and sensitivity, we initially evaluated the performance of several 1.5 × 1.5 and 2.0 × 2.0 mm2 and 12–15 mm long LYSO crystals read out by several appropriately sized PMTs. Experiments to evaluate the impact of reflector on detector performance were performed and the final detector consisted of a 32 × 32 array of 1.5 × 1.5 × 15 mm3 LYSO crystals packed with a diffuse reflector and read out by a single Hamamatsu 64 channel multi-anode PMT. Such a design made it compact, modular and offered a cost-effective solution to obtaining excellent energy and timing resolution. To minimize the number of readout signals, a compact front-end readout electronics that summed anode signals along each of the orthogonal directions was also developed. Experimental evaluation of detector performance demonstrates clear discrimination of the crystals within the detector. An average energy resolution (FWHM) of 12.7 ± 2.6% and average coincidence timing resolution (FWHM) of 348 ps was measured, demonstrating suitability for use in the development of a high spatial resolution time-of-flight scanner for dedicated breast PET imaging. PMID:25246711
Laakso, A; Bergman, J; Haaparanta, M; Vilkman, H; Solin, O; Hietala, J
1998-03-01
We have characterized the usage of [18F]CFT (also known as [18F]WIN 35,428) as a radioligand for in vivo studies of human dopamine transporter by PET. CFT was labeled with 18F to a high specific activity, and dynamic PET scans were conducted in healthy volunteers at various time points up to 5 h from [18F]CFT injection. The regional distribution of [18F]CFT uptake correlated well with the known distribution of dopaminergic nerve terminals in the human brain and also with that of other dopamine transporter radioligands. Striatal binding peaked at 225 min after injection and declined thereafter, demonstrating the reversible nature of the binding to the dopamine transporter. Therefore, due to the relatively long half-life of 18F (109.8 min), PET scans with [18F]CFT could easily be conducted during the binding equilibrium, allowing estimation of Bmax/Kd values (i.e., binding potential). Binding potentials for putamen and caudate measured at equilibrium were 4.79+/-0.11 and 4.50+/-0.23, respectively. We were able to also visualize midbrain dopaminergic neurons (substantia nigra) with [18F]CFT in some subjects. In conclusion, the labeling of CFT with 18F allows PET scans to be conducted at binding equilibrium, and therefore a high signal-to-noise ratio and reliable quantification of binding potential can be achieved. With a high resolution 3D PET scanner, the quantification of extrastriatal dopamine transporters should become possible.
Mixture model based joint-MAP reconstruction of attenuation and activity maps in TOF-PET
NASA Astrophysics Data System (ADS)
Hemmati, H.; Kamali-Asl, A.; Ghafarian, P.; Ay, M. R.
2018-06-01
A challenge to have quantitative positron emission tomography (PET) images is to provide an accurate and patient-specific photon attenuation correction. In PET/MR scanners, the nature of MR signals and hardware limitations have led to a real challenge on the attenuation map extraction. Except for a constant factor, the activity and attenuation maps from emission data on TOF-PET system can be determined by the maximum likelihood reconstruction of attenuation and activity approach (MLAA) from emission data. The aim of the present study is to constrain the joint estimations of activity and attenuation approach for PET system using a mixture model prior based on the attenuation map histogram. This novel prior enforces non-negativity and its hyperparameters can be estimated using a mixture decomposition step from the current estimation of the attenuation map. The proposed method can also be helpful on the solving of scaling problem and is capable to assign the predefined regional attenuation coefficients with some degree of confidence to the attenuation map similar to segmentation-based attenuation correction approaches. The performance of the algorithm is studied with numerical and Monte Carlo simulations and a phantom experiment and was compared with MLAA algorithm with and without the smoothing prior. The results demonstrate that the proposed algorithm is capable of producing the cross-talk free activity and attenuation images from emission data. The proposed approach has potential to be a practical and competitive method for joint reconstruction of activity and attenuation maps from emission data on PET/MR and can be integrated on the other methods.
SU-F-I-58: Image Quality Comparisons of Different Motion Magnitudes and TR Values in MR-PET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patrick, J; Thompson, R; Tavallaei, M
2016-06-15
Purpose: The aim of this work is to evaluate the accuracy and sensitivity of a respiratory-triggered MR-PET protocol in detecting four different sized lesions at two different magnitudes of motion, with two different TR values, using a novel PET-MR-CT compatible respiratory motion phantom. Methods: The eight-compartment torso phantom was setup adjacent to the motion stage, which moved four spherical compartments (28, 22, 17, 10 mm diameter) in two separate (1 and 2 cm) linear motion profiles, simulating a 3.5 second respiratory cycle. Scans were acquired on a 3T MR-PET system (Biograph mMR; Siemens Medical Solutions, Germany). MR measurements were takenmore » with: 1) Respiratory-triggered T2-weighted turbo spin echo (BLADE) sequence in coronal orientation, and 2) Real-time balanced steady-state gradient echo sequence (TrueFISP) in coronal and sagittal planes. PET was acquired simultaneously with MR. Sphere geometries and motion profiles were measured and compared with ground truths for T2 BLADE-TSE acquisitions and real time TrueFISP images. PET quantification and geometry measurements were taken using standardized uptake values, voxel intensity plots and were compared with known values, and examined alongside MR-based attenuation maps. Contrast and signal-to-noise ratios were also compared for each of the acquisitions as functions of motion range and TR. Results: Comparison of lesion diameters indicate the respiratory triggered T2 BLADE-TSE was able to maintain geometry within −2 mm for 1 cm motion for both TR values, and within −3.1 mm for TR = 2000 ms at 2 cm motion. Sphere measurements in respiratory triggered PET images were accurate within +/− 5 mm for both ranges of motion for 28, 22, and 17 mm diameter spheres. Conclusion: Hybrid MR-PET systems show promise in imaging lung cancer in non-compliant patients, with their ability to acquire both modalities simultaneously. However, MR-based attenuation maps are still susceptible to motion derived artifacts and pose the potential to affect PET accuracy.« less
MO-G-17A-09: Quantitative Autoradiography of Biopsy Specimens Extracted Under PET/CT Guidance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fanchon, L; Carlin, S; Schmidtlein, C
2014-06-15
Purpose: To develop a procedure for accurate determination of PET tracer concentration with high spatial accuracy in situ by performing Quantitative Autoradiography of Biopsy Specimens (QABS) extracted under PET/CT guidance. Methods: Autoradiography (ARG) standards were produced from a gel loaded with a known concentration of FDG biopsied with 18G and 20G biopsy needles. Specimens obtained with these needles are generally cylindrical: up to 18 mm in length and about 0.8 and 0.6 mm in diameter respectively. These standards, with similar shape and density as biopsy specimens were used to generate ARG calibration curves.Quantitative ARG was performed to measure the activitymore » concentration in biopsy specimens extracted from ten patients. The biopsy sites were determined according to PET/CT's obtained in the operating room. Additional CT scans were acquired with the needles in place to confirm correct needle placements. The ARG images were aligned with the needle tip in the PET/CT images using the open source CERR software. The mean SUV calculated from the specimen activities (SUVarg) were compared to that from PET (SUVpet) at the needle locations. Results: Calibration curves show that the relation between ARG signal and activity concentration in those standards is linear for the investigated range (up to 150 kBq/ml). The correlation coefficient of SUVarg with SUVpet is 0.74. Discrepancies between SUVarg and SUVpet can be attributed to the small size of the biopsy specimens compared to PET resolution. Conclusion: The calibration procedure using surrogate biopsy specimens provided a method for quantifying the activity within the biopsy cores obtained under FDG-PET guidance. QABS allows mapping the activity concentration in such biopsy specimens with a resolution of about 1mm. QABS is a promising tool for verification of biopsy adequacy by comparing specimen activity to that expected from the PET image. A portion of this research was funded by a research grant from Biospace Lab, 13 rue Georges Auric 75019 Paris, FRANCE.« less
NASA Astrophysics Data System (ADS)
Kim, Ji Hye; Ahn, Il Jun; Nam, Woo Hyun; Ra, Jong Beom
2015-02-01
Positron emission tomography (PET) images usually suffer from a noticeable amount of statistical noise. In order to reduce this noise, a post-filtering process is usually adopted. However, the performance of this approach is limited because the denoising process is mostly performed on the basis of the Gaussian random noise. It has been reported that in a PET image reconstructed by the expectation-maximization (EM), the noise variance of each voxel depends on its mean value, unlike in the case of Gaussian noise. In addition, we observe that the variance also varies with the spatial sensitivity distribution in a PET system, which reflects both the solid angle determined by a given scanner geometry and the attenuation information of a scanned object. Thus, if a post-filtering process based on the Gaussian random noise is applied to PET images without consideration of the noise characteristics along with the spatial sensitivity distribution, the spatially variant non-Gaussian noise cannot be reduced effectively. In the proposed framework, to effectively reduce the noise in PET images reconstructed by the 3-D ordinary Poisson ordered subset EM (3-D OP-OSEM), we first denormalize an image according to the sensitivity of each voxel so that the voxel mean value can represent its statistical properties reliably. Based on our observation that each noisy denormalized voxel has a linear relationship between the mean and variance, we try to convert this non-Gaussian noise image to a Gaussian noise image. We then apply a block matching 4-D algorithm that is optimized for noise reduction of the Gaussian noise image, and reconvert and renormalize the result to obtain a final denoised image. Using simulated phantom data and clinical patient data, we demonstrate that the proposed framework can effectively suppress the noise over the whole region of a PET image while minimizing degradation of the image resolution.
Final Report 2007: DOE-FG02-87ER60561
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilbourn, Michael R
2007-04-26
This project involved a multi-faceted approach to the improvement of techniques used in Positron Emission Tomography (PET), from radiochemistry to image processing and data analysis. New methods for radiochemical syntheses were examined, new radiochemicals prepared for evaluation and eventual use in human PET studies, and new pre-clinical methods examined for validation of biochemical parameters in animal studies. The value of small animal PET imaging in measuring small changes of in vivo biochemistry was examined and directly compared to traditional tissue sampling techniques. In human imaging studies, the ability to perform single experimental sessions utilizing two overlapping injections of radiopharmaceuticals wasmore » tested, and it was shown that valid biochemical measures for both radiotracers can be obtained through careful pharmacokinetic modeling of the PET emission data. Finally, improvements in reconstruction algorithms for PET data from small animal PET scanners was realized and these have been implemented in commercial releases. Together, the project represented an integrated effort to improve and extend all basic science aspects of PET imaging at both the animal and human level.« less
Bridges, Robert L; Wiley, Chris R; Christian, John C; Strohm, Adam P
2007-06-01
Na(18)F, an early bone scintigraphy agent, is poised to reenter mainstream clinical imaging with the present generations of stand-alone PET and PET/CT hybrid scanners. (18)F PET scans promise improved imaging quality for both benign and malignant bone disease, with significantly improved sensitivity and specificity over conventional planar and SPECT bone scans. In this article, basic acquisition information will be presented along with examples of studies related to oncology, sports medicine, and general orthopedics. The use of image fusion of PET bone scans with CT and MRI will be demonstrated. The objectives of this article are to provide the reader with an understanding of the history of early bone scintigraphy in relation to Na(18)F scanning, a familiarity with basic imaging techniques for PET bone scanning, an appreciation of the extent of disease processes that can be imaged with PET bone scanning, an appreciation for the added value of multimodality image fusion with bone disease, and a recognition of the potential role PET bone scanning may play in clinical imaging.
TDC Array Tradeoffs in Current and Upcoming Digital SiPM Detectors for Time-of-Flight PET
NASA Astrophysics Data System (ADS)
Tétrault, Marc-André; Therrien, Audrey Corbeil; Lemaire, William; Fontaine, Réjean; Pratte, Jean-François
2017-03-01
Radiation detection used in positron emission tomography (PET) exploits the timing information to remove background noise and refine position measurement through time-of-flight information. Fine time resolution in the order of 10 ps full-width at half-maximum (FWHM) would not only improve contrast in the image, but would also enable direct image reconstruction without iterative or back-projected algorithms. Currently, PET experimental setups based on silicon photomultipliers (SiPMs) reach 73 ps FWHM, where the scintillation process plays the larger role in spreading the timing resolution. This will change with the optimization of faster light emission mechanisms (prompt photons), where readout optoelectronics will once more have a noticeable contribution to the timing resolution limit. In addition to reducing electronic jitter as much as possible, other aspects of the design space must also explored, especially for digital SiPMs. Unlike traditional SiPMs, digital SiPMs can integrate circuits like time-to-digital converters (TDCs) directly with individual or groups of light sensing cells. Designers should consider the number of TDCs to integrate, the area they occupy, their power consumption, their resolution, and the impact of signal processing algorithms and find a compromise with the figure of merit and the coincidence timing resolution (CTR). This paper presents a parametric simulation flow for digital SiPM microsystems that evaluates CTR based on these aspects and on the best linear unbiased estimator (BLUE) in order to guide their design for present and future PET systems. For a small 1.1 × 1.1 × 3.0 mm3 LYSO crystal, the simulations indicate that for a low jitter digital SiPM microsystem with 18.2% photon detection efficiency, fewer than four timestamps with any multi-TDC configuration scheme nearly obtain the optimal CTR with BLUE (just below 100 ps FWHM), but with limited 5% improvement over only using the first observed photon. On the other hand, if a similar crystal but with 2.5% prompt photon fraction is considered, BLUE provides an improvement between 80% and 200% (depending on electronic jitter) over using only the first observed photon. In this case, a few tens of timestamps are required, yielding very different design guidelines than for standard LYSO scintillators.
IMOTEPAD: A mixed-signal 64-channel front-end ASIC for small-animal PET imaging
NASA Astrophysics Data System (ADS)
Fang, Xiaochao; Ollivier-Henry, Nicolas; Gao, Wu; Hu-Guo, Christine; Colledani, Claude; Humbert, Bernard; Brasse, David; Hu, Yann
2011-04-01
This paper presents the design and characteristics of a mixed-signal 64-channel front-end readout ASIC called IMOTEPAD dedicated to multi-channel plate (MCP) photodetector coupled to LYSO scintillating crystals for small-animal PET imaging. In our configuration, the crystals are oriented in the axial direction readout on both sides by individual photodetector channels allowing the spatial resolution and the detection efficiency to be independent of each other. As a result, both energy signals and timing triggers from the photodetectors are required to be read out by the front-end ASIC. This dedicated ASIC IMOTEPAD comprises two parts: the analog part IMOTEPA and the digital part IMOTEPD. The IMOTEPA is dedicated to energy measurement. And the timing information is digitized by the IMOTEPD in which the key principal element is a time-to-digital converter (TDC) based on a delay-locked loop (DLL) with 32 delay cells. The chip is designed and fabricated in 0.35 μm CMOS process. The measurements show that for the analog part IMOTEPA, the energy gain is 13.1 mV/pC while the peak time of a CR-RC pulse shaper is 280 ns. The SNR is 39 dB and the RMS noise is 300 μV. The nonlinearity is less than 3%. The crosstalk is less than 0.2%. For the IMOTEPD, the bin size of the TDC is 625 ps with a reference clock of 50 MHz. The RMS jitter of the DLL is less than 42 ps. The DNL of the TDC is equal to about 0.17 LSB and the INL is equal to 0.31 LSB. The power dissipation of each channel is less than 16.8 mW. The design of the ASIC, especially for TDC and the measurement results of the IMOTEPAD will be presented and discussed in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nawrocki, J; Chino, J; Light, K
2014-06-01
Purpose: To compare PET extracted metrics and investigate the role of a gradient-based PET segmentation tool, PET Edge (MIM Software Inc., Cleveland, OH), in the context of an adaptive PET protocol for node positive gynecologic cancer patients. Methods: An IRB approved protocol enrolled women with gynecological, PET visible malignancies. A PET-CT was obtained for treatment planning prescribed to 45–50.4Gy with a 55– 70Gy boost to the PET positive nodes. An intra-treatment PET-CT was obtained between 30–36Gy, and all volumes re-contoured. Standard uptake values (SUVmax, SUVmean, SUVmedian) and GTV volumes were extracted from the clinician contoured GTVs on the pre- andmore » intra-treament PET-CT for primaries and nodes and compared with a two tailed Wilcoxon signed-rank test. The differences between primary and node GTV volumes contoured in the treatment planning system and those volumes generated using PET Edge were also investigated. Bland-Altman plots were used to describe significant differences between the two contouring methods. Results: Thirteen women were enrolled in this study. The median baseline/intra-treatment primary (SUVmax, mean, median) were (30.5, 9.09, 7.83)/( 16.6, 4.35, 3.74), and nodes were (20.1, 4.64, 3.93)/( 6.78, 3.13, 3.26). The p values were all < 0.001. The clinical contours were all larger than the PET Edge generated ones, with mean difference of +20.6 ml for primary, and +23.5 ml for nodes. The Bland-Altman revealed changes between clinician/PET Edge contours to be mostly within the margins of the coefficient of variability. However, there was a proportional trend, i.e. the larger the GTV, the larger the clinical contours as compared to PET Edge contours. Conclusion: Primary and node SUV values taken from the intratreament PET-CT can be used to assess the disease response and to design an adaptive plan. The PET Edge tool can streamline the contouring process and lead to smaller, less user-dependent contours.« less
A depth-of-interaction PET detector using mutual gain-equalized silicon photomultiplier
DOE Office of Scientific and Technical Information (OSTI.GOV)
W. Xi, A.G, Weisenberger, H. Dong, Brian Kross, S. Lee, J. McKisson, Carl Zorn
We developed a prototype high resolution, high efficiency depth-encoding detector for PET applications based on dual-ended readout of LYSO array with two silicon photomultipliers (SiPMs). Flood images, energy resolution, and depth-of-interaction (DOI) resolution were measured for a LYSO array - 0.7 mm in crystal pitch and 10 mm in thickness - with four unpolished parallel sides. Flood images were obtained such that individual crystal element in the array is resolved. The energy resolution of the entire array was measured to be 33%, while individual crystal pixel elements utilizing the signal from both sides ranged from 23.3% to 27%. By applyingmore » a mutual-gain equalization method, a DOI resolution of 2 mm for the crystal array was obtained in the experiments while simulations indicate {approx}1 mm DOI resolution could possibly be achieved. The experimental DOI resolution can be further improved by obtaining revised detector supporting electronics with better energy resolutions. This study provides a detailed detector calibration and DOI response characterization of the dual-ended readout SiPM-based PET detectors, which will be important in the design and calibration of a PET scanner in the future.« less
An enhanced approach for biomedical image restoration using image fusion techniques
NASA Astrophysics Data System (ADS)
Karam, Ghada Sabah; Abbas, Fatma Ismail; Abood, Ziad M.; Kadhim, Kadhim K.; Karam, Nada S.
2018-05-01
Biomedical image is generally noisy and little blur due to the physical mechanisms of the acquisition process, so one of the common degradations in biomedical image is their noise and poor contrast. The idea of biomedical image enhancement is to improve the quality of the image for early diagnosis. In this paper we are using Wavelet Transformation to remove the Gaussian noise from biomedical images: Positron Emission Tomography (PET) image and Radiography (Radio) image, in different color spaces (RGB, HSV, YCbCr), and we perform the fusion of the denoised images resulting from the above denoising techniques using add image method. Then some quantive performance metrics such as signal -to -noise ratio (SNR), peak signal-to-noise ratio (PSNR), and Mean Square Error (MSE), etc. are computed. Since this statistical measurement helps in the assessment of fidelity and image quality. The results showed that our approach can be applied of Image types of color spaces for biomedical images.
Mapp, Oni M.; Wanner, Sarah J.; Rohrschneider, Monica R.; Prince, Victoria E.
2011-01-01
The facial branchiomotor neurons undergo a characteristic tangential migration in the vertebrate hindbrain. Several signaling mechanisms have been implicated in this process, including the non-canonical Wnt/planar cell polarity (PCP) pathway. However, the role of this signaling pathway in controlling the dynamics of these neurons is unclear. Here, we describe the cellular dynamics of the facial neurons as they migrate, focusing on the speed and direction of migration, extension of protrusions, cell shape and orientation. Furthermore, we show that the PET/LIM domain protein Prickle1b (Pk1b) is required for several aspects of these migratory behaviors, including cell orientation. However, we find that centrosome localization is not significantly affected by disruption of Pk1b function, suggesting that polarization of the neurons is not completely lost. Together, our data suggest that Pk1b function may be required to integrate the multiple migratory cues received by the neurons into polarization instructions for proper posterior movement. PMID:20503357
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasciak, A; Kao, J
2014-06-15
Purpose The process of converting Yttrium-90 (Y90) PET/CT images into 3D absorbed dose maps will be explained. The simple methods presented will allow the medical physicst to analyze Y90 PET images following radioembolization and determine the absorbed dose to tumor, normal liver parenchyma and other areas of interest, without application of Monte-Carlo radiation transport or dose-point-kernel (DPK) convolution. Methods Absorbed dose can be computed from Y90 PET/CT images based on the premise that radioembolization is a permanent implant with a constant relative activity distribution after infusion. Many Y90 PET/CT publications have used DPK convolution to obtain 3D absorbed dose maps.more » However, this method requires specialized software limiting clinical utility. The Local Deposition method, an alternative to DPK convolution, can be used to obtain absorbed dose and requires no additional computer processing. Pixel values from regions of interest drawn on Y90 PET/CT images can be converted to absorbed dose (Gy) by multiplication with a scalar constant. Results There is evidence that suggests the Local Deposition method may actually be more accurate than DPK convolution and it has been successfully used in a recent Y90 PET/CT publication. We have analytically compared dose-volume-histograms (DVH) for phantom hot-spheres to determine the difference between the DPK and Local Deposition methods, as a function of PET scanner point-spread-function for Y90. We have found that for PET/CT systems with a FWHM greater than 3.0 mm when imaging Y90, the Local Deposition Method provides a more accurate representation of DVH, regardless of target size than DPK convolution. Conclusion Using the Local Deposition Method, post-radioembolization Y90 PET/CT images can be transformed into 3D absorbed dose maps of the liver. An interventional radiologist or a Medical Physicist can perform this transformation in a clinical setting, allowing for rapid prediction of treatment efficacy by comparison to published tumoricidal thresholds.« less
Optimization of oncological {sup 18}F-FDG PET/CT imaging based on a multiparameter analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menezes, Vinicius O., E-mail: vinicius@radtec.com.br; Machado, Marcos A. D.; Queiroz, Cleiton C.
2016-02-15
Purpose: This paper describes a method to achieve consistent clinical image quality in {sup 18}F-FDG scans accounting for patient habitus, dose regimen, image acquisition, and processing techniques. Methods: Oncological PET/CT scan data for 58 subjects were evaluated retrospectively to derive analytical curves that predict image quality. Patient noise equivalent count rate and coefficient of variation (CV) were used as metrics in their analysis. Optimized acquisition protocols were identified and prospectively applied to 179 subjects. Results: The adoption of different schemes for three body mass ranges (<60 kg, 60–90 kg, >90 kg) allows improved image quality with both point spread functionmore » and ordered-subsets expectation maximization-3D reconstruction methods. The application of this methodology showed that CV improved significantly (p < 0.0001) in clinical practice. Conclusions: Consistent oncological PET/CT image quality on a high-performance scanner was achieved from an analysis of the relations existing between dose regimen, patient habitus, acquisition, and processing techniques. The proposed methodology may be used by PET/CT centers to develop protocols to standardize PET/CT imaging procedures and achieve better patient management and cost-effective operations.« less
Quirce, R; Martínez-Rodríguez, I; Banzo, I; de Arcocha-Torres, M; Jiménez-Bonilla, J F; Martínez-Amador, N; Ibáñez-Bravo, S; Ramos, L; Amado, J A; Carril, J M
2015-01-01
Diabetes is a major frequent cause of atherosclerosis vascular disease. Arterial calcification in diabetic patients is responsible for peripheral vascular involvement. Molecular imaging using (18)F-sodium fluoride ((18)F-NaF) positron emission tomography (PET)/computed tomography (CT) has been recently proposed as a marker to study the in vivo mineralization process in the atheroma plaque. A 69-year-old man with a history of type 2 diabetes and no clinical evidence of peripheral arterial disease underwent an (18)F-NaF PET/CT scan. A linear, well-defined (18)F-NaF uptake was detected along the femoral arteries. In addition, the CT component of the PET/CT identified an unsuspected "tram-track" calcification in his femoral arteries, suggestive of medial calcification (Mönckeberg's sclerosis). In other vascular territories, focal (18)F-NaF uptake was also detected in carotid and aorta atheroma plaques. Molecular imaging with (18)F-NaF PET/CT might provide new functional information about the in vivo vascular calcification process in diabetic patients. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.