Science.gov

Sample records for petawatt laser-solid interactions

  1. Proton Beam Focusing and Heating in Petawatt Laser-Solid Interactions

    SciTech Connect

    Snavely, R A; Gu, P; King, J; Hey, D; Akli, K; Zhang, B B; Freeman, R; Hatchett, S; Key, M H; Koch, J; Langdon, A B; Lasinsky, B; MacKinnon, A; Patel, P; Town, R; Wilks, S; Stephens, R; Tsutsumi, T; Chen, Z; Yabuuchi, T; Kurahashi, T; Sato, T; Adumi, K; Toyama, Y; Zheng, J; Kodama, R; Tanaka, K A; Yamanaka, T

    2003-08-13

    It has recently been demonstrated that femtosecond-laser generated proton beams may be focused. These protons, following expansion of the Debye sheath, emit off the inner concave surface of hemispherical shell targets irradiated at their outer convex pole. The sheath normal expansion produces a rapidly converging proton beam. Such focused proton beams provide a new and powerful means to achieve isochoric heating to high temperatures. They are potentially important for measuring the equation of state of materials at high energy density and may provide an alternative route to fast ignition. We present the first results of proton focusing and heating experiments performed at the Petawatt power level at the Gekko XII Laser Facility at ILE Osaka Japan. Solid density Aluminum slabs are placed in the proton focal region at various lengths. The degree of proton focusing is measured via XUV imaging of Planckian emission of the heated zone. Simultaneous with the XUV measurement a streaked optical imaging technique, HISAK, gave temporal optical emission images of the focal region. Results indicate excellent coupling between the laser-proton conversion and subsequent heating.

  2. Micron-scale mapping of megagauss magnetic fields using optical polarimetry to probe hot electron transport in petawatt-class laser-solid interactions.

    PubMed

    Chatterjee, Gourab; Singh, Prashant Kumar; Robinson, A P L; Blackman, D; Booth, N; Culfa, O; Dance, R J; Gizzi, L A; Gray, R J; Green, J S; Koester, P; Kumar, G Ravindra; Labate, L; Lad, Amit D; Lancaster, K L; Pasley, J; Woolsey, N C; Rajeev, P P

    2017-08-21

    The transport of hot, relativistic electrons produced by the interaction of an intense petawatt laser pulse with a solid has garnered interest due to its potential application in the development of innovative x-ray sources and ion-acceleration schemes. We report on spatially and temporally resolved measurements of megagauss magnetic fields at the rear of a 50-μm thick plastic target, irradiated by a multi-picosecond petawatt laser pulse at an incident intensity of ~10(20) W/cm(2). The pump-probe polarimetric measurements with micron-scale spatial resolution reveal the dynamics of the magnetic fields generated by the hot electron distribution at the target rear. An annular magnetic field profile was observed ~5 ps after the interaction, indicating a relatively smooth hot electron distribution at the rear-side of the plastic target. This is contrary to previous time-integrated measurements, which infer that such targets will produce highly structured hot electron transport. We measured large-scale filamentation of the hot electron distribution at the target rear only at later time-scales of ~10 ps, resulting in a commensurate large-scale filamentation of the magnetic field profile. Three-dimensional hybrid simulations corroborate our experimental observations and demonstrate a beam-like hot electron transport at initial time-scales that may be attributed to the local resistivity profile at the target rear.

  3. High energy electrons, positrons and photonuclear reactions in petawatt laser-solid experiments

    SciTech Connect

    Cowan, T E; Hunt, A W; Johnson, J; Perry, M D; Fountain, W; Hatchett, S; Key, M H; Kuehl, T; Parnell, T; Pennington, D M; Phillips, T W; Roth, M; Takahashi, Y; Wilks, S C

    1999-09-09

    The Petawatt laser at LLNL has opened a new regime of high-energy laser-matter interactions in which the quiver motion of plasma electrons is fully relativistic with energies extending well above the threshold for nuclear processes. We have observed that, in addition to the large flux of several MeV electrons ponderomotively expelled from the ultra-intense laser focus, there is a high energy component of electrons extending to -100 MeV, apparently from relativistic self-focusing and plasma acceleration in the underdense pre-formed plasma. The generation of hard bremsstrahlung cascade as these electrons traverse the solid target material, and the resulting photo-nuclear reactions, nuclear fission, and positron-electron pair production are described.

  4. Dissipative Structures At Laser-Solid Interactions

    NASA Astrophysics Data System (ADS)

    Nanai, Laszlo

    1989-05-01

    The questions which are discussed in this lecture refer to one of sections of laser-solid interactions, namely: to formation of different dissipative structures on the surface of metals and semiconductors when they are irradiated by intensive laser light in chemically active media (f.e.air). Some particular examples of the development at different spatial and time instabilities, periodic and stochastic structures, auto-wave processes are present-ed using testing materials vanadium metal and semiconducting V205 single crystals and light sources: cw and pulsed CO2 and YAG lasers.

  5. HOT ELECTRON ENERGY DISTRIBUTIONS FROM ULTRA-INTENSE LASER SOLID INTERACTIONS

    SciTech Connect

    Chen, H; Wilks, S C; Kruer, W; Patel, P; Shepherd, R

    2008-10-08

    Measurements of electron energy distributions from ultra-intense (>10{sup 19} W/cm{sup 2}) laser-solid interactions using an electron spectrometer are presented. These measurements were performed on the Vulcan petawatt laser at Rutherford Appleton Laboratory and the Callisto laser at Lawrence Livermore National Laboratory. The effective hot electron temperatures (T{sub hot}) have been measured for laser intensities (I{lambda}{sup 2}) from 10{sup 18} W/cm{sup 2} {micro}m{sup 2} to 10{sup 21} W/cm{sup 2} {micro}m{sup 2} for the first time, and T{sub hot} is found to increase as (I{lambda}{sup 2}){sup 0.34} {+-} 0.4. This scaling agrees well with the empirical scaling published by Beg et al. (1997), and is explained by a simple physical model that gives good agreement with experimental results and particle-in-cell simulations.

  6. HOT ELECTRON ENERGY DISTRIBUTIONS FROM ULTRA-INTENSE LASER SOLID INTERACTIONS

    SciTech Connect

    Chen, H; Wilks, S C; Kruer, W L; Moon, S; Patel, N; Patel, P K; Shepherd, R; Snavely, R

    2005-12-08

    We present experimental data of electron energy distributions from ultra-intense (>10{sup 19} W/cm{sup 2}) laser-solid interactions using the Rutherford Appleton Laboratory Vulcan petawatt laser. These measurements were made using a CCD-based magnetic spectrometer. We present details on the distinct effective temperatures that were obtained for a wide variety of targets as a function of laser intensity. It is found that as the intensity increases from 10{sup 17} W/cm{sup 2} to 10{sup 19} W/cm{sup 2}, a 0.4 dependence on the laser intensity is found. Between 10{sup 19} W/cm{sup 2} and 10{sup 20} W/cm{sup 2}, a gradual rolling off of temperature with intensity is observed.

  7. Interaction physics of multipicosecond Petawatt laser pulses with overdense plasma.

    PubMed

    Kemp, A J; Divol, L

    2012-11-09

    We study the interaction of intense petawatt laser pulses with overdense plasma over several picoseconds, using two- and three-dimensional kinetic particle simulations. Sustained irradiation with non-diffraction-limited pulses at relativistic intensities yields conditions that differ qualitatively from what is experimentally available today. Nonlinear saturation of laser-driven density perturbations at the target surface causes recurrent emissions of plasma, which stabilize the surface and keep absorption continuously high. This dynamics leads to the acceleration of three distinct groups of electrons up to energies many times the laser ponderomotive potential. We discuss their energy distribution for applications like the fast-ignition approach to inertial confinement fusion.

  8. Low-emittance monoenergetic electron and ion beams from ultra-intense laser-solid interactions

    SciTech Connect

    Cowan, T E; Roth, M; Allen, M M; Johnson, J; Hatchett, S P; Le Sage, G P; Wilks, S C

    2000-03-03

    Recent experiments at the LLNL Petawatt Laser have demonstrated the generation of intense, high energy beams of electrons and ions from the interaction of ultra-intense laser light with solid targets. Focused laser intensities as high as 6 x 10{sup 20} W/cm{sup 2} are achieved, at which point the quiver energies of the target electrons extend to {approx}10 MeV. In this new, fully relativistic regime of laser-plasma interactions, nuclear processes become important and nuclear techniques are required to diagnose the high-energy particle production. In recent experiments we have observed electrons accelerated to 100 MeV, up to 60 MeV brehmsstrahlung generation, photo-nuclear fission and positron-electron pair creation. We also have observed monoenergetic jets of electrons having sufficiently small emittance to be interesting as a laser-accelerated beam, if the production mechanism could be understood and controlled. The huge flux of multi-MeV ponderomotively accelerated electrons produced in the laser-solid interaction is also observed to accelerate contaminant ions from the rear surface of the solid target up to 50 MeV. We describe spectroscopic measurements which reveal intense monoenergetic beam features in the proton energy spectrum. The total spectrum contains >10{sup 13} protons, while the monoenergetic beam pulses contain {approx}1 nC of protons, and exhibits a longitudinal and transverse emittance smaller than conventional RF proton accelerator beams.

  9. Understanding laser-solid interactions at ultra-high intensities

    NASA Astrophysics Data System (ADS)

    Murphy, C. D.; Gray, R. J.; Carroll, D. C.; MacLellan, D. A.; Powell, H.; Scott, G. G.; Ridgers, C. P.; Brady, C. S.; Neely, D.; Green, J. S.; Booth, N.; McKenna, P.

    2012-10-01

    The interaction of matter with lasers is a subject which has progressed rapidly over the last two decades as higher intensity lasers have opened the door to nonlinear and then relativistic interactions such that applications in ion acceleration and x-ray backlighting sources have become a clear possibility. Until recently, lasers capable of reaching the highest intensities (˜10^21 Wcm-2) have been glass-based systems with a low shot rate making detailed studies prohibitively time consuming. The development of petawatt-class Ti:Sapphire lasers such as Astra Gemini at STFC - Rutherford Appleton Laboratory, has made the systematic studies required to understand such interaction physics feasible. One such experiment on the Astra Gemini laser will be presented. The photon and particle diagnostics used will be explained and their results presented.

  10. A target inserter for the Vulcan Petawatt Laser interaction chamber

    NASA Astrophysics Data System (ADS)

    Heathcote, Robert; Clarke, Robert J.

    2016-09-01

    The ability to maximise the shot rate of large scale laser facilities is dependent on the turnaround time of the laser, diagnostics and targetry. In a move to improve the last of these, a combined target mount and carousel are being implemented on the Vulcan Petawatt facility. The Vulcan Petawatt interaction chamber currently operates with either a single target or with a target wheel; which has limited positions and varying degrees of subsequent target survivability. Whenever the target holder needs to be changed the chamber vacuum has to be cycled, delaying shots by up to an hour. The new carousel design is capable of holding 30 target assemblies at a safe distance from the interaction point, with each target capable of being dialed in to position on demand. This allows for a whole day's worth of shots with the flexibility to choose any target or reference object without having to break vacuum. Here we present the design, characterisation and implementation of this new target inserter.

  11. Gigagauss magnetic field generation from high intensity laser solid interactions

    SciTech Connect

    Cowan, T; Moran, M; Hammer, J; Hatchett, S; Hunt, A; Key, M H; Langdon, A B; Lasinski, B F; Pennington, D; Perry, M D; Sefcik, J A; Snavely, R; Trebes, J; Wilks, S C

    1998-10-15

    Intense laser (>1021 W/cm2 ) sources using pulse compression techniques in the sub-picosecond time frame have been used to create dynamic electric field strenghs in excess of 100 Megavolts/micron with associated magnetic field strengths in the Gigagauss regime. We have begun a series of experiments using the Petawatt Laser system at LLNL to determine the potential of these sources for a variety of applications. Hot electron spectra from laser-target interactions in Au have been measured with energies up to 100 MeV. Hot x-ray production has been measured using filtered thermoluminescent dosimeters and threshold nuclear activation ({gamma},n) from giant resonance interactions. High resolution radiographs through a {rho}r > 165 gm/cm² have been obtained. Dose levels in the x-ray band from 2-8 MeV have been measured at the level of several Rads at one meter from the target for a single pulse. The physics of these sources and the scaling relationships and laser technology required to provide high magnetic fields will be discussed. Results of preliminary magnetic field calculations will be presented along with potential applications of this technology and estimates of the fundamental scaling limits for future development.

  12. Review of laser-solid interaction and its possibilities for space propulsion

    NASA Technical Reports Server (NTRS)

    Harstad, K. G.

    1972-01-01

    Literature on laser-solid interaction is surveyed and the important regimes of this process are delineated. This information is used to discuss the possibility of a laser induced ablation thruster. It is concluded that such a thruster may be feasible if a sufficiently high intensity, high frequency laser beam is available and that further study of interaction is needed.

  13. Integrated Laser-Target Interaction Experiments on the RAL Petawatt Laser

    SciTech Connect

    Patel, P K; Key, M H; Mackinnon, A J; Berry, R; Borghesi, M; Chambers, D M; Chen, H; Clarke, R; Damian, C; Eagleton, R; Freeman, R; Glenzer, S; Gregori, G; Heathcote, R; Hey, D; Izumi, N; Kar, S; King, J; Nikroo, A; Niles, A; Park, H S; Pasley, J; Patel, N; Shepherd, R; Snavely, R A; Steinman, D; Stoeckl, C; Storm, M; Town, R; Van Maren, R; Theobald, W; Wilks, S C; Zhang, B

    2006-10-11

    Since the construction of the first Petawatt laser on the Nova laser facility at Lawrence Livermore National Laboratory we are witnessing the emergence of similar Petawatt-class laser systems at laboratories all around the world. This new generation of lasers, able to deliver several hundred joules of energy in a sub-picosecond pulse, has enabled a host of new discoveries to be made and continues to provide a valuable tool to explore new regimes in relativistic laser-plasma physics--encompassing high energy X-rays and -rays, relativistic electrons, intense ion beams, and superstrong magnetic fields. The coupling in the near-future of multi-kiloJoule Petawatt-class lasers with large-scale fusion lasers.including the NIF and Omega EP (US), LIL (France), and FIREX (Japan)--will further expand opportunities in fast ignition, high energy X-ray radiography, and high energy density physics research. The 500 J Petawatt laser at the Rutherford Appleton Laboratory is currently the highest energy short-pulse laser in the world. In this paper we describe a recent experimental campaign carried out on the facility. The campaign, performed by a large collaborative team from eight different laboratories, was designed to study a variety of relativistic laser-interaction phenomena including laser absorption, fast electron transport, proton heating, and high-brightness x-ray generation. The wide scope of the experiment necessitated the deployment of a very large set of diagnostics--in total twenty-five separate instruments. In order to obtain the most comprehensive set of measurements all twenty-five diagnostics were fielded simultaneously on every shot.

  14. High Harmonic Radiation Generation and Attosecond pulse generation from Intense Laser-Solid Interactions

    SciTech Connect

    Thomas, Alexander Roy; Krushelnick, Karl

    2016-09-08

    We have studied ion motion effects in high harmonic generation, including shifts to the harmonics which result in degradation of the attosecond pulse train, and how to mitigate them. We have examined the scaling with intensity of harmonic emission. We have also switched the geometry of the interaction to measure, for the first time, harmonics from a normal incidence interaction. This was performed by using a special parabolic reflector with an on axis hole and is to allow measurements of the attosecond pulses using standard techniques. Here is a summary of the findings: First high harmonic generation in laser-solid interactions at 1021 Wcm-2, demonstration of harmonic focusing, study of ion motion effects in high harmonic generation in laser-solid interactions, and demonstration of harmonic amplification.

  15. Surface electron acceleration in relativistic laser-solid interactions

    NASA Astrophysics Data System (ADS)

    Chen, Min; Sheng, Zheng-Ming; Zheng, Jun; Ma, Yan-Yun; Bari, Muhammad; Li, Yu-Tong; Zhang, Jie

    2006-04-01

    Under the grazing incidence of a relativistic intense laser pulse onto a solid target, two-dimensional particle-in-cell simulations show that intense quasistatic magnetic and electric fields are generated near the front target surface during the interaction. Some electrons are confined in these quasistatic fields and move along the target surface with betatron oscillations. When this oscillating frequency is close to the laser frequency in the particle frame, these electrons can be accelerated significantly in the reflected laser field, similar to the inverse free-electron-laser acceleration. An analytical model for this surface betatron acceleration is proposed.

  16. Modeling plasma plumes generated from laser solid interactions

    NASA Astrophysics Data System (ADS)

    Wilks, Scott C.; Higginson, D. P.; Link, A. J.; Park, H.-S.; Ping, Y.; Rinderknecht, H. G.; Ross, J. S.; Orban, C.; Hua, R.

    2016-10-01

    Laser pulses interacting with solid targets sitting in a vacuum form the basis for a large class of High Energy Density physics experiments. The resulting hydrodynamical evolution of the target during and after this interaction can be modeled using myriad techniques. These techniques range from pure particle-in-cell (PIC) to pure radiation-hydrodynamics, and include a large number of hybrid techniques in between. The particular method employed depends predominately on laser intensity. We compare and contrast several methods relevant for a large range of laser intensities (from Iλ2 1 ×1012W . μm2 /cm2 to Iλ2 1 ×1019W . μm2 /cm2) and energies (from E 100 mJ to E 100 kJ .) Density, temperature, and velocity profiles are benchmarked against recent experimental data. These experimental data include proton radiographs, time resolved x-ray images, and neutron yield and spectra. Methods to self-consistently handle backscatter and detailed energy deposition will also be discussed. LLNL-ABS-697767. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. Photon dose estimation from ultraintense laser-solid interactions and shielding calculation with Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Qiu, Rui; Li, JunLi; Lu, Wei; Wu, Zhen; Li, Chunyan

    2017-02-01

    When a strong laser beam irradiates a solid target, a hot plasma is produced and high-energy electrons are usually generated (the so-called "hot electrons"). These energetic electrons subsequently generate hard X-rays in the solid target through the Bremsstrahlung process. To date, only limited studies have been conducted on this laser-induced radiological protection issue. In this study, extensive literature reviews on the physics and properties of hot electrons have been conducted. On the basis of these information, the photon dose generated by the interaction between hot electrons and a solid target was simulated with the Monte Carlo code FLUKA. With some reasonable assumptions, the calculated dose can be regarded as the upper boundary of the experimental results over the laser intensity ranging from 1019 to 1021 W/cm2. Furthermore, an equation to estimate the photon dose generated from ultraintense laser-solid interactions based on the normalized laser intensity is derived. The shielding effects of common materials including concrete and lead were also studied for the laser-driven X-ray source. The dose transmission curves and tenth-value layers (TVLs) in concrete and lead were calculated through Monte Carlo simulations. These results could be used to perform a preliminary and fast radiation safety assessment for the X-rays generated from ultraintense laser-solid interactions.

  18. Investigation of time-resolved fast electron dynamics in ultra-intense laser-solid interactions

    NASA Astrophysics Data System (ADS)

    Green, James; Robinson, Alex; Rusby, Dean; Wilson, Lucy; Murphy, Chris; Dance, Rachel; Gray, Ross; MacLellan, David; McKenna, Paul; Ridgers, Chris

    2014-10-01

    The study of fast electron transport in laser-solid interactions is crucial for many key applications. Laser-accelerated particle beams will require compact laser systems operating at high repetition rates, hence experimental effort to characterise acceleration processes using femtosecond laser sources is crucial. A thorough understanding of fast-electron acceleration and transport underpins the development of most of these applications, necessitating both temporally and spatially-resolved measurements. Here an overview will be presented of unique fast electron transport results from the Astra Gemini laser (1021 Wcm-2, 40 fs). Using high resolution rear surface optical probing, together with complementary ion acceleration measurements, we have undertaken a study of the earliest stages of fast electron dynamics. How various target and laser parameters directly affected both the electron distribution and subsequent ion acceleration will be detailed, with computational modeling supporting the experimental observations.

  19. Mathematical modeling of two-photon thermal fields in laser-solid interaction

    NASA Astrophysics Data System (ADS)

    Oane, Mihai; Apostol, Dan

    2004-04-01

    In this paper, we have developed an analytical model to study the temperature distributions in IR optical materials heated by laser pulses. Our model takes into account the two-photon absorption (TPA). The calculations are based on a three-dimensional model of heat diffusion in solids using the integral transform method. We find out the rigorous analytical expression of the thermal field when one considers both one- and two-photon absorption. The model is valid for any laser-solid system whose interaction can be described by the generalized Beer-Lambert law. Specific results are presented for an application of the model to ZnSe sample. We find out that TPA can produce detectable temperature variation.

  20. Measuring fast electron spectra and laser absorption in relativistic laser-solid interactions using differential bremsstrahlung photon detectors.

    PubMed

    Scott, R H H; Clark, E L; Pérez, F; Streeter, M J V; Davies, J R; Schlenvoigt, H-P; Santos, J J; Hulin, S; Lancaster, K L; Baton, S D; Rose, S J; Norreys, P A

    2013-08-01

    A photon detector suitable for the measurement of bremsstrahlung spectra generated in relativistically intense laser-solid interactions is described. The Monte Carlo techniques used to extract the fast electron spectrum and laser energy absorbed into forward-going fast electrons are detailed. A relativistically intense laser-solid experiment using frequency doubled laser light is used to demonstrate the effective operation of the detector. The experimental data were interpreted using the 3-spatial-dimension Monte Carlo code MCNPX [D. Pelowitz, MCNPX User's Manual Version 2.6.0, Los Alamos National Laboratory, 2008], and the fast electron temperature found to be 125 keV.

  1. Hot electron production in laser solid interactions with a controlled pre-pulse

    SciTech Connect

    Culfa, O.; Tallents, G. J.; Wagenaars, E.; Ridgers, C. P.; Dance, R. J.; Rossall, A. K.; Woolsey, N. C.; Gray, R. J.; McKenna, P.; Brown, C. D. R.; James, S. F.; Hoarty, D. J.; Booth, N.; Robinson, A. P. L.; Lancaster, K. L.; Pikuz, S. A.; Faenov, A. Ya.; Kampfer, T.; Schulze, K. S.; Uschmann, I.

    2014-04-15

    Hot electron generation plays an important role in the fast ignition approach to inertial confinement fusion (ICF) and other applications with ultra-intense lasers. Hot electrons of temperature up to 10–20 MeV have been produced by high contrast picosecond duration laser pulses focussed to intensities of ∼10{sup 20} W cm{sup −2} with a deliberate pre-pulse on solid targets using the Vulcan Petawatt Laser facility. We present measurements of the number and temperature of hot electrons obtained using an electron spectrometer. The results are correlated to the density scale length of the plasma produced by a controlled pre-pulse measured using an optical probe diagnostic. 1D simulations predict electron temperature variations with plasma density scale length in agreement with the experiment at shorter plasma scale lengths (<7.5μm), but with the experimental temperatures (13–17 MeV) dropping below the simulation values (20–25 MeV) at longer scale lengths. The experimental results show that longer interaction plasmas produced by pre-pulses enable significantly greater number of hot electrons to be produced.

  2. X-ray and γ ray emission from a high intensity laser-solid interactions.

    NASA Astrophysics Data System (ADS)

    Beg, F. N.; Bell, A. R.; Dangor, A. E.; Fews, A. P.; Lee, P.; Norreys, P.; Tatarakis, M.

    1996-11-01

    We report measurement of x-rays and γ rays in the range 7 keV to 10 MeV produced in a high intensity (10^18--10^19 Wcm-2, 1 μm, 1 ps) laser-solid interactions. Targets of various Z materials were used including cryogenic deuterium. Eight filtered pin diodes and four scintillator/photomultipliers were used to get the spectral information of the emitted radiation. Measurements showed that the spectrum extended beyond 10 MeV. Our observations show that the x-rays and γ rays from higher Z-material are an order of magnitude higher than with the lower Z-material. Our data fits a two temperature spectrum (20 keV and 300 keV) for plastic targets consistent with the observations of K_α that show electron in the target with energies up to 200 keV and measurements of blow-off ions at the chamber wall. The energy converted to x-rays and γ rays will be presented. ^1 Blackett Laboratory, Imperial College, London SW6 2BZ, UK. ^2 Dept. of Physics, Univ. of Bristol, Royal Fort, Tyndall Ave., Bristol BS8 1TL, UK. ^3 Central Laser Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 OOX, UK.

  3. Petawatt laser absorption bounded

    PubMed Central

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-01-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials. PMID:24938656

  4. High-repetition rate relativistic electron beam generation from intense laser solid interactions

    NASA Astrophysics Data System (ADS)

    Batson, Thomas; Nees, John; Hou, Bixue; Thomas, A. G. R.; Krushelnick, Karl

    2015-05-01

    Relativistic electron beams have applications spanning materials science, medicine, and home- land security. Recent advances in short pulse laser technology have enabled the production of very high focused intensities at kHz rep rates. Consequently this has led to the generation of high ux sources of relativistic electrons- which is a necessary characteristic of these laser plasma sources for any potential application. In our experiments, through the generation of a plasma with the lambda cubed laser system at the University of Michigan (a 5 × 1018W=cm2, 500 Hz, Ti:Sapphire laser), we have measured electrons ejected from the surface of fused silica nd Cu targets having energies in excess of an MeV. The spectrum of these electrons was measured with respect to incident laser angle, prepulse timing, and focusing conditions. While taken at a high repetition rate, the pulse energy of the lambda cubed system was consistently on the order of 10 mJ. In order to predict scaling of the electron energy with laser pulse energy, simulations are underway which compare the spectrum generated with the lambda cubed system to the predicted spectrum generated on the petawatt scale HERCULES laser system at the University of Michigan.

  5. Measurement of the relaxation time of hot electrons in laser-solid interaction at relativistic laser intensities

    SciTech Connect

    Chen, H; Shepherd, R; Chung, H K; Dyer, G; Faenov, A; Fournier, K B; Hansen, S B; Hunter, J; Kemp, A; Pikuz, T; Ping, Y; Widmann, K; Wilks, S C; Beiersdorfer, P

    2006-08-22

    The authors have measured the relaxation time of hot electrons in short pulse laser-solid interactions using a picosecond time-resolved x-ray spectrometer and a time-integrated electron spectrometer. Employing laser intensities of 10{sup 17}, 10{sup 18}, and 10{sup 19} W/cm{sup 2}, they find increased laser coupling to hot electrons as the laser intensity becomes relativistic and thermalization of hot electrons at timescales on the order of 10 ps at all laser intensities. They propose a simple model based on collisional coupling and plasma expansion to describe the rapid relaxation of hot electrons. The agreement between the resulting K{sub {alpha}} time-history from this model with the experiments is best at highest laser intensity and less satisfactory at the two lower laser intensities.

  6. Energy coupling in short pulse laser solid interactions and its impact for space debris removal.

    PubMed

    Neely, David; Allott, Ric; Bingham, Bob; Collier, John; Greenhalgh, Justin; Michaelis, Max; Phillips, Jonathan; Phipps, Claude R; McKenna, Paul

    2014-11-01

    Significant advances have been made over the last decade to improve the performance, efficiency, and contrast of high peak and average power laser systems, driven by their use in a wide variety of fields, from the industrial to the scientific. As the contrast of the lasers has improved, interactions with contrasts of 1012 are now routinely undertaken. At such high contrasts, there is negligible preplasma formation and the ionized surface layer created by subpicosecond-duration pulses typically forms a highly reflective "plasma mirror" capable of reflecting between 70% and 90% of the incident energy. Although such interactions are of significant interest for applications such as harmonic source production and to enable the underlying physics to be studied, their low absorption can limit their usefulness for applications such as space debris removal.

  7. Understanding the Femtosecond Laser-Solid Interaction Near and Beyond the Material Damage Threshold

    DTIC Science & Technology

    2016-05-23

    intense interaction of a laser and metal target. The simulation technique is based on the particle-in-cell (PIC) method for simulating plasmas and...that the gratings patterns are generated by etching the fused silica substrate directly. After etching , the metal overcoating was optimized based...were able to reproduce the key features seen in the lab. We were able to identify surface plasma polariton excitation and follow the evolution of

  8. Effects of the plasma profiles on photon and pair production in ultrahigh intensity laser solid interaction

    SciTech Connect

    Tian, Y. X.; Jin, X. L. Yan, W. Z.; Li, J. Q.; Li, B.; Yu, J. Q.

    2015-12-15

    The model of photon and pair production in strong field quantum electrodynamics is implemented into our 1D3V particle-in-cell code with Monte Carlo algorithm. Using this code, the evolution of the particles in ultrahigh intensity laser (∼10{sup 23} W/cm{sup 2}) interaction with aluminum foil target is observed. Four different initial plasma profiles are considered in the simulations. The effects of initial plasma profiles on photon and pair production, energy spectra, and energy evolution are analyzed. The results imply that one can set an optimal initial plasma profile to obtain the desired photon distributions.

  9. Terahertz emission from two-plasmon-decay induced transient currents in laser-solid interactions

    SciTech Connect

    Liao, G.-Q.; Li, C.; Li, Y.-T. E-mail: zmsheng@sjtu.edu.cn; Wang, W.-M.; Mondal, S.; Hafez, H. A.; Fareed, M. A.; Ozaki, T.; Sheng, Z.-M. E-mail: zmsheng@sjtu.edu.cn; Zhang, J.

    2016-01-15

    We have studied the generation of terahertz (THz) radiation via the interaction of intense femtosecond laser pulses with solid targets at a small incidence angle. It is found that preplasma with a moderate density gradient can enhance the emission. We also observe saturation of the THz output with the driving laser energy. We find that THz emission is closely related to the 3/2 harmonics of the driving laser. Particle-in-cell simulations indicate that under the present experimental conditions, the THz emission could be attributed to the transient currents at the plasma-vacuum interface, mainly formed by the two-plasmon-decay instability.

  10. Weibel magnetic field competes with Biermann fields in laser-solid interactions

    NASA Astrophysics Data System (ADS)

    Shukla, Nitin; Schoeffler, Kevin; Vieira, Jorge; Fonseca, Ricardo; Silva, Luis

    2016-10-01

    Biermann battery induced magnetic fields caused by non-parallel density and temperature gradients, first investigated experimentally, continue to be measured in many current experiments. A detailed study of Biermann generated magnetic fields in collisionless systems has been carried out, showing that for large system sizes (L /de >= 100) , where de is the electron inertial length, the Weibel instability dominates as the major source of magnetic field. In this work, we demonstrate the possibility of experimentally generating this strong Weibel magnetic field. We model, using ab initio PIC simulations, the interaction of a short (ps) high intensity (a0 >= 1) laser pulse, with a target of sufficiently large gradient scale length, L. The expanding hot energetic electron population generated by the laser produces an anisotropy in the velocity distribution. This anisotropy provides the free energy that drives the Weibel instability that appears on the surfaces of the target and dominates over the Biermann battery field.

  11. Ultrahigh-current proton beams from short-pulse laser-solid interactions

    NASA Astrophysics Data System (ADS)

    Badziak, J.; Antici, P.; Fuchs, J.; Jabłowski, S.; Lancia, L.; Mancic, A.; Parys, P.; Rosiński, M.; Suchańska, R.; Szydłowski, A.; Wołowski, J.

    2008-05-01

    The results of studies of high-current proton beam generation from thin (1-3μm) solid targets irradiated by 0.35-ps laser pulse of intensity up to 2×1019 W/cm2 are reported. It is shown that the proton beams of multi-MA currents and multi-TA/cm2 current densities at the source can be produced when the laser-target interaction conditions approach the skin-layer ponderomotive acceleration requirements. The current and energy spectrum of protons remarkably depend on the target structure. In particular, using a double-layer Au/PS target (plastic covered by 0.1 - 0.2μm Au front layer) results in two-fold higher proton currents and higher proton energies than in the case of a plastic target.

  12. Fast electron beam measurements from relativistically intense, frequency-doubled laser-solid interactions

    NASA Astrophysics Data System (ADS)

    Scott, R. H. H.; Pérez, F.; Streeter, M. J. V.; Clark, E. L.; Davies, J. R.; Schlenvoigt, H.-P.; Santos, J. J.; Hulin, S.; Lancaster, K. L.; Dorchies, F.; Fourment, C.; Vauzour, B.; Soloviev, A. A.; Baton, S. D.; Rose, S. J.; Norreys, P. A.

    2013-09-01

    Experimental measurements of the fast electron beam created by the interaction of relativistically intense, frequency-doubled laser light with planar solid targets and its subsequent transport within the target are presented and compared with those of a similar experiment using the laser fundamental frequency. Using frequency-doubled laser light, the fast electron source size is significantly reduced, while evidence suggests the divergence angle may be reduced. Pyrometric measurements of the target rear surface temperature and the Cu Kα imager data indicate the laser to fast electron absorption fraction is reduced using frequency doubled laser light. Bremsstrahlung measurements indicate the fast electron temperature is 125 keV, while the laser energy absorbed into forward-going fast electrons was found to be 16 ± 4% for frequency doubled light at a mean laser intensity of 5 ± 3 × 1018 W cm-2.

  13. Proton beam generation by ultra-high intensity laser-solid interaction

    NASA Astrophysics Data System (ADS)

    Manclossi, M.; Guemnie-Tafo, A.; Batani, D.; Malka, V.; Fritzler, S.; Lefebvre, E.; D'Humieres, E.

    2005-10-01

    We report on some recent experimental results on proton production from ultra-intense laser pulse interaction with thin aluminium and plastic foil targets. These results were obtained at Laboratoire d'Optique Appliquee with the 100TW 'salle jaune' laser system, delivering 35 fs laser pulses at 0.8 mu m, reaching a maximum intensity on target of a few 10(19) W/cm(2). In such extreme interaction conditions, an intense and collimated relativistic electron current is injected from the plasma created on the laser focal spot into the cold interior of the target. Its transport through dense matter, ruled by both collisions and self-induced (electro-magnetic) field effects, is the driving mechanism for proton acceleration from the rear side of thin foils: when reaching and leaving the foil rear-side, the fast electrons create a large charge separation and a huge electrostatic field with a maximum value of few TV/m, capable of accelerating protons. A parametric study as a function of the laser driver and target parameters indicates an optimal value for target thickness, which strongly depends on the laser prepulse duration. In our experiments, we did irradiate targets of various materials (CH, Al, Au) changing the prepulse duration by using fast Pockels cells in the laser chain. CR-39 nuclear track detectors with Al filters of different thickness and a Thomson parabola were used to detect proton generation. The best results were obtained for 2 mu m Al targets, leading to the generation of proton energies with energies up to 12 MeV.

  14. A Novel Compact Electron Spectrometer for Hot Electron Measurement in Pulsed Laser Solid Interaction

    SciTech Connect

    Chen, H; Patel, P; Price, D F; Young, B K; Springer, P T; Berry, R; Booth, R; Bruns, C; Nelson, D

    2002-07-05

    Ultra-intense laser-matter interactions provide a unique source of temporally short, broad spectrum electrons, which may be utilized in many varied applications. One such, which we are pursuing, is as part of a novel diagnostic to trace magnetic field lines in a magnetically-confined fusion device. An essential aspect of this scheme is to have a detailed characterization of the electron angular and energy distribution. To this effect we designed and constructed a compact electron spectrometer that uses permanent magnets for electron energy dispersion and over 100 scintillating fibers coupled to a 1024 x 1024 pixel CCD as the detection system. This spectrometer has electron energy coverage from 10 keV to 2 MeV. We tested the spectrometer on a high intensity (10{sup 17} to 10{sup 21} W/cm{sup 2}) short pulse (< 100 fs) laser, JanUSP, at Lawrence Livermore National laboratory using various solid targets. The details of the spectrometer and the experimental results will be reported.

  15. Front versus rear side light-ion acceleration from high-intensity laser-solid interactions

    NASA Astrophysics Data System (ADS)

    Willingale, L.; Petrov, G. M.; Maksimchuk, A.; Davis, J.; Freeman, R. R.; Matsuoka, T.; Murphy, C. D.; Ovchinnikov, V. M.; Van Woerkom, L.; Krushelnick, K.

    2011-01-01

    The source of ions accelerated from high-intensity laser interactions with thin foil targets is investigated by coating a deuterated plastic layer either on the front, rear or both surfaces of thin foil targets. The originating surface of the deuterons is therefore known and this method is used to assess the relative source contributions and maximum energies using a Thomson parabola spectrometer to obtain high-resolution light-ion spectra. Under these experimental conditions, laser intensity of (0.5-2.5) × 1019 W cm-2, pulse duration of 400 fs and target thickness of 6-13 µm, deuterons originating from the front surface can gain comparable maximum energies as those from the rear surface and spectra from either side can deviate from Maxwellian. Two-dimensional particle-in-cell simulations model the acceleration and show that any presence of a proton rich contamination layer over the surface is detrimental to the deuteron acceleration from the rear surface, whereas it is likely to be less influential on the front side acceleration mechanism.

  16. The scaling of electron and positron generation in intense laser-solid interactions

    SciTech Connect

    Chen, Hui; Link, A.; Fiuza, F.; Hazi, A.; Heeter, R. F.; Kemp, A. J.; Kemp, G. E.; Nagel, S. R.; Park, J.; Tommasini, R.; Williams, G. J.; Sentoku, Y.; Audebert, P.; Hill, M.; Hobbs, L.; Kerr, S.; Meyerhofer, D. D.; Myatt, J.

    2015-05-15

    This paper presents experimental scalings of the electrons and positrons produced by intense laser-target interactions at relativistic laser intensities (10{sup 18}–10{sup 20} W cm{sup −2}). The data were acquired from three short-pulse laser facilities with laser energies ranging from 80 to 1500 J. We found a non-linear (≈E{sub L}{sup 2}) scaling of positron yield [Chen et al., Phys. Rev. Lett. 114, 215001 (2015)] and a linear scaling of electron yield with the laser energy. These scalings are explained by theoretical and numerical analyses. Positron acceleration by the target sheath field is confirmed by the positron energy spectrum, which has a pronounced peak at energies near the sheath potential, as determined by the observed maximum energies of accelerated protons. The parameters of laser-produced electron-positron jets are summarized together with the theoretical energy scaling. The measured energy-squared scaling of relativistic electron-positron jets indicates the possibility to create an astrophysically relevant experimental platform with such jets using multi-kilojoule high intensity lasers currently under construction.

  17. Brilliant petawatt gamma-ray pulse generation in quantum electrodynamic laser-plasma interaction

    PubMed Central

    Chang, H. X.; Qiao, B.; Huang, T. W.; Xu, Z.; Zhou, C. T.; Gu, Y. Q.; Yan, X. Q.; Zepf, M.; He, X. T.

    2017-01-01

    We show a new resonance acceleration scheme for generating ultradense relativistic electron bunches in helical motions and hence emitting brilliant vortical γ-ray pulses in the quantum electrodynamic (QED) regime of circularly-polarized (CP) laser-plasma interactions. Here the combined effects of the radiation reaction recoil force and the self-generated magnetic fields result in not only trapping of a great amount of electrons in laser-produced plasma channel, but also significant broadening of the resonance bandwidth between laser frequency and that of electron betatron oscillation in the channel, which eventually leads to formation of the ultradense electron bunch under resonant helical motion in CP laser fields. Three-dimensional PIC simulations show that a brilliant γ-ray pulse with unprecedented power of 6.7 PW and peak brightness of 1025 photons/s/mm2/mrad2/0.1% BW (at 15 MeV) is emitted at laser intensity of 1.9 × 1023 W/cm2. PMID:28338010

  18. Brilliant petawatt gamma-ray pulse generation in quantum electrodynamic laser-plasma interaction.

    PubMed

    Chang, H X; Qiao, B; Huang, T W; Xu, Z; Zhou, C T; Gu, Y Q; Yan, X Q; Zepf, M; He, X T

    2017-03-24

    We show a new resonance acceleration scheme for generating ultradense relativistic electron bunches in helical motions and hence emitting brilliant vortical γ-ray pulses in the quantum electrodynamic (QED) regime of circularly-polarized (CP) laser-plasma interactions. Here the combined effects of the radiation reaction recoil force and the self-generated magnetic fields result in not only trapping of a great amount of electrons in laser-produced plasma channel, but also significant broadening of the resonance bandwidth between laser frequency and that of electron betatron oscillation in the channel, which eventually leads to formation of the ultradense electron bunch under resonant helical motion in CP laser fields. Three-dimensional PIC simulations show that a brilliant γ-ray pulse with unprecedented power of 6.7 PW and peak brightness of 10(25) photons/s/mm(2)/mrad(2)/0.1% BW (at 15 MeV) is emitted at laser intensity of 1.9 × 10(23) W/cm(2).

  19. Brilliant petawatt gamma-ray pulse generation in quantum electrodynamic laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Chang, H. X.; Qiao, B.; Huang, T. W.; Xu, Z.; Zhou, C. T.; Gu, Y. Q.; Yan, X. Q.; Zepf, M.; He, X. T.

    2017-03-01

    We show a new resonance acceleration scheme for generating ultradense relativistic electron bunches in helical motions and hence emitting brilliant vortical γ-ray pulses in the quantum electrodynamic (QED) regime of circularly-polarized (CP) laser-plasma interactions. Here the combined effects of the radiation reaction recoil force and the self-generated magnetic fields result in not only trapping of a great amount of electrons in laser-produced plasma channel, but also significant broadening of the resonance bandwidth between laser frequency and that of electron betatron oscillation in the channel, which eventually leads to formation of the ultradense electron bunch under resonant helical motion in CP laser fields. Three-dimensional PIC simulations show that a brilliant γ-ray pulse with unprecedented power of 6.7 PW and peak brightness of 1025 photons/s/mm2/mrad2/0.1% BW (at 15 MeV) is emitted at laser intensity of 1.9 × 1023 W/cm2.

  20. The sources of super-high energetic electron at relativistic circularly-polarized laser-solid interactions in the presence of large scale pre-plasmas

    NASA Astrophysics Data System (ADS)

    Wu, D.; Krasheninnikov, S. I.; Luan, S. X.; Yu, W.

    2016-12-01

    The two stage electron acceleration model [Wu et al., Nucl. Fusion 57, 016007 (2017)] is extended to investigate the sources of super-hot electrons at intense circularly polarized (CP) laser solid interactions. It is found that in the presence of large scale pre-formed plasmas, super-high energetic electrons can be generated. For laser of intensity 1020 W /cm2 and pre-plasma of scale-length 10 μm , the cut-off energy of electrons by CP laser can be as high as 120 MeV compared with 100 MeV by linearly polarized laser. This unexpected acceleration can be also explained by the two-stage acceleration model. The envelop modulation of reflected CP laser is figured out, and a modified scaling law of the maximal-possible energy gain when including the modulation effect is obtained.

  1. The Texas Petawatt Laser

    NASA Astrophysics Data System (ADS)

    Martinez, Mikael; Gaul, Erhard; Ditmire, Todd; Douglas, Skyler; Gorski, Dan; Henderson, Watson; Blakeney, Joel; Hammond, Doug; Gerity, Michael; Caird, John; Erlandson, Al; Iovanovic, Igor; Ebbers, Chris; Molander, Bill

    2005-12-01

    We report on the design and construction of the Texas Petawatt Laser. This research facility will consist of two, synchronized laser systems that will be used for a wide variety of high intensity laser and high energy density science experiments. The first laser is a novel, high energy (200 J), short pulse (150 fs) petawatt-class laser that is based on hybrid, broadband optical parametric chirped pulse amplification (OPCPA) and mixed silicate and phosphate Nd:glass amplification. The second laser will provide 500 J at 527 nm (>1 kJ @1053 nm) with pulse widths selectable from 2-20 ns. Design and construction began in early 2003 and is scheduled to complete in 2007. In this report we will briefly discuss some of the important applications of this system, present the design of the laser and review some of the technology used to achieve pulse durations approaching 100 fs. Currently, the facility has been renovated for laser construction. The oscillator and stretcher are operational with the first stage of gain measured at 2×106. Output energies of 500μJ have been achieved with good near field image quality. Delivery has been taken for Nova components that will compose the main amplifier chain of the laser system.

  2. Production of high-current heavy ion jets at the short-wavelength subnanosecond laser-solid interaction

    NASA Astrophysics Data System (ADS)

    Badziak, J.; Kasperczuk, A.; Parys, P.; Pisarczyk, T.; Rosiński, M.; Ryć, L.; Wołowski, J.; Jabłoński, S.; Suchańska, R.; Krousky, E.; Láska, L.; Mašek, K.; Pfeifer, M.; Ullschmied, J.; Dareshwar, L. J.; Földes, I.; Torrisi, L.; Pisarczyk, P.

    2007-08-01

    Generation of ion fluxes at the interaction of 70J, 0.438μm subnanosecond laser pulse with a massive planar target has been investigated. It is shown that after proper optimization of high-Z (Cu or Ta) target irradiation, a highly collimated heavy ion jet of the ion current >100A and the ion current density >1A/cm2 at 1m from the target can be produced with an energy conversion efficiency nearly 10%.

  3. High-resolution multi-MeV x-ray radiography using relativistic laser-solid interaction

    SciTech Connect

    Courtois, C.; Compant La Fontaine, A.; Barbotin, M.; Bazzoli, S.; Brebion, D.; Bourgade, J. L.; Gazave, J.; Lagrange, J. M.; Landoas, O.; Le Dain, L.; Lefebvre, E.; Pichoff, N.; Edwards, R.; Aedy, C.; Biddle, L.; Drew, D.; Gardner, M.; Ramsay, M.; Simons, A.; Sircombe, N.

    2011-02-15

    When high intensity ({>=}10{sup 19} W cm{sup -2}) laser light interacts with matter, multi-MeV electrons are produced. These electrons can be utilized to generate a MeV bremsstrahlung x-ray emission spectrum as they propagate into a high-Z solid target positioned behind the interaction area. The short duration (<10 ps) and the small diameter (<500 {mu}m) of the x-ray pulse combined with the MeV x-ray spectrum offers an interesting alternative to conventional bremsstrahlung x-ray sources based on an electron accelerator used to radiograph dense, rapidly moving objects. In experiments at the Omega EP laser, a multi-MeV x-ray source is characterized consistently with number of independent diagnostics. An unfiltered x-ray dose of approximately 2 rad in air at 1 m and a source diameter of less than 350 {mu}m are inferred. Radiography of a complex and high area density (up to 61 g/cm{sup 2}) object is then performed with few hundred microns spatial resolution.

  4. Intense high repetition rate Mo Kα x-ray source generated from laser solid interaction for imaging application.

    PubMed

    Huang, K; Li, M H; Yan, W C; Guo, X; Li, D Z; Chen, Y P; Ma, Y; Zhao, J R; Li, Y F; Zhang, J; Chen, L M

    2014-11-01

    We report an efficient Mo Kα x-ray source produced by interaction of femtosecond Ti: sapphire laser pulses with a solid Molybdenum target working at 1 kHz repetition rate. The generated Mo Kα x-ray intensity reaches to 4.7 × 10(10) photons sr(-1) s(-1), corresponding to an average power of 0.8 mW into 2π solid angle. The spatial resolution of this x-ray source is measured to be 26 lp/mm. With the high flux and high spatial resolution characteristics, high resolving in-line x-ray radiography was realized on test objects and large size biological samples within merely half a minute. This experiment shows the possibility of laser plasma hard x-ray source as a new low cost and high resolution system for radiography and its ability of ultrafast x-ray pump-probe study of matter.

  5. Control of energy spread and dark current in proton and ion beams generated in high-contrast laser solid interactions.

    PubMed

    Dollar, F; Matsuoka, T; Petrov, G M; Thomas, A G R; Bulanov, S S; Chvykov, V; Davis, J; Kalinchenko, G; McGuffey, C; Willingale, L; Yanovsky, V; Maksimchuk, A; Krushelnick, K

    2011-08-05

    By using temporal pulse shaping of high-contrast, short pulse laser interactions with solid density targets at intensities of 2 × 10(21) W cm(-2) at a 45° incident angle, we show that it is possible to reproducibly generate quasimonoenergetic proton and ion energy spectra. The presence of a short pulse prepulse 33 ps prior to the main pulse produced proton spectra with an energy spread between 25% and 60% (ΔE/E) with energy of several MeV, with light ions becoming quasimonoenergetic for 50 nm targets. When the prepulse was removed, the energy spectra was broad. Numerical simulations suggest that expansion of the rear-side contaminant layer allowed for density conditions that prevented the protons from being screened from the sheath field, thus providing a low energy cutoff in the observed spectra normal to the target surface.

  6. Intense high repetition rate Mo Kα x-ray source generated from laser solid interaction for imaging application

    SciTech Connect

    Huang, K.; Li, M. H.; Yan, W. C.; Ma, Y.; Zhao, J. R.; Li, Y. F.; Chen, L. M.; Guo, X.; Li, D. Z.; Chen, Y. P.; Zhang, J.

    2014-11-15

    We report an efficient Mo Kα x-ray source produced by interaction of femtosecond Ti: sapphire laser pulses with a solid Molybdenum target working at 1 kHz repetition rate. The generated Mo Kα x-ray intensity reaches to 4.7 × 10{sup 10} photons sr{sup −1} s{sup −1}, corresponding to an average power of 0.8 mW into 2π solid angle. The spatial resolution of this x-ray source is measured to be 26 lp/mm. With the high flux and high spatial resolution characteristics, high resolving in-line x-ray radiography was realized on test objects and large size biological samples within merely half a minute. This experiment shows the possibility of laser plasma hard x-ray source as a new low cost and high resolution system for radiography and its ability of ultrafast x-ray pump-probe study of matter.

  7. Simulations of the interaction of intense petawatt laser pulses with dense Z-pinch plasmas : final report LDRD 39670.

    SciTech Connect

    Welch, Dale Robert; MacFarlane, Joseph John; Mehlhorn, Thomas Alan; Campbell, Robert B.

    2004-11-01

    We have studied the feasibility of using the 3D fully electromagnetic implicit hybrid particle code LSP (Large Scale Plasma) to study laser plasma interactions with dense, compressed plasmas like those created with Z, and which might be created with the planned ZR. We have determined that with the proper additional physics and numerical algorithms developed during the LDRD period, LSP was transformed into a unique platform for studying such interactions. Its uniqueness stems from its ability to consider realistic compressed densities and low initial target temperatures (if required), an ability that conventional PIC codes do not possess. Through several test cases, validations, and applications to next generation machines described in this report, we have established the suitability of the code to look at fast ignition issues for ZR, as well as other high-density laser plasma interaction problems relevant to the HEDP program at Sandia (e.g. backlighting).

  8. Time of Flight Measurements for Neutrons Produced in Reactions Driven by Laser-Target Interactions at Petawatt level

    NASA Astrophysics Data System (ADS)

    Kisyov, S.; Negoita, F.; Gugiu, M. M.; Higginson, D. P.; Vassura, L.; Borghesi, M.; Bernstein, L.; Bleuel, D. L.; Gobet, F.; Goldblum, B. L.; Green, A.; Hannachi, F.; Kar, S.; Petrascu, H.; Pietreanu, D.; Quentin, L.; Schroer, A.-M.; Tarisien, M.; Versteegen, M.; Willi, O.; Antici, P.; Fuchs, J.

    Short intense pulses of fast neutrons were produced in a two stage laser-driven experiment. Protons were accelerated by means of the Target Normal Sheath Acceleration (TNSA) method using the TITAN facility at the Lawrence Livermore National Laboratory. Neutrons were obtained following interactions of the protons with a secondary lithium fluoride (LiF) target. The properties of the neutron flux were studied using BC-400 plastic scintillation detectors and the neutron time of flight (nTOF) technique. The detector setup and the experimental conditions were simulated with the Geant4 toolkit. The effects of different components of the experimental setup on the nTOF were studied. Preliminary results from a comparison between experimental and simulated nTOF distributions are presented.

  9. Generation of Nonlinear Force Driven Blocks from Skin Layer Interaction of Petawatt-Picosecond Laser Pulses for ICF

    NASA Astrophysics Data System (ADS)

    Heinrich, Hora; Cang, Yu; He, Xiantu; Zhang, Jie; F, Osman; J, Badziak; F, P. Boody; S, Gammino; R, Höpfl; K, Jungwirth; B, Kralikova; J, Kraska; L, Laska; Liu, Hong; G, H. Miley; P, Parys; Peng, Hansheng; M, Pfeifer; K, Rohlena; J, Skala; Z, Skladanowski; L, Torrisi; J, Ullschmied; J, Wolowski; Zhang, Weiyan

    2004-02-01

    The discovery of the essential difference of maximum ion energy for TW - ps laser plasma interaction compared with the 100 ns laser pulses [1] led to the theory of a skin layer model [2] where the control of prepulses suppressed the usual relativistic self-focusing. The subsequent generation of two nonlinear force driven blocks has been demonstrated experimentally and in extensive numerical studies where one block moves against the laser light and the other block into the irradiated target. These blocks of nearly solid state density DT plasma correspond to ion beam current densities [3] exceeding 1010 A/cm2 where the ion velocity can be chosen up to highly relativistic values. Using the results of the expected ignition of DT fuel by light ion beams, a self-sustained fusion reaction front may be generated even into uncompressed solid DT fuel similar to the Nuckolls-Wood [4] scheme where 10 kJ laser pulses produce 100 MJ fusion energy. This new and simplified scheme of laser-ICF needs and optimisation of the involved parameters.

  10. Operation of target diagnostics in a petawatt laser environment (invited)

    SciTech Connect

    Stoeckl, C.; Glebov, V. Yu.; Jaanimagi, P. A.; Knauer, J. P.; Meyerhofer, D. D.; Sangster, T. C.; Storm, M.; Sublett, S.; Theobald, W.; Key, M. H.; MacKinnon, A. J.; Patel, P.; Neely, D.; Norreys, P. A.

    2006-10-15

    The operation of target diagnostics in a high-energy petawatt laser environment is made challenging by the large number of energetic electrons, hard x rays, and energetic particles produced in laser-target interactions. The charged particles and x rays from the target create secondary radiation and a large electromagnetic pulse (EMP) when they hit structures inside the target chamber. The primary particles create secondary particles and radiation that can create excessive background in sensitive detectors. The large EMP can impair or damage electronic equipment and detectors, especially inside the target chamber. Shielding and EMP mitigation strategies developed during experiments at the Rutherford Appleton Vulcan petawatt laser facility will be presented for a variety of detection systems, such as single-photon-counting x-ray charge-coupled device cameras, multiple diamond x-ray detectors, and scintillator-photomultiplier detectors. These strategies will be applied to the development of diagnostic systems for the OMEGA EP, high-energy petawatt laser facility, currently under construction at the Laboratory for Laser Energetics.

  11. Petawatt pulsed-power accelerator

    SciTech Connect

    Stygar, William A.; Cuneo, Michael E.; Headley, Daniel I.; Ives, Harry C.; Ives, legal representative; Berry Cottrell; Leeper, Ramon J.; Mazarakis, Michael G.; Olson, Craig L.; Porter, John L.; Wagoner; Tim C.

    2010-03-16

    A petawatt pulsed-power accelerator can be driven by various types of electrical-pulse generators, including conventional Marx generators and linear-transformer drivers. The pulsed-power accelerator can be configured to drive an electrical load from one- or two-sides. Various types of loads can be driven; for example, the accelerator can be used to drive a high-current z-pinch load. When driven by slow-pulse generators (e.g., conventional Marx generators), the accelerator comprises an oil section comprising at least one pulse-generator level having a plurality of pulse generators; a water section comprising a pulse-forming circuit for each pulse generator and a level of monolithic triplate radial-transmission-line impedance transformers, that have variable impedance profiles, for each pulse-generator level; and a vacuum section comprising triplate magnetically insulated transmission lines that feed an electrical load. When driven by LTD generators or other fast-pulse generators, the need for the pulse-forming circuits in the water section can be eliminated.

  12. Hot Electron Diagnostic in a Solid Laser Target by Buried K-Shell Fluorer Technique from Ultra-Intense (3x1020W/cm2,< 500 J) Laser-Plasma Interactions on the Petawatt Laser at LLNL

    SciTech Connect

    Yasuike, K.; Key, M.H.; Hatchett, S.P.; Snavely, R.A.

    2000-06-29

    Characterization of hot electron production (a conversion efficiency from laser energy into electrons) in ultra intense laser-solid target interaction, using 1.06 {micro}m laser light with an intensity of up to 3 x 10{sup 20}W cm{sup -2} and an on target laser energy of {le}500 J, has been done by observing K{sub {beta}} as well as K{sub {alpha}} emissions from a buried Mo layer in the targets, which are same structure as in the previous 100 TW experiments but done under less laser intensity and energy conditions ({le} 4 x 10{sup 19} Wcm{sup -2} and {le} 30 J). The conversion efficiency from the laser energy into the energy, carried by hot electrons, has been estimated to be {approx}50%, which are little bit higher than the previous less laser energy ({approx} 20 J) experiments, yet the x-ray emission spectra from the target has change drastically, i.e., gamma flash.

  13. The controllable electron-heating by external magnetic fields at relativistic laser-solid interactions in the presence of large scale pre-plasmas

    NASA Astrophysics Data System (ADS)

    Wu, D.; Luan, S. X.; Wang, J. W.; Yu, W.; Gong, J. X.; Cao, L. H.; Zheng, C. Y.; He, X. T.

    2017-06-01

    The two-stage electron acceleration/heating model (Wu et al 2017 Nucl. Fusion 57 016007 and Wu et al 2016 Phys. Plasmas 23 123116) is extended to the study of laser magnetized-plasmas interactions at relativistic intensities and in the presence of large-scale preformed plasmas. It is shown that the electron-heating efficiency is a controllable value by the external magnetic fields. Detailed studies indicate that for a right-hand circularly polarized laser, the electron heating efficiency depends on both strength and directions of external magnetic fields. The electron-heating is dramatically enhanced when the external magnetic field is of B\\equiv {ω }c/{ω }0> 1. When magnetic field is of negative direction, i.e. B< 0, it trends to suppress the electron heating. The underlining physics—the dependences of electron-heating on both the strength and directions of the external magnetic fields—is uncovered. With -∞ < B< 1, the electron-heating is explained by the synergetic effects by longitudinal charge separation electric field and the reflected ‘envelop-modulated’ CP laser. It is indicated that the ‘modulation depth’ of reflected CP laser is significantly determined by the external magnetic fields, which will in turn influence the efficiency of the electron-heating. While with B> 1, a laser front sharpening mechanism is identified at relativistic laser magnetized-plasmas interactions, which is responsible for the dramatical enhancement of electron-heating.

  14. Quasimonoenergetic Electron Beams with Relativistic Energies and Ultrashort Duration from Laser-Solid Interactions at 0.5 kHz

    SciTech Connect

    Mordovanakis, Aghapi G.; Easter, James; Hou Bixue; Nees, John; Krushelnick, Karl; Naumova, Natalia; Popov, Konstantin; Rozmus, Wojciech; Masson-Laborde, Paul-Edouard; Sokolov, Igor; Mourou, Gerard; Glazyrin, Igor V.; Bychenkov, Valery

    2009-12-04

    We investigate the production of electron beams from the interaction of relativistically-intense laser pulses with a solid-density SiO{sub 2} target in a regime where the laser pulse energy is approxmJ and the repetition rate approxkHz. The electron beam spatial distribution and spectrum were investigated as a function of the plasma scale length, which was varied by deliberately introducing a moderate-intensity prepulse. At the optimum scale length of lambda/2, the electrons are emitted in a collimated beam having a quasimonoenergetic distribution that peaked at approx0.8 MeV. A highly reproducible structure in the spatial distribution exhibits an evacuation of electrons along the laser specular direction and suggests that the electron beam duration is comparable to that of the laser pulse. Particle-in-cell simulations which are in good agreement with the experimental results offer insights on the acceleration mechanism by the laser field.

  15. Quasimonoenergetic electron beams with relativistic energies and ultrashort duration from laser-solid interactions at 0.5 kHz.

    PubMed

    Mordovanakis, Aghapi G; Easter, James; Naumova, Natalia; Popov, Konstantin; Masson-Laborde, Paul-Edouard; Hou, Bixue; Sokolov, Igor; Mourou, Gérard; Glazyrin, Igor V; Rozmus, Wojciech; Bychenkov, Valery; Nees, John; Krushelnick, Karl

    2009-12-04

    We investigate the production of electron beams from the interaction of relativistically-intense laser pulses with a solid-density SiO(2) target in a regime where the laser pulse energy is approximately mJ and the repetition rate approximately kHz. The electron beam spatial distribution and spectrum were investigated as a function of the plasma scale length, which was varied by deliberately introducing a moderate-intensity prepulse. At the optimum scale length of lambda/2, the electrons are emitted in a collimated beam having a quasimonoenergetic distribution that peaked at approximately 0.8 MeV. A highly reproducible structure in the spatial distribution exhibits an evacuation of electrons along the laser specular direction and suggests that the electron beam duration is comparable to that of the laser pulse. Particle-in-cell simulations which are in good agreement with the experimental results offer insights on the acceleration mechanism by the laser field.

  16. Plasma lenses for ultrashort multi-petawatt laser pulses

    SciTech Connect

    Palastro, J. P.; Gordon, D.; Hafizi, B.; Johnson, L. A.; Peñano, J.; Hubbard, R. F.; Helle, M.; Kaganovich, D.

    2015-12-15

    An ideal plasma lens can provide the focusing power of a small f-number, solid-state focusing optic at a fraction of the diameter. An ideal plasma lens, however, relies on a steady-state, linear laser pulse-plasma interaction. Ultrashort multi-petawatt (MPW) pulses possess broad bandwidths and extreme intensities, and, as a result, their interaction with the plasma lens is neither steady state nor linear. Here, we examine nonlinear and time-dependent modifications to plasma lens focusing, and show that these result in chromatic and phase aberrations and amplitude distortion. We find that a plasma lens can provide enhanced focusing for 30 fs pulses with peak power up to ∼1 PW. The performance degrades through the MPW regime, until finally a focusing penalty is incurred at ∼10 PW.

  17. Plasma lenses for ultrashort multi-petawatt laser pulses

    NASA Astrophysics Data System (ADS)

    Palastro, J. P.; Gordon, D.; Hafizi, B.; Johnson, L. A.; Peñano, J.; Hubbard, R. F.; Helle, M.; Kaganovich, D.

    2015-12-01

    An ideal plasma lens can provide the focusing power of a small f-number, solid-state focusing optic at a fraction of the diameter. An ideal plasma lens, however, relies on a steady-state, linear laser pulse-plasma interaction. Ultrashort multi-petawatt (MPW) pulses possess broad bandwidths and extreme intensities, and, as a result, their interaction with the plasma lens is neither steady state nor linear. Here, we examine nonlinear and time-dependent modifications to plasma lens focusing, and show that these result in chromatic and phase aberrations and amplitude distortion. We find that a plasma lens can provide enhanced focusing for 30 fs pulses with peak power up to ˜1 PW. The performance degrades through the MPW regime, until finally a focusing penalty is incurred at ˜10 PW.

  18. Probing the quantum vacuum with petawatt lasers

    NASA Astrophysics Data System (ADS)

    Hill, W. T., III; Roso, L.

    2017-07-01

    Due to the bosonic nature of the photon, increasing the peak intensity through a combination of raising the pulse energy and decreasing the pulse duration will pile up more and more photons within the same finite region of space. In the absence of material, this continues until the vacuum is stressed to the point of breakdown and virtual particles become real. The critical intensity where this occurs for electrons and positrons - the so-called Schwinger limit - is predicted to be ˜ 1029 W/cm2. At substantially lower intensities, however, nonlinear aspects of the quantum vacuum associated with polarization of the vacuum can be explored. These studies become viable at the petawatt level where 1023 W/cm2 and above can be reached. This is an era into which we are just embarking that will provide critical tests of QED and theories beyond the Standard Model of particle physics.

  19. Electromagnetic pulse generation within a petawatt laser target chamber

    SciTech Connect

    Mead, M.J.; Neely, D.; Gauoin, J.; Heathcote, R.; Patel, P.

    2004-10-01

    Recent work has been undertaken to characterize the electromagnatic pulse (EMP) generated by the high temperature high density plasma produced by a petawatt laser. This was to evaluate the susceptibility to malfunction and damage of equipment and diagnostics for the new Orion laser. EMP measurement were made using moebius loop antennas fitted inside the target chamber of the Vulcan petawatt laser at the Rutherford Appleton Laboratory. These show the EMP as a 63 MHz transient which decays from a peak magnetic field of around 4.3 A/m. A theoretical model presented assumes the EMP is produced by an impulse of 10{sup 12} electron emanating from the target, which charge the chamber wall causing it to ring at natural frequency. The theoretical model provides an estimate of the EMP measured in the Vulcan petawatt target chamber and will be used for the design of the Orion laser.

  20. High-Energy Petawatt Capability for the Omega Laser

    SciTech Connect

    Waxer, L.J.; Maywar, D.N.; Kelly, J.H.; Kessler, T.J.; Kruschwitz, B.E.; Loucks, S.J.; McCrory, R.L.; Meyerhofer, D.D.; Morse, S.F.B.; Stoeckl, C.; Zuegel, J.D.

    2005-07-25

    The 60-beam Omega laser system at the University of Rochester's Laboratory for Laser Energetics (LLE) has been a workhorse on the frontier of laser fusion and high-energy-density physics for more than a decade. LLE scientists are currently extending the performance of this unique, direct-drive laser system by adding high-energy petawatt capabilities.

  1. Optimization of the neutron yield in fusion plasmas produced by Coulomb explosions of deuterium clusters irradiated by a petawatt laser.

    PubMed

    Bang, W; Dyer, G; Quevedo, H J; Bernstein, A C; Gaul, E; Donovan, M; Ditmire, T

    2013-02-01

    The kinetic energy of hot (multi-keV) ions from the laser-driven Coulomb explosion of deuterium clusters and the resulting fusion yield in plasmas formed from these exploding clusters has been investigated under a variety of conditions using the Texas Petawatt laser. An optimum laser intensity was found for producing neutrons in these cluster fusion plasmas with corresponding average ion energies of 14 keV. The substantial volume (1-10 mm(3)) of the laser-cluster interaction produced by the petawatt peak power laser pulse led to a fusion yield of 1.6×10(7) neutrons in a single shot with a 120 J, 170 fs laser pulse. Possible effects of prepulses are discussed.

  2. Characteristics of high energy Kα and Bremsstrahlung sources generated by short pulse petawatt lasers

    NASA Astrophysics Data System (ADS)

    Park, H.-S.; Izumi, N.; Key, M. H.; Koch, J. A.; Landen, O. L.; Patel, P. K.; Phillips, T. W.; Zhang, B. B.

    2004-10-01

    We have measured the characteristics of high energy Kα sources created with the Vulcan Petawatt laser at RAL and the JanUSP laser at Lawrence Livermore National Laboratory. High energy x-ray backlighters will be essential for radiographing high energy-density experimental science targets for NIF projects especially to probe implosions and high areal density planar samples. Hard Kα x-ray photons are created through relativistic electron plasma interactions in the target material after irradiated by short pulse high intensity lasers. For our Vulcan experiment, we employed a CsI scintillator charge coupled device (CCD) camera for imaging and a CCD camera for single photon counting. We have directly measured the 22 keV Ag Kα source size using the RAL petawatt laser and performed knife-edge measurements of a 40 keV Sm Kα source using the JanUSP laser. The measured source sizes are both ˜60 μm full width half maximum. We have also measured the Ag Kα conversion efficiencies. At laser intensities of 1×1018 W/cm2 range, the conversion efficiency at 22 keV is ˜1×10-4.

  3. The Potential of Fast Ignition and Related Experiments with A Petawatt Laser Facility

    SciTech Connect

    Key, M.H.; Campbell, E.M.; Cowan, T.E.; Hatchett, S.P.; Henry, E.A.; Koch, J.A.; Langdon, A.B.; Lasinski, B.F.; MacKinnon, A.; Offenberger, A.A.; Pennington, D.M.; Perry, M. D.; Phillips, T.J.; Sangster, T.C.; Singh, M.S.; Snavely, R.A.; Stoyer, M.A.; Tsukamoto, M.; Wharton, K.B.; Wilks, S.C.

    2000-04-06

    A model of energy gain induced by fast ignition of thermonuclear burn in compressed deuterium-tritium fuel, is used to show the potential for 300x gain with a driver energy of 1 M J, if the National Ignition Facility (NIF) were to be adapted for fast ignition. The physics of fast ignition has been studied using a petawatt laser facility at the Lawrence Livermore National Laboratory. Laser plasma interaction in a preformed plasma on a solid target leads to relativistic self-focusing evidenced by x-ray images. Absorption of the laser radiation transfers energy to an intense source of relativistic electrons. Good conversion efficiency into a wide angular distribution is reported. Heating by the electrons in solid density CD{sub 2} produces 0.5 to 1/keV temperature, inferred from the D-D thermo-nuclear neutron yield.

  4. Shielding activation of petawatt laser facilities in Romania: a FLUKA preliminary evaluation.

    PubMed

    Florescu, Gabriela M; Duliu, O G

    2016-03-01

    The FLUKA 2011.2c code was used to evaluate the activity induced in the irradiation chamber walls by secondary charged particles emitted during the interaction of 1 petawatt laser beam with the targets. The results have shown that, even in the most conservative approaches, i.e. 300 and 100 MeV secondary electrons and protons, respectively, the maximum equivalent dose rate, at 1 cm in front of the chamber wall, 1 min after the end of irradiation, was of ∼23 nSv h(-1). Three minutes later, it falls at ∼60 pSv h(-1), negligible with respect to the environmental radiation background of 90-110 nSv h(-1), as reported for Romania.

  5. Hot electrons transverse refluxing in ultraintense laser-solid interactions.

    PubMed

    Buffechoux, S; Psikal, J; Nakatsutsumi, M; Romagnani, L; Andreev, A; Zeil, K; Amin, M; Antici, P; Burris-Mog, T; Compant-La-Fontaine, A; d'Humières, E; Fourmaux, S; Gaillard, S; Gobet, F; Hannachi, F; Kraft, S; Mancic, A; Plaisir, C; Sarri, G; Tarisien, M; Toncian, T; Schramm, U; Tampo, M; Audebert, P; Willi, O; Cowan, T E; Pépin, H; Tikhonchuk, V; Borghesi, M; Fuchs, J

    2010-07-02

    We have analyzed the coupling of ultraintense lasers (at ∼2×10{19}  W/cm{2}) with solid foils of limited transverse extent (∼10  s of μm) by monitoring the electrons and ions emitted from the target. We observe that reducing the target surface area allows electrons at the target surface to be reflected from the target edges during or shortly after the laser pulse. This transverse refluxing can maintain a hotter, denser and more homogeneous electron sheath around the target for a longer time. Consequently, when transverse refluxing takes places within the acceleration time of associated ions, we observe increased maximum proton energies (up to threefold), increased laser-to-ion conversion efficiency (up to a factor 30), and reduced divergence which bodes well for a number of applications.

  6. Relativistic Quasimonoenergetic Positron Jets from Intense Laser-Solid Interactions

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Wilks, S. C.; Meyerhofer, D. D.; Bonlie, J.; Chen, C. D.; Chen, S. N.; Courtois, C.; Elberson, L.; Gregori, G.; Kruer, W.; Landoas, O.; Mithen, J.; Myatt, J.; Murphy, C. D.; Nilson, P.; Price, D.; Schneider, M.; Shepherd, R.; Stoeckl, C.; Tabak, M.; Tommasini, R.; Beiersdorfer, P.

    2010-07-01

    Detailed angle and energy resolved measurements of positrons ejected from the back of a gold target that was irradiated with an intense picosecond duration laser pulse reveal that the positrons are ejected in a collimated relativistic jet. The laser-positron energy conversion efficiency is ˜2×10-4. The jets have ˜20 degree angular divergence and the energy distributions are quasimonoenergetic with energy of 4 to 20 MeV and a beam temperature of ˜1MeV. The sheath electric field on the surface of the target is shown to determine the positron energy. The positron angular and energy distribution is controlled by varying the sheath field, through the laser conditions and target geometry.

  7. Hot Electrons Transverse Refluxing in Ultraintense Laser-Solid Interactions

    SciTech Connect

    Buffechoux, S.; Psikal, J.; Nakatsutsumi, M.; Mancic, A.; Audebert, P.; Fuchs, J.; Romagnani, L.; Sarri, G.; Borghesi, M.; Andreev, A.; Zeil, K.; Burris-Mog, T.; Gaillard, S.; Kraft, S.; Schramm, U.; Cowan, T. E.; Amin, M.; Toncian, T.; Willi, O.; Antici, P.

    2010-07-02

    We have analyzed the coupling of ultraintense lasers (at {approx}2x10{sup 19} W/cm{sup 2}) with solid foils of limited transverse extent ({approx}10 s of {mu}m) by monitoring the electrons and ions emitted from the target. We observe that reducing the target surface area allows electrons at the target surface to be reflected from the target edges during or shortly after the laser pulse. This transverse refluxing can maintain a hotter, denser and more homogeneous electron sheath around the target for a longer time. Consequently, when transverse refluxing takes places within the acceleration time of associated ions, we observe increased maximum proton energies (up to threefold), increased laser-to-ion conversion efficiency (up to a factor 30), and reduced divergence which bodes well for a number of applications.

  8. Progress on Converting a NIF Quad to Eight, Petawatt Beams for Advanced Radiography

    SciTech Connect

    Crane, J K

    2009-10-19

    We are converting a quad of NIF beamlines into eight, short-pulse (1-50 ps), petawatt-class beams for advanced radiography and fast ignition experiments. This paper describes progress toward completing this project.

  9. Selective deuterium ion acceleration using the Vulcan petawatt laser

    NASA Astrophysics Data System (ADS)

    Krygier, A. G.; Morrison, J. T.; Kar, S.; Ahmed, H.; Alejo, A.; Clarke, R.; Fuchs, J.; Green, A.; Jung, D.; Kleinschmidt, A.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.; Freeman, R. R.

    2015-05-01

    We report on the successful demonstration of selective acceleration of deuterium ions by target-normal sheath acceleration (TNSA) with a high-energy petawatt laser. TNSA typically produces a multi-species ion beam that originates from the intrinsic hydrocarbon and water vapor contaminants on the target surface. Using the method first developed by Morrison et al. [Phys. Plasmas 19, 030707 (2012)], an ion beam with >99% deuterium ions and peak energy 14 MeV/nucleon is produced with a 200 J, 700 fs, > 10 20 W / cm 2 laser pulse by cryogenically freezing heavy water (D2O) vapor onto the rear surface of the target prior to the shot. Within the range of our detectors (0°-8.5°), we find laser-to-deuterium-ion energy conversion efficiency of 4.3% above 0.7 MeV/nucleon while a conservative estimate of the total beam gives a conversion efficiency of 9.4%.

  10. Multi-GeV Electron Generation Using Texas Petawatt Laser

    NASA Astrophysics Data System (ADS)

    Wang, X.; Du, D.; Yi, S. A.; Kalmykov, S.; D'avignon, E.; Fazel, N.; Zagdzaj, R.; Reed, S.; Dong, P.; Henderson, W.; Dyer, G.; Bernstein, A.; Gaul, E.; Martinez, M.; Shvets, G.; Ditmire, T.; Downer, M.

    2010-11-01

    We present simulation results and experimental setup for multi-GeV electron generation by a laser plasma wake field accelerator (LWFA) driven by the Texas Petawatt (TPW) laser. Simulations show that, in plasma of density ne = 2-4×1017 cm-3, the TPW laser pulse (1.1 PW, 170 fs) can self-guide over 5 Rayleigh ranges, while electrons self-injected into the LWFA can accelerate up to 7 GeV. Optical diagnostic methods employed to observe the laser beam self-guiding, electron trapping and plasma bubble formation and evolution are discussed. Electron beam diagnostics, including optical transition radiation (OTR) and electron gamma ray shower (EGS) generation, are discussed as well.

  11. Multilayer Dielectric Gratings for Petawatt-Class Laser Systems

    SciTech Connect

    Britten, J A; Molander, W; Komashko, A M; Barty, C P J

    2003-12-03

    Existing Petawatt class lasers today based on Nd:glass architectures operating at nominally 500 J, 0.5 ps use meter-scale aperture, gold-overcoated master photoresist gratings to compress the amplified chirped pulse. Many lasers operating in the >lkJ, >Ips regime are in the planning stages around the world. These will require multilayer dielectric diffraction gratings to handle larger peak powers than can be accommodated with gold gratings. Models of the electric field distribution in the solid material of these gratings suggest that high aspect-ratio structures used at high incidence angles will have better laser damage resistance. New tooling for transfer etching these submicron-grating patterns and for nondestructive critical-dimension measurement of these features on meter-scale substrates will be described.

  12. High average power, diode pumped petawatt laser systems: a new generation of lasers enabling precision science and commercial applications

    NASA Astrophysics Data System (ADS)

    Haefner, C. L.; Bayramian, A.; Betts, S.; Bopp, R.; Buck, S.; Cupal, J.; Drouin, M.; Erlandson, A.; Horáček, J.; Horner, J.; Jarboe, J.; Kasl, K.; Kim, D.; Koh, E.; Koubíková, L.; Maranville, W.; Marshall, C.; Mason, D.; Menapace, J.; Miller, P.; Mazurek, P.; Naylon, A.; Novák, J.; Peceli, D.; Rosso, P.; Schaffers, K.; Sistrunk, E.; Smith, D.; Spinka, T.; Stanley, J.; Steele, R.; Stolz, C.; Suratwala, T.; Telford, S.; Thoma, J.; VanBlarcom, D.; Weiss, J.; Wegner, P.

    2017-05-01

    Large laser systems that deliver optical pulses with peak powers exceeding one Petawatt (PW) have been constructed at dozens of research facilities worldwide and have fostered research in High-Energy-Density (HED) Science, High-Field and nonlinear physics [1]. Furthermore, the high intensities exceeding 1018W/cm2 allow for efficiently driving secondary sources that inherit some of the properties of the laser pulse, e.g. pulse duration, spatial and/or divergence characteristics. In the intervening decades since that first PW laser, single-shot proof-of-principle experiments have been successful in demonstrating new high-intensity laser-matter interactions and subsequent secondary particle and photon sources. These secondary sources include generation and acceleration of charged-particle (electron, proton, ion) and neutron beams, and x-ray and gamma-ray sources, generation of radioisotopes for positron emission tomography (PET), targeted cancer therapy, medical imaging, and the transmutation of radioactive waste [2, 3]. Each of these promising applications requires lasers with peak power of hundreds of terawatt (TW) to petawatt (PW) and with average power of tens to hundreds of kW to achieve the required secondary source flux.

  13. A dual-channel, curved-crystal spectrograph for petawatt laser, x-ray backlighter source studies.

    PubMed

    Theobald, W; Stoeckl, C; Jaanimagi, P A; Nilson, P M; Storm, M; Meyerhofer, D D; Sangster, T C; Hey, D; MacKinnon, A J; Park, H-S; Patel, P K; Shepherd, R; Snavely, R A; Key, M H; King, J A; Zhang, B; Stephens, R B; Akli, K U; Highbarger, K; Daskalova, R L; Van Woerkom, L; Freeman, R R; Green, J S; Gregori, G; Lancaster, K; Norreys, P A

    2009-08-01

    A dual-channel, curved-crystal spectrograph was designed to measure time-integrated x-ray spectra in the approximately 1.5 to 2 keV range (6.2-8.2 A wavelength) from small-mass, thin-foil targets irradiated by the VULCAN petawatt laser focused up to 4x10(20) W/cm(2). The spectrograph consists of two cylindrically curved potassium-acid-phthalate crystals bent in the meridional plane to increase the spectral range by a factor of approximately 10 compared to a flat crystal. The device acquires single-shot x-ray spectra with good signal-to-background ratios in the hard x-ray background environment of petawatt laser-plasma interactions. The peak spectral energies of the aluminum He(alpha) and Ly(alpha) resonance lines were approximately 1.8 and approximately 1.0 mJ/eV sr (approximately 0.4 and 0.25 J/A sr), respectively, for 220 J, 10 ps laser irradiation.

  14. A Dual-Channel, Curved-Crystal Spectrograph for Petawatt Laser, X-Ray Backlighter Source Studies

    SciTech Connect

    Theobald, W.; Stoeckl, C.; Jaanimagi, P.A.; Nilson, P.M.; Storm, M.; Meyerhofer, D.D.; Sangster, T.C.; Hey, D.; MacKinnon, A.J.; Park, H.-S.; Patel, P.K.; Shepherd, R.; Snavely, R.A.; Key, M.H.; King, J.A.; Zhang, B.; Stephens, R.B.; Akli, K.U.; Highbarger, K.; Daskalova, R.L.; VanWoerkom, L.; Freeman, R.R.; Green, J.S.; Gregori, G.; Lancaster, K.; Norreys, P.A.

    2009-08-19

    A dual-channel, curved-crystal spectrograph was designed to measure time-integrated x-ray spectra in the ~1.5 to 2 keV range (6.2–8.2 Å wavelength) from small-mass, thin-foil targets irradiated by the VULCAN petawatt laser focused up to 4 x 10^20 W/cm^2. The spectrograph consists of two cylindrically curved potassium-acid-phthalate crystals bent in the meridional plane to increase the spectral range by a factor of ~10 compared to a flat crystal. The device acquires single-shot x-ray spectra with good signal-to-background ratios in the hard x-ray background environment of petawatt laser-plasma interactions. The peak spectral energies of the aluminum He-alpha and Ly-alpha resonance lines were ~1.8 and ~1.0 mJ/eV sr (~0.4 and 0.25 J/Å sr), respectively, for 220 J, 10 ps laser irradiation.

  15. A dual-channel, curved-crystal spectrograph for petawatt laser, x-ray backlighter source studies

    SciTech Connect

    Theobald, W.; Stoeckl, C.; Jaanimagi, P. A.; Nilson, P. M.; Storm, M.; Meyerhofer, D. D.; Sangster, T. C.; Hey, D.; MacKinnon, A. J.; Park, H.-S.; Patel, P. K.; Shepherd, R.; Snavely, R. A.; Key, M. H.; King, J. A.; Zhang, B.; Stephens, R. B.; Akli, K. U.; Highbarger, K.; Daskalova, R. L.; and others

    2009-08-15

    A dual-channel, curved-crystal spectrograph was designed to measure time-integrated x-ray spectra in the {approx}1.5 to 2 keV range (6.2-8.2 A wavelength) from small-mass, thin-foil targets irradiated by the VULCAN petawatt laser focused up to 4x10{sup 20} W/cm{sup 2}. The spectrograph consists of two cylindrically curved potassium-acid-phthalate crystals bent in the meridional plane to increase the spectral range by a factor of {approx}10 compared to a flat crystal. The device acquires single-shot x-ray spectra with good signal-to-background ratios in the hard x-ray background environment of petawatt laser-plasma interactions. The peak spectral energies of the aluminum He{sub {alpha}} and Ly{sub {alpha}} resonance lines were {approx}1.8 and {approx}1.0 mJ/eV sr ({approx}0.4 and 0.25 J/A sr), respectively, for 220 J, 10 ps laser irradiation.

  16. Estimation of laser solid forming process based on temperature measurement

    NASA Astrophysics Data System (ADS)

    Tan, Hua; Chen, Jing; Zhang, Fengying; Lin, Xin; Huang, Weidong

    2010-02-01

    By using a moving disc heat source model, an analytical model was developed to describe laser solid forming (LSF) process with the feedback of the surface temperature of the molten pool, which can be used to estimate the geometric characterizations (width and height) of the clad layer rapidly. An on-line temperature measurement system was established and some single-pass cladding experiments were conducted while the molten pool temperature was monitored. It was found that the estimated geometric characterizations agreed well with the experimental results. In addition, the power consumed by conduction, convection, radiation, evaporation and absorption during LSF were also estimated by the model. It was shown that the majority of the total absorbed power was conducted to the substrate. The effective model can not only be used to optimize the processing parameters but also potentially applied to the real-time feedback control.

  17. Investigation of Super-Ponderomotive Electron Generation Using the Texas Petawatt Laser

    NASA Astrophysics Data System (ADS)

    Peebles, J.; Zhang, S.; McGuffey, C.; Wei, M. S.; Mariscal, D.; McLean, H. S.; Chen, H.; McCary, E.; Wagner, C.; Spinks, M.; Hegelich, B. M.; Gaul, E.; Dyer, G.; Martinez, M.; Donovan, M.; Ditmire, T.; Krasheninnikov, S.; Beg, F.

    2016-10-01

    Relativistic laser plasma interactions (LPI) in conjunction with an underdense pre-plasma have been shown to generate extremely high energy ``super-ponderomotive'' electrons. We conducted an experiment at the Texas Petawatt Laser Facility with recent pre-pulse cleaning upgrades in order to better understand the conditions required to generate such high energy electrons. We created the pre-plasma by introducing a controlled injected pre-pulse via a secondary beam prior to the main high intensity (I >1020 W/cm 2) beam's arrival. The pulse length of the main beam was varied from 150 - 600 fs. The experimental data demonstrated that super-ponderomotive electrons require a pulse of at least 450 fs to be generated. Such interactions generated electrons with energies greatly exceeded 150 MeV, which also corresponded to an unexpected drop in lower energy electron count. We present these experimental findings along with subsequent 1 and 2D PIC simulations examining the results. This work performed under the auspices of the US DOE Office of Sciences Program under contracts DE-NA0001858.

  18. Improved pulse contrast on the Texas Petawatt Laser

    NASA Astrophysics Data System (ADS)

    Gaul, E.; Toncian, T.; Martinez, M.; Gordon, J.; Spinks, M.; Dyer, G.; Truong, N.; Wagner, C.; Tiwari, G.; Donovan, M. E.; Ditmire, T.; Hegelich, B. M.

    2016-05-01

    We have completed a pulse contrast upgrade on the Texas Petawatt Laser. This improvement enables the use of thin and reduced mass targets for ion acceleration, and reduces pre-plasma effects on all experiments. The new design starts with two BBO-based OPCPA stages pumped by an optically synchronized 8-ps laser. These stages amplify slightly chirped few ps pulses by six orders of magnitude. Next there are two LBO-based OPCPA stages that are pumped by 4 ns pulses. With much less gain than before, parametric fluorescence has been reduced by about three orders of magnitude. Prior to the upgrade, lenses caused pencil beam prepulses. Since tilting or wedging lenses was not a viable option, we replaced all lenses in the glass amplifiers with off-axis parabolic mirrors. There are still weak prepulses that we attribute to surface scattering. We eliminated thin transmissive optics to avoid post pulses that would result in prepulses by nonlinear (B-integral) conversion. This required us to reduce from eight to four passes in the 64-mm glass amplifier and to add a two-pass 25-mm “booster amplifier.” As a final upgrade we added an Acousto-Optic Programmable Dispersive-Filter (AOPDF) to improve higher order dispersion and steepen the rising edge of the compressed pulse.

  19. Selective deuterium ion acceleration using the Vulcan petawatt laser

    SciTech Connect

    Krygier, A. G.; Morrison, J. T.; Kar, S. Ahmed, H.; Alejo, A.; Green, A.; Jung, D.; Clarke, R.; Notley, M.; Fuchs, J.; Vassura, L.; Kleinschmidt, A.; Roth, M.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Oliver, M.; Zepf, M.; Borghesi, M.; Freeman, R. R.

    2015-05-15

    We report on the successful demonstration of selective acceleration of deuterium ions by target-normal sheath acceleration (TNSA) with a high-energy petawatt laser. TNSA typically produces a multi-species ion beam that originates from the intrinsic hydrocarbon and water vapor contaminants on the target surface. Using the method first developed by Morrison et al. [Phys. Plasmas 19, 030707 (2012)], an ion beam with >99% deuterium ions and peak energy 14 MeV/nucleon is produced with a 200 J, 700 fs, >10{sup 20}W/cm{sup 2} laser pulse by cryogenically freezing heavy water (D{sub 2}O) vapor onto the rear surface of the target prior to the shot. Within the range of our detectors (0°–8.5°), we find laser-to-deuterium-ion energy conversion efficiency of 4.3% above 0.7 MeV/nucleon while a conservative estimate of the total beam gives a conversion efficiency of 9.4%.

  20. Z-petawatt driven ion beam radiography development.

    SciTech Connect

    Schollmeier, Marius; Geissel, Matthias; Rambo, Patrick K.; Schwarz, Jens; Sefkow, Adam B.

    2013-09-01

    Laser-driven proton radiography provides electromagnetic field mapping with high spatiotemporal resolution, and has been applied to many laser-driven High Energy Density Physics (HEDP) experiments. Our report addresses key questions about the feasibility of ion radiography at the Z-Accelerator (%E2%80%9CZ%E2%80%9D), concerning laser configuration, hardware, and radiation background. Charged particle tracking revealed that radiography at Z requires GeV scale protons, which is out of reach for existing and near-future laser systems. However, it might be possible to perform proton deflectometry to detect magnetic flux compression in the fringe field region of a magnetized liner inertial fusion experiment. Experiments with the Z-Petawatt laser to enhance proton yield and energy showed an unexpected scaling with target thickness. Full-scale, 3D radiation-hydrodynamics simulations, coupled to fully explicit and kinetic 2D particle-in-cell simulations running for over 10 ps, explain the scaling by a complex interplay of laser prepulse, preplasma, and ps-scale temporal rising edge of the laser.

  1. Ultra-intense Pair Creation using the Texas Petawatt Laser and Applications

    NASA Astrophysics Data System (ADS)

    Liang, Edison; Henderson, Alexander; Clarke, Taylor; Lo, Willie; Chaguine, Petr; Dyer, Gilliss; Riley, Nathan; Serratto, Kristina; Donovan, Michael; Ditmire, Todd

    2014-10-01

    Pair plasmas and intense gamma-ray sources are ubiquitous in the high-energy universe, from pulser winds to gamma-ray bursts (GRB). Their study can be greatly enhanced if such sources can be recreated in the laboratory under controlled conditions. In 2012 and 2013, a joint Rice-University of Texas team performed over 130 laser shots on thick gold and platinum targets using the 100 Joule Texas Petawatt Laser in Austin. The laser intensity of many shots exceeded 1021 W.cm-2 with pulses as short as 130 fs. These experiments probe a new extreme regime of ultra-intense laser - high-Z solid target interactions never achieved before. In addition to creating copious pairs with the highest density (>1015/cc) and emergent e +/e- ratio exceeding 20% in many shots, these experiments also created the highest density multi-MeV gamma-rays, comparable in absolute numbers to those found inside a gamma-ray burst (GRB). Potential applications of such intense pair and gamma-ray sources to laboratory astrophysics and innovative technologies will be discussed. Work supported by DOE HEDLP program.

  2. Calibration of the neutron detectors for the cluster fusion experiment on the Texas Petawatt Laser

    SciTech Connect

    Bang, W.; Quevedo, H. J.; Dyer, G.; Rougk, J.; Kim, I.; McCormick, M.; Bernstein, A. C.; Ditmire, T.

    2012-06-15

    Three types of neutron detectors (plastic scintillation detectors, indium activation detectors, and CR-39 track detectors) were calibrated for the measurement of 2.45 MeV DD fusion neutron yields from the deuterium cluster fusion experiment on the Texas Petawatt Laser. A Cf-252 neutron source and 2.45 MeV fusion neutrons generated from laser-cluster interaction were used as neutron sources. The scintillation detectors were calibrated such that they can detect up to 10{sup 8} DD fusion neutrons per shot in current mode under high electromagnetic pulse environments. Indium activation detectors successfully measured neutron yields as low as 10{sup 4} per shot and up to 10{sup 11} neutrons. The use of a Cf-252 neutron source allowed cross calibration of CR-39 and indium activation detectors at high neutron yields ({approx}10{sup 11}). The CR-39 detectors provided consistent measurements of the total neutron yield of Cf-252 when a modified detection efficiency of 4.6 Multiplication-Sign 10{sup -4} was used. The combined use of all three detectors allowed for a detection range of 10{sup 4} to 10{sup 11} neutrons per shot.

  3. Characteristics of High Energy Ka and Bremsstrahlung Sources Generated by Short Pulse Petawatt Lasers

    SciTech Connect

    Park, H; Izumi, N; Key, M H; Koch, J A; Landen, O L; Patel, P K; Phillips, T W; Zhang, B B

    2004-04-13

    We have measured the characteristics of high energy K{alpha} sources created with the Vulcan Petawatt laser at RAL and the JanUSP laser at LLNL. High energy x-ray backlighters will be essential for radiographing High-Energy-Density Experimental Science (HEDES) targets for NIF projects especially to probe implosions and high areal density planar samples. Hard K{alpha} x-ray photons are created through relativistic electron plasma interactions in the target material after irradiation by short pulse high intensity lasers. For our Vulcan experiment, we employed a CsI scintillator/CCD camera for imaging and a CCD camera for single photon counting. We measured the Ag K{alpha} source (22 keV) size using a pinhole array and the K{alpha} flux using a single photon counting method. We also radiographed a high Z target using the high energy broadband x-rays generated from these short pulse lasers. This paper will present results from these experiments.

  4. Acceleration of electrons under the action of petawatt-class laser pulses onto foam targets

    NASA Astrophysics Data System (ADS)

    Pugachev, L. P.; Andreev, N. E.; Levashov, P. R.; Rosmej, O. N.

    2016-09-01

    Optimization study for future experiments on interaction of petawatt laser pulses with foam targets was done by 3D PIC simulations. Densities in the range 0.5nc-nc and thicknesses in the range 100 - 500 μm of the targets were considered corresponding to those which are currently available. It is shown that heating of electrons mainly occurs under the action of the ponderomotive force of a laser pulse in which amplitude increases up to three times because of self-focusing effect in underdense plasma. Accelerated electrons gain additional energy directly from the high-frequency laser field at the betatron resonance in the emerging plasma density channels. For thicker targets a higher number of electrons with higher energies are obtained. The narrowing of the angular distribution of electrons for thicker targets is explained by acceleration in multiple narrow filaments. Obtained energies of accelerated electrons can be approximated by Maxwell distribution with the temperature 8.5 MeV. The charge carried by electrons with energies higher than 30 MeV is about 30 nC, that is 3-4 order of magnitude higher than the charge predicted by the ponderomotive scaling for the incident laser amplitude.

  5. Third-order dispersion compensation for petawatt-level lasers employing object-image-grating self-tiling

    SciTech Connect

    Zhaoyang Li; Yuxin Leng; Daxing Rao; Lei Chen; Yaping Dai

    2015-10-31

    A method is proposed for third-order dispersion compensation in compressors of femtosecond petawatt laser facilities employing object-image-grating self-tiling technology to prevent the return of the laser beam in amplifying chains. Simulations are performed for functioning and being developed Nd : glass and Ti : sapphire petawatt-level lasers. (control of radiation parameters)

  6. A focal-spot diagnostic for on-shot characterization of high-energy petawatt lasers.

    PubMed

    Bromage, J; Bahk, S-W; Irwin, D; Kwiatkowski, J; Pruyne, A; Millecchia, M; Moore, M; Zuegel, J D

    2008-10-13

    An on-shot focal-spot diagnostic for characterizing high-energy, petawatt-class laser systems is presented. Accurate measurements at full energy are demonstrated using high-resolution wavefront sensing in combination with techniques to calibrate on-shot measurements with low-power sample beams. Results are shown for full-energy activation shots of the OMEGA EP Laser System.

  7. Experimental demonstration of a synthetic aperture compression scheme for multi-Petawatt high-energy lasers.

    PubMed

    Blanchot, N; Bar, E; Behar, G; Bellet, C; Bigourd, D; Boubault, F; Chappuis, C; Coïc, H; Damiens-Dupont, C; Flour, O; Hartmann, O; Hilsz, L; Hugonnot, E; Lavastre, E; Luce, J; Mazataud, E; Neauport, J; Noailles, S; Remy, B; Sautarel, F; Sautet, M; Rouyer, C

    2010-05-10

    We present the experimental demonstration of a subaperture compression scheme achieved in the PETAL (PETawatt Aquitaine Laser) facility. We evidence that by dividing the beam into small subapertures fitting the available grating size, the sub-beam can be individually compressed below 1 ps, synchronized below 50 fs and then coherently added thanks to a segmented mirror. (c) 2010 Optical Society of America.

  8. Simulations of ion acceleration from ultrathin targets with the VEGA petawatt laser

    NASA Astrophysics Data System (ADS)

    Stockhausen, Luca C.; Torres, Ricardo; Conejero Jarque, Enrique

    2015-05-01

    The Spanish Pulsed Laser Centre (CLPU) is a new high-power laser facility for users. Its main system, VEGA, is a CPA Ti:Sapphire laser which, in its final phase, will be able to reach petawatt peak powers in pulses of 30 fs with a pulse contrast of 1 : 1010 at 1 ps. The extremely low level of pre-pulse intensity makes this system ideally suited for studying the laser interaction with ultrathin targets. We have used the particle-in-cell (PIC) code OSIRIS to carry out 2D simulations of the acceleration of ions from ultrathin solid targets under the unique conditions provided by VEGA, with laser intensities up to 1022Wcm-2 impinging normally on 5 - 40 nm thick overdense plasmas, with different polarizations and pre-plasma scale lengths. We show how signatures of the radiation pressure dominated regime, such as layer compression and bunch formation, are only present with circular polarization. By passively shaping the density gradient of the plasma, we demonstrate an enhancement in peak energy up to tens of MeV and monoenergetic features. On the contrary linear polarization at the same intensity level causes the target to blow up, resulting in much lower energies and broader spectra. One limiting factor of Radiation Pressure Acceleration is the development of Rayleigh-Taylor like instabilities at the interface of the plasma and photon fluid. This results in the formation of bubbles in the spatial profile of laser-accelerated proton beams. These structures were previously evidenced both experimentally and theoretically. We have performed 2D simulations to characterize this bubble-like structure and report on the dependency on laser and target parameters.

  9. Debris mitigation techniques for petawatt-class lasers in high debris environments

    NASA Astrophysics Data System (ADS)

    Schwarz, Jens; Rambo, Patrick; Kimmel, Mark; Geissel, Matthias; Robertson, Grafton; Ramsey, Marc; Headley, Daniel; Atherton, Briggs

    2010-04-01

    This paper addresses debris mitigation techniques for two different kinds of debris sources that are found in the high-energy density community. The first debris source stems from the laser-target interaction and this debris can be mitigated by avoiding a direct line of sight to the debris source (e.g. by using a sacrificial fold mirror) or by inserting a thin debris shield. Several thin film debris shields have been investigated and nitrocellulose was found to be the best suited. The second debris source originates from an external high-energy density driver or experiment. In our specific case, this is the Z accelerator, a Z-pinch machine that generates 2 MJ of x rays at 300 TW. The center section of the Z accelerator is an extremely violent environment which requires the development of novel debris mitigation approaches for backlighting with petawatt lasers. Two such approaches are presented in this paper. First, a self-closing focusing cone. In our facility, the focused beam on target is fully enclosed inside a solid focusing cone. In the first debris mitigation scenario, the last part of the cone has a “flapper” that should seal the cone when the pressure wave from the Z-pinch explosion hits it. In the second scenario, an enclosed target assembly is used, with the last part of the focusing cone connected to a “target can” which houses the laser target. The laser produced x rays for backlighting escape through a 3 mm diameter hole that is protected by an x-ray filter stack. Both techniques are discussed in detail and have been successfully tested on the Z accelerator.

  10. Simulations of radiation pressure ion acceleration with the VEGA Petawatt laser

    NASA Astrophysics Data System (ADS)

    Stockhausen, Luca C.; Torres, Ricardo; Conejero Jarque, Enrique

    2016-09-01

    The Spanish Pulsed Laser Centre (CLPU) is a new high-power laser facility for users. Its main system, VEGA, is a CPA Ti:Sapphire laser which, in its final phase, will be able to reach Petawatt peak powers in pulses of 30 fs with a pulse contrast of 1 :1010 at 1 ps. The extremely low level of pre-pulse intensity makes this system ideally suited for studying the laser interaction with ultrathin targets. We have used the particle-in-cell (PIC) code OSIRIS to carry out 2D simulations of the acceleration of ions from ultrathin solid targets under the unique conditions provided by VEGA, with laser intensities up to 1022 W cm-2 impinging normally on 20 - 60 nm thick overdense plasmas, with different polarizations and pre-plasma scale lengths. We show how signatures of the radiation pressure-dominated regime, such as layer compression and bunch formation, are only present with circular polarization. By passively shaping the density gradient of the plasma, we demonstrate an enhancement in peak energy up to tens of MeV and monoenergetic features. On the contrary linear polarization at the same intensity level causes the target to blow up, resulting in much lower energies and broader spectra. One limiting factor of Radiation Pressure Acceleration is the development of Rayleigh-Taylor like instabilities at the interface of the plasma and photon fluid. This results in the formation of bubbles in the spatial profile of laser-accelerated proton beams. These structures were previously evidenced both experimentally and theoretically. We have performed 2D simulations to characterize this bubble-like structure and report on the dependency on laser and target parameters.

  11. Ultra-Intense Short-Pulse Pair Creation Using the Texas Petawatt Laser

    NASA Astrophysics Data System (ADS)

    Liang, Edison; Henderson, Alexander; Clarke, Taylor; Taylor, Devin; Chaguine, Petr; Serratto, Kristina; Riley, Nathan; Dyer, Gilliss; Donovan, Michael; Ditmire, Todd

    2013-10-01

    We report results from the 2012 pair creation experiment using the Texas Petawatt Laser. Up to 1011 positrons per steradian were detected using 100 Joule pulses from the Texas Petawatt Laser to irradiate gold targets, with peak laser intensities up to 1.9 × 1021W/cm2 and pulse durations as short as 130 fs. Positron-to-electron ratios exceeding 20% were measured on some shots. The positron energy, positron yield per unit laser energy, and inferred positron density are significantly higher than those reported in previous experiments. This confirms that, for a given laser energy, higher intensity and shorter pulses irradiating thicker targets are more favorable for pair creation. Narrow-band high-energy positrons up to 23 MeV were observed from thin targets. Supported by DOE Grant DE-SC-0001481 and Rice FIF.

  12. Ultra-Intense Short-Pulse Pair Creation Using the Texas Petawatt Laser

    NASA Astrophysics Data System (ADS)

    Liang, Edison; Henderson, Alexander; Clarke, Taylor; Taylor, Devin; Chaguine, Petr; Serratto, Kristina; Riley, Nathan; Dyer, Gilliss; Donovan, Michael; Ditmire, Todd

    2013-10-01

    We report results from the 2012 pair creation experiment using the Texas Petawatt Laser. Up to 1011 positrons per steradian were detected using 100 Joule pulses from the Texas Petawatt Laser to irradiate gold targets, with peak laser intensities up to 1.9 × 1021W/cm2 and pulse durations as short as 130 fs. Positron-to-electron ratios exceeding 20% were measured on some shots. The positron energy, positron yield per unit laser energy, and inferred positron density are significantly higher than those reported in previous experiments. This confirms that, for a given laser energy, higher intensity and shorter pulses irradiating thicker targets are more favorable for pair creation. Narrow-band high-energy positrons up to 23 MeV were observed from thin targets. Supported by DOE Grant DE-SC-0001481 and Rice FIF.

  13. Extreme Ultraviolet Imaging of Electron Heated Targets in Petawatt Laser Experiments

    SciTech Connect

    Ma, T; MacPhee, A; Key, M; Akli, K; Mackinnon, A; Chen, C; Barbee, T; Freeman, R; King, J; Link, A; Offermann, D; Ovchinnikov, V; Patel, P; Stephens, R; VanWoerkom, L; Zhang, B; Beg, F

    2007-11-29

    The study of the transport of electrons, and the flow of energy into a solid target or dense plasma, is instrumental in the development of fast ignition inertial confinement fusion. An extreme ultraviolet (XUV) imaging diagnostic at 256 eV and 68 eV provides information about heating and energy deposition within petawatt laser-irradiated targets. XUV images of several irradiated solid targets are presented.

  14. Contrast and Intensity upgrades to the Texas Petawatt laser for hadron generation and non-linear QED experiments

    NASA Astrophysics Data System (ADS)

    Hegelich, Bjorn M.; Arefiev, Alexey; Ditmire, Todd; Donovan, Michael E.; Dyer, Gillis; Gaul, Erhard; Labun, Lance; Luedtke, Scott; Martinez, Mikael; McCarry, Edward; Stark, David; Pomerantz, Ishay; Tiwari, Ganesh; Toncian, Toma

    2015-11-01

    Advances in laser-based hadron generation, especially with respect to particle energy, as well as reaching the new regime of radiation dominated plasmas and non-linear QED, require laser fields of Petavolts per meter that preferably interact with very high density, overcritical plasmas. To achieve these conditions we are upgrading the Texas Petawatt Laser both respect to on-target laser intensity and laser-contrast, aiming to reach intensities of ~ 5x1022 W/cm2 and pulse contrast parameters allowing the interaction with overcritical, yet ultrathin, sub-micron targets. We will report on the planned experiments aimed at ion acceleration, neutron generation and the first experimental measurement of radiation reactions to motivate the chosen upgrade parameters. We will further report on the technical changes to the laser and present first measurements of the achieved intensity and contrast parameters. This work was supported by NNSA cooperative agreement DE-NA0002008, the Defense Advanced Research Projects Agency's PULSE program (12-63-PULSE-FP014), the Air Force Office of Scientific Research (FA9550-14-1-0045) and the National Institute of Health SBIR.

  15. Hot surface ionic line emission and cold K-inner shell emission from petawatt-laser irradiated Cu foil targets

    SciTech Connect

    Theobald, W; Akli, K; Clarke, R; Delettrez, J A; Freeman, R R; Glenzer, S; Green, J; Gregori, G; Heathcote, R; Izumi, N; King, J A; Koch, J A; Kuba, J; Lancaster, K; MacKinnon, A J; Key, M; Mileham, C; Myatt, J; Neely, D; Norreys, P A; Park, H; Pasely, J; Patel, P; Regan, S P; Sawada, H; Shepherd, R; Snavely, R; Stephens, R B; Stoeckl, C; Storm, M; Zhang, B; Sangster, T C

    2005-12-13

    A hot, T{sub e} {approx} 2- to 3-keV surface plasma was observed in the interaction of a 0.7-ps petawatt laser beam with solid copper-foil targets at intensities >10{sup 20} W/cm{sup 2}. Copper K-shell spectra were measured in the range of 8 to 9 keV using a single-photon-counting x-ray CCD camera. In addition to K{sub {alpha}} and K{sub {beta}} inner-shell lines, the emission contained the Cu He{sub {alpha}} and Ly{sub {alpha}} lines, allowing the temperature to be inferred. These lines have not been observed previously with ultrafast laser pulses. For intensities less than 3 x 10{sup 18} W/cm{sup 2}, only the K{sub {alpha}} and K{sub {beta}} inner-shell emissions are detected. Measurements of the absolute K{sub {alpha}} yield as a function of the laser intensity are in agreement with a model that includes refluxing and confinement of the suprathermal electrons in the target volume.

  16. Development of a radiative-hydrodynamics testbed using the petawatt laser facility

    SciTech Connect

    Koch, J A; Bell, P M; Brown, C; Budil, K S; Estabrook, K G; Gold, D M; Hatchett, S P; Kane, J; Key, M H; Pennington, D M; Perry, M D; Remington, B A

    1998-08-27

    Many of the conditions believed to underlie astrophysical phenomena have been difficult to achieve in a laboratory setting. For example, models of supernova remnant evolution rely on a detailed understanding of the propagation of shock waves with gigabar pressures at temperatures of 1 keV or more where radiative effects can be important. Current models of gamma ray bursts posit a relativistically expanding plasma fireball with copious production of electron-positron pairs, a difficult scenario to experimentally verify. However, a new class of lasers, such as the Petawatt laser,Perry 1996 are capable of producing focused intensities greater than 1020 W/cm² where such relativistic effects can be observed and even dominate the laser-target interaction. There is ample evidence in observational data from supernova remnants of the aftermath of the passage of radiative shock or blast waves. In the early phases of supernova remnant evolution, the radially-expanding shock wave expands nearly adiabatically since it is traveling at a very high velocity as it begins to sweep up the surrounding interstellar gas. A Sedov-Taylor blast wave solution can be applied to this phase,Taylor 1950, Sedov 1959 when the mass of interstellar gas swept up by the blast greatly exceeds the mass of the stellar ejecta, or a self-similar driven wave model can be applied if the ejecta play a significant role.Chevalier 1982 As the mass of the swept up material begins to greatly exceed the mass of the stellar ejecta, the evolution transitions to a radiative phase wherein the remnant can be modeled as an interior region of ldw-density, high-pressure gas surrounded by a thin, spherical shell of cooled, dense gas with a radiative shock as its outer boundary, the pressure-driven snowplow.Blondin et al. 1998 Until recently it has not been feasible to devise laboratory experiments wherein shock waves with initial pressures in excess of several hundred Mbar and temperatures approaching 1 keV are

  17. First results with the novel petawatt laser acceleration facility in Dresden

    NASA Astrophysics Data System (ADS)

    Schramm, U.; Bussmann, M.; Irman, A.; Siebold, M.; Zeil, K.; Albach, D.; Bernert, C.; Bock, S.; Brack, F.; Branco, J.; Couperus, JP; Cowan, TE; Debus, A.; Eisenmann, C.; Garten, M.; Gebhardt, R.; Grams, S.; Helbig, U.; Huebl, A.; Kluge, T.; Köhler, A.; Krämer, JM; Kraft, S.; Kroll, F.; Kuntzsch, M.; Lehnert, U.; Loeser, M.; Metzkes, J.; Michel, P.; Obst, L.; Pausch, R.; Rehwald, M.; Sauerbrey, R.; Schlenvoigt, HP; Steiniger, K.; Zarini, O.

    2017-07-01

    We report on first commissioning results of the DRACO Petawatt ultra-short pulse laser system implemented at the ELBE center for high power radiation sources of Helmholtz-Zentrum Dresden-Rossendorf. Key parameters of the laser system essential for efficient and reproducible performance of plasma accelerators are presented and discussed with the demonstration of 40 MeV proton acceleration under TNSA conditions as well as peaked electron spectra with unprecedented bunch charge in the 0.5 nC range.

  18. OMEGA EP: High-Energy Petawatt Capability for the OMEGA Laser Facility

    SciTech Connect

    Kelly, J.H.; Waxer, L.J.; Bagnoud, V.; Begishev, I.A.; Bromage, J.; Kruschwitz, B.E.; Kessler, T.J.; Loucks, S.J.; Maywar, D.N.; McCrory, R.L.; Meyerhofer, D.D.; Morse, S.F.B.; Oliver, J.B.; Rigatti, A.L.; Schmid, A.W.; Stoeckl, C.; Dalton, S.; Folnsbee, L.; Guardalben, M.J.; Jungquist, R.; Puth, J.; Shoup III, M.J.; Weiner, D.; Zuegel, J.D.

    2006-06-28

    OMEGA EP (Extended Performance) is a petawatt-class addition to the existing 30-kJ, 60-beam OMEGA Laser Facility at the University of Rochester. When completed, it will consist of four beamlines, each capable of producing up to 6.5 kJ at 351 nm in a 1 to 10 ns pulse. Two of the beamlines will produce up to 2.6 kJ in a pulse-width range of 1 to 100 ps at 1053 nm using chirped-pulse amplification (CPA). This paper reviews both the OMEGA EP performance objectives and the enabling technologies required to meet these goals.

  19. Large-scale proton radiography with micrometer spatial resolution using femtosecond petawatt laser system

    SciTech Connect

    Wang, W. P.; Shen, B. F. Zhang, H.; Lu, X. M.; Wang, C.; Liu, Y. Q.; Yu, L. H.; Chu, Y. X.; Li, Y. Y.; Xu, T. J.; Zhang, H.; Zhai, S. H.; Leng, Y. X.; Liang, X. Y.; Li, R. X.; Xu, Z. Z.

    2015-10-15

    An image of dragonfly with many details is obtained by the fundamental property of the high-energy proton source on a femtosecond petawatt laser system. Equal imaging of the dragonfly and high spatial resolution on the micrometer scale are simultaneously obtained. The head, wing, leg, tail, and even the internal tissue structures are clearly mapped in detail by the proton beam. Experiments show that image blurring caused by multiple Coulomb scattering can be reduced to a certain extent and the spatial resolution can be increased by attaching the dragonfly to the RCFs, which is consistent with theoretical assumptions.

  20. High-flux electron beams from laser wakefield accelerators driven by petawatt lasers

    NASA Astrophysics Data System (ADS)

    Zeng, Ming; Tesileanu, Ovidiu

    2017-07-01

    Laser wakefield accelerators (LWFAs) are considered to be one of the most competitive next-generation accelerator candidates. In this paper, we will study the potential high-flux electron beam production of an LWFA driven by petawatt-level laser pulses. In our three-dimensional particle-in-cell simulations, an optimal set of parameters gives ˜ 40 {nC} of charge with 2 {PW} laser power, thus ˜ 400 {kA} of instantaneous current if we assume the electron beam duration is 100 fs. This high flux and its secondary radiation are widely applicable in nuclear and QED physics, industrial imaging, medical and biological studies.

  1. High-flux electron beams from laser wakefield accelerators driven by petawatt lasers

    NASA Astrophysics Data System (ADS)

    Ming, ZENG; Ovidiu, TESILEANU

    2017-07-01

    Laser wakefield accelerators (LWFAs) are considered to be one of the most competitive next-generation accelerator candidates. In this paper, we will study the potential high-flux electron beam production of an LWFA driven by petawatt-level laser pulses. In our three-dimensional particle-in-cell simulations, an optimal set of parameters gives ∼ 40 {nC} of charge with 2 {PW} laser power, thus ∼ 400 {kA} of instantaneous current if we assume the electron beam duration is 100 fs. This high flux and its secondary radiation are widely applicable in nuclear and QED physics, industrial imaging, medical and biological studies.

  2. Parasitic lasing suppression in high gain femtosecond petawatt Ti:sapphire amplifier.

    PubMed

    Liang, Xiaoyan; Leng, Yuxin; Wang, Cheng; Li, Chuang; Lin, Lihuang; Zhao, Baozhen; Jiang, Yunhua; Lu, Xiaoming; Hu, Minyuan; Zhang, Chunmei; Lu, Haihe; Yin, Dingjun; Jiang, Yongliang; Lu, Xingqiang; Wei, Hui; Zhu, Jianqiang; Li, Ruxin; Xu, Zhizhan

    2007-11-12

    New parasitic lasing suppression techniques are developed and high gain amplification is demonstrated in a petawatt level Ti:sapphire amplifier based on the chirped pulse amplification (CPA) scheme. Cladding the large aperture Ti:sapphire with refractive-index matched liquid doped with absorber suppresses the transverse lasing. The acousto-optic programmable dispersive filter (AOPDF) is used to realize side-lobe suppression in the temporal profile of the compressed pulse. The 800 nm laser output with peak power of 0.89 PW and pulse width of 29.0 fs is demonstrated.

  3. Observation of extremely strong shock waves in solids launched by petawatt laser heating

    NASA Astrophysics Data System (ADS)

    Lancaster, K. L.; Robinson, A. P. L.; Pasley, J.; Hakel, P.; Ma, T.; Highbarger, K.; Beg, F. N.; Chen, S. N.; Daskalova, R. L.; Freeman, R. R.; Green, J. S.; Habara, H.; Jaanimagi, P.; Key, M. H.; King, J.; Kodama, R.; Krushelnick, K.; Nakamura, H.; Nakatsutsumi, M.; MacKinnon, A. J.; MacPhee, A. G.; Stephens, R. B.; Van Woerkom, L.; Norreys, P. A.

    2017-08-01

    Understanding hydrodynamic phenomena driven by fast electron heating is important for a range of applications including fast electron collimation schemes for fast ignition and the production and study of hot, dense matter. In this work, detailed numerical simulations modelling the heating, hydrodynamic evolution, and extreme ultra-violet (XUV) emission in combination with experimental XUV images indicate shock waves of exceptional strength (200 Mbar) launched due to rapid heating of materials via a petawatt laser. We discuss in detail the production of synthetic XUV images and how they assist us in interpreting experimental XUV images captured at 256 eV using a multi-layer spherical mirror.

  4. Delay interferometric single shot measurement of a petawatt-class laser longitudinal chromatism corrector.

    PubMed

    Rouyer, C; Blanchot, N; Neauport, J; Sauteret, C

    2007-03-05

    In this paper we present a self-referenced interferometric single-shot measurement technique that we use to evaluate the longitudinal chromatism compensation made by a diffractive lens corrector. A diffractive lens with a delay of 1 ps is qualified for a 60 mm beam aperture. This corrector was implemented on the Alisé Nd:glass power chain. We qualify the corrector and the Alisé power chain chromatism, demonstrating the potential of this measuring principle as well as the interest of diffractive lenses to correct longitudinal chromatism of petawatt-class lasers.

  5. Production of Picosecond, Kilojoule, and Petawatt Laser Pulses via Raman Amplification of Nanosecond Pulses

    SciTech Connect

    Trines, R. M. G. M.; Bingham, R.; Norreys, P. A.; Fiuza, F.; Fonseca, R. A.; Silva, L. O.

    2011-09-02

    Raman amplification in plasma has been promoted as a means of compressing picosecond optical laser pulses to femtosecond duration to explore the intensity frontier. Here we show for the first time that it can be used, with equal success, to compress laser pulses from nanosecond to picosecond duration. Simulations show up to 60% energy transfer from pump pulse to probe pulse, implying that multikilojoule ultraviolet petawatt laser pulses can be produced using this scheme. This has important consequences for the demonstration of fast-ignition inertial confinement fusion.

  6. Ion acceleration by petawatt class laser pulses and pellet compression in a fast ignition scenario

    NASA Astrophysics Data System (ADS)

    Benedetti, C.; Londrillo, P.; Liseykina, T. V.; Macchi, A.; Sgattoni, A.; Turchetti, G.

    2009-07-01

    Ion drivers based on standard acceleration techniques have faced up to now several difficulties. We consider here a conceptual alternative to more standard schemes, such as HIDIF (Heavy Ion Driven Inertial Fusion), which are still beyond the present state of the art of particle accelerators, even though the requirements on the total beam energy are lowered by fast ignition scenarios. The new generation of petawatt class lasers open new possibilities: acceleration of electrons or protons for the fast ignition and eventually light or heavy ions acceleration for compression. The pulses of chirped pulse amplification (CPA) lasers allow ions acceleration with very high efficiency at reachable intensities ( I˜1021 W/cm2), if circularly polarized light is used since we enter in the radiation pressure acceleration (RPA) regime. We analyze the possibility of accelerating carbon ion bunches by interaction of a circularly polarized pulses with an ultra-thin target. The advantage would be compactness and modularity, due to identical accelerating units. The laser efficiency required to have an acceptable net gain in the inertial fusion process is still far from the presently achievable values both for CPA short pulses and for long pulses used for direct illumination. Conversely the energy conversion efficiency from the laser pulse to the ion bunch is high and grows with the intensity. As a consequence the energy loss is not the major concern. For a preliminary investigation of the ions bunch production we have used the PIC code ALaDyn developed to analyze the results of the INFN-CNR PLASMONX experiment at Frascati National Laboratories (Rome, Italy) where the 0.3 PW laser FLAME will accelerate electrons and protons. We present the results of some 1D simulations and parametric scan concerning the acceleration of carbon ions that we suppose to be fully ionized. Circularly polarized laser pulses of 50 J and 50-100 fs duration, illuminating a 100 μm2 area of a 20 nm thick carbon

  7. 10-kJ Status and 100-kJ Future for NIF PetaWatt Technology

    SciTech Connect

    Siders, C W; Crane, J K; Rushford, M C; Haefner, L C; Hernandez, J E; Dawson, J W; Beach, R J; Clark, W J; Trummer, D J; Tietbohl, G L; Barty, C J

    2007-07-02

    We discuss the status of the NIF ARC, an 8-beam 10-kJ class high-energy petawatt laser, and the future upgrade path of this and similar systems to 100-kJ-class with coherent phasing of multiple apertures.

  8. High energy mode locked fiber oscillators for high contrast, high energy petawatt laser seed sources

    SciTech Connect

    Dawson, J W; Messerly, M J; An, J; Kim, D; Barty, C J

    2006-06-15

    In a high-energy petawatt laser beam line the ASE pulse contrast is directly related to the total laser gain. Thus a more energetic input pulse will result in increased pulse contrast at the target. We have developed a mode-locked fiber laser with high quality pulses and energies exceeding 25nJ. We believe this 25nJ result is scalable to higher energies. This oscillator has no intra-cavity dispersion compensation, which yields an extremely simple, and elegant laser configuration. We will discuss the design of this laser, our most recent results and characterization of all the key parameters relevant to it use as a seed laser. Our oscillator is a ring cavity mode-locked fiber laser [1]. These lasers operate in a self-similar pulse propagation regime characterized by a spectrum that is almost square. This mode was found theoretically [2] to occur only in the positive dispersion regime. Further increasing positive dispersion should lead to increasing pulse energy [2]. We established that the positive dispersion required for high-energy operation was approximately that of 2m of fiber. To this end, we constructed a laser cavity similar to [1], but with no gratings and only 2m of fiber, which we cladding pumped in order to ensure sufficient pump power was available to achieve mode-locked operation. A schematic of the laser is shown in figure 1 below. This laser produced low noise 25nJ pulses with a broad self similar spectrum (figure 2) and pulses that could be de-chirped to <100fs (figure 3). Pulse contrast is important in peta-watt laser systems. A major contributor to pulse contrast is amplified spontaneous emission (ASE), which is proportional to the gain in the laser chain. As the oscillator strength is increased, the required gain to reach 1PW pulses is decreased, reducing ASE and improving pulse contrast. We believe these lasers can be scaled in a stable fashion to pulse energies as high as 100nJ and have in fact seen 60nJ briefly in our lab, which is work still

  9. Measurements of electron and proton heating temperatures from extreme-ultraviolet light images at 68 eV in petawatt laser experiments

    SciTech Connect

    Gu Peimin; Zhang, B.; Key, M. H.; Hatchett, S. P.; Barbee, T.; Freeman, R. R.; Akli, K.; Hey, D.; King, J. A.; Mackinnon, A. J.; Snavely, R. A.; Stephens, R. B.

    2006-11-15

    A 68 eV extreme-ultraviolet light imaging diagnostic measures short pulse isochoric heating by electrons and protons in petawatt laser experiments. Temperatures are deduced from the absolute intensities and comparison with modeling using a radiation hydrodynamics code.

  10. Imaging Detectors for 20-100 ke V X-ray Backlighters in HEDES Petawatt Experiments

    SciTech Connect

    Wickersham, J E; Park, H; Bell, P M; Koch, J A; Landen, O L; Moody, J D

    2004-04-16

    We are developing a petawatt laser for use as a high energy backlighter source in the 20{approx} 100 keV range. High energy x-ray backlighters will be essential for radiographing High-Energy- Density Experimental Science (HEDES) targets for NIF projects especially to probe implosions and high areal density planar samples. For these experiments we are employing two types of detectors: a columnar grown CsI scintillator coupled to a 2K x 2K CCD camera and a CdTe crystal with a special ASIC readout electronics in a 508 x 512 format array. We have characterized these sensors using radioactive sources. In addition, we utilized them to measure the Sm K{alpha} source size generated by the short pulse laser, JanUSP, at LLNL. This paper will present the results of our characterizations of these detectors.

  11. Progress in fast ignitor research with the Nova petawatt laser facility

    SciTech Connect

    Cowan, T E; Hammel , B A; Hatchett, S P; Henry, E A; Key, M H; Kilkenny, J D; Koch, J A; Langdon, A B; Lasinski, B F; Lee, R W; Moody, J D; Mora, M J; Offenberger, A A; Pennington, D M; Perry, M D; Phillips, T J; Sangster, T C; Singh, M S; Stoyer, M A; Tabak, M; Tsukamoto, M; Wharton, K; Wilks, S C

    1998-11-10

    The physics of fast ignition is being studied using a petawatt laser facility at the Lawrence Livermore National Laboratory. Performance of the PW laser with deformable mirror wavefront control giving intensities up to 3x10{sup 20} Wcm{sup {minus}2} is described. Measurements of the efficiency of conversion of laser energy to relativistic electrons and of their energy spectrum and angular distribution including an observed narrow beam angle of {+-}15{degree}, are reported. Heating by the electrons to near 1keV in solid density CD{sub 2} is inferred from the thermo-nuclear neutron yield. Estimates suggest an optimized gain of 300x if the National Ignition Facility were to be adapted for fast ignition.

  12. Hot electron production using the Texas Petawatt Laser irradiating thick gold targets

    NASA Astrophysics Data System (ADS)

    Taylor, Devin; Liang, Edison; Clarke, Taylor; Henderson, Alexander; Chaguine, Petr; Wang, Xin; Dyer, Gilliss; Serratto, Kristina; Riley, Nathan; Donovan, Michael; Ditmire, Todd

    2013-06-01

    We present data for relativistic hot electron production by the Texas Petawatt Laser irradiating solid Au targets with thickness between 1 and 4 mm. The experiment was performed at the short focus target chamber TC1 in July 2011, with intensities on the order of several ×1019 W/cm2 and laser energies around 50 J. We discuss the design of an electron-positron magnetic spectrometer to record the lepton energy spectra ejected from the Au targets and present a deconvolution algorithm to extract the lepton energy spectra. We measured hot electron spectra out to ˜50 MeV, which show a narrow peak around 10-20 MeV, plus high energy exponential tail. The hot electron spectral shapes appear significantly different from those reported for other PW lasers.

  13. High-Energy Petawatt Project at the University of Rochester's Laboratory for Laser Energetics

    SciTech Connect

    Stoeckl, C.; Delettrez, J.A.; Kelly, J.H.; Kessler, T.J.; Kruschwitz, B.E.; Loucks, S.J.; McCrory, R.L.; Meyerhofer, D.D.; Maywar, D.N.; Morse, S.F.B.; Myatt, J.; Rigatti, A.L.; Waxer, L.J.; Zuegel, J.D.; Stephens, R.B.

    2006-04-12

    A high-energy petawatt laser, OMEGA EP, is currently under construction at the University of Rochester's Laboratory for Laser Energetics. Integrated into the existing OMEGA laser, it will support three major areas of research: (a) backlighting of high-energy-density plasmas, (b) integrated fast ignition experiments, and (c) high-intensity physics. The laser will provide two beams combined collinearly and coaxially with short pulses (~1 to 100 ps) and high energy (2.6 kJ at 10 ps). Cone-in-shell fuel-assembly experiments and simulations of short-pulse heated cryogenic targets are being performed in preparation for cryogenic integrated fast ignitor experiments on OMEGA EP.

  14. Physics of laser-driven relativistic plasmas energetic X-rays, proton beams and relativistic electron transport in Petawatt laser experiments

    NASA Astrophysics Data System (ADS)

    Snavely, Richard Adolph

    2003-10-01

    Experiments investigating laser-matter interactions, where the laser power extends into the Petawatt (1015 Watt) regime, are presented. The focused (f/3) laser intensities (˜500 Joules at .5 pico-seconds) as high as 3 1020 W/cm2 are reached for the first time and drive fully relativistic motions of the electrons found at the laser-matter interface. We report on the experimental measurements of the radiation phenomena characteristic of these super-intense laser pulses. Significantly, the discovery of laser-accelerated intense proton beams is presented. We summarize the extensive studies into the proton beam characteristics and acceleration mechanisms of the proton beam physics. These energetic beams carry currents into the Meg-Amp range and have peak energies as high as 48 MeV with multiple-slope temperatures of ˜3 and ˜50 MeV and usually exhibit a high-energy cut-off. They are accelerated primarily off the rear surfaces of our thin foil targets and have ballistic trajectories normal to the emission surface. The proton acceleration mechanism (Target Sheath Normal Acceleration) is found to be a very efficient process. Laser energy to proton beam energy conversion ratios of 10--30% are inferred in the data. The driving force behind the proton acceleration mechanism is ultra-high current relativistic electron transport in solid density plasma. These electrons participate in many effects but notably in Bremsstrahlung radiation and the Petawatt laser performance to create extraordinarily bright X-Ray sources is investigated in detail. We report the most intense forward driven x-ray fluxes yet measured in laser experiments, with peak irradiance as high as 2 Rads at 1 meter. Overall yields into high energy x-rays of 11 Joules imply laser absorption mechanisms with 45--55% efficiency. A Monte Carlo Ponderomotive Kinematics (MPK) code is developed and is used to analyze the laser relativistic electron interaction, transport and high-energy x-ray relationships. These

  15. Compact acceleration of energetic neutral atoms using high intensity laser-solid interaction.

    PubMed

    Dalui, Malay; Trivikram, T Madhu; Colgan, James; Pasley, John; Krishnamurthy, M

    2017-06-20

    Recent advances in high-intensity laser-produced plasmas have demonstrated their potential as compact charge particle accelerators. Unlike conventional accelerators, transient quasi-static charge separation acceleration fields in laser produced plasmas are highly localized and orders of magnitude larger. Manipulating these ion accelerators, to convert the fast ions to neutral atoms with little change in momentum, transform these to a bright source of MeV atoms. The emittance of the neutral atom beam would be similar to that expected for an ion beam. Since intense laser-produced plasmas have been demonstrated to produce high-brightness-low-emittance beams, it is possible to envisage generation of high-flux, low-emittance, high energy neutral atom beams in length scales of less than a millimeter. Here, we show a scheme where more than 80% of the fast ions are reduced to energetic neutral atoms and demonstrate the feasibility of a high energy neutral atom accelerator that could significantly impact applications in neutral atom lithography and diagnostics.

  16. Scaling high-order harmonic generation from laser-solid interactions to ultrahigh intensity.

    PubMed

    Dollar, F; Cummings, P; Chvykov, V; Willingale, L; Vargas, M; Yanovsky, V; Zulick, C; Maksimchuk, A; Thomas, A G R; Krushelnick, K

    2013-04-26

    Coherent x-ray beams with a subfemtosecond (<10(-15)  s) pulse duration will enable measurements of fundamental atomic processes in a completely new regime. High-order harmonic generation (HOHG) using short pulse (<100  fs) infrared lasers focused to intensities surpassing 10(18)  W cm(-2) onto a solid density plasma is a promising means of generating such short pulses. Critical to the relativistic oscillating mirror mechanism is the steepness of the plasma density gradient at the reflection point, characterized by a scale length, which can strongly influence the harmonic generation mechanism. It is shown that for intensities in excess of 10(21)  W cm(-2) an optimum density ramp scale length exists that balances an increase in efficiency with a growth of parametric plasma wave instabilities. We show that for these higher intensities the optimal scale length is c/ω0, for which a variety of HOHG properties are optimized, including total conversion efficiency, HOHG divergence, and their power law scaling. Particle-in-cell simulations show striking evidence of the HOHG loss mechanism through parametric instabilities and relativistic self-phase modulation, which affect the produced spectra and conversion efficiency.

  17. Energy partitioning and electron momentum distributions in intense laser-solid interactions

    NASA Astrophysics Data System (ADS)

    Magnusson, Joel; Gonoskov, Arkady; Marklund, Mattias

    2017-09-01

    Producing inward orientated streams of energetic electrons by intense laser pulses acting on solid targets is the most robust and accessible way of transferring the laser energy to particles, which underlies numerous applications, ranging from TNSA to laboratory astrophysics. Structures with the scale of the laser wavelength can significantly enhance energy absorption, which has been in the center of attention in recent studies. In this article, we demonstrate and assess the effect of the structures for widening the angular distribution of generated energetic electrons. We analyse the results of PIC simulations and reveal several aspects that can be important for the related applications.

  18. Two-stage acceleration of protons from relativistic laser-solid interaction

    SciTech Connect

    Liu Jinlu; Sheng, Z. M.; Zheng, J.; Wang, W. M.; Yu, M. Y.; Liu, C. S.; Zhang, J.

    2012-12-21

    A two-stage proton acceleration scheme using present-day intense lasers and a unique target design is proposed. The target system consists of a hollow cylinder, inside which is a hollow cone, which is followed by the main target with a flat front and dish-like flared rear surface. At the center of the latter is a tapered proton layer, which is surrounded by outer proton layers at an angle to it. In the first acceleration stage, protons in both layers are accelerated by target normal sheath acceleration. The center-layer protons are accelerated forward along the axis and the side protons are accelerated and focused towards them. As a result, the side-layer protons radially compress as well as axially further accelerate the front part of the accelerating center-layer protons in the second stage, which are also radially confined and guided by the field of the fast electrons surrounding them. Two-dimensional particle-incell simulation shows that a 79fs 8.5 Multiplication-Sign 10{sup 20} W/cm{sup 2} laser pulse can produce a proton bunch with {approx} 267MeV maximum energy and {approx} 9.5% energy spread, which may find many applications, including cancer therapy.

  19. Characterization of two distinct, simultaneous hot electron beams in intense laser-solid interactions.

    PubMed

    Cho, B I; Osterholz, J; Bernstein, A C; Dyer, G M; Karmakar, A; Pukhov, A; Ditmire, T

    2009-11-01

    The transport of energetic electron beams generated from aluminum foils irradiated by ultraintense laser pulses has been studied by imaging coherent transition radiation from the rear side of the target. Two distinct beams of MeV electrons are emitted from the target rear side at the same time. This measurement indicates that two different mechanisms, namely resonance absorption and jxB heating, accelerate the electrons at the targets front side and drive them to different directions, with different temperatures. This interpretation is consistent with 3D-particle-in-cell simulations.

  20. New adaptive optics control strategy for petawatt-class laser chains

    NASA Astrophysics Data System (ADS)

    Varkentina, N.; Dovillaire, G.; Legrand, J.; Beaugrand, G.; Stefanon, I.; Treimany, P.; Levecq, X.

    2017-08-01

    A new generation of ultra-high intensity femtosecond petawatt- and above-class lasers requires new approaches to wavefront corrections. New challenges for adaptive optics consist in overcoming the constraints of potentially bigger diameters, larger amplitude aberrations, faster optics, higher risk of damaging optical components and faster and easier maintenance. Here we present a new technology of a mechanical deformable mirror, which has a large stroke, high temporal stability, low hysteresis, no printthrough effect, easy, safe and fast maintenance and an operating frequency up to 10 Hz. We propose the full correction of the final focal spot in the target chamber by a combination of a standard adaptive optics system, a simple focal plane camera and a phase retrieval correction process. We test the reliability of the correction system in terms of intensity variation and wavefront stability. We further verify correction robustness of the method on a large spectral bandwidth and finally perform a focal spot correction on a terawatt laser system in both low and high-power regimes.

  1. Dense blocks of energetic ions driven by multi-petawatt lasers

    PubMed Central

    Weng, S. M.; Liu, M.; Sheng, Z. M.; Murakami, M.; Chen, M.; Yu, L. L.; Zhang, J.

    2016-01-01

    Laser-driven ion accelerators have the advantages of compact size, high density, and short bunch duration over conventional accelerators. Nevertheless, it is still challenging to simultaneously enhance the yield and quality of laser-driven ion beams for practical applications. Here we propose a scheme to address this challenge via the use of emerging multi-petawatt lasers and a density-modulated target. The density-modulated target permits its ions to be uniformly accelerated as a dense block by laser radiation pressure. In addition, the beam quality of the accelerated ions is remarkably improved by embedding the target in a thick enough substrate, which suppresses hot electron refluxing and thus alleviates plasma heating. Particle-in-cell simulations demonstrate that almost all ions in a solid-density plasma of a few microns can be uniformly accelerated to about 25% of the speed of light by a laser pulse at an intensity around 1022 W/cm2. The resulting dense block of energetic ions may drive fusion ignition and more generally create matter with unprecedented high energy density. PMID:26924793

  2. Dense blocks of energetic ions driven by multi-petawatt lasers.

    PubMed

    Weng, S M; Liu, M; Sheng, Z M; Murakami, M; Chen, M; Yu, L L; Zhang, J

    2016-02-29

    Laser-driven ion accelerators have the advantages of compact size, high density, and short bunch duration over conventional accelerators. Nevertheless, it is still challenging to simultaneously enhance the yield and quality of laser-driven ion beams for practical applications. Here we propose a scheme to address this challenge via the use of emerging multi-petawatt lasers and a density-modulated target. The density-modulated target permits its ions to be uniformly accelerated as a dense block by laser radiation pressure. In addition, the beam quality of the accelerated ions is remarkably improved by embedding the target in a thick enough substrate, which suppresses hot electron refluxing and thus alleviates plasma heating. Particle-in-cell simulations demonstrate that almost all ions in a solid-density plasma of a few microns can be uniformly accelerated to about 25% of the speed of light by a laser pulse at an intensity around 10(22) W/cm(2). The resulting dense block of energetic ions may drive fusion ignition and more generally create matter with unprecedented high energy density.

  3. Proton and Ion Acceleration on the Contrast Upgraded Texas Petawatt Laser

    NASA Astrophysics Data System (ADS)

    McCary, Edward; Roycroft, Rebecca; Jiao, Xuejing; Kupfer, Rotem; Tiwari, Ganesh; Wagner, Craig; Yandow, Andrew; Franke, Philip; Dyer, Gilliss; Gaul, Erhard; Toncian, Toma; Ditmire, Todd; Hegelich, Bjorn; CenterHigh Energy Density Science Team

    2016-10-01

    Recent upgrades to the Texas Petawatt (TPW) laser system have eliminated pre-pulses and reduced the laser pedestal, resulting in improved laser contrast. Previously unwanted pre-pulses and amplified spontaneous emission (ASE) would ionize targets thinner than 1 micron, leaving an under-dense plasma which was not capable of accelerating ions to high energies. After the upgrade the contrast was drastically improved allowing us to successfully shoot targets as thin as 20 nm without plasma mirrors. We have also observed evidence of relativistic transparency and Break-Out Afterburner (BOA) ion acceleration when shooting ultra-thin, nanometer scale targets. Data taken with a wide angle ion spectrometer (IWASP) showed the characteristic asymmetry of BOA in the plane orthogonal to the laser polarization on thin targets but not on micron scale targets. Thick micron scale targets saw improvement as well; shots on 2 μm thick gold targets saw ions with energies up to 100 MeV, which broke the former record proton energy on the TPW. Switching the focusing optic from an f/3 parabolic mirror to an f/40 spherical mirror showed improvement in the number of low energy protons created, and provided a source for hundreds of picosecond heating of aluminum foils for warm dense matter measurements.

  4. Enhancement of electron energy to the multi-GeV regime by a dual-stage laser-wakefield accelerator pumped by petawatt laser pulses.

    PubMed

    Kim, Hyung Taek; Pae, Ki Hong; Cha, Hyuk Jin; Kim, I Jong; Yu, Tae Jun; Sung, Jae Hee; Lee, Seong Ku; Jeong, Tae Moon; Lee, Jongmin

    2013-10-18

    Laser-wakefield acceleration offers the promise of a compact electron accelerator for generating a multi-GeV electron beam using the huge field gradient induced by an intense laser pulse, compared to conventional rf accelerators. However, the energy and quality of the electron beam from the laser-wakefield accelerator have been limited by the power of the driving laser pulses and interaction properties in the target medium. Recent progress in laser technology has resulted in the realization of a petawatt (PW) femtosecond laser, which offers new capabilities for research on laser-wakefield acceleration. Here, we present a significant increase in laser-driven electron energy to the multi-GeV level by utilizing a 30-fs, 1-PW laser system. In particular, a dual-stage laser-wakefield acceleration scheme (injector and accelerator scheme) was applied to boost electron energies to over 3 GeV with a single PW laser pulse. Three-dimensional particle-in-cell simulations corroborate the multi-GeV electron generation from the dual-stage laser-wakefield accelerator driven by PW laser pulses.

  5. Effect of heat input on cracking in laser solid formed DZ4125 superalloy

    NASA Astrophysics Data System (ADS)

    Hu, Y. L.; Lin, X.; Song, K.; Jiang, X. Y.; Yang, H. O.; Huang, W. D.

    2016-12-01

    DZ4125 superalloy, which processes a high hot cracking sensitivity, is deposited on an as-cast substrate using laser solid forming (LSF) in order to investigate the effect of heat input on the cracking in the deposit and the heat affected zone (HAZ) in the substrate. It is shown that the liquation cracks occurred in LSFed sample with the lower heat input. The propagation extent of the cracks can be reduced with increasing the heat input. The crack-free deposits are achieved when the heat input reaches 150 J/mm. The variation of the residual stress in the LSFed sample with the heat input are discussed based on the micro-indentation analysis. It can be found that the elimination of the cracks with the high heat input can be attributed to the lower temperature gradient and thermal stresses in the LSFed sample. Besides, the backfilling of the liquid melt from the molten pool to the crack is also observed with the high heat input, which is also beneficial to the healing of crack in the HAZ of the molten pool.

  6. Petawatt laser pulses for proton-boron high gain fusion with avalanche reactions excluding problems of nuclear radiation

    NASA Astrophysics Data System (ADS)

    Hora, Heinrich; Lalousis, Paraskevas; Giuffrida, Lorenzo; Margarone, Daniele; Korn, Georg; Eliezer, Shalom; Miley, George H.; Moustaizis, Stavros; Mourou, Gérard

    2015-05-01

    An alternative way may be possible for igniting solid density hydrogen-11B (HB11) fuel. The use of >petawatt-ps laser pulses from the non-thermal ignition based on ultrahigh acceleration of plasma blocks by the nonlinear (ponderomotive) force, has to be combined with the measured ultrahigh magnetic fields in the 10 kilotesla range for cylindrical trapping. The evaluation of measured alpha particles from HB11 reactions arrives at the conclusion that apart from the usual binary nuclear reactions, secondary reactions by an avalanche multiplication may cause the high gains, even much higher than from deuterium tritium fusion. This may be leading to a concept of clean economic power generation.

  7. Degradation of femtosecond petawatt laser beams: Spatio-temporal/spectral coupling induced by wavefront errors of compression gratings

    NASA Astrophysics Data System (ADS)

    Li, Zhaoyang; Tsubakimoto, Koji; Yoshida, Hidetsugu; Nakata, Yoshiki; Miyanaga, Noriaki

    2017-10-01

    Recently, several petawatt (PW, 1015 W) lasers with pulse duration of ∼20–30 fs have been introduced throughout the world, pushing the upper limit on laser peak power. However, besides well-known spatio-temporal coupling effects, such as residual spatial/angular chirps and pulsefront tilt/curvature, the spatio-temporal/spectral coupling in compressors induced by wavefront errors of gratings, which could dramatically distort ultra-intense pulses, has been neglected. In this work, for the first time we analyzed this phenomenon and the peak power/intensity degradation induced by it. Our results suggest that the actual performance of femtosecond PW lasers may be worse than previously estimated.

  8. Compton MeV Gamma-ray Source on Texas Petawatt Laser-Driven GeV Electron Accelerator

    NASA Astrophysics Data System (ADS)

    Shaw, Joseph M.; Tsai, Hai-En; Zgadzaj, Rafal; Wang, Xiaoming; Chang, Vincent; Fazel, Neil; Henderson, Watson; Downer, M. C.; Texas Petawatt Laser Team

    2015-11-01

    Compton Backscatter (CBS) from laser wakefield accelerated (LWFA) electron bunches is a promising compact, femtosecond (fs) source of tunable high-energy photons. CBS x-rays have been produced from LWFAs using two methods: (1) retro-reflection of the LWFA drive pulse via an in-line plasma mirror (PM); (2) scattering of a counter-propagating secondary pulse split from the drive pulse. Previously MeV photons were only demonstrated by the latter method, but the former method is self-aligning. Here, using the Texas Petawatt (TPW) laser and a self-aligned near-retro-reflecting PM, we generate bright CBS γ-rays with central energies higher than 10 MeV. The 100 μm focus of TPW delivers 100 J in 100 fs pulses, with intensity 6x1018 W/cm2 (a0 =1.5), to the entrance of a 6-cm long Helium gas cell. A thin, plastic PM immediately following the gas cell exit retro-reflects the LWFA driving pulse into the oncoming 0.5 - 2 GeV electron beam to produce a directional beam of γ-rays without significant bremsstrahlung background. A Pb-filter pack on a thick, pixelated, CsI(Tl) scintillator is used to estimate the spectrum via differential transmission and to observe the beam profile. Recorded beam profiles indicate a low divergence. Department of Physics, The University of Texas at Austin

  9. Space and Time Resolved Measurements of the Heating of Solids to Ten Million Kelvin by a Petawatt Laser

    SciTech Connect

    Nakatsutsumi, M.; Davies, J.R.; Kodama, R.; Green, J.S.; Lancaster, K.L.; Akli, K.U.; Beg, F.N.; Chen, S.N.; Clark, D.; Freeman, R.R.; Gregory, C.D.; Habara, H.; Heathcote, R.; Hey, D.S.; Highbarger, K.; Jaanimagi, P.; Key, M.H.; Krushelnick, K.; Ma, T.; MacPhee, A.; MacKinnon, A.J.; Nakamura, H.; Stephens, R.B.; Storm, M.; Tampo, M.; Theobald, W.; Van Woerkom, L.; Weber, R.L.; Wei, M.S.; Woolsey, N.C.; Norreys, P.A.

    2008-04-29

    The heating of plane solid targets by the Vulcan petawatt laser at powers of 0.32-0.73 PW and intensities of up to 4 x 10^20 W cm^-2 has been diagnosed with a temporal resolution of 17 ps and a spatial resolution of 30 um, by measuring optical emission from the opposite side of the target to the laser with a streak camera. Second harmonic emission was filtered out and the target viewed at an angle to eliminate optical transition radiation. Spatial resolution was obtained by imaging the emission onto a bundle of fibre optics, arranged into a one-dimensional array at the camera entrance. The results show that a region 160 um in diameter can be heated to a temperature of ~10^7 K (kT/e ~ keV) in solid targets from 10 to 20 um thick and that this temperature is maintained for at least 20 ps, confirming the utility of PW lasers in the study of high energy density physics. Hybrid code modelling shows that magnetic field generation prevents increased target heating by electron refluxing above a certain target thickness and that the absorption of laser energy into electrons entering the solid target was between 15-30%, and tends to increase with laser energy.

  10. Study of proton acceleration at the target front surface in laser-solid interactions by neutron spectroscopy

    SciTech Connect

    Youssef, A.; Kodama, R.; Tampo, M.

    2006-03-15

    Proton acceleration inside solid LiF and CH-LiF targets irradiated by a 450-fs, 20-J, 1053-nm laser at an intensity of 3x10{sup 18} W/cm{sup 2} has been studied via neutron spectroscopy. Neutron spectra produced through the {sup 7}Li(p,n){sup 7}Be reaction that occurs between accelerated protons, at the front surface, and background {sup 7}Li ions inside the target. From measured and calculated spectra, by three-dimensional Monte Carlo code, the maximum energy, total number, and slope temperature of the accelerated protons are investigated. The study indicates that protons originate at the front surface and are accelerated to a maximum energy that is reasonably consistent with the calculated one due to the ponderomotive force.

  11. Angle-dependent modulated spectral peaks of proton beams generated in ultrashort intense laser-solid interactions

    SciTech Connect

    Su, L. N.; Hu, Z. D.; Zheng, Y.; Liu, M.; Li, Y. T. Wang, W. M.; Shen, Z. W.; Fan, H. T.; Chen, L. M.; Lu, X.; Ma, J. L.; Wang, X.; Wang, Z. H.; Wei, Z. Y.; Sheng, Z. M.; Yuan, X. H.; Zhang, J.; Xu, M. H.

    2014-09-15

    Proton acceleration from 4 μm thick aluminum foils irradiated by 30-TW Ti:sapphire laser pulses is investigated using an angle-resolved proton energy spectrometer. We find that a modulated spectral peak at ∼0.82 MeV is presented at 2.5° off the target normal direction. The divergence angle of the modulated zone is 3.8°. Two-dimensional particle-in-cell simulations reveal that self-generated toroidal magnetic field at the rear surface of the target foil is responsible for the modulated spectral feature. The field deflects the low energy protons, resulting in the modulated energy spectrum with certain peaks.

  12. Microstructure and Mechanical Properties of Laser Solid Formed Ti-6Al-4V Alloy Under Dynamic Shear Loading

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Guo, Wei-Guo; Su, Yu; Wang, Jianjun; Lin, Xin; Huang, Weidong

    2017-07-01

    To investigate the mechanical properties of the Ti-6Al-4V alloy fabricated by laser solid forming technology, both static and dynamic shear tests were conducted on hat-shaped specimens by a servohydraulic testing machine and an enhanced split Hopkinson pressure bar system, over a temperature range of 173-573 K. The microstructure of both the original and deformed specimens was characterized by optical microscopy and scanning electron microscopy. The results show that: (1) the anisotropy of shear properties is not significant regardless of the visible stratification and the prior- β grains that grow epitaxially along the depositing direction; (2) the ultimate shear strength of this material is lower than that of those Ti-6Al-4V alloys fabricated by forging and extrusion; (3) the adiabatic shear bands of approximately 25.6-36.4 μm in width can develop at all selected temperatures during the dynamic shear deformation; and (4) the observed microstructure and measured microhardness indicate that the grains become refined in adiabatic shear band. Estimation of the temperature rise shows that the temperature in shear band exceeds the recrystallization temperature. The process of rotational dynamic recrystallization is considered to be the cause of the grain refinement in shear band.

  13. Fast scaling of energetic protons generated in the interaction of linearly polarized femtosecond petawatt laser pulses with ultrathin targets

    NASA Astrophysics Data System (ADS)

    Kim, I. Jong; Pae, Ki Hong; Kim, Chul Min; Kim, Hyung Taek; Choi, Il Woo; Lee, Chang-Lyoul; Singhal, Himanshu; Sung, Jae Hee; Lee, Seong Ku; Lee, Hwang Woon; Nickles, Peter V.; Jeong, Tae Moon; Nam, Chang Hee

    2015-12-01

    Laser-driven proton/ion acceleration is a rapidly developing research field attractive for both fundamental physics and applications such as hadron therapy, radiography, inertial confinement fusion, and nuclear/particle physics. Laser-driven proton/ion beams, compared to those obtained in conventional accelerators, have outstanding features such as low emittance, small source size, ultra-short duration and huge acceleration gradient of ∼1 MeV μm-1. We report proton acceleration from ultrathin polymer targets irradiated with linearly polarized, 30-fs, 1-PW Ti:sapphire laser pulses. A maximum proton energy of 45 MeV with a broad and modulated profile was obtained when a 10-nm-thick target was irradiated at a laser intensity of 3.3 × 1020 W/cm2. The transition from slow (I1/2) to fast scaling (I) of maximum proton energy with respect to laser intensity I was observed and explained by the hybrid acceleration mechanism including target normal sheath acceleration and radiation pressure acceleration in the acceleration stage and Coulomb-explosion-assisted free expansion in the post acceleration stage.

  14. Laser-induced damage of intrinsic and extrinsic defects by picosecond pulses on multilayer dielectric coatings for petawatt-class lasers

    SciTech Connect

    Negres, Raluca A.; Carr, Christopher W.; Laurence, Ted A.; Stanion, Ken; Guss, Gabe; Cross, David A.; Wegner, Paul J.; Stolz, Christopher J.

    2016-08-01

    Here, we describe a damage testing system and its use in investigating laser-induced optical damage initiated by both intrinsic and extrinsic precursors on multilayer dielectric coatings suitable for use in high-energy, large-aperture petawatt-class lasers. We employ small-area damage test methodologies to evaluate the intrinsic damage resistance of various coatings as a function of deposition methods and coating materials under simulated use conditions. In addition, we demonstrate that damage initiation by raster scanning at lower fluences and growth threshold testing are required to probe the density of extrinsic defects, which will limit large-aperture optics performance.

  15. Laser-induced damage of intrinsic and extrinsic defects by picosecond pulses on multilayer dielectric coatings for petawatt-class lasers

    DOE PAGES

    Negres, Raluca A.; Carr, Christopher W.; Laurence, Ted A.; ...

    2016-08-01

    Here, we describe a damage testing system and its use in investigating laser-induced optical damage initiated by both intrinsic and extrinsic precursors on multilayer dielectric coatings suitable for use in high-energy, large-aperture petawatt-class lasers. We employ small-area damage test methodologies to evaluate the intrinsic damage resistance of various coatings as a function of deposition methods and coating materials under simulated use conditions. In addition, we demonstrate that damage initiation by raster scanning at lower fluences and growth threshold testing are required to probe the density of extrinsic defects, which will limit large-aperture optics performance.

  16. The scaling of electron and positron generation in intense laser-solid interactionsa)

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Link, A.; Sentoku, Y.; Audebert, P.; Fiuza, F.; Hazi, A.; Heeter, R. F.; Hill, M.; Hobbs, L.; Kemp, A. J.; Kemp, G. E.; Kerr, S.; Meyerhofer, D. D.; Myatt, J.; Nagel, S. R.; Park, J.; Tommasini, R.; Williams, G. J.

    2015-05-01

    This paper presents experimental scalings of the electrons and positrons produced by intense laser-target interactions at relativistic laser intensities (1018-1020 W cm-2). The data were acquired from three short-pulse laser facilities with laser energies ranging from 80 to 1500 J. We found a non-linear (≈EL2) scaling of positron yield [Chen et al., Phys. Rev. Lett. 114, 215001 (2015)] and a linear scaling of electron yield with the laser energy. These scalings are explained by theoretical and numerical analyses. Positron acceleration by the target sheath field is confirmed by the positron energy spectrum, which has a pronounced peak at energies near the sheath potential, as determined by the observed maximum energies of accelerated protons. The parameters of laser-produced electron-positron jets are summarized together with the theoretical energy scaling. The measured energy-squared scaling of relativistic electron-positron jets indicates the possibility to create an astrophysically relevant experimental platform with such jets using multi-kilojoule high intensity lasers currently under construction.

  17. High contrast high intensity petawatt J-KAREN-P laser facility at QST

    NASA Astrophysics Data System (ADS)

    Nishiuchi, Mamiko; Kiriyama, Hiromitsu; Sakaki, Hironao; Dover, Nicholas P.; Kondo, Kotaro; Pirozhkov, Alexander S.; Sagisaka, Akito; Fukuda, Yuji; Nishitani, Keita; Miyahara, Takumi; Ogura, Koichi; Alkhimova, Mariya A.; Pikuz, Tatiana A.; Faenov, Anatoly Y.; Watanabe, Yukinobu; Koga, James; Bulanov, Sergei V.; Kando, Masaki; Kondo, Kiminori

    2017-05-01

    We report on the J-KAREN-P laser facility at QST, which can provide PW peak power at 0.1 Hz on target. The system can deliver short pulses with an energy of 30 J and pulse duration of 30 fs after compression with a contrast level of better than 1012. Such performance in high field science will give rise to the birth of new applications and breakthroughs, which include relativistic particle acceleration, bright x-ray source generation, and nuclear activation. The current achieved laser intensity on target is up to > 9x1021 Wcm-2 with an energy of 9 J on target. The interaction with a 3 to 5- μm stainless steel tape target provides us electrons with a typical temperature of more than 10 MeV and energetic proton beams with typical maximum energies of > 40 MeV with good reproducibility. The protons are accelerated in the Target Normal Sheath Acceleration regime, which is suitable for many applications including as an injector into a beamline for medical use, which is one of our objectives.

  18. X-ray backlight measurement of preformed plasma by kJ-class petawatt LFEX laser

    SciTech Connect

    Ohira, Shinji; Fujioka, Shinsuke; Nagatomo, Hideo; Matsuo, Satoshi; Morio, Noboru; Kawanaka, Jyunji; Nakata, Yoshiki; Miyanaga, Noriaki; Shiraga, Hiroyuki; Nishimura, Hiroaki; Azechi, Hiroshi; Sunahara, Atsushi; Johzaki, Tomoyuki

    2012-09-15

    Foot and pedestal pulses that precede the main pulse from a high-intensity laser greatly affect laser-plasma interactions. Especially in fast ignition schemes, preceding pulses generate a plasma prior to irradiation by the main pulse. This results in a too energetic and divergent electron beam being generated in the preformed plasma, which reduces the energy coupling efficiency from the heating laser to the dense fuel core. A preformed plasma with a density scale length of 40-60 {mu}m was observed by a time- and space-resolved x-ray backlight technique using the LFEX laser system at the Institute of Laser Engineering, Osaka University. Preceding pulses (i.e., the foot and pedestal) of the LFEX were characterized by comparing observations with calculations results obtained using a two-dimension (2D) radiation-hydrodynamic simulation code. In a separate experiment, the 2D code was benchmarked with the experimentally observed hydrodynamic behavior of a gold plasma produced by a nanosecond laser pulse that mimicked foot and pedestal pulses (intensity: 1 Multiplication-Sign 10{sup 11}-1 Multiplication-Sign 10{sup 12}W/cm{sup 2}). The preceding pulses were estimated to have an intensity of 1 Multiplication-Sign 10{sup 12}-10{sup 13}W/cm{sup 2}, a duration of 2.0 ns, and a spot diameter at the target of 200-600 {mu}m by comparing the measured hydrodynamics of the preformed plasma with that calculated by the 2D hydrodynamic simulation code.

  19. Theory and Modeling of Petawatt Laser Pulse Propagation in Low Density Plasmas

    SciTech Connect

    Shadwick, Bradley A.; Kalmykov, S. Y.

    2016-12-08

    Report describing accomplishments in all-optical control of self-injection in laser-plasma accelerators and in developing advanced numerical models of laser-plasma interactions. All-optical approaches to controlling electron self-injection and beam formation in laser-plasma accelerators (LPAs) were explored. It was demonstrated that control over the laser pulse evolution is the key ingredient in the generation of low-background, low-phase-space-volume electron beams. To this end, preserving a smooth laser pulse envelope throughout the acceleration process can be achieved through tuning the phase and amplitude of the incident pulse. A negative frequency chirp compensates the frequency red-shift accumulated due to wake excitation, preventing evolution of the pulse into a relativistic optical shock. This reduces the ponderomotive force exerted on quiescent plasma electrons, suppressing expansion of the bubble and continuous injection of background electrons, thereby reducing the charge in the low-energy tail by an order of magnitude. Slowly raising the density in the pulse propagation direction locks electrons in the accelerating phase, boosting their energy, keeping continuous injection at a low level, tripling the brightness of the quasi-monoenergetic component. Additionally, propagating the negatively chirped pulse in a plasma channel suppresses diffraction of the pulse leading edge, further reducing continuous injection. As a side effect, oscillations of the pulse tail may be enhanced, leading to production of low-background, polychromatic electron beams. Such beams, consisting of quasi-monoenergetic components with controllable energy and energy separation, may be useful as drivers of polychromatic x-rays based on Thomson backscattering. These all-optical methods of electron beam quality control are critically important for the development of future compact, high-repetition-rate, GeV-scale LPA using 10 TW-class, ultra-high bandwidth pulses and mm-scale, dense

  20. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    DOE PAGES

    Stygar, W. A.; Awe, T. J.; Bennett, N L; ...

    2015-11-30

    Here, we have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-GW LTD bricks connected electrically in parallel. (A brick comprises a single switch and two capacitors in series.) Six water-insulated radial-transmission-line impedance transformers transport the power generated bymore » the modules to a six-level vacuum-insulator stack. The stack serves as the accelerator’s water-vacuum interface. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs), which are joined in parallel at a 10-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator’s physics-package load. Z 300 is 35 m in diameter and stores 48 MJ of electrical energy in its LTD capacitors. The accelerator generates 320 TW of electrical power at the output of the LTD system, and delivers 48 MA in 154 ns to a magnetized-liner inertial-fusion (MagLIF) target [Phys. Plasmas 17, 056303 (2010)]. The peak electrical power at the MagLIF target is 870 TW, which is the highest power throughout the accelerator. Power amplification is accomplished by the centrally located vacuum section, which serves as an intermediate inductive-energy-storage device. The principal goal of Z 300 is to achieve thermonuclear ignition; i.e., a fusion yield that exceeds the energy transmitted by the accelerator to the liner. 2D magnetohydrodynamic (MHD

  1. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    NASA Astrophysics Data System (ADS)

    Stygar, W. A.; Awe, T. J.; Bailey, J. E.; Bennett, N. L.; Breden, E. W.; Campbell, E. M.; Clark, R. E.; Cooper, R. A.; Cuneo, M. E.; Ennis, J. B.; Fehl, D. L.; Genoni, T. C.; Gomez, M. R.; Greiser, G. W.; Gruner, F. R.; Herrmann, M. C.; Hutsel, B. T.; Jennings, C. A.; Jobe, D. O.; Jones, B. M.; Jones, M. C.; Jones, P. A.; Knapp, P. F.; Lash, J. S.; LeChien, K. R.; Leckbee, J. J.; Leeper, R. J.; Lewis, S. A.; Long, F. W.; Lucero, D. J.; Madrid, E. A.; Martin, M. R.; Matzen, M. K.; Mazarakis, M. G.; McBride, R. D.; McKee, G. R.; Miller, C. L.; Moore, J. K.; Mostrom, C. B.; Mulville, T. D.; Peterson, K. J.; Porter, J. L.; Reisman, D. B.; Rochau, G. A.; Rochau, G. E.; Rose, D. V.; Rovang, D. C.; Savage, M. E.; Sceiford, M. E.; Schmit, P. F.; Schneider, R. F.; Schwarz, J.; Sefkow, A. B.; Sinars, D. B.; Slutz, S. A.; Spielman, R. B.; Stoltzfus, B. S.; Thoma, C.; Vesey, R. A.; Wakeland, P. E.; Welch, D. R.; Wisher, M. L.; Woodworth, J. R.

    2015-11-01

    We have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-GW LTD bricks connected electrically in parallel. (A brick comprises a single switch and two capacitors in series.) Six water-insulated radial-transmission-line impedance transformers transport the power generated by the modules to a six-level vacuum-insulator stack. The stack serves as the accelerator's water-vacuum interface. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs), which are joined in parallel at a 10-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator's physics-package load. Z 300 is 35 m in diameter and stores 48 MJ of electrical energy in its LTD capacitors. The accelerator generates 320 TW of electrical power at the output of the LTD system, and delivers 48 MA in 154 ns to a magnetized-liner inertial-fusion (MagLIF) target [Phys. Plasmas 17, 056303 (2010)]. The peak electrical power at the MagLIF target is 870 TW, which is the highest power throughout the accelerator. Power amplification is accomplished by the centrally located vacuum section, which serves as an intermediate inductive-energy-storage device. The principal goal of Z 300 is to achieve thermonuclear ignition; i.e., a fusion yield that exceeds the energy transmitted by the accelerator to the liner. 2D magnetohydrodynamic (MHD) simulations

  2. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    SciTech Connect

    Stygar, W. A.; Awe, T. J.; Bennett, N L; Breden, E. W.; Campbell, E. M.; Clark, R. E.; Cooper, R. A.; Cuneo, M. E.; Ennis, J. B.; Fehl, D. L.; Genoni, T. C.; Gomez, M. R.; Greiser, G. W.; Gruner, F. R.; Herrmann, M. C.; Hutsel, B. T.; Jennings, C. A.; Jobe, D. O.; Jones, B. M.; Jones, M. C.; Jones, P. A.; Knapp, P. F.; Lash, J. S.; LeChien, K. R.; Leckbee, J. J.; Leeper, R. J.; Lewis, S. A.; Long, F. W.; Lucero, D. J.; Madrid, E. A.; Martin, M. R.; Matzen, M. K.; Mazarakis, M. G.; McBride, R. D.; McKee, G. R.; Miller, C. L.; Moore, J. K.; Mostrom, C. B.; Mulville, T. D.; Peterson, K. J.; Porter, J. L.; Reisman, D. B.; Rochau, G. A.; Rochau, G. E.; Rose, D. V.; Savage, M. E.; Sceiford, M. E.; Schmit, P. F.; Schneider, R. F.; Schwarz, J.; Sefkow, A. B.; Sinars, D. B.; Slutz, S. A.; Spielman, R. B.; Stoltzfus, B. S.; Thoma, C.; Vesey, R. A.; Wakeland, P. E.; Welch, D. R.; Wisher, M. L.; Woodworth, J. R.; Bailey, J. E.; Rovang, D. C.

    2015-11-30

    Here, we have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-GW LTD bricks connected electrically in parallel. (A brick comprises a single switch and two capacitors in series.) Six water-insulated radial-transmission-line impedance transformers transport the power generated by the modules to a six-level vacuum-insulator stack. The stack serves as the accelerator’s water-vacuum interface. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs), which are joined in parallel at a 10-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator’s physics-package load. Z 300 is 35 m in diameter and stores 48 MJ of electrical energy in its LTD capacitors. The accelerator generates 320 TW of electrical power at the output of the LTD system, and delivers 48 MA in 154 ns to a magnetized-liner inertial-fusion (MagLIF) target [Phys. Plasmas 17, 056303 (2010)]. The peak electrical power at the MagLIF target is 870 TW, which is the highest power throughout the accelerator. Power amplification is accomplished by the centrally located vacuum section, which serves as an intermediate inductive-energy-storage device. The principal goal of Z 300 is to achieve thermonuclear ignition; i.e., a fusion yield that exceeds the energy transmitted by the accelerator to the liner. 2D magnetohydrodynamic (MHD

  3. Radiation Dose Measurement for High-Intensity Laser Interactions with Solid Targets at SLAC

    SciTech Connect

    Liang, Taiee

    2015-09-25

    A systematic study of photon and neutron radiation doses generated in high-intensity laser-solid interactions is underway at SLAC National Accelerator Laboratory. We found that these laser-solid experiments are being performed using a 25 TW (up to 1 J in 40 fs) femtosecond pulsed Ti:sapphire laser at the Linac Coherent Light Source’s (LCLS) Matter in Extreme Conditions (MEC) facility. Additionally, radiation measurements were performed with passive and active detectors deployed at various locations inside and outside the target chamber. Results from radiation dose measurements for laser-solid experiments at SLAC MEC in 2014 with peak intensity between 1018 to 7.1x1019 W/cm2 are presented.

  4. Fast ignition realization experiment with high-contrast kilo-joule peta-watt LFEX laser and strong external magnetic field

    NASA Astrophysics Data System (ADS)

    Fujioka, Shinsuke; Arikawa, Yasunobu; Kojima, Sadaoki; Johzaki, Tomoyuki; Nagatomo, Hideo; Sawada, Hiroshi; Lee, Seung Ho; Shiroto, Takashi; Ohnishi, Naofumi; Morace, Alessio; Vaisseau, Xavier; Sakata, Shohei; Abe, Yuki; Matsuo, Kazuki; Farley Law, King Fai; Tosaki, Shota; Yogo, Akifumi; Shigemori, Keisuke; Hironaka, Yoichiro; Zhang, Zhe; Sunahara, Atsushi; Ozaki, Tetsuo; Sakagami, Hitoshi; Mima, Kunioki; Fujimoto, Yasushi; Yamanoi, Kohei; Norimatsu, Takayoshi; Tokita, Shigeki; Nakata, Yoshiki; Kawanaka, Junji; Jitsuno, Takahisa; Miyanaga, Noriaki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Kondo, Kotaro; Bailly-Grandvaux, Mathieu; Bellei, Claudio; Santos, João Jorge; Azechi, Hiroshi

    2016-05-01

    A petawatt laser for fast ignition experiments (LFEX) laser system [N. Miyanaga et al., J. Phys. IV France 133, 81 (2006)], which is currently capable of delivering 2 kJ in a 1.5 ps pulse using 4 laser beams, has been constructed beside the GEKKO-XII laser facility for demonstrating efficient fast heating of a dense plasma up to the ignition temperature under the auspices of the Fast Ignition Realization EXperiment (FIREX) project [H. Azechi et al., Nucl. Fusion 49, 104024 (2009)]. In the FIREX experiment, a cone is attached to a spherical target containing a fuel to prevent a corona plasma from entering the path of the intense heating LFEX laser beams. The LFEX laser beams are focused at the tip of the cone to generate a relativistic electron beam (REB), which heats a dense fuel core generated by compression of a spherical deuterized plastic target induced by the GEKKO-XII laser beams. Recent studies indicate that the current heating efficiency is only 0.4%, and three requirements to achieve higher efficiency of the fast ignition (FI) scheme with the current GEKKO and LFEX systems have been identified: (i) reduction of the high energy tail of the REB; (ii) formation of a fuel core with high areal density using a limited number (twelve) of GEKKO-XII laser beams as well as a limited energy (4 kJ of 0.53-μm light in a 1.3 ns pulse); (iii) guiding and focusing of the REB to the fuel core. Laser-plasma interactions in a long-scale plasma generate electrons that are too energetic to efficiently heat the fuel core. Three actions were taken to meet the first requirement. First, the intensity contrast of the foot pulses to the main pulses of the LFEX was improved to >109. Second, a 5.5-mm-long cone was introduced to reduce pre-heating of the inner cone wall caused by illumination of the unconverted 1.053-μm light of implosion beam (GEKKO-XII). Third, the outside of the cone wall was coated with a 40-μm plastic layer to protect it from the pressure caused by imploding

  5. Fast ignition realization experiment with high-contrast kilo-joule peta-watt LFEX laser and strong external magnetic field

    SciTech Connect

    Fujioka, Shinsuke Arikawa, Yasunobu; Kojima, Sadaoki; Nagatomo, Hideo; Lee, Seung Ho; Morace, Alessio; Vaisseau, Xavier; Sakata, Shohei; Abe, Yuki; Matsuo, Kazuki; Farley Law, King Fai; Tosaki, Shota; Yogo, Akifumi; Shigemori, Keisuke; Hironaka, Yoichiro; Fujimoto, Yasushi; Yamanoi, Kohei; Norimatsu, Takayoshi; Tokita, Shigeki; Nakata, Yoshiki; and others

    2016-05-15

    A petawatt laser for fast ignition experiments (LFEX) laser system [N. Miyanaga et al., J. Phys. IV France 133, 81 (2006)], which is currently capable of delivering 2 kJ in a 1.5 ps pulse using 4 laser beams, has been constructed beside the GEKKO-XII laser facility for demonstrating efficient fast heating of a dense plasma up to the ignition temperature under the auspices of the Fast Ignition Realization EXperiment (FIREX) project [H. Azechi et al., Nucl. Fusion 49, 104024 (2009)]. In the FIREX experiment, a cone is attached to a spherical target containing a fuel to prevent a corona plasma from entering the path of the intense heating LFEX laser beams. The LFEX laser beams are focused at the tip of the cone to generate a relativistic electron beam (REB), which heats a dense fuel core generated by compression of a spherical deuterized plastic target induced by the GEKKO-XII laser beams. Recent studies indicate that the current heating efficiency is only 0.4%, and three requirements to achieve higher efficiency of the fast ignition (FI) scheme with the current GEKKO and LFEX systems have been identified: (i) reduction of the high energy tail of the REB; (ii) formation of a fuel core with high areal density using a limited number (twelve) of GEKKO-XII laser beams as well as a limited energy (4 kJ of 0.53-μm light in a 1.3 ns pulse); (iii) guiding and focusing of the REB to the fuel core. Laser–plasma interactions in a long-scale plasma generate electrons that are too energetic to efficiently heat the fuel core. Three actions were taken to meet the first requirement. First, the intensity contrast of the foot pulses to the main pulses of the LFEX was improved to >10{sup 9}. Second, a 5.5-mm-long cone was introduced to reduce pre-heating of the inner cone wall caused by illumination of the unconverted 1.053-μm light of implosion beam (GEKKO-XII). Third, the outside of the cone wall was coated with a 40-μm plastic layer to protect it from the pressure caused

  6. Comparing Particle-in-Cell QED Models for High-Intensity Laser-Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Luedtke, Scott V.; Labun, Lance A.; Hegelich, Björn Manuel

    2016-10-01

    High-intensity lasers, such as the Texas Petawatt, are pushing into new regimes of laser-matter interaction, requiring continuing improvement and inclusion of new physics effects in computer simulations. Experiments at the Texas Petawatt are reaching intensity regimes where new physics-quantum electrodynamics (QED) corrections to otherwise classical plasma dynamics-becomes important. We have two particle-in-cell (PIC) codes with different QED implementations. We review the theory of photon emission in QED-strong fields, and cover the differing PIC implementations. We show predictions from the two codes and compare with ongoing experiments. This work was supported by NNSA cooperative agreement DE-NA0002008, the Defense Advanced Research Projects Agency's PULSE program (12-63-PULSE-FP014) and the Air Force Office of Scientific Research (FA9550-14-1-0045). HPC resources provided by TACC.

  7. Multi-GeV electron beams from capillary discharge guided sub-petawatt class laser pulses in the self-trapping regime

    NASA Astrophysics Data System (ADS)

    Leemans, Wim

    2014-10-01

    Laser plasma accelerators (LPAs) can produce acceleration gradients on the order of tens to hundreds of GV/m, making them attractive as compact particle accelerators. During the past decade, quasi-monochromatic electron beams at the 1 GeV energy level have been produced using laser pulses at the 40-50 TW peak power level. With the availability of petawatt class lasers, beams up to 2 GeV have been produced from 7 cm long gas cells at UT Austin using 150 J laser pulses and at the 1 GeV level with tails extending to 3 GeV at the GIST facility in Korea. In this talk we present experimental results using the 1 Hz petawatt class BELLA laser at LBNL of the generation of multi-GeV electron beams with center energy up to 4.2 GeV, 6% rms energy spread, charge approximately 10 pC and an rms divergence around 0.3 mrad. The beams were produced from 9 cm long capillary discharge waveguide structure with a plasma density of ~ 7 ×1017cm-3 , powered by laser pulses with peak power up to 0.3 PW. Preformed plasma waveguides allow the use of lower laser power compared to unguided plasma structures to achieve the same beam energy. Detailed comparison between experiment and simulation indicates the importance of the near-field laser transverse mode quality on guiding and acceleration in the LPA. By tuning the plasma density, regimes were found where laser beams with a top hat near-field profile were guided well, and where high energy electron beams can be produced, with narrow divergence [ <0.8 mrad (FWHM)], and relatively small integrated energy spread (<10%). Provided that the slice energy spread and emittance are sufficiently low, electron beams with this energy could power x-ray free electron lasers. Future experiments will aim at increasing the beam energy to the 10 GeV level. Work supported by Office of Science, Office of HEP, US DOE Contract DE-AC02-05CH11231.

  8. Multi-GeV electron beam and high brightness betatron x-ray generation in recent Texas Petawatt laser-driven plasma accelerator experiments

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoming; Zgadzaj, Rafal; Fazel, Neil; Li, Zhengyan; Zhang, Xi; Henderson, Watson; Chang, Yen-Yu; Korzekwa, Rick; Tsai, H.-E.; Quevedo, Hernan; Dyer, Gilliss; Gaul, Erhard; Martinez, Mikael; Bernstein, Aaron; Spinks, Michael; Gordan, Joseph; Donovan, Michael; Khudik, Vladimir; Shvets, Gennady; Ditmire, Todd; Downer, Michael

    2014-10-01

    Compact laser-plasma accelerators (LPAs) driven by petawatt (PW) lasers have produced highly collimated, quasi-monoenergetic multi-GeV electron bunches with ~100 pC charge, which are promising sources of ultrafast x-rays. Here we report three recent advances in PW-LPA performance brought about by optimizing the focal volume of the Texas PW laser with a deformable mirror. First, we accelerated electrons up to 3 GeV with hundreds of pC over 1 GeV and <0.5 mrad divergence. Second, we significantly improved shot-to-shot reproducibility (90% shots >1 GeV, 10% >2 GeV). Third, by introducing a double-peaked laser focus, creating a ``double bubble'' that subsequently merged, we significantly increased electron charge (0.5 nC) above 1 GeV, while producing brighter (1022photon/mm2/rad/0.1%), harder (up to 30 keV) betatron x-rays, characterized by a multi-metal filter pack and phase-contrast imaging. We observe evidence of dimuon production by irradiating a high-Z target with this high-charge, GeV electron beam.

  9. Validation of modelled imaging plates sensitivity to 1-100 keV x-rays and spatial resolution characterisation for diagnostics for the "PETawatt Aquitaine Laser".

    PubMed

    Boutoux, G; Batani, D; Burgy, F; Ducret, J-E; Forestier-Colleoni, P; Hulin, S; Rabhi, N; Duval, A; Lecherbourg, L; Reverdin, C; Jakubowska, K; Szabo, C I; Bastiani-Ceccotti, S; Consoli, F; Curcio, A; De Angelis, R; Ingenito, F; Baggio, J; Raffestin, D

    2016-04-01

    Thanks to their high dynamic range and ability to withstand electromagnetic pulse, imaging plates (IPs) are commonly used as passive detectors in laser-plasma experiments. In the framework of the development of the diagnostics for the Petawatt Aquitaine Laser facility, we present an absolute calibration and spatial resolution study of five different available types of IP (namely, MS-SR-TR-MP-ND) performed by using laser-induced K-shell X-rays emitted by a solid silver target irradiated by the laser ECLIPSE at CEntre Lasers Intenses et Applications. In addition, IP sensitivity measurements were performed with a 160 kV X-ray generator at CEA DAM DIF, where the absolute response of IP SR and TR has been calibrated to X-rays in the energy range 8-75 keV with uncertainties of about 15%. Finally, the response functions have been modeled in Monte Carlo GEANT4 simulations in order to reproduce experimental data. Simulations enable extrapolation of the IP response functions to photon energies from 1 keV to 1 GeV, of interest, e.g., for laser-driven radiography.

  10. Validation of modelled imaging plates sensitivity to 1-100 keV x-rays and spatial resolution characterisation for diagnostics for the "PETawatt Aquitaine Laser"

    NASA Astrophysics Data System (ADS)

    Boutoux, G.; Batani, D.; Burgy, F.; Ducret, J.-E.; Forestier-Colleoni, P.; Hulin, S.; Rabhi, N.; Duval, A.; Lecherbourg, L.; Reverdin, C.; Jakubowska, K.; Szabo, C. I.; Bastiani-Ceccotti, S.; Consoli, F.; Curcio, A.; De Angelis, R.; Ingenito, F.; Baggio, J.; Raffestin, D.

    2016-04-01

    Thanks to their high dynamic range and ability to withstand electromagnetic pulse, imaging plates (IPs) are commonly used as passive detectors in laser-plasma experiments. In the framework of the development of the diagnostics for the Petawatt Aquitaine Laser facility, we present an absolute calibration and spatial resolution study of five different available types of IP (namely, MS-SR-TR-MP-ND) performed by using laser-induced K-shell X-rays emitted by a solid silver target irradiated by the laser ECLIPSE at CEntre Lasers Intenses et Applications. In addition, IP sensitivity measurements were performed with a 160 kV X-ray generator at CEA DAM DIF, where the absolute response of IP SR and TR has been calibrated to X-rays in the energy range 8-75 keV with uncertainties of about 15%. Finally, the response functions have been modeled in Monte Carlo GEANT4 simulations in order to reproduce experimental data. Simulations enable extrapolation of the IP response functions to photon energies from 1 keV to 1 GeV, of interest, e.g., for laser-driven radiography.

  11. Copper fine-structure K-shell electron impact ionization cross sections for fast-electron diagnostic in laser-solid experiments

    SciTech Connect

    Palmeri, P.; Quinet, P.; Batani, D.

    2015-03-15

    The K-shell electron impact ionization (EII) cross section, along with the K-shell fluorescence yield, is one of the key atomic parameters for fast-electron diagnostic in laser-solid experiments through the K-shell emission cross section. In addition, copper is a material that has been often used in those experiments because it has a maximum total K-shell emission yield. Furthermore, in a campaign dedicated to the modeling of the K lines of astrophysical interest (Palmeri et al., 2012), the K-shell fluorescence yields for the K-vacancy fine-structure atomic levels of all the copper isonuclear ions have been calculated. In this study, the K-shell EII cross sections connecting the ground and the metastable levels of the parent copper ions to the daughter ions K-vacancy levels considered in Palmeri et al. (2012) have been determined. The relativistic distorted-wave (DW) approximation implemented in the FAC atomic code has been used for the incident electron kinetic energies up to 10 times the K-shell threshold energies. Moreover, the resulting DW cross sections have been extrapolated at higher energies using the asymptotic form proposed by Davies et al. (2013)

  12. Broadband Brillouin Scatter from CO2-Laser-Target Interactions

    NASA Astrophysics Data System (ADS)

    Mitchel, G. R.; Grek, B.; Johnston, T. W.; Pépin, H.; Church, P.; Lavigne, P.; Martin, F.; Décoste, R.

    1982-05-01

    Light scattered near the incident wavelength from CO2 laser-solid target interactions in oblique incidence shows the spectral signature of Brillouin scattering both in the backward and in the near specular directions. This instability is apparently seeded by broadband scatter from the critical density surface and then amplified in the underdense plasma. 60% of the incident light is scattered, and the Brillouin contribution to total scatter may be large if the source is also large.

  13. Investigation of the effect of laser parameters on the target, plume and plasma behavior during and after laser-solid interaction

    NASA Astrophysics Data System (ADS)

    Stancalie, A.; Ciobanu, S. S.; Sporea, D.

    2017-09-01

    A detailed theoretical and experimental analysis is performed for a wide range of laser operating conditions, typical for laser induced breakdown spectroscopy (LIBS) and laser ablation (LA) experiments on copper metallic target. The plasma parameters were experimentally estimated from the line intensities ratio which reflects the relative population of neutral excited species in the plasma. In the case of LA experiments the highest temperature observed was 8210 ± 370 K. In case of LIBS measurements, a maximum temperature of 8123 K has been determined. The experimental results are in good agreement with a stationary, hydrodynamic model. We have theoretically investigated the plasma emission based on the generalized collisional-radiative model as implemented in the ADAS interconnected set of computer codes and data collections. The ionic population density distribution over the ground and excited states into the cooper plasma is graphically displayed as output from the code. The theoretical line intensity ratios are in good agreement with experimental values for the electron density and temperature range measured in our experiments.

  14. Fast Ignition Realization Experiment with High-Contrast Kilo-Joule Peta-Watt Laser ``LFEX'' and Strong External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Fujioka, Shinsuke

    2015-11-01

    We report on progresses of the Fast Ignition Realization Experiment (FIREX) project that has been curried out at the Institute of Laser Engineering to assess the feasibility of high density core heating with a high-power, short-pulse laser including the construction of the Kilo-Joule, Petawatt class LFEX laser system. Our recent studies identify three scientific challenges to achieve high heating efficiency in the fast ignition (FI) scheme with the current GEKKO and LFEX laser systems: (i) control of energy distribution of relativistic electron beam (REB), (ii) guiding and focusing of REB to a fuel core, and (iii) formation of a high areal-density core. The control of the electron energy distribution has been experimentally confirmed by improving the intensity contrast of the LFEX laser up to >109 and an ultra-high contrast of 1011 with a plasma mirror. After the contrast improvement, 50% of the total REB energy is carried by a low energy component of the REB, which slope temperature is close to the ponderomotive scaling value (~ 1 MeV). To guide the electron beam, we apply strong external magnetic field to the REB transport region. Guiding of the REB by 0.6 kT field in a planar geometry has already been demonstrated at LULI 2000 laser facility in a collaborative experiment lead by CELIA-Univ. Bordeaux. Considering more realistic FI scenario, we have performed a similar experiment using the Kilo-Joule LFEX laser to study the effect of guiding and magnetic mirror on the electron beam. A high density core of a laser-imploded 200 μm-diameter solid CD ball was radiographed with picosecond LFEX-produced K-alpha backlighter. Comparisons of the experimental results and integrated simulations using hydrodynamic and electron transport codes suggest that 10% of the efficiency can be achievable with the current GEKKO and LFEX laser system with the success of the above challenges. This work is supported by NIFS (Japan), MEXT/JSPS KAKENHI (Japan), JSPS Fellowship (Japan), ANR

  15. Chemical Laser Solid Fuels Program

    DTIC Science & Technology

    1976-12-01

    W»B»^liH^l.mii^»i^W!lf^ • J 1 iiit»liu,±. i JW-J-l.^MUUmi-’llU- Uai^i|^p||pp!ippByif JpLLJIJ^I,!. Sintered Nickel Filter Discs Foametal ...nickel foam material called " Foametal "*. The ൵ pore" grade Foametal filter discs had a maximum pore size of approximately 0.056 cm (0.022 in) and...a density of approximately 5 percent of the density of solid nickel. These coarse Foametal discs did catch splatters of molten igniter residue or

  16. Strong terahertz radiation from relativistic laser interaction with solid density plasmas

    NASA Astrophysics Data System (ADS)

    Li, Y. T.; Li, C.; Zhou, M. L.; Wang, W. M.; Du, F.; Ding, W. J.; Lin, X. X.; Liu, F.; Sheng, Z. M.; Peng, X. Y.; Chen, L. M.; Ma, J. L.; Lu, X.; Wang, Z. H.; Wei, Z. Y.; Zhang, J.

    2012-06-01

    We report a plasma-based strong THz source generated in intense laser-solid interactions at relativistic intensities >1018 W/cm2. Energies up to 50 μJ/sr per THz pulse is observed when the laser pulses are incident onto a copper foil at 67.5°. The temporal properties of the THz radiation are measured by a single shot, electro-optic sampling method with a chirped laser pulse. The THz radiation is attributed to the self-organized transient fast electron currents formed along the target surface. Such a source allows potential applications in THz nonlinear physics and provides a diagnostic of transient currents generated in intense laser-solid interactions.

  17. Petawatt Laser - Physics Today article

    SciTech Connect

    Perry, M.D.

    1997-07-02

    The development of small scale multiterawatt and now pentawatt lasers is described. The intent was to develop a laser capable of producing pentawatt pulses in order to examine the fast ignitor concept for inertial confinement fusion. This application requires high pulse energy in addition to the short pulse duration. The essential idea is to pre-implode a deuterium-tritium capsule to an isochoric condition.

  18. Interaction of intense multi-picosecond laser pulses with matter

    NASA Astrophysics Data System (ADS)

    Kemp, Andreas; Divol, Laurent; Cohen, Bruce

    2011-10-01

    We present new results on the two- and three-dimensional kinetic modeling of short-pulse laser-matter interaction of Petawatt pulses at the spatial and temporal scales relevant to current experiments. We address key questions such as characterizing the multi-picosecond evolution of the laser energy conversion into hot electrons, i.e., conversion efficiency as well as angular- and energy distribution; the impact of return currents on the laser-plasma interaction; and the effect of self-generated electric and magnetic fields on electron transport. We will report applications to current experiments at LLNL's Titan laser and Omega EP, and to a Fast-Ignition point design. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  19. Validation of modelled imaging plates sensitivity to 1-100 keV x-rays and spatial resolution characterisation for diagnostics for the “PETawatt Aquitaine Laser”

    SciTech Connect

    Boutoux, G. Batani, D.; Burgy, F.; Ducret, J.-E.; Forestier-Colleoni, P.; Hulin, S.; Rabhi, N.; Duval, A.; Lecherbourg, L.; Reverdin, C.; Jakubowska, K.; Szabo, C. I.; Bastiani-Ceccotti, S.; Consoli, F.; Curcio, A.; De Angelis, R.; Ingenito, F.; Baggio, J.; Raffestin, D.

    2016-04-15

    Thanks to their high dynamic range and ability to withstand electromagnetic pulse, imaging plates (IPs) are commonly used as passive detectors in laser-plasma experiments. In the framework of the development of the diagnostics for the Petawatt Aquitaine Laser facility, we present an absolute calibration and spatial resolution study of five different available types of IP (namely, MS-SR-TR-MP-ND) performed by using laser-induced K-shell X-rays emitted by a solid silver target irradiated by the laser ECLIPSE at CEntre Lasers Intenses et Applications. In addition, IP sensitivity measurements were performed with a 160 kV X-ray generator at CEA DAM DIF, where the absolute response of IP SR and TR has been calibrated to X-rays in the energy range 8-75 keV with uncertainties of about 15%. Finally, the response functions have been modeled in Monte Carlo GEANT4 simulations in order to reproduce experimental data. Simulations enable extrapolation of the IP response functions to photon energies from 1 keV to 1 GeV, of interest, e.g., for laser-driven radiography.

  20. Optimum laser intensity for the production of energetic deuterium ions from laser-cluster interaction

    SciTech Connect

    Bang, W.; Dyer, G.; Quevedo, H. J.; Bernstein, A. C.; Gaul, E.; Rougk, J.; Aymond, F.; Donovan, M. E.; Ditmire, T.

    2013-09-15

    We measured, using Petawatt-level pulses, the average ion energy and neutron yield in high-intensity laser interactions with molecular clusters as a function of laser intensity. The interaction volume over which fusion occurred (1–10 mm{sup 3}) was larger than previous investigations, owing to the high laser power. Possible effects of prepulses were examined by implementing a pair of plasma mirrors. Our results show an optimum laser intensity for the production of energetic deuterium ions both with and without the use of the plasma mirrors. We measured deuterium plasmas with 14 keV average ion energies, which produced 7.2 × 10{sup 6} and 1.6 × 10{sup 7} neutrons in a single shot with and without plasma mirrors, respectively. The measured neutron yields qualitatively matched the expected yields calculated using a cylindrical plasma model.

  1. Laser–plasma interactions for fast ignition

    SciTech Connect

    Kemp, A. J.; Fiuza, F.; Debayle, A.; Johzaki, T.; Mori, W. B.; Patel, P. K.; Sentoku, Y.; Silva, L. O.

    2014-04-17

    In the electron-driven fast-ignition approach to inertial confinement fusion, petawatt laser pulses are required to generate MeV electrons that deposit several tens of kilojoules in the compressed core of an imploded DT shell. We review recent progress in the understanding of intense laser- plasma interactions (LPI) relevant to fast ignition. Increases in computational and modeling capabilities, as well as algorithmic developments have led to enhancement in our ability to perform multidimensional particle-in-cell (PIC) simulations of LPI at relevant scales. We discuss the physics of the interaction in terms of laser absorption fraction, the laser-generated electron spectra, divergence, and their temporal evolution. Scaling with irradiation conditions such as laser intensity, f-number and wavelength are considered, as well as the dependence on plasma parameters. Different numerical modeling approaches and configurations are addressed, providing an overview of the modeling capabilities and limitations. In addition, we discuss the comparison of simulation results with experimental observables. In particular, we address the question of surrogacy of today's experiments for the full-scale fast ignition problem.

  2. Laser–plasma interactions for fast ignition

    DOE PAGES

    Kemp, A. J.; Fiuza, F.; Debayle, A.; ...

    2014-04-17

    In the electron-driven fast-ignition approach to inertial confinement fusion, petawatt laser pulses are required to generate MeV electrons that deposit several tens of kilojoules in the compressed core of an imploded DT shell. We review recent progress in the understanding of intense laser- plasma interactions (LPI) relevant to fast ignition. Increases in computational and modeling capabilities, as well as algorithmic developments have led to enhancement in our ability to perform multidimensional particle-in-cell (PIC) simulations of LPI at relevant scales. We discuss the physics of the interaction in terms of laser absorption fraction, the laser-generated electron spectra, divergence, and their temporalmore » evolution. Scaling with irradiation conditions such as laser intensity, f-number and wavelength are considered, as well as the dependence on plasma parameters. Different numerical modeling approaches and configurations are addressed, providing an overview of the modeling capabilities and limitations. In addition, we discuss the comparison of simulation results with experimental observables. In particular, we address the question of surrogacy of today's experiments for the full-scale fast ignition problem.« less

  3. Laser-plasma interactions for fast ignition

    NASA Astrophysics Data System (ADS)

    Kemp, A. J.; Fiuza, F.; Debayle, A.; Johzaki, T.; Mori, W. B.; Patel, P. K.; Sentoku, Y.; Silva, L. O.

    2014-05-01

    In the electron-driven fast-ignition (FI) approach to inertial confinement fusion, petawatt laser pulses are required to generate MeV electrons that deposit several tens of kilojoules in the compressed core of an imploded DT shell. We review recent progress in the understanding of intense laser-plasma interactions (LPI) relevant to FI. Increases in computational and modelling capabilities, as well as algorithmic developments have led to enhancement in our ability to perform multi-dimensional particle-in-cell simulations of LPI at relevant scales. We discuss the physics of the interaction in terms of laser absorption fraction, the laser-generated electron spectra, divergence, and their temporal evolution. Scaling with irradiation conditions such as laser intensity are considered, as well as the dependence on plasma parameters. Different numerical modelling approaches and configurations are addressed, providing an overview of the modelling capabilities and limitations. In addition, we discuss the comparison of simulation results with experimental observables. In particular, we address the question of surrogacy of today's experiments for the full-scale FI problem.

  4. Characterization of proton and heavier ion acceleration in ultrahigh-intensity laser interactions with heated target foils.

    PubMed

    McKenna, P; Ledingham, K W D; Yang, J M; Robson, L; McCanny, T; Shimizu, S; Clarke, R J; Neely, D; Spohr, K; Chapman, R; Singhal, R P; Krushelnick, K; Wei, M S; Norreys, P A

    2004-09-01

    Proton and heavy ion acceleration in ultrahigh intensity ( approximately 2 x 10(20) W cm(-2) ) laser plasma interactions has been investigated using the new petawatt arm of the VULCAN laser. Nuclear activation techniques have been applied to make the first spatially integrated measurements of both proton and heavy ion acceleration from the same laser shots with heated and unheated Fe foil targets. Fe ions with energies greater than 10 MeV per nucleon have been observed. Effects of target heating on the accelerated ion energy spectra and the laser-to-ion energy conversion efficiencies are discussed. The laser-driven production of the long-lived isotope (57 )Co (271 days) via a heavy ion induced reaction is demonstrated.

  5. Bright multi-keV harmonic generation from relativistically oscillating plasma surfaces.

    PubMed

    Dromey, B; Kar, S; Bellei, C; Carroll, D C; Clarke, R J; Green, J S; Kneip, S; Markey, K; Nagel, S R; Simpson, P T; Willingale, L; McKenna, P; Neely, D; Najmudin, Z; Krushelnick, K; Norreys, P A; Zepf, M

    2007-08-24

    The first evidence of x-ray harmonic radiation extending to 3.3 A, 3.8 keV (order n>3200) from petawatt class laser-solid interactions is presented, exhibiting relativistic limit efficiency scaling (eta approximately n{-2.5}-n{-3}) at multi-keV energies. This scaling holds up to a maximum order, n{RO} approximately 8{1/2}gamma;{3}, where gamma is the relativistic Lorentz factor, above which the first evidence of an intensity dependent efficiency rollover is observed. The coherent nature of the generated harmonics is demonstrated by the highly directional beamed emission, which for photon energy hnu>1 keV is found to be into a cone angle approximately 4 degrees , significantly less than that of the incident laser cone (20 degrees ).

  6. Dense electron-positron plasmas and gamma-ray bursts generation by counter-propagating quantum electrodynamics-strong laser interaction with solid targets

    SciTech Connect

    Luo, Wen; Zhu, Yi-Bo; Song, Ying-Ming; Zhu, Zhi-Chao; Wang, Xiao-Dong; Zhuo, Hong-Bin; Ma, Yan-Yun; Li, Xing-Huo; Turcu, I. C. E.; Chen, Min

    2015-06-15

    We use quantum electrodynamics (QED) particle-in-cell simulations to investigate and compare the generation of dense electron-positron plasmas and intense γ-ray bursts in the case of counter-propagating laser solid interaction (two-side irradiation) and single laser solid interaction (one-side irradiation). In the case of counter-propagating linearly polarized laser pulses irradiating a thin aluminum foil with each pulse peak power of 12.5 PW (I = 4 × 10{sup 23 }W/cm{sup 2}), we calculate that about 20% of the laser energy is converted into a burst of γ-rays with flux exceeding 10{sup 14 }s.{sup −1} This would be one of the most intense γ-ray sources among those currently available in laboratories. The γ-ray conversion efficiency in the case of two-side irradiation is three times higher than in the case of one-side irradiation using a single 12.5 PW laser. Dense electron-positron plasma with a maximum density of 6 × 10{sup 27 }m{sup −3} are generated simultaneously during the two-side irradiation which is eightfold denser compared to the one-side irradiation. The enhancement of the effects in the case of counter-propagating lasers are the results of the symmetrical compression of the foil target and the formation of electric potential and standing wave around the target. Realizing experimentally the proposed counter-propagating QED-strong laser-solid interaction to produce dense electron-positron pairs and prolific γ-rays will be made possible by the Extreme Light Infrastructure-Nuclear Physics facility under construction.

  7. Dense electron-positron plasmas and gamma-ray bursts generation by counter-propagating quantum electrodynamics-strong laser interaction with solid targets

    NASA Astrophysics Data System (ADS)

    Luo, Wen; Zhu, Yi-Bo; Zhuo, Hong-Bin; Ma, Yan-Yun; Song, Ying-Ming; Zhu, Zhi-Chao; Wang, Xiao-Dong; Li, Xing-Huo; Turcu, I. C. E.; Chen, Min

    2015-06-01

    We use quantum electrodynamics (QED) particle-in-cell simulations to investigate and compare the generation of dense electron-positron plasmas and intense γ-ray bursts in the case of counter-propagating laser solid interaction (two-side irradiation) and single laser solid interaction (one-side irradiation). In the case of counter-propagating linearly polarized laser pulses irradiating a thin aluminum foil with each pulse peak power of 12.5 PW (I = 4 × 1023 W/cm2), we calculate that about 20% of the laser energy is converted into a burst of γ-rays with flux exceeding 1014 s.-1 This would be one of the most intense γ-ray sources among those currently available in laboratories. The γ-ray conversion efficiency in the case of two-side irradiation is three times higher than in the case of one-side irradiation using a single 12.5 PW laser. Dense electron-positron plasma with a maximum density of 6 × 1027 m-3 are generated simultaneously during the two-side irradiation which is eightfold denser compared to the one-side irradiation. The enhancement of the effects in the case of counter-propagating lasers are the results of the symmetrical compression of the foil target and the formation of electric potential and standing wave around the target. Realizing experimentally the proposed counter-propagating QED-strong laser-solid interaction to produce dense electron-positron pairs and prolific γ-rays will be made possible by the Extreme Light Infrastructure-Nuclear Physics facility under construction.

  8. Theoretical Understanding of Enhanced Proton Energies from Laser-Cone Interactions

    SciTech Connect

    Kluge, T.; Gaillard, S. A.; Bussmann, M.; Burris-Mog, T.; Kraft, S. D.; Metzkes, J.; Rassuchine, J.; Schramm, U.; Zeil, K.; Cowan, T. E.; Flippo, K. A.; Offermann, D. T.; Gall, B.; Geissel, M.; Schollmeier, M.; Lockard, T.; Sentoku, Y.

    2010-11-04

    For the past ten years, the highest proton energies accelerated with high-intensity lasers was 58 MeV, observed in 2000 at the LLNL NOVA Petawatt laser, using flat foil targets. Recently, 67.5 MeV protons were observed in experiments at the Los Alamos National Laboratory (LANL) Trident laser, using one-fifth of the PW laser pulse energy, incident into novel conical targets. We present a focused study of new theoretical understanding of this measured enhancement from collisional Particle-in-Cell simulations, which shows that the hot electron temperature, number and maximum energy, responsible for the Target Normal Sheath Acceleration (TNSA) at the cone-top, are significantly increased when the laser grazes the cone wall. This is mainly due to the extraction of electrons from the cone wall by the laser electric field, and their boost in the forward direction by the vxB term of the Lorentz force. This result is in contrast to previous predictions of optical collection and wall-guiding of electrons in angled cones. This new wall-grazing mechanism offers the prospect to linearly increase the hot electron temperature, and thereby the TNSA proton energy, by extending the length over which the laser interacts in a grazing fashion in suitably optimized targets. This may allow achieving much higher proton energies for interesting future applications, with smaller, lower energy laser systems that allow for a high repetition rate.

  9. Measurement of electromagnetic pulses generated during interactions of high power lasers with solid targets

    NASA Astrophysics Data System (ADS)

    De Marco, M.; Krása, J.; Cikhardt, J.; Pfeifer, M.; Krouský, E.; Margarone, D.; Ahmed, H.; Borghesi, M.; Kar, S.; Giuffrida, L.; Vrana, R.; Velyhan, A.; Limpouch, J.; Korn, G.; Weber, S.; Velardi, L.; Delle Side, D.; Nassisi, V.; Ullschmied, J.

    2016-06-01

    A target irradiated with a high power laser pulse, blows off a large amount of charge and as a consequence the target itself becomes a generator of electromagnetic pulses (EMP) owing to high return current flowing to the ground through the target holder. The first measurement of the magnetic field induced by the neutralizing current reaching a value of a few kA was performed with the use of an inductive target probe at the PALS Laser Facility (Cikhardt et al. Rev. Sci. Instrum. 85 (2014) 103507). A full description of EMP generation should contain information on the spatial distribution and temporal variation of the electromagnetic field inside and outside of the interaction chamber. For this reason, we consider the interaction chamber as a resonant cavity in which different modes of EMP oscillate for hundreds of nanoseconds, until the EMP is transmitted outside through the glass windows and EM waves are attenuated. Since the experimental determination of the electromagnetic field distribution is limited by the number of employed antennas, a mapping of the electromagnetic field has to be integrated with numerical simulations. Thus, this work reports on a detailed numerical mapping of the electromagnetic field inside the interaction chamber at the PALS Laser Facility (covering a frequency spectrum from 100 MHz to 3 GHz) using the commercial code COMSOL Multiphysics 5.2. Moreover we carried out a comparison of the EMP generated in the parallelepiped-like interaction chamber used in the Vulcan Petawatt Laser Facility at the Rutherford Appleton Laboratory, against that produced in the spherical interaction chamber of PALS.

  10. SPECTRAL AMPLITUDE AND PHASE EVOLUTION IN PETAWATT LASER PULSES

    SciTech Connect

    Filip, C V

    2010-11-22

    The influence of the active gain medium on the spectral amplitude and phase of amplified pulses in a CPA system is studied. Results from a 10-PW example based on Nd-doped mixed glasses are presented. In conclusion, this study shows that, by using spectral shaping and gain saturation in a mixed-glass amplifier, it is possible to produce 124 fs, 1.4 kJ laser pulses. One detrimental effect, the pulse distortion due to resonant amplification medium, has been investigated and its magnitude as well as its compensation calculated.

  11. Laser Ion Acceleration from the Interaction of Ultra-Intense laser Pulse with thi foils

    SciTech Connect

    Allen, Matthew Mark

    2004-03-12

    The discovery that ultra-intense laser pulses (I > 1018 W/cm2) can produce short pulse, high energy proton beams has renewed interest in the fundamental mechanisms that govern particle acceleration from laser-solid interactions. Experiments have shown that protons present as hydrocarbon contaminants on laser targets can be accelerated up to energies > 50 MeV. Different theoretical models that explain the observed results have been proposed. One model describes a front-surface acceleration mechanism based on the ponderomotive potential of the laser pulse. At high intensities (I > 1018 W/cm2), the quiver energy of an electron oscillating in the electric field of the laser pulse exceeds the electron rest mass, requiring the consideration of relativistic effects. The relativistically correct ponderomotive potential is given by Up = ([1 + Iλ2/1.3 x 1018]1/2 - 1) moc2, where Iλ2 is the irradiance in Wμm2/cm2 and moc2 is the electron rest mass.At laser irradiance of Iλ2 ~ 1018 Wμm2/cm2, the ponderomotive potential can be of order several MeV. A few recent experiments--discussed in Chapter 3 of this thesis--consider this ponderomotive potential sufficiently strong to accelerate protons from the front surface of the target to energies up to tens of MeV. Another model, known as Target Normal Sheath Acceleration (TNSA), describes the mechanism as an electrostatic sheath on the back surface of the laser target. According to the TNSA model, relativistic hot electrons created at the laser-solid interaction penetrate the foil where a few escape to infinity. The remaining hot electrons are retained by the target potential and establish an electrostatic sheath on the back surface of the target.

  12. Gamma-ray emission in ultra-intense laser interaction with solid targets

    NASA Astrophysics Data System (ADS)

    Klimo, Ondrej; Vyskocil, Jiri; Kumar, Deepak; Limpouch, Jiri; Weber, Stefan

    2016-10-01

    Electrons moving in ultra-intense laser fields emit hard radiation due to radiation reaction and non-linear Compton scattering. Multi-MeV γ-rays were measured by scattering of electrons generated from laser wakefield with a focused laser of intensity a0 1 . However, non-linear Compton scattering and radiation reaction is also an efficient mechanism for generating copious amount of γ-rays in laser interaction with solids at intensities approaching 1022 W/cm2. Emission of γ-rays due to radiation reaction and bremsstrahlung are investigated here in the high intensity regime of laser-solid target interaction by using a combination of Particle-in-Cell and Monte Carlo radiation transport simulations. The relative contribution of these processes is analyzed as a function of the target parameters. We concentrate on the influence of the target thickness, material, preplasma conditions or a surface structure on the generation of high energy photons and study separately their energy and angular distributions. It is demonstrated that the presence of preplasma or a special surface structure may significantly enhance emission of hard γ photons and their cut-off energy and change their angular distribution. Supported by Czech Science Foundation project 15-02964S.

  13. Optically Levitated Targets as a Source for High Brightness X-rays and a Platform for Mass-Limited Laser-interaction Experiments

    NASA Astrophysics Data System (ADS)

    Giltrap, Samuel; Stuart, Nick; Robinson, Tim; Armstrong, Chris; Hicks, George; Eardley, Sam; Gumbrell, Ed; Smith, Roland

    2016-10-01

    Here we report on the development of an optical levitation based x-ray and proton source, motivated by the requirement for a debris free, high spatial resolution, and low EMP source for x-ray radiography and proton production. Research at Imperial College has led to the development of a feedback controlled optical levitation trap which is capable of holding both solid (Glass beads) and liquid (silicon based oil) micro-targets ( 3-10um). The optical levitation trap has been successfully fielded in a high-intensity laser interaction experiment at Imperial College London and at the Vulcan Petawatt Laser system at the Rutherford Appleton Laboratory (RAL). Here we report on the results from that RAL run including; an x-ray source size of 10-15um with very good spherical symmetry when compared to wire targets, secondly very low EMP signal from isolated levitated targets (9 times less RF signal than a comparable wire target). At Imperial College we were also able to record an x-ray energy spectrum which produced an electron temperature of 0.48KeV, and performed interferometry of a shock evolving into a blast wave off an optically levitated droplet which allowed us to infer the electron density within the shock front.

  14. Study of the yield of D-D, D-3He fusion reactions produced by the interaction of intense ultrafast laser pulses with molecular clusters

    NASA Astrophysics Data System (ADS)

    Barbui, Marina; Bang, Woosuk; Bonasera, Aldo; Hagel, Kris; Schmidt, Katarzyna; Natowitz, Joseph; Giuliani, Gianluca; Barbarino, Matteo; Dyer, Gilliss; Quevedo, Hernan; Gaul, Erhard; Borger, Ted; Bernstein, Aaron; Martinez, Mikael; Donovan, Michael; Ditmire, Todd; Kimura, Sachie; Mazzocco, Marco; Consoli, Fabrizio; De Angelis, Riccardo; Andreoli, Pierluigi

    2013-03-01

    The interaction of intense ultrafast laser pulses with molecular clusters produces a Coulomb explosion of the clusters. In this process, the positive ions from the clusters might gain enough kinetic energy to drive nuclear reactions. An experiment to measure the yield of D-D and D-3He fusion reactions was performed at University of Texas Center for High Intensity Laser Science. Laser pulses of energy ranging from 100 to 180 J and duration 150fs were delivered by the Petawatt laser. The temperature of the energetic deuterium ions was measured using a Faraday cup, whereas the yields of the D-D reactions were measured by detecting the characteristic 2.45 MeV neutrons and 3.02 MeV protons. In order to allow the simultaneous measurement of 3He(D,p)4He and D-D reactions, different concentrations of D2 and 3He or CD4 and 3He were mixed in the gas jet target. The 2.45 MeV neutrons from the D(D,n)3He reaction were detecteded as well as the 14.7 MeV protons from the 3He(D,p)4He reaction. The preliminary results will be shown.

  15. Ultrabroadband Relay Imaged GRENOUILLE as a Time-Resolved Diagnostic for Relativistic Hole Boring

    NASA Astrophysics Data System (ADS)

    Wagner, Craig; Bernstein, Aaron; Dyer, Gilliss; Ditmire, Todd

    2015-11-01

    In a highly intense laser-solid interaction, the surface of the resultant plasma is pushed into the interior of the target at a significant fraction of the speed of light as a result of the intense radiation pressure from the focused laser beam. This is known as hole boring. During the hole boring process laser interactions with electrons at the receding target surface generate light at frequency harmonics of the incident laser. The frequency shift of these harmonics is proportional to the velocity of the target surface. In previous experiments at the Texas Petawatt we observed red-shifts in the 351nm harmonic up to 513nm, corresponding to a recession velocity of 0.18c. We designed an ultra-broadband GRENOUILLE to conduct time resolved measurements of spectral shifting of second harmonic light over the duration of the incident laser pulse. This GRENOUILLE is relay imaged from the target plane to prevent spectral splitting, and is an all reflective design to reduce pulse broadening and chromatic aberrations. With an f/3.15 optic focusing into a thick BBO crystal, the system accepts wavelengths from 526nm to 766nm with 4.8nm spectral resolution and 5.6fs temporal resolution. This work was supported by NNSA cooperative agreement DE-NA0002008.

  16. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    SciTech Connect

    Scisciò, M.; Antici, P.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.

    2016-03-07

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.

  17. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Scisciò, M.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.; Antici, P.

    2016-03-01

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.

  18. Interactive numerals

    PubMed Central

    2017-01-01

    Although Arabic numerals (like ‘2016’ and ‘3.14’) are ubiquitous, we show that in interactive computer applications they are often misleading and surprisingly unreliable. We introduce interactive numerals as a new concept and show, like Roman numerals and Arabic numerals, interactive numerals introduce another way of using and thinking about numbers. Properly understanding interactive numerals is essential for all computer applications that involve numerical data entered by users, including finance, medicine, aviation and science. PMID:28484609

  19. Media Interaction.

    ERIC Educational Resources Information Center

    Nordlund, Jan-Erik

    1978-01-01

    Defines and operationalizes the concept of media interaction, which implies that the audience member experiences "interaction" with, and in many cases identifies with, persons in the media content. Presents a model of media interaction and the results of surveys conducted to explore hypotheses derived form the model. (JMF)

  20. Interacting faults

    NASA Astrophysics Data System (ADS)

    Peacock, D. C. P.; Nixon, C. W.; Rotevatn, A.; Sanderson, D. J.; Zuluaga, L. F.

    2017-04-01

    The way that faults interact with each other controls fault geometries, displacements and strains. Faults rarely occur individually but as sets or networks, with the arrangement of these faults producing a variety of different fault interactions. Fault interactions are characterised in terms of the following: 1) Geometry - the spatial arrangement of the faults. Interacting faults may or may not be geometrically linked (i.e. physically connected), when fault planes share an intersection line. 2) Kinematics - the displacement distributions of the interacting faults and whether the displacement directions are parallel, perpendicular or oblique to the intersection line. Interacting faults may or may not be kinematically linked, where the displacements, stresses and strains of one fault influences those of the other. 3) Displacement and strain in the interaction zone - whether the faults have the same or opposite displacement directions, and if extension or contraction dominates in the acute bisector between the faults. 4) Chronology - the relative ages of the faults. This characterisation scheme is used to suggest a classification for interacting faults. Different types of interaction are illustrated using metre-scale faults from the Mesozoic rocks of Somerset and examples from the literature.

  1. Time-dependent energetic proton acceleration and scaling laws in ultraintense laser-pulse interactions with thin foils.

    PubMed

    Huang, Yongsheng; Bi, Yuanjie; Shi, Yijin; Wang, Naiyan; Tang, Xiuzhang; Gao, Zhe

    2009-03-01

    A two-phase model, where the plasma expansion is an isothermal one when laser irradiates and a following adiabatic one after laser ends, has been proposed to predict the maximum energy of the proton beams induced in the ultraintense laser-foil interactions. The hot-electron recirculation in the ultraintense laser-solid interactions has been accounted in and described by the time-dependent hot-electron density continuously in this model. The dilution effect of electron density as electrons recirculate and spread laterally has been considered. With our model, the scaling laws of maximum ion energy have been achieved and the dependence of the scaling coefficients on laser intensity, pulse duration, and target thickness have been obtained. Some interesting results have been predicted: the adiabatic expansion is an important process of the ion acceleration and cannot be neglected; the whole acceleration time is about 10-20 times of laser-pulse duration; the larger the laser intensity, the more sensitive the maximum ion energy to the change of focus radius, and so on.

  2. Imagined Interactions

    ERIC Educational Resources Information Center

    Honeycutt, James M.

    2010-01-01

    Social scientists have been studying imagined interactions since the mid-1980s and have measured numerous physiological correlates (Honeycutt, 2010). In this commentary I assess the research reported in Crisp and Turner (May-June 2009) and highlight the underlying mechanisms of imagined interactions that have empirically been laid out across…

  3. Imagined Interactions

    ERIC Educational Resources Information Center

    Honeycutt, James M.

    2010-01-01

    Social scientists have been studying imagined interactions since the mid-1980s and have measured numerous physiological correlates (Honeycutt, 2010). In this commentary I assess the research reported in Crisp and Turner (May-June 2009) and highlight the underlying mechanisms of imagined interactions that have empirically been laid out across…

  4. Interacting parasites

    USGS Publications Warehouse

    Lafferty, Kevin D.

    2010-01-01

    Parasitism is the most popular life-style on Earth, and many vertebrates host more than one kind of parasite at a time. A common assumption is that parasite species rarely interact, because they often exploit different tissues in a host, and this use of discrete resources limits competition (1). On page 243 of this issue, however, Telfer et al. (2) provide a convincing case of a highly interactive parasite community in voles, and show how infection with one parasite can affect susceptibility to others. If some human parasites are equally interactive, our current, disease-by-disease approach to modeling and treating infectious diseases is inadequate (3).

  5. Interacting Galaxies

    NASA Image and Video Library

    2008-04-24

    This beautiful pair of interacting galaxies consists of NGC 5754, the large spiral on the right, and NGC 5752, the smaller companion in the bottom left corner of the image. This image is from NASA Hubble Space Telescope.

  6. Interactive training.

    PubMed

    Toogood, Sandy

    2008-09-01

    Active support (AS) was developed to help staff organise and deliver practical support for meaningful client engagement in everyday activities. Both the amount and momentary effectiveness of staff support for client engagement have been found to increase following AS training. Training typically consists of a combination of workshops and onsite coaching sessions. To date, onsite training procedures have not been described or evaluated independently of AS workshops. An onsite training procedure used in AS--interactive training (IT)--was evaluated independently of AS workshops through direct observation of staff and client behaviour. Staff views were canvassed via a questionnaire. Following interactive training, staff assistance and client engagement increased. Staff views on the experience were positive. Results from this preliminary study suggest that further research on the effectiveness of interactive training is warranted.

  7. Weak Interactions

    DOE R&D Accomplishments Database

    Lee, T. D.

    1957-06-01

    Experimental results on the non-conservation of parity and charge conservation in weak interactions are reviewed. The two-component theory of the neutrino is discussed. Lepton reactions are examined under the assumption of the law of conservation of leptons and that the neutrino is described by a two- component theory. From the results of this examination, the universal Fermi interactions are analyzed. Although reactions involving the neutrino can be described, the same is not true of reactions which do not involve the lepton, as the discussion of the decay of K mesons and hyperons shows. The question of the invariance of time reversal is next examined. (J.S.R.)

  8. Interacting Compasses

    NASA Astrophysics Data System (ADS)

    Riveros, Héctor G.; Betancourt, Julián

    2009-10-01

    The use of multiple compasses to map and visualize magnetic fields is well-known. The magnetic field exerts a torque on the compasses aligning them along the lines of force. Some science museums show the field of a magnet using a table with many compasses in a closely packed arrangement. However, the very interesting interactions that occur between the compasses themselves are frequently neglected. In this paper we describe demonstrations, using arrays of compasses, that show these interactions and model magnetic domains in ferromagnetic materials.

  9. Interactive Video.

    ERIC Educational Resources Information Center

    Boyce, Carol

    1992-01-01

    A workshop on interactive video was designed for fourth and fifth grade students, with the goals of familiarizing students with laser disc technology, developing a cadre of trained students to train other students and staff, and challenging able learners to utilize higher level thinking skills while conducting a research project. (JDD)

  10. Interactive Astronomy.

    ERIC Educational Resources Information Center

    Martin, Jean K.

    1997-01-01

    Presents guiding principles for developing interactive lessons for the World Wide Web. Describes "Amazing Space: Education Online from the Hubble Space Telescope", a program where students study spectacular Hubble Space Telescope images of stars and star-forming regions to learn about the life cycle of stars and the creation of atoms. (JRH)

  11. Constructive Interaction.

    ERIC Educational Resources Information Center

    Miyake, Naomi

    To identify conditions that make a conversational interaction constructive--in the sense that the participants can find the way toward the success of what they wanted to accomplish--two situations were examined. In one, a professional researcher explained her data to a statistician. In the other, three groups of two people cooperated with each…

  12. Interacting Compasses

    ERIC Educational Resources Information Center

    Riveros, Hector G.; Betancourt, Julian

    2009-01-01

    The use of multiple compasses to map and visualize magnetic fields is well-known. The magnetic field exerts a torque on the compasses aligning them along the lines of force. Some science museums show the field of a magnet using a table with many compasses in a closely packed arrangement. However, the very interesting interactions that occur…

  13. Interactive Astronomy.

    ERIC Educational Resources Information Center

    Martin, Jean K.

    1997-01-01

    Presents guiding principles for developing interactive lessons for the World Wide Web. Describes "Amazing Space: Education Online from the Hubble Space Telescope", a program where students study spectacular Hubble Space Telescope images of stars and star-forming regions to learn about the life cycle of stars and the creation of atoms. (JRH)

  14. Interacting Compasses

    ERIC Educational Resources Information Center

    Riveros, Hector G.; Betancourt, Julian

    2009-01-01

    The use of multiple compasses to map and visualize magnetic fields is well-known. The magnetic field exerts a torque on the compasses aligning them along the lines of force. Some science museums show the field of a magnet using a table with many compasses in a closely packed arrangement. However, the very interesting interactions that occur…

  15. Interactive Macroeconomics

    NASA Astrophysics Data System (ADS)

    Di Guilmi, Corrado; Gallegati, Mauro; Landini, Simone

    2017-04-01

    Preface; List of tables; List of figures, 1. Introduction; Part I. Methodological Notes and Tools: 2. The state space notion; 3. The master equation; Part II. Applications to HIA Based Models: 4. Financial fragility and macroeconomic dynamics I: heterogeneity and interaction; 5. Financial fragility and macroeconomic Dynamics II: learning; Part III. Conclusions: 6. Conclusive remarks; Part IV. Appendices and Complements: Appendix A: Complements to Chapter 3; Appendix B: Solving the ME to solve the ABM; Appendix C: Specifying transition rates; Index.

  16. Sibling interaction.

    PubMed

    Balsam, Rosemary H

    2013-01-01

    Sibling interactions traditionally were conceived psychoanalytically in "vertical" and parentified oedipal terms and overlooked in their own right, for complicated reasons (Colonna and Newman 1983). Important work has been done to right this, from the 1980s and onward, with conferences and writings. Juliet Mitchell's 2000 and, in particular, her 2003 books, for example, have brought "lateral" sibling relations forcefully to the forefront of insights, especially about sex and violence, with the added interdisciplinary impact of illuminating upheaval in global community interactions as well as having implications for clinicians. A clinical example from the analysis of an adult woman with a ten-years-younger sister will show here how we need both concepts to help us understand complex individual psychic life. The newer "lateral" sibling emphasis, including Mitchell's "Law of the Mother" and "seriality," can be used to inform the older "vertical" take, to enrich the full dimensions of intersubjective oedipal and preoedipal reciprocities that have been foundational in shaping that particular analysand's inner landscape. Some technical recommendations for heightening sensitivity to the import of these dynamics will be offered along the way here, by invoking Hans Loewald's useful metaphor of the analytic situation as theater.

  17. [Pharmacokinetic interactions].

    PubMed

    Arazo Garcés, Piedad; de los Santos Gil, Ignacio

    2013-06-01

    Rilpivirine (RPV) is a nonnucleoside reverse transcriptase inhibitor (NNRTI) that has been approved for use in treatment-naïve patients and which has potent antiviral activity. Its adverse effects profile differs from that of first-generation NNRTs. The pharmacological interactions produced by RPV are due to its effects on the CYP450 system; RPV is a substrate and mild inducer of CYP3A4. Moreover, in vitro, RPV inhibits glycoprotein-P. RPV has clinically significant pharmacological interactions, especially with protease inhibitors (except boosted darunavir and lopinavir) and the NNRTIs efavirenz and nevirapine. Coadministration of RPV with drugs that increase gastric pH, such as omeprazole, or those inducing CYP3A4, such as rifampicin, can significantly reduce RPV concentrations and is contraindicated. The concomitant use of RPV with a CYP3A4 inhibitor (such as clarithromycin) can increase RPV concentrations. Administration of PRV with food is recommended to obtain better absorption and adequate plasma values. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  18. Cosmic Interactions

    NASA Astrophysics Data System (ADS)

    2008-01-01

    An image based on data taken with ESO's Very Large Telescope reveals a triplet of galaxies intertwined in a cosmic dance. ESO PR Photo 02/08 ESO PR Photo 02/08 NGC 7173, 7174, and 7176 The three galaxies, catalogued as NGC 7173 (top), 7174 (bottom right) and 7176 (bottom left), are located 106 million light-years away towards the constellation of Piscis Austrinus (the 'Southern Fish'). NGC 7173 and 7176 are elliptical galaxies, while NGC 7174 is a spiral galaxy with quite disturbed dust lanes and a long, twisted tail. This seems to indicate that the two bottom galaxies - whose combined shape bears some resemblance to that of a sleeping baby - are currently interacting, with NGC 7176 providing fresh material to NGC 7174. Matter present in great quantity around the triplet's members also points to the fact that NGC 7176 and NGC 7173 have interacted in the past. Astronomers have suggested that the three galaxies will finally merge into a giant 'island universe', tens to hundreds of times as massive as our own Milky Way. ESO PR Photo 02/08 ESO PR Photo 02b/08 NGC 7173, 7174, and 7176 The triplet is part of a so-called 'Compact Group', as compiled by Canadian astronomer Paul Hickson in the early 1980s. The group, which is the 90th entry in the catalogue and is therefore known as HCG 90, actually contains four major members. One of them - NGC 7192 - lies above the trio, outside of this image, and is another peculiar spiral galaxy. Compact groups are small, relatively isolated, systems of typically four to ten galaxies in close proximity to one another. Another striking example is Robert's Quartet. Compact groups are excellent laboratories for the study of galaxy interactions and their effects, in particular the formation of stars. As the striking image reveals, there are many other galaxies in the field. Some are distant ones, while others seem to be part of the family. Studies made with other telescopes have indeed revealed that the HCG 90 group contains 16 members

  19. Electroweak interactions

    SciTech Connect

    Bjorken, J.D.

    1980-10-01

    A point of view of the electroweak interaction is presented. It begins phenomenologically and moves in stages toward the conventional gauge theory formalism containing elementary scalar Higgs-fields and then beyond. The purpose in so doing is that the success of the standard SU(2) x U(1) theory in accounting for low energy phenomena need not automatically imply success at high energies. It is deemed unlikely by most theorists that the predicted W/sup + -/ or Z/sup 0/ does not exist or does not have the mass and/or couplings anticipated in the standard model. However, the odds that the standard predictions will work are not 100%. Therefore there is some reason to look at the subject as one would were he forced by a wrong experimental outcome - to go back to fundamentals and ascertain what is the minimal amount of theory necessary to account for the data.

  20. Designing "Interaction": How Do Interaction Design Students Address Interaction?

    ERIC Educational Resources Information Center

    Karlgren, Klas; Ramberg, Robert; Artman, Henrik

    2016-01-01

    Interaction design is usually described as being concerned with interactions with and through artifacts but independent of a specific implementation. Design work has been characterized as a conversation between the designer and the situation and this conversation poses a particular challenge for interaction design as interactions can be elusive…

  1. Designing "Interaction": How Do Interaction Design Students Address Interaction?

    ERIC Educational Resources Information Center

    Karlgren, Klas; Ramberg, Robert; Artman, Henrik

    2016-01-01

    Interaction design is usually described as being concerned with interactions with and through artifacts but independent of a specific implementation. Design work has been characterized as a conversation between the designer and the situation and this conversation poses a particular challenge for interaction design as interactions can be elusive…

  2. Experimental study of fast electrons from the interaction of ultra intense laser and solid density plasmas

    NASA Astrophysics Data System (ADS)

    Cho, Byoung-Ick

    A series of experiments have been performed to understand fast electron generation from ultra intense laser-solid interaction, and their transports through a cold material. Using Micro-Electro-Mechanical Systems (MEMS), we contrived various shape of cone and wedge targets. The first set of experiment was for investigating hot electron generations by measuring x-ray production in different energy ranges. Kalpha and hard x-ray yields were compared when the laser was focused into pyramidal shaped cone targets and wedge shaped targets. Hot electron production is highest in the wedge targets irradiated with transverse polarization, though Kalpha is maximized with wedge targets and parallel polarization. These results are explained with particle-in-cell (PIC) simulations utilizing PICLS and OOPIC codes. We also investigate hot electron transport in foil, wedge, and cone targets by observing the transition radiation emitted from the targets rear side along with bremsstrahlung x-ray measurement. Two-dimensional images and spectra of 800 nm coherent transition radiation (CTR) along with ballistic electron transport analysis have revealed the spatial, temporal, and temperature characteristics of hot electron micro-pulses. Various patterns from different target-laser configurations suggest that hot electrons were guided by the strong static electromagnetic fields at the target boundary. Evidence about fast electron guiding in the cone is also observed. CTR at 400 nm showed that two distinct beams of MeV electrons are emitted from the target rear side at the same time. This measurement indicates that two different mechanisms, namely resonance absorption and j x B heating, create two populations of electrons at the targets front side and drive them to different directions, with distinct temperatures and temporal characteristics. This interpretation is consistent with the results from 3D-PIC code Virtual Laser Plasma Laboratory (VLPL).

  3. Cloud Interactions

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 1 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth.

    Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms.

    This image was acquired during mid-spring near the North Pole. The linear water-ice clouds are now regional in extent and often interact with neighboring cloud system, as seen in this image. The bottom of the image shows how the interaction can destroy the linear nature. While the surface is still visible through most of the clouds, there is evidence that dust is also starting to enter the atmosphere.

    Image information: VIS instrument. Latitude 68.4, Longitude 258.8 East (101.2 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration

  4. Probing the dynamics of the interaction between few-cycle laser pulses and single crystal (100) Si and GaAs near the laser-induced damage threshold

    NASA Astrophysics Data System (ADS)

    Talisa, Noah; Werner, Kevin; Kafka, Kyle; Austin, Drake R.; Chowdhury, Enam

    2016-12-01

    The dynamics of the laser-solid interaction with high intensity ultra-short s-polarized few-cycle pulses (FCPs) (Ephoton 1.65 eV) and single crystals (100) Si and GaAs (Egap 1.14 and 1.4 eV, respectivly) near the multipulse laser-induced damage threshold (LIDT) were measured using a pump-probe reflectivity technique. FCP's with central wavelength 760 nm and FWHM duration 5 fs used as both pump and probe pulses were incident at 45°, and the reflectivity of each probe pulse was measured as the delay between the pump and probe pulses was varied with 0.1 fs resolution. Near zero delay, the probe pulse reflectivity displayed oscillatory behavior relative to the unexcited reflectivity for both materials, with a period equal to the optical cycle ( 2.6 fs). For Si, the crystal orientation was varied so that the field polarization was parallel to the (010) and (011) directions, and half way in between. Significantly larger zero delay oscillations were observed for the field polarization parallel to the (011) direction compared to those for the other two directions.

  5. Formation et interaction (Teacher Education and Interaction).

    ERIC Educational Resources Information Center

    Bertocchini, Paola; Costanzo, Edwige

    1989-01-01

    Effective interaction is as important in inservice education programs for language teachers as it is in the foreign language classroom. Techniques are described for improving the quality of interaction in teacher workshops through simulation exercises. (MSE)

  6. Absorptions UV dans le fonctionnement des sources lasers solides à ions de terres rares

    NASA Astrophysics Data System (ADS)

    Moncorgé, R.; Margerie, J.; Doualan, J. L.; Nagtegaele, P.; Guyot, Y.

    2006-12-01

    L'article donne une description et analyse les phénomènes d'absorption UV à l'origine des mécanismes de solarisation et de variation d'indice de réfraction observés dans certains matériaux dopés terres rares étudiés pour leurs propriétés laser UV ou infrarouge lorsqu'ils sont soumis à de fortes densités d'excitation optique.

  7. Ion acceleration from the interaction of ultra-intense lasers with solid foils

    NASA Astrophysics Data System (ADS)

    Allen, Matthew Mark

    The discovery that ultra-intense laser pulses (I > 10 18 W/cm2) can produce short pulse, high energy proton beams has renewed interest in the fundamental mechanisms that govern particle acceleration from laser-solid interactions. In this thesis we present several experiments that study the accelerated ions by affecting the contamination layer from which they originate. Radiative heating was employed as a method of removing contamination from palladium targets doped with deuterium. We present evidence that ions heavier than protons can be accelerated if hydrogenous contaminants that cover the laser target can be removed. We show that deuterons can be accelerated from the deuterated-palladium target, which has been radiatively heating to remove contaminants. Impinging a deuteron beam onto a tritiated-titanium catcher could lead to the development of a table-top source of short-pulse, 14-MeV fusion neutrons. We also show that by using an argon-ion sputter gun, contaminants from one side of the laser target can be selectively removed without affecting the other side. We show that irradiating a thin metallic foil with an ultra-intense laser pulse produces a proton beam with a yield of 1.5--2.5 10 11 and temperature, kT = 1.5 MeV with a maximum proton energy >9 MeV. Removing contaminants from the front surface of the laser target with an argon-ion sputter gun, had no observable effect on the proton beam. However, removing contaminants from the back surface of the laser target reduced the proton beam by two orders of magnitude to, at most, a yield of ˜10 9 and a maximum proton energy <4 MeV. Based on these observations, we conclude that the majority (>99%) of high energy protons (E > 5 MeV) from the interaction of an ultra-intense laser pulse with a thin foil originate on the back surface of the foil---as predicted by the TNSA model. Our experimental results are in agreement with PIC simulations showing back surface protons reach energies up to 13 MeV, while front

  8. PIC: Protein Interactions Calculator

    PubMed Central

    Tina, K. G.; Bhadra, R.; Srinivasan, N.

    2007-01-01

    Interactions within a protein structure and interactions between proteins in an assembly are essential considerations in understanding molecular basis of stability and functions of proteins and their complexes. There are several weak and strong interactions that render stability to a protein structure or an assembly. Protein Interactions Calculator (PIC) is a server which, given the coordinate set of 3D structure of a protein or an assembly, computes various interactions such as disulphide bonds, interactions between hydrophobic residues, ionic interactions, hydrogen bonds, aromatic–aromatic interactions, aromatic–sulphur interactions and cation–π interactions within a protein or between proteins in a complex. Interactions are calculated on the basis of standard, published criteria. The identified interactions between residues can be visualized using a RasMol and Jmol interface. The advantage with PIC server is the easy availability of inter-residue interaction calculations in a single site. It also determines the accessible surface area and residue-depth, which is the distance of a residue from the surface of the protein. User can also recognize specific kind of interactions, such as apolar–apolar residue interactions or ionic interactions, that are formed between buried or exposed residues or near the surface or deep inside. PMID:17584791

  9. PIC: Protein Interactions Calculator.

    PubMed

    Tina, K G; Bhadra, R; Srinivasan, N

    2007-07-01

    Interactions within a protein structure and interactions between proteins in an assembly are essential considerations in understanding molecular basis of stability and functions of proteins and their complexes. There are several weak and strong interactions that render stability to a protein structure or an assembly. Protein Interactions Calculator (PIC) is a server which, given the coordinate set of 3D structure of a protein or an assembly, computes various interactions such as disulphide bonds, interactions between hydrophobic residues, ionic interactions, hydrogen bonds, aromatic-aromatic interactions, aromatic-sulphur interactions and cation-pi interactions within a protein or between proteins in a complex. Interactions are calculated on the basis of standard, published criteria. The identified interactions between residues can be visualized using a RasMol and Jmol interface. The advantage with PIC server is the easy availability of inter-residue interaction calculations in a single site. It also determines the accessible surface area and residue-depth, which is the distance of a residue from the surface of the protein. User can also recognize specific kind of interactions, such as apolar-apolar residue interactions or ionic interactions, that are formed between buried or exposed residues or near the surface or deep inside.

  10. X-ray and gamma ray emission from petawatt laser-driven nanostructured metal targets

    NASA Astrophysics Data System (ADS)

    Hill, Matthew; Allan, Peter; Brown, Colin; Hoarty, David; Hobbs, Lauren; James, Steven; Bargsten, Clayton; Hollinger, Reed; Rocca, Jorge; Park, Jaebum; Chen, Hui; London, Richard; Shepherd, Ronnie; Tommasini, Riccardo; Vinko, Sam; Wark, Justin; Marjoribanks, Robin; Neely, David; Spindloe, Chris

    2016-10-01

    Nano-wire arrays of nickel and gold have been fired at the Orion laser facility using high contrast 1 ω and 2 ω short pulse beams (0.7 ps pulse length, >1020 W cm-2 intensity). Time-resolved and time-integrated K-shell and M-shell emission have been characterized and compared to those of flat foils, investigating the capability of these metamaterial coatings to enhance laser-target coupling and X-ray emission. Bremsstrahlung emission of gamma rays and associated pair production via the Bethe-Heitler process have also been investigated by use of 1 mm-thick gold substrates attached to the gold nanowires. We present our latest experimental data and outline some potential future applications.

  11. System Modeling of kJ-class Petawatt Lasers at LLNL

    SciTech Connect

    Shverdin, M Y; Rushford, M; Henesian, M A; Boley, C; Haefner, C; Heebner, J E; Crane, J K; Siders, C W; Barty, C P

    2010-04-14

    Advanced Radiographic Capability (ARC) project at the National Ignition Facility (NIF) is designed to produce energetic, ultrafast x-rays in the range of 70-100 keV for backlighting NIF targets. The chirped pulse amplification (CPA) laser system will deliver kilo-Joule pulses at an adjustable pulse duration from 1 ps to 50 ps. System complexity requires sophisticated simulation and modeling tools for design, performance prediction, and comprehension of experimental results. We provide a brief overview of ARC, present our main modeling tools, and describe important performance predictions. The laser system (Fig. 1) consists of an all-fiber front end, including chirped-fiber Bragg grating (CFBG) stretchers. The beam after the final fiber amplifier is split into two apertures and spatially shaped. The split beam first seeds a regenerative amplifier and is then amplified in a multi-pass Nd:glass amplifier. Next, the preamplified chirped pulse is split in time into four identical replicas and injected into one NIF Quad. At the output of the NIF beamline, each of the eight amplified pulses is compressed in an individual, folded, four-grating compressor. Compressor grating pairs have slightly different groove densities to enable compact folding geometry and eliminate adjacent beam cross-talk. Pulse duration is adjustable with a small, rack-mounted compressor in the front-end. We use non-sequential ray-tracing software, FRED for design and layout of the optical system. Currently, our FRED model includes all of the optical components from the output of the fiber front end to the target center (Fig. 2). CAD designed opto-mechanical components are imported into our FRED model to provide a complete system description. In addition to incoherent ray tracing and scattering analysis, FRED uses Gaussian beam decomposition to model coherent beam propagation. Neglecting nonlinear effects, we can obtain a nearly complete frequency domain description of the ARC beam at different stages in the system. We employ 3D Fourier based propagation codes: MIRO, Virtual Beamline (VBL), and PROP for time-domain pulse analysis. These codes simulate nonlinear effects, calculate near and far field beam profiles, and account for amplifier gain. Verification of correct system set-up is a major difficulty to using these codes. VBL and PROP predictions have been extensively benchmarked to NIF experiments, and the verified descriptions of specific NIF beamlines are used for ARC. MIRO has the added capability of treating bandwidth specific effects of CPA. A sample MIRO model of the NIF beamline is shown in Fig. 3. MIRO models are benchmarked to VBL and PROP in the narrow bandwidth mode. Developing a variety of simulation tools allows us to cross-check predictions of different models and gain confidence in their fidelity. Preliminary experiments, currently in progress, are allowing us to validate and refine our models, and help guide future experimental campaigns.

  12. Sub-picosecond laser induced damage test facility for petawatt reflective optical components characterizations

    NASA Astrophysics Data System (ADS)

    Sozet, Martin; Néauport, Jérôme; Lavastre, Eric; Roquin, Nadja; Gallais, Laurent; Lamaignère, Laurent

    2015-05-01

    While considering long pulse or short pulse high power laser facilities, optical components performances and in particular laser damage resistance are always factors limiting the overall system performances. Consequently, getting a detailed knowledge of the behavior of these optical components under irradiations with large beam in short pulse range is of major importance. In this context, a Laser Induced Damage Threshold test facility called DERIC has been developed at the Commissariat à l'Energie Atomique et aux Energies Alternatives, Bordeaux. It uses an Amplitude Systemes laser source which delivers Gaussian pulses of 500 fs at 1053 nm. 1-on-1, S-on-1 and RasterScan test procedures are implemented to study the behavior of monolayer and multilayer dielectric coatings.

  13. High-contrast 2.0 Petawatt Ti:sapphire laser system.

    PubMed

    Chu, Yuxi; Liang, Xiaoyan; Yu, Lianghong; Xu, Yi; Xu, Lu; Ma, Lin; Lu, Xiaoming; Liu, Yanqi; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2013-12-02

    We report on a 2.0 PW femtosecond laser system at 800 nm based on the scheme of chirped pulse amplification using Ti:sapphire crystals, which is the highest peak power ever achieved from a femtosecond laser system. Combining the index-matching cladding technique and the precise control of the time delay between the input seed pulse and pump pulses, the parasitic lasing in the final booster amplifier is effectively suppressed at the pump energy of 140 J at 527 nm. The maximum output energy from the final amplifier is 72.6 J, corresponding to a conversion efficiency of 47.2% from the pump energy to the output laser energy. The measured spectral width of the amplified output pulse from the final amplifier is 60.8 nm for the full width at half-maximum (FWHM) by controlling the spectral evolution in the amplifier chain, and the recompressed pulse duration is 26.0 fs. The technology of cross-polarized wave (XPW) is applied in a broadband front-end, and the pulse contrast is improved to ~1.5 × 10¹¹ (-100 ps before the main pulse) which is measured at 83 TW power level with a repetition rate of 5 HZ.

  14. Latest results of 10 petawatt laser beamline for ELi nuclear physics infrastructure

    NASA Astrophysics Data System (ADS)

    Lureau, F.; Laux, S.; Casagrande, O.; Chalus, O.; Pellegrina, A.; Matras, G.; Radier, C.; Rey, G.; Ricaud, S.; Herriot, S.; Jougla, P.; Charbonneau, M.; Duvochelle, P. A.; Simon-Boisson, C.

    2016-03-01

    A laser system made of two beams of 10 PW each has been designed and is currently built for ELI-NP research infrastructure. Design is presented as well as preliminary results up to the 1PW level amplifier.

  15. Development of high damage threshold optics for petawatt-class short-pulse lasers

    SciTech Connect

    Stuart, B.C.; Perry, M.D.; Boyd, R.D.

    1995-02-22

    The authors report laser-induced damage threshold measurements on pure and multilayer dielectrics and gold-coated optics at 1053 and 526 nm for pulse durations, {tau}, ranging from 140 fs to 1 ns. Damage thresholds of gold coatings are limited to 500 mJ/cm{sup 2} in the subpicosecond range for 1053-nm pulses. In dielectrics, qualitative differences in the morphology of damage and a departure from the diffusion-dominated {tau}1/2 scaling indicate that damage results from plasma formation and ablation for {tau}{le}10 ps and from conventional melting and boiling for {tau}>50 ps. A theoretical model based on electron production via multiphoton ionization, Joule heating, and collisional (avalanche) ionization is in quantitative agreement with both the pulsewidth and wavelength scaling of experimental results.

  16. Food and Drug Interactions.

    PubMed

    Choi, Jong Hwan; Ko, Chang Mann

    2017-01-01

    Natural foods and vegetal supplements have recently become increasingly popular for their roles in medicine and as staple foods. This has, however, led to the increased risk of interaction between prescribed drugs and the bioactive ingredients contained in these foods. These interactions range from pharmacokinetic interactions (absorption, distribution, metabolism, and excretion influencing blood levels of drugs) to pharmacodynamic interactions (drug effects). In a quantitative respect, these interactions occur mainly during metabolism. In addition to the systemic metabolism that occurs mainly in the liver, recent studies have focused on the metabolism in the gastrointestinal tract endothelium before absorption. Inhibition of metabolism causes an increase in the blood levels of drugs and could have adverse reactions. The food-drug interactions causing increased blood levels of drugs may have beneficial or detrimental therapeutic effects depending on the intensity and predictability of these interactions. It is therefore important to understand the potential interactions between foods and drugs should and the specific outcomes of such interactions.

  17. Interacting dark sector with transversal interaction

    SciTech Connect

    Chimento, Luis P.; Richarte, Martín G.

    2015-03-26

    We investigate the interacting dark sector composed of dark matter, dark energy, and dark radiation for a spatially flat Friedmann-Robertson-Walker (FRW) background by introducing a three-dimensional internal space spanned by the interaction vector Q and solve the source equation for a linear transversal interaction. Then, we explore a realistic model with dark matter coupled to a scalar field plus a decoupled radiation term, analyze the amount of dark energy in the radiation era and find that our model is consistent with the recent measurements of cosmic microwave background anisotropy coming from Planck along with the future constraints achievable by CMBPol experiment.

  18. Gestalt Interactional Groups

    ERIC Educational Resources Information Center

    Harman, Robert L.; Franklin, Richard W.

    1975-01-01

    Gestalt therapy in groups is not limited to individual work in the presence of an audience. Describes several ways to involve gestalt groups interactionally. Interactions described focus on learning by doing and discovering, and are noninterpretive. (Author/EJT)

  19. Computerized Interactive Harness Engineering

    NASA Technical Reports Server (NTRS)

    Billitti, J. W.

    1985-01-01

    Computerized interactive harness engineering program inexpensive, interactive system for learning and using engineering approach to interconnection systems. Basically data-base system that stores information as files of individual connectors and handles wiring information in circuit groups stored as records.

  20. Interactions between magnetohydrodynamical discontinuities

    SciTech Connect

    Dai, W.; Woodward, P.R. )

    1994-11-01

    Interactions between magnetohydrodynamical (MHD) discontinuities are studied through numerical simulations for the set of one-dimensional MHD equations. The interactions include the impact of a shock on a contact discontinuity, the collision of two shocks, and the catchup of a shock over another shock. The shocks involved in the interactions may be very strong. Each shock in an interaction may be either a fast or a slow shock.

  1. Interactivity: A Forgotten Art?

    ERIC Educational Resources Information Center

    Sims, Rod

    1997-01-01

    This paper promotes further discussion and analysis of interactivity in learning environments and contains a classification of interaction types appropriate for consideration in multimedia settings. Through an examination of related factors associated with navigation and control, a matrix of interactive dimensions is proposed. (Author)

  2. Interactive Reactor Simulation.

    ERIC Educational Resources Information Center

    Nuttall, Herbert E., Jr.; Himmelblau, David M.

    In the field of chemical engineering, interactive process models can simulate the dynamic behavior and analysis of chemical processes. DYFLO was the process simulation program selected as a foundation for development of interactive programs for computer-assisted instruction (CAI) in chemical engineering. Interactive Computing and time sharing…

  3. Dynamic Interactive Learning Systems

    ERIC Educational Resources Information Center

    Sabry, Khaled; Barker, Jeff

    2009-01-01

    This paper reviews and discusses the notions of interactivity and dynamicity of learning systems in relation to information technologies and design principles that can contribute to interactive and dynamic learning. It explores the concept of dynamic interactive learning systems based on the emerging generation of information as part of a…

  4. Global Interaction in Design

    ERIC Educational Resources Information Center

    Bennett, Audrey Grace

    2010-01-01

    Based on a virtual conference, Glide'08 (Global Interaction in Design Education), that brought international design scholars together online, this special issue expands on the topics of cross-cultural communication and design and the technological affordances that support such interaction. The author discusses the need for global interaction in…

  5. Relativistically induced transparency acceleration of light ions by an ultrashort laser pulse interacting with a heavy-ion-plasma density gradient

    NASA Astrophysics Data System (ADS)

    Sahai, Aakash A.; Tsung, Frank S.; Tableman, Adam R.; Mori, Warren B.; Katsouleas, Thomas C.

    2013-10-01

    The relativistically induced transparency acceleration (RITA) scheme of proton and ion acceleration using laser-plasma interactions is introduced, modeled, and compared to the existing schemes. Protons are accelerated with femtosecond relativistic pulses to produce quasimonoenergetic bunches with controllable peak energy. The RITA scheme works by a relativistic laser inducing transparency [Akhiezer and Polovin, Zh. Eksp. Teor. Fiz 30, 915 (1956); Kaw and Dawson, Phys. FluidsPFLDAS0031-917110.1063/1.1692942 13, 472 (1970); Max and Perkins, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.27.1342 27, 1342 (1971)] to densities higher than the cold-electron critical density, while the background heavy ions are stationary. The rising laser pulse creates a traveling acceleration structure at the relativistic critical density by ponderomotively [Lindl and Kaw, Phys. FluidsPFLDAS0031-917110.1063/1.1693437 14, 371 (1971); Silva , Phys. Rev. E1063-651X10.1103/PhysRevE.59.2273 59, 2273 (1999)] driving a local electron density inflation, creating an electron snowplow and a co-propagating electrostatic potential. The snowplow advances with a velocity determined by the rate of the rise of the laser's intensity envelope and the heavy-ion-plasma density gradient scale length. The rising laser is incrementally rendered transparent to higher densities such that the relativistic-electron plasma frequency is resonant with the laser frequency. In the snowplow frame, trace density protons reflect off the electrostatic potential and get snowplowed, while the heavier background ions are relatively unperturbed. Quasimonoenergetic bunches of velocity equal to twice the snowplow velocity can be obtained and tuned by controlling the snowplow velocity using laser-plasma parameters. An analytical model for the proton energy as a function of laser intensity, rise time, and plasma density gradient is developed and compared to 1D and 2D PIC OSIRIS [Fonseca , Lect. Note Comput. Sci.9783

  6. Return current and proton emission from wire targets interacting with an intense short pulse laser

    NASA Astrophysics Data System (ADS)

    Beg, Farhat

    2004-05-01

    One of the important characteristics of short pulse high intensity laser-solid interactions is the generation of energetic charged particles, which result from the very efficient conversion of laser energy into hot electrons. Since the electrons in the electric field of the laser have relativistic quiver motions, the temperature of the hot electron distribution of the plasma produced at such extreme intensities can become very high. A large number of hot electrons (1013-1014) having an average energy of the order of 1-2 MeV can be generated as intensities exceed 1019 Wcm-2. Since the resulting beam current exceeds the Alfvén limit, a neutralizing return current of cold plasma electrons moving in the opposite direction is produced. Another source of return current is that due to the escape of very energetic electrons from the target, which then creates a large electrostatic potential due to charge separation. These return currents can cause significant ohmic heating. In addition escaping electrons establish the large electrostatic fields, accelerating a large number of protons from the target with energies of 10's of MeV. The experiments reported here were performed at the Rutherford Appleton Laboratory with the VULCAN laser facility at intensity greater than 5 x1019 Wcm-2 on wire targets. In some shots an additional wire or foil was placed nearby. The laser was blocked by the main wire target so that no laser light reached the additional wire or foil. Three main observations were made: (i) a Z-pinch was driven in the wire due to the return current, (ii) optical transition radiation (OTR) at 2w was generated and (iii) energetic proton emission was observed. The wire targets were observed to be ohmically heated and were m=0 unstable. The OTR emission is likely due to electron bunches accelerated by the ponderomotive force of the laser. The proton emission was in a form of thin disk perpendicular to the wire and centered on the wire at the laser focus. Proton

  7. Evolving synergetic interactions

    PubMed Central

    Wu, Bin; Arranz, Jordi; Du, Jinming; Zhou, Da; Traulsen, Arne

    2016-01-01

    Cooperators forgo their own interests to benefit others. This reduces their fitness and thus cooperators are not likely to spread based on natural selection. Nonetheless, cooperation is widespread on every level of biological organization ranging from bacterial communities to human society. Mathematical models can help to explain under which circumstances cooperation evolves. Evolutionary game theory is a powerful mathematical tool to depict the interactions between cooperators and defectors. Classical models typically involve either pairwise interactions between individuals or a linear superposition of these interactions. For interactions within groups, however, synergetic effects may arise: their outcome is not just the sum of its parts. This is because the payoffs via a single group interaction can be different from the sum of any collection of two-player interactions. Assuming that all interactions start from pairs, how can such synergetic multiplayer games emerge from simpler pairwise interactions? Here, we present a mathematical model that captures the transition from pairwise interactions to synergetic multiplayer ones. We assume that different social groups have different breaking rates. We show that non-uniform breaking rates do foster the emergence of synergy, even though individuals always interact in pairs. Our work sheds new light on the mechanisms underlying such synergetic interactions. PMID:27466437

  8. The Interactive Learning Toolkit: supporting interactive classrooms

    NASA Astrophysics Data System (ADS)

    Dutta, S.; McCauley, V.; Mazur, E.

    2004-05-01

    Research-based interactive learning techniques have dramatically improved student understanding. We have created the 'Interactive Learning Toolkit' (ILT), a web-based learning management system, to help implement two such pedagogies: Just in Time Teaching and Peer Instruction. Our main goal in developing this toolkit is to save the instructor time and effort and to use technology to facilitate the interaction between the students and the instructor (and between students themselves). After a brief review of both pedagogies, we will demonstrate the many exciting new features of the ILT. We will show how technology can not only implement, but also supplement and improve these pedagogies. We would like acknowdge grants from NSF and DEAS, Harvard University

  9. [Drug-drug interactions: interactions between xenobiotics].

    PubMed

    Haen, E

    2014-04-01

    Drug-drug interactions (DDI) are a major topic in programs for continuous medical education (CME). Many physicians are afraid of being trapped into charges of malpractice; however, DDI cannot be avoided in many cases. They belong to routine medical practice and it is often impossible to avoid them. Moreover, they do not just occur between drugs but between any kind of foreign substance (xenobiotica), such as food (e.g. grapefruit juice, broccoli, barbecue) as well as legal (e.g. tobacco smoke, caffeine and alcohol) and illegal drugs. Therefore, the medical challenge is not just to avoid any interaction. Instead the physician faces the question of how to proceed with drug treatment in the presence of such interactions. Based on the medical education a physician has to judge first of all whether there is a risk for interactions in the prescription being planned for an individual patient. The classification of interactions proposed in this article (PD1-PD4, PK1-PK3) might help as a sort of check list. For more detailed information the physician can then consult one of the many databases available on the internet, such as PSIAConline (http://www.psiac.de) and MediQ (http://www.mediq.ch). Pharmacokinetic interactions can be easily assessed, monitored and controlled by therapeutic drug monitoring (TDM). Besides these tools it is important to keep in mind that nobody knows everything; even physicians do not know everything. So take pride in asking someone who might help and for this purpose AGATE offers a drug information service AID (http://www.amuep-agate.de). Just good for nothing, without being based on any kind of medical approach are computer programs that judge prescriptions without taking into account a patient's individual peculiarities. In case these types of programs produce red exclamation marks or traffic lights to underline their judgment, they might even work in a contrapuntal way by just eliciting insecurity and fear.

  10. The interactive brain hypothesis

    PubMed Central

    Di Paolo, Ezequiel; De Jaegher, Hanne

    2012-01-01

    Enactive approaches foreground the role of interpersonal interaction in explanations of social understanding. This motivates, in combination with a recent interest in neuroscientific studies involving actual interactions, the question of how interactive processes relate to neural mechanisms involved in social understanding. We introduce the Interactive Brain Hypothesis (IBH) in order to help map the spectrum of possible relations between social interaction and neural processes. The hypothesis states that interactive experience and skills play enabling roles in both the development and current function of social brain mechanisms, even in cases where social understanding happens in the absence of immediate interaction. We examine the plausibility of this hypothesis against developmental and neurobiological evidence and contrast it with the widespread assumption that mindreading is crucial to all social cognition. We describe the elements of social interaction that bear most directly on this hypothesis and discuss the empirical possibilities open to social neuroscience. We propose that the link between coordination dynamics and social understanding can be best grasped by studying transitions between states of coordination. These transitions form part of the self-organization of interaction processes that characterize the dynamics of social engagement. The patterns and synergies of this self-organization help explain how individuals understand each other. Various possibilities for role-taking emerge during interaction, determining a spectrum of participation. This view contrasts sharply with the observational stance that has guided research in social neuroscience until recently. We also introduce the concept of readiness to interact to describe the practices and dispositions that are summoned in situations of social significance (even if not interactive). This latter idea links interactive factors to more classical observational scenarios. PMID:22701412

  11. Hot Electron Diagnostic in a Solid Laser Target by K-Shell Lines Measurement from Ultra-Intense Laser-Plasma Interactions R=1.06 (micron)m, 3x10 W/cm -2(less than or equal to) 500 J

    SciTech Connect

    Yasuike, K.; Wharton, K.B.; Key, M.; Hatchett, S.; Snavely, R.

    2000-07-27

    Characterization of hot electron production (a conversion efficiency from laser energy into electrons) from ultra intense laser-solid target interaction by observing molybdenum (Mo) K{beta} as well as K{alpha} emissions from a buried fluorescence tracer layer in the targets has been done. The experiments used 1.06 {micro}m laser light with an intensity of from 2 x 10{sup 18} up to 3 x 10{sup 20} W cm{sup -2} (20-0.5 ps pulse width) and an on target laser energy of 280-500 J. The conversion efficiency from the laser energy into the energy, carried by hot electrons, has been estimated to be {approx}50% for the 0.5 ps shots at an on-target laser intensity of 3 x 10{sup 20} W cm{sup -2}, which increased from {approx}30% at 1 x 10{sup 19} W cm{sup -2} 5 ps shots and {approx} 12% at 2 x 10{sup 18} W cm{sup -2} 20 ps shots.

  12. How Interactive Is the Interactive Whiteboard?

    ERIC Educational Resources Information Center

    Quashie, Valerie

    2009-01-01

    An interactive whiteboard (IWB) is simply a surface onto which a computer screen can be displayed, via a projector. It is touch-sensitive and lets one use a pen like a mouse, controlling the computer from the board itself. Everything that can be displayed on a computer can be displayed onto the whiteboard and, if the computer is linked to speakers…

  13. Interactive Whiteboards: Interactive or Just Whiteboards?

    ERIC Educational Resources Information Center

    Northcote, Maria; Mildenhall, Paula; Marshall, Linda; Swan, Paul

    2010-01-01

    Over the last decade, interactive whiteboards have become popular teaching and learning tools, especially in primary school classrooms. Research studies from recent literature report on high levels of student motivation, teacher enthusiasm and whole-school support associated with these technological tools. Much research to date has reported on the…

  14. Beam-Bem interactions

    SciTech Connect

    Kim, Hyung Jin; /Fermilab

    2011-12-01

    In high energy storage-ring colliders, the nonlinear effect arising from beam-beam interactions is a major source that leads to the emittance growth, the reduction of beam life time, and limits the collider luminosity. In this paper, two models of beam-beam interactions are introduced, which are weak-strong and strong-strong beam-beam interactions. In addition, space-charge model is introduced.

  15. Food-drug interactions.

    PubMed

    Bushra, Rabia; Aslam, Nousheen; Khan, Arshad Yar

    2011-03-01

    The effect of drug on a person may be different than expected because that drug interacts with another drug the person is taking (drug-drug interaction), food, beverages, dietary supplements the person is consuming (drug-nutrient/food interaction) or another disease the person has (drug-disease interaction). A drug interaction is a situation in which a substance affects the activity of a drug, i.e. the effects are increased or decreased, or they produce a new effect that neither produces on its own. These interactions may occur out of accidental misuse or due to lack of knowledge about the active ingredients involved in the relevant substances. Regarding food-drug interactions physicians and pharmacists recognize that some foods and drugs, when taken simultaneously, can alter the body's ability to utilize a particular food or drug, or cause serious side effects. Clinically significant drug interactions, which pose potential harm to the patient, may result from changes in pharmaceutical, pharmacokinetic, or pharmacodynamic properties. Some may be taken advantage of, to the benefit of patients, but more commonly drug interactions result in adverse drug events. Therefore it is advisable for patients to follow the physician and doctors instructions to obtain maximum benefits with least food-drug interactions. The literature survey was conducted by extracting data from different review and original articles on general or specific drug interactions with food. This review gives information about various interactions between different foods and drugs and will help physicians and pharmacists prescribe drugs cautiously with only suitable food supplement to get maximum benefit for the patient.

  16. Phase conjugation by wave-mixing interactions in solid-state laser gain media

    NASA Astrophysics Data System (ADS)

    Brignon, A.

    The heat load deposited in solid-state laser medium leads to thermally induced aberrations. This undesirable effect causes wavefront distorsions and reduces the brightness of lasers. Phase-distorsion correction of an optical wave propagating in laser media is thus a crucial problem that must be taken into account in solid-state laser sources. Indeed, many applications require a high-spatial-quality, diffraction-limited output beam. An approach offering great potential to solve this problem involves nonlinear optical phase conjugation. Phase conjugation can be obtained with degenerate wave mixing in the laser medium itself by gain saturation. The use of solid-state laser amplifiers for such operation presents very attractive features including the automatic matching of the nonlinearity with the laser wavelength, a fast response time and a high efficiency of the nonlinear process due to the laser amplification of all interacting beams. In as much as gain saturation is inherent in all tenporal regimes, phase conjugation in inverted media can be performed in both pulsed and cw regimes. This nonlinear mechanism is theoretically analyzed and experimentally demonstrated in flash-lamp pumped Nd:YAG amplifiers and in a compact diode-pumped Nd:YVO4 amplifier in the nanosecond pulsed regime. Efficient continuous wave operation is also demonstrated in a Nd:YVO4 amplifier pumped by a cw Ti:sapphire laser. Applications to dynamic holography and correction of aberrated wavefronts propagating in laser media are presented. Finally, it is shown that saturable gain media can be used as efficient phase conjugate mirrors for all-solid-state high beam quality laser sources. Les lasers solides présentent des avantages relatifs à leur compacité, facilité d'utilisation et à leur durée de vie. Cependant, une partie importante de l'énergie de pompage se dissipe sous forme de chaleur provocant des distorsions de phase importantes dans le milieu laser. Cet effet indésirable dégrade la

  17. Ion Acceleration from the Interaction of Ultra-Intense Lasers with Solid Foils

    SciTech Connect

    Allen, Matthew M.

    2004-01-01

    The discovery that ultra-intense laser pulses (I > 1018 W/cm2) can produce short pulse, high energy proton beams has renewed interest in the fundamental mechanisms that govern particle acceleration from laser-solid interactions. Experiments have shown that protons present as hydrocarbon contaminants on laser targets can be accelerated up to energies > 50 MeV. Different theoretical models that explain the observed results have been proposed. One model describes a front-surface acceleration mechanism based on the ponderomotive potential of the laser pulse. At high intensities (I > 1018 W/cm2), the quiver energy of an electron oscillating in the electric field of the laser pulse exceeds the electron rest mass, requiring the consideration of relativistic effects. The relativistically correct ponderomotive potential is given by Up = ([1 + Iλ2/1.3 x 1018]1/2 - 1) m{sub o}c2, where Iλ2 is the irradiance in W μm2/cm2 and moc2 is the electron rest mass. At laser irradiance of Iλ2 ~ 1020 W μm2/cm2, the ponderomotive potential can be of order several MeV. A few recent experiments--discussed in Chapter 3 of this thesis--consider this ponderomotive potential sufficiently strong to accelerate protons from the front surface of the target to energies up to tens of MeV. Another model, known as Target Normal Sheath Acceleration (TNSA), describes the mechanism as an electrostatic sheath on the back surface of the laser target. According to the TNSA model, relativistic hot electrons created at the laser-solid interaction penetrate the foil where a few escape to infinity. The remaining hot electrons are retained by the target potential and establish an electrostatic sheath on the back surface of the target. In this thesis we present several experiments that study the accelerated ions by

  18. Food and Drug Interactions

    PubMed Central

    Choi, Jong Hwan; Ko, Chang Mann

    2017-01-01

    Natural foods and vegetal supplements have recently become increasingly popular for their roles in medicine and as staple foods. This has, however, led to the increased risk of interaction between prescribed drugs and the bioactive ingredients contained in these foods. These interactions range from pharmacokinetic interactions (absorption, distribution, metabolism, and excretion influencing blood levels of drugs) to pharmacodynamic interactions (drug effects). In a quantitative respect, these interactions occur mainly during metabolism. In addition to the systemic metabolism that occurs mainly in the liver, recent studies have focused on the metabolism in the gastrointestinal tract endothelium before absorption. Inhibition of metabolism causes an increase in the blood levels of drugs and could have adverse reactions. The food-drug interactions causing increased blood levels of drugs may have beneficial or detrimental therapeutic effects depending on the intensity and predictability of these interactions. It is therefore important to understand the potential interactions between foods and drugs should and the specific outcomes of such interactions. PMID:28261555

  19. Two interacting Hofstadter butterflies

    SciTech Connect

    Barelli, A.; Bellissard, J.; Jacquod, P.; Shepelyansky, D.L.

    1997-04-01

    The problem of two interacting particles in a quasiperiodic potential is addressed. Using analytical and numerical methods, we explore the spectral properties and eigenstates structure from the weak to the strong interaction case. More precisely, a semiclassical approach based on noncommutative geometry techniques is used to understand the intricate structure of such a spectrum. An interaction induced localization effect is furthermore emphasized. We discuss the application of our results on a two-dimensional model of two particles in a uniform magnetic field with on-site interaction. {copyright} {ital 1997} {ital The American Physical Society}

  20. The Science of Interaction

    SciTech Connect

    Pike, William A.; Stasko, John T.; Chang, Remco; O'Connell, Theresa

    2009-09-23

    There is a growing recognition with the visual analytics community that interaction and inquiry are inextricable. It is through the interactive manipulation of a visual interface – the analytic discourse – that knowledge is constructed, tested, refined, and shared. This paper reflects on the interaction challenges raised in the original visual analytics research and development agenda and further explores the relationship between interaction and cognition. It identifies recent exemplars of visual analytics research that have made substantive progress toward the goals of a true science of interaction, which must include theories and testable premises about the most appropriate mechanisms for human-information interaction. Six areas for further work are highlighted as those among the highest priorities for the next five years of visual analytics research: ubiquitous, embodied interaction; capturing user intentionality; knowledge-based interfaces; principles of design and perception; collaboration; and interoperability. Ultimately, the goal of a science of interaction is to support the visual analytics community through the recognition and implementation of best practices in the representation of and interaction with visual displays.

  1. Gender interactions and success.

    PubMed

    Wiggins, Carla; Peterson, Teri

    2004-01-01

    Does gender by itself, or does gender's interaction with career variables, better explain the difference between women and men's careers in healthcare management? US healthcare managers were surveyed regarding career and personal experiences. Gender was statistically interacted with explanatory variables. Multiple regression with backwards selection systematically removed non-significant variables. All gender interaction variables were non-significant. Much of the literature proposes that work and career factors impact working women differently than working men. We find that while gender alone is a significant predictor of income, it does not significantly interact with other career variables.

  2. Reconceptualizing sex, brain and psychopathology: interaction, interaction, interaction

    PubMed Central

    Joel, D; Yankelevitch-Yahav, R

    2014-01-01

    In recent years there has been a growing recognition of the influence of sex on brain structure and function, and in relation, on the susceptibility, prevalence and response to treatment of psychiatric disorders. Most theories and descriptions of the effects of sex on the brain are dominated by an analogy to the current interpretation of the effects of sex on the reproductive system, according to which sex is a divergence system that exerts a unitary, overriding and serial effect on the form of other systems. We shortly summarize different lines of evidence that contradict aspects of this analogy. The new view that emerges from these data is of sex as a complex system whose different components interact with one another and with other systems to affect body and brain. The paradigm shift that this understanding calls for is from thinking of sex in terms of sexual dimorphism and sex differences, to thinking of sex in terms of its interactions with other factors and processes. Our review of data obtained from animal models of psychopathology clearly reveals the need for such a paradigmatic shift, because in the field of animal behaviour whether a sex difference exists and its direction depend on the interaction of many factors including, species, strain, age, specific test employed and a multitude of environmental factors. We conclude by explaining how the new conceptualization can account for sex differences in psychopathology. Linked Articles This article is part of a themed section on Animal Models in Psychiatry Research. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-20 PMID:24758640

  3. Drug-nutrient interactions.

    PubMed

    Chan, Lingtak-Neander

    2013-07-01

    Drug-nutrient interactions are defined as physical, chemical, physiologic, or pathophysiologic relationships between a drug and a nutrient. The causes of most clinically significant drug-nutrient interactions are usually multifactorial. Failure to identify and properly manage drug-nutrient interactions can lead to very serious consequences and have a negative impact on patient outcomes. Nevertheless, with thorough review and assessment of the patient's history and treatment regimens and a carefully executed management strategy, adverse events associated with drug-nutrient interactions can be prevented. Based on the physiologic sequence of events after a drug or a nutrient has entered the body and the mechanism of interactions, drug-nutrient interactions can be categorized into 4 main types. Each type of interaction can be managed using similar strategies. The existing data that guide the clinical management of most drug-nutrient interactions are mostly anecdotal experience, uncontrolled observations, and opinions, whereas the science in understanding the mechanism of drug-nutrient interactions remains limited. The challenge for researchers and clinicians is to increase both basic and higher level clinical research in this field to bridge the gap between the science and practice. The research should aim to establish a better understanding of the function, regulation, and substrate specificity of the nutrient-related enzymes and transport proteins present in the gastrointestinal tract, as well as assess how the incidence and management of drug-nutrient interactions can be affected by sex, ethnicity, environmental factors, and genetic polymorphisms. This knowledge can help us develop a true personalized medicine approach in the prevention and management of drug-nutrient interactions.

  4. Normal Shock Vortex Interaction

    DTIC Science & Technology

    2003-03-01

    Figure 9: Breakdown map for normal-shock vortex-interaction. References [1] O. Thomer, W. Schroder and M. Meinke , Numerical Simulation of Normal...and Oblique-Shock Vortex Interaction, ZAMM Band 80, Sub. 1, pp. 181-184, 2000. [2] O. Thomer, E. Krause, W. Schroder and M. Meinke , Computational

  5. Let Social Interaction Flourish

    ERIC Educational Resources Information Center

    Case, Anny Fritzen

    2016-01-01

    The author describes lessons learned--through a high school project that grouped English language learners with native speakers to create a video--about ways to foster respectful, productive interaction among English learners and peers who are native speakers. The potential benefits of students who are just learning English interacting socially…

  6. Interactive Presentation of Content

    ERIC Educational Resources Information Center

    Magdin, Martin; Turcáni, Milan; Vrábel, Marek

    2009-01-01

    In the paper we discus about design of universal environment for solution of creating effective multimedia applications with accent on the implementation of interactive elements with the possibility of using the adaptive systems (AS). We also discuss about possibilities of offline presentation of this interactive multimedia adaptive animations…

  7. Interaction Analysis in MANOVA.

    ERIC Educational Resources Information Center

    Betz, M. Austin

    Simultaneous test procedures (STPS for short) in the context of the unrestricted full rank general linear multivariate model for population cell means are introduced and utilized to analyze interactions in factorial designs. By appropriate choice of an implying hypothesis, it is shown how to test overall main effects, interactions, simple main,…

  8. Storyboarding Multimedia Interactions.

    ERIC Educational Resources Information Center

    Martin, Linda C.

    2000-01-01

    Understanding how to include interactivity when designing multimedia-based training (MBT) storyboards is a major key for a successful MBT. Discusses the basic formats of interactions and when to use each format. Describes how to storyboard and areas to address, including: the display area, prompts, branching, programming and graphics notes,…

  9. Visualizing Dispersion Interactions

    ERIC Educational Resources Information Center

    Gottschalk, Elinor; Venkataraman, Bhawani

    2014-01-01

    An animation and accompanying activity has been developed to help students visualize how dispersion interactions arise. The animation uses the gecko's ability to walk on vertical surfaces to illustrate how dispersion interactions play a role in macroscale outcomes. Assessment of student learning reveals that students were able to develop…

  10. Storyboarding Multimedia Interactions.

    ERIC Educational Resources Information Center

    Martin, Linda C.

    2000-01-01

    Understanding how to include interactivity when designing multimedia-based training (MBT) storyboards is a major key for a successful MBT. Discusses the basic formats of interactions and when to use each format. Describes how to storyboard and areas to address, including: the display area, prompts, branching, programming and graphics notes,…

  11. Interactive Visualization of Dependencies

    ERIC Educational Resources Information Center

    Moreno, Camilo Arango; Bischof, Walter F.; Hoover, H. James

    2012-01-01

    We present an interactive tool for browsing course requisites as a case study of dependency visualization. This tool uses multiple interactive visualizations to allow the user to explore the dependencies between courses. A usability study revealed that the proposed browser provides significant advantages over traditional methods, in terms of…

  12. Interactive Visualization of Dependencies

    ERIC Educational Resources Information Center

    Moreno, Camilo Arango; Bischof, Walter F.; Hoover, H. James

    2012-01-01

    We present an interactive tool for browsing course requisites as a case study of dependency visualization. This tool uses multiple interactive visualizations to allow the user to explore the dependencies between courses. A usability study revealed that the proposed browser provides significant advantages over traditional methods, in terms of…

  13. University-industry interaction

    NASA Technical Reports Server (NTRS)

    Hastings, Daniel E.

    1990-01-01

    It is posited that university industry interaction is highly desirable from the viewpoint of the long term economic development of the country as well as being desirable for the Space Grant Programs. The present and future possible interactions are reviewed for the three university levels namely, undergraduate, graduate, and faculty research.

  14. Interactive TV: The Sequel.

    ERIC Educational Resources Information Center

    Brown, Eric

    1998-01-01

    Examines the future of interactive TV where consumers navigate the Internet on their TVs with WebTV set-top boxes. Focuses on competition between cable companies and computer and consumer electronics companies. Highlights nine companies and partnerships developing interactive hardware and services. (PEN)

  15. Visualizing Dispersion Interactions

    ERIC Educational Resources Information Center

    Gottschalk, Elinor; Venkataraman, Bhawani

    2014-01-01

    An animation and accompanying activity has been developed to help students visualize how dispersion interactions arise. The animation uses the gecko's ability to walk on vertical surfaces to illustrate how dispersion interactions play a role in macroscale outcomes. Assessment of student learning reveals that students were able to develop…

  16. Let Social Interaction Flourish

    ERIC Educational Resources Information Center

    Case, Anny Fritzen

    2016-01-01

    The author describes lessons learned--through a high school project that grouped English language learners with native speakers to create a video--about ways to foster respectful, productive interaction among English learners and peers who are native speakers. The potential benefits of students who are just learning English interacting socially…

  17. Interaction Online: A Reevaluation

    ERIC Educational Resources Information Center

    Battalio, John

    2007-01-01

    Instructors commonly assume that the successful online course must replicate its live counterpart by including a variety of interactions among student, instructor, and computer. Given the changing lifestyles prompted by an evolving Internet, an increasing student need for autonomy, and student learning styles, highly interactive courses may not…

  18. Elementary particle interactions

    SciTech Connect

    Bugg, W.M.; Condo, G.T.; Handler, T.; Hart, E.L.; Ward, B.F.L.; Close, F.E.; Christophorou, L.G.

    1990-10-01

    This report discusses freon bubble chamber experiments exposed to {mu}{sup +} and neutrinos, photon-proton interactions; shower counter simulations; SLD detectors at the Stanford Linear Collider, and the detectors at the Superconducting Super Collider; elementary particle interactions; physical properties of dielectric materials used in High Energy Physics detectors; and Nuclear Physics. (LSP)

  19. Electromagnetic cellular interactions.

    PubMed

    Cifra, Michal; Fields, Jeremy Z; Farhadi, Ashkan

    2011-05-01

    Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating.

  20. Spacelab user interaction

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The results of the third and final phase of a study undertaken to define means of optimizing the Spacelab experiment data system by interactively manipulating the flow of data were presented. A number of payload applicable interactive techniques and an integrated interaction system for each of two possible payloads are described. These interaction systems have been functionally defined and are accompanied with block diagrams, hardware specifications, software sizing and speed requirements, operational procedures and cost/benefits analysis data for both onboard and ground based system elements. It is shown that accrued benefits are attributable to a reduction in data processing costs obtained by, generally, a considerable reduction in the quantity of data that might otherwise be generated without interaction. One other additional anticipated benefit includes the increased scientific value obtained by the quicker return of all useful data.

  1. Venus: Interaction with Solar Wind

    NASA Astrophysics Data System (ADS)

    Russell, C.; Luhmann, J.; Murdin, P.

    2002-07-01

    The solar wind interaction with VENUS provides the archetypal interaction of a flowing magnetized PLASMA with a PLANETARY IONOSPHERE. Mars interacts with the solar wind in much the same way as does Venus, while the rotating plasma in the Saturnian magnetosphere is believed to interact similarly with its moon, Titan (see SATURN: MAGNETOSPHERE INTERACTION WITH TITAN). The interaction of the Jovian ...

  2. Cefuroxime antacid interactions.

    PubMed

    Sultana, N; Mubeen, T; Arayne, M S; Ifzal, R

    2001-01-01

    Cefuroxime sodium a second generation semi-synthetic cephalosporin is effective for treating meningitis, lower respiratory tract infections, gonorrhea, bone and joint infections and is approved for surgical prophylaxis. There are number of synergistic and as well as antagonistic drug interactions reported for this antibiotic. Withstanding to gastric irritations caused by this antibiotic, antacids may possibly be co-administered with cefuroxime, which may result in severe adverse drug interaction. The present work describes the effect of magnesium carbonate, magnesium hydroxide, magnesium trisilicate, megaldrate powder, sodium bicarbonate, aluminum oxide and simethicone suspension on the in vitro availability of cefuroxime sodium. The mechanism of interaction between antibiotic and antacids was also studied.

  3. Early Interactive Emotional Development

    PubMed Central

    Messinger, Daniel S.; Mahoor, Mohammad H.; Cadavid, Steven; Chow, Sy-Miin; Cohn, Jeffrey F.

    2010-01-01

    Early infant emotional development concerns the interactive emergence of emotional states that motivate approach and withdrawal. These are indexed by different patterns of infant facial expressions, vocalization, and gazing that emerge within parent-infant interactions in the first 10 months of life. Specifically, the interface of a limited number of interactive parameters creates complex real-time patterns which change over developmental time. These phenomena are described below using techniques from our laboratory such as statistical simulations, continuous ratings, and computer vision modeling. PMID:21804955

  4. Adverse Drug Interactions

    PubMed Central

    Becker, Daniel E.

    2011-01-01

    The potential for interactions with current medications should always be considered when administering or prescribing any drug. Considering the staggering number of drugs patients may be taking, this task can be daunting. Fortunately, drug classes employed in dental practice are relatively few in number and therapy is generally brief in duration. While this reduces the volume of potential interactions, there are still a significant number to be considered. This article will review basic principles of drug interactions and highlight those of greatest concern in dental practice. PMID:21410363

  5. The ADAMS interactive interpreter

    SciTech Connect

    Rietscha, E.R.

    1990-12-17

    The ADAMS (Advanced DAta Management System) project is exploring next generation database technology. Database management does not follow the usual programming paradigm. Instead, the database dictionary provides an additional name space environment that should be interactively created and tested before writing application code. This document describes the implementation and operation of the ADAMS Interpreter, an interactive interface to the ADAMS data dictionary and runtime system. The Interpreter executes individual statements of the ADAMS Interface Language, providing a fast, interactive mechanism to define and access persistent databases. 5 refs.

  6. Interactive Design Activism

    NASA Astrophysics Data System (ADS)

    Goulev, Petar; Farrer, Joan

    The following sections are included: * Introduction * Computers and Human Well-being * To Fuzzy or Yes (No)! * Interactive Design Activism * Sensing the Sun * Personalised Public Health Advice * Modifying Human Behaviour * Transdisciplinarity, Knowledge Transfer and Multi-domain

  7. Electromagnetic and Weak Interactions

    NASA Astrophysics Data System (ADS)

    Salam, A.; Ward, J. C.

    One of the recurrent dreams in elementary particles physics is that of a possible fundamental synthesis between electro-magnetism and weak interactions [1]. The idea has its origin in the following shared characteristics…

  8. Chasing Ecological Interactions.

    PubMed

    Jordano, Pedro

    2016-09-01

    Basic research on biodiversity has concentrated on individual species-naming new species, studying distribution patterns, and analyzing their evolutionary relationships. Yet biodiversity is more than a collection of individual species; it is the combination of biological entities and processes that support life on Earth. To understand biodiversity we must catalog it, but we must also assess the ways species interact with other species to provide functional support for the Tree of Life. Ecological interactions may be lost well before the species involved in those interactions go extinct; their ecological functions disappear even though they remain. Here, I address the challenges in studying the functional aspects of species interactions and how basic research is helping us address the fast-paced extinction of species due to human activities.

  9. Atomic & Molecular Interactions

    SciTech Connect

    2002-07-12

    The Gordon Research Conference (GRC) on Atomic & Molecular Interactions was held at Roger Williams University, Bristol, RI. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  10. Interactive Science on Mars

    NASA Astrophysics Data System (ADS)

    Mercer, C. R.; Landis, G. A.

    2017-02-01

    Swarms of small citizen-driven rovers can conduct Mars surface science missions. Transportation and communication technology needed for human exploration can enable this new interactive science mission architecture.

  11. Chasing Ecological Interactions

    PubMed Central

    2016-01-01

    Basic research on biodiversity has concentrated on individual species—naming new species, studying distribution patterns, and analyzing their evolutionary relationships. Yet biodiversity is more than a collection of individual species; it is the combination of biological entities and processes that support life on Earth. To understand biodiversity we must catalog it, but we must also assess the ways species interact with other species to provide functional support for the Tree of Life. Ecological interactions may be lost well before the species involved in those interactions go extinct; their ecological functions disappear even though they remain. Here, I address the challenges in studying the functional aspects of species interactions and how basic research is helping us address the fast-paced extinction of species due to human activities. PMID:27631692

  12. Interactive Office user's manual

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E.; Lowers, Benjamin; Nabors, Terri L.

    1990-01-01

    Given here is a user's manual for Interactive Office (IO), an executive office tool for organization and planning, written specifically for Macintosh. IO is a paperless management tool to automate a related group of individuals into one productive system.

  13. Interactive spectra demonstration

    NASA Astrophysics Data System (ADS)

    Palmquist, Bruce C.

    2002-03-01

    This report describes an interactive demonstration to help students qualitatively understand emission, continuous, and absorption spectra. Students throw colored balls at a person representing an electron that can move between discrete energy levels.

  14. Grapefruit and drug interactions.

    PubMed

    2012-12-01

    Since the late 1980s, grapefruit juice has been known to affect the metabolism of certain drugs. Several serious adverse effects involving drug interactions with grapefruit juice have been published in detail. The components of grapefruit juice vary considerably depending on the variety, maturity and origin of the fruit, local climatic conditions, and the manufacturing process. No single component accounts for all observed interactions. Other grapefruit products are also occasionally implicated, including preserves, lyophylised grapefruit juice, powdered whole grapefruit, grapefruit seed extract, and zest. Clinical reports of drug interactions with grapefruit juice are supported by pharmacokinetic studies, each usually involving about 10 healthy volunteers, in which the probable clinical consequences were extrapolated from the observed plasma concentrations. Grapefruit juice inhibits CYP3A4, the cytochrome P450 isoenzyme most often involved in drug metabolism. This increases plasma concentrations of the drugs concerned, creating a risk of overdose and dose-dependent adverse effects. Grapefruit juice also inhibits several other cytochrome P450 isoenzymes, but they are less frequently implicated in interactions with clinical consequences. Drugs interacting with grapefruit and inducing serious clinical consequences (confirmed or very probable) include: immunosuppressants, some statins, benzodiazepines, most calcium channel blockers, indinavir and carbamazepine. There are large inter-individual differences in enzyme efficiency. Along with the variable composition of grapefruit juice, this makes it difficult to predict the magnitude and clinical consequences of drug interactions with grapefruit juice in a given patient. There is increasing evidence that transporter proteins such as organic anion transporters and P-glycoprotein are involved in interactions between drugs and grapefruit juice. In practice, numerous drugs interact with grapefruit juice. Although only a few

  15. Beam-Material Interaction

    SciTech Connect

    Mokhov, N. V.; Cerutti, F.

    2016-01-01

    Th is paper is motivated by the growing importance of better understanding of the phenomena and consequences of high-intensity energetic particle beam interactions with accelerator, generic target, and detector components. It reviews the principal physical processes of fast-particle interactions with matter, effects in materials under irradiation, materials response, related to component lifetime and performance, simulation techniques, and methods of mitigating the impact of radiation on the components and environment in challenging current and future applications.

  16. LASER-tissue interactions.

    PubMed

    Carroll, Lisa; Humphreys, Tatyana R

    2006-01-01

    As new laser devices continue to emerge, it becomes increasingly important for the clinical dermatologist to understand the basic principles behind their operation. A fundamental understanding of how lasers interact with tissue will enable the physician to choose the most appropriate laser for a given clinical situation. Although the physical laws guiding laser design are vastly complex, the fundamental principles of laser-tissue interaction can be summarized as they are applicable to the clinician.

  17. An Interactive Plotting Routine

    NASA Technical Reports Server (NTRS)

    Bowdish, D. W.

    1985-01-01

    Routine called CRTRPM meets needs of applications programer to plot data in interactive environment on Tektronix graphics terminal. CRTRPM designed specifically for applications where data is viewed and responded to at terminal. CRTRPM produces from one to four grids on terminal screen at one time, with from one to ten plots of X-Y data on each grid. CRTRPM written in FORTRAN V for interactive execution.

  18. PIA: ISOPHOT Interactive Analysis

    NASA Astrophysics Data System (ADS)

    Gabriel, Carlos; Acosta, Jose; Heinrichsen, Ingolf; Skaley, Detlef; Tai, Wai Ming; Morris, Huw; Merluzzi, Paola

    2014-08-01

    ISOPHOT is one of the instruments on board the Infrared Space Observatory (ISO). ISOPHOT Interactive Analysis (PIA) is a scientific and calibration interactive data analysis tool for ISOPHOT data reduction. Written in IDL under Xwindows, PIA offers a full context sensitive graphical interface for retrieving, accessing and analyzing ISOPHOT data. It is available in two nearly identical versions; a general observers version omits the calibration sequences.

  19. Replicators with Hebb interactions

    NASA Astrophysics Data System (ADS)

    de Oliveira, V. M.

    2003-01-01

    We do an analytical study of the statistical properties of an ecosystem composed of species that are coupled via pairwise interactions that are given by the Hebb rule and have deterministic self-interactions u. In the model each species is characterized by an infinite set of p = αN traits. As one of our main results, we observe that the ecosystem becomes less cooperative as the complexity of species (number of traits) is increased.

  20. Interactive DIF Generator

    NASA Technical Reports Server (NTRS)

    Preheim, Larry E.; Amy, Laraine; Young, Jimmie D.

    1993-01-01

    Interactive DIF Generator (IDG) computer program serves as utility to generate and manipulate directory interchange format (DIF) files. Creates and updates DIF files, sent to NASA's Master Directory, also referred to as International Global Change Directory at Goddard Space Flight Center. Many government and university data systems use Master Directory to advertise availability of research data. IDG is interactive software tool and requires mouse or trackball to operate. Written in C language.

  1. Vortice-propeller interaction

    NASA Astrophysics Data System (ADS)

    Hemon, Alain; Huberson, Serge

    1989-08-01

    The interactions between a ship's propeller blades and the boundary layer created by the ship are investigated. A finite element calculation method based on Navier-Stokes equation is developed. The application of an k-epsilon turbulence model for improving the analysis is considered. The flow azimuthal homogenization hypothesis is applied and leads to an accurate evaluation of the propeller performances. The unsteady effects generated by the interaction between the propeller blades and the vortices are analyzed.

  2. Interactive Plotting Program

    NASA Technical Reports Server (NTRS)

    Moore, Judith G.

    1988-01-01

    Interactive Plotting Program (IAP) provides fast and easy method of plotting data in presentable format. Extensive plot editing done with various IAP commands, typed interactively from terminal or read from batch command files. Ability to redirect output to variety of devices enables user to tailor plots with graphics terminal before printing. Designed to allow addition or deletion of code for any type of terminal or plotting device. Written in FORTRAN 77 and Assembler.

  3. Food-drug interactions.

    PubMed

    Schmidt, Lars E; Dalhoff, Kim

    2002-01-01

    Interactions between food and drugs may inadvertently reduce or increase the drug effect. The majority of clinically relevant food-drug interactions are caused by food-induced changes in the bioavailability of the drug. Since the bioavailability and clinical effect of most drugs are correlated, the bioavailability is an important pharmacokinetic effect parameter. However, in order to evaluate the clinical relevance of a food-drug interaction, the impact of food intake on the clinical effect of the drug has to be quantified as well. As a result of quality review in healthcare systems, healthcare providers are increasingly required to develop methods for identifying and preventing adverse food-drug interactions. In this review of original literature, we have tried to provide both pharmacokinetic and clinical effect parameters of clinically relevant food-drug interactions. The most important interactions are those associated with a high risk of treatment failure arising from a significantly reduced bioavailability in the fed state. Such interactions are frequently caused by chelation with components in food (as occurs with alendronic acid, clodronic acid, didanosine, etidronic acid, penicillamine and tetracycline) or dairy products (ciprofloxacin and norfloxacin), or by other direct interactions between the drug and certain food components (avitriptan, indinavir, itraconazole solution, levodopa, melphalan, mercaptopurine and perindopril). In addition, the physiological response to food intake, in particular gastric acid secretion, may reduce the bioavailability of certain drugs (ampicillin, azithromycin capsules, didanosine, erythromycin stearate or enteric coated, and isoniazid). For other drugs, concomitant food intake may result in an increase in drug bioavailability either because of a food-induced increase in drug solubility (albendazole, atovaquone, griseofulvin, isotretinoin, lovastatin, mefloquine, saquinavir and tacrolimus) or because of the secretion of

  4. Towards interactive narrative medicine.

    PubMed

    Cavazza, Marc; Charles, Fred

    2013-01-01

    Interactive Storytelling technologies have attracted significant interest in the field of simulation and serious gaming for their potential to provide a principled approach to improve user engagement in training scenarios. In this paper, we explore the use of Interactive Storytelling to support Narrative Medicine as a reflective practice. We describe a workflow for the generation of virtual narratives from high-level descriptions of patients' experiences as perceived by physicians, which can help to objectivize such perceptions and support various forms of analysis.

  5. Flank solar wind interaction

    NASA Technical Reports Server (NTRS)

    Moses, Stewart L.; Greenstadt, Eugene W.; Coroniti, Ferdinand V.

    1994-01-01

    In this report we will summarize the results of the work performed under the 'Flank Solar Wind Interaction' investigation in support of NASA's Space Physics Guest Investigator Program. While this investigation was focused on the interaction of the Earth's magnetosphere with the solar wind as observed by instruments on the International Sun-Earth Explorer (ISEE) 3 spacecraft, it also represents the culmination of decades of research performed by scientists at TRW on the rich phenomenology of collisionless shocks in space.

  6. Human-machine interactions

    DOEpatents

    Forsythe, J. Chris; Xavier, Patrick G.; Abbott, Robert G.; Brannon, Nathan G.; Bernard, Michael L.; Speed, Ann E.

    2009-04-28

    Digital technology utilizing a cognitive model based on human naturalistic decision-making processes, including pattern recognition and episodic memory, can reduce the dependency of human-machine interactions on the abilities of a human user and can enable a machine to more closely emulate human-like responses. Such a cognitive model can enable digital technology to use cognitive capacities fundamental to human-like communication and cooperation to interact with humans.

  7. Interaction with Machine Improvisation

    NASA Astrophysics Data System (ADS)

    Assayag, Gerard; Bloch, George; Cont, Arshia; Dubnov, Shlomo

    We describe two multi-agent architectures for an improvisation oriented musician-machine interaction systems that learn in real time from human performers. The improvisation kernel is based on sequence modeling and statistical learning. We present two frameworks of interaction with this kernel. In the first, the stylistic interaction is guided by a human operator in front of an interactive computer environment. In the second framework, the stylistic interaction is delegated to machine intelligence and therefore, knowledge propagation and decision are taken care of by the computer alone. The first framework involves a hybrid architecture using two popular composition/performance environments, Max and OpenMusic, that are put to work and communicate together, each one handling the process at a different time/memory scale. The second framework shares the same representational schemes with the first but uses an Active Learning architecture based on collaborative, competitive and memory-based learning to handle stylistic interactions. Both systems are capable of processing real-time audio/video as well as MIDI. After discussing the general cognitive background of improvisation practices, the statistical modelling tools and the concurrent agent architecture are presented. Then, an Active Learning scheme is described and considered in terms of using different improvisation regimes for improvisation planning. Finally, we provide more details about the different system implementations and describe several performances with the system.

  8. Embedded human computer interaction.

    PubMed

    Baber, Christopher; Baumann, Konrad

    2002-05-01

    In this paper, human interaction with embedded or ubiquitous technology is considered. The techniques focus on the use of what might be termed "everyday" objects and actions as a means of controlling (or otherwise interacting with) technology. While this paper is not intended to be an exhaustive review, it does present a view of the immediate future of human-computer interaction (HCI) in which users move beyond the desktop to where interacting with technology becomes merged with other activity. At one level this places HCI in the context of other forms of personal and domestic technologies. At another level, this raises questions as to how people will interact with technologies of the future. Until now, HCI had often relied on people learning obscure command sets or learning to recognise words and objects on their computer screen. The most significant advance in HCI (the invention of the WIMP interface) is already some 40 years old. Thus, the future of HCI might be one in which people are encouraged (or at least allowed) to employ the skills that they have developed during their lives in order to interact with technology, rather than being forced to learn and perfect new skills.

  9. Sperm-egg interaction.

    PubMed

    Evans, Janice P

    2012-01-01

    A crucial step of fertilization is the sperm-egg interaction that allows the two gametes to fuse and create the zygote. In the mouse, CD9 on the egg and IZUMO1 on the sperm stand out as critical players, as Cd9(-/-) and Izumo1(-/-) mice are healthy but infertile or severely subfertile due to defective sperm-egg interaction. Moreover, work on several nonmammalian organisms has identified some of the most intriguing candidates implicated in sperm-egg interaction. Understanding of gamete membrane interactions is advancing through characterization of in vivo and in vitro fertilization phenotypes, including insights from less robust phenotypes that highlight potential supporting (albeit not absolutely essential) players. An emerging theme is that there are varied roles for gamete molecules that participate in sperm-egg interactions. Such roles include not only functioning as fusogens, or as adhesion molecules for the opposite gamete, but also functioning through interactions in cis with other proteins to regulate membrane order and functionality.

  10. History of Weak Interactions

    DOE R&D Accomplishments Database

    Lee, T. D.

    1970-07-01

    While the phenomenon of beta-decay was discovered near the end of the last century, the notion that the weak interaction forms a separate field of physical forces evolved rather gradually. This became clear only after the experimental discoveries of other weak reactions such as muon-decay, muon-capture, etc., and the theoretical observation that all these reactions can be described by approximately the same coupling constant, thus giving rise to the notion of a universal weak interaction. Only then did one slowly recognize that the weak interaction force forms an independent field, perhaps on the same footing as the gravitational force, the electromagnetic force, and the strong nuclear and sub-nuclear forces.

  11. Molecular interaction databases.

    PubMed

    Orchard, Sandra

    2012-05-01

    Molecular interaction databases are playing an ever more important role in our understanding of the biology of the cell. An increasing number of resources exist to provide these data and many of these have adopted the controlled vocabularies and agreed-upon standardised data formats produced by the Molecular Interaction workgroup of the Human Proteome Organization Proteomics Standards Initiative (HUPO PSI-MI). Use of these standards allows each resource to establish PSI Common QUery InterfaCe (PSICQUIC) service, making data from multiple resources available to the user in response to a single query. This cooperation between databases has been taken a stage further, with the establishment of the International Molecular Exchange (IMEx) consortium which aims to maximise the curation power of numerous data resources, and provide the user with a non-redundant, consistently annotated set of interaction data. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Interactions of anabolic steroids.

    PubMed

    Kopera, H

    1993-01-01

    Drug-drug interactions, or interference between drugs and other treatments, depend on many factors and are therefore difficult to predict. However, a number are clearly established in the case of anabolic-androgenic steroids. The beneficial interactions between anabolic steroids and radiotherapy or cytostatic drugs respectively are of therapeutic value. Adjuvant treatment with anabolic compounds in patients undergoing radiation and/or cytostatic therapy is beneficial because it can prevent or reduce depression of erythropoiesis, granulopoiesis and thrombopoiesis. It also diminishes protein catabolism, supports recovery, improves the general condition of the patient and minimizes radiation sickness. Potentially adverse interactions with anabolic steroids must be expected in the case of oral anticoagulants and antidiabetic drugs, since sensitivity to each of the latter is increased. This makes it particularly advisable to monitor patients receiving either oral anticoagulants or antidiabetic treatment concurrently with anabolic drugs.

  13. Dike/Drift Interactions

    SciTech Connect

    E. Gaffiney

    2004-11-23

    This report presents and documents the model components and analyses that represent potential processes associated with propagation of a magma-filled crack (dike) migrating upward toward the surface, intersection of the dike with repository drifts, flow of magma in the drifts, and post-magma emplacement effects on repository performance. The processes that describe upward migration of a dike and magma flow down the drift are referred to as the dike intrusion submodel. The post-magma emplacement processes are referred to as the post-intrusion submodel. Collectively, these submodels are referred to as a conceptual model for dike/drift interaction. The model components and analyses of the dike/drift interaction conceptual model provide the technical basis for assessing the potential impacts of an igneous intrusion on repository performance, including those features, events, and processes (FEPs) related to dike/drift interaction (Section 6.1).

  14. Propeller tip vortex interactions

    NASA Technical Reports Server (NTRS)

    Johnston, Robert T.; Sullivan, John P.

    1990-01-01

    Propeller wakes interacting with aircraft aerodynamic surfaces are a source of noise and vibration. For this reason, flow visualization work on the motion of the helical tip vortex over a wing and through the second stage of a counterrotation propeller (CRP) has been pursued. Initially, work was done on the motion of a propeller helix as it passes over the center of a 9.0 aspect ratio wing. The propeller tip vortex experiences significant spanwise displacements when passing across a lifting wing. A stationary propeller blade or stator was installed behind the rotating propeller to model the blade vortex interaction in a CRP. The resulting vortex interaction was found to depend on the relative vortex strengths and vortex sign.

  15. Carotenoid-Protein Interactions

    NASA Astrophysics Data System (ADS)

    Britton, George; Helliwell, John R.

    Chapter 5 shows that the aggregation of carotenoid molecules can have a profound effect on their properties and hence their functioning in biological systems. Another important influence is the interaction between carotenoids and other molecules. The way that interactions of carotenoids with lipid bilayers influence the structure and properties of membranes and membrane-asociated processes is discussed in Chapter 10, and the aggregation of carotenoid molecules within the bilayers in Chapter 5. Of particular importance, though, are interactions between carotenoids and proteins. These allow the hydrophobic carotenoids to be transported, to exist, and to function in an aqueous environment. In some cases they may modify strongly the light-absorption properties and hence the colour and photochemistry of the carotenoids.

  16. Achromatic Interaction Point Design

    SciTech Connect

    Guimei Wang,, Yaroslav Derbenev, S.Alex Bogacz, P. Chevtsov, Andre Afanaciev, Charles Ankenbrandt, Valentin Ivanov, Rolland P. Johnson

    2009-05-01

    Designers of high-luminosity energy-frontier muon colliders must provide strong beam focusing in the interaction regions. However, the construction of a strong, aberration-free beam focus is difficult and space consuming, and long straight sections generate an off-site radiation problem due to muon decay neutrinos that interact as they leave the surface of the earth. Without some way to mitigate the neutrino radiation problem, the maximum c.m. energy of a muon collider will be limited to about 3.5 TeV. A new concept for achromatic low beta design is being developed, in which the interaction region telescope and optical correction elements, are installed in the bending arcs. The concept, formulated analytically, combines space economy, a preventative approach to compensation for aberrations, and a reduction of neutrino flux concentration. An analytical theory for the aberration-free, low beta, spatially compact insertion is being developed.

  17. Multimodal Interaction Control

    NASA Astrophysics Data System (ADS)

    Beskow, Jonas; Carlson, Rolf; Edlund, Jens; Granström, Björn; Heldner, Mattias; Hjalmarsson, Anna; Skantze, Gabriel

    No matter how well hidden our systems are and how well they do their magic unnoticed in the background, there are times when direct interaction between system and human is a necessity. As long as the interaction can take place unobtrusively and without techno-clutter, this is desirable. It is hard to picture a means of interaction less obtrusive and techno-cluttered than spoken communication on human terms. Spoken face-to-face communication is the most intuitive and robust form of communication between humans imaginable. In order to exploit such human spoken communication to its full potential as an interface between human and machine, we need a much better understanding of how the more human-like aspects of spoken communication work.

  18. Solar-terrestrial interactions

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The effects of solar radiation on man's environment are discussed. It is solar radiation that is the basic energy source driving the circulations of the earth's atmosphere and oceans. Solar radiation is responsible for the ionization of the earth's upper atmosphere to form the ionosphere, which is important to our understanding of the magnetosphere and its interaction with the solar wind. The solar wind, which is the continuous (but not steady) flow of the sun's coronal plasma and magnetic field into interplanetary space, plays both an active and passive role in its interaction with the earth's environment.

  19. The new interactive CESAR

    SciTech Connect

    Fox, P.B.; Yatabe, M.

    1987-01-01

    In this report the Nuclear Criticality Safety Analytical Methods Resource Center describes a new interactive version of CESAR, a critical experiments storage and retrieval program available on the Nuclear Criticality Information System (NCIS) database at Lawrence Livermore National Laboratory. The original version of CESAR did not include interactive search capabilities. The CESAR database was developed to provide a convenient, readily accessible means of storing and retrieving code input data for the SCALE Criticality Safety Analytical Sequences and the codes comprising those sequences. The database includes data for both cross section preparation and criticality safety calculations. 3 refs., 1 tab.

  20. Propeller/wing interaction

    NASA Technical Reports Server (NTRS)

    Witkowski, David P.; Johnston, Robert T.; Sullivan, John P.

    1989-01-01

    The present experimental investigation of the steady-state and unsteady-state effects due to the interaction between a tractor propeller's wake and a wing employs, in the steady case, wind tunnel measurements at low subsonic speed; results are obtained which demonstrate wing performance response to variations in configuration geometry. Other steady-state results involve the propeller-hub lift and side-force due to the wing's influence on the propeller. The unsteady effects of interaction were studied through flow visualization of propeller-tip vortex distortion over a wing, again using a tractor-propeller configuration.

  1. Propeller/wing interaction

    NASA Technical Reports Server (NTRS)

    Witkowski, David P.; Johnston, Robert T.; Sullivan, John P.

    1989-01-01

    The present experimental investigation of the steady-state and unsteady-state effects due to the interaction between a tractor propeller's wake and a wing employs, in the steady case, wind tunnel measurements at low subsonic speed; results are obtained which demonstrate wing performance response to variations in configuration geometry. Other steady-state results involve the propeller-hub lift and side-force due to the wing's influence on the propeller. The unsteady effects of interaction were studied through flow visualization of propeller-tip vortex distortion over a wing, again using a tractor-propeller configuration.

  2. Solitary water wave interactions

    NASA Astrophysics Data System (ADS)

    Craig, W.; Guyenne, P.; Hammack, J.; Henderson, D.; Sulem, C.

    2006-05-01

    This article concerns the pairwise nonlinear interaction of solitary waves in the free surface of a body of water lying over a horizontal bottom. Unlike solitary waves in many completely integrable model systems, solitary waves for the full Euler equations do not collide elastically; after interactions, there is a nonzero residual wave that trails the post-collision solitary waves. In this report on new numerical and experimental studies of such solitary wave interactions, we verify that this is the case, both in head-on collisions (the counterpropagating case) and overtaking collisions (the copropagating case), quantifying the degree to which interactions are inelastic. In the situation in which two identical solitary waves undergo a head-on collision, we compare the asymptotic predictions of Su and Mirie [J. Fluid Mech. 98, 509 (1980)] and Byatt-Smith [J. Fluid Mech. 49, 625 (1971)], the wavetank experiments of Maxworthy [J. Fluid Mech. 76, 177 (1976)], and the numerical results of Cooker, Weidman, and Bale [J. Fluid Mech. 342, 141 (1997)] with independent numerical simulations, in which we quantify the phase change, the run-up, and the form of the residual wave and its Fourier signature in both small- and large-amplitude interactions. This updates the prior numerical observations of inelastic interactions in Fenton and Rienecker [J. Fluid Mech. 118, 411 (1982)]. In the case of two nonidentical solitary waves, our precision wavetank experiments are compared with numerical simulations, again observing the run-up, phase lag, and generation of a residual from the interaction. Considering overtaking solitary wave interactions, we compare our experimental observations, numerical simulations, and the asymptotic predictions of Zou and Su [Phys. Fluids 29, 2113 (1986)], and again we quantify the inelastic residual after collisions in the simulations. Geometrically, our numerical simulations of overtaking interactions fit into the three categories of Korteweg-deVries two

  3. Interactions between interactions: predator-prey, parasite-host, and mutualistic interactions.

    PubMed

    Møller, Anders Pape

    2008-01-01

    Ecological interactions such as those between predators and prey, parasites and hosts, and pollinators and plants are usually studied on their own while neglecting that one category of interactions can have dramatic effects on another. Such interactions between interactions will have both ecological and evolutionary effects because the actions of one party will influence interactions among other parties, thereby eventually causing feedback on the first party. Examples of such interactions include the effects of predators and parasites on the evolution of host sexual selection, the effects of parasites and predators on the evolution of virulence, and the effects of parasites and predators on the evolution of pollinator mutualisms. Such interactions among interactions will generally prevent simple cases of coevolution, because any single case of interaction between two parties may be affected by an entire range of additional interacting factors. These phenomena will have implications not only for how ecologists and evolutionary biologists empirically study interactions but also on how such interactions are modeled.

  4. Teleconferencing and Interactive Media.

    ERIC Educational Resources Information Center

    Parker, Lorne A., Comp.; Olgren, Christine H., Comp.

    This publication contains more than 50 papers on the latest developments and applications of interactive media to link distant locations. The contributors, who represent business, government, education, medical, and telecommunications organizations in the United States, Canada, England, and Australia, have had direct experience with the full range…

  5. Interactive Technology for Education.

    ERIC Educational Resources Information Center

    Brooks, Robert; Perl, Barry

    1991-01-01

    By using the kind of two-way television system envisioned by Buckminster Fuller, school children can learn at their own rates and select interesting topics, thereby continually reinforcing the desire to learn. Today's new interactive video systems, from multimedia encyclopedias to hypermedia combinations, allow students to explore subject matter…

  6. Interactive Tabletops in Education

    ERIC Educational Resources Information Center

    Dillenbourg, Pierre; Evans, Michael

    2011-01-01

    Interactive tabletops are gaining increased attention from CSCL researchers. This paper analyses the relation between this technology and teaching and learning processes. At a global level, one could argue that tabletops convey a socio-constructivist flavor: they support small teams that solve problems by exploring multiple solutions. The…

  7. Interactive Genetics Tutorial Project.

    ERIC Educational Resources Information Center

    Wisconsin Univ., Madison. Dept. of Curriculum and Instruction.

    The Interactive Genetics Tutorial (IGT) project and the Intelligent Tutoring System for the IGT project named MENDEL supplement genetics instruction in biology courses by providing students with experience in designing, conducting, and evaluating genetics experiments. The MENDEL software is designed to: (1) simulate genetics experiments that…

  8. Electron interaction in matter

    NASA Technical Reports Server (NTRS)

    Dance, W. E.; Rainwater, W. J.; Rester, D. H.

    1969-01-01

    Data on the scattering of 1-MeV electrons in aluminum for the case of non-normal incidence, electron-bremsstrahlung cross-sections in thin targets, and the production of bremstrahlung by electron interaction in thick targets, are presented both in tabular and graphic form. These results may interest physicists and radiologists.

  9. Weak and electromagnetic interactions

    NASA Astrophysics Data System (ADS)

    Salam, Abdus

    One of the recurrent dreams in elementary particle physics is that of a possible fundamental synthesis between electromagnetism and weak interaction. The idea has its origin in the following shared characteristics: 1. Both forces affect equally all forms of matter -leptons as well as hadrons. 2. Both are vector in character. 3. Both (individually) possess universal coupling strengths.

  10. Interaction Information Retrieval.

    ERIC Educational Resources Information Center

    Dominich, Sandor

    1994-01-01

    Discussion of information retrieval focuses on an Interaction Information Retrieval model in which documents are interconnected; queries and documents are treated in the same way; and retrieval is the result of the interconnection between query and documents. A theoretical mathematical formulation of this type of retrieval is given. (Contains 31…

  11. GENIE final state interactions

    SciTech Connect

    Dytman, Steven

    2015-10-15

    Final state interactions are an important component of any neutrino-nucleus Monte Carlo program. GENIE has 2 FSI programs which serve different purposes. Each has fair-good agreement with a wide range of hadron-nucleus data. Recent improvements and planned advancements are described.

  12. Magnetosphere-ionosphere interactions

    NASA Technical Reports Server (NTRS)

    Vondrak, R. R.; Chiu, Y. T.; Evans, D. S.; Patterson, V. G.; Romick, G. J.; Stasiewicz, K.

    1979-01-01

    The present understanding of magnetosphere ionosphere interactions is described, and present and future predictive capabilities are assessed. Ionospheric features directly coupled to the magnetosphere to a significant degree are considered, with emphasis given to those phenomena of major interest to forecasters and users.

  13. Standardizing Interaction Design Education

    ERIC Educational Resources Information Center

    Thomassen, Aukje; Ozcan, Oguzhan

    2010-01-01

    The objective of this paper is to which extend the didactic format of studio-based group-work is applicable for creating a common-ground for Interaction Design Education in European Perspective. The current debate on design education shows us a landscape of different initiatives. So far difficulties have arisen in the area of accreditation and…

  14. Interactive Mold House Tour

    EPA Pesticide Factsheets

    Get a quick glimpse of some of the most important ways to protect your home from mold by this interactive tour of the Mold House. Room-by-room, you'll learn about common mold issues and how to address them.

  15. Data Interactive Publications Revisited

    NASA Astrophysics Data System (ADS)

    Domenico, B.; Weber, W. J.

    2011-12-01

    A few years back, the authors presented examples of online documents that allowed the reader to interact directly with datasets, but there were limitations that restricted the interaction to specific desktop analysis and display tools that were not generally available to all readers of the documents. Recent advances in web service technology and related standards are making it possible to develop systems for publishing online documents that enable readers to access, analyze, and display the data discussed in the publication from the perspective and in the manner from which the author wants it to be represented. By clicking on embedded links, the reader accesses not only the usual textual information in a publication, but also data residing on a local or remote web server as well as a set of processing tools for analyzing and displaying the data. With the option of having the analysis and display processing provided on the server, there are now a broader set of possibilities on the client side where the reader can interact with the data via a thin web client, a rich desktop application, or a mobile platform "app." The presentation will outline the architecture of data interactive publications along with illustrative examples.

  16. Data Interactive Publications

    NASA Astrophysics Data System (ADS)

    Domenico, B.; Weber, J.

    2012-04-01

    For some years now, the authors have developed examples of online documents that allowed the reader to interact directly with datasets, but there were limitations that restricted the interaction to specific desktop analysis and display tools that were not generally available to all readers of the documents. Recent advances in web service technology and related standards are making it possible to develop systems for publishing online documents that enable readers to access, analyze, and display the data discussed in the publication from the perspective and in the manner from which the author wants it to be represented. By clicking on embedded links, the reader accesses not only the usual textual information in a publication, but also data residing on a local or remote web server as well as a set of processing tools for analyzing and displaying the data. With the option of having the analysis and display processing provided on the server (or in the cloud), there are now a broader set of possibilities on the client side where the reader can interact with the data via a thin web client, a rich desktop application, or a mobile platform "app." The presentation will outline the architecture of data interactive publications along with illustrative examples.

  17. Connectionist Interaction Information Retrieval.

    ERIC Educational Resources Information Center

    Dominich, Sandor

    2003-01-01

    Discussion of connectionist views for adaptive clustering in information retrieval focuses on a connectionist clustering technique and activation spreading-based information retrieval model using the interaction information retrieval method. Presents theoretical as well as simulation results as regards computational complexity and includes…

  18. Designing Interactive Learning Systems.

    ERIC Educational Resources Information Center

    Barker, Philip

    1990-01-01

    Describes multimedia, computer-based interactive learning systems that support various forms of individualized study. Highlights include design models; user interfaces; design guidelines; media utilization paradigms, including hypermedia and learner-controlled models; metaphors and myths; authoring tools; optical media; workstations; four case…

  19. Interactive Reflective Logs

    ERIC Educational Resources Information Center

    Deaton, Cynthia Minchew; Deaton, Benjamin E.; Leland, Katina

    2010-01-01

    The authors created an interactive reflective log (IRL) to provide teachers with an opportunity to use a journal approach to record, evaluate, and communicate student understanding of science concepts. Unlike a traditional journal, the IRL incorporates prompts to encourage students to discuss their understanding of science content and science…

  20. Interactive shape metamorphosis

    NASA Technical Reports Server (NTRS)

    Chen, David T.; State, Andrei; Banks, David

    1994-01-01

    A technique for controlled metamorphosis between surfaces in 3-space is described. Well-understood techniques to produce shape metamorphosis between models in a 2D parametric space is applied. The user selects morphable features interactively, and the morphing process executes in real time on a high-performance graphics multicomputer.

  1. Electronically Enhanced Classroom Interaction.

    ERIC Educational Resources Information Center

    Draper, Stephen; Cargill, Julie; Cutts, Quintin

    A design rationale for introducing electronic equipment (a group response system) for student interaction in lecture theaters is presented, linking the instructional design to theory. The effectiveness of the equipment for learning depends mostly on what pedagogic method is employed. Various alternative types are introduced, including: assessment;…

  2. Interaction, 1996-1997.

    ERIC Educational Resources Information Center

    Hajdu-Vaughn, Susan, Ed.; Coyle, Barbara, Ed.

    1997-01-01

    This collection includes four quarterly issues of "Interaction," a publication of the Canadian Child Care Federation. Each issue addresses several topics and is arranged in four sections: opinions, practice/pratique, focus/a propos, and news/nouvelles. The opinions section includes letters and editorial/review columns, the practice…

  3. Teleconferencing and Interactive Media.

    ERIC Educational Resources Information Center

    Parker, Lorne A., Comp.; Olgren, Christine H., Comp.

    This publication contains more than 50 papers on the latest developments and applications of interactive media to link distant locations. The contributors, who represent business, government, education, medical, and telecommunications organizations in the United States, Canada, England, and Australia, have had direct experience with the full range…

  4. Adhesive interactions with wood

    Treesearch

    Charles R. Frihart

    2004-01-01

    While the chemistry for the polymerization of wood adhesives has been studied systematically and extensively, the critical aspects of the interaction of adhesives with wood are less clearly understood. General theories of bond formation need to be modified to take into account the porosity of wood and the ability of chemicals to be absorbed into the cell wall....

  5. Interactive Technology for Education.

    ERIC Educational Resources Information Center

    Brooks, Robert; Perl, Barry

    1991-01-01

    By using the kind of two-way television system envisioned by Buckminster Fuller, school children can learn at their own rates and select interesting topics, thereby continually reinforcing the desire to learn. Today's new interactive video systems, from multimedia encyclopedias to hypermedia combinations, allow students to explore subject matter…

  6. Interaction with William Carnall

    SciTech Connect

    Judd, Brian R. . E-mail: juddbr@pha.jhu.edu

    2005-02-15

    A personal account is given of interaction with William T. Carnall during the period 1977-1988, when I made regular visits to the Argonne National Laboratory to discuss the theoretical background to the spectroscopic work he was carrying out on the lanthanides and actinides.

  7. Teaching with Interactive Multimedia.

    ERIC Educational Resources Information Center

    Hudson, Tim

    Based on the idea that anyone who is interested in making entertaining and informative presentations in educational settings is interested in multimedia, this practical guide offers tips for communication (and other) teachers who want to integrate and program interactive multimedia into their courses. The guide suggests that teachers on limited…

  8. Interactive Tabletops in Education

    ERIC Educational Resources Information Center

    Dillenbourg, Pierre; Evans, Michael

    2011-01-01

    Interactive tabletops are gaining increased attention from CSCL researchers. This paper analyses the relation between this technology and teaching and learning processes. At a global level, one could argue that tabletops convey a socio-constructivist flavor: they support small teams that solve problems by exploring multiple solutions. The…

  9. Dimensions of Group Interaction

    ERIC Educational Resources Information Center

    Dawidowicz, Paula

    2008-01-01

    The correlation between positive and negative group interactions and one or another of individuals' attitudes or characteristics--moral development, critical thinking, resilience, and self efficacy--has been examined previously. However, no systemic examination of individuals' development of patterns of these characteristics and those patterns'…

  10. Electronically Enhanced Classroom Interaction.

    ERIC Educational Resources Information Center

    Draper, Stephen; Cargill, Julie; Cutts, Quintin

    A design rationale for introducing electronic equipment (a group response system) for student interaction in lecture theaters is presented, linking the instructional design to theory. The effectiveness of the equipment for learning depends mostly on what pedagogic method is employed. Various alternative types are introduced, including: assessment;…

  11. Interaction, 1996-1997.

    ERIC Educational Resources Information Center

    Hajdu-Vaughn, Susan, Ed.; Coyle, Barbara, Ed.

    1997-01-01

    This collection includes four quarterly issues of "Interaction," a publication of the Canadian Child Care Federation. Each issue addresses several topics and is arranged in four sections: opinions, practice/pratique, focus/a propos, and news/nouvelles. The opinions section includes letters and editorial/review columns, the practice…

  12. Interactive Learning by Satellite.

    ERIC Educational Resources Information Center

    Barker, Bruce O.

    1987-01-01

    Describes three systems of interactive satellite instruction for high school credit: German by Satellite, offered by the University of Oklahoma; Accelerated Learning of Spanish, originating in Utah; and the TI-IN network, which broadcasts 14 different high school courses from San Antonio, Texas. (JC)

  13. Connectionist Interaction Information Retrieval.

    ERIC Educational Resources Information Center

    Dominich, Sandor

    2003-01-01

    Discussion of connectionist views for adaptive clustering in information retrieval focuses on a connectionist clustering technique and activation spreading-based information retrieval model using the interaction information retrieval method. Presents theoretical as well as simulation results as regards computational complexity and includes…

  14. Standardizing Interaction Design Education

    ERIC Educational Resources Information Center

    Thomassen, Aukje; Ozcan, Oguzhan

    2010-01-01

    The objective of this paper is to which extend the didactic format of studio-based group-work is applicable for creating a common-ground for Interaction Design Education in European Perspective. The current debate on design education shows us a landscape of different initiatives. So far difficulties have arisen in the area of accreditation and…

  15. Nucleon-nucleon interactions

    SciTech Connect

    Wiringa, R.B.

    1996-12-31

    Nucleon-nucleon interactions are at the heart of nuclear physics, bridging the gap between QCD and the effective interactions appropriate for the shell model. We discuss the current status of {ital NN} data sets, partial-wave analyses, and some of the issues that go into the construction of potential models. Our remarks are illustrated by reference to the Argonne {ital v}{sub 18} potential, one of a number of new potentials that fit elastic nucleon-nucleon data up to 350 MeV with a {Chi}{sup 2} per datum near 1. We also discuss the related issues of three-nucleon potentials, two-nucleon charge and current operators, and relativistic effects. We give some examples of calculations that can be made using these realistic descriptions of {ital NN} interactions. We conclude with some remarks on how our empirical knowledge of {ital NN} interactions may help constrain models at the quark level, and hence models of nucleon structure.

  16. Interaction: Examples and Possibilities.

    ERIC Educational Resources Information Center

    Schick, James B. M.

    2000-01-01

    Explores examples of software that employs interactivity to engage students in a dialogue with the past: (1) "Reverse America"; (2) "Pilgrims and Indians"; (3) "Keys to Victory in the War for Independence"; (4) "Monmouth"; (5) "Critical Period"; (6) "Translating"; (7) "Founders"; and (8) "Convention". (CMK)

  17. Interacting Chaplygin gas revisited

    NASA Astrophysics Data System (ADS)

    Saha, Subhajit; Ghosh, Saumya; Gangopadhyay, Sunandan

    2017-07-01

    In this paper, the implications of considering interaction between Chaplygin gas and a barotropic fluid with constant equation of state have been explored. The unique feature of this work is that assuming an interaction Q ∝ Hρd, analytic expressions for the energy density and pressure have been derived in terms of the hypergeometric 2F1 function. It is worthwhile to mention that an interacting Chaplygin gas model was considered in 2006 by Zhang and Zhu, nevertheless, analytic solutions for the continuity equations could not be determined assuming an interaction proportional to H times the sum of the energy densities of Chaplygin gas and dust. Our model can successfully explain the transition from the early decelerating phase to the present phase of cosmic acceleration. Arbitrary choice of the free parameters of our model through trial and error shows that recent observational data strongly favors wm = 0 and wm = -1 3 over the wm = 1 3 case. Interestingly, the present model also incorporates the transition of dark energy into the phantom domain, however, future deceleration is forbidden.

  18. Interactive Reflective Logs

    ERIC Educational Resources Information Center

    Deaton, Cynthia Minchew; Deaton, Benjamin E.; Leland, Katina

    2010-01-01

    The authors created an interactive reflective log (IRL) to provide teachers with an opportunity to use a journal approach to record, evaluate, and communicate student understanding of science concepts. Unlike a traditional journal, the IRL incorporates prompts to encourage students to discuss their understanding of science content and science…

  19. Interactions of cosmic superstrings

    SciTech Connect

    Jackson, Mark G.; /Fermilab

    2007-06-01

    We develop methods by which cosmic superstring interactions can be studied in detail. These include the reconnection probability and emission of radiation such as gravitons or small string loops. Loop corrections to these are discussed, as well as relationships to (p; q)-strings. These tools should allow a phenomenological study of string models in anticipation of upcoming experiments sensitive to cosmic string radiation.

  20. Embarrassment in Dyadic Interaction.

    ERIC Educational Resources Information Center

    Edelmann, Robert J.; Hampson, Sarah E.

    1981-01-01

    Subject pairs (N=18) participated in an alternating question-and-answer session at one of two interactional distances utilizing questions which increased in their intimacy content. Results indicated topic intimacy, but not distance, affected the embarrassment potential of the situation. Increases in embarrassment caused changes in nonverbal and…

  1. INTERACT: an object oriented protein-protein interaction database.

    PubMed

    Eilbeck, K; Brass, A; Paton, N; Hodgman, C

    1999-01-01

    Protein-protein interactions provide vital information concerning the function of proteins, complexes and networks. Currently there is no widely accepted repository of this interaction information. Our aim is to provide a single database with the necessary architecture to fully store, query and analyse interaction data. An object oriented database has been created which provides scientists with a resource for examining existing protein-protein interactions and inferring possible interactions from the data stored. It also provides a basis for examining networks of interacting proteins, via analysis of the data stored. The database contains over a thousand interactions. k.eilbeck@stud.man.ac.uk

  2. The evolution of social interactions changes predictions about interacting phenotypes.

    PubMed

    Kazancıoğlu, Erem; Klug, Hope; Alonzo, Suzanne H

    2012-07-01

    In many traits involved in social interactions, such as courtship and aggression, the phenotype is an outcome of interactions between individuals. Such traits whose expression in an individual is partly determined by the phenotype of its social partner are called "interacting phenotypes." Quantitative genetic models suggested that interacting phenotypes can evolve much faster than nonsocial traits. Current models, however, consider the interaction between phenotypes of social partners as a fixed phenotypic response rule, represented by an interaction coefficient (ψ). Here, we extend existing theoretical models and incorporate the interaction coefficient as a trait that can evolve. We find that the evolution of the interaction coefficient can change qualitatively the predictions about the rate and direction of evolution of interacting phenotypes. We argue that it is crucial to determine whether and how the phenotypic response of an individual to its social partner can evolve to make accurate predictions about the evolution of traits involved in social interactions. © 2012 The Author(s).

  3. Drug Interaction and Pharmacist

    PubMed Central

    Ansari, JA

    2010-01-01

    The topic of drug–drug interactions has received a great deal of recent attention from the regulatory, scientific, and health care communities worldwide. Nonsteroidal anti-inflammatory drugs, antibiotics and, in particular, rifampin are common precipitant drugs prescribed in primary care practice. Drugs with a narrow therapeutic range or low therapeutic index are more likely to be the objects for serious drug interactions. Object drugs in common use include warfarin, fluoroquinolones, antiepileptic drugs, oral contraceptives, cisapride, and 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. The pharmacist, along with the prescriber has a duty to ensure that patients are aware of the risk of side effects and a suitable course of action should they occur. With their detailed knowledge of medicine, pharmacists have the ability to relate unexpected symptoms experienced by patients to possible adverse effects of their drug therapy. PMID:21042495

  4. Interactive optical panel

    DOEpatents

    Veligdan, James T.

    1995-10-03

    An interactive optical panel assembly 34 includes an optical panel 10 having a plurality of ribbon optical waveguides 12 stacked together with opposite ends thereof defining panel first and second faces 16, 18. A light source 20 provides an image beam 22 to the panel first face 16 for being channeled through the waveguides 12 and emitted from the panel second face 18 in the form of a viewable light image 24a. A remote device 38 produces a response beam 40 over a discrete selection area 36 of the panel second face 18 for being channeled through at least one of the waveguides 12 toward the panel first face 16. A light sensor 42,50 is disposed across a plurality of the waveguides 12 for detecting the response beam 40 therein for providing interactive capability.

  5. Diabetes Interactive Atlas

    PubMed Central

    Burrows, Nilka R.; Geiss, Linda S.

    2014-01-01

    The Diabetes Interactive Atlas is a recently released Web-based collection of maps that allows users to view geographic patterns and examine trends in diabetes and its risk factors over time across the United States and within states. The atlas provides maps, tables, graphs, and motion charts that depict national, state, and county data. Large amounts of data can be viewed in various ways simultaneously. In this article, we describe the design and technical issues for developing the atlas and provide an overview of the atlas’ maps and graphs. The Diabetes Interactive Atlas improves visualization of geographic patterns, highlights observation of trends, and demonstrates the concomitant geographic and temporal growth of diabetes and obesity. PMID:24503340

  6. Volcanism-Climate Interactions

    NASA Technical Reports Server (NTRS)

    Walter, Louis S. (Editor); Desilva, Shanaka (Editor)

    1991-01-01

    The range of disciplines in the study of volcanism-climate interactions includes paleoclimate, volcanology, petrology, tectonics, cloud physics and chemistry, and climate and radiation modeling. Questions encountered in understanding the interactions include: the source and evolution of sulfur and sulfur-gaseous species in magmas; their entrainment in volcanic plumes and injection into the stratosphere; their dissipation rates; and their radiative effects. Other issues include modeling and measuring regional and global effects of such large, dense clouds. A broad-range plan of research designed to answer these questions was defined. The plan includes observations of volcanoes, rocks, trees, and ice cores, as well as satellite and aircraft observations of erupting volcanoes and resulting lumes and clouds.

  7. Evolution of intrafamilial interactions.

    PubMed Central

    Lynch, M

    1987-01-01

    A theory for the evolution of behavioral interactions among relatives is developed that allows for genetic correlations between the types of behavior that are expressed in different social contexts. Both theoretical and empirical considerations indicate that such genetic constraints will almost certainly be common in natural populations. It is shown that when genetic correlations between elements of social behavior exist, Hamilton's rule inaccurately describes the conditions for evolution by way of kin selection. The direction in which social organization evolves is a delicate function of the genetic covariance structure among behaviors expressed as an offspring, sibling, parent, etc. A change in this covariance structure caused by random genetic drift or by a change in environment for a population exhibiting genotype-environment interaction can cause the population to suddenly cross a threshold into a new selective domain. Consequently, radical changes in social organization may arise between closely related species without any major shift in selective pressures external to the population. Images PMID:3479804

  8. Interactive protein manipulation

    SciTech Connect

    SNCrivelli@lbl.gov

    2003-07-01

    We describe an interactive visualization and modeling program for the creation of protein structures ''from scratch''. The input to our program is an amino acid sequence -decoded from a gene- and a sequence of predicted secondary structure types for each amino acid-provided by external structure prediction programs. Our program can be used in the set-up phase of a protein structure prediction process; the structures created with it serve as input for a subsequent global internal energy minimization, or another method of protein structure prediction. Our program supports basic visualization methods for protein structures, interactive manipulation based on inverse kinematics, and visualization guides to aid a user in creating ''good'' initial structures.

  9. Tetrel Bonding Interactions.

    PubMed

    Bauzá, Antonio; Mooibroek, Tiddo J; Frontera, Antonio

    2016-02-01

    Tetrel (Tr) bonding is first placed into perspective as a σ-hole bonding interaction with atoms of the Tr family. An sp(3) R4Tr unit has four σ-holes with which a Lewis base can form a complex. We then highlight some inspiring crystal structures where Tr bonding is obvious, followed by an account of our own work. We have shown that Tr bonding is ubiquitous in the solid state and we have highlighted that Tr bonding with carbon is possible when C is placed in the appropriate chemical context. We hope that this account serves as an initial guide and source of inspiration for others wishing to exploit this vastly underexplored interaction.

  10. Interactive design center.

    SciTech Connect

    Pomplun, Alan R. (Sandia National Laboratories, Livermore, CA)

    2005-07-01

    Sandia's advanced computing resources provide researchers, engineers and analysts with the ability to develop and render highly detailed large-scale models and simulations. To take full advantage of these multi-million data point visualizations, display systems with comparable pixel counts are needed. The Interactive Design Center (IDC) is a second generation visualization theater designed to meet this need. The main display integrates twenty-seven projectors in a 9-wide by 3-high array with a total display resolution of more than 35 million pixels. Six individual SmartBoard displays offer interactive capabilities that include on-screen annotation and touch panel control of the facility's display systems. This report details the design, implementation and operation of this innovative facility.

  11. Interactive chemical reactivity exploration.

    PubMed

    Haag, Moritz P; Vaucher, Alain C; Bosson, Maël; Redon, Stéphane; Reiher, Markus

    2014-10-20

    Elucidating chemical reactivity in complex molecular assemblies of a few hundred atoms is, despite the remarkable progress in quantum chemistry, still a major challenge. Black-box search methods to find intermediates and transition-state structures might fail in such situations because of the high-dimensionality of the potential energy surface. Here, we propose the concept of interactive chemical reactivity exploration to effectively introduce the chemist's intuition into the search process. We employ a haptic pointer device with force feedback to allow the operator the direct manipulation of structures in three dimensions along with simultaneous perception of the quantum mechanical response upon structure modification as forces. We elaborate on the details of how such an interactive exploration should proceed and which technical difficulties need to be overcome. All reactivity-exploration concepts developed for this purpose have been implemented in the samson programming environment.

  12. Neutrinophilic nonstandard interactions

    NASA Astrophysics Data System (ADS)

    Farzan, Yasaman; Heeck, Julian

    2016-09-01

    We construct UV-complete models for nonstandard neutrino interactions mediated by a sub-GeV gauge boson Z' coupled to baryon number B or B -L . A flavor-dependent Z' coupling to neutrinos is induced by mixing a U (1 )'-charged Dirac fermion with the active neutrinos, naturally suppressing flavor violation or nonuniversality of the charged leptons to the loop level. We show that these models can give rise to large flavor-conserving as well as flavor-violating nonstandard neutral-current neutrino interactions potentially observable in current or future oscillation experiments such as DUNE without being in conflict with other constraints such as neutrino scattering or lepton-flavor-violating decays. In particular, the LMA-Dark solution to the solar-neutrino anomaly can be obtained for U (1 )B, but not for U (1 )B-L.

  13. Combustor diffuser interaction program

    NASA Technical Reports Server (NTRS)

    Srinivasan, Ram; Thorp, Daniel

    1986-01-01

    Advances in gas turbine engine performance are achieved by using compressor systems with high stage loading and low part count, which result in high exit Mach numbers. The diffuser and combustor systems in such engines should be optimized to reduce system pressure loss and to maximize the engine thrust-to-weight ratio and minimize length. The state-of-the-art combustor-diffuser systems do not meet these requirements. Detailed understanding of the combustor-diffuser flow field interaction is required for designing advanced gas turbine engines. An experimental study of the combustor-diffuser interaction (CDI) is being conducted to obtain data for the evaluation and improvement of analytical models applicable to a wide variety of diffuser designs. The CDI program consists of four technical phases: Literature Search; Baseline Configuration; Parametric Configurations; and Performance Configurations. Phase 2 of the program is in progress.

  14. Interactive optical panel

    DOEpatents

    Veligdan, J.T.

    1995-10-03

    An interactive optical panel assembly includes an optical panel having a plurality of ribbon optical waveguides stacked together with opposite ends thereof defining panel first and second faces. A light source provides an image beam to the panel first face for being channeled through the waveguides and emitted from the panel second face in the form of a viewable light image. A remote device produces a response beam over a discrete selection area of the panel second face for being channeled through at least one of the waveguides toward the panel first face. A light sensor is disposed across a plurality of the waveguides for detecting the response beam therein for providing interactive capability. 10 figs.

  15. The interactive videodisc.

    PubMed

    Leveridge, L L

    1983-04-01

    Dynamic audiovisual presentations that are interactive due to the use of videodisc systems provide more efficient and effective communication of those elements of medicine best learned by seeing them, than is possible via traditional modes. This is particularly true when externally interfaced electronic data processors are used to automate the process. While magnetic and stylus-type videodisc players can serve in education, it is the optical videodisc that has the greatest educational potential. The AMA has been exploring the capabilities of optical videodisc systems and demonstrating pilot programs that use good principles of audiovisual and computer-assisted instruction in tutorial formats or presented as patient management problems. We are on the threshold of a revolution in communication potentially as significant to education as the one which followed the invention of movable type. Using interactive videodisc programs, designed and produced with skill and care, we can solve some of medical education's most pressing problems.

  16. Interactive digital signal processor

    NASA Technical Reports Server (NTRS)

    Mish, W. H.; Wenger, R. M.; Behannon, K. W.; Byrnes, J. B.

    1982-01-01

    The Interactive Digital Signal Processor (IDSP) is examined. It consists of a set of time series analysis Operators each of which operates on an input file to produce an output file. The operators can be executed in any order that makes sense and recursively, if desired. The operators are the various algorithms used in digital time series analysis work. User written operators can be easily interfaced to the sysatem. The system can be operated both interactively and in batch mode. In IDSP a file can consist of up to n (currently n=8) simultaneous time series. IDSP currently includes over thirty standard operators that range from Fourier transform operations, design and application of digital filters, eigenvalue analysis, to operators that provide graphical output, allow batch operation, editing and display information.

  17. Titan's magnetospheric interaction

    NASA Technical Reports Server (NTRS)

    Neubauer, F. M.; Gurnett, D. A.; Scudder, J. D.; Hartle, R. E.

    1984-01-01

    Voyager 1 encounter data are used to theoretically examine the interaction of Titan with the solar wind, the Saturn magnetosheath and the Saturn magnetosphere. The spacecraft data comprised magnetometer, plasma wave, radio signal and charged particle measurements. Attention is given to the Alfven (1.9) and Mach (0.57) numbers detected in the Saturn magnetosheath, along with a fast hydrodynamic Mach number of 0.55. Incident plasma interacted with the Titan atmosphere and produced a magnetosphere through mass capture and field-line draping. The tail region was loaded with N(+) and N2(+)/H2CN(+) ions instead of the strong H(+) signals typical of other regions. The magnetotail featured four lobes, and the Titan atmosphere was calculated to lose 10 to the 24th ions/sec. Finally, the Titan internal rotationally aligned magnetic field has an estimated strength of 7 x 10 to the 20th gauss/cu cm.

  18. Antinucleon-nucleus interactions

    SciTech Connect

    Dover, C.B.

    1987-01-01

    Recent experimental and theoretical results on anti p-nucleus interactions are reviewed. We focus on determinations of the anti p optical potential from elastic scattering, the use of (anti p, anti p') inelastic scattering to reveal aspects of the spin-isospin dependence of N anti N amplitudes, and some puzzling features of (anti p, anti n) charge exchange reactions on nuclei. 47 refs., 7 figs.

  19. Mesoscale/convective interaction

    NASA Technical Reports Server (NTRS)

    Haines, P. A.; Sun, W. Y.

    1988-01-01

    A novel cumulus parameterization scheme (CPS) has been developed in order to account for mesoscale/convective-scale interaction which considers both the mesoscale and convective scale mass and moisture budgets, under the assumption that the heating rate is a maximum for given environmental conditions. The basis of the CPS is a detailed, quasi-one-dimensional cloud model that calculates mass and moisture fluxes similar to those calculated by the Schlesinger (1978) three-dimensional model.

  20. Acousto-Optic Interactions.

    DTIC Science & Technology

    The document reports the results of the experimental and theoretical investigation of acousto - optic interactions in guided wave structure for optical...waves and acoustic surface waves and experimental results of isotropic and anisotropic diffraction in LiNbO3 and quartz. A simple acousto - optic plate...CVD ZnO films on sapphire, which may be needed for the acousto - optic devices in thin films are also included. (Author)

  1. Interacting warm dark matter

    SciTech Connect

    Cruz, Norman; Palma, Guillermo; Zambrano, David; Avelino, Arturo E-mail: guillermo.palma@usach.cl E-mail: avelino@fisica.ugto.mx

    2013-05-01

    We explore a cosmological model composed by a dark matter fluid interacting with a dark energy fluid. The interaction term has the non-linear λρ{sub m}{sup α}ρ{sub e}{sup β} form, where ρ{sub m} and ρ{sub e} are the energy densities of the dark matter and dark energy, respectively. The parameters α and β are in principle not constrained to take any particular values, and were estimated from observations. We perform an analytical study of the evolution equations, finding the fixed points and their stability properties in order to characterize suitable physical regions in the phase space of the dark matter and dark energy densities. The constants (λ,α,β) as well as w{sub m} and w{sub e} of the EoS of dark matter and dark energy respectively, were estimated using the cosmological observations of the type Ia supernovae and the Hubble expansion rate H(z) data sets. We find that the best estimated values for the free parameters of the model correspond to a warm dark matter interacting with a phantom dark energy component, with a well goodness-of-fit to data. However, using the Bayesian Information Criterion (BIC) we find that this model is overcame by a warm dark matter – phantom dark energy model without interaction, as well as by the ΛCDM model. We find also a large dispersion on the best estimated values of the (λ,α,β) parameters, so even if we are not able to set strong constraints on their values, given the goodness-of-fit to data of the model, we find that a large variety of theirs values are well compatible with the observational data used.

  2. ELEMENTARY PARTICLE INTERACTIONS

    SciTech Connect

    EFREMENKO, YURI; HANDLER, THOMAS; KAMYSHKOV, YURI; SIOPSIS, GEORGE; SPANIER, STEFAN

    2013-07-30

    The High-Energy Elementary Particle Interactions group at UT during the last three years worked on the following directions and projects: Collider-based Particle Physics; Neutrino Physics, particularly participation in “NOνA”, “Double Chooz”, and “KamLAND” neutrino experiments; and Theory, including Scattering amplitudes, Quark-gluon plasma; Holographic cosmology; Holographic superconductors; Charge density waves; Striped superconductors; and Holographic FFLO states.

  3. [Brain-gut interactions].

    PubMed

    Bonaz, B

    2010-08-01

    Our digestive tract has an autonomous functioning but also has a bidirectional relation with our brain known as brain-gut interactions. This communication is mediated by the autonomous nervous system, i.e., the sympathetic and parasympathetic nervous systems, with a mixed afferent and efferent component, and the circumventricular organs located outside the blood-brain barrier. The vagus nerve, known as the principal component of the parasympathetic nervous system, is a mixed nerve composed of 90% afferent fibers, which has physiological roles due to its putative vegetative functions. The vagus nerve has also anti-inflammatory properties both through the hypothalamic pituitary adrenal axis (through its afferents) and the cholinergic anti-inflammatory pathway (through its efferents). The sympathetic nervous system has a classical antagonist effect on the parasympathetic nervous system at the origin of an equilibrated sympathovagal balance in normal conditions. The brain is able to integrate inputs coming from the digestive tract inside a central autonomic network organized around the hypothalamus, limbic system and cerebral cortex (insula, prefrontal, cingulate) and in return to modify the autonomic nervous system and the hypothalamic pituitary adrenal axis in the frame of physiological loops. A dysfunction of these brain-gut interactions, favoured by stress, is most likely involved in the pathophysiology of digestive diseases such as irritable bowel syndrome or even inflammatory bowel diseases. A better knowledge of these brain-gut interactions has therapeutic implications in the domain of pharmacology, neurophysiology, behavioural and cognitive management.

  4. Transactional interactive multimedia banner

    NASA Astrophysics Data System (ADS)

    Shae, Zon-Yin; Wang, Xiping; von Kaenel, Juerg

    2000-05-01

    Advertising in TV broadcasting has shown that multimedia is a very effective means to present merchandise and attract shoppers. This has been applied to the Web by including animated multimedia banner ads on web pages. However, the issues of coupling interactive browsing, shopping, and secure transactions e.g. from inside a multimedia banner, have only recently started to being explored. Currently there is an explosively growing amount of back-end services available (e.g., business to business commerce (B2B), business to consumer (B2C) commerce, and infomercial services) in the Internet. These services are mostly accessible through static HTML web pages at a few specific web portals. In this paper, we will investigate the feasibility of using interactive multimedia banners as pervasive access point for the B2C, B2B, and infomercial services. We present a system architecture that involves a layer of middleware agents functioning as the bridge between the interactive multimedia banners and back-end services.

  5. Biomolecular Interaction Assay

    SciTech Connect

    Bruckner-Lea, Cindy J.; Brown, L; Holman, David A.; Olson, Lydia; Grate, Jay W.

    2000-12-29

    Understanding the binding interactions of complexes of multiple proteins is an important area of medical research since many biological signaling pathways involve multiple protein complexes. A number of sensor technologies have been adapted to monitoring biomolecular interactions. Acoustic wave devices such as flexural plate wave devices, surface transverse waves, and quartz crystal microbalances detect the mass increase observed upon binding of a solution biomolecule to a surface bound biomolecule. However, these devices will also respond to changes in viscosity, temperature, liquid density, and viscoelastic effects, which may confound the interpretation of observed signals. Nonspecific binding is indistinguishable from specific binding. Several techniques for refractive index sensing, such as planar wave guides and surface plasmon resonance (SPR), can also be used to observe biomolecular interactions localized at a surface. Again, nonspecific binding is indistinguishable from specific binding. In addition, the derivatized surface must be very thin and uniform to obtain adequate sensitivity and reproducibility, and the technique is not suited for monitoring large multiple protein complexes since the measurement sensitivity decreases rapidly with distance from the sensor surface. All of these techniques use planar surfaces that are difficult to prepare and characterize, and must be prepared fresh for each assay.

  6. Bacteria-surface interactions.

    PubMed

    Tuson, Hannah H; Weibel, Douglas B

    2013-05-14

    The interaction of bacteria with surfaces has important implications in a range of areas, including bioenergy, biofouling, biofilm formation, and the infection of plants and animals. Many of the interactions of bacteria with surfaces produce changes in the expression of genes that influence cell morphology and behavior, including genes essential for motility and surface attachment. Despite the attention that these phenotypes have garnered, the bacterial systems used for sensing and responding to surfaces are still not well understood. An understanding of these mechanisms will guide the development of new classes of materials that inhibit and promote cell growth, and complement studies of the physiology of bacteria in contact with surfaces. Recent studies from a range of fields in science and engineering are poised to guide future investigations in this area. This review summarizes recent studies on bacteria-surface interactions, discusses mechanisms of surface sensing and consequences of cell attachment, provides an overview of surfaces that have been used in bacterial studies, and highlights unanswered questions in this field.

  7. Interactive reservoir simulation

    SciTech Connect

    Regtien, J.M.M. Por, G.J.A.; Stiphout, M.T. van; Vlugt, F.F. van der

    1995-12-31

    Shell`s new Modular Reservoir Simulator (MoReS) has been equipped with a comprehensive and versatile user interface called FrontEnd. Apart from providing a user-friendly environment for interactive reservoir simulation, FrontEnd serves a software platform for other dynamic simulation and reservoir-engineering applications. It offers to all supported applications a common user interface, enables the re-use of code and reduces overall maintenance and support costs associated with the embedded applications. Because of its features, FrontEnd facilitates the transfer of research results in the form of operational software to end users. When coupled with MoReS, FrontEnd can be used for pre- and post-processing and interactive simulation. The pre-processing options allow data to be inputted by means of various OSF/Motif widgets containing a spreadsheet, text editors, dialogues and graphical input. The display of the input data as well as the post-processing of all simulation results is made possible by a variety of user-defined plot of tabular (e.g. timestep summary) and array (simulation grid) data. During a simulation user-defined plots can be displayed and edited, allowing a close inspection of the results as they are being calculated. FrontEnd has been equipped with a powerful input command language, which gives the batch user as much flexibility and control over the input as the interactive user.

  8. Interactive Atlas of Histology

    PubMed Central

    Goubran, Emile Z.; Vinjamury, Sivarama P.

    2007-01-01

    Purpose: An interactive atlas of histology was developed for online use by chiropractic students to enable them to practice and self-assess their ability to identify various histological structures. This article discusses the steps in the development, implementation, and usefulness of an interactive atlas of histology for students who take histology examinations. Methods: The atlas was developed by digitizing images imported through a video-microscope using actual microscope slides. Leica EWS 2100 and PowerPoint software were used to construct the atlas. The usefulness of the atlas was assessed through a comparison of histology exam scores between four classes before and four classes after the use of the atlas. Analysis of admissions data, including overall grade point average (GPA), science and nonscience GPA, and a number of course units, was done initially to avoid any identifiable differences in the academic competency between the two being compared. A survey of the students was also done to assess atlas usefulness and students' satisfaction with the atlas. Results: Analysis of histology exam scores showed that the average scores in the lab exam were significantly higher for the classes that used the atlas. Survey results showed a high level of student satisfaction with the atlas. Conclusion: The development and use of an online interactive atlas of histology for chiropractic students helped to improve lab exams scores. In addition, students were satisfied with the features and usefulness of this atlas. PMID:18483638

  9. Bacteria-surface interactions

    PubMed Central

    Tuson, Hannah H.; Weibel, Douglas B.

    2013-01-01

    The interaction of bacteria with surfaces has important implications in a range of areas, including bioenergy, biofouling, biofilm formation, and the infection of plants and animals. Many of the interactions of bacteria with surfaces produce changes in the expression of genes that influence cell morphology and behavior, including genes essential for motility and surface attachment. Despite the attention that these phenotypes have garnered, the bacterial systems used for sensing and responding to surfaces are still not well understood. An understanding of these mechanisms will guide the development of new classes of materials that inhibit and promote cell growth, and complement studies of the physiology of bacteria in contact with surfaces. Recent studies from a range of fields in science and engineering are poised to guide future investigations in this area. This review summarizes recent studies on bacteria-surface interactions, discusses mechanisms of surface sensing and consequences of cell attachment, provides an overview of surfaces that have been used in bacterial studies, and highlights unanswered questions in this field. PMID:23930134

  10. Pharmacological interactions of vasoconstrictors.

    PubMed

    Gómez-Moreno, Gerardo; Guardia, Javier; Cutando, Antonio; Calvo-Guirado, José Luis

    2009-01-01

    This article is the first of a series on pharmacological interactions involving medicaments commonly prescribed and/or used in odontology: vasoconstrictors in local anaesthetics and anti-inflammatory and anti-microbial analgesics. The necessity for the odontologist to be aware of adverse reactions as a result of the pharmacological interactions is due to the increase in medicament consumption by the general population. There is a demographic change with greater life expectancy and patients have increased chronic health problems and therefore have increased medicament intake. The presence of adrenaline (epinephrine) and other vasoconstrictors in local odontological anaesthetics is beneficial in relation to the duration and depth of anaesthesia and reduces bleeding and systemic toxicity of the local anaesthetic. However, it might produce pharmacological interactions between the injected vasoconstrictors and the local anaesthetic and adrenergic medicament administered exogenically which the odontologist should be aware of, especially because of the risk of consequent adverse reactions. Therefore the importance of conducting a detailed clinical history of the general state of health and include all medicaments, legal as well as illegal, taken by the patient.

  11. Weakly nonlinear magnetohydrodynamic wave interactions

    SciTech Connect

    Webb, G.M.; Brio, M.; Kruse, M.T.; Zank, G.P.

    1999-06-01

    Equations describing weakly nonlinear magnetohydrodynamic (MHD) wave interactions in one Cartesian space dimension are discussed. For wave propagation in uniform media, the wave interactions of interest consist of: (a) three-wave resonant interactions in which high frequency waves, may evolve on long space and time scales if the wave phases satisfy the resonance conditions; (b) Burgers self-wave steepening for the magnetoacoustic waves, and (c) mean wave field effects, in which a particular wave interacts with the mean wave field of the other waves. For wave propagation in non-uniform media, further linear wave mixing terms appear in the equations. The equations describe four types of resonant triads: slow-fast magnetosonic wave interaction; Alfv{acute e}n-entropy wave interaction; Alfv{acute e}n-magnetosonic wave interaction; and magnetosonic-entropy wave interaction. The formalism is restricted to coherent wave interactions. {copyright} {ital 1999 American Institute of Physics.}

  12. Interactive Learning and "Clickers"

    NASA Astrophysics Data System (ADS)

    Rudolph, Alexander

    2006-12-01

    A growing body of evidence demonstrates that student understanding and retention of key concepts in science can be dramatically improved by using “Interactive Learning” techniques. Interactive learning is a way to get students more actively involved in their own learning than by simple lecture alone. I will focus on one type of interactive learning activity, known as “Think-Pair-Share”. After a brief (10-20 minute) lecture on a topic, students are asked a conceptually challenging multiple-choice question. After they answer, if there is sufficient disagreement, the students discuss the question in small groups after which they answer the same question again. Frequently, the percentage of correct answers goes up, indicating that the active role of speaking and listening, together with peer instruction, has helped students better grasp the concept being tested. If disagreement persists, or if students continue to have questions, a short, class-wide discussion can be held. Clickers provide an excellent means to collect students’ answers to “Think-Pair-Share” questions in real time. Although clickers are not essential, they do provide some advantages over alternatives such as flash cards: answers are completely anonymous (though you as instructor can record individual responses); you can display a histogram of results immediately, either before or after group discussion, providing immediate feedback; by recording the results, you can give students credit for their participation in class. In this talk, I will model “Think-Pair-Share” with the audience using clickers, show results from my classes before and after group discussions, share results of a student survey on “Think-Pair-Share” and clickers, describe other uses of clickers (e.g., taking attendance, surveys, test administration) and highlight some of the pros and cons of clickers v. flashcards.

  13. Intelligently interactive combat simulation

    NASA Astrophysics Data System (ADS)

    Fogel, Lawrence J.; Porto, Vincent W.; Alexander, Steven M.

    2001-09-01

    To be fully effective, combat simulation must include an intelligently interactive enemy... one that can be calibrated. But human operated combat simulations are uncalibratable, for we learn during the engagement, there's no average enemy, and we cannot replicate their culture/personality. Rule-based combat simulations (expert systems) are not interactive. They do not take advantage of unexpected mistakes, learn, innovate, and reflect the changing mission/situation. And it is presumed that the enemy does not have a copy of the rules, that the available experts are good enough, that they know why they did what they did, that their combat experience provides a sufficient sample and that we know how to combine the rules offered by differing experts. Indeed, expert systems become increasingly complex, costly to develop, and brittle. They have face validity but may be misleading. In contrast, intelligently interactive combat simulation is purpose- driven. Each player is given a well-defined mission, reference to the available weapons/platforms, their dynamics, and the sensed environment. Optimal tactics are discovered online and in real-time by simulating phenotypic evolution in fast time. The initial behaviors are generated randomly or include hints. The process then learns without instruction. The Valuated State Space Approach provides a convenient way to represent any purpose/mission. Evolutionary programming searches the domain of possible tactics in a highly efficient manner. Coupled together, these provide a basis for cruise missile mission planning, and for driving tank warfare simulation. This approach is now being explored to benefit Air Force simulations by a shell that can enhance the original simulation.

  14. Interactive Classification Technology

    NASA Technical Reports Server (NTRS)

    deBessonet, Cary

    2000-01-01

    The investigators upgraded a knowledge representation language called SL (Symbolic Language) and an automated reasoning system called SMS (Symbolic Manipulation System) to enable the more effective use of the technologies in automated reasoning and interactive classification systems. The overall goals of the project were: 1) the enhancement of the representation language SL to accommodate a wider range of meaning; 2) the development of a default inference scheme to operate over SL notation as it is encoded; and 3) the development of an interpreter for SL that would handle representations of some basic cognitive acts and perspectives.

  15. Flank solar wind interaction

    NASA Technical Reports Server (NTRS)

    Moses, Stewart L.; Greenstadt, Eugene W.

    1992-01-01

    This report summarizes the results of the first 12 months of our program to study the interaction of the Earth's magnetosphere with the solar wind on the far flanks of the bow shock. This study employs data from the ISEE-3 spacecraft during its traversals of the Earth's magnetotail and correlative data from spacecraft monitoring the solar wind upstream. Our main effort to date has involved assembling data sets and developing new plotting programs. Two talks were given at the Spring Meeting of the American Geophysical Union describing our initial results from analyzing data from the far flank foreshock and magnetosheath. The following sections summarize our results.

  16. Human Computer Interaction

    NASA Astrophysics Data System (ADS)

    Bhagwani, Akhilesh; Sengar, Chitransh; Talwaniper, Jyotsna; Sharma, Shaan

    2012-08-01

    The paper basically deals with the study of HCI (Human computer interaction) or BCI(Brain-Computer-Interfaces) Technology that can be used for capturing brain signals and translating them into commands that allow humans to control (just by thinking) devices such as computers, robots, rehabilitation technology and virtual reality environments. The HCI is based as a direct communication pathway between the brain and an external device. BCIs are often aimed at assisting, augmenting, or repairing human cognitive or sensory-motor functions.The paper also deals with many advantages of BCI Technology along with some of its applications and some major drawbacks.

  17. Integrin Cytoplasmic Tail Interactions

    PubMed Central

    2015-01-01

    Integrins are heterodimeric cell surface adhesion receptors essential for multicellular life. They connect cells to the extracellular environment and transduce chemical and mechanical signals to and from the cell. Intracellular proteins that bind the integrin cytoplasmic tail regulate integrin engagement of extracellular ligands as well as integrin localization and trafficking. Cytoplasmic integrin-binding proteins also function downstream of integrins, mediating links to the cytoskeleton and to signaling cascades that impact cell motility, growth, and survival. Here, we review key integrin-interacting proteins and their roles in regulating integrin activity, localization, and signaling. PMID:24467163

  18. Intersensory Interactions in Hermissenda

    PubMed Central

    Alkon, Daniel L.

    1973-01-01

    Hair cells of the Hermissenda statocyst respond to photic stimulation. This response requires the presence of at least one of the two eyes. Two principal hair cell responses to light were observed. The activity of photoreceptors in response to a light step is interrupted during firing of contralateral hair cells. The intersensory interactions between the statocyst and visual pathway underlying these responses were examined with simultaneous intracellular recordings. Evidence is presented that the statocyst of Hermissenda is an important channel for visual information. PMID:4352950

  19. Plasma Interactions with Spacecraft

    DTIC Science & Technology

    2007-03-16

    Ultraviolet Limb Imager on DMSP, IEEE Trans Plasma Science, 34, No. 5, p 2062, 2006. V.A. Davis , M.J. Mandell, D.L. Cooke, D.C. Ferguson , Nascap...AFRL-VS-HA-TR-2007-1062 Plasma Interactions with Spacecraft V.A. Davis M.J. Mandell S.L. Huston R.A. Kuharski B.M. Gardner...using MSM output generated using three different MSM input parameter sets. The results were included in the presentation prepared by Dr. Hilmer of

  20. Visuo-Vestibular Interactions

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session TA3 includes short reports covering: (1) Vestibulo-Oculomotor Interaction in Long-Term Microgravity; (2) Effects of Weightlessness on the Spatial Orientation of Visually Induced Eye Movements; (3) Adaptive Modification of the Three-Dimensional Vestibulo-Ocular Reflex during Prolonged Microgravity; (4) The Dynamic Change of Brain Potential Related to Selective Attention to Visual Signals from Left and Right Visual Fields; (5) Locomotor Errors Caused by Vestibular Suppression; and (6) A Novel, Image-Based Technique for Three-Dimensional Eye Measurement.

  1. [Hormonal contraception interactions].

    PubMed

    Hurt, K; Sottner, J; Záhumenský, J; Halaska, M; Krcmár, M; Krajcová, A

    2006-12-01

    The purpose of this article is to discuss the probable ways of interactions between some drugs or remedies and steroid contraceptives. A review article. OBGYN Clinic of the 1t Faculty of Medicine, Prague, Teaching Hospital Bulovka. Low dose oral contraceptives are very popular these days. Some drugs and remedies could negatively influence the levels of ethinyl estradiol (EE) and/or progestins and thus increase the possibility of their failure. These drugs mostly implicate as an inducer of the CYP450 system (liver) and as an inducer of P-glycoprotein transport system (transmembrane drug pump in the intestines). We wanted to describe briefly the mechanism and the principles of their impact.

  2. DUST-PLASMA INTERACTIONS

    SciTech Connect

    Dr. M. Rosenberg

    2010-01-05

    The objective of our theoretical research under this grant over the past 3 years was to develop new understanding in a range of topics in the physics of dust-plasma interactions, with application to space and the laboratory. We conducted studies related to the physical properties of dust, waves and instabilities in both weakly coupled and strongly coupled dusty plasmas, and innovative possible applications. A major consideration in our choice of topics was to compare theory with experiments or observations, and to motivate new experiments, which we believe is important for developing this relatively new field. Our research is summarized, with reference to our list of journal publications.

  3. Twisting Plasma Interactions

    NASA Image and Video Library

    2017-06-19

    Several short stalks of cooler, darker plasma spun and twisted as they interacted with each other at the sun's edge (June 14-15, 2017). The row of strands, which together form a prominence, were being pulled back and forth by magnetic forces. The dynamic action was observed for just over one day. Also noteworthy is the rapid development of a bright active region in the upper right about halfway through the clip. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA21761

  4. Dust-magnetospheric interactions

    NASA Technical Reports Server (NTRS)

    Mendis, D. A.

    1979-01-01

    The important processes controlling the electrical potentials of dust grains in planetary magnetospheres are considered, and the quasi-equilibrium electric potentials acquired by them in the different plasma and radiative environments encountered are evaluated. The orbital dynamics of such charged grains is discussed, and their interaction with satellites within the planetary magnetospheres is considered. The possibility of magneto-gravitational capture of these gains by magnetospheres, to form dust rings around the planets, is also discussed. Finally, the possible break-up of grains charged to large electrical potentials and its consequences are briefly addressed.

  5. Bunyavirus-Vector Interactions

    PubMed Central

    Horne, Kate McElroy; Vanlandingham, Dana L.

    2014-01-01

    The Bunyaviridae family is comprised of more than 350 viruses, of which many within the Hantavirus, Orthobunyavirus, Nairovirus, Tospovirus, and Phlebovirus genera are significant human or agricultural pathogens. The viruses within the Orthobunyavirus, Nairovirus, and Phlebovirus genera are transmitted by hematophagous arthropods, such as mosquitoes, midges, flies, and ticks, and their associated arthropods not only serve as vectors but also as virus reservoirs in many cases. This review presents an overview of several important emerging or re-emerging bunyaviruses and describes what is known about bunyavirus-vector interactions based on epidemiological, ultrastructural, and genetic studies of members of this virus family. PMID:25402172

  6. Detection of molecular interactions

    DOEpatents

    Groves, John T [Berkeley, CA; Baksh, Michael M [Fremont, CA; Jaros, Michal [Brno, CH

    2012-02-14

    A method and assay are described for measuring the interaction between a ligand and an analyte. The assay can include a suspension of colloidal particles that are associated with a ligand of interest. The colloidal particles are maintained in the suspension at or near a phase transition state from a condensed phase to a dispersed phase. An analyte to be tested is then added to the suspension. If the analyte binds to the ligand, a phase change occurs to indicate that the binding was successful.

  7. Imitation, Interaction and Dialogue Using Intensive Interaction: Tea Party Rules

    ERIC Educational Resources Information Center

    Barber, Mark

    2007-01-01

    Intensive Interaction has become widely used when building up communication with children with profound learning difficulties. Often practitioners understand Intensive Interaction to be primarily about imitation and Mark Barber shows how this can be a "mis"understanding that limits the kinds of interactions that can be enjoyed by conversation…

  8. Cotton and Protein Interactions

    SciTech Connect

    Goheen, Steven C.; Edwards, J. V.; Rayburn, Alfred R.; Gaither, Kari A.; Castro, Nathan J.

    2006-06-30

    The adsorbent properties of important wound fluid proteins and cotton cellulose are reviewed. This review focuses on the adsorption of albumin to cotton-based wound dressings and some chemically modified derivatives targeted for chronic wounds. Adsorption of elastase in the presence of albumin was examined as a model to understand the interactive properties of these wound fluid components with cotton fibers. In the chronic non-healing wound, elastase appears to be over-expressed, and it digests tissue and growth factors, interfering with the normal healing process. Albumin is the most prevalent protein in wound fluid, and in highly to moderately exudative wounds, it may bind significantly to the fibers of wound dressings. Thus, the relative binding properties of both elastase and albumin to wound dressing fibers are of interest in the design of more effective wound dressings. The present work examines the binding of albumin to two different derivatives of cotton, and quantifies the elastase binding to the same derivatives following exposure of albumin to the fiber surface. An HPLC adsorption technique was employed coupled with a colorimetric enzyme assay to quantify the relative binding properties of albumin and elastase to cotton. The results of wound protein binding are discussed in relation to the porosity and surface chemistry interactions of cotton and wound proteins. Studies are directed to understanding the implications of protein adsorption phenomena in terms of fiber-protein models that have implications for rationally designing dressings for chronic wounds.

  9. Charged Dust Aggregate Interactions

    NASA Astrophysics Data System (ADS)

    Matthews, Lorin; Hyde, Truell

    2015-11-01

    A proper understanding of the behavior of dust particle aggregates immersed in a complex plasma first requires a knowledge of the basic properties of the system. Among the most important of these are the net electrostatic charge and higher multipole moments on the dust aggregate as well as the manner in which the aggregate interacts with the local electrostatic fields. The formation of elongated, fractal-like aggregates levitating in the sheath electric field of a weakly ionized RF generated plasma discharge has recently been observed experimentally. The resulting data has shown that as aggregates approach one another, they can both accelerate and rotate. At equilibrium, aggregates are observed to levitate with regular spacing, rotating about their long axis aligned parallel to the sheath electric field. Since gas drag tends to slow any such rotation, energy must be constantly fed into the system in order to sustain it. A numerical model designed to analyze this motion provides both the electrostatic charge and higher multipole moments of the aggregate while including the forces due to thermophoresis, neutral gas drag, and the ion wakefield. This model will be used to investigate the ambient conditions leading to the observed interactions. This research is funded by NSF Grant 1414523.

  10. Relationality and social interaction.

    PubMed

    Bottero, Wendy

    2009-06-01

    This paper explores Bourdieu's account of a relational social space, and his relative neglect of social interaction within this framework. Bourdieu includes social capital as one of the key relational elements of his social space, but says much less about it than economic or cultural capital, and levels of social capital are rarely measured in his work. Bourdieu is reluctant to focus on the content of social networks as part of his rejection of substantialist thinking. The neglect of substantive networks creates problems for Bourdieu's framework, because many of Bourdieu's core concepts rest upon assumptions about their interactional properties (in particular, the prevalence of homophilous differential association) which are left unexamined. It is argued here that Bourdieu's neglect of the substance of social networks is related to the criticisms that Bourdieu's framework often encounters, and that this neglect bears re-examination, since it is helpful to think of the ways in which differentiated social networks contribute to the development of habitus, help form fields, and so constitute the intersubjective social relations within which sociality, and practice more generally, occur.

  11. Strong-interaction nonuniversality

    SciTech Connect

    Volkas, R. R.; Foot, R.; He, X.; Joshi, G. C.

    1989-07-01

    The universal QCD color theory is extended to an SU(3)/sub 1//direct product/SU(3)/sub 2//direct product/SU(3)/sub 3/ gauge theory, where quarks of the /ital i/th generation transform as triplets under SU(3)/sub /ital i// and singlets under the other two factors. The usual color group is then identified with the diagonal subgroup, which remains exact after symmetry breaking. The gauge bosons associated with the 16 broken generators then form two massive octets under ordinary color. The interactions between quarks and these heavy gluonlike particles are explicitly nonuniversal and thus an exploration of their physical implications allows us to shed light on the fundamental issue of strong-interaction universality. Nonuniversality and weak flavor mixing are shown to generate heavy-gluon-induced flavor-changing neutral currents. The phenomenology of these processes is studied, as they provide the major experimental constraint on the extended theory. Three symmetry-breaking scenarios are presented. The first has color breaking occurring at the weak scale, while the second and third divorce the two scales. The third model has the interesting feature of radiatively induced off-diagonal Kobayashi-Maskawa matrix elements.

  12. Interactive Terascale Particle Visualization

    NASA Technical Reports Server (NTRS)

    Ellsworth, David; Green, Bryan; Moran, Patrick

    2004-01-01

    This paper describes the methods used to produce an interactive visualization of a 2 TB computational fluid dynamics (CFD) data set using particle tracing (streaklines). We use the method introduced by Bruckschen et al. [2001] that pre-computes a large number of particles, stores them on disk using a space-filling curve ordering that minimizes seeks, and then retrieves and displays the particles according to the user's command. We describe how the particle computation can be performed using a PC cluster, how the algorithm can be adapted to work with a multi-block curvilinear mesh, and how the out-of-core visualization can be scaled to 296 billion particles while still achieving interactive performance on PG hardware. Compared to the earlier work, our data set size and total number of particles are an order of magnitude larger. We also describe a new compression technique that allows the lossless compression of the particles by 41% and speeds the particle retrieval by about 30%.

  13. Cephradine antacids interaction studies.

    PubMed

    Arayne, M Saeed; Sultana, Najma; Afzal, M

    2007-07-01

    The present work comprises of interaction studies of cephradine with antacids. Cephradine is included among the first generation cephalosporin, which is active against a wide range of Gram positive and Gram-negative bacteria including penicillinase-producing staphylococci. Since the presence of complexing ligand may affect the bioavailability of a drug in blood or tissues, therefore, in order to study the probable interaction of cephradine with antacids all the reaction conditions were simulated to natural environments. Antacids are commonly used in patients complaining of GI irritations. The behavior of cephradine in presence of seven antacids i.e., simethicone, magaldrate, magnesium carbonate, magnesium hydroxide, magnesium trisilicate, sodium bicarbonate and aluminium hydroxide was studied by using standard dissolution apparatus. Cephradine was monitored both by UV and by high performance liquid chromatography. The results revealed that antacids containing polyvalent cations retarded the in vitro availability of cephradine. Moreover, these studies indicated that cephradine was strongly adsorbed on antacids; magnesium trisilicate and simeco tablets (powdered) exhibited relatively higher adsorption capacities.

  14. Neutron Star - Magnetosphere Interactions

    NASA Astrophysics Data System (ADS)

    Ponce, Marcelo; Anderson, Matthew; Lehner, Luis; Liebling, Steven L.; Palenzuela, Carlos

    2012-03-01

    In this work we report results of the interaction of a neutron star magnetosphere in both collapsing and moving scenarios interacting with an ambient magnetic field. In recent works [1,2], it has been shown the important role and realism associated with studies of electromagnetic environments in some particular regimes, such as: ideal-MHD, force-free, and electro-vacuum. Motivated by this and their astrophysical implications for BBH and hybrid BH-NS mergers [3,4], we study the following cases: collapse of a magnetized NS, head-on collision of a BH-NS, and orbiting merger of a BH-NS. Based in the results from our simulations, we draw some relevant conclusions to the production of jets as described within the force-free formalism. [4pt] [1] C.Palenzuela, L.Lehner and S.Liebling, Science 329, 927 (2010).[0pt] [2] C.Palenzuela, T.Garrett, et al., Phys.Rev.D 82, 044045 (2010).[0pt] [3] L.Lehner, C.Palenzuela, et al., 2011.[0pt] [4] S.Liebling, L.Lehner, et al., Phys.Rev.D 81, 124023 (2010).

  15. Time reversal interactive objects

    NASA Astrophysics Data System (ADS)

    Ing, Ros Ki; Quieffin, Nicolas; Catheline, Stefan; Fink, Mathias

    2001-05-01

    Time reversal has shown to be a fruitful concept in nondestructive testing in underwater acoustic or in ultrasonic imaging. In this paper this technique is adapted in the audible range to transform every day objects into tactile sensitive interfaces. A quick historical background is presented in the ultrasonic field and specially in chaotic cavity. In all time reversal experiments, it is demonstrated that a wave field spatially and temporally recorded is able to back propagate to its source. In other words, the field contains all the information on the location of the source. In the interactive experiments, it is shown that touching an object like a window, a table or a world globe generates an acoustic field easily detectable with one or two acoustic sensors. Using the concept of time reversal, the source location is deduced in real time. Then, touching objects at specific locations (virtual switches) is used to activate devices. Such devices are for example lights, stereo volume, or computer software. From a technical point of view, all these interactive experiments just use some computation easily performed with a standard personnel computer.

  16. Interactive Computer Graphics

    NASA Technical Reports Server (NTRS)

    Kenwright, David

    2000-01-01

    Aerospace data analysis tools that significantly reduce the time and effort needed to analyze large-scale computational fluid dynamics simulations have emerged this year. The current approach for most postprocessing and visualization work is to explore the 3D flow simulations with one of a dozen or so interactive tools. While effective for analyzing small data sets, this approach becomes extremely time consuming when working with data sets larger than one gigabyte. An active area of research this year has been the development of data mining tools that automatically search through gigabyte data sets and extract the salient features with little or no human intervention. With these so-called feature extraction tools, engineers are spared the tedious task of manually exploring huge amounts of data to find the important flow phenomena. The software tools identify features such as vortex cores, shocks, separation and attachment lines, recirculation bubbles, and boundary layers. Some of these features can be extracted in a few seconds; others take minutes to hours on extremely large data sets. The analysis can be performed off-line in a batch process, either during or following the supercomputer simulations. These computations have to be performed only once, because the feature extraction programs search the entire data set and find every occurrence of the phenomena being sought. Because the important questions about the data are being answered automatically, interactivity is less critical than it is with traditional approaches.

  17. Herb-drug interactions.

    PubMed

    Fugh-Berman, A

    2000-01-08

    Concurrent use of herbs may mimic, magnify, or oppose the effect of drugs. Plausible cases of herb-drug interactions include: bleeding when warfarin is combined with ginkgo (Ginkgo biloba), garlic (Allium sativum), dong quai (Angelica sinensis), or danshen (Salvia miltiorrhiza); mild serotonin syndrome in patients who mix St John's wort (Hypericum perforatum) with serotonin-reuptake inhibitors; decreased bioavailability of digoxin, theophylline, cyclosporin, and phenprocoumon when these drugs are combined with St John's wort; induction of mania in depressed patients who mix antidepressants and Panax ginseng; exacerbation of extrapyramidal effects with neuroleptic drugs and betel nut (Areca catechu); increased risk of hypertension when tricyclic antidepressants are combined with yohimbine (Pausinystalia yohimbe); potentiation of oral and topical corticosteroids by liquorice (Glycyrrhiza glabra); decreased blood concentrations of prednisolone when taken with the Chinese herbal product xaio chai hu tang (sho-salko-to); and decreased concentrations of phenytoin when combined with the Ayurvedic syrup shankhapushpi. Anthranoid-containing plants (including senna [Cassia senna] and cascara [Rhamnus purshiana]) and soluble fibres (including guar gum and psyllium) can decrease the absorption of drugs. Many reports of herb-drug interactions are sketchy and lack laboratory analysis of suspect preparations. Health-care practitioners should caution patients against mixing herbs and pharmaceutical drugs.

  18. XEphem: Interactive Astronomical Ephemeris

    NASA Astrophysics Data System (ADS)

    Downey, Elwood Charles

    2011-12-01

    XEphem is a scientific-grade interactive astronomical ephemeris package for UNIX-like systems. Written in C, X11 and Motif, it is easily ported to systems. Among other things, XEphem: computes heliocentric, geocentric and topocentric information for all objects; has built-in support for all planets; the moons of Mars, Jupiter, Saturn, Uranus and Earth; central meridian longitude of Mars and Jupiter; Saturn's rings; and Jupiter's Great Red Spot; allows user-defined objects including stars, deepsky objects, asteroids, comets and Earth satellites; provides special efficient handling of large catalogs including Tycho, Hipparcos, GSC; displays data in configurable tabular formats in conjunction with several interactive graphical views; displays a night-at-a-glance 24 hour graphic showing when any selected objects are up; displays 3-D stereo Solar System views that are particularly well suited for visualizing comet trajectories; quickly finds all close pairs of objects in the sky; and sorts and prints all catalogs with very flexible criteria for creating custom observing lists. Its capabilities are listed more fully in the user manual introduction.

  19. Metal-dielectric interactions

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1979-01-01

    Metal direlectric surface interactions and dielectric films on metal substrates were investigated. Since interfacial interaction depends so heavily on the nature of the surfaces, analytical surface tools such as Auger emission spectroscopy, X-ray photoelectron spectroscopy and field ion microscopy were used to assist in surface and interfacial characterization. The results indicate that with metals contacting certain glasses in the clean state interfacial, bonding produces fractures in the glasses while when a film such as water is present, fractures occur in the metal near the interface. Friction forces were used to measure the interfacial bond strengths. Studies with metals contacting polymers using field ion microscopy revealed that strong bonding forces could develop being between a metal and polymer surface with polymer transferring to the metal surface in various ways depending upon the forces applied to the surface in contact. With the deposition of refractory carbides, silicides and borides onto metal and alloy substrates the presence of oxides at the interface or active gases in the deposition plasma were shown to alter interfacial properties and chemistry. Auger ion depth profile analysis indicated the chemical composition at the interface and this could be related to the mechanical, friction, and wear behavior of the coating.

  20. Dynamics of Interacting Diseases

    NASA Astrophysics Data System (ADS)

    Sanz, Joaquín; Xia, Cheng-Yi; Meloni, Sandro; Moreno, Yamir

    2014-10-01

    Current modeling of infectious diseases allows for the study of complex and realistic scenarios that go from the population to the individual level of description. However, most epidemic models assume that the spreading process takes place on a single level (be it a single population, a metapopulation system, or a network of contacts). In particular, interdependent contagion phenomena can be addressed only if we go beyond the scheme-one pathogen-one network. In this paper, we propose a framework that allows us to describe the spreading dynamics of two concurrent diseases. Specifically, we characterize analytically the epidemic thresholds of the two diseases for different scenarios and compute the temporal evolution characterizing the unfolding dynamics. Results show that there are regions of the parameter space in which the onset of a disease's outbreak is conditioned to the prevalence levels of the other disease. Moreover, we show, for the susceptible-infected-susceptible scheme, that under certain circumstances, finite and not vanishing epidemic thresholds are found even at the limit for scale-free networks. For the susceptible-infected-removed scenario, the phenomenology is richer and additional interdependencies show up. We also find that the secondary thresholds for the susceptible-infected-susceptible and susceptible-infected-removed models are different, which results directly from the interaction between both diseases. Our work thus solves an important problem and paves the way toward a more comprehensive description of the dynamics of interacting diseases.

  1. New particles and interactions

    SciTech Connect

    Gilman, F.J.; Grannis, P.D.

    1984-04-01

    The Working Group on New Particles and Interactions met as a whole at the beginning and at the end of the Workshop. However, much of what was accomplished was done in five subgroups. These were devoted to: (1) new quarks and leptons; (2) technicolor; (3) supersymmetry; (4) rare decays and CP; and (5) substructure of quarks and leptons. Other aspects of new particles, e.g., Higgs, W', Z', fell to the Electroweak Working Group to consider. The central question of this Workshop of comparing anti pp (with L = 10/sup 32//cm/sup 2/-sec) with pp (with L = 10/sup 33//cm/sup 2/-sec) colliders carried through to all these subgroups. In addition there were several other aspects of hadron colliders which were considered: what does an increase in ..sqrt..s gain in cross section and resultant sensitivity to new physics versus an increase in luminosity; will polarized beams or the use of asymmetries be essential in finding new interactions; where and at what level do rate limitations due to triggering or detection systems play a role; and how and where will the detection of particles with short, but detectable, lifetimes be important. 25 references.

  2. JSPAM: Interacting galaxies modeller

    NASA Astrophysics Data System (ADS)

    Wallin, John F.; Holincheck, Anthony; Harvey, Allen

    2015-11-01

    JSPAM models galaxy collisions using a restricted n-body approach to speed up computation. Instead of using a softened point-mass potential, the software supports a modified version of the three component potential created by Hernquist (1994, ApJS 86, 389). Although spherically symmetric gravitationally potentials and a Gaussian model for the bulge are used to increase computational efficiency, the potential mimics that of a fully consistent n-body model of a galaxy. Dynamical friction has been implemented in the code to improve the accuracy of close approaches between galaxies. Simulations using this code using thousands of particles over the typical interaction times of a galaxy interaction take a few seconds on modern desktop workstations, making it ideal for rapidly prototyping the dynamics of colliding galaxies. Extensive testing of the code has shown that it produces nearly identical tidal features to those from hierarchical tree codes such as Gadget but using a fraction of the computational resources. This code was used in the Galaxy Zoo: Mergers project and is very well suited for automated fitting of galaxy mergers with automated pattern fitting approaches such as genetic algorithms. Java and Fortran versions of the code are available.

  3. Incremental full configuration interaction

    NASA Astrophysics Data System (ADS)

    Zimmerman, Paul M.

    2017-03-01

    The incremental expansion provides a polynomial scaling method for computing electronic correlation energies. This article details a new algorithm and implementation for the incremental expansion of full configuration interaction (FCI), called iFCI. By dividing the problem into n-body interaction terms, accurate correlation energies can be recovered at low n in a highly parallel computation. Additionally, relatively low-cost approximations are possible in iFCI by solving for each incremental energy to within a specified threshold. Herein, systematic tests show that FCI-quality energies can be asymptotically reached for cases where dynamic correlation is dominant as well as where static correlation is vital. To further reduce computational costs and allow iFCI to reach larger systems, a select-CI approach (heat-bath CI) requiring two parameters is incorporated. Finally, iFCI provides the first estimate of FCI energies for hexatriene with a polarized double zeta basis set, which has 32 electrons correlated in 118 orbitals, corresponding to a FCI dimension of over 1038.

  4. [Drug interactions with grapefruit].

    PubMed

    Bojanić, Zoran Z; Bojanić, Novica Z; Bojanić, Vladmila V

    2010-01-01

    The concentration of many orally given medications may be affected by grapefruit or grapefruit juice consumption. It may result in numerous harmful effects. Taking only one cup of juice may induce interactions with different drugs even during the period of a few days. The effect is induced by suppression of cytochrome P450 isoenzyme CYP3A4 in the intestinal wall. The Latin name of grapefruit, Citrus paradisi, is quite opposite to the effects which could be induced by taking grapefruit and some medications at the same time. It is necessary to avoid taking grapefruit with the drugs whose pharmacokinetics could be altered by the active principles found in that fruit. The coloured grapefruit contains less furanocoumarins, but there is no difference in induction and intensity of pharmacokinetic interaction with drugs related to its colour. Other citrus fruits (orange, lemon) do not have such effects, but some other fruits (pomegranate, stella fruit, banpeiyu, hassaku, takaoka-buntan and kinkan) exert inhibitory effects on the activity of cytochrome P450 isoenzyme.

  5. Interaction between piperazine and chlorpromazine

    PubMed Central

    Sturman, Gillian

    1974-01-01

    The interaction between piperazine and chlorpromazine has been studied in rats and mice. Piperazine administered a few hours previously potentiated the action of chlorpromazine on the central nervous system. No such interaction was found between piperazine and prochlorperazine. PMID:4856722

  6. Mediated Discourse and Social Interaction.

    ERIC Educational Resources Information Center

    Scollon, Ron

    1999-01-01

    Suggests that future research in language and social interaction should (1) focus on studies of media or mediated discourse as forms of social interaction as one broad group; and (2) engage in the flow of postmodernist discourse. (Author/VWL)

  7. How Interactive Is Your Whiteboard?

    ERIC Educational Resources Information Center

    Tanner, Howard; Jones, Sonia

    2007-01-01

    In this article, the authors question the assumption that interactive whiteboards (IWBs) automatically lead to interactive teaching. The authors contend that although IWBs have features that offer great potential for the development of highly interactive teaching approaches, it may be the case that teachers must have made the transition from…

  8. An Introduction to Interactive Video.

    ERIC Educational Resources Information Center

    Chung, Ulric

    Aspects of interactive video use in the second language classroom are examined. The major components and equipment considerations for an interactive videodisk and computer system are outlined, including factors in the choice of a system interface. The use and control of interactive video for accessing scenes to be played are described, and…

  9. Expanding the Interaction Equivalency Theorem

    ERIC Educational Resources Information Center

    Rodriguez, Brenda Cecilia Padilla; Armellini, Alejandro

    2015-01-01

    Although interaction is recognised as a key element for learning, its incorporation in online courses can be challenging. The interaction equivalency theorem provides guidelines: Meaningful learning can be supported as long as one of three types of interactions (learner-content, learner-teacher and learner-learner) is present at a high level. This…

  10. Interactive Writing with Young Children.

    ERIC Educational Resources Information Center

    Hall, Nigel

    2000-01-01

    Defines interactive writing and how it works. Recommends starting with the message sheet, then going on to written conversation and writing to a make-believe character. Identifies six benefits of interactive writing and asserts that interactive writing supports a basic human need of expressing one's thoughts and communicating them to others. (DLH)

  11. Imagined Interactions and the Family.

    ERIC Educational Resources Information Center

    Rosenblatt, Paul C.; Meyer, Cynthia

    1986-01-01

    The forms and functions of imagined interaction are discussed. Imagined interaction aids in the clarification of thinking, in dealing with unfinished and emergent relationship business, in preparing for a possibly difficult interaction, and in dealing with opposing aspects of self. (Author/BL)

  12. Ridge Regression for Interactive Models.

    ERIC Educational Resources Information Center

    Tate, Richard L.

    1988-01-01

    An exploratory study of the value of ridge regression for interactive models is reported. Assuming that the linear terms in a simple interactive model are centered to eliminate non-essential multicollinearity, a variety of common models, representing both ordinal and disordinal interactions, are shown to have "orientations" that are…

  13. Human-Robot Interaction

    NASA Technical Reports Server (NTRS)

    Sandor, Aniko; Cross, E. Vincent, II; Chang, Mai Lee

    2015-01-01

    Human-robot interaction (HRI) is a discipline investigating the factors affecting the interactions between humans and robots. It is important to evaluate how the design of interfaces affect the human's ability to perform tasks effectively and efficiently when working with a robot. By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed to appropriately support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for the design of robotic systems. For efficient and effective remote navigation of a rover, a human operator needs to be aware of the robot's environment. However, during teleoperation, operators may get information about the environment only through a robot's front-mounted camera causing a keyhole effect. The keyhole effect reduces situation awareness which may manifest in navigation issues such as higher number of collisions, missing critical aspects of the environment, or reduced speed. One way to compensate for the keyhole effect and the ambiguities operators experience when they teleoperate a robot is adding multiple cameras and including the robot chassis in the camera view. Augmented reality, such as overlays, can also enhance the way a person sees objects in the environment or in camera views by making them more visible. Scenes can be augmented with integrated telemetry, procedures, or map information. Furthermore, the addition of an exocentric (i.e., third-person) field of view from a camera placed in the robot's environment may provide operators with the additional information needed to gain spatial awareness of the robot. Two research studies investigated possible mitigation approaches to address the keyhole effect: 1) combining the inclusion of the robot chassis in the camera view with augmented reality overlays, and 2) modifying the camera

  14. IDG - INTERACTIVE DIF GENERATOR

    NASA Technical Reports Server (NTRS)

    Preheim, L. E.

    1994-01-01

    The Interactive DIF Generator (IDG) utility is a tool used to generate and manipulate Directory Interchange Format files (DIF). Its purpose as a specialized text editor is to create and update DIF files which can be sent to NASA's Master Directory, also referred to as the International Global Change Directory at Goddard. Many government and university data systems use the Master Directory to advertise the availability of research data. The IDG interface consists of a set of four windows: (1) the IDG main window; (2) a text editing window; (3) a text formatting and validation window; and (4) a file viewing window. The IDG main window starts up the other windows and contains a list of valid keywords. The keywords are loaded from a user-designated file and selected keywords can be copied into any active editing window. Once activated, the editing window designates the file to be edited. Upon switching from the editing window to the formatting and validation window, the user has options for making simple changes to one or more files such as inserting tabs, aligning fields, and indenting groups. The viewing window is a scrollable read-only window that allows fast viewing of any text file. IDG is an interactive tool and requires a mouse or a trackball to operate. IDG uses the X Window System to build and manage its interactive forms, and also uses the Motif widget set and runs under Sun UNIX. IDG is written in C-language for Sun computers running SunOS. This package requires the X Window System, Version 11 Revision 4, with OSF/Motif 1.1. IDG requires 1.8Mb of hard disk space. The standard distribution medium for IDG is a .25 inch streaming magnetic tape cartridge in UNIX tar format. It is also available on a 3.5 inch diskette in UNIX tar format. The program was developed in 1991 and is a copyrighted work with all copyright vested in NASA. SunOS is a trademark of Sun Microsystems, Inc. X Window System is a trademark of Massachusetts Institute of Technology. OSF/Motif is a

  15. Bunyavirus-vector interactions.

    PubMed

    Beaty, B J; Bishop, D H

    1988-06-01

    Recent advances in the genetics and molecular biology of bunyaviruses have been applied to understanding bunyavirus-vector interactions. Such approaches have revealed which virus gene and gene products are important in establishing infections in vectors and in transmission of viruses. However, much more information is required to understand the molecular mechanisms of persistent infections of vectors which are lifelong but apparently exert no untoward effect. In fact, it seems remarkable that LAC viral antigen can be detected in almost every cell in an ovarian follicle, yet no untoward effect on fecundity and no teratology is seen. Similarly the lifelong infection of the vector would seem to provide ample opportunity for bunyavirus evolution by genetic drift and, under the appropriate circumstances, by segment reassortment. The potential for bunyavirus evolution by segment reassortment in vectors certainly exists. For example the Group C viruses in a small forest in Brazil seem to constitute a gene pool, with the 6 viruses related alternately by HI/NT and CF reactions, which assay respectively M RNA and S RNA gene products (Casals and Whitman, 1960; Shope and Causey, 1962). Direct evidence for naturally occurring reassortant bunyaviruses has also been obtained. Oligonucleotide fingerprint analyses of field isolates of LAC virus and members of the Patois serogroup of bunyaviruses have demonstrated that reassortment does occur in nature (El Said et al., 1979; Klimas et al., 1981; Ushijima et al., 1981). Determination of the genotypic frequencies of viruses selected by the biological interactions of viruses and vectors after dual infection and segment reassortment is an important issue. Should a virus result that efficiently interacts with alternate vector species, the virus could be expressed in different circumstances with serious epidemiologic consequences. Dual infection of vectors with different viruses is not unlikely, because many bunyaviruses are sympatric in

  16. Interactive molecular dynamics

    NASA Astrophysics Data System (ADS)

    Schroeder, Daniel V.

    2015-03-01

    Physics students now have access to interactive molecular dynamics simulations that can model and animate the motions of hundreds of particles, such as noble gas atoms, that attract each other weakly at short distances but repel strongly when pressed together. Using these simulations, students can develop an understanding of forces and motions at the molecular scale, nonideal fluids, phases of matter, thermal equilibrium, nonequilibrium states, the Boltzmann distribution, the arrow of time, and much more. This article summarizes the basic features and capabilities of such a simulation, presents a variety of student exercises using it at the introductory and intermediate levels, and describes some enhancements that can further extend its uses. A working simulation code, in html5 and javascript for running within any modern Web browser, is provided as an online supplement.

  17. Parvovirus Glycan Interactions

    PubMed Central

    Huang, Lin-Ya; Halder, Sujata; Agbandje-McKenna, Mavis

    2014-01-01

    Members of the Parvoviridae utilize glycan receptors for cellular attachment and subsequent interactions determine transduction efficiency or pathogenic outcome. This review focuses on the identity of the glycan receptors utilized, their capsid binding footprints, and a discussion of the overlap of these sites with tropism, transduction, and pathogenicity determinants. Despite high sequence diversity between the different genera, most parvoviruses bind to negatively charged glycans, such as sialic acid and heparan sulfate, abundant on cell surface membranes. The capsid structure of these viruses exhibit high structural homology enabling common regions to be utilized for glycan binding and at the same time the sequence diversity at the common footprints allows for binding of different glycans or differential binding of the same glycan. PMID:25047752

  18. Interactions of astringent substances.

    PubMed

    Lawless, H T; Corrigan, C J; Lee, C B

    1994-04-01

    Two-component mixtures of astringent materials were rated for perceived intensity of astringent and taste attributes over time. Components included alum (a complex salt), gallic acid (the monomeric component of hydrolyzable tannins), catechin (the monomeric component of condensed tannins) and citric acid. Mixtures of alum and gallic acid showed mixture suppression, in that the 50/50 mixture was less intense than either component in astringency, drying, roughing and puckery/drawing sensations. Suppression was seen at concentration levels producing moderate to strong astringency but was absent or less pronounced at lower concentration levels. A similar pattern held for citric acid, although the suppressive effects were less pronounced. Catechin and gallic acid mixtures were additive. Sensory interactions between astringent materials appears to depend on the substances involved and their concentrations (or intensity levels).

  19. Parvovirus glycan interactions.

    PubMed

    Huang, Lin-Ya; Halder, Sujata; Agbandje-McKenna, Mavis

    2014-08-01

    Members of the Parvoviridae utilize glycan receptors for cellular attachment and subsequent interactions determine transduction efficiency or pathogenic outcome. This review focuses on the identity of the glycan receptors utilized, their capsid binding footprints, and a discussion of the overlap of these sites with tropism, transduction, and pathogenicity determinants. Despite high sequence diversity between the different genera, most parvoviruses bind to negatively charged glycans, such as sialic acid and heparan sulfate, abundant on cell surface membranes. The capsid structure of these viruses exhibit high structural homology enabling common regions to be utilized for glycan binding. At the same time the sequence diversity at the common footprints allows for binding of different glycans or differential binding of the same glycan.

  20. Interactive TV Narrativity

    NASA Astrophysics Data System (ADS)

    Ursu, Marian F.

    Looking back over the past 25 years, the impressive developments in information and communication technologies generated a booming popularity of the new forms of media consumption that allow for interactivity and mobility, such as Web information and entertainment and games. This was and still is particularly evident within the younger generation, who are the most avid adopters of both new technologies and new forms of media consumption (Schadler 2006; KPMG 2007). When asked, in 2006, which device they could not live without, 37% mentioned their PC, 26% their mobile phone, whereas only 17% mentioned their TVs (Schadler 2006); and all these were before the launch of products such as the iPhone, which offer increasing flexibility and mobility of the media experiences.

  1. Fluid structure interaction

    NASA Astrophysics Data System (ADS)

    Komatsu, K.

    A few nonflow field problems are considered, taking into account mainly fluid-shell dynamic interaction and fluid-solid impact. Fluid-shell systems are used as models for sloshing and POGO (structure-propulsion coupling oscillation) in liquid rockets, floating lids of oil tanks, large tanks containing fluid, nuclear containment vessels, and head injury studies in biomechanics. The study of structure-water impact finds applications in the problems associated with water landings of reentry vehicles, water entry of torpedoes, and slamming of ships in heavy seas. At least three different methods can be used in handling wet structures. Attention is given to the method which treats fluid by boundary elements and structure by finite elements.

  2. Universality in string interactions

    NASA Astrophysics Data System (ADS)

    Huang, Yu-tin; Schlotterer, Oliver; Wen, Congkao

    2016-09-01

    In this note, we provide evidence for universality in the low-energy expansion of tree-level string interactions. More precisely, in the α'-expansion of tree-level scattering amplitudes, we conjecture that the leading transcendental coefficient at each order in α' is universal for all perturbative string theories. We have checked this universality up to seven points and trace its origin to the ability to restructure the disk integrals of open bosonic string into those of the superstring. The accompanying kinematic functions have the same low-energy limit and do not introduce any transcendental numbers in their α'-corrections. Universality in the closed-string sector then follows from KLT-relations.

  3. Three dimensional interactive display

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2005-01-01

    A three-dimensional (3-D) interactive display and method of forming the same, includes a transparent capaciflector (TC) camera formed on a transparent shield layer on the screen surface. A first dielectric layer is formed on the shield layer. A first wire layer is formed on the first dielectric layer. A second dielectric layer is formed on the first wire layer. A second wire layer is formed on the second dielectric layer. Wires on the first wire layer and second wire layer are grouped into groups of parallel wires with a turnaround at one end of each group and a sensor pad at the opposite end. An operational amplifier is connected to each of the sensor pads and the shield pad biases the pads and receives a signal from connected sensor pads in response to intrusion of a probe. The signal is proportional to probe location with respect to the monitor screen.

  4. Synchronization and hydrodynamic interactions

    NASA Astrophysics Data System (ADS)

    Powers, Thomas; Qian, Bian; Breuer, Kenneth

    2008-03-01

    Cilia and flagella commonly beat in a coordinated manner. Examples include the flagella that Volvox colonies use to move, the cilia that sweep foreign particles up out of the human airway, and the nodal cilia that set up the flow that determines the left-right axis in developing vertebrate embryos. In this talk we present an experimental study of how hydrodynamic interactions can lead to coordination in a simple idealized system: two nearby paddles driven with fixed torques in a highly viscous fluid. The paddles attain a synchronized state in which they rotate together with a phase difference of 90 degrees. We discuss how synchronization depends on system parameters and present numerical calculations using the method of regularized stokeslets.

  5. Critical Density Interaction Studies

    SciTech Connect

    Young, P; Baldis, H A; Cheung, P; Rozmus, W; Kruer, W; Wilks, S; Crowley, S; Mori, W; Hansen, C

    2001-02-14

    Experiments have been performed to study the propagation of intense laser pulses to high plasma densities. The issue of self-focusing and filamentation of the laser pulse as well as developing predictive capability of absorption processes and x-ray conversion efficiencies is important for numerous programs at the Laboratory, particularly Laser Program (Fast Ignitor and direct-drive ICF) and D&NT (radiography, high energy backlighters and laser cutting). Processes such as resonance absorption, profile modification, linear mode conversion, filamentation and stimulated Brillouin scattering can occur near the critical density and can have important effects on the coupling of laser light to solid targets. A combination of experiments have been used to study the propagation of laser light to high plasma densities and the interaction physics of intense laser pulses with solid targets. Nonparaxial fluid codes to study nonstationary behavior of filamentation and stimulated Brillouin scattering at high densities have also been developed as part of this project.

  6. Interacting neural networks

    NASA Astrophysics Data System (ADS)

    Metzler, R.; Kinzel, W.; Kanter, I.

    2000-08-01

    Several scenarios of interacting neural networks which are trained either in an identical or in a competitive way are solved analytically. In the case of identical training each perceptron receives the output of its neighbor. The symmetry of the stationary state as well as the sensitivity to the used training algorithm are investigated. Two competitive perceptrons trained on mutually exclusive learning aims and a perceptron which is trained on the opposite of its own output are examined analytically. An ensemble of competitive perceptrons is used as decision-making algorithms in a model of a closed market (El Farol Bar problem or the Minority Game. In this game, a set of agents who have to make a binary decision is considered.); each network is trained on the history of minority decisions. This ensemble of perceptrons relaxes to a stationary state whose performance can be better than random.

  7. Tracking protein aggregate interactions

    PubMed Central

    Bartz, Jason C; Nilsson, K Peter R

    2011-01-01

    Amyloid fibrils share a structural motif consisting of highly ordered β-sheets aligned perpendicular to the fibril axis.1, 2 At each fibril end, β-sheets provide a template for recruiting and converting monomers.3 Different amyloid fibrils often co-occur in the same individual, yet whether a protein aggregate aids or inhibits the assembly of a heterologous protein is unclear. In prion disease, diverse prion aggregate structures, known as strains, are thought to be the basis of disparate disease phenotypes in the same species expressing identical prion protein sequences.4–7 Here we explore the interactions reported to occur when two distinct prion strains occur together in the central nervous system. PMID:21597336

  8. Interactive Data Visualization

    SciTech Connect

    Steed, Chad A

    2017-01-01

    Interactive data visualization leverages human visual perception and cognition to improve the accuracy and effectiveness of data analysis. When combined with automated data analytics, data visualization systems orchestrate the strengths of humans with the computational power of machines to solve problems neither approach can manage in isolation. In the intelligent transportation system domain, such systems are necessary to support decision making in large and complex data streams. In this chapter, we provide an introduction to several key topics related to the design of data visualization systems. In addition to an overview of key techniques and strategies, we will describe practical design principles. The chapter is concluded with a detailed case study involving the design of a multivariate visualization tool.

  9. Drugging Membrane Protein Interactions

    PubMed Central

    Yin, Hang; Flynn, Aaron D.

    2016-01-01

    The majority of therapeutics target membrane proteins, accessible on the surface of cells, to alter cellular signaling. Cells use membrane proteins to transduce signals into cells, transport ions and molecules, bind the cell to a surface or substrate, and catalyze reactions. Newly devised technologies allow us to drug conventionally “undruggable” regions of membrane proteins, enabling modulation of protein–protein, protein–lipid, and protein–nucleic acid interactions. In this review, we survey the state of the art in high-throughput screening and rational design in drug discovery, and we evaluate the advances in biological understanding and technological capacity that will drive pharmacotherapy forward against unorthodox membrane protein targets. PMID:26863923

  10. Glycosaminoglycan-lipoprotein interaction.

    PubMed

    Olsson, U; Ostergren-Lundén, G; Moses, J

    2001-10-01

    Glycosaminoglycans (GAGs) bound to various proteoglycans (PGs) present in the cardiovascular system have been proposed to perform a wide range of functions. These include conferring viscoelastic properties; interacting with and modulating growth factors and enzymes; and as receptors and co-receptors in lipoprotein metabolism. Binding of apoB-100 lipoproteins, particularly low density lipoproteins (LDL), to GAGs of extracellular matrix PGs in arteries has been proposed to be an initiating event in development of atherosclerosis. This study was initiated with the aim of getting an overview of the binding patterns of different lipoprotein subclasses with individual GAG categories. We thus evaluated the interaction of lipoproteins with GAGs commonly found in the cardiovascular system using a gel mobility-shift assay developed for this purpose. The same procedure was used to measure lipoproteins binding to metabolically [(35)S]-labeled whole PGs prepared from three cell types, arterial smooth muscle cells, THP-1 macrophages and from HepG2 cells. The effect of GAG composition on PGs on lipoprotein binding was evaluated by enzymatic degradation of the carbohydrate chains. Heparan sulfate was found to bind beta very low density lipoproteins (beta-VLDL) and a chylomicron remnant model (beta-VLDL+apoE), but not LDL. Dermatan sulfate was found to bind LDL, but not beta-VLDL or the chylomicron remnant model. Chondroitin sulfate and heparin were found to bind all lipoproteins tested (LDL, beta-VLDL and beta-VLDL+apoE) although with different affinities. We can conclude that each lipoprotein subclass tested binds a specific assortment of the GAGs tested. The observations made contribute to the understanding of new and complex mechanisms by which carbohydrate and lipid metabolism may be linked.

  11. [Neuron-glia interactions].

    PubMed

    Belin, M F; Hardin, H

    1991-01-01

    The progress of research in the Central Nervous System (CNS) had led to the consideration of neurons and glia as indissociable functional complexes. Neuron-glia interactions are essential for the maturation of the CNS. Glial cells release trophic factors for neurons (NGF) and neurons release trophic factors for glia (GGF). Furthermore, the latter provide a substrate for the migration of neurons and guidance of axons by mean of adhesion molecules. In adults, the interactions between neurons and glial cells serve to maintain homeostasis. Thus, the glial cells perform the restoration of the metabolic equilibrium overthrown by the transmission of the nerve impulse and provide the glucose required for neuronal activity. The nerve impulse provokes increases in the cellular space of CO2, K+, NH3 and neurotransmitters which must be taken up to allow neuronal activity to continue (in normal conditions). Astrocytes perform the uptake of the extracellular K+ by means of passive ionic channels, ionic voltage-dependent channels and a sodium-potassium-ATPase-dependent pump. The oligodendrocytes are involved in the metabolism of CO2 by converting CO2 into carbonic acid by means of carbonic anhydrase. Oligodendrocytes and astrocytes play a role in terminating neural transmission by the uptake of the amino acid neurotransmitters, such as GABA, glutamate and aspartate. The catabolism of glutamate to glutamine by means of glutamine synthetase allows both the conversion of an excitatory amino acid into a neutral amino acid (which can diffuse in the extracellular space without causing neural transmission) and the reduction of cerebral NH3 content.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Compression of femtosecond petawatt laser pulses in a plasma under the conditions of wake-wave excitation

    NASA Astrophysics Data System (ADS)

    Balakin, A. A.; Litvak, A. G.; Mironov, V. A.; Skobelev, S. A.

    2013-08-01

    We propose the concept of a plasma compressor capable of producing extremely short relativistic laser pulse, which is based on the studies of self-focusing of high-power laser pulses under the wake-wave excitation conditions. It is shown that, in the optimal regime, the compression of laser pulses up to a duration of one optical cycle is possible. We study the influence of hose instability on the process of pulse self-compression and have found that this instability is not important for a wide set of initial conditions. The matter is that the length of pulse distortion in both transverse and longitudinal directions is larger than the length of the pulse self-compression. Hose instability gives only negligible decrease of compression degree and weak deformation of pulse profile.

  13. Picosecond-petawatt laser-block ignition for avalanche fusion of boron by ultrahigh acceleration and ultrahigh magnetic fields

    NASA Astrophysics Data System (ADS)

    Hora, H.; Lalousis, P.; Giuffrida, L.; Margarone, D.; Korn, G.; Eliezer, S.; Miley, G. H.; Moustaizis, S.; Mourou, G.; Barty, C. P. J.

    2016-05-01

    Fusion energy from reacting hydrogen (protons) with the boron isotope 11 (HB11) resulting in three stable helium nuclei, is without problem of nuclear radiation in contrast to DT fusion. But the HB11 reaction driven by nanosecond laser pulses with thermal compression and ignition by lasers is extremely difficult. This changed radically when irradiation with picosecond laser pulses produces a non-thermal plasma block ignition with ultrahigh acceleration. This uses the nonlinear (ponderomotive) force to surprizingly resulting in same thresholds as DT fusion even under pessimistic assumption of binary reactions. After evaluation of reactions trapped cylindrically by kilotesla magnetic fields and using the measured highly increased HB11 fusion gains for the proof of an avalanche of the three alphas in secondary reactions, possibilities for an absolutely clean energy source at comptitive costs were concluded.

  14. Determination of Electron-Heated Target Temperatures in Petawatt Laser Experiments Using Soft X-Ray Diagnostics

    NASA Astrophysics Data System (ADS)

    Ma, Tammy; Beg, Farhat; Macphee, Andrew; Chung, Hyun-Kyung; Key, Michael; MacKinnon, Andrew; Hatchett, Stephen; Stephens, Richard; Akli, Kramer; van Woerkom, Linn; Zhang, Bingbing

    2007-11-01

    The study of the transport of electrons, and the flow of energy into a solid target or dense plasma, is instrumental in the development of fast ignition inertial confinement fusion. Various solid targets (layered foils, cones, wires) were irradiated with the Titan Laser (4x10^19 Wcm-2) at LLNL. Analysis has been done on soft x-ray images, spectra, and streaked images to determine the thermal electron temperatures on target back surfaces. Three independent methods (Soft X-Ray Spectrometer, 68eV XUV Imager, and 256eV XUV Imager) were used to confirm temperatures, while a fourth diagnostic (Streaked 68eV XUV Imager) provided time-resolved temperature information.

  15. Power scaling of the Xe(L) amplifier at λ ~ 2.8 Å into the petawatt regime

    NASA Astrophysics Data System (ADS)

    Borisov, Alex B.; Racz, Ervin; Khan, Shahab F.; Poopalasingam, Sankar; McCorkindale, John C.; Zhao, Ji; Boguta, John; Longworth, James W.; Rhodes, Charles K.

    2010-01-01

    Single-pulse and time-integrated spectral measurements of the characteristics of the Xe(L) amplifier at λ ~ 2.8 Å indicate an efficiency of energy extraction of ~30% over a bandwidth of ~500 eV. These observations, together with data from prior studies, provide a basis for estimating a corresponding set of scaling limits for a laboratory sized ~4.5 keV Xe(L) system. Specifically, they are a peak power Px ~ 6.0 PW, an unfocused peak intensity Ix ~ 3.4 × 1021 W cm-2, peak brightness figures corresponding to B ~ 4.1 × 1034 photons s-1 mm-2 mrad-2 (0.1% bandwidth)-1 and Px/λ2 ~ 7.6 × 1030 W cm-2 sr-1, and an x-ray pulse length τx ~ 5-10 as.

  16. [Encouraging experiences of interactive lectures].

    PubMed

    Lehtonen, Sanna; Linden, Anni-Maija; Ojala, Päivi M; Polvi, Anne; Sallinen, Ville; Viranta, Suvi

    2009-01-01

    Traditional lectures typically represent unidirectional transfer of information from teacher to students whilst interactive lectures involve student activity. We analyzed the experiences of students and teachers of interactive lectures by observation and questionnaires during a course organized by Helsinki Biomedical Graduate School. Teachers and the majority of students found interactive lectures highly motivating although we observed that only a fraction of students participated in discussions. Students were of the opinion that interactivity improved their learning. Supplementing lectures with interactive elements encourages students to adopt active learning techniques.

  17. Making public displays interactive everywhere.

    PubMed

    Boring, Sebastian; Baur, Dominikus

    2013-01-01

    As the number of large public displays increases, the need for interaction techniques to control them is emerging. One promising way to provide such interaction is through personal mobile devices. However, although much research has covered this topic, it hasn't yet brought those technologies fully into the public that is, by allowing for interactions in a variety of public spaces. A proposed tracking technology has led to several prototype applications that employ mobile devices to interact with large public displays. In turn, these prototypes have led to an overarching interaction concept that allows for public deployment regardless of the space's characteristics (for example, layout and technologies).

  18. Polymer-Nucleic Acid Interactions.

    PubMed

    Shen, Zhuang-Lin; Xia, Yi-Qi; Yang, Qiu-Song; Tian, Wen-de; Chen, Kang; Ma, Yu-Qiang

    2017-04-01

    Gene therapy is an important therapeutic strategy in the treatment of a wide range of genetic disorders. Polymers forming stable complexes with nucleic acids (NAs) are non-viral gene carriers. The self-assembly of polymers and nucleic acids is typically a complex process that involves many types of interaction at different scales. Electrostatic interaction, hydrophobic interaction, and hydrogen bonds are three important and prevalent interactions in the polymer/nucleic acid system. Electrostatic interactions and hydrogen bonds are the main driving forces for the condensation of nucleic acids, while hydrophobic interactions play a significant role in the cellular uptake and endosomal escape of polymer-nucleic acid complexes. To design high-efficiency polymer candidates for the DNA and siRNA delivery, it is necessary to have a detailed understanding of the interactions between them in solution. In this chapter, we survey the roles of the three important interactions between polymers and nucleic acids during the formation of polyplexes and summarize recent understandings of the linear polyelectrolyte-NA interactions and dendrimer-NA interactions. We also review recent progress optimizing the gene delivery system by tuning these interactions.

  19. Developing a general interaction potential for hydrophobic and hydrophilic interactions.

    PubMed

    Donaldson, Stephen H; Røyne, Anja; Kristiansen, Kai; Rapp, Michael V; Das, Saurabh; Gebbie, Matthew A; Lee, Dong Woog; Stock, Philipp; Valtiner, Markus; Israelachvili, Jacob

    2015-02-24

    We review direct force measurements on a broad class of hydrophobic and hydrophilic surfaces. These measurements have enabled the development of a general interaction potential per unit area, W(D) = -2γ(i)Hy exp(-D/D(H)) in terms of a nondimensional Hydra parameter, Hy, that applies to both hydrophobic and hydrophilic interactions between extended surfaces. This potential allows one to quantitatively account for additional attractions and repulsions not included in the well-known combination of electrostatic double layer and van der Waals theories, the so-called Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The interaction energy is exponentially decaying with decay length D(H) ≈ 0.3-2 nm for both hydrophobic and hydrophilic interactions, with the exact value of D(H) depending on the precise system and conditions. The pre-exponential factor depends on the interfacial tension, γ(i), of the interacting surfaces and Hy. For Hy > 0, the interaction potential describes interactions between partially hydrophobic surfaces, with the maximum hydrophobic interaction (i.e., two fully hydrophobic surfaces) corresponding to Hy = 1. Hydrophobic interactions between hydrophobic monolayer surfaces measured with the surface forces apparatus (SFA) are shown to be well described by the proposed interaction potential. The potential becomes repulsive for Hy < 0, corresponding to partially hydrophilic (hydrated) interfaces. Hydrated surfaces such as mica, silica, and lipid bilayers are discussed and reviewed in the context of the values of Hy appropriate for each system.

  20. Discovering interacting domains and motifs in protein-protein interactions.

    PubMed

    Hugo, Willy; Sung, Wing-Kin; Ng, See-Kiong

    2013-01-01

    Many important biological processes, such as the signaling pathways, require protein-protein interactions (PPIs) that are designed for fast response to stimuli. These interactions are usually transient, easily formed, and disrupted, yet specific. Many of these transient interactions involve the binding of a protein domain to a short stretch (3-10) of amino acid residues, which can be characterized by a sequence pattern, i.e., a short linear motif (SLiM). We call these interacting domains and motifs domain-SLiM interactions. Existing methods have focused on discovering SLiMs in the interacting proteins' sequence data. With the recent increase in protein structures, we have a new opportunity to detect SLiMs directly from the proteins' 3D structures instead of their linear sequences. In this chapter, we describe a computational method called SLiMDIet to directly detect SLiMs on domain interfaces extracted from 3D structures of PPIs. SLiMDIet comprises two steps: (1) interaction interfaces belonging to the same domain are extracted and grouped together using structural clustering and (2) the extracted interaction interfaces in each cluster are structurally aligned to extract the corresponding SLiM. Using SLiMDIet, de novo SLiMs interacting with protein domains can be computationally detected from structurally clustered domain-SLiM interactions for PFAM domains which have available 3D structures in the PDB database.

  1. Interactive Projector as an Interactive Teaching Tool in the Classroom: Evaluating Teaching Efficiency and Interactivity

    ERIC Educational Resources Information Center

    Liu, Li-Ying; Cheng, Meng-Tzu

    2015-01-01

    This study reports on a measurement that is used to investigate interactivity in the classrooms and examines the impact of integrating the interactive projector into middle school science classes on classroom interactivity and students' biology learning. A total of 126 7th grade Taiwanese students were involved in the study and quasi-experimental…

  2. Weak Interactions and Instability Cascades.

    PubMed

    Kadoya, Taku; McCann, Kevin S

    2015-07-29

    Food web theory states that a weak interactor which is positioned in the food web such that it tends to deflect, or mute, energy away from a potentially oscillating consumer-resource interaction often enhances community persistence and stability. Here we examine how adding other weak interactions (predation/harvesting) on the stabilizing weak interactor alters the stability of food web using a set of well-established food web models/modules. We show that such "weak on weak" interaction chains drive an indirect dynamic cascade that can rapidly ignite a distant consumer-resource oscillator. Nonetheless, we also show that the "weak on weak" interactions are still more stable than the food web without them, and so weak interactions still generally act to stabilize food webs. Rather, these results are best interpreted to say that the degree of the stabilizing effect of a given important weak interaction can be severely compromised by other weak interactions (including weak harvesting).

  3. Arc electrode interaction study

    NASA Technical Reports Server (NTRS)

    Zhou, X.; Berns, D.; Heberlein, J.

    1994-01-01

    The project consisted of two parts: (1) the cathode interaction studies which were a continuation of previous work and had the objective of increasing our understanding of the microscopic phenomena controlling cathode erosion in arc jet thrusters, and (2) the studies of the anode attachment in arc jet thrusters. The cathode interaction studies consisted of (1) a continuation of some modeling work in which the previously derived model for the cathode heating was applied to some specific gases and electrode materials, and (2) experimental work in which various diagnostics was applied to the cathode. The specific diagnostics used were observation of the cathode tip during arcing using a Laser Strobe Video system in conjunction with a tele-microscope, a monochromator with an optical multichannel analyzer for the determination of the cathode temperature distribution, and various ex situ materials analysis methods. The emphasis of our effort was shifted to the cathode materials analysis because a parallel project was in place during the second half of 1993 with a visiting scientist pursuing arc electrode materials studies. As a consequence, the diagnostic investigations of the arc in front of the cathode had to be postponed to the first half of 1994, and we are presently preparing these measurements. The results of last year's study showed some unexpected effects influencing the cathode erosion behavior, such as increased erosion away from the cathode tip, and our understanding of these effects should improve our ability to control cathode erosion. The arc jet anode attachment studies concentrated on diagnostics of the instabilities in subsonic anode attachment arc jet thrusters, and were supplemental measurements to work which was performed by one of the authors who spent the summer as an intern at NASA Lewis Research Center. A summary of the results obtained during the internship are included because they formed an integral part of the study. Two tasks for 1994, the

  4. "Interactive Classification Technology"

    NASA Technical Reports Server (NTRS)

    deBessonet, Cary

    1999-01-01

    The investigators are upgrading a knowledge representation language called SL (Symbolic Language) and an automated reasoning system called SMS (Symbolic Manipulation System) to enable the technologies to be used in automated reasoning and interactive classification systems. The overall goals of the project are: a) the enhancement of the representation language SL to accommodate multiple perspectives and a wider range of meaning; b) the development of a sufficient set of operators to enable the interpreter of SL to handle representations of basic cognitive acts; and c) the development of a default inference scheme to operate over SL notation as it is encoded. As to particular goals the first-year work plan focused on inferencing and.representation issues, including: 1) the development of higher level cognitive/ classification functions and conceptual models for use in inferencing and decision making; 2) the specification of a more detailed scheme of defaults and the enrichment of SL notation to accommodate the scheme; and 3) the adoption of additional perspectives for inferencing.

  5. SEEPAGE/BACKFILL INTERACTIONS

    SciTech Connect

    P. Mariner

    2000-04-14

    As directed by written development plan (CRWMS M&O 1999a), a sub-model of seepage/backfill interactions is developed and presented in this document to support the Engineered Barrier System (EBS) Physical and Chemical Environment Model. The purpose of this analysis is to assist Performance Assessment Operations (PAO) and the Engineered Barrier Performance Department in modeling the geochemical environment within a repository drift. In this analysis, a conceptual model is developed to provide PAO a more detailed and complete in-drift geochemical model abstraction and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near Field Environment (NFE) Revision 2 (NRC 1999). The development plan calls for a sub-model that evaluates the effect on water chemistry of chemical reactions between water that enters the drift and backfill materials in the drift. The development plan specifically requests an evaluation of the following important chemical reaction processes: dissolution-precipitation, aqueous complexation, and oxidation-reduction. The development plan also requests the evaluation of the effects of varying seepage and drainage fluxes, varying temperature, and varying evaporation and condensation fluxes. Many of these effects are evaluated in a separate Analysis/Model Report (AMR), ''Precipitates Salts Analysis AMR'' (CRWMS M&O 2000), so the results of that AMR are referenced throughout this AMR.

  6. Hydrogen interactions with metals

    NASA Technical Reports Server (NTRS)

    Mclellan, R. B.; Harkins, C. G.

    1975-01-01

    Review of the literature on the nature and extent of hydrogen interactions with metals and the role of hydrogen in metal failure. The classification of hydrogen-containing systems is discussed, including such categories as covalent hydrides, volatile hydrides, polymeric hydrides, and transition metal hydride complexes. The use of electronegativity as a correlating parameter in determining hydride type is evaluated. A detailed study is made of the thermodynamics of metal-hydrogen systems, touching upon such aspects as hydrogen solubility, the positions occupied by hydrogen atoms within the solvent metal lattice, the derivation of thermodynamic functions of solid solutions from solubility data, and the construction of statistical models for hydrogen-metal solutions. A number of theories of hydrogen-metal bonding are reviewed, including the rigid-band model, the screened-proton model, and an approach employing the augmented plane wave method to solve the one-electron energy band problem. Finally, the mechanism of hydrogen embrittlement is investigated on the basis of literature data concerning stress effects and the kinetics of hydrogen transport to critical sites.

  7. Atmospheric Ball Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Wurden, C. J. V.; Wurden, G. A.

    2008-11-01

    Free-floating atmospheric pressure copper hydroxyl ball plasmas have been studied in air and helium atmospheres, using still and high speed photography (up to 20,000 fps), collimated photodiodes, and spectroscopy. A fine boundary layer between the greenish Cu-OH cloud, and the air, is orange in color. However, when the discharge is initiated into a helium atmosphere, the boundary layer is no longer visible, suggesting that the visible boundary was caused by interactions with oxygen. We have studied scaling of the 10-cm diameter ball plasmas with both the size of the water bucket, and the applied discharge voltage, over the range of 500-5000 volts. When looking at the initial spider-leg breakdown above the water surface, the ratio of H-alpha to H-beta lines suggests a temperature of ˜0.3 eV. This is also consistent with the presence of molecular lines of OH, and perhaps CuOH2 in the rising cloud. The cloud is affected by, but can penetrate through an aluminum window screen mesh.

  8. Interactions between electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Schwan, H. P.

    1985-02-01

    We applied for this grant to support a workshop at Erice, Italy. This workshop has been commonly called Erice School and the main subject of this workshop is the interaction of electromagnetic fields with biological cells and molecules. The grant from ONR enabled us to invite American scientists to participants in this workshop and deliver scientific papers. The duration of the Erice School was ten days. Therefore, we had sufficient time to discuss the problems of electromagnetic radiations. Vigorous discussions took place during official sessions and during private conversations. The participants of this workshop are mostly those who have been active in the research on bioelectromagnetics, but there are some numbers of speakers who discussed the basic electrical and magnetic properties of polyelectrolytes, biological membranes and tissue. The workshop was unique in that there were participants with a variety of training backgrounds. This enabled us to exchange the information between applied scientists and basic scientists. Also, active exchanges of opinions took place between biological scientists and physical scientists.

  9. Electron Interactions in Graphene

    NASA Astrophysics Data System (ADS)

    Kim, Philip

    2011-03-01

    Electrons confined in two dimensions (2D) can exhibit strongly correlated states. Recent experimental discovery of integer and fractional quantum Hall effect in graphene amplified interest in correlated 2D electronic systems, owning to presence of the unusual topological phase associated with zero effective mass of charge carriers. In this talk, we will discuss the role of the many-body effects due to the electron-electron interaction in graphene manifested in electron transport phenomena. In particular, we will discuss the nature unusual spontaneous symmetry breaking Landau levels graphene under the extreme quantum condition, the appearance of unique low density insulating states and fractional quantum Hall states. Employing extremely high quality samples obtained by suspending graphene and graphene on atomically flat defect free insulating substrate such as hexa-bron nitride, we now investigate various broken symmetry states under high magnetic field. The nature of these broken symmetry state can be explained generally considering underlying SU(4) symmetry in the single particle level of the Landau levels.

  10. Beam-Beam Interactions

    SciTech Connect

    Sramek, Christopher

    2003-09-05

    At the interaction point of a particle accelerator, various phenomena occur which are known as beam-beam effects. Incident bunches of electrons (or positrons) experience strong electromagnetic fields from the opposing bunches, which leads to electron deflection, beamstrahlung and the creation of electron/positron pairs and hadrons due to two-photon exchange. In addition, the beams experience a ''pinch effect'' which focuses each beam and results in either a reduction or expansion of their vertical size. Finally, if a beam's disruption parameter is too large, the beam can develop a sinusoidal distortion, or two-stream (kink) instability. This project simulated and studied these effects as they relate to luminosity, deflection angles and energy loss in order to optimize beam parameters for the Next Linear Collider (NLC). Using the simulation program Guinea-Pig, luminosity, deflection angle and beam energy data was acquired for different levels of beam offset and distortion. Standard deflection curves and luminosity plots agreed with theoretical models but also made clear the difficulties of e-e- feedback. Simulations emphasizing kink instability in modulated and straight beam collisions followed qualitative behavioral predictions and roughly fit recent analytic calculations. Finally, a study of e-e- collisions under design constraints for the NLC provided new estimates of how luminosity, beamstrahlung energy loss, upsilon parameter and deflection curve width scale with beam spotsizes.

  11. Featured Image: Interacting Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-06-01

    This beautiful image shows two galaxies, IC 2163 and NGC 2207, as they undergo a grazing collision 114 million light-years away. The image is composite, constructed from Hubble (blue), Spitzer (green), and ALMA (red) data. In a recent study, Debra Elmegreen (Vassar College) and collaborators used this ALMA data to trace the individual molecular clouds in the two interacting galaxies, identifying a total of over 200 clouds that each contain a mass of over a million solar masses. These clouds represent roughly half the molecular gas in the two galaxies total. Elmegreen and collaborators track the properties of these clouds and their relation to star-forming regions observed with Hubble. For more information about their observations, check out the paper linked below.A closer look at the ALMA observations for these galaxies, with the different emission regions labeled. Most of the molecular gas emission comes from the eyelids of IC 2163, and the nuclear ring and Feature i in NGC 2207. [Elmegreen et al. 2017]CitationDebra Meloy Elmegreen et al 2017 ApJ 841 43. doi:10.3847/1538-4357/aa6ba5

  12. Interactive Kalman filtering

    NASA Astrophysics Data System (ADS)

    Bürger, Gerd; Cane, Mark A.

    1994-04-01

    Data assimilation via the extended Kaiman filter can become problematic when the assimilating model is strongly nonlinear, primarily in connection with sharp, "switchlike" changes between different regimes of the system. The filter seems too inert to follow those switches quickly enough, a fact that can lead to a complete failure when the switches occur often enough. In this paper we replace the key feature of the filter, the use of local linearity for the error model update, with a principle that uses a more global approach through the utilization of a set of preselected regimes. The method uses all regime error models simultaneously. Being mutually incompatible, a compromise between the different error models is found through the use of a weighting function that reflects the `closeness' of the error model to the correct model. To test the interactive Kaiman filter a series of numerical experiments is performed using the double-well system and the well-known Lorenz system, and the results are compared to the extended Kaiman filter. It turns out that, depending on the set of preselected regimes, the performance is worse than, comparable to, or better than that of the extended Kaiman filter.

  13. Influenza-Sediment Interactions

    NASA Astrophysics Data System (ADS)

    Trusiak, A.; Block, K. A.; Katz, A.; Gottlieb, P.; Alimova, A.; Galarza, J.; Wei, H.; Steiner, J. C.

    2013-12-01

    A typical water fowl can secrete 1012 influenza virions per day. Therefore it is not unexpected that influenza virions interact with sediments in the water column. The influence of sediments on avian influenza virions is not known. With the threat of avian influenza emerging into the human population, it is crucial to understand virus survivability and residence time in a body of water. Influenza and clay sediments are colloidal particles and thus aggregate as explained by DLVO (Derjaguin & Landau, Verwey & Overbeek) theory. Of great importance is an understanding of the types of particulate or macromolecular components that bind the virus particles, and whether the virus remains biologically active. We present results of hetero-aggregation and transmission electron microscopy experiments performed with influenza A/PR8/38. Influenza particles are suspended with sediment and minimal nutrients for several days, after which the components are evaluated to determine influenza concentration and survivability. Transmission electron microscopy results are reported on the influenza-sediment aggregates to elucidate structure and morphology of the components.

  14. The many faces of interaction.

    PubMed

    Reynolds, P A; Mason, R; Harper, J

    2008-05-24

    During the process of learning teachers and/or students interact with each other on a personal level. However, in e-learning the process is achieved through the intermediary of an information and communication technology (ICT) system or service. Descriptions of these ICT-human interface devices are given in this paper. Successful interaction depends not just on personal relationships, but also on understanding and the ability to use computers and communications equipment effectively. Interactivity, when using ICT, may as a result be different from that in a traditional classroom. The computer is the main man-machine interface and modulates people's ability to interact. Newer, mobile technology will extend the ability to interact in terms of time and place, as is illustrated by the use of portable digital assistants for dental teaching in clinics. The paper concludes that it is very important that both teachers and students should understand how to interact optimally with current and future ICT systems and devices.

  15. Interaction Models for Functional Regression

    PubMed Central

    USSET, JOSEPH; STAICU, ANA-MARIA; MAITY, ARNAB

    2015-01-01

    A functional regression model with a scalar response and multiple functional predictors is proposed that accommodates two-way interactions in addition to their main effects. The proposed estimation procedure models the main effects using penalized regression splines, and the interaction effect by a tensor product basis. Extensions to generalized linear models and data observed on sparse grids or with measurement error are presented. A hypothesis testing procedure for the functional interaction effect is described. The proposed method can be easily implemented through existing software. Numerical studies show that fitting an additive model in the presence of interaction leads to both poor estimation performance and lost prediction power, while fitting an interaction model where there is in fact no interaction leads to negligible losses. The methodology is illustrated on the AneuRisk65 study data. PMID:26744549

  16. Gaussian interaction profile kernels for predicting drug-target interaction.

    PubMed

    van Laarhoven, Twan; Nabuurs, Sander B; Marchiori, Elena

    2011-11-01

    The in silico prediction of potential interactions between drugs and target proteins is of core importance for the identification of new drugs or novel targets for existing drugs. However, only a tiny portion of all drug-target pairs in current datasets are experimentally validated interactions. This motivates the need for developing computational methods that predict true interaction pairs with high accuracy. We show that a simple machine learning method that uses the drug-target network as the only source of information is capable of predicting true interaction pairs with high accuracy. Specifically, we introduce interaction profiles of drugs (and of targets) in a network, which are binary vectors specifying the presence or absence of interaction with every target (drug) in that network. We define a kernel on these profiles, called the Gaussian Interaction Profile (GIP) kernel, and use a simple classifier, (kernel) Regularized Least Squares (RLS), for prediction drug-target interactions. We test comparatively the effectiveness of RLS with the GIP kernel on four drug-target interaction networks used in previous studies. The proposed algorithm achieves area under the precision-recall curve (AUPR) up to 92.7, significantly improving over results of state-of-the-art methods. Moreover, we show that using also kernels based on chemical and genomic information further increases accuracy, with a neat improvement on small datasets. These results substantiate the relevance of the network topology (in the form of interaction profiles) as source of information for predicting drug-target interactions. Software and Supplementary Material are available at http://cs.ru.nl/~tvanlaarhoven/drugtarget2011/. tvanlaarhoven@cs.ru.nl; elenam@cs.ru.nl. Supplementary data are available at Bioinformatics online.

  17. Interactive Raytracing: The nirt Command

    DTIC Science & Technology

    2009-04-01

    Interactive Raytracing : The nirt Command by Clifford Yapp ARL-CR-624 April 2009 prepared by Quantum Research...Laboratory Aberdeen Proving Ground, MD 21005-5068 ARL-CR-624 April 2009 Interactive Raytracing : The nirt Command Clifford Yapp Quantum...DATES COVERED (From - To) June 2008–October 2008 4. TITLE AND SUBTITLE Interactive Raytracing : The nirt Command 5a. CONTRACT NUMBER W911QX-06-F

  18. Collective excitations and retarded interactions

    NASA Astrophysics Data System (ADS)

    Choi, M. Y.; Huberman, B. A.

    1985-03-01

    We study the dynamics of many-body systems with retarded interactions and show how their non-Markovian character can lead to nonergodic behavior. This nonergodicity is characterized by the appearance of long periods or chaotic wanderings in phase space. We construct the phase diagrams for Ising-type systems with delayed interactions, and show the emergence of non-Gibbsian measures as a function of both interaction strengths and delays.

  19. Interactions between Chemokines

    PubMed Central

    Cook, Anna; Hippensteel, Randi; Shimizu, Saori; Nicolai, Jaclyn; Fatatis, Alessandro; Meucci, Olimpia

    2010-01-01

    The soluble form of the chemokine fractalkine/CX3CL1 regulates microglia activation in the central nervous system (CNS), ultimately affecting neuronal survival. This study aims to determine whether CXCL12, another chemokine constitutively expressed in the CNS (known as stromal cell-derived factor 1; SDF-1), regulates cleavage of fractalkine from neurons. To this end, ELISA was used to measure protein levels of soluble fractalkine in the medium of rat neuronal cultures exposed to SDF-1. Gene arrays, quantitative RT-PCR, and Western blot were used to measure overall fractalkine expression in neurons. The data show that the rate of fractalkine shedding in healthy cultures positively correlates with in vitro differentiation and survival. In analogy to non-neuronal cells, metalloproteinases (ADAM10/17) are involved in cleavage of neuronal fractalkine as indicated by studies with pharmacologic inhibitors. Moreover, treatment of the neuronal cultures with SDF-1 stimulates expression of the inducible metalloproteinase ADAM17 and increases soluble fractalkine content in culture medium. The effect of SDF-1 is blocked by an inhibitor of both ADAM10 and -17, but only partially affected by a more specific inhibitor of ADAM10. In addition, SDF-1 also up-regulates expression of the fractalkine gene. Conversely, exposure of neurons to an excitotoxic stimulus (i.e. NMDA) inhibits α-secretase activity and markedly diminishes soluble fractalkine levels, leading to cell death. These results, along with previous findings on the neuroprotective role of both SDF-1 and fractalkine, suggest that this novel interaction between the two chemokines may contribute to in vivo regulation of neuronal survival by modulating microglial neurotoxic properties. PMID:20124406

  20. Studies on Strong Interactions

    NASA Astrophysics Data System (ADS)

    Coriano, Claudio

    Five studies, four in Quantum field theory and one in fermionic molecular dynamics are presented. In the first study, introduced in chapter one and developed in chapter two of this dissertation, we formulate an extension of QCD sum rules to Compton scattering of the pion at intermediate energy. The chapter is based on the research paper Fixed angle pion Compton scattering and QCD sum rules by Prof. George Sterman and the author, which has been submitted for publication as a regular article. In chapter 3 we discuss the relation between traditional bosonic exchange models of nuclear strong interaction and soliton models, in the particular case of the sine-Gordon model. The chapter is based on the research paper "Scattering in soliton models and bosonic exchange descriptions", by R. R. Parwani, H. Yamagishi, I. Zahed and the author, and is published in Phys. Rev. D 45 (1992), 2542. A preprint of this paper (Preprint 1) has been included as an Appendix to the Chapter. In Chapter 4 we discuss aspects of the propagation of quantized fields in classical backgrounds, using the light-cone expansion of the propagator. The chapter is based on the research papers "Electrodynamics in the presence of an axion", published by the author in Modern Physics Letters A 7 (1992), 1253, and on the paper "Singularity of Green's function and the effective action in massive Yang Mills theories, by Prof. H. Yamagishi and the author. This last paper is published in Physical Review D 41 (1990), 3226 and its reprint appears in the final part of the Chapter (Reprint 1). In chapter 5, entitled "On the time dependent Rayleigh-Ritz equations", we discuss aspects of the variational approach to fermionic molecular dynamics. This investigation by R. Parwani, H. Yamagishi and the author has been published in Nucl. Physics A 522 (1991), 591. A preprint of this research paper has been inserted in the final part of the Chapter (Preprint 2).

  1. Nutrition and parasite interaction.

    PubMed

    Coop, R L; Holmes, P H

    1996-01-01

    This overview focuses on the interaction between nutritional status and gastrointestinal nematode infection in ruminants and considers: (i) the influence of the parasite on host metabolism; and (ii) the effect of host nutrition on the establishment and survival of parasite populations, the development of the host-immune response and the pathophysiology of infection. Gastrointestinal nematodes reduce voluntary feed intake and efficiency of feed utilisation, a key feature being an increased endogenous loss of protein into the gastrointestinal tract. Overall there is movement of protein from productive processes into repair of the gastrointestinal tract, synthesis of plasma proteins and mucoprotein production. Although reduction in feed intake is a major factor contributing to the reduced performance of parasitised ruminants, the underlying mechanisms of the anorexia are poorly understood. Supplementation of the diet with additional protein does not appear to affect initial establishment of nematode infections but the pathophysiological consequences are generally more severe on lower planes of protein nutrition. The main effect of protein supplementation is to increase the rate of acquisition of immunity and increase resistance to reinfection and this has been associated with an enhanced cellular immune response in the gastrointestinal mucosa. The unresponsiveness of the young lamb can be improved by dietary protein supplementation. Recent trials have shown that growing sheep offered a free choice between a low and a high protein ration are able to modify their diet selection in order to alleviate the increase in protein requirements which result from gastrointestinal nematode infection. Studies on the influence of nutrition on the expression of genotype have shown that the benefits of a superior genotype are not lost on a low protein diet whereas a high protein diet can partially emeliorate the disadvantages of an inferior genotype. In addition to dietary protein

  2. RIBOSOME-MEMBRANE INTERACTION

    PubMed Central

    Adelman, M. R.; Sabatini, David D.; Blobel, Günter

    1973-01-01

    In a medium of high ionic strength, rat liver rough microsomes can be nondestructively disassembled into ribosomes and stripped membranes if nascent polypeptides are discharged from the bound ribosomes by reaction with puromycin. At 750 mM KCl, 5 mM MgCl2, 50 mM Tris·HCl, pH 7 5, up to 85% of all bound ribosomes are released from the membranes after incubation at room temperature with 1 mM puromycin. The ribosomes are released as subunits which are active in peptide synthesis if programmed with polyuridylic acid. The ribosome-denuded, or stripped, rough microsomes (RM) can be recovered as intact, essentially unaltered membranous vesicles Judging from the incorporation of [3H]puromycin into hot acid-insoluble material and from the release of [3H]leucine-labeled nascent polypeptide chains from bound ribosomes, puromycin coupling occurs almost as well at low (25–100 mM) as at high (500–1000 mM) KCl concentrations. Since puromycin-dependent ribosome release only occurs at high ionic strength, it appears that ribosomes are bound to membranes via two types of interactions: a direct one between the membrane and the large ribosomal subunit (labile at high KCl concentration) and an indirect one in which the nascent chain anchors the ribosome to the membrane (puromycin labile). The nascent chains of ribosomes specifically released by puromycin remain tightly associated with the stripped membranes. Some membrane-bound ribosomes (up to 40%) can be nondestructively released in high ionic strength media without puromycin; these appear to consist of a mixture of inactive ribosomes and ribosomes containing relatively short nascent chains. A fraction (∼15%) of the bound ribosomes can only be released from membranes by exposure of RM to ionic conditions which cause extensive unfolding of ribosomal subunits, the nature and significance of these ribosomes is not clear. PMID:4682341

  3. INCA- INTERACTIVE CONTROLS ANALYSIS

    NASA Technical Reports Server (NTRS)

    Bauer, F. H.

    1994-01-01

    The Interactive Controls Analysis (INCA) program was developed to provide a user friendly environment for the design and analysis of linear control systems, primarily feedback control systems. INCA is designed for use with both small and large order systems. Using the interactive graphics capability, the INCA user can quickly plot a root locus, frequency response, or time response of either a continuous time system or a sampled data system. The system configuration and parameters can be easily changed, allowing the INCA user to design compensation networks and perform sensitivity analysis in a very convenient manner. A journal file capability is included. This stores an entire sequence of commands, generated during an INCA session into a file which can be accessed later. Also included in INCA are a context-sensitive help library, a screen editor, and plot windows. INCA is robust to VAX-specific overflow problems. The transfer function is the basic unit of INCA. Transfer functions are automatically saved and are available to the INCA user at any time. A powerful, user friendly transfer function manipulation and editing capability is built into the INCA program. The user can do all transfer function manipulations and plotting without leaving INCA, although provisions are made to input transfer functions from data files. By using a small set of commands, the user may compute and edit transfer functions, and then examine these functions by using the ROOT_LOCUS, FREQUENCY_RESPONSE, and TIME_RESPONSE capabilities. Basic input data, including gains, are handled as single-input single-output transfer functions. These functions can be developed using the function editor or by using FORTRAN- like arithmetic expressions. In addition to the arithmetic functions, special functions are available to 1) compute step, ramp, and sinusoid functions, 2) compute closed loop transfer functions, 3) convert from S plane to Z plane with optional advanced Z transform, and 4) convert from Z

  4. INCA- INTERACTIVE CONTROLS ANALYSIS

    NASA Technical Reports Server (NTRS)

    Bauer, F. H.

    1994-01-01

    The Interactive Controls Analysis (INCA) program was developed to provide a user friendly environment for the design and analysis of linear control systems, primarily feedback control systems. INCA is designed for use with both small and large order systems. Using the interactive graphics capability, the INCA user can quickly plot a root locus, frequency response, or time response of either a continuous time system or a sampled data system. The system configuration and parameters can be easily changed, allowing the INCA user to design compensation networks and perform sensitivity analysis in a very convenient manner. A journal file capability is included. This stores an entire sequence of commands, generated during an INCA session into a file which can be accessed later. Also included in INCA are a context-sensitive help library, a screen editor, and plot windows. INCA is robust to VAX-specific overflow problems. The transfer function is the basic unit of INCA. Transfer functions are automatically saved and are available to the INCA user at any time. A powerful, user friendly transfer function manipulation and editing capability is built into the INCA program. The user can do all transfer function manipulations and plotting without leaving INCA, although provisions are made to input transfer functions from data files. By using a small set of commands, the user may compute and edit transfer functions, and then examine these functions by using the ROOT_LOCUS, FREQUENCY_RESPONSE, and TIME_RESPONSE capabilities. Basic input data, including gains, are handled as single-input single-output transfer functions. These functions can be developed using the function editor or by using FORTRAN- like arithmetic expressions. In addition to the arithmetic functions, special functions are available to 1) compute step, ramp, and sinusoid functions, 2) compute closed loop transfer functions, 3) convert from S plane to Z plane with optional advanced Z transform, and 4) convert from Z

  5. Theoretical studies of molecular interactions

    SciTech Connect

    Lester, W.A. Jr.

    1993-12-01

    This research program is directed at extending fundamental knowledge of atoms and molecules including their electronic structure, mutual interaction, collision dynamics, and interaction with radiation. The approach combines the use of ab initio methods--Hartree-Fock (HF) multiconfiguration HF, configuration interaction, and the recently developed quantum Monte Carlo (MC)--to describe electronic structure, intermolecular interactions, and other properties, with various methods of characterizing inelastic and reaction collision processes, and photodissociation dynamics. Present activity is focused on the development and application of the QMC method, surface catalyzed reactions, and reorientation cross sections.

  6. Plasma interactions with large spacecraft

    NASA Technical Reports Server (NTRS)

    Sagalyn, Rita C.; Maynard, Nelson C.

    1986-01-01

    Space is playing a rapidly expanding role in the conduct of the Air Force mission. Larger, more complex, high-power space platforms are planned and military astronauts will provide a new capability in spacecraft servicing. Interactions of operational satellites with the environment have been shown to degrade space sensors and electronics and to constrain systems operations. The environmental interaction effects grow nonlinearly with increasing size and power. Quantification of the interactions and development of mitigation techniques for systems-limiting interactions is essential to the success of future Air Force space operations.

  7. Imaging van der Waals Interactions.

    PubMed

    Han, Zhumin; Wei, Xinyuan; Xu, Chen; Chiang, Chi-Lun; Zhang, Yanxing; Wu, Ruqian; Ho, W

    2016-12-15

    The van der Waals interactions are responsible for a large diversity of structures and functions in chemistry, biology, and materials. Discussion of van der Waals interactions has focused on the attractive potential energy that varies as the inverse power of the distance between the two interacting partners. The origin of the attractive force is widely discussed as being due to the correlated fluctuations of electron charges that lead to instantaneous dipole-induced dipole attractions. Here, we use the inelastic tunneling probe to image the potential energy surface associated with the van der Waals interactions of xenon atoms.

  8. Interactive TV on parliament session

    NASA Astrophysics Data System (ADS)

    Royer, J.; Nguyen, H.; Martinot, O.; Preda, M.; Preteux, F.; Zaharia, T.

    2007-09-01

    This paper introduces a new interactive mobile TV application related to parliament session. This application aims to provide additional information to mobile TV users by inserting automatically and in real-time interactive contents (complementary information, subject of the current session...) into original TV program, using MPEG-4 streaming video and extra real time information (news, events, databases... from RSS streams, Internet links...). Here, we propose an architecture based on plug-in multimedia analyzers to generate the contextual description of the media and on an interactive scene generator to dynamically create related interactive scenes. Description is implemented according to the MPEG-7 standard.

  9. [Antibiotics: drug and food interactions].

    PubMed

    Hodel, M; Genné, D

    2009-10-07

    Antibiotics are widely prescribed in medical practice. Many of them induce or are subject to interactions that may diminish their anti-infectious efficiency or elicit toxic effects. Food intake can influence the effectiveness of an antibiotic. Certain antibiotics can lower the effectiveness of oral contraception. Oral anticoagulation can be influenced to a great extent by antibiotics and controls are necessary. Interactions are also possible via enzymatic induction or inhibition of cytochromes. The use of an interaction list with substrates of cytochromes enables to anticipate. Every new prescription should consider a possible drug or food interaction.

  10. Structural interaction with control systems

    NASA Technical Reports Server (NTRS)

    Noll, R. B.; Zvara, J.

    1971-01-01

    A monograph which assesses the state of the art of space vehicle design and development is presented. The monograph presents criteria and recommended practices for determining the structural data and a mathematical structural model of the vehicle needed for accurate prediction of structure and control-system interaction; for design to minimize undesirable interactions between the structure and the control system; and for determining techniques to achieve the maximum desirable interactions and associated structural design benefits. All space vehicles are treated, including launch vehicles, spacecraft, and entry vehicles. Important structural characteristics which affect the structural model used for structural and control-system interaction analysis are given.

  11. RKKY interaction in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Mohammadi, Yawar; Moradian, Rostam

    2015-12-01

    We study the RKKY interaction between two magnetic impurities located on the same layer (intralayer case) or on different layers (interlayer case) in undoped bilayer graphene (BLG) in the four-bands model, by directly calculating the Green functions in the eigenvalues and eigenvectors representation. Our results show that both intra- and interlayer RKKY interactions between two magnetic impurities located on the same (opposite) sublattice are always ferromagnetic (antiferromagnetic). Furthermore we find unusual long-distance decay of the RKKY interaction in BLG. The intralyer RKKY interactions between two magnetic impurities located on the same sublattice, J AnAn(R) and J BnBn(R), decay closely as 1 /R6 and 1 /R2 at large impurity distances respectively, but when they are located on opposite sublattices the RKKY interactions exhibit 1 /R4 decays approximately. In the interlayer case, the RKKY interactions between two magnetic impurities located on the same sublattice show a decay close to 1 /R4 at large impurity distances, but if two magnetic impurities be on opposite sublattices the RKKY interactions, J A1B2(R) and J B1A2(R), decay closely as 1 /R6 and 1 /R2 respectively. Both intra- and interlayer RKKY interactions have anisotropic oscillatory factors which for intralayer case is equal to that for single layer graphene (SLG). Our results at weak and strong interlayer coupling limits reduce to the RKKY interaction of SLG and that of BLG in the two-bands approximation respectively.

  12. Self-interacting dark matter

    SciTech Connect

    Tulin, Sean

    2014-06-24

    The particle physics nature of dark matter (DM) can leave an imprint on the structure of Universe. If DM has a sizable cross section for self-interactions (much larger than the typical weak scale cross section), this can affect the density profiles of DM halos. Moreover, there exist long-standing discrepancies on small scales between astrophysical observations and predictions from N-body simulations of collisionless DM, which suggests that DM may be self-interacting. Here, we review these discrepancies, we discuss the particle physics implications of self-interacting DM, and we show that DM self-interactions have interesting implications for direct and indirect detection searches.

  13. Josef Alber's "Interaction of Color": From Print to Interactive Multimedia.

    ERIC Educational Resources Information Center

    Whiteley, Jerry; Roberts, Joseph

    1990-01-01

    Describes the development of interactive, multimedia courseware based on Josef Alber's book, "Interaction of Color." Alber's ideas and teachings on the perceptions of color are explained, and steps involving computer graphics, hardware, and software that resulted in the use of CD-ROM and videodisc with an Apple Macintosh II are detailed.…

  14. Why Interactivity Works: Interactive Priming of Mental Rotation

    ERIC Educational Resources Information Center

    Smith, Glenn Gordon; Olkun, Sinan

    2005-01-01

    This study has important implications for microworlds such as Logo, HyperGami, and Newton's World, which use interaction to learn spatial mental models for science, math, geometry, etc. This study tested the hypothesis that interactively rotating (dragging) virtual shapes primes mental rotation. The independent variable was observation vs.…

  15. Interactions among the Imagination, Expertise Reversal, and Element Interactivity Effects

    ERIC Educational Resources Information Center

    Leahy, Wayne; Sweller, John

    2005-01-01

    Interactions among the imagination, expertise reversal, and element interactivity effects were investigated in 2 experiments. In Experiment 1, less knowledgeable primary school students learning to use a bus timetable produced better performance under study than imagination conditions, but an increase in their experience reversed the result,…

  16. The n→π* Interaction

    PubMed Central

    2017-01-01

    Conspectus The carbonyl group holds a prominent position in chemistry and biology not only because it allows diverse transformations but also because it supports key intermolecular interactions, including hydrogen bonding. More recently, carbonyl groups have been found to interact with a variety of nucleophiles, including other carbonyl groups, in what we have termed an n→π* interaction. In an n→π* interaction, a nucleophile donates lone-pair (n) electron density into the empty π* orbital of a nearby carbonyl group. Mixing of these orbitals releases energy, resulting in an attractive interaction. Hints of such interactions were evident in small-molecule crystal structures as early as the 1970s, but not until 2001 was the role of such interactions articulated clearly. These non-covalent interactions were first discovered during investigations into the thermostability of the proline-rich protein collagen, which achieves a robust structure despite a relatively low potential for hydrogen bonding. It was found that by modulating the distance between two carbonyl groups in the peptide backbone, one could alter the conformational preferences of a peptide bond to proline. Specifically, only the trans conformation of a peptide bond to proline allows for an attractive interaction with an adjacent carbonyl group, so when one increases the proximity of the two carbonyl groups, one enhances their interaction and promotes the trans conformation of the peptide bond, which increases the thermostability of collagen. More recently, attention has been paid to the nature of these interactions. Some have argued that rather than resulting from electron donation, carbonyl interactions are a particular example of dipolar interactions that are well-approximated by classical mechanics. However, experimental evidence has demonstrated otherwise. Numerous examples now exist where an increase in the dipole moment of a carbonyl group decreases the strength of its interactions with other

  17. The n→π* Interaction.

    PubMed

    Newberry, Robert W; Raines, Ronald T

    2017-08-15

    The carbonyl group holds a prominent position in chemistry and biology not only because it allows diverse transformations but also because it supports key intermolecular interactions, including hydrogen bonding. More recently, carbonyl groups have been found to interact with a variety of nucleophiles, including other carbonyl groups, in what we have termed an n→π* interaction. In an n→π* interaction, a nucleophile donates lone-pair (n) electron density into the empty π* orbital of a nearby carbonyl group. Mixing of these orbitals releases energy, resulting in an attractive interaction. Hints of such interactions were evident in small-molecule crystal structures as early as the 1970s, but not until 2001 was the role of such interactions articulated clearly. These non-covalent interactions were first discovered during investigations into the thermostability of the proline-rich protein collagen, which achieves a robust structure despite a relatively low potential for hydrogen bonding. It was found that by modulating the distance between two carbonyl groups in the peptide backbone, one could alter the conformational preferences of a peptide bond to proline. Specifically, only the trans conformation of a peptide bond to proline allows for an attractive interaction with an adjacent carbonyl group, so when one increases the proximity of the two carbonyl groups, one enhances their interaction and promotes the trans conformation of the peptide bond, which increases the thermostability of collagen. More recently, attention has been paid to the nature of these interactions. Some have argued that rather than resulting from electron donation, carbonyl interactions are a particular example of dipolar interactions that are well-approximated by classical mechanics. However, experimental evidence has demonstrated otherwise. Numerous examples now exist where an increase in the dipole moment of a carbonyl group decreases the strength of its interactions with other carbonyl

  18. The Cation-π Interaction

    PubMed Central

    DOUGHERTY, DENNIS A.

    2014-01-01

    CONSPECTUS The chemistry community now recognizes the cation-π interaction as a major force for molecular recognition, joining the hydrophobic effect, the hydrogen bond, and the ion pair in determining macromolecular structure and drug-receptor interactions. This Account provides the author’s perspective on the intellectual origins and fundamental nature of the cation-π interaction. Early studies on cyclophanes established that water-soluble, cationic molecules would forgo aqueous solvation to enter a hydrophobic cavity if that cavity was lined with π systems. Important gas phase studies established the fundamental nature of the cation-π interaction. The strength of the cation-π interaction – Li+ binds to benzene with 38 kcal/mol of binding energy; NH4+ with 19 kcal/mol– distinguishes it from the weaker polar-π interactions observed in the benzene dimer or water-benzene complexes. In addition to the substantial intrinsic strength of the cation-π interaction in gas phase studies, the cation-π interaction remains energetically significant in aqueous media and under biological conditions. Many studies have shown that cation-π interactions can enhance binding energies by 2 – 5 kcal/mol, making them competitive with hydrogen bonds and ion pairs in drug-receptor and protein-protein interactions. As with other noncovalent interactions involving aromatic systems, the cation-π interaction includes a substantial electrostatic component. The six (four) Cδ−–Hδ+ bond dipoles of a molecule like benzene (ethylene) combine to produce a region of negative electrostatic potential on the face of the π system. Simple electrostatics facilitate a natural attraction of cations to the surface. The trend for (gas phase) binding energies is Li+>Na+>K+>Rb+: as the ion gets larger the charge is dispersed over a larger sphere and binding interactions weaken, a classical electrostatic effect. On other hand, polarizability does not define these interactions. Cyclohexane

  19. Interact - Access to the Arctic

    NASA Astrophysics Data System (ADS)

    Johansson, M.; Callaghan, T. V.

    2013-12-01

    INTERACT is currently a network of 50 terrestrial research stations from all Arctic countries, but is still growing. The network was inaugurated in January 2011 when it received an EU 7th Framework award. INTERACT's main objective is to build capacity for identifying, understanding, predicting and responding to diverse environmental changes throughout the wide environmental and land-use envelopes of the Arctic. Implicit in this objective is the task to build capacity for monitoring, research, education and outreach. INTERACT is increasing access to the Arctic: 20 INTERACT research stations in Europe and Russia are offering Transnational Access and so far, 5600 person-days of access have been granted from the total of 10,000 offered. An INTERACT Station Managers' Forum facilitates a dialogue among station managers on subjects such as best practice in station management and standardised monitoring. The Station Managers' Forum has produced a unique 'one-stop-shop' for information from 45 research stations in an informative and attractive Station Catalogue that is available in hard copy and on the INTERACT web site (www.eu-interact.org). INTERACT also includes three joint research activities that are improving monitoring in remote, harsh environments and are making data capture and dissemination more efficient. Already, new equipment for measuring feedbacks from the land surface to the climate system has been installed at several locations, while best practices for sensor networking have been established. INTERACT networks with most of the high-level Arctic organisations: it includes AMAP and WWF as partners, is endorsed by IASC and CBMP, has signed MoUs with ISAC and the University of the Arctic, is a task within SAON, and contributes to the Cold Region community within GEO/GEOSS. INTERACT welcomes other interactions.

  20. Strong interactions in air showers

    SciTech Connect

    Dietrich, Dennis D.

    2015-03-02

    We study the role new gauge interactions in extensions of the standard model play in air showers initiated by ultrahigh-energy cosmic rays. Hadron-hadron events remain dominated by quantum chromodynamics, while projectiles and/or targets from beyond the standard model permit us to see qualitative differences arising due to the new interactions.

  1. Distinguishing Ordinal and Disordinal Interactions

    ERIC Educational Resources Information Center

    Widaman, Keith F.; Helm, Jonathan L.; Castro-Schilo, Laura; Pluess, Michael; Stallings, Michael C.; Belsky, Jay

    2012-01-01

    Re-parameterized regression models may enable tests of crucial theoretical predictions involving interactive effects of predictors that cannot be tested directly using standard approaches. First, we present a re-parameterized regression model for the Linear x Linear interaction of 2 quantitative predictors that yields point and interval estimates…

  2. Transformations: Mobile Interaction & Language Learning

    ERIC Educational Resources Information Center

    Carroll, Fiona; Kop, Rita; Thomas, Nathan; Dunning, Rebecca

    2015-01-01

    Mobile devices and the interactions that these technologies afford have the potential to change the face and nature of education in our schools. Indeed, mobile technological advances are seen to offer better access to educational material and new interactive ways to learn. However, the question arises, as to whether these new technologies are…

  3. Designing Interactive Online Nursing Courses

    ERIC Educational Resources Information Center

    Jain, Smita; Jain, Pawan

    2015-01-01

    This study empirically tests the relation between the instructional design elements and the overall meaningful interactions among online students. Eighteen online graduate nursing courses are analyzed using bivariate and multivariate analysis techniques. Findings suggest that the quantity of meaningful interaction among learners can be improved by…

  4. Some Aspects of Classroom Interaction.

    ERIC Educational Resources Information Center

    Sjorslev, Sten

    A model for analyzing classroom interaction is presented. The model focuses on two issues: management of turn-taking and the relationship between ways of interacting and outcome of the teaching/learning process. Turn-taking is seen as one element of conversational style, in which speakers signal degree of involvement by using different linguistic…

  5. The Power of Interactive Whiteboards.

    ERIC Educational Resources Information Center

    Ekhaml, Leticia

    2002-01-01

    Describes the use of interactive whiteboards, a new type of instructional presentation technology that allows users to control computer applications from the board. Highlights include vendors; multimedia online instruction; rear-projection models; examples of classroom uses; contests and opportunities for schools to obtain interactive whiteboards;…

  6. Distinguishing Ordinal and Disordinal Interactions

    ERIC Educational Resources Information Center

    Widaman, Keith F.; Helm, Jonathan L.; Castro-Schilo, Laura; Pluess, Michael; Stallings, Michael C.; Belsky, Jay

    2012-01-01

    Re-parameterized regression models may enable tests of crucial theoretical predictions involving interactive effects of predictors that cannot be tested directly using standard approaches. First, we present a re-parameterized regression model for the Linear x Linear interaction of 2 quantitative predictors that yields point and interval estimates…

  7. Interactions between diatoms and bacteria.

    PubMed

    Amin, Shady A; Parker, Micaela S; Armbrust, E Virginia

    2012-09-01

    Diatoms and bacteria have cooccurred in common habitats for hundreds of millions of years, thus fostering specific associations and interactions with global biogeochemical consequences. Diatoms are responsible for one-fifth of the photosynthesis on Earth, while bacteria remineralize a large portion of this fixed carbon in the oceans. Through their coexistence, diatoms and bacteria cycle nutrients between oxidized and reduced states, impacting bioavailability and ultimately feeding higher trophic levels. Here we present an overview of how diatoms and bacteria interact and the implications of these interactions. We emphasize that heterotrophic bacteria in the oceans that are consistently associated with diatoms are confined to two phyla. These consistent bacterial associations result from encounter mechanisms that occur within a microscale environment surrounding a diatom cell. We review signaling mechanisms that occur in this microenvironment to pave the way for specific interactions. Finally, we discuss known interactions between diatoms and bacteria and exciting new directions and research opportunities in this field. Throughout the review, we emphasize new technological advances that will help in the discovery of new interactions. Deciphering the languages of diatoms and bacteria and how they interact will inform our understanding of the role these organisms have in shaping the ocean and how these interactions may change in future oceans.

  8. Mental Models in Social Interaction

    ERIC Educational Resources Information Center

    Fernandez-Berrocal, Pablo; Santamaria, Carlos

    2006-01-01

    In this study, the authors introduce a new way to analyze cognitive change during social interactions, based on the mental model theory of reasoning. From this approach, cognitive performance can be improved for solving problems that require multiple models when participants in a social interaction group maintain qualitatively different models of…

  9. Drug interactions with herbal medicines.

    PubMed

    Shi, Shaojun; Klotz, Ulrich

    2012-02-01

    In recent years, the issue of herbal medicine-drug interactions has generated significant concern. Such interactions can increase the risk for an individual patient, especially with regard to drugs with a narrow therapeutic index (e.g. warfarin, ciclosporin and digoxin). The present article summarizes herbal medicine-drug interactions involving mainly inhibition or induction of cytochrome P450 enzymes and/or drug transporters. An increasing number of in vitro and animal studies, case reports and clinical trials evaluating such interactions have been reported, and the majority of the interactions may be difficult to predict. Potential pharmacodynamic and/or pharmacokinetic interactions of commonly used herbal medicines (black cohosh, garlic, Ginkgo, goldenseal, kava, milk thistle, Panax ginseng, Panax quinquefolius, saw palmetto and St John's wort) with conventional drugs are presented, and sometimes the results are contradictory. Clinical implications of herbal medicine-drug interactions depend on a variety of factors, such as the co-administered drugs, the patient characteristics, the origin of the herbal medicines, the composition of their constituents and the applied dosage regimens. To optimize the use of herbal medicines, further controlled studies are urgently needed to explore their potential for interactions with conventional drugs and to delineate the underlying mechanisms.

  10. Results-Based Interaction Design

    ERIC Educational Resources Information Center

    Weiss, Meredith

    2008-01-01

    Interaction design is a user-centered approach to development in which users and their goals are the driving force behind a project's design. Interaction design principles are fundamental to the design and implementation of effective websites, but they are not sufficient. This article argues that, to reach its full potential, a website should also…

  11. Interactive Cultural Cultivating in FLT

    ERIC Educational Resources Information Center

    Yang, Youwen

    2010-01-01

    Culture cultivating in foreign language teaching (FLT) is usually conducted through factual introductions in the form of articles, books, seminars, lectures or workshops. This approach regards L2 learners as passive receivers of cultural knowledge without their interaction involved. This paper aims at raising an interactive approach to develop L2…

  12. The Power of Interactive Whiteboards.

    ERIC Educational Resources Information Center

    Ekhaml, Leticia

    2002-01-01

    Describes the use of interactive whiteboards, a new type of instructional presentation technology that allows users to control computer applications from the board. Highlights include vendors; multimedia online instruction; rear-projection models; examples of classroom uses; contests and opportunities for schools to obtain interactive whiteboards;…

  13. Interactive Flow in Exercise Pedagogy

    ERIC Educational Resources Information Center

    Lloyd, Rebecca; Smith, Stephen

    2006-01-01

    A phenomenology of the bodily experience of interactive flow adds to Csikszentmihalyi's flow theory. Whereas Csikszentmihalyi attended to teachers' and students' experiences of flow separately, this inquiry explores flow through three water-inspired layers of physical interaction between fitness professionals and their clients. Teaching fitness is…

  14. Interactive Flow in Exercise Pedagogy

    ERIC Educational Resources Information Center

    Lloyd, Rebecca; Smith, Stephen

    2006-01-01

    A phenomenology of the bodily experience of interactive flow adds to Csikszentmihalyi's flow theory. Whereas Csikszentmihalyi attended to teachers' and students' experiences of flow separately, this inquiry explores flow through three water-inspired layers of physical interaction between fitness professionals and their clients. Teaching fitness is…

  15. Gaming Redefines Interactivity for Learning

    ERIC Educational Resources Information Center

    DeKanter, Nick

    2005-01-01

    The new definition of interactivity has as its focal point the skills of people, not the capabilities of the technology. The goal is to enhance the interaction between people and the learning that can only occur among curious and motivated individuals working together. The social nature of people, the increasing capabilities of technology and the…

  16. The Wonders of Interactive Whiteboards

    ERIC Educational Resources Information Center

    Starkman, Neal

    2006-01-01

    This article discusses the advantages of using interactive whiteboards in the classroom. Developed by Smart Technologies, the Smart Board is one of several interactive whiteboards on the market today. Through Smart Board, starters can write, erase, and perform mouse functions with their finger, a pen, or anything with a maneuverable, firm surface.…

  17. Speculations on Design Team Interactions.

    ERIC Educational Resources Information Center

    Hedberg, John; Sims, Rod

    2001-01-01

    Discussion of the design of effective learning environments focuses on design team interactions. Topics include designer intention and instructor implementation; technology tools and their use; instructional design processes, including computer interfaces and interaction possibilities; learner as actor; multimedia; and interpersonal communication.…

  18. Assessing Preference for Social Interactions

    ERIC Educational Resources Information Center

    Clay, Casey J.; Samaha, Andrew L.; Bloom, Sarah E.; Bogoev, Bistra K.; Boyle, Megan A.

    2013-01-01

    We examined a procedure to assess preference for social interactions in individuals with intellectual and developmental disabilities. Preferences were identified in five individuals using a paired-choice procedure in which participants approached therapists who provided different forms of social interactions. A subsequent tracking test showed that…

  19. Gaming Redefines Interactivity for Learning

    ERIC Educational Resources Information Center

    DeKanter, Nick

    2005-01-01

    The new definition of interactivity has as its focal point the skills of people, not the capabilities of the technology. The goal is to enhance the interaction between people and the learning that can only occur among curious and motivated individuals working together. The social nature of people, the increasing capabilities of technology and the…

  20. Environmental Interactions Working Group Report

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.; Wiskerchen, M.

    1984-01-01

    Interactions between spacecraft systems and the space charged particle environment are reviewed and recommendations are presented for both near-term and far-term research considerations. Transient environment models, large space structures, solar and nuclear power systems/environment interactions, single event upsets, material degradation, and planetary missions are addressed.