Science.gov

Sample records for petrochemical effluents industries

  1. Toxic impact of effluents from petrochemical industry

    SciTech Connect

    Nikunen, E.

    1985-02-01

    The toxicity of effluents from a petrochemical industry center in southern Finland was tested by conducting bioassays on organisms from three different trophic levels. In fish tests, rainbow trout (Salmo gairdneri) were caged at the discharge site and simultaneously at a reference area. The only clear differences, among the measurements of 25 metabolic parameters, were observed in fish liver where activities of two detoxication enzymes were significantly increased in the exposed group. The water flea (Daphnia magna) was used both in acute (EC50) and long-term reproduction tests. No acute lethal toxicity was detected in any of the wastewater samples investigated. A combined effluent, however, caused a reduction in the reproduction rate with an EC50 of 3%. No mutagenic activity was observed with the Ames test (Salmonella typhimurium, strains TA 97, TA 98, and TA 100) in concentrated effluents, in sediment samples, or in liver samples from predator fish caught from the discharge site.

  2. The international petrochemical industry

    SciTech Connect

    Chapman, K.

    1991-01-01

    The petrochemical industry occupies a crucial place in economic, strategic and political terms in the twentieth century. The author explains its growth and international distribution from the 1920s tot he present, relating the particular experience of petrochemicals to the processes that have shaped the long-term evolution of industry in general. The geographical coverage of this book extends from the regional to international scale, and its historical scope embraces one hundred years from the laboratory origins of polymer science and petrochemistry to the massive operations of modern industry. It represents the result of twenty years of research, and reflects the author's privileged access to company sources in both the U.S. and Europe.

  3. [Source identification of toxic wastewaters in a petrochemical industrial park].

    PubMed

    Yang, Qian; Yu, Yin; Zhou, Yue-Xi; Chen, Xue-Min; Fu, Xiao-Yong; Wang, Miao

    2014-12-01

    Petrochemical wastewaters have toxic impacts on the microorganisms in biotreatment processes, which are prone to cause deterioration of effluent quality of the wastewater treatment plants. In this study, the inhibition effects of activated sludge's oxygen consumption were tested to evaluate the toxicity of production wastewaters in a petrochemical industrial park. The evaluation covered the wastewaters from not only different production units in the park, but also different production nodes in each unit. No direct correlation was observed between the toxicity effects and the organic contents, suggesting that the toxic properties of the effluents could not be predicted by the organic contents. In view of the variation of activated sludge sensitivity among different tests, the toxicity data were standardized according to the concentration-effect relationships of the standard toxic substance 3, 5-dichlorophenol on each day, in order to improve the comparability among the toxicity data. Furthermore, the Quality Emission Load (QEL) of corresponding standard toxic substance was calculated by multiplying the corresponding 3, 5-dichlorophenol concentration and the wastewater flow quantity, to indicate the toxicity emission contribution of each wastewater to the wastewater treatment plant. According to the rank list of the toxicity contribution of wastewater from different units and nodes, the sources of toxic wastewater in the petrochemical industrial park were clearly identified. This study provides effective guidance for source control of wastewater toxicity in the large industrial park.

  4. [Treatment of Petrochemical Treatment Plant Secondary Effluent by Fenton Oxidation].

    PubMed

    Wang, Yi; Wu, Chang-yong; Zhou, Yue-xi; Zhang, Xue; Dong, Bo; Chen, Xue-min

    2015-07-01

    Fenton oxidation was applied to treat the petrochemical treatment plant secondary effluent by the continuous flow configuration. The effect of Fenton agent dosage on the COD and phosphorus removal and the variation of the dissolved organic matter characteristics during the treatment process were investigated. The results showed the average COD and PO(4)3- -P concentrations were 64.8 mg.L-1 and 0. 79 mg.L-1, respectively. When the dosage of H2O (30%), FeSO4.7H2O and PAM were 0. 4 mL.L-1, 0. 8 mg.L-1 and 0. 9 mg.L-1 and the residence time was 30 min, the average removal rate of COD and PO(4)3- -P were 24. 3% and 95. 5% respectively. The effluent COD was lower than 50 mg.L-1. The percentage of dissolved organic matters with molecular weight less than 1 x 10(3) was 80. 4% in the raw wastewater, however, the percentage increased to 95. 6% when treated by Fenton oxidation. Three-dimensional fluorescence analysis showed that the Fenton oxidation can effectively remove protein and phenols. GC-MS results showed that there were about 117 kinds of organic matters detected in the secondary effluent, while the number reduced to 27 after oxidation by Fenton. The organics containing unsaturated bond had a better removal than those of other types of organics. Fenton oxidation can be used in the advanced treatment of petrochemical secondary effluent.

  5. Membrane separation processes in the petrochemical industry

    SciTech Connect

    Li, N.N.; Funk, E.W.; Chang, Y.A.; Kulkarni, S.S.; Swamikannu, A.X.; White, L.S.

    1987-09-30

    This report provides an overview of a project with Allied-Signal which focused on developing new membrane technology with potential for energy conservation in the petrochemical industry. Three applications were investigated: (1) bulk removal of polar (sour) gases from natural gas using spiral-wound, cellulose acetate membranes; (2) recovery of solvent from solvent/heavy oil mixtures using polysulfone ultrafiltration membranes; and (3) separation of polar gases (e.g., H{sub 2}S and NH{sub 3} from H{sub 2}) using mixed-matrix, facilitated-transport membranes. This report summarizes laboratory research results performed in an earlier phase of this project and provides results from pilot-scale, field test studies and economic assessments.

  6. Regional Industry Workforce Development: The Gulf Coast Petrochemical Information Network

    ERIC Educational Resources Information Center

    Hodgin, Johnette; Muha, Susan

    2008-01-01

    The Gulf Coast Petrochemical Information Network (GC-PIN) is a workforce development partnership among industry businesses and area institutions of higher education in the four-county Gulf Coast region. GC-PIN partners develop new industry-specific curricula, foster industry career awareness, and retrain existing employees in new technologies.

  7. Cancer mortality and residence near petrochemical industries in Taiwan

    SciTech Connect

    Yang, Chun-Yuh; Chiu, Hui-Fen; Chiu, Jeng-Fen

    1997-02-21

    An ecologic study design was used to investigate the relationship between cancer risks and residence in communities adjacent to petrochemical industrial counties (PICs). Directly age-adjusted mortality rates for cancer during 1982-1991 among 16 counties characterized by a heavy concentration of petrochemical industries were compared to rates among 16 matched counties with similar concentration of nonpetrochemical manufacturing industries, urbanization level, and demographic characteristics. An excess rate for liver cancer among males was found in the so-called PICs. The correlation could not be explained by confounding variables such as urbanization, socioeconomic class, or employment in nonpetrochemical industries. No other increased cancer risks were found to be associated with residence near petrochemical industries. 30 refs., 3 tabs.

  8. Growth and heavy metals accumulation potential of microalgae grown in sewage wastewater and petrochemical effluents.

    PubMed

    Ajayan, K V; Selvaraju, M; Thirugnanamoorthy, K

    2011-08-15

    Microalgae exhibit a number of heavy metal uptake process by different metabolism. In this study, the ability of microalgae for removal of heavy metal from wastewater was studied. Growth and biochemical contents of microalgae were determined by spectrophotometer. Heavy metal analysis of wastewater effluents were performed by atomic absorption spectrophotometer before and after treatment at laboratory scale. The growth of Scenedesmus bijuga and Oscillatoria quadripunctulata in sewage wastewater was higher than those grown in synthetic medium. Whereas, the growth of S. bijuga and O. quadripunctulata in sterilized petrochemical effluents was slightly lower than that grown in the standard synthetic medium. The chlorophyll, carotenoid and protein content of S. bijuga and O. quadripunctulata grown in sterilized sewage wastewater were higher than those grown in the standard medium. Similarly S. bijuga and O. quadripunctulata grown in sterilized petrochemical effluents showed lower contents of pigments and protein than those grown in sewage and synthetic medium. Heavy metals copper, cobalt, lead and zinc were removed by 37-50, 20.3-33.3, 34.6-100 and 32.1-100%, respectively from sewage wastewater and petrochemical effluent using Ocillatoria culture. The metal absorption by S. bijuga were (Cu, Co, Pb, Zn) 60-50, 29.6-66, 15.4-25 and 42.9-50%, respectively from sewage and petrochemical effluents. Both species showed high level of heavy metal removal efficiency and metal sorption efficiency of both microalgae depended on the type of biosorbent, the physiological status of the cells, availability of heavy metal, concentration of heavy metal and chemical composition of wastewater.

  9. Investment planning model of the world petrochemical industry

    SciTech Connect

    Manouchehri Adib, P.

    1985-01-01

    The world petrochemical industry is faced with an overcapacity in traditionally producing areas such as the United States, Western Europe, and Japan. At the same time, an increasing amount of new capacities are either planned or almost complete in energy-rich regions such as Canada, Latin America, Eastern Europe, the Middle East and Africa, and the Far East and Oceania. Such a conflicting move may add significantly to the existing problems of the world petrochemical industry. A multi-period, multi-region, multi-product, multi-process linear programming model is developed to analyze investment decisions under selected scenarios. Embodied in the model are detailed technical information about processes and products as well as economic information on different regions. Based on this theoretical model for the world petrochemical industry, both a static and a dynamic model are developed. The static model covers nine regions, thirty-one products, and a five-year period, 1988 to 1992, while the dynamic model includes eight regions, eleven products, and three five-year periods, 1988 to 2002. A variety of different cases are examined including one in which product demand is decreased. Two other cases considered are (1) stricter import policies by traditional producers and (2) adjustment in base-year capacity to include possible new productive units added before 1988.

  10. Industrial Energy in Transition: A Petrochemical Perspective

    ERIC Educational Resources Information Center

    Wishart, Ronald S.

    1978-01-01

    An industrial development involves the conversion of biomass, through fermentation, to useful chemical products and the gasification of municiple wastes to produce steam for electricity generation. These gases may also serve as chemical feedstocks. (Author/MA)

  11. Treatment of petrochemical secondary effluent by an up-flow biological aerated filter (BAF).

    PubMed

    Fu, L Y; Wu, C Y; Zhou, Y X; Zuo, J E; Ding, Y

    2016-01-01

    In this study, petrochemical secondary effluent was treated by a 55 cm diameter pilot-scale biological aerated filter (BAF) with a media depth of 220 cm. Volcanic rock grains were filled as the BAF media. Median removal efficiency of chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) was 29.35 and 57.98%, respectively. Moreover, the removal profile of the COD, NH3-N, total nitrogen and total organic carbon demonstrated that the filter height of 140 cm made up to 90% of the total removal efficiency of the final effluent. By gas chromatography-mass spectrometry, removal efficiencies of 2-chloromethyl-1,3-dioxolane, and benzonitrile, indene and naphthalene were obtained, ranging from 30.12 to 63.01%. The biomass and microbial activity of the microorganisms on the filter media were in general reduced with increasing filter height, which is consistent with the removal profile of the contaminants. The detected genera Defluviicoccus, Betaproteobacteria_unclassified and the Blastocatella constituted 1.86-6.75% of the identified gene, enhancing the COD and nitrogen removal in BAF for treating petrochemical secondary effluent.

  12. The sequencing batch reactor as an excellent configuration to treat wastewater from the petrochemical industry.

    PubMed

    Caluwé, Michel; Daens, Dominique; Blust, Ronny; Geuens, Luc; Dries, Jan

    2017-02-01

    In the present study, the influence of a changing feeding pattern from continuous to pulse feeding on the characteristics of activated sludge was investigated with a wastewater from the petrochemical industry from the harbour of Antwerp. Continuous seed sludge, adapted to the industrial wastewater, was used to start up three laboratory-scale sequencing batch reactors. After an adaptation period from the shift to pulse feeding, the effect of an increasing organic loading rate (OLR) and volume exchange ratio (VER) were investigated one after another. Remarkable changes of the specific oxygen uptake rate (sOUR), microscopic structure, sludge volume index (SVI), SVI30/SVI5 ratio, and settling rate were observed during adaptation. sOUR increased two to five times and treatment time decreased 43.9% in 15 days. Stabilization of the SVI occurred after a period of 20 days and improved significantly from 300 mL·g(-1) to 80 mL·g(-1). Triplication of the OLR and VER had no negative influence on sludge settling and effluent quality. Adaptation time of the microorganisms to a new feeding pattern, OLR and VER was relatively short and sludge characteristics related to aerobic granular sludge were obtained. This study indicates significant potential of the batch activated sludge system for the treatment of this industrial petrochemical wastewater.

  13. 31 CFR 538.210 - Prohibited transactions relating to petroleum and petrochemical industries.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... petroleum and petrochemical industries. 538.210 Section 538.210 Money and Finance: Treasury Regulations... SUDANESE SANCTIONS REGULATIONS Prohibitions § 538.210 Prohibited transactions relating to petroleum and... relating to the petroleum or petrochemical industries in Sudan, including, but not limited to,...

  14. 31 CFR 538.210 - Prohibited transactions relating to petroleum and petrochemical industries.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... petroleum and petrochemical industries. 538.210 Section 538.210 Money and Finance: Treasury Regulations... SUDANESE SANCTIONS REGULATIONS Prohibitions § 538.210 Prohibited transactions relating to petroleum and... relating to the petroleum or petrochemical industries in Sudan, including, but not limited to,...

  15. 31 CFR 538.210 - Prohibited transactions relating to petroleum and petrochemical industries.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... petroleum and petrochemical industries. 538.210 Section 538.210 Money and Finance: Treasury Regulations... SUDANESE SANCTIONS REGULATIONS Prohibitions § 538.210 Prohibited transactions relating to petroleum and... relating to the petroleum or petrochemical industries in Sudan, including, but not limited to,...

  16. 31 CFR 538.210 - Prohibited transactions relating to petroleum and petrochemical industries.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... petroleum and petrochemical industries. 538.210 Section 538.210 Money and Finance: Treasury Regulations... SUDANESE SANCTIONS REGULATIONS Prohibitions § 538.210 Prohibited transactions relating to petroleum and... relating to the petroleum or petrochemical industries in Sudan, including, but not limited to,...

  17. 31 CFR 538.210 - Prohibited transactions relating to petroleum and petrochemical industries.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... petroleum and petrochemical industries. 538.210 Section 538.210 Money and Finance: Treasury Regulations... SUDANESE SANCTIONS REGULATIONS Prohibitions § 538.210 Prohibited transactions relating to petroleum and... relating to the petroleum or petrochemical industries in Sudan, including, but not limited to,...

  18. Laboratory scale and pilot plant study on treatment of toxic wastewater from the petrochemical industry by UASB reactors.

    PubMed

    Stergar, V; Zagorc-Koncan, J; Zgajnar-Gotvanj, A

    2003-01-01

    This research concentrates on the development of an integrated approach to evaluate the possibility of treating very concentrated (COD = 15-20 g/l) and toxic wastewater (nitro-organic effluent) from the petrochemical industry in UASB reactors. A newly developed method utilising a modified Micro-Oxymax respirometer was used to (1) evaluate the inhibitory effects of varying concentrations of nitro-organic effluent on anaerobic granular sludge and (2) to make the proposal of operational parameters for the start up of the continuous process. Subsequently, the continuous tests were undertaken using laboratory scale upflow anaerobic sludge bed reactors to test gradual adaptation of anaerobic biomass to nitro-organic effluent. Practical application of the experimental results of the laboratory-scale continuous tests was evaluated by running the UASB pilot plant. Acceptable COD removal efficiencies were obtained when nitro-organic effluent was diluted with a readily biodegradable substrate up to 80 vol % of nitro-organic effluent in the inlet. The COD removal was 90% and the methane production rate was 4.5 l/d. Wastewater was detoxified and no acute toxicity of the treated wastewater to the anaerobic biomass was detected. This research indicates that anaerobic digestion of the undiluted nitro-organic effluent was not feasible. However, it is possible to blend the nitro-organic effluent with another effluent stream and co-treat these effluents.

  19. Emission of polycyclic aromatic hydrocarbons (PAHs) from the liquid injection incineration of petrochemical industrial wastewater.

    PubMed

    Wang, Lin-Chi; Wang, I-Ching; Chang, Juu-En; Lai, Soon-Onn; Chang-Chien, Guo-Ping

    2007-09-05

    This study investigated the emission of polycyclic aromatic hydrocarbons (PAHs) from stack flue gas and air pollution control device (APCD) effluent of the liquid injection incinerator (LII) disposing the petrochemical industrial wastewater, and PAH removal efficiencies of wet electrostatic precipitator (WESP) and wet scrubber (WSB). The PAH carcinogenic potency were investigated with the benzo(a)pyrene equivalent concentration (BaP(eq)). The remarkably high total-BaP(eq) concentration (220 microgNm(-3)) in the stack flue gas was much higher than those of several published emission sources, and indicated the possible influence on its surrounding environment. The total-PAH emission factors of the WESP, WSB and stack flue gas were 78.9, 95.7 and 30,900 microgL(-1) wastewater, respectively. The removal efficiencies of total-PAHs were 0.254, 0.309 and 0.563% for WESP, WSB and overall, respectively, suggesting that the use of both WESP and WSB shows insignificant PAH removal efficiencies, and 99.4% of total-PAHs was directly emitted to the ambient air through the stack flue gas. This finding suggested that the better incineration efficiencies, and APCD removal efficiencies for disposing the petrochemical industrial wastewater are necessary in future.

  20. Chemometric analysis of ecological toxicants in petrochemical and industrial environments.

    PubMed

    Olawoyin, Richard; Heidrich, Brenden; Oyewole, Samuel; Okareh, Oladapo T; McGlothlin, Charles W

    2014-10-01

    The application of chemometrics in the assessment of toxicants, such as heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) potentially derived from petrochemical activities in the microenvironment, is vital in providing safeguards for human health of children and adults residing around petrochemical industrial regions. Several multivariate statistical methods are used in geosciences and environmental protection studies to classify, identify and group prevalent pollutants with regard to exhibited trends. Chemometrics can be applied for toxicant source identification, estimation of contaminants contributions to the toxicity of sites of interest, the assessment of the integral risk index of an area and provision of mitigating measures that limit or eliminate the contaminants identified. In this study, the principal component analysis (PCA) was used for dimensionality reduction of both organic and inorganic substances data in the environment, which are potentially hazardous. The high molecular weight (HMW) PAHs correlated positively with stronger impact on the model than the lower molecular weight (LMW) PAHs, the total petroleum hydrocarbons (TPHs), PAHs and BTEX correlate positively in the F1 vs F2 plot indicating similar source contributions of these pollutants in the environmental material. Cu, Cr, Cd, Fe, Zn and Pb all show positive correlation in the same space indicating similar source of contamination. Analytical processes involving environmental assessment data obtained in the Niger Delta area of Nigeria, confirmed the usefulness of chemometrics for comprehensive ecological evaluation.

  1. Characterizing the genotoxicity of hazardous industrial wastes and effluents using short-term bioassays

    SciTech Connect

    Houk, V.S.; DeMarini, D.M.

    1989-01-01

    This paper demonstrates that short-term bioassays can reliably and expeditiously measure the genotoxic potential of hazardous industrial wastes and effluents. Petrochemical wastes have been studied in detail, especially discharges from chemical manufacturing plants and textile and dye effluents. However, there is little information on effluents from pesticide manufacturers. The most extensive evaluations have been conducted on effluents from pulp and paper mills. These studies have shown which pulping plants generate the most genotoxic effluents, which process wastes are most hazardous, have isolated and identified the compounds responsible for the genotoxic activity, have described the environmental fate of these compounds, have evaluated the types of genetic damage likely to occur upon exposure to the effluents, and have identified several treatment methods that effectively reduce the genotoxicity of the effluents. The coupling of bioassays for biological analysis with chemical evaluation provides the most powerful approach to assessing the overall health effects of complex industrial wastes and effluents.

  2. Long term effects of irrigation with petrochemical industry wastewater

    SciTech Connect

    Aziz, O.; Inam, A.; Samiullah; Siddiqi, R.H.

    1996-11-01

    Split plot designed field trials were conducted during 1988-1995 to study the long term effects of petrochemical industry wastewater on six crops and agricultural soils. It was observed that wastewater irrigation resulted in increased seed yield of all the crops selected, viz. wheat, triticale, chickpea, lentil and pigeonpea, except summer moong which showed a decrease in seed yield. Soil receiving the wastewater showed no significant changes in pH, total organic carbon, electrical conductivity, cation exchange capacity, micro- and macro-nutrients and SAR. Thus, it may be concluded that treated refinery wastewater met the irrigational quality requirements as its physico-chemical characteristics were within the permissible limits. The same could be said for the accumulation of heavy metals in the soil as well as in the grains making the latter safe for human consumption. 28 refs., 5 figs., 2 tabs.

  3. Genotoxicity of river water under the influence of petrochemical industrial complexes

    SciTech Connect

    Lemos, C.T.; Vargas, V.M.F. ); Henriques, J.A.P.; Mattevi, M.S. )

    1994-06-01

    The toxic effects of industrial wastes discharged into natural waters should be intensively investigated since they may affect the survival, behavior or genetic composition of aquatic organisms, as well as the health of the population drinking this water. Most mutagenic, carcinogenic and mutagenic-carcinogenic substances can be detected by tests which evaluate alterations in DNA sequence in combination with at least one in vitro test. Among the methods used to determine the genotoxicity of a substance, the Ames test on bacteria and analysis of sister chromatid exchanges (SCEs) in lymphocytes are considered to be classic. The Ames test has been extensively used to determine the mutagenicity of environmental samples, among them river water and industrial effluents. SCE analysis has shown considerable potential for the detection of mutagens and carcinogens in human populations exposed to different genotoxic conditions, including polluted natural waters. The present report presents the results obtained using these two methods for the evaluation of the genotoxicity of water from the Cai River, in the area affected by the Petrochemical Complex of the State of Rio Grande do Sul, Brazil. After treatment, the wastes of the complex are discharged into the Cai River, an important tributary of the Guaiba River, which provides the drinking water used by the approximately 1,200,000 inhabitants of Porto Alegre, capital city of the State of Rio Grande do Sul. 24 refs., 1 fig., 3 tabs.

  4. Quality of effluents from Hattar Industrial Estate

    PubMed Central

    Sial, R.A.; Chaudhary, M.F.; Abbas, S.T.; Latif, M.I.; Khan, A.G.

    2006-01-01

    Of 6634 registered industries in Pakistan, 1228 are considered to be highly polluting. The major industries include textile, pharmaceutical, chemicals (organic and inorganic), food industries, ceramics, steel, oil mills and leather tanning which spread all over four provinces, with the larger number located in Sindh and Punjab, with smaller number in North Western Frontier Province (NWFP) and Baluchistan. Hattar Industrial Estate extending over 700 acres located in Haripur district of NWFP is a new industrial estate, which has been developed with proper planning for management of industrial effluents. The major industries located in Hattar are ghee industry, chemical (sulfuric acid, synthetic fiber) industry, textile industry and pharmaceuticals industry. These industries, although developed with proper planning are discharging their effluents in the nearby natural drains and ultimately collected in a big drain near Wah. The farmers in the vicinity are using these effluents for growing vegetables and cereal crops due to shortage of water. In view of this discussion, there is a dire need to determine if these effluents are hazardous for soil and plant growth. So, effluents from different industries, sewage and normal tap water samples were collected and analysed for pH, electrical conductivity (EC), total soluble salts (TSS), biological oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen, cations and anions and heavy metals. The effluents of ghee and textile industries are highly alkaline. EC and TSS loads of ghee and textile industries are also above the National Environmental Quality Standards (NEQS), Pakistan. All the effluents had residual sodium carbonates (RSCs), carbonates and bicarbonates in amounts that cannot be used for irrigation. Total toxic metals load in all the effluents is also above the limit i.e. 2.0 mg/L. Copper in effluents of textile and sewage, manganese in ghee industry effluents and iron contents in all the effluents were

  5. 31 CFR 538.536 - Activities relating to the petroleum and petrochemical industries in the Republic of South Sudan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Activities relating to the petroleum... Policy § 538.536 Activities relating to the petroleum and petrochemical industries in the Republic of... and transactions relating to the petroleum and petrochemical industries in the Republic of South...

  6. 31 CFR 538.536 - Activities relating to the petroleum and petrochemical industries in the Republic of South Sudan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Activities relating to the petroleum... Policy § 538.536 Activities relating to the petroleum and petrochemical industries in the Republic of... and transactions relating to the petroleum and petrochemical industries in the Republic of South...

  7. 31 CFR 538.536 - Activities relating to the petroleum and petrochemical industries in the Republic of South Sudan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Activities relating to the petroleum... Policy § 538.536 Activities relating to the petroleum and petrochemical industries in the Republic of... and transactions relating to the petroleum and petrochemical industries in the Republic of South...

  8. Advanced treatment of refractory organic pollutants in petrochemical industrial wastewater by bioactive enhanced ponds and wetland system.

    PubMed

    Liu, Shuo; Ma, Qiusha; Wang, Baozhen; Wang, Jifu; Zhang, Ying

    2014-05-01

    A large-scale combined ponds-wetland system was applied for advanced treatment of refractory pollutants in petrochemical industrial wastewater. The system was designed to enhance bioactivity and biological diversity, which consisted of anaerobic ponds (APs), facultative ponds (FPs), aerobic pond and wetland. The refractory pollutants in the petrochemical wastewater to be treated were identified as alkanes, chloroalkanes, aromatic hydrocarbons, and olefins, which were significantly degraded and transformed along with the influent flowing through the enhanced bioactive ponds-wetland system. 8 years of recent operational data revealed that the average removal rate of stable chemical oxygen demand (COD) was 42.7 % and that influent COD varied from 92.3 to 195.6 mg/L. Final effluent COD could reach 65.8 mg/L (average). COD removal rates were high in the APs and FPs and accounted for 75 % of the total amount removed. This result indicated that the APs and FPs degraded refractory pollutants through the facilitation of bacteria growth. The changes in the community structures of major microbes were assessed by 16SrDNA-denaturing gradient gel electrophoresis. The same analysis was used to identify the main bacterial function for the removal of refractory pollutants in the APs and FPs. The APs and FPs displayed similar microbial diversities, and some of the identified bacteria degraded and removed refractory pollutants. The overall results proved the applicability, stability, and high efficiency of the ponds-wetland system with enhanced bioactivity in the advanced removal of refractory pollutants from petrochemical industrial wastewater.

  9. Petrochemical industry in the Middle East: current status, uncertainties, global impact

    SciTech Connect

    Not Available

    1983-01-01

    The situation and perspective of the petrochemical industry in Saudi Arabia, Qatar, IR Iran, Iraq, Kuwait, Bahrain, the UAE, SP Libyan AJ, Algeria, and Egypt are reviewed. Special attention is given to the budgetary constraints, foreign partners, the costs, the markets, and the impact of falling oil prices.

  10. Economic viability of the Saudi Arabian petrochemical industry: methanol as a case study

    SciTech Connect

    Al-Salem, A.M.

    1987-01-01

    In the pursuit of the diversification strategy, Saudi planners invested a sizable amount of oil surplus in export-oriented petrochemical projects at Jubail and Yanbu. For this strategy to be realized, the projects must be economically viable. Economic viability entails the presence of petrochemical plants that are self-sustaining and self-perpetuating in the long run without state subsidies. In view of the projects, heavy reliance on state subsidies along with their location in a remote area, far from the source of demand, it is hypothesized that, barring a significant shift in the development strategy, a dynamic industrial sector focusing on the development of the petrochemical industry is unlikely to emerge in Saudi Arabia and that the export-led growth strategy that accords it a key role in the nation's development is not likely to prove viable. In verifying the hypothesis, a comparative cost analysis was conducted comparing the cost structure at the Ibn-Sina methanol plant to a similar plant in Alberta, Canada. According to the authors forecast of methanol revenues and costs, the Saudi petrochemical industry exemplified by the methanol project emerges to be as a net absorber of rather than contributor to the nation's financial resources and in this regard appears to impede the process of capital formation and economic growth.

  11. Trends in high performance compressors for petrochemical and natural gas industry in China

    NASA Astrophysics Data System (ADS)

    Zhao, Yuanyang; Li, Liansheng

    2015-08-01

    Compressors are the key equipment in the petrochemical and natural gas industry system. The performance and reliability of them are very important for the process system. The application status of petrochemical & natural gas compressors in China is presented in this paper. The present status of design and operating technologies of compressors in China are mentioned in this paper. The turbo, reciprocating and twin screw compressors are discussed. The market demands for different structure compressors in process gas industries are analysed. This paper also introduces the research and developments for high performance compressors in China. The recent research results on efficiency improvement methods, stability improvement, online monitor and fault diagnosis will also be presented in details.

  12. Pulp and Paper Industry Effluent Management.

    ERIC Educational Resources Information Center

    Gove, George W.

    1978-01-01

    Presents a literature review of wastes from pulp and paper industry, covering publications of 1976-77. This review focuses on: (1) receiving water, toxicity, and effluent characterization; (2) pulping liquor disposal and recovery; and (3) physicochemical and biological treatment. A list of 238 references is also presented. (HM)

  13. New petrochemical compositions for use in the coal industry

    SciTech Connect

    D.O. Safieva; E.V. Surov; O.G. Safiev

    2008-12-15

    Various aspects of the use of antifreezing agents in the coal industry are considered. It has been found that, unlike previously proposed compositions, these agents can be prepared based on the products of a single process, the vacuum distillation of fuel oil.

  14. [Evolution of technology and occupational exposures in petrochemical industry and in petroleum refining].

    PubMed

    Cottica, Danilo; Grignani, Elena

    2013-01-01

    The industry of oil refining and petrochemical play an important role in terms of number of employees in the Italian production. Often the terms "petroleum refining" and "petrochemical" are used interchangeably to define processes that occur in complex plants, which grow outdoors on large surfaces and a visual impact is not irrelevant. In reality, the two areas involve potential exposure to different chemical agents, related to raw materials processed and the specific products. The petrochemical uses as raw materials, the oil fractions, obtained by distillation in the refinery, or natural gas; petrochemical products are, usually, single compounds with a specific degree of purity, used as basic raw materials for the entire industry of organic chemistry, from the production of plastics to pharmaceuticals. The oil refining, that is the topic of this paper, processes mainly oil to obtain mixtures of hydrocarbon compounds, the products of which are specified on the basis of aptitude for use. For example gasolines, are obtained by mixing of fractions of the first distillation, reforming products, antiknock. The paper illustrates, necessarily broadly due to the complexity of the productive sectors, the technological and organizational changes that have led to a significant reduction of occupational exposure to chemical agents, the results of environmental monitoring carried out in some refineries both during routine conditions that during scheduled maintenance activities with plant shutdown and a store of petroleum products. The chemical agents measured are typical for presence, physico-chemical properties and toxicological characteristics of the manufacturing processes of petroleum products like benzene, toluene, xylenes, ethyl benzene, n-hexane, Volatile Hydrocarbons belonging to gasoline, kerosene, diesel fuel. Data related to both personal sampling and fixed positions.

  15. Ambient levels of volatile organic compounds in the vicinity of petrochemical industrial area of Yokohama, Japan

    PubMed Central

    Hanai, Yoshimichi; Masunaga, Shigeki

    2009-01-01

    Urban ambient air concentrations of 39 aromatic (including benzene, toluene, and xylenes) and aliphatic volatile organic compounds (VOCs) were measured in Yokohama city, Japan. Yokohama city was selected as a case study to assess the amount of VOC released from Industrial area to characterize the ambient air quality with respect to VOC as well as to know the impact of petrochemical storage facilities on local air quality. For this purpose, ambient air samples were collected (from June 2007 to November 2008) at six selected locations which are designated as industrial, residential, or commercial areas. To find out the diurnal variations of VOC, hourly nighttime sampling was carried out for three nights at one of the industrial locations (Shiohama). Samples were analyzed using gas chromatographic system (GC-FID). Results show strong variation between day and nighttime concentrations and among the seasons. Aliphatic fractions were most abundant, suggesting petrochemical storage facilities as the major source of atmospheric hydrocarbons. High concentrations of benzene, toluene, ethyl benzene, and xylene (BTEX) were observed at industrial locations. BTEX showed strong diurnal variation which is attributed to change in meteorology. During our campaign, low ambient VOC concentrations were observed at the residential site. PMID:20495606

  16. Annoyance and Worry in a Petrochemical Industrial Area—Prevalence, Time Trends and Risk Indicators

    PubMed Central

    Axelsson, Gösta; Stockfelt, Leo; Andersson, Eva; Gidlof-Gunnarsson, Anita; Sallsten, Gerd; Barregard, Lars

    2013-01-01

    In 1992, 1998, and 2006, questionnaires were sent to stratified samples of residents aged 18–75 years living near petrochemical industries (n = 600–800 people on each occasion) and in a control area (n = 200–1,000). The aims were to estimate the long-term prevalence and change over time of annoyance caused by industrial odour, industrial noise, and worries about possible health effects, and to identify risk indicators. In 2006, 20% were annoyed by industrial odour, 27% by industrial noise (1–4% in the control area), and 40–50% were worried about health effects or industrial accidents (10–20% in the control area). Multiple logistic regression analyses revealed significantly lower prevalence of odour annoyance in 1998 and 2006 than in 1992, while industrial noise annoyance increased significantly over time. The prevalence of worry remained constant. Risk of odour annoyance increased with female sex, worry of health effects, annoyance by motor vehicle exhausts and industrial noise. Industrial noise annoyance was associated with traffic noise annoyance and worry of health effects of traffic. Health-risk worry due to industrial air pollution was associated with female sex, having children, annoyance due to dust/soot in the air, and worry of traffic air pollution. PMID:23552810

  17. Petrochemical industry standards activity aimed at improving the mechanical integrity of process piping

    SciTech Connect

    Reynolds, J.T.

    1996-07-01

    This paper will cover numerous changes being made to existing standards and several new standards being created, all focusing on increasing mechanical integrity of petrochemical industry process piping. Those new standards include ones for (1) Risk-Based Inspection (2) Fitness for Service Analysis, (3) Positive Material Identification, and (4) In-service Inspection and Maintenance for Process Piping. A progress report is included for the Process Industry Practices (PIP) being created to consolidate individual company piping standards into one consistent industry set. And finally, recent initiatives toward standards cooperation/coordination between the American Petroleum Institute(API), American Society of Mechanical Engineers (ASME), International Standards Organization (ISO) and National Board are highlighted.

  18. Membrane separation processes for liquid hydrocarbons and gases in the petrochemical industry

    SciTech Connect

    Not Available

    1989-09-01

    OIP and Allied Signal Corporation have completed a joint project exploring new applications of membrane separation technology for the petrochemical and related industries. These applications have the potential for major energy savings compared to more traditional distillation and chemical absorption processes. This technical case study provides an overview of the DOE-Allied Signal membrane development project. It highlights the field testing of modified cellulose acetate membrane systems for acid gas removal at two commercial natural gas plants. The document is aimed at making field test and data analysis results available to other researchers and private industry in a timely manner. This case study discusses project status; summarizes field testing efforts; and reviews potential technology impacts in terms of applications, energy savings, and preliminary economics.

  19. Assessment of soil organic contamination in a typical petrochemical industry park in China.

    PubMed

    Teng, Yong; Zhou, Qixing; Miao, Xinyu; Chen, Yuming

    2015-07-01

    The concentrations of total petroleum hydrocarbons (TPH), n-alkanes (n-C8 through n-C40), and 16 polycyclic aromatic hydrocarbons (PAHs) in soils were determined to assess the level of organic contamination in soils from the Da-gang Petrochemical Industry Park with several big state-run enterprises, a recent rapid flourishing park in China. The results showed that the concentration of TPH in soil was high, up to 20 ng/g-12.8478%; in particular, the content in most sites ranged from 1 to 2%. Thus, it is clear that soil environment in the Da-gang Petrochemical Industry Park has been seriously polluted by TPH according to the Nemerow pollution index method. Furthermore, the average concentration of Σ(n-C>16 through n-C34) in 30 sampling sites was above the maximum limit set for F3 under all the conditions in the Canada-wide standards for petroleum hydrocarbons (PHC CWS) with 43.33-93.33% soil samples exceeding F3 standards, and n-alkanes possessing higher concentrations were proved much abundant alkanes in this study. Besides, the predominance of even n-alkanes and lower carbon preference index (CPI) demonstrated that n-alkanes in surface soils were mainly caused by anthropogenic inputs, while the concentration of Σ16-PAHs was in the range of 1652.5-8217.3 ng/g and the BaA/(BaA + Chr) and Flu/(Flu + Pyr) ratios indicated that pyrogenic PAHs may be the dominant PAHs in most soils with the contribution of petrogenic hydrocarbons in some sites.

  20. On the Hydrogen Embrittlement of Commercially Pure Alpha Titanium: An Example from the Petrochemical Industry

    NASA Astrophysics Data System (ADS)

    Tawancy, H. M.

    2016-12-01

    Grade 2 of commercially pure Ti consisting of α-phase has many applications in the petrochemical industry such as floaters of gauges used to indicate liquid levels in tanks and reaction vessels. A floater fabricated by welding of 3.5-mm-thick sheet of grade 2 Ti into a thick-walled cylinder to indicate the level of a liquid mixture of isobutane, neobutane and neopentane in a petrochemical plant has lost its structural integrity by puncturing, cracking and blistering particularly at the section in contact with the liquid. The damage has been most severe in the base metal adjacent to the weld. Detailed microstructural characterization of the damaged floater and unwelded section of the same material has been carried out using scanning electron microscopy combined with energy dispersive spectroscopy, x-ray diffraction and transmission electron microscopy, and the results have been complemented by stress analysis and microhardness measurements. It is shown that the mechanical strength of the floater has been degraded by a combination of excessive absorption of hydrogen during welding and rapid cooling from the β-phase field aided by the stresses generated by the liquid pressure. Absorption of hydrogen and rapid cooling are found to alter the desirable morphology of equiaxed grains of α-phase into a multi-phase structure with fine platelet-type morphology. The base metal adjacent to the weld is found to contain the brittle δ-phase of titanium hydride in a low-ductility matrix of α-Ti with some β-Ti. However, β-Ti is found to be the predominant constituent of the weld.

  1. On the Hydrogen Embrittlement of Commercially Pure Alpha Titanium: An Example from the Petrochemical Industry

    NASA Astrophysics Data System (ADS)

    Tawancy, H. M.

    2017-02-01

    Grade 2 of commercially pure Ti consisting of α-phase has many applications in the petrochemical industry such as floaters of gauges used to indicate liquid levels in tanks and reaction vessels. A floater fabricated by welding of 3.5-mm-thick sheet of grade 2 Ti into a thick-walled cylinder to indicate the level of a liquid mixture of isobutane, neobutane and neopentane in a petrochemical plant has lost its structural integrity by puncturing, cracking and blistering particularly at the section in contact with the liquid. The damage has been most severe in the base metal adjacent to the weld. Detailed microstructural characterization of the damaged floater and unwelded section of the same material has been carried out using scanning electron microscopy combined with energy dispersive spectroscopy, x-ray diffraction and transmission electron microscopy, and the results have been complemented by stress analysis and microhardness measurements. It is shown that the mechanical strength of the floater has been degraded by a combination of excessive absorption of hydrogen during welding and rapid cooling from the β-phase field aided by the stresses generated by the liquid pressure. Absorption of hydrogen and rapid cooling are found to alter the desirable morphology of equiaxed grains of α-phase into a multi-phase structure with fine platelet-type morphology. The base metal adjacent to the weld is found to contain the brittle δ-phase of titanium hydride in a low-ductility matrix of α-Ti with some β-Ti. However, β-Ti is found to be the predominant constituent of the weld.

  2. [Asbestos exposure in the petrochemical industry and interaction with other occupational risk factors: analysis of the last ten years INAIL data].

    PubMed

    Innocenzi, Mariano; Saldutti, Elisa; Bindi, Luciano; Di Giacobbe, Andrea; Mercadante, Lucina; Innocenzi, Ludovico

    2013-01-01

    The present study analyzes the trend of occupational diseases, in particular those asbestos-related, in the petrochemical industry from 2002 to 2011, taking into account the number of diseases claimed to and compensated by the National Institute for Insurance of Workplace Accidents and Occupational Diseases (INAIL), assessing risk factors and possible interactions. To identify the research areas, we selected INAIL cost codes, related to the petrochemical industry. In the last five years, over the total claims submitted by industrial workers, 54% of claims for asbestosis, 76.7% of claims for neoplastic diseases, and 78.6% of claims for pleural plaques have been compensated. In the petrochemical industry, such percentages are respectively 59.2%, 81.6% and 82.7%. These data suggest possible interactions between asbestos and other risk factors, particularly significant in the petrochemical industry, although difficult to identify, as well as an initial underestimation of asbestos exposure in this industry.

  3. FTIR remote sensor measurements of air pollutants in the petrochemical industrial park

    NASA Astrophysics Data System (ADS)

    Wu, Rong T.; Chang, Shih-Yi; Chung, Y. W.; Tzou, H. C.; Tso, Tai-Ly

    1995-09-01

    As FT-IR remote sensing techniques become more accessible, there are increasing interests to apply this open-path measurement method to detect and measure airborne pollutants. Thus a research for VOCs emission pollutants in the petrochemical industry park is conducted. In this study, we focused on the identification of the gaseous pollutants as well as the location of the VOCs pollutants from different factories. Measurement is sampled at every half hour period to obtain the time series plots of observed gas concentration for the gaseous pollutants. Besides the inherent components in ambient air such as carbon monoxide, methane, and ozone, the results of the measurement indicate that the major pollutants detected in this industrial park include vinyl chloride, chloroform, hydrogen chloride, 1,2-dichloroethane, 1,3-butadiene, ethylene, propylene, n-hexane, acetic acid, methyl acetate and ammonia. Some of these toxic pollutants are carcinogens and also the chloride related compounds are potentially a threat to the depletion of ozone. All of these measurements indicate that the pattern of the pollutants for each location is significantly different from each other pattern. In addition, the concentrations and the presence of absence of pollutants were dramatically affected by wind directions. Under this case, suspicious polluting plants are successfully being identified by examining the pattern of compounds, pollutant's concentration time series, metrology, and manufacturing process.

  4. The Effect of Social Trust on Citizens’ Health Risk Perception in the Context of a Petrochemical Industrial Complex

    PubMed Central

    López-Navarro, Miguel Ángel; Llorens-Monzonís, Jaume; Tortosa-Edo, Vicente

    2013-01-01

    Perceived risk of environmental threats often translates into psychological stress with a wide range of effects on health and well-being. Petrochemical industrial complexes constitute one of the sites that can cause considerable pollution and health problems. The uncertainty around emissions results in a perception of risk for citizens residing in neighboring areas, which translates into anxiety and physiological stress. In this context, social trust is a key factor in managing the perceived risk. In the case of industrial risks, it is essential to distinguish between trust in the companies that make up the industry, and trust in public institutions. In the context of a petrochemical industrial complex located in the port of Castellón (Spain), this paper primarily discusses how trust—both in the companies located in the petrochemical complex and in the public institutions—affects citizens’ health risk perception. The research findings confirm that while the trust in companies negatively affects citizens’ health risk perception, trust in public institutions does not exert a direct and significant effect. Analysis also revealed that trust in public institutions and health risk perception are essentially linked indirectly (through trust in companies). PMID:23337129

  5. The effect of social trust on citizens’ health risk perception in the context of a petrochemical industrial complex.

    PubMed

    López-Navarro, Miguel Angel; Llorens-Monzonís, Jaume; Tortosa-Edo, Vicente

    2013-01-21

    Perceived risk of environmental threats often translates into psychological stress with a wide range of effects on health and well-being. Petrochemical industrial complexes constitute one of the sites that can cause considerable pollution and health problems. The uncertainty around emissions results in a perception of risk for citizens residing in neighboring areas, which translates into anxiety and physiological stress. In this context, social trust is a key factor in managing the perceived risk. In the case of industrial risks, it is essential to distinguish between trust in the companies that make up the industry, and trust in public institutions. In the context of a petrochemical industrial complex located in the port of Castellón (Spain), this paper primarily discusses how trust - both in the companies located in the petrochemical complex and in the public institutions - affects citizens' health risk perception. The research findings confirm that while the trust in companies negatively affects citizens' health risk perception, trust in public institutions does not exert a direct and significant effect. Analysis also revealed that trust in public institutions and health risk perception are essentially linked indirectly (through trust in companies).

  6. Barry Commoner Assails Petrochemicals

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1973

    1973-01-01

    Discusses Commoner's ideas on the social value of the petrochemical industry and his suggestions for curtailment or elimination of its productive operation to produce a higher environmental quality for mankind at a relatively low loss in social benefit. (CC)

  7. PAH characteristics and genotoxicity in the ambient air of a petrochemical industry complex

    SciTech Connect

    Tsai, Jiun-Horng; Peng, Being-Hwa; Lee, Ding-Zang; Lee, Ching-Chang

    1995-05-01

    Polycyclic aromatic hydrocarbons (PAHs) samples, at four sampling sites, in the ambient air of petrochemical plants were collected by several PS-1 samplers from October 1993 to July 1994 in a petrochemical complex area located in southern Taiwan. In addition, the genotoxicity of the PAH samples were investigated by the Ames Salmonella/microsomal assay system. The winter/summer ratios of total-PAH composition were 0.60, 1.39, 2.97, and 1.28 for sites A, B, C, and D, respectively. This result implied that wind direction is the most significant parameter affecting the total-PAH composition in these four sampling sites. Sampling sites B, C, and D were located on the downwind side of the petrochemical plant and gave higher total-PAH composition than those of sampling site A. Particle phase PAHs had higher mutagenicity than those in the gas phase.

  8. Volatile organic compounds (VOCs) emission characteristics and control strategies for a petrochemical industrial area in middle Taiwan.

    PubMed

    Yen, Chia-Hsien; Horng, Jao-Jia

    2009-11-01

    This study investigated VOC emissions from the largest petrochemical industrial district in Taiwan and recommended some control measures to reduce VOC emissions. In addition to the petrochemical industry, the district encompasses a chemical and fiber industry, a plastics industry and a harbor, which together produce more than 95% of the VOC emissions in the area. The sequence of VOC emission was as follows: components (e.g., valves, flanges, and pumps) (47%) > tanks (29%) > stacks (15%) > wastewater treatment facility (6%) > loading (2%) > flares (1%). Other plants producing high-density polyethylene (HDPE), styrene, ethylene glycol (EG), gas oil, and iso-nonyl-alchol (INA) were measured to determine the VOC leaching in the district. The VOC emissions of these 35 plants (90% of all plants) were less than 100 tons/year. About 74% of the tanks were fixed-roof tanks that leached more VOCs than the other types of tanks. To reduce leaching, the components should be checked periodically, and companies should be required to follow the Taiwan EPA regulations. A VOC emission management system was developed in state implementation plans (SIPs) to inspect and reduce emissions in the industrial district.

  9. Efficient removal of mercury from aqueous solutions and industrial effluent.

    PubMed

    Dos Santos, Maria B P; Leal, Katia Z; Oliveira, Fernando J S; Sella, Silvia M; Vieira, Méri D; Marques, Elisa M D; Gomes, Vanessa A C

    2015-01-01

    The objective of this study was to examine the ability of a solid waste produced during beneficiation of ornamental rocks to remove mercury (Hg) from an industrial effluent and aqueous solutions under various conditions. Batch studies have been carried out by observing the effects of pH, concentration of the adsorbate, contact time, and so on. Various sorption isotherm models such as Langmuir, Freundlich, and Tóth have been applied for the adsorbent. Film and intraparticle diffusion were both found to be rate-limiting steps. Adsorption was properly described by the Freundlich model (capacity constant of 0.3090 (mg g(-1))(mg L(-1))(-1/n) and adsorption intensity indicator of 2.2939), which indicated a favorable sorption and encouraged subsequent studies for treatment of Hg-containing industrial effluent. Industrial effluent treatment efficiency reached Hg removals greater than 90% by using ornamental rock solid waste (ORSW). Besides, desorption studies indicated that the maximum recovery of mercury was 100 ± 2% for 1 mol L(-1) HNO3 and 74 ± 8% for 0.1 mol L(-1) HNO3. The ORSW could be reused thrice without significant difference on the Hg removal rate from industrial effluent. These findings place ORSW as a promising efficient and low-cost adsorbent for the removal of Hg from aqueous solutions and industrial effluent.

  10. The feasibility of effluent trading in the energy industries

    SciTech Connect

    Veil, J.A.

    1997-05-01

    In January 1996, the U.S. Environmental Protection Agency (EPA) released a policy statement endorsing effluent trading in watersheds, hoping to spur additional interest in the subject. The policy describes five types of effluent trades - point source/point source, point source/nonpoint source, pretreatment, intraplant, and nonpoint source/nonpoint source. This report evaluates the feasibility of effluent trading for facilities in the oil and gas industry (exploration and production, refining, and distribution and marketing segments), electric power industry, and the coal industry (mines and preparation plants). Nonpoint source/nonpoint source trades are not considered since the energy industry facilities evaluated here are all point sources. EPA has administered emission trading programs in its air quality program for many years. Programs for offsets, bubbles, banking, and netting are supported by federal regulations, and the 1990 Clean Air Act (CAA) amendments provide a statutory basis for trading programs to control ozone and acid rain. Different programs have had varying degrees of success, but few have come close to meeting their expectations. Few trading programs have been established under the Clean Water Act (CWA). One intraplant trading program was established by EPA in its effluent limitation guidelines (ELGs) for the iron and steel industry. The other existing effluent trading programs were established by state or local governments and have had minimal success.

  11. Non-methane hydrocarbons (NMHCs) and their contribution to ozone formation potential in a petrochemical industrialized city, Northwest China

    NASA Astrophysics Data System (ADS)

    Jia, Chenhui; Mao, Xiaoxuan; Huang, Tao; Liang, Xiaoxue; Wang, Yanan; Shen, Yanjie; Jiang, Wanyanhan; Wang, Huiqin; Bai, Zhilin; Ma, Minquan; Yu, Zhousuo; Ma, Jianmin; Gao, Hong

    2016-03-01

    Hourly air concentrations of fifty-three non-methane hydrocarbons (NMHCs) were measured at downtown and suburb of Lanzhou, a petrochemical industrialized city, Northwest China in 2013. The measured data were used to investigate the seasonal characteristics of NMHCs air pollution and their contributions to the ozone formation in Lanzhou. Annually averaged NMHCs concentration was 38.29 ppbv in downtown Lanzhou. Among 53 NMHCs, alkanes, alkenes, and aromatics accounted for 57%, 23% and 20% of the total NMHCs air concentration, respectively. The atmospheric levels of toluene and propane with mean values of 4.62 and 4.56 ppbv were higher than other NMHCs, respectively. The ambient levels of NMHCs in downtown Lanzhou were compared with measured NMHCs data collected at a suburban site of Lanzhou, located near a large-scale petrochemical industry. Results show that the levels of alkanes, alkenes, and aromatics in downtown Lanzhou were lower by factors of 3-11 than that in west suburb of the city. O3-isopleth plots show that ozone was formed in VOCs control area in downtown Lanzhou and NOx control area at the west suburban site during the summertime. Propylene-equivalent (Prop-Equiv) concentration and the maximum incremental reactivity (MIR) in downtown Lanzhou indicate that cis-2-butene, propylene, and m/p-xylene were the first three compounds contributing to ozone formation potentials whereas in the petrochemical industrialized west suburb, ethane, propene, and trans-2-Butene played more important role in the summertime ozone formation. Principal component analysis (PCA) and multiple linear regression (MLR) were further applied to identify the dominant emission sources and examine their fractions in total NMHCs. Results suggest that vehicle emission, solvent usage, and industrial activities were major sources of NMHCs in the city, accounting for 58.34%, 22.19%, and 19.47% of the total monitored NMHCs in downtown Lanzhou, respectively. In the west suburb of the city

  12. [Liver function of workers occupationally exposed to mixed organic solvents in a petrochemical industry].

    PubMed

    Fernández-D'Pool, J; Oroño-Osorio, A

    2001-06-01

    A descriptive and cross sectional study was conducted to determine whether hepatic function changes in workers occupationally exposed to a mixture of organic solvents, were due to the exposure or confusing factors. A non random sample of 77 workers, operators and supervisors of the Olefin Plant I and II of a petrochemical industry in Maracaibo, Venezuela, was used. Their mean age was 29 +/- 7 years, and had at least one year of exposure to the solvents. This sample was compared with a group of employees of the administrative offices or control panel workers, with a mean age of 36 +/- 8 year and with similar anthropometric characteristics. Workers with a known history of liver disease, blood transfusions and diabetes mellitus were excluded of the study. In addition to a complete occupational disease medical history and a physical examination, serum samples were obtained to determine the activity of the aspartato aminotransferase (AST), alanin aminotransferase (ALT), gamma glutamiltransferase (GGT), alkaline phosphatase (AF), the concentration of the total bile acids (BAS), the surface antigen of hepatitis B(HbsAg) and the hepatitis A virus antibodies: AntiHAV-IgG and the AntiHAV-IgM. An urine sample was taken and analyzed by standard methodology to determine urinary phenols. The air concentrations of benzene, ethylbenzene, toluene and xylene were analyzed by gas chromathography. The serum activities of the liver enzymes, the concentration of bile acids and urinary phenols were not influenced by the exposure to the solvents. The increase of the activity of GGT was associated with obesity and alcohol consumption. The antibodies of the surface antigen of hepatitis A-IgM were normal in both groups and the antibodies for the antigen of hepatitis A-IgG presented a prevalence of 6% in the exposed group and 9% in the non exposed not being associated with liver abnormalities. The individual air concentrations of the solvents were below the environmentally permissible

  13. Genotoxicity of industrial wastes and effluents. A review

    SciTech Connect

    Houk, V.S.

    1992-01-01

    A review of the literature published on the genotoxicity of industrial wastes and effluents using short-term genetic bioassays is presented in the document. The importance of this task arises from the ubiquity of genotoxic compounds in the environment and the need to identify the sources of contamination so that efforts aimed at control and minimization can be implemented. Of even greater significance is the immediate concern for the welfare of human health and the environment. Subheadings of the document include an introduction, a summary of the various genetic bioassays that have been used to test industrial wastes, a compendium of methods commonly used to prepare crude waste samples for bioassay, and a review of the genetic toxicity of wastes and effluents. Wastes have been grouped according to major industrial source. Within each industrial category, a synopsis of individual studies is presented, followed by an interpretation of results on an industry-wide basis.

  14. Metabolic response of environmentally isolated microorganisms to industrial effluents: Use of a newly described cell culture assay

    NASA Technical Reports Server (NTRS)

    Ferebee, Robert N.

    1992-01-01

    An environmental application using a microtiter culture assay to measure the metabolic sensitivity of microorganisms to petrochemical effluents will be tested. The Biomedical Operations and Research Branch at NASA JSC has recently developed a rapid and nondestructive method to measure cell growth and metabolism. Using a colorimetric procedure the uniquely modified assay allows the metabolic kinetics of prokaryotic and eukaryotic cells to be measured. Use of such an assay if adapted for the routine monitoring of waste products, process effluents, and environmentally hazardous substances may prove to be invaluable to the industrial community. The microtiter method as described will be tested using microorganisms isolated from the Galveston Bay aquatic habitat. The microbial isolates will be identified prior to testing using the automated systems available at JSC. Sodium dodecyl sulfate (SDS), cadmium, and lead will provide control toxic chemicals. The toxicity of industrial effluent from two industrial sites will be tested. An effort will be made to test the efficacy of this assay for measuring toxicity in a mixed culture community.

  15. Characterization of ozone precursor volatile organic compounds in urban atmospheres and around the petrochemical industry in the Tarragona region.

    PubMed

    Ras, Maria Rosa; Marcé, Rosa Maria; Borrull, Francesc

    2009-07-01

    This paper reports the results of an assessment of volatile organic compound (VOCs) levels in ambient air in samples collected at urban and industrial sites in southern Catalonia, which is home to one of the most important petrochemical complexes in southern Europe. This study contains data from a total of 192 samples collected in 2007, from May to October, at six air pollution measurement stations within the area of influence of several chemical and petrochemical industrial plants. The ambient air concentrations of a group of 65 VOCs, some of them ozone precursors, were determined by active sampling into sorbent tubes, thermal desorption and gas chromatography-mass spectrometry. At the same time, several meteorological parameters were also recorded, and levels of NO, NO(2) and O(3) measured by the automatic stations, have been included in the study as well. Ambient air profiles of the different areas were studied, and the ozone formation dependent on VOCs and NO(2) levels was also analysed, taking into account the photochemical ozone creation potential (POCP) for different groups of VOCs.

  16. Determination of Phenols and Trimethylamine in Industrial Effluents

    NASA Technical Reports Server (NTRS)

    Levaggi, D. A.; Feldstein, M.

    1971-01-01

    For regulatory purposes to control certain odorous compounds the analysis of phenols and trimethylamines in industrial effluents is necessary. The Bay Area Air Pollution Control District laboratory has been determining these gases by gas chromatographic techniques. The procedures for sample collection, preparation for analysis and determination are described in detail. Typical data from various sources showing the effect of proposed regulations is shown. Extensive sampling and usage of these procedures has shown them to be accurate, reliable and suitable to all types of source effluents.

  17. INDUSTRIAL EFFLUENT TREATMENT USING IONIZING RADIATION COMBINED TO TITANIUM DIOXIDE

    SciTech Connect

    Duarte, C.L.; Oikawa, H.; Mori, M.N.; Sampa, M.H.O.

    2004-10-04

    The Advanced Oxidation Process (AOP) with OH radicals are the most efficient to mineralize organic compounds, and there are various methods to generate OH radicals as the use of ozone, hydrogen peroxide and ultra-violet radiation and ionizing radiation. The irradiation of aqueous solutions with high-energy electrons results in the excitation and ionizing of the molecules and rapid (10{sup -14} - 10{sup -9} s) formation of reactive intermediates. These reactive species will react with organic compounds present in industrial effluent inducing their decomposition. Titanium dioxide (TiO{sub 2}) catalyzed photoreaction is used to remove a wide range of pollutants in air and water media, combined to UV/VIS light, FeO{sub 2}, and H{sub 2}O{sub 2}, but as far as known there is no report on the combination with ionizing radiation. In some recent studies, the removal of organic pollutants in industrial effluent, such as Benzene, Toluene, and Xylene from petroleum production using ionizing radiation was investigated. It has been ob served that none of the methods can be used individually in wastewater treatment applications with good economics and high degree of energy efficiency. In the present work, the efficiency of ionizing radiation in presence of TiO{sub 2} to treat industrial effluent was evaluated. The main aim to combine these technologies is to improve the efficiency for very hard effluents and to reduce the processing cost for future implementation to large-scale design.

  18. Electrochemical degradation of specialty chemical industry effluent.

    PubMed

    Basha, C Ahmed; Soloman, P A; Velan, M; Miranda, Lima Rose; Balasubramanian, N; Siva, R

    2010-04-15

    Conventional wastewater treatment techniques are inefficient to manage large quantities of refractory organics discharged by specialty chemical industries. It is aimed in the present investigation to compare overall performance of the basic electrochemical reactor configurations such as batch, batch recirculation and continuous recycle reactors, in removing the organic part of wastewater from a medium-scale, specialty chemical industry. The effects of current density, supporting electrolyte concentration, electrolysis duration and fluid flow rate on the pollutant removal and energy consumption performances were critically evaluated. Continuous recycle reactor is found to be the better configuration, because of its flexibility of operation. Circulation flow rate and withdrawal flow rate enable control on transfer coefficients and treatment duration respectively. The ability of artificial neural network (ANN) in predicting the performance of the batch electrochemical treatment has also been demonstrated.

  19. Characterizing ozone pollution in a petrochemical industrial area in Beijing, China: a case study using a chemical reaction model.

    PubMed

    Wei, Wei; Lv, Zhaofeng; Cheng, Shuiyuan; Wang, Lili; Ji, Dongsheng; Zhou, Ying; Han, Lihui; Wang, Litao

    2015-06-01

    This study selected a petrochemical industrial complex in Beijing, China, to understand the characteristics of surface ozone (O3) in this industrial area through the on-site measurement campaign during the July-August of 2010 and 2011, and to reveal the response of local O3 to its precursors' emissions through the NCAR-Master Mechanism model (NCAR-MM) simulation. Measurement results showed that the O3 concentration in this industrial area was significantly higher, with the mean daily average of 124.6 μg/m(3) and mean daily maximum of 236.8 μg/m(3), which are, respectively, 90.9 and 50.6 % higher than those in Beijing urban area. Moreover, the diurnal O3 peak generally started up early in 11:00-12:00 and usually remained for 5-6 h, greatly different with the normal diurnal pattern of urban O3. Then, we used NCAR-MM to simulate the average diurnal variation of photochemical O3 in sunny days of August 2010 in both industrial and urban areas. A good agreement in O3 diurnal variation pattern and in O3 relative level was obtained for both areas. For example of O3 daily maximum, the calculated value in the industrial area was about 51 % higher than in the urban area, while measured value in the industrial area was approximately 60 % higher than in the urban area. Finally, the sensitivity analysis of photochemical O3 to its precursors was conducted based on a set of VOCs/NOx emissions cases. Simulation results implied that in the industrial area, the response of O3 to VOCs was negative and to NOx was positive under the current conditions, with the sensitivity coefficients of -0.16~-0.43 and +0.04~+0.06, respectively. By contrast, the urban area was within the VOCs-limitation regime, where ozone enhancement in response to increasing VOCs emissions and to decreasing NOx emission. So, we think that the VOCs emissions control for this petrochemical industrial complex will increase the potential risk of local ozone pollution aggravation, but will be helpful to inhibit the

  20. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect

    Neelis, Maarten; Worrell, Ernst; Masanet, Eric

    2008-09-01

    Energy is the most important cost factor in the U.S petrochemical industry, defined in this guide as the chemical industry sectors producing large volume basic and intermediate organic chemicals as well as large volume plastics. The sector spent about $10 billion on fuels and electricity in 2004. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. petrochemical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the petrochemical industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the petrochemical and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. petrochemical industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--and on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

  1. Influence of relative humidity and temperature on quantity of electric charge of static protective clothing used in petrochemical industry

    NASA Astrophysics Data System (ADS)

    Zhang, Yunpeng; Liu, Quanzhen; Liu, Baoquan; Li, Yipeng; Zhang, Tingting

    2013-03-01

    In this paper, the working principle of static protective clothing and its testing method of quantity of electric charge are introduced, and the influence of temperature and relative humidity on the quantity of electric charge (qe) of static protective clothing is studied by measuring qe of different clothing samples. The result shows that temperature and relative humidity can influence qe of static protective clothing to some extent and the influence of relative humidity is bigger than that of temperature. According to experimental results, the relationship of qe and relative humidity and temperature was analysed, and the safety boundary of quantity of electric charge is discussed. In order to reduce the occurrence of electrostatic accidents and ensure safe production and operation of petrochemical industry, some suggestions on choosing and using of static protective clothing are given for guaranteeing its static protective performance.

  2. Soluble phosphate fertilizer production using acid effluent from metallurgical industry.

    PubMed

    Mattiello, Edson M; Resende Filho, Itamar D P; Barreto, Matheus S; Soares, Aline R; Silva, Ivo R da; Vergütz, Leonardus; Melo, Leônidas C A; Soares, Emanuelle M B

    2016-01-15

    Preventive and effective waste management requires cleaner production strategies and technologies for recycling and reuse. Metallurgical industries produce a great amount of acid effluent that must be discarded in a responsible manner, protecting the environment. The focus of this study was to examine the use of this effluent to increase reactivity of some phosphate rocks, thus enabling soluble phosphate fertilizer production. The effluent was diluted in deionized water with the following concentrations 0; 12.5; 25; 50; 75% (v v(-1)), which were added to four natural phosphate rocks: Araxá, Patos, Bayovar and Catalão and then left to react for 1 h and 24 h. There was an increase in water (PW), neutral ammonium citrate (PNAC) and citric acid (PCA) soluble phosphorus fractions. Such increases were dependent of rock type while the reaction time had no significant effect (p < 0.05) on the chemical and mineralogical phosphate characteristics. Phosphate fertilizers with low toxic metal concentrations and a high level of micronutrients were produced compared to the original natural rocks. The minimum amount of total P2O5, PNAC and PW, required for national legislation for phosphate partially acidulated fertilizer, were met when using Catalão and the effluent at the concentration of 55% (v v(-1)). Fertilizer similar to partially acidulated phosphate was obtained when Bayovar with effluent at 37.5% (v v(-1)) was used. Even though fertilizers obtained from Araxá and Patos did not contain the minimum levels of total P2O5 required by legislation, they can be used as a nutrient source and for acid effluent recycling and reuse.

  3. Trace metals in PM10 and PM 2.5 samples collected in a highly industrialized chemical/petrochemical area and its urbanized surroundings.

    PubMed

    dos Anjos Paulino, Silvia; Oliveira, Rafael Lopes; Loyola, Josiane; Minho, Alan Silva; Arbilla, Graciela; Quiterio, Simone Lorena; Escaleira, Viviane

    2014-05-01

    The aim of this study was to determine the potential impact of a highly industrialized area on its urbanized surroundings. The area studied is home to a refinery, a thermoelectric plant and several petrochemical facilities industries. The concentrations of twelve elements were determined in PM10 and PM2.5 samples collected along a busy highway and near the petrochemical complex. Significantly higher concentrations of Ca, Mg, Mn, Fe, Cu and Al were observed in the petrochemical zone, but principal component analysis revealed similar patterns for both the highway site and a site approximately 1.5 km from the petrochemical complex, suggesting that the main pollution source in the area is vehicular flux. Higher concentrations in the industrial area may be attributed to intense diesel-powered truck and bus traffic movement, mainly due to the transport of supplies, fuel and gas. The observed concentrations of the elements Cr, Co, Ni, Cd and Pb were always lower than the detection limits of the technique used.

  4. Effluent treatment in the textile industry: Excluding dyes. (Latest citations from World Textile abstracts). Published Search

    SciTech Connect

    Not Available

    1994-01-01

    The bibliography contains citations concerning the treatment and reuse of textile industry effluents exclusive of dyes. Topics include the recovery of lubricants, lye, sizing agents, polyvinyl alcohol, zinc, dirt, and heat from textile effluents. Air and water pollution control technology that is effective in treating textile effluents is discussed. Effluents from synthetic fiber manufacture and wool scouring processes are emphasized. Effluents that contain dyes are discusssed in a separate bibliography. (Contains 250 citations and includes a subject term index and title list.)

  5. Effluent treatment in the textile industry: Excluding dyes. (Latest citations from World Textile abstracts). Published Search

    SciTech Connect

    Not Available

    1993-01-01

    The bibliography contains citations concerning the treatment and reuse of textile industry effluents exclusive of dyes. Topics include the recovery of lubricants, lye, sizing agents, polyvinyl alcohol, zinc, dirt, and heat from textile effluents. Air and water pollution control technology that is effective in treating textile effluents is discussed. Effluents from synthetic fiber manufacture and wool scouring processes are emphasized. Effluents that contain dyes are discusssed in a separate bibliography. (Contains 250 citations and includes a subject term index and title list.)

  6. Chromosomal aberration frequencies determined by conventional methods: Parallel increases over time in the region of a petrochemical industry and throughout the Czech Republic.

    PubMed

    Sram, Radim J; Rössner, Pavel; Beskid, Olena; Bavorova, Hana; Ocadlikova, Dana; Solansky, Ivo; Albertini, Richard J

    2007-03-20

    The rationale for cytogenetic monitoring to determine if safe maximum allowable concentrations (MAC) of genotoxic chemicals are being maintained in a workplace is that exposure levels that do not increase chromosomal aberration frequencies are without harmful effects. Such monitoring, widely used in occupational health programs in the Czech Republic (CR), includes workers exposed to 1,3-butadiene (BD) or other chemicals. Studies of BD exposed workers in the years 1992, 1993, 1994, 1998, and 2004 compared mean frequencies of cells carrying chromosomal aberrations (frequency of aberrant cells=%AB.C.) in exposed workers with those in non-exposed matched controls in the same plant or in other individuals living in the region of the same petrochemical industry. Workers potentially exposed to acrylonitrile at this site were also evaluated in 2000, along with another unexposed matched control group. The %AB.C. values of exposed workers and their controls were also compared with reference values determined for normal individuals (ages 20-59 years) throughout the CR. Substantial discrepancies were noted between subjects in the region of the petrochemical industry (exposed workers and controls) for the years 2000 and 2004 and the reference CR-wide normal values that had been determined during an earlier time period. The matched non-exposed controls at the petrochemical industry site showed a mean %AB.C. value of 1.56+/-1.23% (N=25) in 1998; this rose to a mean of 2.65+/-2.29% (N=33) in 2000. In 2004, values for non-exposed matched controls at the industry site were 2.64+/-1.75% for males (N=25) and 2.38+/-1.74% (N=26) for females. However, the earlier determined CR-wide %AB.C. mean reference values for normal individuals were 1.77+/-1.16% (N=1305) for the interval 1977-1988 and 1.45+/-1.17% (N=2140) for the interval 1991-1999. As both reference values are substantially lower than those determined in 2000 and 2004 for the non-exposed matched controls at the petrochemical

  7. Safety Culture Assessment in Petrochemical Industry: A Comparative Study of Two Algerian Plants

    PubMed Central

    Boughaba, Assia; Hassane, Chabane; Roukia, Ouddai

    2014-01-01

    Background To elucidate the relationship between safety culture maturity and safety performance of a particular company. Methods To identify the factors that contribute to a safety culture, a survey questionnaire was created based mainly on the studies of Fernández-Muñiz et al. The survey was randomly distributed to 1000 employees of two oil companies and realized a rate of valid answer of 51%. Minitab 16 software was used and diverse tests, including the descriptive statistical analysis, factor analysis, reliability analysis, mean analysis, and correlation, were used for the analysis of data. Ten factors were extracted using the analysis of factor to represent safety culture and safety performance. Results The results of this study showed that the managers' commitment, training, incentives, communication, and employee involvement are the priority domains on which it is necessary to stress the effort of improvement, where they had all the descriptive average values lower than 3.0 at the level of Company B. Furthermore, the results also showed that the safety culture influences the safety performance of the company. Therefore, Company A with a good safety culture (the descriptive average values more than 4.0), is more successful than Company B in terms of accident rates. Conclusion The comparison between the two petrochemical plants of the group Sonatrach confirms these results in which Company A, the managers of which are English and Norwegian, distinguishes itself by the maturity of their safety culture has significantly higher evaluations than the company B, who is constituted of Algerian staff, in terms of safety management practices and safety performance. PMID:25180135

  8. Development of sustainable waste management toward zero landfill waste for the petrochemical industry in Thailand using a comprehensive 3R methodology: A case study.

    PubMed

    Usapein, Parnuwat; Chavalparit, Orathai

    2014-06-01

    Sustainable waste management was introduced more than ten years ago, but it has not yet been applied to the Thai petrochemical industry. Therefore, under the philosophy of sustainable waste management, this research aims to apply the reduce, reuse, and recycle (3R) concept at the petrochemical factory level to achieve a more sustainable industrial solid waste management system. Three olefin plants in Thailand were surveyed for the case study. The sources and types of waste and existing waste management options were identified. The results indicate that there are four sources of waste generation: (1) production, (2) maintenance, (3) waste treatment, and (4) waste packaging, which correspond to 45.18%, 36.71%, 9.73%, and 8.37% of the waste generated, respectively. From the survey, 59 different types of industrial wastes were generated from the different factory activities. The proposed 3R options could reduce the amount of landfill waste to 79.01% of the amount produced during the survey period; this reduction would occur over a period of 2 years and would result in reduced disposal costs and reduced consumption of natural resources. This study could be used as an example of an improved waste management system in the petrochemical industry.

  9. Bioprospecting of lipolytic microorganisms obtained from industrial effluents.

    PubMed

    Peil, Greice H S; Kuss, Anelise V; Rave, Andrés F G; Villarreal, José P V; Hernandes, Yohana M L; Nascente, Patrícia S

    2016-01-01

    The lipases have ability to catalyze diverse reactions and are important in different biotechnological applications. The aim of this work was to isolate and characterize microorganisms that produce lipases, from different food industry effluents localized in Pelotas, RS/Brazil. Bacteria were identified using Gram stain and biochemical tests (Vitek 2(r)). Fungi were identified according to macro and micromorphology characteristics. The extracellular lipase production was evaluated using the Rhodamine B test and the enzymatic activity by titration. Twenty-one bacteria were isolated and identified as Klebsiella pneumoniae ssp. pneumoniae, Serratia marcescens, Enterobacter aerogenes, Raoultella ornithinolytica and Raoultella planticola. Were characterized isolated filamentous fungi by the following genera: Alternaria sp., Fusarium sp., Geotrichum sp., Gliocladium sp., Mucor sp., Paecilomyces sp. and Trichoderma sp. Extracellular lipase production was observed in 71.43% of the bacteria and 57.14% of the fungi. The bacterium that presented better promising enzymatic activity was E. aerogenes (1.54 U/ml) however between fungi there was not significant difference between the four isolates. This study indicated that microorganisms lipase producers are present in the industrial effluents, as well as these enzymes have potential of biodegradation of lipid compounds.

  10. Destruction of some more and less hydrophobic PAHs and their toxicities in a petrochemical industry wastewater with sonication in Turkey.

    PubMed

    Sponza, Delia Teresa; Oztekin, Rukiye

    2010-11-01

    The effects of increasing sonication time (60-150min), NaCl (2-18g/l), S(2)O(8)(2-) (2-10mg/l) and 1-butanol (200-600mg/l) concentrations on the destructions of seven polycyclic aromatic hydrocarbons (PAHs) and acute toxicity in a petrochemical industry wastewater in Izmir (Turkey) were investigated. The yields in more hydrophobic PAHs (DahA and BghiP) were as high as in less hydrophobic PAHs (CHR, PHE, PY, BbF and ANT) at 60 degrees C after 150min sonication. The removals in all PAHs increased from 72-78% to 97-99% as the NaCl administration was increased from 1.5 to 12g/l. The degradation efficiency of seven PAHs was enhanced by 36% with 6mg/l S(2)O(8)(2-) after 150min. OH(*) is the major process for complete sonodegradation of less hydrophobic PAHs while pyrolysis is the major process for complete degradation of more hydrophobic PAHs.

  11. Biological anoxic treatment of O₂-free VOC emissions from the petrochemical industry: a proof of concept study.

    PubMed

    Muñoz, Raúl; Souza, Theo S O; Glittmann, Lina; Pérez, Rebeca; Quijano, Guillermo

    2013-09-15

    An innovative biofiltration technology based on anoxic biodegradation was proposed in this work for the treatment of inert VOC-laden emissions from the petrochemical industry. Anoxic biofiltration does not require conventional O2 supply to mineralize VOCs, which increases process safety and allows for the reuse of the residual gas for inertization purposes in plant. The potential of this technology was evaluated in a biotrickling filter using toluene as a model VOC at loads of 3, 5, 12 and 34 g m(-3)h(-1) (corresponding to empty bed residence times of 16, 8, 4 and 1.3 min) with a maximum elimination capacity of ∼3 g m(-3)h(-1). However, significant differences in the nature and number of metabolites accumulated at each toluene load tested were observed, o- and p-cresol being detected only at 34 g m(-3)h(-1), while benzyl alcohol, benzaldehyde and phenol were detected at lower loads. A complete toluene removal was maintained after increasing the inlet toluene concentration from 0.5 to 1 g m(-3) (which entailed a loading rate increase from 3 to 6 g m(-3)h(-1)), indicating that the system was limited by mass transfer rather than by biological activity. A high bacterial diversity was observed, the predominant phyla being Actinobacteria and Proteobacteria.

  12. Conventional, microwave, and ultrasound sequential extractions for the fractionation of metals in sediments within the Petrochemical Industry, Serbia.

    PubMed

    Relić, Dubravka; Dorđević, Dragana; Sakan, Sanja; Anđelković, Ivan; Pantelić, Ana; Stanković, Ratomir; Popović, Aleksandar

    2013-09-01

    In this paper, the main objective was fractionation of Cd, Cu, Ni, Pb, Zn, Ca, Fe, and K in certificate material and sediment samples gathered from and around the Petrochemical Industry using the conventional, microwave and ultrasonic sequential extraction. Microwave oven and ultrasound bath were used as an energy source for achieving faster extraction. Additional heating and boiling of samples were avoided by using lower power and shorter time for microwave and ultrasound extraction. Precision and accuracy of procedure were evaluated by using certificate material (BCR701). Acceptable accuracy of metals (87.0-111.3 %) was achieved for all three-step sequential of conventional extraction protocol. An accuracy of the fourth step has been verified with two certificate materials: BCR143R and 146R. The range of total extracted metal concentrations from sediments was similar for all three extraction techniques. A significant high percentage of Cd, Cu, and Zn were obtained after extraction of the exchangeable and acid soluble sediment fraction. Principal component analysis of values obtained after determination of risk assessment code using conventional and ultrasound sequential extraction show similarity of these values. Accuracy, recovery, and risk assessment code values imply that ultrasound sequential extraction is a more suitable, accelerated sequential extraction procedure (30 min per extraction step) than microwave extraction in applied conditions.

  13. [The workplace injury trends in the petrochemical industry: from data analysis to risk management].

    PubMed

    Campo, Giuseppe; Martini, Benedetta

    2013-01-01

    The most recent INAIL data show that, in 2009-2011, the accident frequency rate and the severity rate of workplace injuries in the chemical industry are lower than for the total non-agricultural workforce. The chemical industry, primarily because of the complex and hazardous work processes, requires an appropriate system for assessing and monitoring specific risks.The implementation of Responsible Care, a risk management system specific for the chemical industry, in 1984, has represented a historical step in the process of critical awareness of risk management by the chemical companies. Responsible Care is a risk management system specifically designed on the risk profiles of this type of enterprise, which integrates safety, health and environment. A risk management system, suitable for the needs of a chemical company, should extend its coverage area, beyond the responsible management of products throughout the entire production cycle, to the issues of corporate responsibility.

  14. Fundamental studies of hydrogen attack in carbon-0.5molybdenum steel and weldments applied in petroelum and petrochemical industries

    NASA Astrophysics Data System (ADS)

    Liu, Peng

    High temperature hydrogen attack (HTHA) is a form of surface decarburization, internal decarburization, and/or intergranular cracking in steels exposed to high temperature (>400°F) and high hydrogen pressure. Hydrogen attack is an irreversible process which can cause permanent damage resulting in degradation of mechanical properties and failures such as leakage, bursting, fire, and/or explosion. The continuous progression of hydrogen attack in C-0.5Mo steel and weldments below the C-0.5Mo Nelson Curve has caused a significant concern for the integrity and serviceability of C-0.5Mo steel utilized for pressure vessels and piping in the petroleum refinery and petrochemical industries. A state-of-the-art literature review was implemented to provide a comprehensive overview of the published research efforts on hydrogen attack studies. The evolution of "Nelson Curves" for carbon steel, C-0.5Mo, and Cr-Mo steels was historically reviewed in regard to design applications and limitations. Testing techniques for hydrogen attack assessment were summarized under the categories of hydrogen exposure testing, mechanical evaluation, and dilatometric swelling testing. In accord with the demands of these industries, fundamental studies of hydrogen attack in C-0.5Mo steel and weldments were accomplished in terms of quantitative methodologies for hydrogen damage evaluation; hydrogen damage assessment of service exposed weldments and autoclave exposed materials; effects of carbon and alloying elements, heat treatments, hot and cold working, welding processes and postweld heat treatment (PWHT) on hydrogen attack susceptibility; development of continuous cooling transformation (CCT) diagrams for C-0.5Mo base metals and the coarse grained heat-affected zone (CGHAZ); carbide evaluation for the C-0.5Mo steel after service exposure and heat treatment; methane evolution by the reaction of hydrogen and carbides; hydrogen diffusion and methane pressure through the wall thickness of one

  15. Technical Training in the MNCs in Malaysia: A Case Study Analysis of the Petrochemical Industry

    ERIC Educational Resources Information Center

    Hooi, Lai Wan

    2010-01-01

    Purpose: The aim of this paper is to gain insight into some of the types of training and development practices that are carried out in the chemical industry for technical workers. A salient focus of the study is to make a comparative analysis of four MNCs, which were selected based on equity ownership, to ascertain whether T&D practices are…

  16. Anaerobic treatment of effluents from an industrial polymers synthesis plant

    SciTech Connect

    Araya, P.; Aroca, G.; Chamy, R.

    1999-06-01

    The feasibility of the anaerobic treatment of an industrial polymer synthesis plant effluent was evaluated. The composition of the wastewater includes acrylates, styrene, detergents, a minor amount of silicates and a significant amount of ferric chloride. The average chemical oxygen demand (COD) corresponding is about 2,000 mg/l. The anaerobic biodegradability of the effluent is shown and the toxicity effect on the populations of anaerobic bacteria is evaluated. The results of the anaerobic biodegradation assays show that 62% of the wastewater compounds, measured as COD, could be consumed. An upflow anaerobic sludge blanket (UASB) reactor was used in the evaluation, it has a diameter-height ratio of 1:7, and 4-liter volume. The inoculum was obtained from a UASB pilot plant that treats brewery wastewaters. At the beginning of the operation, the biomass showed an anaerobic activity of 0.58 gCOD/(gVSS {times} d), it decreased only 2.5% in the subsequent 4 months. After 35 days of continuous operation, the reactor was operated at different steady states for 140 days. The COD was maintained at 2,200 mg/l in the feed. The results were: organic loading rate (OLR): 4.3 kg COD/(m{sup 3} {times} d), hydraulic retention time: 12 h, superficial velocity: 1 m/h, average biogas productivity: 290 L CH{sub 4}/kg COD fed, biogas composition: 70--75% methane and a COD removal percentage > 75%.

  17. Efficacy and reliability of upgraded industrial treatment plant at Porto Marghera, near Venice, Italy, in removing nutrients and dangerous micropollutants from petrochemical wastewaters.

    PubMed

    Verlicchi, Paola; Cattaneo, Serena; Marciano, Ferdinando; Masotti, Luigi; Vecchiato, Giuseppe; Zaffaroni, Carlo

    2011-08-01

    Chemical and petrochemical wastewaters contain a host of contaminants that require different treatment strategies. Regulation of macropollutants and micropollutants in the final discharge from industrial wastewater treatment plants (WWTPs) have become increasingly stringent in recent decades, requiring many WWTPs to be upgraded. This article presents an analysis of a WWTP treating petrochemicals in Porto Marghera, Italy, that recently was upgraded following legislative changes. Because of strict legal limits for macropollutants and micropollutants and a lack of space necessary for a full-scale WWTP overhaul, the existing activated sludge tank was converted into a membrane biological reactor. The paper presents experimental data collected during a five-month investigation showing the removal rates achieved by the upgraded plant for macropollutants (particularly nitrogen compounds) and micropollutants (heavy metals and organic and inorganic toxic compounds).

  18. Carbon Dioxide Separation Technology: R&D Needs for the Chemical and Petrochemical Industries

    SciTech Connect

    none,

    2007-11-01

    This report, the second in a series, is designed to summarize and present recommendations for improved CO2 separation technology for industrial processes. This report provides an overview of 1) the principal CO2 producing processes, 2) the current commercial separation technologies and 3) emerging adsorption and membrane technologies for CO2 separation, and makes recommendations for future research.

  19. Efficacy of Allium cepa test system for screening cytotoxicity and genotoxicity of industrial effluents originated from different industrial activities.

    PubMed

    Pathiratne, Asoka; Hemachandra, Chamini K; De Silva, Nimal

    2015-12-01

    Efficacy of Allium cepa test system for screening cytotoxicity and genotoxicity of treated effluents originated from four types of industrial activities (two textile industries, three rubber based industries, two common treatment plants of industrial zones, and two water treatment plants) was assessed. Physico-chemical parameters including the heavy metal/metalloid levels of the effluents varied depending on the industry profile, but most of the measured parameters in the effluents were within the specified tolerance limits of Sri Lankan environmental regulations for discharge of industrial effluents into inland surface waters. In the A. cepa test system, the undiluted effluents induced statistically significant root growth retardation, mitosis depression, and chromosomal aberrations in root meristematic cells in most cases in comparison to the dilution water and upstream water signifying effluent induced cytotoxicity and genotoxicity. Ethyl methane sulphonate (a mutagen, positive control) and all the effluents under 1:8 dilution significantly induced total chromosomal aberrations in root meristematic cells in comparison to the dilution water and upstream water indicating inadequacy of expected 1:8 dilutions in the receiving waters for curtailing genotoxic impacts. The results support the use of a practically feasible A. cepa test system for rapid screening of cytotoxicity and genotoxicity of diverse industrial effluents discharging into inland surface waters.

  20. Effluent treatment in the textile industry: Excluding dyes. (Latest citations from World Textile abstracts). Published Search

    SciTech Connect

    1996-09-01

    The bibliography contains citations concerning the treatment and reuse of textile industry effluents exclusive of dyes. Topics include the recovery of lubricants, lye, sizing agents, polyvinyl alcohol, zinc, dirt, and heat from textile effluents. Air and water pollution control technology that is effective in treating textile effluents is discussed. Effluents from synthetic fiber manufacture and wool scouring processes are emphasized. Effluents that contain dyes are discusssed in a separate bibliography.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  1. Healthy environment--indoor air quality of Brazilian elementary schools nearby petrochemical industry.

    PubMed

    Godoi, Ricardo H M; Godoi, Ana F L; Gonçalves Junior, Sérgio J; Paralovo, Sarah L; Borillo, Guilherme C; Gonçalves Gregório Barbosa, Cybelli; Arantes, Manoela G; Charello, Renata C; Rosário Filho, Nelson A; Grassi, Marco T; Yamamoto, Carlos I; Potgieter-Vermaak, Sanja; Rotondo, Giuliana G; De Wael, Karolien; van Grieken, Rene

    2013-10-01

    The mitigation of pollution released to the environment originating from the industrial sector has been the aim of all policy-makers and its importance is evident if the adverse health effects on the world population are considered. Although this concern is controversial, petroleum refinery has been linked to some adverse health effects for people living nearby. Apart from home, school is the most important indoor environment for children and there is increasing concern about the school environment and its impact on health, also in developing countries where the prevalence of pollution is higher. As most of the children spend more than 40% of their time in schools, it is critical to evaluate the pollution level in such environment. In the metropolitan region of Curitiba, South Brazil, five schools nearby industries and highways with high density traffic, were selected to characterize the aerosol and gaseous compounds indoor and outdoor of the classrooms, during 2009-2011. Size segregated aerosol samples were collected for analyses of bulk and single particle elemental profiles. They were analyzed by electron probe X-ray micro-analysis (EPXMA), and by energy-dispersive X-ray fluorescence (EDXRF), to investigate the elemental composition of individual particles and bulk samples. The concentrations of benzene, toluene, ethylbenzene, and xylene (BTEX); NO2; SO2; acetic acid; and formic acid were assessed indoor and outdoor using passive diffusion tubes. BTEX were analyzed by GC-MS and other collected gasses by ion chromatography. Individual exposition of BTEX was assessed by personal passive diffusion tubes. Results are interpreted separately and as a whole with the specific aim of identifying compounds that could affect the health of the scholars. In view of the chemical composition and size distribution of the aerosol particles, local deposition efficiencies in the children's respiratory systems were calculated, revealing the deposition of particles at extrathoracic

  2. Removal of heavy metals from tannery effluents of Ambur industrial area, Tamilnadu by Arthrospira (Spirulina) platensis.

    PubMed

    Balaji, S; Kalaivani, T; Rajasekaran, C; Shalini, M; Vinodhini, S; Priyadharshini, S Sunitha; Vidya, A G

    2015-06-01

    The present study was carried out with the tannery effluent contaminated with heavy metals collected from Ambur industrial area to determine the phycoremediation potential of Arthrospira (Spirulina) platensis. Two different concentrations (50 and 100 %) of heavy metals containing tannery effluent treated with A. platensis were analysed for growth, absorption spectra, biochemical properties and antioxidant enzyme activity levels. The effluent treatments revealed dose-dependent decrease in the levels of A. platensis growth (65.37 % for 50 % effluent and 49.32 % for 100 % effluent), chlorophyll content (97.43 % for 50 % effluent and 71.05 % for 100 % effluent) and total protein content (82.63 % for 50 % effluent and 62.10 % for 100 % effluent) that leads to the reduction of total solids, total dissolved solids and total suspended solids. A. platensis with lower effluent concentration was effective than at higher concentration. Treatment with the effluent also resulted in increased activity levels of antioxidant enzymes, such as superoxide dismutase (14.58 units/g fresh weight for 50 % and 24.57 units/g fresh weight for 100 %) and catalase (0.963 units/g fresh weight for 50 % and 1.263 units/g fresh weight for 100 %). Furthermore, heavy metal content was determined using atomic absorption spectrometry. These results indicated that A. platensis has the ability to combat heavy metal stress by the induction of antioxidant enzymes demonstrating its potential usefulness in phycoremediation of tannery effluent.

  3. Assessment of the impact of petroleum and petrochemical industries to the surrounding areas in Malaysia using mosses as bioindicator supported by multivariate analysis.

    PubMed

    Abdullah, Mohd Zahari Bin; Saat, Ahmad Bin; Hamzah, Zaini Bin

    2012-06-01

    Biomonitoring of multi-element atmospheric deposition using terrestrial moss is a well-established technique in Europe. Although the technique is widely known, there were very limited records of using this technique to study atmospheric air pollution in Malaysia. In this present study, the deposition of 11 trace metals surrounding the main petroleum refinery plant in Kerteh Terengganu (eastern part of peninsular Malaysia) has been evaluated using two local moss species, namely Hypnum plumaeforme and Taxithelium instratum as bioindicators. The study was also done by means of observing whether these metals are attributed to work related to oil exploration in this area. The moss samples have been collected at 30 sampling stations in the vicinity of the petrochemical industrial area covering up to 15 km to the south, north, and west in radius. The contents of heavy metal in moss samples were analyzed by energy dispersive x-ray fluorescence technique. Distribution of heavy metal content in all mosses is portrayed using Surfer software. Areas of the highest level of contaminations are highlighted. The results obtained using the principal components analysis revealed that the elements can be grouped into three different components that indirectly reflected three different sources namely anthropogenic factor, vegetation factor, and natural sources (soil dust or substrate) factor. Heavy metals deposited mostly in the distance after 9 km onward to the western part (the average direction of wind blow). V, Cr, Cu, and Hg are believed to have originated from local petrochemical-based industries operated around petroleum industrial area.

  4. Effluent treatment in the textile industry: Dyes. (Latest citations from World Textile abstracts). Published Search

    SciTech Connect

    1995-09-01

    The bibliography contains citations concerning the treatment and reuse of textile industry effluents containing dyes. The citations explore bacteria that absorb dyes, neutralization of dye effluents, decolorization by ozonization or ultraviolet radiation, flocculation treatment, and dye absorption methods and materials. Membrane treatment, electrolysis, and ultrafiltration methods of removing dyes from wastewater are considered, as well as reuse of dye-containing effluents. Textile effluents that do not contain dyes are discussed in another bibliography.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  5. Effluent treatment in the textile industry: Dyes. (Latest citations from World Textile abstracts). Published Search

    SciTech Connect

    Not Available

    1993-06-01

    The bibliography contains citations concerning the treatment and reuse of textile industry effluents containing dyes. The citations explore bacteria that absorb dyes, neutralization of dye effluents, decolorization by ozonization or ultraviolet radiation, flocculation treatment, and dye absorption methods and materials. Membrane treatment, electrolysis, and ultrafiltration methods of removing dyes from wastewater are considered, as well as reuse of dye-containing effluents. Textile effluents that do not contain dyes are discussed in another bibliography. (Contains 250 citations and includes a subject term index and title list.)

  6. Effluent treatment in the textile industry: Dyes. (Latest citations from World Textile Abstracts). Published Search

    SciTech Connect

    Not Available

    1992-06-01

    The bibliography contains citations concerning the treatment and reuse of textile industry effluents containing dyes. The citations explore bacteria that absorb dyes, neutralization of dye effluents, color removal by ozonization and by treatment with manganese solid waste, flocculation treatment, and dye absorption methods and materials. Membrane treatment, electrolysis, and ultrafiltration methods of removing dyes from wastewater are considered, as well as reuse of dye-containing effluents. Textile effluents that do not contain dyes are discussed in another bibliography. (Contains a minimum of 244 citations and includes a subject term index and title list.)

  7. Development of biological oxygen demand biosensor for monitoring the fermentation industry effluent.

    PubMed

    Verma, Neelam; Singh, Ashish Kumar

    2013-01-01

    A biosensor was developed for the determination of BOD value of fermentation industry effluent. The developed biosensor was fabricated by immobilizing the microbial consortium on cellulose acetate (CA) membrane in close proximity to a DO probe electrode. The microbial consortium was harvested from the fermentation industry effluent. The BOD biosensor was calibrated by using a solution containing the equivalent amount of glucose/glutamic acid (GGA) as a standard sample solution. The response time was optimized by immobilizing different concentrations of cell biomass on CA membrane. Once the response time was optimized, it was used for determination of BOD of fermentation industry effluent. For analysis of fermentation industry effluent, the response time was observed 7 minutes with detection limit 1 mg/L. Good linear range with GGA standard solution was observed, R (2) 0.99 with relative standard deviation (RSD) <%. The observed BOD value by biosensor showed a good comparison with the conventional method for the determination of BOD.

  8. Removal of heavy metal from industrial effluents using Baker's yeast

    NASA Astrophysics Data System (ADS)

    Ferdous, Anika; Maisha, Nuzhat; Sultana, Nayer; Ahmed, Shoeb

    2016-07-01

    Bioremediation of wastewater containing heavy metals is one of the major challenges in environmental biotechnology. Heavy metals are not degraded and as a result they remain in the ecosystem, and pose serious health hazards as it comes in contact with human due to anthropogenic activities. Biological treatment with various microorganisms has been practiced widely in recent past, however, accessing and maintaining the microorganisms have always been a challenge. Microorganisms like Baker's yeast can be very promising biosorbents as they offer high surface to volume ratio, large availability, rapid kinetics of adsorption and desorption and low cost. The main aim of this study is to evaluate the applicability of the biosorption process using baker's yeast. Here we present an experimental investigation of biosorption of Chromium (Cr) from water using commercial Baker's Yeast. It was envisaged that yeast, dead or alive, would adsorb heavy metals, however, operating parameters could play vital roles in determining the removal efficiency. Parameters, such as incubation time, pH, amount of biosorbent and heavy metal concentration were varied to investigate the impacts of those parameters on removal efficiency. Rate of removal was found to be inversely proportional to the initial Cr (+6) concentrations but the removal rate per unit biomass was a weakly dependent on initial Cr(+6) concentrations. Biosorption process was found to be more efficient at lower pH and it exhibited lower removal with the increase in solution pH. The optimum incubation time was found to be between 6-8 hours and optimum pH for the metal ion solution was 2. The effluents produced in leather industries are the major source of chromium pollution in Bangladesh and this study has presented a very cost effective yet efficient heavy metal removal approach that can be adopted for such kind of wastewater.

  9. Effect of soda ash industry effluent on protein content of two green seaweeds.

    PubMed

    Jadeja, R N; Tewari, A

    2008-03-01

    The aim of the present study is to check the effect of soda ash industry effluent on the protein content of the seaweed Ulva faciata and Chaetomorpha antennina. Study shows that the effluent has positive effect on the protein content of the alga and thus these species can be used to reduce the effect of soda ash industry pollution because the rise of up to 35% of protein level is found in these species of alga due to uptake of polluted water. Thus, these seaweeds can be cultivated on a large scale in the effluent affected region and thus clean the environment while getting the proteinous food as by product.

  10. Bioremediation of a complex industrial effluent by biosorbents derived from freshwater macroalgae.

    PubMed

    Kidgell, Joel T; de Nys, Rocky; Hu, Yi; Paul, Nicholas A; Roberts, David A

    2014-01-01

    Biosorption with macroalgae is a promising technology for the bioremediation of industrial effluents. However, the vast majority of research has been conducted on simple mock effluents with little data available on the performance of biosorbents in complex effluents. Here we evaluate the efficacy of dried biomass, biochar, and Fe-treated biomass and biochar to remediate 21 elements from a real-world industrial effluent from a coal-fired power station. The biosorbents were produced from the freshwater macroalga Oedogonium sp. (Chlorophyta) that is native to the industrial site from which the effluent was sourced, and which has been intensively cultivated to provide a feed stock for biosorbents. The effect of pH and exposure time on sorption was also assessed. These biosorbents showed specificity for different suites of elements, primarily differentiated by ionic charge. Overall, biochar and Fe-biochar were more successful biosorbents than their biomass counterparts. Fe-biochar adsorbed metalloids (As, Mo, and Se) at rates independent of effluent pH, while untreated biochar removed metals (Al, Cd, Ni and Zn) at rates dependent on pH. This study demonstrates that the biomass of Oedogonium is an effective substrate for the production of biosorbents to remediate both metals and metalloids from a complex industrial effluent.

  11. Bioremediation of a Complex Industrial Effluent by Biosorbents Derived from Freshwater Macroalgae

    PubMed Central

    Kidgell, Joel T.; de Nys, Rocky; Hu, Yi; Paul, Nicholas A.; Roberts, David A.

    2014-01-01

    Biosorption with macroalgae is a promising technology for the bioremediation of industrial effluents. However, the vast majority of research has been conducted on simple mock effluents with little data available on the performance of biosorbents in complex effluents. Here we evaluate the efficacy of dried biomass, biochar, and Fe-treated biomass and biochar to remediate 21 elements from a real-world industrial effluent from a coal-fired power station. The biosorbents were produced from the freshwater macroalga Oedogonium sp. (Chlorophyta) that is native to the industrial site from which the effluent was sourced, and which has been intensively cultivated to provide a feed stock for biosorbents. The effect of pH and exposure time on sorption was also assessed. These biosorbents showed specificity for different suites of elements, primarily differentiated by ionic charge. Overall, biochar and Fe-biochar were more successful biosorbents than their biomass counterparts. Fe-biochar adsorbed metalloids (As, Mo, and Se) at rates independent of effluent pH, while untreated biochar removed metals (Al, Cd, Ni and Zn) at rates dependent on pH. This study demonstrates that the biomass of Oedogonium is an effective substrate for the production of biosorbents to remediate both metals and metalloids from a complex industrial effluent. PMID:24919058

  12. Biomanagement of petrochemical sludge using an exotic earthworm Eudrilus eugineae.

    PubMed

    Banu, J Rajesh; Esakkiraj, S; Nagendran, R; Logakanthi, S

    2005-01-01

    Petrochemical industry have severe problem in disposing effluent and semisolid sludge despite repeated recycling. It requires further treatment prior to disposal of sludge. In recent years biological treatment methods received much attention and considered as an efficient low-cost treatment. One such method is vermiculture treatment The end product of vermicompost is rich in essential micro and macronutrients along with microorganisms in a very simple form. Adding cast, not only improves the soil structure and fertility but also leads to improvement in overall plant growth and thus increase their yield. The present study was carried out to dispose the petrochemical sludge biologically using an exotic earthworm Eudrilus eugineae. The petrochemical sludge at various concentrations 25, 50 and 75% were subjected to vermicomposting treatment for a period of 60 days. During the period of study, data were collected on life form of earthworm and chemical analysis of the sludge before and after treatment. The microbial analysis was carried out fortnightly. The results indicate that 25 and 50% concentration of sludge was ideal for the vermicomposting, whereas the higher concentration inhibits the vermicomposting.

  13. Remediation System Evaluation, Mattiace Petrochemical Superfund Site

    EPA Pesticide Factsheets

    The Mattiace Petrochemical Superfund Site, located in an industrial area near the harbor of Glen Cove, isapproximately 1.9 acres and has extensive soil and groundwater contamination of volatile organiccompounds stemming from the operations of...

  14. Pathogens Assessment in Reclaimed Effluent Used for Industrial Crops Irrigation

    PubMed Central

    Al-Sa’ed, R.

    2007-01-01

    Reuse of treated effluent is a highly valued water source in Palestine, however with limited success due to public health concerns. This paper assesses the potential pathogens in raw, treated and reclaimed wastewater at Albireh urban wastewater treatment facility, and provides scientific knowledge to update the Palestinian reuse guidelines. Laboratory analyses of collected samples over a period of 4 months have indicated that the raw wastewater from Albireh city contained high numbers of fecal coliforms and worm eggs while 31% of the samples were Salmonella positive. Treated effluent suitable for restricted irrigation demonstrated that the plant was efficient in removing indicator bacteria, where fecal coliforms and fecal streptococci removal averaged 99.64% and 93.44%, respectively. Although not disinfected, treated effluent was free of Salmonella and parasites, hence safe for restricted agricultural purposes. All samples of the reclaimed effluent and three samples of irrigated grass were devoid of microbial pathogens indicating a safe use in unrestricted agricultural utilization. Adequate operation of wastewater treatment facilities, scientific updating of reuse guidelines and launching public awareness campaigns are core factors for successful and sustainable large-scale wastewater reuse schemes in Palestine. PMID:17431318

  15. Application of ozonation process in industrial wastewaters: textile, kraft E1 and whey effluents.

    PubMed

    Assalin, M R; Almeida, E S; Rosa, M A; Moraes, S G; Duran, N

    2004-08-01

    A large variety of organic and inorganic compounds can be found in wastewater from industrial processes. In this work, Advanced Oxidative Processes (AOPs) have been applied for the control of water pollution and the ozonation of different effluents was investigated. Wastewater from textile, kraft E1 and cheese manufacturing processes were chosen as examples of industrial effluents. The efficiency of substrate mineralization has been comparatively analyzed by the decrease in total organic carbon (TOC), color, and toxicity. The results revealed that the ozonation process can be a method for decolorization of effluent, but it is not effective for TOC reduction. The whey effluent was the most recalcitrant wastewater for ozone treatment which produced no TOC removal.

  16. BOD5 estimation by using UV absorption and COD for rapid industrial effluent monitoring.

    PubMed

    Chevakidagarn, Panalee

    2007-08-01

    The study dealt with the method to predict the BOD(5) in effluent from industrial wastewater by using the UV absorption from two wavelengths, 260 and 550 nm. The interference from suspended solids was reduced. In the same time, COD was used as the secure value to calculate BOD(5). From the representative wastewater treatment plants, the estimated effluent BOD(5) of wastewater from the Para rubber industry showed an average error at +/-2.97 mg/l. While it was at +/-3.31 mg/l, for frozen seafood industry. The simple mathematic equations in this study gave the assuring method for BOD(5) estimation without time consuming.

  17. Removal of chromium from electroplating industry effluents by ion exchange resins.

    PubMed

    Cavaco, Sofia A; Fernandes, Sandra; Quina, Margarida M; Ferreira, Licínio M

    2007-06-18

    Effluent discharged from the chromium electroplating industry contains a large number of metals, including chromium, copper, nickel, zinc, manganese and lead. The ion exchange process is an alternative technique for application in the treatment of industrial wastewater containing heavy metals and indeed it has proven to be very promising in the removal and recovery of valuable species. The main objective of the present work is to evaluate the performance of commercial ion exchange resins for removing chromium trivalent from industrial effluents, and for this purpose two resins were tested: a chelating exchange resin (Diaion CR11) and a weak cationic resin (Amberlite IRC86). In order to evaluate the sorption capacity of the resins some equilibrium experiments were carried out, being the temperature and pH the main variables considered. The chromium solutions employed in the experiments were synthetic solutions and industrial effluents. In addition, a transient test was also performed as an attempt to understand the kinetic behaviour of the process.

  18. Integrated process for the removal of emulsified oils from effluents in the steel industry

    SciTech Connect

    Benito, J.M.; Rios, G.; Gutierrez, B.; Pazos, C.; Coca, J.

    1999-11-01

    Emulsified oils contained in aqueous effluents from cold-rolling mills of the steel industry can be effectively removed via an integrated process consisting of a coagulation/flocculation stage followed by ultrafiltration of the resulting aqueous phase. The effects of CaCl{sub 2}, NaOH, and lime on the stability of different industrial effluents were studied in the coagulation experiments. The flocculants tested were inorganic prehydrolyzed aluminum salts and quaternary polyamines. Ultrafiltration of the aqueous phase from the coagulation/flocculation stage was carried out in a stirred cell using Amicon PM30 and XM300 organic membranes. Permeate fluxes were measured for industrial effluents to which the indicated coagulants and flocculants had been added. Oil concentrations in the permeate were 75% lower than the limits established by all European Union countries. Complete regeneration of the membrane was accomplished with an aqueous solution of a commercial detergent.

  19. Identification of estrogenic activity change in sewage, industrial and livestock effluents by gamma-irradiation

    NASA Astrophysics Data System (ADS)

    Ahn, Byeong-Yong; Kang, Sung-Wook; Yoo, Jisu; Kim, Woong-Ki; Bae, Paek-Hyun; Jung, Jinho

    2012-11-01

    In this study, reduction of estrogenic activity in three different types of effluents from sewage, industrial and livestock wastewater treatment plants by gamma-irradiation was investigated using the yeast two-hybrid assay. After gamma-ray treatment at a dose of 10 kGy, estrogenic activities of sewage, industrial and livestock effluents decreased from 4.4 to 3.0, 1.5 to 1.0 and 16 to 9.9 ng-EEQ L-1, respectively. The substantial reduction of estrogenic activity in livestock effluent was attributable to the degradation of 17β-estradiol (E2), estrone (E1) and 17α-ethynylestradiol (EE2). Although bisphenol A (BPA) was found at the highest concentration in all effluents, its contribution to the estrogenic activity was not significant due to its low relative estrogenic potency. Meanwhile, the calculated estrogenic activity based on concentrations of E2, E1, EE2 and BPA in the effluents significantly differed from the measured ones. Overestimation may have resulted by dissolved organic matters in effluents inhibiting the estrogenic activity of E2, E1, EE2 and BPA, whereas underestimation was likely due to estrogenic by-products generated by gamma-irradiation.

  20. Dyeing Industry Effluent System as Lipid Production Medium of Neochloris sp. for Biodiesel Feedstock Preparation

    PubMed Central

    Ramamurthy, Dhandapani

    2014-01-01

    Microalgae lipid feedstock preparation cost was an important factor in increasing biodiesel fuel hikes. This study was conducted with the concept of implementing an effluent wastewater as lipid production medium for microalgae cultivation. In our study textile dyeing industry effluent was taken as a lipid production medium for Neochloris sp. cultivation. The changes in physicochemical analysis of effluent before and after Neochloris sp. treatment were recorded using standard procedures and AAS analysis. There was especially a reduction in heavy metal like lead (Pb) concentration from 0.002 ppm to 0.001 ppm after Neochloris sp. treatment. Neochloris sp. cultivated in Bold Basal Medium (BBM) (specific algal medium) produced 41.93% total lipid and 36.69% lipid was produced in effluent based cultivation. Surprisingly Neochloris sp. cultivated in effluent was found with enhanced neutral lipid content, and it was confirmed by Nile red fluorescence assay. Further the particular enrichment in oleic acid content of the cells was confirmed with thin layer chromatography (TLC) with oleic acid pure (98%) control. The overall results suggested that textile dyeing industry effluent could serve as the best lipid productive medium for Neochloris sp. biodiesel feedstock preparation. This study was found to have a significant impact on reducing the biodiesel feedstock preparation cost with simultaneous lipid induction by heavy metal stress to microalgae. PMID:25247176

  1. The feasibility of effluent trading in the oil and gas industry

    SciTech Connect

    Veil, J.A.

    1997-09-01

    In January 1996, the U.S. Environmental Protection Agency (EPA) released a policy statement endorsing wastewater effluent trading in watersheds, hoping to promote additional interest in the subject. The policy describes five types of effluent trades - point source/point source, point source/nonpoint source, pretreatment, intraplant, and nonpoint source/nonpoint source. This paper evaluates the feasibility of effluent trading for facilities in the oil and gas industry. The evaluation leads to the conclusion that potential for effluent trading is very low in the exploration and production and distribution and marketing sectors; trading potential is moderate for the refining sector except for intraplant trades, for which the potential is high. Good potential also exists for other types of water-related trades that do not directly involve effluents (e.g., wetlands mitigation banking). The potential for effluent trading in the energy industries and in other sectors would be enhanced if Congress amended the Clean Water Act (CWA) to formally authorize such trading.

  2. Incorporation of effluent trading in the city of Millville, NJ industrial pretreatment program

    SciTech Connect

    Taylor, S.T.; Dimino, M.A.; Tarasevich, A.

    1998-07-01

    The City of Millville, NJ recently updated its sewer use ordinance to incorporate technically defensible effluent limitations for industrial users of their POTW. These limitations were designed to protect the POTW from the potential inhibitory effects of pollutants in the waste stream, to protect the quality of the biosolids generated at the POTW, and to protect the quality of effluent discharged by the POTW. Along with these technically defensible limits, the City also developed a pollutant trading program which allows industries to set up agreements, under the City's supervision, which affect the allocation of pollutant loadings.

  3. Quantitative Estimation of Trace Chemicals in Industrial Effluents with the Sticklet Transform Method

    SciTech Connect

    Mehta, N C; Scharlemann, E T; Stevens, C G

    2001-04-02

    Application of a novel transform operator, the Sticklet transform, to the quantitative estimation of trace chemicals in industrial effluent plumes is reported. The sticklet transform is a superset of the well-known derivative operator and the Haar wavelet, and is characterized by independently adjustable lobe width and separation. Computer simulations demonstrate that they can make accurate and robust concentration estimates of multiple chemical species in industrial effluent plumes in the presence of strong clutter background, interferent chemicals and random noise. In this paper they address the application of the sticklet transform in estimating chemical concentrations in effluent plumes in the presence of atmospheric transmission effects. They show that this transform retains the ability to yield accurate estimates using on-plume/off-plume measurements that represent atmospheric differentials up to 10% of the full atmospheric attenuation.

  4. Algae in the assessment of industrial effluents: case study in Southern Bengal, India.

    PubMed

    Sen Sarkar, Neera; Bandyopadhyaya, Tuli; Datta, Shilpa; Das, Swapna

    2013-01-01

    This article is an assessment of the diversity of scum and bloom algae encountered in different industrial effluents of Southern Bengal, India, analyzing their habitat and correlating the habitat ecology of each study site. The study was conducted during the period May 2009 to August 2010. The study sites include effluent release areas of the dairy industry, a distillery unit, the leather industry, and an herbal medicine unit. Habitat were analyzed for pH, dissolved oxygen, biological oxygen demand, salinity, alkalinity, and phosphate and nitrate levels. Correlation coefficients were calculated for habitat parameters and algae encountered, showing a significant positive correlation between the richness of dominant and subdominant species with biochemical oxygen demand and salinity and a significant negative correlation with alkalinity, phosphates, and the nitrate-to-phosphate ratio. The richness of dominant and subdominant species in the effluent discharge areas show average values of 9 and 5 in the distillery unit, 8 and 5 in the dairy industry, 7 and 8 in the leather industry, and 5 and 9 in the herbal medicine unit, respectively, with a few (ranging between 3 and 7) co-occurring species in each case. The algal groups encountered were cyanobacteria, euglenophytes, chlorophytes, and bacillariophytes, showing Palmer's Algal Pollution Index of 15 in the dairy industry, 20 in the distillery unit, 28 in the leather industry, and 8 in the herbal medicine unit.

  5. Phase partitioning of trace metals in a contaminated estuary influenced by industrial effluent discharge.

    PubMed

    Wang, Wenhao; Wang, Wen-Xiong

    2016-07-01

    Severe trace metal pollution due to industrial effluents releases was found in Jiulong River Estuary, Southern China. In this study, water samples were collected during effluent release events to study the dynamic changes of environmental conditions and metal partitioning among dissolved, particulate and colloidal phases controlled by estuarine mixing. Intermittent effluent discharges during low tide caused decreasing pH and dissolved oxygen, and induced numerous suspended particulate materials and dissolved organic carbon to the estuary. Different behaviors of Cu, Zn, Ni, Cr and Pb in the dissolved fraction against the conservative index salinity indicated different sources, e.g., dissolved Ni from the intermittent effluent. Although total metal concentrations increased markedly following effluent discharges, Cu, Zn, Cr, Pb were predominated by the particulate fraction. Enhanced adsorption onto particulates in the mixing process resulted in elevated partitioning coefficient (Kd) values for Cu and Zn, and the particle concentration effect was not obvious under such anthropogenic impacts. Colloidal proportion of these metals (especially Cu and Zn) showed positive correlations with dissolved or colloidal organic carbon, suggesting the metal-organic complexation. However, the calculated colloidal partitioning coefficients were relatively constant, indicating the excess binding capacity. Overall, the intermittent effluent discharge altered the particulate/dissolved and colloidal/soluble phase partitioning process and may further influence the bioavailability and potential toxicity to aquatic organisms.

  6. Development of Biological Oxygen Demand Biosensor for Monitoring the Fermentation Industry Effluent

    PubMed Central

    Verma, Neelam; Singh, Ashish Kumar

    2013-01-01

    A biosensor was developed for the determination of BOD value of fermentation industry effluent. The developed biosensor was fabricated by immobilizing the microbial consortium on cellulose acetate (CA) membrane in close proximity to a DO probe electrode. The microbial consortium was harvested from the fermentation industry effluent. The BOD biosensor was calibrated by using a solution containing the equivalent amount of glucose/glutamic acid (GGA) as a standard sample solution. The response time was optimized by immobilizing different concentrations of cell biomass on CA membrane. Once the response time was optimized, it was used for determination of BOD of fermentation industry effluent. For analysis of fermentation industry effluent, the response time was observed 7 minutes with detection limit 1 mg/L. Good linear range with GGA standard solution was observed, R2 0.99 with relative standard deviation (RSD) <%. The observed BOD value by biosensor showed a good comparison with the conventional method for the determination of BOD. PMID:25969770

  7. Industrial effluents as a source of mercury contamination in terrestrial riparian vertebrates

    USGS Publications Warehouse

    Powell, G.V.N.

    1983-01-01

    Eight species of piscivorous and insectivorous birds and one species of bat collected along Virginia's North Fork of the Holston River contained elevated mercury residues. The ubiquitous occurrence of mercury in riparian insectivores implicates aquatic insects as a vehicle for spreading mercury contamination from one ecosystem to another and expands the ecological ramifications of mercury-contaminated industrial effluents.

  8. Hazard zoning around electric substations of petrochemical industries by stimulation of extremely low-frequency magnetic fields.

    PubMed

    Hosseini, Monireh; Monazzam, Mohammad Reza; Farhang Matin, Laleh; Khosroabadi, Hossein

    2015-05-01

    Electromagnetic fields in recent years have been discussed as one of the occupational hazards at workplaces. Hence, control and assessment of these physical factors is very important to protect and promote the health of employees. The present study was conducted to determine hazard zones based on assessment of extremely low-frequency magnetic fields at electric substations of a petrochemical complex in southern Iran, using the single-axis HI-3604 device. In measurement of electromagnetic fields by the single-axis HI-3604 device, the sensor screen should be oriented in a way to be perpendicular to the field lines. Therefore, in places where power lines are located in different directions, it is required to keep the device towards three axes of x, y, and z. For further precision, the measurements should be repeated along each of the three axes. In this research, magnetic field was measured, for the first time, in three axes of x, y, and z whose resultant value was considered as the value of magnetic field. Measurements were done based on IEEE std 644-1994. Further, the spatial changes of the magnetic field surrounding electric substations were stimulated using MATLAB software. The obtained results indicated that the maximum magnetic flux density was 49.90 μT recorded from boiler substation, while the minimum magnetic flux density of 0.02 μT was measured at the control room of the complex. As the stimulation results suggest, the spaces around incoming panels, transformers, and cables were recognized as hazardous zones of indoor electric substations. Considering the health effects of chronic exposure to magnetic fields, it would be possible to minimize exposure to these contaminants at workplaces by identification of risky zones and observation of protective considerations.

  9. Source fingerprint monitoring of air pollutants from petrochemical industry and the determination of their annual emission flux using open path Fourier transform infrared spectroscopy

    SciTech Connect

    Yih-Shiaw Huang; Shih-Yi Chang; Tai-Ly Tso

    1996-12-31

    Toxic air pollutants were investigated in several petrochemical industrial park in Taiwan using a movable open-path Fourier-transform infrared spectroscopy (FTIR). The results show the qualitative and quantitative analysis of emission gases from plants, and also provide the emission rates of various compounds. More than twenty compounds under usual operation were found from these industrial park. The concentration variation with time could be correlated exactly with the distances from the emission source along the wind direction. This means that by changing the measuring points the source of emission could be unambiguously identified. The point, area and line source (PAL) plume dispersion model has been applied to estimate the emission rate of either a point or an area source. The local atmospheric stability was determined by releasing an SF{sub 6} tracer. The origin of errors came mainly from the uncertainty of the source configuration and the variation of the meteorological condition. Through continuous measurement using a portable open-path Fourier transform infrared (POP-FTIR) spectrometer, the maximum value of the emission rate and the annual amount of emission could be derived. The emission rate of the measured toxic gases was derived by the model technique, and the results show that the emission amount is on the order of ten to hundred tons per year.

  10. Application of toxicity identification evaluation procedure to toxic industrial effluent in South Korea.

    PubMed

    Ra, Jin-Sung; Jeong, Tae-Yong; Lee, Sun-Hong; Kim, Sang Don

    2016-01-01

    Toxicity identification evaluation (TIE) was applied to the effluent from a pharmaceutical industrial complex, following the US EPA TIE guidelines. The whole effluent toxicity (WET) test found toxicity greater than 16toxic units (TU) in the effluent. Dissolved non-polar organic compounds were identified as the major contributor to the observed toxicity in the TIE manipulations in phases I and II. Among the 48 organic compounds identified, three compounds (i.e., acetophenone, benzoimide, and benzothiazole) were related to the pharmaceutical production procedure; however, no contribution to toxicity was predicted in the compounds. The results of the ECOSAR model, which predicts toxicity, indicated that the alkane compounds caused significant toxicity in the effluent. The toxicity test and heavy metal analysis, which used IC and ICP/MS, identified that particulate and heavy metals, such as Cu and Zn, contributed to the remaining toxicity, except dissolved organics. The results showed the applicability of the TIE method for predicting regional effluents produced by the industrial pharmaceutical complex in this study. Although the location was assumed to be affected by discharge of pharmaceutical related compounds in the river, no correlations were observed in the study. Based on the results, advanced treatment processes, such as activated carbon adsorption, are recommended for the wastewater treatment process in this location.

  11. Utilization of artificial recharged effluent as makeup water for industrial cooling system: corrosion and scaling.

    PubMed

    Wei, Liangliang; Qin, Kena; Zhao, Qingliang; Noguera, Daniel R; Xin, Ming; Liu, Chengcai; Keene, Natalie; Wang, Kun; Cui, Fuyi

    2016-01-01

    The secondary effluent from wastewater treatment plants was reused for industrial cooling water after pre-treatment with a laboratory-scale soil aquifer treatment (SAT) system. Up to a 95.3% removal efficiency for suspended solids (SS), 51.4% for chemical oxygen demand (COD), 32.1% for Cl(-) and 30.0% SO4(2-) were observed for the recharged secondary effluent after the SAT operation, which is essential for controlling scaling and corrosion during the cooling process. As compared to the secondary effluent, the reuse of the 1.5 m depth SAT effluent decreased the corrosion by 75.0%, in addition to a 55.1% decline of the scales/biofouling formation (with a compacted structure). The experimental results can satisfy the Chinese criterion of Design Criterion of the Industrial Circulating Cooling Water Treatment (GB 50050-95), and was more efficient than tertiary effluent which coagulated with ferric chloride. In addition, chemical structure of the scales/biofouling obtained from the cooling system was analyzed.

  12. Phenol degradation by yeasts isolated from industrial effluents.

    PubMed

    Santos, Vera L.; Linardi, Valter R.

    2001-08-01

    Yeast strains of the genera Aureobasidium, Rhodotorula and Trichosporon were isolated from stainless steel effluents and tested for their ability to utilize phenol as the sole carbon source. Fourteen strains grew in the presence of up to 10 mm phenol. Only the strain Trichosporon sp. LE3 was able to grow in the presence of up to 20 mm phenol. An inhibitory effect was observed at concentrations higher than 11 mm, resulting in reduction of specific growth rates. Phenol degradation was a function of strain, time of incubation and initial phenol concentration. All strains exhibited activity of catechol 1,2-dioxygenase and phenol hydroxylase in free cell extracts from cells grown on phenol, suggesting that catechol was oxidized by the ortho type of ring fission. Addition of glucose and benzoate reduced the phenol consumption rate, and both substrates were used simultaneously. Glucose concentrations higher than 0.25% inhibited the induction of phenol oxidation by non-proliferating cells and inhibited phenol oxidation by pre-induced cells.

  13. Effect of soda ash industry effluent on agarophytes, alginophytes and carrageenophyte of west coast of India.

    PubMed

    Jadeja, R N; Tewari, A

    2009-02-15

    This paper presents the results of a study on the impact of the effluent released by the soda ash industry on important red and brown macro algal species Gelidiella acerosa, Gracilaria corticata, Soleria robusta, Sargassum tenerrimum, Padina tetrastromatica in the tidal zone around Veraval, on the west coast of India, in the lowest low water tide of December 2003. The study examined the effect of effluent discharge on availability of biomass and percentage of phyco-colloids extraction such as agar, alginic acid and carrageen of these commercial seaweeds.

  14. Treatment of industrial effluents in constructed wetlands: challenges, operational strategies and overall performance.

    PubMed

    Wu, Shubiao; Wallace, Scott; Brix, Hans; Kuschk, Peter; Kirui, Wesley Kipkemoi; Masi, Fabio; Dong, Renjie

    2015-06-01

    The application of constructed wetlands (CWs) has significantly expanded to treatment of various industrial effluents, but knowledge in this field is still insufficiently summarized. This review is accordingly necessary to better understand this state-of-the-art technology for further design development and new ideas. Full-scale cases of CWs for treating various industrial effluents are summarized, and challenges including high organic loading, salinity, extreme pH, and low biodegradability and color are evaluated. Even horizontal flow CWs are widely used because of their passive operation, tolerance to high organic loading, and decolorization capacity, free water surface flow CWs are effective for treating oil field/refinery and milking parlor/cheese making wastewater for settlement of total suspended solids, oil, and grease. Proper pretreatment, inflow dilutions through re-circulated effluent, pH adjustment, plant selection and intensifications in the wetland bed, such as aeration and bioaugmentation, are recommended according to the specific characteristics of industrial effluents.

  15. Biomass in a petrochemical world

    PubMed Central

    Roddy, Dermot J.

    2013-01-01

    The world's increasingly voracious appetite for fossil fuels is driven by fast-growing populations and ever-rising aspirations for the lifestyles and standard of living exemplified in the developed world. Forecasts for higher electricity consumption, more comfortable living environments (via heating or cooling) and greater demand for transport fuels are well known. Similar growth in demand is projected for petrochemical-based products in the form of man-made fibres for clothing, ubiquitous plastic artefacts, cosmetics, etc. All drawing upon the same finite oil, gas and coal feedstocks. Biomass can, in principle, substitute for all of these feedstocks. Although ultimately finite, biomass resources can be expanded and renewed if this is a societal priority. This paper examines the projected growth of an energy-intensive international petrochemicals industry, considers its demand for both utilities and feedstocks, and considers the extent to which biomass can substitute for fossil fuels. The scope of this study includes biomass component extraction, direct chemical conversion, thermochemical conversion and biochemical conversion. Noting that the petrochemicals industry consumes around 10 per cent of the world's fossil fuels as feedstocks and almost as much again in utilities, various strategies for addressing future demand are considered. The need for long-term infrastructure and logistics planning is highlighted. PMID:24427511

  16. A Petrochemical Primer.

    ERIC Educational Resources Information Center

    Martin, Amy

    1991-01-01

    Informs the reader of the pervasiveness of petrochemicals in everyday life. Discusses the petroleum-to-petrochemical transformation at the refinery and issues related to how petroleum products will be utilized for fuel or nonfuel needs such as lubricants, computers, and medicine in the future. (MDH)

  17. Cleanup of industrial effluents containing heavy metals: a new opportunity of valorising the biomass produced by brewing industry.

    PubMed

    Soares, Eduardo V; Soares, Helena M V M

    2013-08-01

    Heavy metal pollution is a matter of concern in industrialised countries. Contrary to organic pollutants, heavy metals are not metabolically degraded. This fact has two main consequences: its bioremediation requires another strategy and heavy metals can be indefinitely recycled. Yeast cells of Saccharomyces cerevisiae are produced at high amounts as a by-product of brewing industry constituting a cheap raw material. In the present work, the possibility of valorising this type of biomass in the bioremediation of real industrial effluents containing heavy metals is reviewed. Given the auto-aggregation capacity (flocculation) of brewing yeast cells, a fast and off-cost yeast separation is achieved after the treatment of metal-laden effluent, which reduces the costs associated with the process. This is a critical issue when we are looking for an effective, eco-friendly, and low-cost technology. The possibility of the bioremediation of industrial effluents linked with the selective recovery of metals, in a strategy of simultaneous minimisation of environmental hazard of industrial wastes with financial benefits from reselling or recycling the metals, is discussed.

  18. Use of ozone and/or UV in the treatment of effluents from board paper industry.

    PubMed

    Amat, A M; Arques, A; Miranda, M A; López, F

    2005-08-01

    The aim of this work has been to study the viability of ozone and/or UV in the treatment of cardboard industry effluents. Several model compounds have been chosen for the experiments: guaicol, eugenol, glucose, acetate and butyrate. Significant differences in the ozonisation rates are observed between phenolic products coming from lignin (eugenol and guaiacol) and aliphatic compounds. Reactions fit in all cases a pseudo-first order kinetics and are influenced by the pH of the solution. Real effluents have also been tested, and the COD decrease has been found to depend on the fatty acids/phenols ratio. Finally, respirometric studies have shown an increase in the BODst in effluents subjected to a mild oxidation, while under stronger conditions a BODst decrease is observed.

  19. Potential of biohydrogen production from effluents of citrus processing industry using anaerobic bacteria from sewage sludge.

    PubMed

    Torquato, Lilian D M; Pachiega, Renan; Crespi, Marisa S; Nespeca, Maurílio Gustavo; de Oliveira, José Eduardo; Maintinguer, Sandra I

    2017-01-01

    Citrus crops are among the most abundant crops in the world, which processing is mainly based on juice extraction, generating large amounts of effluents with properties that turn them into potential pollution sources if they are improperly discarded. This study evaluated the potential for bioconversion of effluents from citrus-processing industry (wastewater and vinasse) into hydrogen through the dark fermentation process, by applying anaerobic sewage sludge as inoculum. The inoculum was previously heat treated to eliminate H2-consumers microorganisms and improve its activity. Anaerobic batch reactors were operated in triplicate with increasing proportions (50, 80 and 100%) of each effluent as substrate at 37°C, pH 5.5. Citrus effluents had different effects on inoculum growth and H2 yields, demonstrated by profiles of acetic acid, butyric acid, propionic acid and ethanol, the main by-products generated. It was verified that there was an increase in the production of biogas with the additions of either wastewater (7.3, 33.4 and 85.3mmolL(-1)) or vinasse (8.8, 12.7 and 13.4mmolL(-1)) in substrate. These effluents demonstrated remarkable energetic reuse perspectives: 24.0MJm(-3) and 4.0MJm(-3), respectively. Besides promoting the integrated management and mitigation of anaerobic sludge and effluents from citrus industry, the biohydrogen production may be an alternative for the local energy supply, reducing the operational costs in their own facilities, while enabling a better utilization of the biological potential contained in sewage sludges.

  20. Effects of industrial effluents, heavy metals, and organic solvents on mallard embryo development

    USGS Publications Warehouse

    Hoffman, D.J.; Eastin, W.C.

    1981-01-01

    Mallard eggs were externally exposed at 3 and 8 days of incubation to 7 different industrial effluents and to 7 different heavy metal, organic solvent, and petroleum solutions to screen for potential embryo-toxic effects. This route of exposure was chosen in order to simulate the transfer of pollutant from the plumage of aquatic birds to their eggs. Five of the effluents including mineral pigment, scouring effluent, sludge, and tannery effluent resulted in small but significant reductions in embryonic growth. Treatment with methyl mercury chloride solution of 50 ppm (Hg) impaired embryonic growth but much higher concentrations were required to affect survival and cause teratogenic effects. Oil used to suppress road dust was the most toxic of the pollutants tested and only 0.5 microliter/egg caused 60% mortality by 18 days of development. These findings, in combination with other studies suggest that petroleum pollutants, or effluents in combination with petroleum, may pose a hazard to birds' eggs when exposure is by this route.

  1. Effects of endocrine disrupting chemicals from leather industry effluents on male reproductive system.

    PubMed

    Kumar, Vikas; Majumdar, Chandrajeetbalo; Roy, Partha

    2008-09-01

    The leather tanning industry is characterized by the production of different kinds of effluents, generated in each step of leather processing. These effluents have various chemical compounds which may cause toxicity and endocrine disruption and are thus known as endocrine disrupting chemicals (EDC). This study was aimed to examine the androgenic potential of leather industry effluents collected from northern region of India. Hershberger assay data showed a significant increase (p<0.05) in the weight and structure of sex accessory tissues of castrated rats. Reverse transcriptase polymerase chain reaction (RT-PCR) analysis demonstrated a significant change (p<0.05) in the expression patterns of the major steroidogenic enzymes in adrenal and testes namely, cytochrome P450scc, 3beta-hydroxysteroid dehydrogenase, 17beta-hydroxysteroid dehydorgenase in castrated and intact rats. This was further supported by increased enzymatic activities measured in vitro spectrophotometrically. Serum hormone profile demonstrated a dose dependent increase in testicular and adrenal testosterone productions in intact and castrated rats, respectively. This was further supported by decreased level of gonadotrophic hormones (LH and FSH) in treated groups of animals. Further, the effluent treatment resulted in the development of hyperplasia in seminiferous tubules of testes in treated rats as evident from histopathological studies and about two-fold increases in daily sperm production. On analysis of water samples using GC-MS, it was found to contain various aromatic compounds (nonylphenol, hexaclrobenzene and several azo dyes) some of which independently demonstrated similar effects as shown by water samples. Our data suggests that the effluents from leather industry have potential EDC demonstrating androgenic activities.

  2. Effects of sludge retention time and biosurfactant on the treatment of polyaromatic hydrocarbon (PAH) in a petrochemical industry wastewater.

    PubMed

    Sponza, D T; Gok, O

    2011-01-01

    A laboratory-scale aerobic activated sludge reactor (AASR) system was employed to investigate the effects of sludge retention time (SRT) on the removal of three polyaromatic hydrocarbons (PAHs) with low benzene rings [(acenaphthene (ACT), fluorene (FLN) and phenanthrene (PHE)] and six PAHs with high benzene rings [(benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), indeno[1,2,3-cd]pyrene, dibenz[a,h]anthracene (DahA), benzo[g,h,i]perylene (BghiP)] in the presence of rhamnolipid (RD), emulsan (EM) and surfactine (SR) biosurfactants. This study showed that biosurfactants enhance the PAH biodegradation by increasing the biomass growth. RD exhibits a better performance than the other biosurfactants in the removal of the chemical oxygen demand (COD) and PAHs. At a RD concentration of 15 mg/L aerobic treatment for 25 days, SRT was enough to remove over 95% of total PAHs, and COD(dis). Under the same conditions 75% of COD originating from the inert organics (COD(inert)) and 96% of COD originating from the inert soluble microbial products (COD(imp)) were removed. At 25 days SRT and 15 mg/L RD concentration, about 88% of PAHs were biodegraded by the AASR system, 4% were accumulated in the system, 3% were released in the effluent, and 5% remained in the waste sludge.

  3. Application of lipase from Burkholderia cepacia in the degradation of agro-industrial effluent.

    PubMed

    Mello Bueno, Pabline Rafaella; de Oliveira, Tatianne Ferreira; Castiglioni, Gabriel Luis; Soares Júnior, Manoel Soares; Ulhoa, Cirano Jose

    2015-01-01

    This study aimed to analyze the physical and chemical characteristics of Amano PS commercial lipase - Burkholderia cepacia and lipase produced by Burkholderia cepacia strain ATCC 25416, in addition to studying the hydrolysis of agro-industrial effluent collected in a fried potato industry. The optimum temperature for increasing lipase activity was 37 °C. The temperature increase caused a decrease in thermostability of lipase, and the commercial lipase was less stable, with values of 10.5, 4.6 and 4.9%, respectively, lower than those obtained by lipase from strain ATCC 25416, at temperatures of 40, 50 and 60 °C. The enzymatic activity was higher in alkaline conditions, achieving better results at pH 8.0. The pH was the variable that most influenced the hydrolysis of triacylglycerides of the agro-industrial effluent, followed by enzyme concentration, and volume of gum arabic used in the reaction medium. Thus, it can be observed that the enzymatic hydrolytic process of the studied effluent presents a premising contribution to reduction of environmental impacts of potato chip processing industries.

  4. Effluent treatment in the paint and coating industry. (Latest citations from World Surface Coatings abstracts). Published Search

    SciTech Connect

    1996-02-01

    The bibliography contains citations concerning the analysis and treatment of effluents from the coating industry. Filters used for solvent adsorption and recovery, activated carbon adsorption of paint fumes, hydrogen peroxide treatment of wastes, effluent heat recovery, and biological treatments are discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  5. Solar photo-degradation of a pharmaceutical wastewater effluent in a semi-industrial autonomous plant.

    PubMed

    Expósito, Antonio J; Durán, Antonio; Monteagudo, José M; Acevedo, Alba

    2016-05-01

    An industrial wastewater effluent coming from a pharmaceutical laboratory has been treated in a semi-industrial autonomous solar compound parabolic collector (CPC) plant. A photo-Fenton process assisted with ferrioxalate has been used. Up to 79% of TOC can be removed in 2 h depending on initial conditions when treating an aqueous effluent containing up to 400 ppm of initial organic carbon concentration (TOC). An initial ratio of Fe(II)/TOC higher than 0.5 guarantees a high removal. It can be seen that most of TOC removal occurs early in the first hour of reaction. After this time, mineralization was very slow, although H2O2 was still present in solution. Indeed it decomposed to form oxygen in inefficient reactions. It is clear that remaining TOC was mainly due to the presence of acetates which are difficult to degrade.

  6. Industrial effluents and surface waters genotoxicity and mutagenicity evaluation of a river of Tucuman, Argentina.

    PubMed

    Gana, Jimena Mesón; Ordóñez, Roxana; Zampini, Catiana; Hidalgo, Margarita; Meoni, Susana; Isla, María Inés

    2008-07-15

    Assessment of water pollution and its effect upon river biotic communities and human health is indispensable to develop control and management strategies. The aim of this work was to ascertain the biotoxicity of water pollution in samples from industrial effluent discharge areas of Tucumán, Argentina by means of biological tests. Chemical characterization of the water pollution was verified by measuring dissolved oxygen concentration or levels of suspended matter and salts. Genotoxic/mutagenic potential was determined using Allium anaphase-telophase and Ames/Salmonella tests. All samples were phytotoxic and genotoxic for Allium roots. Micronucleus and anaphase aberrations were observed, but they did not show mutagenic effects on Salmonella typhimurium, TA98 and TA100 strains with and without metabolic activation (S9). Our results show the importance of testing industrial effluents by chemical methods and complementary biological tests to optimize the control policy on these environmental samples.

  7. Two fold modified chitosan for enhanced adsorption of hexavalent chromium from simulated wastewater and industrial effluents.

    PubMed

    Kahu, S S; Shekhawat, A; Saravanan, D; Jugade, R M

    2016-08-01

    Ionic solid (Ethylhexadecyldimethylammoniumbromide) impregnated phosphated chitosan (ISPC) was synthesized and applied for enhanced adsorption of hexavalent chromium from industrial effluent. The compound obtained was extensively characterized using instrumental techniques like FT-IR, TGA-DTA, XRD, SEM, BET and EDX. ISPC showed high adsorption capacity of 266.67mg/g in accordance with Langmuir isotherm model at pH 3.0 due to the presence of multiple sites which contribute for ion pair and electrostatic interactions with Cr(VI) species. The sorption kinetics and thermodynamic studies revealed that adsorption of Cr(VI) followed pseudo-second-order kinetics with exothermic and spontaneous behaviour. Applicability of ISPC for higher sample volumes was discerned through column studies. The real chrome plating industry effluent was effectively treated with total chromium recovery of 94%. The used ISPC was regenerated simply by dilute ammonium hydroxide treatment and tested for ten adsorption-desorption cycles with marginal decrease in adsorption efficiency.

  8. Estimating genetic potential of biofuel forest hardwoods to withstand metal toxicity in industrial effluent under dry tropical conditions.

    PubMed

    Manzoor, S A; Mirza, S N; Zubair, M; Nouman, W; Hussain, S B; Mehmood, S; Irshad, A; Sarwar, N; Ammar, A; Iqbal, M F; Asim, A; Chattha, M U; Chattha, M B; Zafar, A; Abid, R

    2015-08-14

    Biofuel tree species are recognized as a promising alternative source of fuel to conventional forms. Additionally, these tree species are also effective in accumulating toxic heavy metals present in some industrial effluents. In developing countries such as Pakistan, the use of biofuel tree species is gaining popularity not only for harvesting economical and environmentally friendly biofuel, but also to sequester poisonous heavy metals from industrial wastewater. This study was aimed at evaluating the genetic potential of two biofuel species, namely, Jatropha curcas and Pongamia pinnata, to grow when irrigated with industrial effluent from the Pak-Arab Fertilizer Factory Multan, Southern Punjab, Pakistan. The growth performances of one-year-old seedlings of both species were compared in soil with adverse physiochemical properties. It was found that J. curcas was better able to withstand the toxicity of the heavy metals present in the fertilizer factory effluent. J. curcas showed maximum gain in height, diameter, and biomass production in soil irrigated with 75% concentrated industrial effluent. In contrast, P. pinnata showed a significant reduction in growth in soil irrigated with more than 50% concentrated industrial effluent, indicating that this species is less tolerant to higher toxicity levels of industrial effluent. This study identifies J. curcas as a promising biofuel tree species that can be grown using industrial wastewater.

  9. Impact of industrial effluent on growth and yield of rice (Oryza sativa L.) in silty clay loam soil.

    PubMed

    Anwar Hossain, Mohammad; Rahman, Golum Kibria Muhammad Mustafizur; Rahman, Mohammad Mizanur; Molla, Abul Hossain; Mostafizur Rahman, Mohammad; Khabir Uddin, Mohammad

    2015-04-01

    Degradation of soil and water from discharge of untreated industrial effluent is alarming in Bangladesh. Therefore, buildup of heavy metals in soil from contaminated effluent, their entry into the food chain and effects on rice yield were quantified in a pot experiment. The treatments were comprised of 0, 25%, 50%, 75% and 100% industrial effluents applied as irrigation water. Effluents, initial soil, different parts of rice plants and post-harvest pot soil were analyzed for various elements, including heavy metals. Application of elevated levels of effluent contributed to increased heavy metals in pot soils and rice roots due to translocation effects, which were transferred to rice straw and grain. The results indicated that heavy metal toxicity may develop in soil because of contaminated effluent application. Heavy metals are not biodegradable, rather they accumulate in soils, and transfer of these metals from effluent to soil and plant cells was found to reduce the growth and development of rice plants and thereby contributed to lower yield. Moreover, a higher concentration of effluent caused heavy metal toxicity as well as reduction of growth and yield of rice, and in the long run a more aggravated situation may threaten human lives, which emphasizes the obligatory adoption of effluent treatment before its release to the environment, and regular monitoring by government agencies needs to be ensured.

  10. USE OF TOXICITY IDENTIFICATION EVALUATION METHODS TO CHARACTERIZE IDENTIFY, AND CONFIRM HEXAVALENT CHROMIUM TOXICITY IN AN INDUSTRIAL EFFLUENT

    EPA Science Inventory

    A toxicity identification evaluation (TIE) was conducted on effluent from a major industrial discharger. Initial monitoring showed slight chronic toxicity to Ceriodaphnia dubia; later sample showed substantial toxicity to C. dubia. Chemical analysis detected hexavalent chromium ...

  11. Investigation of endogenous biomass efficiency in the treatment of unhairing effluents from the tanning industry.

    PubMed

    Mlaik, Najwa; Bouzid, Jalel; Gharsallah, Neji; Belbahri, Lassad; Woodward, Steve; Mechichi, Tahar

    2009-08-01

    The tanning industry is of great economic importance worldwide; however, the potential environmental impact of tanning is significant. An important component in tanning is the removal of hair from the hide (unhairing), a process which generates considerable amounts of toxic effluent characterized by a high concentration of sulphur, rich mineral compounds, a high alkalinity and a high organic load. The purpose of the work described here was to evaluate the biodegradability of the unhairing wastewater by endogenous biomass in batch culture and continuous systems. The detoxification of the effluent was assessed by seed germination tests. The batch culture experiments showed that variations in COD, temperature and pH significantly affected the endogenous biomass growth and activity. The optimal treatment condition corresponded to an initial COD of 6 g/L, pH of 7 and 30 degrees C. Under continuous culture conditions, the reactor was fed for 48 days with the unhairing effluent. The optimal COD removal efficiency was 85.5%. During treatment, a transformation of sulphides into thiosulphates and then sulphates was also observed. The effect of untreated and treated unhairing wastewater on seed germination of different plant species was studied. The data suggested that treatment decreased the wastewater toxicity. Indeed, germination was inhibited when the effluent dilution was lower than 20% and 10% for treated and untreated wastewater, respectively.

  12. Sequential (anaerobic/aerobic) biological treatment of Dalaman SEKA pulp and paper industry effluent.

    PubMed

    Tezel, U; Guven, E; Erguder, T H; Demirer, G N

    2001-01-01

    In the pulp and paper industry, lignin and other color compounds are removed by chemical agents in bleaching process. Use of chlorine-based agents results in production of degradation products which include various chloro-organic derivatives. Since these new compounds are highly chlorinated, they cause a problem in the treatment of pulp and paper industry wastewaters. Chemical precipitation, lagooning, activated sludge, and anaerobic treatment are the processes used for treating pulp and paper effluents. Furthermore, a combination of these processes is also applicable. In this study, the effluent of Dalaman SEKA Pulp and Paper Industry was examined for its toxic effects on anaerobic microorganisms by anaerobic toxicity assay. Additionally, this wastewater was applied to a sequential biotreatment process consisting of an upflow anaerobic sludge blanket as the anaerobic stage and a once-through completely mixed stirred tank as the aerobic stage. Results indicated that: (1) Dalaman SEKA Pulp and Paper Industry wastewater exerted no inhibitory effects on the anaerobic cultures under the studied conditions, and (2) application of a sequential biological (anaerobic/aerobic) system to treat the Dalaman SEKA Pulp and Paper Industry wastewater resulted in approximately 91% COD and 58% AOX removals at a HRT of 5 and 6.54 h for anaerobic and aerobic, respectively.

  13. Investigating the differences between receptor and dispersion modeling for concentration prediction and health risk assessment of volatile organic compounds from petrochemical industrial complexes.

    PubMed

    Chen, Wei-Hsiang; Chen, Zheng-Bin; Yuan, Chung-Shin; Hung, Chung-Hsuang; Ning, Shu-Kuang

    2016-01-15

    Receptor and dispersion models both provide important information to help understand the emissions of volatile organic compounds (VOCs) and develop effective management strategies. In this study, differences between the predicted concentrations of two models and the associated impacts on the estimated health risks due to different theories behind two models were investigated. Two petrochemical industrial complexes in Kaohsiung city of southern Taiwan were selected as the sites for this comparison. Although the study compares the approaches by applying the methods to this specific area, the results are expected to be adopted for other areas or industries. Ninety-nine VOC concentrations at eight monitoring sites were analyzed, with the effects of diurnal temperature and seasonal humidity variations being considered. The Chemical Mass Balance (CMB) receptor model was used for source apportionment, while the Industrial Source Complex (ISC) dispersion model was used to predict the VOC concentrations at receptor sites. In the results of receptor modeling, 54% ± 11% and 49% ± 20% of the monitored concentrations were contributed by process emissions in two complexes, whereas the numbers increased to 78% ± 41% and 64% ± 44% in the results of dispersion modeling. Significant differences were observed between two model predictions (p < 0.05). The receptor model was more reproducible given the smaller variances of its results. The effect of seasonal humidity variation on two model predictions was not negligible. Similar findings were observed given that the cancer and non-cancer risks estimated by the receptor model were lower but more reproducible. The adverse health risks estimated by the dispersion model exceeded and were 75.3%-132.4% of the values estimated by using the monitored data, whereas the percentages were lowered to the range from 27.4% to 53.8% when the prediction was performed by using the receptor model. As the results of different models could be

  14. Effluent treatment in the textile industry: Excluding dyes. July 1983-September 1989 (Citations from World Textile Abstracts). Report for July 1983-September 1989

    SciTech Connect

    Not Available

    1989-12-01

    This bibliography contains citations concerning the treatment and reuse of textile industry effluents. Effluents that contain dyes are discussed in a separate bibliography. Recovery of lubricants, lye, sizing agents, polyvinyl alcohol, zinc, dirt, and heat from textile effluents are discussed. Air and water pollution control technology that is effective in treating textile effluents is discussed. Effluents from synthetic fiber manufacture and wool scouring processes are emphasized. (This updated bibliography contains 322 citations, 22 of which are new entries to the previous edition.)

  15. Use of recycling through medium size granular filters to treat small food processing industry effluents.

    PubMed

    Ménoret, C; Boutin, C; Liénard, A; Brissaud, F

    2002-01-01

    Currently there are no suitable wastewater treatment systems for effluents from small food processing industries (dairy, cheese, wine production). Such raw sewages are characterized by high organic matter concentrations (about 10 g COD L-1) and relatively low daily volumes (about 2 m3). An adaptation of attached-growth cultures on fine media processes, known to be easy and inexpensive to use, could fit both the technical and economical context of those industries. Coarser filter particle size distributions than those normally used allow a better aeration and reduce clogging risk. The transit time of the effluent through the porous filter materials is shortened and requires recycling to increase the contact time between the biomass and the substrate. A pilot plant was built to compare the efficiency of two kinds of filter materials, gravel (2-5 mm) and pozzolana (3-7 mm). Two measurement campaigns were undertaken on a full-scale unit dealing with cheese dairy effluents. Both pilot-scale and full-scale plants show high COD removal rates (> 95%). Pilot-scale experiments show that accumulation of organic matter leads to the clogging of the recycling filter. To prevent early clogging, a better definition of feeding cycles is needed.

  16. An ecotoxicological approach to assessing the impact of tanning industry effluent on river health.

    PubMed

    Mwinyihija, Mwinyikione; Meharg, Andy; Dawson, Julian; Strachan, Norval J C; Killham, Ken

    2006-04-01

    A study was conducted to investigate the sediment health and water quality of the River Sagana, Kenya, as impacted by the local tanning industry. Chemical analysis identified the main chemical pollutants (pentachlorophenols and chromium) while a bioassay addressed pollutant bioavailability. The bioassay, exploiting the luminescence response of a lux marked bacterial biosensor, was coupled to a dehydrogenase and Dapnia magna test to determine toxicity effects on sediments. Results highlighted the toxicity of the tannery effluent to the sediments at the point of discharge (64% of control bioluminescence) with gradual improvement downstream. There was a significant increase in dehydrogenase downstream, with the enzyme activity attaining a peak at 600 m, also indicating a gradual reduction of toxicity. Biological oxygen demand (19.56 mg L(-1)) dissolved oxygen (3.97 mg L(-1)) and high lethal dose value (85%) of D. magna also confirmed an initial stress at the point of discharge and recovery downstream. Optical density of surface water demonstrated an increase in suspended particulates and colour after the discharge point, eventually decreasing beyond 400 m. In conclusion, the study highlighted the importance of understanding the biogeochemistry of river systems impacted by industries discharging effluent into them and the invaluable role of a biosensor-based ecotoxicological approach to address effluent hazards, particularly in relation to river sediments.

  17. Economic analysis of effluent limitation guidelines and standards for the centralized waste treatment industry

    SciTech Connect

    Wheeler, W.

    1998-12-01

    This report estimates the economic and financial effects and the benefits of compliance with the proposed effluent limitations guidelines and standards for the Centralized Waste Treatment (CWT) industry. The Environmental Protection Agency (EPA) has measured these impacts in terms of changes in the profitability of waste treatment operations at CWT facilities, changes in market prices to CWT services, and changes in the quantities of waste management at CWT facilities in six geographic regions. EPA has also examined the impacts on companies owning CWT facilities (including impacts on small entities), on communities in which CWT facilities are located, and on environmental justice. EPA examined the benefits to society of the CWT effluent limitations guidelines and standards by examining cancer and non-cancer health effects of the regulation, recreational benefits, and cost savings to publicly owned treatment works (POTWs) to which indirect-discharging CWT facilities send their wastewater.

  18. Energy saving membrane treatment of high organic load industrial effluents: from lab to pilot scale.

    PubMed

    Lopes, Mafalda Pessoa; Xin, Gang; Crespo, João G

    2013-12-15

    In this study, a nanofiltration unit was implemented at an industrial site, for the treatment of industrial wastewater generated during rubber tubing extrusion. The aim was to reduce the energy input required, while assuring a final effluent quality that meets the requirements of environmental legislation. In a first stage, two membrane process treatments, ultrafiltration and nanofiltration, were evaluated at laboratory scale in order to assess the rejection of pollutants and maximise permeate throughput. Permeate generated from nanofiltration using either an NF90 or an NF270 membrane were shown to meet the effluent discharge requirements (<2000 mg COD/l). The less restrictive membrane, NF270, was chosen for study in a pilot plant at the industrial site, due to its higher membrane permeability. The pilot nanofiltration unit was integrated into the treatment plant operation aiming at optimising the process in terms of the efficiency of pollutant removal with minimal energy input. A feasibility study was performed for this case-study and it was concluded that the energy expenditure of the new process represents only 62% of the current energy consumption of the treatment plant. The proposed solution in this work may be retrofitted to full scale wastewater treatment processes, and may be applicable to industries that employ similar manufacturing processes, and face similar difficulties.

  19. Dangerous and cancer-causing properties of products and chemicals in the oil refining and petrochemical industry: Part 5--Asbestos-caused cancers and exposure of workers in the oil refining industry

    SciTech Connect

    Mehlman, M.A. )

    1991-01-01

    In the oil refining and petrochemical industries exposure to cancer-causing asbestos particles, especially during equipment repair and maintenance, is very high. Up to 90% of workers in the oil refining industry had direct and/or indirect contact with asbestos, and more than half of this contact occurred without the use of any kind of precaution, thus these workers are in high risk of developing lung cancer and mesothelioma, both fatal diseases. The hazards include: inadequate health and safety training for both company personnel and workers, failure to inform about the dangers and diseases (cancers) resulting from exposure to asbestos; excessive use of large numbers of untrained and uninformed contract workers; lack of use of protective equipment; and archaeological approaches and responses to repairing asbestos breaks and replacement of asbestos in oil refining facilities. For a better understanding of practices and policies in the oil refining industry, refer to Rachel Scott's Muscle and Blood, in particular the chapter Oil (E.P. Dutton, New York, 1974), as well as to an editorial which appeared in the Oil and Gas Journal, April, 1968.

  20. Comparative toxicity of an effluent from a chlor-alkali industry and HgCl sub 2

    SciTech Connect

    Shaw, B.P.; Sahu, A.; Panigrahi, A.K. )

    1990-08-01

    Release of waste waters from industries severely affect aquatic flora and fauna. Effluents from industries involved in the production of pesticides, or from industries utilizing toxic substances in their production processes are of particular concern. One such industry, the chlor-alkali industry, utilizes mercury as a cathode in an electrolytic process. The present study reports the toxicity assessment of the effluent from a chlor-alkali factor, Jayshree Chemicals Ltd., Ganjam, Orissa. The reported production capacity of the plant is 50 tons of NaOH per day. The effluent discharged, 50,000 1 per day, contains mercury ranging up to 1.5 mg/l, much more than the permissible limit of 0.01 mg/l set by the Central Board for the Prevention and Control of Water Pollution, India. The effluent enters the Rushikulya River Estuary and finally the Bay of Bengal. This paper was also designed to determine whether the mercury present in the effluent was toxic or whether the toxicity involved some other parameters of the effluent as well.

  1. Transfer of hexabromocyclododecane from industrial effluents to sediments and biota: Case study in Cinca river (Spain)

    NASA Astrophysics Data System (ADS)

    Guerra, Paula; Cal, Agustina De La; Marsh, Göran; Eljarrat, Ethel; Barceló, Damià

    2009-05-01

    SummaryThis work is part of the research included in the European project AQUATERRA, focused on the study of different persistent organic pollutants (POPs) in different risk zones along the Ebro River basin. Within monitoring programmes, a high contaminated area was detected, located along the Cinca River, a tributary of Ebro River, downstream a heavily industrialized town (Monzón). Data showed a high hexabromocyclododecane (HBCD) contamination in this area. Our work included the analysis of sediments and biota, with special attention on aspects such as temporal trends, bioavailability and bioaccumulation of these contaminants. Moreover, an attempt of identification of source contamination was carried out, with the analysis of industrial effluents. The industry responsible of the contamination was identified.

  2. Impact of marble industry effluents on water and sediment quality of Barandu River in Buner District, Pakistan.

    PubMed

    Mulk, Shahi; Azizullah, Azizullah; Korai, Abdul Latif; Khattak, Muhammad Nasir Khan

    2015-02-01

    Industries play an important role in improving the living standard but at the same time cause several environmental problems. Therefore, it is necessary to evaluate the impact of industries on the quality of environment. In the present study, the impact of marble industry effluents on water and sediment quality of Barandu River in Buner District, Pakistan was evaluated. Water and sediment samples were collected at three different sampling sites (upstream, industrial, and downstream sites) from Barandu River and their physicochemical properties were inter-compared. In addition, different marble stones and mix water (wastewater) from marble industry were analyzed. The measured physicochemical parameters of river water including pH, electrical conductivity (EC), alkalinity, total hardness, Ca and Mg hardness, total dissolved solid (TDS), total suspended solids (TSS), sulfates (SO4 (2-)), sodium (Na(+)), potassium (K(+)), nitrites (NO2 (-)), nitrate (NO3 (-)), chloride (Cl(-)), calcium (Ca(2+)), and magnesium (Mg(2+)) were found to be significantly altered by effluent discharges of marble industries. Similarly, heavy metal concentrations in both water and sediments of the river were significantly increased by marble industry wastewater. It is concluded that large quantities of different pollutants are added to Barandu River due to direct disposal of marble industry effluents which degrades its quality. Therefore, it is recommended that direct disposal of marble industry wastewater should be banned and all effluents must be properly treated before discharging in the river water.

  3. Economic analysis of final effluent limitations guidelines and standards for the pharmaceutical manufacturing industry

    SciTech Connect

    1998-07-01

    This economic analysis (EA) examines compliance costs and economic impacts resulting from the US Environmental Protection Agency`s (EPA`s) Final Effluent Limitations Guidelines and Standards for the Pharmaceutical Manufacturing Industry Point Source Category. It also investigates the costs and impacts associated with an air rule requiring Maximum Achievable Control Technology (MACT) to control air emissions, both separately and together with the Final Pharmaceutical Industry Effluent Guidelines. The EA estimates the economic effects of compliance with both final rules in terms of total aggregate annualized costs of compliance, facility closures, impacts on firms (likelihood of bankruptcy and effects on profit margins), and impacts on new sources. The EA also investigates secondary impacts on employment and communities, foreign trade, specific demographic groups, and environmental justice. This report includes a Final Regulatory Flexibility Analysis (FRFA) detailing the impacts on small businesses within the pharmaceutical industry to meet the requirements of the Regulatory Flexibility Act (RFA), as amended by the Small Business Regulatory Enforcement Fairness Act (SBREFA). Finally, the EA presents a cost-benefit analysis to meet the requirements of Executive Order 12866 and the Unfunded Mandates Reform Act.

  4. Nutrient Loadings to Streams of the Continental United States from Municipal and Industrial Effluent

    USGS Publications Warehouse

    Maupin, M.A.; Ivahnenko, T.

    2011-01-01

    Data from the United States Environmental Protection Agency Permit Compliance System national database were used to calculate annual total nitrogen (TN) and total phosphorus (TP) loads to surface waters from municipal and industrial facilities in six major regions of the United States for 1992, 1997, and 2002. Concentration and effluent flow data were examined for approximately 118,250 facilities in 45 states and the District of Columbia. Inconsistent and incomplete discharge locations, effluent flows, and effluent nutrient concentrations limited the use of these data for calculating nutrient loads. More concentrations were reported for major facilities, those discharging more than 1million gallons per day, than for minor facilities, and more concentrations were reported for TP than for TN. Analytical methods to check and improve the quality of the Permit Compliance System data were used. Annual loads were calculated using "typical pollutant concentrations" to supplement missing concentrations based on the type and size of facilities. Annual nutrient loads for over 26,600 facilities were calculated for at least one of the three years. Sewage systems represented 74% of all TN loads and 58% of all TP loads. This work represents an initial set of data to develop a comprehensive and consistent national database of point-source nutrient loads. These loads can be used to inform a wide range of water-quality management, watershed modeling, and research efforts at multiple scales. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.

  5. Nutrient loadings to streams of the continental United States from municipal and industrial effluent?

    USGS Publications Warehouse

    Maupin, Molly A.; Ivahnenko, Tamara

    2011-01-01

    Data from the United States Environmental Protection Agency Permit Compliance System national database were used to calculate annual total nitrogen (TN) and total phosphorus (TP) loads to surface waters from municipal and industrial facilities in six major regions of the United States for 1992, 1997, and 2002. Concentration and effluent flow data were examined for approximately 118,250 facilities in 45 states and the District of Columbia. Inconsistent and incomplete discharge locations, effluent flows, and effluent nutrient concentrations limited the use of these data for calculating nutrient loads. More concentrations were reported for major facilities, those discharging more than 1 million gallons per day, than for minor facilities, and more concentrations were reported for TP than for TN. Analytical methods to check and improve the quality of the Permit Compliance System data were used. Annual loads were calculated using "typical pollutant concentrations" to supplement missing concentrations based on the type and size of facilities. Annual nutrient loads for over 26,600 facilities were calculated for at least one of the three years. Sewage systems represented 74% of all TN loads and 58% of all TP loads. This work represents an initial set of data to develop a comprehensive and consistent national database of point-source nutrient loads. These loads can be used to inform a wide range of water-quality management, watershed modeling, and research efforts at multiple scales.

  6. Advanced oxidation processes for treatment of effluents from a detergent industry.

    PubMed

    Martins, Rui C; Silva, Adrián M T; Castro-Silva, Sérgio; Garção-Nunes, Paulo; Quinta-Ferreira, Rosa M

    2011-07-01

    Ozonation, catalytic ozonation, Fenton's and heterogeneous Fenton-like processes were investigated as possible pretreatments of a low biodegradable and highly toxic wastewater produced by a detergent industry. The presence of a Mn-Ce-O catalyst in ozonation enhances the biodegradability and improves the degradation at low pH values. However, a high content of carbonyl compounds adsorbed on the recovered solid indicates some limitations for real-scale application. A commercial Fe2O3-MnOx catalyst shows higher activity as well as higher stability concerning carbon adsorption, but the leaching of metals is larger than for Mn-Ce-O. Regarding the heterogeneous Fenton-like route with an Fe-Ce-O catalyst, even though a high activity and stability are attained, the intermediates are less biodegradable than the original compounds, indicating that the resulting effluent cannot be conducted to an activated sludge post-treatment. The highest enhancement of effluent biodegradability is obtained with the classic homogeneous Fenton's process, with the BOD5/COD ratio increasing from 0.32 to 0.80. This process was scaled up and the treated effluent is now safely directed to a municipal wastewater treatment plant.

  7. Nutrient Loadings to Streams of the Continental United States from Municipal and Industrial Effluent1

    PubMed Central

    Maupin, Molly A; Ivahnenko, Tamara

    2011-01-01

    Abstract Data from the United States Environmental Protection Agency Permit Compliance System national database were used to calculate annual total nitrogen (TN) and total phosphorus (TP) loads to surface waters from municipal and industrial facilities in six major regions of the United States for 1992, 1997, and 2002. Concentration and effluent flow data were examined for approximately 118,250 facilities in 45 states and the District of Columbia. Inconsistent and incomplete discharge locations, effluent flows, and effluent nutrient concentrations limited the use of these data for calculating nutrient loads. More concentrations were reported for major facilities, those discharging more than 1 million gallons per day, than for minor facilities, and more concentrations were reported for TP than for TN. Analytical methods to check and improve the quality of the Permit Compliance System data were used. Annual loads were calculated using “typical pollutant concentrations” to supplement missing concentrations based on the type and size of facilities. Annual nutrient loads for over 26,600 facilities were calculated for at least one of the three years. Sewage systems represented 74% of all TN loads and 58% of all TP loads. This work represents an initial set of data to develop a comprehensive and consistent national database of point-source nutrient loads. These loads can be used to inform a wide range of water-quality management, watershed modeling, and research efforts at multiple scales. PMID:22457577

  8. A modular success story the Saudi petrochemical project

    SciTech Connect

    Kirven, J.B.; Swenson, C.R.

    1986-01-01

    The Saudi Petrochemical Company is referred to within this paper as ''Sadaf''. Sadaf is the phonetic spelling of the Arabic word for seashell and is a joint venture of Saudi Basic Industries Corporation (SABIC) and Pecten Arabian Ltd., an affiliate of Shell Oil Comapny, U.S.A. SABIC is a joint stock corporation responsible for the development of basic industries in the Kingdom in the petrochemicals, metals and fertilizers field.

  9. a Study for Remote Detection of Industrial Effluents' Effect on Rice Using Thermal Images

    NASA Astrophysics Data System (ADS)

    Dehnavi, S.; Abkar, A. A.; Maghsoudi, Y.; Dehnavi, E.

    2015-12-01

    Rice is one of the most important nutritious grains all over the world, so that only in some parts of Asia more than 300 million acres allocated for cultivating this product. Therefore, qualitative and quantitative management of this product is of great importance in commercial, political and financial viewpoints. Rice plant is very influenced by physical and chemical characteristics of irrigation water, due to its specific kind of planting method. Hence, chemically-polluted waters which received by plant can change in live plants and their products. Thus, a very high degree of treatment will be required if the effluent discharges to rice plants. Current waters receive a variety of land-based water pollutants ranging from industrial wastes to excess sediments. One of the most hazardous wastes are chemicals that are toxic. Some factories discharge their effluents directly into a water body. So, what would happen for rice plant or its product if this polluted water flow to paddies? Is there any remotely-based method to study for this effect? Are surface temperature distributions (thermal images) useful in this context? The first goal in this research is thus to investigate the effect of a simulated textile factory's effluent sample on the rice product. The second goal is to investigate whether the polluted plant can be identified by means of thermal remote sensing or not. The results of this laboratory research have proven that the presence of industrial wastewater cause a decrease in plant's product and its f-cover value, also some changes in radiant temperature.

  10. [AF + BAF for treating effluent in the sewage plant of the resin and chemical industry park].

    PubMed

    Tu, Yong; Liu, Wei-Jing; Zhang, Yao-Hui; Xu, Jun; Tang, Min; Chen, Yong; Bai, Yong-Gang

    2014-06-01

    The anaerobic filter (AF) and biological aerated filter (BAF) were employed to treat the effluent in a sewage plant of the resin and chemical industry park. The ceramsite was used in BAF. In this study, the influent COD was 200-300 mg x L(-1) and the pilot model scale was 2-4 L x d(-1). According to the results, the AF-BAF treatment had a good effect on organic wastewater. When the AF HRT was 24 h and BAF was 12 h, the removal of COD reached 73.4%, and that of NH4(+)-N reached 93.8%. From gas chromatography-mass spectrometry (GC-MS) and three-dimensional fluorescence analysis, it was found that small organic molecules and microbial metabolites could be removed effectively. However, there was no obviously effect on the removal of saturated alkane and nitrogenous heterocyclic compounds. From the denature gradient gel electrophoresis (DGGE) spectra analysis, it was shown that there were more kinds of microorganism in the sludge of the AF than in the up-flow anaerobic sludge bed (UASB), which indicates that the AF-BAF system is more effective on treating effluent in a sewage plant of the resin and chemical industry park.

  11. Decolorization of textile dye by Candida albicans isolated from industrial effluents.

    PubMed

    Vitor, Vivian; Corso, Carlos Renato

    2008-11-01

    The aim of the present work was to observe microbial decolorization and biodegradation of the Direct Violet 51 azo dye by Candida albicans isolated from industrial effluents and study the metabolites formed after degradation. C. albicans was used in the removal of the dye in order to further biosorption and biodegradation at different pH values in aqueous solutions. A comparative study of biodegradation analysis was carried out using UV-vis and FTIR spectroscopy, which revealed significant changes in peak positions when compared to the dye spectrum. Theses changes in dye structure appeared after 72 h at pH 2.50; after 240 h at pH 4.50; and after 280 h at pH 6.50, indicating the different by-products formed during the biodegradation process. Hence, the yeast C. albicans was able to remove the color substance, demonstrating a potential enzymatic capacity to modify the chemical structure of pigments found in industrial effluents.

  12. A strategy for the assessment of hazardous substances in industrial effluents (IDA).

    PubMed

    Reemtsma, T; Klinkow, N

    2004-01-01

    A strategy for the assessment of industrial wastewater discharges with regard to the major hazard parameters toxicity, persistence and bioaccumulation is presented. The modular design of the strategy named IDA (Industrial Discharge Assessment) allows us to successively determine the three hazard parameters. Starting with the parameter toxicity biological tests for acute and chronic as well as genotoxicity are performed. Next persistence in the aquatic environment is simulated by a biological degradation test. A method based on solid-phase extraction was developed to cover the parameter bioaccumulation by determination of the amount of potentially bioaccumulating substances. The strategy was applied to real wastewater samples to test its applicability. In one of the investigated discharges toxic and persistent but no potentially bioaccumulating substances were found to be present. The strategy IDA is generally applicable and provides reasonable results to allow for a deeper insight into the hazard potential of an effluent.

  13. Supporting data for identification of biosurfactant-producing bacteria isolated from agro-food industrial effluent.

    PubMed

    Fulazzaky, Mohamad Ali; Abdullah, Shakila; Salim, Mohd Razman

    2016-06-01

    The goal of this study was to identify the biosurfactant-producing bacteria isolated from agro-food industrial effluet. The identification of the potential bacterial strain using a polymerase chain reaction of the 16S rRNA gene analysis was closely related to Serratia marcescens with its recorded strain of SA30 "Fundamentals of mass transfer and kinetics for biosorption of oil and grease from agro-food industrial effluent by Serratia marcescens SA30" (Fulazzaky et al., 2015) [1]; however, many biochemical tests have not been published yet. The biochemical tests of biosurfactant production, haemolytic assay and cell surface hydrophobicity were performed to investigate the beneficial strain of biosurfactant-producing bacteria. Here we do share data collected from the biochemical tests to get a better understanding of the use of Serratia marcescens SA30 to degrade oil, which contributes the technical features of strengthening the biological treatment of oil-contaminated wastewater in tropical environments.

  14. Simultaneous methanogenesis and denitrification of pretreated effluents from a fish canning industry.

    PubMed

    Mosquera-Corral, A; Sánchez, M; Campos, J L; Méndez, R; Lema, J M

    2001-02-01

    A lab-scale hybrid upflow sludge bed-filter (USBF) reactor was employed to carry out methanogenesis and denitrification of the effluent from an anaerobic industrial reactor (EAIR) in a fish canning industry. The reactor was initially inoculated with methanogenic sludge and there were two different operational steps. During the first step (Step I: days 1-61), the methanogenic process was carried out at organic loading rates (OLR) of 1.0-1.25 g COD l-1 d-1 reaching COD removal percentages of 80%. During the second step (Step II: days 62-109) nitrate was added as KNO3 to the industrial effluent and the OLR was varied between 1.0 and 1.25 g COD l-1 d-1. Two different nitrogen loads of 0.10 and 0.22 g NO3(-)-N l-1 d-1 were applied and these led to nitrogen removal percentages of around 100% in both cases and COD removal percentages of around 80%. Carbon to nitrogen ratio (C:N) in the influent was maintained at 2.0 and eventually it was increased to 3.0, by means of glucose addition, to control the denitrification process. From these results it is possible to establish that wastewater produced in a fish canning industry can be used as a carbon source for denitrification and that denitrifying microorganisms were present in the initially methanogenic sludge. Biomass productions of 0.23 and 0.61 g VSS:g TOC fed for Steps I and II, respectively, were calculated from carbon global balances, showing an increase in biomass growth due to denitrification.

  15. Effect of soda ash industry effluent on bioaccumulation of metals by seaweeds of coastal region of Gujarat, India.

    PubMed

    Jadeja, R N; Tewari, A

    2007-08-17

    The bioaccumulation ability of five species of seaweeds to 15 metals was studied in the seawater polluted by the effluent of soda ash industry. The bioaccumulation of Al, Mn and Fe in these seaweeds increased continuously as distance increased from outfall. However, Padina tetrastromatica showed reverse trend. Quite a number of metals like Au, Co, Hg, Ni, Pb, Pt and Sn were not recorded from any species of seaweeds from all sampling stations. Cr was recorded in Gracillaria acerosa from control site only. Accumulation of Cu in Gracilaria corticata was maximum near effluent discharge point and least at control, whereas its accumulation in P. tetrastromatica was more at station with lower pollution (station-3) than higher polluted station (station-2). Seaweeds had different pattern of bioaccumulation to Cu and Ag under the influence of the effluent. The bioaccumulation of Cd in quite a number of species was in non-detectable range, however in case of red seaweed it was more under polluted condition and non-detectable in control. The biosequestering capacity of different seaweed to different metals and their suitability for bioremediation under the influence of effluent is discussed. Bioconcentration factor for different seaweed species from different distances from outfall has been computed and discussed. The undiluted soda ash industry effluent is characterized by very high pH, density, settleable solids, total dissolved solids, ammonia and nitrate. The specific gravity, density, total suspended solids and total dissolved solids decreased continuously from undiluted effluent to seawater affected up to 1 km.

  16. Effect of marble industry effluent on seed germination, post germinative growth and productivity of Zea mays L.

    PubMed

    Akbar, Fazal; Hadi, Fazal; Ullah, Zakir; Zia, Muhammad Amir

    2007-11-15

    A green house study was conducted at the University of Malakand, NWFP, Pakistan to evaluate the effect of marble industry effluent on soil pH, germination, post germinative growth and productivity of maize. The experiment was conducted in triplicate form for each treatment and tape water was used as control (T0). Effluents were diluted with tap water at concentration of 20% (T1), 40% (T2), 60% (T3), 80% (T4) and also used 100% (T5) concentration in 4 kg soil pot(-1) and plants were grown for 90 days. Results showed that there was a linear increase in pH of soil with increase in effluent concentration while germination, root length and stem girth was enhanced and found maximum at 40% concentration of effluent applied. The shoot length and root dry biomass was depressed as compared to control. It is concluded from the present study that marble industry effluent can be used as a fertilizer in low concentration especially for highly acidic soil but there is still need to carry out series of greenhouse and field trials to ascertain the fertilizer potentials of this effluent for maize crop.

  17. Advanced oxidation treatment of physico-chemically pre-treated olive mill industry effluent.

    PubMed

    Gomec, Cigdem Y; Erdim, Esra; Turan, Ilknur; Aydin, Ali F; Ozturk, Izzet

    2007-08-01

    In this study, the applicability of physico-chemical methods was investigated for the pre-treatment of the olive mill effluents prior to the discharge into the common sewerage ending with a municipal wastewater treatment plant. The samples were taken from an olive oil industry operated as three-phase process located in Turkey. Various pre-treatment methods including acid craking, polyelectrolyte and lime additions were applied. Advanced oxidation study using Fenton's process was also investigated following pre-treatment by acid cracking and cationic polyelectrolyte. Acid cracking alone gave satisfactory treatment efficiencies and polyelectrolite additions to the acid-cracked samples enhanced treatment efficiency. Since a complete treatment plant is available at the end of the sewer system, results indicated that the effluents of the investigated industry could be discharged into the municipal sewerage in the case of total chemical oxygen demand (COD(tot)), suspended solid (SS) and volatile suspended solid (VSS) concentrations according to the Turkish Water Pollution Control Regulation after pre-treatment with 5 ppm anionic polyelectrolyte following acid cracking. The minimum COD(tot), SS and VSS removals were observed when raw wastewater was pre-treated with lime and the discharge standards to the municipal sewer system could not be met. Advanced oxidation with Fenton's process was applied after acid cracking and cationic polyelectrolyte treatment in order to investigate further reduction in chemical oxygen demand (COD) concentration for minimizing the influence of this industrial discharge on the existing municipal wastewater treatment plant. Results indicated that COD(tot) removal increased up to 89% from 74% after Fenton's oxidation for the acid cracked samples in which cationic polyelectrolite (10 ppm) was added.

  18. Low effluent processing in the pulp and paper industry: Electrodialysis for continuous selective chloride removal

    SciTech Connect

    Pfromm, P.H.

    1997-12-01

    Pollution prevention is currently a major focus of the United States pulp and paper industry. Significant process changes are inevitable to implement low effluent processing. The kraft pulping process is prevalent for the production of wood pulp. About 50 million tons of wood pulp are produced annually in the United States alone using the kraft process. Water consumption is currently roughly between 30 and 200 m{sup 3} of water per ton of air dry bleached kraft pulp. In-process recycling of water is now being implemented by many mills to reduce the use of increasingly scarce water resources and to reduce the need for waste-water treatment. Mass balance considerations and industrial experience show that nonprocess elements, which are detrimental to the kraft process, such as chloride and potassium, will quickly build up once water use is significantly reduced. High concentrations of chloride and potassium can cause corrosion and lead to more frequent mill shutdowns due to fouling of heat exchanger surfaces in the kraft recovery furnace. Electrodialysis will monovalent selective anion and cation exchange membranes was explored here to selectively remove chlorine as sodium and potassium chloride from a feed stream with very high ionic strength. Experiments with model solutions and extended tests with the actual pulp mill materials were performed. Very good selectivities and current efficiencies were observed for chloride over sulfate. The outstanding performance of the process with actual mill materials containing organic and inorganic contamination shows great promise for rapid transfer to the pilot scale. This work is an example of the usefulness of membrane separations as a kidney in low effluent industrial processing.

  19. Zero Discharge Performance of an Industrial Pilot-Scale Plant Treating Palm Oil Mill Effluent

    PubMed Central

    Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated “zero discharge” pilot-scale industrial plant comprising “pretreatment-anaerobic and aerobic process-membrane separation” was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer. PMID:25685798

  20. Identification of a new N-nitrosodimethylamine precursor in sewage containing industrial effluents.

    PubMed

    Kosaka, Koji; Asami, Mari; Ohkubo, Keiko; Iwamoto, Takuji; Tanaka, Yasuo; Koshino, Hiroyuki; Echigo, Shinya; Akiba, Michihiro

    2014-10-07

    N-Nitrosodimethylamine (NDMA), a potential human carcinogen, is known to be a disinfection byproduct of chloramination and ozonation. NDMA is formed during ozonation at water purification plants in the Yodo River basin, a major drinking water source in western Japan. An NDMA precursor, 1,1,5,5-tetramethylcarbohydrazide (TMCH) was identified in sewage containing industrial effluents via ultrahigh performance liquid chromatography-tandem mass spectrometry, and ultrahigh performance liquid chromatography-time-of-flight mass spectrometry, as well as nuclear magnetic resonance spectroscopy. The mean of the NDMA molar formation yield of TMCH upon ozonation in four water matrices was 140%. TMCH removal was low during biological treatment processes at a sewage treatment plant. The mean TMCH contribution to total NDMA precursors upon ozonation of the primary, secondary, and final effluents of the sewage treatment plant in January and February of 2014 was 43-72%, 51-72%, and 42-60%, respectively, while the contributions of 4,4'-hexamethylenebis(1,1-dimethylsemicarbazide) and 1,1,1',1'-tetramethyl-4,4'-(methylene-di-p-phenylene)disemicarbazide, two other known NDMA precursors, were limited to 0.6% and 6.9%, respectively. Thus, TMCH was identified as the primary precursor yielding NDMA upon ozonation in the Yodo River basin.

  1. Ultrafiltration/nanofiltration for the tertiary treatment of leather industry effluents.

    PubMed

    Streit, Katia F; Ferreira, Jane Zoppas; Bernardes, Andréa M; Norberta De Pinho, Maria

    2009-12-15

    Biologically treated effluents from the leather industry pose severe problems for the environment due in part to both the inorganic charge and the high nitrogen content associated with the organic charge. Pressure-driven membrane processes, namely ultrafiltration/nanofiltration (UF/NF) technology, were investigated for their selective retention of the organics and permeation of the inorganic fraction. Permeation experiments were carried out with two model solutions representative of a treated tannery effluent. UF and NF of these model solutions were assessed in terms of both their inorganic/organic fractionation capability and their permeation productivity. The UF membranes with MWCOs ranging from 10,000 to 1000 Da yield retentate streams enriched in organic compounds and permeate streams enriched in salts. Despite their high capacity for pure water permeation, they displayed low permeation fluxes, as the result of concentration polarization and fouling phenomena. NF 200 and NF 270 membranes associated fractionation capability with high permeation rates. Furthermore, these membranes demonstrated the highest permeate fluxes -30 kg/h/m(2) and 16 kg/h/m(2) for different model solutions, at the transmembrane pressure of 8 bar. Although these membranes had lower hydraulic permeabilities relative to the other membranes tested, they exhibited the best characteristics in terms of minimization of colloidal fouling.

  2. Zero discharge performance of an industrial pilot-scale plant treating palm oil mill effluent.

    PubMed

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated "zero discharge" pilot-scale industrial plant comprising "pretreatment-anaerobic and aerobic process-membrane separation" was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer.

  3. Glyphosate degradation by immobilized bacteria: field studies with industrial wastewater effluent.

    PubMed

    Hallas, L E; Adams, W J; Heitkamp, M A

    1992-04-01

    Immobilized bacteria have been shown in the laboratory to effectively remove glyphosate from wastewater effluent discharged from an activated sludge treatment system. Bacterial consortia in lab columns maintained a 99% glyphosate-degrading activity (GDA) at a hydraulic residence time of less than 20 min. In this study, a pilot plant (capacity, 45 liters/min) was used for a field demonstration. Initially, activated sludge was enriched for microbes with GDA during a 3-week biocarrier activation period. Wastewater effluent was then spiked with glyphosate and NH4Cl and recycled through the pilot plant column during start-up. Microbes with GDA were enhanced by maintaining the pH at less than 8 and adding yeast extract (less than 10 mg/liter). Once the consortia were stabilized, the column capacity for glyphosate removal was determined in a 60-day continuous-flow study. Waste containing 50 mg of glyphosate per liter was pumped at increasing flow rates until a steady state was reached. A microbial GDA of greater than 90% was achieved at a 10-min hydraulic residence time (144 hydraulic turnovers per day). Additional studies showed that microbes with GDA were recoverable within (i) 5 days of an acid shock and (ii) 3 days after a 21-day dormancy (low-flow, low-maintenance) mode. These results suggest that full-scale use of immobilized bacteria can be a cost-effective and dependable technique for the biotreatment of industrial wastewater.

  4. 88. ARAIII. "Petrochem" heater is hoisted over south exterior wall ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    88. ARA-III. "Petro-chem" heater is hoisted over south exterior wall of heater pit in GCRE reactor building (ARA-608). Printing on heater says, "Petro-chem iso-flow furnace; American industrial fabrications, inc." Camera facing north. January 7, 1959. Ineel photo no. 529-124. Photographer: Ken Mansfield. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  5. Economic impact analysis of effluent limitations and standards for plastics molding and forming industry. Final report

    SciTech Connect

    Not Available

    1984-12-01

    The U.S. Environmental Protection Agency issued effluent limitations and standards in December, 1984, for the Plastics Molding and Forming Industry. The report estimates the economic impacts associated with pollution control costs. Plant-specific treatment costs for 20 percent of the impacted plants are compared to estimated pre-tax plant income to assess the impact of treatment costs on plant liquidity. Then a closure analysis is performed, comparing the current salvage value of the plant's assets with the present value of the plant's cash flow plus the terminal value of its assets. The results are extrapolated to the 558 plants which, as direct dischargers, would be impacted. The results of this plant-level analysis are used to assess the indirect impacts of the regulation, e.g., price changes, unemployment and shifts, in the balance of foreign trade.

  6. Remotion of organic compounds of actual industrial effluents by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Sampa, M. H. O.; Duarte, C. L.; Rela, P. R.; Somessari, E. S. R.; Silveira, C. G.; Azevedo, A. L.

    1998-06-01

    Organic compounds has been a great problem of environmental pollution, the traditional methods are not effecient on removing these compounds and most of them are deposited to ambient and stay there for long time causing problems to the environment. Ionizing radiation has been used with success to destroy organic molecules. Actual industrial effluents were irradiated using IPEN's electron beam wastewater pilot plant to study organic compounds degradation. The samples were irradiated with and without air mixture by different doses. Irradiation treatment efficiency was evaluated by the Cromatography Gas Analyses of the samples before and after irradiation. The studied organic compounds were: phenol, chloroform, tetrachloroethylene (PCE), carbon tetrachloride, trichloroethylene (TCE), 1,1-dichloroethane, dichloromethane, benzene, toluene and xilene. A degradation superior to 80% was achieved for the majority of the compounds with air addition and 2kGy delivered dose condition. For the samples that were irradiated without air addition the degradation was higher.

  7. Dye removal from textile industrial effluents by adsorption on exfoliated graphite nanoplatelets: kinetic and equilibrium studies.

    PubMed

    Carvallho, Marilda N; da Silva, Karolyne S; Sales, Deivson C S; Freire, Eleonora M P L; Sobrinho, Maurício A M; Ghislandi, Marcos G

    2016-01-01

    The concept of physical adsorption was applied for the removal of direct and reactive blue textile dyes from industrial effluents. Commercial graphite nanoplatelets were used as substrate, and the quality of the material was characterized by atomic force and transmission electron microscopies. Dye/graphite nanoplatelets water solutions were prepared varying their pH and initial dye concentration. Exceptionally high values (beyond 100 mg/L) for adsorptive capacity of graphite nanoplatelets could be achieved without complicated chemical modifications, and equilibrium and kinetic experiments were performed. Our findings were compared with the state of the art, and compared with theoretical models. Agreement between them was satisfactory, and allowed us to propose novel considerations describing the interactions of the dyes and the graphene planar structure. The work highlights the important role of these interactions, which can govern the mobility of the dye molecules and the amount of layers that can be stacked on the graphite nanoplatelets surface.

  8. Application of Trapa bipinosa for the treatment of pulp and paper industry effluent.

    PubMed

    Kousar, Hina; Puttaiah, E T

    2009-09-01

    The ability of aquatic plants to absorb, translocate and concentrate metals has led to the development of various plant-based treatment systems. The potential to accumulate metals like iron, nickel, manganese and copper by Trapa bipinosa was assessed by subjecting them to different effluent concentrations of pulp and paper industry under laboratory conditions. Trapa showed the ability to accumulate substantial amounts of the metals during a short span of one week. When the plants were grown in different concentrations they caused significant reduction in various parameters like dissolved oxygen, biological oxygen demand, chemical oxygen demand, total alkalinity total hardness, chloride and sulphate. While there was an increase in biomass, no visible phytotoxic symptoms were shown by treated plants.

  9. Advanced water recycling through electrochemical treatment of effluent from dissolved air flotation unit of food processing industry.

    PubMed

    Yoo, Sukjoon; Hsieh, Jeffery S

    2010-01-01

    This study elucidates the feasibility of electrochemical treatment as a water recycling process in the dissolved air flotation (DAF) unit in the food industry. Effects of operation parameters such as current density, electrolysis time, initial pH of effluent, and mixing process were investigated on the removal of COD, TSS, and TDS of the DAF pretreated effluent. An increase of current density enhances the removal rates and reduces the electrolysis time to reach the maximum performance. The initial pH less than 7 and the addition of mixing process were proven to increase the efficiency of EC treatment. About 80% of COD, 100% of TSS, and 60% of TDS were successfully removed at 500 mA current for 1 hour of electrolysis. The final treated effluent was found to meet the discharge standard from the US Environmental Protection Agency. It was concluded that EC process could be effective as an advanced water resourcing technology in the food industry.

  10. Wastewater Treatment Costs and Outlays in Organic Petrochemicals: Standards Versus Taxes With Methodology Suggestions for Marginal Cost Pricing and Analysis

    NASA Astrophysics Data System (ADS)

    Thompson, Russell G.; Singleton, F. D., Jr.

    1986-04-01

    With the methodology recommended by Baumol and Oates, comparable estimates of wastewater treatment costs and industry outlays are developed for effluent standard and effluent tax instruments for pollution abatement in five hypothetical organic petrochemicals (olefins) plants. The computational method uses a nonlinear simulation model for wastewater treatment to estimate the system state inputs for linear programming cost estimation, following a practice developed in a National Science Foundation (Research Applied to National Needs) study at the University of Houston and used to estimate Houston Ship Channel pollution abatement costs for the National Commission on Water Quality. Focusing on best practical and best available technology standards, with effluent taxes adjusted to give nearly equal pollution discharges, shows that average daily treatment costs (and the confidence intervals for treatment cost) would always be less for the effluent tax than for the effluent standard approach. However, industry's total outlay for these treatment costs, plus effluent taxes, would always be greater for the effluent tax approach than the total treatment costs would be for the effluent standard approach. Thus the practical necessity of showing smaller outlays as a prerequisite for a policy change toward efficiency dictates the need to link the economics at the microlevel with that at the macrolevel. Aggregation of the plants into a programming modeling basis for individual sectors and for the economy would provide a sound basis for effective policy reform, because the opportunity costs of the salient regulatory policies would be captured. Then, the government's policymakers would have the informational insights necessary to legislate more efficient environmental policies in light of the wealth distribution effects.

  11. Decolorization and detoxification of Congo red and textile industry effluent by an isolated bacterium Pseudomonas sp. SU-EBT.

    PubMed

    Telke, Amar A; Joshi, Swati M; Jadhav, Sheetal U; Tamboli, Dhawal P; Govindwar, Sanjay P

    2010-04-01

    The 16S rRNA sequence and biochemical characteristics revealed the isolated organism as Pseudomonas sp. SU-EBT. This strain showed 97 and 90% decolorization of a recalcitrant dye, Congo red (100 mg l(-1)) and textile industry effluent with 50% reduction in COD within 12 and 60 h, respectively. The optimum pH and temperature for the decolorization was 8.0 and 40 degrees C, respectively. Pseudomonas sp. SU-EBT was found to tolerate the dye concentration up to 1.0 g l(-1). Significant induction in the activity of intracellular laccase suggested its involvement in the decolorization of Congo red. The metabolites formed after decolorization of Congo red, such as p-dihydroxy biphenyl, 8-amino naphthol 3-sulfonic acid and 3-hydroperoxy 8-nitrosonaphthol were characterized using FTIR and GC-MS. Phytotoxicity study revealed nontoxic nature of the degradation metabolites to Sorghum bicolor, Vigna radiata, Lens culinaris and Oryza sativa plants as compared to Congo red and textile industry effluent. Pseudomonas sp. SU-EBT decolorized several individual textile dyes, dye mixtures and textile industry effluent, thus it is a useful strain for the development of effluent treatment methods in textile processing industries.

  12. Effluent treatment in the textile industry: excluding dyes. January 1983-January 1989 (Citations from World Textile Abstracts). Report for January 1983-January 1989

    SciTech Connect

    Not Available

    1989-02-01

    This bibliography contains citations concerning the treatment and reuse of textile-industry effluents. Effluents that contain dyes are discussed in a separate bibliography. Recovery of lubricants, lye, sizing agents, polyvinyl alcohol, zinc, dirt, and heat from textile effluents are discussed. Air and water pollution control technology that is effective in treating textile effluents is discussed. Effluents from synthetic-fiber manufacture and wool-scouring processes are emphasized. (This updated bibliography contains 300 citations, 84 of which are new entries to the previous edition.)

  13. Evaluation of aquatic toxicities of chromium and chromium-containing effluents in reference to chromium electroplating industries.

    PubMed

    Baral, A; Engelken, R; Stephens, W; Farris, J; Hannigan, R

    2006-05-01

    This study evaluated aquatic toxicities of chromium and chromium-containing laboratory samples representative of effluents from chromium electroplating industries, and compared the aquatic environmental risks of hexavalent and trivalent chromium electroplating operations. Trivalent chromium electroplating has emerged as an acceptable alternative to hazardous hexavalent chromium electroplating. This process substitution has reduced the human health impact in the workplace and minimized the production of hazardous sludge regulated under the Resource Conservation and Recovery Act (RCRA). The thrust behind this research was to investigate whether trivalent chromium electroplating operations have lower adverse impacts on standardized toxicity test organisms. Ceriodaphnia dubia and Pimephales promelas were used to investigate toxicities of trivalent chromium (Cr (III)), hexavalent chromium (Cr (VI)), and industrial effluents. In agreement with previous studies, Cr (III) was found to be less toxic than Cr (VI). Despite having several organic and inorganic constituents in the effluents obtained from trivalent chromium plating baths, they exhibited less adverse effects to C. dubia than effluents obtained from hexavalent chromium electroplating baths. Thus, transition from hexavalent to trivalent chromium electroplating processes may be justified. However, because of the presence of organic constituents such as formate, oxalate, and triethylene glycol in effluents, trivalent chromium electroplating operations may face additional regulatory requirements for removal of total organic carbon.

  14. CRIER, a relative analysis tool for preliminary screening of complex industrial waste and effluents

    SciTech Connect

    Anderson, P.D.; Brucher, S.; Melanson, P.

    1994-12-31

    CRIER (Chemrisk, a Relative Index for Evaluating Risk), a Windows{trademark}-based program for the preliminary screening of potential risk to aquatic ecosystems, has been developed at the Center of Environmental Chemistry and Ecotoxicology (CECE) in Concordia. This tool, originally designed for environmental management government bodies, was designed to screen chemical compounds found in industrial aqueous effluents, for their potential to cause harm to some selected target species such as the rainbow trout (Oncorhynchus mykiss). This revised model will be applicable in both regulatory and industrial managements as an expert system that provides an assessment based on the most up-to-date toxicological information regarding each compound. Some major characteristics include the consideration of partitioning, plume effect, bioavailability and bioconcentration capacity in producing an evaluation of potential for harm to freshwater species. When parameters are empirically unavailable from the diverse databases, QSARs are used to produce theoretical preliminary estimates of the missing values. one aspect of the model allows consideration of the combined toxicity of organic congeners. Case studies are used in demonstrating the capacities of this model.

  15. Bacillus sp. strain DJ-1, potent arsenic hypertolerant bacterium isolated from the industrial effluent of India.

    PubMed

    Joshi, Dhaval N; Flora, S J S; Kalia, Kiran

    2009-07-30

    Arsenic hypertolerant bacterial cells were isolated from the common industrial effluent treatment plant, Vapi, India. Strain DJ-1 sustaining 400 mM, As (V) out of 16 bacterial strains was identified as Bacillus sp. strain DJ-1 through 16S rRNA ribotyping. The maximum arsenic accumulation of 9.8+/-0.5 mg g(-1) (dry weight) was observed during stationary phase of growth. Intracellular compartmentalization has shown 80% of arsenic accumulation in cytoplasm. The lack of arsC gene and arsenate reductase activity indicated that Bacillus sp. strain DJ-1 may lack classical ars operon and detoxification may be mediated through some novel mechanism. The arsenite binding protein was purified by affinity chromatography and characterized as DNA protection during starvation (DPS) protein by electrospray ionization mass spectrometry. The induction of DPS showed the adaptation of bacteria in arsenic stress condition and/or in detoxification mechanism, relies on its ability to bind with arsenic. These results indicate the hypertolerance with higher intracellular accumulation of arsenic by Bacillus sp. strain DJ-1, which could be mediated by DPS protein thus signifying this organism is a potential candidate for the removal of arsenic from industrial wastewater, which needs further study.

  16. Transcriptional response of stress-regulated genes to industrial effluent exposure in the cockle Cerastoderma glaucum.

    PubMed

    Karray, Sahar; Tastard, Emmanuelle; Moreau, Brigitte; Delahaut, Laurence; Geffard, Alain; Guillon, Emmanuel; Denis, Françoise; Hamza-Chaffai, Amel; Chénais, Benoît; Marchand, Justine

    2015-11-01

    This study assessed the responses of molecular biomarkers and heavy metal levels in Cerastoderma glaucum exposed for 1 week to two industrial effluents (1%) discharged into the Tunisian coastal area, F1 and F2, produced by different units of production of a phosphate treatment plant. A significant uptake of metals (Cd, Cu, Zn, and Ni) was observed in exposed cockles compared to controls, with an uptake higher for F1 than for F2. A decrease in LT50 (stress on stress test) was also observed after an exposure to the effluent F1. Treatments resulted in different patterns of messenger RNA (mRNA) expression of the different genes tested in this report. Gene transcription monitoring performed on seven genes potentially involved in the tolerance to metal exposure showed that for both exposures, mechanisms are rapidly and synchronically settled down to prevent damage to cellular components, by (1) handling and exporting out metal ions through the up-regulation of ATP-binding cassette xenobiotic transporter (ABCB1) and metallothionein (MT), (2) increasing the mRNA expression of antioxidant enzymes (catalase (CAT), superoxide dismutases, CuZnSOD and MnSOD), (3) protecting and/or repairing proteins through the expression of heat shock protein 70 (HSP70) mRNAs, and (4) increasing ATP production (through the up-regulation of cytochrome c oxidase 1 (CO1)) to provide energy for cells to tolerate stress exposure. The tools developed may be useful both for future control strategies and for the use of the cockle C. glaucum as a sentinel species.

  17. Effluent Guidelines

    EPA Pesticide Factsheets

    Effluent guidelines are national standards for wastewater discharges to surface waters and municipal sewage treatment plants. We issue the regulations for industrial categories based on the performance of treatment and control technologies.

  18. Biodegradation of benzo[a]pyrene by the mixed culture of Bacillus cereus and Bacillus vireti isolated from the petrochemical industry.

    PubMed

    Mohandass, Ramya; Rout, Pallabi; Jiwal, Sonia; Sasikala, Chitrambalam

    2012-11-01

    Polycyclic aromatic hydrocarbons are a group of compounds that pose threat to humans and animal life. Methods to reduce the amount of PAHs in the environment are continuously being sought. The bacterial consortium capable of utilizing benzo(a)pyrene as the sole source of carbon and energy was isolated from petrochemical soil. The isolates were identified as Bacillus cereus and Bacillus viretibased on morphological characterization, and 16S rDNA gene sequence analysis. About 58.98% of benzo(a)pyrene at concentration of 500 mg l(-1) in mineral salts medium were removed by bacterial consortium. GC mass spectral analysis showed the presence of metabolite cis-4-(7-hydroxypyren-8-yl)-2-oxobut-3enoic acid. The results indicate that the bacterial consortium is a new bacterial resource for biodegrading benzo(a)pyrene and might be used for bioremediation of sites heavily contaminated by benzo[a]pyrene and its derivatives.

  19. Usefulness of sediment toxicity tests with estuarine plants and animals to indicate municipal and industrial effluent impact

    SciTech Connect

    Lewis, M.A.; Weber, D.E.

    1994-12-31

    The environmental impact of municipal and industrial effluents has been predicted from results from single species toxicity tests. The goal of these tests is to ensure that water quality criteria and the designated use of the waterbody is not impacted. Recently, the focus of some effluent toxicity evaluation has centered on determining the effluent impact on the sediment in the receiving water. This study evaluated the toxicities of several sediment samples collected above and below six outfalls to the Pensacola Bay system. Toxicities were determined using three macrophytic plants and four animal species. The sediments, with few exceptions, exhibited a low level of toxicity. The mysid shrimp was more sensitive than Ampelisca, Leptocheirus and the sheepshead minnow. The sensitivities of the plants, Echinochloa crusgalli, Scirpus robustus and Sesbania macrocarpa, were comparable to those of the animal species. The toxicity of time sediment, when compared to that of the effluent, determined using standard single species of plants and animals was less. Overall, the sediment toxicity tests were useful in providing insight on the impact of effluents. However, the application and usefulness of this assessment tool is highly dependent upon a variety of factors, including the geomorphological characteristics of the receiving waters.

  20. Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag(+), Cu(2+) and Fe(3+) from industrial effluents.

    PubMed

    Liu, Peng; Borrell, Pere Ferrer; Božič, Mojca; Kokol, Vanja; Oksman, Kristiina; Mathew, Aji P

    2015-08-30

    The potential of nanoscaled cellulose and enzymatically phosphorylated derivatives as bio-adsorbents to remove metal ions (Ag(+), Cu(2+) and Fe(3+)) from model water and industrial effluents is demonstrated. Introduction of phosphate groups onto nanocelluloses significantly improved the metal sorption velocity and sorption capacity. The removal efficiency was considered to be driven by the high surface area of these nanomaterials as well as the nature and density of functional groups on the nanocellulose surface. Generally, in the solutions containing only single types of metal ions, the metal ion selectivity was in the order Ag(+)>Cu(2+)>Fe(3+), while in the case of mixtures of ions, the order changed to Ag(+)>Fe(3+)>Cu(2+), irrespective of the surface functionality of the nanocellulose. In the case of industrial effluent from the mirror making industry, 99% removal of Cu(2+) and Fe(3+) by phosphorylated nanocellulose was observed. The study showed that phosphorylated nanocelluloses are highly efficient biomaterials for scavenging multiple metal ions, simultaneously, from industrial effluents.

  1. Assessment of heavy metals in the industrial effluents, tube-wells and municipal supplied water of Dehradun, India.

    PubMed

    Kulshrestha, Shail; Awasthi, Alok; Dabral, S K

    2013-07-01

    The bio-geochemical cycles of metals involve the lands, rivers, oceans and the atmosphere. Although a large number of metals are introduced to the water bodies during their mining and extraction processes and geochemical weathering of rocks, but the role of domestic and industrial wastes is predominant and of much concern. Increased industrial activities has increased the incidence of percolation of toxic metal ions to the soil and water bodies and presently their presence in ecosystem, have reached to an alarming level that environmentalists are finding it difficult to enforce control measures. Human activities and large number of small and big industrial units are increasingly discharging deleterious metals present in the effluents and wastes, to the environment and aquatic systems and have contaminated heavily even the ground water. The toxic metals have a great tendency of bioaccumulation through which they enter the food chain system and ultimately affect adversely the life on this planet Earth in various ways. Further, due to contamination of irrigation system by the harmful Chemicals and toxic metals, the farm products, vegetables, fruits, potable water and even milk is not spared. This paper describes the assessment of the heavy metal concentration in various industrial effluents of the surrounding area. Various physico-chemical characteristics of the effluents collected from various sites are also reported. To assess the status of ground water quality, water samples from four tube wells of different localities of the area and four drinking water samples supplied by Municipal Distribution System were also analyzed.

  2. [Advanced Treatment of Effluent from Industrial Park Wastewater Treatment Plant by Ferrous Ion Activated Sodium Persulfate].

    PubMed

    Zhu, Song-mei; Zhou, Zhen; Gu, Ling-yun; Jiang, Hai-tao; Ren, Jia-min; Wang, Luo-chun

    2016-01-15

    Fe(II) activated sodium persulfate (PS) technology was used for advanced treatment of effluent from industrial park wastewater treatment plant. Separate and combined effects of PS/COD, Fe(II)/PS and pH on COD and TOC removal were analyzed by the response surface methodology. Variations of organic substances before and after Fe(II)-PS oxidation were characterized by UV-Vis spectrometry, gel chromatography and three-dimensional fluorescence. PS/COD and Fe(II)/PS had significant effect on COD removal, while all the three factors had significant effect on TOC removal. The combined effect of PS/COD and pH had significant effect on COD removal. COD and TOC removal efficiencies reached 50.7% and 60.6% under optimized conditions of PS/COD 3.47, Fe(II)/PS 3.32 and pH 6.5. Fe(II)-PS oxidation converted macromolecular organic substances to small ones, and reduced contents of protein-, humic- and fulvic-like substances.

  3. Palm oil mill effluent treatment and utilization to ensure the sustainability of palm oil industries.

    PubMed

    Hasanudin, U; Sugiharto, R; Haryanto, A; Setiadi, T; Fujie, K

    2015-01-01

    The purpose of this study was to evaluate the current condition of palm oil mill effluent (POME) treatment and utilization and to propose alternative scenarios to improve the sustainability of palm oil industries. The research was conducted through field survey at some palm oil mills in Indonesia, in which different waste management systems were used. Laboratory experiment was also carried out using a 5 m(3) pilot-scale wet anaerobic digester. Currently, POME is treated through anaerobic digestion without or with methane capture followed by utilization of treated POME as liquid fertilizer or further treatment (aerobic process) to fulfill the wastewater quality standard. A methane capturing system was estimated to successfully produce renewable energy of about 25.4-40.7 kWh/ton of fresh fruit bunches (FFBs) and reduce greenhouse gas (GHG) emissions by about 109.41-175.35 kgCO2e/tonFFB (CO2e: carbon dioxide equivalent). Utilization of treated POME as liquid fertilizer increased FFB production by about 13%. A palm oil mill with 45 ton FFB/hour capacity has potential to generate about 0.95-1.52 MW of electricity. Coupling the POME-based biogas digester and anaerobic co-composting of empty fruit bunches (EFBs) is capable of adding another 0.93 MW. The utilization of POME and EFB not only increases the added value of POME and EFB by producing renewable energy, compost, and liquid fertilizer, but also lowers environmental burden.

  4. Biodegradation of phenanthrene using adapted microbial consortium isolated from petrochemical contaminated environment.

    PubMed

    Janbandhu, Anjali; Fulekar, M H

    2011-03-15

    In developing countries like India, there are many industrial areas discharging effluent containing large amount of polyaromatic hydrocarbon (PAH) which causes hazardous effect on the soil-water environment. The objective of this study was to isolate and characterize high-efficiency PAH-degrading microbial consortium from 3 decade old petrochemical refinery field located in Nagpur, Maharashtra with history of PAH disposal. Based on biochemical tests and 16S rDNA gene sequence analysis the consortium was identified as Sphingobacterium sp., Bacillus cereus and a novel bacterium Achromobacter insolitus MHF ENV IV with effective phenanthrene-degrading ability. The biodegradation data of phenanthrene indicates about 100%, 56.9% and 25.8% degradation at the concentration of 100mg/l, 250 mg/l and 500 mg/l respectively within 14 days. The consortium and its monoculture isolates also utilized variety of other hydrocarbons for growth. To best of our knowledge this is the first time that Achromobacter insolitus has been reported to mineralize phenanthrene effectively. GC-MS analysis of phenanthrene degradation confirmed biodegradation by detection of intermediates like salicylaldehyde, salicylic acid and catechol. All the results indicated that the microbial consortium have a promising application in bioremediation of petrochemical contaminated environments and could be potentially useful for the study of PAH degradation and for bioremediation purposes.

  5. Toxicity Identification and Evaluation for the Effluent from Wastewater Treatment Plant in Industrial Complex using D.magna

    NASA Astrophysics Data System (ADS)

    Lee, S.; Keum, H.; Chun Sang, H.

    2015-12-01

    In recent years, the interests on the impacts of industrial wastewater on aquatic ecosystem have increased with concern about ecosystem protection and human health. Whole effluent toxicity tests are used to monitor toxicity by unknown toxic chemicals as well as conventional pollutants from industrial effluent discharges. This study describes the application of TIE (toxicity identification evaluation) procedures to an acutely toxic effluent from a wastewater treatment plant in industrial complex which was toxic to Daphnia magna. In TIE phase I (characterization step), the toxic effects by heavy metals, organic compounds, oxidants, volatile organic compounds, suspended solids and ammonia were screened and revealed that the source of toxicity is far from these toxicants group. Chemical analysis (TIE phase II) on TDS showed that the concentration of chloride ion (6,900 mg/L) was substantially higher than that predicted from EC50 for D. magna. In confirmation step (TIE phase III), chloride ion was demonstrated to be main toxicant in this effluent by the spiking approach, species sensitivity approach and deletion approach. Calcium, potassium, magnesium, sodium, fluorine, sulfate ion concentration (450, 100, 80, 5,300, 0.66, 2,200mg/L) was not shown toxicity from D. magna. Finally, we concluded that chloride was the most contributing toxicant in the waste water treatment plant. Further research activities are needed for technical support of toxicity identification and evaluation on the various types of wastewater treatment plant discharge in Korea. Keywords : TIE, D. magna, Industrial waste water Acknowledgement This research was supported by a grant (15IFIP-B089908-02) from Plant Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government

  6. Removal of Cd(II) ions from aqueous solution and industrial effluent using reverse osmosis and nanofiltration membranes.

    PubMed

    Kheriji, Jamel; Tabassi, Dorra; Hamrouni, Béchir

    2015-01-01

    Industrial effluents loaded with cadmium have contributed to the pollution of the environment and health troubles for humans. Therefore, these effluents need treatment to reduce cadmium concentration before releasing them to public sewage. The purpose of the research is to study the major role of reverse osmosis (RO) and nanofiltration (NF) processes, which can contribute to the removal of cadmium ions from model water and wastewater from the battery industry. For this reason, two RO and two nanofiltration membranes have been used. The effects of feed pressure, concentration, ionic strength, nature of anion associated with cadmium and pH on the retention of Cd(II) were studied with model solutions. Thereafter, NF and RO membranes were used to reduce cadmium ions and total salinity of battery industry effluent. Among these membranes, there are only three which eliminate more than 95% of cadmium. This was found to depend on operating conditions. It is worth noting that the Spiegler-Kedem model was applied to fit the experimental results.

  7. Assessment of the effluent quality from a gold mining industry in Ghana.

    PubMed

    Acheampong, Mike A; Paksirajan, Kannan; Lens, Piet N L

    2013-06-01

    The physical and chemical qualities of the process effluent and the tailings dam wastewater of AngloGold-Ashanti Limited, a gold mining company in Ghana, were studied from June to September, 2010. The process effluent from the gold extraction plant contains high amounts of suspended solids and is therefore highly turbid. Arsenic, copper and cyanide were identified as the major pollutants in the process effluent with average concentrations of 10.0, 3.1 and 21.6 mg L(-1), respectively. Arsenic, copper, iron and free cyanide (CN(-)) concentrations in the process effluent exceeded the Ghana EPA discharge limits; therefore, it is necessary to treat the process effluent before it can be discharged into the environment. Principal component analysis of the data indicated that the process effluent characteristics were influenced by the gold extraction process as well as the nature of the gold-bearing ore processed. No significant correlation was observed between the wastewater characteristics themselves, except for the dissolved oxygen and the biochemical oxygen demand. The process effluent is fed to the Sansu tailings dam, which removes 99.9 % of the total suspended solids and 99.7 % of the turbidity; but copper, arsenic and cyanide concentrations were still high. The effluent produced can be classified as inorganic with a high load of non-biodegradable compounds. It was noted that, though the Sansu tailings dam stores the polluted effluent from the gold extraction plant, there will still be serious environmental problems in the event of failure of the dam.

  8. Amphibian embryos as a biological test for environmental pollutants in leachates, industrial effluents, surface and ground water

    SciTech Connect

    Herkovits, J.; Perez-Coll, C.S.; Herkovits, F.D.; Tarlato, M.

    1995-12-31

    Test of early life stages are very sensitive to toxic effects and moreover a good predictive correlation between embryo-larval survival and independent ecological parameters such as species richness and diversity have been established. The main purpose of this preliminary study is to report that Bufo arenarum embryos are very sensitive to contaminants from a variety of sources such as leachates, industrial effluents, surface and ground water. The toxicity of 30 samples (five from each category plus controls of surface and ground water from reference places) was evaluated during a 14 day renewal toxicity test at 20 C, conducted with 10 embryos (by triplicate) from stage 23--25 onwards using six concentrations (V/V) of each sample of Holtfreter`s solution. For industrial effluents and leachates the results range from a concentration of 0.6% resulting in 24hs LC100 up to a sample which exert 20% of lethality after 14 days of treatment. The survival of controls and in samples from reference places was over 90% for 7 days and over 80% for 14 days. The results with Bufo arenarum embryos confirm that a 7 day Short-term Chronic Toxicity Test is appropriate for toxicity screening of industrial effluents (as it was established by EPA for whole effluent toxicity test for aquatic life protection performed with other species) as well as for leachates. On the other hand, for freshwater (surface and ground), it is convenient to extend the exposure period until 14 days in order to record situations of low, but significant levels of toxicity, which could be of particular value for surface as well as ground water quality criteria.

  9. Characterization of new biosurfactant produced by Trichosporon montevideense CLOA 72 isolated from dairy industry effluents.

    PubMed

    Monteiro, Andrea S; Coutinho, Joana O P A; Júnior, Ary C; Rosa, Carlos A; Siqueira, Ezequias P; Santos, Vera L

    2009-12-01

    The yeast strain CLOA 72 isolated from the effluent of a dairy industry in Brazil and identified as Trichosporon montevideense, was able to grow and produce a glycolipid biosurfactant when cultured on a mineral medium (MM) with sunflower oil as the carbon source. Biosurfactant production was partially growth-associated and maximal emulsification activity was observed at 144 h of cultivation (78.92%). The biosurfactant purified by precipitation with ethanol showed 78.66% emulsifying activity when used in concentrations above 4.5 mg/ml and was able to reduce the surface tension of water to values below 44.9 mN/m. The critical micellar concentration (CMC) was found to be 2.2 mg/ml. The highest emulsifying activity (E(24)) has been observed with vegetable oils, toluene, kerosene, isooctane, cyclohexane, hexane, diesel oil and hexadecane as compared to mineral oil and oleic acid. The biosurfactant also showed good stability during exposure to 100 degrees C for different periods of time (10 to 60 min), to high salinity (30% of NaCl, KCl and NaHCO(3)), and to a wide range of pH values (1-10). The biosurfactant purified by gel filtration chromatography is a glycolipid, with lipid portion containing 16.03% (9Z)-octadec-9-enoic acid, 14.92% hexadecanoic acid, and 9.63% (E) octadec-9-enoic acid and the carbohydrate portion containing mannose (35.29%), xylose (41.99%), arabinose (17.47%), and glucose (5.25%).

  10. Regulatory impact assessment of proposed effluent guidelines and NESHAP for the pulp, paper, and paperboard industry. Final report

    SciTech Connect

    Not Available

    1993-11-01

    The report has been prepared to comply with Executive Order 12866, which requires that federal agencies assess costs and benefits of each significant rule they propose or promulgate. The pulp and paper industry is the eighth largest manufacturing industry in the U.S. in terms of the value of goods shipped and third among the nondurables sector in sales. The products of this industry are used every day and involve many aspects of our lives. Approximately 200 companies are engaged in the manufacture of pulp, paper, and paperboard in the United States. These companies own and operate 565 facilities in 42 states. The pulp, paper, and paperboard industry is one of the largest users of water in the U.S.; because large quantities of water are used in making pulp and paper products, these mills recycle, treat and discharge large quantities of effluent water. The main categories of aquatic pollutants found in pulp and paper mill effluent are conventional pollutants, such as biochemical oxygen demand (BOD), and toxic pollutants such as chlorinated compounds. Conventional pollution abatement in the U.S. paper industry has focused on reducing solids and BOD.

  11. Application of a continuously stirred tank bioreactor (CSTR) for bioremediation of hydrocarbon-rich industrial wastewater effluents.

    PubMed

    Gargouri, Boutheina; Karray, Fatma; Mhiri, Najla; Aloui, Fathi; Sayadi, Sami

    2011-05-15

    A continuously stirred tank bioreactor (CSTR) was used to optimize feasible and reliable bioprocess system in order to treat hydrocarbon-rich industrial wastewaters. A successful bioremediation was developed by an efficient acclimatized microbial consortium. After an experimental period of 225 days, the process was shown to be highly efficient in decontaminating the wastewater. The performance of the bioaugmented reactor was demonstrated by the reduction of COD rates up to 95%. The residual total petroleum hydrocarbon (TPH) decreased from 320 mg TPH l(-1) to 8 mg TPH l(-1). Analysis using gas chromatography-mass spectrometry (GC-MS) identified 26 hydrocarbons. The use of the mixed cultures demonstrated high degradation performance for hydrocarbons range n-alkanes (C10-C35). Six microbial isolates from the CSTR were characterized and species identification was confirmed by sequencing the 16S rRNA genes. The partial 16S rRNA gene sequences demonstrated that 5 strains were closely related to Aeromonas punctata (Aeromonas caviae), Bacillus cereus, Ochrobactrum intermedium, Stenotrophomonas maltophilia and Rhodococcus sp. The 6th isolate was affiliated to genera Achromobacter. Besides, the treated wastewater could be considered as non toxic according to the phytotoxicity test since the germination index of Lepidium sativum ranged between 57 and 95%. The treatment provided satisfactory results and presents a feasible technology for the treatment of hydrocarbon-rich wastewater from petrochemical industries and petroleum refineries.

  12. Potential of ultrafiltration for organic matter removal in the polymer industry effluent based on particle size distribution analysis.

    PubMed

    Doğruel, Serdar; Çokgör, Emine Ubay; Ince, Orhan; Sözen, Seval; Orhon, Derin

    2013-01-01

    The purpose of the study was the experimental evaluation of ultrafiltration as a potential innovative technology for the removal of organic matter of around 15,000 mg chemical oxygen demand (COD) per liter in the polymer industry wastewater. Particle size distribution (PSD) analysis served as the major experimental instrument along with conventional chemical settling. Biodegradation characteristics of the remaining COD after ultrafiltration were determined by model interpretation of the corresponding oxygen uptake rate (OUR) profile. The study first involved a detailed characterization of the polymer wastewater including PSD analysis of the COD content. Chemical treatability was investigated using lime alone and with ferric chloride as coagulants followed with a PSD assessment of the chemically settled effluent. Modeling of the OUR profile generated by the ultrafiltration effluent defined related biodegradation kinetics and provided information on the overall COD removal potential. PSD analysis indicated that more than 70 % of the total COD accumulated in the 220- to 450-nm size range. It indicated that ultrafiltration was potentially capable of removing more than 90 % of the COD with an effluent lower than 1,500 mg COD/L. Chemical settling with 750 mg/L of FeCl(3) dosing at a pH of 7.0 provided a similar performance. The ultrafiltration effluent included mainly hydrolysable COD and proved to be biodegradable, with the process kinetics compatible with domestic sewage. PSD evaluation proved to be a valuable scientific instrument for underlining the merit of ultrafiltration as the appropriate innovative technology for polymer wastewater, removing the major portion of the COD in a way that is suitable for recovery and reuse and producing a totally biodegradable effluent.

  13. Assessment of microbial quality of fish processing industrial effluent in bar-mouth at Bhidia landing site, Veraval, Gujarat, India.

    PubMed

    Sivaraman, G K; Visnuvinayagam, S; Jha, Ashish Kumar; Renuka, V; Remya, S; Vanik, Deesha

    2016-07-01

    The present study was carried out to assess the microbial quality of fish processing industries effluent at Bhidia bar-mouth, Veraval, Gujarat during April, 2012 to March 2013. The total viable bacterial count (TVBC), total Enterobacteriaceae count, E. coli count (EC), Staphylococcus aureus and Fecal Streptococcal count in effluent ranged from 3.0 x 10(-1) to 6.8 x 10(6), 9.0 x 10(1) to 2.9 x 10(4), 0 to 0. 5 x 10(4), 0 to 0. 4 x 102 and 0.3 x 10(1) to 0. 1 x 10(4) cfu.(-1)respectively. Significantly higher load of TEC, E. coli, S.aureus, Fecal Streptococci, Total coliforms and Fecal coliforms were higher during summer whereas, TVBC was higher in the month of Sept.-Oct. Furthermore, the total coliform and fecal coliform counts were found to be higher with 1400+ /100 ml MPN value throughout the year of the study, except in the month of August. Overall occurrence of pathogenic strains of E. coli, S. aureus and Fecal streptococci were 41.67%, 25.00% and 66.67% respectively during this period. The antibiogram of the isolated E. coli isolates show that almost 50% were resistant to Cefazidime/Clavulanic acid (CAC), Amoxyclav (AMC), Ciprofloxacin (CIF) and Ampicillin (AMP). The present study indicated that the effluent of fish processing industry was heavily contaminated with E. coli, S. aureus and Fecal Streptococci which confirmed improper treatment of fish processing effluent. Moreover, the precedence of antibiotic resistant E. coli may pose threat to public health safety.

  14. The application of advanced oxidation technologies to the treatment of effluents from the pulp and paper industry: a review.

    PubMed

    Hermosilla, Daphne; Merayo, Noemí; Gascó, Antonio; Blanco, Ángeles

    2015-01-01

    The paper industry is adopting zero liquid effluent technologies to reduce freshwater use and meet environmental regulations, which implies closure of water circuits and the progressive accumulation of pollutants that must be removed before water reuse and final wastewater discharge. The traditional water treatment technologies that are used in paper mills (such as dissolved air flotation or biological treatment) are not able to remove recalcitrant contaminants. Therefore, advanced water treatment technologies, such as advanced oxidation processes (AOPs), are being included in industrial wastewater treatment chains aiming to either improve water biodegradability or its final quality. A comprehensive review of the current state of the art regarding the use of AOPs for the treatment of the organic load of effluents from the paper industry is herein addressed considering mature and emerging treatments for a sustainable water use in this sector. Wastewater composition, which is highly dependent on the raw materials being used in the mills, the selected AOP itself, and its combination with other technologies, will determine the viability of the treatment. In general, all AOPs have been reported to achieve good organic removal efficiencies (COD removal >40%, and about an extra 20% if AOPs are combined with biological stages). Particularly, ozonation has been the most extensively reported and successfully implemented AOP at an industrial scale for effluent treatment or reuse within pulp and paper mills, although Fenton processes (photo-Fenton particularly) have actually addressed better oxidative results (COD removal ≈ 65-75%) at a lab scale, but still need further development at a large scale.

  15. Combination of physico-chemical analysis, Allium cepa test system and Oreochromis niloticus erythrocyte based comet assay/nuclear abnormalities tests for cyto-genotoxicity assessments of treated effluents discharged from textile industries.

    PubMed

    Hemachandra, Chamini K; Pathiratne, Asoka

    2016-09-01

    Bioassays for cyto-genotoxicity assessments are generally not required in current textile industry effluent discharge management regulations. The present study applied in vivo plant and fish based toxicity tests viz. Allium cepa test system and Oreochromis niloticus erythrocyte based comet assay and nuclear abnormalities tests in combination with physico-chemical analysis for assessing potential cytotoxic/genotoxic impacts of treated textile industry effluents reaching a major river (Kelani River) in Sri Lanka. Of the treated effluents tested from two textile industries, color in the Textile industry 1 effluents occasionally and color, biochemical oxygen demand and chemical oxygen demand in the Textile industry 2 effluents frequently exceeded the specified Sri Lankan tolerance limits for discharge of industrial effluents into inland surface waters. Exposure of A. cepa bulbs to 100% and 12.5% treated effluents from both industries resulted in statistically significant root growth retardation, mito-depression, and induction of chromosomal abnormalities in root meristematic cells in comparison to the dilution water in all cases demonstrating cyto-genotoxicity associated with the treated effluents. Exposure of O. niloticus to the 100% and 12.5% effluents, resulted in erythrocytic genetic damage as shown by elevated total comet scores and induction of nuclear abnormalities confirming the genotoxicity of the treated effluents even with 1:8 dilution. The results provide strong scientific evidence for the crucial necessity of incorporating cyto-genotoxicity impact assessment tools in textile industry effluent management regulations considering human health and ecological health of the receiving water course under chronic exposure.

  16. The Sequential Application of Macroalgal Biosorbents for the Bioremediation of a Complex Industrial Effluent

    PubMed Central

    Kidgell, Joel T.; de Nys, Rocky; Paul, Nicholas A.; Roberts, David A.

    2014-01-01

    Fe-treated biochar and raw biochar produced from macroalgae are effective biosorbents of metalloids and metals, respectively. However, the treatment of complex effluents that contain both metalloid and metal contaminants presents a challenging scenario. We test a multiple-biosorbent approach to bioremediation using Fe-biochar and biochar to remediate both metalloids and metals from the effluent from a coal-fired power station. First, a model was derived from published data for this effluent to predict the biosorption of 21 elements by Fe-biochar and biochar. The modelled outputs were then used to design biosorption experiments using Fe-biochar and biochar, both simultaneously and in sequence, to treat effluent containing multiple contaminants in excess of water quality criteria. The waste water was produced during ash disposal at an Australian coal-fired power station. The application of Fe-biochar and biochar, either simultaneously or sequentially, resulted in a more comprehensive remediation of metalloids and metals compared to either biosorbent used individually. The most effective treatment was the sequential use of Fe-biochar to remove metalloids from the waste water, followed by biochar to remove metals. Al, Cd, Cr, Cu, Mn, Ni, Pb, Zn were reduced to the lowest concentration following the sequential application of the two biosorbents, and their final concentrations were predicted by the model. Overall, 17 of the 21 elements measured were remediated to, or below, the concentrations that were predicted by the model. Both metalloids and metals can be remediated from complex effluent using biosorbents with different characteristics but derived from a single feedstock. Furthermore, the extent of remediation can be predicted for similar effluents using additive models. PMID:25061756

  17. Extracellular synthesis and characterization of nickel oxide nanoparticles from Microbacterium sp. MRS-1 towards bioremediation of nickel electroplating industrial effluent.

    PubMed

    Sathyavathi, S; Manjula, A; Rajendhran, J; Gunasekaran, P

    2014-08-01

    In the present study, a nickel resistant bacterium MRS-1 was isolated from nickel electroplating industrial effluent, capable of converting soluble NiSO4 into insoluble NiO nanoparticles and identified as Microbacterium sp. The formation of NiO nanoparticles in the form of pale green powder was observed on the bottom of the flask upon prolonged incubation of liquid nutrient medium containing high concentration of 2000ppm NiSO4. The properties of the produced NiO nanoparticles were characterized. NiO nanoparticles exhibited a maximum absorbance at 400nm. The NiO nanoparticles were 100-500nm in size with unique flower like structure. The elemental composition of the NiO nanoparticles was 44:39. The cells of MRS-1 were utilized for the treatment of nickel electroplating industrial effluent and showed nickel removal efficiency of 95%. Application of Microbacterium sp. MRS-1 would be a potential bacterium for bioremediation of nickel electroplating industrial waste water and simultaneous synthesis of NiO nanoparticles.

  18. Advanced treatment of effluents from an industrial park wastewater treatment plant by ferrous ion activated persulfate oxidation process.

    PubMed

    Zhu, Songmei; Zhou, Zhen; Jiang, Haitao; Ye, Jianfeng; Ren, Jiamin; Gu, Lingyun; Wang, Luochun

    The advanced oxidation technology, ferrous ion (Fe(II)) activated persulfate (PS) producing sulfate radicals, was used for the advanced treatment of effluent from an integrated wastewater treatment plant in a papermaking industrial park. Separate and interactive effects of PS dosage, Fe(II)/PS ratio and initial pH on chemical oxygen demand (COD) removal were analyzed by the response surface methodology (RSM). The results showed that Fe(II)-PS system was effective in COD removal from the secondary effluent. PS dosage was the most dominant factor with positive influence on COD removal, followed by initial pH value. The optimum conditions with COD removal of 54.4% were obtained at PS/COD of 2.2, initial pH of 6.47 and Fe(II)/PS of 1.89. UV-visible spectrum analysis showed that after RSM optimization, Fe(II)-PS system effectively degraded large organic molecules into small ones, and decreased humification degree of the effluent. Three-dimensional fluorescence analysis demonstrated that aromatic protein and fulvic substances were fully decomposed by the Fe(II)-PS treatment.

  19. Adsorption-desorption studies of indigocarmine from industrial effluents by using deoiled mustard and its comparison with charcoal.

    PubMed

    Gupta, Vinod K; Jain, Rajeev; Malathi, S; Nayak, Arunima

    2010-08-15

    Deoiled mustard obtained from local oil mills has been used as an inexpensive and effective adsorbent for the removal of indigocarmine dye from industrial effluents. The influence of various factors on the adsorption capacity has been studied by batch experiments. The adsorption studies validate both Langmuir and Freundlich adsorption isotherms. Thermodynamic parameters such as DeltaG degrees, DeltaH degrees, and DeltaS degrees for the adsorption process were calculated, which indicated the feasibility of the adsorption process. Desorption profiles revealed that a significant portion (85%) could be desorbed from deoiled mustard by using 30% glycerol as eluting agent.

  20. Design improvement and performance evaluation of solar photocatalytic reactor for industrial effluent treatment.

    PubMed

    Nair, Ranjith G; Bharadwaj, P J; Samdarshi, S K

    2016-12-01

    This work reports the details of the design components and materials used in a linear compound parabolic trough reactor constructed with an aim to use the photocatalyst for solar photocatalytic applications. A compound parabolic trough reactor has been designed and engineered to exploit both UV and visible part of the solar irradiation. The developed compound parabolic trough reactor could receive almost 88% of UV radiation along with a major part of visible radiation. The performance of the reactor has been evaluated in terms of degradation of a probe pollutant using the parameters such as rate constant, residence time and photonic efficiency. An attempt has been made to assess the performance in different ranges of solar spectrum. Finally the developed reactor has been employed for the photocatalytic treatment of a paper mill effluent using Degussa P25 as the photocatalyst. The paper mill effluent collected from Nagaon paper mill, Assam, India has been treated under both batch mode and continuous mode using Degussa P25 photocatalyst under artificial and natural solar radiation, respectively. The photocatalytic degradation kinetics of the paper mill effluent has been determined using the reduction in total organic carbon (TOC) values of the effluent.

  1. Application of chemical, biological and membrane separation processes in textile industry with recourse to zero effluent discharge--a case study.

    PubMed

    Nandy, T; Dhodapkar, R S; Pophali, G R; Kaul, S N; Devotta, S

    2005-09-01

    Environmental concerns associated with textile processing had placed the textile sector in a Southern State of India under serious threat of survival. The textile industries were closed under the orders of the Statutory Board for reason of inadequate compliance to environmental discharge norms of the State for the protection of the drinking water source of the State capital. In compliance with the direction of the Board for zero effluent discharge, advanced treatment process have been implemented for recovery of boiler feed quality water with recourse to effluent recycling/reuse. The paper describes to a case study on the adequacy assessment of the full scale effluent treatment plant comprising chemical, biological and filtration processes in a small scale textile industry. In addition, implementation of measures for discernable improvement in the performance of the existing units through effective operation & maintenance, and application of membrane separation processes leading to zero effluent discharge is also highlighted.

  2. Application of novel consortium TSR for treatment of industrial dye manufacturing effluent with concurrent removal of ADMI, COD, heavy metals and toxicity.

    PubMed

    Patel, Tallika L; Patel, Bhargav C; Kadam, Avinash A; Tipre, Devayani R; Dave, Shailesh R

    2015-01-01

    The present study was aimed towards the effective bio-treatment of actual industrial effluent containing as high as 42,000 mg/L COD (chemical oxygen demand), >28,000 ADMI (American Dye Manufacturers Institute) color value and four heavy metals using indigenous developed bacterial consortium TSR. Mineral salt medium supplemented with as low as 0.02% (w/v) yeast extract and glucose was found to remove 70% ADMI, 69% COD and >99% sorption of heavy metals in 24 h from the effluent by consortium TSR. The biodegradation of effluent was monitored by UV-vis light, HPLC (high performance liquid chromatography), HPTLC (high performance thin layer chromotography) and FTIR (Fourier transform infrared spectroscopy) and showed significant differences in spectra of untreated and treated effluent, confirming degradation of the effluent. Induction of intracellular azoreductase (107%) and NADH-DCIP reductase (128%) in addition to extracellular laccase (489%) indicates the vital role of the consortium TSR in the degradation process. Toxicity study of the effluent using Allium cepa by single cell gel electrophoresis showed detoxification of the effluent. Ninety per cent germination of plant seeds, Triticum aestivum and Phaseolus mungo, was achieved after treatment by consortium TSR in contrast to only 20% and 30% germination of the respective plants in case of untreated effluent.

  3. Combined physical-chemical and biological treatment of poorly biodegradable industrial effluents.

    PubMed

    González, Patricia; Zaror, Claudio; Carrasco, Virginia; Mondaca, Maria Angelica; Mansilla, Hector

    2003-01-01

    Effluents from small and medium sized chemical plants may contain significant amounts of poorly biodegradable aromatic compounds, which could negatively affect water quality and public health. This is a key environmental issue, particularly in areas where effluents are discharged into drinking water sources. Unfortunately, conventional biological treatment may not be able to meet discharge standards, and combined systems should be implemented. In this context, this paper presents experimental results on the application of a combined sequential ozonation-activated carbon-biological system to treat effluents containing chlorinated aromatic contaminants from chlorine based pulp bleaching. The experimental system consisted of an ozone bubble column reactor (0.3 dm3), an activated carbon fixed bed reactor (0.2 dm3), and an aerobic bioreactor (20 dm3). Ozone was produced from pure O2 using a generator rated at 2 mmol O3 h(-1). The bleaching effluent was pretreated and fed into the aerated sequencing batch bioreactor containing preconditioned biological sludge (3-4 g VSS dm(-3)), and cultured for 24 h. Samples of raw and treated effluents were assayed for biochemical oxygen demand (BOD5), chemical oxygen demand (COD), total organic carbon (TOC), total phenols, and adsorbable organic halogens (AOX), using standard techniques. The presence of potential genotoxic activity in untreated and treated samples was assessed using the Ames tests. Results show that biological treatment of raw samples could not remove mutagenic activity on its own. On the other hand, ozonation followed by activated carbon treatment and biological treatment successfully removed genotoxicity in all cases. Reductions in BOD, COD, TOC, AOX, and phenols by biological treatment increased when samples were pretreated with ozone/activated carbon.

  4. Technical potential of microalgal bacterial floc raceway ponds treating food-industry effluents while producing microalgal bacterial biomass: An outdoor pilot-scale study.

    PubMed

    Van Den Hende, Sofie; Beelen, Veerle; Julien, Lucie; Lefoulon, Alexandra; Vanhoucke, Thomas; Coolsaet, Carlos; Sonnenholzner, Stanislaus; Vervaeren, Han; Rousseau, Diederik P L

    2016-10-01

    To replace costly mechanical aeration by photosynthetical aeration, upflow anaerobic sludge blanket (UASB) effluent of food-industry was treated in an outdoor MaB-floc raceway pond. Photosynthetic aeration was sufficient for nitrification, but the raceway effluent quality was below current discharge limits, despite the high hydraulic retention time (HRT) of 35days. Hereafter, conventional activated sludge (CAS) effluent of food-industry was treated in this pond to recover phosphorus. The two-day HRT results in a more realistic pond area, but the phosphorus removal efficiency was low (20%). High biomass productivities were obtained, i.e. 31.3 and 24.9ton total suspended solids hapond(-1)year(-1) for UASB and CAS effluent, respectively. Bioflocculation enabled successful harvesting of CAS effluent-fed MaB-flocs by settling and filtering at 150-250μm to 22.7% total solids. To conclude, MaB-floc raceway ponds cannot be recommended as the sole treatment for these food-industry effluents, but huge potential lies in added-value biomass production.

  5. Environmental and health impacts of effluents from textile industries in Ethiopia: the case of Gelan and Dukem, Oromia Regional State.

    PubMed

    Dadi, Diriba; Stellmacher, Till; Senbeta, Feyera; Van Passel, Steven; Azadi, Hossein

    2017-01-01

    This study focuses on four textile industries (DH-GEDA, NOYA, ALMHADI, and ALSAR) established between 2005 and 2008 in the peri-urban areas of Dukem and Gelan. The objectives of the study were to generate baseline information regarding the concentration levels of selected pollutants and to analyze their effects on biophysical environments. This study also attempts to explore the level of exposure that humans and livestock have to polluted effluents and the effects thereof. The findings of this study are based on data empirically collected from two sources: laboratory analysis of sample effluents from the four selected textile plants and quantitative as well as qualitative socioeconomic data collection. As part of the latter, a household survey and focus group discussions (FGDs) with elderly and other focal persons were employed in the towns of Dukem and Gelan. The results of the study show that large concentrations of biological oxygen demand (BOD5), chemical oxygen demand (COD), total suspended solids (TSS), and pH were found in all the observed textile industries, at levels beyond the permissible discharge limit set by the national Environmental Protection Authority (EPA). Furthermore, sulfide (S2), R-phosphate (R-PO4(3)), and Zn were found in large concentrations in DH-GEDA and ALMHADI, while high concentrations were also identified in samples taken from ALSAR and ALMHADI. In spite of the clear-cut legal tools, this study shows that the local environment, people, and their livestock are exposed to highly contaminated effluents. We therefore recommend that the respective federal and regional government bodies should reexamine the compliance to and actual implementation of the existing legal procedures and regulations and respond appropriately.

  6. Understanding the petrochemical cycle: Part 2

    SciTech Connect

    Sedriks, W. )

    1994-04-01

    The manager of a petrochemical enterprise, to survive the competitive 1990s, must have a good understanding of the industry's cyclicality, and a good grasp of coping alternatives. To select the best strategies and tactics calls for a familiarity with such concepts as the hockey-stick profile for profitability and the experience curve for cost reductions at both ends of the supply curve. The manager must carefully weigh advantages of build-and-scrap policies and differentiation vs. diversification and recognize the pitfalls associated with the prisoner's dilemma. With these elements well understood, the manager is in an improved position to cope with the industry's boom-and-bust characteristics. The paper discusses practicalities, the prisoner's dilemma in game theory, individual company actions, leveraging cyclicability, differentiation and diversification/integration, improvement of competitiveness, and structure as part of the problem.

  7. Effect of long-term industrial waste effluent pollution on soil enzyme activities and bacterial community composition.

    PubMed

    Subrahmanyam, Gangavarapu; Shen, Ju-Pei; Liu, Yu-Rong; Archana, Gattupalli; Zhang, Li-Mei

    2016-02-01

    Although numerous studies have addressed the influence of exogenous pollutants on microorganisms, the effect of long-term industrial waste effluent (IWE) pollution on the activity and diversity of soil bacteria was still unclear. Three soil samples characterized as uncontaminated (R1), moderately contaminated (R2), and highly contaminated (R3) receiving mixed organic and heavy metal pollutants for more than 20 years through IWE were collected along the Mahi River basin, Gujarat, western India. Basal soil respiration and in situ enzyme activities indicated an apparent deleterious effect of IWE on microbial activity and soil function. Community composition profiling of soil bacteria using 16S rRNA gene amplification and denaturing gradient gel electrophoresis (DGGE) method indicated an apparent bacterial community shift in the IWE-affected soils. Cloning and sequencing of DGGE bands revealed that the dominated bacterial phyla in polluted soil were affiliated with Firmicutes, Acidobacteria, and Actinobacteria, indicating that these bacterial phyla may have a high tolerance to pollutants. We suggested that specific bacterial phyla along with soil enzyme activities could be used as relevant biological indicators for long-term pollution assessment on soil quality. Graphical Abstract Bacterial community profiling and soil enzyme activities in long-term industrial waste effluent polluted soils.

  8. Genotoxic evaluation of an industrial effluent from an oil refinery using plant and animal bioassays

    PubMed Central

    2010-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are genotoxic chemicals commonly found in effluents from oil refineries. Bioassays using plants and cells cultures can be employed for assessing environmental safety and potential genotoxicity. In this study, the genotoxic potential of an oil refinery effluent was analyzed by means of micronucleus (MN) testing of Alium cepa, which revealed no effect after 24 h of treatment. On the other hand, primary lesions in the DNA of rat (Rattus norvegicus) hepatoma cells (HTC) were observed through comet assaying after only 2 h of exposure. On considering the capacity to detect DNA damage of a different nature and of these cells to metabolize xenobiotics, we suggest the association of the two bioassays with these cell types, plant (Allium cepa) and mammal (HTC) cells, for more accurately assessing genotoxicity in environmental samples. PMID:21637622

  9. Comparing the presence, potency, and potential hazard of genotoxins extracted from a broad range of industrial effluents

    SciTech Connect

    White, P.; Rasmussen, J.B.; Blaise, C.

    1996-12-31

    The genotoxicity of dichloromethane extracts from effluent samples collected from 42 industries, including pulp and paper, chemical manufacturing, metal refining, metal surface treatment, and municipal waste water treatment, was examined. Genotoxicity of extracts was found to be related to sample type, industry type, metabolic activation reduced genotoxic potency values per equivalent unit or original sample revealed that effluent particulate particulate matter is on average, almost four orders of magnitude more potent than aqueous filtrates. Suspended particulate matter from organic and inorganic chemical production, petroleum and metal refining, and from metal surface treatment facilities, provided extracts significantly more genotoxic than those from sewage treatment and pulp and paper facilities. Aqueous filtrates from inorganic and organic chemical production, metal refining, and surface treatment facilities were significantly more genotoxic than those emitted by aluminum and petroleum refineries. Overall, the results suggest that pulp and paper mills emit mostly soluble genotoxins, while petroleum and aluminum refineries emit predominantly particle-associated genotoxins. Predicted Ames mutagenic potency values corresponded reasonably well with industrial waste mutagenic potency values published by other researchers. Genotoxic loading values were calculated to quantify the total daily genotoxic emission and potential hazard of each industry. Highest loading were from sewage treatment, pulp and paper, and metal refining facilities. Highest loading values were the SOS genotoxic equivalent of over 30 kg of benzo(a)pyrene per day. The ultimate hazard of genotoxic emissions is not known. Actual hazard assessment is complicated by a poor understanding assessment is complicated by a poor understanding of the postemission behavior of genotoxins. Exposure of downstream biota is likely substantial. 130 refs., 7 figs., 3 tabs.

  10. Physicochemical characteristics of paper industry effluents--a case study of South India Paper Mill (SIPM).

    PubMed

    Devi, Ningombam Linthoingambi; Yadav, Ishwar Chandra; Shihua, Q I; Singh, Surendra; Belagali, S L

    2011-06-01

    Pulp and paper mills generate varieties of pollutants depending upon type of the pulping process being used. This paper presents the characteristics of wastewater from South India Paper Mill, Karnataka, India which is using recycled waste paper as a raw material. The raw wastewater consists of 80-90 mg L( - 1) suspended solid and 1,010-1,015 mg L( - 1) dissolved solid. However, pH varied from 5.5-6.8. The biochemical oxygen demand and chemical oxygen demand ranged from 200-210 and 1,120-1,160 mg L( - 1), respectively. Aerobic treatment of raw effluent attribute to significant reduction in suspended solid (range between 25 to 30 mg L( - 1)) and total dissolved solid (range between 360 to 390 mg L( - 1)). However, pH, temperature, and electrical conductivity were found superior after treatment. Copper, cadmium, iron, lead, nickel, and zinc were found in less quantity in raw effluent and were almost completely removed after treatment. The dendrogram of the effluent quality parameters clearly indicate that South India Paper Mill does not meet Minimal National Standard set by central Pollution Control Board to discharge in agricultural field.

  11. Morphological response of Typha domingensis to an industrial effluent containing heavy metals in a constructed wetland.

    PubMed

    Hadad, H R; Mufarrege, M M; Pinciroli, M; Di Luca, G A; Maine, M A

    2010-04-01

    Typha domingensis had become the dominant species after 2 years of operation of a wetland constructed for metallurgical effluent treatment. Therefore, the main purpose of this study was to investigate its ability to tolerate the effluent and to maintain the contaminant removal efficiency of the constructed wetland. Plant, sediment, and water at the inlet and outlet of the constructed wetland and in two natural wetlands were sampled. Metal concentration (Cr, Ni, and Zn) and total phosphorus were significantly higher in tissues of plants growing at the inlet in comparison with those from the outlet and natural wetlands. Even though the chlorophyll concentration was sensitive to effluent toxicity, biomass and plant height at the inlet and outlet were significantly higher than those in the natural wetlands. The highest root and stele cross-sectional areas, number of vessels, and biomass registered in inlet plants promoted the uptake, transport, and accumulation of contaminants in tissues. The modifications recorded accounted for the adaptability of T. domingensis to the conditions prevailing in the constructed wetland, which allowed this plant to become the dominant species and enabled the wetland to maintain a high contaminant retention capacity.

  12. Application of industrial hygiene techniques for work-place exposure assessment protocols related to petro-chemical exploration and production field activities

    SciTech Connect

    Koehn, J.

    1995-12-31

    Standard industrial hygiene techniques for recognition, evaluation, and control can be directly applied to development of technical protocols for workplace exposure assessment activities for a variety of field site locations. Categories of occupational hazards include chemical and physical agents. Examples of these types of hazards directly related to oil and gas exploration and production workplaces include hydrocarbons, benzene, oil mist, hydrogen sulfide, Naturally Occurring Radioactive Materials (NORM), asbestos-containing materials, and noise. Specific components of well process chemicals include potential hazardous chemical substances such as methanol, acrolein, chlorine dioxide, and hydrochloric acid. Other types of exposure hazards may result from non-routine conduct of sandblasting and painting operations.

  13. Effective decolorization and adsorption of contaminant from industrial dye effluents using spherical surfaced magnetic (Fe3O4) nanoparticles

    NASA Astrophysics Data System (ADS)

    Suriyaprabha, R.; Khan, Samreen Heena; Pathak, Bhawana; Fulekar, M. H.

    2016-04-01

    Treatment of highly concentrated Industrial dye stuff effluents released in the environment is the major issue faced in the era of waste management as well as in water pollution. Though there is availability of conventional techniques in large numbers, there is a need of efficient and effective advance technologies. In account of that, Nanotechnology plays a prominent role to treat the heavy metals, organic and inorganic contaminants using smart materials in nano regime (1 -100 nm). Among these nanomaterials like Iron Oxide (Fe3O4, magnetic nanoparticle) is one of the most promising candidates to remove the heavy metals from the industrial effluent. Fe3O4 is the widely used smart material with magnetic property having high surface area; high surface to volume ratio provides more surface for the chemical reaction for the surface adsorption. Fe3O4 nanoparticles have been synthesized using sonochemical method using ultra frequency in aqueous solution under optimized conditions. The as-synthesized nanoparticle was analyzed using different characterization tool. The Transmission Electron microscope (TEM) images revealed 10-12 nm spherical shape nanoparticles; crystal phase and surface morphology was confirmed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM), respectively. The functional group were identified by Fourier Transform-Infra Red Spectroscopy (FT-IR), revealed the bending and stretching vibrations associated with Iron Oxide nanoparticle. In present study, for the efficient removal of contaminants, different concentration (10-50 ppm) of dye stuff effluent has been prepared and subjected to adsorption and decolourization at definite time intervals with Fe3O4 nanoparticles. The concentration of Iron oxide and the time (45 mins) was kept fixed for the reaction whereas the concentration of dye stuff effluent was kept varying. It was found that the spherical shaped Fe3O4 proved to be the potential material for the adsorption of corresponding

  14. A highly efficient polyampholyte hydrogel sorbent based fixed-bed process for heavy metal removal in actual industrial effluent.

    PubMed

    Zhou, Guiyin; Luo, Jinming; Liu, Chengbin; Chu, Lin; Ma, Jianhong; Tang, Yanhong; Zeng, Zebing; Luo, Shenglian

    2016-02-01

    High sorption capacity, high sorption rate, and fast separation and regeneration for qualified sorbents used in removing heavy metals from wastewater are urgently needed. In this study, a polyampholyte hydrogel was well designed and prepared via a simple radical polymerization procedure. Due to the remarkable mechanical strength, the three-dimensional polyampholyte hydrogel could be fast separated, easily regenerated and highly reused. The sorption capacities were as high as 216.1 mg/g for Pb(II) and 153.8 mg/g for Cd(II) owing to the existence of the large number of active groups. The adsorption could be conducted in a wide pH range of 3-6 and the equilibrium fast reached in 30 min due to its excellent water penetration for highly accessible to metal ions. The fixed-bed column sorption results indicated that the polyampholyte hydrogel was particularly effective in removing Pb(II) and Cd(II) from actual industrial effluent to meet the regulatory requirements. The treatment volumes of actual smelting effluent using one fixed bed column were as high as 684 bed volumes (BV) (7736 mL) for Pb(II) and 200 BV (2262 mL) for Cd(II). Furthermore, the treatment volumes of actual smelting effluent using tandem three columns reached 924 BV (31,351 mL) for Pb(II) and 250 BV (8483 mL) for Cd(II), producing only 4 BV (136 mL) eluent. Compared with the traditional high density slurry (HDS) process with large amount of sludge, the proposed process would be expected to produce only a small amount of sludge. When the treatment volume was controlled below 209.3 BV (7103 mL), all metal ions in the actual industrial effluent could be effectively removed (<0.01 mg/L). This wok develops a highly practical process based on polyampholyte hydrogel sorbents for the removal of heavy metal ions from practical wastewater.

  15. Assessing acute toxicity of effluent from a textile industry and nearby river waters using sulfur-oxidizing bacteria in continuous mode.

    PubMed

    Gurung, Anup; Hassan, Sedky H A; Oh, Sang-Eun

    2011-10-01

    Bioassays are becoming an important tool for assessing the toxicity of complex mixtures of substances in aquatic environments in which Daphnia magna is routinely used as a test organism. Bioassays outweigh physicochemical analyses and are valuable in the decision-making process pertaining to the final discharge of effluents from wastewater treatment plants as they measure the total effect of the discharge which is ecologically relevant. In this study, the aquatic toxicity of a textile plant effluent and river water downstream from the plant were evaluated with sulfur-oxidizing bacterial biosensors in continuous mode. Collected samples were analysed for different physicochemical parameters and 1,4-dioxane was detected in the effluent. The effluent contained a relatively high chemical oxygen demand of 60 mg L(-1), which exceeded the limit set by the Korean government for industrial effluent discharges. Results showed that both the effluent and river waters were toxic to sulfur-oxidizing bacteria. These results show the importance of incorporating bioassays to detect toxicity in wastewater effluents for the sustainable management of water resources.

  16. Production of bioethanol from effluents of the dairy industry by Kluyveromyces marxianus.

    PubMed

    Zoppellari, Francesca; Bardi, Laura

    2013-09-25

    Whey and scotta are effluents coming from cheese and ricotta processing respectively. Whey contains minerals, lipids, lactose and proteins; scotta contains mainly lactose. Whey can be reused in several ways, such as protein extraction or animal feeding, while nowadays scotta is just considered as a waste; moreover, due to very high volumes of whey produced in the world, it poses serious environmental and disposal problems. Alternative destinations of these effluents, such as biotechnological transformations, can be a way to reach both goals of improving the added value of the agroindustrial processes and reducing their environmental impact. In this work we investigated the way to produce bioethanol from lactose of whey and scotta and to optimize the fermentation yields. Kluyveromyces marxianus var. marxianus was chosen as lactose-fermenting yeast. Batch, aerobic and anaerobic, fermentations and semicontinuous fermentations in dispersed phase and in packed bed reactor were carried out of row whey, scotta and mix 1:1 whey:scotta at a laboratory scale. Different temperatures (28-40°C) were also tested to check whether the thermotolerance of the chosen yeast could be useful to improve the ethanol yield. The best performances were reached at low temperatures (28°C); high temperatures are also compatible with good ethanol yields in whey fermentations, but not in scotta fermentations. Semicontinuous fermentations in dispersed phase gave the best fermentation performances, particularly with scotta. Then both effluents can be considered suitable for ethanol production. The good yields obtained from scotta allow us to transform this waste in a source.

  17. Fully automated measuring equipment for aqueous boron and its application to online monitoring of industrial process effluents.

    PubMed

    Ohyama, Seiichi; Abe, Keiko; Ohsumi, Hitoshi; Kobayashi, Hirokazu; Miyazaki, Naotsugu; Miyadera, Koji; Akasaka, Kin-ichi

    2009-06-01

    Fully automated measuring equipment for aqueous boron (referred to as the online boron monitor) was developed on the basis of a rapid potentiometric determination method using a commercial BF4(-) ion-selective electrode (ISE). The equipment can measure boron compounds with concentration ranging from a few to several hundred mg/L, and the measurement is completed in less than 20 min without any pretreatment of the sample. In the monitor, a series of operations for the measurement, i.e., sampling and dispensing of the sample, addition of the chemicals, acquisition and processing of potentiometric data, rinsing of the measurement cell, and calibration of the BF4(-) ISE, is automated. To demonstrate the performance, we installed the monitor in full-scale coal-fired power plants and measured the effluent from a flue gas desulfurization unit. The boron concentration in the wastewater varied significantly depending on the type of coal and the load of power generation. An excellent correlation (R2 = 0.987) was obtained in the measurements between the online boron monitor and inductively coupled plasma atomic emission spectrometry, which proved that the developed monitor can serve as a useful tool for managing boron emission in industrial process effluent.

  18. Fully automated measuring equipment for aqueous boron and its application to online monitoring of industrial process effluents

    SciTech Connect

    Seiichi Ohyama; Keiko Abe; Hitoshi Ohsumi; Hirokazu Kobayashi; Naotsugu Miyazaki; Koji Miyadera; Kin-ichi Akasaka

    2009-06-15

    Fully automated measuring equipment for aqueous boron (referred to as the online boron monitor) was developed on the basis of a rapid potentiometric determination method using a commercial BF{sub 4}{sup -} ion-selective electrode (ISE). The equipment can measure boron compounds with concentration ranging from a few to several hundred mg/L, and the measurement is completed in less than 20 min without any pretreatment of the sample. In the monitor, a series of operations for the measurement, i.e., sampling and dispensing of the sample, addition of the chemicals, acquisition and processing of potentiometric data, rinsing of the measurement cell, and calibration of the BF{sub 4}{sup -} ISE, is automated. To demonstrate the performance, we installed the monitor in full-scale coal-fired power plants and measured the effluent from a flue gas desulfurization unit. The boron concentration in the wastewater varied significantly depending on the type of coal and the load of power generation. An excellent correlation (R{sup 2} = 0.987) was obtained in the measurements between the online boron monitor and inductively coupled plasma atomic emission spectrometry, which proved that the developed monitor can serve as a useful tool for managing boron emission in industrial process effluent. 22 refs., 6 figs.

  19. Emerging trends in photodegradation of petrochemical wastes: a review.

    PubMed

    Singh, Pardeep; Ojha, Ankita; Borthakur, Anwesha; Singh, Rishikesh; Lahiry, D; Tiwary, Dhanesh; Mishra, Pradeep Kumar

    2016-11-01

    Various human activities like mining and extraction of mineral oils have been used for the modernization of society and well-beings. However, the by-products such as petrochemical wastes generated from such industries are carcinogenic and toxic, which had increased environmental pollution and risks to human health several folds. Various methods such as physical, chemical and biological methods have been used to degrade these pollutants from wastewater. Advance oxidation processes (AOPs) are evolving techniques for efficient sequestration of chemically stable and less biodegradable organic pollutants. In the present review, photocatalytic degradation of petrochemical wastes containing monoaromatic and poly-aromatic hydrocarbons has been studied using various heterogeneous photocatalysts (such as TiO2, ZnO and CdS. The present article seeks to offer a scientific and technical overview of the current trend in the use of the photocatalyst for remediation and degradation of petrochemical waste depending upon the recent advances in photodegradation of petrochemical research using bibliometric analysis. We further outlined the effect of various heterogeneous catalysts and their ecotoxicity, various degradation pathways of petrochemical wastes, the key regulatory parameters and the reactors used. A critical analysis of the available literature revealed that TiO2 is widely reported in the degradation processes along with other semiconductors/nanomaterials in visible and UV light irradiation. Further, various degradation studies have been carried out at laboratory scale in the presence of UV light. However, further elaborative research is needed for successful application of the laboratory scale techniques to pilot-scale operation and to develop environmental friendly catalysts which support the sustainable treatment technology with the "zero concept" of industrial wastewater. Nevertheless, there is a need to develop more effective methods which consume less energy and are

  20. Silica removal in industrial effluents with high silica content and low hardness.

    PubMed

    Latour, Isabel; Miranda, Ruben; Blanco, Angeles

    2014-01-01

    High silica content of de-inked paper mill effluents is limiting their regeneration and reuse after membrane treatments such as reverse osmosis (RO). Silica removal during softening processes is a common treatment; however, the effluent from the paper mill studied has a low hardness content, which makes the addition of magnesium compounds necessary to increase silica removal. Two soluble magnesium compounds (MgCl₂∙6H₂O and MgSO₄∙7H₂O) were tested at five dosages (250-1,500 mg/L) and different initial pH values. High removal rates (80-90%) were obtained with both products at the highest pH tested (11.5). With these removal efficiencies, it is possible to work at high RO recoveries (75-85%) without silica scaling. Although pH regulation significantly increased the conductivity of the waters (at pH 11.5 from 2.1 to 3.7-4.0 mS/cm), this could be partially solved by using Ca(OH)₂ instead of NaOH as pH regulator (final conductivity around 3.0 mS/cm). Maximum chemical oxygen demand (COD) removal obtained with caustic soda was lower than with lime (15 vs. 30%). Additionally, the combined use of a polyaluminum coagulant during the softening process was studied; the coagulant, however, did not significantly improve silica removal, obtaining a maximum increase of only 10%.

  1. Measurement of sucrose and ethanol concentrations in process streams and effluents of sugarcane bioethanol industry by optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Fujiwara, Eric; Ono, Eduardo; Manfrim, Tarcio P.; Santos, Juliana S.; Suzuki, Carlos K.

    2011-05-01

    The measurement of process streams and effluents from sugar-ethanol industry by using optical fiber sensor based on Fresnel reflection principle is reported. Firstly, binary sucrose-water and ethanol-water solutions were measured in order to determine the calibration curves. Secondly, the co-products from various processing stages were analyzed in order to identify the sucrose or ethanol concentration. The absolute error was calculated by comparison between the nominal concentration values obtained by plant laboratory analysis and the sensor response, yielding errors <= 5 wt% and <= 5 vol% for sucrose and ethanol content, respectively. The fiber sensor provided reliable results even for samples with more complex compositions than pure sucrose or ethanol solutions, with perspectives of application on the several stages of the plant facility.

  2. Characterization of a phenol-degrading bacterium isolated from an industrial effluent and its potential application for bioremediation.

    PubMed

    Paisio, Cintia E; Talano, Melina A; González, Paola S; Pajuelo-Domínguez, Eloisa; Agostini, Elizabeth

    2013-01-01

    The use of native microorganisms is a useful strategy for phenol bioremediation. In the present work, a bacterial strain, named RTE1.4, was isolated from effluents of a chemical industry. The strain was able to grow at high concentrations of phenol and its derivatives, such as guaiacol, 2,4-dichlorophenol and pentachlorophenol, as well as in a medium containing industrial effluents. This bacterium was identified as Acinetobacter sp. using morphological, physiological, biochemical and 16S rRNA gene analysis. Acinetobacter sp. RTE1.4 degraded phenol (200 to 600 mg/L) at wide pH range and temperature (5-9 and 25-37 degrees C, respectively) demonstrating high adaptation ability to different conditions. The strain would metabolize phenol by the ortho-pathway since catechol 1,2-dioxygenase activity was detected. When bacteria were grown in medium containing phenol, an altered whole-cell protein pattern was observed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), with the lack of some low-molecular mass polypeptides and an increase in the relative abundance of high-molecular mass proteins after treatment. Considering that the use of native strains in bioremediation studies shows several ecological advantages and that the studied bacterium showed high tolerance and biodegradation capabilities, Acinetobacter sp. RTE1.4 could be an appropriate microorganism for improving bioremediation and biotreatment of areas polluted with phenol and/or some of its derivatives. Moreover, the establishment of the optimal growth conditions (pH, temperature, concentration of the pollutant) would provide baseline data for bulk production of the strain and its use in bioremediation processes.

  3. Multispectral identiftcation of alkyl and chloroalkyl phosphates from an industrial effluent.

    PubMed

    Thruston, A D; Richardson, S D; McGuire, J M; Collette, T W; Trusty, C D

    1991-09-01

    Multispectral techniques (gas chromatography combined with low and high resolution electron-impact mass spectrometry, low and high resolution chemical ionization mass spectrometry, and Fourier transform infrared spectroscopy) were used to identify 13 alkyl and chloroalkyl phosphates in a water sample taken from the effluent of a plant that manufactures fire-retardant chemicals. Of the 13 phosphates identified, only 4 were located in hbrary mass spectral data bases; thus, techniques other than conventional low resolution electron-impact mass spectrometry with data base matching were required. Several of the Identified phosphates are commonly used ftre retardants; however, three exhibited chemical structures different from those of the commercially manufactured fire retardants and the reactants used in their synthesis.

  4. Improvement of dewatering capacity of a petrochemical sludge.

    PubMed

    Buyukkamaci, Nurdan; Kucukselek, Emrah

    2007-06-01

    Oily sludge produced from a petrochemical industry was used to investigate the improvement of its dewatering properties. The oil content (OC) and the dry solid content (DS) of the raw sludge were respectively, 15% and 3.6% by weight. The capillary suction time (CST) and the specific resistance to filtration (SRF) of the raw petrochemical industrial sludge were found to be 2000s and approximately 5.5x10(16)m/kg, respectively. Conventional chemical conditioners such as alum, lime, and polyelectrolyte, and less conventional ones like fly ash, gypsum, and bentonite were used in the sludge conditioning studies. Conventional chemical conditioners gave better results for the enhancement of the dewatering capacity of the sludge. The best result was obtained by using 0.9% cationic polyelectrolyte by weight, and a decrease of 99%-95% were achieved for CST and SRF, respectively, when this dosage of cationic polyelectrolyte was used.

  5. Simultaneously bio treatment of textiles and food industries effluent at difference ratios with the aid of e-beam radiation

    NASA Astrophysics Data System (ADS)

    Bakar, Khomsaton Abu; Selambakkannu, Sarala; Ting, Teo Ming; Shariff, Jamaliah

    2012-09-01

    The combination of irradiation and biological technique was used to study COD, BOD5 and colour removal of textiles effluent in the presence of food industry wastewater at two different ratios. Two biological treatment system, the first consisting a mix of unirradiated textile and food industry wastewater and the second a mix of irradiated textile wastewater and food industry wastewater were operated in parallel. The experiment was conducted by batch. For the first batch the ratio was use for textile wastewater and food industry wastewater in biological treatment was 1:1. Meanwhile, for the second batch the ratio used for textile wastewater and food industry wastewater in biological treatment was 1:2. The results obtained for the first and second batch varies from each other. After irradiation, COD reduce in textile wastewater for the both batches are roughly 29% - 33% from the unirradiated wastewater. But after undergoing the biological treatment the percentage of COD reduction for first batch and second batch was 62.1% and 80.7% respectively. After irradiation the BOD5 of textile wastewater reduced by 22.2% for the first batch and 55.1% for the second batch. But after biological treatment, the BOD5 value for the first batch was same as its initial, 36mg/l and 40.4mg/l for the second batch. Colour had decreased from 899.5 ADMI to 379.3 ADMI after irradiation and decrease to 109.3 after undergoes biological treatment for the first batch. Meantime for the batch two, colour had decreased from 1000.44 ADMI to 363.40 ADMI after irradiation and dropped to 79.20 ADMI after biological treatment. The experiment show that 1:2 ratio show better reduction on COD, BOD5 and colour, compared to the ratio of 1:1.

  6. Evaluation of haloalkaliphilic sulfur-oxidizing microorganisms with potential application in the effluent treatment of the petroleum industry.

    PubMed

    Olguín-Lora, P; Le Borgne, S; Castorena-Cortés, G; Roldán-Carrillo, T; Zapata-Peñasco, I; Reyes-Avila, J; Alcántara-Pérez, S

    2011-02-01

    Haloalkaliphilic sulfur-oxidizing mixed cultures for the treatment of alkaline-saline effluents containing sulfide were characterized and evaluated. The mixed cultures (IMP-PB, IMP-XO and IMP-TL) were obtained from Mexican alkaline soils collected in Puebla (PB), Xochimilco (XO) and Tlahuac (TL), respectively. The Ribosomal Intergenic Spacer Analysis (RISA) revealed bacteria related to Thioalkalibacterium and Thioalkalivibrio in IMP-XO and IMP-PB mixed cultures. Halomonas strains were detected in IMP-XO and IMP-TL. In addition, an uncultured Bacteroides bacterium was present in IMP-TL. Mixed cultures were evaluated at different pH and NaCl concentrations at 30°C. IMP-PB and IMP-TL expressed thiosulfate-oxidizing activity in the 7.5-10.5 pH range, whereas IMP-XO presented its maximal activity with 19.0 mg O₂ g (protein)⁻¹ min⁻¹, at pH 10.6; it was not affected by NaCl concentrations up to 1.7 M. In continuous culture, IMP-XO showed a growth rate of 15 day⁻¹, productivity of 433.4 mg(protein) l⁻¹ day⁻¹ and haloalkaliphilic sulfur-oxidizing activity was also detected up to 170 mM by means of N-methyl-diethanolamine (MDEA). Saline-alkaline soil samples are potential sources of haloalkaliphilic sulfur-oxidizing bacteria and the mixed cultures could be applied in the treatment of inorganic sulfur compounds in petroleum industry effluents under alkaline-saline conditions.

  7. Treatment of industrial effluents by a continuous system: electrocoagulation--activated sludge.

    PubMed

    Moisés, Tejocote-Pérez; Patricia, Balderas-Hernández; Barrera-Díaz, C E; Gabriela, Roa-Morales; Natividad-Rangel, Reyna

    2010-10-01

    A continuous system electrocoagulation--active sludge was designed and built for the treatment of industrial wastewater. The system included an electrochemical reactor with aluminum electrodes, a clarifier and a biological reactor. The electrochemical reactor was tested under different flowrates (50, 100 and 200 mL/min). In the biological reactor, the performance of different cultures of active sludge was assessed: coliform bacterial, ciliate and flagellate protozoa and aquatic fungus. Overall treatment efficiencies of color, turbidity and COD removal were 94%, 92% and 80%, respectively, under optimal conditions of 50 mL/min flowrate and using ciliate and flagellate protozoa. It was concluded that the system was efficient for the treatment of industrial wastewater.

  8. Remediation of sewage and industrial effluent using bacterially assisted floating treatment wetlands vegetated with Typha domingensis.

    PubMed

    Ijaz, Amna; Iqbal, Zafar; Afzal, Muhammad

    2016-11-01

    This investigation reports the quantitative assessment of endophyte-assisted floating treatment wetlands (FTWs) for the remediation of sewage and industrial wastewater. Typha domingensis was used to vegetate FTWs that were subsequently inoculated with a consortium of pollutant-degrading and plant growth-promoting endophytic bacteria. T. domingensis, being an aquatic species, holds excellent potential to remediate polluted water. Nonetheless, investigation conducted on Madhuana drain carrying industrial and sewage water from Faisalabad City revealed the percentage reduction in chemical oxygen demand (COD) and biochemical oxygen demand (BOD5) to be 87% and 87.5%, respectively, within 96 h on coupling the plant species with a consortium of bacterial endophytes. With the endophytes surviving in plant tissue, maximal reduction was obtained in not only the aforementioned pollution parameters but for other major environmental quality parameters including nutrients (N and P), ions (Na(+) and K(+)), Cl(-), and SO4(2-) as well, which showed percentage reductions up to 90%, 39%, 77%, 91.8%, 40%, and 60%, respectively. This significant improvement in polluted wastewater quality treated with the proposed method render it safe to be discharged freely in larger water bodies as per the National Environmental Quality Standards (NEQS) of Pakistan or to be reused safely for irrigation purposes; thus, FTWs provide a sustainable and affordable approach for in situ remediation of sewage and industrial wastewater.

  9. Morphological, Physiological and Biochemical Impact of Ink Industry Effluent on Germination of Maize (Zea mays), Barley (Hordeum vulgare) and Sorghum (Sorghum bicolor).

    PubMed

    Zayneb, Chaâbene; Lamia, Khanous; Olfa, Ellouze; Naïma, Jebahi; Grubb, C Douglas; Bassem, Khemakhem; Hafedh, Mejdoub; Amine, Elleuch

    2015-11-01

    The present study focuses on effects of untreated and treated ink industry wastewater on germination of maize, barley and sorghum. Wastewater had a high chemical oxygen demand (COD) and metal content compared to treated effluent. Germination decreased with increasing COD concentration. Speed of germination also followed the same trend, except for maize seeds exposed to untreated effluent (E), which germinated slightly faster than controls. These alterations of seedling development were mirrored by changes in soluble protein content. E exerted a positive effect on soluble protein content and maximum levels occurred after 10 days with treated effluent using coagulation/flocculation (TEc/f) process and treated effluent using combined process (coagulation/flocculation/biosorption) (TEc/f/b). Likewise, activity of α-amylase was influenced by effluent composition. Its expression depended on the species, exposure time and applied treatment. Nevertheless, current results indicated TEc/f/b had no observable toxic effects on germination and could be a beneficial alternative resource to irrigation water.

  10. Characterization of sorption sites and differential stress response of microalgae isolates against tannery effluents from ranipet industrial area-An application towards phycoremediation.

    PubMed

    Balaji, S; Kalaivani, T; Sushma, B; Pillai, C Varneetha; Shalini, M; Rajasekaran, C

    2016-08-02

    Phycoremediation ability of microalgae namely Oscillatoria acuminate and Phormidium irrigum were validated against the heavy metals from tannery effluent of Ranipet industrial area. The microalgae species were cultured in media containing tannery effluent in two different volumes and the parameters like specific growth rate, protein content and antioxidant enzyme activities were estimated. FTIR spectroscopy was carried out to know the sorption sites interaction. The antioxidant enzymes namely superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) contents were increased in microalgae species indicating the free radical scavenging mechanism under heavy metal stress. SOD activity was 0.502 and 0.378 units/gram fresh weight, CAT activity was 1.36 and 0.256 units/gram fresh weight, GSH activity was 1.286 and 1.232 units/gram fresh weight respectively in the effluent treated microalgae species. Bio sorption efficiency for Oscillatoria acuminate and Phormidium irrigum was 90% and 80% respectively. FTIR analysis revealed the interaction of microalgae species with chemical groups present in the tannery effluent. From the results, the microalgae Oscillatoria acuminate possess high antioxidant activity and bio sorption efficiency when compared to Phormidium irrigum and hence considered useful in treating heavy metals contaminated effluents.

  11. Impact of industrial effluents on geochemical association of metals within intertidal sediments of a creek.

    PubMed

    Volvoikar, Samida P; Nayak, G N

    2015-10-15

    Metal speciation studies were carried out on three intertidal core sediments of the industrially impacted Dudh creek located along west coast of India. Metals indicated a drastic increase in the bioavailable fraction towards the surface of the cores, suggesting an increase in anthropogenic metal input in recent years as compared to the past. Also, when compared with Vaitarna estuary and Khonda creek of Thane district, the speciation of metals in Dudh creek sediments was observed to have been highly modified in recent years. High concentrations of metals associated with bioavailable fractions therefore suggested a risk of toxicity to sediment associated biota of Dudh creek.

  12. Rapid analysis of effluents generated by the dairy industry for fat determination by preconcentration in nylon membranes and attenuated total reflectance infrared spectroscopy measurement.

    PubMed

    Moliner Martínez, Y; Muñoz-Ortuño, M; Herráez-Hernández, R; Campíns-Falcó, P

    2014-02-01

    This paper describes a new approach for the determination of fat in the effluents generated by the dairy industry which is based on the retention of fat in nylon membranes and measurement of the absorbances on the membrane surface by ATR-IR spectroscopy. Different options have been evaluated for retaining fat in the membranes using milk samples of different origin and fat content. Based on the results obtained, a method is proposed for the determination of fat in effluents which involves the filtration of 1 mL of the samples through 0.45 µm nylon membranes of 13 mm diameter. The fat content is then determined by measuring the absorbance of band at 1745 cm(-1). The proposed method can be used for the direct estimation of fat at concentrations in the 2-12 mg/L interval with adequate reproducibility. The intraday precision, expressed as coefficients of variation CVs, were ≤ 11%, whereas the interday CVs were ≤ 20%. The method shows a good tolerance towards conditions typically found in the effluents generated by the dairy industry. The most relevant features of the proposed method are simplicity and speed as the samples can be characterized in a few minutes. Sample preparation does not involve either additional instrumentation (such as pumps or vacuum equipment) or organic solvents or other chemicals. Therefore, the proposed method can be considered a rapid, simple and cost-effective alternative to gravimetric methods for controlling fat content in these effluents during production or cleaning processes.

  13. Membrane filtration for tertiary treatment of biologically treated effluents from the pulp and paper industry.

    PubMed

    Mänttäri, M; Nyström, M

    2007-01-01

    Discharge waters from activated sludge processes in the pulp and paper industry and from a municipal wastewater treatment plant were filtered with various nanofiltration (NF) and low pressure reverse osmosis (RO) membranes. The purpose was to study flux, retention, and permeate quality after membrane filtration by using a high shear (CR-250/2) filter. The suitability of the achieved permeates for reuse at the industrial site is also discussed. The NF permeate was practically free from colour and organic compounds but contained significant amount of inorganic compounds e.g. chloride ions, especially when a high amount of sulphate containing discharge waters were filtered, in which case a low pressure RO membrane was needed to successfully remove monovalent anions. Organic compounds were almost completely retained by NF and RO membranes and organic carbon in the permeate was less than 10 mg/dm3 on average. The achieved permeate can easily be reused in paper production. Nanofiltration has a significantly higher flux and also a lower fouling tendency than reverse osmosis but it passes through monovalent ions when there is a high sulphate concentration in the water. Therefore, RO might be needed in such cases to produce excellent process water.

  14. Aerobic treatability of waste effluent from the leather finishing industry. Master's thesis

    SciTech Connect

    Vinger, J.A.

    1993-12-01

    The Seton Company supplies finished leather products exclusively for the automotive industry. In the process of finishing leather, two types of wastewaters are generated. The majority of the wastewater is composed of water-based paint residuals while the remainder is composed of solvent-based coating residuals. Aerobic treatability studies were conducted using water-based and solvent-based waste recirculatory waters from the Seton Company's Saxton, Pennsylvania processing plant. The specific objective was to determine the potential for using aerobic biological processes to biodegrade the industry's wastes and determine the potential for joint treatment at the local publicly owned treatment works (POTW). This study was accomplished in two phases. Phase I was conducted during the Spring Semester 1993 and consisted of aerobic respirometer tests of the raw wastes and mass balance analysis. The results of Phase I were published in a report to the Seton Company as Environmental Resources Research Institute project number 92C.II40R-1. Phase II was conducted during the Summer Semester 1993 and consisted of bench-scale reactor tests and additional aerobic respirometer tests. The aerobic respirometer batch tests and bench-scale reactor tests were used to assess the treatability of solvent-based and water-based wastewaters and determine the degree of biodegradability of the wastewaters. Mass balance calculations were made using measured characteristics.

  15. [Enhanced bio-contact oxidation method to treat petrochemical wastewater by tourmaline].

    PubMed

    Jiang, Kan; Ma, Fang; Sun, Tie-Heng; Feng, Zhi-Yun

    2009-06-15

    Aiming at the complexity and poor biochemical degradability of petrochemical wastewater, the effect of tourmaline on bio-contact oxidation method was investigated. The influent and effluent of petrochemical wastewater were analyzed by GC-MS, and the carrier was observed in reactor by scanning electron microscope (SEM). As the loading rates of influent were COD 0.64-0.72 kg/(m3 x d) and NH4(+) -N 0.058-0.072 kg/(m3 x d), the start up of pilot system supported tourmaline were improved, and the removal rate of COD and NH4(+) -N of effluent was increased 8.7% and 6.4%, respectively. Organic pollutants of 100 kinds were detected in influent, mainly including aromatic hydrocarbon, acids, lipids, phenols, alcohols, and alkanes compounds. The removal efficiency of organic pollutant of reactor 1 with tourmaline was higher than reactor 2 without tourmaline. The number of organic pollutant in effluent from reactor 1 and 2 were 14 and 28, respectively. Zoogloea can be observed on carrier supported tourmaline, and the biomass of bacteria was predominant. The efficiency of bio-contact oxidation method on petrochemical wastewater treatment can be enhanced by tourmaline.

  16. Petrochemicals from coal-derived syngas

    SciTech Connect

    Sardesai, A.; Lee, S.

    1996-12-31

    The development of the Liquid Phase Dimethyl Ether (LPDME) process has established a means to effectively convert CO-rich syngas to dimethyl ether (DME) in a mechanically agitated slurry reactor. By operating in a dual catalyst mode, in-situ produced methanol may be converted to DME, thereby alleviating the chemical equilibrium limitation imposed on the methanol synthesis reaction. As a result, higher syngas conversions and methyl productivities are seen over methanol synthesis alone. This effective route to DME production over methanol has led to the development of conversion technologies based on a DME feedstock. Oxygenates, in particular, ethers and their precursors, are very important as potential clean fuel additives and have been postulated through vinylation/hydrogenation and oxidative coupling reactions. Specialty chemicals such as methyl acetate and acetic acid have widescale industrial importance in the conversion to ethanol from a non-agricultural feedstock. Vapor phase oxidative dimerization of DME over tin based catalysts produced precursors of ethylene glycol. Finally, DME has been extensively used as a feedstock for hydrocarbon synthesis including olefins, paraffins and gasoline range hydrocarbons, over zeolite based catalysts with a 46% increase in product selectivity over methanol. The efficient production of DME in the liquid phase has given it widescale industrial significance as a potential replacement for methanol and as a keystone for more important petrochemicals.

  17. Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries

    PubMed Central

    Hsu, Liang-Ching; Huang, Ching-Yi; Chuang, Yen-Hsun; Chen, Ho-Wen; Chan, Ya-Ting; Teah, Heng Yi; Chen, Tsan-Yao; Chang, Chiung-Fen; Liu, Yu-Ting; Tzou, Yu-Min

    2016-01-01

    Metal accumulation in sediments threatens adjacent ecosystems due to the potential of metal mobilization and the subsequent uptake into food webs. Here, contents of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) and trace elements (Ga, In, Mo, and Se) were determined for river waters and bed sediments that received sewage discharged from traditional and semiconductor industries. We used principal component analysis (PCA) to determine the metal distribution in relation to environmental factors such as pH, EC, and organic matter (OM) contents in the river basin. While water PCA categorized discharged metals into three groups that implied potential origins of contamination, sediment PCA only indicated a correlation between metal accumulation and OM contents. Such discrepancy in metal distribution between river water and bed sediment highlighted the significance of physical-chemical properties of sediment, especially OM, in metal retention. Moreover, we used Se XANES as an example to test the species transformation during metal transportation from effluent outlets to bed sediments and found a portion of Se inventory shifted from less soluble elemental Se to the high soluble and toxic selenite and selenate. The consideration of environmental factors is required to develop pollution managements and assess environmental risks for bed sediments. PMID:27681994

  18. Copper removal from an effluent generated by a plastics chromium-plating industry using a rotating cylinder electrode (RCE) reactor.

    PubMed

    Rivera, F F; González, I; Nava, J L

    2008-08-01

    This work shows the application of a rotating cylinder electrode (RCE) in the removal of Cu(II) content from an effluent generated by a plastics chromium-plating industry, on the laboratory scale; in particular, it deals with rinse water from the electrolytic copper process. This process was designed to convert cupric ions in solution to metal powder. The generation of metal powders in the RCE was achieved at Reynolds numbers between 52925 and 83183 and limiting current densities (J(L)) in the range of 17 to 25 mA cm(-2). The removal of Cu(II) (initially 922 ppm) reached 43 ppm in 10 minutes of electrolysis for Re = 83183 and J = 25 mA cm(-2), with a space-time yield of 88 mg Cu(II) L(-1) min(-1), 95% current efficiency, and energy consumption of 5.3 KWh m(-3). The electrochemical treatment applied to waste rinse water at the RCE allows this treated water to be recycled back to the same rinsing process, avoiding additional consumption and discharge of this liquid.

  19. Isolation and characterization of phenol utilizing bacteria from industrial effluent-contaminated soil and kinetic evaluation of their biodegradation potential.

    PubMed

    Pal Basak, Sreela; Sarkar, Priyabrata; Pal, Priyabrata

    2014-01-01

    Microbial degradation of phenol by pure bacterial species is a well-known approach towards alleviation of environmental pollution. In this study, five phenol-degrading bacterial species designated as CUPS-1 to CUPS-5 were isolated from the oil-effluent dumped sites of Haldia Industrial area of West Bengal, India. Detailed morphological, biochemical and molecular characterization identified CUPS-3 as a novel strain- Stenotrophomonas maltophilia (GU358076), while the others could be identified as Pseudomonas (CUPS-2, 5), Delftia (CUPS-1) and Micrococcus (CUPS-4) genera, respectively. Although all of these strains utilized phenol as their sole carbon source supporting growth, three among them, CUPS-2, CUPS-3 and CUPS-5 proved potential phenol degraders and hence used for further biodegradation studies. Degradation experiments were carried out for several initial phenol concentrations of 500 mg/L, 750 mg/L, 1000 mg/L, 1250 mg/L and 1500 mg/L. The novel strain, CUPS-3 could completely degrade 500 mg/L phenol within 48 h, with 0.0937/h substrate degradation rate and 16.34 mg/L/h substrate consumption rate. The strains degraded phenol via meta-cleavage pathway. Prediction of kinetic parameters of the biodegradation was accomplished Haldane model using the experimental data of degradation rate and phenol concentration as function of time.

  20. Electrochemical treatment of heavy metals (Cu2+, Cr6+, Ni2+) from industrial effluent and modeling of copper reduction.

    PubMed

    Hunsom, M; Pruksathorn, K; Damronglerd, S; Vergnes, H; Duverneuil, P

    2005-02-01

    An electrochemical technique was tested in a laboratory scale to treat heavy metals (Cu2+, Cr6+ and Ni2+) from plating industrial effluent. The experiments were performed in a membrane reactor having a capacity of 1 l. Stainless-steel sheets with surface area of 0.011 m2 and titanium coated with ruthenium oxide were used as cathode and anode, respectively. The electrolyte was circulated at a constant flow rate (0.42 l/min) and the pH was kept constant at 1. Applied current densities were 10 and 90 A/m2. According to the experiment, it was found that a membrane reactor with plane electrode was capable for treating plating wastewater with low energy consumption (42.30 kWh/kg metal) and low operating cost (5.43 US dollars/m3). More than 99% of metal reduction was achieved and the final concentrations of copper, chromium and nickel in treated water were 0.10-0.13, 0.19-0.20 and 0.05-0.13 ppm, respectively. The brightener had no effect on copper reduction whereas hexavalent chromium had strong effect. The kinetic of copper reduction in the presence of hexavalent chromium was modeled as a two-step process with respect to copper concentration.

  1. Genetic characterization, nickel tolerance, biosorption, kinetics, and uptake mechanism of a bacterium isolated from electroplating industrial effluent.

    PubMed

    Nagarajan, N; Gunasekaran, P; Rajendran, P

    2015-04-01

    Electroplating industries in Madurai city produce approximately 49,000 L of wastewater and 1200 L of sludge every day revealing 687-5569 ppm of nickel (Ni) with other contaminants. Seventeen Ni-tolerant bacterial strains were isolated from nutrient-enriched effluents. Among them one hyper Ni accumulating strain was scored and identified as Bacillus cereus VP17 on the basis of morphology, biochemical tests, 16S rDNA gene sequencing, and phylogenetic analysis. Equilibrium data of Ni(II) ions using the bacterium as sorbent at isothermal conditions (37 °C) and pH 6 were best adjusted by Langmuir (R(2) = 0.6268) and Freundlich models (R(2) = 0.9505). Experimental validation reveals Ni sorption takes place on a heterogeneous surface of the biosorbent, and predicted metal sorption capacity is 434 ppm. The pseudo-second-order kinetic model fitted the biosorption kinetic data better than the pseudo-first-order kinetic model (R(2) = 0.9963 and 0.3625). Scanning electron microscopy, energy dispersive X-ray, and Fourier transform infrared spectroscopy studies of the bacterial strain with and without Ni(II) ion reveals the biosorption mechanism. The results conclude possibilities of using B. cereus VP17 for Ni bioremediation.

  2. Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries

    NASA Astrophysics Data System (ADS)

    Hsu, Liang-Ching; Huang, Ching-Yi; Chuang, Yen-Hsun; Chen, Ho-Wen; Chan, Ya-Ting; Teah, Heng Yi; Chen, Tsan-Yao; Chang, Chiung-Fen; Liu, Yu-Ting; Tzou, Yu-Min

    2016-09-01

    Metal accumulation in sediments threatens adjacent ecosystems due to the potential of metal mobilization and the subsequent uptake into food webs. Here, contents of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) and trace elements (Ga, In, Mo, and Se) were determined for river waters and bed sediments that received sewage discharged from traditional and semiconductor industries. We used principal component analysis (PCA) to determine the metal distribution in relation to environmental factors such as pH, EC, and organic matter (OM) contents in the river basin. While water PCA categorized discharged metals into three groups that implied potential origins of contamination, sediment PCA only indicated a correlation between metal accumulation and OM contents. Such discrepancy in metal distribution between river water and bed sediment highlighted the significance of physical-chemical properties of sediment, especially OM, in metal retention. Moreover, we used Se XANES as an example to test the species transformation during metal transportation from effluent outlets to bed sediments and found a portion of Se inventory shifted from less soluble elemental Se to the high soluble and toxic selenite and selenate. The consideration of environmental factors is required to develop pollution managements and assess environmental risks for bed sediments.

  3. Dynamics of microbiological parameters, enzymatic activities and worm biomass production during vermicomposting of effluent treatment plant sludge of bakery industry.

    PubMed

    Yadav, Anoop; Suthar, S; Garg, V K

    2015-10-01

    This paper reports the changes in microbial parameters and enzymatic activities during vermicomposting of effluent treatment plant sludge (ETPS) of bakery industry spiked with cow dung (CD) by Eisenia fetida. Six vermibins containing different ratios of ETPS and CD were maintained under controlled laboratory conditions for 15 weeks. Total bacterial and total fungal count increased upto 7th week and declined afterward in all the bins. Maximum bacterial and fungal count was 31.6 CFU × 10(6) g(-1) and 31 CFU × 10(4) g(-1) in 7th week. Maximum dehydrogenase activity was 1921 μg TPF g(-1) h(-1) in 9th week in 100 % CD containing vermibin, whereas maximum urease activity was 1208 μg NH4 (-)N g(-1) h(-1) in 3rd week in 100 % CD containing vermibin. The enzyme activity and microbial counts were lesser in ETPS containing vermibins than control (100 % CD). The growth and fecundity of the worms in different vermibins were also investigated. The results showed that initially biomass and fecundity of the worms increased but decreased at the later stages due to non-availability of the palatable feed. This showed that quality and palatability of food directly affect biological parameters of the system.

  4. ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents.

    PubMed

    Saravanan, R; Mansoob Khan, M; Gupta, Vinod Kumar; Mosquera, E; Gracia, F; Narayanan, V; Stephen, A

    2015-08-15

    A ternary ZnO/Ag/CdO nanocomposite was synthesized using thermal decomposition method. The resulting nanocomposite was characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, UV-Vis spectroscopy, and X-ray photoelectron spectroscopy. The ZnO/Ag/CdO nanocomposite exhibited enhanced photocatalytic activity under visible light irradiation for the degradation of methyl orange and methylene blue compared with binary ZnO/Ag and ZnO/CdO nanocomposites. The ZnO/Ag/CdO nanocomposite was also used for the degradation of the industrial textile effluent (real sample analysis) and degraded more than 90% in 210 min under visible light irradiation. The small size, high surface area and synergistic effect in the ZnO/Ag/CdO nanocomposite is responsible for high photocatalytic activity. These results also showed that the Ag nanoparticles induced visible light activity and facilitated efficient charge separation in the ZnO/Ag/CdO nanocomposite, thereby improving the photocatalytic performance.

  5. Photoautotrophic microorganisms and bioremediation of industrial effluents: current status and future prospects.

    PubMed

    Brar, Amandeep; Kumar, Manish; Vivekanand, Vivek; Pareek, Nidhi

    2017-05-01

    Growth of the industrial sector, a result of population explosion has become the root cause of environmental deterioration and has raised the concerns for efficient wastewater management and reuse. Photoautotrophic cultivation of microorganisms is a boon and considered as a potential biological treatment for remediation of wastewater as it sequesters CO2 during growth. Photoautotrophs viz. cyanobacteria, micro-algae and macro-algae can photosynthetically assimilate the excessive pollutants present in the wastewater. The present review emphasizes on the achievability of microorganisms to bestow wastewater as the nutrient source for biomass production, which can further be reused for feed, food and fertilizers. To support this, various case studies have been cited that prove phycoremediation as a cost-effective and sustainable process over conventional wastewater treatment processes that requires high chemical load and more energy inputs.

  6. Impact of urban and industrial effluents on the coastal marine environment in Oran, Algeria.

    PubMed

    Tayeb, A; Chellali, M R; Hamou, A; Debbah, S

    2015-09-15

    In Algeria most of the urban waste water is dumped without treatment into the Sea. It is tremendously important to assess the consequences of organic matter rich sewage on marine ecosystem. In this study we investigated the effects of industrial and urban sewage on the dissolved oxygen (O2), chemical oxygen demand (COD), biochemical oxygen demands (BOD5), pH, salinity, electrical conductivity (EC), Metal element (Hg, Pb, Cu, Ni, Cr, Cd), petroleum hydrocarbons (HC), oil and grease (OG) in Bay of Oran, Algeria. A ten-year follow-up research showed that the concentrations of oil and grease released into the bionetwork are of higher ecological impact and this needs to be given the desired consideration. Information on bathing water quality revealed that the most beaches in Oran are under the national environmental standard limit.

  7. Bacterial bioluminescence response to long-term exposure to reverse osmosis treated effluents from dye industries.

    PubMed

    Ravindran, J; Manikandan, B; Shirodkar, P V; Francis, K X; Mani Murali, R; Vethamony, P

    2014-10-01

    The bacterial bioluminescence assay is one of the novel means for toxicity detection. The bioluminescence response of 2 marine bioluminescent bacteria was tested upon their long-term exposure to 9 different reverse osmosis (RO) rejects with varying chemical composition sampled from various dye industries. Bioluminescent bacteria were cultured in the RO reject samples, at different concentrations, and their growth rate and luminescence was measured for 24 h. The RO reject samples caused sublethal effects upon exposure and retarded the growth of bacteria, confirming their toxic nature. Further, continuation of the exposure showed that the initial luminescence, though reduced, recovered and increased beyond the control cultures irrespective of cell density, and finally decreased once again. The present study emphasizes the need of evolving a long-term exposure assay and shows that the method followed in this study is suitable to evaluate the toxicants that exert delayed toxicity, using lower concentrations of toxicants as well as coloured samples.

  8. Arsenite oxidizing multiple metal resistant bacteria isolated from industrial effluent: their potential use in wastewater treatment.

    PubMed

    Naureen, Ayesha; Rehman, Abdul

    2016-08-01

    Arsenite oxidizing bacteria, isolated from industrial wastewater, showed high resistance against arsenite (40 mM) and other heavy metals (10 mM Pb; 8 mM Cd; 6 mM Cr; 10 mM Cu and 26.6 mM As(5+)). Bacterial isolates were characterized, on the basis of morphological, biochemical and 16S rRNA ribotyping, as Bacillus cereus (1.1S) and Acinetobacter junii (1.3S). The optimum temperature and pH for the growth of both strains were found to be 37 °C and 7. Both the strains showed maximum growth after 24 h of incubation. The predominant form of arsenite oxidase was extracellular in B. cereus while in A. junii both types of activities, intracellular and extracellular, were found. The extracellular aresenite oxidase activity was found to be 730 and 750 µM/m for B. cereus and A. junii, respectively. The arsenite oxidase from both bacterial strains showed maximum activity at 37 °C, pH 7 and enhanced in the presence of Zn(2+). The presence of two protein bands with molecular weight of approximately 70 and 14 kDa in the presence of arsenic points out a possible role in arsenite oxidation. Arsenite oxidation potential of B. cereus and A. junii was determined up to 92 and 88 % in industrial wastewater after 6 days of incubation. The bacterial treated wastewater improved the growth of Vigna radiata as compared to the untreated wastewater. It indicates that these bacterial strains may find some potential applications in wastewater treatment systems to transform toxic arsenite into less toxic form, arsenate.

  9. Potential for bioremediation of agro-industrial effluents with high loads of pesticides by selected fungi.

    PubMed

    Karas, Panagiotis A; Perruchon, Chiara; Exarhou, Katerina; Ehaliotis, Constantinos; Karpouzas, Dimitrios G

    2011-02-01

    Wastewaters from the fruit packaging industry contain a high pesticide load and require treatment before their environmental discharge. We provide first evidence for the potential bioremediation of these wastewaters. Three white rot fungi (WRF) (Phanerochaete chrysosporium, Trametes versicolor, Pleurotus ostreatus) and an Aspergillus niger strain were tested in straw extract medium (StEM) and soil extract medium (SEM) for degrading the pesticides thiabendazole (TBZ), imazalil (IMZ), thiophanate methyl (TM), ortho-phenylphenol (OPP), diphenylamine (DPA) and chlorpyrifos (CHL). Peroxidase (LiP, MnP) and laccase (Lac) activity was also determined to investigate their involvement in pesticide degradation. T. versicolor and P. ostreatus were the most efficient degraders and degraded all pesticides (10 mg l⁻¹) except TBZ, with maximum efficiency in StEM. The phenolic pesticides OPP and DPA were rapidly degraded by these two fungi with a concurrent increase in MnP and Lac activity. In contrast, these enzymes were not associated with the degradation of CHL, IMZ and TM implying the involvement of other enzymes. T. versicolor degraded spillage-level pesticide concentrations (50 mg l⁻¹) either fully (DPA, OPP) or partially (TBZ, IMZ). The fungus was also able to rapidly degrade a mixture of TM/DPA (50 mg l⁻¹), whereas it failed to degrade IMZ and TBZ when supplied in a mixture with OPP. Overall, T. versicolor and P. ostreatus showed great potential for the bioremediation of wastewaters from the fruit packaging industry. However, degradation of TBZ should be also achieved before further scaling up.

  10. Assessing toxicity of copper, cadmium and chromium levels relevant to discharge limits of industrial effluents into inland surface waters using common onion, Allium cepa bioassay.

    PubMed

    Hemachandra, Chamini K; Pathiratne, Asoka

    2015-02-01

    Toxicity of copper, cadmium and chromium relevant to established tolerance limits for the discharge of industrial effluents into inland surface waters was evaluated by Allium cepa bioassay. The roots of A. cepa bulbs exposed to Cu(2+) (3 mg L(-1)) individually or in mixtures with Cd(2+) (0.1 mg L(-1)) or/and Cr(6+) (0.1 mg L(-1)) exhibited the highest growth inhibition, mitotic index depression and nuclear abnormalities. Root tip cells exposed to Cr(6+) or Cd(2+) alone or in mixture displayed significant chromosomal aberrations in comparison to the controls. EC50s for root growth inhibition followed the order Cu(2+) < Cd(2+) < Cr(6+) indicating greater toxicity of copper. The results show that the industrial effluent discharge regulatory limits for these metals need to be reviewed considering potential cyto-genotoxicity to biological systems.

  11. Bioremediation and Detoxification of Synthetic Wastewater Containing Triarylmethane Dyes by Aeromonas hydrophila Isolated from Industrial Effluent

    PubMed Central

    Ogugbue, Chimezie Jason; Sawidis, Thomas

    2011-01-01

    Economical and bio-friendly approaches are needed to remediate dye-contaminated wastewater from various industries. In this study, a novel bacterial strain capable of decolorizing triarylmethane dyes was isolated from a textile wastewater treatment plant in Greece. The bacterial isolate was identified as Aeromonas hydrophila and was shown to decolorize three triarylmethane dyes tested within 24 h with color removal in the range of 72% to 96%. Decolorization efficiency of the bacterium was a function of operational parameters (aeration, dye concentration, temperature, and pH) and the optimal operational conditions obtained for decolorization of the dyes were: pH 7-8, 35°C and culture agitation. Effective color removal within 24 h was obtained at a maximum dye concentration of 50 mg/L. Dye decolorization was monitored using a scanning UV/visible spectrophotometer which indicated that decolorization was due to the degradation of dyes into non-colored intermediates. Phytotoxicity studies carried out using Triticum aestivum, Hordeum vulgare, and Lens esculenta revealed the triarylmethane dyes exerted toxic effects on plant growth parameters monitored. However, significant reduction in toxicity was obtained with the decolorized dye metabolites thus, indicating the detoxification of the dyes following degradation by Aeromonas hydrophila. PMID:21808740

  12. Identification and characterization of bioemulsifier-producing yeasts isolated from effluents of a dairy industry.

    PubMed

    Monteiro, A S; Bonfim, M R Q; Domingues, V S; Corrêa, A; Siqueira, E P; Zani, C L; Santos, V L

    2010-07-01

    New bioemulsifier-producing yeasts were isolated from the biological wastewater treatment plant of a dairy industry. Of the 31 bioemulsifier-producing strains, 12 showed emulsifying activity after 2months of incubation, with E(24) values ranging from 7% to 78%. However, only Trichosporon loubieri CLV20, Geotrichum sp. CLOA40, and T. montevideense CLOA70 exhibited high emulsion-stabilizing capacity, with E(24) values of 78%, 67%, and 66%, respectively. These isolates were shown to induce a strong emulsion stabilizing activity rather than the reduction of the interfacial tension. These strains exhibited similar growth rates in the exponential growth phase, with a clear acceleration after 24h and stabilization of the activity after 144h. Emulsification and stability properties of the bioemulsifiers were compared to those of commercial surfactants after the addition of NaCl and exposure to temperature of 100 degrees C. The compounds produced by the isolates appeared to be lipid-polysaccharide complexes. Gas chromatograph analysis of the lipidic fraction of the bioemulsifiers from CLV20, CLOA40, and CLOA70 shows the prevalence of (9Z,12Z)-octadeca-9,12-dienoic acid, in concentrations of 42.8%, 25.9%, and 49.8%, respectively. The carbohydrate composition, as determined by GC-MS of their alditol acetate derivatives, showed a predominance of mannose, galactose, xylose and arabinose.

  13. Surface Alteration of Activated Carbon for Detoxification of Copper (ii) from Industrial Effluents

    NASA Astrophysics Data System (ADS)

    Bhutto, Sadaf; Khan, M. Nasiruddin

    2013-04-01

    The low-cost modified activated carbons were prepared from Thar and Lakhra (Pakistan) coals by activation with sulfuric acid and further modified with citric, tartaric and acetic acids for the selective adsorption of Cu(II) from aqueous solution. The original carbon obtained from activated Thar and Lakhra coals at pH 3.0 displayed significant adsorption capacity for lead and insignificant capacity values (0.880 and 0.830 mgṡg-1) for copper. However, after modification with citric, tartaric and acetic acid the copper adsorption capacities enhanced in the range of 5.56-21.85 and 6.05-44.61 times, respectively. The Langmuir, Freundlich and Temkin adsorption isotherms were used to elucidate the observed sorption phenomena. The isotherm equilibrium data was well fitted by the Langmuir and sufficiently fitted to the Freundlich models. The calculated thermodynamic parameters such as change in Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) inferred that the investigated adsorption was spontaneous and endothermic in nature. Based on the results, it was concluded that the surface alteration with citric and tartaric acid, Thar and Lakhra activated carbons had significant potential for selective removal of copper(II) from industrial wastewater.

  14. Degradation of organic contaminants in effluents-synthetic and from the textile industry-by Fenton, photocatalysis, and H2O2 photolysis.

    PubMed

    de Lima, L B; Pereira, L O; de Moura, S G; Magalhães, F

    2016-06-24

    In this study, the oxidation of the dye rhodamine B (RhB), present in a synthetic effluent, and the degradation of organic matter present in a textile effluent, were assessed by photolysis (H2O2, UV), homogeneous Fenton (Fe(2+), H2O2), and photocatalysis (TiO2, UV). The results showed that photolysis and Fenton had an efficiency of 100 % and photocatalysis, 96 %, to discoloration 10 mg L(-1) RhB, present in the synthetic effluent. The best experimental conditions determined for these reactions showed that the one performed with 51 mg L(-1) H2O2 and UV light had the best results, where 100 % of RhB was discolored in only 6 min of reaction. The optimum conditions determined in the first part of this study for the RhB oxidation did not show satisfactory results for the degradation of organic matter present in the textile effluent sample, and it was necessary to increase the amount of reagents in the three processes. After resizing the concentration of the reagents for the reactions with the textile effluent, the following reductions of color, total organic carbon (TOC), and total soluble solids (SS) were obtained: photocatalysis 29, 25, and 32 %; photolysis 85, 69, and 35 %; Fenton 98, 90, and 23 %; and biological (followed by physicochemical) treatment carried out by the textile industry 96, 48, and 9 %. It is observed that the Fenton reaction showed the best result, followed by photolysis reaction, a treatment carried out by industry and, at last, photocatalysis.

  15. A review and investigation of the effect of nanophotocatalytic ozonation process for phenolic compound removal from real effluent of pulp and paper industry.

    PubMed

    Biglari, Hamed; Afsharnia, Mojtaba; Alipour, Vali; Khosravi, Rasoul; Sharafi, Kiomars; Mahvi, Amir Hossein

    2017-02-01

    Phenol and its derivatives are the major environmental pollutants discharged from paper and pulp industries into water bodies. All these compounds and chlorinated phenolic compounds in particular are very toxic to fauna and flora, even at relatively low concentration. This study aimed to investigate the removal rate of phenolic compounds from the effluent of pulp and paper industries using a combination of ozonation and photocatalytic processes. Firstly, a certain volume from the effluent of paper and pulp industries containing certain phenol concentrations was obtained and fed into a prefabricated reactor at laboratory scale. Then, the combined and separate effects of zinc oxide dosage (ZnO), ozone flow rate (O3), and pH under ultra violet radiation for 30 min were evaluated. The concentration of phenolic compounds and the produced ozone gas flow rate were measured by a spectrophotometry and iodometric method, respectively. The results showed that the phenolic removal rate increased at acidic PHs compared with alkaline PHs; it was also decreased with the increase in ZnO dosages. Furthermore, the highest phenolic compound's removal rate was 99% at the optimal condition (pH 5, ZnO dosage of 0.1 g L(-1) at the 30 min with UV-C illumination of 125 W). Finally, Daphnia toxicity test showed that treated effluent was safe and met the standards to the extent that it can be discharged into the receiving waters. Graphical abstract ᅟ.

  16. Impact of pharmaceutical industry treated effluents on the water quality of river Uppanar, South east coast of India: A case study

    NASA Astrophysics Data System (ADS)

    Damodhar, Usha; Vikram Reddy, M.

    2013-06-01

    The water quality of a river that received pharmaceutical industrial effluents is evaluated through the analysis of two indices to describe the level of pollution of the river, in this paper. The indices have been computed from December 2009 to June 2011 at four sampling stations—outlet, outfall, upstream, and downstream in the Uppanar River located at Cuddalore (South east coast of India). The results were compared with the guidelines of Bureau of Indian standards for drinking water specifications (BIS 10500).The study also identifies the pollutants of pharmaceutical industrial effluents before and after treatment that affects the river water quality. Data on spatial and temporal changes in dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, pH, temperature, color, electrical conductance, total dissolved solids, total suspended solids, calcium, magnesium, hardness, sodium, and chloride were collected. The water quality indices used, Bascarón (1979) adapted Water Quality Index (WQIBA) and the Canadian Council of Ministers of the Environment-Water Quality Index 1.0 (CCME WQI), which is a well-accepted and universally applicable computer model for evaluating the water quality index. Both the indices presented similar trends, and were considered adequate for evaluating the impacts of industrial effluent on the river water bodies.

  17. Dual application of duckweed and azolla plants for wastewater treatment and renewable fuels and petrochemicals production

    PubMed Central

    2014-01-01

    Background Shortages in fresh water supplies today affects more than 1 billion people worldwide. Phytoremediation strategies, based on the abilities of aquatic plants to recycle nutrients offer an attractive solution for the bioremediation of water pollution and represents one of the most globally researched issues. The subsequent application of the biomass from the remediation for the production of fuels and petrochemicals offers an ecologically friendly and cost-effective solution for water pollution problems and production of value-added products. Results In this paper, the feasibility of the dual application of duckweed and azolla aquatic plants for wastewater treatment and production of renewable fuels and petrochemicals is explored. The differences in absorption rates of the key wastewater nutrients, ammonium and phosphorus by these aquatic macrophytes were used as the basis for optimization of the composition of wastewater effluents. Analysis of pyrolysis products showed that azolla and algae produce a similar range of bio-oils that contain a large spectrum of petrochemicals including straight-chain C10-C21 alkanes, which can be directly used as diesel fuel supplement, or a glycerin-free component of biodiesel. Pyrolysis of duckweed produces a different range of bio-oil components that can potentially be used for the production of “green” gasoline and diesel fuel using existing techniques, such as catalytic hydrodeoxygenation. Conclusions Differences in absorption rates of the key wastewater nutrients, ammonium and phosphorus by different aquatic macrophytes can be used for optimization of composition of wastewater effluents. The generated data suggest that the composition of the petrochemicals can be modified in a targeted fashion, not only by using different species, but also by changing the source plants’ metabolic profile, by exposing them to different abiotic or biotic stresses. This study presents an attractive, ecologically friendly and cost

  18. Phytoaccumulation of heavy metals in natural plants thriving on wastewater effluent at Hattar industrial estate, Pakistan.

    PubMed

    Irshad, Muhammad; Ahmad, Sajjad; Pervez, Arshid; Inoue, Mitsuhiro

    2015-01-01

    The objective of this research was to compare the potential of native plants for the phytoaccumulation of heavy metals (HM). Thirteen predominant plant species (including trees, bushes and grasses) namely Ricinus communis, Ipomoea carnea, Cannabis sativa, Parthenium hysterophorus, Acacia nilotica, Dalbergia sissoo, Acacia modesta, Solanum nigrum, Xanthium stromarium, Chenopodium album, Cynodon dactylon, Eleusine indica, and Dactyloctenium aegyptium were collected from the wastewater originated from Hattar industrial estate of Pakistan, Plants shoots and roots were analyzed for heavy metals/metalloid: Pb, Cr, Cd, Zn, Fe, Ni, and As. Among plant species, the accumulation potential for HM varied depending on the type of element. Regardless of the plant species, HM concentrations varied in the order of Fe>Zn>Cr>Pb>Ni>Cd>As. Tree species of R. communis, A. nilotica, A. modesta, and D. sissoo exhibited an enhanced concentrations of metals. Accumulation pattern of Fe, Pb, Cd, and As in plants could be related to the HM composition of soil and wastewater. Most of the species exhibited higher HM composition in the root as compared to shoot. The species that found with greater ability to absorb HM in the root, got higher HM concentrations in its shoot. Shoot tissue concentrations of HM were attained by the species as D. sissoo>A. modesta>A. nilotica>R. communis>I. carnea>C. album>E. indica>P. hysterophorus>S. nigrum>C. sativa>D. aegyptium>X. strumarium>C. dactylon. Based on results, tree plants were noticed as higher accumulators of HM in polluted soils.

  19. Ammonia-containing industrial effluents, lethal to rainbow trout, induce vacuolisation and Neutral Red uptake in the rainbow trout gill cell line, RTgill-W1.

    PubMed

    Dayeh, Vivian R; Schirmer, Kristin; Bols, Niels C

    2009-02-01

    Nine samples of whole effluent from the operation of an industrial plant over the course of one year, were tested on rainbow trout for lethality and on the rainbow trout gill cell line, RTgill-W1, for metabolic activity, plasma membrane integrity, and lysosomal activity, as measured by using the alamar Blue (AB), 5-carboxyfluorescein diacetate acetoxymethyl (CFDA-AM), and neutral red (NR) assays, respectively. None of the nine samples caused a loss of plasma membrane integrity, and only two caused a transitory decline in metabolism. Three samples caused massive vacuolisation in RTgill-W1 cells, which was accompanied by increased uptake of NR, and only these three samples were lethal to the rainbow trout. The addition of ammonia to RTgill-W1 cultures also induced vacuolisation and NR uptake, with little change in plasma membrane integrity or metabolism. Subsequently, the effluent source was identified as a nitrogen product producer, and variable levels of ammonia were found in the nine samples. Three of the four samples with the highest non-ionised ammonia levels were those which were toxic to rainbow trout and which caused vacuoles in RTgill-W1 cells. The close correlation between rainbow trout-killing and RTgill-W1 vacuolisation by the effluents, suggests that vacuolisation of RTgill-W1 cells could be used to indicate effluents which would be toxic to rainbow trout as a result of their ammonia content.

  20. Estimating effluent COD

    SciTech Connect

    Eckenfelder, W.W.; Landine, R.

    1995-06-01

    In many parts of the world, chemical oxygen demand (COD) is a primary effluent parameter. Unlike BOD, which considers only biodegradable organics, COD also includes non-degradable organics and non-degradable biological oxidation by-products, generally referred to as soluble microbial products (SMP). The SMP can vary from 2% to 10% of the influent degradable COD. If the technology is limited to biological treatment only, the degradable COD will be removed. Further reductions in COD will require physical chemical treatments such as activated carbon. Effluent COD values for several industrial wastewaters are presented. Effluent characteristics from the anaerobic treatment of industrial wastewaters are also discussed.

  1. Recycling of aluminum and caustic soda solution from waste effluents generated during the cleaning of the extruder matrixes of the aluminum industry.

    PubMed

    Tansens, Pieter; Rodal, Alberto T; Machado, Carina M M; Soares, Helena M V M

    2011-03-15

    Anodising industries use a concentrated caustic soda solution to remove aluminum from extruder matrixes. This procedure produces very alkaline effluents containing high amounts of aluminum. The work reported here was focussed on recycling aluminum, as aluminum hydroxide, from these effluents and regenerating an alkaline sodium hydroxide solution. Briefly, the method comprises a dilution step (necessary for reducing the viscosity of the effluent and allowing the subsequent filtration) followed by a filtration to eliminate a substantial amount of the insoluble iron. Then, sulphuric acid was added to neutralize the waste solution down to pH 12 and induce aluminum precipitation. The purity of the aluminum salt was improved after washing the precipitate with deionised water. The characterization of the solid recovered, performed by thermogravimetric analysis, Fourier transform infrared spectroscopy and X-ray diffraction, indicated characteristics typical of bayerite. The proposal method allowed recovering 82% of the aluminum present in the wastewater with high purity (99.5%). Additionally, a sufficiently concentrated caustic soda solution was also recovered, which can be reused in the anodising industries. This procedure can be easily implemented and ensures economy by recycling reagents (concentrated caustic soda solution) and by recovering commercial by-products (aluminum hydroxide), while avoiding environmental pollution.

  2. Accumulation of Metals in Soils, Groundwater and Edible Parts of Crops Grown Under Long-Term Irrigation with Sewage Mixed Industrial Effluents.

    PubMed

    Yadav, R K; Minhas, P S; Lal, Khajanchi; Chaturvedi, R K; Yadav, Gajender; Verma, T P

    2015-08-01

    Farmers in developing countries irrigate crops using raw urban and industrial effluents with consequent risks from metal contamination. Therefore, soils, crops and groundwater from an effluent irrigation use site were assessed for Cd, Cr, Ni and Pb. Total and available contents of metals in soil followed the order Pb>Ni>Cr>Cd. Crops accumulated more Pb, followed by Cd, Ni and Cr. Pb exceeded the permissible limit with wastewater irrigation only, but Cd exceeded the limit even with combined irrigations of wastewater and groundwater. Among crops, sugar beet assimilated highest Cd (3.14 μg g(-1)) and Pb (6.42 μg g(-1)) concentrations. Legumes accumulated more metals than cereals. Long-term use of wastewater and its conjunctive use with groundwater led to toxic accumulations of Cd, Pb, Ni and Cr. Cd with higher availability and mobility indices and lower toxicity limit, posed the maximum risk of food-chain contamination.

  3. Treatment of textile industry effluents using orange waste: a proposal to reduce color and chemical oxygen demand.

    PubMed

    de Farias Silva, Carlos Eduardo; da Silva Gonçalves, Andreza Heloiza; de Souza Abud, Ana Karla

    Various agricultural residues have been tested as biosorbents due to their low cost, high surface area, and favorable surface chemistry. In this work, a sweet orange albedo was tested as a biosorbent for treatment of real textile effluents. The orange albedo powder was prepared by drying the residue at 50 °C and milling to 30 mesh, and then used for dye adsorption from a alkaline (pH = 10.71) effluent. The adsorption process was studied in batch experiments at 30 °C by measuring color removal and chemical oxygen demand (COD). The color removal was found not to be significantly altered when the effluent was used in its raw state, while COD increased probably due to albedo degradation. For the effluent diluted to 60% (Veffluent VH2O(-1)), color and COD removal percentages of approximately 89% were obtained. It was found that pH played a very significant role on the adsorption process, as the treated albedo displayed a relative pHPZC* of 4.61, and the highest dye removal efficiencies were reached at pH lower than 2. The COD was strongly influenced by the effluent dilution. The effectiveness in eliminating color and COD shows that orange albedo can be potentially used as a biosorbent to treat textile wastewater.

  4. Assessing the application of advanced oxidation processes, and their combination with biological treatment, to effluents from pulp and paper industry.

    PubMed

    Merayo, Noemí; Hermosilla, Daphne; Blanco, Laura; Cortijo, Luis; Blanco, Angeles

    2013-11-15

    The closure of water circuits within pulp and paper mills has resulted in a higher contamination load of the final mill effluent, which must consequently be further treated in many cases to meet the standards imposed by the legislation in force. Different treatment strategies based on advanced oxidation processes (ozonation and TiO2-photocatalysis), and their combination with biological treatment (MBR), are herein assessed for effluents of a recycled paper mill and a kraft pulp mill. Ozone treatment achieved the highest efficiency of all. The consumption of 2.4 g O3 L(-1) resulted in about a 60% COD reduction treating the effluent from the kraft pulp mill at an initial pH=7; although it only reached about a 35% COD removal for the effluent of the recycled paper mill. Otherwise, photocatalysis achieved about a 20-30% reduction of the COD for both type of effluents. In addition, the effluent from the recycled paper mill showed a higher biodegradability, so combinations of these AOPs with biological treatment were tested. As a result, photocatalysis did not report any significant COD reduction improvement whether being performed as pre- or post-treatment of the biological process; whereas the use of ozonation as post-biological treatment enhanced COD removal a further 10%, summing up a total 90% reduction of the COD for the combined treatment, as well as it also supposed an increase of the presence of volatile fatty acids, which might ultimately enable the resultant wastewater to be recirculated back to further biological treatment.

  5. Development of a simultaneous partial nitrification, anaerobic ammonia oxidation and denitrification (SNAD) bench scale process for removal of ammonia from effluent of a fertilizer industry.

    PubMed

    Keluskar, Radhika; Nerurkar, Anuradha; Desai, Anjana

    2013-02-01

    A simultaneous partial nitrification, anammox and denitrification (SNAD) process was developed for the treatment of ammonia laden effluent of a fertilizer industry. Autotrophic aerobic and anaerobic ammonia oxidizing biomass was enriched and their ammonia removal ability was confirmed in synthetic effluent system. Seed consortium developed from these was applied in the treatment of effluent in an oxygen limited bench scale SNAD type (1L) reactor run at ambient temperature (∼30°C). Around 98.9% ammonia removal was achieved with ammonia loading rate 0.35kgNH(4)(+)-N/m(3)day in the presence of 46.6mg/L COD at 2.31days hydraulic retention time. Qualitative and quantitative analysis of the biomass from upper and lower zone of the reactor revealed presence of autotrophic ammonia oxidizing bacteria (AOB), Planctomycetes and denitrifiers as the dominant bacteria carrying out anoxic oxidation of ammonia in the reactor. Physiological and molecular studies strongly indicate presence of anammox bacteria in the anoxic zone of the SNAD reactor.

  6. Economic-impact analysis of effluent-limitations guidelines and standards for the organic chemicals, plastics, and synthetic-fibers industry

    SciTech Connect

    Not Available

    1987-09-01

    This report identifies and analyzes economic impacts that are likely to result from water-pollution-control regulations on the organic chemicals, plastics, and synthetic fibers (OCPSF) industry. The regulations included EPA effluent limitations and standards. The report supplements technical studies supporting the issuance of the OCPSF regulations by estimating the broader economic effects that might result from the application of various control methods and technologies. The primary economic-impact variables assessed include the costs of the contemplated regulations, and the potential for these regulations to cause plant closure, unemployment, reductions in profitability, shifts in the balance of trade, and anticompetitive effects on small business and new facilities.

  7. Monitoring the fate and behavior of TiO2 nanoparticles: Simulated in a WWTP with industrial dye-stuff effluent according to OECD 303A.

    PubMed

    Mahlalela, Lwazi C; Ngila, Jane C; Dlamini, Langelihle N

    2017-04-03

    The use of nanoparticles (NPs) in several consumer products has led to them finding their way into wastewater treatment plants (WWTPs). Some of these NPs have photocatalytic properties, thus providing a possible solution to textile industries to photodegrade dyes from their wastewater. Thus, the interaction of NPs with industrial dye effluents is inevitable. The Organization for Economic Co-operation and development (OECD) guideline for testing of chemical 303A was employed to study the fate and behaviour of TiO2 NPs in industrial dye-stuff effluent. This was due to the unavailability of NPs' fate and behaviour test protocols. The effect of TiO2 NPs on the treatment process was ascertained by measuring chemical oxygen demand (COD) and 5-day biological oxygen demand (BOD5). Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to study the fate and behavior of TiO2 NPs. Acclimatization of bacteria to target pollutants was a crucial factor for the treatment efficiency of activated sludge in a simulated wastewater treatment plant (SWTP). The acclimatization of the activated sludge to the synthetic industrial dye-stuff effluent was successfully achieved. Effect of TiO2 NPs on the treatment process efficiency was then investigated. Addition of TiO2 NPs had no effect on the treatment process as chemical oxygen demand (COD) removal remained >80%. Measured total plate count (TPC) affirmed that the addition of TiO2 NPs had no effect on the treatment process. The removal of total nitrogen (TN) was not efficient as the treatment system was required to have an oxic and anoxic stage for efficient TN removal. Results from X-ray powder diffraction (XRD) confirmed that the anatase phase of the added TiO2 NPs remained unchanged even after exposure to the treatment plant. Removal of the NPs from the influent was facilitated by biosorption of the NPs on the activated sludge. Nanoparticles received by wastewater treatment plants will therefore reach the

  8. The impact of petrochemical industrialisation on life expectancy and per capita income in Taiwan: an 11-year longitudinal study

    PubMed Central

    2014-01-01

    Background Petrochemical industries have been identified as important sources of emissions of chemical substances, and adverse health outcomes have been reported for residents who live nearby. The purpose of the current study was to examine the adverse effects of petrochemical industrialization in Taiwan on the life expectancy and personal income of people living in nearby communities. Methods This study compared life expectancies and personal income between one industrial county (Yunlin County) and one reference county (Yilan County), which had no significant industrial activity that might emit pollutants, in Taiwan through analysis of 11 year long and publicly available data. Data from before and after the petrochemical company in the industrial county started (year 1999) operating were compared. Results Residents of the industrialized county had lesser increases in life expectancy over time than did residents of a similar but less-industrialized county, with difference means ranging from 0.89 years (p < 0.05) to 1.62 years (p < 0.001) at different stages. Male residents were more vulnerable to the effects of industrialization. There were no significant differences in individual income between the two counties. Conclusions Countries, including Taiwan and the U.S., embracing petrochemical industries now face the challenge of environmental injustice. Our findings suggested that life expectancy lengthening was slowed and income growth was stalled for residents living in the industrial communities. PMID:24621018

  9. Oestrogenic activity of a textile industrial wastewater treatment plant effluent evaluated by the E-screen test and MELN gene-reporter luciferase assay.

    PubMed

    Schilirò, Tiziana; Porfido, Arianna; Spina, Federica; Varese, Giovanna Cristina; Gilli, Giorgio

    2012-08-15

    This study quantified the biological oestrogenic activity in the effluent of a textile industrial wastewater treatment plant (IWWTP) in northwestern Italy. Samples of the IWWTP effluent were collected monthly, both before and after tertiary treatment (ozonation). After solid phase extraction, all samples were subjected to two in vitro tests of total estrogenic activity, the human breast cancer cell line (MCF-7 BUS) proliferation assay, or E-screen test, and the luciferase-transfected human breast cancer cell line (MELN) gene-reporter assay, to measure the 17β-oestradiol equivalent quantity (EEQ). In the E-screen test, the mean EEQ values were 2.35±1.68 ng/L pre-ozonation and 0.72±0.58 ng/L post-ozonation; in the MELN gene-reporter luciferase assay, the mean EEQ values were 4.18±3.54 ng/L pre-ozonation and 2.53±2.48 ng/L post-ozonation. These results suggest that the post-ozonation IWWTP effluent had a lower oestrogenic activity (simple paired t-tests, p<0.05). The average reduction of estrogenic activity of IWWTP effluent after ozonation was 67±26% and 52±27% as measured by E-screen test and MELN gene-reporter luciferase assay, respectively. There was a positive and significant correlation between the two tests (Rho S=0.650, p=0.022). This study indicates that the environmental risk is low because oestrogenic substances are deposited into the river via IWWTP at concentrations lower than those at which chronic exposure has been reported to affect the endocrine system of living organisms.

  10. Valve movement response of the mussel mytilus galloprovincialis to metals (Cu, Hg, Cd and Zn) and phosphate industry effluents from Moroccan Atlantic coast.

    PubMed

    Fdil, Mohamed Ait; Mouabad, Abdelfattah; Outzourhit, Abdelkader; Benhra, Ali; Maarouf, Abdelmalek; Pihan, Jean Claude

    2006-07-01

    Valve activity was measured in the Mediterranean mussel Mytilus galloprovincialis in response to sublethal concentrations of four metals (Hg, Cu, Zn and Cd) and two phosphate industry effluents from the Atlantic coast of Morocco. Valve movements were monitored using a proximity inductive sensor which could display all activity figures from full closure to wide opening of the shell valves. In a 1 h exposure experiments, all metals induced a decrease in the time of normal opening and the appearance of sequences of stress behaviour, including enhanced valve adductions and complete closure at high concentrations. Mercury (tested from 5 to 75 microg Hg l(-1)) was the most toxic to the valve activity, with a threshold effective concentration at 10 microg Hg l(-1) and full valve closure occurring at 50 microg Hg l(-1). Copper (15-150 microg Cu l(-1)) showed a toxic effect starting at threshold concentration of 20 microg Cu l(-1) and induced full valve closure at 150 microg Cu l(-1). Zinc (100-500 microg Zn l(-1)) was effective in reducing the time of normal opening (threshold concentration at 100 microg Zn I(-1)) but no complete closure was recorded in any of the tested concentrations. For cadmium (1000-5000 microg Cd l(-1)), the valve activity was insensitive for exposures under 2000 microg Cd l(-1). Results for the testing of several samplings of the phosphate industry effluents (Safi and Jorf Lasfar) showed that their toxicity varied over the time. The effluent of the Jorf Lasfar plant (2-9.4%) was, however, more toxic than that of Safi (1-25%). In the light of these results, the sensitivity of the valve activity of Mytilus galloprovincialis to pollutants and its usefulness for in situ monitoring of coastal pollution in Morocco are discussed.

  11. Ultratrace Determination of Cr(VI) and Pb(II) by Microsample Injection System Flame Atomic Spectroscopy in Drinking Water and Treated and Untreated Industrial Effluents.

    PubMed

    Baig, Jameel Ahmed; Kazi, Tasneem Gul; Elci, Latif; Afridi, Hassan Imran; Khan, Muhammad Irfan; Naseer, Hafiz Muhammad

    2013-01-01

    Simple and robust analytical procedures were developed for hexavalent chromium (Cr(VI)) and lead (Pb(II)) by dispersive liquid-liquid microextraction (DLLME) using microsample injection system coupled with flame atomic absorption spectrophotometry (MIS-FAAS). For the current study, ammonium pyrrolidine dithiocarbamate (APDC), carbon tetrachloride, and ethanol were used as chelating agent, extraction solvent, and disperser solvent, respectively. The effective variables of developed method have been optimized and studied in detail. The limit of detection of Cr(VI) and Pb(II) were 0.037 and 0.054 µg/L, respectively. The enrichment factors in both cases were 400 with 40 mL of initial volumes. The relative standard deviations (RSDs, n = 6) were <4%. The applicability and the accuracy of DLLME were estimated by the analysis of Cr(VI) and Pb(II) in industrial effluent wastewater by standard addition method (recoveries >96%). The proposed method was successfully applied to the determination of Cr(VI) and Pb(II) at ultratrace levels in natural drinking water and industrial effluents wastewater of Denizli. Moreover, the proposed method was compared with the literature reported method.

  12. Ultratrace Determination of Cr(VI) and Pb(II) by Microsample Injection System Flame Atomic Spectroscopy in Drinking Water and Treated and Untreated Industrial Effluents

    PubMed Central

    Baig, Jameel Ahmed; Kazi, Tasneem Gul; Elci, Latif; Afridi, Hassan Imran; Khan, Muhammad Irfan; Naseer, Hafiz Muhammad

    2013-01-01

    Simple and robust analytical procedures were developed for hexavalent chromium (Cr(VI)) and lead (Pb(II)) by dispersive liquid-liquid microextraction (DLLME) using microsample injection system coupled with flame atomic absorption spectrophotometry (MIS-FAAS). For the current study, ammonium pyrrolidine dithiocarbamate (APDC), carbon tetrachloride, and ethanol were used as chelating agent, extraction solvent, and disperser solvent, respectively. The effective variables of developed method have been optimized and studied in detail. The limit of detection of Cr(VI) and Pb(II) were 0.037 and 0.054 µg/L, respectively. The enrichment factors in both cases were 400 with 40 mL of initial volumes. The relative standard deviations (RSDs, n = 6) were <4%. The applicability and the accuracy of DLLME were estimated by the analysis of Cr(VI) and Pb(II) in industrial effluent wastewater by standard addition method (recoveries >96%). The proposed method was successfully applied to the determination of Cr(VI) and Pb(II) at ultratrace levels in natural drinking water and industrial effluents wastewater of Denizli. Moreover, the proposed method was compared with the literature reported method. PMID:24163779

  13. Economic benefits of final effluent limitations guidelines and standards for the offshore oil and gas industry. Final report

    SciTech Connect

    Not Available

    1993-01-14

    The report provides an overview of the benefits analysis of the effluent limitation guidelines for offshore oil and gas facilities. Regulatory options were evaluated for two wastestreams: (1) drilling fluids (muds) and cuttings; and (2) produced water. The analysis focuses on the human health-related benefits of the regulatory options considered. These health risk reduction benefits are associated with reduced human exposure to various carcinogenic and noncarcinogenic contaminants, including lead, by way of consumption of shrimp and recreationally caught finfish from the Gulf of Mexico. Most of the health-risk reduction benefits analysis is based upon a previous report (RCG/Hagler, Bailly, January 1991), developed in support of the proposed rulemaking. Recreational, commercial, and nonuse benefits have not been estimated for these regulations, due to data limitations and the difficulty of estimating these values for effluent controls in the open-water marine environment.

  14. Determination of pesticide residues and related compounds in water and industrial effluent by solid-phase extraction and gas chromatography coupled to triple quadrupole mass spectrometry.

    PubMed

    Martins, Manoel L; Donato, Filipe F; Prestes, Osmar D; Adaime, Martha B; Zanella, Renato

    2013-09-01

    Pollution of drinking water supplies from industrial waste is a result of several industrial processes and disposal practices, and the establishment of analytical methods for monitoring organic compounds related to environmental and health problems is very important. In this work, a method using solid-phase extraction (SPE) and gas chromatography coupled to triple quadrupole tandem mass spectrometry (GC-QqQ-MS/MS) was developed and validated for the simultaneous determination of pesticide residues and related compounds in drinking and surface water as well as in industrial effluent. Optimization of the method was achieved by using a central composite design approach on parameters such as the sample pH and SPE eluent composition. A single SPE consisting of the loading on a polymeric sorbent of 100 mL of sample adjusted to pH 3 and elution with methanol/methylene chloride (10:90, v/v) permitted the obtaining of acceptable recoveries in most cases. The concentration factor associated with sensitivity of the chromatographic analysis permitted the achievement of the method limit of detection values between 0.01 and 0.25 μg L(-1). Recovery assays presented mean recoveries between 70 and 120% for most of the compounds with very good precision, despite the different chemical nature of the compounds analyzed. The selectivity of the method, evaluated through the relative intensity of quantification and qualification ions obtained by GC-QqQ-MS/MS, was considered adequate. The developed method was finally applied to the determination of target analytes in real samples. River water and treated industrial effluent samples presented residues of some compounds, but no detectable residues were found in the drinking water samples evaluated.

  15. Dissipation, metabolism and sorption of pesticides used in fruit-packaging plants: Towards an optimized depuration of their pesticide-contaminated agro-industrial effluents.

    PubMed

    Karas, Panagiotis; Metsoviti, Aria; Zisis, Vasileios; Ehaliotis, Constantinos; Omirou, Michalis; Papadopoulou, Evangelia S; Menkissoglou-Spiroudi, Urania; Manta, Stella; Komiotis, Dimitri; Karpouzas, Dimitrios G

    2015-10-15

    Wastewaters from the fruit-packaging industry constitute a serious point source contamination with pesticides. In the absence of effective depuration methods, they are discharged in municipal wastewater treatment plants or spread to land. Modified biobeds could be an applicable solution for their treatment. We studied the dissipation of thiabendazole (TBZ), imazalil (IMZ), ortho-phenylphenol (OPP), diphenylamine (DPA) and ethoxyquin (EQ), used by the fruit-packaging industry, in anaerobically digested sewage sludge, liquid aerobic sewage sludge and in various organic substrates (biobeds packing materials) composed of soil, straw and spend mushroom substrate (SMS) in various volumetric ratios. Pesticide sorption was also determined. TBZ and IMZ showed higher persistence especially in the anaerobically digested sewage sludge (DT50=32.3-257.6d), in contrast to OPP and DPA which were rapidly dissipated especially in liquid aerobic sewage sludge (DT50=1.3-9.3d). EQ was rapidly oxidized mainly to quinone imine (QI) which did not persist and dimethyl ethoxyquinoline (EQNL, minor metabolite) which persisted for longer. Sterilization of liquid aerobic sewage sludge inhibited pesticide decay verifying the microbial nature of pesticide dissipation. Organic substrates rich in SMS showed the highest dissipation capacity with TBZ and IMZ DT50s of ca. 28 d compared to DT50s of >50 d in the other substrates. TBZ and IMZ showed the highest sorption affinity, whereas OPP and DPA were weakly sorbed. Our findings suggest that current disposal practices could not guarantee an efficient depuration of effluents from the fruit-packaging industry, whereas SMS-rich biobed organic substrates show efficient depuration of effluents from the fruit-packaging industry via accelerated dissipation even of recalcitrant fungicides.

  16. Directional drilling allows quick exit from petrochemical plant

    SciTech Connect

    Halderman, R.G.

    1994-12-31

    Horizontal directional drilling uses specialty tools and techniques largely taken from the oil field and the mining industry to very accurately install pipelines, utilities and other conduits under obstacles such as rivers, beaches, environmentally sensitive areas, roadways, railroads, airfields, and congested pipeline corridors. In the early part of 1990, a particularly interesting problem confronted the pipeline engineers at Union Carbides 2,500-acre Seadrift plant near Port Lavaca, Texas. Having started up in 1954, the plant today is a major supplier of chemicals and plastics to industry, shipping more than two billion pounds per year. Since very large volumes of cooling water are needed for the operation of a petrochemical complex of this magnitude, years of expansion and modifications have caused the plant to become nearly surrounded by a number of rather large segmented ponds.

  17. INEEL Liquid Effluent Inventory

    SciTech Connect

    Major, C.A.

    1997-06-01

    The INEEL contractors and their associated facilities are required to identify all liquid effluent discharges that may impact the environment at the INEEL. This liquid effluent information is then placed in the Liquid Effluent Inventory (LEI) database, which is maintained by the INEEL prime contractor. The purpose of the LEI is to identify and maintain a current listing of all liquid effluent discharge points and to identify which discharges are subject to federal, state, or local permitting or reporting requirements and DOE order requirements. Initial characterization, which represents most of the INEEL liquid effluents, has been performed, and additional characterization may be required in the future to meet regulations. LEI information is made available to persons responsible for or concerned with INEEL compliance with liquid effluent permitting or reporting requirements, such as the National Pollutant Discharge Elimination System, Wastewater Land Application, Storm Water Pollution Prevention, Spill Prevention Control and Countermeasures, and Industrial Wastewater Pretreatment. The State of Idaho Environmental Oversight and Monitoring Program also needs the information for tracking liquid effluent discharges at the INEEL. The information provides a baseline from which future liquid discharges can be identified, characterized, and regulated, if appropriate. The review covered new and removed buildings/structures, buildings/structures which most likely had new, relocated, or removed LEI discharge points, and at least 10% of the remaining discharge points.

  18. Resource Conservation and Recovery Act industrial site environmental restoration site characterization report - area 6 steam cleaning effluent ponds

    SciTech Connect

    1996-09-01

    The Area 6 North and South Steam Cleaning Effluent Ponds (SCEPs) are historic disposal units located at the Nevada Test Site (NTS) in Nye County, Nevada. The NTS is operated by the U.S. Department of Energy, Nevada Operations Office (DOE/NV) which has been required by the Nevada Division of Environmental Protection (NDEP) to characterize the site under the requirements of the Resource Conservation and Recovery Act (RCRA) Part B Permit for the NTS and Title 40 Code of Federal Regulations, Part 265.

  19. Determination of thimerosal in pharmaceutical industry effluents and river waters by HPLC coupled to atomic fluorescence spectrometry through post-column UV-assisted vapor generation.

    PubMed

    Acosta, Gimena; Spisso, Adrián; Fernández, Liliana P; Martinez, Luis D; Pacheco, Pablo H; Gil, Raúl A

    2015-03-15

    A high performance liquid chromatography coupled with atomic fluorescence spectrometry method for the determination of thimerosal (sodium ethylmercury thiosalicylate, C9H9HgNaO2S), ethylmercury, and inorganic mercury is proposed. Mercury vapor is generated by the post-column reduction of mercury species in formic acid media using UV-radiation. Thimerosal is quantitatively converted to Hg(II) followed by the reduction of Hg(II) to Hg(0). This method is applied to the determination of thimerosal (THM), ethylmercury (EtHg) and inorganic Hg in samples of a pharmaceutical industry effluent, and in waters of the San Luis River situated in the west side of San Luis city (Middle West, Argentine) where the effluents are dumped. The limit of detections, calculated on the basis of the 3σ criterion, where 0.09, 0.09 and 0.07 μg L(-1) for THM, EtHg(II) and for Hg(II), respectively. Linearity was attained from levels close to the detection limit up to at least 100 μg L(-1).

  20. Degradation and monitoring of acetamiprid, thiabendazole and their transformation products in an agro-food industry effluent during solar photo-Fenton treatment in a raceway pond reactor.

    PubMed

    Carra, Irene; Sirtori, Carla; Ponce-Robles, Laura; Sánchez Pérez, José Antonio; Malato, Sixto; Agüera, Ana

    2015-07-01

    In this study, pesticides acetamiprid and thiabendazole and their transformation products (TPs), seven from each pesticide, were successfully monitored during solar photo-Fenton treatment in a real secondary effluent from an agro-food industry spiked with 100μgL(-1) of each pesticide. To this end, a highly sensitive procedure was developed, based on liquid chromatography (LC) coupled to hybrid quadrupole-linear ion trap mass spectrometry (QqLIT-MS). In addition, finding low-cost and operational technology for the application of AOPs would then facilitate their use on a commercial level. Simple and extensive photoreactors such as raceway pond reactors (RPRs) are therefore proposed as an alternative for the application of solar photo-Fenton. Results showed that high degradation could be achieved in a complex water matrix (>99% TBZ and 91% ACTM in 240min) using a 120-L RPR pilot plant as novel technology. The analyses indicated that after the treatment only three TPs from ACTM were still present in the effluent, while the others had been removed. The study showed that the goal of either just removing the parent compounds, or going one step further and removing all the TPs, can significantly change the treatment time, which would affect process costs.

  1. Exploiting the efficacy of Lysinibacillus sp. RGS for decolorization and detoxification of industrial dyes, textile effluent and bioreactor studies.

    PubMed

    Saratale, Rijuta G; Saratale, Ganesh D; Govindwar, Sanjay P; Kim, Dong S

    2015-01-01

    Complete decolorization and detoxification of Reactive Orange 4 within 5 h (pH 6.6, at 30°C) by isolated Lysinibacillus sp. RGS was observed. Significant reduction in TOC (93%) and COD (90%) was indicative of conversion of complex dye into simple products, which were identified as naphthalene moieties by various analytical techniques (HPLC, FTIR, and GC-MS). Supplementation of agricultural waste extract considered as better option to make the process cost effective. Oxido-reductive enzymes were found to be involved in the degradation mechanism. Finally Loofa immobilized Lysinibacillus sp. cells in a fixed-bed bioreactor showed significant decolorization with reduction in TOC (51 and 64%) and COD (54 and 66%) for synthetic and textile effluent at 30 and 35 mL h(-1) feeding rate, respectively. The degraded metabolites showed non-toxic nature revealed by phytotoxicity and photosynthetic pigments content study for Sorghum vulgare and Phaseolus mungo. In addition nitrogen fixing and phosphate solubilizing microbes were less affected in treated wastewater and thus the treated effluent can be used for the irrigation purpose. This work could be useful for the development of efficient and ecofriendly technologies to reduce dye content in the wastewater to permissible levels at affordable cost.

  2. Environmental assessment of the degradation potential of mushroom fruit bodies of Pleurotus ostreatus (Jacq.: Fr.) P. Kumm. towards synthetic azo dyes and contaminating effluents collected from textile industries in Karnataka, India.

    PubMed

    Skariyachan, Sinosh; Prasanna, Apoorva; Manjunath, Sirisha P; Karanth, Soujanya S; Nazre, Ambika

    2016-02-01

    Pleurotus ostreatus (Jacq.: Fr.) P. Kumm. is one of the edible mushrooms currently gaining attention as environmental restorer. The present study explores the potential of P. ostreatus (Jacq.: Fr.) P. Kumm. in degradation of textile dyes and effluents. The mushroom cultivation was carried out using paddy bed as substrate. The fully grown mushroom fruit bodies were used as a bioremediation agent against two industrially important azo dyes such as nylon blue and cotton yellow and few effluents collected from various textile industries in Karnataka, India. The ideal growth parameters such as temperature, pH, and dye concentrations for effective degradation were carried out. One of the main enzymes, laccase, responsible for biodegradation, was partially characterized. The degradation was found to be ideal at pH 3.0 and temperature at 26-28 °C. This study demonstrated a percentage degradation of 78.10, 90.81, 82.5, and 64.88 for dye samples such as nylon blue (50 ppm), cotton yellow (350 ppm), KSIC effluents, and Ramanagar effluents at 28 °C within 15th days respectively in comparison with other temperature conditions. Similarly, a percentage degradation of 35.99, 33.33, 76.13 and 25.8 for nylon blue (50 ppm), cotton yellow (350 ppm), Karnataka Silk Industries Corporation (KSIC) effluents and Ramnagar effluents were observed at pH 3.0 within 15 days, respectively (p < 0.05). Thus, the current study concluded that the utilization of P. ostreatus (Jacq.: Fr.) P. Kumm. at ideal environmental conditions is a cost-effective and eco-friendly approach for the degradation of various azo dyes and textile effluents which are harmful to the ecosystem.

  3. The biodegradation of 1,3-dichlorobenzene by an adapted strain Bacillus cereus PF-11 derived from town-gas industrial effluent.

    PubMed

    Wang, L; Zhou, Q; Zhang, B S; Li, Z L; Chua, H; Ren, D M

    2003-09-01

    In the present study, an adapted bacterium PF-11 with high 1,3-dichlorobenzene degradation capability was isolated from town-gas industrial effluent through continuous introducing of N-methyl-N'-nitro-N-nitrosoquanidine (NTG). In suitable condition, a degradation rate of 32 mg L(-1) d(-1) of 1,3-dichlorobenzene was obtained by strain PF-11 with effective chlorion release. Strain PF-11 was tentatively identified as gram-positive Bacillus cereus. The substrate specificity of the strain PF-11 was relatively low, and the degradation rate for different chlorobenzenes was in the order of monochlorobenzene > 1,3-dichlorobenzene > 1,2-dichlorobenzene. Initial oxidation step was molecular oxygen attacking chlorobenzene ring catalyzed by dioxygenase.

  4. Catalytic wet hydrogen peroxide oxidation of a petrochemical wastewater.

    PubMed

    Pariente, M I; Melero, J A; Martínez, F; Botas, J A; Gallego, A I

    2010-01-01

    Continuous Catalytic Wet Hydrogen Peroxide Oxidation (CWHPO) for the treatment of a petrochemical industry wastewater has been studied on a pilot plant scale process. The installation, based on a catalytic fixed bed reactor (FBR) coupled with a stirred tank reactor (STR), shows an interesting alternative for the intensification of a continuous CWHPO treatment. Agglomerated SBA-15 silica-supported iron oxide (Fe(2)O(3)/SBA-15) was used as Fenton-like catalyst. Several variables such as the temperature and hydrogen peroxide concentration, as well as the capacity of the pilot plant for the treatment of inlet polluted streams with different dilution degrees were studied. Remarkable results in terms of TOC reduction and increased biodegradability were achieved using 160 degrees C and moderate hydrogen peroxide initial concentration. Additionally, a good stability of the catalyst was evidenced for 8 hours of treatment with low iron leaching (less than 1 mg/L) under the best operating conditions.

  5. Composition of activated sludge settling and planktonic bacterial communities treating industrial effluent and their correlation to settling problems.

    PubMed

    Nadarajah, Nalina; Allen, D Grant; Fulthorpe, Roberta R

    2010-11-01

    Problems with deflocculation and solids separation in biological wastewater treatment systems are linked to fluctuations in physicochemical conditions. This study examined the composition of activated sludge bacterial communities in lab-scale sequencing batch reactors treating bleached kraft mill effluent, under transient temperature conditions (30 to 45 °C) and their correlation to sludge settleability problems. The bacterial community composition of settled and planktonic biomass samples in the reactors was monitored via denaturing gradient gel electrophoresis of 16S ribosomal RNA gene fragments. Our analysis showed that settled biomass has a different community composition from the planktonic biomass (49 ± 7% difference based on Jaccard similarity coefficients; p < 0.01). During times of poor sludge compression, the settled and planktonic biomass became more similar. This observation supports the hypothesis that settling problems observed were due to deflocculation of normally settling flocs rather than the outgrowth of non-settling bacterial species.

  6. Draft Genome Sequence of Textile Azo Dye-Decolorizing and -Degrading Pseudomonas aeruginosa Strain PFK10, Isolated from the Common Effluent Treatment Plant of the Ankleshwar Industrial Area of Gujarat, India.

    PubMed

    Faldu, P R; Kothari, V V; Kothari, C R; Rawal, C M; Domadia, K K; Patel, P A; Bhimani, H D; Raval, V H; Parmar, N R; Nathani, N M; Koringa, P G; Joshi, C G; Kothari, R K

    2014-02-06

    Here, we report the draft genome sequence of Pseudomonas aeruginosa strain PFK10, isolated from the common effluent treatment plant (CETP) of the Ankleshwar industrial area of Gujarat, India. The 6.04-Mb draft genome sequence of strain PFK10 provides information about the genes encoding enzymes that enable the strain to decolorize and degrade textile azo dye.

  7. Draft Genome Sequence of Textile Azo Dye-Decolorizing and -Degrading Pseudomonas aeruginosa Strain PFK10, Isolated from the Common Effluent Treatment Plant of the Ankleshwar Industrial Area of Gujarat, India

    PubMed Central

    Faldu, P. R.; Kothari, V. V.; Kothari, C. R.; Rawal, C. M.; Domadia, K. K.; Patel, P. A.; Bhimani, H. D.; Raval, V. H.; Parmar, N. R.; Nathani, N. M.; Koringa, P. G.; Joshi, C. G.

    2014-01-01

    Here, we report the draft genome sequence of Pseudomonas aeruginosa strain PFK10, isolated from the common effluent treatment plant (CETP) of the Ankleshwar industrial area of Gujarat, India. The 6.04-Mb draft genome sequence of strain PFK10 provides information about the genes encoding enzymes that enable the strain to decolorize and degrade textile azo dye. PMID:24503984

  8. Hazardous effects of effluent from the chrome plating industry: 70 kDa heat shock protein expression as a marker of cellular damage in transgenic Drosophila melanogaster (hsp70-lacZ).

    PubMed

    Mukhopadhyay, Indranil; Saxena, Daya Krishna; Chowdhuri, Debapratim Kar

    2003-12-01

    Hazardous effects of an effluent from the chrome plating industry were examined by exposing transgenic Drosophila melanogaster (hsp70-lacZ) to various concentrations (0.05, 0.1, 1.0, 10.0, and 100.0 micro L/mL) of the effluent through diet. The emergence pattern of adult flies was affected, along with impaired reproductive performance at the higher dietary concentrations of the effluent. Interestingly, the effect of the effluent was more pronounced in male than in female flies. The effect of the effluent on development of adult flies was concurrent with the expression pattern of the heat shock protein 70 gene (hsp70), both in larval tissues and in the reproductive organs of adult flies. We observed a dose- and time-dependent expression of hsp70 in third instar larvae exposed for different time intervals. Absence of hsp70 expression in larvae exposed to 0.1 micro L/mL of the effluent indicated that this is the highest nontoxic concentration for Drosophila. The stress gene assay in the reproductive organs of adult flies revealed hsp70 expression in the testis of male flies only. However, trypan blue dye exclusion tests in these tissues indicate tissue damage in the male accessory gland of adult flies, which was further confirmed by ultrastructural observations. In the present study we demonstrate the utility of transgenic Drosophila as an alternative animal model for evaluating hazardous effects of the effluent from the chrome plating industry and further reveal the cytoprotective role of hsp70 and its expression as an early marker in environmental risk assessment.

  9. Appling hydrolysis acidification-anoxic-oxic process in the treatment of petrochemical wastewater: From bench scale reactor to full scale wastewater treatment plant.

    PubMed

    Wu, Changyong; Zhou, Yuexi; Sun, Qingliang; Fu, Liya; Xi, Hongbo; Yu, Yin; Yu, Ruozhen

    2016-05-15

    A hydrolysis acidification (HA)-anoxic-oxic (A/O) process was adopted to treat a petrochemical wastewater. The operation optimization was carried out firstly by a bench scale experimental reactor. Then a full scale petrochemical wastewater treatment plant (PCWWTP, 6500 m(3) h(-1)) was operated with the same parameters. The results showed that the BOD5/COD of the wastewater increased from 0.30 to 0.43 by HA. The effluent COD was 54.4 mg L(-1) for bench scale reactor and 60.9 mg L(-1) for PCWWTP when the influent COD was about 480 mg L(-1) on optimized conditions. The organics measured by gas chromatography-mass spectrometry (GC-MS) reduced obviously and the total concentration of the 5 organics (1,3-dioxolane, 2-pentanone, ethylbenzene, 2-chloromethyl-1,3-dioxolane and indene) detected in the effluent was only 0.24 mg L(-1). There was no obvious toxicity of the effluent. However, low acute toxicity of the effluent could be detected by the luminescent bacteria assay, indicating the advanced treatment is needed. The clone library profiling analysis showed that the dominant bacteria in the system were Acidobacteria, Proteobacteria and Bacteriodetes. HA-A/O process is suitable for the petrochemical wastewater treatment.

  10. Process-specific emission characteristics of volatile organic compounds (VOCs) from petrochemical facilities in the Yangtze River Delta, China.

    PubMed

    Mo, Ziwei; Shao, Min; Lu, Sihua; Qu, Hang; Zhou, Mengyi; Sun, Jin; Gou, Bin

    2015-11-15

    Process-specific emission characteristics of volatile organic compounds (VOCs) from petrochemical facilities were investigated in the Yangtze River Delta, China. Source samples were collected from various process units in the petrochemical, basic chemical, and chlorinated chemical plants, and were measured using gas chromatography-mass spectrometry/flame ionization detection. The results showed that propane (19.9%), propene (11.7%), ethane (9.5%) and i-butane (9.2%) were the most abundant species in the petrochemical plant, with propene at much higher levels than in petrochemical profiles measured in other regions. Styrene (15.3%), toluene (10.3%) and 1,3-butadiene (7.5%) were the major species in the basic chemical industry, while halocarbons, especially dichloromethane (15.2%) and chloromethane (7.5%), were substantial in the chlorinated chemical plant. Composite profiles were calculated using a weight-average approach based on the VOC emission strength of various process units. Emission profiles for an entire petrochemical-related industry were found to be process-oriented and should be established considering the differences in VOC emissions from various manufacturing facilities. The VOC source reactivity and carcinogenic risk potential of each process unit were also calculated in this study, suggesting that process operations mainly producing alkenes should be targeted for possible controls with respect to reducing the ozone formation potential, while process units emitting 1,3-butadiene should be under priority control in terms of toxicity. This provides a basis for further measurements of process-specific VOC emissions from the entire petrochemical industry. Meanwhile, more representative samples should be collected to reduce the large uncertainties.

  11. Treatment of real effluents from the pharmaceutical industry: A comparison between Fenton oxidation and conductive-diamond electro-oxidation.

    PubMed

    Pérez, J F; Llanos, J; Sáez, C; López, C; Cañizares, P; Rodrigo, M A

    2016-08-13

    Wastewater produced in pharmaceutical manufacturing plants (PMPs), especially the one coming from organic-synthesis facilities, is characterized by its large variability due to the wide range of solvents and chemical reagents used in the different stages of the production of medicines. Normally, the toxicity of the organic compounds prevent the utilization of biological processes and more powerful treatments are needed becoming advanced oxidation processes (AOPs) a valid alternative. In this work, the efficiency in abatement of pollution by Fenton oxidation (FO) and conductive-diamond electro-oxidation (CDEO) are compared in the treatment of 60 real effluents coming from different processes carried out in a pharmaceutical facility, using standardized tests. In 80% of the samples, CDEO was found to be more efficient than FO and in the remaining 20%, coagulation was found to exhibit a great significance in the COD abatement mechanism during FO, pointing out the effectiveness of the oxidation promoted by the electrochemical technology. Mean oxidation state of carbon was found to be a relevant parameter to understand the behavior of the oxidation technologies. It varied inversely proportional to efficiency in FO and it showed practically no influence in the case of CDEO.

  12. Impact of industrial waste water effluents on mycoflora of the shore sediments of the 3rd oxidation pond, with reference to biosorption of heavy metals.

    PubMed

    Sharaf, Eman F

    2002-01-01

    The third oxidation pond at 10th of Ramadan desert receives a number of industrial waste water effluents contaminated with the heavy metal ions Zn, Cd, Cu and Ni. The species diversity and fungal community structure of seven different sites at the onshore sediments and offshore were studied. Mycological analysis resulted in isolation of 3912 fungal colonies, 11.7% of this count were recovered from the onshore sediment sites (4 sites) whereas 88.3% were from the offshore sites (3 sites), in the desert. Fungal counts and species diversity at the onshore sites tend to increase with increasing distance far from the waste water input. A complete accordance was observed among the total fungal counts and species variabilities with organic matter content at each sampling site. This relationship was reversed in case of heavy metal contents with both counts and diversity. Seventeen fungal species belonging to seven genera were isolated from all sites under study. Aspergillus spp. constituted the majority of the isolates (51.7% of the total isolates), followed by Curvularia, Cephalosporium, and Humicola. Of nine isolated Aspergillus spp., A. humicola was the most dominant (37.4% of the total catch) and appeared at all polluted sites. Therefore, A. humicola was chosen to investigate its potential for heavy metals sorption from the contaminated waste water effluent. Four days old biomass pellets could sorb a large amount of heavy metals according to the following sequence: Zn>Cd>Cu>Ni ions. Agitation significantly increased Zn and Cd sorption, but not Cu and Ni. Heavy metals sorption took place at a wide pH range and particularly increased at alkaline pH (8-9).

  13. Effects of petrochemical contamination on caged marine mussels using a multi-biomarker approach: Histological changes, neurotoxicity and hypoxic stress.

    PubMed

    Maisano, Maria; Cappello, Tiziana; Natalotto, Antonino; Vitale, Valeria; Parrino, Vincenzo; Giannetto, Alessia; Oliva, Sabrina; Mancini, Giuseppe; Cappello, Simone; Mauceri, Angela; Fasulo, Salvatore

    2016-03-31

    This work was designed to evaluate the biological effects of petrochemical contamination on marine mussels. Mytilus galloprovincialis, widely used as sentinel organisms in biomonitoring studies, were caged at the "Augusta-Melilli-Priolo" industrial site (eastern Sicily, Italy), chosen as one of the largest petrochemical areas in Europe, and Brucoli, chosen as reference site. Chemical analyses of sediments at the polluted site revealed high levels of PAHs and mercury, exceeding the national and international guideline limits. In mussels from the polluted site, severe morphological alterations were observed in gills, mainly involved in nutrient uptake and gas exchange. Changes in serotonergic and cholinergic systems, investigated through immunohistochemical, metabolomics and enzymatic approaches, were highlighted in gills, as well as onset of hypoxic adaptive responses with up-regulation of hypoxia-inducible factor transcript. Overall, the application of a multi-biomarker panel results effective in assessing the biological effects of petrochemical contamination on the health of aquatic organisms.

  14. Ecological impact and recovery of a Mediterranean river after receiving the effluent from a textile dyeing industry.

    PubMed

    Colin, Nicole; Maceda-Veiga, Alberto; Flor-Arnau, Núria; Mora, Josep; Fortuño, Pau; Vieira, Cristiana; Prat, Narcís; Cambra, Jaume; de Sostoa, Adolfo

    2016-10-01

    The textile industry is one of the largest sectors globally, representing up to 20% of industrial water pollution. However, there is limited insight into how fluvial ecosystems respond and recover from this impact. From summer 2012 to spring 2013, we examined water quality and ecological status upstream and 1.5km downstream the input of a textile industry wastewater treatment plant (WWTP) in Ripoll River, NE Spain. The ecological status was determined via diversity measures and 10 biotic indices based on diatoms, macrophytes, macroinvertebrates and fish. Our results showed that the WWTP severely deteriorated water quality and biological communities at the discharge site, but that they improved at 1.5km downstream. Severity also varied across taxa and seasons, being fish the most affected taxa and spring the season with the best ecological status. The strong correlation amongst water quality variables and many biotic indices across taxa indicated that this is a chronic pollution event affecting multiple trophic levels. Thus, this study suggests that there is an urgent need to invest in wastewater treatment in this industry to preserve the ecological integrity of Ripoll River and especially its fish fauna. Likewise, it illustrates the diagnostic power of biotic indices based on diatoms, macroinvertebrates and fish, as driven by the European Water Framework Directive.

  15. [Study on the quantitative estimation method for VOCs emission from petrochemical storage tanks based on tanks 4.0.9d model].

    PubMed

    Li, Jing; Wang, Min-Yan; Zhang, Jian; He, Wan-Qing; Nie, Lei; Shao, Xia

    2013-12-01

    VOCs emission from petrochemical storage tanks is one of the important emission sources in the petrochemical industry. In order to find out the VOCs emission amount of petrochemical storage tanks, Tanks 4.0.9d model is utilized to calculate the VOCs emission from different kinds of storage tanks. VOCs emissions from a horizontal tank, a vertical fixed roof tank, an internal floating roof tank and an external floating roof tank were calculated as an example. The consideration of the site meteorological information, the sealing information, the tank content information and unit conversion by using Tanks 4.0.9d model in China was also discussed. Tanks 4.0.9d model can be used to estimate VOCs emissions from petrochemical storage tanks in China as a simple and highly accurate method.

  16. Semi-continuous treatment of recalcitrant anaerobic effluent from pulp and paper industry using hybrid pellets of Trametes versicolor.

    PubMed

    Ortega-Clemente, A; Ponce-Noyola, M T; Montes-Horcasitas, M C; Vicent, M T; Barrera-Cortés, J; Poggi-Varaldo, H M

    2007-01-01

    The objective of this work was to evaluate the semi-continuous post-treatment of anaerobically-pre-treated weak black liquor (anaerobic effluent, AnE) by aerobic post-treatment using hybrid pellets of Trametes versicolor. The latter consisted of fungus immobilized onto holm oak sawdust (mixed or double pellets) or a mixture of holm oak sawdust and powdered activated carbon (triple pellets). First, a semicontinuous experiment was run to compare the effectiveness of triple and mixed pellets in agitated flasks for 15 cycles of 7 days each. A second extended batch test was implemented with 500 mL AnE and triple pellets to give 400 mg fungal biomass; some units were spiked with protease inhibitor. In the first experiment, triple pellets displayed consistently higher removal efficiencies of pollutant parameters than double pellets (10 to 15% higher), although overall averages were moderate and no statistical significance to the difference could be set because of the noise of fluctuations. Periodic fluctuations of removal were characterized by three periods of approximately six cycles each with maximum removals occurring at cycles 3-4, 7-9, 13, and 14. Evaluating pooled removals of the latter cycles showed that triple pellets were significantly more effective than double pellets, with removal efficiencies as high as 47% of COD, colour, and absorbance at 254 nm (A254). In general, protease activity seemed to increase in the third period (last six cycles), whereas activities of MnP, LiP and Lac significantly decreased. In the second experiment, pollutant removals and enzymatic activities of triple pellets with protease inhibitor were significantly higher than those of units without added protease inhibitor. These results indicate that protease could be the main cause of periodic falls of pollutant removal efficiencies found in the first experiment.

  17. 40 CFR 436.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Industrial Sand Subcategory § 436.42 Effluent limitations guidelines representing the degree of effluent... water, for use in the processing shall not exceed the following limitations: Effluent...

  18. 40 CFR 419.30 - Applicability; description of the petrochemical subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... topping, cracking, and petrochemical operations whether or not the facility includes any process in addition to topping, cracking, and petrochemical operations. The provisions of this subpart shall not...

  19. Survey of hazardous organic compounds in the groundwater, air and wastewater effluents near the Tehran automobile industry.

    PubMed

    Kargar, Mahdi; Nadafi, Kazem; Nabizadeh, Ramin; Nasseri, Simin; Mesdaghinia, Alireza; Mahvi, Amir Hossein; Alimohammadi, Mahmood; Nazmara, Shahrokh; Rastkari, Noushin

    2013-02-01

    Potential of wastewater treatment in car industry and groundwater contamination by volatile organic compounds include perchloroethylene (PCE), trichloroethylene (TCE) and dichloromethane (DCM) near car industry was conducted in this study. Samples were collected in September through December 2011 from automobile industry. Head-space Gas chromatography with FID detector is used for analysis. Mean PCE levels in groundwater ranged from 0 to 63.56 μg L(-1) with maximum level of 89.1 μg L(-1). Mean TCE from 0 to 76.63 μg L(-1) with maximum level of 112 μg L(-1). Due to the data obtained from pre treatment of car staining site and conventional wastewater treatment in car factory, the most of TCE, PCE and DCM removed by pre aeration. Therefor this materials entry from liquid phase to air phase and by precipitation leak out to the groundwater. As a consequence these pollutants have a many negative health effect on the workers by air and groundwater.

  20. Effect of by-pass and effluent recirculation on nitrogen removal in hybrid constructed wetlands for domestic and industrial wastewater treatment.

    PubMed

    Torrijos, V; Gonzalo, O G; Trueba-Santiso, A; Ruiz, I; Soto, M

    2016-10-15

    Hybrid constructed wetlands (CWs) including subsurface horizontal flow (HF) and vertical flow (VF) steps look for effective nitrification and denitrification through the combination of anaerobic/anoxic and aerobic conditions. Several CW configurations including several configurations of single pass systems (HF + HF, VF + VF, VF + HF), the Bp(VF + HF) arrangement (with feeding by-pass) and the R(HF + VF) system (with effluent recirculation) were tested treating synthetic domestic wastewater. Two HF/VF area ratios (AR) were tested for the VF + HF and Bp(VF + HF) systems. In addition, a R(VF + VF) system was tested for the treatment of a high strength industrial wastewater. The percentage removal of TSS, COD and BOD5 was usually higher than 95% in all systems. The single pass systems showed TN removal below the threshold of 50% and low removal rates (0.6-1.2 g TN/m(2) d), except the VF + VF system which reached 63% and 3.5 g TN/m(2) d removal but only at high loading rates. Bp(VF + HF) systems required by-pass ratios of 40-50% and increased TN removal rates to approximately 50-60% in a sustainable manner. Removal rates depended on the AR value, increasing from 1.6 (AR 2.0) to 5.2 g TN/m(2) d (AR 0.5), both working with synthetic domestic wastewater. On real domestic wastewater the Bp (VF + HF) (AR 0.5 and 30% by-pass) reached 2.5 g TN/m(2) d removal rate. Effluent recirculation significantly improved the TN removal efficiency and rate. The R(HF + VF) system showed stable TN removals of approximately 80% at loading rates ranging from 2 to 8 g TN/m(2) d. High TN removal rates (up to 73% TN and 8.4 g TN/m(2) d) were also obtained for the R(VF + VF) system treating industrial wastewater.

  1. Cleaner production and methodological proposal of eco-efficiency measurement in a Mexican petrochemical complex.

    PubMed

    Morales, M A; Herrero, V M; Martínez, S A; Rodríguez, M G; Valdivieso, E; Garcia, G; de los Angeles Elías, Maria

    2006-01-01

    Abstract In the frame of the Petróleos Mexicanos Institutional Program for Sustainable Development, processes were evaluated in the manufacture operation of the petrochemical industry, with the purpose of reducing their ecological fingerprint. Thirteen cleaner production opportunities were registered in six process plants: ethylene oxide and glycols, acetaldehyde, ethylene, high density polyethylene, polypropylene switch and acrylonitrile, and 45 recommendations in the waste water treatment plant. Morelos is the second most important petrochemical complex in the Mexican and Latin American petrochemical industry. A tool was developed to obtain eco-efficiency indicators in operation processes, and as a result, potential savings were obtained based on best performance, as well as the integrated distribution of Sankey diagrams. Likewise, a mechanism of calculation to obtain economic savings based on the reduction of residues during the whole productive process is proposed. These improvement opportunities and recommendations will result in economic and environmental benefits minimising the use of water, efficient use of energy, raw materials and reducing residues from source, generating less environmental impacts during the process.

  2. Incorporation of whey permeate, a dairy effluent, in ethanol fermentation to provide a zero waste solution for the dairy industry.

    PubMed

    Parashar, Archana; Jin, Yiqiong; Mason, Beth; Chae, Michael; Bressler, David C

    2016-03-01

    This study proposes a novel alternative for utilization of whey permeate, a by-product stream from the dairy industry, in wheat fermentation for ethanol production using Saccharomyces cerevisiae. Whey permeates were hydrolyzed using enzymes to release fermentable sugars. Hydrolyzed whey permeates were integrated into wheat fermentation as a co-substrate or to partially replace process water. Cold starch hydrolysis-based simultaneous saccharification and fermentation was done as per the current industrial protocol for commercial wheat-to-ethanol production. Ethanol production was not affected; ethanol yield efficiency did not change when up to 10% of process water was replaced. Lactic acid bacteria in whey permeate did not negatively affect the co-fermentation or reduce ethanol yield. Whey permeate could be effectively stored for up to 4 wk at 4 °C with little change in lactose and lactic acid content. Considering the global abundance and nutrient value of whey permeate, the proposed strategy could improve economics of the dairy and biofuel sectors, and reduce environmental pollution. Furthermore, our research may be applied to fermentation strategies designed to produce value-added products other than ethanol.

  3. A nano-structured material for reliable speciation of chromium and manganese in drinking waters, surface waters and industrial wastewater effluents.

    PubMed

    Abdolmohammad-Zadeh, H; Sadeghi, G H

    2012-05-30

    A simple solid phase extraction system based on the applying the nickel-aluminum layered double hydroxide (Ni-Al LDH) as a nano-sorbent was developed for the speciation analysis of chromium and manganese by flame atomic absorption spectrometry (FAAS). The method is based on the fact that Cr(VI) and Mn(VII) oxyanions could be adsorbed on the Ni-Al(NO(3)(-)) LDH and/or exchanged with LDH interlayer NO(3)(-) ions at pH 6.0, whereas Cr(III) and Mn(II) cations pass through the LDH-packed column without retention. The determinations of total Cr and Mn, and hence indirectly Cr(III) and Mn(II), involve the pre-oxidations of Cr(III) and Mn(II) to Cr(VI) and Mn(VII) with H(2)O(2) and acidic solution of KIO(4), respectively. Several important factors affecting the retention efficiency were investigated and optimized. In the optimum experimental conditions, the limits of detection (3S(b)/m) for Cr(VI) and Mn(VII) were 0.51 and 0.47 ng mL(-1), and the relative standard deviations were 2.5 and 3.2% (C=30.0 ng mL(-1), n=6), respectively. The presented method was validated by the analysis of a certified reference material, and applied to the speciation of Cr and Mn in drinking waters, surface waters and industrial wastewater effluents.

  4. Polydimethylsiloxane composites containing 1,2-naphtoquinone 4-sulphonate as unique dispositive for estimation of casein in effluents from dairy industries.

    PubMed

    Muñoz-Ortuño, M; Argente-García, A; Moliner-Martínez, Y; Molins-Legua, C; Campíns-Falcó, P

    2015-05-11

    A unique dispositive to determine casein which is the most abundant protein in dairy sewages has been proposed. In this sensing technology, the derivatization reagent 1,2-naphtoquininone 4-sulphonate (NQS) is embedded into a polydimethylsiloxane-tetraethylortosilicate-SiO2 nanoparticles composite (PDMS-TEOS-SiO2NPs). When the composite is immersed into the samples, casein is extracted from the solution and derivatized inside the PDMS matrix after 10 min at 100°C. The sensing support changes its color from yellow to orange depending on the casein concentration. Quantitative analysis can be carried out by measuring the absorbance with a reflection probe or by image-processing tool (GIMP). This sensor provides good sensitivity and precision (RSD% <12%). The method validation has been done by applying the biocinchoninic acid method (BCA). Moreover, semiquatitative analysis of casein can be performed by visual observation. Taking into account the advantages of small size, rapidity, simplicity, good stability and high compatibility in aqueous solution, this sensor is expected to have potential practical applications for in-situ determination of casein. Finally the method has been applied to analyze effluents from dairy industries.

  5. Electrochemical oxidation of bio-refractory dye in a simulated textile industry effluent using DSA electrodes in a filter-press type FM01-LC reactor.

    PubMed

    Rodríguez, Francisca A; Mateo, María N; Aceves, Juan M; Rivero, Eligio P; González, Ignacio

    2013-01-01

    This work presents a study on degradation of indigo carmine dye in a filter-press type FM01-LC reactor using Sb2O5-doped Ti/IrO2-SnO2 dimensionally stable anode (DSA) electrodes. Micro- and macroelectrolysis studies were carried out using solutions of 0.8 mM indigo carmine in 0.05 M NaCl, which resemble blue denim laundry industrial wastewater. Microelectrolysis results show the behaviour of DSA electrodes in comparison with the behaviour of boron-doped diamond (BDD) electrodes. In general, dye degradation reactions are carried out indirectly through active chlorine generated on DSA, whereas in the case of BDD electrodes more oxidizing species are formed, mainly OH radicals, on the electrode surface. The well-characterized geometry, flow pattern and mass transport of the FM01-LC reactor used in macroelectrolysis experiments allowed the evaluation of the effect of hydrodynamic conditions on the chlorine-mediated degradation rate. Four values of Reynolds number (Re) (93, 371, 464 and 557) at four current densities (50, 100, 150 and 200 A/m2) were tested. The results show that the degradation rate is independent of Re at low current density (50 A/m2) but becomes dependent on the Re at high current density (200 A/m2). This behaviour shows the central role of mass transport and the reactor parameters and design. The low energy consumption (2.02 and 9.04 kWh/m3 for complete discolouration and chemical oxygen demand elimination at 50 A/m2, respectively) and the low cost of DSA electrodes compared to BDD make DSA electrodes promising for practical application in treating industrial textile effluents. In the present study, chlorinated organic compounds were not detected.

  6. Genetic markers for detection of Escherichia coli K-12 harboring ampicillin-resistance plasmid from an industrial wastewater treatment effluent pond.

    PubMed

    Simões, G A R; Xavier, M A S; Oliveira, D A; Menezes, E V; Magalhães, S S G; Gandra, J A C D; Xavier, A R E O

    2016-06-17

    Biotechnology industries that use recombinant DNA technology are potential sources for release of genetically modified organisms to the environment. Antibiotic-resistance marker genes are commonly used for recombinant bacteria selection. One example is the marker gene coding for β-lactamase (bla) in plasmids found in Escherichia coli K-12. The aim of this study was to provide an approach to develop a molecular method for genetic marker detection in E. coli K-12 harboring bla genes from an industrial wastewater treatment effluent pond (IWTEP). For the detection of bla and Achromobacter lyticus protease I (api) genes in samples from IWTEP, we employed multiplex polymerase chain reaction (PCR) using E. coli K-12 genetic marker detection primers, previously described in the literature, and primers designed in our laboratory. The microbiological screening method resulted in 22 bacterial colony-forming units isolated from three different IWTEP harvesting points. The multiplex PCR amplicons showed that five isolates were positive for the bla gene marker and negative for the E. coli K-12 and api genes. The 16S rRNA regions of positive microorganisms carrying the bla gene were genotyped by the MicroSeq®500 system. The bacteria found were Escherichia spp (3/5), Chromobacterium spp (1/5), and Aeromonas spp (1/5). None of the 22 isolated microorganisms presented the molecular pattern of E. coli K-12 harboring the bla gene. The presence of microorganisms positive for the bla gene and negative for E. coli K-12 harboring bla genes at IWTEP suggests that the ampicillin resistance found in the isolated bacteria could be from microorganisms other than the E. coli K-12 strain harboring plasmid.

  7. VOC removal and deodorization of effluent gases from an industrial plant by photo-oxidation, chemical oxidation, and ozonization.

    PubMed

    Domeño, Celia; Rodríguez-Lafuente, Angel; Martos, J M; Bilbao, Rafael; Nerín, Cristina

    2010-04-01

    The efficiency of photo-oxidation, chemical oxidation by sodium hypochlorite, and ozonization for the industrial-scale removal of volatile organic compounds (VOCs) and odors from gaseous emissions was studied by applying these treatments (in an experimental system) to substances passing through an emission stack of a factory producing maize derivatives. Absorption and ozonization were the most efficient treatment, removing 75% and 98% of VOCs, respectively, while photo-oxidation only removed about 59%. The emitted chemical compounds and odors were identified and quantified by gas chromatography-mass spectrometry (in full-scan mode). In addition to presenting the results, their implications for selecting optimal processes for treating volatile emissions are discussed.

  8. Toxicity Identification Evaluation (Phase I) of water and sediment samples from a tropical reservoir contaminated with industrial and domestic effluents.

    PubMed

    Matos, Mariana de F; Botta, Clarice Maria Rispoli; Fonseca, Ana Lúcia

    2014-11-01

    The Funil Reservoir (Rio de Janeiro State, Brazil) is an environment degraded by constant discharge of nutrients and pollution coming from the most industrialized region of the country. As a consequence of eutrophication, there are continuous cyanobacteria blooms, which cause acute and chronic toxicity to zooplankton. In this context, Phase I of Toxicity Identification Evaluation (TIE) was performed on Daphnia similis using water and interstitial water from the reservoir, with the aim of identifying classes of compounds responsible for toxicity. The results indicated that water toxicity was due to cyanobacteria resulting from blooms in the reservoir and surfactants. Metals, especially copper, contributed to sediment toxicity. This research is the first attempt to describe the nature of toxicity in this reservoir using this method.

  9. Removal of hydrocarbons from petrochemical wastewater by dissolved air flotation.

    PubMed

    Galil, N I; Wolf, D

    2001-01-01

    The dissolved air flotation (DAF) method has an important role in the removal of hydrocarbons, as well as in the protection of the biological treatment, which usually follows the DAF. The aims of this study were to evaluate the removal efficiencies of suspended solids, general organic matter, hydrocarbons and phenols by DAF, as influenced by the flocculant type, aluminum sulfate (alum) or a cationic polyelectrolyte. Laboratory batch experiments included chemical flocculation followed by DAF, controlling the flocculant dose and the air to solids ratio. The characterization of the influent and effluent was based on general analysis of organic matter (COD), suspended solids, hydrocarbons and phenols. The influent to all experiments was supplied daily from the outlet of a full scale oil-water gravitational separation unit at a petrochemical complex in Haifa, Israel. The influent contained hydrocarbons in the range of 20 to 77 mg/L. Usually less than 10% were found in "free" form, 70 to 80% were emulsified and 10 to 20% were dissolved. The DAF process enabled us to reduce the general hydrocarbon content by 50 to 90%. The effluent was characterized by stable and uniform levels of suspended solids, and oil, almost without depending on the influent concentrations. The results indicate that the chemical flocculation followed by DAF removed efficiently the emulsified phase, which could be aggregated and separated to the surface. However, it was found that the process could also remove substantial amounts of dissolved organic matter. This mechanism could be explained by the hydrophobic characteristics of some of the substances, which could bind to the solid surfaces. It was found that aggregates created by the flocculation with the cationic polyelectrolite (C-577) could remove up to 40% from the dissolved hydrocarbon. Alum flocs also indicated removal of soluble materials, mainly phenols. The results obtained in this study indicated the possibility to improve the protection

  10. Deposition of chromium in aquatic ecosystem from effluents of handloom textile industries in Ranaghat–Fulia region of West Bengal, India

    PubMed Central

    Sanyal, Tanmay; Kaviraj, Anilava; Saha, Subrata

    2014-01-01

    Accumulation of chromium (Cr) was determined in water, sediment, aquatic plants, invertebrates and fish in aquatic ecosystems receiving effluents from handloom textile industries in Ranaghat–Fulia region of West Bengal in India. Cr was determined in the samples by atomic absorption spectrophotometer and data were analyzed functionally by Genetic Algorithm to determine trend of depositions of Cr in the sediment and water. Area plot curve was used to represent accumulation of Cr in biota. The results indicate that the aquatic ecosystems receiving the effluents from handloom textile factories are heavily contaminated by Cr. The contamination is hardly reflected in the concentration of Cr in water, but sediment exhibits seasonal fluctuation in deposition of Cr, concentration reaching to as high as 451.0 μg g−1 during the peak production period. There is a clear trend of gradual increase in the deposition of Cr in the sediment. Aquatic weed, insect and mollusk specimens collected from both closed water bodies (S1 & S2) and riverine resources (S3 & S4) showed high rate of accumulation of Cr. Maximum concentration of Cr was detected in roots of aquatic weeds (877.5 μg g−1). Fish specimens collected from the polluted sites (S3 & S4) of river Churni showed moderate to high concentration of Cr in different tissues. Maximum concentration was detected in the liver of Glossogobius giuris (679.7 μg g−1) during monsoon followed by gill of Mystus bleekeri (190.0 μg g−1) and gut of G. giuris (123.7 μg g−1) during summer. Eutropiichthys vacha showed moderately high concentration of Cr in different tissues (65–99 μg g−1) while Puntius sarana showed relatively low concentration of Cr (below detection limit to 18.0 μg g−1) in different tissues except in gill (64.4 μg g−1). PMID:26644938

  11. Uranium behaviour in an estuary polluted by mining and industrial effluents: the Ría of Huelva (SW of Spain).

    PubMed

    Hierro, A; Martín, J E; Olías, M; Vaca, F; Bolivar, J P

    2013-10-15

    This paper describes a comprehensive study of the behaviour of U in the Ría of Huelva estuary, formed by the Tinto and Odiel rivers. This ecosystem is conditioned by two hydrochemical facts: one connected with the acid mining drainage (AMD) generated in the first section of the river basins, and another one related to the fertilizer industry located at the estuary. AMD gives a singular character to these rivers; low pH and high redox potential that keep high amounts of toxic elements and radionuclides in dissolution. Most of the data for dissolved U in estuaries indicate conservative mixing, but there are examples of non-conservative behaviour attributed to oxidation/reduction processes or solubility variations. In the Ría of Huelva estuary the U shows a non-conservative behaviour due to solubility changes produced by variations in the pH. A complete removal of riverine dissolved U is observed in a pH range of 4-6. At higher pH values, U release from suspended matter, and probably also from sediments into the dissolved phase is found.

  12. Dangerous and cancer-causing properties of products and chemicals in the oil-refining and petrochemical industry--Part XXII: Health hazards from exposure to gasoline containing methyl tertiary butyl ether: study of New Jersey residents.

    PubMed

    Mehlman, M A

    1996-01-01

    Methyl tertiary butyl ether has caused the following cancers in rats and mice: kidney, testicular, liver, lymphomas, and leukemias. Thus, in the absence of adequate data on humans, it is biologically plausible and prudent to regard methyl tertiary butyl ether-for which there is sufficient evidence of carcinogenicity in experimental animals-as a probable human carcinogen. This means that some humans are at extreme risk of contracting cancers resulting from their exposure to oxygenated gasoline containing methyl tertiary butyl ether. Immediately after the introduction of methyl tertiary butyl ether into gasoline, many consumers of this product in New Jersey, New York, Alaska, Maine, Pennsylvania, Colorado, Arizona, Montana, Massachusetts, California, and other areas, experienced a variety of neurotoxic, allergic, and respiratory illnesses. These illnesses were similar to those suffered by refinery workers from the Oil, Chemical, and Atomic Workers Union who mixed methyl tertiary butyl ether with gasoline. Additionally, these illnesses occurred following exposure to extremely low levels of methyl tertiary butyl ether in gasoline, particularly when compared to the adverse health effects that occurred only after exposure to very high levels of conventional gasoline. Thus, gasoline containing methyl tertiary butyl ether exhibited substantially more toxicity in humans than gasoline without this additive. A number of oil industry-sponsored or influenced reports alleged that these illnesses were either unrelated to exposure to reformulated gasoline or were characteristic of some yet-to-be-identified communicable disease. These studies further alleged that the widespread concern was not about illness, but was merely a reaction to the odor and the five cent increase in the price of gasoline. To clarify the significance of this issue, it is important to note that consumers have been using gasoline for many decades, with complaints only occurring following exposure to high

  13. Impact on surface ozone by fugitive emissons of ethylene and propylene from a petrochemical plant cluster

    NASA Astrophysics Data System (ADS)

    Hsieh, H.; Chang, J.; Chen, S.; Wang, J.

    2010-12-01

    Ethylene and propylene are two most produced organic compounds in the world which are mainly produced from the cracking process in the oil refinery industry. In a large petrochemical plant cluster a large variety of petrochemical products are derived from these two compounds used as starting reagents. Fugitive emissions of these two compounds from storage tanks and pipelines are often inevitable, which could pose a great burden on the formation of surface ozone and thus deteriorate air quality if leakage is significant. In this study, a photochemical assessment monitoring station (PAMS) was deployed 7 kilometers south of a large petrochemical plant cluster. Concentration spikes of ethylene and propylene were frequently observed by the on-line gas chromatographic system whenever northerly prevailed. The impact of ethylene and propylene’s leakage on ozone formation was simulated by an air quality model (i.e., PAMS-AQM), of which emission inventory of non-methane hydrocarbons (NMHCs) were speciated and calibrated by the PAMS measurements. Contribution to ozone formation by these two compounds in the downwind areas was able to be assessed by turning off the emissions of ethylene and propylene from this plant cluster while maintaining those of other precursors in the model. Scenarios of precursor (NMHC and NOx) reduction or increase were also simulated from the perspectives of ozone control strategies.

  14. 40 CFR 436.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Industrial Sand Subcategory § 436.42 Effluent limitations guidelines representing the... waste water, for use in the processing shall not exceed the following limitations:...

  15. 40 CFR 436.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Industrial Sand Subcategory § 436.42 Effluent limitations guidelines representing the... waste water, for use in the processing shall not exceed the following limitations:...

  16. 40 CFR 436.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Industrial Sand Subcategory § 436.42 Effluent limitations guidelines representing the... waste water, for use in the processing shall not exceed the following limitations:...

  17. Development of highly sensitive extractive spectrophotometric determination of nickel(II) in medicinal leaves, soil, industrial effluents and standard alloy samples using pyridoxal-4-phenyl-3-thiosemicarbazone.

    PubMed

    Sarma, Loka Subramanyam; Kumar, Jyothi Rajesh; Reddy, Koduru Janardhan; Thriveni, Thenepalli; Reddy, Ammireddy Varada

    2008-01-01

    Pyridoxal-4-phenyl-3-thiosemicarbazone (PPT) is proposed as a new sensitive reagent for the extractive spectrophotometric determination of nickel(II). PPT reacts with nickel(II) in the pH range 4.0-6.0 to form a reddish brown colored complex, which was well-extracted into n-butanol. The absorbance value of the Ni(II)-PPT complex was measured at different time intervals at 430nm, to ascertain the stability of the complex. The system obeyed Beer's law up to 0.5-5.0microgmL(-1) of nickel(II), with an excellent linearity in terms of the correlation coefficient value of 0.99. The molar absorptivity and Sandell's sensitivity of the extracted species are 1.92 x 10(4)Lmol(-1)cm(-1) and 0.003057microgcm(-2) respectively at 430nm. The detection limit of the method is 0.069microgmL(-1). To assess precision and accuracy of the developed method, determinations were carried out at different concentrations. The relative standard deviation of all measurements does not exceed 2.62%. The developed method has been satisfactorily applied for the determination of nickel(II), when present alone or in the presence of diverse ions, which are usually associated with nickel(II) in medicinal leaves, soil and industrial effluent samples. Various standard and certified reference materials (CM 247 LC, IN 718, BCS 233, 266, 253 and 251) have also been tested for the determination of nickel for the purpose of validation of the present method. The results of the proposed method are compared with those obtained from an atomic absorption spectrometer (AAS).

  18. On-line filtration system for determining total chromium and chromium in the soluble fraction of industrial effluents by flow injection flame atomic absorption spectrometry.

    PubMed

    López-García, I; Merino Meroño, B; Campillo, N; Hernández-Córdoba, M

    2002-05-01

    Two manifolds were assessed for the purpose of determining both the total chromium content and that present as a soluble form in industrial effluents by flow injection flame atomic absorption spectrometry (FI-FAAS). To determine the chromium content in the soluble fraction the samples were used without additional treatment, a 0.45 microm filter being included in the FI system. To determine the total chromium content, the samples were acidified with nitric acid 20% (v/v) and heated for 30 s in a microwave oven (temperatures of about 70 degrees C were reached). The problem posed by the very different concentration range in which total and soluble chromium are present was overcome by using programmed flow rate methodology and by only partially emptying the sample loop. A personal computer controlled both the rotation speed of a peristaltic pump and the volume of sample injected into the system, thus obtaining the dispersion degree required. Using the manifold proposed, the chromium content in the soluble fraction can be determined in the 0.5-20 microg mL(-1) range using a 10 microg mL(-1) single standard for calibration. To determine the total chromium content, a calibration line in the 20-200 microg mL(-1) range was obtained using a single 50 microg mL(-1) chromium standard solution. The reliability of the semi-automatic devices was verified by comparing the results obtained with those found by treating the samples and using both FAAS in a conventional way and a spectrophotometric method using diphenylcarbazide at the 95% confidence level (ANOVA test). The proposed procedures showed a RSD lower than +/-3%.

  19. [Application of Micro-aerobic Hydrolysis Acidification in the Pretreatment of Petrochemical Wastewater].

    PubMed

    Zhu, Chen; Wu, Chang-yong; Zhou, Yue-xi; Fu, Xiao-yong; Chen, Xue-min; Qiu, Yan-bo; Wu, Xiao-feng

    2015-10-01

    Micro-aerobic hydrolysis acidification technology was applied in the reconstruction of ananaerobic hydrolysis acidification tank in a north petrochemical wastewater treatment plant. After put into operation, the monitoring results showed that the average removal rate of COD was 11.7% when influent COD was 490.3-673.2 mg x L(-1), hydraulic retention time (HRT) was 24 and the dissolved oxygen (DO) was 0.2-0.35 mg x L(-1). In addition, the BOD5/COD value was increased by 12.4%, the UV254 removal rate reached 11.2%, and the VFA concentration was increased by 23.0%. The relative molecular weight distribution (MWD) results showed that the small molecule organic matter (< 1 x 10(3)) percentage was increased from 59.5% to 82.1% and the high molecular organic matter ( > 100 x 10(3)) percentage was decreased from 31.8% to 14.0% after micro-aerobic hydrolysis acidification. The aerobic biodegradation batch test showed that the degradation of petrochemical wastewater was significantly improved by the pretreatment of micro-aerobic hydrolysis acidification. The COD of influent can be degraded to 102.2 mg x L(-1) by 48h aerobic treatment while the micro-aerobic hydrolysis acidification effluent COD can be degraded to 71.5 mg x L(-1) on the same condition. The effluent sulfate concentration of micro-aerobic hydrolysis acidification tank [(930.7 ± 60.1) mg x L(-1)] was higher than that of the influent [(854.3 ± 41.5) mg x L(-1)], indicating that sulfate reducing bacteria (SRB) was inhibited. The toxic and malodorous gases generation was reduced with the improvement of environment.

  20. Treatment of Industrial Process Effluents & Contaminated Groundwater Using the Biological Granular Activated Carbon-Fluidized Bed Reactor (GAC-FBR) Process. Volume I

    DTIC Science & Technology

    2007-11-02

    and effluent streams. The influent and effluent wastewater streams were analyzed for DNT, DAT, ethanol, ether, short chain fatty acids, and COD. Added...Substrates like glucose, alcohols or acetone are sufficient for activating the anaerobic biomass and supplying the reducing equivalents for the...separate the MeCI/ Water emulsions . The MeCI layer was removed with a Pasteur pipette and passed through another Pasteur pipette packed with anhydrous

  1. Effect of mercury and arsenic from industrial effluents on the drinking water and comparison of the water quality of polluted and non-polluted areas: a case study of Peshawar and Lower Dir.

    PubMed

    Ishaq, M; Jan, F Akbar; Khan, Murad Ali; Ihsanullah, I; Ahmad, I; Shakirullah, M; Roohullah

    2013-02-01

    The purpose of the present study was to find out the sources of mercury and arsenic pollution of water in the industrial area of Peshawar, the capital of Khyber Pakhtunkhwa, Pakistan. Samples of effluents, mud, and water were collected from the target area (industrial area of Peshawar), the area of water supply source, and from the less polluted area, the Lower Dir district, as the control. Hg was determined by the cold vapor generation technique, while arsenic was determined using the electrothermal atomic absorption technique. Data of the water from the industrial area were compared with that of the source area, control area, as well as with the WHO and some international drinking water quality standards. The results show that some parameters, i.e., TDS, DO, pH, and hardness, were more than the permissible limits. Textile and glass industries were found to be the major sources of Hg and As pollution. Downstream dilution of these contaminants was also observed.

  2. Excess cancer mortality among children and adolescents in residential districts polluted by petrochemical manufacturing plants in Taiwan

    SciTech Connect

    Bi Jen Pan; Yu Jue Hong; Gwo Chin Chang; Frigyes F. Cinkotai; Ying Chin Ko; Ming Tsan Wang

    1994-12-31

    We have collected data on the cancer deaths of children and adolescents 0-19 yr old living in a residential area near 3 large petroleum and petrochemical complexes in and near Kaohsiung city (petrochemical industrial districts, PIDs) in the period of 1971-1990 and compared these with the cancer deaths of children and adolescents 0-19 yr old among the entire population of Taiwan (national reference) and among the residents of 26 administrative districts, comprising all of Kaohsiung city and Kaohsiung county (local reference), except for 8 sparsely populated, rural districts. Having scrutinized all cancer death certificates, we have identified various statistically significant excess deaths, as compared with the national and local reference, due to cancers at all sites. Cancer of the bone, brain, and bladder in boys and girls 0-9 yr and 10-19 yr of age in the 1981-1990 decade that followed the establishment of petrochemical production in the PIDs was studied. However, excess cancer deaths seemed to have clustered in the 10-19 yr age group, who had been potentially exposed to the petrochemical pollutants for the longest period of time from the youngest age. Almost all bone, brain, and bladder cancer deaths registered were within 3 km of the 3 complexes. Bone and brain cancers in particular occurred in girls in the PIDs more frequently than in boys, even though these are believed to occur more in males than females elsewhere. 32 refs., 1 fig., 6 tabs.

  3. Application of hydrocyanic acid vapor generation via focused microwave radiation to the preparation of industrial effluent samples prior to free and total cyanide determinations by spectrophotometric flow injection analysis.

    PubMed

    Quaresma, Maria Cristina Baptista; de Carvalho, Maria de Fátima Batista; Meirelles, Francis Assis; Santiago, Vânia Maria Junqueira; Santelli, Ricardo Erthal

    2007-02-01

    A sample preparation procedure for the quantitative determination of free and total cyanides in industrial effluents has been developed that involves hydrocyanic acid vapor generation via focused microwave radiation. Hydrocyanic acid vapor was generated from free cyanides using only 5 min of irradiation time (90 W power) and a purge time of 5 min. The HCN generated was absorbed into an accepting NaOH solution using very simple glassware apparatus that was appropriate for the microwave oven cavity. After that, the cyanide concentration was determined within 90 s using a well-known spectrophotometric flow injection analysis system. Total cyanide analysis required 15 min irradiation time (90 W power), as well as chemical conditions such as the presence of EDTA-acetate buffer solution or ascorbic acid, depending on the effluent to be analyzed (petroleum refinery or electroplating effluents, respectively). The detection limit was 0.018 mg CN l(-1) (quantification limit of 0.05 mg CN l(-1)), and the measured RSD was better than 8% for ten independent analyses of effluent samples (1.4 mg l(-1) cyanide). The accuracy of the procedure was assessed via analyte spiking (with free and complex cyanides) and by performing an independent sample analysis based on the standard methodology recommended by the APHA for comparison. The sample preparation procedure takes only 10 min for free and 20 min for total cyanide, making this procedure much faster than traditional methodologies (conventional heating and distillation), which are time-consuming (they require at least 1 h). Samples from oil (sour and stripping tower bottom waters) and electroplating effluents were analyzed successfully.

  4. Typical uses of NASTRAN in a petrochemical industry

    NASA Technical Reports Server (NTRS)

    Winter, J. R.

    1978-01-01

    NASTRAN was principally used to perform failure analysis and redesign process equipment. It was also employed in the evaluation of vendor designs and proposed design modifications to existing process equipment. Stress analysis of forced draft fans, distillation trays, metal stacks, jacketed pipes, heat exchangers, large centrifugal fans, and agitator support structures are described.

  5. A cohort mortality study of petrochemical workers

    SciTech Connect

    Austin, S.G.; Schnatter, A.R.

    1983-04-01

    A historical prospective cohort mortality study was conducted for a cohort of 6,588 white male employees of a Texas petrochemical plant because of a suspected increased incidence of malignant brain tumors. Mortality experience from 1941 to 1977 was determined and compared with that of the general U.S. white male population adjusting for age and time period. Overall and cause-specific standardized mortality ratios were calculated for various subgroups of the population defined by length of employment, latency and payroll status. Significant deficits in total cohort mortality were found for all causes of death, all circulatory diseases, all respiratory diseases and all digestive diseases. Although not statistically significant, fewer deaths were observed (O) than expected (E) for all malignant neoplasms. No statistically significant excess of malignant brain tumors was found in the overall plant population (O/E = 12/7.42 = 1.62). A borderline significant excess of brain cancer deaths was found among hourly employees with more than six months' employment based on 10 observed and five expected deaths. This excess was observed to occur among elderly employees (over 55 years) and in later follow-up years (post-1970). Risk did not appear to be related to length of employment. Because of the nature of the problem that prompted this study, the small number of cases involved and the lack of a suspect agent in the plant that could have produced this excess, insufficient evidence was found to conclude that these tumors were occupationally related.

  6. Dynamical modelling of an activated sludge system of a petrochemical plant operating at high temperatures.

    PubMed

    Maqueda, M A M; Martinez, Sergio A; Narváez, D; Rodriguez, Miriam G; Aguilar, Ricardo; Herrero, Victor M

    2006-01-01

    The Mexican petrochemical industry, Morelos S.A. de C.V., is one of the biggest and more important petroleum industries in Mexico and Latin America. It has an activated sludge system to treat its wastewater flow, which is approximately 7,000 m3/d. The wastewater contains volatile organic carbon substances classified as toxics. The old surface aeration system was changed for fine bubble diffusers; however, one major drawback of the new aeration system is that the temperature in the bioreactor has increased due to the compression of the air, which at the compressor exit reaches 85 degrees C. This effect results in the temperature in the bioreactor attaining 32 degrees C during the fall, whereas in the spring and summer, the bioreactor temperature reaches higher values than 40 degrees C. The high temperatures reduce the microorganism activity and cause a higher volatilisation rate of volatile compounds, among other effects, which affect the performance of the biological treatment. This work was performed to obtain a better modelling of the wastewater treatment from the petrochemical industry. The model describes the effect of the temperature on the performance of the biological treatment. The model was obtained from tests that were carried out in laboratory reactors with 14 L capacity, which were operated at different temperatures (from 30 to 45 degrees C), with the same wastewater and conditions as the actual system.

  7. Treatment of industrial effluents by electrochemical generation of H2O2 using an RVC cathode in a parallel plate reactor.

    PubMed

    Bustos, Yaneth A; Rangel-Peraza, Jesús Gabriel; Rojas-Valencia, Ma Neftalí; Bandala, Erick R; Álvarez-Gallegos, Alberto; Vargas-Estrada, Laura

    2016-01-01

    Electrochemical techniques have been used for the discolouration of synthetic textile industrial wastewater by Fenton's process using a parallel plate reactor with a reticulated vitreous carbon (RVC) cathode. It has been shown that RVC is capable of electro-generating and activating H2O2 in the presence of Fe(2+) added as catalyst and using a stainless steel mesh as anode material. A catholyte comprising 0.05 M Na2SO4, 0.001 M FeSO4.7H2O, 0.01 M H2SO4 and fed with oxygen was used to activate H2O2.The anolyte contained only 0.8 M H2SO4. The operating experimental conditions were 170 mA (2.0 V < ΔECell < 3.0 V) to generate 5.3 mM H2O2. Synthetic effluents containing various concentrations (millimolar - mM) of three different dyes, Blue Basic 9 (BB9), Reactive Black 5 (RB5) and Acid Orange 7 (AO7), were evaluated for discolouration using the electro-assisted Fenton reaction. Water discolouration was measured by UV-VIS absorbance reduction. Dye removal by electrolysis was a function of time: 90% discolouration of 0.08, 0.04 and 0.02 mM BB9 was obtained at 14, 10 and 6 min, respectively. In the same way, 90% discolouration of 0.063, 0.031 and 0.016 mM RB5 was achieved at 90, 60 and 30 min, respectively. Finally, 90% discolouration of 0.14, 0.07 and 0.035 mM AO7 was achieved at 70, 40 and 20 min, respectively. The experimental results confirmed the effectiveness of electro-assisted Fenton reaction as a strong oxidizing process in water discolouration and the ability of RVC cathode to electro-generate and activate H2O2 in situ.

  8. Pulp mill effluents: Activated sludge treatment process. (Latest citations from the Paper and Board, Printing, and Packaging Industries Research Associations database). Published Search

    SciTech Connect

    Not Available

    1993-05-01

    The bibliography contains citations concerning plant histories, laboratory analyses, field applications, performance evaluations, and cost factors of pulping mill activated sludge treatment facilities. Monitoring techniques of the activated sludge effluent treatment process, and operating problems and solutions are discussed. Computerized simulation of activated sludge plants is included. (Contains a minimum of 75 citations and includes a subject term index and title list.)

  9. iWitness pollution map: crowdsourcing petrochemical accident research.

    PubMed

    Bera, Risha; Hrybyk, Anna

    2013-01-01

    Community members living near any one of Louisiana's 160 chemical plants or refineries have always said that accidents occurring in these petrochemical facilities significantly impact their health and safety. This article reviews the iWitness Pollution Map tool and Rapid Response Team (RRT) approach led by the Louisiana Bucket Brigade, an environmental nonprofit group, and their effectiveness in documenting these health and safety impacts during petrochemical accidents. Analysis of a January 2013 RRT deployment in Chalmette, LA, showed increased documentation of current petrochemical accidents and suggested increased preparedness to report future accidents. The RRT model encourages government response and enforcement agencies to integrate with organized community groups to fully document the impacts during ongoing accidents, lead a more timely response to the accident, and prevent future accidents from occurring.

  10. Determination of boiling point of petrochemicals by gas chromatography-mass spectrometry and multivariate regression analysis of structural activity relationship.

    PubMed

    Fakayode, Sayo O; Mitchell, Breanna S; Pollard, David A

    2014-08-01

    Accurate understanding of analyte boiling points (BP) is of critical importance in gas chromatographic (GC) separation and crude oil refinery operation in petrochemical industries. This study reported the first combined use of GC separation and partial-least-square (PLS1) multivariate regression analysis of petrochemical structural activity relationship (SAR) for accurate BP determination of two commercially available (D3710 and MA VHP) calibration gas mix samples. The results of the BP determination using PLS1 multivariate regression were further compared with the results of traditional simulated distillation method of BP determination. The developed PLS1 regression was able to correctly predict analytes BP in D3710 and MA VHP calibration gas mix samples, with a root-mean-square-%-relative-error (RMS%RE) of 6.4%, and 10.8% respectively. In contrast, the overall RMS%RE of 32.9% and 40.4%, respectively obtained for BP determination in D3710 and MA VHP using a traditional simulated distillation method were approximately four times larger than the corresponding RMS%RE of BP prediction using MRA, demonstrating the better predictive ability of MRA. The reported method is rapid, robust, and promising, and can be potentially used routinely for fast analysis, pattern recognition, and analyte BP determination in petrochemical industries.

  11. Project summary: Land treatability of refinery and petrochemical sludges

    SciTech Connect

    Brown, K.W.; Deuel, L.E.; Thomas, J.C.

    1983-11-01

    The land disposal of API separator sludges was investigated with regard to decomposition rates of organic constituents and the possible impact of these materials on plants and surface water or groundwater quality. Two oily sludges (one from a petroleum refinery and one from a petrochemical plant) were studied as to their phytotoxicity, biodegradability in soils, water-soluble constituents, and field mobility. Concentrations of refinery sludge of 5% v/v and above depressed ryegrass emergence and yield. The petrochemical sludge suppressed emergence and yield proportional to the amount of sludge applied, and the suppression lasted longer than that of the refinery sludge.

  12. Synergize fuel and petrochemical processing plans with catalytic reforming

    SciTech Connect

    1997-03-01

    Depending on the market, refiner`s plans to produce clean fuels and higher value petrochemicals will weigh heavily on the catalytic reformer`s flexibility. It seems that as soon as a timely article related to catalytic reforming operations is published, a new {open_quotes}boutique{close_quotes} gasoline fuel specification is slapped on to existing fuel standards, affecting reformer operations and processing objectives. Just as importantly, the petrochemical market (such as aromatics) that refiners are targeting, can be very fickle. That`s why process engineers have endeavored to maintain an awareness of the flexibility that technology suppliers are building into modern catalytic reformers.

  13. Imaging DOAS detection of primary formaldehyde and sulfur dioxide emissions from petrochemical flares

    NASA Astrophysics Data System (ADS)

    Pikelnaya, Olga; Flynn, James H.; Tsai, Catalina; Stutz, Jochen

    2013-08-01

    areas with a high number of petrochemical facilities are often struggling to meet current and future air quality standards. The Houston-Galveston area, for example, continues to be in noncompliance with the U.S. federal air quality standard of ozone, despite significant progress in mitigating air pollution. In recent years, the magnitude and role of primary emissions of ozone-forming chemicals, and in particular formaldehyde, from flares in petrochemical facilities have been discussed as a potential factor contributing to ozone formation. However, no direct observations of flare emissions of formaldehyde have thus far been reported. Here we present observations of formaldehyde and sulfur dioxide emissions from petrochemical flares in the Houston-Galveston area during the 2009 Formaldehyde and Olefin from Large Industrial Sources campaign using a new imaging differential optical absorption spectrometer (I-DOAS). Formaldehyde emissions from burning flares were observed directly above the flare stack and ranged from 0.2 to 8.5 kg/h. Unlit flares were found not to emit formaldehyde. SO2 emission rates from a burning acid gas flare ranged between 2 and 4 kg/h. None of the sampled flares coemitted HCHO and SO2. Comparison of the emission fluxes measured by the I-DOAS instrument with those from emission inventories and with fluxes calculated from plumes detected by the long-path DOAS over downtown Houston shows that the flares observed by the I-DOAS were relatively small. While burning flares clearly emit HCHO, a larger observational database is needed to assess the importance of flare emissions for ozone formation.

  14. Radioactivity and radiological risk associated with effluent sediment containing technologically enhanced naturally occurring radioactive materials in amang (tin tailings) processing industry.

    PubMed

    Bahari, Ismail; Mohsen, Nasirian; Abdullah, Pauzi

    2007-01-01

    The processing of amang, or tin tailings, for valuable minerals has been shown to technologically enhance NORM and this has stirred significant radiological safety and health concerns among Malaysia's regulatory authority. A growing radiological concern is now focused on the amang effluent containing NORM in recycling ponds, since these ponds may be reclaimed for future residential developments. A study was carried out to assess the radiological risk associated with amang processing and the accumulated effluent in the recycling ponds. Twenty-six sediment samples from the recycling ponds of two amang plants in the states of Selangor and Perak, Malaysia, were collected and analyzed. The maximum activity concentrations of (238)U, (226)Ra, (232)Th and (40)K recorded in sediments from these ponds were higher than Malaysia's and the world's natural highest. Correspondingly, the mean radium equivalent activity concentration indices, Ra(eq), and gamma radiation representative level index, I(gammar), were higher than the world's average. The enhancement of NORM in effluent sediments as a consequence of amang processing, and the use of a closed water management recycling system created Effective Dose Rates, E (nSv h(-1)), that signal potential environmental radiological risks in these ponds, should they be reclaimed for future land use.

  15. Understanding the petrochemical cycle: Part 1

    SciTech Connect

    Sedriks, W. )

    1994-03-01

    Fitness in the hydrocarbon processing industry (HPI) arena involves understanding and coping with business cycles: supply and demand. This becomes increasingly more important as the industry globalizes and matures. Competitive-edge thinking needs to look hard at the forces that influence business cycles. Recognition of potential pitfalls is very important when considering: future capacity expansion, mergers and acquisitions, market departure, plant closure, potential product substitution, etc. Understanding pricing mechanisms and the workings of hockey-stick profitability profiles help HPI operators endure cycle downturns and prepare plants to maximize profits for the next upswing. The paper discusses characteristic trends, cycles in the hydrocarbon processing industry, current conditions, and mitigating cycle effects.

  16. 89. ARAIII. Petrochem oilfired gas heater installed in reactor building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    89. ARA-III. Petro-chem oil-fired gas heater installed in reactor building (ARA-608). View is at floor level. Shows hand rails around heater pit and top of pit extending upwards through ceiling. January 20, 1959. Ineel photo no. 59-321. Photographer: Jack L. Anderson. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  17. The U.S. Chemical Industry, the Raw Materials It Uses

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1972

    1972-01-01

    The raw materials used by the industry are considered in this section of the annual chemical industry report, including data covering: natural gas, lead, mercury, phosphate rock, potash, salt, petroleum products including petrochemical feedstocks. (PR)

  18. LC-MS-MS analysis and occurrence of octyl- and nonylphenol, their ethoxylates and their carboxylates in Belgian and Italian textile industry, waste water treatment plant effluents and surface waters.

    PubMed

    Loos, Robert; Hanke, Georg; Umlauf, Gunther; Eisenreich, Steven J

    2007-01-01

    Alkylphenols (APs), alkylphenol ethoxylates (APEOs), ethoxycarboxylate metabolites (APECs) and bisphenol A were determined in surface water using solid-phase extraction (SPE) followed by triple-quadrupole LC-MS-MS. APs were separated by LC from APECs using an acetonitrile-water-gradient without the addition of any buffer. Nonylphenol ethoxycarboxylates (NPECs) interfere in the detection of nonylphenols (NPs) when using an acidic mobile phase, because they produce the same MS-MS fragment ions (219>133 and 147). 4n-NP shows the characteristic transition 219>106; it is well suited as internal standard. Nonylphenol ethoxylates NPE(n)Os (n=1-17) were analysed separately in a second run by positive ionization using an ammonium acetate mobile phase. Textile industry discharges, the corresponding wastewater treatment plant (WWTP) effluents and the receiving rivers in Belgium and Italy were analysed. Among the substances investigated, NPE1C and NPE2O exhibited the highest concentrations in the water samples, up to 4.5 microg l(-1) NPE1C in a WWTP effluent and 3.6 microg l(-1) NPE2O in a river. The highest NP levels were found in the receiving rivers (max. 2.5 microg l(-1)). The predicted no-effect concentration (PNEC) for NP of 0.33 microg l(-1) for water species was frequently exceeded in the surface waters investigated, suggesting potential adverse effects to the aquatic environment.

  19. Industrial Fuel Flexibility Workshop

    SciTech Connect

    none,

    2006-09-01

    On September 28, 2006, in Washington, DC, ITP and Booz Allen Hamilton conducted a fuel flexibility workshop with attendance from various stakeholder groups. Workshop participants included representatives from the petrochemical, refining, food and beverage, steel and metals, pulp and paper, cement and glass manufacturing industries; as well as representatives from industrial boiler manufacturers, technology providers, energy and waste service providers, the federal government and national laboratories, and developers and financiers.

  20. A novel "wastes-treat-wastes" technology: role and potential of spent fluid catalytic cracking catalyst assisted ozonation of petrochemical wastewater.

    PubMed

    Chen, Chunmao; Yu, Ji; Yoza, Brandon A; Li, Qing X; Wang, Gang

    2015-04-01

    Catalytic ozonation is a promising wastewater treatment technology. However, the high cost of the catalyst hinders its application. A novel "wastes-treat-wastes" technology was developed to reuse spent fluid catalytic cracking catalysts (sFCCc) for the ozonation of petrochemical wastewater in this study. Multivalent vanadium (V(4+) and V(5+)), iron (Fe(2+) and Fe(3+)) and nickel (Ni(2+)) oxides that are distributed on the surface of sFCCc and poisoned FCC catalysts are the catalytic components for ozonation. The sFCCc assisted catalytic ozonation (sFCCc-O) of nitrobenzene indicated that the sFCCc significantly promoted hydroxyl radical mediated oxidation. The degradation rate constant of nitrobenzene in sFCCc-O (0.0794 min(-1) at 298 K) was approximately doubled in comparison with that in single ozonation (0.0362 min(-1) at 298 K). The sFCCc-O of petrochemical wastewater increased chemical oxygen demand removal efficiency by three-fold relative to single ozonation. The number of oxygen-containing (Ox) polar contaminants in the effluent (253) from sFCCc-O treatment decreased to about 70% of the initial wastewater (353). The increased oxygen/carbon atomic ratio and decreased number of Ox polar contaminants indicated a high degree of degradation. The present study showed the role and potential of sFCCc for catalytic ozonation of petrochemical wastewater, particularly in an advantage of the cost-effectiveness through "wastes-treat-wastes".

  1. CO{sub 2} Reuse in Petrochemical Facilities

    SciTech Connect

    Jason Trembly; Brian Turk; Maruthi Pavani; Jon McCarty; Chris Boggs; Aqil Jamal; Raghubir Gupta

    2010-12-31

    To address public concerns regarding the consequences of climate change from anthropogenic carbon dioxide (CO{sub 2}) emissions, the U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL) is actively funding a CO{sub 2} management program to develop technologies capable of mitigating CO{sub 2} emissions from power plant and industrial facilities. Over the past decade, this program has focused on reducing the costs of carbon capture and storage technologies. Recently, DOE/NETL launched an alternative CO{sub 2} mitigation program focused on beneficial CO{sub 2} reuse to support the development of technologies that mitigate emissions by converting CO{sub 2} into valuable chemicals and fuels. RTI, with DOE/NETL support, has been developing an innovative beneficial CO{sub 2} reuse process for converting CO{sub 2} into substitute natural gas (SNG) by using by-product hydrogen (H{sub 2)-containing fuel gas from petrochemical facilities. This process leveraged commercial reactor technology currently used in fluid catalytic crackers in petroleum refining and a novel nickel (Ni)-based catalyst developed by RTI. The goal was to generate an SNG product that meets the pipeline specifications for natural gas, making the SNG product completely compatible with the existing natural gas infrastructure. RTI's technology development efforts focused on demonstrating the technical feasibility of this novel CO{sub 2} reuse process and obtaining the necessary engineering information to design a pilot demonstration unit for converting about 4 tons per day (tons/day) of CO{sub 2} into SNG at a suitable host site. This final report describes the results of the Phase I catalyst and process development efforts. The methanation activity of several commercial fixed-bed catalysts was evaluated under fluidized-bed conditions in a bench-scale reactor to identify catalyst performance targets. RTI developed two fluidizable Ni-based catalyst formulations (Cat-1 and Cat-3) that

  2. Photocatalytic degradation of industrial pulp and paper mill effluent using synthesized magnetic Fe2O3-TiO2: Treatment efficiency and characterizations of reused photocatalyst.

    PubMed

    Subramonian, Wennie; Wu, Ta Yeong; Chai, Siang-Piao

    2017-02-01

    In this work, heterogeneous photocatalysis was used to treat pulp and paper mill effluent (PPME). Magnetically retrievable Fe2O3-TiO2 was fabricated by employing a solvent-free mechanochemical process under ambient conditions. Findings elucidated the successful incorporation of Fe2O3 into the TiO2 lattice. Fe2O3-TiO2 was found to be an irregular and slightly agglomerated surface morphology. In comparison to commercial P25, Fe2O3-TiO2 exhibited higher ferromagnetism and better catalyst properties with improvements in surface area (58.40 m(2)/g), pore volume (0.29 cm(3)/g), pore size (18.52 nm), and band gap (2.95 eV). Besides, reusability study revealed that Fe2O3-TiO2 was chemically stable and could be reused successively (five cycles) without significant changes in its photoactivity and intrinsic properties. Additionally, this study demonstrated the potential recovery of Fe2O3-TiO2 from an aqueous suspension by using an applied magnetic field or sedimentation. Interactive effects of photocatalytic conditions (initial effluent pH, Fe2O3-TiO2 dosage, and air flow-rate), reaction mechanism, and the presence of chemical oxidants (H2O2, BrO3(-), and HOCl) during the treatment process of PPME were also investigated. Under optimal conditions (initial effluent pH = 3.88, [Fe2O3-TiO2] = 1.3 g/L, and air flow-rate = 2.28 L/min), the treatment efficiency of Fe2O3-TiO2 was 98.5% higher than the P25. Based on Langmuir-Hinshelwood kinetic model, apparent rate constants of Fe2O3-TiO2 and P25 were 9.2 × 10(-3) and 2.7 × 10(-3) min(-1), respectively. The present study revealed not only the potential of using magnetic Fe2O3-TiO2 in PPME treatment but also demonstrated high reusability and easy separation of Fe2O3-TiO2 from the wastewater.

  3. Behavior of natural radionuclides in surficial sediments from an estuary impacted by acid mine discharge and industrial effluents in Southwest Spain.

    PubMed

    Hierro, A; Bolivar, J P; Vaca, F; Borrego, J

    2012-08-01

    The environmental degradation resulting from the acid mine drainage (AMD) and discharge from effluents of phosphogypsum (PG) piles in the watershed of Tinto and Odiel Rivers estuary over long periods of time has resulted in significant impact on the ecosystem of this estuary, resulting that the sediments are highly polluted by heavy metals and radionuclides from the discharge AMD and leachates from the PG. During resuspension of benthic sediments some of the radionuclides are desorbed making them bioavailable. In the present study, we investigate the spatial distribution of radionuclides U, Th and Ra and assess the factors and processes that caused the spatial distribution of these nuclides in this estuarine system. This study has global significance for other polluted environmental systems that are impacted by AMD and PG.

  4. Whole Effluent Toxicity (WET)

    EPA Pesticide Factsheets

    Whole Effluent Toxicity (WET) describes the aggregate toxic effect of an aqueous sample (e.g., whole effluent wastewater discharge) as measured by an organism's response upon exposure to the sample (e.g., lethality, impaired growth, or reproduction).

  5. Facility effluent monitoring

    SciTech Connect

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the facility effluent monitoring programs and provides an evaluation of effluent monitoring data. These evaluations are useful in assessing the effectiveness of effluent treatment and control systems, as well as management practices.

  6. The Mexican petrochemical sector in the NAFTA negotiations

    SciTech Connect

    Kessel, G.; Kim, C.S.

    1993-12-31

    Since 1985, there have been important changes in the Mexican petrochemical sector, including trade liberalization, deregulation and the elimination of subsidies. NAFTA represents another step towards liberalization of the sector. Given the low tariffs currently applied to international trade among the three nations, the authors do not anticipate major impacts of NAFTA on trade flows. Nevertheless, the elimination of restrictions to foreign investment is expected to increase capital flows into the sector and to promote productivity increases. On the other hand, the new barriers to trade in petrochemical feedstocks and the restrictions on private investment in infrastructure may negatively affect the sector`s growth, making it necessary to adjust domestic regulations to improve the performance of Pemex. 12 refs., 4 tabs.

  7. The use of lidar as optical remote sensors in the assessment of air quality near oil refineries and petrochemical sites

    NASA Astrophysics Data System (ADS)

    Steffens, Juliana; Landulfo, Eduardo; Guardani, Roberto; Oller do Nascimento, Cláudio A.; Moreira, Andréia

    2008-10-01

    Petrochemical and oil refining facilities play an increasingly important role in the industrial context. The corresponding need for monitoring emissions from these facilities as well as in their neighborhood has raised in importance, leading to the present tendency of creating real time data acquisition and analysis systems. The use of LIDAR-based techniques, both for air quality and emissions monitoring purposes is currently being developed for the area of Cubatao, Sao Paulo, one of the largest petrochemical and industrial sites in Brazil. In a partnership with the University of SÃ#o Paulo (USP) the Brazilian oil company PETROBRAS has implemented an Environmental Research Center - CEPEMA - located in the industrial site, in which the development of fieldwork will be carried out. The current joint R&D project focuses on the development of a real time acquisition system, together with automated multicomponent chemical analysis. Additionally, fugitive emissions from oil processing and storage sites will be measured, together with the main greenhouse gases (CO2, CH4), and aerosols. Our first effort is to assess the potential chemical species coming out of an oil refinery site and to verify which LIDAR technique, DIAL, Raman, fluorescence would be most efficient in detecting and quantifying the specific atmospheric emissions.

  8. Carbohydrate-mediated purification of petrochemicals.

    PubMed

    Holcroft, James M; Hartlieb, Karel J; Moghadam, Peyman Z; Bell, Jon G; Barin, Gokhan; Ferris, Daniel P; Bloch, Eric D; Algaradah, Mohammed M; Nassar, Majed S; Botros, Youssry Y; Thomas, K Mark; Long, Jeffrey R; Snurr, Randall Q; Stoddart, J Fraser

    2015-05-06

    Metal-organic frameworks (MOFs) are known to facilitate energy-efficient separations of important industrial chemical feedstocks. Here, we report how a class of green MOFs-namely CD-MOFs-exhibits high shape selectivity toward aromatic hydrocarbons. CD-MOFs, which consist of an extended porous network of γ-cyclodextrins (γ-CDs) and alkali metal cations, can separate a wide range of benzenoid compounds as a result of their relative orientation and packing within the transverse channels formed from linking (γ-CD)6 body-centered cuboids in three dimensions. Adsorption isotherms and liquid-phase chromatographic measurements indicate a retention order of ortho- > meta- > para-xylene. The persistence of this regioselectivity is also observed during the liquid-phase chromatography of the ethyltoluene and cymene regioisomers. In addition, molecular shape-sorting within CD-MOFs facilitates the separation of the industrially relevant BTEX (benzene, toluene, ethylbenzene, and xylene isomers) mixture. The high resolution and large separation factors exhibited by CD-MOFs for benzene and these alkylaromatics provide an efficient, reliable, and green alternative to current isolation protocols. Furthermore, the isolation of the regioisomers of (i) ethyltoluene and (ii) cymene, together with the purification of (iii) cumene from its major impurities (benzene, n-propylbenzene, and diisopropylbenzene) highlight the specificity of the shape selectivity exhibited by CD-MOFs. Grand canonical Monte Carlo simulations and single component static vapor adsorption isotherms and kinetics reveal the origin of the shape selectivity and provide insight into the capability of CD-MOFs to serve as versatile separation platforms derived from renewable sources.

  9. Photocatalytic treatment of an industrial effluent using artificial and solar UV radiation: an operational cost study on a pilot plant scale.

    PubMed

    Durán, A; Monteagudo, J M; San Martín, I

    2012-05-15

    The aim of this work was to study the operation costs of treating a real effluent from an integrated gasification combined cycle (IGCC) power station located in Spain. The study compares different homogeneous photocatalytic processes on a pilot plant scale using different types of radiation (artificial UV or solar UV with a compound parabolic collector). The efficiency of the processes was evaluated by an analysis of the total organic carbon (TOC) removed. The following processes were considered in the study: (i) a photo-Fenton process at an artificial UV pilot plant (with the initial addition of H(2)O(2)), (ii) a modified photo-Fenton process with continuous addition of H(2)O(2) and O(2) to the system and (iii) a ferrioxalate-assisted solar photo-Fenton process at a compound parabolic collector (CPC) pilot plant. The efficiency of these processes in degrading pollutants has been studied previously, and the results obtained in each of those studies have been published elsewhere. The operational costs due to the consumption of electrical energy, reagents and catalysts were calculated from the optimal conditions of each process. The results showed that the solar photo-Fenton system was economically feasible, being able to achieve up to 75% mineralization with a total cost of 6 €/m(3), which can be reduced to 3.6 €/m(3) by subtracting the electrical costs because the IGCC plant is self-sufficient in terms of energy.

  10. Industry

    SciTech Connect

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  11. Global petrochemical R and D focus on projects that provide a return

    SciTech Connect

    Knott, D.

    1996-08-26

    Because of tough market conditions, the research and development of new petrochemical products is down along with spending. The paper discusses the new marketing strategy used by petrochemical developers while relenting all blue sky research to academia. The paper discusses developments and research in the four main targeted research areas. These include basic petrochemicals such as ethylene an propylene; petrochemical intermediates such as 1,4 butanediol and vinyl chloride monomer; commodity polymers, notably linear low density polyethylene; and, specialty polymers such as engineering plastics. The advances in production technologies in these areas are then discussed.

  12. Petrochemical types of kimberlites and their diamond-bearing capacity

    NASA Astrophysics Data System (ADS)

    Kostrovitsky, Sergey

    2010-05-01

    Kimberlite rocks of Yakutian province (belong to 1 group of kimberlites after Smith, 1983) are characterized by wide variations of rock-forming oxides [Ilupin et al., 1986; Milashev, 1965; Kharkiv et al., 1991]. A number of factors could be discussed to explain the variety of chemical compositions of rocks. The first factor, explaining the regional differences in the kimberlite composition with primarily different composition of source kimberlite melt-fluid, is conventionally called «primary». All other factors are connected with the secondary redistribution of chemical components of kimberlites. Irrespective of intensity of secondary factors, the primary composition of kimberlites varies broadly, which is noticeable in kimberlites of some provinces, kimberlites fields, pipe clusters and individual pipes. The petrochemical types are classified based on the contents of such oxides as FeO, TiO2 and K2O, being relatively inert in the secondary processes. In the Yakutian Province we have distinguished 5 petrochemical types of kimberlites (Kostrovitsky et al, 2007); with principal ones - high-Mg, magnesium-ferruginous (Mg-Fe) and ferruginous-titaniferous, their composition: < 6; 6-9; 8-15 % FeOtotal and < 1; 1-2.5; 1.5-5.0 % TiO2). Some petrochemical and mineralogical criteria of diamond-bearing capacity of kimberlites were identified some time before. The essence of petrochemical criterion consists of the inverse correlation dependence between the contents FeOtotal, TiO2 in kimberlite rocks and their diamond-bearing capacity (Milashev, 1965; Krivonos, 1998). The mineralogical criteria of diamond-bearing capacity infer presence of direct dependence of the rate of capacity on the content in kimberlites of low-Ca, high-Cr garnet and chrome spinellids with Cr2O3 > 62% and TiO2 < 0.5%, of dunite-harzburgite paragenesis (Sobolev, 1974; Meyer, 1968). The acquired results are applied to evaluate «efficiency» of criteria of diamond-bearing capacity exemplified by the

  13. Health planning for remote petrochemical field operations

    SciTech Connect

    Krieger, G.R.; Balge, M.Z.

    1995-12-31

    Occupational/Public Health Services are becoming increasingly required in projects that involve the extended presence of expatriates in remote underdeveloped areas of the world. These ``expats`` are defined as individuals living and working in the environment who are not indigenous to the area. Under this definition, workers who are resistant to a ``local`` strain of malaria and then relocate to another geographic within the same country can also be considered as ``biologic expatriates`` since their resistance profile for certain tropical diseases is not reflective of their new environment. Unlike a major infrastructure project in the industrialized world, project planners in remote areas of the developing world should be expected to make significant long term medical and environmental commitments. US companies have extensive experience in the business of large-scale development projects, e.g. oil and gas pipelines and well field development; however, these projects represent major long-term in-country commitments with potentially large labor forces and substantial and sustained impacts on local health and safety resources. The initial structuring of health and safety programs will, therefore, have long-term ramifications on the project both during construction and ``routine`` operations since the multi-national companies are increasingly expected to develop and maintain self-sustaining health, safety and environmental programs.

  14. Considerations for Planning a Monitoring Campaign at Petrochemical Complexes: Lessons Learned

    NASA Astrophysics Data System (ADS)

    Cuclis, A.

    2010-12-01

    An air quality monitoring campaign was developed for the late spring of 2009 near Houston area petrochemical facilities. The focus of the field campaign was to measure free radicals that contribute to the formation of ozone, however refinery and chemical plants monitored are also emitters of many different volatile organic compounds (vocs) and hazardous air pollutants (haps). The Houston area is home to the largest aggregation of petrochemical facilities in the U.S. Three specific geographical areas with industrial facilities were considered: Mont Belvieu, the Houston Ship Channel and the Texas City Industrial Complex. Previous experiences with field campaigns in the area led to the presumption that there would be little if any access inside the facilities. Considerations for which areas to focus on included: how close could the facility be approached, what were the directions of the prevailing winds, what kind of barriers to measurement existed (e.g. trees, buildings, highways, privately owned land, etc.), and what were the possible chemical interferences from other sources near the measurement sites? Close communications with the plant security, the local police, the Federal Bureau of Investigations (FBI), Homeland Security, the Federal Aviation Administration (FAA), and the Texas Commission on Environmental Quality (TCEQ) were required. Substantial delays can occur due to local concerns regarding homeland security and plant safety. Also, a system of communications is essential to coordinate the participating scientists operating stationary analyzers with the scientists who have analyzers mounted in ground vehicles and in aircraft. The researchers were provided with information regarding plant operations, types of equipment and potential pollutants. A wide variety of stationery and mobile ambient air monitoring techniques were used to measure formaldehyde and other volatile organic compounds. In order to identify likely formaldehyde sources the self

  15. Biological treatment of actual petrochemical wastewater using anaerobic/anoxic/oxic process and the microbial diversity analysis.

    PubMed

    Ding, Pengyuan; Chu, Libing; Wang, Jianlong

    2016-12-01

    A novel process integrating anaerobic hydrolysis-acidification (HA) and anoxic/oxic (A/O) reactors was developed to treat the actual petrochemical wastewater, which was operated for more than 8 months, the removal efficiency of COD and NH4(+)-N was monitored, and the microbial community was analyzed. The results showed that the effluent concentrations were maintained at around 99 and 1.3 mg/L, with the removal efficiency of 70.6 and 95.4 %, respectively at a total hydraulic retention time (HRT) of 20 h. The major pollutants in the influent were identified as hydrocarbons, aldehydes, heterocyclic matters, amines, alcohols, phenols, ketones, etc. by GC-MS analysis, while only heterocyclic compounds, ketones, and esters were detected in the effluent after HA-A/O treatment. Bacteria belonging to phyla Chloroflexi, Proteobacteria, and Bacteroidetes were highly enriched in the system. The predominant genera in HA, anoxic, and oxic tanks were Anaerolineaceae uncultured and Desulfobacter, Blastocatella and Anaerolineaceae uncultured, Saprospiraceae uncultured and Nitrosomonadaceae uncultured, respectively. The sulfate-reducing bacteria Desulfobacter, Desulfofustis and Desulfomicrobium were detected only in HA reactor. The ammonium-oxidizing bacteria Nitrosomonadaceae and Nitrosomonas and nitrite-oxidizing bacteria Nitrospira were highly enriched in A/O reactor, which is consistent with the good nitrification performance.

  16. Health risk evaluation in a population exposed to chemical releases from a petrochemical complex in Thailand.

    PubMed

    Kampeerawipakorn, Ormrat; Navasumrit, Panida; Settachan, Daam; Promvijit, Jeerawan; Hunsonti, Potchanee; Parnlob, Varabhorn; Nakngam, Netnapa; Choonvisase, Suppachai; Chotikapukana, Passaornrawan; Chanchaeamsai, Samroeng; Ruchirawat, Mathuros

    2017-01-01

    Emissions from petrochemical industries may contain toxic and carcinogenic compounds that can pose health risk to human populations. The scenario may be worse in developing countries where management of such exposure-health problems is typically not well-implemented and the public may not be well-informed about such health risk. In Thailand, increasing incidences of respiratory diseases and cancers have been reported for the population around a major petrochemical complex, the Map Ta Phut Industrial Estate (MTPIE). This study aimed to systematically investigate an exposure-health risk among these populations. One-hundred and twelve healthy residents living nearby MTPIE and 50 controls located approximately 40km from MTPIE were recruited. Both external and internal exposure doses to benzene and 1,3-butadiene, known to be associated with the types of cancer that are of concern, were measured because they represent exposure to industrial and/or traffic-related emissions. Health risk was assessed using the biomarkers of early biological effects for cancer and inflammatory responses, as well as biomarkers of exposure for benzene and 1,3-butadiene. The exposure levels of benzene and 1,3-butadiene were similar for both the exposed and control groups. This was confirmed by a non-significant difference in the levels of specific urinary metabolites for benzene (trans,trans-muconic acid, t,t-MA) and 1,3-butadiene (monohydroxy-butyl mercapturic acid, MHBMA). Levels of 8-hydroxydeoxyguanosine (8-OHdG) and DNA strand breaks between the two groups were not statistically significantly different. However, functional biomarkers, interleukin-8 (IL-8) expression was significantly higher (p<0.01) and DNA repair capacity was lower (p<0.05) in the exposed residents compared to the control subjects. This suggests that the exposed residents may have a higher risk for development of diseases such as cancer compared to controls. However, the increased expression of IL-8 and lower DNA repair

  17. Effect of rhamnolipid on the aerobic removal of polyaromatic hydrocarbons (PAHs) and COD components from petrochemical wastewater.

    PubMed

    Sponza, Delia Teresa; Gök, Oğuzhan

    2010-02-01

    The removal efficiencies of 15 PAHs and some COD components (inert, readily degradable, slowly degradable and metabolic products) from a wastewater taken from a petrochemical industry treatment plant (Izmir, Turkey) have been determined using an aerobic completely stirred tank reactor (CSTR). Addition of rhamnolipid surfactant (15 mg l(-1)) increased the removal efficiencies of PAHs and soluble COD from 72% and 90% to 80% and 99%, respectively. The rhamnolipid treatment caused a significant increase of 5- and 6-ring PAH degradation. The soluble COD removal efficiency was 93%, in CSTR reactors with rhamnolipid added. The inert COD removal efficiency was 60% in a CSTR reactor containing rhamnolipid. Batch tests showed that removal arising from the adsorption of the PAHs was low (between 1.88% and 4.84%) while the removal of PAHs from the petrochemical industry wastewater via volatilization varied between 0.69% and 5.92%. Low sorption capacity (K(p)) values for refinery activated sludge (approximately 2.98 l g(-1)) confirmed that bio-sorption was not an important mechanism controlling the fate of PAHs in aerobic CSTR reactors. Models proposed to simulate the PAH removal indicated that 94% of the PAHs were removed via biodegradation.

  18. [Effects of dissolved oxygen in the oxic parts of A/O reactor on degradation of organic pollutants and analysis of microbial community for treating petrochemical wastewater].

    PubMed

    Ding, Peng-Yuan; Chu, Li-Bing; Zhang, Nan; Wang, Xing; Wang, Jian-Long

    2015-02-01

    Effects of dissolved oxygen (DO) on the biodegradation of organic pollutants were investigated using A/O reactors for the treatment of actual petrochemical wastewater. Two A/O reactors, DO were controlled at 2-3 mg x L(-1) in the oxic parts of reactor A and 5-6 mg x L(-1) of reactor B, were operated in parallel for comparison. The nearly a half of year operation results showed that the effluent COD in reactor A (72.5 ± 14.8 mg x L(-1)) was slightly higher than that in reactor B (68.7 ± 14.6 mg x L(-1)) at a HRT of 20 h. The average COD removal efficiencies were 67.0% and 68.8%, respectively. The effluent ammonium concentration was maintained at 0.8 mg x L(-1) and approximately 95% of ammonium removal was achieved. The effluent BOD, concentration was lower than 5 mg x L(-1). This indicated that the organic pollutants could be degraded thoroughly by the A/O processes, which were affected slightly by DO. Results of 454 pyrosequencing analysis of the sludge in oxic parts showed that at the phylum levels, sequences belonged to Proteobacteria, Planctomycetes and Bacteroidetes were abundant with 58.7% and 59.2%, 14.7% and 12.7%, 10.8% and 12.4% of total bacterial sequences in reactor A and B, respectively. Ammonium oxidation bacteria Nitrosomonas, nitrite oxidizing bacteria Nitrospira and obligate aerobic bacteria were highly enriched in reactor B with high DO levels, while the anaerobic denitrifiers Azospira and Acidovora were highly enriched in reactor A with low DO levels. The identified bacteria belonged to genera Novosphingobium, Comamonas, Sphingobium and Altererythrobacter were reported to degrade PAHs, chloronitrobenzene, pesticides and petroleum, which contributed to the degradation of petrochemical wastewater.

  19. Heterotrophic denitrification of aquaculture effluent using fluidized sand biofilters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability to consistently and cost-effectively reduce nitrate-nitrogen loads in effluent from recirculating aquaculture systems would enhance the industry's environmental stewardship and allow improved facility proximity to large markets in sensitive watersheds. Heterotrophic denitrification techn...

  20. Biomass and bioenergy production potential of microalgae consortium in open and closed bioreactors using untreated carpet industry effluent as growth medium.

    PubMed

    Chinnasamy, Senthil; Bhatnagar, Ashish; Claxton, Ronald; Das, K C

    2010-09-01

    Improved wastewater management with beneficial utilization will result in enhanced sustainability and enormous cost savings in industries. Algae cultivation systems viz. raceway ponds, vertical tank reactors (VTR) and polybags were evaluated for mass production of algal consortium using carpet industry (CI) untreated wastewater. Overall areal biomass productivity of polybags (21.1 g m(-2)d(-1)) was the best followed by VTR (8.1 g m(-2)d(-1)) and raceways (5.9 g m(-2)d(-1)). An estimated biomass productivity of 51 and 77 tons ha(-1)year(-1) can be achieved using 20 and 30 L capacity polybags, respectively with triple row arrangement. Biomass obtained from algal consortium was rich in proteins (approximately 53.8%) and low in carbohydrates (approximately 15.7%) and lipids (approximately 5.3%). Consortium cultivated in polybags has the potential to produce 12,128 m(3) of biomethane ha(-1)year(-1). To be economically viable, the capital expenditure for polybag reactors needs to be reduced to $10 m(-2) for bioenergy/biofuel production.

  1. Metal distribution in road dust samples collected in an urban area close to a petrochemical plant at Gela, Sicily

    NASA Astrophysics Data System (ADS)

    Manno, Emanuela; Varrica, Daniela; Dongarrà, Gaetano

    Eight samples of road dust were collected from three different localities (industrial, urban, peripheral) of the town of Gela (Italy) to characterize their chemical composition and to assess (a) the influence of the petrochemical plant and the urban traffic on the trace element content in different grain-size fractions of street dust and (b) the solid-phase speciation of the analysed metal using sequential extraction. The samples were sieved into six particle size ranges: 500-250, 250-125, 125-63, 63-40, 40-20 and <20 μm and then analysed for 15 trace elements by ICP-MS. Sequential extraction of metals was performed on each subsample. A principal component analysis was also carried out to define the possible origin of metals in dusts. A comparison was made between the trace metal concentrations in road dust and those in main local outcropping rocks. The obtained results, indicate, that the road dust samples contain non-soil-derived elements, whose primary contributors appear to be vehicular traffic and the nearby petrochemical plant. Traffic appears to be responsible for the high levels of Ba, Cu, Cr, Mo, Pb, Sb and Zn. High concentrations of Ni, V and, partly, Ba and Cr were associated with emissions from the petrochemical plant. With respect to the local background, Sb was the most highly enriched trace element in the road dusts. Results of sequential extraction analysis show that most metals are mainly distributed in the non-residual fractions and particularly in the organic/sulphide and Fe-Mn oxides fractions. They also point to superficial adsorption as an important transfer mechanism of trace metals from their sources to the environment.

  2. Industrial and occupational ergonomics in the petrochemical process industry: a regression trees approach.

    PubMed

    Bevilacqua, M; Ciarapica, F E; Giacchetta, G

    2008-07-01

    This work is an attempt to apply classification tree methods to data regarding accidents in a medium-sized refinery, so as to identify the important relationships between the variables, which can be considered as decision-making rules when adopting any measures for improvement. The results obtained using the CART (Classification And Regression Trees) method proved to be the most precise and, in general, they are encouraging concerning the use of tree diagrams as preliminary explorative techniques for the assessment of the ergonomic, management and operational parameters which influence high accident risk situations. The Occupational Injury analysis carried out in this paper was planned as a dynamic process and can be repeated systematically. The CART technique, which considers a very wide set of objective and predictive variables, shows new cause-effect correlations in occupational safety which had never been previously described, highlighting possible injury risk groups and supporting decision-making in these areas. The use of classification trees must not, however, be seen as an attempt to supplant other techniques, but as a complementary method which can be integrated into traditional types of analysis.

  3. Agent orange herbicides, organophosphate and triazinic pesticides analysis in olive oil and industrial oil mill waste effluents using new organic phase immunosensors.

    PubMed

    Martini, Elisabetta; Merola, Giovanni; Tomassetti, Mauro; Campanella, Luigi

    2015-02-15

    New immunosensors working in organic solvent mixtures (OPIEs) for the analysis of traces of different pesticides (triazinic, organophosphates and chlorurates) present in hydrophobic matrices such as olive oil were developed and tested. A Clark electrode was used as transducer and peroxidase enzyme as marker. The competitive process took place in a chloroform-hexane 50% (V/V) mixture, while the subsequent enzymatic final measurement was performed in decane and using tert-butylhydroperoxide as substrate of the enzymatic reaction. A linear response of between about 10nM and 5.0μM was usually obtained in the presence of olive oil. Recovery tests were carried out in commercial or artisanal extra virgin olive oil. Traces of pesticides were also checked in the oily matrix, in pomace and mill wastewaters from an industrial oil mill. Immunosensors show good selectivity and satisfactory precision and recovery tests performed in olive oil gave excellent results.

  4. Determination of sediment mutagenicity and cytotoxicity in an area subjected to petrochemical contamination.

    PubMed

    Horn, Rubem Cesar; Rocha, Jocelita Aparecida Vaz; Vargas, Vera Maria Ferrão

    2004-11-01

    This study is an evaluation of the mutagenic and cytotoxic activity of sediments in Bom Jardim stream, one of the tributaries of the Cai River basin, Rio Grande do Sul, Brazil. This stream receives an indirect contribution of treated effluent from a petrochemical plant. The Salmonella/microsome assay, a microsuspension method, was used to evaluate moderately polar extracts of sediment samples at three points along the stream. The grain size analysis showed a lower mean content of fine particles in the principle face (front) of the complex, and this was also the sampling point with the lowest percentage of extracted organics. Low mutagenic activity was observed at the different sites studied, ranging from 3.3 to 8.3%; cytotoxic activity was more important in this area, ranging from 20 to 40%, adding up the results of assays in the presence and absence of external metabolism. In assays without S9mix there were more frequent mutagenic and cytotoxic responses, with frameshift mutations being the most frequent. The results also showed that there was a gradual, seasonal distribution of the responses as the stream mouth is reached, the most compromised points being in front of and downstream of the complex. Mutagenic and cytotoxic activity in sediment samples has proved important to determine environmental quality, despite the complexity of the chemical composition of the environmental matrix. Furthermore, use of the Salmonella assay to monitor mutagenesis and cytotoxicity helped identify the presence of pollutants. This assay is an important tool, aimed mainly at actions to preserve the genetic heritage of the fauna and flora affected by human activity and to improve environmental quality.

  5. Technology transfer through a network of standard methods and recommended practices - The case of petrochemicals

    NASA Astrophysics Data System (ADS)

    Batzias, Dimitris F.; Karvounis, Sotirios

    2012-12-01

    Technology transfer may take place in parallel with cooperative action between companies participating in the same organizational scheme or using one another as subcontractor (outsourcing). In this case, cooperation should be realized by means of Standard Methods and Recommended Practices (SRPs) to achieve (i) quality of intermediate/final products according to specifications and (ii) industrial process control as required to guarantee such quality with minimum deviation (corresponding to maximum reliability) from preset mean values of representative quality parameters. This work deals with the design of the network of SRPs needed in each case for successful cooperation, implying also the corresponding technology transfer, effectuated through a methodological framework developed in the form of an algorithmic procedure with 20 activity stages and 8 decision nodes. The functionality of this methodology is proved by presenting the path leading from (and relating) a standard test method for toluene, as petrochemical feedstock in the toluene diisocyanate production, to the (6 generations distance upstream) performance evaluation of industrial process control systems (ie., from ASTM D5606 to BS EN 61003-1:2004 in the SRPs network).

  6. Industry analysts focus on US, Asian, Latin American markets

    SciTech Connect

    Not Available

    1994-04-25

    International consultant Chem Systems Inc., Tarrytown, N.Y., brought together its principle specialists from around the world to assess the state of the petrochemical industry earlier this year. Although the global industry is in a cyclic downturn, Chem Systems sees the current situation as being at the bottom of the cycle. Prices and margins are low. They are, however, in most regions, expected to recover somewhat in the coming years. Although these three regions present somewhat different pictures, they are all important in determining the health of the global petrochemical industry. Companies operating in the US and Asia are expected to have improved bottom lines in the coming years. And Latin America is a region with great potential. Political and economic conditions in this area, however, will play a big role in the vitality of the petrochemical industry.

  7. Nuclear reactor effluent monitoring

    SciTech Connect

    Minns, J.L.; Essig, T.H.

    1993-12-31

    Radiological environmental monitoring and effluent monitoring at nuclear power plants is important both for normal operations, as well as in the event of an accident. During normal operations, environmental monitoring verifies the effectiveness of in-plant measures for controlling the release of radioactive materials in the plant. Following an accident, it would be an additional mechanism for estimating doses to members of the general public. This paper identifies the U.S. Nuclear Regulatory Commission (NRC) regulatory basis for requiring radiological environmental and effluent monitoring, licensee conditions for effluent and environmental monitoring, NRC independent oversight activities, and NRC`s program results.

  8. Genotoxicity of swine effluents.

    PubMed

    Techio, V H; Stolberg, J; Kunz, A; Zanin, E; Perdomo, C C

    2011-01-01

    This study aimed at the investigation of genotoxic effects of swine effluents from different stages of a treatment system for swine wastes through bioassay of stamen hairs and micronuclei in Tradescantia (clone BNL 4430). No significant differences (p≥0.05) regarding the genic mutations were found in the bioassay of stamen hairs, independently of the effluent analysed. For the genotoxicity test with micronuclei, the plants exposed to raw wastes, to sludge, and to effluent of the biodigester have presented higher rates of chromosomal damages (micronuclei), with significant differences in relation to the control group and other effluent of the waste treatment system (p≤0.05). The association between the chemical parameters and the genotoxicity data have shown that the variables COD and TKN have presented significant correlation (p≤0.05) with the number of mutagenic events in the tetrads.

  9. NATIONAL WWTP EFFLUENT STUDY

    EPA Science Inventory

    Reports of potential wildlife risk from exposure to environmental estrogens emphasize the need to better understand both estrogenic presence and persistence in treated wastewater effluents. In addition to wildlife exposure, human exposure should also be examined, especially in si...

  10. Lidar Measurements of Industrial Benzene Emissions

    NASA Astrophysics Data System (ADS)

    Berkhout, A. J. C.; van der Hoff, G. R.; Gast, L. F. L.

    2016-06-01

    The ability to measure benzene concentrations was added to the RIVM mobile DIAL system. In a ten-days campaign, it was used to measure benzene emissions in the Rijnmond, a heavily industrialised area in the South-west of the Netherlands with petrochemical industry, petrochemical products storage and the port of Rotterdam. On two of the ten days, benzene emissions were found. Combined with measurements of wind speed and wind direction, the Lidar measurements indicated the possible origins of these emissions. This makes the Lidar a valuable tool, augmenting the data collected at fixed monitoring stations.

  11. Recovery of enthalpy as work from thermal effluents

    NASA Astrophysics Data System (ADS)

    Molini, A. E.

    1982-08-01

    Enthalpy is recovered as work from hot industrial effluents by the controlled expansion of liquids through convergent-divergent nozzles in true reaction turbines. For hot liquid effluents, the effluent itself serves as the working fluid. For gaseous effluents, a high boiling stable liquid is heated by the gas in a scrubbing tower and then the liquid is expanded as the work fluid. If the effluents contain undesirable levels of particulate pollutants, the liquid is cleaned before it is expanded. The results predicted when using both impulse and true reaction turbines are reported. Results predicted when using work fluids as glycerol, tricresyl phosphate, bi-phenyls, and silicone oils are presented. Cycle efficiencies as high as 26% are predicted as possible.

  12. Investigation of fugitive emissions from petrochemical transport barges using optical remote sensing

    EPA Science Inventory

    Recent airborne remote sensing survey data acquired with passive gas imaging equipment (PGIE), in this case infrared cameras, have shown potentially significant fugitive volatile organic carbon (VOC) emissions from petrochemical transport barges. The experiment found remote sens...

  13. Integrating sequencing batch reactor with bio-electrochemical treatment for augmenting remediation efficiency of complex petrochemical wastewater.

    PubMed

    Yeruva, Dileep Kumar; Jukuri, Srinivas; Velvizhi, G; Naresh Kumar, A; Swamy, Y V; Venkata Mohan, S

    2015-01-01

    The present study evaluates the sequential integration of two advanced biological treatment methods viz., sequencing batch reactor (SBR) and bioelectrochemical treatment systems (BET) for the treatment of real-field petrochemical wastewater (PCW). Initially two SBR reactors were operated in aerobic (SBR(Ae)) and anoxic (SBR(Ax)) microenvironments with an organic loading rate (OLR) of 9.68 kg COD/m(3)-day. Relatively, SBR(Ax) showed higher substrate degradation (3.34 kg COD/m(3)-day) compared to SBR(Ae) (2.9 kg COD/m(3)-day). To further improve treatment efficiency, the effluents from SBR process were fed to BET reactors. BET(Ax) depicted higher SDR (1.92 kg COD/m(3)-day) with simultaneous power generation (17.12 mW/m(2)) followed by BET(Ae) (1.80 kg COD/m(3)-day; 14.25 mW/m(2)). Integrating both the processes documented significant improvement in COD removal efficiency due to the flexibility of combining multiple microenvironments sequentially. Results were supported with GC-MS and FTIR, which confirmed the increment in biodegradability of wastewater.

  14. Comparison between Thermal Desorption Tubes and Stainless Steel Canisters Used for Measuring Volatile Organic Compounds in Petrochemical Factories

    PubMed Central

    Chang, Cheng-Ping; Lin, Tser-Cheng; Lin, Yu-Wen; Hua, Yi-Chun; Chu, Wei-Ming; Lin, Tzu-Yu; Lin, Yi-Wen; Wu, Jyun-De

    2016-01-01

    Objective: The purpose of this study was to compare thermal desorption tubes and stainless steel canisters for measuring volatile organic compounds (VOCs) emitted from petrochemical factories. Methods: Twelve petrochemical factories in the Mailiao Industrial Complex were recruited for conducting the measurements of VOCs. Thermal desorption tubes and 6-l specially prepared stainless steel canisters were used to simultaneously perform active sampling of environmental air samples. The sampling time of the environmental air samples was set up on 6h close to a full work shift of the workers. A total of 94 pairwise air samples were collected by using the thermal adsorption tubes and stainless steel canisters in these 12 factories in the petrochemical industrial complex. To maximize the number of comparative data points, all the measurements from all the factories in different sampling times were lumped together to perform a linear regression analysis for each selected VOC. Pearson product–moment correlation coefficient was used to examine the correlation between the pairwise measurements of these two sampling methods. A paired t-test was also performed to examine whether the difference in the concentrations of each selected VOC measured by the two methods was statistically significant. Results: The correlation coefficients of seven compounds, including acetone, n-hexane, benzene, toluene, 1,2-dichloroethane, 1,3-butadiene, and styrene were >0.80 indicating the two sampling methods for these VOCs’ measurements had high consistency. The paired t-tests for the measurements of n-hexane, benzene, m/p-xylene, o-xylene, 1,2-dichloroethane, and 1,3-butadiene showed statistically significant difference (P-value < 0.05). This indicated that the two sampling methods had various degrees of systematic errors. Looking at the results of six chemicals and these systematic errors probably resulted from the differences of the detection limits in the two sampling methods for these VOCs

  15. Anaerobic/aerobic treatment of a petrochemical wastewater from two aromatic transformation processes by fluidized bed reactors.

    PubMed

    Estrada-Arriaga, Edson B; Ramirez-Camperos, Esperanza; Moeller-Chavez, Gabriela E; García-Sanchez, Liliana

    2012-01-01

    An integrated fluidized bed reactor (FBR) has been employed as the treatment for petrochemical industry wastewaters with high organic matter and aromatic compounds, under anaerobic and aerobic conditions. The system was operated at hydraulic residence time (HRT) of 2.7 and 2.2 h in the anaerobic and aerobic reactor, respectively. The degree of fluidization in the beds was 30%. This system showed a high performance on the removal of organic matter and aromatic compounds. At different organic loading rates (OLR), the chemical oxygen demand (COD) removal in the anaerobic reactor was close to 85% and removals of the COD up to 94% were obtained in the aerobic reactor. High removals of benzene, toluene, ethylbenzene, xylenes, styrene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene and naphthalene were achieved in this study.

  16. Volatile organic monitor for industrial effluents

    SciTech Connect

    Laguna, G.R.; Peter, F.J.; Stuart, A.D.; Loyola, V.M.

    1993-07-01

    1990 amendments to the Clean Air Act have created the need for instruments capable of monitoring volatile organic compounds (VOCS) in public air space in an unattended and low cost manner. The purpose of the study was to develop and demonstrate the capability to do long term automatic and unattended ambient air monitoring using an inexpensive portable analytic system at a commercial manufacturing plant site. A gas chromatograph system personal computer hardware, meteorology tower & instruments, and custom designed hardware and software were developed. Comparison with an EPA approved method was performed. The system was sited at an aircraft engines manufacturing site and operated in a completely unattended mode for 60 days. Two VOCs were monitored every 30 minutes during the 24hr day. Large variation in the concentration from 800ppb to the limits of detection of about 10ppb were observed. Work to increase the capabilities of the system is ongoing.

  17. Environmental comparison of biobased chemicals from glutamic acid with their petrochemical equivalents.

    PubMed

    Lammens, Tijs M; Potting, José; Sanders, Johan P M; De Boer, Imke J M

    2011-10-01

    Glutamic acid is an important constituent of waste streams from biofuels production. It is an interesting starting material for the synthesis of biobased chemicals, thereby decreasing the dependency on fossil fuels. The objective of this paper was to compare the environmental impact of four biobased chemicals from glutamic acid with their petrochemical equivalents, that is, N-methylpyrrolidone (NMP), N-vinylpyrrolidone (NVP), acrylonitrile (ACN), and succinonitrile (SCN). A consequential life cycle assessment was performed, wherein glutamic acid was obtained from sugar beet vinasse. The removed glutamic acid was substituted with cane molasses and ureum. The comparison between the four biobased and petrochemical products showed that for NMP and NVP the biobased version had less impact on the environment, while for ACN and SCN the petrochemical version had less impact on the environment. For the latter two an optimized scenario was computed, which showed that the process for SCN can be improved to a level at which it can compete with the petrochemical process. For biobased ACN large improvements are required to make it competitive with its petrochemical equivalent. The results of this LCA and the research preceding it also show that glutamic acid can be a building block for a variety of molecules that are currently produced from petrochemical resources. Currently, most methods to produce biobased products are biotechnological processes based on sugar, but this paper demonstrates that the use of amino acids from low-value byproducts can certainly be a method as well.

  18. Effluent guidelines, leather tanning, and pollution prevention: A retrospective study

    SciTech Connect

    1995-06-01

    This study was undertaken to learn: in what ways and for what reasons a specific industry in the past already was implementing pollution in order to comply with existing effuent guidelines and to what degree the effluent guidelines development document for that industry had already previously projected that outcome.

  19. Substance abuse in the refining industry

    SciTech Connect

    Little, A. Jr. ); Ross, J.K. ); Lavorerio, R. ); Richards, T.A. )

    1989-01-01

    In order to provide some background for the NPRA Annual Meeting Management Session panel discussion on Substance Abuse in the Refining and Petrochemical Industries, NPRA distributed a questionnaire to member companies requesting information regarding the status of their individual substance abuse policies. The questionnaire was designed to identify general trends in the industry. The aggregate responses to the survey are summarized in this paper, as background for the Substance Abuse panel discussions.

  20. Identification and chemical characterization of specific organic indicators in the effluents from chemical production sites.

    PubMed

    Botalova, Oxana; Schwarzbauer, Jan; al Sandouk, Nadia

    2011-06-01

    The structural diversity of the wastewater composition was described by the use of detailed non-target screening analyses of industrial effluents from chemical production sites. Determination of the indicative organic compounds acting as potential molecular indicators for industrial emissions from chemical production industries has been possible due to (i) detailed characterisation of industrial contaminants and identification of compounds with high source specificity, (ii) quantitative determination of the organic constituents in the industrial effluents and (iii) the review of their industrial applications. The determination of potential site-specific markers and industrial molecular indicators corresponding to certain production processes (production of starting materials for manufacturing paper and printing inks, powder coatings as well as epichlorohydrin production) was performed in this work. The results of this study allowed significant contributions to the chemical characterisation of industrial contaminants and isolation of indicators that can act as representatives of industrial effluents in the aquatic environment.

  1. Environmental assessment for effluent reduction, Los Alamos National Laboratory, Los Alamos, New Mexico

    SciTech Connect

    1996-09-11

    The Department of Energy (DOE) proposes to eliminate industrial effluent from 27 outfalls at Los Alamos National Laboratory (LANL). The Proposed Action includes both simple and extensive plumbing modifications, which would result in the elimination of industrial effluent being released to the environment through 27 outfalls. The industrial effluent currently going to about half of the 27 outfalls under consideration would be rerouted to LANL`s sanitary sewer system. Industrial effluent from other outfalls would be eliminated by replacing once-through cooling water systems with recirculation systems, or, in a few instances, operational changes would result in no generation of industrial effluent. After the industrial effluents have been discontinued, the affected outfalls would be removed from the NPDES Permit. The pipes from the source building or structure to the discharge point for the outfalls may be plugged, or excavated and removed. Other outfalls would remain intact and would continue to discharge stormwater. The No Action alternative, which would maintain the status quo for LANL`s outfalls, was also analyzed. An alternative in which industrial effluent would be treated at the source facilities was considered but dismissed from further analysis because it would not reasonably meet the DOE`s purpose for action, and its potential environmental effects were bounded by the analysis of the Proposed Action and the No Action alternatives.

  2. Experimental research on vibration reduction of high-rise petrochemical equipment

    NASA Astrophysics Data System (ADS)

    Hao, W.; He, L. D.; Chang, J.; Han, W. F.; Wang, L. X.

    2012-05-01

    The wind-induced vibration of high-rise petrochemical equipment would do great harm to equipment operation and cause fatigue damage easily. Thus it is necessary to install some control device to reduce the vibration actively. Existing reinforcement methods include enlarging structural section, welding wind girder, adding braced frame system, fixing taut cable, etc. But each has some shortcomings. Therefore, the tuned mass damper (TMD), rarely used in high-rise petrochemical equipment, is studied by experiment to minimize wind-induced vibration, ensure safety operation and prolong service life. In the experiment, high-rise petrochemical equipment is properly simplified in order to verify the feasibility of the TMD. Parameters of the TMD are mainly researched, which include mass ratio and damping ratio. During the process, different mass ratios and damping ratios have been taken into account to understand the characteristics of the TMD under different conditions. By experiment, the changing tendencies of the natural frequency, damping ratio and top maximum displacement have been given after the simulator is implemented with the TMD. Experimental results show that the TMD is feasible for the wind-induced vibration control of high-rise petrochemical equipment, and that top maximum displacement of the simulator reduces by about 45% in the experimental condition. The experimental research has provided valuable preferences for practical application of the TMD in petrochemical field.

  3. Biodegradation of pentyl amine and aniline from petrochemical wastewater.

    PubMed

    Wang, Li; Barrington, Suzelle; Kim, Jin-Woo

    2007-04-01

    The objectives of the project were to isolate a bacterial strain capable of degrading pentyl amine and aniline and to define the optimal pentyl amine and aniline degradation conditions for this bacterial strain. The bacterial strain was isolated from activated sludge obtained from a Northeastern China treatment facility for petrochemical wastewater rich in pentyl amine and aniline. Once the strain was isolated, five triplicate (5) batch tests were used to establish the conditions for maximum pentyl amine and aniline degradation, by varying one at a time the following five factors: temperature, pH, reaction time, pollutant concentrations and aeration rate. In a final test, oil refinery sludge was inoculated with the strain and tested for the degradation of pentyl amine and aniline under optimal conditions, while observing the degradation pathway of pentyl amine and aniline. The isolated strain, PN1001, is a member of the Pseudomonas species and it was capable of degrading pentyl amine and aniline. The optimal reactor conditions for the degradation of a mixture of pentyl amine and aniline, at a concentration ranging between 150 and 200mg/L, were found to be 30 degrees C at a pH of 7.0, under a reaction time of 24h and a maximum solution dissolved oxygen level of 6 mgO(2)/L. Under such conditions, the strain PN1001 degraded 93% and 89% of the pentyl amine and aniline, respectively, aniline being more toxic and demonstrating a more complex degradation pathway. The strain PN1001 degraded more contaminants when both were present because of the pi and sigma electron cloud coordination functions of aniline and pentyl amine, respectively, presumed to reduce the toxic effect of aniline. Once inoculated with the strain, oil refinery sludge degraded 93% and 88% of the pentyl amine and aniline, compared to the strain alone which degraded 72% and 82%, likely because of the sludge's buffering effect against the toxic environment.

  4. Silage effluent management: a review.

    PubMed

    Gebrehanna, M M; Gordon, R J; Madani, A; VanderZaag, A C; Wood, J D

    2014-10-01

    Silage effluent is a potent wastewater that can be produced when ensiling crops that have a high moisture content (MC). Silage effluent can cause fish-kills and eutrophication due to its high biochemical oxygen demand (BOD) and nutrient content, respectively. It has a high acidity (pH ≈ 3.5-5) making it corrosive to steel and damaging to concrete, which makes handling, storage and disposal a challenge. Although being recognized as a concentrated wastewater, most research has focused on preventing its production. Despite noted imprecision in effluent production models-and therefore limited ability to predict when effluent will flow-there has been little research aimed at identifying effective reactive management options, such as containment and natural treatment systems. Increasing climate variability and intensifying livestock agriculture are issues that will place a greater importance on developing comprehensive, multi-layered management strategies that include both preventative and reactive measures. This paper reviews important factors governing the production of effluent, approaches to minimize effluent flows as well as treatment and disposal options. The challenges of managing silage effluent are reviewed in the context of its chemical constituents. A multi-faceted approach should be utilized to minimize environmental risks associated with silage effluent. This includes: (i) managing crop moisture content prior to ensiling to reduce effluent production, (ii) ensuring the integrity of silos and effluent storages, and (iii) establishing infrastructure for effluent treatment and disposal. A more thorough investigation of constructed wetlands and vegetated infiltration areas for treating dilute silage effluent is needed. In particular, there should be efforts to improve natural treatment system design criteria by identifying pre-treatment processes and appropriate effluent loading rates. There is also a need for research aimed at understanding the effects of

  5. Genotoxicity biomarkers for airborne particulate matter (PM2.5) in an area under petrochemical influence.

    PubMed

    Lemos, Andréia Torres; Lemos, Clarice Torres de; Flores, Andressa Negreiros; Pantoja, Eduarda Ozório; Rocha, Jocelita Aparecida Vaz; Vargas, Vera Maria Ferrão

    2016-09-01

    The effects of fine inhalable particles (PM2.5) were evaluated in an area under the influence of a petrochemical industry, investigating the sensitivity of different genotoxicity biomarkers. Organic extracts were obtained from PM2.5 samples at two sites, positioned in the first and second preferential wind direction in the area. The extracts were evaluated with Salmonella/microsome assay, microsuspension method, strains TA98, YG1021 and YG1024. The mammalian metabolization fraction (S9) was used to evaluate metabolite mutagenicity. The Comet Assay (CA) and Micronuclei Test were used in a Chinese hamster lung cell line (V79). All extracts showed mutagenicity in Salmonella, and nitrogenated compounds were strongly present. Genotoxicity were found in CA in almost all extracts and the micronuclei induction at the Site in the first (Autumn 1, Winter 1), and in the second (Spring 2) wind direction. V79 showed cytotoxicity in all samples. The three biomarkers were concordant in characterization Site NO with worse quality, compatible with the greater pollutants dispersion in the first wind direction. All PM2.5 concentrations were lower than those recommended by air quality standards but genotoxic effects were detected in all samples, corroborating that these standards are inadequate as quality indicators. The Salmonella/microsome assay proved sensitive to PM2.5 mutagenicity, with an outstanding influence of nitroarenes and aromatic amines. Analyses using CA and the micronucleus test broadened the levels of response that involve different damage induction mechanisms. Results show that the complex PM2.5 composition can provoke various genotoxic effects and the use of different bioassays is essential to understand its effects.

  6. Data on greenhouse gases emission in condensate separation unit of a petrochemical company in Iran.

    PubMed

    Ahmadi, Mehdi; Dastorian, Mehrshad; Jafarzadeh, Nemat; Jorfi, Sahand; Ramavandi, Bahman

    2016-09-01

    Since global warming due to greenhouse gas emissions is no respecter of geographical boundaries of countries, concerted mitigation activities such as Clean Development Mechanism (CDM), are suitable. In this mechanism, some developed countries can gain certified emission reduction credits from emission reduction actions undertaken in developing countries. Thus, the data of greenhouse gas emissions in developing countries would be informative for implementing of CDM. Herein, the data of greenhouse gas emissions of Bandar Imam Petrochemical Complex, one of the biggest petrochemical companies in the Middle East region is presented. The data was acquired using emission factor method and self-presented raw information of the Bandar Imam Petrochemical Complex. Overall, the data will be interesting for environmentalists, non-governmental organization (NGO), and developed countries to perform CDM.

  7. PFOS and PFOA in influents, effluents, and biosolids of Chinese wastewater treatment plants and effluent-receiving marine environments.

    PubMed

    Chen, Hong; Zhang, Can; Han, Jianbo; Yu, Yixuan; Zhang, Peng

    2012-11-01

    Concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in influents, effluents and sludges were investigated by analyzing the samples from twelve wastewater treatment plants (WWTPs) in China. The highest concentrations of PFOS and PFOA in influents were found to occur in municipal and industrial WWTPs, respectively. Relative to PFOS and PFOA concentrations in influents, elevated concentrations were observed in effluents from WWTPs applying anaerobic-anoxic-oxic wastewater treatment process. Importantly, application of previously reported organic carbon normalized partition coefficients (K(OC)) derived from sediment-based sorption experiments appear to underestimate the PFOS and PFOA levels in biosolids quantified in the current study. PFOS and PFOA levels in effluents were found to be approximately 27 and 2 times higher than those detected in the effluent-receiving seawater, respectively. However, their levels in this area of seawater haven't exceeded the provisional short-term health advisories in drinking water issued by U.S. EPA yet.

  8. 76 FR 66286 - Notice of Final 2010 Effluent Guidelines Program Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ...This notice presents the final 2010 Effluent Guidelines Program Plan(``final 2010 Plan''), which, as required under the Clean Water Act (CWA), identifies any new or existing industrial dischargers, both those discharging directly to surface waters and those discharging to publicly owned treatment works (POTWs), selected for effluent guidelines rulemaking and provides a schedule for such......

  9. Impact of sugar factory effluent on the growth and biochemical characteristics of terrestrial and aquatic plants.

    PubMed

    Ayyasamy, P M; Yasodha, R; Rajakumar, S; Lakshmanaperumalsamy, P; Rahman, P K S M; Lee, Sanghoon

    2008-11-01

    The physico-chemical characteristics of sugar industry effluent were measured and some were found to be above those limits permissible in the Indian irrigation water standard. A pot study was initially conducted to study the effects of different concentrations (20%, 40%, 60%, 80% and 100%) of sugar factory effluent on seed germination, seedling growth and biochemical characteristics of green gram and maize. A similar study was also carried out using the aquatic plants, water hyacinth and water lettuce. The higher effluent concentrations (above 60%) were found to affect plant growth, but diluted effluent (up to 60%) favored seedling growth.

  10. Implementation of a quantum cascade laser-based gas sensor prototype for sub-ppmv H2S measurements in a petrochemical process gas stream.

    PubMed

    Moser, Harald; Pölz, Walter; Waclawek, Johannes Paul; Ofner, Johannes; Lendl, Bernhard

    2017-01-01

    The implementation of a sensitive and selective as well as industrial fit gas sensor prototype based on wavelength modulation spectroscopy with second harmonic detection (2f-WMS) employing an 8-μm continuous-wave distributed feedback quantum cascade laser (CW-DFB-QCL) for monitoring hydrogen sulfide (H2S) at sub-ppm levels is reported. Regarding the applicability for analytical and industrial process purposes aimed at petrochemical environments, a synthetic methane (CH4) matrix of up to 1000 ppmv together with a varying H2S content was chosen as the model environment for the laboratory-based performance evaluation performed at TU Wien. A noise-equivalent absorption sensitivity (NEAS) for H2S targeting the absorption line at 1247.2 cm(-1) was found to be 8.419 × 10(-10) cm(-1) Hz(-1/2), and a limit of detection (LOD) of 150 ppbv H2S could be achieved. The sensor prototype was then deployed for on-site measurements at the petrochemical research hydrogenation platform of the industrial partner OMV AG. In order to meet the company's on-site safety regulations, the H2S sensor platform was installed in an industry rack and equipped with the required safety infrastructure for protected operation in hazardous and explosive environments. The work reports the suitability of the sensor prototype for simultaneous monitoring of H2S and CH4 content in the process streams of a research hydrodesulfurization (HDS) unit. Concentration readings were obtained every 15 s and revealed process dynamics not observed previously.

  11. Land application of pulp and paper mill effluents -- A literature review

    SciTech Connect

    Rezende, A.A.; Edwards, E.

    1999-07-01

    This paper reviews the literature on land application of pulp and paper mill effluents with emphasis on secondary treated effluents from kraft bleach pulp mills. It discusses the current status of effluent land application in the industry and the need for further studies. The literature review showed that considerable research had been undertaken, including full-scale land application of effluents from pulp and paper mills. These studies dealt almost exclusively with crop productivity aspects. Soil salinity and sodicity problems, as well as application rates were extensively studied. However, relatively little attention has been given to the behavior of toxic organic compounds from pulp mill effluents in the soil environment and the long-term environmental impact of the effluent disposal practices is not fully understood.

  12. Seaborne petrochemical spill analysis within the United States, 1992-1999.

    PubMed

    Nicholson, Benjamin L; Perakis, Anastassios N; Bulkley, Jonathan W

    2003-04-01

    Through discussion of causative factors and examination of historical data, petrochemical spill prevention in US waters is reviewed. Unintentional petrochemical outflow is analyzed in a comprehensive manner and presented as a hierarchical sequence of antecedent events to reveal the trends of causative factors leading to release. Specifically, a seaborne petrochemical spill is examined in terms of four basic, antecedent events: (1) an underway source, (2) a failure incident, (3) a marine accident capable of breaching the hull and cargo block, and (4) the onset of outflow. These events are further subdivided into underlying, contributing events to form a causative framework for spill prevention. While a hierarchical review is not necessary to uncover the elements of causation, it does provide a comprehensive and logical structure that clearly defines these elements in terms of occurrence frequency and contribution to resulting outflow. It is found that relatively small, frequent spills less than 40,000 liters (10,567 gallons), attributable to human operator failures, leading to grounding, and cargo transfer system failure accidents, dominate US seaborne petrochemical outflow from 1992 to 1999. Given the frequency of groundings, structural reinforcement regulations such as those contained in the Oil Pollution Act of 1990 (requiring double hulls) appear well justified. However, passive restraint systems are secondary to the need for vigilant training and licensing of tank vessel operators.

  13. Ultrasonic and Thermal Pretreatments on Anaerobic Digestion of Petrochemical Sludge: Dewaterability and Degradation of PAHs

    PubMed Central

    Zhou, Jun; Xu, Weizhong; Wong, Jonathan W. C.; Yong, Xiaoyu; Yan, Binghua; Zhang, Xueying; Jia, Honghua

    2015-01-01

    Effects of different pretreatment methods on sludge dewaterability and polycyclic aromatic hydrocarbons (PAHs) degradation during petrochemical sludge anaerobic digestion were studied. Results showed that the total biogas production volume in the thermal pretreatment system was 4 and 5 times higher than that in the ultrasound pretreatment and in the control system, and the corresponding volatile solid removal efficiencies reached 28%, 15%, and 8%. Phenanthrene, paranaphthalene, fluoranthene, benzofluoranthene, and benzopyrene removal rates reached 43.3%, 55.5%, 30.6%, 42.9%, and 41.7%, respectively, in the thermal pretreatment system, which were much higher than those in the ultrasound pretreatment and in the control system. Moreover, capillary suction time (CST) of sludge increased after pretreatment, and then reduced after 20 days of anaerobic digestion, indicating that sludge dewaterability was greatly improved after anaerobic digestion. The decrease of protein and polysaccharide in the sludge could improve sludge dewaterability during petrochemical sludge anaerobic digestion. This study suggested that thermal pretreatment might be a promising enhancement method for petrochemical sludge solubilization, thus contributing to degradation of the PAHs, biogas production, and improvement of dewaterability during petrochemical sludge anaerobic digestion. PMID:26327510

  14. Measurement and removal of bioconcentratable compounds in refinery effluents

    SciTech Connect

    Gala, W.R.; Dorn, P.B.; Means, J.C.; Jenkins, K.D.; Folwarkow, S.

    1994-12-31

    Public concern regarding the presence of persistent, bioconcentratable compounds in fish and shellfish has led the petroleum industry to investigate methods for the measurement of bioconcentratable compounds in refinery effluents. Research has focused on developing methods to measure polycyclic aromatic hydrocarbons (PAHs) and other hydrocarbons directly in the effluent and in bivalves exposed to refinery effluents in the field and in the laboratory. Results from a multi-refinery study in the San Francisco Bay Area using selective ion monitoring GC/MS-MS indicated that alkylated and non-substituted 2--3 ring PAHs are rarely present in refinery effluents at concentrations greater than 100 ng/L. Higher MW PAHs were rarely detected. PAHs did not substantially bioconcentrate in bivalves exposed in the laboratory to refinery effluent and reference sea water. Total PAHs were generally less than 50 {mu}g/g in the effluent-exposed bivalves. A comparison of the waste water treatment facilities at each refinery suggest that biological treatment already required by existing regulations is sufficient to reduce PAH concentrations to these low levels.

  15. Advancements in NDE for utilities and the petrochemical industry through electromagnetic acoustic transducers (EMATs)

    NASA Astrophysics Data System (ADS)

    Robertson, M. O.; Stevens, Donald M.; Schlader, Daniel M.; Tilley, Richard M.

    1998-03-01

    The ultrasonic testing (UT) method continues to broaden in its effectiveness and capabilities for nondestructive evaluation (NDE). Much of this expansion can be attributed to advancements in specific techniques of the method. The utilization of electromagnetic acoustic transducers (EMATs) in dedicated ultrasonic systems has provided McDermott Technology, Inc. (MTI), formerly Babcock & Wilcox, with significant advantages over conventional ultrasonics. In recent years, through significant R&D, MTI has been instrumental in bringing about considerable advancements in the maturing EMAT technology. Progress in electronic design, magnet configurations, and sensor concepts has greatly improved system capabilities while reducing cost and equipment size. These improvements, coupled with the inherent advantages of utilizing the non-contact EMAT technique, have combined to make this technology a viable option for many commercial system inspection applications. MTI has recently completed the development and commercialization of an EMAT-based UT scanner for boiler tube thickness measurements. MTI is currently developing an automated EMAT scanner, based on phased array technology, for complete volumetric inspection of circumferential girth welds associated with pipelines (intended primarily for offshore applications). Additional benefits of phased array technology for providing materials characterization are currently being researched.

  16. Genotoxicity assessment of a pharmaceutical effluent using four bioassays

    PubMed Central

    2009-01-01

    Pharmaceutical industries are among the major contributors to industrial waste. Their effluents when wrongly handled and disposed of endanger both human and environmental health. In this study, we investigated the potential genotoxicity of a pharmaceutical effluent, by using the Allium cepa, mouse- sperm morphology, bone marrow chromosome aberration (CA) and micronucleus (MN) assays. Some of the physico-chemical properties of the effluent were also determined. The A. cepa and the animal assays were respectively carried out at concentrations of 0.5, 1, 2.5, 5 and 10%; and 1, 5, 10, 25 and 50% of the effluent. There was a statistically different (p < 0.05), concentration-dependent inhibition of onion root growth and mitotic index, and induction of chromosomal aberrations in the onion and mouse CA test. Assessment of sperm shape showed that the fraction of the sperm that was abnormal in shape was significantly (p < 0.05) greater than the negative control value. MN analysis showed a dose-dependent induction of micronucleated polychromatic erythrocytes across the treatment groups. These observations were provoked by the toxic and genotoxic constituents present in test samples. The tested pharmaceutical effluent is a potentially genotoxic agent and germ cell mutagen, and may induce adverse health effects in exposed individuals. PMID:21637694

  17. Assessment of the impact of textile effluents on microbial diversity in Tirupur district, Tamil Nadu

    NASA Astrophysics Data System (ADS)

    Prabha, Shashi; Gogoi, Anindita; Mazumder, Payal; Ramanathan, AL.; Kumar, Manish

    2016-03-01

    The expedited advent of urbanization and industrialization for economic growth has adversely affected the biological diversity, which is one of the major concerns of the developing countries. Microbes play a crucial role in decontaminating polluted sites and degrades pollution load of textile effluent. The present study was based on identification of microbial diversity along the Noyaal river of Tirupur area. River water samples from industrial and non-industrial sites and effluent samples of before and after treatment were tested and it was found that microbial diversity was higher in the river water at the industrial site (Kasipalayam) as compared to the non-industrial site (Perur). Similarly, the microbial populations were found to be high in the untreated effluent as compared to the treated one by conventional treatment systems. Similar trends were observed for MBR treatment systems as well. Pseudomonas sp., Achromobacter sp. (bacterial species) and Aspergillus fumigates (fungal species), found exclusively at the industrial site have been reported to possess decolorization potential of dye effluent, thus can be used for treatment of dye effluent. The comparison of different microbial communities from different dye wastewater sources and textile effluents was done, which showed that the microbes degrade dyestuffs, reduce toxicity of wastewaters, etc. From the study, it can be concluded that the microbial community helps to check on the pollutants and minimize their affect. Therefore, there is a need to understand the systematic variation in microbial diversity with the accumulation of pollution load through monitoring.

  18. Fatigue and Psychological Distress: A Case Study Among Shift Workers of an Iranian Petrochemical Plant, During 2013, in Bushehr

    PubMed Central

    Rasoulzadeh, Yahya; Bazazan, Ahmad; Safaiyan, Abdolrasoul; Dianat, Iman

    2015-01-01

    Background: Shift work is a well-recognized occupational health hazard in both industrialized and industrially developing countries. Prolonged working time, day/night shift rotation, circadian rhythm and sleep disorders, family and social problems are the most important features of shift working, which have serious complications. Objectives: The present study evaluated the fatigue and psychological distress and their relationship among shift workers, in a petrochemical plant (Southern Pars gas field) in Southwest Iran. Materials and Methods: In this cross-sectional field study, 400 shift workers from a plant were involved, with participation rate of 72.5% (290 persons). The multidimensional fatigue inventory (MFI-20) and general health questionnaire (GHQ-28) were used to evaluate the level of fatigue and psychological distress, respectively. Results: The results showed that the fatigue and psychological distress (particularly social dysfunction, anxiety and insomnia) are frequent among 12-hour shift workers (the total MFI and total GHQ scores were 42.68 ± 17.88 and 34.66 ± 18.56). A relatively strong positive correlation was found between fatigue and psychological distress (r = 0.62). The results of the stepwise regression model indicated that the psychological distress was significantly related only to general fatigue, mental fatigue and reduced motivation, whereas it was not to the physical fatigue and reduced activity. Conclusions: The study findings highlight the importance of the mental aspect of fatigue in this working group. These results have possible implications for workers’ health and well-being and for the design of shift work systems, for industrial workers. PMID:26568862

  19. Association between occupational exposure to benzene and chromosomal alterations in lymphocytes of Brazilian petrochemical workers removed from exposure.

    PubMed

    Gonçalves, Rozana Oliveira; de Almeida Melo, Neli; Rêgo, Marco Antônio Vasconcelos

    2016-06-01

    We aimed to investigate the association between chronic exposure to benzene and genotoxicity in the lymphocytes of workers removed from exposure. The study included 20 workers with hematological disorders who had previously worked in the petrochemical industry of Salvador, Bahia, Brazil; 16 workers without occupational exposure to benzene served as the control group. Chromosomal analysis was performed on lymphocytes from peripheral blood, to assess chromosomal breaks and gaps and to identify aneuploidy. The Kruskal-Wallis test was used to compare the mean values between two groups, and Student's t test for comparison of two independent means. The frequency of gaps was statistically higher in and the exposed group than in the controls (2.13 ± 2.86 vs. 0.97 ± 1.27, p = 0.001). The frequency of chromosomal breaks was significantly higher among cases (0.21 ± 0.58) than among controls (0.12 ± 0.4) (p = 0.0002). An association was observed between chromosomal gaps and breaks and occupational exposure to benzene. Our study showed that even when removed from exposure for several years, workers still demonstrated genotoxic damage. Studies are still needed to clarify the long-term genotoxic potential of benzene after removal from exposure.

  20. Definition and GIS-based characterization of an integral risk index applied to a chemical/petrochemical area.

    PubMed

    Nadal, Martí; Kumar, Vikas; Schuhmacher, Marta; Domingo, José L

    2006-08-01

    A risk map of the chemical/petrochemical industrial area of Tarragona (Catalonia, Spain) was designed following a two-stage procedure. The first step was the creation of a ranking system (Hazard Index) for a number of different inorganic and organic pollutants: heavy metals, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs) and polychlorinated aromatic hydrocarbons (PAHs) by applying self-organizing maps (SOM) to persistence, bioaccumulation and toxicity properties of the chemicals. PCBs seemed to be the most hazardous compounds, while the light PAHs showed the minimum values. Subsequently, an Integral Risk Index was developed taking into account the Hazard Index and the concentrations of all pollutants in soil samples collected in the assessed area of Tarragona. Finally, a risk map was elaborated by representing the spatial distribution of the Integral Risk Index with a geographic information system (GIS). The results of the present study seem to indicate that the development of an integral risk map might be useful to help in making-decision processes concerning environmental pollutants.

  1. Remedy of dye manufacturing process effluent by UV/H2O2 process.

    PubMed

    Shu, Hung-Yee; Chang, Ming-Chin; Hsieh, Wen-Pin

    2006-01-16

    The effluent from dye manufacturing industry is more difficult to be treated than laboratory synthesized wastewater according to high variability of composition and color intensity. Thus, this study aimed to propose the method for remedying industrial effluent by UV/H2O2 process in a recirculated batch reactor system while considering the effects on hydrogen peroxide dosage, UV power and wastewater intensity for the removal of color and COD. From the experimental results, it was feasibly treated that the distinguished removal of color and COD by increasing the hydrogen peroxide dosage and UV power, but not by the strong intensity of industrial effluent. Therefore, UV/H2O2 process of the developed reactor was a positively superior treatment or pre-treatment for dye manufacturing plant effluent to comply the regulated requirements.

  2. Reproductive Disruption in Wild Longear Sunfish (Lepomis megalotis) Exposed to Kraft Mill Effluent

    PubMed Central

    Fentress, Jennifer A.; Steele, Stacy L.; Bart, Henry L.; Cheek, Ann Oliver

    2006-01-01

    Worldwide, wild fish living in rivers receiving municipal and industrial discharges may experience endocrine disruption as a result of exposure to anthropogenic pollutants. The purpose of this study was to evaluate the hormonal status of wild fish in a U.S. river receiving unbleached kraft and recycled pulp mill effluent (Pearl River at Bogalusa, LA). We evaluated two alternative hypotheses: the effluent contained constituents that suppressed male and female reproduction, or it contained an androgenic substance that masculinized females. To evaluate the likelihood of fish exposure to effluent, we marked 697 longear sunfish (Lepomis megalotis) over a 2-year period; 83% of recaptured fish were found at the site of initial capture, and only one fish migrated from an effluent-receiving site to a reference site. We can reasonably assume that fish captured from an effluent-receiving site are residents, not transitory migrants. To diagnose endocrine disruption, we measured sex steroid hormone [17β-estradiol (E2), testosterone (T), and 11-ketotestosterone (11KT)] and vitellogenin (VTG) concentrations in male and female longear sunfish captured at two sites upstream and two sites downstream of the effluent outfall. Kraft pulp mill effluent did not affect male reproductive physiology but did suppress female T and VTG levels when effluent constituted ≥ 1% of river flow. Masculinization was not observed. Longear sunfish in the Pearl River experience moderate reproductive suppression in response to unbleached kraft and recycled pulp mill effluent. PMID:16393656

  3. Reproductive disruption in wild longear sunfish (Lepomis megalotis) exposed to kraft mill effluent.

    PubMed

    Fentress, Jennifer A; Steele, Stacy L; Bart, Henry L; Cheek, Ann Oliver

    2006-01-01

    Worldwide, wild fish living in rivers receiving municipal and industrial discharges may experience endocrine disruption as a result of exposure to anthropogenic pollutants. The purpose of this study was to evaluate the hormonal status of wild fish in a U.S. river receiving unbleached kraft and recycled pulp mill effluent (Pearl River at Bogalusa, LA). We evaluated two alternative hypotheses: the effluent contained constituents that suppressed male and female reproduction, or it contained an androgenic substance that masculinized females. To evaluate the likelihood of fish exposure to effluent, we marked 697 longear sunfish (Lepomis megalotis) over a 2-year period; 83% of recaptured fish were found at the site of initial capture, and only one fish migrated from an effluent-receiving site to a reference site. We can reasonably assume that fish captured from an effluent-receiving site are residents, not transitory migrants. To diagnose endocrine disruption, we measured sex steroid hormone [17beta-estradiol (E2), testosterone (T), and 11-ketotestosterone (11KT)] and vitellogenin (VTG) concentrations in male and female longear sunfish captured at two sites upstream and two sites downstream of the effluent outfall. Kraft pulp mill effluent did not affect male reproductive physiology but did suppress female T and VTG levels when effluent constituted>or=1% of river flow. Masculinization was not observed. Longear sunfish in the Pearl River experience moderate reproductive suppression in response to unbleached kraft and recycled pulp mill effluent.

  4. Liquid Effluent Retention Facility/Effluent Treatment Facility Hazards Assessment

    SciTech Connect

    Simiele, G.A.

    1994-09-29

    This document establishes the technical basis in support of Emergency Planning activities for the Liquid Effluent Retention Facility and Effluent Treatment Facility the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated.

  5. Facility effluent monitoring plan for WESF

    SciTech Connect

    SIMMONS, F.M.

    1999-09-01

    The FEMP for the Waste Encapsulation and Storage Facility (WESF) provides sufficient information on the WESF effluent characteristics and the effluent monitoring systems so that a compliance assessment against applicable requirements may be performed. Radioactive and hazardous material source terms are related to specific effluent streams that are in turn, related to discharge points and, finally are compared to the effluent monitoring system capability.

  6. Role of livestock effluent suspended particulate in sealing effluent ponds.

    PubMed

    Bennett, J McL; Warren, B R

    2015-05-01

    Intensive livestock feed-lots have become more prevalent in recent years to help in meeting the predicted food production targets based on expected population growth. Effluent from these is stored in ponds, representing a potential concern for seepage and contamination of groundwater. Whilst previous literature suggests that effluent particulate can limit seepage adequately in combination with a clay liner, this research addresses potential concerns for sealing of ponds with low concentration fine and then evaluates this against proposed filter-cake based methodologies to describe and predict hydraulic reduction. Short soil cores were compacted to 98% of the maximum dry density and subject to ponded head percolation with unfiltered-sediment-reduced effluent, effluent filtered to <3 μm, and chemically synthesized effluent. Reduction in hydraulic conductivity was observed to be primarily due to the colloidal fraction of the effluent, with larger particulate fractions providing minimal further reduction. Pond sealing was shown to follow mathematical models of filter-cake formation, but without the formation of a physical seal on top of the soil surface. Management considerations based on the results are presented.

  7. Industrial waste pollution

    NASA Technical Reports Server (NTRS)

    Jensen, L. D.

    1972-01-01

    The characteristics and effects of industrial waste pollution in the Chesapeake Bay are discussed. The sources of inorganic and organic pollution entering the bay are described. The four types of pollutants are defined as: (1) inorganic chemical wastes, (2) naturally occurring organic wastes, (3) synthetic organic wastes (exotics) and (4) thermal effluents. The ecological behavior of industrial wastes in the surface waters is analyzed with respect to surface film phenomena, interfacial phenomena, and benthis phenomena

  8. Pulp mill effluent color removal process

    SciTech Connect

    Newman, H.L.; Adams, W.S. Jr.; Boyden, B.

    1991-07-16

    This paper describes a method for removing color from an effluent having a low pH and containing organic chromophores. It comprises: increasing the pressure of the effluent to between 200 and 600 psi to prevent the liquid within the effluent from changing phase; heating the effluent to a temperature between 200{degrees} and 250{degrees} C. for a retention time up to 20 minutes in accordance with the temperature to alter the chemical structure of lignin chromophores in the effluent; cooling the effluent to a temperature between 35{degrees} and 60{degrees} C.; adjusting the pressure of the effluent to between 0 to 10 psi; adjusting the pH of the effluent to between 10 and 12 to initiate flocculation of the altered chromophores in the effluent; and separating the chromophores from effluent.

  9. Bioplastic production using wood mill effluents as feedstock.

    PubMed

    Ben, M; Mato, T; Lopez, A; Vila, M; Kennes, C; Veiga, M C

    2011-01-01

    Fibreboard production is one of the most important industrial activities in Galicia (Spain). Great amounts of wastewater are generated, with properties depending on the type of wood, treatment process, final product and water reusing, among others. These effluents are characterized by a high chemical oxygen demand, low pH and nutrients limitation. Although anaerobic digestion is one of the most suitable processes for the treatment, lately bioplastics production (mainly polyhydroxyalkanoates) from wastewaters with mixed cultures is being evaluated. Substrate requirements for these processes consist of high organic matter content and low nutrient concentration. Therefore, wood mill effluents could be a suitable feedstock. In this work, the possibility of producing bioplastics from to wood mill effluents is evaluated. First, wood mill effluent was converted to volatile fatty acids in an acidogenic reactor operated at two different hydraulic retention times of 1 and 1.5 d. The acidification percentage obtained was 37% and 42%, respectively. Then, aerobic batch assays were performed using fermented wood mill effluents obtained at different hydraulic retention times. Assays were developed using different cultures as inoculums. The maximum storage yield of 0.57 Cmmol/Cmmol was obtained when when the culture was enriched on a synthetic media.

  10. Effect of metal ions and petrochemicals on bioremediation of chlorpyrifos in aerobic sequencing batch bioreactor (ASBR).

    PubMed

    Khalid, Saira; Hashmi, Imran; Jamal Khan, Sher; Qazi, Ishtiaq A; Nasir, Habib

    2016-10-01

    Application of chlorpyrifos (CP) has increased its environmental concentration. Increasing CP concentration has increased chances of adverse health effects. Its removal from environment has attained researcher's attention. CP degrading bacterial strains were isolated from wastewater and agricultural soil. Finally, selected five bacterial strains were identified using 16S rRNA nucleotide sequence analysis as Pseudomonas kilonensis SRK1, Serratia marcescens SRK2, Bacillus pumilus SRK4, Achromobacter xylosoxidans SRK5, and Klebsiella sp. T13. Interaction studies among bacterial strains demonstrated possibility for development of five membered bacterial consortium. Biodegradation potential of bacterial consortium was investigated in the presence of petrochemicals and trace metals. About 98 % CP removal was observed in sequencing batch reactors at inoculum level, 10 %; pH, 7; CP concentration, 400 mgL(-1), and HRT, 48 h. Experimental data has shown an excellent fit to first order growth model. Among all petrochemicals only toluene (in low concentration) has stimulatory effect on biodegradation of CP. Addition of petrochemicals (benzene, toluene, and xylene) in high concentration (100 mg L(-1)) inhibited bacterial activity and decreased CP removal. At low concentration i.e., 1 mg L(-1) of inorganic contaminants (Cu, Hg, and Zn) >96 % degradation was observed. Addition of Cu(II) in low concentration has stimulated CP removal efficiency. Hg(II) in all concentrations has strongly inhibited biodegradation rate except at 1 mgL(-1). In simulated pesticide, wastewater CP removal efficiency decreased to 77.5 %. Outcomes of study showed that both type and concentration of petrochemicals and trace metals influenced biodegradation of CP.

  11. Lung cancer mortality in a cohort of workers in a petrochemical plant: occupational or residential risk?

    PubMed

    Pasetto, Roberto; Comba, Pietro; Pirastu, Roberta

    2008-01-01

    The purpose of the present study is to examine the role of environmental (non occupational) exposures in lung cancer risk among petrochemical workers at a large petrochemical plant built on the Sicilian coast in the immediate vicinity of the town of Gela, Italy in 1960. The cohort included workers employed in the Gela petrochemical plant in 1960-1993. We looked at mortality rates for the period 1960-2002. An internal comparison was performed between two categories of workers with different likelihood of residence in Gela during the period of employment. The rate ratio of mortality from lung cancer comparing "probable residents" with "possible non residents," adjusted for age, calendar period, andjob classification (only blue collar, only white collar and both), was 1.66 (90% Confidence Interval 1.07-2.58). Although the information collected is quite sparse and no inferences can be made about risk sources, the results show a possible excess of residential/environmental risk from lung cancer mortality for those workers more likely to have been residents in Gela.

  12. Management of nonprocess elements in low-effluent bleached kraft pulp mills

    SciTech Connect

    Bryant, P.S.

    1995-12-31

    Increasing environmental regulation for the discharge of chlorinated organics in bleach plant effluents has required most manufacturers in the pulp and paper industry to reduce the charge of elemental chlorine in the bleaching of kraft pulp. The best long term solution for reducing effluent pollutants from bleached kraft pulp mills is to move towards low-effluent (closed-cycle) bleaching. Closure of operating bleach plants would dramatically reduce both the volume and the pollutant concentration of pulp mill effluents. However, closing the mill creates many operational problems including a concentration build-up of nonprocess elements (NPE`s) in process streams. NPE`s usually enter the pulp process as trace constituents of wood. Recent studies have lead to a fundamental understanding of how NPE`s partition between the solid cellulose phase and the liquid aqueous phase in pulp mill process streams. This knowledge will help in the design, operation and optimization of future low-effluent bleach plants.

  13. Treatment of effluents from uranium oxide production.

    PubMed

    Ladeira, A C Q; Gonçalves, J S; Morais, C A

    2011-01-01

    The nuclear fuel cycle comprises a series of industrial processes which involve the production of electricity from uranium in nuclear power reactors. In Brazil the conversion of uranium hexafluoride (UF6) into uranium dioxide (UO2) takes place in Resende (RJ) at the Nuclear Fuel Factory (FCN). The process generates liquid effluents with significant concentrations of uranium, which might be treated before being discharged into the environment. This study investigates the recovery of uranium from three distinct liquid effluents: one with a high carbonate content and the other with an elevated fluoride concentration. This paper also presents a study on carbonate removal from an effluent that consists of a water-methanol solution generated during the filtration of the yellow cake (ammonium uranyl tricarbonate). The results showed that: (1) the uranium from the carbonated solution can be recovered through the ion exchange technique using the strong base anionic resin IRA 910-U, as the carbonate has been removed as CO2 after heating; (2) the most suitable technique to recover uranium from the fluoride solution is its precipitation as (NH4)2UO4F2 (ammonium fluorouranate peroxide), (3) the solution free of carbonate can be added to the fluoride solution and the uranium from the final solution can be recovered by precipitation as ammonium fluorouranate peroxide as well; (4) the carbonate from the water-methanol solution can be recovered as calcium carbonate through the addition of calcium chloride, or it can be recovered as ammonium sulphate through the addition of sulphuric acid. The ammonium sulphate product can be used as a fertilizer.

  14. Statistical Evaluation of Effluent Monitoring Data for the 200 Area Treated Effluent Disposal Facility

    SciTech Connect

    Chou, Charissa J.; Johnson, Vernon G.

    2000-03-08

    This report updates the original effluent variability study for the 200 Area Treated Effluent Disposal Facility (TEDF) and provides supporting justification for modifying the effluent monitoring portion of the discharge permit. Four years of monitoring data were evaluated and used to statistically justify changes in permit effluent monitoring conditions. As a result, the TEDF effluent composition and variability of the effluent waste stream are now well defined.

  15. The potential of organic substrates based on mushroom substrate and straw to dissipate fungicides contained in effluents from the fruit-packaging industry - Is there a role for Pleurotus ostreatus?

    PubMed

    Karas, Panagiotis A; Makri, Sotirina; Papadopoulou, Evangelia S; Ehaliotis, Constantinos; Menkissoglu-Spiroudi, Urania; Karpouzas, Dimitrios G

    2016-02-01

    Citrus fruit-packaging plants (FPP) produce large wastewater volumes with high loads of fungicides like ortho-phenylphenol (OPP) and imazalil (IMZ). No methods are in place for the treatment of those effluents and biobeds appear as a viable alternative. We employed a column study to investigate the potential of spent mushroom substrate (SMS) of Pleurotus ostreatus, either alone or in mixture with straw and soil plus a mixture of straw /soil to retain and dissipate IMZ and OPP. The role of P. ostreatus on fungicides dissipation was also investigated by studying in parallel the performance of fresh mushroom substrate of P. ostreatus (FMS) and measuring lignolytic enzymatic activity in the leachates. All substrates effectively reduced the leaching of OPP and IMZ which corresponded to 0.014-1.1% and 0.120-0.420% of their initial amounts respectively. Mass balance analysis revealed that FMS and SMS/Straw/Soil (50/25/25 by vol) offered the most efficient removal of OPP and IMZ from wastewaters respectively. Regardless of the substrate, OPP was restricted in the top 0-20cm of the columns and was bioavailable (extractable with water), compared to IMZ which was less bioavailable (extractable with acetonitrile) but diffused at deeper layers (20-50, 50-80cm) in the SMS- and Straw/Soil-columns. PLFAs showed that fungal abundance was significantly lower in the top layer of all substrates from where the highest pesticide amounts were recovered suggesting an inhibitory effect of fungicides on total fungi in the substrates tested. Our data suggest that biobeds packed with SMS-rich substrates could ensure the efficient removal of IMZ and OPP from wastewaters of citrus FPP.

  16. Simultaneous colour and DON removal from sewage treatment plant effluent: alum coagulation of melanoidin.

    PubMed

    Dwyer, Jason; Griffiths, Peter; Lant, Paul

    2009-02-01

    The aim of this study was to detect and characterise melanoidin in sewage treatment plant (STP) effluent, and to study the ability of alum coagulation to remove the colour and dissolved organic nitrogen (DON) associated with melanoidin. The melanoidin is non-biodegradable due to the complex cyclic based structure and thus it directly contributes to effluent nitrogen concentrations from the sewage treatment plant (STP). Lowering of effluent total nitrogen limits and the link between colour and chlorinated disinfection by-products have therefore driven a need to understand the structure, properties and treatability of DON species found in STP effluent. The focus of this paper is the refractory coloured, organic nitrogen compound melanoidin. Wetalla STP effluent has relatively high colour (170mg-PtCoL(-1)) and DON (2.5mgL(-1)) for a biological nutrient removal STP, owing to an industrial supply of melanoidin containing molasses fermentation wastewater. Alum coagulation jar tests were performed on synthetic melanoidin solution, STP effluent containing melanoidin (Wetalla, Toowoomba, Australia) and STP effluent free of melanoidin (Merrimac, Gold Coast, Australia) to examine the treatability of melanoidin and its associated colour and DON content when present in STP effluent. The removal of melanoidin from STP effluent resulted in significant colour and DON reduction. An alum dose of 30mgL(-1) as aluminium was sufficient to reach maximum removal of colour (75%), DON (42%) and dissolved organic carbon (DOC) (30%) present in melanoidin containing STP effluent. Alum was shown to preferentially remove DON with a molecular weight >10kDa over small molecular weight DON. Fluorescence excitation-emission matrix examination of the humic compounds present in the STP effluent indicated that melanoidin type humic compounds were more readily removed by alum coagulation than other humic compounds.

  17. Anaerobic treatment of pulp and paper mill effluents--status quo and new developments.

    PubMed

    Habets, Leo; Driessen, Willie

    2007-01-01

    Since the early 1980s, anaerobic treatment of industrial effluents has found widespread application in the pulp and paper industry. Over 200 installations are treating a large variety of different pulp and paper mill effluents. Amongst various anaerobic systems the UASB and IC are the most applied anaerobic reactor systems. Anaerobic treatment is well feasible for effluents originated from recycle paper mills, mechanical pulping (peroxide bleached), semi-chemical pulping and sulphite and kraft evaporator condensates. The advantages of anaerobic pre-treatment are (1) net production of renewable energy (biogas), (2) minimized bio-solids production, (3) minimal footprint and (4) reduced emission of greenhouse gases. Via in-line application of anaerobic treatment in closed circuits (paper kidney technology) further savings on cost of fresh water intake and effluent discharge levies are generated.

  18. 40 CFR 414.71 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Bulk Organic Chemicals § 414.71 Effluent limitations representing the degree of effluent reduction attainable by...

  19. 40 CFR 414.61 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals § 414.61 Effluent limitations representing the degree of effluent reduction...

  20. 40 CFR 414.81 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals § 414.81 Effluent limitations representing the degree of effluent reduction...

  1. 40 CFR 414.63 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals § 414.63 Effluent limitations representing the degree of effluent reduction attainable by...

  2. 40 CFR 414.61 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals § 414.61 Effluent limitations representing the degree of effluent reduction...

  3. 40 CFR 414.62 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals § 414.62 Effluent limitations representing the degree of effluent reduction attainable by...

  4. 40 CFR 414.71 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Bulk Organic Chemicals § 414.71 Effluent limitations representing the degree of effluent reduction attainable by...

  5. 40 CFR 414.81 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals § 414.81 Effluent limitations representing the degree of effluent reduction...

  6. 40 CFR 414.63 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals § 414.63 Effluent limitations representing the degree of effluent reduction attainable by...

  7. 40 CFR 414.71 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Bulk Organic Chemicals § 414.71 Effluent limitations representing the degree of effluent reduction attainable by...

  8. 40 CFR 414.62 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals § 414.62 Effluent limitations representing the degree of effluent reduction attainable by...

  9. 40 CFR 414.81 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals § 414.81 Effluent limitations representing the degree of effluent reduction...

  10. 40 CFR 414.82 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals § 414.82 Effluent limitations representing the degree of effluent reduction attainable by...

  11. 40 CFR 414.61 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals § 414.61 Effluent limitations representing the degree of effluent reduction...

  12. 40 CFR 414.82 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals § 414.82 Effluent limitations representing the degree of effluent reduction attainable by...

  13. 40 CFR 414.83 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals § 414.83 Effluent limitations representing the degree of effluent reduction attainable by...

  14. 40 CFR 414.62 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals § 414.62 Effluent limitations representing the degree of effluent reduction attainable by...

  15. 40 CFR 414.62 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals § 414.62 Effluent limitations representing the degree of effluent reduction attainable by...

  16. 40 CFR 414.82 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals § 414.82 Effluent limitations representing the degree of effluent reduction attainable by...

  17. 40 CFR 414.82 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals § 414.82 Effluent limitations representing the degree of effluent reduction attainable by...

  18. 40 CFR 414.81 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals § 414.81 Effluent limitations representing the degree of effluent reduction...

  19. 40 CFR 414.81 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals § 414.81 Effluent limitations representing the degree of effluent reduction...

  20. 40 CFR 414.71 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Bulk Organic Chemicals § 414.71 Effluent limitations representing the degree of effluent reduction attainable by...

  1. 40 CFR 414.82 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals § 414.82 Effluent limitations representing the degree of effluent reduction attainable by...

  2. 40 CFR 414.83 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals § 414.83 Effluent limitations representing the degree of effluent reduction attainable by...

  3. 40 CFR 414.61 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals § 414.61 Effluent limitations representing the degree of effluent reduction...

  4. 40 CFR 414.62 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals § 414.62 Effluent limitations representing the degree of effluent reduction attainable by...

  5. 40 CFR 414.71 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Bulk Organic Chemicals § 414.71 Effluent limitations representing the degree of effluent reduction attainable by...

  6. 40 CFR 414.61 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals § 414.61 Effluent limitations representing the degree of effluent reduction...

  7. 40 CFR 409.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar... beet sugar processing operation. Effluent characteristic Effluent limitations Maximum for any 1...

  8. 40 CFR 409.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar... beet sugar processing operation. Effluent characteristic Effluent limitations Maximum for any 1...

  9. 40 CFR 409.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar... beet sugar processing operation. Effluent characteristic Effluent limitations Maximum for any 1...

  10. 40 CFR 409.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar... beet sugar processing operation. Effluent characteristic Effluent limitations Maximum for any 1...

  11. 40 CFR 409.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar... beet sugar processing operation. Effluent characteristic Effluent limitations Maximum for any 1...

  12. 40 CFR 420.117 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....117 Section 420.117 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT... § 420.117 Effluent limitations representing the degree of effluent reduction attainable by...

  13. 40 CFR 428.33 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Solution Crumb Rubber Subcategory § 428.33 Effluent limitations guidelines representing the degree of effluent...

  14. 40 CFR 428.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Latex Rubber Subcategory § 428.42 Effluent limitations guidelines representing the degree of effluent...

  15. 40 CFR 428.23 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Emulsion Crumb Rubber Subcategory § 428.23 Effluent limitations guidelines representing the degree of effluent...

  16. 40 CFR 428.33 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Solution Crumb Rubber Subcategory § 428.33 Effluent limitations guidelines representing the degree of effluent...

  17. 40 CFR 428.43 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Latex Rubber Subcategory § 428.43 Effluent limitations guidelines representing the degree of effluent...

  18. 40 CFR 428.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Latex Rubber Subcategory § 428.42 Effluent limitations guidelines representing the degree of effluent...

  19. 40 CFR 428.23 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Emulsion Crumb Rubber Subcategory § 428.23 Effluent limitations guidelines representing the degree of effluent...

  20. 40 CFR 426.67 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Automotive Glass Tempering Subcategory § 426.67 Effluent limitations guidelines representing the degree of effluent...

  1. 40 CFR 426.67 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Automotive Glass Tempering Subcategory § 426.67 Effluent limitations guidelines representing the degree of effluent...

  2. 40 CFR 420.62 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Continuous Casting Subcategory § 420.62 Effluent limitations representing the degree of effluent reduction...

  3. 40 CFR 420.62 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Continuous Casting Subcategory § 420.62 Effluent limitations representing the degree of effluent reduction...

  4. 40 CFR 405.37 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS DAIRY PRODUCTS PROCESSING POINT SOURCE CATEGORY Cultured Products Subcategory § 405.37 Effluent limitations guidelines representing the degree of effluent...

  5. 40 CFR 430.92 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Secondary Fiber Deink Subcategory § 430.92 Effluent limitations representing the degree of effluent...

  6. 40 CFR 463.27 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Cleaning Water Subcategory § 463.27 Effluent limitations guidelines representing the degree of effluent...

  7. 40 CFR 463.27 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Cleaning Water Subcategory § 463.27 Effluent limitations guidelines representing the degree of effluent...

  8. 40 CFR 440.35 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Uranium, Radium and Vanadium Ores Subcategory § 440.35 Effluent limitations representing the degree of effluent...

  9. Characteristics of treated effluents and their potential applications for producing concrete.

    PubMed

    Noruzman, Ainul Haezah; Muhammad, Bala; Ismail, Mohammad; Abdul-Majid, Zaiton

    2012-11-15

    Conservation and preservation of freshwater is increasingly becoming important as the global population grows. Presently, enormous volumes of freshwater are used to mix concrete. This paper reports experimental findings regarding the feasibility of using treated effluents as alternatives to freshwater in mixing concrete. Samples were obtained from three effluent sources: heavy industry, a palm-oil mill and domestic sewage. The effluents were discharge into public drain without danger to human health and natural environment. Chemical compositions and physical properties of the treated effluents were investigated. Fifteen compositional properties of each effluent were correlated with the requirements set out by the relevant standards. Concrete mixes were prepared using the effluents and freshwater to establish a base for control performance. The concrete samples were evaluated with regard to setting time, workability, compressive strength and permeability. The results show that except for some slight excesses in total solids and pH, the properties of the effluents satisfy the recommended disposal requirements. Two concrete samples performed well for all of the properties investigated. In fact, one sample was comparatively better in compressive strength than the normal concrete; a 9.4% increase was observed at the end of the curing period. Indeed, in addition to environmental conservation, the use of treated effluents as alternatives to freshwater for mixing concrete could save a large amount of freshwater, especially in arid zones.

  10. Heavy metal removal from copper smelting effluent using electrochemical cylindrical flow reactor.

    PubMed

    Ahmed Basha, C; Bhadrinarayana, N S; Anantharaman, N; Meera Sheriffa Begum, K M

    2008-03-21

    The purpose of this study is mainly to evaluate the performance of the continuous recirculation flow cell at low current density and pH (the pH at which the effluents are available) in removing heavy metals from copper smelting effluent by cathodic reduction. During the electrolysis at different pH, % removal of heavy metals removal, energy consumption and heterogeneous reaction rate constants were investigated at given flow rate and current density on the selected industrial effluent. The overall specific energy consumption at the pH 0.64 was observed to be lowest, which is 10.99kWh/kg of heavy metal removal.

  11. Microbial ecology and performance of ammonia oxidizing bacteria (AOB) in biological processes treating petrochemical wastewater with high strength of ammonia: effect of Na(2)CO(3) addition.

    PubMed

    Whang, L M; Yang, K H; Yang, Y F; Han, Y L; Chen, Y J; Cheng, S S

    2009-01-01

    This study evaluated nitrification performance and microbial ecology of AOB in a full-scale biological process, powder activated carbon treatment (PACT), and a pilot-scale biological process, moving bed biofilm reactor (MBBR), treating wastewater collected from a petrochemical industry park. The petrochemical influent wastewater characteristics showed a relative low carbon to nitrogen ratio around 1 with average COD and ammonia concentrations of 310 mg/L and 325 mg-N/L, respectively. The average nitrification efficiency of the full-scale PACT process was around 11% during this study. For the pilot-scale MBBR, the average nitrification efficiency was 24% during the Run I operation mode, which provided a slightly better performance in nitrification than that of the PACT process. During the Run II operation, the pH control mode was switched from addition of NaOH to Na(2)CO(3), leading to a significant improvement in nitrification efficiency of 51%. In addition to a dramatic change in nitrification performance, the microbial ecology of AOB, monitored with the terminal restriction fragment length polymorphism (T-RFLP) molecular methodology, was found to be different between Runs I and II. The amoA-based TRFLP results indicated that Nitrosomonas europaea lineage was the dominant AOB population during Run I operation, while Nitrosospira-like AOB was dominant during Run II operation. To confirm the effects of Na(2)CO(3) addition on the nitrification performance and AOB microbial ecology observed in the MBBR process, batch experiments were conducted. The results suggest that addition of Na(2)CO(3) as a pH control strategy can improve nitrification performance and also influence AOB microbial ecology as well. Although the exact mechanisms are not clear at this time, the results showing the effects of adding different buffering chemicals such as NaOH or Na(2)CO(3) on AOB populations have never been demonstrated until this study.

  12. Malondialdehyde–Deoxyguanosine Adducts among Workers of a Thai Industrial Estate and Nearby Residents

    PubMed Central

    Peluso, Marco; Srivatanakul, Petcharin; Munnia, Armelle; Jedpiyawongse, Adisorn; Ceppi, Marcello; Sangrajrang, Suleeporn; Piro, Sara; Boffetta, Paolo

    2010-01-01

    Background Humans living near industrial point emissions can experience high levels of exposures to air pollutants. Map Ta Phut Industrial Estate in Thailand is the location of the largest steel, oil refinery, and petrochemical factory complexes in Southeast Asia. Air pollution is an important source of oxidative stress and reactive oxygen species, which interact with DNA and lipids, leading to oxidative damage and lipid peroxidation, respectively. Objective We measured the levels of malondialdehyde–deoxyguanosine (dG) adducts, a biomarker of oxidative stress and lipid peroxidation, in petrochemical workers, nearby residents, and subjects living in a control district without proximity to industrial sources. Design We conducted a cross-sectional study to compare the prevalence of malondialdehyde-dG adducts in groups of subjects experiencing various degrees of air pollution. Results The multivariate regression analysis shows that the adduct levels were associated with occupational and environmental exposures to air pollution. The highest adduct level was observed in the steel factory workers. In addition, the formation of DNA damage tended to be associated with tobacco smoking, but without reaching statistical significance. A nonsignificant increase in DNA adducts was observed after 4–6 years of employment among the petrochemical complexes. Conclusions Air pollution emitted from the Map Ta Phut Industrial Estate complexes was associated with increased adduct levels in petrochemical workers and nearby residents. Considering the mutagenic potential of DNA lesions in the carcinogenic process, we recommend measures aimed at reducing the levels of air pollution. PMID:20056580

  13. Effluent Charts Help | ECHO | US EPA

    EPA Pesticide Factsheets

    Effluent Charts present dynamic charts and tables of permitted effluent limits, releases, and violations over time for Clean Water Act (CWA) wastewater discharge permits issued under the National Pollutant Discharge Elimination System (NPDES).

  14. Sleep quality and general health status of employees exposed to extremely low frequency magnetic fields in a petrochemical complex

    PubMed Central

    2014-01-01

    Background Advances in science and technology of electrical equipment, despite increasing human welfare in everyday life, have increased the number of people exposed to Electro-Magnetic Fields (EMFs). Because of possible adverse effects on the health of exposed individuals, the EMFs have being the center of attention. This study was performed to determine possible correlation between Extremely Low Frequency Electro-Magnetic Fields (ELF EMFs) and sleep quality and public health of those working in substation units of a petrochemical complex in southern Iran. Materials and method To begin with, magnetic flux density was measured at different parts of a Control Building and two substations in accordance with IEEE std 644–1994. Subsequently, the questionnaires “Pittsburgh Sleep Quality Index” (PSQI) and “General Health Quality (GHQ)” were used to investigate relationship between ELF exposure level and sleep quality and public health, respectively. Both questionnaires were placed at disposal of a total number of 40 workers at the complex. The filled out questionnaires were analyzed by T-test, Duncan and the Chi-square tests. Results The obtained results revealed that 28% of those in case group suffered from poor health status and 61% were diagnosed with a sleep disorder. However, all members in control group were in good health condition and only 4.5% of them had undesirable sleep quality. Conclusion In spite of a significant difference between the case and control groups in terms of sleep quality and general health, no significant relationship was found between the exposure level and sleep quality and general health. It is worth noting that the measured EMF values were lower than the standard limits recommended by American Conference of Industrial Hygienists (ACGIH). However, given the uncertainties about the pathogenic effects caused by exposure to ELF EMFs, further epidemiological studies and periodic testing of personnel working in high voltage substations

  15. 40 CFR 417.163 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Detergents Subcategory § 417.163 Effluent limitations guidelines representing the degree... detergent operations the following values pertain: Effluent characteristic Effluent limitations Maximum...

  16. 40 CFR 417.163 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Detergents Subcategory § 417.163 Effluent limitations guidelines representing the degree... detergent operations the following values pertain: Effluent characteristic Effluent limitations Maximum...

  17. 40 CFR 417.163 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Detergents Subcategory § 417.163 Effluent limitations guidelines representing the degree... detergent operations the following values pertain: Effluent characteristic Effluent limitations Maximum...

  18. 40 CFR 417.163 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Detergents Subcategory § 417.163 Effluent limitations guidelines representing the degree... detergent operations the following values pertain: Effluent characteristic Effluent limitations Maximum...

  19. 40 CFR 417.163 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Detergents Subcategory § 417.163 Effluent limitations guidelines representing the degree... detergent operations the following values pertain: Effluent characteristic Effluent limitations Maximum...

  20. Fermentative Succinate Production: An Emerging Technology to Replace the Traditional Petrochemical Processes

    PubMed Central

    Cao, Yujin; Zhang, Rubing; Sun, Chao; Cheng, Tao; Liu, Yuhua; Xian, Mo

    2013-01-01

    Succinate is a valuable platform chemical for multiple applications. Confronted with the exhaustion of fossil energy resources, fermentative succinate production from renewable biomass to replace the traditional petrochemical process is receiving an increasing amount of attention. During the past few years, the succinate-producing process using microbial fermentation has been made commercially available by the joint efforts of researchers in different fields. In this review, recent attempts and experiences devoted to reduce the production cost of biobased succinate are summarized, including strain improvement, fermentation engineering, and downstream processing. The key limitations and challenges faced in current microbial production systems are also proposed. PMID:24396827

  1. An evaluation of the whole effluent toxicity test method

    SciTech Connect

    Osteen, D.V.

    1999-12-17

    Whole effluent toxicity (WET) testing has become increasingly more important to the Environmental Protection Agency (EPA) and the States in the permitting of wastewater discharges from industry and municipalities. The primary purpose of the WET test is to protect aquatic life by predicting the effect of an effluent on the receiving stream. However, there are both scientific and regulatory concerns that using WET tests to regulate industrial effluents may result in either false positives and/or false negatives. In order to realistically predict the effect of an effluent on the receiving stream, the test should be as representative as possible of the conditions in the receiving stream. Studies (Rand and Petrocelli 1985) suggested several criteria for an ideal aquatic toxicity test organism, one of which is that the organism be indigenous to, or representative of, the ecosystem receiving the effluent. The other component needed in the development of a predictive test is the use of the receiving stream water or similar synthetic water as the control and dilution water in the test method. Use of an indigenous species and receiving water in the test should help reduce the variability in the method and allow the test to predict the effect of the effluent on the receiving stream. The experience with toxicity testing at the Savannah River Site (SRS) has yielded inconclusive data because of the inconsistency and unreliability of the results. The SRS contention is that the WET method in its present form does not adequately mimic actual biological/chemical conditions of the receiving streams and is neither reasonable nor accurate. This paper discusses the rationale for such a position by SRS on toxicity testing in terms of historical permitting requirements, outfall effluent test results, standard test method evaluation, scientific review of alternate test species, and concerns over the test method expressed by other organizations. This paper presents the Savannah River Site

  2. Zebrafish embryos sequester and retain petrochemical combustion products: developmental and transcriptome consequences.

    PubMed

    Bui, Allen; Xiao, Rui; Perveen, Zakia; Kleinow, Kevin; Penn, Arthur

    2012-02-01

    Zebrafish embryos are a model for studying effects of environmental stressors on development. Incomplete combustion of the environmentally relevant volatile petrochemical, 1,3-butadiene (BD) yields butadiene soot (BDS) nanoparticles, to which polynuclear aromatic hydrocarbons (PAHs) are adsorbed. In mammalian cells these PAHs are concentrated in lipid droplets and trigger up-regulation of biotransformation, oxidative stress and inflammatory genes. The present study was designed to determine whether: (a) PAH-rich BDS elicits alterations in zebrafish embryo development; (b) BDS-exposed zebrafish embryos sequester PAHs in select tissues; and (c) developmental abnormalities are correlated with altered gene expression patterns. 1-day old zebrafish embryos were exposed for 48 h to BDS (0, 6, 30 or 60 μg/ml) sprinkled on the water surface. PAH localization was tracked by fluorescence. Developmental responses (pericardial edema, yolk sac swelling, axial malformations) were monitored by microscopy. Gene expression changes were assessed by gene microarray and qRT-PCR. Our results show that PAHs localized with endogenous lipids in the yolk sac and in hatching gland cells. PAHs were retained at least 8 days after exposures ended. Dose-dependent pericardial and yolk sac edema and axial malformations were prominent and accompanied by up-regulation of biotransformation and oxidative stress gene cascades. Thus, zebrafish embryos should be useful for predicting the potential for developmental toxicity following exposure to PAH-rich petrochemical soots, e.g., those arising from attempts at oil spill remediation by combustion.

  3. A novel salt-tolerant bacterial consortium for biodegradation of saline and recalcitrant petrochemical wastewater.

    PubMed

    Ahmadi, Mehdi; Jorfi, Sahand; Kujlu, Raheleh; Ghafari, Shokouh; Darvishi Cheshmeh Soltani, Reza; Jaafarzadeh Haghighifard, Nematollah

    2017-04-15

    Treatment of a saline petrochemical wastewater with BOD5/COD ratio of less than 0.1 was investigated using a consortium consisted of three isolated salt-tolerant bacteria namely, Kocuria turfanesis, Halomonas alkaliphila and Pseudomonas balearica. Selected bacteria were isolated from petrochemical wastewater containing mineral salt mediums of 3% salinity. A lab-scale activated sludge bioreactor was used for startup in batch mode operation and after obtaining the MLSS concentration of about 3000 mg/L, the operation was changed to continuous flow mode to determine the biokinetic coefficients under different organic loading rates of 0.33-1.21 kg CODm(-3) d(-1). The COD removal efficiency of 78.7%-61.5% was observed for treatment of real saline wastewater with a decreasing trend along with increasing the organic loading rate. In addition, results of kinetic investigation demonstrated that the yield(Y), endogenous decay coefficient (kd), maximum reaction rate (Kmax), maximum specific growth rate (μmax) and saturation constant (Ks) were 0.54 mg VSS mg COD(-1), 0.014 day(-1), 1.23 day(-1), 0.66 day(-1), and 1315 mg L(-1), respectively.

  4. Use of an open-path FTIR sensor at Camacari Petrochemical Complex--Bahia, Brazil

    NASA Astrophysics Data System (ADS)

    Neves, Neuza; Couto, Elizabeth d. R.; Kagann, Robert H.

    1995-05-01

    CETREL--Empresa de Protecao Ambiental, is an environmental engineering company, which is owned by the member companies in the Camacari Petrochemical Complex, the largest petrochemical complex in Brazil. CETREL operates a centralized waste treatment plant, treatment and disposal facilities, an incineration unit, groundwater monitoring and air quality monitoring networks. The air monitoring network was designed based on mathematical modeling, and the results showed that the monoitoring of hydrocarbons is important not just within the complex but also at the area surrounding the complex. There are presently no regulations for hydrocarbons in Brazil, however they are monitored due to concerns about health problems arising from human exposure. The network has eight multiparameter monitoring stations, located at the villages nearby, where hydrocarbons are sampled with Summa canisters and subsequently analyzed with a GC/MS, using a Cryogenic trap at the interface. The open-path FTIR is used to monitor at the individual plants and in the areas in between because it is more efficient and costs less than it would to attempt to achieve the same level of coverage using the canisters. Ten locations were selected based on mathematical modeling and knowledge of the likely emission sources. Since August 1993, there have been five different measurement campaigns.

  5. Voluntary GHG reduction of industrial sectors in Taiwan.

    PubMed

    Chen, Liang-Tung; Hu, Allen H

    2012-08-01

    The present paper describes the voluntary greenhouse gas (GHG) reduction agreements of six different industrial sectors in Taiwan, as well as the fluorinated gases (F-gas) reduction agreement of the semiconductor and Liquid Crystal Display (LCD) industries. The operating mechanisms, GHG reduction methods, capital investment, and investment effectiveness are also discussed. A total of 182 plants participated in the voluntary energy saving and GHG reduction in six industrial sectors (iron and steel, petrochemical, cement, paper, synthetic fiber, and textile printing and dyeing), with 5.35 Mt reduction from 2004 to 2008, or 33% higher than the target goal (4.02 Mt). The reduction accounts for 1.6% annual emission or 7.8% during the 5-yr span. The petrochemical industry accounts for 49% of the reduction, followed by the cement sector (21%) and the iron and steel industry (13%). The total investment amounted to approximately USD 716 million, in which, the majority of the investment went to the modification of the manufacturing process (89%). The benefit was valued at around USD 472 million with an average payback period of 1.5 yr. Moreover, related energy saving was achieved through different approaches, e.g., via electricity (iron and steel), steam and oil consumption (petrochemical) and coal usage (cement). The cost for unit CO(2) reduction varies per industry, with the steel and iron industrial sector having the highest cost (USD 346 t(-1) CO(2)) compared with the average cost of the six industrial sectors (USD 134 t(-1) CO(2)). For the semiconductor and Thin-Film Transistor LCD industries, F-gas emissions were reduced from approximately 4.1 to about 1.7 Mt CO(2)-eq, and from 2.2 to about 1.1 Mt CO(2)-eq, respectively. Incentive mechanisms for participation in GHG reduction are also further discussed.

  6. Pulp and paper mill effluent treatments have differential endocrine-disrupting effects on rainbow trout.

    PubMed

    Orrego, Rodrigo; Guchardi, John; Hernandez, Victor; Krause, Rachelle; Roti, Lucia; Armour, Jeffrey; Ganeshakumar, Mathumai; Holdway, Douglas

    2009-01-01

    Endocrine disruption (ED) effects due to pulp and paper mill effluents extracts involving different industrial procedures and effluent treatments (nontreated, primary, and secondary treated) were evaluated using immature triploid rainbow trout in a pulse-exposure toxicity experiment. The protocol involved the use of intraperitoneal injection of mill extracts (solid-phase extraction [SPE]) corrected for individual fish weight and included several laboratory standards (steroidal hormones and phytosterols). Biological endpoints at two different levels of biological organization were analyzed (molecular and individual organism). Results indicated that nonsignificant changes were observed in the individual physiological indices represented by condition factor, liver somatic index, and gonad somatic index during the experiment. Significant induction of liver ethoxyresorufin-O-deethylase activity was observed between different effluent treatments and experimental controls. Significant endocrine-disrupting effects at the reproductive level were observed in all effluent treatments involving significant increments in plasma vitellogenin (VTG) levels. Fish exposed to untreated effluent extracts had significantly higher VTG levels compared to fish exposed to primary and secondary treatment effluent extracts, indicating a decrease of the estrogenic effect due to the effluent treatment. The present study has shown that for the Chilean pulp and paper mill SPE extracts evaluated, an endocrine disruption effect was induced in immature triploid rainbow, reaffirming the significant estrogenic effects demonstrated previously in laboratory and field experiments.

  7. Removal of chromium from tannery effluents by adsorption.

    PubMed

    Fadali, O A; Magdy, Y H; Daifullah, A A M; Ebrahiem, E E; Nassar, M M

    2004-01-01

    Tannery effluent is characterized not only by heavy loads but also with toxic heavy metals especially chromium ions. Chromium is considered an important source of contamination due to large volume of exhaust liquid discharged and solid sludge produced. Details on adsorption studies were carried out using synthetic chromium salts (chromium chloride) as adsorbate, and cement kiln dust (a waste from white cement industry) as adsorbent. Equilibrium isotherms have been determined for the adsorption of chromium ions on cement kiln dust. Kinetic study provided that the adsorption process is diffusion controlled. The experimental results have been fitted using Freundlich, Langmuir, and Redlich Peterson isotherms. The maximum adsorption capacity of cement kiln dust was found to be 33 mg/g. Industrial tannery effluent (22-mg/L chromium and COD 952 mg/L) was also treated by cement dust. The treated effluent (using 20 g cement dust per 1 L) contains only 0.6 mg/L chromium and COD 200 mg/L.

  8. Identification of the need for research on chemical tracers to detect pulp mill effluent exposure

    SciTech Connect

    Ali, N.; Humphrey, S.; Van Coillie, R.

    1995-12-31

    A critical factor in the assessment of the effects of effluent exposure on sampled biota is the verification of exposure in nearfield and farfield zones and verification of the lack of exposure in the reference areas. At mills with rapid dilution of effluent, or where physical barriers to fish movement between exposure and reference areas do not exist, an appropriate fish tracer must be used. In Canada, because of multiple industrial and municipal discharges at certain pulp mill sites, it is difficult to assess the effects of the mill effluent in isolation from those of neighboring influences unless tracers specific to the different effluents are used. Examples of substances proposed as tracers for pulp mill effluent include resin acids, chloroguaiacols, chlorophenols, dioxin, and furan congeners. This paper gives a summary of tracer substances used to date and the problems encountered in selecting and measuring suitable chemical tracers for regulated environmental effects monitoring studies at Canadian mills. Based on their experience, there is urgent need for research into appropriate tracer substances for pulp mill as well as other industrial and municipal effluents.

  9. Strategies for chromium bioremediation of tannery effluent.

    PubMed

    Garg, Satyendra Kumar; Tripathi, Manikant; Srinath, Thiruneelakantan

    2012-01-01

    Bioremediation offers the possibility of using living organisms (bacteria, fungi, algae,or plants), but primarily microorganisms, to degrade or remove environmental contaminants, and transform them into nontoxic or less-toxic forms. The major advantages of bioremediation over conventional physicochemical and biological treatment methods include low cost, good efficiency, minimization of chemicals, reduced quantity of secondary sludge, regeneration of cell biomass, and the possibility of recover-ing pollutant metals. Leather industries, which extensively employ chromium compounds in the tanning process, discharge spent-chromium-laden effluent into nearby water bodies. Worldwide, chromium is known to be one of the most common inorganic contaminants of groundwater at pollutant hazardous sites. Hexavalent chromium poses a health risk to all forms of life. Bioremediation of chromium extant in tannery waste involves different strategies that include biosorption, bioaccumulation,bioreduction, and immobilization of biomaterial(s). Biosorption is a nondirected physiochemical interaction that occurs between metal species and the cellular components of biological species. It is metabolism-dependent when living biomass is employed, and metabolism-independent in dead cell biomass. Dead cell biomass is much more effective than living cell biomass at biosorping heavy metals, including chromium. Bioaccumulation is a metabolically active process in living organisms that works through adsorption, intracellular accumulation, and bioprecipitation mechanisms. In bioreduction processes, microorganisms alter the oxidation/reduction state of toxic metals through direct or indirect biological and chemical process(es).Bioreduction of Cr6+ to Cr3+ not only decreases the chromium toxicity to living organisms, but also helps precipitate chromium at a neutral pH for further physical removal,thus offering promise as a bioremediation strategy. However, biosorption, bioaccumulation, and

  10. Remediation of phenol, lignin and paper effluents by advanced oxidative processes.

    PubMed

    Peralta-Zamora, P; Wypych, F; Carneiro, L M; Vaz, S R

    2004-12-01

    The tremendous environmental impact of pulping and bleaching effluents and the relatively low efficiency of the current biological remediation processes represent one of the most important problems of the paper industry. In this work the efficiency of heterogeneous and homogeneous advanced oxidative processes was evaluated toward the degradation of model substrates (phenol and lignin) and the remediation of paper effluents. Best results were found by application of the UV-H2O2 system, with almost total discoloration of both pulping and bleaching effluents and typical COD removal higher than 60%, at reaction times of 120 min. In view of the reported results, and mainly on account of the simplicity of the UV-H2O2 system, shows good potential for the advanced process to remediation of recalcitrant effluents like those studied in this present work.

  11. Efficiency of combined process of ozone and bio-filtration in the treatment of secondary effluent.

    PubMed

    Tripathi, Smriti; Tripathi, B D

    2011-07-01

    The present work was aimed at studying the efficiency of the combined process of biofiltration with ozonation to improve the quality of secondary effluent. The secondary effluent from the Dinapur Sewage Treatment Plant Varanasi, India was used in this work. The process of biofiltration with the plant species of Eichornia crassipes and Lemna minor, at a flow rate of 262 ml min(-1) and plant density of 30 mg L(-1) for 48 h, in combination with the process of ozonation with ozone dose of 10 mg L(-1) and contact time of 5 min was applied. Results revealed that combined process was statistically most suitable for the highest degradation of physico-chemical and microbial parameters with improving BDOC value. The biofiltration process is able to remove highest percentage of toxic heavy metals from the secondary effluent without production of toxicity. This technique is highly recommendable for tropical wastewater where sewage is mixed with industrial effluents.

  12. Applications of multi-spectral imaging: failsafe industrial flame detector

    NASA Astrophysics Data System (ADS)

    Wing Au, Kwong; Larsen, Christopher; Cole, Barry; Venkatesha, Sharath

    2016-05-01

    Industrial and petrochemical facilities present unique challenges for fire protection and safety. Typical scenarios include detection of an unintended fire in a scene, wherein the scene also includes a flare stack in the background. Maintaining a high level of process and plant safety is a critical concern. In this paper, we present a failsafe industrial flame detector which has significant performance benefits compared to current flame detectors. The design involves use of microbolometer in the MWIR and LWIR spectrum and a dual band filter. This novel flame detector can help industrial facilities to meet their plant safety and critical infrastructure protection requirements while ensuring operational and business readiness at project start-up.

  13. Opportunities for the chemical industry in space, part 1

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The chemical/petrochemical industry devotes a large percentage of its gross income to research and development, with much of its R and D of a long-term nature. As the chemical industry is examined as a candidate for space investigations, it is readily apparent that research and development in the space environment may lead to attractive commercial opportunities. The advantages of low gravity manufacturing, with a particular emphasis on chemical catalysts, are presented herein specifically for the chemical industry. Research from the Skylab program and Apollo Soyuz test project is reviewed, including acoustic levitation, crystal growth, and container less melts. Space processing of composite materials, alloys, and coatings is also discussed.

  14. Liquid Effluents Program mission analysis

    SciTech Connect

    Lowe, S.S.

    1994-09-27

    Systems engineering is being used to identify work to cleanup the Hanford Site. The systems engineering process transforms an identified mission need into a set of performance parameters and a preferred system configuration. Mission analysis is the first step in the process. Mission analysis supports early decision-making by clearly defining the program objectives, and evaluating the feasibility and risks associated with achieving those objectives. The results of the mission analysis provide a consistent basis for subsequent systems engineering work. A mission analysis was performed earlier for the overall Hanford Site. This work was continued by a ``capstone`` team which developed a top-level functional analysis. Continuing in a top-down manner, systems engineering is now being applied at the program and project levels. A mission analysis was conducted for the Liquid Effluents Program. The results are described herein. This report identifies the initial conditions and acceptable final conditions, defines the programmatic and physical interfaces and sources of constraints, estimates the resources to carry out the mission, and establishes measures of success. The mission analysis reflects current program planning for the Liquid Effluents Program as described in Liquid Effluents FY 1995 Multi-Year Program Plan.

  15. High Speed/ Low Effluent Process for Ethanol

    SciTech Connect

    M. Clark Dale

    2006-10-30

    n this project, BPI demonstrated a new ethanol fermentation technology, termed the High Speed/ Low Effluent (HS/LE) process on both lab and large pilot scale as it would apply to wet mill and/or dry mill corn ethanol production. The HS/LE process allows very rapid fermentations, with 18 to 22% sugar syrups converted to 9 to 11% ethanol ‘beers’ in 6 to 12 hours using either a ‘consecutive batch’ or ‘continuous cascade’ implementation. This represents a 5 to 8X increase in fermentation speeds over conventional 72 hour batch fermentations which are the norm in the fuel ethanol industry today. The ‘consecutive batch’ technology was demonstrated on a large pilot scale (4,800 L) in a dry mill corn ethanol plant near Cedar Rapids, IA (Xethanol Biofuels). The pilot demonstrated that 12 hour fermentations can be accomplished on an industrial scale in a non-sterile industrial environment. Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

  16. Assessment of water contamination caused by a mutagenic textile effluent/dyehouse effluent bearing disperse dyes.

    PubMed

    Carneiro, Patricia A; Umbuzeiro, Gisela A; Oliveira, Danielle P; Zanoni, Maria Valnice B

    2010-02-15

    High performance liquid chromatography coupled to a diode array detector method was developed to detect disperse dyes in water samples over the range 0.50-35 ng, with detection limits of 0.09 ng, 0.84 ng and 0.08 ng, respectively, with good repeatability and accuracy. This study identifies the disperse azo dyes C.I. Disperse Blue 373, C.I. Disperse Orange 37 and Disperse Violet 93 as components of a commercial dye formulation assigned as Dispersol Black Dye (CVS) used in the textile industry for dyeing synthetic fibers that are contributing to the mutagenicity found in the Cristais River, São Paulo, Brazil. High performance liquid chromatography coupled to a diode array detector was applied to monitor the occurrence of these dyes in: (1) the treated industrial effluent, (2) raw river water, (3) treated river water, and (4) the sludge produced by a Drinking Water Treatment Plant (DWTP) which is located 6 km downstream from the textile industrial discharge, where dyes' concentrations changed from 1.65 ng L(-1) to 316 microL(-1).

  17. Outcome of pregnancy in women engaged in laboratory work at a petrochemical plant.

    PubMed

    Axelsson, G; Rylander, R

    1989-01-01

    The aim of the investigation was to study whether laboratory work or other types of chemical work at one petrochemical plant were associated with an increased risk for miscarriage or reduced birthweight. The study was based on questionnaire data for 95% of the women working at the plant between 1973 and 1987. A statistically significant difference between observed and expected number of miscarriages (p less than 0.05) was seen during the period 1970-1974 among women working in one of the laboratories during the first trimester. No suspicions could be raised against any specific chemical as a cause of the unsuccessful pregnancies. The results do not indicate the presence of an increased risk today.

  18. [Assessement of combined impact of hazards on petrochemical and chemical workers' health].

    PubMed

    Badamshina, G G; Karimova, L K; Tkacheva, T A; Mavrina, L N; Bakirova, A É

    2013-01-01

    We have conducted a study on working conditions and health status of petrochemical workers. The main hazardous factor of work environment and manufacture process has been found to be work environment air pollution caused by Class 2-3 hazards. Depending on the composition of the current complex of hazards, the manufacture workers comprise three groups determined by the impact of aromatic hydrocarbons, olefin oxides and their combinations. It has been shown that the combined impact of aromatic hydrocarbons and olefin oxides combination may produce a more pronounced hazardous impact on workers' health compared with the impact of aromatic hydrocarbons or olefin oxides taken separately. This may be due to the summing up of biological effects.

  19. Bioremediation of Pharmaceuticals, Pesticides, and Petrochemicals with Gomeya/Cow Dung

    PubMed Central

    Randhawa, Gurpreet Kaur; Kullar, Jagdev Singh

    2011-01-01

    Use and misuse of pharmaceuticals, pesticides, and petrochemicals by man is causing havoc with nature, as they persist as such or as their toxic metabolites. These pollutants bioaccumulate in environment, and they ultimately reach man through various means. They are hazardous because of potential toxicity, mutagenicity, carcinogenicity, and genotoxicity. To rejuvenate nature, remediation methods currently available are usually expensive and might convert one toxic pollutant to another. Bioremediation methods use naturally occurring microorganisms to detoxify man-made pollutants so that they change pollutants to innocuous products that make soil fertile in the process. Taking cue from Ayurveda, Gomeya/cow dung is used as an excellent bioremediation method. Thus, utilizing freely available cow dung as slurry or after composting in rural areas, is a cheap and effective measure to bioremediate the harmful pollutants. Yet, more research in this direction is warranted to bioremediate nonbiodegradable, potentially toxic pollutants. PMID:22084712

  20. Effluent treatment for nuclear thermal propulsion ground testing

    NASA Technical Reports Server (NTRS)

    Shipers, Larry R.

    1993-01-01

    The objectives are to define treatment functions, review concept options, discuss PIPET effluent treatment system (ETS), and outline future activities. The topics covered include the following: reactor exhaust; effluent treatment functions; effluent treatment categories; effluent treatment options; concept evaluation; PIPETS ETS envelope; PIPET effluent treatment concept; and future activities.