Cathodoluminescence Petrography: A Valuable Tool for Teaching and Research.
ERIC Educational Resources Information Center
Kopp, Otto C.
1981-01-01
Cathodoluminescence is visible light emitted from a specimen when it is bombarded with electrons. A technique known as cathodoluminescence petrography can provide information especially useful in studies or courses related to mineralogy and petrology. The technique is briefly presented, along with examples to illustrate typical results. (Author/WB)
NASA Technical Reports Server (NTRS)
Keller, L. P.; Snead, C.; Rahman, Z.; McKeegan, K. D.
2012-01-01
Hibonite-rich Ca- and Al-rich inclusions (CAIs) are among the earliest formed solids that condensed in the early nebula. We discovered an unusual refractory inclusion from the Allende CV3 chondrite (SHAL) containing an approx 500 micron long single crystal of hibonite and co-existing coarse-grained perovskite. The mineralogy and petrography of SHAL show strong similarities to some FUN inclusions, especially HAL. Here we report on the mineralogy, petrography, mineral chemistry and oxygen isotopic compositions in SHAL.
NASA Astrophysics Data System (ADS)
Kassab, Mohamed A.; Gomaa, Mohamed M.; Lala, Amir M. S.
2017-06-01
Realization of electrical and petrography of rocks is absolutely necessary for geophysical investigations. The petrographical, petrophysical and electrical properties of sandstone rocks (El-Maghara Formation, North Sinai, Egypt) will be discussed in the present work. The goal of this paper was to highlight interrelations between electrical properties in terms of frequency (conductivity, permittivity and impedance) and petrography, as well as mineral composition. Electrical properties including (conductivity and dielectric constant) were measured at room temperature and humidity of (∼35%). The frequency range used will be from 10 Hz to 100 kHz. Slight changes between samples in electrical properties were found to result from changes in composition and texture. Electrical properties generally change with grain size, shape, sorting, mineralogy and mineral composition. The dielectric constant decreases with frequency and increases with increasing clay content. The conductivity increases with the increase in conductor channels among electrodes. Many parameters can combine together to lead to the same electrical properties. The samples are mainly composed of sand with clay and carbonate.
The Apollo 16 Mare Component: Petrography, Geochemistry, and Provenance
NASA Technical Reports Server (NTRS)
Zeigler, R. A.; Haskin, L. A.; Korotev, R. L.; Jolliff, B. L.; Gillis, J. J.
2003-01-01
The A16 (Apollo16) site in the lunar nearside highlands is 220 km from the nearest mare. Thus it is no surprise that mare basalt samples are uncommon at the site. Here, we present the petrography and geochemistry of 5 new mare basalt samples found at the A16 site. We also discuss possible provenances of all A16 mare basalt samples using high-resolution global data for the distribution of Fe and Ti on the lunar surface derived from Clementine UV-VIS data [1-2].
Application of organic petrography in North American shale petroleum systems: A review
Hackley, Paul C.; Cardott, Brian J.
2016-01-01
Organic petrography via incident light microscopy has broad application to shale petroleum systems, including delineation of thermal maturity windows and determination of organo-facies. Incident light microscopy allows practitioners the ability to identify various types of organic components and demonstrates that solid bitumen is the dominant organic matter occurring in shale plays of peak oil and gas window thermal maturity, whereas oil-prone Type I/II kerogens have converted to hydrocarbons and are not present. High magnification SEM observation of an interconnected organic porosity occurring in the solid bitumen of thermally mature shale reservoirs has enabled major advances in our understanding of hydrocarbon migration and storage in shale, but suffers from inability to confirm the type of organic matter present. Herein we review organic petrography applications in the North American shale plays through discussion of incident light photographic examples. In the first part of the manuscript we provide basic practical information on the measurement of organic reflectance and outline fluorescence microscopy and other petrographic approaches to the determination of thermal maturity. In the second half of the paper we discuss applications of organic petrography and SEM in all of the major shale petroleum systems in North America including tight oil plays such as the Bakken, Eagle Ford and Niobrara, and shale gas and condensate plays including the Barnett, Duvernay, Haynesville-Bossier, Marcellus, Utica, and Woodford, among others. Our review suggests systematic research employing correlative high resolution imaging techniques and in situ geochemical probing is needed to better document hydrocarbon storage, migration and wettability properties of solid bitumen at the pressure and temperature conditions of shale reservoirs.
Authentication controversies and impactite petrography of the New Quebec Crater
NASA Technical Reports Server (NTRS)
Marvin, Ursula B.; Kring, David A.
1992-01-01
The literature reports that led to the current acceptance of New Quebec Crater (Chubb Crater) as an authentic impact crater are reviewed, and it is noted that, for reasons that are not entirely clear, a meteoritic origin for the New Quebec Crater achieved wider acceptance at an earlier data than for the Lake Bosumtwi Crater, for which petrographic and chemical evidence is more abundant and compelling. The petrography of two impact melt samples from the New Quebec Crater was investigated, and new evidence is obtained on the degrees of shock metamorphism affecting the accessory minerals such as apatite, sphene, magnetite, and zircon.
Morphology and petrography of volcanic ashes.
NASA Technical Reports Server (NTRS)
Heiken, G.
1972-01-01
Study of volcanic ash samples collected from a variety of recent eruptions using petrography, chemical analyses, and scanning electron microscopy to characterize each type and to relate ash morphology to magma composition and the type of eruption. The ashes are placed in the broad genetic categories of magmatic and phreatomagmatic. The morphology of ash particles from magmatic eruptions of high viscosity magma is governed primarily by vesicle density and shape. Ash particles from eruptions of low viscosity magmas are mostly droplets. The morphology of ash particles from phreatomagmatic eruptions is controlled by stresses within the chilled magma which result in fragmentation of the glass to form small blocky or pyramidal glass ash particles.
From in situ coal to the final coal product: A case study of the Danville Coal Member (Indiana)
Mastalerz, Maria; Padgett, P.L.
1999-01-01
A surface coal mine operation and preparation plant in southwestern Indiana was sampled to examine variations in coal quality and coal petrography parameters for the Danville Coal Member of the Dugger Formation (Pennsylvanian-Desmoinesian, Westphalian D). Representative samples from in situ coal, preparation plant feeds, and a final coal product were collected in order to compare coal quality, coal petrography, trace element concentrations, and ash chemistry of the coal to those of the product. Coal quality parameters of the in situ samples and various feeds, coarse refuse, and final product were variable. The quality of the final coal product was best predicted by the coal quality of the clean coal feed (from the middle portions of the seam). Some trace element contents, especially lead and arsenic, varied between the coal feeds and the product. Lead contents increased in the feeds and product compared to the channel sample of the raw coal, possibly due to contamination in the handling process.A surface coal mine operation and preparation plant in southwestern Indiana was sampled to examine variations in coal quality and coal petrography parameters for the Danville Coal Member of the Dugger Formation (Pennsylvanian-Desmoinesian, Westphalian D). Representative samples from in situ coal, preparation plant feeds, and a final coal product were collected in order to compare coal quality, coal petrography, trace element concentrations, and ash chemistry of the coal to those of the product. Coal quality parameters of the in situ samples and various feeds, coarse refuse, and final product were variable. The quality of the final coal product was best predicted by the coal quality of the clean coal feed (from the middle portions of the seam). Some trace element contents, especially lead and arsenic, varied between the coal feeds and the product. Lead contents increased in the feeds and product compared to the channel sample of the raw coal, possibly due to contamination in the handling process.
ERIC Educational Resources Information Center
Nagle, Frederick
1981-01-01
Describes the production and use of color videocassettes with an inexpensive, conventional TV camera and an ordinary petrographic microscope. The videocassettes are used in optical mineralogy and petrology courses. (Author/WB)
Essential Elements of Geologic Reports.
ERIC Educational Resources Information Center
Webb, Elmer James
1988-01-01
Described is a report outline for geologic reports. Essential elements include title; abstract; introduction; stratigraphy; petrography; geochemistry; petrology; geophysics; structural geology; geologic history; modeling; economics; conclusions; and recommendations. (Author/CW)
NASA Astrophysics Data System (ADS)
Schreiber, U. M.; Eriksson, P. G.; van der Neut, M.; Snyman, C. P.
1992-11-01
Sandstone petrography, geochemistry and petrotectonic assemblages of the predominantly clastic sedimentary rocks of the Early Proterozoic Pretoria Group, Transvaal Sequence, point to relatively stable cratonic conditions at the beginning of sedimentation, interrupted by minor rifting events. Basement uplift and a second period of rifting occurred towards the end of Pretoria Group deposition, which was followed by the intrusion of mafic sill swarms and the emplacement of the Bushveld Complex in the Kaapvaal Craton at about 2050 Ma, the latter indicating increased extensional tectonism, and incipient continental rifting. An overall intracratonic lacustrine tectonic setting for the Pretoria Group is supported by periods of subaerial volcanic activity and palaeosol formation, rapid sedimentary facies changes, significant arkosic sandstones, the presence of non-glacial varves and a highly variable mudrock geochemistry.
Backscattered Electron Microscopy as an Advanced Technique in Petrography.
ERIC Educational Resources Information Center
Krinsley, David Henry; Manley, Curtis Robert
1989-01-01
Three uses of this method with sandstone, desert varnish, and granite weathering are described. Background information on this technique is provided. Advantages of this type of microscopy are stressed. (CW)
Publications - GMC 339 | Alaska Division of Geological & Geophysical
petrography from petrographic thin sections of core (4759'-4894') Authors: Unknown Publication Date: Feb 2007 thin sections of core (4759'-4894'): Alaska Division of Geological & Geophysical Surveys Geologic
NASA Astrophysics Data System (ADS)
Wu, Sujuan; Hu, Jianmin; Ren, Minghua; Gong, Wangbin; Liu, Yang; Yan, Jiyuan
2014-11-01
The Bayanwulashan Metamorphic Complex (BMC) exposes along the eastern margin of the Alxa Block, the westernmost part of the North China Craton (NCC). BMC is principally composed of metamorphic rocks with amphibole plagiogneiss, biotite plagioclase gneiss and granitic gneiss. Our research has been focused on the petrography and zircon U-Pb geochronology of the BMC to better understand the evolution of the Alxa Block and its relationship with the NCC. Evidences from field geology, petrography, and mineral chemistry indicate that two distinct metamorphic assemblages, the amphibolite and greenschist facies, had overprinted the preexisting granitic gneiss and suggest that the BMC experienced retrograde metamorphic episodes. The LA-ICP-MS zircon U-Pb ages reveal that the primary magmatic activities of BMC were at ca. 2.30-2.24 Ga and the two metamorphic events were at ca. 1.95-1.91 Ga and ca. 1.88-1.85 Ga respectively. These ages indicate that BMC initially intruded during Paleoproterozoic, not as previously suggested at Archean period. The Early Paleoproterozoic metamorphic records and the magmatic thermochronological data in BMC exhibit different evolution paths between the Alxa Block and the NCC. The Alxa Block was most likely an independent Early Paleoproterozoic terrain. Following different amalgamation processes, The Alxa Block combined with Western Block at ca. 1.95 Ga and then united with NCC at ca. 1.85 Ga.
Petrography and physicomechanical properties of rocks from the Ambela granitic complex, NW Pakistan.
Arif, Mohammad; Bukhari, S Wajid Hanif; Muhammad, Noor; Sajid, Muhammad
2013-01-01
Petrography and physicomechanical properties of alkali granites, alkali quartz syenite, and nepheline syenite from Ambela, NW Pakistan, have been investigated. Whereas the alkali quartz syenite and most of the alkali granites are megaporphyritic, the nepheline syenite and some of the alkali granites are microporphyritic. Their phenocryst shape and size and abundance of groundmass are also different. The values of unconfined compressive strength (UCS) are the lowest and highest for megaporphyritic alkali granite and alkali quartz syenite, respectively. However, all the four rock types are moderately strong. Correspondingly, their specific gravity and water absorption values are within the permissible range for use as construction material. The UCS for the alkali quartz syenite is the highest, most probably because (i) it has roughly equal amounts of phenocryst and groundmass, (ii) it displays maximum size contrast between phenocryst and groundmass, (iii) its phenocrysts are highly irregular, and (iv) it contains substantial amounts of quartz.
An overview on current fluid-inclusion research and applications
Chi, G.; Chou, I.-Ming; Lu, H.-Z.
2003-01-01
This paper provides an overview of some of the more important developments in fluid-inclusion research and applications in recent years, including fluid-inclusion petrography, PVTX studies, and analytical techniques. In fluid-inclusion petrography, the introduction of the concept of 'fluid-inclusion assemblage' has been a major advance. In PVTX studies, the use of synthetic fluid inclusions and hydrothermal diamond-anvil cells has greatly contributed to the characterization of the phase behaviour of geologically relevant fluid systems. Various analytical methods are being developed and refined rapidly, with the Laser-Raman and LA-ICP-MS techniques being particularly useful for volatile and solute analyses, respectively. Ore deposit research has been and will continue to be the main field of application of fluid inclusions. However, fluid inclusions have been increasingly applied to other fields of earth science, especially in petroleum geology and the study of magmatic and earth interior processes.
Lunar and Planetary Science XXXV: Lunar Rocks from Outer Space
NASA Technical Reports Server (NTRS)
2004-01-01
The following topics were discussed: Mineralogy and Petrology of Unbrecciated Lunar Basaltic Meteorite LAP 02205; LAP02205 Lunar Meteorite: Lunar Mare Basalt with Similarities to the Apollo 12 Ilmenite Basalt; Mineral Chemistry of LaPaz Ice Field 02205 - A New Lunar Basalt; Petrography of Lunar Meteorite LAP 02205, a New Low-Ti Basalt Possibly Launch Paired with NWA 032; KREEP-rich Basaltic Magmatism: Diversity of Composition and Consistency of Age; Mineralogy of Yamato 983885 Lunar Polymict Breccia with Alkali-rich and Mg-rich Rocks; Ar-Ar Studies of Dhofar Clast-rich Feldspathic Highland Meteorites: 025, 026, 280, 303; Can Granulite Metamorphic Conditions Reset 40Ar-39Ar Ages in Lunar Rocks? [#1009] A Ferroan Gabbronorite Clast in Lunar Meteorite ALHA81005: Major and Trace Element Composition, and Origin; Petrography of Lunar Meteorite PCA02007, a New Feldspathic Regolith Breccia; and Troilite Formed by Sulfurization: A Crystal Structure of Synthetic Analogue
Petrography and Physicomechanical Properties of Rocks from the Ambela Granitic Complex, NW Pakistan
Arif, Mohammad; Bukhari, S. Wajid Hanif; Muhammad, Noor; Sajid, Muhammad
2013-01-01
Petrography and physicomechanical properties of alkali granites, alkali quartz syenite, and nepheline syenite from Ambela, NW Pakistan, have been investigated. Whereas the alkali quartz syenite and most of the alkali granites are megaporphyritic, the nepheline syenite and some of the alkali granites are microporphyritic. Their phenocryst shape and size and abundance of groundmass are also different. The values of unconfined compressive strength (UCS) are the lowest and highest for megaporphyritic alkali granite and alkali quartz syenite, respectively. However, all the four rock types are moderately strong. Correspondingly, their specific gravity and water absorption values are within the permissible range for use as construction material. The UCS for the alkali quartz syenite is the highest, most probably because (i) it has roughly equal amounts of phenocryst and groundmass, (ii) it displays maximum size contrast between phenocryst and groundmass, (iii) its phenocrysts are highly irregular, and (iv) it contains substantial amounts of quartz. PMID:23861654
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingham, Jeremy P., E-mail: inghamjp@halcrow.com
The number of building fires has doubled over the last 50 years. There has never been a greater need for structures to be assessed for fire damage to ensure safety and enable appropriate repairs to be planned. Fortunately, even after a severe fire, concrete and masonry structures are generally capable of being repaired rather than demolished. By allowing direct examination of microcracking and mineralogical changes, petrographic examination has become widely used to determine the depth of fire damage for reinforced concrete elements. Petrographic examination can also be applied to fire-damaged masonry structures built of materials such as stone, brick andmore » mortar. Petrography can ensure accurate detection of damaged geomaterials, which provides cost savings during building repair and increased safety reassurance. This paper comprises a review of the role of petrography in fire damage assessments, drawing on a range of actual fire damage investigations.« less
Petrographic methods of examining hardened concrete : a petrographic manual.
DOT National Transportation Integrated Search
1997-11-01
This manual was undertaken to record for all persons wishing to do concrete : petrography the petrographic procedures that have been found useful at the : Virginia Transportation Research Council. The manual is made up of an : introduction and chapte...
Calibrating the Iowa pore index with mercury intrusion porosimetry and petrography.
DOT National Transportation Integrated Search
2017-10-31
The Iowa Pore Index (IPI) test is a fast, non-destructive, inexpensive, and environmentally friendly test used by several Midwestern state departments of transportation to determine the volume ratio of macropores to micropores in a coarse rock aggreg...
CLAY, COASTAL REGIONS, CYCLES, DELTAS, DEPOSITION, DIAGNOSIS(GENERAL), FINES, FLOW, GEOLOGY, GEOMORPHOLOGY, KAOLINITE , MATHEMATICAL MODELS, MINERALS...MODELS, MONTMORILLONITE , PARAMETERS, PETROGRAPHY, PROCESSING, RATIOS, RESIDUALS, RESPONSE, RIVERS, SALINITY, SAMPLING, SAND, SCHIST, SEDIMENTS
Coordinated Petrography and Oxygen Isotopic Compositions of Al-Rich Chondrules from CV3 Chondrites
NASA Astrophysics Data System (ADS)
Zhang, M. M.; Lin, Y. T.; Tang, G. Q.; Li, X. H.
2017-07-01
In this study, we coordinated the petrology, bulk compositions and oxygen isotope compositions of 12 ARCs from Allende and Leoville and Ningqiang chondrites in order to elucidate any potential genetic relationships between ARCs, CAIs and FMCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D`Agostino, A.E.; Jordan, D.W.; Jordan, D.W.
Shanmugam and Moiola (1995) put forth a new interpretation of sandstone depositional processes in the Jackfork Group exposed in the spillway at DeGray Lake, near Arkadelphia, Arkansas. Their novel interpretation of deposition dominated by sandy, matrix-supported debris flows is at odds with nearly every other investigation of the Jackfork to date. One key to their interpretation is their contention that the Jackfork sandstones have a high matrix content (as high as 25%). The high matrix content is critical to their arguments about the textural characteristics and flow properties of debris flows vs. turbidites. In our guidebook, we presented a largemore » volume of petrographic data collected from samples taken from the Jackfork exposed on the east and west sides of the Spillway at DeGray Lake (and other locations as well). D`Agostino performed nearly al of the petrographic analyses presented in that guidebook. We disagree strongly with the reinterpretations of Shanmugam and Moiola and believe we can confidently address issues of petrography and matrix content. Specifically, we wish to address four points: (1) the amount of petrographic sampling done by Shanmugam and Moiola (1995); i.e., sampling density in a 327-m- (1072-ft) thick section, (2) overall matrix content of Jackfork sandstones, and Shanmugam and Moiola`s misrepresentation of our data, plus their apparent unfamiliarity with pertinent published data on the petrography of the Jackfork, (3) the distinction among authigenic clay, density in a 327-m- (1072-ft-) thick section, (2) overall matrix content of Jackfork sandstones, and Shanmugam and Moiola`s misrepresentation of our data, plus their apparent unfamiliarity with pertinent published data on the petrography of the Jackfork, (3) the distinction among authigenic clay, detrital clay, and other matrix materials, which Shanmugam and Moiola do not adequately discuss, and (4) the relationship of matrix content to their own facies classification scheme.« less
Dusel-Bacon, Cynthia; Day, Warren C.; Aleinikoff, John N.
2013-01-01
We report the results of new mapping, whole-rock major, minor, and trace-element geochemistry, and petrography for metaigneous rocks from the Mount Veta area in the westernmost part of the allochthonous Yukon–Tanana terrane (YTT) in east-central Alaska. These rocks include tonalitic mylonite gneiss and mafic metaigneous rocks from the Chicken metamorphic complex and the Nasina and Fortymile River assemblages. Whole-rock trace-element data from the tonalitic gneiss, whose igneous protolith was dated by SHRIMP U–Pb zircon geochronology at 332.6 ± 5.6 Ma, indicate derivation from tholeiitic arc basalt. Whole-rock analyses of the mafic rocks suggest that greenschist-facies rocks from the Chicken metamorphic complex, a mafic metavolcanic rock from the Nasina assemblage, and an amphibolite from the Fortymile River assemblage formed as island-arc tholeiite in a back-arc setting; another Nasina assemblage greenschist has MORB geochemical characteristics, and another mafic metaigneous rock from the Fortymile River assemblage has geochemical characteristics of calc-alkaline basalt. Our geochemical results imply derivation in an arc and back-arc spreading region within the allochthonous YTT crustal fragment, as previously proposed for correlative units in other parts of the terrane. We also describe the petrography and geochemistry of a newly discovered tectonic lens of Alpine-type metaharzburgite. The metaharzburgite is interpreted to be a sliver of lithospheric mantle from beneath the Seventymile ocean basin or from sub-continental mantle lithosphere of the allochthonous YTT or the western margin of Laurentia that was tectonically emplaced within crustal rocks during closure of the Seventymile ocean basin and subsequently displaced and fragmented by faults.
Petrography and Origin of the Unique Achondrite GRA 06128 & 06129: Preliminary Results
NASA Technical Reports Server (NTRS)
Treiman, A. H.; Morris, R. V.; Kring, D. A.; Mittlefehldt, D. W.; Jones, J. H.
2007-01-01
GRA 06128 and 06129 are paired achondrites with unique mineral proportions (75% oligoclase), mineral compositions, and oxygen isotope ratios. They appear to represent alkalic igneous rock from a hitherto unsampled differentiated parent body, modified significantly by thermal and shock metamorphism.
NASA Technical Reports Server (NTRS)
Bradley, John
1994-01-01
The 'pyroxene' interplanetary dust particles (IDP's) may be the best samples for investigation of primordial grain-forming reactions because they appear to have experienced negligible post-accretional alteration. They are likely to continue to yield information about gas-to-solid condensation and other grain-forming reactions that may have occurred either in the solar nebular or presolar interstellar environments. An immediate challenge lies in understanding the nanometer-scale petrography of the ultrafine-grained aggregates in 'pyroxene' IDP's. Whether these aggregates contain components from diverse grain-forming environments may ultimately be answered by systematic petrographic studies using electron microscopes capable of high spatial resolution microanalysis. It may be more difficult to decipher evidence of grain formation and evolution in 'olivine' and 'layer silicate' IDP's because they appear to have experienced post-accretional alteration. Most of the studied 'olivine' IDPs have been subjected to heating and equilibration, perhaps during atmospheric entry, while the 'layer silicate' IDP's have experienced aqueous alteration.
Lunar sample studies. [breccias basalts, and anorthosites
NASA Technical Reports Server (NTRS)
1977-01-01
Lunar samples discussed and the nature of their analyses are: (1) an Apollo 15 breccia which is thoroughly analyzed as to the nature of the mature regolith from which it derived and the time and nature of the lithification process, (2) two Apollo 11 and one Apollo 12 basalts analyzed in terms of chemistry, Cross-Iddings-Pirsson-Washington norms, mineralogy, and petrography, (3) eight Apollo 17 mare basalts, also analyzed in terms of chemistry, Cross-Iddings-Pirsson-Washington norms, mineralogy, and petrography. The first seven are shown to be chemically similar although of two main textural groups; the eighth is seen to be distinct in both chemistry and mineralogy, (4) a troctolitic clast from a Fra Mauro breccia, analyzed and contrasted with other high-temperature lunar mineral assemblages. Two basaltic clasts from the same breccia are shown to have affinities with rock 14053, and (5) the uranium-thorium-lead systematics of three Apollo 16 samples are determined; serious terrestrial-lead contamination of the first two samples is attributed to bandsaw cutting in the lunar curatorial facility.
A Manual of Photographs as a Teaching Tool in Petrography.
ERIC Educational Resources Information Center
Brice, William Riley; Lint, Brenda Hawkins
1987-01-01
Discusses the need for visual aids in helping students recognize various minerals in a thin section. Describes the development of a manual of color photomicrographs designed to provide students with a more realistic view of minerals than can be provided by charts and diagrams. (TW)
DOT National Transportation Integrated Search
1991-01-01
This manual was undertaken to record for all persons wishing to do concrete petrography the petrographic procedures that have been found useful here at the Virginia Transportation Research Council. This interim report is made up of the introduction, ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Floran, R. J
1978-04-01
Results are reported from a petrographic study of 20 mesosiderites that reveals that most contain a complex assemblage of mineral, lithic, and metal clasts. Mineral fragments dominate the clast population and consist primarily of orthopyroxene, plagioclase, and olivine.
NASA Technical Reports Server (NTRS)
Merrill, R. B.
1978-01-01
Various aspects of lunar science are discussed including origins and evolution, mare basalts, nonmare rocks, and breccias. Consideration is also given to meteorites, giving attention to petrography and chemistry, the Allende meteorite, and experimental studies.
NASA Astrophysics Data System (ADS)
Krot, A. N.; Nagashima, K.; Libourel, G.; Miller, K. E.
2017-02-01
Here we review the mineralogy, petrography, O-isotope compositions, and trace element abundances of precursors of chondrules and igneous CAIs which provide important constraints on the mechanisms of transient heating events in the protoplanetary disk.
Carbonates of the Gunflint Banded Iron Formation as Analogs of Martian Carbonates
NASA Technical Reports Server (NTRS)
Pun, A.; Papike, J. J.; Shearer, C. K.
2001-01-01
Terrestrial iron formations preserve remnants of life on Earth and may serve as analogs for identifying evidence of biologic activity in martian rocks. We report on the petrography, mineralogy and trace-element abundances of carbonates of the Gunflint banded iron formation. Additional information is contained in the original extended abstract.
Seam profiling of three coals from Upper Cretaceous Menefee formation near Durango, CO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pawlewicz, M.J.
1985-05-01
Column samples of three separate coal seams from the Upper Cretaceous Menefee Formation near Durango were examined with reflected light and oil immersion to characterize the vertical variation in the coal petrography. In order to interpret the paleoenvironments of the coal, the macerals (microlithotypes) that make up the coal were identified and their association (whether they are in microbands or dispersed throughout), their physical condition (if they show signs of weathering or transportation), and their modal composition were observed. The observed petrography indicates two main environments of deposition. Most of the microlithotypes are rich in vitrinite. This and the associationmore » and physical condition of the macerals indicate a terrestrial forest containing mainly woody plants and trees with a slightly fluctuating ground-water level. Less commonly, the microlithotypes have less vitrinite and more mineral matter, suggesting deposition in an open moor or deep water usually inhabited mainly be herbaceous plants. Macerals from both environments are weathered, suggesting infrequent dry periods or periods of lower water-table levels where the peat was exposed to subaerial oxidation.« less
On the Relationship between Cosmic Ray Exposure Ages and Petrography of CM Chondrites
NASA Technical Reports Server (NTRS)
Takenouchi, A.; Zolensky, M. E.; Nishiizumi, K.; Caffee, M.; Velbel, M. A.; Ross, K.; Zolensky, A.; Lee, L.; Imae, N.; Yamaguchi, A.;
2014-01-01
Carbonaceous (C) chondrites are potentially the most primitive among chondrites because they mostly escaped thermal metamorphism that affected the other chondrite groups. C chondrites are chemically distinguished from other chondrites by their high Mg/Si ratios and refractory elements, and have experienced various degrees of aqueous alteration. They are subdivided into eight subgroups (CI, CM, CO, CV, CK, CR, CB and CH) based on major element and oxygen isotopic ratios. Their elemental ratios vary over a wide range, in contrast to those of ordinary and enstatite chondrites which are relatively uniform. It is critical to know how many separate bodies are represented by the C chondrites. In this study we defined 4 distinct cosmic-ray exposure (CRE) age groups of CMs and systematically characterized the petrography in each of the 4 CRE age groups to determine whether the groups have significant petrographic differences with such differences probably reflecting different parent body (asteroid) geological processing, or multiple original bodies. We have reported the results of a preliminary grouping at the NIPR Symp. in 2013 [3], however, we revised the grouping and here report our new results.
Barker, C.E.; Pawlewicz, M.; Cobabe, E.A.
2001-01-01
A transect of three holes drilled across the Blake Nose, western North Atlantic Ocean, retrieved cores of black shale facies related to the Albian Oceanic Anoxic Events (OAE) lb and ld. Sedimentary organic matter (SOM) recovered from Ocean Drilling Program Hole 1049A from the eastern end of the transect showed that before black shale facies deposition organic matter preservation was a Type III-IV SOM. Petrography reveals that this SOM is composed mostly of degraded algal debris, amorphous SOM and a minor component of Type III-IV terrestrial SOM, mostly detroinertinite. When black shale facies deposition commenced, the geochemical character of the SOM changed from a relatively oxygen-rich Type III-IV to relatively hydrogen-rich Type II. Petrography, biomarker and organic carbon isotopic data indicate marine and terrestrial SOM sources that do not appear to change during the transition from light-grey calcareous ooze to the black shale facies. Black shale subfacies layers alternate from laminated to homogeneous. Some of the laminated and the poorly laminated to homogeneous layers are organic carbon and hydrogen rich as well, suggesting that at least two SOM depositional processes are influencing the black shale facies. The laminated beds reflect deposition in a low sedimentation rate (6m Ma-1) environment with SOM derived mostly from gravity settling from the overlying water into sometimes dysoxic bottom water. The source of this high hydrogen content SOM is problematic because before black shale deposition, the marine SOM supplied to the site is geochemically a Type III-IV. A clue to the source of the H-rich SOM may be the interlayering of relatively homogeneous ooze layers that have a widely variable SOM content and quality. These relatively thick, sometimes subtly graded, sediment layers are thought to be deposited from a Type II SOM-enriched sediment suspension generated by turbidities or direct turbidite deposition.
Geochemistry and petrography of the MacAlpine Hills lunar meteorites
NASA Technical Reports Server (NTRS)
Lindstrom, Marilyn M.; Mckay, David S.; Wentworth, Susan J.; Martinez, Rene R.; Mittlefehldt, David W.; Wang, Ming-Sheng; Lipschutz, Michael E.
1991-01-01
MacAlpine Hills 88104 and 88105, anorthositic lunar meteorites recovered form the same area in Antartica, are characterized. Petrographic studies show that MAC88104/5 is a polymict breccia dominated by impact melt clasts. It is better classified as a fragmental breccia than a regolith breccia. The bulk composition is ferroan and highly aluminous (Al2O3-28 percent).
Measuring the Shock Stage of Asteroid Regolith Grains by Electron Back-Scattered Diffraction
NASA Technical Reports Server (NTRS)
Zolensky, Michael; Martinez, James; Sitzman, Scott; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Terada, Yasuko; Yagi, Naoto; Komatsu, Mutsumi; Ozawa, Hikaru;
2018-01-01
We have been analyzing Itokawa samples in order to definitively establish the degree of shock experienced by the regolith of asteroid Itokawa, and to devise a bridge between shock determinations by standard light optical petrography, crystal structures as determined by electron and X-ray diffraction. These techniques would then be available for samples returned from other asteroid regoliths.
Swindle, T.D.; Grossman, J.N.; Olinger, C.T.; Garrison, D.H.
1991-01-01
We have performed INAA, petrographie, and noble gas analyses on seventeen chondrules from the Semarkona meteorite (LL3.0) primarily to study the relationship of the I-Xe system to other measured properties. We observe a range of ???10 Ma in apparent I-Xe ages. The three latest apparent ages fall in a cluster, suggesting the possibility of a common event. The initial 129I/127I ratio (R0) is apparently related to chondrule type and/or mineralogy, with nonporphyritic and pyroxene-rich chondrules showing evidence for lower R0'S (later apparent I-Xe ages) than porphyritic and olivine-rich chondrules. In addition, chondrules with sulfides on or near the surface have lower R0S than other chondrules. The 129Xe/132Xe ratio in the trapped Xe component anticorrelates with R0, consistent with evolution of a chronometer in a closed system or in multiple similar systems. On the basis of these correlations, we conclude that the variations in R0 represent variations in ages, and that later event(s), possibly aqueous alteration, preferentially affected chondrules with nonporphyritic textures and/or sulfide-rich exteriors about 10 Ma after the formation of the chondrules. ?? 1991.
Twenty-fourth Lunar and Planetary Science Conference. Part 1: A-F
NASA Technical Reports Server (NTRS)
1993-01-01
The topics covered include the following: petrology, petrography, meteoritic composition, planetary geology, atmospheric composition, astronomical spectroscopy, lunar geology, Mars (planet), Mars composition, Mars surface, volcanology, Mars volcanoes, Mars craters, lunar craters, mineralogy, mineral deposits, lithology, asteroids, impact melts, planetary composition, planetary atmospheres, planetary mapping, cosmic dust, photogeology, stratigraphy, lunar craters, lunar exploration, space exploration, geochronology, tectonics, atmospheric chemistry, astronomical models, and geochemistry.
The Twenty-Fifth Lunar and Planetary Science Conference. Part 1: A-G
NASA Technical Reports Server (NTRS)
1994-01-01
Papers from the conference are presented, and the topics covered include the following: planetary geology, meteorites, planetary composition, meteoritic composition, planetary craters, lunar craters, meteorite craters, petrology, petrography, volcanology, planetary crusts, geochronology, geomorphism, mineralogy, lithology, planetary atmospheres, impact melts, volcanoes, planetary evolution, tectonics, planetary mapping, asteroids, comets, lunar soil, lunar rocks, lunar geology, metamorphism, chemical composition, meteorite craters, and planetary mantles.
Workshop on the Analysis of Interplanetary Dust Particles
NASA Technical Reports Server (NTRS)
Zolensky, Michael E. (Editor)
1994-01-01
Great progress has been made in the analysis of interplanetary dust particles (IDP's) over the past few years. This workshop provided a forum for the discussion of the following topics: observation and modeling of dust in the solar system, mineralogy and petrography of IDP's, processing of IDP's in the solar system and terrestrial atmosphere, comparison of IDP's to meteorites and micrometeorites, composition of IDP's, classification, and collection of IDP's.
Twenty-Fourth Lunar and Planetary Science Conference. Part 2: G-M
NASA Technical Reports Server (NTRS)
1993-01-01
The topics covered include the following: meteorites, meteoritic composition, geochemistry, planetary geology, planetary composition, planetary craters, the Moon, Mars, Venus, asteroids, planetary atmospheres, meteorite craters, space exploration, lunar geology, planetary surfaces, lunar surface, lunar rocks, lunar soil, planetary atmospheres, lunar atmosphere, lunar exploration, space missions, geomorphology, lithology, petrology, petrography, planetary evolution, Earth surface, planetary surfaces, volcanology, volcanos, lava, magma, mineralogy, minerals, ejecta, impact damage, meteoritic damage, tectonics, etc.
Twenty-Fourth Lunar and Planetary Science Conference. Part 3: N-Z
NASA Technical Reports Server (NTRS)
1993-01-01
Papers from the conference are presented, and the topics covered include the following: planetary geology, meteorites, planetary composition, meteoritic composition, planetary craters, lunar craters, meteorite craters, petrology, petrography, volcanology, planetary crusts, geochronology, geomorphism, mineralogy, lithology, planetary atmospheres, impact melts, K-T Boundary Layer, volcanoes, planetary evolution, tectonics, planetary mapping, asteroids, comets, lunar soil, lunar rocks, lunar geology, metamorphism, chemical composition, meteorite craters, planetary mantles, and space exploration.
Petrology and mineral chemistry of 67667, a unique feldspathic lherzolite
NASA Technical Reports Server (NTRS)
Hansen, E. C.; Smith, J. V.; Steele, I. M.
1980-01-01
The petrography and mineral chemistry of 67667 lherzolite suggests cataclasis of a fine-grained high-temperature rock, perhaps formed as a cumulate in a high-level pluton. With the exception of the Sr content of plagioclase, the mineral chemistry fits with that of major rock types ascribed to the lunar crust. No evidence is found to favor a relationship between 67667 and present-day meteorites falling on the earth.
Characterization and utilization potential of basalt rock from East-Lampung district
NASA Astrophysics Data System (ADS)
Isnugroho, K.; Hendronursito, Y.; Birawidha, D. C.
2018-01-01
The aim of this research was to study the petrography and chemical properties of basalt rock from East Lampung district, Lampung province. Petrography analysis was performed using a polarization microscope, and analysis of chemical composition using X-RF method. From the analysis of basalt rock samples, the mineral composition consists of pyroxene, plagioclase, olivine, and opaque minerals. Basic mass of basalt rock samples is, composed of plagioclase and pyroxene with subhedral-anhedral shape, forming intergranular texture, and uniform distribution. Mineral plagioclase is colorless and blade shape, transformed into opaque minerals with a size of <0.2 mm, whereas pyroxene present among the blades of plagioclase, with a greenish tint looked and a size of <0.006 mm. Mineral opaque has a rectangular shape to irregular, with a size of <0.16 mm. The chemical composition of basalt rock samples, consisting of 37.76-59.64 SiO2; 10.10-20.93 Fe2O3; 11.77-14.32 Al2O3; 5.57-14.75 CaO; 5.37-9.15 MgO; 1.40-3.34 Na2O. From the calculation, obtained the value of acidity ratio (Ma) = 3.81. With these values, indicate that the basalt rock from East Lampung district has the potential to be utilized as stone wool fiber.
Conner, Amber J.
2013-01-01
Abstract Lake Magic is one of the most extreme of hundreds of ephemeral acid-saline lakes in southern Western Australia. It has pH as low as 1.7, salinity as high as 32% total dissolved solids, temperatures ranging from 0°C to 50°C, and an unusually complex aqueous composition. Optical petrography, UV-vis petrography, and laser Raman spectrometry were used to detect microorganisms and organic compounds within primary fluid inclusions in modern bedded halite from Lake Magic. Rare prokaryotes appear as 1–3 μm, bright cocci that fluoresce green with UV-vis illumination. Dimpled, 5–7 μm yellow spherules that fluoresce blue with UV-vis illumination are interpreted as Dunaliella algae. Yellow-orange beta-carotene crystals, globules, and coatings are characterized by orange-red fluorescence and three distinct Raman peaks. Because acid saline lakes are good Mars analogues, the documentation of prokaryotes, eukaryotes, and organic compounds preserved in the halite here has implications for the search for life on Mars. Missions to Mars should incorporate such in situ optical and chemical examination of martian evaporites for possible microorganisms and/or organic compounds in fluid inclusions. Key Words: Acid—Extremophiles—Western Australia—Fluid inclusions—Lake Magic—Dunaliella. Astrobiology 13, 850–860. PMID:23971647
Antarctic Meteorite Newsletter, volume 8, number 1
NASA Technical Reports Server (NTRS)
1985-01-01
Preliminary descriptions and classifications of meteorites examined since the July 1984 newsletter are presented. Each macroscopic description summarizes features that were visible to the eye (with, at most, 50X magnification). Each thin section description represents features that were found in a survey-level examination of a polished thin section that was prepared from a small (usually extrior) chip of the meteorite. Classification is based on microscopic petrography and reconnaissance-level electron-probe microanalyses.
Ultrabasic breccias in layered intrusions - The Rhum complex
NASA Technical Reports Server (NTRS)
Donaldson, C. H.
1975-01-01
Two breccias in the southwest part of the ultrabasic Rhum complex are considered. Aspects of field relations are discussed along with questions regarding the petrography of the matrix. Attention is given to textures and chemical mineralogy, the mechanism of brecciation, matrix magmas, and the possible implications of the findings. It is concluded that the Harris Bay and Ard Mheall ultrabasic breccias formed by brecciation due to the intrusion of feldspathic peridotite magmas.
NASA Astrophysics Data System (ADS)
Rat, Juliette; Mouthereau, Frédéric; Bernet, Matthias; Brichau, Stéphanie; Balvay, Mélanie; Garzanti, Eduardo; Ando, Sergio
2017-04-01
Detrital content of sediments preserved in basins provide constraints on the nature of source rocks, dynamics of sediment transport, and potentially on tectonics and climate changes. U-Pb dating method on detrital zircon is ideally suited for provenance studies due to the ability of U-Pb age data to resist several orogenic cycles. However, with the aim to track sediment source evolution over a single orogenic cycle and determine characteristic time and parameters controlling the geochronological signal preservation throughout the cycle from rifting, mountain building to post-collision evolution, low-temperature thermochronology combined with sediment petrography are more appropriate than the U-Pb dating approach taken alone. To better understanding processes at play in the long-term geochronological signal preservation we focus on the sediment record associated with the Iberia plate tectonic evolution, which is part of the OROGEN research project, co-financed by BRGM, TOTAL & CNRS. The Iberian plate recorded a period of extension in the Late Jurassic, followed during the Early Cretaceous (Aptian-Albian) by a major thinning event documented by thick syn-rift sediments in intraplate basins and plate-scale heating/cooling of the Iberia crust, as argued by published fission track ages. Paleogeographic reconstructions that are based on stratigraphic and lithofacies analyses in northern Iberia (Iberian Range, Pyrenees and Basque-Cantabrians Range), describe a large domain of continental/fluvial and shallow-marine siliciclastic deposition. The related detrital content was then recycled during the subsequent Pyrenean orogenic phase in the Ebro foreland basin, and eventually transfer to the Mediterranean realm during post-orogenic re-excavation of the Ebro basin. In this study, we complete the published time-temperature paths in the mesozoic syn-rift basins by providing new thermo-chronological analyses of well-dated syn-collision and post-collision stratigraphic sections of the Ebro basin to determine thermal control on preservation through burial and geothermal evolution. We combined this study with sediments petrography analyses to identify relative control of source petrography, hydraulic sorting, alteration and diagenesis processes on the signal preservation during sediment transfer. All these observations will ultimately be incorporated in a geodynamic reconstruction of Iberia, and compared with age predictions from a model coupling surface processes and thermal evolution.
Moore, Diane E.; Ponce, David A.
2001-01-01
A larger group of samples, most of them 1"-diameter cores, on which density and magnetic susceptibility measurements were made as part of gravity and magnetic surveys of the Hayward Fault. Because this second group of samples received less extensive laboratory study, examination of them was limited to standard petrographic microscope examination of covered thin sections. The density and susceptibility measurements of this second group of samples are included in this report.
NASA Astrophysics Data System (ADS)
Zaid, Samir M.
2017-10-01
Petrography and bulk rock geochemistry of the Middle Miocene sandstones of the lower and upper members of Gebel El Rusas Formation along the Egyptian Red Sea Coastal plain, have been investigated to determine the provenance, tectonic setting, and weathering condition of this formation. The Lower Member is formed mainly of sandstones and conglomerates with clay interbeds. The Upper Member is more calcareous and formed mainly of sandstones and limestones with marls and clays intercalations. Petrographically, the Lower Member sandstones are mostly immature and classified as arkoses with an average framework composition of Q_{66}F_{29}R5, and the Upper Member sandstones are partly submature (more quartzose, less feldspathic) and classified as subarkoses with an average framework composition of Q_{80}F_{17}R3. The Gebel El Rusas sandstones are enriched in Sr, Ba, Zr and Rb and depleted in Co and U, as compared to UCC. The chemical index of alteration (CIA) values suggest moderate weathering conditions. The geochemistry results revealed that the Gebel El Rusas sandstones were derived from felsic-granitic source rocks and deposited in a passive margin of a synrift basin. The inferred tectonic setting for Middle Miocene Gebel El Rusas sandstones in the study area is consistent with the regional geology of the Eastern Desert of Egypt during Middle Miocene.
NASA Technical Reports Server (NTRS)
Taylor, Lawrence A.; Chambers, John G.; Patchen, Allan; Jerde, Eric A.; Mckay, David S.; Graf, John; Oder, Robin R.
1993-01-01
The rocks and soils of the Moon will be the raw materials for fuels and construction needs at a lunar base. This includes sources of materials for the generation of hydrogen, oxygen, metals, and other potential construction materials. For most of the bulk material needs, the regolith, and its less than 1 cm fraction, the soil, will suffice. But for specific mineral resources, it may be necessary to concentrate minerals from rocks or soils, and it is not always obvious which is the more appropriate feedstock. Besides an appreciation of site geology, the mineralogy and petrography of local rocks and soils is important for consideration of the resources which can provide feedstocks of ilmenite, glass, agglutinates, anorthite, etc. In such studies, it is very time-consuming and practically impossible to correlate particle counts (the traditional method of characterizing lunar soil petrography) with accurate modal analyses and with mineral associations in multi-mineralic grains. But x ray digital imaging, using x rays characteristic of each element, makes all this possible and much more (e.g., size and shape analysis). An application of beneficiation image analysis, in use in our lab (Oxford Instr. EDS and Cameca SX-50 EMP), was demonstrated to study mineral liberation from lunar rocks and soils. Results of x ray image analysis are presented.
Lithification of vitric- and clastic-matrix breccias - SEM petrography
NASA Technical Reports Server (NTRS)
Phinney, W. C.; Mckay, D. S.; Warner, J. L.; Simonds, C. H.
1976-01-01
A scanning electron microscope was used in a petrographic investigation of the matrix textures of 41 lunar breccias ranging from very friable soil clods through coherent microbreccias and tough vitric breccias to tough, fine-grained crystalline breccias. It was found that as their coherence increases, the matrices display a gradual increase in the content of glass from 1 or 2% as filaments less than 1 micron across through 5-50% as irregularly shaped patches up to 200 microns across to over 50% as continuous networks.
NASA Technical Reports Server (NTRS)
Ladle, G. H.
1978-01-01
A conceptual model of a lava fountain consists of a vent, spatter ramparts, fountain column, downwind plume and associated pumice deposits. Glassy particles produced by lava fountain eruptions consist primarily of sideromelane glass and minor to moderate amounts of vesicles and crystals. Particles are classified on the basis of morphology as: (1) spherical, (2) elongate, (3) glass-coated mineral grain, (4) shard, (5) reticulite, (6) composite particle, and (7) lithic fragment.
Quenching and disruption of lunar KREEP lava flows by impacts
NASA Technical Reports Server (NTRS)
Ryder, Graham
1988-01-01
The results of a reexamination of petrography of the Apollo 15 KREEP basalts are reported. Several of the basalts contain yellow residual glasses which cross-cut the crystallized phases; some show more extreme disruption. The features of the glasses appear to be compatible only with impact disruption, ejection, and quenching from actively crystallizing flows, indicating a high impact flux immediately after the impact that formed the Imbrium basin. No other example of impacts into active lava flows is known in the solar system.
Twenty-Fourth Lunar and Planetary Science Conference. Part 2: G-M
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-01-01
The topics covered include the following: meteorites, meteoritic composition, geochemistry, planetary geology, planetary composition, planetary craters, the Moon, Mars, Venus, asteroids, planetary atmospheres, meteorite craters, space exploration, lunar geology, planetary surfaces, lunar surface, lunar rocks, lunar soil, planetary atmospheres, lunar atmosphere, lunar exploration, space missions, geomorphology, lithology, petrology, petrography, planetary evolution, Earth surface, planetary surfaces, volcanology, volcanos, lava, magma, mineralogy, minerals, ejecta, impact damage, meteoritic damage, tectonics, etc. Separate abstracts have been prepared for articles from this report.
du Bray, Edward A.; Van Gosen, Bradley S.
2015-01-01
The Paleocene Fort Union Formation hosts a compositionally diverse array of Eocene plugs, dikes, and sills arrayed around the Eocene Big Timber stock in the Crazy Mountains of south-central Montana. The geochemistry and petrography of the sills have not previously been characterized or interpreted. The purpose of this report is (1) to present available geochemical and petrographic data for several dozen samples of these rocks and (2) to provide a basic interpretive synthesis of these data.
Pierce, B.S.; Eble, C.F.; Stanton, R.W.
1995-01-01
The proximate, petrographic, palynologic, and plant tissue data from two sets of samples indicate a high ash, gelocollinite- and liptinite-rich coal consisting of a relatively diverse paleoflora, including lycopsid trees, small lycopsids, tree ferns, small ferns, pteridosperms, and rare calamites and cordaites. The relatively very high ash yields the relatively thin subunits and the large scale vertical variations in palynomorph floras suggest that the study area was at the edge of the paleopeat-forming environment. -from Authors
NASA Astrophysics Data System (ADS)
Song, Yu; Liu, Zhaojun; Meng, Qingtao; Wang, Yimeng; Zheng, Guodong; Xu, Yinbo
2017-06-01
The petrography, mineralogy and geochemistry of sedimentary rocks from the lower Cretaceous Muling Formation (K1ml) in the Laoheishan basin, northeast (NE) China are studied to determine the weathering intensity, provenance and tectonic setting of the source region. Petrographic data indicate the average quartz-feldspar-lithic fragments (QFL) of the sandstone is Q = 63 %, F = 22 %, and L = 15 %. Lithic fragments mainly contain volcanic clasts that derived from surrounding basement. X-ray diffraction (XRD) data reveal abundant clay and detrital minerals (e.g. quartz), as well as minor calcite in the fine-grained sediments. The Hf contents and element concentration ratios such as Al2O3/TiO2, Co/Th, La/Sc, and La/Th are comparable to sediments derived from felsic and intermediate igneous rocks. The strong genetic relationship with the igneous rocks from the northwest and northeast areas provides evidence that the sediments of the Muling Formation (K1ml) in the Laoheishan basin have been derived from this area. The chemical index of alteration (CIA) and index of chemical variability (ICV) reveal an intensive weathering in the source region of the sediments. The multidimensional tectonic discrimination diagrams indicate that the source rocks of K1ml are mainly derived from the collision system. However, they may also comprise sediments derived from the continental rift system. The results are consistent with the geology of the study area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Atta, R.O.
Recent discovery (1979) and commercial production of natural gas in arkosic sandstone (Clark and Wilson sand, informal) of the Cowlitz Formation near Mist, Oregon, has stimulated interest in the sedimentology and stratigraphy of Narizian sandstones of northwestern Oregon and the Willamette lowlands. Petrographic study of arkosic sandstone in the lower part of the Cowlitz Formation in surface outcrops in Clatsop, Tillamook, and Columbia Counties, Oregon, and in the Texaco 1 Clatskanie well reveals that the composition is more lithic than that of arkosic sandstone (Clark and Wilson sand) in the upper part of the Cowlitz Formation. The petrography of highlymore » permeable, arkosic sandstone in the Spencer Formation in the western Tualatin Valley south of the Mist gas field is identical in framework grain composition, texture, matrix composition, and heavy mineral content to that of the gas producing Clark and Wilson sand. The petrography of sandstone in the Yamhill Formation in the western Tualatin Valley is very like that of sandstone in the lower part of the Cowlitz Formation of northern northwest Oregon. Diagenetic alteration is more pronounced in arkosic sandstone in the lower part of the Cowlitz Formation and in the Yamhill Formation compared to diagenesis, which is almost nil in arkosic sandstone in the upper part of the cowlitz and in the Spencer Formations. Natural gas exploration will be aided by a clearer and more certain understanding of these petrologic differences between Eocene sandstones in northwestern Oregon.« less
NASA Astrophysics Data System (ADS)
Hara, Hidetoshi; Kunii, Miyuki; Hisada, Ken-ichiro; Ueno, Katsumi; Kamata, Yoshihito; Srichan, Weerapan; Charusiri, Punya; Charoentitirat, Thasinee; Watarai, Megumi; Adachi, Yoshiko; Kurihara, Toshiyuki
2012-11-01
The provenance, source rock compositions, and sediment supply system for a convergence zone of the Paleo-Tethys were reconstructed based on the petrography and geochemistry of clastic rocks of the Inthanon Zone, northern Thailand. The clastic rocks are classified into two types based on field and microscopic observations, the modal composition of sandstone, and mineral compositions: (1) lithic sandstone and shale within mélange in a Permo-Triassic accretionary complex; and (2) Carboniferous quartzose sandstone and mudstone within the Sibumasu Block. Geochemical data indicate that the clastic rocks of the mélange were derived from continental island arc and continental margin settings, which correspond to felsic volcanic rocks within the Sukhothai Zone and quartz-rich fragments within the Indochina Block, respectively. The results of a mixing model indicate the source rocks were approximately 35% volcanic rocks of the Sukhothai Zone and 65% craton sandstone and upper continental crust of the Indochina Block. In contrast, Carboniferous quartzose sedimentary rocks within the Sibumasu Block originated from a continental margin, without a contribution from volcanic rocks. In terms of Paleo-Tethys subduction, a continental island arc in the Sukhothai Zone evolved in tandem with Late Permian-Triassic forearc basins and volcanic activity during the Middle-early Late Triassic. The accretionary complex formed contemporaneously with the evolution of continental island arc during the Permo-Triassic, supplied with sediment from the Sukhothai Zone and the Indochina Block.
NASA Astrophysics Data System (ADS)
Weiss, A.; Martindale, R. C.; Kosir, A.; Oefinger, J.
2017-12-01
The Paleocene-Eocene Thermal Maximum (PETM) event ( 56.3 Ma) was a period of massive carbon release into the Earth system, resulting in significant shifts in ocean chemistry. It has been proposed that ocean acidification - a decrease in the pH and carbonate saturation state of the water as a result of dissolved carbon dioxide in sea water - occurred in both the shallow and deep marine realms. Ocean acidification would have had a devastating impact on the benthic ecosystem, and has been proposed as the cause of decreased carbonate deposition in marine sections and coral reef collapse during the late Paleocene. To date, however, the only physical evidence of Paleocene-Eocene ocean acidification has been shown for offshore sites (i.e., a shallow carbonate compensation depth), but isotope analysis (i.e. B, I/Ca) suggests that acidification occurred in the shallow shelves as well. Several sites in the Kras region of Slovenia, has been found to contain apparent erosion surfaces coeval with the Paleocene-Eocene Boundary. We have investigated these potentially acidified horizons using petrography, stable carbon isotopes, cathodoluminescence, and elemental mapping. These datasets will inform whether the horizons formed by seafloor dissolution in an acidified ocean, or are due to subaerial exposure, or burial diagenesis (i.e. stylotization). Physical erosion and diagenesis can easily be ruled out based on field relationships and petrography, but the other potential causes must be analyzed more critically.
NASA Astrophysics Data System (ADS)
Farrand, W. H.; Wright, S. P.; Glotch, T. D.; Schröder, C.; Sklute, E. C.; Dyar, M. D.
2018-07-01
Hydro- and glaciovolcanism are processes that have taken place on both Earth and Mars. The amount of materials produced by these processes that are present in the martian surface layer is unknown, but may be substantial. We have used Mars rover analogue analysis techniques to examine altered tuff samples collected from multiple hydrovolcanic features, tuff rings and tuff cones, in the American west and from glaciovolcanic hyaloclastite ridges in Washington state and in Iceland. Analysis methods include VNIR-SWIR reflectance, MWIR thermal emissivity, thin section petrography, XRD, XRF, and Mössbauer spectroscopy. We distinguish three main types of tuff that differ prominently in petrography and VNIR-SWIR reflectance: minimally altered sideromelane tuff, gray to brown colored smectite-bearing tuff, and highly palagonitized tuff. Differences are also observed between the tuffs associated with hydrovolcanic tuff rings and tuff cones and those forming glaciovolcanic hyaloclastite ridges. For the locations sampled, hydrovolcanic palagonite tuffs are more smectite and zeolite rich while the palagonitized hyaloclastites from the sampled glaciovolcanic sites are largely devoid of zeolites and relatively lacking in smectites as well. The gray to brown colored tuffs are only observed in the hydrovolcanic deposits and appear to represent a distinct alteration pathway, with formation of smectites without associated palagonite formation. This is attributed to lower temperatures and possibly longer time scale alteration. Altered hydro- or glaciovolcanic materials might be recognized on the surface of Mars with rover-based instrumentation based on the results of this study.
Petrology of Two Itokawa Particles: Comparison with Equilibrated LL Chondrites
NASA Technical Reports Server (NTRS)
Komatsu, M.; Mikouchi, T.; Arai, T.; Fagan, T. J.; Zolensky, M.; Hagiya, K.; Ohsumi, K.; Karouji, Y.
2015-01-01
A strong link between Itokawa particles and LL chondrites was confirmed by preliminary examinations of Hayabusa particles [e.g., 1, 2]. Both poorly equilibrated and highly equilibrated particles have been found among the grains returned from Itokawa [1], and it is suggested that they correspond to LL4 and LL5-6, respectively. Here we report the petrography of two Itokawa particles and TEM study of one, and compare them to Antarctic LL chondrites with variable petrologic types (LL4-LL7) in order to understand the metamorphic history of asteroid Itokawa.
Large Meteorite Impacts and Planetary Evolution
NASA Technical Reports Server (NTRS)
1997-01-01
Topics considered include: Petrography, geochemistry and geochronology; impact-induced hydrothermal base metal mineralization; nickel-and platinum group element -enriched quartz norite in the latest jurassic morokweng impact structure, south Africa; extraterrestrial helium trapped in fullerenes in the sudbury; synthetic aperture radar characteristics of a glacially modified meltsheet; the chicxulub seismic experiment; chemical compositions of chicxulub impact breccias; experimental investigation of the chemistry of vaporization of targets in relation to the chicxulub impact; artificial ozone hole generation following a large meteoroid impact into an oceanic site; three dimensional modeling of impactite bodies of popigai impact crater, Russia.
Volkert, R.A.; Puffer, J.H.
1995-01-01
Diabase dikes of widespread occurrence intrude only middle Proterozoic rocks in the New Jersey Highlands. These dikes are enriched in TiO2, P2O5, Zr, and light rare earth elements, and have compositions that range from tholeiitic to alkalic. Dike descriptions, field relations, petrography, geochemistry, petrogenesis, and tectonic setting are discussed. The data are consistent with emplacement in a rift-related, within-plate environment and suggest a correlation with other occurrences of late Proterozoic Appalachian basaltic magmatism.
SQUID-SIMS is a useful approach to uncover primary signals in the Archean sulfur cycle
NASA Astrophysics Data System (ADS)
Fischer, Woodward W.; Fike, David A.; Johnson, Jena E.; Raub, Timothy D.; Guan, Yunbin; Kirschvink, Joseph L.; Eiler, John M.
2014-04-01
Many aspects of Earth's early sulfur cycle, from the origin of mass-anomalous fractionations to the degree of biological participation, remain poorly understood-in part due to complications from postdepositional diagenetic and metamorphic processes. Using a combination of scanning high-resolution magnetic superconducting quantum interference device (SQUID) microscopy and secondary ion mass spectrometry (SIMS) of sulfur isotopes (32S, 33S, and 34S), we examined drill core samples from slope and basinal environments adjacent to a major Late Archean (∼2.6-2.5 Ga) marine carbonate platform from South Africa. Coupled with petrography, these techniques can untangle the complex history of mineralization in samples containing diverse sulfur-bearing phases. We focused on pyrite nodules, precipitated in shallow sediments. These textures record systematic spatial differences in both mass-dependent and mass-anomalous sulfur-isotopic composition over length scales of even a few hundred microns. Petrography and magnetic imaging demonstrate that mass-anomalous fractionations were acquired before burial and compaction, but also show evidence of postdepositional alteration 500 million y after deposition. Using magnetic imaging to screen for primary phases, we observed large spatial gradients in Δ33S (>4‰) in nodules, pointing to substantial environmental heterogeneity and dynamic mixing of sulfur pools on geologically rapid timescales. In other nodules, large systematic radial δ34S gradients (>20‰) were observed, from low values near their centers increasing to high values near their rims. These fractionations support hypotheses that microbial sulfate reduction was an important metabolism in organic-rich Archean environments-even in an Archean ocean basin dominated by iron chemistry.
Clast Selection and Metallographic Cooling Rates: Initial Results on Type 1A and 2A Mesosiderites
NASA Technical Reports Server (NTRS)
Baecker, B.; Cohen, B. A.; Rubin, A. E.; Frasl, B.; Corrigan, C. M.
2017-01-01
We initiated a comprehensive study on selected clasts and metal of mesosiderites using SEM, electron microprobe and the complete suite of noble gases. Here we report initial results on the petrography of selected clasts and metallographic cooling rates using the central Ni method used in sev-eral publications. We focus on the approach of selecting grains in least recrystallized mesosiderites. Hence, especially (lithic) clasts in type 1A, 1B, 2A and 2B are the first choice. They provide highest primitive-ness and least annealing/metamorphism. All grains selected should be in close proximity to each other. Lithic clasts in mesosiderites are of high interest be-cause of their igneous texture and similarity to eucrites and howardite petrography. We find pyrox-enes (px) and plagioclase (plag) attached to each other which implies a common formation history. It will be interesting to see differences and similarities in their noble gas inventory (CRE ages, trapped components and closure temperature). In addition, we will investi-gate variations of the lithic clasts toward similar grains in the thick sections which are not igneous. Plag grains are the best bases for noble gas measurements con-cerning He to Ar and Ar-Ar dating since it delivers im-portant target elements. We focus on plag grains in close contact to olivine (olv) / px grains to assess weth-er both grains show noble gas patterns being similar or different. Phosphate grains are suitable for Kr and Xe measurements since they yield REE abundances (tar-get elements).
NASA Astrophysics Data System (ADS)
Snyder, H.; Leva-Lopez, J.
2017-12-01
During the late Campanian age in North America fluvial systems drained the highlands of the Sevier orogenic belt and travelled east towards the Western Interior Seaway. One of such systems deposited the Canyon Creek Member (CCM) of the Ericson Formation in south-western Wyoming. At this time the fluvial system was being partially controlled by laterally variable subsidence caused by incipient Laramide uplifts. These uplifts rather than real topographic features were only areas of reduced subsidence at the time of deposition of the CCM. Surface expression at that time must have been minimum, only minute changes in slope and accommodation. Outcrops around these Laramide structures, in particular both flanks of the Rock Springs Uplift, the western side of the Rawlins uplift and the north flank of the Uinta Mountains, have been sampled to study the petrography, grain size, roundness and sorting of the CCM, which along with the cross-bed thickness and bar thickness allowed calculation of the hydraulic parameters of the rivers that deposited the CCM. This study reveals how the fluvial system evolved and responded to the very small changes in subsidence and slope. Furthermore, the petrography will shed light on the provenance of these sandstones and on the relative importance of Sevier sources versus Laramide sources. This work is framed in a larger study that shows how incipient Laramide structural highs modified the behavior, style and architecture of the fluvial system, affecting its thickness, facies characteristics and net-to-gross both down-dip and along strike across the basin.
Rb-Sr Isotopic Systematics of Alkali-Rich Fragments in the Yamato-74442 LL-Chondritic Breccia
NASA Technical Reports Server (NTRS)
Yokoyama, T.; Misawa, K.; Okano, O.; Shih, C.-Y.; Nyquist, L. E.; Simo, J. I.; Tappa, M. J.; Yoneda, S.
2012-01-01
Alkali-rich igneous fragments were identified in the brecciated LL-chondrites, Kr henberg (LL5)], Bhola (LL3-6) and Yamato (Y)-74442 (LL4), and show characteristic fractionation patterns of alkaline elements. The K-Rb-Cs-rich fragments in Kr henberg, Bhola, and Y-74442 are very similar in mineralogy and petrography (olivine + pyroxene + glass), suggesting that they could have come from related precursor materials. We have undertaken Rb-Sr isotopic studies on alkali-rich fragments in Y-74442 to precisely determine their crystallization ages and the isotopic signatures of their precursor material(s).
Elephant Moraine 87521 - The first lunar meteorite composed of predominantly mare material
NASA Technical Reports Server (NTRS)
Warren, Paul H.; Kallemeyn, Gregory W.
1989-01-01
This paper presents the results of trace-element analyses and detailed petrography obtained for the Elephant Moraine 87521 meteorite (EET87521) found recently in Antarctica. Its high values found for the Fe/Mn ratio and the bulk-Co content indicate that the EET87521 is not, as was originally classified, a eucrite. Moreover, its low Ga/Al and Na/Ca ratios exclude the possibility that it is an SNC meteorite. These and other characteristics (e.g., a very low Ti content) of the EET87521 suggest its affinity with very-low-Ti high-alumina varieties of lunar mare basalt.
Rubin, D.M.; Friedman, G.M.
1981-01-01
A chert bed in this Formation is strikingly similar in petrography and inferred origin to Australian and South African silcretes. It occurs along an erosion surface that formed subaerially, and it contains colloform chalcedony and abundant ferruginous minerals. This chert also contains pseudomorphs and ghosts of halite. Silica precipitated from a solution that became enriched in electrolytes as a result of dissolving halite. Sand- size chert grains in the Whitehall are petrographically like the Whitehall silcrete and are probably grains of reworked silcrete.-Authors
The geologic evolution of the moon
NASA Technical Reports Server (NTRS)
Lowman, P. D., Jr.
1971-01-01
A synthesis of pre- and post-Apollo 11 studies is presented to produce an outline of the moon's geologic evolution from three lines of evidence: (1) relative ages of lunar landforms and rock types, (2) absolute ages of returned lunar samples, and (3) petrography, chemistry, and isotopic ratios of lunar rocks and soils. It is assumed that the ray craters, circular mare basins, and most intermediate circular landforms are primarily of impact origin, although many other landforms are volcanic or of hybrid origin. The moon's evolution is divided into four main stages, each including several distinct but overlapping events or processes.
Apollo 16 stratigraphy - The ANT hills, the Cayley Plains, and a pre-Imbrian regolith
NASA Technical Reports Server (NTRS)
Taylor, G. J.; Drake, M. J.; Hallam, M. E.; Marvin, U. B.; Wood, J. A.
1973-01-01
A total of 645 particles in the 1 to 2 mm size range has been classified in the Apollo 16 soil samples 60602,3, 61242,7, 66042,4, 67602,13, and 69942,13. Five major categories of lithic fragments recognized in these samples include (1) an anorthositic/noritic/troctolitic, or ANT suite, (2) light-matrix breccias, (3) poikiloblastic noritic/anorthositic fragments, (4) spinel-troctolites, and (5) feldspathic basalts. The petrography and phase chemistry of the lithic fragments are discussed along with results of the fragment census and the stratigraphy of the Apollo 16 site.
Petrography and provenance of Apollo 15 soils
NASA Technical Reports Server (NTRS)
Basu, A.; Mckay, D. S.
1979-01-01
Preliminary petrographic and electron probe data from Apollo 15 soils, collected as a part of a comprehensive project, are presented and four principal soil petrographic provinces at the Apollo 15 site are examined. The ratio of non-mare/mare component decreases gradually from the Apennine Front in the south to the mare surface in the north. KREEP basalts appear to be an essential component of the Apennine Bench Formation. The ANT suite rocks contribute only slightly to the population of monomineralic pyroxene, but approximately 30% of the monomineralic olivine are derived from this suite, suggesting troctolitic and dunitic sources.
NASA Astrophysics Data System (ADS)
Mambwe, Pascal; Milan, Luke; Batumike, Jacques; Lavoie, Sébastien; Jébrak, Michel; Kipata, Louis; Chabu, Mumba; Mulongo, Sonya; Lubala, Toto; Delvaux, Damien; Muchez, Philippe
2017-05-01
The Mwale Formation that constitutes the base of the Nguba Group in the Neoproterozoic Katanga Supergroup has recently attracted renewed interest for copper mineral exploration. We present new field observations combined with detailed logging and petrography of MWAS0001 drill hole at Shanika syncline in the Tenke Fungurume Mining District. Our study has enabled us to subdivide the Mwale Formation into 7 distinct sequences. This succession is host to glaciogenic, glaciomarine, glaciofluvial and glaciolacustrine deposits. Glaciomarine beds are typically a deposit by debris flow in deep water marine environment, induced by basin wide tectonics and glaciation influence. Glaciofluvial beds were deposited in shallow water, fluvial deltaic environment. The glaciolacustrine environment is indicated by dropstones occurring in the laminated mudstone and rhythmites with dispersed clasts observed in the siltstone and conglomerate. These beds are interlayered within the glaciogenic beds, and are characterised by variable clast composition (felsic, mafic and metamorphic). The clasts are very poorly sorted, angular, rounded to moderately rounded, faceted or striated, and supported in a sandy argillaceous or mud matrix. Two main episodes of sulphide mineralisation are distinguished in the Mwale Formation. The diagenetic episode consists of disseminated euhedral and framboidal pyrites. The hydrothermal episode is associated with Mg-metasomatism and characterised by low grade copper mineralisation that occurs (i) in veins filled with carbonate-chlorite and carbonate-quartz-chlorite-Cu sulphides, such as chalcocite, chalcopyrite and bornite, and (ii) as disseminated sulphides within the host rock. This second episode is late to post-orogenic and can be correlated with late brittle tectonics within the Lufilian arc. The other alteration types include silicification and potassic alteration; however, these alterations are not associated with mineralisation.
NASA Astrophysics Data System (ADS)
Shervais, John W.; Vetter, Scott K.
1993-05-01
Many current models for the origin of lunar highland rocks feature as an essential component the assimilation of KREEPy material by primitive magmas parental to the Mg-rich suite and alkali suite plutonic rocks. Similar models have also been proposed for the origin of various mare basalt suites. However, any model which considers assimilation of KREEP an important petrologic process must sooner-or-later deal with the question: what is KREEP? Because pristine KREEP basalts are rare, and most known samples are small (e.g., 15382/15386), the geochemical variability of KREEP basalts is poorly known. Other KREEP compositions which are commonly used in these models include the hypothetical 'high-K KREEP' component of Warren and Wasson, which is derived from Apollo 14 soil data, and the 'superKREEP' quartz-monzodiorite 15405. Lunar breccia 15205 is a polymict regolith breccia that consists of approximately 20% KREEP basalt clasts and 20% quartz-normative basalt clasts in a KREEP-rich matrix. Bulk rock mixing calculations show that this sample comprises about 84% KREEP. The clasts range up to 1 cm in size, but most are considerably smaller. The primary aim is to characterize pristine KREEP basalts petrographically, to establish the range in chemical compositions of KREEP basalts, and to test models that were proposed for their origin. In addition, we may be able to extend the compositional range recognized in the quartz-normative basalt suite and cast some light on its origin as well. Preliminary whole rock geochemical data on the KREEP basalts are presented in a companion paper by M.M. Lindstrom and co-workers. Concentration is on petrography and mineral chemistry of these clasts, and the implications these data have for the origin of the different melt rock suites.
NASA Astrophysics Data System (ADS)
Dal Corso, Jacopo; Gianolla, Piero; Newton, Robert J.; Franceschi, Marco; Roghi, Guido; Caggiati, Marcello; Raucsik, Béla; Budai, Tamás; Haas, János; Preto, Nereo
2015-04-01
In the early Late Triassic a period of increased rainfall, named the Carnian Pluvial Event (CPE), is evidenced by major lithological changes in continental and marine successions worldwide. The environmental change seems to be closely associated with a negative carbon isotope excursion that was identified in a stratigraphic succession of the Dolomites (Italy) but the temporal relationship between these phenomena is still not well defined. Here we present organic-carbon isotope data from Carnian deep-water stratigraphic sections in Austria and Hungary, and carbonate petrography of samples from a marginal marine section in Italy. A negative 2-4‰ δ13C shift is recorded by bulk organic matter in the studied sections and is coincident with a similar feature highlighted in higher plant and marine algal biomarker carbon-isotope records from the Dolomites (Italy), thus testifying to a global change in the isotopic composition of the reservoirs of the exchangeable carbon. Our new observations verify that sedimentological changes related to the CPE coincide with the carbon cycle perturbation and therefore occurred synchronously within the western Tethys. Consistent with modern observations, our results show that the injection of 13C-depleted CO2 into the Carnian atmosphere-ocean system may have been directly responsible for the increase in rainfall by intensifying the Pangaean mega-monsoon activity. The consequent increased continental weathering and erosion led to the transfer of large amounts of siliciclastics into the basins that were rapidly filled up, while the increased nutrient flux triggered the local development of anoxia. The new carbonate petrography data show that these changes also coincided with the demise of platform microbial carbonate factories and their replacement with metazoan driven carbonate deposition. This had the effect of considerably decreasing carbonate deposition in shallow water environments.
SQUID–SIMS is a useful approach to uncover primary signals in the Archean sulfur cycle
Fischer, Woodward W.; Fike, David A.; Johnson, Jena E.; Raub, Timothy D.; Guan, Yunbin; Kirschvink, Joseph L.; Eiler, John M.
2014-01-01
Many aspects of Earth’s early sulfur cycle, from the origin of mass-anomalous fractionations to the degree of biological participation, remain poorly understood—in part due to complications from postdepositional diagenetic and metamorphic processes. Using a combination of scanning high-resolution magnetic superconducting quantum interference device (SQUID) microscopy and secondary ion mass spectrometry (SIMS) of sulfur isotopes (32S, 33S, and 34S), we examined drill core samples from slope and basinal environments adjacent to a major Late Archean (∼2.6–2.5 Ga) marine carbonate platform from South Africa. Coupled with petrography, these techniques can untangle the complex history of mineralization in samples containing diverse sulfur-bearing phases. We focused on pyrite nodules, precipitated in shallow sediments. These textures record systematic spatial differences in both mass-dependent and mass-anomalous sulfur-isotopic composition over length scales of even a few hundred microns. Petrography and magnetic imaging demonstrate that mass-anomalous fractionations were acquired before burial and compaction, but also show evidence of postdepositional alteration 500 million y after deposition. Using magnetic imaging to screen for primary phases, we observed large spatial gradients in Δ33S (>4‰) in nodules, pointing to substantial environmental heterogeneity and dynamic mixing of sulfur pools on geologically rapid timescales. In other nodules, large systematic radial δ34S gradients (>20‰) were observed, from low values near their centers increasing to high values near their rims. These fractionations support hypotheses that microbial sulfate reduction was an important metabolism in organic-rich Archean environments—even in an Archean ocean basin dominated by iron chemistry. PMID:24706767
Tectonic isolation from regional sediment sourcing of the Paradox Basin
NASA Astrophysics Data System (ADS)
Smith, T. M.; Saylor, J.; Sundell, K. E.; Lapen, T. J.
2017-12-01
The Appalachian and Ouachita-Marathon mountain ranges were created by a series of tectonic collisions that occurred through the middle and late Paleozoic along North America's eastern and southern margins, respectively. Previous work employing detrital zircon U-Pb geochronology has demonstrated that fluvial and eolian systems transported Appalachian-derived sediment across the continent to North America's Paleozoic western margin. However, contemporaneous intraplate deformation of the Ancestral Rocky Mountains (ARM) compartmentalized much of the North American western interior and mid-continent. We employ lithofacies characterization, stratigraphic thickness, paleocurrent data, sandstone petrography, and detrital zircon U-Pb geochronology to evaluate source-sink relationships of the Paradox Basin, which is one of the most prominent ARM basins. Evaluation of provenance is conducted through quantitative comparison of detrital zircon U-Pb distributions from basin samples and potential sources via detrital zircon mixture modeling, and is augmented with sandstone petrography. Mixing model results provide a measure of individual source contributions to basin stratigraphy, and are combined with outcrop and subsurface data (e.g., stratigraphic thickness and facies distributions) to create tectonic isolation maps. These maps elucidate drainage networks and the degree to which local versus regional sources influence sediment character within a single basin, or multiple depocenters. Results show that despite the cross-continental ubiquity of Appalachian-derived sediment, fluvial and deltaic systems throughout much of the Paradox Basin do not record their influence. Instead, sediment sourcing from the Uncompahgre Uplift, which has been interpreted to drive tectonic subsidence and formation of the Paradox Basin, completely dominated its sedimentary record. Further, the strong degree of tectonic isolation experienced by the Paradox Basin appears to be an emerging, yet common feature among other intraplate, tectonically active basins.
NASA Technical Reports Server (NTRS)
Shervais, John W.; Vetter, Scott K.
1993-01-01
Many current models for the origin of lunar highland rocks feature as an essential component the assimilation of KREEPy material by primitive magmas parental to the Mg-rich suite and alkali suite plutonic rocks. Similar models have also been proposed for the origin of various mare basalt suites. However, any model which considers assimilation of KREEP an important petrologic process must sooner-or-later deal with the question: what is KREEP? Because pristine KREEP basalts are rare, and most known samples are small (e.g., 15382/15386), the geochemical variability of KREEP basalts is poorly known. Other KREEP compositions which are commonly used in these models include the hypothetical 'high-K KREEP' component of Warren and Wasson, which is derived from Apollo 14 soil data, and the 'superKREEP' quartz-monzodiorite 15405. Lunar breccia 15205 is a polymict regolith breccia that consists of approximately 20% KREEP basalt clasts and 20% quartz-normative basalt clasts in a KREEP-rich matrix. Bulk rock mixing calculations show that this sample comprises about 84% KREEP. The clasts range up to 1 cm in size, but most are considerably smaller. The primary aim is to characterize pristine KREEP basalts petrographically, to establish the range in chemical compositions of KREEP basalts, and to test models that were proposed for their origin. In addition, we may be able to extend the compositional range recognized in the quartz-normative basalt suite and cast some light on its origin as well. Preliminary whole rock geochemical data on the KREEP basalts are presented in a companion paper by M.M. Lindstrom and co-workers. Concentration is on petrography and mineral chemistry of these clasts, and the implications these data have for the origin of the different melt rock suites.
Antarctic Meteorite Newsletter, volume 9, no. 2
NASA Technical Reports Server (NTRS)
Gooding, J. L. (Editor)
1986-01-01
Preliminary description and classifications of meteorites that were completed since publication of the February issue are contained. Most large (greater than 150 g) specimens (regardless of petrologic type) and all pebble sized (less than 150 g) specimens of special petrologic type are represented by separate descriptions. However, specimens of nonspecial petrologic type are listed only as single line entries. For convenience, new specimens are also recast by petrologic type. Each macroscopic description summarizes features that were visible to the eye at the time the meteorite was first examined. Classification is based on microscopic petrography and resonnaissance-level electron-probe microanalysis. The pairing list was updated.
U.S. Geological Survey silicate rock standards
Flanagan, F.J.
1967-01-01
The U.S. Geological Survey has processed six silicate rocks to provide new reference samples to supplement G-1 and W-1. Complete conventional, rapid rock, and spectrochemical analyses by the U.S. Geological Survey are reported for a granite (replacement for G-1), a granodiorite, an andesite, a peridotite, a dunite, and a basalt. Analyses of variance for nickel, chromium, copper, and zirconium in each rock sample showed that for these elements, the rocks can be considered homogeneous. Spectrochemical estimates are given for the nickel, chromium, copper, and zirconium contents of the samples. The petrography of five of the six rocks is described and CIPW norms are presented. ?? 1967.
Combined infrared and analytical electron microscope studies of interplanetary dust particles
NASA Technical Reports Server (NTRS)
Bradley, J. P.; Humecki, H. J.; Germani, M. S.
1992-01-01
Ultramicrotomed thin sections (less than 100 nm thick) of eight chondritic interplanetary dust particles (IDPs) were studied by analytical electron microscopy and IR microspectroscopy with the objective of identifying IDPs or their specific components with IR spectral transmission characteristics at 10 microns similar to those of comets. Two IDPs are identified whose silicate emission characteristics between 8 and 12 microns are similar to those of comets Halley and Bradfield. Implanted solar flare tracks and sputtered rims resulting from solar wind damage suggest that the minerology and petrography of these IDPs have not been significantly perturbed since ejection from their parent bodies.
Petrographic evidence shows that pottery exchange between the Olmec and their neighbors was two-way
Stoltman, James B.; Marcus, Joyce; Flannery, Kent V.; Burton, James H.; Moyle, Robert G.
2005-01-01
Petrographic thin sections of pottery from five Formative Mexican archaeological sites show that exchanges of vessels between highland and lowland chiefly centers were reciprocal, or two-way. These analyses contradict recent claims that the Gulf Coast was the sole source of pottery carved with iconographic motifs. Those claims were based on neutron activation, which, by relying on chemical elements rather than actual minerals, has important limitations in its ability to identify nonlocal pottery from within large data sets. Petrography shows that the ceramics in question (and hence their carved motifs) have multiple origins and were widely traded. PMID:16061796
Five questions to ask about the soils
NASA Astrophysics Data System (ADS)
Kasanin Grubin, Milica
2013-04-01
I think that anyone who ever gave a lecture would agree that this feels like being on a stage. One has to educate the audience of course, but also keep attention and be interesting to the listeners. Authority is important but there is a certain vulnerability at all times. There is also a fine line on both sides that should not be crossed. However, the most important thing is that the audience remembers the lecture and certain points the lecturer made for at least some time, and even more that someone gets interested enough to ask for more details. This is often done by giving interesting examples and unusual comparison. Teaching a soils course there are five main questions to be addressed, of which first four are often subordinated to the fifth being the most complex. First question is "Is the soil alive?". The answer is yes, and that is what it differentiates from any type of sediment or rock, and it is very vulnerable to environmental change. The second question is "Where does it come from?" Rocks being a main origin of soils are often neglected in soil science and petrography in general, and weathering, as an important process for soil formation, are not given enough explaining. Petrography teaches us about rock characteristics, structure and texture and mineralogy. Understanding petrography would help in understanding the weathering processes which are crucial for soil formation and this must not be ignored. The third question is "Is it old?" Yes, it is - at least for everybody else except geologists. It is important to understand how slow the soil formation process is. The forth question is "Does it move?" Yes, it can move and the faster it moves downhill, it less likes it. Erosion is a very important problem for soil and must be addressed. And finally, the fifth question is "What are the main characteristics of soils?" This is an opportunity to talk about physical, chemical, biological, microbiological issues. As the most elaborate question it allows the lecturer to talk mostly about the soil issues that are of main interest to the audience. Every soil science course should involve laboratory and field classes as much as possible. Hands on experience has always been of outmost importance and one hour in the lab or in the field can substitute 3-5 hours of lecturing measuring the absorbed information by students. So, to conclude, if one knows that something is alive, what it is made off, how old it is, what will happen to it during natural processes and also during imposed processes one would develop some respect for it and would be interested in its various characteristics and also, probably, how to save it from degradation. If that is all done while having a chance to touch it, and see it in its natural condition, the result would be even more insightful.
NASA Astrophysics Data System (ADS)
Garcia, Michael O.; Presti, A. A.
1987-10-01
Garnet-bearing, mantle-derived pyroxenites have been found at a new locality in Hawaii, Kaula Island. They occur as xenoliths in a nephelinite tuff. Some of the pyroxenites contain basaltic glasses, a common feature in mantle-derived xenoliths. Results of petrography, mineral chemistry, and least-squares mixing calculations show that the glasses are products of infiltration of the host nephelinite into the xenoliths and partial assimilation of garnet, spinel, and clinopyroxene. These results should encourage others to thoroughly test petrographically viable explanations for glasses in xenoliths before invoking absent phases or metasomatic fluids as explanations for the glasses. *Currently with Mobil Oil Company, Houston, Texas
NASA Astrophysics Data System (ADS)
Kurapov, M. Yu.; Ershova, V. B.; Makariev, A. A.; Makarieva, E. V.; Khudoley, A. K.; Luchitskaya, M. V.; Prokopiev, A. V.
2018-03-01
Data on the petrography, geochemistry, and isotopic geochronology of granites from the northern part of the Taimyr Peninsula are considered. The Early-Middle Carboniferous age of these rocks has been established (U-Pb, SIMS). Judging by the results of 40Ar/39Ar dating, the rocks underwent metamorphism in the Middle Permian. In geochemical and isotopic composition, the granitic rocks have much in common with evolved I-type granites. This makes it possible to specify a suprasubduction marginal continental formation setting. The existence of an active Carboniferous margin along the southern edge of the Kara Block (in presentday coordinates) corroborates the close relationship of the studied region with the continent of Baltia.
Mineralogy and Microstructures of Shock-Induced Melt Veins in Chondrites
NASA Technical Reports Server (NTRS)
Sharp, Thomas G.
2000-01-01
The applicability of phase equilibrium data to the interpretation of shock-induced melt veins can only be tested by a detailed study of melt- vein mineralogy to see how high-pressure assemblages vary as a function of shock conditions inferred from other indicators. We have used transmission electron microscopy (TEM), analytical electron microscopy (AEM), scanning electron microscopy (SEM), electron microprobe analysis (EMA) and optical petrography to characterize the mineralogy, microstructures, and compositions of melt veins and associated high-pressure minerals in shocked chondrites and SNC meteorites. In the processes, we have gained a better understanding of what melt veining can tell us about shock conditions and we have discovered new mineral phases in chondritic and SNC meteorites.
Updates on Pairing Issues with the US Antarctic Meteorite Collection
NASA Technical Reports Server (NTRS)
Righter, K.; Satterwhite, C.; Schutt, J.
2015-01-01
The US Antarctic meteorite program has re-covered >21,000 meteorites since 1976, with thousands of those recovered from several icefields over multiple seasons, some-times spanning over a decade [1]. Pairing is assigned as best as possible at the time of classification, based on information from the field team, macro-scale hand sample features in the lab, and petrography, but later focused studies can reveal details that suggest re-evaluation of pairing groups. As a result, pairing groups are revealed over time, and must be continuously updated. Here we examine a few groups with known issues and give an update on some of the larger or more significant pairing groups.
Paragenesis and Geochronology of the Nopal I Uranium Deposit, Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. Fayek; M. Ren
2007-02-14
Uranium deposits can, by analogy, provide important information on the long-term performance of radioactive waste forms and radioactive waste repositories. Their complex mineralogy and variable elemental and isotopic compositions can provide important information, provided that analyses are obtained on the scale of several micrometers. Here, we present a structural model of the Nopal I deposit as well as petrography at the nanoscale coupled with preliminary U-Th-Pb ages and O isotopic compositions of uranium-rich minerals obtained by Secondary Ion Mass Spectrometry (SIMS). This multi-technique approach promises to provide ''natural system'' data on the corrosion rate of uraninite, the natural analogue ofmore » spent nuclear fuel.« less
NASA Astrophysics Data System (ADS)
Mohammedyasin, Mohammed Seid; Desta, Zerihun; Getaneh, Worash
2017-10-01
The aim of this work is to evaluate the genesis and tectonic setting of the Kenticha rare metal granite-pegmatite deposit using petrography and whole-rock geochemical analysis. The samples were analysed for major elements, and trace and rare earth elements by ICP-AES and ICP-MS, respectively. The Kenticha rare metal granite-pegmatite deposit is controlled by the N-S deep-seated normal fault that allow the emplacement of the granite-pegmatite in the study area. Six main mineral assemblages have been identified: (a) alaskitic granite (quartz + microcline + albite with subordinate muscovite), (b) aplitic layer (quartz + albite), (c) muscovite-quartz-microcline-albite pegmatite, (d) spodumene-microcline-albite pegmatite, partly albitized or greisenized, (e) microcline-albite-green and pink spodumene pegmatite with quartz-microcline block, which is partly albitized and greisenized, and (f) quartz core. This mineralogical zonation is also accompanied by variation in Ta ore concentration and trace and rare earth elements content. The Kenticha granite-pegmatite is strongly differentiated with high SiO2 (72-84 wt %) and enriched with Rb (∼689 ppm), Be (∼196 ppm), Nb (∼129 ppm), Ta (∼92 ppm) and Cs (∼150 ppm) and depleted in Ba and Sr. The rare earth element (REE) patterns of the primary ore zone (below 60 m depth) shows moderate enrichment in light REE ((La/Yb)N = ∼8, and LREE/HREE = ∼9.96) and negative Eu-anomaly (Eu/Eu* = ∼0.4). The whole-rock geochemical data display the Within Plate Granite (WPG) and syn-Collisional Granite (syn-COLG) suites and interpret as its formation is crustal related melting. The mineralogical assemblage, tectonic setting and geochemical signatures implies that the Kenticha rare metal bearing granite pegmatite is formed by partial melting of metasedimentary rocks during post-Gondwana assembly and further tantalite enrichment through later hydrothermal-metasomatic processes.
Provenance and paleogeography of the Devonian Durazno Group, southern Parana Basin in Uruguay
NASA Astrophysics Data System (ADS)
Uriz, N. J.; Cingolani, C. A.; Basei, M. A. S.; Blanco, G.; Abre, P.; Portillo, N. S.; Siccardi, A.
2016-03-01
A succession of Devonian cover rocks occurs in outcrop and in the subsurface of central-northern Uruguay where they were deposited in an intracratonic basin. This Durazno Group comprises three distinct stratigraphic units, namely the Cerrezuelo, Cordobés and La Paloma formations. The Durazno Group does not exceed 300 m of average thickness and preserves a transgressive-regressive cycle within a shallow-marine siliciclastic shelf platform, and is characterized by an assemblage of invertebrate fossils of Malvinokaffric affinity especially within the Lower Devonian Cordobés shales. The sedimentary provenance of the Durazno Group was determined using petrography, geochemistry, and morphological studies of detrital zircons as well as their U-Pb ages. Sandstone petrography of Cerrezuelo and La Paloma sequences shows that they have a dominantly quartz-feldspathic composition with a minor contribution of other minerals. Whole-rock geochemical data indicate that alteration was strong in each of the three formations studied; chondritic-normalized REE patterns essentially parallel to PAAS, the presence of a negative Eu-anomaly, and Th/Sc and La/Hf ratios point to an average source composition similar to UCC or slightly more felsic. Within the Cerrezuelo Formation, recycling of older volcano-metasedimentary sources is interpreted from Zr/Sc ratios and high Hf, Zr, and REE concentrations. U-Pb detrital zircon age populations of the Cerrezuelo and La Paloma formations indicate that the principal source terranes are of Neoproterozoic age, but include also minor populations derived from Mesoproterozoic and Archean-Paleoproterozoic rocks. A provenance from the Cuchilla Dionisio-Dom Feliciano, Nico Pérez and Piedra Alta terranes of Uruguay and southern Brazil is likely. This study establishes an intracratonic extensional tectonic setting during Durazno time. Considering provenance age sources, regional paleocurrent distributions and the established orogenic history recorded in SW Gondwana, we suggest that the basin fill was derived from paleohighs located in what is currently SE Uruguay.
The Mukundpura meteorite, a new fall of CM chondrite
NASA Astrophysics Data System (ADS)
Ray, Dwijesh; Shukla, Anil D.
2018-02-01
Mukundpura is a new CM chondrite fell near Jaipur, Rajasthan, India on June 6, 2017 at 5:15 IST. The fall was observed by local villager. According to eyewitness, the meteorite was fragmented into several pieces once the object hit the ground. Based on petrography, mineralogy and bulk composition, Mukundpura is classified as CM2 chondrite. The chondrules are mainly similar to type I (Olivine: Fo99). Olivines are often found associated with pyroxene (Wo10-35En62-87Fs2-7) phenocryst. However, occurrences of forsteritic and fayalitic olivine (Fa58-71) as isolated mineral clast in matrix are not uncommon. Other types of chondrules include porphyritic pyroxene (En86Fs14) and barred olivine (Fa32.7±0.3) clast. Chondrules are commonly rimmed by fine-grained accretionary dust mantles. Phyllosilicates are the most dominant secondary mineral in matrix and largely associated with poorly characterised phases (PCP). FeO/SiO2 and S/SiO2 of PCP are 2.7 and 0.4 respectively. Other phases in matrix generally include calcite (pure CaCO3), Fe-Ni metal and sulphides. Spinel and perovskite occur occasionally as inclusions. The spherical or elliptical shaped metals (within chondrule or in isolated grains) are low-Ni type (kamacite <7.5 wt%) and resembles the solar Ni/Co ratio. However, Ni content in metal rarely exceeds 8.5 wt% (up to 23 wt%, taenite). Pyrrhotite (Fe ∼62 wt%; S ∼38 wt%) and pentlandite (Fe ∼31-33 wt%, Ni ∼28-32 wt%, S ∼33 wt%)) are the common sulphides occur as isolated grains within the matrix, however, the former is the most dominant. The bulk chemical composition of Mukundpura is largely similar to other CM type chondrite (e.g. Paris CM). Based on petrography, we infer a modest aqueous alteration stage for Mukundpura while the effect of thermal metamorphism was negligible.
NASA Astrophysics Data System (ADS)
Domnick, Urs; Cook, Nigel J.; Bluck, Russel; Brown, Callan; Ciobanu, Cristiana L.
2018-02-01
The Blackbush uranium deposit (JORC Inferred Resource: 12,580 tonnes U), located on the north-eastern Eyre Peninsula, is currently the only sediment-hosted U deposit investigated in detail in the Gawler Craton. Uranium is hosted within Eocene sandstone of the Kanaka Beds, overlying Mesoproterozoic granites of the Samphire pluton, affiliated with the Hiltaba Intrusive Suite ( 1.6 Ga). These are considered the most probable source rocks for uranium mineralisation. By constraining the petrography and mineralogy of the granites, insights into the post-emplacement evolution can be gained, which may provide an exploration indicator for other sediment-hosted uranium systems. Three geochemically distinct granite types were identified in the Samphire Pluton and correspond to domains interpreted from geophysical data. All granites show complex alteration overprints and textures with increasing intensity closer to the deposit, as well as crosscutting veining. Alkali feldspar has been replaced by porous K-feldspar and albite, and plagioclase is overprinted by an assemblage of porous albite + sericite ± calc-silicates (prehnite, pumpellyite and epidote). This style of feldspar alteration is regionally widespread and known from Hiltaba-aged granites associated with iron-oxide copper-gold mineralisation at Olympic Dam and in the Moonta-Wallaroo region. In two granite types biotite is replaced by calcic garnet. Calc-silicates are indicative of Ca-metasomatism, sourced from the anorthite component of altered plagioclase. Minor clay alteration of feldspars is present in all samples. Mineral assemblages in veins include quartz + hematite, hematite + coffinite, fluorite + quartz, and clay minerals. Minor chlorite and sericite are found in all vein types. All granite types are anomalously rich in U (concentrations between 10 and 81 ppm). Highly variable Th/U ratios, as well as hydrothermal U minerals (mostly coffinite) in granites and veins, are clear evidence for U mobility. Uranium may have been preconcentrated in veins in the upper parts of the pluton, and was subsequently leached after deposition of the sediment.
FORGE Milford Digitized Geophysical Logs from Acord 1
Jones, Clay G.; Moore, Joseph N.
2016-03-31
This submission includes digitalized versions of the following: McCulloch Geothermal Corp Acord 1-26 Cover Letter McCulloch Geothermal Corp Acord 1-26 Drilling Plan McCulloch Geothermal Corp Acord 1-26 Bond Documents Division of Water Rights Permission to Drill Drillers Log Geothermal Data (Mud) Log Compensated Densilog - Neutron Log Dual Induction Focused Log BHC Acoustilog Differential Temperature Log Dual Induction Focused Log Gamma Ray Neutron Log Temperature Log Caliper Temperature Log (Run 3) Densilog Gamma Ray Neutron Log Temperature Log (Run 4) Compensated Densilog Sample Log (Page 1 of 2) Report of Well Driller Stratigraphic Report (J.E. Welsh) Photographs and Negatives of Acord 1-26 Well Site (7) Petrography Report (M.J. Sweeney) Cuttings Samples (21 Boxes at Utah Core Research Center)
Effects of Space Weathering on Lunar Rocks: Scanning Electron Microscope Petrography
NASA Technical Reports Server (NTRS)
Wentworth, Susan J.; Keller, Lindsay P.; McKay, David S.
1998-01-01
Lunar rocks that have undergone direct exposure to the space weathering environment at the surface of the Moon commonly have patinas on their surfaces. Patinas are characterized by visible darkening and other changes in spectral properties of rocks. They form as a result of bombardment by micrometeorites, solar wind, and solar flares. Processes of space weathering and patina production have clearly been significant in the formation and history of the lunar regolith. It is very likely that other planetary bodies without atmospheres have undergone similar alteration processes; therefore, it is critical to determine the relationship between patinas and their host rocks in view of future robotic and remote-sensing missions to the Moon and other planetary bodies.
Chemistry of Diogenites and Evolution of their Parent Asteroid
NASA Technical Reports Server (NTRS)
Mittlefehldt, D.W.; Beck, A.W.; McSween, H.Y.; Lee, C-T A.
2009-01-01
Diogenites are orthopyroxenite meteorites [1]. Most are breccias, but remnant textures indicate they were originally coarse-grained rocks, with grain sizes of order of cm. Their petrography, and major and trace element chemistry support an origin as crustal cumulates from a differentiated asteroid. Diogenites are genetically related to the basaltic and cumulate-gabbro eucrites, and the polymict breccias known as howardites, collectively, the HED suite. Spectroscopic observations, orbit data and dynamical arguments strongly support the hypothesis that asteroid 4 Vesta is the parent object for HED meteorites [2]. Here we discuss our new trace element data for a suite of diogenites and integrate these into the body of literature data. We use the combined data set to discuss the petrologic evolution of diogenites and 4 Vesta.
NASA Technical Reports Server (NTRS)
Heiken, G.
1974-01-01
Volcanic ash samples collected from a variety of recent eruptions were studied, using petrography, chemical analyses, and scanning electron microscopy to characterize each ash type and to relate ash morphology to magma composition and eruption type. The ashes are best placed into two broad genetic categories: magnetic and hydrovolcanic (phreatomagmatic). Ashes from magmatic eruptions are formed when expanding gases in the magma form a froth that loses its coherence as it approaches the ground surface. During hydrovolcanic eruptions, the magma is chilled on contact with ground or surface waters, resulting in violent steam eruptions. Within these two genetic categories, ashes from different magma types can be characterized. The pigeon hole classification used here is for convenience; there are eruptions which are driven by both phreatic and magmatic gases.
Pairing Relationships Among Feldspathic Lunar Meteorites from Miller Range, Antarctica
NASA Technical Reports Server (NTRS)
Zeigler, Ryan A.; Korotev, R. L.; Jolliff, B. L.
2012-01-01
The Miller Range ice fields have been amongst the most prolific for lunar meteorites that ANSMET has searched [1-3]. Six different stones have been recovered during the 2005, 2007, and 2009 field seasons: MIL 05035 (142 g), MIL 07006 (1.4 g), MIL 090034 (196 g), MIL 090036 (245 g), MIL 090070 (137 g), and MIL 090075 (144 g). Of these, the five stones collected during the 2007 and 2009 seasons are feldspathic breccias. Previous work on the Miller Range feldspathic lunar meteorites (FLMs) has suggested that they are not all paired with each other [4-5]. Here we examine the pairing relationships among the Miller Range FLMs using petrography in concert with traceand major-element compositions.
Porphyry of Russian Empires in Paris
NASA Astrophysics Data System (ADS)
Bulakh, Andrey
2014-05-01
Porphyry of Russian Empires in Paris A. G. Bulakh (St Petersburg State University, Russia) So called "Schokhan porphyry" from Lake Onega, Russia, belongs surely to stones of World cultural heritage. One can see this "porphyry" at facades of a lovely palace of Pavel I and in pedestal of the monument after Nicolas I in St Petersburg. There are many other cases of using this stone in Russia. In Paris, sarcophagus of Napoleon I Bonaparte is constructed of blocks of this stone. Really, it is Proterozoic quartzite. Geology situation, petrography and mineralogical characteristic will be reported too. Comparison with antique porphyre from the Egyptian Province of the Roma Empire is given. References: 1) A.G.Bulakh, N.B.Abakumova, J.V.Romanovsky. St Petersburg: a History in Stone. 2010. Print House of St Petersburg State University. 173 p.
Geologic setting and petrology of Apollo 15 anorthosite /15415/.
NASA Technical Reports Server (NTRS)
Wilshire, H. G.; Schaber, G. G.; Jackson, E. D.; Silver, L. T.; Phinney, W. C.
1972-01-01
The geological setting, petrography and history of this Apollo 15 lunar rock sample are discussed, characterizing the sample as coarse-grained anorthosite composed largely of calcic plagioclase with small amounts of three pyroxene phases. The presence of shattered and granulated minerals in the texture of the rock is traced to two or more fragmentation events, and the presence of irregular bands of coarsely recrystallized plagioclase and minor pyroxene crossing larger plagioclase grains is traced to an earlier thermal metamorphic event. It is pointed out that any of these events may have affected apparent radiometric ages of elements in this rock. A comparative summarization of data suggests that this rock is the least-deformed member of a suite of similar rocks ejected from beneath the regolith at Spur crater.
NASA Technical Reports Server (NTRS)
Reid, Arch M.; Le Roex, Anton P.
1988-01-01
The petrography, mineral chemistry, and whole-rock compositions of volcanic rocks dredged from the Funk Seamount, located 60 km NW of Marion Island in the southwestern Indian Ocean, are presented together with the mineral chemistry of their inclusions. On the basis of these characteristics, the possible relationships between the Funk Seamount's volcanic rocks and the megacrysts and xenoliths in these rocks are discussed. It is argued that the Funk Seamount lavas derive from a similar mantle source region as that of the Marion Island and Prince Edward Island hotspot lavas. The geochemical signature of these lavas implies derivation from a source that is enriched (e.g., in Ti, K, P, and Nb) over the depleted mantle source regions for the adjacent mid-ocean ridge basalts.
The cali meteorite fell: A new H/L ordinary chondrite
Rodriguez, J.M.T.; Llorca, J.; Rubin, A.E.; Grossman, J.N.; Sears, D.W.G.; Naranjo, M.; Bretzius, S.; Tapia, M.; Sepulveda, M.H.G.
2009-01-01
The fall of the Cali meteorite took place on 6 July 2007 at 16 h 32 ?? 1 min local time (21 h 32 ?? 1 min UTC). A daylight fireball was witnessed by hundreds of people in the Cauca Valley in Colombia from which 10 meteorite samples with a total mass of 478 g were recovered near 3??24.3'N, 76??30.6'W. The fireball trajectory and radiant have been reconstructed with moderate accuracy. From the computed radiant and from considering various plausible velocities, we obtained a range of orbital solutions that suggest that the Cali progenitor meteoroid probably originated in the main asteroid belt. Based on petrography, mineral chemistry, magnetic susceptibility, fhermoluminescence, and bulk chemistry, the Cali meteorite is classified as an H/L4 ordinary chondrite breccia.
Geology and geochemistry of the Arctic prospect, Ambler District, Alaska
NASA Astrophysics Data System (ADS)
Schmidt, J. M.
The Arctic volcanogenic massive sulfide prospect is the largest known (40 million ton) deposit hosted by the low greenschist grade, latest Devonian Ambler Sequence of bimodal, basaltic and rhyolitic volcanic and volcanoclastic rocks, pelitic, graphitic and calcareous metasediments. Detailed field mapping, core logging, petrography, X-ray diffractometry, electron microprobe analyses and whole-rock major element analyses of hydrothermally altered rocks were used to determine the emplacement history and setting of sulfide deposition. Low greenschist grade metamorphism was essentially isochemical on a macroscopic scale, and preserved volcanic compositions, the major element chemistry of alteration and the compositions of individual metamorphic, alteration and relict igneous minerals. Mineralization at Arctic was formed along a synvolcanic fault in a tectonically and volcanically active basin within a rifted continental margin, possibly related to an actively spreading oceanic rift.
The building stones of ancient Egypt a gift of its geology
NASA Astrophysics Data System (ADS)
Klemm, Dietrich D.; Klemm, Rosemarie
2001-08-01
Building stones and clay-rich Nile mud were ancient Egypt's main raw construction materials. While the mud was easily accessible along the Nile river valley, the immense quantities of the different stone materials used for construction of the famous pyramids, precious temples and tombs needed a systematic quarrying organization, well arranged transport logistics over extreme distances and a high standard of stone masonry. The petrography, occurrence, and main applications of the 11 most popular stone types used in ancient Egypt are described in this contribution. Rough estimates of the scale of this mining activity, based on the volume of many different ancient quarry sites, all over Egypt, reveal that the monuments known today represent only a small fraction of the amount of building stones mined during the long, ancient Egyptian history.
NASA Technical Reports Server (NTRS)
Mishra, R. K.; Simon, J. I.; Ross, D. K.; Marhas, K. K.
2016-01-01
Calcium, Aluminum-rich inclusions (CAIs) are the first forming solids of the Solar system. Their observed abundance, mean size, and mineralogy vary quite significantly between different groups of chondrites. These differences may reflect the dynamics and distinct cosmochemical conditions present in the region(s) of the protoplanetary disk from which each type likely accreted. Only about 11 such objects have been found in L and LL type while another 57 have been found in H type ordinary chondrites, compared to thousands in carbonaceous chondrites. At issue is whether the rare CAIs contained in ordinary chondrites truly reflect a distinct population from the inclusions commonly found in other chondrite types. Semarkona (LL3.00) (fall, 691 g) is the most pristine chondrite available in our meteorite collection. Here we report petrography and mineralogy of 3 CAIs from Semarkona
Warwick, Peter D.; Crowley, Sharon S.; Ruppert, Leslie F.; Pontolillo, James
1997-01-01
This study examined the petrographic and geochemical characteristics of two lignite beds (3500 and 4500 beds, Manning Formation, Jackson Group, Eocene) that are mined at the Gibbons Creek mine in east-central Texas. The purpose of the study was to identify the relations among sample ash yield, coal petrography, and trace-element concentrations in lignite and adjoining rock layers of the Gibbons Creek mine. Particular interest was given to the distribution of 12 environmentally sensitive trace elements (As, Be, Cd, Cr, Co, Hg, Mn, Ni, Pb, Sb, Se, and U) that have been identified as potentially hazardous air pollutants (HAPs) in the United States Clean Air Act Amendments of 1990. Eleven lignite, floor, and rock parting samples were collected from incremental channel samples of the 3500 and 4500 beds that were exposed in a highwall of pit A3 at the Gibbons Creek mine. Short proximate and ultimate and forms of sulfur analyses were performed on all lignite samples, and lignite and rock samples were analyzed for 60 major, minor and trace elements. Representative splits of all lignite samples were ground and cast into pellets, and polished for petrographic analyses in blue-light fluorescence and reflected white light to determine liptinite, inertinite, and huminite maceral group percentages. The following observations summarize our results and conclusions about the geochemistry, petrography, and sedimentology of the 3500 and 4500 beds of the Gibbons Creek lignite deposit: (1) Weighted average dry (db) ash yield for the two beds is 29.7%, average total sulfur content is 2.6%, and average calorific value is 7832 Btu (18.22 MJ/kg). Ash yields are greatest in the lower bench (59.33% db) of the 3500 bed and in the upper bench of the 4500 bed (74.61% db). (2) For lignite samples (on a whole-coal basis), the distributions of two of the HAPs (Pb and Sb) are positively related to ash yield, probably indicating an inorganic affinity for these elements. By using cluster analysis we found that Be and Cd were poorly associated with ash yield, indicating a possible organic affinity, and that Ni, Se, Hg, U, and Pb cluster with most of the rare-earth elements. (3) The dominance of the crypto-eugelinite maceral subgroup over the crypto-humotelinite subgroup suggests that all Gibbons Creek lignites were subjected to peat-forming conditions (either biogenic or chemical) conducive to the degradation of wood cellular material into matrix gels, or that original plant material was not very woody and was prone to formation of matrix gels. The latter idea is supported by pollen studies of Gibbons Creek lignite beds; results indicate that the peat was derived in part from marsh plants low in wood tissue. (4) The occurrence of siliceous sponge spicules in the lower benches of the 3500 bed suggests the original peat in this part of the bed was deposited in standing, fresh water. (5) The petrographic data indicate that the upper sample interval of the 3500 bed contains more inertinite (3%) than the other samples studied. Increases in inertinite content in the upper part of the 3500 bed may have been associated with alteration of the peat by acids derived from the volcanic ash or could have been caused by fire, oxidation and drying, or biologic alteration of the peat in the paleo-mire.
Petrography and Geochemistry of the Zamora Batholith in the south of the sub-Andean zone (Ecuador)
NASA Astrophysics Data System (ADS)
Villares, F. M.
2013-05-01
The Zamora Batholith is an intrusive complex that is located in the extreme south-east of Ecuador. It has dimensions of 200 x 50 km approximately. It is mainly located in the Zamora Chinchipe province from which it takes its name. This study consisted in the petrographic and geochemical characterization of the Zamora Batholith in the area covered by 1: 50,000 geological maps of Centro Shaime, Guayzimi, Paquisha, Los Encuentros and El Pangui. Fieldwork was done by the "Proyecto Mapeo Geológico escala 1:50.000 (zonas prospectivas mineras)" of the Instituto Nacional de Investigación Geológico, Minero, Metalúrgico of Ecuador. This research was performed with 59 thin sections and 10 whole - rock chemical analysis done in the C.I.C of the Granada University. The Zamora Batholith intrudes Triassic to Jurassic volcanic rocks. It is overlaid by sandstones of the Hollin Formation of the Upper Aptian age and shale and limestone from the Napo Formation. Post-cretaceous deposits of ash and lava flows of andesitic to rhyolitic compositions cover the batholith. The petrography of the Zamora Batholith ranges from tonalite to monzogranite with the same qualitative mineralogy. The rocks are composed by different proportions of plagioclase, amphibole, feldspar K, quartz, biotite, opaque, pyroxene and epidote, as accessory minerals has zircon, sphene and apatite. To the south of the Conguime and Guayzimi towns, the dominant petrography is medium to coarse grained amphibole granodiorite with tonalitic and monzogranitic subordinates. To the north monzogranites are dominant rocks and subordinate granodiorites. To the East of Santa Elena the sienogranites are associated with El Hito porphyritic granite that intrudes to Zamora Batholith. Frequently the batholith has propylitic alteration; which produces a primary association of chlorite, epidote, calcite and pyrite. The granitoids have dioritic to granitic compositions (60.09 to 73.6 wt.% SiO2) and are I - type, medium to high-K calc-alkaline. They have affinities slightly peraluminous (ASI = 1,00 to 1,16). CaO is moderate to high (CaO ≈ 3.58), the alkalis have averaged of Na2O≈3,09 and K2O≈3,28. The concentrations of Na2O/K2O are moderate ranging between 0.7 and 1.7, with an average value of 1.04. The contents of Ba and Sr are moderate. The content of Zr is low (61 to 161 ppm). The multi-element diagrams normalized to chondritic values and to primitive mantle show Nb and Ta negative anomaly. Considering the multi-element diagrams, the rocks are slightly enriched in LILE (Large Ion-Lithophile-elements) mainly in Rb, Cs and Ba and slight positive anomalies in K and Sr, other incompatible elements have negative anomalies such as HFSE ( High Field Strength Elements) Ti, Nb, Ta. The values of (Eu/Eu*)N are in the range of 0.54 to 1.03. (Eu* = (SmN*GdN)1/2). Correlations between major element and silica, and relationships between trace elements indicate that fractional crystallization is a dominant process in the magma evolution. Most granitoids are also slightly peraluminous; but we believe this characteristic is due to rock alteration. The Zamora Batolith is a plutonic complex generated within a magmatic arc in normal conditions of maturity.
Eble, C.F.; Greb, S.F.; Williams, D.A.; Hower, J.C.
1999-01-01
Eight bench-column samples of the Western Kentucky Number 4 coal bed, collected from an area along the southern margin of the Western Kentucky Coal Field, were analyzed palynologically, petrographically, and geochemically to document both temporal and spatial variability among these parameters. The Western Kentucky Number 4 coal occurs near the top of the Tradewater Formation, is of Early Desmoinesian age, and is correlative with the lower part of the Allegheny Formation of the Appalachian Basin, and Late Bolsovian strata of western Europe. Palynologically, the coal is co-dominated by spores that were produced by lycopod trees (Lycospora and Granasporites medius) and tree ferns. Thin-walled tree fern spores (Punctatisporites minutus, P. minutus, P. rotundus) are more abundant than thick-walled forms (Laevigatosporites globosus, P. granifer). Calamitean spores (Calamospora and Laevigatosporites spp.) are locally abundant as is cordaitean pollen (Florinites). Small fern (Granulatisporites) and small lycopod spores (Densosporites, Cirratriradites, Endosporites and Anacanthotriletes spinosus) are present, but occur in minor amounts. Temporal changes in palynomorph composition occur, but are not uniform between columns. Spatial variability among columns is also evident. Petrographically, the coal is dominated by vitrinite macerals, with telinite and telocollinite generally occurring more commonly than desmocollinite and gelocollinite. Basal benches typically contain high percentages of vitrinite; middle benches usually contain higher percentages of liptinite and inertinite. In about half the studied columns, the terminal coal benches show a slight increase in vitrinite. In the study area, the petrography of the Western Kentucky Number 4 coal is more uniform than the palynology. Ash yields and total sulfur contents are temporally uniform in some columns, but variable in others. In the latter case, higher percentages of ash and sulfur occur at the base of the bed and decrease up to the middle of the bed. The terminal benches of these columns often, but not always, show slight increases in ash or sulfur. Both syngenetic and epigenetic forms of sulfur are present in the Western Kentucky Number 4 coal. The high vitrinite contents and moderate to high sulfur contents suggest that the Western Kentucky Number 4 paleomire was mainly planar and rheotrophic throughout its developmental history. Groundwaters carrying dissolved solutes may have helped neutralize the normally acidic interstitial peat waters allowing for the production of sulfide minerals. Several of the columns with high sulfur contents at the base of the bed occur in faulted areas. The faults could have promoted the flow of groundwaters through the peat, providing an increased dissolved load for acid mitigation and sulfide formation. The concentration of sulfur at the base of the bed may be a function of the peat/underclay contact enhancing sulfide formation. The clay layer may also have acted as an impermeable boundary for downward moving groundwaters, causing mainly lateral, rather than vertical movement along the base of the coal bed.Eight bench-column samples of the Western Kentucky Number 4 coal bed were analyzed palynologically, petrographically, and geochemically to study both temporal and spatial variability among these parameters. Palynologically, the coal is co-dominated by spores that were produced by lycopod trees and tree ferns. Petrographically, the coal is dominated by vitrinite macerals, with telinite and telocollinite generally occurring more commonly than desmocollinite and gelocollinite. The petrography of the coal was found to be more uniform than the palynology.
NASA Astrophysics Data System (ADS)
Ackerman, Lukáš; Magna, Tomáš; Rapprich, Vladislav; Upadhyay, Dewashish; Krátký, Ondřej; Čejková, Bohuslava; Erban, Vojtěch; Kochergina, Yulia V.; Hrstka, Tomáš
2017-07-01
Two Neoproterozoic carbonatite suites of spatially related carbonatites and associated silicate alkaline rocks from Sevattur and Samalpatti, south India, have been investigated in terms of petrography, chemistry and radiogenic-stable isotopic compositions in order to provide further constraints on their genesis. The cumulative evidence indicates that the Sevattur suite is derived from an enriched mantle source without significant post-emplacement modifications through crustal contamination and hydrothermal overprint. The stable (C, O) isotopic compositions confirm mantle origin of Sevattur carbonatites with only a modest difference to Paleoproterozoic Hogenakal carbonatite, emplaced in the same tectonic setting. On the contrary, multiple processes have shaped the petrography, chemistry and isotopic systematics of the Samalpatti suite. These include pre-emplacement interaction with the ambient crustal materials with more pronounced signatures of such a process in silicocarbonatites. Calc-silicate marbles present in the Samalpatti area could represent a possible evolved end member due to the inability of common silicate rocks (pyroxenites, granites, diorites) to comply with radiogenic isotopic constraints. In addition, Samalpatti carbonatites show a range of C-O isotopic compositions, and δ13CV-PDB values between + 1.8 and + 4.1‰ found for a sub-suite of Samalpatti carbonatites belong to the highest values ever reported for magmatic carbonates. These heavy C-O isotopic signatures in Samalpatti carbonatites could be indicative of massive hydrothermal interaction with carbonated fluids. Unusual high-Cr silicocarbonatites, discovered at Samalpatti, seek their origin in the reaction of pyroxenites with enriched mantle-derived alkali-CO2-rich melts, as also evidenced by mantle-like O isotopic compositions. Field and petrographic observations as well as isotopic constraints must, however, be combined with the complex chemistry of incompatible trace elements as indicated from their non-uniform systematics in carbonatites and their individual fractions. We emphasise that, beside common carriers of REE like apatite, other phases may be important for incompatible element budgets, such as mckelveyite-(Nd) and kosmochlor, found in these carbonatites. Future targeted studies, including in-situ techniques, could help further constrain temporal and petrologic conditions of formation of Sevattur and Samalpatti carbonatite bodies.
NASA Astrophysics Data System (ADS)
Petrie, E. S.; Evans, J. P.; Richey, D.; Flores, S.; Barton, C.; Mozley, P.
2015-12-01
Sedimentary rocks in the San Rafael Swell, Utah, were deformed by Laramide compression and subsequent Neogene extension. We evaluate the effect of fault damage zone morphology as a function of structural position, and changes in mechanical stratigraphy on the distribution of secondary minerals across the reservoir-seal pair of the Navajo Sandstone and overlying Carmel Formation. We decipher paleo-fluid migration and examine the effect faults and fractures have on reservoir permeability and efficacy of top seal for a range of geo-engineering applications. Map-scale faults have an increased probability of allowing upward migration of fluids along the fault plane and within the damage zone, potentially bypassing the top seal. Field mapping, mesoscopic structural analyses, petrography, and geochemical observations demonstrate that fault zone thickness increases at structural intersections, fault relay zones, fault-related folds, and fault tips. Higher densities of faults with meters of slip and dense fracture populations are present in relay zones relative to single, discrete faults. Curvature analysis of the San Rafael monocline and fracture density data show that fracture density is highest where curvature is highest in the syncline hinge and near faults. Fractures cross the reservoir-seal interface where fracture density is highest and structural diagensis includes mineralization events and bleaching and calcite and gypsum mineralization. The link between fracture distributions and structural setting implys that transmissive fractures have predictable orientations and density distributions. At the m- to cm- scale, deformation-band faults and joints in the Navajo Sandstone penetrate the reservoir-seal interface and transition into open-mode fractures in the caprock seal. Scanline analysis and petrography of veins provide evidence for subsurface mineralization and fracture reactivation, suggesting that the fractures act as loci for fluid flow through time. Heterolithic caprock seals with variable fracture distributions and morphology highlight the strong link between the variation in material properties and the response to changing stress conditions. The variable connectivity of fractures and the changes in fracture density plays a critical role in subsurface fluid flow.
Papineau, D; De Gregorio, B; Fearn, S; Kilcoyne, D; McMahon, G; Purohit, R; Fogel, M
2016-01-01
Stromatolites composed of apatite occur in post-Lomagundi-Jatuli successions (late Palaeoproterozoic) and suggest the emergence of novel types of biomineralization at that time. The microscopic and nanoscopic petrology of organic matter in stromatolitic phosphorites might provide insights into the suite of diagenetic processes that formed these types of stromatolites. Correlated geochemical micro-analyses of the organic matter could also yield molecular, elemental and isotopic compositions and thus insights into the role of specific micro-organisms among these communities. Here, we report on the occurrence of nanoscopic disseminated organic matter in the Palaeoproterozoic stromatolitic phosphorite from the Aravalli Supergroup of north-west India. Organic petrography by micro-Raman and Transmission Electron Microscopy demonstrates syngeneity of the organic matter. Total organic carbon contents of these stromatolitic phosphorite columns are between 0.05 and 3.0 wt% and have a large range of δ(13) Corg values with an average of -18.5‰ (1σ = 4.5‰). δ(15) N values of decarbonated rock powders are between -1.2 and +2.7‰. These isotopic compositions point to the important role of biological N2 -fixation and CO2 -fixation by the pentose phosphate pathway consistent with a population of cyanobacteria. Microscopic spheroidal grains of apatite (MSGA) occur in association with calcite microspar in microbial mats from stromatolite columns and with chert in the core of diagenetic apatite rosettes. Organic matter extracted from the stromatolitic phosphorites contains a range of molecular functional group (e.g. carboxylic acid, alcohol, and aliphatic hydrocarbons) as well as nitrile and nitro groups as determined from C- and N-XANES spectra. The presence of organic nitrogen was independently confirmed by a CN(-) peak detected by ToF-SIMS. Nanoscale petrography and geochemistry allow for a refinement of the formation model for the accretion and phototrophic growth of stromatolites. The original microbial biomass is inferred to have been dominated by cyanobacteria, which might be an important contributor of organic matter in shallow-marine phosphorites. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Dimalanta, C. B.; Salapare, R. C.; Faustino-Eslava, D. V.; Ramos, N. T.; Queaño, K. L.; Yumul, G. P.; Yang, T. F.
2015-05-01
The Zambales Ophiolite Complex in Luzon, Philippines is made up of two blocks with differing geochemical signatures and ages - the Middle Jurassic to Early Cretaceous Acoje Block-San Antonio Massif that is of island arc tholeiite composition and the Eocene Coto Block-Cabangan Massif which is of transitional mid-ocean ridge basalt-island arc tholeiite affinity. These ophiolitic bodies are overlain by Miocene to Pliocene sedimentary units whose petrochemistry are reported here for the first time. Varying degrees of influences from ophiolitic detritus and from arc volcanic materials, as shown by petrography and indicator elements including Cr, Co and Ni, are observed in these sedimentary formations from north to south and from the oldest to the youngest. The Early to Middle Miocene Cabaluan Formation, whose outcrops are found to overlie only the Acoje Block, registers a more dominant ophiolitic signature as compared to the Late Miocene to Pliocene Santa Cruz Formation. The Santa Cruz Formation is generally characterized by fewer ophiolitic clasts and higher amounts of felsic components. Additionally, within this formation itself, a pronounced compositional change is observed relative to its spatial distribution. From the south to the north, an increase in ophiolitic components and a relative decrease in felsic signature is noted in units of the Santa Cruz Formation. It is therefore inferred that changes in the petrochemistry of rocks from the older Cabaluan to the younger Santa Cruz sedimentary formations record a decline in the influx of ophiolitic detritus or, conversely, the introduction of more diverse sediment sources as the deposition progressed. Detrital zircon U-Pb ages from the Santa Cruz Formation, with peaks at 46.73 ± 0.94 and 5.78 ± 0.13 Ma, reflects this change in provenance from the unroofing of an Early Eocene oceanic crust to fresh contributions from an active volcanic arc during the Late Miocene. The contrast in compositions of the southern and northern Santa Cruz Formation also indicates a closer proximity of the southern units to the source of these non-ophiolitic sources, which most likely corresponds to the Pliocene volcanoes of the West Luzon Arc.
NASA Astrophysics Data System (ADS)
Jonell, Tara; Clift, Peter; Carter, Andrew; Böning, Philipp; Wittmann, Hella
2016-04-01
Summer monsoon precipitation strongly controls erosion and sediment storage in the frontal Himalaya but the relationship between monsoonal variability and erosion is less well-constrained beyond the High Himalayan topographic divide in the rain shadow. Here we establish a Quaternary erosional history for a rain shadow tributary of the upper Indus River system, the Zanskar River, by applying several sediment provenance techniques to modern and dated terrace river sediments. We evaluate if there are temporal links between sediment storage and moisture supply to the rain shadow and if regions like the Zanskar River basin play a significant role in controlling total sediment flux to the Indus River. We compile bulk sediment petrography and Sr and Nd isotope geochemistry, detrital U-Pb zircon and apatite fission track dating with in-situ 10Be cosmogenic radionuclide techniques to identify patterns of erosion and sediment production across Zanskar. Bulk petrography, Sr and Nd isotope geochemistry, and U-Pb detrital zircon spectra of modern and older terrace sediments indicate high rates of erosion along the Greater Himalaya in the Zanskar River basin. We find that the wettest and most glaciated subcatchment dominates the bulk sediment provenance signal, with only moderate input from other tributaries, and that other basin parameters cannot explain our observations. Catchment-averaged in-situ 10Be cosmogenic nuclide concentrations of modern sediments indicate erosion rates up to ˜1.2 mm y-1 but show strong dilution attributed to glacial sediment recycling into the modern river, suggesting rates nearer 0.4-0.6 mm•y-1. These rates are consistent with longer-term rates of incision (0.3-0.7 mm•y-1) calculated from detrital apatite fission track ages, and incision rates inferred from Late Glacial and Holocene terraces near the Zanskar-Indus confluence. Our findings suggest that sediment production in glaciated Himalayan rain shadow environments like Zanskar is largely controlled by internal glacial fluctuations coupled with periodic dissection and reworking of terrace material during strong monsoonal precipitation phases.
Petrography, mineralogy, and geochemistry of lunar meteorite Sayh al Uhaymir 300
NASA Astrophysics Data System (ADS)
Hsu, Weibiao; Zhang, Aicheng; Bartoschewitz, Rainer; Guan, Yunbin; Ushikubo, Takayuki; KrńHenbÜHl, Urs; Niedergesaess, Rainer; Pepelnik, Rudolf; Reus, Ulrich; Kurtz, Thomas; Kurtz, Paul
2008-08-01
We report here the petrography, mineralogy, and geochemistry of lunar meteorite Sayh al Uhaymir 300 (SaU 300). SaU 300 is dominated by a fine-grained crystalline matrix surrounding mineral fragments (plagioclase, pyroxene, olivine, and ilmenite) and lithic clasts (mainly feldspathic to noritic). Mare basalt and KREEPy rocks are absent. Glass melt veins and impact melts are present, indicating that the rock has been subjected to a second impact event. FeNi metal and troilite grains were observed in the matrix. Major element concentrations of SaU 300 (Al2O3 21.6 wt% and FeO 8.16 wt%) are very similar to those of two basalt-bearing feldspathic regolith breccias: Calcalong Creek and Yamato (Y-) 983885. However, the rare earth element (REE) abundances and pattern of SaU 300 resemble the patterns of feldspathic highlands meteorites (e.g., Queen Alexandra Range (QUE) 93069 and Dar al Gani (DaG) 400), and the average lunar highlands crust. It has a relatively LREE-enriched (7 to 10 x CI) pattern with a positive Eu anomaly (˜11 x CI). Values of Fe/Mn ratios of olivine, pyroxene, and the bulk sample are essentially consistent with a lunar origin. SaU 300 also contains high siderophile abundances with a chondritic Ni/Ir ratio. SaU 300 has experienced moderate terrestrial weathering as its bulk Sr concentration is elevated compared to other lunar meteorites and Apollo and Luna samples. Mineral chemistry and trace element abundances of SaU 300 fall within the ranges of lunar feldspathic meteorites and FAN rocks. SaU 300 is a feldspathic impact-melt breccia predominantly composed of feldspathic highlands rocks with a small amount of mafic component. With a bulk Mg# of 0.67, it is the most mafic of the feldspathic meteorites and represents a lunar surface composition distinct from any other known lunar meteorites. On the basis of its low Th concentration (0.46 ppm) and its lack of KREEPy and mare basaltic components, the source region of SaU 300 could have been within a highland terrain, a great distance from the Imbrium impact basin, probably on the far side of the Moon.
Petrography and Geochemistry of Metals in Almahata Sitta Ureilites
NASA Technical Reports Server (NTRS)
Ross, A. J.; Herrin, J. S.; Mittlefehldt, D. W.; Downes, H.; Smith, C. L.; Lee, M. R.; Jones, A. P.; Jenniskens, P.; Shaddad, M. H,
2011-01-01
Ureilites are ultramafic achondrites, predominantly composed of olivine and pyroxenes with accessory carbon, metal and sulfide. The majority of ureilites are believed to represent the mantle of the ureilite parent body (UPB) [1]. Although ureilites have lost much of their original metal [2], the metal that remains retains a record of the formative processes. Almahata Sitta is predominantly composed of unbrecciated ureilites with a wide range of silicate compositions [3,4]. As a fall it presents a rare opportunity to examine fresh ureilite metal in-situ, and analyzing their highly siderophile element (HSE) ratios gives clues to their formation. Bulk siderophile element analyses of Almahata Sitta fall within the range observed in other ureilites [5]. We have examined the metals in seven ureilitic samples of Almahata Sitta (AS) and one associated chondrite fragment (AS#25).
NASA Astrophysics Data System (ADS)
Li, Qiong; Chen, Jie; He, Jian-Jun
2017-12-01
In this study, we experimentally established the relationship between physical properties, vitrinite reflectance, and microstructure of coal, Taiyuan Formation, Qinshui Basin, China using representative coal samples collected from three different mines via the rock mechanics testing system (MTS). We analyzed the organic macerals, vitrinite reflectance, and microstructure of 11 coal samples using petrography and scanning electron microscopy (SEM). The experimental results suggest that (1) the elastic parameters can be described by linear equations, (2) both P-and S-wave velocities display anisotropy, (3) the anisotropy negatively correlates with vitrinite reflectance, and (4) the acoustic velocities and Young's modulus are negatively correlated with the volume of micropores. The derived empirical equations can be used in the forward modeling and seismic inversion of physical properties of coal for improving the coal-bed methane (CBM) reservoir characterization.
Radar-Enabled Recovery of the Sutters Mill Meteorite, a Carbonaceous Chondrite Regolith Breccia
NASA Technical Reports Server (NTRS)
Jenniskens, Petrus M.; Fries, Marc D.; Yin, Qing-Zhu; Zolensky, Michael E.; Krot, Alexander N.; Sandford, Scott A.; Sears, Derek; Beauford, Robert; Ebel, Denton S.; Friedrich, Jon M.;
2012-01-01
Doppler weather radar imaging enabled the rapid recovery of the Sutter's Mill meteorite after a rare 4-kiloton of TNT-equivalent asteroid impact over the foothills of the Sierra Nevada in northern California. The recovered meteorites survived a record high-speed entry of 28.6 kilometers per second from an orbit close to that of Jupiter-family comets (Tisserand's parameter = 2.8 +/- 0.3). Sutter's Mill is a regolith breccia composed of CM (Mighei)-type carbonaceous chondrite and highly reduced xenolithic materials. It exhibits considerable diversity of mineralogy, petrography, and isotope and organic chemistry, resulting from a complex formation history of the parent body surface. That diversity is quickly masked by alteration once in the terrestrial environment but will need to be considered when samples returned by missions to C-class asteroids are interpreted.
A Comparison of Anorthositic Lunar Lithologies: Variation on the FAN Theme
NASA Technical Reports Server (NTRS)
Nyquist, L. E.; Shih, C-Y.; Yamaguchi, A.; Mittlefehldt, D. W.; Peng, Z. X.; Park, J.; Herzog, G. F.; Shirai, N.
2014-01-01
Certain anorthositic rocks that are rare in the returned lunar samples have been identified among lunar meteorites. The variety of anorthosites in the Apollo collection also is more varied than is widely recognized. James eta. identified three lithologies in a composite clast o ferroan anorthosite (FAN)-suite rocks in lunar breccia 64435. They further divided all FANs into four subgroups: anorthositic ferroan (AF), mafic magnesian (MM), mafic ferroan (MF), and anorthositic sodic (AS, absent in the 64435 clast). Here we report Sm-Nd isotopic studies of the lithologies present in the 64435 composite clast and compare the new data to our previous data for lunar anorthosites incuding lunar anorthositic meteorites. Mineralogy-petrography, in situ trace element studies, Sr-isotope studies, and Ar-Ar chronology are included, but only the Nd-isotopic studies are currently complete.
NASA Technical Reports Server (NTRS)
Neal, C. R.; Taylor, L. A.; Patchen, A. D.
1989-01-01
The mineralogy and petrography of very high potassium (VHK) and high alumina (HA) basalts from the Apollo 14 site provide an insight into their magmatic evolution. Generally, their parageneses are similar, with olivine and chromite the early liquidus phases, followed by plagioclase and pyroxene, which crystallized together. Although late-stage ilmenite and FeNi metal occur in both VHK and HA samples, the VHKs also crystallize K-feldspar and Fa-rich olivine. Zoning of constituent minerals is similar for both basalt types, demonstrating that the parental magmas for both HA and VHK basalts became enriched in K, Na, Ca, Fe, and Ti and depleted in Mg and Al as crystallization proceeded. Enrichment of K in the VHK basalts is above that expected from normal fractional crystallization.
NASA Technical Reports Server (NTRS)
Sugavanam, E. B.; Vidyadharan, K. T.
1988-01-01
Presented here are the results of detailed investigations encompassing externsive structural mapping in the charnockite-high grade gneiss terrain of North Arcot district and the type area in Pallavaram in Tamil Nadu supported by petrography, mineral chemistry, major, minor and REE distribution patterns in various lithounits. This has helped in understanding the evolutionary history of the southern peninsular shield. A possible tectonic model is also suggested. The results of these studies are compared with similar rock types from parts of Andhra Pradesh, Kerala, Sri Lanka, Lapland and Nigeria which has brought about a well defined correlation in geochemical characteristics. The area investigated has an interbanded sequence of thick pile of charnockite and a supracrustal succession of shelf type sediments, layered igneous complex, basic and ultrabasic rocks involved in a complex structural, tectonic, igneous and metamorphic events.
Radar-Enabled Recovery of the Sutter’s Mill Meteorite, a Carbonaceous Chondrite Regolith Breccia
NASA Astrophysics Data System (ADS)
Jenniskens, Peter; Fries, Marc D.; Yin, Qing-Zhu; Zolensky, Michael; Krot, Alexander N.; Sandford, Scott A.; Sears, Derek; Beauford, Robert; Ebel, Denton S.; Friedrich, Jon M.; Nagashima, Kazuhide; Wimpenny, Josh; Yamakawa, Akane; Nishiizumi, Kunihiko; Hamajima, Yasunori; Caffee, Marc W.; Welten, Kees C.; Laubenstein, Matthias; Davis, Andrew M.; Simon, Steven B.; Heck, Philipp R.; Young, Edward D.; Kohl, Issaku E.; Thiemens, Mark H.; Nunn, Morgan H.; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Cahill, Thomas A.; Lawton, Jonathan A.; Barnes, David; Steele, Andrew; Rochette, Pierre; Verosub, Kenneth L.; Gattacceca, Jérôme; Cooper, George; Glavin, Daniel P.; Burton, Aaron S.; Dworkin, Jason P.; Elsila, Jamie E.; Pizzarello, Sandra; Ogliore, Ryan; Schmitt-Kopplin, Phillipe; Harir, Mourad; Hertkorn, Norbert; Verchovsky, Alexander; Grady, Monica; Nagao, Keisuke; Okazaki, Ryuji; Takechi, Hiroyuki; Hiroi, Takahiro; Smith, Ken; Silber, Elizabeth A.; Brown, Peter G.; Albers, Jim; Klotz, Doug; Hankey, Mike; Matson, Robert; Fries, Jeffrey A.; Walker, Richard J.; Puchtel, Igor; Lee, Cin-Ty A.; Erdman, Monica E.; Eppich, Gary R.; Roeske, Sarah; Gabelica, Zelimir; Lerche, Michael; Nuevo, Michel; Girten, Beverly; Worden, Simon P.
2012-12-01
Doppler weather radar imaging enabled the rapid recovery of the Sutter’s Mill meteorite after a rare 4-kiloton of TNT-equivalent asteroid impact over the foothills of the Sierra Nevada in northern California. The recovered meteorites survived a record high-speed entry of 28.6 kilometers per second from an orbit close to that of Jupiter-family comets (Tisserand’s parameter = 2.8 ± 0.3). Sutter’s Mill is a regolith breccia composed of CM (Mighei)-type carbonaceous chondrite and highly reduced xenolithic materials. It exhibits considerable diversity of mineralogy, petrography, and isotope and organic chemistry, resulting from a complex formation history of the parent body surface. That diversity is quickly masked by alteration once in the terrestrial environment but will need to be considered when samples returned by missions to C-class asteroids are interpreted.
Interpretation of Ferroan Anorthosite Ages and Implications for the Lunar Magma Ocean
NASA Technical Reports Server (NTRS)
Neal, C. R.; Draper, D. S.
2017-01-01
Ferroan Anorthosites (FANs) are considered to have purportedly crystallized directly from the lunar magma ocean (LMO) as a flotation crust. LMO modeling suggests that such anorthosites started to form only after greater than 70 percent of the LMO had crystallized. Recent age dates for FANs have questioned this hypothesis as they span too large of an age range. This means a younger age for the Moon-forming giant impact or the LMO hypothesis is flawed. However, FANs are notoriously difficult to age-date using the isochron method. We have proposed a mechanism for testing the LMO hypothesis through using plagioclase trace element abundances to calculate equilibrium liquids and compare them with LMO crystallization models. We now examine the petrography of the samples that have Sm-Nd (Samarium-Neodymium) age dates (Rb-Sr (Rubidium-Strontium) isotopic systematics may have been disturbed) and propose a relative way to age date FANs.
Origin and modal petrography of Luna 24 soils
NASA Technical Reports Server (NTRS)
Basu, A.; Mckay, D. S.; Fruland, R. M.
1978-01-01
Petrographic modal analyses of polished grain mounts of fractions in the 20 to 250 micron size range from Luna 24 soil samples are presented and used to infer the nature and relative contributions of source rocks. It is found that more than 90% of the identifiable rock fragments are mare basalts, with about 11% of the soil consisting of the crystalline form. Soil breccias, which make up nearly 10% of the soil, are found to be immature. Electron probe analysis of glass particles reveals principle clusters conforming to anorthosite, anorthositic gabbro and mare basalts. More than half of the soil is composed of monomineralic particles, with pyroxene as the most abundant mineral. It is concluded that 85% of the regolith is derived from local mare basalts and gabbros and about 10% is derived from early cumulates of local mare basalt magma. Highland sources are considered to contribute not more than 3% of the regolith.
Petrography and Origin of the Unique Achondrite GRA 06128 and 06129: Preliminary Results
NASA Technical Reports Server (NTRS)
Treiman, A. H.; Morris, R. V.; Kring, D. A.; Mittlefehldt, D. W.; Jones, J. H.
2008-01-01
GRA 06128 & 06129 are paired achondrites [1], with unique mineral proportions (75% oligoclase), mineral compositions, and oxygen isotope ratios. They appear to represent alkalic igneous rock from a hitherto unsampled differentiated parent body, modified significantly by thermal and shock metamorphism. Samples and Methods: Bulk samples were examined at JSC during splitting for consortium analyses. Microscope and BSE images here are on thick section GRA06128,40. Chemical analyses of minerals were acquired at Johnson Space Center with the Cameca SX100, operated at 15 kV. Feldspar was analyzed with a defocused 5 micron beam @ 5 nA; other minerals were analyzed with a focused beam @ 20 nA. Moessbauer spectra were obtained at ARES, JSC [2]. Intrinsic radioactivity was measured in the low-level counting facility at ARES JSC [3]. An estimated abundance of Al-26 of approx. 70 dpm/kg is within the range determined for eucrites.
Effects of atamp-charging coke making on strength and high temperature thermal properties of coke.
Zhang, Yaru; Bai, Jinfeng; Xu, Jun; Zhong, Xiangyun; Zhao, Zhenning; Liu, Hongchun
2013-12-01
The stamp-charging coke making process has some advantages of improving the operation environment, decreasing fugitive emission, higher gas collection efficiency as well as less environmental pollution. This article describes the different structure strength and high temperature thermal properties of 4 different types of coke manufactured using a conventional coking process and the stamp-charging coke making process. The 4 kinds of cokes were prepared from the mixture of five feed coals blended by the petrography blending method. The results showed that the structure strength indices of coke prepared using the stamp-charging coke method increase sharply. In contrast with conventional coking process, the stamp-charging process improved the coke strength after reaction but had little impact on the coke reactivity index. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Apollo 16 impact-melt splashes - Petrography and major-element composition
NASA Technical Reports Server (NTRS)
See, Thomas H.; Horz, Friedrich; Morris, Richard V.
1986-01-01
Petrographic and major-element analyses are applied to 50 Apollo 16 impact-melt splash (IMS) samples in order to determine their origin and assess the nature of the subregolith source. The macroscopic analyses reveal that the IMSs exhibit a glassy appearance, but the textures range from holohyaline to hyalopilitic. Schlieren-rich glasses dominate the holohyaline areas, and the crystalline areas are mainly spherulitic. It is observed that most IMSs contain feldspathic monomineralic and lithic clasts and no regolithic materials. It is detected that the chemistry of most IMSs is not like the local regolith and appears to represent varied mixtures of VHA impact-melt breccias and anorthosite; the host rocks are mainly dimict breccias. It is concluded that the Cayley Formation is a polymict deposit composed of VHA impact-melt breccias and anorthosites. Tables revealing the macroscopic characteristics of the IMSs and the major-element composition of IMSs and various host rock are presented.
NASA Technical Reports Server (NTRS)
Kimura, Makoto; El-Goresy, Ahmed; Palme, Herbert; Zinner, Ernst
1993-01-01
A comprehensive study is performed for the Ca-,Al-rich inclusions (CAIs) in the unique chondrite ALH85085. The ALH85085 inclusions are smaller (5-80 microns) and more refractory than their counterparts in carbonaceous chondrites. The study includes 42 inclusions for petrography and mineralogy, 15 for bulk major and minor element chemical composition, six for Mg-Al isotopic systematics, 10 for Ca isotopes, nine for Ti isotopes, and six for trace element abundances. In addition, oxygen-isotopic compositions were determined in minerals from a single inclusion. No correlation is found between mineralogy, major element chemistry, and trace element abundances. It is further shown that the high-temperature geochemical behavior of ultrarefractory trace elements is decoupled from that of the major elements Ca and Ti (Ti is correlated with the relatively volatile elements Nb and Yb) implying that perovskite is of only minor importance as carrier of ultrarefractories.
NASA Astrophysics Data System (ADS)
Nehme, C.; Verheyden, S.; Noble, S. R.; Farrant, A. R.; Delannoy, J. J.; Claeys, P.
2015-07-01
Lying at the transition between the temperate Mediterranean domain and subtropical deserts, the Levant is a key area to study the palaeoclimatic response over glacial-interglacial cycles. This paper presents a precisely dated last interglacial (MIS 5) stalagmite (129-84 ka) from the Kanaan Cave, Lebanon. Variations in growth rate and isotopic records indicate a warm humid phase at the onst of the last interglacial at ~129 ka that lasted until ~125 ka. A gradual shift in speleothem isotopic composition (125-122 ka) is driven mainly by the δ18O source effect of the Eastern Mediterranean surface waters during Sapropel S5. The onset of glacial inception began after ~122 ka, interrupted by a short wet pulse during Sapropel S4. Low growth rates and enriched oxygen and carbon values until ~84 ka indicate a transition to drier conditions during Northern Hemisphere glaciation.
Petrography of shock features in the 1953 Manson 2-A drill core
NASA Technical Reports Server (NTRS)
Short, N. M.; Gold, D. P.
1993-01-01
Drilling of Nx core in late 1953 into an anomalous zone of disturbed rocks northwest of Manson, Iowa disclosed presence of extensive breccias including crystalline rocks brought to the surface from depths of 4 km or more. Hole 2-A penetrated breccias dominated by leucocratic igneous and metamorphic lithologies, later interpreted to be part of a general ringed peak complex within a 35 km wide impact structure produced about 65 Ma ago. Proof of this origin was given in 1966 by NMS through recognition of shock metamorphic features in 2-A materials during a cursory examination of samples provided by R.A. Hoppin, University of Iowa. A detailed study of this material now underway has revealed that most breccia clasts in 2-A show abundant and varied evidence of shock damage, including extensive planar deformation features (PDF) in quartz, K-feldspar, plagioclase, and a pyroxene and varying degrees of isotropization and incipient melting in feldspars.
NASA Astrophysics Data System (ADS)
Pfaffl, Fritz A.
2010-06-01
Alfred E. Bergeat, originated from a family, who produced gold-glance in a factory (porcelain painting), studied mineralogy and geology at the University of Munich from 1886 to 1892. Due to the results of his habilitation work on the volcanism of island arcs, especially of the Stromboli volcanic island in the Tyrrhenian Sea, he became a recognized volcanologist and specialist in volcanic petrography. He further became an explorer of syngenetic, epigenetic and deuterogenic ore deposits at the mining academies (Bergakademien) of Freiberg (Saxony) and Clausthal (Harz mountains). He described these ore deposits in a two-volume manual (1904-1906) which was summarized again in 1913. After his early death in 1924, the two manuals “Die Vulkane” (1925) and “Vulkankunde” (1927) were posthumously published by his colleague and friend Karl Sapper (1866-1945).
NASA Astrophysics Data System (ADS)
Eriksson, P. G.; Schreiber, U. M.; van der Neut, M.; Labuschagne, H.; Van Der Schyff, W.; Potgieter, G.
1993-04-01
This paper discusses some of the problems related to the palaeoenvironmental interpretation of non-fossiliferous, early Precambrian, recrystallised quartzitic sandstones, using the Early Proterozoic Daspoort Formation, Transvaal Sequence of southern Africa as a case study. These cross-bedded and planar stratified rocks have been interpreted previously as shallow marine deposits, based on limited studies of areas with well-exposed, relatively undeformed outcrops. This postulate rests largely on the apparently mature nature of the recrystallised sandstones and their thin bedding. Examination of outcrops throughout the preserved basin, including those which have been deformed and metamorphosed, reveals the presence of subordinate immature sandstones. Lateral facies relationships permit an alternative distal fan-fluvial braidplain model to be proposed. This is compatible with collected palaeocurrent data, thicknes trends and results of thin section petrography.
NASA Astrophysics Data System (ADS)
Freire-Lista, D. M.; Varas-Muriel, M. J.; Fort, R.
2012-04-01
A specific leucogranite (fine to medium grain sized) from Cadalso de los Vidrios, Madrid, Spain, from where it takes the name of the stone variety, which is a traditional heritage building material used in Central Spain, was subjected to freezing-thaw durability tests or accelerated artificial ageing tests (according to Spanish standard EN 12371:2001) to assess its durability by means of ultrasonic velocity measurements (a non-destructive technique), and optical and fluorescence petrography using a polarized optical microscope (destructive technique), both techniques used before, during and after laboratory ageing tests, or in other words, what is determined is the improvement or deterioration in some properties. The measurement of the ultrasonic velocity in the leucogranite cubic test specimens along the freezing-thaw cycles shown that the velocity diminishes with the number of cycles, in relation to the decay that the stones were experiencing. This deterioration can be observed by the loss of crystalline minerals in the surface of the analyzed samples and by the micro-fractures appearance up to one centimeter deep, which have been detected by the petrographic techniques previously mentioned. The images taken by means of the fluorescence microscope clearly show the micro-fractures generated during the durability test. These images have been processed and analyzed by the UTHSCSA Image Tool program with the purpose of being able to quantify the degree of decay that this type of crystalline materials undergone, when subjected to a number of freezing-thaw test cycles. It is therefore an effective, reliable and complementary technique to that of the petrography analysis, both optical and fluorescence ones. In the first cycles of the ageing test, the micro-fractures propagate along crystals edges and during the last cycles of the test, intracrystalline micro-fractures are generated, which are developed in different ways depending on the mineralogy of the crystals. Thus, the quartz crystals are those that undergo more intracrystalline micro-fractures, whereas the biotites, behave in a more ductile form and they are not micro-fractured. Both analytical techniques give information of this granite deterioration, showing a relation between the number of freezing-thaw cycles, the superficial micro-fractures proliferation and the decrease of ultrasonic waves propagation velocity produced by the ageing cycles.
NASA Astrophysics Data System (ADS)
Etemad-Saeed, N.; Hosseini-Barzi, M.; Armstrong-Altrin, John S.
2011-09-01
Petrography and geochemistry (major, trace and rare earth elements) of clastic rocks from the Lower Cambrian Lalun Formation, in the Posht-e-badam block, Central Iran, have been investigated to understand their provenance. Petrographical analysis suggests that the Lalun conglomerates are dominantly with chert clasts derived from a proximal source, probably chert bearing Precambrian Formations. Similarly, purple sandstones are classified as litharenite (chertarenite) and white sandstones as quartzarenite types. The detrital modes of purple and white sandstones indicate that they were derived from recycled orogen (uplifted shoulders of rift) and stable cratonic source. Most major and trace element contents of purple sandstones are generally similar to upper continental crust (UCC) values. However, white sandstones are depleted in major and trace elements (except SiO 2, Zr and Co) relative to UCC, which is mainly due to the presence of quartz and absence of other Al-bearing minerals. Shale samples have considerably lower content in most of the major and trace elements concentration than purple sandstones, which is possibly due to intense weathering and recycling. Modal composition (e.g., quartz, feldspar, lithic fragments) and geochemical indices (Th/Sc, La/Sc, Co/Th, Cr/Th, Cr/V and V/Ni ratios) of sandstones, and shales (La/Sc and La/Cr ratios) indicate that they were derived from felsic source rocks and deposited in a passive continental margin. The chondrite-normalized rare earth element (REE) patterns of the studied samples are characterized by LREE enrichment, negative Eu anomaly and flat HREE similar to an old upper continental crust composed chiefly of felsic components in the source area. The study of paleoweathering conditions based on modal composition, chemical index of alteration (CIA), plagioclase index of alteration (PIA) and A-CN-K (Al 2O 3 - CaO + Na 2O - K 2O) relationships indicate that probably chemical weathering in the source area and recycling processes have been more important in shale and white sandstones relative to purple sandstones. The results of this study suggest that the main source for the Lalun Formation was likely located in uplifted shoulders of a rifted basin (probably a pull-apart basin) in its post-rift stage (Pan-African basement of the Posht-e-badam block).
Ice stream motion facilitated by a shallow-deforming and accreting bed
Spagnolo, Matteo; Phillips, Emrys; Piotrowski, Jan A.; Rea, Brice R.; Clark, Chris D.; Stokes, Chris R.; Carr, Simon J.; Ely, Jeremy C.; Ribolini, Adriano; Wysota, Wojciech; Szuman, Izabela
2016-01-01
Ice streams drain large portions of ice sheets and play a fundamental role in governing their response to atmospheric and oceanic forcing, with implications for sea-level change. The mechanisms that generate ice stream flow remain elusive. Basal sliding and/or bed deformation have been hypothesized, but ice stream beds are largely inaccessible. Here we present a comprehensive, multi-scale study of the internal structure of mega-scale glacial lineations (MSGLs) formed at the bed of a palaeo ice stream. Analyses were undertaken at macro- and microscales, using multiple techniques including X-ray tomography, thin sections and ground penetrating radar (GPR) acquisitions. Results reveal homogeneity in stratigraphy, kinematics, granulometry and petrography. The consistency of the physical and geological properties demonstrates a continuously accreting, shallow-deforming, bed and invariant basal conditions. This implies that ice stream basal motion on soft sediment beds during MSGL formation is accommodated by plastic deformation, facilitated by continuous sediment supply and an inefficient drainage system. PMID:26898399
Chemistry and petrography of calcite in the KTB pilot borehole, Bavarian Oberpfalz, Germany
Komor, S.C.
1995-01-01
The KTB pilot borehole in northeast Bavaria, Germany, penetrates 4000 m of gneiss, amphibolite, and subordinate calc-silicate, lamprophyre and metagabbro. There are three types of calcite in the drilled section: 1) metamorphic calcite in calc-silicate and marble; 2) crack-filling calcite in all lithologies; and 3) replacement calcite in altered minerals. Crack-filling and replacement calcite postdate metamorphic calcite. Multiple calcite generations in individual cracks suggest that different generations of water repeatedly flowed through the same cracks. Crack-filling mineral assemblages that include calcite originally formed at temperatures of 150-350??C. Presently, crack-filling calcite is in chemical and isotopic equilibrium with saline to brackish water in the borehole at temperatures of ???120??C. The saline to brackish water contains a significant proportion of meteoric water. Re-equilibration of crack-filling calcite to lower temperatures means that calcite chemistry tells us little about water-rock interactions in the crystal section of temperatures higher than ~120??C. -from Author
NASA Technical Reports Server (NTRS)
Greenwood, R. C.; Morse, A.; Long, J. V. P.
1993-01-01
Thermodynamic calculations predict that Ca-dialuminate (CaAl4O7) condenses from a cooling gas of solar composition after hibonite and before melilite. Although Ca-dialuminate has now been recorded from Ca Al-rich inclusions (CAI's) in at least 9 meteorites, compared to hibonite it is a relatively rare phase. As pointed out by Michel-Levy et al., the absence of Ca-dialuminate from most hibonite-bearing inclusions poses a serious problem for the condensation model of CAI formation. Here we describe an inclusion which contains abundant CA-dialuminate partially altered to a hercynite-rich (FeAl2O4) assemblage. The evidence from VICTA indicates that compared to all other phases in type A inclusions, Ca-dialuminate is the most susceptible to secondary alteration; a feature which may explain its restricted occurrence. Unaltered Ca-dialuminate and melilite in VICTA display excess Mg-26 indicative of in situ decay of Al-26.
Measurements of Shock Effects Recorded by Hayabusa Samples
NASA Technical Reports Server (NTRS)
Zolensky, Michael; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Martinez, James; Komatsu, Mutsumi; Chan, Queenie H-.S.
2015-01-01
We requested and have been approved for 5 Hayabusa samples in order definitively establish the degree of shock experienced by the regolith of asteroid Itokawa, and to devise a bridge between shock determinations by standard light optical petrography, crystal structures as determined by synchrotron X-ray diffraction (SXRD), and degree of crystallinity as determined by electron back-scattered diffraction (EBSD) [1,2]. As of the writing of this abstract we are awaiting the approved samples. We propose measurements of astromaterial crystal structures and regolith processes. The proposed research work will improve our understanding of how small, primitive solar system bodies formed and evolved, and improve understanding of the processes that determine the history and future of habitability of environments on other solar system bodies. The results of the proposed research will directly enrich the ongoing asteroid and comet exploration missions by NASA, JAXA and ESA, and broaden our understanding of the origin and evolution of small bodies in the early solar system, and elucidate the nature of asteroid and comet regolith.
Measurements of Shock Effects Recorded by Itokawa Samples
NASA Technical Reports Server (NTRS)
Zolensky, Michael; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Martinez, James; Komatsu, Mutsumi; Chan, Queenie H-.S.
2016-01-01
We requested and have been approved for 5 Hayabusa samples in order definitively establish the degree of shock experienced by the regolith of asteroid Itokawa, and to devise a bridge between shock determinations by standard light optical petrography, crystal structures as determined by synchrotron X-ray diffraction (SXRD), and degree of crystallinity as determined by electron back-scattered diffraction (EBSD). As of the writing of this abstract we are awaiting the approved samples. We propose measurements of astromaterial crystal structures and regolith processes. The proposed research work will improve our understanding of how small, primitive solar system bodies formed and evolved, and improve understanding of the processes that determine the history and future of habitability of environments on other solar system bodies. The results of the proposed research will directly enrich the ongoing asteroid and comet exploration missions by NASA, JAXA and ESA, and broaden our understanding of the origin and evolution of small bodies in the early solar system, and elucidate the nature of asteroid and comet regolith.
NASA Technical Reports Server (NTRS)
White, J. C.
1992-01-01
High-pressure silica polymorphs (coesite and stishovite) were described from the Vredefort structure in association with pseudotachylite veinlets. In addition to the fundamental significance of the polymorphs to genetic interpretations of the structure, it was additionally argued that the type of pseudotachylite with which they occur forms during the compressional phase of the shock process, while the larger, classic pseudotachylite occurrences are barren of polymorphs and formed during passage of the rarefaction wave. This identification of temporal relationships among transient shock features at a regional scale is similar to observations from the Manicouagan structure, Quebec, where texturally distinct diaplectic plagioclase glasses formed during both compressional and decompressional phases of the shock process. The clarification of such relationships impinges directly on interpretations of natural shock processes and the identification of high probability targets for polymorph searches. Detailed analytical scanning (SEM) and transmission electron microscopy (TEM) were utilized to further establish the nature of both the pseudotachylite and the silica polymorph occurrences in the Vredefort rocks. The results of this investigation are discussed.
NASA Astrophysics Data System (ADS)
Roselee, Muhammad Hatta; Umor, Mohd Rozi; Ghani, Azman Abdul; Badruldin, Muhamad Hafifi; Quek, Long Xiang
2018-04-01
Kampung Awah and Tasik Kenyir are geologically located in East Malaya Blocks. These block is also known as western margin of Indochina terrane. Apart from sedimentary formations, East Malaya Blocks is also dominated by plutonic and volcanic rocks of mafic to rhyolitic compositions. Petrography and geochemical data suggest that Kampung Awah and Tasik Kenyir are one of locations which consists of volcanic rocks of generally basaltic to basaltic andesite compositions. Volcanic rocks from both area consists of plagioclcase, clinopyroxene, orthpyroxene as main mineral constituents with minor occurrences of hornblende. Geochemical data also indicate that volcanic rocks from both area were formed during subduction of the Paleo-tethys oceanic underneath the East Malaya Block or Indochina terrane. Most of the samples are metaluminous which indicate the volcanics are derived from igneous origin. This paper will contribute new geochemical data of mafic volcanics from Kampung Awah and Tasik Kenyir with the support of petrographic and field evidence to deduce the magma evolution and the tectonic setting.
Rusty rock 66095 - A paradigm for volatile-element mobility in highland rocks
NASA Astrophysics Data System (ADS)
Hunter, R. H.; Taylor, L. A.
The ultimate goals of Apollo 16 consortia investigations are related to a determination of the nature of the early crust of the moon, taking into account questions regarding the petrogenesis of highland breccias and melt-rocks. In addition to these potential objectives, the consortia study of 66095 has also the goal to provide information for an understanding of the origin of volatile elements. Since 66095 is the most volatile-rich sample returned by the Apollo missions and its elemental ratios mimic those in many Apollo 16 breccias, it was selected as a paradigm for the highland breccias. 66095 is a clast-laden, impact-melt breccia. The volatile-rich nature is manifest in the presence of rust, schreibersite, and minor volatile-bearing compounds, usually in association with native metal and/or troilite. Attention is given to aspects of petrography, mineral chemistry, major element chemistry, the volatile bearing phases, and the history of the volatiles starting with their ultimate origin.
Mineralogy and petrography of HAL, an isotopically-unusual Allende inclusion
NASA Technical Reports Server (NTRS)
Allen, J. M.; Grossman, L.; Lee, T.; Wasserburg, G. J.
1980-01-01
Results of a detailed mineralogical and textural study of the HAL (Hibonite ALlende) inclusion of the Allende meteorite, which has been found to exhibit no Mg-26 excesses despite very high Al-27/Mg-24 ratios and large fractionation effects with small nuclear effects in its Ca, are reported. The inclusion is found to consist of three up to 1-mm diameter hibonite crystals partially surrounded by a black rim resembling a devitrified glass and containing an anisotropic Al-Fe oxide, which is in turn surrounded by a 2-mm thick friable rim sequence consisting of five layers distinguishable by mineral composition. From the available evidence, it is concluded that each of the layers of the friable rim formed by the accretion of an assemblage of condensate grains rather than by the complete reaction of a HAL precursor with a nebular gas, thus explaining its unusual isotopic characteristics and supporting the conclusion that the solar nebular contained isotopically-distinct reservoirs.
Carbon isotopic evidence for photosynthesis in Early Cambrian oceans
NASA Astrophysics Data System (ADS)
Surge, Donna M.; Savarese, Michael; Dodd, J. Robert; Lohmann, Kyger C.
1997-06-01
Were the first metazoan reefs ecologically similar to modern tropical reefs, enabling them to persist under oligotrophic conditions? We tested the hypothesis of ecological similarity by employing a geochemical approach. Petrography, cathodoluminescence, trace elements, and stable isotope analyses of primary precipitates of the Lower Cambrian Ajax Limestone, South Australia, indicate preservation of original C isotopic composition. All primary carbonate components exhibit C isotopic values similar to the composition of inorganically precipitated fibrous marine cements, suggesting that archaeocyaths and the calcimicrobe Epiphyton precipitated skeletal carbonate in equilibrium with ambient seawater in the absence of vital effects. Such data do not support the contention that archaeocyaths possessed photosymbionts. However, a +0.55‰ shift in δ13C occurs in reefs developed under shallower-water conditions relative to deeper reefs. This shift suggests the stratification of primary production in Early Cambrian oceans. The pattern is similar to that seen in the modern ocean, whereby significant photosynthesis modulates the C isotopic composition of the photic zone.
NASA Astrophysics Data System (ADS)
Bustos Rodríguez, H.; Rojas Martínez, Y.; Oyola Lozano, D.; Pérez Alcázar, G. A.; Fajardo, M.; Mojica, J.; Molano, Y. J. C.
2005-02-01
In this work a study on gold mineral samples is reported, using optical microscopy, X-ray diffraction (XRD) and Mössbauer spectroscopy (MS). The auriferous samples are from the El Diamante mine, located in Guachavez-Nariño (Colombia) and were prepared by means of polished thin sections. The petrography analysis registered the presence, in different percentages that depend on the sample, of pyrite, quartz, arsenopyirite, sphalerite, chalcopyrite and galena. The XRD analysis confirmed these findings through the calculated cell parameters. One typical Rietveld analysis showed the following weight percent of phases: 85.0% quartz, 14.5% pyrite and 0.5% sphalerite. In this sample, MS demonstrated the presence of two types of pyrite whose hyperfine parameters are δ 1 = 0.280 ± 0.002 mm/s and Δ 1 = 0.642 ± 0.002 mm/s, δ 2 = 0.379 ± 0.002 mm/s and Δ 2 = 0.613 ± 0.002 mm/s.
Heaven and Earth - `Madonne col Bambino' and `Rustiques figulines'
NASA Astrophysics Data System (ADS)
Bouquillon, A.
Analyses of the productions of della Robbia and Palissy, two masters of Renaissance ceramics in France and in Italy, have enlightened their contributions to the improvement of the glazed terracotta technique. Della Robbia used very homogeneous materials: marly clay for the bodies, and tin-opacified coloured glazes. The technique is here very robust and very mastered. Palissy used different types of clay with different colours and physical properties, associated with specific productions. So far, we have identified seven pastes. Concerning the glazes, he played with transparency and opacity, with lead glazes and with tin-opacified lead glazes. He added traditional colouring oxides as well as specific pigments (lead-tin yellow, haematite, etc.). The mixed-earth technique is specific to his palette. So, the materials used by both artists are completely different and illustrate their different philosophical approaches. To perform the different analyses, new methodologies have been developed: ICP/AES-MS, petrography and X-ray diffractometry for the bodies, PIXE and micro-PIXE, SEM coupled with EDS and Raman spectrometry for the glazes.
The Geology and Petrography of Crater Lake National Park
Diller, Joseph Silas; Patton, Horace Bushnell
1902-01-01
Origin of the name Mount Mazama - A great impetus to the spread of information concerning Crater Lake was given by the Mazamas of Portland, Oreg., who held a meeting at the lake in August, 1896, which attracted many visitors. The principal features in the history of the lake had previously been made out, and the Mazamas, recognizing the fact that the great peak which was nearly destroyed in preparing the pit for the lake had no name, gave it the name of their own society. Upon the rim of the lake are a number of small peaks, each having its own designation. The term Mount Mazama refers to the whole rim encircling the lake. It is but a mere remnant of the once lofty peak, the real Mount Mazama, which rose far into the region of eternal snow. To get a basis for reconstructing the original Mount Mazama it is necessary to study in detail the structure and composition of its foundation, now so attractively displayed in the encircling cliffs of Crater Lake.
Thin-sectioning and microanalysis of individual extraterrestrial particles
NASA Technical Reports Server (NTRS)
Bradley, J. P.
1986-01-01
A long standing constraint on the study of micrometeorites has centered on difficulties in preparing them for analysis. This is due largely to their small dimensions and consequent practical limitations on sample manipulation. Chondritic micrometeorites provide a good example; although much has been learned about their chemistry and mineralogy almost nothing was known about such basic properties as texture and petrographic associations. The only way to assess such properties is to examine microstructure indigenous to the particles. Unfortunately, almost all micrometeorites, out of necessity, have been crushed and dispersed onto appropriate substances prior to analysis, and most information about texture and petrography was lost. Recently, thin-sections of individual extraterrestrial particles have been prepared using an ultramicrotome equipped with a diamond knife. This procedure has been applied to stratospheric micrometeorites and Solar Max impact debris. In both cases the sections have enabled observation of a variety of internal particle features, including textures, porosity, and petrographic associations. The sectioning procedure is described and analysis results for chondritic micrometeoroids and select particles from Solar Max are presented.
NASA Astrophysics Data System (ADS)
Navelot, Vivien; Favier, Alexiane; Géraud, Yves; Diraison, Marc; Corsini, Michel; Verati, Chrystèle; Lardeaux, Jean-Marc; Mercier de Lépinay, Jeanne; Munschy, Marc
2017-04-01
The GEOTREF project (high enthalpy geothermal energy in fractured reservoirs), supported by the French government program, "Investissements d'avenir" develops a sustainable geothermal resource in the Vieux Habitants area, 8-km south of the currently exploited Bouillante geothermal field. The Basse Terre Island is a recent volcanic arc (< 3 Myr) belonging to the Lesser Antilles subduction zone. It is composed of arc typical calc-alkaline volcanic rocks. Outcrops of the studied area consist either of andesitic lava flows, volcanic sedimentary facies or dikes. Field studies allow to propose a structural framework and highlight three major directions N000˚ E, N050˚ E and N090˚ E, which are consistent with the regional tectonic trends of the arc. Petrographical and petrophysical studies displayed that the major part of outcropping facies in the Vieux-Habitants area are not altered. Andesitic lava flows have poor reservoir properties with porosity and permeability lower than 5 % and 10-15m2 respectively. These results are in contrast with measurements performed in volcano-sedimentary rocks, which have heterogeneous petrophysical properties ranging from 15 to 50 % for porosity and from 10-15to 10-9m2 for permeability. Such surface data would probably change and decrease when depth increases. As there is a lack of underground data under the Vieux-Habitants area (wireline, drill core), exhumated rocks outcropping in the northern part of Basse-Terre Island (Basal Complex) have been studied. Such rocks have been identified in the Basal Complex (2.5 - 3 Myr) located in the northern part of the Basse-Terre Island. Previous works have demonstrated a 1000 m/Myr erosional rate, which corresponds at least to a 2 - 3 km exhumation. The petrography study of the Basal Complex reveals sub-greenschist type mineralogical transformations (chlorite, white mica, quartz...) changing the andesitic protolith in a meta-andesite. This metamorphism forms cleavage plans thanks to a pressure-solution mechanism. Mineralogical transformations associated with these cleavage planes have an impact on petrophysical properties. The solid phase density and porosity decrease. An anisotropy of permeability develops due to cleavage plans. Thermodynamics modelling based on the rock chemical composition and petrography observations emphasizes a steady-state mineral assemblage between 1.5 - 2 kbar and 280 - 320˚ C. This is consistent with an in situ measured volcanic arc conductive geothermal gradient of 70 ˚ C/km.
NASA Astrophysics Data System (ADS)
Ustunisik, G. K.; Nielsen, R. L.
2012-12-01
Individual lava flows are sometimes characterized by progressive changes in petrography and mineral chemistry which have been attributed to progressive magma chamber evacuation. In the case of Whitewater Canyon flow, a glacially quenched andesite unit on the NW flank of Mt. Jefferson, significant changes have been observed in phenocryst content and mineral chemistry within a transect from the early erupted components (inferred by flow morphology to be quenched against glacial ice ~10000 ybp), to the top of the 30 m thick flow unit. With the increasing distance from the quenched interface, the matrix changes from glassy to microcrystalline. The matrix material is generally similar in composition to the glassy melt inclusions rhyolitic in composition yet relatively degassed (lower Cl, S). Based on their morphology, we have identified at least 4 populations of plagioclase phenocrysts within the single flow: (1) Relatively unzoned high An cores (>An80) with oscillatory overgrowth, (2) Lower An cores (An50-60), associated with dacitic melt inclusions, (3) Cellular low An cores (An50-60) with higher An overgrowths (~An65-75), and (4) Lath shaped, sometimes oscillatory zoned moderately high An phenocrysts (An65-75) -often associated with olivine:cpx:plagioclase glomerocrysts. Melt inclusions are present in orthopyroxene and plagioclase, but only in the earliest erupted samples (within 5-10 meters of the quenched interface). This mafic component, characterized by olivine, intermediate plagioclase (An60-75), clinopyroxene, orthopyroxene, and oxides, was present at a range of scales from glomerocrysts to 10 cm+ enclaves. Amphibole and quartz are present only in samples from the interior of the flow unit. The width of reaction rims on amphibole increase as one progress upwards towards the flow interior. Our initial conclusions are this eruptive unit represents the progressive evacuation of a shallow magma chamber where the upper parts of the chamber had already been partially degassed. This is supported by the absence of amphibole phenocrysts in the first erupted, quenched samples. However, the presence of volatiles in glassy melt inclusions and phenocrysts suggests that the system had not completely degassed prior to the eruption. Also, the petrographic heterogeneity of the unit demonstrates that complete overturn and mixing did not happen at Mt. Jefferson. Therefore, eruption may have been triggered by the injection of mafic material; however, the petrographic and field evidence suggests that overturn is not required as part of that triggering event.
Serra Pelada: the first Amazonian Meteorite fall is a Eucrite (basalt) from Asteroid 4-Vesta.
Zucolotto, Maria Elizabeth; Tosi, Amanda A; Villaça, Caio V N; Moutinho, André L R; Andrade, Diana P P; Faulstich, Fabiano; Gomes, Angelo M S; Rios, Debora C; Rocha, Marcilio C
2018-01-01
Serra Pelada is the newest Brazilian eucrite and the first recovered fall from Amazonia (State of Pará, Brazil, June 29th 2017). In this paper, we report on its petrography, chemistry, mineralogy and its magnetic properties. Study of four thin sections reveals that the meteorite is brecciated, containing basaltic and gabbroic clasts, as well of recrystallized impact melt, embedded into a fine-medium grained matrix. Chemical analyses suggest that Serra Pelada is a monomict basaltic eucritic breccia, and that the meteorite is a normal member of the HED suite. Our results provide additional geological and compositional information on the lithological diversity of its parent body. The mineralogy of Serra Pelada consists basically of low-Ca pyroxene and high-Ca plagioclase with accessory minerals such as quartz, sulphide (troilite), chromite - ulvöspinel and ilmenite. These data are consistent with the meteorite being an eucrite, a basaltic achondrite and a member of the howardite-eucrite-diogenite (HED) clan of meteorites which most likely are from the crust asteroid 4 Vesta.
Valentim, Bruno; Algarra, Manuel; Guedes, Alexandra; Ruppert, Leslie F.; Hower, James C.
2016-01-01
The study of Peach Orchard coal samples using reflected-light microscopy, isotopic composition, and nitrogen-forms analyses revealed that the macrinite-rich sample contains macrinite with coprolitic features (e.g. oxidation rind, mix of undigested palynomorphs, frequent and randomly located funginite, agglutination pulp of semifusinite reflectance, internal lack of bedding fabric, and suggestion of structures resulting from intestines and stomach walls), more pyrrolic-N (~ 16%), and lower δ13C (~ 2‰ VPDB) and δ15N (~ 4‰ Air) values than the vitrinite and semifusinite + fusinite rich samples. These findings suggest that the maceral macrinite has multiple origins based on petrography and measurable chemical differences between the macrinite, vitrinite, and semifusinite + fusinite fractions within the coal. Assuming that copromacrinite observed is an excretion then the anomalies observed may result from the symbiotic relations between the macrofauna (e.g. cockroaches) and microbiota during the digestive processes, and the nitrogen balance mechanisms inside macrofauna body.
Relationships among basaltic lunar meteorites
NASA Technical Reports Server (NTRS)
Lindstrom, Marilyn M.
1991-01-01
During the past two years four meteorites of dominantly mare basalt composition were identified in the Japanese and US Antarctic collections. Basalts represent a much higher proportion of the lunar meteorites than is expected from photogeologic mapping of mare and highland regions. Also, the basaltic lunar meteorites are all described as VLT mare basalt, which is a relatively uncommon type among returned lunar samples. The significance of the basaltic meteorites to the understanding of the lunar crust depends on the evaluation of possible relationships among the individual meteorites. None of the specimens are paired meteorites. They differ from each other in petrography and composition. It is important to determine whether they might be paired ejecta which were ejected from the same mare region by the same impact. The question of paired ejecta must be addressed using a combination of exposure histories and petrographic/compositional characteristics. It is possible that the basaltic lunar meteorites are paired ejecta from the same region of the Moon. However, the relationships among them are more complicated than the basaltic breccias being simply brecciated mare gabbros.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Picard, M.D.
1977-01-01
The combination stratigraphic and structural traps in the Morgan Formation of Pennsylvanian age of Church Buttes, Butcher Knife, and Bruff that produce gas and condensate are directly related to folding of the Church Buttes Arch in SW. Wyoming and NE. Utah. Present knowledge indicates that the Morgan gas and condensate originated in source beds in the lower Morgan formation west of the present Church Buttes Arch and were trapped mainly in porous barrier deposits in the Morgan. Folding of the Church Buttes Arch liberated these accumulations and they migrated updip in their present traps. This work summarizes the sedimentary petrographymore » of the productive beds in the Morgan Formation at the Church Buttes Unit No. 19 (SEC. 8, T 16 N, R 112 W), Uinta County, Wyoming. The stratigraphy is outlined for the whole region and the productive interval at Church Buttes is correlated with other rock units. Nearly all of the rocks studied are dolomite, which is difficult to interpret because of pronounced diagenesis. 33 references.« less
Apollo 16 soils - Grain size analyses and petrography
NASA Technical Reports Server (NTRS)
Heiken, G. H.; Mckay, D. S.; Fruland, R. M.
1973-01-01
Soils from South Ray Crater, North Ray Crater, and the interray area of Station 10 have a similar provenance, containing breccia fragments of low to medium metamorphic grade and low light/dark lithic fragment ratios; these appear to be characteristic of the Cayley Formation. The primary difference between soils possibly derived from North Ray and South Ray craters is in the agglutinate content. A soil from Stone Mountain (Station 4) is characterized by breccia fragments of medium to high metamorphic grade and a high light/dark lithic fragment ratio; this soil may be derived from the Descartes Formation. Differences between the selenomorphic units, the Descartes and Cayley formations, may be lithologic as well as structural. The mean grain size varies from 84 to 280 microns, and all of the samples are poorly to very poorly sorted. There appears to be a relation between the sorting, grain size, and agglutinate content, with the finer-grained, better sorted soils containing more than 30% agglutinates. 'Shadowed' soils, collected close to large boulders, are similar in all respects to the 'reference' soils collected at least 5 m from the boulders.
Photomosaics of the cathodoluminescence of 60 sections of meteorites and lunar samples
Akridge, D.G.; Akridge, J.M.C.; Batchelor, J.D.; Benoit, P.H.; Brewer, J.; DeHart, J.M.; Keck, B.D.; Jie, L.; Meier, A.; Penrose, M.; Schneider, D.M.; Sears, D.W.G.; Symes, S.J.K.; Yanhong, Z.
2004-01-01
Cathodoluminescence (CL) petrography provides a means of observing petrographic and compositional properties of geological samples not readily observable by other techniques. We report the low-magnification CL images of 60 sections of extraterrestrial materials. The images we report include ordinary chondrites (including type 3 ordinary chondrites and gas-rich regolith breccias), enstatite chondrites, CO chondrites and a CM chondrite, eucrites and a howardite, lunar highland regolith breccias, and lunar soils. The CL images show how primitive materials respond to parent body metamorphism, how the metamorphic history of EL chondrites differs from that of EH chondrites, how dark matrix and light clasts of regolith breccias relate to each other, how metamorphism affects eucrites, the texture of lunar regolith breccias and the distribution of crystallized lunar spherules ("lunar chondrules"), and how regolith working affects the mineral properties of lunar soils. More particularly, we argue that such images are a rich source of new information on the nature and history of these materials and that our efforts to date are a small fraction of what can be done. Copyright 2004 by the American Geophysical Union.
NASA Technical Reports Server (NTRS)
Dymek, R. F.; Albee, A. L.; Chodos, A. A.; Wasserburg, G. J.
1976-01-01
Results are presented for petrographic and electron microprobe studies of the isotopically dated A, B, C, and rho basaltic rock fragments separated from the howardite Kapoeta. Other lithic clasts and numerous mineral fragments in thin sections of Kapoeta are investigated in order to outline the range in lithology and chemistry of the source materials from which the Kapoeta meteorite is derived. The data obtained are compared to those from other meteorite and lunar samples, with particular reference to the observational consequences for the evolution of the Kapoeta parent body. A major conclusion is that there is no clearcut evidence for young magmatism on the Kapoeta parent body. The observations preclude the interpretation that the Kapoeta is a simple mixture of eucrites and diogenites. In contrast to the moon, a source of anorthositic rocks does not appear to have been present on the Kapoeta parent body which involved chiefly pyroxene. The FeO-MnO relationships suggest that the source of the materials in the Kapoeta parent planet are fundamentally related.
Pressure–temperature evolution of primordial solar system solids during impact-induced compaction
Bland, P. A.; Collins, G. S.; Davison, T. M.; Abreu, N. M.; Ciesla, F. J.; Muxworthy, A. R.; Moore, J.
2014-01-01
Prior to becoming chondritic meteorites, primordial solids were a poorly consolidated mix of mm-scale igneous inclusions (chondrules) and high-porosity sub-μm dust (matrix). We used high-resolution numerical simulations to track the effect of impact-induced compaction on these materials. Here we show that impact velocities as low as 1.5 km s−1 were capable of heating the matrix to >1,000 K, with pressure–temperature varying by >10 GPa and >1,000 K over ~100 μm. Chondrules were unaffected, acting as heat-sinks: matrix temperature excursions were brief. As impact-induced compaction was a primary and ubiquitous process, our new understanding of its effects requires that key aspects of the chondrite record be re-evaluated: palaeomagnetism, petrography and variability in shock level across meteorite groups. Our data suggest a lithification mechanism for meteorites, and provide a ‘speed limit’ constraint on major compressive impacts that is inconsistent with recent models of solar system orbital architecture that require an early, rapid phase of main-belt collisional evolution. PMID:25465283
NASA Astrophysics Data System (ADS)
Concepcion, R. A. B.; Dimalanta, C. B.; Yumul, G. P.; Faustino-Eslava, D. V.; Queaño, K. L.; Tamayo, R. A.; Imai, A.
2012-01-01
Petrological and geochemical investigations of the sedimentary Lasala formation in northwest Mindoro, Philippines, offer new insights into the origin of this geologically contentious region. Mindoro island's position at the boundary between Sundaland and the Philippine Mobile Belt has led to variable suggestions as to how much of it is continent derived or not. The Eocene Lasala formation overlies the Jurassic Halcon metamorphics, a regionally metamorphosed suite generally thought to have formed as a result of arc-continent collision processes. The sedimentary formation consists mainly of sandstones and shales interbedded with mudstones, basalt flows, and subordinate limestones and conglomerates. Petrographic information on the Lasala clastic rocks demonstrates a uniform framework composition that is predominantly quartzose. Major oxide, trace element abundances, and various elemental ratios similarly impart a strongly felsic signature. These characteristics are taken to indicate a chiefly continental, passive margin derivation and deposition of the Lasala sediments during the Eocene. The weak indication of active margin influence is suggested to be an inherited signature, supported by paleogeographic models of the southeastern Asian margin area during the pre-Cenozoic.
Interdisciplinary application and interpretation of EREP data within the Susquehanna River Basin
NASA Technical Reports Server (NTRS)
Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator)
1975-01-01
The author has identified the following significant results. It has become that lineaments seen on Skylab and ERTS images are not equally well defined, and that the clarity of definition of a particular lineament is recorded somewhat differently by different interpreters. In an effort to determine the extent of these variations, a semi-quantitative classification scheme was devised. In the field, along the crest of Bald Eagle Mountain in central Pennsylvania, statistical techniques borrowed from sedimentary petrography (point counting) were used to determine the existence and location of intensely fractured float rock. Verification of Skylab and ERTS detected lineaments on aerial photography at different scales indicated that the brecciated zones appear to occur at one margin of the 1 km zone of brecciation defined as a lineament. In the Lock Haven area, comparison of the film types from the SL4 S190A sensor revealed the black and white Pan X photography to be superior in quality for general interpretation to the black and white IR film. Also, the color positive film is better for interpretation than the color IR film.
NASA Astrophysics Data System (ADS)
Chaudhuri, Trisrota; Mazumder, Rajat; Arima, Makoto
2015-01-01
The Mesoarchaean supracrustals of the Gorumahishani-Badampahar belt, eastern India record sedimentation-volcanism like most other contemporary greenstone belts over the world. The current study reports unambiguous komatiitic rocks from Tua-Dungri hill, Gorumahishani-Badampahar belt, Jharkhand and presents a petrological and geochemical inventory of these very interesting rocks. The Tua-Dungri komatiites are characterised by a well distinguishable cumulate, platy and random spinifex zone. These Tua-Dungri komatiites are rich in SiO2 (47-50 wt%) like Barberton type komatiite or modern day boninite. Their Al depleted nature (Al2O3 = 1.36-2.95 wt%) with very low Al2O3/TiO2 (3.4-6.5) and high CaO/Al2O3 (2-3), high LREE/HREE ratios show further resemblance with the Barberton komatiite. The Tua Dungri komatiite data along with published geochemical, sedimentological and stratigraphic data from the Iron Ore Group of rocks suggest mantle plume activity during the Mesoarchaean on the Singhbhum craton.
NASA Astrophysics Data System (ADS)
Milovský, Rastislav; van den Kerkhof, Alfons; Hoefs, Jochen; Hurai, Vratislav; Prochaska, Walter
2012-03-01
Basal hydraulic breccias of alpine thin-skinned Muráň nappe were investigated by means of cathodoluminescence petrography, stable isotope geochemistry and fluid inclusions analysis. Our study reveals an unusual dynamic fluid regime along basal thrust plane during final episode of the nappe emplacement over its metamorphic substratum. Basal thrusting fluids enriched in 18O, silica, alumina, alkalies and phosphates were generated in the underlying metamorphosed basement at epizonal conditions corresponding to the temperatures of 400-450°C. The fluids fluxed the tectonized nappe base, leached evaporite-bearing formations in hangingwall, whereby becoming oversaturated with sulphates and chlorides. The fluids further modified their composition by dedolomitization and isotopic exchange with the host carbonatic cataclasites. Newly formed mineral assemblage of quartz, phlogopite, albite, potassium feldspar, apatite, dravite tourmaline and anhydrite precipitated from these fluids on cooling down to 180-200°C. Finally, the cataclastic mush was cemented by calcite at ambient anchizonal conditions. Recurrent fluid injections as described above probably enhanced the final motion of the Muráň nappe.
Luminescence petrography of lunar samples
NASA Technical Reports Server (NTRS)
1972-01-01
Light-colored metaclastic rock fragments, mainly anorthositic breccias, are dominant in the lithic clasts of rock 14321 and constitute about 25% of the Apollo 14 soils. Concentration of anorthositic breccias is less in the Apollo 15 soils, but is higher in the Front samples. The Rille edge soils are rich in basalt fragments. The Apollo 15 soils are also rich in green glasses. True anorthosites in the Hadley region were found only at the St. George Crater site. Varying degrees of metamorphism were found in the anorthositic fragments, and luminescence zonations give independent evidence of metamorphism. Compositional zoning verifies the interpretation of luminescence. Rock 14321 gives evidence of modest annealing, but the light metaclastic fragments were metamorphosed before incorporation into the rock. Reaction rimming on plagioclase results in mosaicism and preferentially affects grains. The spectral analysis of luminescence in plagioclase shows that a red-infrared emission band is present in a small fraction of plagioclase grains. Samples from trench bottoms and from beneath a large boulder were compared with surface samples. Large variations in soil composition indicate marked layering in the Apollo 15 soils.
Trade and Industry at Africa's Hub: Petrography of Pottery from Meroe, Sudan
NASA Astrophysics Data System (ADS)
Mason, R.; Grzymski, K.
2009-04-01
The ancient city of Meroë lies about 200 km northeast of Khartoum, on the Nile River. Apart from being the centre of a number of important Nubian kingdoms, such as that of the Kushites (circa 800 BCE - 350 CE), it was always a major hub for trade between ancient Egypt and the rest of Africa, and also for local production of various commodities, particularly including gold. Excavations at the site by a team from the Royal Ontario Museum (ROM) of Toronto and the University of Khartoum have continued the research of Peter Shinnie, aimed at unraveling the history of the site and its contact with Egypt and Africa (Grzymski 2003). Petrographic analysis of pottery from the ROM/Khartoum excavations and also Shinnie's excavations, also stored at the ROM, is aimed at examining the diversity of local production and raw material procurement and processing, and also identifying imported ceramics to give a better idea of the archaeologically determinable contacts of Meroë with Egypt and the rest of Africa. Reference: Grzymski, K. A., 2003, "Meroe Reports I," Society for the Study of Egyptian Antiquities Publication XVII, Toronto.
NASA Astrophysics Data System (ADS)
Pan, Bo; de Silva, Shanaka L.; Xu, Jiandong; Chen, Zhengquan; Miggins, Daniel P.; Wei, Haiquan
2017-09-01
Field relations, petrography, bulk and micro-scale chemistry reveal that the most recent history of hazardous Changbaishan-Tianchi volcano should be revised with important implications for volcanic hazard in NE Asia. Currently, the two most recent large eruptions are identified separately as a VEI 5 trachytic Baguamiao eruption (BGM) and the much heralded VEI 7, late 946 CE (Common Era) "Millennium" eruption (ME) of comendite. However, we find that the former is part of the latter based on the following evidence: (1) trachytic fallout of the BGM lies directly on the comendite tephra of the ME without any indication of depositional hiatus; (2) abundant mingled trachyte-comendite pumice in the tephra deposits; (3) similar chemistry of mingled pumice and its components to those in the BGM and ME products; (4) correlation of bimodal glass shard compositions in the distal 'B-Tm' ash from the Japan Sea with comendite and trachyte glass from the BGM and ME products. Based on the above evidence, we suggest that the great Millennium eruption of 946 CE should be revised finally to include the BGM trachyte as its final stage. Furthermore, deposits attributed to two other trachytic eruptions in 1668 and/or 1702 CE (also called Baguamiao by some authors), and 1903 CE referred to in historic accounts were also examined. Our field observations, petrography, bulk and micro-scale chemistry combined with previously published Ra/Th ages indicate that all these trachytes are either primary deposits of the ME or its reworked deposits. Thus our findings do not support two separate post-ME eruptions and require that volcanic hazard assessment at Changbaishan volcano include this new interpretation. Recently published geochronological data integrated with our new petrochemical and volcanological framework informs the magma dynamics leading to the ME. The ME comendite, derived from a parental trachyte similar to the BGM started accumulating at shallow levels around 12 ka to 8 ka. Around 4 to 1.6 ka the BGM trachyte sensu strictu separated from its basaltic parent and started accumulating and crystallizing separately from the ME comendite. Just prior to the ME eruption, mingling of trace amounts of a third more mafic hybrid is implicated by the composition of mafic glass selvedges. The strong evidence for mixing of all these endmembers in the eruption products suggests that recharge mixing and overturn of this predominantly comendite-trachyte system occurred during the 1 ka ME. The common occurrence of comendite and trachyte in the last 100 ka (also maybe 1 Ma) at Changbaishan-Tianchi suggests that conditions for trachyte-comendite magma interactions are prevalent in the magma system of Changbaishan and maybe crucial in catastrophic eruptions there.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broxton, D.E.; Chipera, S.J.; Byers, F.M. Jr.
1993-10-01
Outcrops of nonwelded tuff at six locations in the vicinity of Yucca Mountain, Nevada, were examined to determine their suitability for hosting a surface-based test facility for the Yucca Mountain Project. Investigators will use this facility to test equipment and procedures for the Exploratory Studies Facility and to conduct site characterization field experiments. The outcrops investigated contain rocks that include or are similar to the tuffaceous beds of Calico Hills, an important geologic and hydrologic barrier between the potential repository and the water table. The tuffaceous beds of Calico Hills at the site of the potential repository consist of bothmore » vitric and zeolitic tuffs, thus three of the outcrops examined are vitric tuffs and three are zeolitic tuffs. New data were collected to determine the lithology, chemistry, mineralogy, and modal petrography of the outcrops. Some preliminary data on hydrologic properties are also presented. Evaluation of suitability of the six sites is based on a comparison of their geologic characteristics to those found in the tuffaceous beds of Calico Hills within the exploration block.« less
Karapanagioti, Hrissi K.; Childs, Jeffrey; Sabatini, David A.
2001-01-01
Organic petrography has been proposed as a tool for characterizing the heterogeneous organic matter present in soil and sediment samples. A new simplified method is proposed as a quantitative means of interpreting observed sorption behavior for phenanthrene and different soils and sediments based on their organic petrographical characterization. This method is tested under singe solute conditions and at phenanthrene concentration of 1 μg/L. Since the opaque organic matter fraction dominates the sorption process, we propose that by quantifying this fraction one can interpret organic content normalized sorption distribution coefficient (Koc) values for a sample. While this method was developed and tested for various samples within the same aquifer, in the current study the method is validated for soil and sediment samples from different sites that cover a wide range of organic matter origin, age, and organic content. All 10 soil and sediment samples studied had log Koc values for the opaque particles between 5.6 and 6.8. This range of Koc values illustrates the heterogeneity of opaque particles between sites and geological formations and thus the need to characterize the opaque fraction of materials on a site-by-site basis.
Mineralogy of the Almahata Sitta Ureilite
NASA Technical Reports Server (NTRS)
Zolensky, Michael E.; Herrin, J.; Friedrich, J. M.; Rumble, D.; Steele, A.; Jenniskens, P.; Shaddad, M. H.; Le, L.; Robinson, G. A.
2009-01-01
Mineralogy & Petrography: Almahata Sitta, deriving from the asteroid 2008 TC3, is a coarse-grained- to porous, fine-grained, fragmental breccia with subrounded mineral fragments and olivine aggregates embedded in a cataclastic matrix of ureilitic material. Mineral fragments include polycrystalline olivine, low-calcium, pigeonite, and augite. Abundant carbonaceous aggregates containing graphite, microdiamonds and aliphatics. Kamacite, Cr-rich troilite, silica and schreibersite are abundant. The compositional range of the silicates is characteristic of the ureilites as a group, but unusually broad for an individual ureilite. The dense lithology is typical for ureilites, but the porous lithology is anomalous. In the porous lithology pore walls are largely coated by crystals of olivine. Classification: Almahata Sitta is an anomalous, polymict eucrite. Anomalous features include large compositional range of silicates, high abundance and large size of pores, crystalline pore wall linings, and fine-grained texture. Tomography reveals that the pores define thin, discontinuous "sheets" connected in three dimensions, suggesting that they outline grains that have been incompletely welded together. The crystals lining the pore walls are probably vapor phase deposits. Therefore Almahata Sitta may represent an agglomeration of coarse- to fine-grained, incompletely reduced pellets formed during impact, and subsequently welded together at high temperature.
NASA Astrophysics Data System (ADS)
Commin-Fischer, Adriane; Berger, Gilles; Polvé, Mireille; Dubois, Michel; Sardini, Paul; Beaufort, Daniel; Formoso, Milton
2010-04-01
The filling process of amethyst-bearing geodes from Serra Geral Formation basalts, Brazil, is investigated by different methods performed on the SiO 2 filling phases. Image analysis of quartz-amethyst deposits suggests a single growing mechanism ruled by geometric selection of randomly oriented crystals. Microthermometry of fluid inclusions reveals formation temperature lower than 100 °C, probably lower than 50 °C, and fluid salinity as high as 3 mass% NaCl eq. Composition in REE and trace-elements measured by ICP-MS on acid-digested or laser-ablated samples indicates a common genesis for amethyst, quartz and chalcedony, as well as the absence of significant variations from one geode to another. 87Sr/ 86Sr data on chalcedony shows that both the host basalt or the Botucatu sandstone are possible silica sources. These data, combined with thermo-kinetic considerations, permit us to discuss the filling process. We argue in favor of the contribution of a mineralized fluid of hydrothermal origin producing a regional silica source which decreased with time. The observed mineral sequence is related to the depletion of silica in the solution.
Wildfires in the Triassic of Gondwana Paraná Basin
NASA Astrophysics Data System (ADS)
Cardoso, Daiane dos Santos; Mizusaki, Ana Maria Pimentel; Guerra-Sommer, Margot; Menegat, Rualdo; Barili, Rosalia; Jasper, André; Uhl, Dieter
2018-03-01
This first report of wildfires from an association of facies containing a Dicroidium flora is made from the Upper Triassic (Carnian age) in the southern part of the Paraná Basin (Santa Maria Supersequence, Rio Grande do Sul state). The geographical extension of the Dicroidium plant assemblage is augmented in Brazilian Gondwana. Field work followed by organic petrography (inertinite reflectance), scanning electron microscopy (SEM) and field emission gun scanning electron microscopy (FEG-SEM), revealed charcoal presence in a section located in Pinheiro Machado town. Macroscopic charcoal is represented by three-dimensional wood specimens assigned to gymnosperms, with coniferous affinities and by flattened, thin, elongated remains corresponding to rachises of Dicroidium. Average reflectance values between 2.80 and 6.61 %Ro measured in the macroscopic charcoals evidence high temperature burning processes, involving fires both in the crown and in the crown-surface interface. The occurrence of charcoal in distinct and subsequent facies of the studied section indicates wildfires, which affected hinterland, meso-xerophyllous coniferous assemblages and marginal hygro-mesophyllous Dicroidium-like assemblages. The integration of results from the charcoal analyses is consistent with an atmospheric oxygen content higher than 18.5% and fuel enough to generate wildfires during the Triassic of Gondwana.
NASA Astrophysics Data System (ADS)
Yin, Qiong; Liu, Wei
2017-12-01
This paper focuses on beryl mines in the Maji region of Yunnan Province, which are characterized by fluid inclusions. Based on petrography theory, mineralogy, and ore-forming geological conditions, beryl can be divided as CO2 and CO2-H2O inclusions. In addition, the characteristics of inclusions in the coordinate of A/B is summarized. The homogenization temperature of fluid inclusions in the coordinate of A ranges from 250 °C to 397 °C, while the salinity of fluid inclusions ranges from 0.18% to 4.27%. By contrast, the homogenization temperature in the coordinate of B ranges from 210 °C to 340 °C, and the salinity is from 0.22% to 5.11%. The pressure of ore-forming fluid in the coordinate of A/B is approximately 83 MPa with densities of 0.8034 g/m3 and 0.8363 g/m3, which are characteristic of mediumtemperature, low-salinity, and medium-density fluids. Based on Raman spectra and different metallogenic depths, the two types of beryl belong to different metallogenic belts. The beryl deposits in Gongshan are of medium-temperature gas-hydrothermal type.
NASA Astrophysics Data System (ADS)
Rosatelli, G.; Wall, F.; Stoppa, F.; Brilli, M.
2010-11-01
Petrography-controlled laser ablation inductively coupled plasma mass spectrometry (LAICPMS) analyses of carbonate in fresh shallow level sub-volcanic Polino monticellite calcio-carbonatite tuffisite have been performed to assess the geochemical differences between fresh igneous, epigenetic carbonates and sedimentary accidental fragments. Igneous calcite has consistently high LREE/HREE ratios (La/Yb N , 15-130) due to high LREE (ΣLREE, 425-1,269 ppm). Secondary calcite cements are characterized by progressively lower and more variable trace element contents, with lower LREE/HREE ratios. A distinguishing geochemical feature is progressively increasing negative Ce anomalies observed through coarse secondary calcite that can be related to the surface environment processes. The limestone accidental fragments in the tuffisite have trace element contents almost two orders of magnitude lower than igneous carbonate and low LREE (ΣLREE < 9.5 ppm) with low LREE/HREE fractionation (La/Yb N ratios < 18). The stable isotope composition of different carbonate types is consistent with their formation in different environments. The tuffisitization processes during diatreme formation under high CO2-OH fugacity conditions may account for the differences noted in the igneous carbonates.
Composition of Apollo 17 core 76001
NASA Technical Reports Server (NTRS)
Korotev, Randy L.; Bishop, Kaylynn M.
1993-01-01
Core 76001 is a single drive tube containing a column of regolith taken at the base of the North Massif, station 6, Apollo 17. The core material is believed to have accumulated through slow downslope mass wasting from the massif. As a consequence, the core soil is mature throughout its length. Results of INAA for samples taken every half centimeter along the length of the core indicate that there is only minor systematic compositional variation with depth. Concentrations of elements primarily associated with mare basalt (Sc, Fe) and noritic impact melt breccia (Sm) decrease slightly with depth, particularly between 20 cm and the bottom of the core at 32 cm depth. This is consistent with petrographic studies that indicate a greater proportion of basalt and melt breccia in the top part of the core. However, Sm/Sc and La/Sm ratios are remarkably constant with depth, indicating no variation in the ratio of mare material to Sm-rich highlands material with depth. Other than these subtle changes, there is no compositional evidence for the two stratigraphic units (0-20 cm and 20-32 cm) defined on the basis of modal petrography, although all samples with anomalously high Ni concentrations (Fe-Ni metal nuggets) occur above 20 cm depth.
Reservoir properties of submarine- fan facies: Great Valley sequence, California.
McLean, H.
1981-01-01
Submarine-fan sandstones of the Great Valley sequence west of the Sacramento Valley, California, have low porosities and permeabilities. However, petrography and scanning electron microscope studies indicate that most sands in almost all submarine-fan environments are originally porous and permeable. Thin turbidite sandstones deposited in areas dominated by shale in the outer-fan and basin-plain are cemented mainly by calcite; shale dewatering is inferred to contribute to rapid cementation early in the burial process. Sands deposited in inner- and middle-fan channels with only thin shale beds have small percentrages of intergranular cement. The original porosity is reduced mechanically at shallow depths and by pressure solution at deeperlevels. Permeability decreases with increasing age of the rocks, as a result of increasing burial depths. Computer-run stepwise regression analyses show that the porosity is inversely related to the percentage of calcite cement. The results reported here indicate original porosity and permeability can be high in deep-water submarine fans and that fan environments dominated by sand (with high sand/shale ratios) are more likely to retain higher porosity and permeability to greater depths than sand interbedded with thick shale sequences.-from Author
Petrography of Mayan mortar, Isla Mujeres, Quintana Roo, Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bain, R.J.
1985-01-01
Along coastal regions of the Yucatan Peninsula Mayan builders used a mixture of beach sand, shell fragments, and clasts of rock as mortar for construction. With exposure to subaerial conditions, the aragonitic sand was converted into a semi-lithified mortar. Petrographic analysis of mortar samples collected from Mayan ruins on the south end of Isla Mujeres indicates that the mortar is cemented by blocky, meniscus style, low Mg calcite. In addition to the cement, low Mg calcite also occurs as blocky equant crystals either replacing grains or filling grain-moldic porosity. X-ray analysis of both modern beach sand and mortar shows themore » sand is composed of aragonite and high Mg calcite but lacks low Mg calcite. Mortar, on the other hand, consists of low Mg calcite, high Mg calcite, and aragonite however aragonite is much less abundant than in the sand. Aragonitic ooids, pellets and bioclasts of beach sand used in mortar were dissolved producing moldic porosity. At the same time, CaCO/sub 3/ derived from this process was precipitated as low Mg calcite which formed meniscus cement and filled moldic porosity within the walls of Mayan structures producing a remarkably hard mortar.« less
NASA Astrophysics Data System (ADS)
Libourel, Guy; Krot, Alexander N.
2007-02-01
Chondrules are the major high-temperature components of chondritic meteorites, which are conventionally viewed as the samples from the very first generation of undifferentiated planetesimals. Growing evidences from long- and short-lived radionuclide chronologies indicate however that chondrite parent asteroids accreted after or contemporaneously with igneous activities on differentiated asteroids, questioning the pristine nature of chondrites. Here we report a discovery of metal-bearing olivine aggregates with granoblastic textures inside magnesian porphyritic (Type I) chondrules from the CV carbonaceous chondrite Vigarano. Formation of the granoblastic textures requires sintering and prolonged, high-temperature (> 1000 °C) annealing - conditions which are not expected in the solar nebula during chondrule formation, but could have been achieved on parent bodies of olivine-rich differentiated or thermally metamorphosed meteorites. The mineralogy and petrography of the metal-olivine aggregates thus indicate that they are relict, dunite-like lithic fragments which resulted from fragmentation of such bodies. The very old Pb-Pb absolute ages and Al-Mg relative model ages of bulk CV chondrules suggest that such planetesimals may have formed as early as the currently accepted age of the Solar System (4567.2 ± 0.6 Ma).
Vapour loss (``boiling'') as a mechanism for fluid evolution in metamorphic rocks
NASA Astrophysics Data System (ADS)
Trommsdorff, Volkmar; Skippen, George
1986-11-01
The calculation of fluid evolution paths during reaction progress is considered for multicomponent systems and the results applied to the ternary system, CO2-H2O-NaCl. Fluid evolution paths are considered for systems in which a CO2-rich phase of lesser density (vapour) is preferentially removed from the system leaving behind a saline aqueous phase (liquid). Such “boiling” leads to enrichment of the residual aqueous phase in dissolved components and, for certain reaction stoichiometries, to eventual saturation of the fluids in salt components. Distinctive textures, particularly radiating growths of prismatic minerals such as tremolite or diopside, are associated with saline fluid inclusions and solid syngenetic salt inclusions at a number of field localities. The most thoroughly studied of these localities is Campolungo, Switzerland, where metasomatic rocks have developed in association with fractures and veins at 500° C and 2,000 bars of pressure. The petrography of these rocks suggests that fluid phase separation into liquid and vapour has been an important process during metasomatism. Fracture systems with fluids at pressure less than lithostatic may facilitate the loss of the less dense vapour phase to conditions of the amphibolite facies.
NASA Astrophysics Data System (ADS)
Carrino, Thais Andressa; Crósta, Alvaro Penteado; Toledo, Catarina Labouré Bemfica; Silva, Adalene Moreira
2018-02-01
Remote sensing is a strategic key tool for mineral exploration, due to its capacity of detecting hydrothermal alteration minerals or alteration mineral zones associated with different types of mineralization systems. A case study of an epithermal system located in southern Peru is presented, aimed at the characterization of mineral assemblies for discriminating potential high sulfidation epithermal targets, using hyperspectral imagery integrated with petrography, XRD and magnetic data. HyMap images were processed using the Mixture Tuned Matched Filtering (MTMF) technique for producing alteration map in the Chapi Chiara epithermal gold prospect. Extensive areas marked by advanced argillic alteration (alunite-kaolinite-dickite ± topaz) were mapped in detail, as well as limited argillic (illite-smectite) and propylitic (chlorite spectral domain) alteration. The magmatic-hydrothermal processes responsible for the formation of hypogene minerals were also related to the destruction of ferrimagnetic minerals (e.g., magnetite) of host rocks such as andesite, and the remobilization/formation of paramagnetic Fe-Ti oxides (e.g., rutile, anatase). The large alteration zones of advanced argillic alteration are controlled by structures related to a regional NW-SE trend, and also by local NE-SW and ENE-WSW ones.
NASA Technical Reports Server (NTRS)
Maliva, R. G.; Knoll, A. H.; Siever, R.
1989-01-01
In the modern oceans, the removal of dissolved silica from sea water is principally a biological process carried out by diatoms, with lesser contributions from radiolaria, silicoflagellates, and sponges. Because such silica in sediments is often redistributed locally during diagenesis to from nodular or bedded chert, stratigraphic changes in the facies distribution of early diagenetic chert provide important insights into the development of biological participation in the silica cycle. The abundance of chert in upper Proterozoic peritidal carbonates suggests that at this time silica was removed from seawater principally by abiological processes operating in part of the margins of the oceans. With the evolution of demosponges near the beginning of the Cambrian Period, subtidal biogenetic cherts became increasingly common, and with the Ordovician rise of radiolaria to ecological and biogeochemical prominence, sedimented skeletons became a principal sink for oceanic silica. Cherts of Silurian to Cretaceous age share many features of facies distribution and petrography but they differ from Cenozoic siliceous deposits. These differences are interpreted to reflect the mid-Cretaceous radiation of diatoms and their subsequent rise to domination of the silica cycle. Biogeochemical cycles provide an important framework for the paleobiological interpretation of the organisms that participate in them.
NASA Astrophysics Data System (ADS)
Joosu, Lauri; Lepland, Aivo; Kreitsmann, Timmu; Üpraus, Kärt; Roberts, Nick M. W.; Paiste, Päärn; Martin, Adam P.; Kirsimäe, Kalle
2016-08-01
The first globally significant phosphorous-rich deposits appear in the Paleoproterozoic at around 2 Ga, however, the specific triggers leading to apatite precipitation are debated. We examine phosphorous-rich rocks (up to 8 wt% P2O5) in 1.98-1.92 Ga old Pilgujärvi Sedimentary Formation, Pechenga Greenstone Belt, Russia. Phosphates in these rocks occur as locally derived and resedimented sand-to-gravel/pebble sized grains consisting of apatite-cemented muddy sediments. Phosphatic grains can be subdivided into four petrographic types (A-D), each has a distinct REE signature reflecting different early-to-late diagenetic conditions and/or metamorphic overprint. Pyrite containing petrographic type D, which typically has a flat REE pattern, negative Ce anomaly and positive Eu anomaly, is the best preserved of the four types and best records conditions present during apatite precipitation. Type D phosphatic grains precipitated under (sub)oxic basinal conditions with a significant hydrothermal influence. These characteristics are similar to Zaonega Formation phosphates of NW Russia's Onega Basin, and consistent with phosphogenesis triggered by the development of anoxic(sulfidic)-(sub)oxic redoxclines at shallow sediment depth during the Paleoproterozoic.
The Acoculco caldera magmas: genesis, evolution and relation with the Acoculco geothermal system
NASA Astrophysics Data System (ADS)
Sosa-Ceballos, G.; Macías, J. L.; Avellán, D.
2017-12-01
The Acoculco Caldera Complex (ACC) is located at the eastern part of the Trans Mexican Volcanic Belt; México. This caldera complex have been active since 2.7 Ma through reactivations of the system or associated magmatism. Therefore the ACC is an excellent case scenario to investigate the relation between the magmatic heat supply and the evolution processes that modified magmatic reservoirs in a potential geothermal field. We investigated the origin and the magmatic processes (magma mixing, assimilation and crystallization) that modified the ACC rocks by petrography, major oxides-trace element geochemistry, and isotopic analysis. Magma mixing is considered as the heat supply that maintain active the magmatic system, whereas assimilation yielded insights about the depth at which processes occurred. In addition, we performed a series of hydrothermal experiments in order to constrain the storage depth for the magma tapped during the caldera collapse. Rocks from the ACC were catalogued as pre, syn and post caldera. The post caldera rocks are peralkaline rhyolites, in contrast to all other rocks that are subalkaline. Our investigation is focus to investigate if the collapse modified the plumbing system and the depth at which magmas stagnate and recorded the magmatic processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulut, Y.; Karayigit, A.I.
The coal-bearing Soma basin is one of the most productive lacustrine coal basins of western Anatolia-Turkey. This study mainly focuses on petrography of the feed coals (FCs) in the Soma power plant. A total of 16 feed coal samples were systematically collected once a week over an eight-week period from both group boiler units, B1-4 with 660 MW and B5-6 with 330 MW capacity. The most abundant maceral group of FCs is huminite, in which texto-ulminite, eu-ulminite, attrinite, densinite are rich. Liptinite group macerals in FCs include mainly sporinite, resinite, and liptodetrinite, which are considerably higher than the other identifiedmore » liptinite macerals. In the inertinite group, fusinite and inertodetrinite are more abundant. Identifiable minerals with petrographical studies are pyrite, siderite, other minerals (e. g., carbonates, clay minerals, quartz, feldspar, etc.), and fossil shells. This study shows that FCs used are subbituminous in rank with mean random ulminite reflectance of 0.43% Rr oil from B1-4 units and 0.39% Rr oil from B5-6 units. This indicates that coal rank is slightly higher in the central mines (southern Soma) than in the Denis mines (northern Soma).« less
NASA Astrophysics Data System (ADS)
Okoro, A. U.; Igwe, E. O.; Nwajide, C. S.
2016-11-01
This study was undertaken to determine the depositional environment, provenance and tectonic setting for the Turonian Amasiri Sandstone, southern Benue Trough, Nigeria, using lithofacies analysis and re-appraisal of petrography of the sandstones. Local stratigraphy and field relationships show a thick succession of shales alternating with elongate/parallel sandstone ridges extending eastwards from Akpoha to Amasiri through Itigidi and Ugep to Apiapum areas. Lithofacies analysis reveals 9 lithofacies suggestive of storm (mass flow) and tidal shelf processes. These include dark grey to black laminated shale/silty mudstones, bioturbated mudstones, coquinoid limestones, very fine-grained bioturbated sandstones with shell hash/debris in places and limestone rip-up clasts, massive and chaotic sandy conglomerate with rip - up clasts, fine to medium-grained, parallel laminated sandstone, hummocky cross-stratified, massive, medium to coarse-grained sandstones, medium to very coarse-grained, planar cross-bedded sandstone, with clay-draped foresets and Ophiomorpha burrows, and coarse-grained trough cross-bedded sandstone. Petrofacies analysis identifies the sandstones as feldspathic and arkosic arenites. Ternary plot of framework mineralogy indicates derivation from an uplifted continental block related to the nearby Oban Massif and Cameroon Basement Complex.
NASA Astrophysics Data System (ADS)
Baskar, Sushmitha; Baskar, R.; Lee, Natuschka; Theophilus, P. K.
2009-05-01
The Mawsmai cave and Krem Phyllut caves, East Khasi hills, Meghalaya, India has so far not yet attracted the attention of geomicrobiologists. Observations and hypotheses on the possible influence of identified microorganisms for speleothem formations in Meghalaya are reported for the first time. XRD studies identified calcite in speleothems and gypsum in cave wall deposits as the dominant minerals. SEM-EDAX showed interesting microfabric features showing strong resemblance with fossilised bacteria, calcified filaments, needle calcite and numerous nano scale calcite crystals, highly weathered and disintegrated crystals of calcite, that point towards a significant microbial influence in its genesis. Thin section petrography showed laminated stromatolitic features. The microorganisms identified by conventional isolation and further evaluation of isolates by molecular techniques include Bacillus cereus, Bacillus mycoides, Bacillus licheniformis, Micrococcus luteus, and Actinomycetes. Microscopic observations also showed unidentifiable cocci and four unidentifiable strains of CaSO4 (gypsum) precipitating bacteria. Experimental studies confirmed that these bacteria are able to precipitate calcium minerals (calcite, gypsum, minor amounts of dolomite) in the laboratory. These results allow us to postulate that species like these may contribute to active biogenic influence in the cave formations at Meghalaya.
Blueschists and eclogites from southern Sifnos (Cyclades, Greece)
NASA Astrophysics Data System (ADS)
Weil, Jonas; Petrakakis, Konstantin; Grasemann, Bernhard; Iglseder, Christoph
2010-05-01
Eclogite/blueschist facies rocks from northern Sifnos (Cyclades) are well known and have been described by many authors. A small occurrence of similar rocks in the south-west of Sifnos has been investigated and is compared to other occurrences in terms of their mineral assemblages, chemistry, petrography and structural position. The tectono-metamorphic evolution on Sifnos is characterized by a regional blueschist / eclogite facies metamorphism (M1) during the Eocene, followed by a regional Oligo-Miocene medium pressure overprint (M2). The investigated rocks from the Fikiada Bay area formed during M1 but were overprinted by a brittle / ductile M2 event. The high-pressure rock assemblage of Fikiada bay represents a sequence of metabasites, metaacidites, and metasediments with a foliation-parallel compositional layering. Rootless isoclinal folding of the regional foliation is common with fold axes trending roughly NW-SE; hinges are overprinted by later axial foliation planes. The foliation is well developed and mostly dips to N to E, the main pervasive stretching lineation is shallow and plunging to NE. Grt- rich dark blueschists, bearing eclogite-boudins of some dm size, alternate with lighter Qtz-rich Grt-bearing, cm to m thick layers. Massive, very coarse grained Ep+Chl+Ab -rich gneisses form layers with up to 3 m thickness. Metasediments comprise light Cal-rich gneisses as well as metapelites and quartzites. These lithologies are overlain by highly strained calcite marbles bearing boudins of Dol-marble. Foliation, stretching lineation and isoclinal folds show the same orientation as in the silicates. The blueschists show the characteristic assemblage Gln + Grt + Ep + Ab + Phg + Pg +Qtz (+Cal) + Mag. Inclusions in large poikiloblastic Grt reveal an earlier compositional layering: Domains with conserved foam microstructures of Qtz and domains of massive Grt including relics of Jd (XNa = 0.9), Ctd, Ep, Rt and Mag. Gln shows a zonal pattern with Mg-rich cores to ferro-glaucophane and crossite- richer rims. Ep is zoned too with decreasing Fe from core to rim, while Grt-poikiloblasts are nearly homogeneous in composition. Eclogitic assemblages consist of Grt + Omp + Ep + Phg + Gln ± Qtz. A greenschist-facies overprint accompanied by Fe- and CO2- rich fluids is mostly evident along shear bands of variable thickness from thin section to outcrop scale. It is best documented by the growth of syntectonic Ab+Chl neoblasts. Metabasite layers intercalated with the marble show a pervasive greenschist-facies overprint with extensive, neoblastic growth of Chl an Ab. Early Ep remains unaffected, but Gln and Grt are preserved only as relics. Petrography and mineral chemistry of southern Sifnos HP-rocks comply with the occurrence in northern Sifnos (e.g. comprehensive description by Schliestedt 1986) References: Schliestedt, M., 1986. Eclogite-blueschist relationships as evidenced by mineral equilibria in the high-pressure rocks of Sifnos (Cycladic islands), Greece. Journal of Petrology, 27,1437-1459 Mineral abbreviations after Kretz, 1983: Symbols for rock-forming minerals. American Mineralogist, 68, 277-279
Meteoritic basalts. Final report, 1986-1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Treiman, A.H.
1989-10-01
The objectives were to: explain the abundances of siderophile elements in the SNC meteorite suite, of putative Martian origin; discover the magmatic origins and possibly magma compositions behind the Nakhla meteorite, one of the SNC meteorites; and a re-evaluation of the petrology of Angra dos Reis, a unique meteorite linked to the earliest planetary bodies of the solar nebula. A re-evaluation of its petrography showed that the accepted scenario for its origin, as a cumulate igneous rock, was not consistent with the meteorite's textures (Treiman). More likely is that the meteorite represents a prophyritic igneous rock, originally with magma dominant.more » Studies of the Nakhla meteorite, of possible Martian origin, although difficult, were successful. It became necessary to reject the basic categorization of Nakhla: that is was a cumulate igneous rock. Detailed studies of the chemical zoning of Nakhlas' minerals, coupled with the failure of experimental studies to yield expected results, forced the conclusion that Nakhla is not a cumulate rock in the usual sense: a rock composed of igneous crystals and intercrystal magma. Study of the siderophile element abundances in the SNC meteorite groups involved trying to find reasonable core formation processes and parameters that would reproduce the observed abundances. Modelling was successful, and delimited a range of models which overlap with those reasonable from geophysical constraints.« less
NASA Astrophysics Data System (ADS)
Arakawa, Yoji; Endo, Daisuke; Ikehata, Kei; Oshika, Junya; Shinmura, Taro; Mori, Yasushi
2017-03-01
We examined the petrography, petrology, and geochemistry of two types of gabbroic xenoliths (A- and B-type xenoliths) in olivine basalt and biotite rhyolite units among the dominantly rhyolitic rocks in Niijima volcano, northern Izu-Bonin volcanic arc, central Japan. A-type gabbroic xenoliths consisting of plagioclase, clinopyroxene, and orthopyroxene with an adcumulate texture were found in both olivine basalt and biotite rhyolite units, and B-type gabbroic xenoliths consisting of plagioclase and amphibole with an orthocumulate texture were found only in biotite rhyolite units. Geothermal- and barometricmodelling based on mineral chemistry indicated that the A-type gabbro formed at higher temperatures (899-955°C) and pressures (3.6-5.9 kbar) than the B-type gabbro (687-824°C and 0.8-3.6 kbar). These findings and whole-rock chemistry suggest different parental magmas for the two types of gabbro. The A-type gabbro was likely formed from basaltic magma, whereas the B-type gabbro was likely formed from an intermediate (andesitic) magma. The gabbroic xenoliths in erupted products at Niijima volcano indicate the presence of mafic to intermediate cumulate bodies of different origins at relatively shallower levels beneath the dominantly rhyolitic volcano.
Temporal and spatial variations in fly ash quality
Hower, J.C.; Trimble, A.S.; Eble, C.F.
2001-01-01
Fly ash quality, both as the amount of petrographically distinguishable carbons and in chemistry, varies in both time and space. Temporal variations are a function of a number of variables. Variables can include variations in the coal blend organic petrography, mineralogy, and chemistry; variations in the pulverization of the coal, both as a function of the coal's Hardgrove grindability index and as a function of the maintenance and settings of the pulverizers; and variations in the operating conditions of the boiler, including changes in the pollution control system. Spatial variation, as an instantaneous measure of fly ash characteristics, should not involve changes in the first two sets of variables listed above. Spatial variations are a function of the gas flow within the boiler and ducts, certain flow conditions leading to a tendency for segregation of the less-dense carbons in one portion of the gas stream. Caution must be applied in sampling fly ash. Samples from a single bin, or series of bins, m ay not be representative of the whole fly ash, providing a biased view of the nature of the material. Further, it is generally not possible to be certain about variation until the analysis of the ash is complete. ?? 2001 Elsevier Science B.V. All rights reserved.
Apollo 16 Evolved Lithology Sodic Ferrogabbro
NASA Technical Reports Server (NTRS)
Zeigler, Ryan; Jolliff, B. L.; Korotev, R. L.
2014-01-01
Evolved lunar igneous lithologies, often referred to as the alkali suite, are a minor but important component of the lunar crust. These evolved samples are incompatible-element rich samples, and are, not surprisingly, most common in the Apollo sites in (or near) the incompatible-element rich region of the Moon known as the Procellarum KREEP Terrane (PKT). The most commonly occurring lithologies are granites (A12, A14, A15, A17), monzogabbro (A14, A15), alkali anorthosites (A12, A14), and KREEP basalts (A15, A17). The Feldspathic Highlands Terrane is not entirely devoid of evolved lithologies, and rare clasts of alkali gabbronorite and sodic ferrogabbro (SFG) have been identified in Apollo 16 station 11 breccias 67915 and 67016. Curiously, nearly all pristine evolved lithologies have been found as small clasts or soil particles, exceptions being KREEP basalts 15382/6 and granitic sample 12013 (which is itself a breccia). Here we reexamine the petrography and geochemistry of two SFG-like particles found in a survey of Apollo 16 2-4 mm particles from the Cayley Plains 62283,7-15 and 62243,10-3 (hereafter 7-15 and 10-3 respectively). We will compare these to previously reported SFG samples, including recent analyses on the type specimen of SFG from lunar breccia 67915.
Martian dunite NWA 2737: Integrated spectroscopic analyses of brown olivine
NASA Astrophysics Data System (ADS)
Pieters, Carle M.; Klima, Rachel L.; Hiroi, Takahiro; Dyar, M. Darby; Lane, Melissa D.; Treiman, Allan H.; Noble, Sarah K.; Sunshine, Jessica M.; Bishop, Janice L.
2008-06-01
A second Martian meteorite has been identified that is composed primarily of heavily shocked dunite, Northwest Africa (NWA) 2737. This meteorite has several similarities to the Chassigny dunite cumulate, but the olivine is more Mg rich and, most notably, is very dark and visually brown. Carefully coordinated analyses of NWA 2737 whole-rock and olivine separates were undertaken using visible and near-infrared reflectance, midinfrared emission and reflectance, and Mössbauer spectroscopic studies of the same samples along with detailed petrography, chemistry, scanning electron microscopy, and transmission electron microscopy analyses. Midinfrared spectra of this sample indicate that the olivine is fully crystalline and that its molecular structure remains intact. The unusual color and spectral properties that extend from the visible through the near-infrared part of the spectrum are shown to be due to nanophase metallic iron particles dispersed throughout the olivine during a major shock event on Mars. Although a minor amount of Fe3+ is present, it cannot account for the well-documented unusual optical properties of Martian meteorite NWA 2737. Perhaps unique to the Martian environment, this ``brown'' olivine exhibits spectral properties that can potentially be used to remotely explore the pressure-temperature history of surface geology as well as assess surface composition.
Testing the Origins of Basalt Fragments fro Apollo 16
NASA Technical Reports Server (NTRS)
Donohue, P. H.; Stevens, R. E.; Neal, C. R.; Zeigler, R. A.
2013-01-01
Several 2-4 mm regolith fragments of basalt from the Apollo 16 site were recently described by [1]. These included a high-Ti vitrophyric basalts (60603,10-16) and one very-low-titanium (VLT) crystalline basalt (65703,9-13). As Apollo 16 was the only highlands sample return mission distant from the maria, identification of basaltic samples at the site indicates input from remote sites via impact processes [1]. However, distinguishing between impact melt and pristine basalt can be notoriously difficult and requires significant sample material [2-6]. The crystal stratigraphy method utilizes essentially non-destructive methods to make these distinctions [7,8]. Crystal stratigraphy combines quantitative petrography in the form of crystal size distributions (CSDs) coupled with mineral geochemistry to reveal the petrogenetic history of samples. The classic CSD plot of crystal size versus population density can reveal insights on growth/cooling rates, residence times, and magma history which in turn can be used to evaluate basaltic vs impact melt origin [7-9]. Electron microprobe (EMP) and laser ablation (LA)-ICP-MS analyses of mineral phases complement textural investigations. Trace element variations document subtle changes occurring during the formation of the samples, and are key in the interpretation and preservation of this rare lunar sample collection.
NASA Technical Reports Server (NTRS)
Treiman, Allan H.
1989-01-01
The objectives were to: explain the abundances of siderophile elements in the SNC meteorite suite, of putative Martian origin; discover the magmatic origins and possibly magma compositions behind the Nakhla meteorite, one of the SNC meteorites; and a re-evaluation of the petrology of Angra dos Reis, a unique meteorite linked to the earliest planetary bodies of the solar nebula. A re-evaluation of its petrography showed that the accepted scenario for its origin, as a cumulate igneous rock, was not consistent with the meteorite's textures (Treiman). More likely is that the meteorite represents a prophyritic igneous rock, originally with magma dominant. Studies of the Nakhla meteorite, of possible Martian origin, although difficult, were successful. It became necessary to reject the basic categorization of Nakhla: that is was a cumulate igneous rock. Detailed studies of the chemical zoning of Nakhlas' minerals, coupled with the failure of experimental studies to yield expected results, forced the conclusion that Nakhla is not a cumulate rock in the usual sense: a rock composed of igneous crystals and intercrystal magma. Study of the siderophile element abundances in the SNC meteorite groups involved trying to find reasonable core formation processes and parameters that would reproduce the observed abundances. Modelling was successful, and delimited a range of models which overlap with those reasonable from geophysical constraints.
Petrography of impact glasses and melt breccias from the El'gygytgyn impact structure, Russia
NASA Astrophysics Data System (ADS)
Pittarello, Lidia; Koeberl, Christian
2013-07-01
The El'gygytgyn impact structure, 18 km in diameter and 3.6 Ma old, in Arctic Siberia, Russia, is the only impact structure on Earth mostly excavated in acidic volcanic rocks. The Late Cretaceous volcanic target includes lavas, tuffs, and ignimbrites of rhyolitic, dacitic, and andesitic composition, and local occurrence of basalt. Although the ejecta blanket around the crater is nearly completely eroded, bomb-shaped impact glasses, redeposited after the impact event, occur in lacustrine terraces within the crater. Here we present detailed petrographic descriptions of newly collected impact glass-bearing samples. The observed features contribute to constrain the formation of the melt and its cooling history within the framework of the impact process. The collected samples can be grouped into two types, characterized by specific features: (1) "pure" glasses, containing very few clasts or new crystals and which were likely formed during the early stages of cratering and (2) a second type, which represents composite samples with impact melt breccia lenses embedded in silicate glass. These mixed samples probably resulted from inclusion of unmelted impact debris during ejection and deposition. After deposition the glassy portions continued to deform, whereas the impact melt breccia inclusions that probably had already cooled down behaved as rigid bodies in the flow.
Mineralogy and petrography of C asteroid regolith: The Sutter's Mill CM meteorite
NASA Astrophysics Data System (ADS)
Zolensky, Michael; Mikouchi, Takashi; Fries, Marc; Bodnar, Robert; Jenniskens, Peter; Yin, Qing-zhu; Hagiya, Kenji; Ohsumi, Kazumasa; Komatsu, Mutsumi; Colbert, Matthew; Hanna, Romy; Maisano, Jessie; Ketcham, Richard; Kebukawa, Yoko; Nakamura, Tomoki; Matsuoka, Moe; Sasaki, Sho; Tsuchiyama, Akira; Gounelle, Matthieu; Le, Loan; Martinez, James; Ross, Kent; Rahman, Zia
2014-11-01
Based upon our characterization of three separate stones by electron and X-ray beam analyses, computed X-ray microtomography, Raman microspectrometry, and visible-IR spectrometry, Sutter's Mill is a unique regolith breccia consisting mainly of various CM lithologies. Most samples resemble existing available CM2 chondrites, consisting of chondrules and calcium-aluminum-rich inclusion (CAI) set within phyllosilicate-dominated matrix (mainly serpentine), pyrrhotite, pentlandite, tochilinite, and variable amounts of Ca-Mg-Fe carbonates. Some lithologies have witnessed sufficient thermal metamorphism to transform phyllosilicates into fine-grained olivine, tochilinite into troilite, and destroy carbonates. One finely comminuted lithology contains xenolithic materials (enstatite, Fe-Cr phosphides) suggesting impact of a reduced asteroid (E or M class) onto the main Sutter's Mill parent asteroid, which was probably a C class asteroid. One can use Sutter's Mill to help predict what will be found on the surfaces of C class asteroids such as Ceres and the target asteroids of the OSIRIS-REx and Hayabusa 2 sample return missions (which will visit predominantly primitive asteroids). C class asteroid regolith may well contain a mixture of hydrated and thermally dehydrated indigenous materials as well as a significant admixture of exogenous material would be essential to the successful interpretation of mineralogical and bulk compositional data.
NASA Astrophysics Data System (ADS)
Kamh, G. M. E.
2007-08-01
Al-hambra is an immense and valuable archaeological site in Spain built on Sabika hill with red brick and natural sandy limestone. It exhibits weathering features indicating salt weathering process. The main aim of this study is to examine weathering processes and intensity acting on Al-hambra. Rock petrography and mineralogical composition have been examined using thin sections, scanning electron microscope, X-ray diffraction and X-ray fluorescence; limits of rock’s physical parameters using ultrasonic waves and mercury porosimeter; rock salt content through hydrochemical analysis. Salts attacking this structure are mainly from wet deposition of air pollutants on the long term chemical alteration of rock’s carbonate content to its equivalent salts. The salts’ concentration limit within the examined rock samples is considerably low but it is effective on the long run through hydration of sulphate salts and/or crystallization of chloride salts. Rock texture type and its silica as well as clay content reduces its resistance to internal stresses by salts as well as wetting and drying cycles at such humid area. The recession in limits of physical parameters examined for deep seated and weathered limestone samples quantitatively reflects weathering intensity on Al-hambra.
Newly recognized hosts for uranium in the Hanford Site vadose zone
Stubbs, J.E.; Veblen, L.A.; Elbert, D.C.; Zachara, J.M.; Davis, J.A.; Veblen, D.R.
2009-01-01
Uranium contaminated sediments from the U.S. Department of Energy's Hanford Site have been investigated using electron microscopy. Six classes of solid hosts for uranium were identified. Preliminary sediment characterization was carried out using optical petrography, and electron microprobe analysis (EMPA) was used to locate materials that host uranium. All of the hosts are fine-grained and intergrown with other materials at spatial scales smaller than the analytical volume of the electron microprobe. A focused ion beam (FIB) was used to prepare electron-transparent specimens of each host for the transmission electron microscope (TEM). The hosts were identified as: (1) metatorbernite [Cu(UO2)2(PO4)2??8H2O]; (2) coatings on sediment clasts comprised mainly of phyllosilicates; (3) an amorphous zirconium (oxyhydr)oxide found in clast coatings; (4) amorphous and poorly crystalline materials that line voids within basalt lithic fragments; (5) amorphous palagonite surrounding fragments of basaltic glass; and (6) Fe- and Mn-oxides. These findings demonstrate the effectiveness of combining EMPA, FIB, and TEM to identify solid-phase contaminant hosts. Furthermore, they highlight the complexity of U geochemistry in the Hanford vadose zone, and illustrate the importance of microscopic transport in controlling the fate of contaminant metals in the environment. ?? 2008 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Navas-Parejo, Pilar; Lara-Peña, R. Aaron; Torres-Martínez, Miguel Angel; Martini, Michelangelo
2018-07-01
A transported crinoid fauna is herein described for the first time in the Paleozoic succession cropping out in the Sierra Las Pintas, northern Baja California, northwestern Mexico. The fossil association includes Heterostelechus texanus Moore and Jeffords, Preptopremnum laeve? Moore and Jeffords, and Mooreanteris perforatus Moore and Jeffords, which indicates a Middle Pennsylvanian-early Permian time-averaged age. The studied area corresponds with the northernmost outcrop of definitely late Paleozoic deep-water facies in northwestern Mexico and the southern United States. Petrographic analyses indicate that the studied metasandstones were primarily derived from high-grade metamorphic rocks and from a shallow-water platform environment dominated by crinoid meadows. These results allow the correlation of the studied metasedimentary rocks with the Carboniferous Rancho Nuevo Formation of the Sonora allochthon, which crops out in central Sonora. The Sonora allochthon includes an Early Ordovician-Late Pennsylvanian sedimentary succession that was deposited in the oceanic basin located south of the Laurentian craton. Therefore, upper Paleozoic metasedimentary rocks of the Sierra Las Pintas were deposited along the same continental margin of Laurentia as those rocks in the Sonora allochthon, and were mostly derived from metamorphic rocks of the continental craton and by the typical Carboniferous encrinites, which characterize the shallow-water rocks of central and northern Sonora.
NASA Astrophysics Data System (ADS)
Darvishi, Esmaiel; Khalili, Mahmoud; Beavers, Roy; Sayari, Mohammad
2015-10-01
The Marziyan granites are located in the north of Azna and crop out in the Sanandaj-Sirjan metamorphic belt. These rocks contain minerals such as quartz, K-feldspars, plagioclase, biotite, muscovite, garnet, tourmaline and minor sillimanite. The mineral chemistry of biotite indicates Fe-rich (siderophyllite), low TiO2, high Al2O3, and low MgO nature, suggesting considerable Al concentration in the source magma. These biotites crystallized from peraluminous S-type granite magma belonging to the ilmenite series. The white mica is rich in alumina and has muscovite composition. The peraluminous nature of these rocks is manifested by their remarkably high SiO2, Al2O3 and high molar A/CNK (> 1.1) ratio. The latter feature is reflected by the presence of garnet and muscovite. All field observations, petrography, mineral chemistry and petrology evidence indicate a peraluminous, S-type nature of the Marziyan granitic rocks that formed by partial melting of metapelite rocks in the mid to upper crust possibly under vapour-absent conditions. These rocks display geochemical characteristics that span the medium to high-K and calc-alkaline nature and profound chemical features typical of syn-collisional magmatism during collision of the Afro-Arabian continental plate and the Central Iranian microplate.
NASA Astrophysics Data System (ADS)
Morales Demarco, M.; Oyhantçabal, P.; Stein, K.-J.; Siegesmund, S.
2012-04-01
Dimensional stones with a black color occupy a prominent place on the international market. Uruguayan dolerite dikes of andesitic and andesitic-basaltic composition are mined for commercial blocks of black dimensional stones. A total of 16 dikes of both compositions were studied and samples collected for geochemical and petrographical analysis. Color measurements were performed on different black dimensional stones in order to compare them with the Uruguayan dolerites. Samples of the two commercial varieties (Absolute Black and Moderate Black) were obtained for petrophysical analysis (e.g. density, porosity, uniaxial compressive strength, tensile strength, etc.). Detailed structural analyses were performed in several quarries. Geochemistry and petrography determines the intensity of the black color. When compared with commercial samples from China, Brazil, India and South Africa, among others, the Uruguayan dolerite Absolute Black is the darkest black dimensional stone analyzed. In addition, the petrophysical properties of the Uruguayan dolerites make them one of the highest quality black dimensional stones. Structural analyses show that five joint sets have been recognized: two sub-vertical joints, one horizontal and two diagonal. These joint sets are one of the most important factors that control the deposits, since they control the block size distribution and the amount of waste material.
Yang, Y.; Van Metre, P.C.; Mahler, B.J.; Wilson, J.T.; Ligouis, B.; Razzaque, M.; Schaeffer, D.J.; Werth, C.J.
2010-01-01
Carbonaceous material (CM) particles are the principal vectors transporting polycyclic aromatic hydrocarbons (PAHs) into urban waters via runoff; however, characteristics of CM particles in urban watersheds and their relative contributions to PAH contamination remain unclear. Our objectives were to identify the sources and distribution of CM particles in an urban watershed and to determine the types of CMs that were the dominant sources of PAHs in the lake and stream sediments. Samples of soils, parking lot and street dust, and streambed and lake sediment were collected from the Lake Como watershed in Fort Worth, Texas. Characteristics of CM particles determined by organic petrography and a significant correlation between PAH concentrations and organic carbon in coal tar, asphalt, and soot indicate that these three CM particle types are the major sources and carriers of PAHs in the watershed. Estimates of the distribution of PAHs in CM particles indicate that coal-tar pitch, usedinsomepavementsealcoats, isadominant source of PAHs in the watershed, and contributes as much as 99% of the PAHs in sealed parking lot dust, 92% in unsealed parking lot dust, 88% in commercial area soil, 71% in streambed sediment, and 84% in surficial lake sediment. ?? 2010 American Chemical Society.
NASA Astrophysics Data System (ADS)
Neuweiler, Fritz; Bernoulli, Daniel
2005-02-01
The Broccatello lithological unit (Lower Jurassic, Hettangian to lower parts of Upper Sinemurian) near the village of Arzo (southern Alps, southern Switzerland) is a mound-shaped carbonate deposit that contains patches of red stromatactis limestone. Within the largely bioclastic Broccatello unit, the stromatactis limestone is distinguished by its early-diagenetic cavity system, a relatively fine-grained texture, and an in-situ assemblage of calcified siliceous sponges (various demosponges and hexactinellids). A complex shallow subsurface diagenetic pathway can be reconstructed from sediment petrography in combination with comparative geochemical analysis (carbon and oxygen isotopes; trace and rare earth elements, REE + Y). This pathway includes organic matter transformation, aragonite and skeletal opal dissolution, patchy calcification and lithification, sediment shrinkage, sagging and collapse, partial REE remobilization, and multiple sediment infiltration. These processes occurred under normal-marine, essentially oxic conditions and were independent from local, recurring syn-sedimentary faulting. It is concluded that the stromatactis results from a combination of calcite mineral authigenesis and syneresis-type deformation. The natural stromatactis phenomenon may thus be best explained by maturation processes of particulate polymer gels expected to form in fine-grained carbonate sediments in the shallow subsurface. Conditions favorable for the evolution of stromatactis appear to be particularly frequent during drowning of tropical or subtropical carbonate platforms.
Leith, S.D.; Reddy, M.M.; Irez, W.F.; Heymans, M.J.
1996-01-01
The pore structure of Salem limestone is investigated, and conclusions regarding the effect of the pore geometry on modeling moisture and contaminant transport are discussed based on thin section petrography, scanning electron microscopy, mercury intrusion porosimetry, and nitrogen adsorption analyses. These investigations are compared to and shown to compliment permeability and capillary pressure measurements for this common building stone. Salem limestone exhibits a bimodal pore size distribution in which the larger pores provide routes for convective mass transfer of contaminants into the material and the smaller pores lead to high surface area adsorption and reaction sites. Relative permeability and capillary pressure measurements of the air/water system indicate that Salem limestone exhibits high capillarity end low effective permeability to water. Based on stone characterization, aqueous diffusion and convection are believed to be the primary transport mechanisms for pollutants in this stone. The extent of contaminant accumulation in the stone depends on the mechanism of partitioning between the aqueous and solid phases. The described characterization techniques and modeling approach can be applied to many systems of interest such as acidic damage to limestone, mass transfer of contaminants in concrete and other porous building materials, and modeling pollutant transport in subsurface moisture zones.
NASA Astrophysics Data System (ADS)
Vanghi, V.; Frisia, S.; Borsato, A.
2017-08-01
The genesis of calcite coralloid speleothems from Lamalunga cave (Southern Italy) is here investigated from a purely petrographic perspective, which constitutes the basis for any subsequent chemical investigation. Lamalunga cave coralloids formed on bones and debris on the floor of the cave. They consist of elongated columnar crystals whose elongation progressively increases from the flanks to the tips of the coralloid, forming a succession of lens-shaped layers, which may be separated by micrite or impurity-rich layers. Organic molecules are preferentially concentrated toward the centre of convex lenses as highlighted by epifluorescence. Their occurrence on cave floor, lens-shaped morphology and concentration of impurities toward the apex of the convex lenses supports the hypothesis that their water supply was hydroaerosol, generated by the fragmentation of cave drips. Evaporation and degassing preferentially occurred on tips, enhancing the digitated morphology and trapping the organic molecules and impurities, carried by the hydroaerosol, between the growing crystals which became more elongated. Micrite layers, that cap some coralloid lenses, likely identify periods when decreasing in hydroaerosol resulted in stronger evaporation and higher supersaturation with respect to calcite of the parent film of fluid. This interpretation of coralloid formation implies that these speleothems can be used to extract hydroclimate information.
The Relationship Between Cosmic-Ray Exposure Ages And Mixing Of CM Chondrite Lithologies
NASA Technical Reports Server (NTRS)
Zolensky, M. E.; Takenouchi, A.; Gregory, T.; Nishiizumi, K.; Caffee, M.; Velbel, M. A.; Ross, K.; Zolensky, A.; Le, L.; Imae, N.;
2017-01-01
Carbonaceous (C) chondrites are primitive materials probably deriving from C, P and D asteroids, and as such potentially include samples and analogues of the target asteroids of the Dawn, Hayabusa2 and OSIRIS-Rex missions. Foremost among the C chondrites are the CM chondrites, the most common type, and which have experienced the widest range of early solar system processes including oxidation, hydration, metamorphism, and impact shock deformation, often repeatedly or cyclically [1]. To track the activity of these processes in the early solar system, it is critical to learn how many separate bodies are represented by the CMs. Nishiizumi and Caffee [2] have reported that the CMs are unique in displaying several distinct peaks for cosmic-ray exposure (CRE) age groups, and that excavation from significant depth and exposure as small entities in space is the best explanation for the observed radionuclide data. There are either 3 or 4 CRE groups for CMs (Fig.1). We decided to systematically characterize the petrography in each of the CRE age groups to determine whether the groups have significant petrographic differences with these reflecting different parent asteroid geological processing or multiple original bodies. We previously re-ported preliminary results of our work [3], however we have now reexamined these meteorites from the perspective of brecciation, with interesting new results.
Lunar Meteorites Sayh Al Uhaymir 449 and Dhofar 925, 960, and 961: Windows into South Pole
NASA Technical Reports Server (NTRS)
Ziegler, Ryan A.; Jolliff, B. L.; Korotev, R. L.
2013-01-01
In 2003, three lunar meteorites were collected in close proximity to each other in the Dhofar region of Oman: Dhofar 925 (49 g), Dhofar 960 (35 g), and Dhofar 961 (22 g). In 2006, lunar meteorite Sayh al Uhaymir (SaU) 449 (16.5 g) was found about 100 km to the NE. Despite significant differences in the bulk composition of Dhofar 961 relative to Dhofar 925/960 and SaU 449 (which are identical to each other), these four meteorites are postulated to be paired based on their find locations, bulk composition, and detailed petrographic analysis. Hereafter, they will collectively be referred to as the Dhofar 961 clan. Comparison of meteorite and component bulk compositions to Lunar Prospector 5-degree gamma-ray data suggest the most likely provenance of this meteorite group is within the South Pole-Aitken Basin. As the oldest, largest, and deepest recognizable basin on the Moon, the composition of the material within the SPA basin is of particular importance to lunar science. Here we review and expand upon the geochemistry and petrography of the Dhofar 961 clan and assess the likelihood that these meteorites come from within the SPA basin based on their bulk compositions and the compositions and characteristics of the major lithologic components found within the breccia.
Samolczyk, Mary; Vallance, James W.; Cubley, Joel; Osborn, Gerald; Clark, Douglas H.
2016-01-01
The oldest postglacial lapilli–ash tephra recognized in sedimentary records surrounding Mount Rainier (Washington State, USA) is R tephra, a very early Holocene deposit that acts as an important stratigraphic and geochronologic marker bed. This multidisciplinary study incorporates tephrostratigraphy, radiocarbon dating, petrography, and electron microprobe analysis to characterize R tephra. Tephra samples were collected from Tipsoo Lake and a stream-cut exposure in the Cowlitz Divide area of Mount Rainier National Park. Field evidence from 25 new sites suggests that R tephra locally contains internal bedding and has a wider distribution than previously reported. Herein, we provide the first robust suite of geochemical data that characterize the tephra. Glass compositions are heterogeneous, predominantly ranging from andesite to rhyolite in ash- to lapilli-sized clasts. The mineral assemblage consists of plagioclase, orthopyroxene, clinopyroxene, and magnetite with trace apatite and ilmenite. Subaerial R tephra deposits appear more weathered in hand sample than subaqueous deposits, but weathering indices suggest negligible chemical weathering in both deposits. Statistical analysis of radiocarbon ages provides a median age for R tephra of ∼10 050 cal years BP, and a 2σ error range between 9960 and 10 130 cal years BP.
Invisible gold in Colombian auriferous soils
NASA Astrophysics Data System (ADS)
Bustos Rodriguez, H.; Oyola Lozano, D.; Rojas Martínez, Y. A.; Pérez Alcázar, G. A.; Balogh, A. G.
2005-11-01
Optic microscopy, X-ray diffraction (XRD), Mössbauer spectroscopy (MS), Electron microprobe analysis (EPMA) and secondary ions mass spectroscopy (SIMS) were used to study Colombian auriferous soils. The auriferous samples, collected from El Diamante mine, located in Guachavez-Nariño (Colombia), were prepared by means of polished thin sections and polished sections for EPMA and SIMS. Petrography analysis was made using an optical microscope with a vision camera, registering the presence, in different percentages, of the following phases: pyrite, quartz, arsenopyrite, sphalerite, chalcopyrite and galena. By XRD analysis, the same phases were detected and their respective cell parameters calculated. By MS, the presence of two types of pyrite was detected and the hyperfine parameters are: δ 1 = 0.280 ± 0.01 mm/s and Δ Q 1 = 0.642 ± 0.01 mm/s, δ 2 = 0.379 ± 0.01 mm/s and Δ Q 2 = 0.613 ± 0.01 mm/s. For two of the samples MS detected also the arsenopyrite and chalcopyrite presence. The mean composition of the detected gold regions, established by EPMA, indicated 73% Au and 27% Ag (electrum type). Multiple regions of approximately 200 × 200 μm of area in each mineral sample were analyzed by SIMS registering the presence of “invisible gold” associated mainly with the pyrite and occasionally with the arsenopyrite.
NASA Astrophysics Data System (ADS)
Sayab, Mohammad; Miettinen, Arttu; Aerden, Domingo; Karell, Fredrik
2017-10-01
We applied X-ray computed microtomography (μ-CT) in combination with anisotropy of magnetic susceptibility (AMS) analysis to study metamorphic rock fabrics in an oriented drill core sample of pyrite-pyrrhotite-quartz-mica schist. The sample is extracted from the Paleoproterozoic Martimo metasedimentary belt of northern Finland. The μ-CT resolves the spatial distribution, shape and orientation of 25,920 pyrrhotite and 153 pyrite grains localized in mm-thick metapelitic laminae. Together with microstructural analysis, the μ-CT allows us to interpret the prolate symmetry of the AMS ellipsoid and its relationship to the deformation history. AMS of the sample is controlled by pyrrhotite porphyroblasts that grew syntectonically during D1 in subhorizontal microlithons. The short and intermediate axes (K3 and K2) of the AMS ellipsoid interchanged positions during a subsequent deformation (D2) that intensely crenulated S1 and deformed pyrrhotite, while the long axes (K1) maintained a constant position parallel to the maximum stretching direction. However, it is likely that all the three AMS axes switched, similar to the three principal axes of the shape ellipsoid of pyrite porphyroblasts from D1 to D2. The superposition of D1 and D2 produced a type-2 fold interference pattern.
Late Quaternary distal tephra-fall deposits in lacustrine sediments, Kenai Peninsula, Alaska
de Fontaine, C.S.; Kaufman, D.S.; Scott, Anderson R.; Werner, A.; Waythomas, C.F.; Brown, T.A.
2007-01-01
Tephra-fall deposits from Cook Inlet volcanoes were detected in sediment cores from Tustumena and Paradox Lakes, Kenai Peninsula, Alaska, using magnetic susceptibility and petrography. The ages of tephra layers were estimated using 21 14C ages on macrofossils. Tephras layers are typically fine, gray ash, 1-5??mm thick, and composed of varying proportions of glass shards, pumice, and glass-coated phenocrysts. Of the two lakes, Paradox Lake contained a higher frequency of tephra (0.8 tephra/100 yr; 109 over the 13,200-yr record). The unusually large number of tephra in this lake relative to others previously studied in the area is attributed to the lake's physiography, sedimentology, and limnology. The frequency of ash fall was not constant through the Holocene. In Paradox Lake, tephra layers are absent between ca. 800-2200, 3800-4800, and 9000-10,300??cal yr BP, despite continuously layered lacustrine sediment. In contrast, between 5000 and 9000??cal yr BP, an average of 1.7 tephra layers are present per 100 yr. The peak period of tephra fall (7000-9000??cal yr BP; 2.6 tephra/100 yr) in Paradox Lake is consistent with the increase in volcanism between 7000 and 9000 yr ago recorded in the Greenland ice cores. ?? 2007 Elsevier Inc. All rights reserved.
Hower, J.C.; Eble, C.F.; Pierce, B.S.
1996-01-01
The Middle Pennsylvanian (Westphalian D) Stockton (also known as the Broas) coal bed of the Breathitt Formation is an important energy resource in Kentucky. Petrographic, geochemical and palynologic studies were undertaken from mine, core and highway exposures in Martin and northern Pike counties, Kentucky, in order to determine the influence of the Stockton depositional ecosystem on those parameters. Vitrinite-rich Stockton lithotypes are dominated by Lycospora. Dull lithotypes, including both high- and low-ash yield durains, generally have abundant Densosporites, suggesting that the parent plant inhabited a fairly wide range of environments. Lithologies having tree ferns as an important component also have high fusinite + semifusinite and a low telinite/gelocollinite ratio. The aerial root bundles of the tree ferns were susceptible to oxidation and, for tissue not oxidized to inertinite, to preservation as gelocollinite. In the initial stages of formation, the Stockton mire was discontinuous and had a rather restricted floral assemblage. The presence of durains higher in the Stockton section, particularly the low-ash yield durains having petrographic indicators of degradation, suggests that portions of the mire developed as a domed peat. The termination of the mire as a high-sulfur, arboreous lycopod-domimated mire is consistent with the return to more planar mire development.
Effects of limestone petrography and calcite microstructure on OPC clinker raw meals burnability
NASA Astrophysics Data System (ADS)
Galimberti, Matteo; Marinoni, Nicoletta; Della Porta, Giovanna; Marchi, Maurizio; Dapiaggi, Monica
2017-10-01
Limestone represents the main raw material for ordinary Portland cement clinker production. In this study eight natural limestones from different geological environments were chosen to prepare raw meals for clinker manufacturing, aiming to define a parameter controlling the burnability. First, limestones were characterized by X-Ray Fluorescence, X-Ray Powder Diffraction and Optical Microscopy to assess their suitability for clinker production and their petrographic features. The average domains size and the microstrain of calcite were also determined by X-Ray Powder Diffraction line profile analysis. Then, each limestone was admixed with clay minerals to achieve the adequate chemical composition for clinker production. Raw meals were thermally threated at seven different temperatures, from 1000 to 1450 °C, to evaluate their behaviour on heating by ex situ X-Ray Powder Diffraction and to observe the final clinker morphology by Scanning Electron Microscopy. Results indicate the calcite microstrain is a reliable parameter to predict the burnability of the raw meals, in terms of calcium silicates growth and lime consumption. In particular, mixtures prepared starting from high-strained calcite exhibit a better burnability. Later, when the melt appears this correlation vanishes; however differences in the early burnability still reflect on the final clinker composition and texture.
NASA Astrophysics Data System (ADS)
Nugraha, A. M. S.; Widiarti, R.; Kusumah, E. P.
2017-12-01
This study describes a deep-water slump facies shale of the Early Miocene Jatiluhur/Cibulakan Formation to understand its potential as a source rock in an active tectonic region, the onshore West Java. The formation is equivalent with the Gumai Formation, which has been well-known as another prolific source rock besides the Oligocene Talang Akar Formation in North West Java Basin, Indonesia. The equivalent shale formation is expected to have same potential source rock towards the onshore of Central Java. The shale samples were taken onshore, 150 km away from the basin. The shale must be rich of organic matter, have good quality of kerogen, and thermally matured to be categorized as a potential source rock. Investigations from petrography, X-Ray diffractions (XRD), and backscattered electron show heterogeneous mineralogy in the shales. The mineralogy consists of clay minerals, minor quartz, muscovite, calcite, chlorite, clinopyroxene, and other weathered minerals. This composition makes the shale more brittle. Scanning Electron Microscope (SEM) analysis indicate secondary porosities and microstructures. Total Organic Carbon (TOC) shows 0.8-1.1 wt%, compared to the basinal shale 1.5-8 wt%. The shale properties from this outcropped formation indicate a good potential source rock that can be found in the subsurface area with better quality and maturity.
NASA Astrophysics Data System (ADS)
Yuguchi, Takashi; Nishiyama, Tadao
2008-12-01
Myrmekite is an intergrowth texture consisting of vermicular quartz and albitic plagioclase (Ab 93An 7 in this study), typically occurring between K-feldspar and plagioclase. It occurs ubiquitously in both metamorphic and granitic rocks; however, its genesis has been an enigma. This paper describes myrmekite's petrography and discusses its genesis from the Okueyama granitic body (OKG), which is a young (14 Ma) granite in Southwest Japan with no evidence of deformation after solidification. The genesis of a newly observed texture, the 'reaction rim', will be also discussed in relation to myrmekite. The reaction rim is an albite layer (Ab 95An 5) with no vermicular quartz between K-feldspar and plagioclase, and it occasionally makes a composite texture with myrmekite. Both myrmekite and the reaction rim are accompanied by a diffusive boundary layer (Olg-layer) with a mean composition of oligoclase (Ab 75An 25) in the rim of neighboring plagioclase rim. The overall reactions in an open system for the formation of myrmekite and that for the reaction rim are derived based on the following two models: 1) one based on the assumption of conservation of solid volume with arbitrarily specified closure components, and 2) the other based on the assumption of closure of AlO 3/2 together with an arbitrarily specified volume factor. Steady diffusion modeling in an open system based on the overall reaction thus derived defines the stability field of myrmekite and of the reaction rim in terms of the ratios of phenomenological coefficients ( L-ratios). The steady diffusion models for the above two models have essentially the same features. Myrmekite is stable for large values (> 10) of LAlAl/ LCaCa, for moderate values of LAlAl/ LSiSi, and for only small values (< 1) of LAlAl/ LNaNa. In the case of the reaction rim, the stability field is much wider in a plot of LAlAl/ LCaCa vs. LAlAl/ LNaNa, and its dependence on LAlAl/ LSiSi is stronger than that of myrmekite. The reaction rim is stable only for large values of LAlAl/ LCaCa, which is consistent with the case of myrmekite. Exchange cycles for myrmekite and the reaction rim show that the essential formation mechanism is albitization of K-feldspar: KAlSi 3O 8 + NaO 1/2 = NaAlSi 3O 8 + KO 1/2, which is coupled with albitization of plagioclase via diffusive transport of NaO 1/2 and SiO 2: CaAl 2Si 2O 8 + NaO 1/2 + SiO 2 = NaAlSi 3O 8 + CaO + AlO 3/2. Formation of myrmekite requires more SiO 2 than development of the reaction rim; some of the SiO 2 is given by decomposition of K-feldspar and some is supplied from the environment to the boundary between K-feldspar and plagioclase.
Field occurrences and petrology of eclogites from the Dabie Mountains, Anhui, central China
NASA Astrophysics Data System (ADS)
Wang, X.; Jing, Y.; Liou, J. G.; Pan, G.; Liang, W.; Xia, M.; Maruyama, S.
1990-11-01
Four distinct types of eclogites are recognized according to their field occurrences and mineral parageneses in a gneiss terrane of the Dabie Mountains, a collision zone between the Sino-Korean and Yangtze cratons in central China. Some eclogites contain coesite and its quartz pseudomorphs enclosed in garnet and omphacite. Type I eclogites occur as layers in serpentinites and contain garnet, clinopyroxene, orthopyroxene, phengite, rutile, and coesite pseudomorph. Type II eclogites occur as lenticular bodies inside serpentinites and contain garnet, clinopyroxene, quartz, rutile, and edenitic hornblende. Type III eclogites occur as blocks of 2 cm to 20 m in size in a matrix of hornblende gneiss and biotite gneiss, and Type IV eclogites occur as thin layers interbedded with amphibolites. P- T estimates for these different eclogites indicate that they were formed under different physical conditions. All the eclogites were affected by later regional metamorphism for which the P- T conditions are estimated. This paper provides an introduction to the abundant eclogites from central China which have not been reported previously in Western literature. Specifically, the mode of field occurrence, petrography, mineral chemistry and formation conditions of the four types of eclogites are described. The paper is thus designed to establish a petrological framework for future detailed studies of the eclogites and their country rocks in an ancient zone of collision.
Karapanagioti, Hrissi K.; Kleineidam, Sybille; Sabatini, David A.; Grathwohl, Peter; Ligouis, Bertrand
2000-01-01
Sediment organic matter heterogeneity in sediments is shown to impact the sorption behavior of contaminants. We investigated the sorptive properties as well as the composition of organic matter in different subsamples (mainly grain size fractions) of the Canadian River Alluvium (CRA). Organic petrography was used as a new tool to describe and characterize the organic matter in the subsamples. The samples studied contained many different types of organic matter including bituminous coal particles. Differences in sorption behavior were explained based on these various types of organic matter. Subsamples containing predominately coaly, particulate organic matter showed the highest Koc, the highest nonlinearity of sorption isotherms and the slowest sorption kinetics. Soil subsamples with organic matter present as organic coatings around the quartz grains evidenced the lowest Koc, the most linear sorption isotherms and the fastest sorption kinetics, which was not limited by slow intraparticle diffusion. Due to the high sorption capacity of the coaly particles even when it is present as only a small fraction of the composite organic content (<3%) causes Koc values which are much higher than expected for soil organic matter (e.g. Koc − Kow relationships). The results show that the identification and quantification of the coaly particles within a sediment or soil sample is a prerequisite in order to understand or predict sorption behavior of organic pollutants.
NASA Astrophysics Data System (ADS)
Abratis, Michael; Viereck, Lothar; Pfänder, Jörg A.; Hentschel, Roland
2015-11-01
Differentiated magmatic rocks such as trachyte and phonolite are volumetrically subordinate to mafic volcanic rocks within the Cenozoic Central European Volcanic Province (exceptions are the East Eifel and the Rhön volcanic fields). Within the volcanic field of the "Heldburg dike swarm" (Heldburger Gangschar), the phonolite of the Burgberg near Heldburg represents the only known occurrence of differentiated magmatic rocks. However, the Heldburg phonolite is famous foremost for containing mantle xenoliths (spinel lherzolite). Former studies proposing a cogenetic relationship between the phonolite and the peridotites concluded that the phonolite magma must have evolved under upper mantle conditions. Herewith, we present petrographic and geochemical evidence for magma mixing and mingling in the Heldburg phonolite melt due to the intrusion of mantle-derived basanitic magma, which is exposed today as dikes at the foot of the Heldburg Burgberg. During this process, the mantle xenoliths were introduced into the phonolite melt as they all contain rims of basanitic magma. Extensive mingling features (e.g., schlieren layers, load casts, flame structures, mafic enclaves) are developed, indicating that the basanite and the zoned phonolitic body were melts at the time of mixing. These petrographic and geochemical indications of two coeval melts of different composition are substantiated by 40Ar/39Ar dating, revealing identical ages of ca. 15 Ma.
Sedimentary Petrography and Facies Analysis at the Shaler Outcrop, Gale Crater, Mars
NASA Astrophysics Data System (ADS)
Edgar, L. A.; Gupta, S.; Rubin, D. M.; Lewis, K. W.; Kocurek, G.; Anderson, R. B.; Bell, J. F.; Dromart, G.; Edgett, K. S.; Grotzinger, J. P.; Hardgrove, C. J.; Kah, L. C.; Leveille, R. J.; Malin, M.; Mangold, N.; Milliken, R.; Minitti, M. E.; Rice, M. S.; Rowland, S. K.; Schieber, J.; Stack, K.; Sumner, D. Y.; Team, M.
2013-12-01
The Mars Science Laboratory Curiosity rover has recently completed an investigation of a large fluvial deposit known informally as the Shaler outcrop (~1 m thick). Curiosity acquired data at the Shaler outcrop during sols 120-121 and 309-324. The Shaler outcrop is comprised of cross-bedded coarse-grained sandstones and recessive finer-grained intervals. Shaler is distinguished from the surrounding units by the presence of resistant beds exhibiting decimeter scale trough cross-bedding. Observations using the Mast Cameras, Mars Hand Lens Imager (MAHLI) and ChemCam Remote Micro Imager (RMI) enable the recognition of several distinct facies. MAHLI images were acquired on five distinct rock targets, and RMI images were acquired at 33 different locations. On the basis of grain size, erosional resistance, color, and sedimentary structures, we identify four facies: 1) resistant cross-stratified facies, 2) smooth, fine-grained cross-stratified facies, 3) dark gray, pitted facies, and 4) recessive, vertically fractured facies. Panoramic Mastcam observations reveal facies distributions and associations, and show cross-bedded facies that are similar to those observed at the Rocknest and Bathurst_Inlet locations. MAHLI and RMI images are used to determine the grain size, sorting, rounding and sedimentary fabric of the different facies. High-resolution images also reveal small-scale diagenetic features and sedimentary structures that are used to reconstruct the depositional and diagenetic history.
Restoration and evolution of the intermontane Indus molasse basin, Ladakh Himalaya, India
NASA Astrophysics Data System (ADS)
Searle, M. P.; Pickering, K. T.; Cooper, D. J. W.
1990-03-01
Collision of the Indian Plate with the Karakorum Plate-Lhasa Block during the Eocene (ca. 55-50 Ma) created predominantly a S- or SW-verging thrust culmination across the Himalaya. During the late Tertiary, two molasse basins existed — the Siwalik Bain, formed in the late Miocene to Present on the Indian foreland south of the Himalaya, and the mid-Eocene to late Miocene Indus Basin along the Indus Suture Zone north of the High Himalaya. The Indus Basin is approximately 2000 km long, extending eastwards from Ladakh across South Tibet. A balanced cross-section along the Zanskar River shows a minimum 36 km shortening in the Eocene-?late Miocene molasse, and suggests that the minimum basin width was approximately 60 km in Ladakh. More than 2000 m of post-Eocene alluvial fan, fluvial and fluvio-lacustrine sediments accumulated in the Ladakh sector with petrographies suggesting derivation mainly from the deeply dissected and uplifted northern granodioritic Ladakh batholith (Aptian-Eocene), with only minor amounts of debris derived from the deformed southern Tethyan passive margin. Palaeocurrents show predominant E-W, axis-parallel, sediment transport, with subordinate lateral input paths being preserved. The Indus molasse basin is deformed by numerous, post-Eocene, N-directed backthrusts, many of which cut the entire stratigraphy and, therefore, were active at least into late Tertiary times.
NASA Technical Reports Server (NTRS)
Jolliff, B. L.; Zeigler, R. A.; Korotev, R. L.; Barra, F.; Swindle, T. D.
2005-01-01
In this abstract, we report on the composition, mineralogy and petrography of a basaltic rock fragment, 12032,366-18, found in the Apollo 12 regolith. Age data, collected as part of an investigation by Barra et al., will be presented in detail in. Here, only the age dating result is summarized. This rock fragment garnered our attention because it is significantly enriched in incompatible elements, e.g., 7 ppm thorium, compared to other known lunar basalts. Its mineral- and trace-element chemistry set it apart from other Apollo 12 basalts and indeed from all Apollo and Luna basalts. What makes it potentially very significant is the possibility that it is a sample of a relatively young, thorium-rich basalt flow similar to those inferred to occur in the Procellarum region, especially northwestern Procellarum, on the basis of Lunar Prospector orbital data. Exploiting the lunar regolith for the diversity of rock types that have been delivered to a landing site by impact processes and correlating them to their likely site of origin using remote sensing will be an important part of future missions to the Moon. One such mission is Moonrise, which would collect regolith samples from the South Pole-Aitken Basin, concentrating thousands of rock fragments of 3-20 mm size from the regolith, and returning the samples to Earth.
NASA Astrophysics Data System (ADS)
Todaro, S.; Hollis, C.; Di Stefano, P.
2016-03-01
This paper focuses upon the analysis of a complex paleokarstic system recorded within uppermost Triassic peritidal cycles in northwestern Sicily. Besides documenting spectacular karstification at the Triassic/Jurassic boundary, it provides an example of stratabound 'spongy' or 'swiss-cheese' dissolution. On the base of field observations, microfacies analysis, transmitted-light and cathodoluminescence petrography and stable-isotope analyses we put forward an original model for the formation of this peculiar stratabound dissolution. It implies a complex interaction of several controlling factors at the interface between the marine and meteoric diagenetic realms during the relative cyclic oscillations of sea-level. The presence of a fresh water supply from an adjacent emerged area is the key for the periodic formation of a mixing water lens during the relative sea level lowstand that brought about the subaerial exposure of the platform. The resulting dissolution pattern in the subtidal unit of a specific cycle is strongly controlled by the textural features of the sediments. In the case of bioturbated wackestones the 'spongy' or 'swiss-cheese' pattern develops, while in mollusk-rich beds biomoldic porosity occurs. In well-sorted subtidal members, such as algal grainstones, the dissolution originates as randomly distributed vuggy porosity. During periodic flooding of the platform, a new subtidal unit is formed and the dissolution stops as fully marine phreatic conditions are re-established.
Hower, J.C.; Finkelman, R.B.; Rathbone, R.F.; Goodman, J.
2000-01-01
Fly ash was collected from eight mechanical and 10 baghouse hoppers at each of the twin 150-MW wall-fired units in a western Kentucky power station. The fuel burned at that time was a blend of many low-sulfur, high-volatile bituminous Central Appalachian coals. The baghouse ash showed less variation between units than the mechanical hoppers. The mechanical fly ash, coarser than the baghouse ash, showed significant differences in the amount of total carbon and in the ratio of isotropic coke to both total carbon and total coke - the latter excluding inertinite and other unburned, uncoked coal. There was no significant variation in proportions of inorganic fly ash constituents. The inter-unit differences in the amount and forms of mechanical fly ash carbon appear to be related to differences in pulverizer efficiency, leading to greater amounts of coarse coal, therefore unburned carbon, in one of the units. Mercury capture is a function of both the total carbon content and the gas temperature at the point of fly ash separation, mercury content increasing with an increase in carbon for a specific collection system. Mercury adsorption on fly ash carbon increases at lower flue-gas temperatures. Baghouse fly ash, collected at a lower temperature than the higher-carbon mechanically separated fly ash, contains a significantly greater amount of Hg.
Petrography and character of the bedrock surface beneath western Cape Cod, Massachusetts
Hallett, B.W.; Poppe, L.J.; Brand, S.G.
2004-01-01
Cores collected during recent drilling in western Cape Cod, Massachusetts provide insight into the topography and petrology of the underlying bedrock. 62 drill sites spread over a ???140 km2 study area produced cores of granitoids (31), orthogneisses (20), basalts/diabases (4), amphibolites (3), felsic mylonites (2), and dolomitic rock (2). Granitoid cores range in composition from granite to tonalite to quartz diorite, but are dominated by single-mica granites. Alteration is common in nearly all cores examined in this study, and is evidenced by the secondary growth of chlorite and epidote. The granitoids resemble rocks of the Dedham and Fall River terranes (Wones and Goldsmith 1991). Gneisses from the study area generally contain the mineral assemblage hornblende+plagioclase+quartz+biotite+epidote??chlorite?? sphene??K-feldspar??sericite+oxides. Based on mineral assemblages, we estimate peak metamorphic grade to be of lower amphibolite facies. X-ray powder diffraction of unmetamorphosed dolomitic cores shows presence of layered silicates (clays), plagioclase, and possible magnesite. Contours of the bedrock surface show locally irregular topography suggesting erosion by glacial scour. The distribution of lithologies suggests a possible continuation of the New Bedford gneissic terrane that outcrops 25 km to the west. Dolomitic rocks may represent a lithified fault gouge material at the eastern edge of the gneissic zone. Basalts/diabases are interpreted to be post-metamorphic dikes of Late Paleozoic age, or possibly associated with Mesozoic rifting.
NASA Astrophysics Data System (ADS)
Lumpkin, Gregory R.; Gieré, Reto; Williams, C. Terry; McGlinn, Peter J.; Payne, Timothy E.
2017-09-01
Tungsten-rich oxycalciobetafite occurs in complex Ti-rich hydrothermal veins emplaced within dolomite marble in the contact aureole of the Adamello batholith, northern Italy, where it occurs as overgrowths on zirconolite. The betafite is weakly zoned and contains 29-34 wt% UO2. In terms of end-members, the betafite contains approximately 50 mol% CaUTi2O7 and is one of the closest known natural compositions to the pyrochlore phase proposed for use in titanate nuclear waste forms. Amorphization and volume expansion of the betafite caused cracks to form in the enclosing silicate mineral grains. Backscattered electron images reveal that betafite was subsequently altered along crystal rims, particularly near the cracks. Electron probe microanalyses reveal little difference in composition between altered and unaltered areas, except for lower totals, suggesting that alteration is primarily due to hydration. Zirconolite contains up to 18 wt% ThO2 and 24 wt% UO2, and exhibits strong compositional zoning, but no internal cracking due to differential (and anisotropic) volume expansion and no visible alteration. The available evidence demonstrates that both oxycalciobetafite and zirconolite retained actinides for approximately 40 million years after the final stage of vein formation. During this time, oxycalciobetafite and zirconolite accumulated a total alpha-decay dose of 3.0-3.6 × 1016 and 0.2-2.0 × 1016 α/mg, respectively.
Carbonate petrography of the Burlington/Keokuk contact in southeastern Iowa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maguire, T.D.
1993-02-01
The top of the Burlington Formation (Mississippian, Osagean Series), a dominantly skeletal packstone/grainstone unit in southeastern Iowa, is defined by a regionally persistent bone bed horizon and is overlain by the lower Keokuk Formation, a dominant skeletal wackestone and chert. A thin gray-green shale at some localities at the contact is interpreted as a condensed section that corresponds to a deepening event during the beginning of the Keokuk deposition. Both units represent similar carbonate bank settings deposited during rapid, uninterrupted progradation of carbonate sediments during changing sea levels. The upper Burlington facies consists dominantly of crinoids and has the highestmore » biotic diversity (i.e., bryozoan, corals, and brachiopods) during the most open marine conditions. In thin section most crinoid grains show moderate abrasion and some evidence of early fragmentation. Frequent winnowing during storm events resulted in relatively clean packed calcarenite fabrics. Both formations acted as a single paragenetic unit during the induration process, characterized by multiple episodes of cementation, dolomitization, and compaction. Crinoidal syntaxial overgrowths and crushed bryozoan matrix make up most of the packstone/grainstone fabrics in both formations. The presence of mashed bryozoans suggests that some compaction may have preceded complete stabilization of the sedimentary mass by crinoidal syntaxial overgrowth cements. Staining revealed at least three generations of syntaxial overgrowth cements which probably formed in a meteoric phreatic environment during a relatively short period of geologic time.« less
Transient calcite fracture fillings in a welded tuff, Snowshoe Mountain, Colorado
Hoch, A.R.; Reddy, M.M.; Heymans, M.J.
2000-01-01
The core from two boreholes (13.1 and 19.2 m depth) drilled 500 m apart in the fractured, welded tuff near the summit of the Snowshoe Mountain, Colorado (47??30'N, 106??55'W) had unique petrographic and hydrodynamic properties. Borehole SM-4 had highly variable annual water levels, in contrast to SM-1a, whose water level remained near the land surface. Core samples from both boreholes (n = 10 and 11) were examined petrographically in thin sections impregnated with epoxy containing rhodamine to mark the pore system features, and were analyzed for matrix porosity and permeability. Core from the borehole sampling the vadose zone was characterized by open fractures with enhanced porosity around phenocrysts due to chemical weathering. Fractures within the borehole sampling the phreatic zone were mineralized with calcite and had porosity characteristics similar to Unweathered and unfractured rock. At the top of the phreatic zone petrography indicates that calcite is dissolving, thereby changing the hydrogeochemical character of the rock (i.e. permeability, porosity, reactive surface area, and mineralogy). Radiocarbon ages and C and O stable isotopes indicate that calcite mineralization occurred about 30 to 40 ka ago and that there was more than one mineralization event. Results of this study also provide some relationships between primary porosity development from 3 types of fracture in a welded tuff. (C) 2000 Elsevier Science Ltd.
Petrography and petrology of Smoky Butte intrusives, Garfield County, Montana
Matson, Robert E.
1960-01-01
The Smoky Butte intrusives are located in T. 18 N., R. 36 E. Garfield County, Montana on the extreme eastern edge of the petrographic province of Central Montana. They consist of dikes and plugs arranged in linear, en-echelon pattern with a northeast trend and intrude the Tullock member (Paleocene age) of the Fort Union formation. Extrusive rocks are absent. The rocks are potassium-rich volcanic types showing a disequilibrium mineral assemblage consisting of sanidine, leucite, biotite, olivine, pyroxene, magnetite plus. ilmenite, apatite, calcite, quartz, and a yellowish to dark greenish glassy groundmass. Two chemical analyses of Smoky Butte rocks show high magnesium, potassium, titanium, and phosphorous and low aluminum and sodium content. The two norm calculations show that the rocks are oversaturated with 1.3 and 3.1 per-cent excess silica. Because of the peculiar nature of the Smoky Butte rocks, descriptive names have been applied to them. They are divided into six different types. Three periods of intrusion are proposed for Smoky Butte quarry where three rock types crop out. Other evidence for multiple injection occurs in several multiple dikes. The upper contact of the intrusion is visible on a few plugs and dikes. Smoky Butte rocks show some similarities to the undersaturated potassium-rich rocks of the Highwood and Bearpaw Mountains of Montana, the rocks of the Leucite Hills of Wyoming, and the oversaturated rocks of the West Kimberly District of Australia.
Bestimmung thermischer Eigenschaften der Gesteine des Unteren und Mittleren Buntsandsteins
NASA Astrophysics Data System (ADS)
Franz, Claudia; Schulze, Marcellus
2016-03-01
For accurate planning of vertical borehole heat exchanger systems, knowledge of thermo-physical ground parameters is critical. This study reports laboratory-measured thermal conductivity and diffusivity values of Mesozoic sandstones (Lower and Middle Buntsandstein) from four wells. The measurements were made on drill core using an optical scanning method. The mean thermal conductivities of the sandstones range between 2.6 ± 0.3 W / (m · K) and 3.1 ± 0.4 W / (m · K) for dry conditions and between 3.6 ± 0.3 W / (m · K) and 4.1 ± 0.6 W / (m · K) after saturation with water. The mean thermal diffusivity values range between (1.6 ± 0.2) · 10- 6 m2 / s for dry and (2.0 ± 0.6) · 10- 6 m2 / s for water-saturated sandstones. Thermal properties are closely related to the petrography and lithostratigraphy of the sandstones. Additionally, three temperature correction methods were applied for the purpose of evaluating the comparative accuracy and the correction schemes with respect to local in-situ conditions. The results show that the temperature corrections proposed by Somerton (Thermal properties on temperature-related behavior of rock/fluid systems, Elsevier, New York, S 257, 1992) and Sass et al. (J Geophys Res, 97:5017-5030, 1992) are most suited for the respective sandstone data set.
The GEOTREF program, a new approach for geothermal investigation
NASA Astrophysics Data System (ADS)
Gérard, Frédéric; Viard, Simon; Garcia, Michel
2017-04-01
The GEOTREF is an R&D program supported by the ADEME, French environmental agency and by the «Investissement d'Avenir », a French government program to found innovative projects. The GEOTREF program aims to develop an integrated analysis of high temperature geothermal reservoir in volcanic context. It is a collaborative program between nine research laboratories and two industrial partners. This program is supported for four years and funds 12 PhDs and 5 post-doctoral grants in various fields: geology, petrography, petrophysics, geophysics, geochemistry, reservoir modelling. The first three years are dedicated to the exploration phases that will lead to the drilling implantation. The project has two main objectives. 1.- Developing innovative and interactive methods and workflows leading to develop prospection and exploration in per volcanic geothermal target. This objective implicates: Optimization of the targeting to mitigate financial risks Adapting oil and gas exploration methods to geothermal energy, especially in peri-volcanic context. 2.- Applying this concept to different prospects in the Caribbean and South America The first target zone is located in Guadeloupe, an island of the active arc of the subduction zone where the Atlantic plate subducts under the Caribbean one. The GEOTREF prospect zone is on the Basse Terre Island in its south part closed to the Soufriere volcano, the active volcanic system. On the same island a geothermal field is exploited in Bouillante, just northward from the GEOTREF targeting area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Link, M.H.; Helmold, K.P.
1988-02-01
The lower Miocene Galoc clastic unit, offshore Palawan, Philippines, is about 500-600 ft thick. The unit overlies the Galoc Limestone and is overlain by the Pelitic Pagasa Formation. The Galoc clastic unit consists of alternating quartzose sandstone, mudstone, and resedimented carbonate deposited at bathyal depths, mainly as turbidites. The deep-water deposits are confined to the axis of a northeast-trending trough in which slope, submarine channel, interchannel, depositional lobe, slump, and basinal facies are recognized. Eroded shallow-marine carbonate lithoclasts are commonly incorporated within the siliciclastic turbidites. The main reservoir sandstones occur in submarine channels and depositional lobes. The sandstones are texturallymore » submature, very fine to medium-grained feldspathic litharenites and subarkoses. The sandstones have detrital modes of Q78:F11:L11 and Qm51:F11:Lt38, with partial modes of the monocrystalline components of Qm82:P13:K5. Lithic fragments include chert, shale, schist, volcanic rock fragments, and minor plutonic rock fragments. Porosity in the better reservoir sandstones ranges from 11 to 25%, and calcite is the dominant cement. Dissolution textures and inhomogeneity of calcite distribution suggest that at least half of the porosity in the sandstones has formed through the leaching of calcite cement and labile framework grains. A source terrain of quartzo-feldspathic sediments and metasediments, chert, volcanics, and acid-intermediate plutonic rocks is visualized.« less
Multiscale Multiphysics Caprock Seal Analysis: A Case Study of the Farnsworth Unit, Texas, USA
NASA Astrophysics Data System (ADS)
Heath, J. E.; Dewers, T. A.; Mozley, P.
2015-12-01
Caprock sealing behavior depends on coupled processes that operate over a variety of length and time scales. Capillary sealing behavior depends on nanoscale pore throats and interfacial fluid properties. Larger-scale sedimentary architecture, fractures, and faults may govern properties of potential "seal-bypass" systems. We present the multiscale multiphysics investigation of sealing integrity of the caprock system that overlies the Morrow Sandstone reservoir, Farnsworth Unit, Texas. The Morrow Sandstone is the target injection unit for an on-going combined enhanced oil recovery-CO2 storage project by the Southwest Regional Partnership on Carbon Sequestration (SWP). Methods include small-to-large scale measurement techniques, including: focused ion beam-scanning electron microscopy; laser scanning confocal microscopy; electron and optical petrography; core examinations of sedimentary architecture and fractures; geomechanical testing; and a noble gas profile through sealing lithologies into the reservoir, as preserved from fresh core. The combined data set is used as part of a performance assessment methodology. The authors gratefully acknowledge the U.S. Department of Energy's (DOE) National Energy Technology Laboratory for sponsoring this project through the SWP under Award No. DE-FC26-05NT42591. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Tin-tungsten mineralizing processes in tungsten vein deposits: Panasqueira, Portugal
NASA Astrophysics Data System (ADS)
Lecumberri-Sanchez, P.; Pinto, F.; Vieira, R.; Wälle, M.; Heinrich, C. A.
2015-12-01
Tungsten has a high heat resistance, density and hardness, which makes it widely applied in industry (e.g. steel, tungsten carbides). Tungsten deposits are typically magmatic-hydrothermal systems. Despite the economic significance of tungsten, there are no modern quantitative analytical studies of the fluids responsible for the formation of its highest-grade deposit type (tungsten vein deposits). Panasqueira (Portugal) is a tungsten vein deposit, one of the leading tungsten producers in Europe and one of the best geologically characterized tungsten vein deposits. In this study, compositions of the mineralizing fluids at Panasqueira have been determined through combination of detailed petrography, microthermometric measurements and LA-ICPMS analyses, and geochemical modeling has been used to determine the processes that lead to tungsten mineralization. We characterized the fluids related to the various mineralizing stages in the system: the oxide stage (tin and tungsten mineralization), the sulfide stage (chalcopyrite and sphalerite mineralization) and the carbonate stage. Thus, our results provide information on the properties of fluids related with specific paragenetic stages. Furthermore we used those fluid compositions in combination with host rock mineralogy and chemistry to evaluate which are the controlling factors in the mineralizing process. This study provides the first quantitative analytical data on fluid composition for tungsten vein deposits and evaluates the controlling mineralization processes helping to determine the mechanisms of formation of the Panasqueira tin-tungsten deposit and providing additional geochemical constraints on the local distribution of mineralization.
NASA Astrophysics Data System (ADS)
Ellero, Alessandro; Ottria, Giuseppe; Sayit, Kaan; Catanzariti, Rita; Frassi, Chiara; Cemal Göncüoǧlu, M.; Marroni, Michele; Pandolfi, Luca
2016-04-01
In the Central Pontides (Northern Turkey), south of Tosya, a tectonic unit consisting of not-metamorphic volcanic rocks and overlying sedimentary succession is exposed inside a fault-bounded elongated block. It is restrained within a wide shear zone, where the Intra-Pontide suture zone, the Sakarya terrane and the Izmir-Ankara-Erzincan suture zone are juxtaposed as result of strike-slip activity of the North Anatolian shear zone. The volcanic rocks are mainly basalts and basaltic andesites (with their pyroclastic equivalents) associated with a volcaniclastic formation made up of breccias and sandstones that are stratigraphically overlain by a Marly-calcareous turbidite formation. The calcareous nannofossil biostratigraphy points to a late Santonian-middle Campanian age (CC17-CC21 Zones) for the sedimentary succession. The geochemistry of the volcanic rocks reveals an active continental margin setting as evidenced by the enrichment in Th and LREE over HFSE, and the Nb-enriched nature of these lavas relative to N-MORB. As highlighted by the performed arenite petrography, the occurrence of continent-derived clastics in the sedimentary succession supports the hypothesis of a continental arc-derived volcanic succession. Alternative geodynamic reconstructions are proposed, where this tectonic unit could represent a slice derived from the northern continental margin of the Intra- Pontide or Izmir-Ankara-Erzincan oceanic basins.
NASA Technical Reports Server (NTRS)
Collinet, M.; Medard, E.; Devouard, B.; Peslier, A.
2012-01-01
Martian basalts can be classified in at least two geochemically different families: enriched and depleted shergottites. Enriched shergottites are characterized by higher incompatible element concentrations and initial Sr-87/Sr-86 and lower initial Nd-143/Nd-144 and Hf-176/Hf-177 than depleted shergottites [e.g. 1, 2]. It is now generally admitted that shergottites result from the melting of at least two distinct mantle reservoirs [e.g. 2, 3]. Some of the olivine-phyric shergottites (either depleted or enriched), the most magnesian Martian basalts, could represent primitive melts, which are of considerable interest to constrain mantle sources. Two depleted olivine-phyric shergottites, Yamato (Y) 980459 and Northwest Africa (NWA) 5789, are in equilibrium with their most magnesian olivine (Fig. 1) and their bulk rock compositions are inferred to represent primitive melts [4, 5]. Larkman Nunatak (LAR) 06319 [3, 6, 7] and NWA 1068 [8], the most magnesian enriched basalts, have bulk Mg# that are too high to be in equilibrium with their olivine megacryst cores. Parental melt compositions have been estimated by subtracting the most magnesian olivine from the bulk rock composition, assuming that olivine megacrysts have partially accumulated [3, 9]. However, because this technique does not account for the actual petrography of these meteorites, we used image analysis to study these rocks history, reconstruct their parent magma and understand the nature of olivine megacrysts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, R.; Howe, S.; O`Leary, J.
The Piedemonte Llanero petroleum trend of the Cordillera Oriental in Colombia has proven to be one of the most prolific hydrocarbon provinces discovered in recent years. The Piedemonte Llanero is a fold and thrust belt of complex, multi-phase structuration and hydrocarbon generation. Following the discovery of the Cusiana and Cupiagua fields in the southern part of the trend, BP and its partners began exploration further to the northeast. Early seismic data showed the existence of two structural trends: the frontal (or basal) thrust trend, with structures similar to Cusiana; and the overthrust (or duplex) trend, with multiple imbricated structures. Improvedmore » quality seismic data defined the gross structures and allowed them to be successfully drilled, but did not give a constrained model for the kinematic evolution of the fold and thrust belt nor the petroleum play. This resulted in no clear predictive models for reservoir quality and hydrocarbon phase distribution in the undrilled parts of the trend. A wide variety of geological and geochemical analytical techniques including biostratigraphy, reservoir petrology, petroleum geochemistry, thermal maturity data, basin modelling and fluid inclusion studies were undertaken. These were iteratively integrated into the seismo-structural model to develop a constrained interpretation for the evolution of the Piedemonte Llanero petroleum system. This paper summarizes the current understanding of the structural evolution of the trend and the development of a major petroleum system. A companion paper details the reservoir petrography and petroleum geochemistry studies.« less
NASA Astrophysics Data System (ADS)
Lacelle, Denis; Lauriol, Bernard; Clark, Ian D.; Cardyn, Raphaelle; Zdanowicz, Christian
2007-09-01
A massive ground-ice body was found exposed in the headwall of a thaw flow developed within the Chapman Lake terminal moraine complex on the Blackstone Plateau (Ogilvie Mountains, central Yukon Territory), which is contemporaneous to the Reid glaciation. Based on visible cryostructures in the 4-m-high headwall, two units were identified: massive ground ice, overlain sharply by 2 m of icy diamicton. The nature and origin of the Chapman Lake massive ground ice was determined using cryostratigraphy, petrography, stable O-H isotopes and the molar concentration of occluded gases (CO 2, O 2, N 2 and Ar) entrapped in the ice, a new technique in the field of periglacial geomorphology that allows to distinguish between glacial and non-glacial intrasedimental ice. Collectively, the results indicate that the Chapman Lake massive ground ice formed by firn densification with limited melting-refreezing and underwent deformation near its margin. Given that the massive ground-ice body consists of relict glacier ice, it suggests that permafrost persisted, at least locally, on plateau areas in the central Yukon Territory since the middle Pleistocene. In addition, the d value of Chapman Lake relict glacier ice suggests that the ice covering the area during the Reid glaciation originated from a local alpine glaciation in the Ogilvie Mountains.
H/L chondrite LaPaz Icefield 031047 - A feather of Icarus?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wittmann, Axel; Friedrich, Jon M; Troiano, Julianne
2011-10-28
Antarctic meteorite LAP 031047 is an ordinary chondrite composed of loosely consolidated chondritic fragments. Its petrography, oxygen isotopic composition and geochemical inventory are ambiguous and indicate an intermediate character between H and L chondrites. Petrographic indicators suggest LAP 031047 suffered a shock metamorphic overprint below ~10 GPa, which did not destroy its unusually high porosity of ~27 vol%. Metallographic textures in LAP 031047 indicate heating above ~700 °C and subsequent cooling, which caused massive transformation of taenite to kamacite. The depletion of thermally labile trace elements, the crystallization of chondritic glass to microcrystalline plagioclase of unusual composition, and the occurrencemore » of coarsely crystallized chondrule fragments is further evidence for post-metamorphic heating to ~700-750 °C. However, this heating event had a transient character because olivine and low-Ca pyroxene did not equilibrate. Nearly complete degassing up to very high temperatures is indicated by the thorough resetting of LAP 031047's Ar-Ar reservoir ~100 ± 55 Ma ago. A noble gas cosmic-ray exposure age indicates it was reduced to a meter-size fragment at <0.5 Ma. In light of the fact that shock heating cannot account for the thermal history of LAP 031047 in its entirety, we test the hypothesis that this meteorite belonged to the near-surface of an Aten or Apollo asteroid that underwent heating during orbital passages close to the Sun.« less
NASA Technical Reports Server (NTRS)
Nunez, J. I.; Farmer, J. D.; Sellar, R. G.; Allen, Carlton C.
2010-01-01
To maximize the scientific return, future robotic and human missions to the Moon will need to have in-situ capabilities to enable the selection of the highest value samples for returning to Earth, or a lunar base for analysis. In order to accomplish this task efficiently, samples will need to be characterized using a suite of robotic instruments that can provide crucial information about elemental composition, mineralogy, volatiles and ices. Such spatially-correlated data sets, which place mineralogy into a microtextural context, are considered crucial for correct petrogenetic interpretations. . Combining microscopic imaging with visible= nearinfrared reflectance spectroscopy, provides a powerful in-situ approach for obtaining mineralogy within a microtextural context. The approach is non-destructive and requires minimal mechanical sample preparation. This approach provides data sets that are comparable to what geologists routinely acquire in the field, using a hand lens and in the lab using thin section petrography, and provide essential information for interpreting the primary formational processes in rocks and soils as well as the effects of secondary (diagenetic) alteration processes. Such observations lay a foundation for inferring geologic histories and provide "ground truth" for similar instruments on orbiting satellites; they support astronaut EVA activities and provide basic information about the physical properties of soils required for assessing associated health risks, and are basic tools in the exploration for in-situ resources to support human exploration of the Moon.
Pierce, B.S.; Stanton, R.W.; Eble, C.F.
1993-01-01
The Stockton coal bed (Middle Pennsylvanian) is a relatively high ash coal composed primarily of moderately thin banded, sparsely thin banded, and nonbanded coal (splint and cannel coal). Comparisons of petrographic, palynologic, and paleobotanic data gathered from the same sample sets from a single column of the Stockton coal bed indicate that compositional correspondences among the sets exist regardless of coal type. Some correspondences are believed to exist because of original plant constituents and others because of the paleoenvironment of peat formation. Using some combination of these data is critical when interpreting paleoenvironmental conditions because (1) a direct correspondence is lacking between many of the data and (2) each of the three data sets provides a unique and important perspective on the paleomire. The Stockton paleomire in the area of this study supported a diverse flora that consisted of both small and arboreous lycopsids, small ferns and tree ferns, calamites, cordaites, and pteridosperms. There appear to have been two successions of Lycospora spore-dominated, vitrinite-rich, liptinite-poor peat formation, which were followed by inertinite-rich peat formation marked by a tree fern-dominant spore assemblage and abundant unidentifiable plant tissues. These are interpreted to be two water-laden or topogenous peat formational stages followed by slightly domed, better drained peat formation. ?? 1993.
Edwards, L.E.; Weedman, S.D.; Simmons, R.; Scott, T.M.; Brewster-Wingard, G. L.; Ishman, S.E.; Carlin, N.M.
1998-01-01
In 1996, seven cores were recovered in western Collier County, southwestern Florida, to acquire subsurface geologic and hydrologic data to support ground-water modeling efforts. This report presents the lithostratigraphy, X-ray diffraction analyses, petrography, biostratigraphy, and strontium-isotope stratigraphy of these cores. The oldest unit encountered in the study cores is an unnamed formation that is late Miocene. At least four depositional sequences are present within this formation. Calculated age of the formation, based on strontium-isotope stratigraphy, ranges from 9.5 to 5.7 Ma (million years ago). An unconformity within this formation that represents a hiatus of at least 2 million years is indicated in the Old Pump Road core. In two cores, Collier-Seminole and Old Pump Road, the uppermost sediments of the unnamed formation are not dated by strontium isotopes, and, based on the fossils present, these sediments could be as young as Pliocene. In another core (Fakahatchee Strand-Ranger Station), the upper part of the unnamed formation is dated by mollusks as Pliocene. The Tamiami Formation overlies the unnamed formation throughout the study area and is represented by the Ochopee Limestone Member. The unit is Pliocene and probably includes the interval of time near the early/late Pliocene boundary. Strontium-isotope analysis indicates an early Pliocene age (calculated ages range from 5.1 to 3.5 Ma), but the margin of error includes the latest Miocene and the late Pliocene. The dinocyst assemblages in the Ochopee typically are not age-diagnostic, but, near the base of the unit in the Collier-Seminole, Jones Grade, and Fakahatchee Strand State Forest cores, they indicate an age of late Miocene or Pliocene. The molluscan assemblages indicate a Pliocene age for the Ochopee, and a distinctive assemblage of Carditimera arata and Chione cortinaria in several of the cores specifically indicates an age near the early/late Pliocene boundary. Undifferentiated sands overlie the Pliocene limestones in two cores in the southern part of the study area. Artificial fill occurs at the top of most of the cores. The hydrologic confining units penetrated by these cores are different in different parts of the study area. To the west, a hard tightly cemented dolostone forms the first major confining unit below the water table. In the eastern part of the study area, confinement is more difficult to determine. A tightly cemented sandstone, much younger than the dolostones to the west and probably not laterally connected to them, forms a slight confining unit in one core. Thick zones of poorly sorted muddy unconsolidated sands form a slight confining unit in other cores; these probably are not correlative to either the sandstone or the dolostones to the west. The age and sedimentologic observations suggest a complex compartmentalization of the surficial aquifer system in southwestern Florida. The calibrations of dinocyst and molluscan occurrences with strontium-isotope stratigraphy allows us to expand and document the reported ranges of many taxa. This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
NASA Astrophysics Data System (ADS)
Peckover, Emily; Mason, Jennifer; Ozbek, Onur; Marca, Alina; Rowe, Peter; Andrews, Julian; Noble, Steve; Brindle, John; Baba, Alper; Kendall, Alan; Al-Omari, Sa'ad
2015-04-01
Palaeoclimatic and palaeoenvironmental reconstructions from two Holocene stalagmites (HY-8 and HY-9) from Sirtlanini Cave, southwest Turkey have been created using petrographic, stable isotope and trace element analyses where the stratigraphy of the stalagmites overlaps from ~6 ka. The cave elevation is 830 metres a.s.l., located 100 km northwest of Lake Golhisar, which has yielded a low resolution Holocene isotopic record (Eastwood et al. 2007), and 120 km northwest of Caltilar Höyük, the site of one of the earliest urban settlements in the region (Momigliano et al., 2011). Both stalagmites contain prominent dark grey-blue layers up to a few mm thick. Trace element analysis reveals that these layers contain elevated Fe, Mn and Zn concentrations suggesting enhanced mobilization of these elements, possibly adsorbed to organic matter on 100 nm to 1 μm soil particles (Hartland et al. 2012). Raman spectroscopy identifies the presence of soot within the layers and evidence for plant material has been identified by SEM along with detritus (clay, quartz). This suggests increased infiltration though the karst, probably due to decreased vegetation cover, a conclusion supported by positive δ13C excursions associated with some grey layers. It is likely that episodes of burning occurred above the cave either due to natural wild fires or anthropogenic activity. The δ18O record of HY-8 shows no long term trend but fluctuates about a mean of -6.3 oḢowever it is punctuated by several shorted lived excursions of 1 o - 2.5 o amplitude. δ13C decreases steadily (-6o to -10 ) through the Mid/Late Holocene with numerous short lived excursions, many >2o and some (not exclusively) associated with grey layers . Carbon and oxygen are poorly correlated, although sympathetic trends are seen during some excursions. δ18O values have probably responded to changes in winter rainfall amounts with δ13C likely reflecting fluctuating vegetation density above the cave, particularly when δ18O corresponds. Petrographic examination of HY-8 reveals a complex fabric. The majority of the stalagmite shows an open fabric of dendritic calcite. Calcite is believed to be primary based on continuous presence of spikey inclusions though dendritic fabric may indicate isotopic disequilibrium. Laminations are defined by compact dendrites but grey layers are defined and bound by dissolution layers. The fabric of the grey layers is mostly microcrystalline believed to be caused by the presence of organic material (Frisia and Borsato 2010). However one prominent layer is defined by equant calcite, implying a thicker film of water. Analysis of the transition between grey layer microcrystalline and dendritic calcite will further resolve the effects on calcite precipitation caused by the inclusion of organics and detritus. Generally petrography will allow investigation into the effects of using fabrics which may potentially alter the environmental signal for stable isotopic interpretation. Further study seeks to establish age models, examine petrography in more detail and to compare stable isotopic records from both stalagmites. We aim to clarify the links between climatic and environmental changes in the region and the temporal isotopic, trace element and petrographic changes observed in the speleothems. References Eastwood, W.J., et al. (2007) J. Quat. Sci., 22, 327-341. Hartland, A., et al. (2012) Chem. Geol. 304-305, 68-82. Momigliano, N., et al. (2011) Anatolian Studies, 6, 61-121. Frisia, S., & Borsato, A. (2010) Developments in Sedimentology, 61, 269-318.
Application of automated image analysis to coal petrography
Chao, E.C.T.; Minkin, J.A.; Thompson, C.L.
1982-01-01
The coal petrologist seeks to determine the petrographic characteristics of organic and inorganic coal constituents and their lateral and vertical variations within a single coal bed or different coal beds of a particular coal field. Definitive descriptions of coal characteristics and coal facies provide the basis for interpretation of depositional environments, diagenetic changes, and burial history and determination of the degree of coalification or metamorphism. Numerous coal core or columnar samples must be studied in detail in order to adequately describe and define coal microlithotypes, lithotypes, and lithologic facies and their variations. The large amount of petrographic information required can be obtained rapidly and quantitatively by use of an automated image-analysis system (AIAS). An AIAS can be used to generate quantitative megascopic and microscopic modal analyses for the lithologic units of an entire columnar section of a coal bed. In our scheme for megascopic analysis, distinctive bands 2 mm or more thick are first demarcated by visual inspection. These bands consist of either nearly pure microlithotypes or lithotypes such as vitrite/vitrain or fusite/fusain, or assemblages of microlithotypes. Megascopic analysis with the aid of the AIAS is next performed to determine volume percentages of vitrite, inertite, minerals, and microlithotype mixtures in bands 0.5 to 2 mm thick. The microlithotype mixtures are analyzed microscopically by use of the AIAS to determine their modal composition in terms of maceral and optically observable mineral components. Megascopic and microscopic data are combined to describe the coal unit quantitatively in terms of (V) for vitrite, (E) for liptite, (I) for inertite or fusite, (M) for mineral components other than iron sulfide, (S) for iron sulfide, and (VEIM) for the composition of the mixed phases (Xi) i = 1,2, etc. in terms of the maceral groups vitrinite V, exinite E, inertinite I, and optically observable mineral content M. The volume percentage of each component present is indicated by a subscript. For example, a lithologic unit was determined megascopically to have the composition (V)13(I)1(S)1(X1)83(X2)2. After microscopic analysis of the mixed phases, this composition was expressed as (V)13(I)1(S)1(V63E19I14M4)83(V67E11I13M9)2. Finally, these data were combined in a description of the bulk composition as V67E16I13M3S1. An AIAS can also analyze textural characteristics and can be used for quick and reliable determination of rank (reflectance). Our AIAS is completely software based and incorporates a television (TV) camera that has optimum response characteristics in the range of reflectance less than 5%, making it particularly suitable for coal studies. Analysis of the digitized signal from the TV camera is controlled by a microprocessor having a resolution of 64 gray levels between full illumination and dark current. The processed image is reconverted for display on a TV monitor screen, on which selection of phases or features to be analyzed is readily controlled and edited by the operator through use of a lightpen. We expect that automated image analysis, because it can rapidly provide a large amount of pertinent information, will play a major role in the advancement of coal petrography. ?? 1982.
NASA Astrophysics Data System (ADS)
Liu, Wei; Liu, Xiu-Jin; Liu, Li-Juan
2013-10-01
Whole rock major and trace element, Nd-Sr and zircon Hf isotopic compositions and secondary-ion mass spectrometry zircon U-Pb ages of eleven granitoid intrusions and dioritic rocks from the East Junggar (NW China) were analyzed in this study. The East Junggar granitoids were emplaced during terminal Early to Late Carboniferous (325-301 Ma) following volcanic eruption of the Batamayi Formation. Zircons from the East Junggar granitoids yielded 210 concordant 206Pb/238U ages which are all younger than 334 Ma and exhibit ɛHf(t) values distinctly higher than Devonian arc volcanic-rocks. Seismic P-wave velocities of deep crust of the East Junggar proper resemble those of oceanic crust (OC). These characteristics suggest absence of volcanic rock and volcano-sedimentary rock of Devonian and Early Carboniferous from the source region. The East Junggar granitoids show ɛNd(t) and initial 87Sr/86Sr values substantially overlapping those of the Armantai ophiolite in the area. The Early Paleozoic OC with seamount-like composition as the Zhaheba-Armantai ophiolites remained in the lower crust and formed main source rock of the East Junggar granitoids. Based on petrography and geochemistry, the East Junggar granitoids are classified into peralkaline A-type in the northern subarea, I-type (I1 and I2 subgroups) mainly in the north and A-type in the south of the southern subarea. The perthitic or argillated core and oligoclasic rim with an argillated boundary of feldspar phenocrysts and inclusion of perthites or its overgrowth by matrix plagioclase, in the monzogranites (northern subarea), suggest mixing of peralkaline granitic magma with mafic magma. In the north of the southern subarea, the presence of magmatic microdioritic enclaves (MMEs) in the I1 subgroup granitoids, transfer of plagioclase phenocrysts and hornblendes between host granodiorite and the MME across the boundary and a prominent resorption surface in the plagioclase phenocrysts indicate mixing of crustal magma (I2 subgroup granitoids) with mafic magma. Magma mixing shifted (87Sr/86Sr)i of the I1 subgroup granitoids towards the mantle array. Two generations of hornblende with zonal distribution and similar mineral and geochemical compositions of quartz monzodiorite and hosted MME with unfractionated rare earth elements (REE) suggest extended magma mixing with onset probably at or near source region. These observations imply concurrency of mantle input and the crustal melting and, hence, a causal relationship between underplating/intraplating and the lower OC/upper OC melting. The I-type granitoids experienced plagioclase and hornblende fractionations, whereas fractionated phases of the two groups of A-type granites were alkali feldspar and albite-oligoclase with significant involvement of F--rich fluid. Granodioritic parent magmas of the I2 subgroup granitoids stemmed from the hydrous upper OC. Parent magmas of the two A-type groups possess syenogranitic or quartz syenitic compositions. The peralkaline A-type granites stemmed from the lower OC, whereas the A-type granites from dehydrated upper OC left behind after extensive partial melting and extraction of I-type granitoids. Based on comparison in the ternary system Mg2SiO4-CaAl2SiO6-SiO2, most of the Batamayi volcanic rocks with affinity to ocean-island basalts were derived from asthenospheric upwelling. The gabbro-dioritic rocks with higher light to heavy REE ratios stemmed from metasomatized lithospheric mantle. Both of the above mafic rocks contain subducted slab component.
Block coals from Indiana: Inferences on changing depositional environment
Mastalerz, Maria; Padgett, P.L.; Eble, C.F.
2000-01-01
Significant differences in coal petrography, palynology and coal quality were found between the Lower Block and Upper Block Coal Members (Brazil Formation, Pennsylvanian) in Daviess County, Indiana. The Lower Block Coal Member ranges in thickness from 51 to 74 cm and the Upper Block Coal Member ranges from 20 to 65 cm. Average sulfur content and ash yield of the Lower Block coal (0.98%, 7.65%) are lower than in the Upper Block coal. Megascopically, the coals show distinct differences. The Lower Block is a banded coal with numerous thin fusain horizons and a thin clay parting in the lower third of the seam. The Upper Block coal has a dulling-upward trend, with a bright clarain found at the base that grades into a clarain and then into a durain in the upper portion of the seam. Vitrinite content of the Lower Block coal ranges from 63% to 78%, with the highest vitrinite content found in the middle portion of the seam. In the Upper Block coal, vitrinite content ranges from 40% to 83%, with the highest values found in the lower part of the seam. Ash yield is higher in the upper part of the Upper Block coal, reaching up to 40%. The Lower Block coal is dominated by lycopod trees and tree ferns. The Upper Block coal shows marked differences in spore assemblages between lower and upper parts of the seam. The lower half is dominated by large lycopod trees and tree ferns, similar to the Lower Block coal. The upper half is dominated by small lycopods, mainly Densosporites and Radiizonates. These differences between the Lower Block and Upper Block Coal Members are significant correlation tools applicable to mining exploration and chronostratigraphy. (C) 2000 Elsevier Science B.V. All rights reserved.Significant differences in coal petrography, palynology and coal quality were found between the Lower Block and Upper Block Coal Members (Brazil Formation, Pennsylvanian) in Daviess County, Indiana. The Lower Block Coal Member ranges in thickness from 51 to 74 cm and the Upper Block Coal Member ranges from 20 to 65 cm. Average sulfur content and ash yield of the Lower Block coal (0.98%, 7.65%) are lower than in the Upper Block coal. Megascopically, the coals show distinct differences. The Lower Block is a banded coal with numerous thin fusain horizons and a thin clay parting in the lower third of the seam. The Upper Block coal has a dulling-upward trend, with a bright clarain found at the base that grades into a clarain and then into a durain in the upper portion of the seam. Vitrinite content of the Lower Block coal ranges from 63% to 78%, with the highest vitrinite content found in the middle portion of the seam. In the Upper Block coal, vitrinite content ranges from 40% to 83%, with the highest values found in the lower part of the seam. Ash yield is higher in the upper part of the Upper Block coal, reaching up to 40%. The Lower Block coal is dominated by lycopod trees and tree ferns. The Upper Block coal shows marked differences in spore assemblages between lower and upper parts of the seam. The lower half is dominated by large lycopod trees and tree ferns, similar to the Lower Block coal. The upper half is dominated by small lycopods, mainly Densosporites and Radiizonates. These differences between the Lower Block and Upper Block Coal members are significant correlation tools applicable to mining exploration and chronostratigraphy.
Geology of Raymond Canyon, Sublette Range, western Wyoming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoemaker, W.A.
1984-07-01
Raymond Canyon is located on the west side of the Sublette Range, Lincoln County, Wyoming. The study area is just east of the Idaho border and 10 mi (16 km) southeast of Geneva, Idaho. Formations exposed range in age from Late Pennsylvanian to Tertiary (Pliocene) and include: the lower part of the Wells Formation (Pennsylvanian, total thickness 720 ft or 219 m); the upper part of the Wells Formation and the Phosphoria Formation (both Permian, 153-210 ft or 47-64 m); the Dinwoody Formation (185 ft or 56 m); Woodside Shale (540 ft or 165 m); Thaynes Limestone (2345 ft ormore » 715 m); and Ankareh Formation (930 ft or 283 m), all of Triassic age; the Nugget Sandstone (1610 ft or 491 m), Twin Creek Limestone, Preuss Sandstone, and Stump Formation, all of Jurassic age; and the Salt Lake formation and the Sublette conglomerate, both Pliocene postorogenic continental deposits. Generally these formations are thinner than in nearby areas to the west and northwest. Raymond Canyon lies on the upper plate of the Tunp thrust and the lower plate of the Crawford thrust of the Idaho-Wyoming thrust belt. Thus, it lies near the middle of the imbricate stack of shallowly dipping thrust faults that formed in the late Mesozoic. Study of the stratigraphy, structure, petrography, and inferred depositional environments exposed in Raymond Canyon may be helpful to those engaged in energy development in the Idaho-Wyoming thrust belt.« less
The World Coal Quality Inventory: A status report
Tewalt, S.J.; Willett, J.C.; Finkelman, R.B.
2005-01-01
National and international policy makers and industry require accurate information on coal, including coal quality data, to make informed decisions regarding international import needs and export opportunities, foreign policy, technology transfer policies, foreign investment prospects, environmental and health assessments, and byproduct use and disposal issues. Unfortunately, the information needed is generally proprietary and does not exist in the public domain. The U.S. Geological Survey (USGS), in conjunction with partners in about 60 countries, is developing a digital compilation of worldwide coal quality. The World Coal Quality Inventory (WoCQI) will contain coal quality information for samples obtained from major coal beds in countries having significant coal production, as well as from many countries producing smaller volumes of coal, with an emphasis on coals currently being burned. The information that will be incorporated includes, but is not limited to, proximate and ultimate analyses; sulfur-form data; major, minor, and trace element analysis; and semi-quantitative analyses of minerals, modes of occurrence, and petrography. The coal quality information will eventually be linked to a Geographic Information System (GIS) that shows the coal basins and sample locations along with geologic, land use, transportation, industrial, and cultural information. The WoCQI will be accessible on the USGS web page and new data added periodically. This multi-national collaboration is developing global coal quality data that contain a broad array of technologic, economic, and environmental parameters, which should help to ensure the efficient and environmentally compatible use of global coal resources in the 21st century.
NASA Astrophysics Data System (ADS)
Rasmussen, Birger; Sheppard, Stephen; Fletcher, Ian R.
2006-02-01
The inability to establish absolute ages for gold deposition in the Pine Creek orogen of northern Australia has led to conflicting ore deposit models, ranging from intrusion related, which predict that gold mineralization was synchronous with granite magmatism (ca. 1835 1820 Ma), to orogenic, which place ore deposition nearly 100 m.y. later. Here we present ion microprobe U-Pb geochronology for a mineralized quartz reef from Tom's Gully mine, Mount Bundey, Northern Territory, Australia, and nearby granitic rocks and associated contact aureoles. Isotopic dating of zircon and monazite indicates that intrusion and contact metamorphism occurred ca. 1825 Ma, whereas hydrothermal monazite from the auriferous quartz reef gives a mean 207Pb/206Pb age of 1780 ± 10 Ma, interpreted as the time of gold mineralization. Mineralization therefore postdated intrusion by ˜45 m.y. and preceded a postulated ca. 1740 1730 Ma cratonwide orogenic gold event by ˜50 m.y. Hence, neither the intrusion-related model nor the recently proposed orogenic model is applicable. Combined with a reevaluation of age data from the nearby Goodall gold deposit, our data suggest that mineralization coincides with, and may be related to, an episode of regional low-grade metamorphism, deformation, and fluid circulation (Shoobridge event). Our results demonstrate the importance of high-precision in situ geochronology and detailed petrography for deciphering age relationships in ore deposits, and of testing the veracity of models for ore formation.
Hower, James C.; Ruppert, Leslie F.
2011-01-01
The Bolsovian (Middle Pennsylvanian) Peach Orchard coal bed is one of the splint coals of the Central Appalachians. Splint coal is a name for the dull, inertinite-rich lithologies typical of coals of the region. The No. 3 Split was sampled at five locations in Magoffin County, Kentucky and analyzed for petrography and major and minor elements. The No. 3 Split coals contain semifusinite-rich lithologies, up to 48% (mineral-free basis) in one case. The nature of the semifusinite varies with position in the coal bed, containing more mineral matter of detrital origin in the uppermost durain. The maceral assemblage of these terminal durains is dominated by detrital fusinite and semifusinite, suggesting reworking of the maceral assemblage coincident with the deposition of the detrital minerals. However, a durain in the middle of the coal bed, while lithologically similar to the uppermost durains, has a degraded, macrinite-rich, texture. The inertinite macerals in the middle durain have less distinct edges than semifusinites in the uppermost terminal durains, suggesting degradation as a possible path to inertinite formation. The uppermost durain has higher ash and semifusinite contents at the eastern sites than at the western sites. The difference in the microscopic petrology indicates that megascopic petrology alone can be a deceptive indicator of depositional environments and that close attention must be paid to the individual macerals and their implications for the depositional setting, especially within the inertinite group.
NASA Astrophysics Data System (ADS)
Wu, Shenghua; Mao, Jingwen; Yuan, Shunda; Dai, Pan; Wang, Xudong
2018-01-01
The Shizhuyuan polymetallic deposit is located in the central part of the Nanling region, southeastern China, and consists of proximal W-Sn-Mo-Bi skarns and greisens and distal Pb-Zn-Ag veins. The sulfides and sulfosalts in the distal veins formed in three distinct stages: (1) an early stage of pyrite and arsenopyrite, (2) a middle stage of sphalerite and chalcopyrite, and (3) a late stage of galena, Ag-, Sn-, and Bi-bearing sulfides and sulfosalts, and pyrrhotite. Combined sulfide and sulfosalt geothermometry and fluid inclusion analyses indicate that the early stage of mineralization occurred at a temperature of 400 °C and involved boiling under hydrostatic pressure ( 200 bar), with the temperature of the system dropping during the late stage to 200 °C. Laser Raman analysis indicates that the fluid inclusions within the studied minerals are dominated by H2O, although some contain carbonate solids and CH4 gas. Vein-hosted sulfides have δ34S values of 3.8-6.3‰ that are interpreted as indicative of a magmatic source of sulfur. The mineralization process can be summarized as follows: an aqueous fluid exsolved on final crystallization of the Qianlishan pluton, ascended along fracture zones, cooled to <400 °C, and boiled under hydrostatic conditions, and with decreasing temperature and sulfur fugacity, sulfide and sulfosalt minerals precipitated successively from the Ag-Cu-Zn-Fe-Pb-Sb-As-S-bearing fluid system.
NASA Astrophysics Data System (ADS)
Gahlan, Hisham A.; Arai, Shoji
2009-01-01
Carbonate-orthopyroxenites (classic sagvandites) are reported in the Gerf ophiolite, South Eastern Desert, Egypt: the first finding from the Arabian Nubian Shield (ANS) ophiolites. They form massive lenses at the southern tip of the Gerf ophiolite, along the contact between the Shinai granite and Gerf serpentinized peridotites. The lenses show structural concordance with the neighboring country rocks and the granite contact. They consist mainly of metamorphic orthopyroxene + magnesite, among other metamorphic, relict primary and retrograde secondary minerals. Based only on chemistry, two types of carbonate-orthopyroxenites can be recognized, Types I (higher-Mg) and II (lower-Mg and higher-Fe). Field constraints, petrography and mineral chemistry indicate a metamorphic origin for the Gerf carbonate-orthopyroxenites. The euhedral form of relict primary chromian spinels combined with their high Cr#/low-TiO 2 character, and absence of clinopyroxene suggest that the protolith for the Gerf carbonate-orthopyroxenites is a highly depleted mantle peridotite derived from a sub-arc setting. Contact metamorphism accompanied by CO 2-metasomatism resulted in formation of the Gerf carbonate-orthopyroxenites during intrusion of the Shinai granite. The source of CO 2-rich fluids is most likely the neighboring impure carbonate layers. Correlation of the carbonate-orthopyroxenite mineral assemblages with experimental data for the system MgO-SiO 2-H 2O-CO 2 suggests metamorphic/metasomatic conditions of 520-560 °C, Pfluid = 2 kbar and extremely high X values (0.87-1).
New insights on petrography and geochemistry of impactites from the Lonar crater, India
NASA Astrophysics Data System (ADS)
Ray, Dwijesh; Upadhyay, Dewashish; Misra, Saumitra; Newsom, Horton E.; Ghosh, Sambhunath
2017-08-01
The Lonar impact crater, India, is one of the few known terrestrial impact craters excavated in continental basaltic target rocks (Deccan Traps, 65 Ma). The impactites reported from the crater to date mainly include centimeter- to decimeter-sized impact-melt bombs, and aerodynamically shaped millimeter- and submillimeter-sized impact spherules. They occur in situ within the ejecta around the crater rim and show schlieren structure. In contrast, non-in situ glassy objects, loosely strewn around the crater lake and in the ejecta around the crater rim do not show any schlieren structure. These non-in situ fragments appear to be similar to ancient bricks from the Daityasudan temple in the Lonar village. Synthesis of existing and new major and trace element data on the Lonar impact spherules show that (1) the target Lonar basalts incorporated into the spherules had undergone minimal preimpact alteration. Also, the paleosol layer as preserved between the top-most target basalt flow and the ejecta blanket, even after the impact, was not a source component for the Lonar impactites, (2) the Archean basement below the Deccan traps were unlikely to have contributed material to the impactite parental melts, and (3) the impactor asteroid components (Cr, Co, Ni) were concentrated only within the submillimeter-sized spherules. Two component mixing calculations using major oxides and Cr, Co, and Ni suggest that the Lonar impactor was a EH-type chondrite with the submillimeter-sized spherules containing 6 wt% impactor components.
NASA Astrophysics Data System (ADS)
Immenhauser, Adrian; Lokier, Stephen W.; Kwiecien, Ola; Riechelmann, Sylvia; Buhl, Dieter
2017-04-01
Marine carbonate firm- and hardgrounds have been described from the Precambrian to the recent sedimentary archive. In comparison to the numerous publications dealing with fossil case examples, well-constrained studies of shoalwater hardground formation from modern (sub)tropical seas are comparably scarce. This comes as a surprise as only modern depositional environments offer direct insight into the plethora of environmental, geochemical, kinetic, and biological parameters that affect these features at formation and during diagenetic pathways. Here, we present the first results of a combined field and laboratory study with focus on firm- to hardgrounds (also termed "discontinuity" in the sense of a catch-it-all term) forming both in the shallow inner lagoon and the outer lagoon ooid shoals of the Abu Dhabi barrier-island complex. Essentially, the discontinuities found represent sub-grounds in the sense that they form a few centimetres beneath the sediment surface. Sub-grounds in the outer lagoon ooid shoals are cemented by characteristic needle-shaped aragonite crystals and essentially represent lithified crab burrows. In contrast, sub-grounds in the inner lagoon of Abu Dhabi form brittle intervals, perhaps 5 cm in thickness, that are cemented by platy aragonitic crystals that show uncommon morphologies. Botryoids are abundant and generally seem to affect crystal morphologies. First evidence suggests that these features form below the uppermost oxic layer of pore fluids in the shallow sedimentary column. These findings are placed in context with temporally-resolved data on sea and porewater chemistry.
Ultramafic lavas and high-Mg basaltic dykes from the Othris ophiolite complex, Greece
NASA Astrophysics Data System (ADS)
Baziotis, Ioannis; Economou-Eliopoulos, Maria; Asimow, Paul D.
2017-09-01
We evaluate the petrography and geochemistry of an unusual suite of subduction-related Phanerozoic high-MgO rocks from the Othris ophiolite complex in Greece, some of which have previously been described as komatiitic lavas. In particular, we study ultramafic, olivine-phyric lavas from the Agrilia area and high-Mg basaltic dykes from the Pournari area. We seek to define primary magmatic MgO contents and initial liquidus temperatures as well as the differentiation sequence and cooling rates experienced by the lavas and dykes. One of our goals is to relate the Othris case to known komatiite and boninite occurrences and to address whether Othris documents an important new constraint on the temporal evolution of ambient mantle temperature, plume-related magmatism, and subduction of oceanic lithosphere. We conclude that, despite whole-rock MgO contents of 31-33 wt%, the olivine-phyric lavas at Agrilia had an upper limit liquid MgO content of 17 wt% and are therefore picrites, not komatiites. The Agrilia lavas contain the unusual Ti-rich pyroxenoid rhönite; we discuss the significance of this occurrence. In the case of the Pournari high-Mg dykes, the distinctive dendritic or plumose clinopyroxene texture, though it resembles in some ways the classic spinifex texture of komatiites, is simply evidence of rapid cooling at the dyke margin and not evidence of extraordinarily high liquidus temperatures. We correlate the dendritic texture with disequilibrium mineral chemistry in clinopyroxene to constrain the cooling rate of the dyke margins.
NASA Astrophysics Data System (ADS)
Periasamy, V.; Venkateshwarlu, M.
2017-06-01
Sandstones of Jhuran Formation from Jara dome, western Kachchh, Gujarat, India were studied for major, trace and rare earth element (REE) geochemistry to deduce their paleo-weathering, tectonic setting, source rock characteristics and provenance. Petrographic analysis shows that sandstones are having quartz grains with minor amount of K-feldspar and lithic fragments in the modal ratio of Q 89:F 7:L 4. On the basis of geochemical results, sandstones are classified into arkose, sub-litharenite, wacke and quartz arenite. The corrected CIA values indicate that the weathering at source region was moderate to intense. The distribution of major and REE elements in the samples normalized to upper continental crust (UCC) and chondrite values indicate similar pattern of UCC. The tectonic discrimination diagram based on the elemental concentrations and elemental ratios of Fe2O3 + MgO vs. TiO2, SiO2 vs. log(K2O/Na2O), Sc/Cr vs. La/Y, Th-Sc-Zr/10, La-Th-Sc plots Jhuran Formation samples in continental rift and collision settings. The plots of Ni against TiO2, La/Sc vs. Th/Co and V-Ni-Th ∗10 reveals that the sediments of Jhuran Formation were derived from felsic rock sources. Additionally, the diagram of (Gd/Yb) N against Eu/Eu ∗ suggest the post-Archean provenance as source possibly Nagar Parkar complex for the studied samples.
Magma surge from the mantle: the Father's Day Eruption, Kīlauea Volcano, Hawai'i
NASA Astrophysics Data System (ADS)
Salem, L. C.; Edmonds, M.; Maclennan, J.; Houghton, B. F.; Poland, M. P.
2015-12-01
The geometry of the shallow plumbing system of Kīlauea Volcano, Hawai'i, is constrained by both geophysical and petrologic studies, yet the loci of lower crustal magma storage and timescales of magma ascent are almost entirely unknown. The petrography and texture of erupted magmas are largely overprinted by processes in the shallow reservoir and conduit. Direct petrological evidence for lower crustal storage and transport is enigmatic but exists in the form of fine-scale crystal zoning in the cores of olivine phenocrysts, in the geochemical heterogeneity of melt inclusions and in fluid inclusion density. The 2007 Father's Day intrusion and eruption occurred at the culmination of a surge in magma supply to the summit reservoir and during a period of heightened CO2 outgassing flux. The erupted lavas provide an opportunity to analyze atypically primitive melts, with > 8.5 wt% MgO in the whole rock, which have undergone relatively little shallow crustal processing. We characterise melt inclusions and their host olivine crystals through a detailed study of olivine morphology, diffusion modelling, and melt and fluid inclusion geochemistry. We show that the melt inclusions preserve primitive geochemical heterogeneity, which we use to reconstruct fractionation, mixing and degassing processes through the crust. We infer timescales and pressures of magma ascent, storage, and CO2 degassing through the crustal plumbing system. These observations are interpreted in the context of the exceptionally detailed set of volcano monitoring data at Kīlauea Volcano.
Elephant Moraine 87521: The first lunar meteorite composed of predominantly mare material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, P.H.; Kallemeyn, G.W.
1989-12-01
The trace-element chemistry and detailed petrography of brecciated Antarctic meteorite EET87521 reveal that it is not, as originally classified, a eucrite. Its Fe/Mn ratio and bulk Co content are fair higher than expected for a eucrite. Only one known type of extraterrestrial material resembles EET87521 in all important respects for which constraints exist: very-low-Ti (VLT) lunar mare basalts. Even compared to VLT basalts, EET87521 is enriched in REE. However, other varieties of high-alumina, low-Ti mare basalt are known that contain REE at even higher concentrations than EET87521. Several clasts in EET87521 preserve clear vestiges of coarse-grained igneous, possibly orthocumulate, textures.more » Mineralogically, these coarse-grained clasts are diverse; e.g., olivine ranges from Fo{sub 15} in one to Fo{sub 67} in another. One clast with an anomalously fine-grained texture is anorthositic and contains exceptionally Mg-rich pyroxene and Na-poor plagioclase, along with the only FeNi-metal in the thin section. Its FeNi-metals have compositions typical of metals incorporated into lunar soils and polymict breccias as debris from metal-rich meteorites. However, the low Ni and Ir contents of our bulk-rock analysis imply that the proportion of impact-projectile matter in our chip sample is probably small. The moderate degree of lithologic diversity among the lithic lasts and the bulk composition in general indicate that EET87521 is dominated by a single rock type: VLT mare basalt.« less
Formation of a Martian Pyroxenite: A Comparative Study of the Nakhlite Meteorites and Theo's Flow
NASA Technical Reports Server (NTRS)
Friedman, R. C.; Taylor, G. J.; Treiman, A. H.
1999-01-01
The unusual composition of the nakhlites, a group of pyroxenitic martian meteorites with young ages, presents an opportunity to learn about nonbasaltic magmatic activity on another planet. However, the limited number of these meteorites makes unraveling their history difficult. A promising terrestrial analog for the formation of the nakhlites is Theo's Flow in Ontario, Canada. This atypical, 120 m-thick flow differentiated in place, forming distinct layered lithologies of peridotite, pyroxenite, and gabbro. Theo's pyroxenite and the nakhlites share strikingly similar petrographies, with concentrated euhedral to subhedral augite grains set in a plagioclase-rich matrix. These two suites of rocks also share specific petrologic features, mineral and whole-rock compositional features, and size and spatial distributions of cumulus grains. The numerous similarities suggest that the nakhlites formed by a similar mechanism in a surface lava flow or shallow intrusion. Their formation could have involved settling of crystals in a phenocryst-laden flow or in situ nucleation and growth of pyroxenes in an ultramafic lava flow. The latter case is more likely and requires steady-state nucleation and growth of clusters of pyroxene grains (and olivine in the nakhlites), circulating in a strongly convecting melt pool, followed by settling and continued growth in a thickening cumulate pile. Trapped pockets of intercumulus liquid in the pile gradually evolved, finally growing Fe-enriched rims on cumulus grains. With sufficient evolution, the melt reached plagioclase supersaturation, causing rapid growth of plagioclase sprays and late-stage mesostasis growth.
NASA Astrophysics Data System (ADS)
Borges, Joniell; Huh, Youngsook
2007-02-01
The Red (Hong) River straddles southwestern China and northern Vietnam and drains the eastern Indo-Asian collision zone. We collected bed sediments from its tributaries and main channel and report the petrographic point counts of framework grains and major oxide compositions as well as organic and inorganic carbon contents. The Q:F:Rf ratios and Q:F:(L-L c) ratios of the bed-load indicate quartz-poor, mineralogically immature sediments of recycled orogen provenance. The weathering indices based on major oxides — the chemical index of alteration (CIA) and the weathering index of Parker — are also consistent with the recycled sedimentary nature of the bed sediments. Using geographic information system (GIS) we calculated for each sample basin such parameters as temperature, precipitation, potential evapotranspiration, runoff, basin length, area, relief, and areal exposure of igneous, metamorphic and sedimentary rocks. Statistically meaningful correlations are obtained between the two weathering indices, between CIA and sedimentary to metamorphic rock fragments ratio, S / (S + M), and between CIA and sedimentary rock cover, but otherwise correlations are poor. The bed sediments preserve signatures of their provenance, but the effect of weathering is not clearly seen. Subtle differences in the bed sediments are observed between the Red and the Himalayan rivers (Indus, Ganges, and Brahmaputra) as well as between sub-basins within the Red River system and are attributed mainly to differences in lithology.
A composite lithology log while drilling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tannenbaum, E.; Sutcliffe, B.; Franks, A.
A new method for producing a computerized composite lithology log (CLL) while drilling by integrating MWD (measurement while drilling) and surface data is described. At present, lithology logs are produced at the well site by mud loggers. They provide basic description and relative amounts of lithologies. Major difficulties are encountered in relating the cuttings to their original formations due to mixing in the drilling mud while transporting to the surface, sloughing shales, flawed sampling, etc. This results in a poor control on the stratigraphic sequence and on the depth of formation boundaries. A composite log can be produced after drillingmore » this additional inputs such as wireline, petrography, and paleontology. This process is labor intensive and expensive. The CLL integrates three types of data (MWD mechanical, MWD geophysical, and surface cuttings) acquired during drilling, in three time stages: (1) Real Time. MWD drilling mechanical data including the rate of penetration and the downhole torque. This stage would provide bed boundaries and some inferred lithology. This would assist the driller with immediate drilling decisions and determine formation tops for coring, casing point, and correlation. (2) MWD Time. Recomputation of the above by adding MWD geophysical data (gamma-ray, resistivity, neutron-density). This stage would upgrade the lithology inference, and give higher resolution to bed boundaries, (3) Lag Time. Detailed analysis of surface cuttings to confirm the inferred lithologies. This last input results in a high-quality CLL with accurate lithologies and bed boundaries.« less
Magmatic Processes at Kilauea Volcano Revealed by the Puu Oo Eruption
NASA Astrophysics Data System (ADS)
Garcia, M. O.; Marske, J. P.; Pietruszka, A. P.; Rhodes, J. M.; Norman, M. D.; Eiler, J.
2008-12-01
The ongoing Puu Oo eruption (1983 to present) provides an unprecedented opportunity to probe the crustal and mantle magmatic processes beneath Kilauea volcano. Here we present Pb, Sr, Nd and O isotope ratios, major- and trace-element abundances, olivine compositions, and petrography data for Puu Oo lavas an compare them to the Kilauea historical record. Crustal processes are dominated by olivine fractionation and accumulation with minor clinopyroxene fractionation, and to a lesser extent and only periodically when eruption rates decrease, by crustal contamination. Systematic variations in Sr isotope ratios, incompatible trace element ratios, and MgO-normalized major elements document remarkable changes in parental magma compositions delivered to Puu Oo. Inflections in some trends correlate broadly with increasing intermediate depth earthquakes under the Kilauea's summit and to changes in eruption rate. Thus, volcanic events are influenced by melting and transport processes. One surprising feature is the systematic trend of Puu Oo rock compositions away from and beyond typical historical Kilauea compositions towards those of lavas from neighboring Mauna Loa volcano. The source for this component in Puu Oo lavas is a hybrid with about equal mixtures of historical Kilauea and Mauna Loa end members. The Puu Oo lava trend continues the cyclic pattern of compositional variation that extends back over 1000 years. Similar trends are also recorded on a coarser scale in HSDP lavas. These patterns of cyclic compositional variation are important for understanding melting processes in Hawaiian and other volcanoes.
NASA Astrophysics Data System (ADS)
Aligholi, Saeed; Lashkaripour, Gholam Reza; Ghafoori, Mohammad; Azali, Sadegh Tarigh
2017-11-01
Thorough and realistic performance predictions are among the main requisites for estimating excavation costs and time of the tunneling projects. Also, NTNU/SINTEF rock drillability indices, including the Drilling Rate Index™ (DRI), Bit Wear Index™ (BWI), and Cutter Life Index™ (CLI), are among the most effective indices for determining rock drillability. In this study, brittleness value (S20), Sievers' J-Value (SJ), abrasion value (AV), and Abrasion Value Cutter Steel (AVS) tests are conducted to determine these indices for a wide range of Iranian hard igneous rocks. In addition, relationships between such drillability parameters with petrographic features and index properties of the tested rocks are investigated. The results from multiple regression analysis revealed that the multiple regression models prepared using petrographic features provide a better estimation of drillability compared to those prepared using index properties. Also, it was found that the semiautomatic petrography and multiple regression analyses provide a suitable complement to determine drillability properties of igneous rocks. Based on the results of this study, AV has higher correlations with studied mineralogical indices than AVS. The results imply that, in general, rock surface hardness of hard igneous rocks is very high, and the acidic igneous rocks have a lower strength and density and higher S20 than those of basic rocks. Moreover, DRI is higher, while BWI is lower in acidic igneous rocks, suggesting that drill and blast tunneling is more convenient in these rocks than basic rocks.
NASA Astrophysics Data System (ADS)
Svensen, Henrik H.; Planke, Sverre; Silkoset, Petter; Hammer, Øyvind; Iyer, Karthik; Schmid, Dani W.; Chevallier, Luc
2017-04-01
Most of the Large Igneous Provinces (LIPs) formed during the last 260 million years are associated with climatic change, oceanic anoxia, or extinctions in marine and terrestrial environments. Current hypotheses involve A) degassing of carbon either from oceans or shallow sea-bed reservoirs, B) carbon and sulfur degassing from flood basalts, C) degassing from sedimentary basins heavily intruded by LIPs. Here we present new data on gas generation and degassing from the Karoo LIP, based on fieldwork, borehole studies (geochemistry, petrography), and thermal modeling. Our data expand and corroborate earlier work on the sub-volcanic processes in the Karoo Basin. We show that 1) hundreds of breccia pipes are rooted in Early Jurassic sill complexes and contact aureoles within the organic-rich Ecca Group, 2) statistical analyses reveal a fractal distribution of pipes and that they are overdispersed at small scales (<50 m), but clustered at larger scales (>800 m), 3) contact aureoles show a reduction in organic matter content towards the sill contacts, reduced to zero in the nearest zones, producing more carbon gas compared to thermal model calculations, 4) we find up to 3 permil reduction in the d13C of the organic matter remaining in the aureoles, and finally 5) some pipes contain recent oil seeps. We conclude that the sill-pipe system released thermogenic gases to the Early Jurassic atmosphere and that the pipes may have acted as permanent fluid flow pathways.
Anatomy of the grainstone shoal facies of the Salem Limestone (Mississippian) of southern Indiana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodd, J.R.; Petzold, D.D.; Thompson, T.A.
In 1990 M.A. Brown described the middle Mississippian (Valmeyeran) Salem Limestone exposed on the eastern side of the Illinois Basin as consisting of a massive grainstone shoal facies behind which developed a sand flat, an open lagoon, and a restricted lagoon facies. Smaller intrashoal channels provided limited exchange between lagoon and open ocean. The authors have made detailed studies of sedimentary structures and petrography of the shoal facies in three settings: the shoal proper, an intrashoal channel, and an intershoal channel. The shoal and channel facies consists of tabular-planar and trough cross-stratified beds of grainstone containing echinoderm and fenestrate bryozoanmore » grains as their primary constituents. Prominent hardgrounds that have up to 1 m of erosional relief occur in two of the sections. Despite the apparent uniformity of composition of the shoal, porosity and especially permeability varies over a wide range, suggesting a range of cementation patterns within the shoal. Most of the cement in the shoal consists of syntaxial overgrowths on echinoderm grains. Cementation is less and thus porosity and permeability greater, in portions of the shoals containing a lower concentration of echinoderm grains and grains with thick micrite envelopes. However, some portions of the intershoal channel facies that contain a high percentage of ooids have reduced porosity and permeability due to crushing of ooids, producing micrite that clogged the pores. Primary sedimentary features of the shoal facies were produced predominantly by storm reworking of carbonate grains produced in situ and perhaps in part washed in from surrounding environments.« less
An AMS study of the Takidani pluton (Japan)
NASA Astrophysics Data System (ADS)
Hartung, Eva; Caricchi, Luca; Floess, David; Wallis, Simon; Harayama, Satoru
2016-04-01
Large plutonic bodies are typically constructed incrementally often by under-accretion of distinct successive magma pulses. Petrography and geochemistry of the Takidani Pluton (1.54 Ma ± 0.23 Ma) in the Northern Japanese Alps show that the chemical and textural variability observed at the roof of this intrusion is best explained by the segregation of residual melt from a crystallising magma body. We carried out a magnetic susceptibility survey (bulk susceptibility and anisotropy of magnetic susceptibility) to identify the structures associated with the emplacement and extraction of residual melts from a magmatic mush. Additionally, we determined shape preferred orientations (SPO) of amphibole at several locations within the Takidani pluton. From bottom to top of the intrusion, the bulk susceptibility is about constant in the main granodioritic part, decreases roofwards within the porphyritic unit, before increasing again within the marginal granodiorite close to the contact with the overlaying Hotaka Andesite. Such variability mimics the major and trace elements compositional variability measured in the whole rock samples. Magnetic foliations are observed at the western tectonic contact of the pluton potentially indicating overprint, while most other magnetic fabrics across the pluton are characterised by triaxial ellipsoids of magnetic susceptibility or magnetic lineations. Our preliminary data and the lack of internal contacts indicate that Takidani Pluton was likely emplaced as a series of successive magma pulses finally merging to produce a large connected magma body. While amphibole foliations may likely be the results of super-solidus tectonic overprint, anisotropy of magnetic susceptibility data may be related to post-emplacement melt segregation.
NASA Astrophysics Data System (ADS)
Ma, Anlin; Hu, Xiumian; Garzanti, Eduardo; Han, Zhong; Lai, Wen
2017-07-01
The Mesozoic stratigraphic record of the southern Qiangtang basin in central Tibet records the evolution and closure of the Bangong-Nujiang ocean to the south. The Jurassic succession includes Toarcian-Aalenian shallow-marine limestones (Quse Formation), Aalenian-Bajocian feldspatho-litho-quartzose to feldspatho-quartzo-lithic sandstones (shallow-marine Sewa Formation and deep-sea Gaaco Formation), and Bathonian outer platform to shoal limestones (Buqu Formation). This succession is truncated by an angular unconformity, overlain by upper Bathonian to lower Callovian fan-delta conglomerates and litho-quartzose to quartzo-lithic sandstones (Biluoco Formation) and Callovian shoal to outer platform limestones (Suowa Formation). Sandstone petrography coupled with detrital-zircon U-Pb and Hf isotope analysis indicate that the Sewa and Gaaco formations contain intermediate to felsic volcanic detritus and youngest detrital zircons (183-170 Ma) with ɛHf(t) ranging widely from +13 to -25, pointing to continental-arc provenance from igneous rocks with mixed mantle and continental-crust contributions. An arc-trench system thus developed toward the end of the Early Jurassic, with the southern Qiangtang basin representing the fore-arc basin. Above the angular unconformity, the Biluoco Formation documents a change to dominant sedimentary detritus including old detrital zircons (mainly >500 Ma ages in the lower part of the unit) with age spectra similar to those from Paleozoic strata in the central Qiangtang area. A major tectonic event with intense folding and thrusting thus took place in late Bathonian time (166 ± 1 Ma), when the Qiangtang block collided with another microcontinental block possibly the Lhasa block.
Tectonics and metallogenesis of Proterozoic rocks of the Reading Prong
Gundersen, L.C.S.
2004-01-01
Detailed geologic mapping, petrography, and major and trace-element analyses of Proterozoic rocks from the Greenwood Lake Quadrangle, New York are compared with chemical analyses and stratigraphic information compiled for the entire Reading Prong. A persistent regional stratigraphy is evident in the mapped area whose geochemistry indicates protoliths consistent with a back-arc marginal basin sequence. The proposed marginal basin may have been floored by an older sialic basement and overlain by a basin-fill sequence consisting of a basal tholeiitic basalt, basic to intermediate volcanic or volcaniclastic rocks and carbonate sediments, a bimodal calc-alkaline volcanic sequence, and finally volcaniclastic, marine, and continental sediments. The presence of high-chlorine biotite and scapolite may indicate circulation of brine fluids or the presence of evaporite layers in the sequence. Abundant, stratabound magnetite deposits with a geologic setting very unlike that of cratonic, Proterozoic banded-iron formations are found throughout the proposed basin sequence. Associated with many of the magnetite deposits is unusual uranium and rare-earth element mineralization. It is proposed here that these deposits formed in an exhalative, volcanogenic, depositional environment within an extensional back-arc marginal basin. Such a tectonic setting is consistent with interpretations of protoliths in other portions of the Reading Prong, the Central Metasedimentary Belt of the Canadian Grenville Province, and recent interpretation of the origin of the Franklin lead-zinc deposits, suggesting a more cohesive evolving arc/back-arc tectonic model for the entire Proterozoic margin of the north-eastern portion of the North American craton. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Hara, Hidetoshi; Hirano, Miho; Kurihara, Toshiyuki; Takahashi, Toshiro; Ueda, Hayato
2018-01-01
We have studied the petrography, geochemistry, and detrital zircon U-Pb ages of sandstones from shallow-marine forearc sediments, accretionary complexes (ACs), and metamorphosed accretionary complexes (Meta-ACs) within the Kurosegawa belt of Southwest Japan. Those rocks formed in a forearc region of a Permian island arc associated with subduction of the Panthalassa oceanic crust along the eastern margin of the South China block (Yangtze block). The provenance of the shallow-marine sediments was dominated by basaltic to andesitic volcanic rocks and minor granitic rocks during the late Middle to Late Permian. The ACs were derived from felsic to andesitic volcanic rocks during the Late Permian. The provenance of Meta-ACs was dominated by andesitic volcanic rocks in the Middle Permian. The provenance, source rock compositions, and zircon age distribution for the forearc sediments, ACs and Meta-ACs have allowed us to reconstruct the geological history of the Permian arc system of the Kurosegawa belt. During the Middle Permian, the ACs were accreted along the eastern margin of the South China block. The Middle Permian arc was an immature oceanic island arc consisting of andesitic volcanic rocks. During the Late Permian, the ACs formed in a mature arc, producing voluminous felsic to andesitic volcanic rocks. A forearc basin developed during the late Middle to Late Permian. Subsequently, the Middle Permian ACs and part of the Late Permian AC underwent low-grade metamorphism in the Late to Early Jurassic, presenting the Meta-ACs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCulloh, R.P.; Purcell, M.D.
1983-09-01
A regional study of the Tuscaloosa Formation in Louisiana, undertaken to assess geopressured-geothermal potential, revealed lobate, downdip extensions of the hydropressured zone in lower Tuscaloosa massive sandstone facies below the regional top of geopressure. Normal pressure zones within geopressured section were identified by drilling-mud weights less than 13 lb/gal on electric logs of massive lower Tuscaloosa sandstone; cross section demonstrated updip continuity of these zones with the regional hydropressured zone. These hydropressure tongues are permitted by the anomalously high permeabilities reported from the deep Tuscaloosa trend, and they are attributed to both primary and secondary porosity by investigators of Tuscaloosamore » sandstone petrography. The hydropressure tongues correspond with lobes of thick net sandstone, principally in Pointe Coupee, East Felinicana, East Baton Rouge, and Livingston Parishes in the central Tuscaloosa trend. Limited control suggests at least one hydropressure tongue in the Chandeleur Sound area to the east. Dimensions of hydropressure tongues range up to 27 km (17 mi) parallel to srike and 17 km (11 mi) oblique to strike. In many places, tongues are terminated downdip by faults, which, by acting as pressure seals, prevent the tongues from extending to the downdip edge of the massive sandstone in the expanded sections of the downthrown blocks. The areal extent of geopressured Tuscaloosa sandstone is controlled updip by these fault zones, and downdip by pinch-out of the sandstone units basinward. Local hydropressure tongues diminish the geopressured-geothermal potential of the Tuscaloosa trend, but show no discernible relation to gas-productive areas.« less
NASA Astrophysics Data System (ADS)
Gomaa, Mohamed M.; Abou El-Anwar, Esmat A.
2015-06-01
The geochemical, petrographical, and electrical properties of rocks are essential to the investigation of the properties of minerals. In this paper we will try to present a study of the A. C. electrical properties of carbonate rock samples and their relation to petrographical and geochemical properties. Samples were collected from four formations from the Bir Dungul area, in the South Western Desert, Egypt. The electrical properties of the samples were measured using a non-polarizing electrode, at room temperature (~28 °C), and at a relative atmospheric humidity of (~45%), in the frequency range from 42 Hz to 5 MHz. The changes in the electrical properties were argued to the change in mineral composition. Generally, the electrical properties of rocks are changed due to many factors e.g., grain size, mineral composition, grain shape and inter-granular relations between grains. The dielectric constant of samples decreases with frequency, and increases with conductor concentration. Also, the conductivity increases with an increase of continuous conductor paths between electrodes. The petrographical and geochemical studies reveal that the deposition of the tufa deposits occurred in shallow lakes accompanied by a high water table, an alkaline spring recharge and significant vegetation cover. Diagenetically, tufa deposits were subjected to early and late diagenesis. Petrography and geochemistry studies indicated that the area of tufa deposits was deposited under the control of bacterial activity. Geochemically, the Sr content indicates that the tufa deposits formed from dissolved bicarbonate under the control of microbes and bacterial activity.
Pore network quantification of sandstones under experimental CO2 injection using image analysis
NASA Astrophysics Data System (ADS)
Berrezueta, Edgar; González-Menéndez, Luís; Ordóñez-Casado, Berta; Olaya, Peter
2015-04-01
Automated-image identification and quantification of minerals, pores and textures together with petrographic analysis can be applied to improve pore system characterization in sedimentary rocks. Our case study is focused on the application of these techniques to study the evolution of rock pore network subjected to super critical CO2-injection. We have proposed a Digital Image Analysis (DIA) protocol that guarantees measurement reproducibility and reliability. This can be summarized in the following stages: (i) detailed description of mineralogy and texture (before and after CO2-injection) by optical and scanning electron microscopy (SEM) techniques using thin sections; (ii) adjustment and calibration of DIA tools; (iii) data acquisition protocol based on image capture with different polarization conditions (synchronized movement of polarizers); (iv) study and quantification by DIA that allow (a) identification and isolation of pixels that belong to the same category: minerals vs. pores in each sample and (b) measurement of changes in pore network, after the samples have been exposed to new conditions (in our case: SC-CO2-injection). Finally, interpretation of the petrography and the measured data by an automated approach were done. In our applied study, the DIA results highlight the changes observed by SEM and microscopic techniques, which consisted in a porosity increase when CO2 treatment occurs. Other additional changes were minor: variations in the roughness and roundness of pore edges, and pore aspect ratio, shown in the bigger pore population. Additionally, statistic tests of pore parameters measured were applied to verify that the differences observed between samples before and after CO2-injection were significant.
Fabric controls on the brittle failure of folded gneiss and schist
NASA Astrophysics Data System (ADS)
Agliardi, Federico; Zanchetta, Stefano; Crosta, Giovanni B.
2014-12-01
We experimentally studied the brittle failure behaviour of folded gneiss and schist. Rock fabric and petrography were characterised by meso-structural analyses, optical microscopy, X-ray diffraction, and SEM imaging. Uniaxial compression, triaxial compression and indirect tension laboratory tests were performed to characterise their strength and stress-strain behaviour. Fracture patterns generated in compression were resolved in 3D through X-ray computed tomography at different resolutions (30 to 625 μm). Uniaxial compression tests revealed relatively low and scattered values of unconfined compressive strength (UCS) and Young's modulus, with no obvious relationships with the orientation of foliation. Samples systematically failed in four brittle modes, involving different combinations of shear fractures along foliation or parallel to fold axial planes, or the development of cm-scale shear zones. Fracture quantification and microstructural analysis show that different failure modes occur depending on the mutual geometrical arrangement and degree of involvement of two distinct physical anisotropies, i.e. the foliation and the fold axial planes. The Axial Plane Anisotropy (APA) is related to micro-scale grain size reduction and shape preferred orientation within quartz-rich domains, and to mechanical rotation or initial crenulation cleavage within phyllosilicate-rich domains at fold hinge zones. In quartz-rich rocks (gneiss), fracture propagation through quartz aggregates forming the APA corresponds to higher fracture energy and strength than found for fracture through phyllosilicate-rich domains. This results in a strong dependence of strength on the failure mode. Conversely, in phyllosilicate-rich rocks (schist), all the failure modes are dominated by the strength of phyllosilicates, resulting in a sharp reduction of strength anisotropy.
NASA Astrophysics Data System (ADS)
Madureira, Pedro; Rosa, Carlos; Marques, Ana Filipa; Silva, Pedro; Moreira, Manuel; Hamelin, Cédric; Relvas, Jorge; Lourenço, Nuno; Conceição, Patrícia; Pinto de Abreu, Manuel; Barriga, Fernando J. A. S.
2017-01-01
The most recent submarine eruption observed offshore the Azores archipelago occurred between 1998 and 2001 along the submarine Serreta ridge (SSR), 4-5 nautical miles WNW of Terceira Island. This submarine eruption delivered abundant basaltic lava balloons floating at the sea surface and significantly changed the bathymetry around the eruption area. Our work combines bathymetry, volcanic facies cartography, petrography, rock magnetism and geochemistry in order to (1) track the possible vent source at seabed, (2) better constrain the Azores magma source(s) sampled through the Serreta submarine volcanic event, and (3) interpret the data within the small-scale mantle source heterogeneity framework that has been demonstrated for the Azores archipelago. Lava balloons sampled at sea surface display a radiogenic signature, which is also correlated with relatively primitive (low) 4He/3He isotopic ratios. Conversely, SSR lavas are characterized by significantly lower radiogenic 87Sr/86Sr, 206Pb/204Pb and 208Pb/204Pb ratios than the lava balloons and the onshore lavas from the Terceira Island. SSR lavas are primitive, but incompatible trace-enriched. Apparent decoupling between the enriched incompatible trace element abundances and depleted radiogenic isotope ratios is best explained by binary mixing of a depleted MORB source and a HIMUtype component into magma batches that evolved by similar shallower processes in their travel to the surface. The collected data suggest that the freshest samples collected in the SSR may correspond to volcanic products of an unnoticed and more recent eruption than the 1998-2001 episode.
Strapoc, D.; Mastalerz, Maria; Schimmelmann, A.; Drobniak, A.; Hasenmueller, N.R.
2010-01-01
This study involved analyses of kerogen petrography, gas desorption, geochemistry, microporosity, and mesoporosity of the New Albany Shale (Devonian-Mississippian) in the eastern part of the Illinois Basin. Specifically, detailed core analysis from two locations, one in Owen County, Indiana, and one in Pike County, Indiana, has been conducted. The gas content in the locations studied was primarily dependent on total organic carbon content and the micropore volume of the shales. Gas origin was assessed using stable isotope geochemistry. Measured and modeled vitrinite reflectance values were compared. Depth of burial and formation water salinity dictated different dominant origins of the gas in place in the two locations studied in detail. The shallower Owen County location (415-433 m [1362-1421 ft] deep) contained significant additions of microbial methane, whereas the Pike County location (832-860 m [2730-2822 ft] deep) was characterized exclusively by thermogenic gas. Despite differences in the gas origin, the total gas in both locations was similar, reaching up to 2.1 cm3/g (66 scf/ton). Lower thermogenic gas content in the shallower location (lower maturity and higher loss of gas related to uplift and leakage via relaxed fractures) was compensated for by the additional generation of microbial methane, which was stimulated by an influx of glacial melt water, inducing brine dilution and microbial inoculation. The characteristics of the shale of the Maquoketa Group (Ordovician) in the Pike County location are briefly discussed to provide a comparison to the New Albany Shale. Copyright ??2010. The American Association of Petroleum Geologists. All rights reserved.
Acharya, Prasanna K; Patro, Sanjaya K
2016-08-01
Solid waste management is one of the subjects essentially addressing the current interest today. Due to the scarcity of land filling area, utilization of wastes in the construction sector has become an attractive proposition for disposal. Ferrochrome ash (FA) is a dust obtained as a waste material from the gas cleaning plant of Ferro alloy industries. It possesses the chemical requirements of granulated slag material used for the manufacture of Portland cement. Ferrochrome slag (FS) is another residue that is obtained as a solid waste by the smelting process during the production of stainless steel in Ferroalloy industries. FS possesses the required engineering properties of coarse aggregates. The possibility of using FA with lime for partial replacement of ordinary Portland cement (OPC) and FS for total replacement of natural coarse aggregates is explored in this research. The combined effect of FA with lime and FS-addition on the properties of concrete, such as workability, compressive strength, flexural strength, splitting tensile strength and sorptivity, were studied. Results of investigation revealed improvement in strength and durability properties of concrete on inclusion of FA and FS. Concrete mix containing 40% FA with 7% lime (replacing 47% OPC) and100% of FS (replacing 100% natural coarse aggregate) achieved the properties of normal concrete or even better properties at all ages. The results were confirmed by microscopic study such as X-ray diffraction and petrography examination. Environmental compatibility of concrete containing FA and FS was verified by the toxicity characteristic leaching procedure test. © The Author(s) 2016.
Petrography, diagenesis, and reservoir properties of Miocene Reefs, Visayan Islands, Philippines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carozzi, A.V.
1988-01-01
The Miocene reefs of the volcanic island arcs making up the Visayan Islands, Philippines, consist of an association of corals, red algae, bryozoans, and encrusting foraminifers forming barriers along the edge of narrow shelves. Bioclasts and intraclasts derived from these wave-resistant barriers were shed as frontal aprons of calcirudites and calcarenites that sometimes support pinnacle coralling buildups. These aprons were intersected by tidal-channel calcarenites grading seaward into carbonate turbidite submarine fans that interfingered with deep-water pelagic argillaceous micrites and shales. Lagoons with low energy micritic and pelletoidal muds. although intersected by numerous well-sorted tidal channel calcarenites, displayed an ecologically zonedmore » succession of small buildups that, in a landward direction, were: (1) finger-coral constructed; (2) larger, benthic foraminifer bioaccumulated; (3) small arenaceous foraminifer, gastropod, and red algae bioaccumulated. The shoreface environment consisted of mixed carbonates and andesitic grkaywackes grading landward into mangrove tidal flats and estuaries. Reservoirs were mainly developed in constructed barriers and in immediately adjacent frontal aprons and rear bioclastic carbonates. Many of these high-energy carbonates show interstitial micritic matrix. Porosity (reaching 30%) and permeability (reaching 146 md) result from a locally variable combination of the effects of subaerial exposure introducing secondary porosity by vadose to upper phreatic undersaturated dissolution,followed by extensive burial dissolution. Seals are provided between superposed barriers by andesitic volcaniclastics and basaltic flows. Uplifted Pleistocene reefs of Barbados, West Indies, which are nearly identical to Holocene West Indian reefs are excellent analogs of the Miocene examples except for the lack of active volcanism.« less
NASA Astrophysics Data System (ADS)
Lustrino, Michele; Prelević, Dejan; Agostini, Samuele; Gaeta, Mario; Di Rocco, Tommaso; Stagno, Vincenzo; Capizzi, Luca Samuele
2016-07-01
The volcanic products of the late Miocene Morron de Villamayor volcano (Calatrava Volcanic Field, central Spain) are known for being one of the few outcrops of leucitites in the entire circum-Mediterranean area. These rocks are important because aragonite of mantle origin has been reported as inclusion in olivine macrocrysts. We use petrographic observations, mineral compositions, as well as oxygen and carbon isotope ratios coupled with experimental petrology to understand the origin of carbonate phase in these olivine-phyric rocks. Groundmass and macrocryst olivines range from δ18OVSMOW of +4.8‰, typical of mantle olivine values, to +7.4‰, indicating contamination by sedimentary carbonate. Carbonates are characterized by heavy oxygen isotope compositions (δ18OVSMOW >+24‰), and relatively light carbon isotopes (δ13CPDB <-11‰), resembling skarn values, and distinct from typical mantle carbonatite compositions. Petrography, mineral compositions such as low Mg# of clinopyroxene and biotite, low Ca# and low incompatible element abundance of the carbonate, and isotopic ratios of O and C, do not support a mantle origin for the carbonate. Rather, the carbonate inclusions found in the olivine macrocrysts are interpreted as basement limestone fragments entrapped by the rising crystallizing magma. Comparison with experimental carbonatitic and silicate-carbonatitic melts indicates that low-degree partial melts of a carbonated peridotite must have a dolomitic rather than the aragonitic/calcitic composition as those found trapped in the Morron de Villamayor olivine macrocrysts.
NASA Astrophysics Data System (ADS)
Batki, Anikó; Pál-Molnár, Elemér; Jankovics, M. Éva; Kerr, Andrew C.; Kiss, Balázs; Markl, Gregor; Heincz, Adrián; Harangi, Szabolcs
2018-02-01
Clinopyroxene is a major constituent in most igneous rock types (hornblendite, diorite, syenite, nepheline syenite, camptonite, tinguaite and ijolite) of the Ditrău Alkaline Massif, Eastern Carpathians, Romania. Phenocryst and antecryst populations have been distinguished based on mineral zoning patterns and geochemical characteristics. Major and trace element compositions of clinopyroxenes reflect three dominant pyroxene types including primitive high-Cr Fe-diopside, intermediate Na-diopside-hedenbergite and evolved high-Zr aegirine-augite. Clinopyroxenes record two major magma sources as well as distinct magma evolution trends. The primitive diopside population is derived from an early camptonitic magma related to basanitic parental melts, whilst the intermediate diopside-hedenbergite crystals represent a Na-, Nb- and Zr-rich magma source recognised for the first time in the Ditrău magmatic system. This magma fractionated towards ijolitic and later phonolitic compositions. Field observations, petrography and clinopyroxene-melt equilibrium calculations reveal magma recharge and mingling, pyroxene recycling, fractional crystallisation and accumulation. Repeated recharge events of the two principal magmas resulted in multiple interactions between more primitive and more fractionated co-existing magma batches. Magma mingling occurred between mafic and felsic magmas by injection of ijolitic magma into fissures (dykes) containing phonolitic (tinguaite) magma. This study shows that antecryst recycling, also described for the first time in Ditrău, is a significant process during magma recharge and demonstrates that incorporated crystals can crucially affect the host magma composition and so whole-rock chemical data should be interpreted with great care.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piggott, N.; Vear, A.; Warren, E.A.
1996-08-01
Detailed quantification of cements and rock texture, fluid inclusion microthermometry, thermal maturity data, oil-source rock correlations and structural restorations have been integrated to reveal the porosity and hydrocarbon charge evolution of reservoirs in the Piedemonte Llanero thrustbelt of Colombia. Active exploration of deeply buried structures in different thrust sheets of the Piedemonte Llanero has encountered quartz arenites of widely varying average porosities (4-15%). Porosity has been reduced by mechanical compaction and quartz cementation during burial, and by pressure solution during structural deformation. The relative importance and timing of these processes varies between thrust sheets controlling the observed porosity variation. Thermalmore » maturity data indicate that all thrust sheets have been deeply buried and uplifted in several stages of compression. Detailed structural restorations indicate significant differences in the burial histories of individual thrust sheets. Oil-source rock correlations suggest two major hydrocarbon components in the thrustbelt: a Late Cretaceous oil-prone source and a Tertiary oil- and gas-prone source. Initial generation charged early structures leading to partial inhibition of quartz cementation. For most structures quartz cementation predated major hydrocarbon migration. Average quartz cementation temperature is uniform within a structure, but varies between thrust sheets. These variations appear to reflect differences in burial depths during quartz cementation rather than variations in timing. Integration of all data reveals a complex but predictable evolution of porosity and hydrocarbon charge in both space and time which is being applied to current exploration in the Piedemonte Llanero and is relevant to thrustbelt exploration elsewhere.« less
NASA Astrophysics Data System (ADS)
Dunn, Tasha L.; Gross, Juliane
2017-11-01
The single parent body model for the CV and CK chondrites (Greenwood et al.) was challenged by Dunn et al., who argued that magnetite compositions could not be reconciled by a single metamorphic sequence (i.e., CV3 → CK3 → CK4-6). Cr isotopic compositions, which are distinguishable between the CV and CK chondrites, also support two different parent bodies (Yin et al.). Despite this, there are many petrographic and mineralogical similarities between the unequilibrated (petrologic type 3) CK chondrites and the CV chondrites (also type 3), which may result in misclassification of samples. Hart and Northwest Africa 6047 (NWA 6047) are an excellent example of this. In this study, we revisit the classification of Hart and NWA 6047 using magnetite compositions, petrography, and compositions of olivine, the most ubiquitous mineral in both CV and CK chondrites. Not only do our results suggest that NWA 6047 and Hart were misclassified, but our assessment of CV and CK3 chondrites has also led to the development of criteria that can be used to distinguish between CV and CK3 chondrites. These criteria include: abundances of Cr2O3, TiO2, NiO, and Al2O3 in magnetite; Fa content and NiO abundance of matrix olivine; FeO content of chondrules; and the chondrule:matrix ratio. Classification as a CV chondrite is also supported by the presence of igneous chondrule rims, calcium-aluminum-rich inclusions, and an elongated petrofabric. However, none of these petrographic characteristics can be used conclusively to distinguish between CV and CK3 chondrites.
New insights into the mineralogy of the Atlantis II Deep metalliferous sediments, Red Sea
NASA Astrophysics Data System (ADS)
Laurila, Tea E.; Hannington, Mark D.; Leybourne, Matthew; Petersen, Sven; Devey, Colin W.; Garbe-Schönberg, Dieter
2015-12-01
The Atlantis II Deep of the Red Sea hosts the largest known hydrothermal ore deposit on the ocean floor and the only modern analog of brine pool-type metal deposition. The deposit consists mainly of chemical-clastic sediments with input from basin-scale hydrothermal and detrital sources. A characteristic feature is the millimeter-scale layering of the sediments, which bears a strong resemblance to banded iron formation (BIF). Quantitative assessment of the mineralogy based on relogging of archived cores, detailed petrography, and sequential leaching experiments shows that Fe-(oxy)hydroxides, hydrothermal carbonates, sulfides, and authigenic clays are the main "ore" minerals. Mn-oxides were mainly deposited when the brine pool was more oxidized than it is today, but detailed logging shows that Fe-deposition and Mn-deposition also alternated at the scale of individual laminae, reflecting short-term fluctuations in the Lower Brine. Previous studies underestimated the importance of nonsulfide metal-bearing components, which formed by metal adsorption onto poorly crystalline Si-Fe-OOH particles. During diagenesis, the crystallinity of all phases increased, and the fine layering of the sediment was enhanced. Within a few meters of burial (corresponding to a few thousand years of deposition), biogenic (Ca)-carbonate was dissolved, manganosiderite formed, and metals originally in poorly crystalline phases or in pore water were incorporated into diagenetic sulfides, clays, and Fe-oxides. Permeable layers with abundant radiolarian tests were the focus for late-stage hydrothermal alteration and replacement, including deposition of amorphous silica and enrichment in elements such as Ba and Au.
Examining Archean methanotrophy
NASA Astrophysics Data System (ADS)
Slotznick, Sarah P.; Fischer, Woodward W.
2016-05-01
The carbon isotope ratios preserved in sedimentary rocks can be used to fingerprint ancient metabolisms. Organic carbon in Late Archean samples stands out from that of other intervals with unusually low δ13C values (∼-45 to -60‰). It was hypothesized that these light compositions record ecosystem-wide methane cycling and methanotrophy, either of the aerobic or anaerobic variety. To test this idea, we studied the petrography and carbon and oxygen isotope systematics of well-known and spectacular occurrences of shallow water stromatolites from the 2.72 Ga Tumbiana Formation of Western Australia. We examined the carbonate cements and kerogen produced within the stromatolites, because methanotrophy is expected to leave an isotopic fingerprint in these carbon reservoirs. Mathematical modeling of Archean carbonate chemistry further reveals that methanotrophy should still have a discernible signature preserved in the isotopic record, somewhat diminished from those observed in Phanerozoic sedimentary basins due to higher dissolved inorganic carbon concentrations. These stromatolites contain kerogen with δ13Corg values of ∼ - 50 ‰. By microsampling different regions and textures within the stromatolites, we determined that the isotopic compositions of the authigenic calcite cements show a low degree of variation and are nearly identical to values estimated for seawater at this time; the lack of low and variable δ13Ccarb values implies that methanotrophy does not explain the low δ13Corg seen in the coeval kerogen. These observations do not support a methanotrophy hypothesis, but instead hint that the Late Archean may constitute an interval wherein autotrophs employed markedly different biochemical processes of energy conservation and carbon fixation.
NASA Astrophysics Data System (ADS)
Roigé, M.; Gómez-Gras, D.; Remacha, E.; Boya, S.; Viaplana-Muzas, M.; Teixell, A.
2017-10-01
In the northern Jaca basin (Southern Pyrenees), the replacement of deep-marine by terrestrial environments during the Eocene records a main drainage reorganization in the active Pyrenean pro-wedge, which leads to recycling of earlier foreland basin sediments. The onset of late Eocene-Oligocene terrestrial sedimentation is represented by four main alluvial fans: Santa Orosia, Canciás, Peña Oroel and San Juan de la Peña, which appear diachronously from east to west. These alluvial fans are the youngest preserved sediments deposited in the basin. We provide new data on sediment composition and sources for the late Eocene-Oligocene alluvial fans and precursor deltas of the Jaca basin. Sandstone petrography allows identification of the interplay of axially-fed sediments from the east with transversely-fed sediments from the north. Compositional data for the alluvial fans reflects a dominating proportion of recycled rock fragments derived from the erosion of a lower to middle Eocene flysch depocentre (the Hecho Group), located immediately to the north. In addition, pebble composition allows identification of a source in the North Pyrenean Zone that provided lithologies from the Cretaceous carbonate flysch, Jurassic dolostones and Triassic dolerites. Thus we infer this zone as part of the source area, located in the headwaters, which would have been unroofed from turbidite deposits during the late Eocene-Oligocene. These conclusions provide new insights on the response of drainage networks to uplift and topographic growth of the Pyrenees, where the water divide migrated southwards to its present day location.
NASA Astrophysics Data System (ADS)
Enriquez, M. V.; Eagle, R.; Eiler, J. M.; Tripati, A. K.; Ramirez, P. C.; Loyd, S. J.; Chiappe, L.; Montanari, S.; Norell, M.; Tuetken, T.
2012-12-01
Carbonate clumped isotope analysis of fossil eggshells has the potential to constrain both the physiology of extinct animals and, potentially, paleoenvironmental conditions, especially when coupled with isotopic measurements of co-occurring soil carbonates. Eggshell samples from both modern vertebrates and Cretaceous Hadrosaurid, Oviraptorid, Titanosaur, Hypselosaurus, Faveoolithus, dinosaur fossils have been collected from Auca Mahuevo, Argentina and Rousett, France, amongst other locations, for geochemical analysis to determine if isotopic signatures could be used to indicate warm- or cold-bloodedness. In some locations soil carbonates were also analyzed to constrain environmental temperatures. In order to test the validity of the geochemical results, an extensive study was undertaken to establish degree of diagenetic alteration. Petrographic and cathodoluminescence characterization of the eggshells were used to assess diagenetic alteration. An empirical 1-5 point scale was used to assign each sample an alteration level, and the observations were then compared with the geochemical results. Specimens displayed a wide range of alteration states. Some of which were well preserved and others highly altered. Another group seemed to be structural intact and only under cathodoluminescence was alteration clearly observed. In the majority of samples, alteration level was found to be predictably related to geochemical results. From specimens with little evidence for diagenesis, carbonate clumped isotope signatures support high (37-40°C) body temperature for Titanosaurid dinosaurs, but potentially lower body temperatures for other taxa. If these data do, in fact, represent original eggshell growth temperatures, these results support variability in body temperature amongst Cretaceous dinosaurs and potentially are consistent with variations between adult body temperature and size — a characteristic of 'gigantothermy'.
Petrography of the Paleogene Volcanic Rocks of the Sierra Maestra, Southeastern Cuba
NASA Astrophysics Data System (ADS)
Bemis, V. L.
2006-12-01
This study is a petrographic analysis of over 200 specimens of the Paleogene volcanic rocks of the Sierra Maestra (Southerneastern Cuba), a key structure in the framework of the northern Caribbean plate boundary evolution. The purpose of this study is to understand the eruptive processes and the depositional environments. The volcanic sequence in the lower part of the Sierra Maestra begins with highly porphyritic pillow lavas, topped by massive tuffs and autoclastic flows. The presence of broken phenocrystals, palagonitic glass and hyaloclastites in this section of the sequence suggests that the prevalent mode of eruption was explosive. The absence of welding in the tuffs suggests that the rocks were emplaced in a deep submarine environment. Coherent flows, much less common than the massive tuffs, show evidence of autoclastic fracturing, also indicating low temperature-submarine environments. These observations support the hypothesis that the Sierra Maestra sequence may be neither part of the Great Antilles Arc of the Mesozoic nor any other fully developed volcanic arc, rather a 250 km long, submarine eruptive system of dikes, flows and sills, most likely a back-arc structure. The volcanic rocks of the upper sequence are all very fine grained, reworked volcaniclastic materials, often with the structures of distal turbidities, in mode and texture similar to those drilled on the Cayman Rise. This study suggests that the Sierra Maestra most likely records volcanism of diverse sources: a local older submarine source, and one or more distal younger sources, identifiable with the pan-Caribbean volcanic events of the Tertiary.
NASA Astrophysics Data System (ADS)
Bordy, Emese M.; Segwabe, Tebogo; Makuke, Bonno
2010-08-01
The Mosolotsane Formation (Lebung Group, Karoo Supergroup) in the Kalahari Karoo Basin of Botswana is a scantly exposed, terrestrial red bed succession which is lithologically correlated with the Late Triassic to Early Jurassic Molteno and Elliot Formations (Karoo Supergroup) in South Africa. New evidence derived from field observations and borehole data via sedimentary facies analysis allowed the assessment of the facies characteristics, distribution and thickness variation as well as palaeo-current directions and sediment composition, and resulted in the palaeo-environmental reconstruction of this poorly known unit. Our results show that the Mosolotsane Formation was deposited in a relatively low-sinuosity meandering river system that drained in a possibly semi-arid environment. Sandstone petrography revealed mainly quartz-rich arenites that were derived from a continental block provenance dominated by metamorphic and/or igneous rocks. Palaeo-flow measurements indicate reasonably strong, unidirectional current patterns with mean flow directions from southeast and east-southeast to northwest and west-northwest. Regional thickness and facies distributions as well as palaeo-drainage indicators suggest that the main depocenter of the Mosolotsane Formation was in the central part of the Kalahari Karoo Basin. Separated from this main depocenter by a west-northwest - east-southeast trending elevated area, an additional depocenter was situated in the north-northeast part of the basin and probably formed part of the Mid-Zambezi Karoo Basin. In addition, data also suggests that further northeast-southwest trending uplands probably existed in the northwest and east, the latter separating the main Kalahari Karoo depocenter from the Tuli Basin.
Geothermometry of Kilauea Iki lava lake, Hawaii
Helz, R.T.; Thornber, C.R.
1987-01-01
Data on the variation of temperature with time and in space are essential to a complete understanding of the crystallization history of basaltic magma in Kilauea Iki lava lake. Methods used to determine temperatures in the lake have included direct, downhole thermocouple measurements and Fe-Ti oxide geothermometry. In addition, the temperature variations of MgO and CaO contents of glasses, as determined in melting experiments on appropriate Kilauean samples, have been calibrated for use as purely empirical geothermometers and are directly applicable to interstitial glasses in olivine-bearing core from Kilauea Iki. The uncertainty in inferred quenching temperatures is ??8-10?? C. Comparison of the three methods shows that (1) oxide and glass geothermometry give results that are consistent with each other and consistent with the petrography and relative position of samples, (2) downhole thermo-couple measurements are low in all but the earliest, shallowest holes because the deeper holes never completely recover to predrilling temperatures, (3) glass geothermometry provides the greatest detail on temperature profiles in the partially molten zone, much of which is otherwise inaccessible, and (4) all three methods are necessary to construct a complete temperature profile for any given drill hole. Application of glass-based geothermometry to partially molten drill core recovered in 1975-1981 reveals in great detail the variation of temperature, in both time and space, within the partially molten zone of Kilauea Iki lava lake. The geothermometers developed here are also potentially applicable to glassy samples from other Kilauea lava lakes and to rapidly quenched lava samples from eruptions of Kilauea and Mauna Loa. ?? 1987 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Wang, Jia-Min; Wu, Fu-Yuan; Rubatto, Daniela; Liu, Kai; Zhang, Jin-Jiang; Liu, Xiao-Chi
2018-04-01
Reconstructing the evolution of Gneiss domes within orogenic belts poses challenges because domes can form in a variety of geodynamic settings and by multiple doming mechanisms. For the North Himalayan gneiss domes (NHGD), it is debated whether they formed during shortening, extension or collapse of the plateau, and what is the spatial and temporal relationship of magmatism, metamorphism and deformation. This study investigates the Yardoi dome in southern Tibet using field mapping, petrography, phase equilibria modelling and new monazite ages. The resulting P-T-time-deformation-magmatism path for the first time reveals the spatial and temporal relationship of metamorphism, deformation and magmatism in the Yardoi dome: a) the dome mantle recorded prograde loading to kyanite-grade Barrovian metamorphic conditions of 650 ± 30 °C and 9 ± 1 kbar (M2) in the Early Miocene (18-17 Ma); b) the main top-to-the-north deformation fabric (D2) formed syn- to post-peak-metamorphism; c) the emplacement of leucorgranites related to doming is syn-metamorphism at 19-17 Ma. The link between the detachment shear zone in the Yardoi dome and the South Tibetan detachment system (STDS) is confirmed. By comparing with orogen-scale tectonic processes in the Himalaya, we suggest that north-south extension in a convergent geodynamic setting during Early Miocene accounts for formation of the Yardoi dome. In a wider tectonic context, the Early Miocene rapid exhumation of deep crustal rocks was contemporaneous with the rapid uplift of southern Tibet and the Himalayan orogen.
NASA Astrophysics Data System (ADS)
Doungkaew, N.; Eichhubl, P.
2015-12-01
Processes of fracture formation control flow of fluid in the subsurface and the mechanical properties of the brittle crust. Understanding of fundamental fracture growth mechanisms is essential for understanding fracture formation and cementation in chemically reactive systems with implications for seismic and aseismic fault and fracture processes, migration of hydrocarbons, long-term CO2 storage, and geothermal energy production. A recent study on crack-seal veins in deeply buried sandstone of east Texas provided evidence for non-linear fracture growth, which is indicated by non-elliptical kinematic fracture aperture profiles. We hypothesize that similar non-linear fracture growth also occurs in other geologic settings, including under higher temperature where solution-precipitation reactions are kinetically favored. To test this hypothesis, we investigate processes of fracture growth in quartzitic sandstone of the Campito Formation, eastern California, by combining field structural observations, thin section petrography, and fluid inclusion microthermometry. Fracture aperture profile measurements of cemented opening-mode fractures show both elliptical and non-elliptical kinematic aperture profiles. In general, fractures that contain fibrous crack-seal cement have elliptical aperture profiles. Fractures filled with blocky cement have linear aperture profiles. Elliptical fracture aperture profiles are consistent with linear-elastic or plastic fracture mechanics. Linear aperture profiles may reflect aperture growth controlled by solution-precipitation creep, with the aperture distribution controlled by solution-precipitation kinetics. We hypothesize that synkinematic crack-seal cement preserves the elliptical aperture profiles of elastic fracture opening increments. Blocky cement, on the other hand, may form postkinematically relative to fracture opening, with fracture opening accommodated by continuous solution-precipitation creep.
Isotope and trace element insights into heterogeneity of subridge mantle
NASA Astrophysics Data System (ADS)
Mallick, Soumen; Dick, Henry J. B.; Sachi-Kocher, Afi; Salters, Vincent J. M.
2014-06-01
Geochemical data for abyssal peridotites are used to determine the relationship to mid-ocean ridge basalts from several locations at ridge segments on the SW Indian Ridge (SWIR), the Mid-Cayman-Rise (MCR), and the Mid-Atlantic Ridge (MAR). Based on chemical and petrological criteria peridotites are categorized as being either dominantly impregnated with melt or being residual after recent melting. Those that are considered impregnated with melt also have isotopic compositions similar to the basalts indicating impregnation by an aggregate MORB melt. A SWIR and MCR residual peridotite Nd-isotopic compositions partly overlap the Nd-isotopic compositions of the basalts but extend to more radiogenic compositions. The differences between peridotite and basalt Nd-isotopic compositions can be explained by incorporating a low-solidus component with enriched isotopic signature in the subridge mantle: a component that is preferentially sampled by the basalts. At the MAR, peridotites and associated basalts have overlapping Nd-isotopic compositions, suggesting a more homogeneous MORB mantle. The combined chemistry and petrography indicates a complex history with several depletion and enrichment events. The MCR data indicate that a low-solidus component can be a ubiquitous component of the asthenosphere. Residual abyssal peridotites from limited geographic areas also show significant chemical variations that could be associated with initial mantle heterogeneities related to events predating the ridge-melting event. Sm-Nd model ages for possible earlier depletion events suggest these could be as old as 2.4 Ga. This article was corrected on 9 JULY 2014. See the end of the full text for details.
Controls on the quality of Miocene reservoirs, southern Gulf of Mexico
NASA Astrophysics Data System (ADS)
Gutiérrez Paredes, Hilda Clarisa; Catuneanu, Octavian; Hernández Romano, Ulises
2018-01-01
An investigation was conducted to determine the main controls on the reservoir quality of the middle and upper Miocene sandstones in the southern Gulf of Mexico based on core descriptions, thin section petrography and petrophysical data; as well as to explore the possible link between the sequence stratigraphic framework, depositional facies and diagenetic alterations. The Miocene deep marine sandstones are attributed to the falling-stage, lowstand, and transgressive systems tracts. The middle Miocene falling-stage systems tract includes medium-to very fine-grained, and structureless sandstones deposited in channels and frontal splays, and muddy sandstones, deposited in lobes of debrites. The lowstand and transgressive systems tracts consist of medium-to very fine-grained massive and normally graded sandstones deposited in channel systems within frontal splay complexes. The upper Miocene falling-stage systems tract includes medium-to coarse-grained, structureless sandstones deposited in channel systems and frontal splay, as well as lobes of debrites formed by grain flows and hybrid-flow deposits. The lowstand and transgressive systems tracts include fine-grained sandstones deposited in overbank deposits. The results reveal that the depositional elements with the best reservoir quality are the frontal splays deposited during the falling-stage system tracts. The reservoir quality of the Miocene sandstones was controlled by a combination of depositional facies, sand composition and diagenetic factors (mainly compaction and calcite cementation). Sandstone texture, controlled primarily by depositional facies appears more important than sandstone composition in determining reservoir quality; and compaction was more important than cementation in porosity destruction. Compaction was stopped, when complete calcite cementation occurred.
Geothermometry of Kilauea Iki lava lake, Hawaii
NASA Astrophysics Data System (ADS)
Helz, Rosalind Tuthill; Thornber, Carl R.
1987-10-01
Data on the variation of temperature with time and in space are essential to a complete understanding of the crystallization history of basaltic magma in Kilauea Iki lava lake. Methods used to determine temperatures in the lake have included direct, downhole thermocouple measurements and Fe-Ti oxide geothermometry. In addition, the temperature variations of MgO and CaO contents of glasses, as determined in melting experiments on appropriate Kilauean samples, have been calibrated for use as purely empirical geothermometers and are directly applicable to interstitial glasses in olivine-bearing core from Kilauea Iki. The uncertainty in inferred quenching temperatures is ±8-10° C. Comparison of the three methods shows that (1) oxide and glass geothermometry give results that are consistent with each other and consistent with the petrography and relative position of samples, (2) downhole thermo-couple measurements are low in all but the earliest, shallowest holes because the deeper holes never completely recover to predrilling temperatures, (3) glass geothermometry provides the greatest detail on temperature profiles in the partially molten zone, much of which is otherwise inaccessible, and (4) all three methods are necessary to construct a complete temperature profile for any given drill hole. Application of glass-based geothermometry to partially molten drill core recovered in 1975 1981 reveals in great detail the variation of temperature, in both time and space, within the partially molten zone of Kilauea Iki lava lake. The geothermometers developed here are also potentially applicable to glassy samples from other Kilauea lava lakes and to rapidly quenched lava samples from eruptions of Kilauea and Mauna Loa.
Petrography and geochemistry of the Middle Devonian coal from Luquan, Yunnan Province, China
Dai, S.; Han, D.; Chou, C.-L.
2006-01-01
Coals from Luquan, Yunnan Province, China, have high contents of cutinite and microsporinite, with an average of 55 and 33.5 vol%, respectively, (on a mineral-free basis). The coals are classified as cutinitic liptobiolith, sporinite-rich durain, cutinite-rich durain, and sporinitic liptobiolith. These four liptinite-rich coals are often interlayered within the coal bed section and vary transversely within the coal bed. The vitrinite content varies from as low as 1.6-20.5% (mineral-free basis), and it is dominated by collodetrinite, collotelinite, and corpogelinite. The maceral composition may be attributed to the type of the peat-forming plant communities. Moreover, the Luquan coals are characterized by high contents of volatile matter, hydrogen, and oxygen, and the high values of the atomic hydrogen to carbon ratio as a result of the maceral composition. As compared with the common Chinese coals and the upper continental crust, the Luquan coals are enriched in Li, B, Cu, Ga, Se, Rb, Mo, Ba, Pb, Bi, and U, with averages of 99.9, 250, 111, 24.4, 4.55, 130, 58.8, 1276, 162, 3.85, and 34.1 ??g/g, respectively. The SEM-EDX results show that V, Cr, Ga, and Rb occur mainly in clay minerals, and Cu and Pb are associated with clay minerals and pyrite, and Mo and U are mainly in clay minerals and organic matter. Barite and clay minerals are the main carrier of barium. The high B and U contents are probably resulted from deep seawater influence during coal formation. ?? 2005 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Todd, E.; Ort, M. H.
2012-12-01
Caldera collapse (˜180 km2) associated with a large Pliocene pyroclastic eruption and subsequent glacial erosion exposed an extensive and complex cross-section of pre-caldera volcanic history (at least 5 My) at the Copahue-Caviahue Eruptive Center (CCEC) in the Andean Southern Volcanic Zone (SVZ) of Argentina. Lava flows in wall exposures range from olivine-rich basaltic andesite to trachyte, are typically horizontal, vary in abundance and thickness at different wall exposures, and rarely correlate with flows in adjacent sections, although some lava and pyroclastic deposits from adjacent sections are similar in petrography, mineral assemblage, and geochemistry. Bulk-rock geochemical and isotopic data indicate at least two distinct primary melt types contributed to pre-caldera CCEC volcanism, and their differentiates produced a high-K and a low-K series. Incompatible element and isotope systematics suggest they are not related by differentiation of a common parental melt, and less-evolved examples of both types occur throughout the pre-caldera stratigraphic section, suggesting long-lived recharge of the local system by variably-sourced magmas. Petrographic and mineral chemistry evidence indicates that mixing of dissimilar magma types produced compositionally intermediate magmas. The location of the CCEC, rear of the volcanic front (VF), yet trenchward of regional backarc basin (BAB) volcanism, is reflected by the composition of CCEC lavas, which are transitional between local VF and BAB types. Thus, contrasting low- and high-K CCEC magmas in the SVZ rear-arc may reflect local focusing of VF-like (low-K) and BAB-like (high-K) melts.
NASA Astrophysics Data System (ADS)
Dabo, Moussa; Aïfa, Tahar; Gning, Ibrahima; Faye, Malick; Ba, Mamadou Fallou; Ngom, Papa Malick
2017-07-01
The new lithological and petrographic data obtained in the Mako sector are analyzed in the light of the geochemical data available in the literature. It consists of ultramaic, mafic rocks of tholeiitic affinities associated with intermediate and felsic rocks of calc-alkaline affinities and with intercalations of sedimentary rocks. The whole unit is intruded by Eburnean granitoids and affected by a greenschist to amphibolite facies metamorphism related to a high grade hydrothermalism. It consists of: (i) ultramafic rocks composed of a fractional crystallization succession of lherzolites, wehrlites and pyroxenites with mafic rock inclusions; (ii) layered, isotropic and pegmatitic metagabbros which gradually pass to metabasalts occur at the top; (iii) massive and in pillow metabasalts with locally tapered vesicles, completely or partially filled with quartzo-feldspathic minerals; (iv) quarzites locally overlying the mafic rocks and thus forming the top of the lower unit. This ultramafic-mafic lower unit presents a tholeiitic affinity near to the OIB or N-MORB. It represents the Mako Ophiolitic Complex (MOC), a lithospheric fragment of Birimian lithospheric crust. The upper unit is a mixed volcanic complex arranged in the tectonic corridors. From bottom to top it comprises the following: (i) andesitic, and (ii) rhyodacitic and rhyolitic lava flows and tuffs, respectively. They present a calc-alkaline affinity of the active margins. Three generations of Eburnean granitoids are recognized: (i) early (2215-2160 Ma); (ii) syn-tectonics (2150-2100 Ma) and post-tectonics (2090-2040 Ma). The lithological succession, geochemical and metamorphic characteristics of these units point to an ophiolitic supra-subduction zone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noble, J.P.A.; Chowdhury, A.H.; Yu, H.
1996-12-31
The Carboniferous Horton Group Albert Formation sediments include lacustrine source-rock oil shales and fluvial porous reservoir sandstones. The petrography, stable isotopes, fluid inclusions, cathodoluminescence and mirror/trace element chemistry of these sandstones are used to establish the diagenetic history and controlling factors. Early diagenetic calcite, quartz and albite cements with minor chlorite and kaolinite are variably present and related to depositional mineralogy and lake levels winch controlled the porewater chemistry. Antitaxial veins occurring preferentially in shales are shown, from heavy {delta}C{sup 13} values and fluid inclusions, to be related to methanogenesis in overpressured zones at shallow depths. Later burial calcite andmore » extensive albitisation are related to mineral reactions during the phase of rapid subsidence at temperatures of 80{degrees} to 150{degrees} in the deepest segment of the basin, together with significant dissolution of carbonates and feldspars related mainly to organic acids generated by organic maturation processes. Mass balance calculations indicate that not enough organic matter was present to account for all the estimated secondary porosity and some evidence suggests that reactions between kaolinite and calcite/ankerite to produce chlorite, and mixed layer illite-smectite ordering reactions, produced significant secondary porosity. Burial history reconstructions and thermal modelling of the Albert Fm. sediments using Arrhenius type maturity models and reflectance and rock-eval data suggest locally variable maturation and reservoir production related to the locally different fault tectonic histories characteristic of strike-slip lacustrine segmented basins. The Horton depositional cycle was followed by major dextral transpression with local faulting and inversion and vein cementation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noble, J.P.A.; Chowdhury, A.H.; Yu, H.
1996-01-01
The Carboniferous Horton Group Albert Formation sediments include lacustrine source-rock oil shales and fluvial porous reservoir sandstones. The petrography, stable isotopes, fluid inclusions, cathodoluminescence and mirror/trace element chemistry of these sandstones are used to establish the diagenetic history and controlling factors. Early diagenetic calcite, quartz and albite cements with minor chlorite and kaolinite are variably present and related to depositional mineralogy and lake levels winch controlled the porewater chemistry. Antitaxial veins occurring preferentially in shales are shown, from heavy [delta]C[sup 13] values and fluid inclusions, to be related to methanogenesis in overpressured zones at shallow depths. Later burial calcite andmore » extensive albitisation are related to mineral reactions during the phase of rapid subsidence at temperatures of 80[degrees] to 150[degrees] in the deepest segment of the basin, together with significant dissolution of carbonates and feldspars related mainly to organic acids generated by organic maturation processes. Mass balance calculations indicate that not enough organic matter was present to account for all the estimated secondary porosity and some evidence suggests that reactions between kaolinite and calcite/ankerite to produce chlorite, and mixed layer illite-smectite ordering reactions, produced significant secondary porosity. Burial history reconstructions and thermal modelling of the Albert Fm. sediments using Arrhenius type maturity models and reflectance and rock-eval data suggest locally variable maturation and reservoir production related to the locally different fault tectonic histories characteristic of strike-slip lacustrine segmented basins. The Horton depositional cycle was followed by major dextral transpression with local faulting and inversion and vein cementation.« less
Shaver, S.A.; Eble, C.F.; Hower, J.C.; Saussy, F.L.
2006-01-01
Stratigraphy, palynology, petrography, and geochemistry of the Bon Air coal from the Armfield, Dotson, Rutledge, and Shakerag mine sites of Franklin County, Tennessee suggest that Bon Air seams at all sites were small (??? 1.0 mile, 1.6 km), spatially distinct paleomires that evolved from planar to domed within the fluviodeltaic Lower Pennsylvanian Raccoon Mountain Formation. Of observed palynoflora, 88-97% are from lycopsids prevalent in the Westphalian. Densosporites palynomorphs of small lycopsids (e.g., Omphalophloios) dominate at the shale-hosted Armfield site, while Lycospora palynoflora of large arboreous lycopsids (especially Lepidodendron, with lesser Lepidophloios harcourtii and Lepidophloios hallii) dominate where intercalated siltstone/sandstone/shale hosts the coal (all other sites). Palynoflora of other lycopsids (Sigillaria and Paralycopodites), tree ferns, seed ferns, small ferns, calamites, and cordaites are generally minor. Genera of clastic-associated Paralycopodites are most common in Shakerag's coal (??? 10%), yet quite rare in Rutledge or Dotson coals. Overall, the palynomorph assemblages suggest that the Bon Air paleomires were forest swamps, and Early Pennsylvanian in age (Westphalian A, Langsettian). Dominant macerals at all sites are vitrinites, with fine collodetrinite (from strongly decomposed plant debris) more common than coarser collotelinite (from well-preserved plant fragments), and with lesser inertinites (fusinite and semifusinite) and liptinites (dominantly sporinite). Shakerag's coal has greatest abundance (mineral-matter-free) of collotelinite (up to 47%) and total vitrinite (74-79%) of any sites, but lowest liptinite (12-14.5%) and inertinite (7-11%). The Dotson and Rutledge seams contain moderate liptinite (21-23%) and highest inertinite (36-37%), lowest vitrinite (??? 41%), and lowest collotelinite (13-15%). Armfield's seam has relatively high liptinite (26-28%) and vitrinite (56.5-62%), but rather low inertinite (12-15%). Moderately high ash (11.0-20.0%) and low to moderate sulfur (1.24% avg.) are typical, but ash may locally be up to 38% and sulfur up to 2.9%. Volatile matter (32.1-41.3%), calorific value (33.3-34.9 MJ/kg MAF), moisture (2.2-3.4%), and vitrinite reflectance (0.70-0.84% Rmax; 0.64-0.79% Rrandom) place the Bon Air's rank as high-volatile-A bituminous (hvAb). The Armfield coal was probably a channel-distal paleomire, perhaps an oxbow lake or floodplain depression, which domed and then subsided back to planarity prior to burial. Features of its basal and uppermost benches suggest low-lying, often-flooded (but periodically dry) mires marked by fluvial influxes and diverse lycopsid growth. These include variable inertinite, common palynoflora of both small lycopsids (Omphalophloios-like) and large arboreous ones (Lepidophloios and Lepidodendron), minor but significant palynoflora of subaerial levee or levee/mire transition species (especially Paralycopodites), moderate to high ash, variable sulfur, and elevated levels of commonly fluvial trace elements (e.g., Al, Cr, REEs, Rb, Sr, Th, V, Y, and Zr). These benches also contain high total vitrinite, high collotelinite/collodetrinite ratios, and clays with moderate to low kaolinite/quartz ratios, all consistent with the near-neutral pH and limited peat degradation that typify such planar mires. By contrast, middle benches at Armfield reflect mires domed above the land surface, less-often flooded, less-preservational, and of lower pH: coals have lower ash, vitrinite, and collotelinite, less palynoflora of both large arboreous lycopsids and Paralycopodites, and high proportions of kaolinite, liptinite, and Densosporites. Similar data at Shakerag suggest that its mire also grew from planar to domed. However, more abundant Paralycopodites, a kaolinite-poor but quartz-and-illite-rich underclay, benches alternately ash-rich and ash-poor, and an upper bench truncated by channel sandstone, suggest that it was channel-proximal and pron
NASA Astrophysics Data System (ADS)
Pálfy, József; Price, Gregory D.; Vörös, Attila; Kovács, Zsófia; Johannson, Gary G.
2017-04-01
Cold seeps, where seepage of methane and/or other hydrocarbon-rich fluids and hydrogen-sulfide occurs in the sea floor, are sites which harbor highly specialized ecosystems associated with distinctive carbonate sediments. Although their Mesozoic record is scarce and patchy, it commonly includes rhynchonellid brachiopods, often of large size. Each new occurrence is valuable in filling gaps and providing additional insight into these peculiar ecosystems. Here we report a monospecific assemblage of Anarhynchia from a boulder-sized limestone clast of Early Pliensbachian (Early Jurassic) age in the Inklin Formation of the Whitehorse Trough in Stikine terrane, recovered from a locality at Copper Island in Atlin Lake, northern British Columbia, Canada. Specimens are of unusually large size, up to 9 cm in length, and their external and internal morphology allows assignment to Anarhynchia but warrants introduction of a new species. Although d13C and d18O values of the shells are close to equilibrium with ancient seawater, early precipitated carbonate cement phases of the enclosing limestone are characterised by highly depleted carbon isotopic composition, indicative of the influence of microbial oxidation of methane derived from a cold seep. Carbonate petrography of the isopachous, banded-fibrous cement supports its origin in a cold seep environment. Volcanogenic detrital grains in the micritic matrix of the limestone clast are indistinguishable from those in the sandstone layers in the siliciclastic sequence, suggesting that the seep carbonate is broadly coeval with the enclosing conglomerate. Previously, Anarhynchia has been known from the Lower Jurassic of California and Oregon, from both cold seep and hydrothermal vent deposits. Our new record extends the geographic range and species-level diversity of the genus, but supports its endemism to the East Pacific and membership in chemosynthesis-based ecosystems.
NASA Astrophysics Data System (ADS)
Neupane, B.; Ju, Y.; Allen, C.
2016-12-01
The continental deposits foreland basin of Central Nepal, Amile Formation, Bhainskati Formation and Dumri Formation (Tansen unit) are the key region for provenance analysis, preserved almost complete sedimentation history of tectonic collision of Indian and Asian plates. Samples from two field traverses are examined petrographically and through zircon U-Pb dating, one traverse through the Tansen Group, and another through its potential source rocks, the Higher and Tethys Himalaya. The Tansen Group ages are well known through fossil assemblages. We examine sandstone-bearing units of the Tansen Group, the upper 3 of 5 Formations. The optical petrography data and resulting classify Tansen sediments as "recycled orogenic" and "Quartzose recycled", indicating that Indian cratonal sediments as the likely source of sediments for the Amile Formations, and the Tethyan Himalaya as the source for the Bhainskati Formation, and both the Tethys and Higher Himalaya as the major sources for the Dumri Formation. The Cretaceous to Paleocene pre-collisional Amile Formation is dominated by a broad 1830 Ma age peak with neither Paleozoic nor Neoproterozic zircons, but hosts a significant proportion (23%) of syndepositional Cretaceous zircons (121 to 105 Ma) indicative of nearby Cretaceous volcanism at that time. Therefore, the rare volcanic fragments in detritus of Amile Formation were derived from the Rajmahal Volcanic Province defining the middle to late Cretaceous depositional age. The other Formations of the Tansen Group are more similar to Tethys units than to Higher Himalaya. Further, the 23+/-1 Ma zircons in two of the crystalline Higher Himalaya units suggest that they could not have been exposed until at or after this time.
NASA Astrophysics Data System (ADS)
Hassan, Safaa M.; El kazzaz, Yahiya A.; Taha, Maysa M. N.; Mohammad, Abdullah T.
2017-07-01
Meatiq dome is one of the mysteries of the basement rocks in Central Eastern Desert (CED) of Egypt. Its mode of formation, and tectonic evolution are still controversial and not fully understood. Satellite remote sensing is a powerful tool for geologic applications, especially in inaccessible regions of the Earth's surface. In this study, three proposed Landsat-8 band ratios (6/2, 6/7, (6/4*4/3)), (6/7, 6/4, 4/2), and (7/5, 7/6, 5/3) are successfully used for detailed geological mapping of the different lithological rock units exposed in Meatiq dome area in the CED. Landsat-8 Principal component (PC) images is also used for refinement the boundaries between the widely-exposed rock units in the study area. Fourteen spectral bands of Advanced Space borne Thermal Emission and Reflection Radiometer (ASTER) data are successfully used to emphasize the distribution of some rock forming minerals (i.e. muscovite, quartz, ferrous oxides, ferrous silicates and hydroxyl-bearing minerals) in the lithological rock units of Meatiq dome area. ASTER muscovite index (B7/B6) and quartz index (B14/B12), ferrous iron index (B5/B3), ferrous silicates index (B5/B4), mafic index (B12/B13) and hydroxyl-bearing minerals index ((B7/B6)*(B4/B6)) discriminate muscovite bearing rocks, Granitoids, and other felsic rocks, amphibolite and other mafic rocks. The proposed image processing methods effectively discriminates between four granitic varieties existed in Meatiq area. They are namely; Abu Ziran, Ariki, Fawakhir and Atalla Plutons. This study reveals that the applied data of ASTER and Landsat-8 enhanced images produced a modified geological map with well emphasized rock units which are verified with field observations, and petrographic study.
NASA Astrophysics Data System (ADS)
Deng, Yu-Feng; Yuan, Feng; Zhou, Taofa; Hollings, Pete; Zhang, Dayu
2018-06-01
The Keketuobie intrusion is situated in the northern part of the West Junggar foldbelt at the southern margin of the Central Asian Orogeic Belt. The intrusion consists of medium- to coarse-grained gabbro, fine-grained gabbro and diorite. Igneous zircons from the medium- to coarse-grained gabbro yielded a LA-ICP-MS U-Pb age of 320.8 ± 5.7 Ma, indicating that the intrusion was emplaced in the Early Carboniferous. The intrusive contact between the medium- to coarse-grained gabbro and the fine-grained gabbro indicates they formed from distinct magma pulses. Magnetite crystals from the fine-grained gabbro have lower V2O3 but higher TiO2 and Al2O3 contents than those of the medium- to coarse-grained gabbro, suggesting that the fine-grained gabbro crystallized in a relatively higher fO2 and temperature magma than the medium- to coarse-grained gabbro. The Keketuobie intrusive rocks are characterized by enriched large ion lithophile elements and depleted high field strength elements relative to N-MORB with restricted (87Sr/86Sr)t ratios (0.70370-0.70400) and εNd(t) values (+5.85 to +6.97). The petrography and geochemistry are comparable to those of subduction-related volcanic rocks. The trace elements and isotopic compositions of the mafic intrusive rocks suggest that the primary magmas were derived from mixing of metasomatized lithospheric mantle and depleted asthenospheric melts, perhaps triggered by slab break-off. The Keketuobie intrusion is younger than adjacent ophiolite sequences, island arc volcanic rocks and porphyry deposits, but predates the post-collisional A-type granites and bimodal volcanic rocks in the district, suggesting that the Keketuobie intrusion likely formed in a syn-collisional setting.
NASA Astrophysics Data System (ADS)
Nandy, J.; Dey, S.
2017-12-01
Neoarchaean crustal growth, role of plate tectonics and potential secular changes is still disoriented in Dharwar craton. To provide constraints on these questions, geochronological and geochemical data are presented on the unstudied granitoids associated with Kadiri greenstone belt, eastern Dharwar craton. Five diverse type of granitoids suites are identified in that area. Field setting, petrography, whole rock geochemistry study with Sm-Nd isotopes and zircon dates help to identify their source and petrogenesis. Along the eastern margin of the Kadiri belt a sanukitoid-like granitoid body is exposed which was probably derived from a metasomatised mantle wedge above a subduction zone followed by some older crustal contamination. Along the western margin transitional TTG is exposed displaying an intrusive relation with Kadiri dacite-rhyolite. This suite is interpreted to be derived from a mafic source with some enriched crustal component. Further east and west vast area is occupied highly silicic biotite monzogranite which is enriched in LILE, high K2O/Na2O. These granitoids are product of intracrustal shallow melting. At the south-eastern tip of the Kadiri belt occurs a well-foliated and banded transitional TTG which was probably derived from melting of mafic source with some contribution of felsic crustal material. At the north-eastern tip of the belt a highly silicic ferroan granitoid is exposed. Geochemical characteristics indicate that it is A-type granite, produced from shallow melting of a felsic crustal source. The basalt in greenstone belt is generated in oceanic plateau setting and granitoids in arc setting in different time. A tectonic scenario envisaging collision between an arc and oceanic plateau followed by repeated slab break-off and crustal recycling is proposed to explain the evolution of the terrain.
Vein mineralizations - archives of paleo-fluid systems in the Thuringian basin (Germany)
NASA Astrophysics Data System (ADS)
Abratis, M.; Brey, M.; Fritsch, S.; Majzlan, J.; Viereck-Götte, L.
2012-04-01
We investigate vein mineralizations within and around the Thuringian basin (Germany) in order to characterize paleo-fluid systems that have been active in the basin. By investigating the composition, temperature, origin, age and evolution of paleo-fluids in the Thuringian basin as a model case, we aim for comprehensive understanding of the character of mineralized fluid systems in sedimentary basins in general and their evolution over geological time scales. Mineralizations along faults are archives for the composition of fluids which intruded the basin and circulated within it millions of years ago. These mineralizations give information on the physical and chemical characteristics of the related fluids as well as on their evolution with time during basin evolution. Mapping of mineralizations in space and time and comparison with the present-day fluid circulation system allows for recognition of the paleo-fluid dynamics and high temperature fluid influx pathways. The chemical characteristics of vein-related mineralizations are proxies for the paleo-fluid sources and their solution load. Methods implied comprise bulk rock analyses (petrography, XRD, XRF, ICP-MS), mineral analyses (EPMA, LA-ICP-MS), fluid inclusion measurements (microthermometry, Raman spectroscopy, ion chromatography) and isotope studies (O, H, C, S, Sr). Vein-related mineralizations within the Mesozoic sediments of the basin occur predominantly along WNW-ESE trending fault systems and comprise mainly carbonates and sulfates. Mineralizations within the basin-confining uplifted Variscan basement rocks and lowermost sedimentary units (Zechstein) show also (Fe-, Cu-, Zn-, As-, Sb-) sulfides, (Fe-, Mn-) oxides, fluorite and barite. The present study is part of INFLUINS, a BMBF-funded project bundle which is dedicated to comprehensive description and understanding of the fluid systems within the Thuringian basin in time and space.
Emplacement of the early Miocene Pinto Peak intrusion, Southwest Utah, USA
NASA Astrophysics Data System (ADS)
Petronis, Michael S.; O'Driscoll, Brian
2013-12-01
In this contribution, we report rock magnetic, petrographic, and anisotropy of magnetic susceptibility (AMS) data from the Pinto Peak intrusion, all of which bear on volcanic construction. Rock magnetic data indicate that the dominant magnetic mineral phase is low-Ti titanomagnetite of multidomain grain size, the composition of which varies spatially across the intrusion. The intrusion is a porphyritic andesite dominated by Ca-rich plagioclase (>60%) as well as biotite, amphibole, olivine, and opaque minerals. Reflected light petrography reveals mostly euhedral-subhedral (titano)magnetite crystals that often form clustered glomerocrysts and stringers of equant crystals, without exhibiting a consistent mineral alignment fabric. Moderate-to-shallow plunging prolate magnetic susceptibility ellipsoids dominate the northern part of the intrusion while steeply dipping/plunging magnetic susceptibility ellipsoids are generally restricted to the southern part of the intrusion. The vent facies rocks yield moderate-to-steep oblate susceptibility ellipsoids. We interpret the flow pattern in the north to reflect subhorizontal flow of magma, filling a tabular sheet-like body associated with propagation of the intrusion to the north. We argue that the southern part of the intrusion represents the ascent site of the magma rising to shallow crustal levels along a steep feeder system. The oblate magnetic fabrics in the vent area plausibly represent flattening against the conduit walls as evidenced by a weak planar flow foliation observed in the vent conduit rocks. On reaching shallow crustal levels, the magma deformed and uplifted the roof rocks leading to gravitational instability. As the slide mass released from the roof, an explosive eruption ensued resulting in the emplacement of the Rocks of Paradise tuff and associated effusive lava flows. Following eruption, magma pressure decreased and the magma drained northward forming the northern intrusive phase.
Watson: A new link in the IIE iron chain
NASA Technical Reports Server (NTRS)
Olsen, Edward; Davis, Andrew; Clarke, Roy S., Jr.; Schultz, Ludolf; Weber, Hartwig W.; Clayton, Robert; Mayeda, Toshiko; Jarosewich, Eugene; Sylvester, Paul; Grossman, Lawrence
1994-01-01
Watson, which was found in 1972 in South Australia, contains the largest single silicate rock mass seen in any known iron meteorite. A comprehensive study has been completed on this unusual meteorite: petrography, metallography, analyses of the silicate inclusion (whole rock chemical analysis, INAA, RNAA, noble gases, and oxygen isotope analysis) and mineral compositions (by electron microprobe and ion microprobe). The whole rock has a composition of an H-chondrite minus the normal H-group metal and troilite content. The oxygen isotope composition is that of the silicates in the IIE iron meteorites and lies along an oxygen isotope fractionation line with the H-group chondrites. Trace elements in the metal confirm Watson is a new IIE iron. Whole rock Watson silicate shows an enrichment in K and P (each approximately 2X H-chondrites). The silicate inclusion has a highly equilibrated igneous (peridotite-like) texture with olivine largely poikilitic within low-Ca pyroxene: olivine (Fa20), opx (Fs17Wo3), capx (Fs9Wo14)(with very fine exsolution lamellae), antiperthite feldspar (An1-3Or5) with less than 1 micron exsolution lamellae (An1-3Or greater than 40), shocked feldspar with altered stoichiometry, minor whitlockite (also a poorly characterized interstitial phosphate-rich phase) and chromite, and only traces of metal and troilite. The individual silicate minerals have normal chondritic REE patterns, but whitlockite has a remarkable REE pattern. It is very enriched in light REE (La is 720X C1, and Lu is 90X C1, as opposed to usual chonditic values of approximately 300X and 100-150X, respectively) with a negative Eu anomaly. The enrichment of whole rock K is expressed both in an unusually high mean modal Or content of the feldspar, Or13, and in the presence of antiperthite.
Remnant colloform pyrite at the haile gold deposit, South Carolina: A textural key to genesis
Foley, N.; Ayuso, R.A.; Seal, R.R.
2001-01-01
Auriferous iron sulfide-bearing deposits of the Carolina slate belt have distinctive mineralogical and textural features-traits that provide a basis to construct models of ore deposition. Our identification of paragenetically early types of pyrite, especially remnant colloform, crustiform, and layered growth textures of pyrite containing electrum and pyrrhotite, establishes unequivocally that gold mineralization was coeval with deposition of host rocks and not solely related to Paleozoic tectonic events. Ore horizons at the Haile deposit, South Carolina, contain many remnants of early pyrite: (1) fine-grained cubic pyrite disseminated along bedding; (2) fine- grained spongy, rounded masses of pyrite that may envelop or drape over pyrite cubes; (3) fragments of botryoidally and crustiform layered pyrite, and (4) pyritic infilling of vesicles and pumice. Detailed mineral chemistry by petrography, microprobe, SEM, and EDS analysis of replaced pumice and colloform structures containing both arsenic compositional banding and electrum points to coeval deposition of gold and the volcanic host rocks and, thus, confirms a syngenetic origin for the gold deposits. Early pyrite textures are present in other major deposits of the Carolina slate belt, such as Ridgeway and Barite Hill, and these provide strong evidence for models whereby the sulfide ores formed prior to tectonism. The role of Paleozoic metamorphism was to remobilize and concentrate gold and other minerals in structurally prepared sites. Recognizing the significance of paragenetically early pyrite and gold textures can play an important role in distinguishing sulfide ores that form in volcanic and sedimentary environments from those formed solely by metamorphic processes. Exploration strategies applied to the Carolina slate belt and correlative rocks in the eastern United States in the Avalonian basement will benefit from using syngenetic models for gold mineralization.
K-Ca Dating of Alkali-Rich Fragments in the Y-74442 and Bhola LL-Chondritic Breccias
NASA Technical Reports Server (NTRS)
Yokoyama, T; Misawa, K.; Okano, O; Shih, C. -Y.; Nyquist, L. E.; Simon, J. I.; Tappa, M. J.; Yoneda, S.
2013-01-01
Alkali-rich igneous fragments in the brecciated LL-chondrites, Krahenberg (LL5) [1], Bhola (LL3-6) [2], Siena (LL5) [3] and Yamato (Y)-74442 (LL4) [4-6], show characteristic fractionation patterns of alkali and alkaline elements [7]. The alkali-rich fragments in Krahenberg, Bhola and Y-74442 are very similar in mineralogy and petrography, suggesting that they could have come from related precursor materials [6]. Recently we reported Rb-Sr isotopic systematics of alkali-rich igneous rock fragments in Y-74442: nine fragments from Y-74442 yield the Rb-Sr age of 4429 plus or minus 54 Ma (2 sigma) for lambda(Rb-87) = 0.01402 Ga(exp -1) [8] with the initial ratio of Sr-87/Sr-86 = 0.7144 plus or minus 0.0094 (2 sigma) [9]. The Rb-Sr age of the alkali-rich fragments of Y-74442 is younger than the primary Rb-Sr age of 4541 plus or minus 14 Ma for LL-chondrite whole-rock samples [10], implying that they formed after accumulation of LL-chondrite parental bodies, although enrichment may have happened earlier. Marshall and DePaolo [11,12] demonstrated that the K-40 - Ca-40 decay system could be an important chronometer as well as a useful radiogenic tracer for studies of terrestrial rocks. Shih et al. [13,14] and more recently Simon et al. [15] determined K-Ca ages of lunar granitic rocks, and showed the application of the K-Ca chronometer for K-rich planetary materials. Since alkali-rich fragments in the LL-chondritic breccias are highly enriched in K, we can expect enhancements of radiogenic Ca-40. Here, we report preliminary results of K-Ca isotopic systematics of alkali-rich fragments in the LL-chondritic breccias, Y-74442 and Bhola.
NASA Astrophysics Data System (ADS)
Moscardelli, L.; Wood, L. J.
2006-12-01
Several late Pleistocene-age seafloor destabilization events have been identified in the continental margin of eastern offshore Trinidad, of sufficient scale to produce tsunamigenic forces. This area, situated along the obliquely-converging-boundary of the Caribbean/South American plates and proximal to the Orinoco Delta, is characterized by catastrophic shelf-margin processes, intrusive-extrusive mobile shales, and active tectonism. A mega-merged, 10,000km2, 3D seismic survey reveals several mass transport complexes that range in area from 11.3km2 to 2017km2. Historical records indicate that this region has experienced submarine landslide- generated tsunamigenic events, including tsunamis that affected Venezuela during the 1700's-1900's. This work concentrates on defining those ancient deep marine mass transport complexes whose occurrence could potentially triggered tsunamis. Three types of failures are identified; 1) source-attached failures that are fed by shelf edge deltas whose sediment input is controlled by sea-level fluctuations and sedimentation rates, 2) source-detached systems, which occur when upper slope sediments catastrophically fail due to gas hydrate disruptions and/or earthquakes, and 3) locally sourced failures, formed when local instabilities in the sea floor trigger relatively smaller collapses. Such classification of the relationship between slope mass failures and the sourcing regions enables a better understanding of the nature of initiation, length of development history and petrography of such mass transport deposits. Source-detached systems, generated due to sudden sediment remobilizations, are more likely to disrupt the overlying water column causing a rise in tsunamigenic risk. Unlike 2D seismic, 3D seismic enables scientists to calculate more accurate deposit volumes, improve deposit imaging and thus increase the accuracy of physical and computer simulations of mass failure processes.
NASA Astrophysics Data System (ADS)
Zaid, Samir M.
2015-02-01
Petrographic, major and trace element compositions of sandstones from the Pliocene Gabir Formation, Central Eastern Desert, Egypt have been investigated to determine their provenance, intensity of paleo-weathering of the source rocks and their depositional tectonic setting. Gabir Formation is composed mainly of sandstones alternating with limestone and shale beds. The Gabir sandstone is yellowish gray to yellowish brown color, calcareous and fossiliferous. The composition of this formation refers to shallow warm agitated marine conditions. Texturally, Gabir sandstones are immature, poorly sorted and grain supported. Abundance of feldspars indicates rapid deposition of sediments from a nearby source rocks. Their average modal composition (Q71.35F16.6L12.05), classifies them as sublitharenite and arkose with subordinate litharenite and subarkose, which is also supported by geochemical study. Chemical analyses revealed that sandstones have high SiO2, K2O > Na2O, and low Fe2O3 values, which are consistent with the modal data. Also, sandstone samples are enriched in most trace elements such as Ba, Sr, Ni, Cr and Zr and depleted in U and Th. The petrography and geochemistry suggest that Gabir sandstones were deposited in an active continental margin basin. They were mainly derived from granitic and low grade metamorphic sources. The CIA values (41.69-74.84) of the Gabir sandstones indicate low to moderate degree of chemical weathering, which may reflect cold and/or arid climate conditions in the source area. The source rocks are probably identified to be Proterozoic granites, metagabbros and metavolcanics, which must have been exposed during rifting, initiated during Oligocene and continued till post Miocene.
Mineralogical Studies Related to Endemic Diseases in Rural P. R. China
NASA Astrophysics Data System (ADS)
Belkin, H. E.; Zheng, B.; Finkelman, R. B.
2003-12-01
Domestic combustion of coal for heating and cooking is mostly confined to the world's developing countries and probably involves about 1 billion persons in China, India, Indonesia, and Africa. Various endemic diseases affecting millions of people involving arsenic, selenium, and fluorine poisoning have been associated with domestic coal combustion in rural China. We have investigated the relationship between mineralized coals (and stone coals) and disease occurrences in Guizhou and Hubei Provinces. The mineralogy of the coals has been studied by a wide variety of techniques, including optical petrography, scanning electron microscopy, electron microprobe analysis, ion probe, Synchrotron XANES-EXAFS, and Raman spectroscopy. Arsenic enrichment (up to 3 weight percent) in Upper Permian Longtan Formation coals, southwestern Guizhou Province, occurs in both 3+ and 5+ valence states. Arsenic occurs in arsenopyrite, pyrite, Al-phosphate, scorodite, Fe-oxides, and as an organically-bound species. Fluorine poisoning, much more widespread than arsenic-poisoning, is related to burning F-rich coals and F-rich clays as admixtures. Mineralogical and chemical analysis suggests that the clays contain the fluorine probably substituting for the hydroxyl group. Localized selenium poisoning in Hubei Province is related to Se-rich stone coals. The selenium occurs as a native element and in rare mandarinoite. In these three cases, knowledge of the paragenesis and mineralogy of the element enrichment in coal was vital to help understand and mitigate the endemic diseases. For the situation concerning arsenic and selenium poisoning, suspect coals have been identified and mining from these deposits has been curtailed. Fluorine has been a much more difficult problem for the local public health officials as both the coal and clay in the burning admixture can contain high fluorine. Regional geochemical and mineralogical studies will help to define coal and clay with low fluorine, suitable for domestic use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamero de Villarroel, H.; Lowe, D.R.
1993-02-01
The Upper Archean Pongola Supergroup is a succession of clastic and volcanic rocks that represents the oldest relatively unmetamorphosed sedimentary sequence deposited on the basement of the 3.5-3.2 Ga-old Kaapvaal Craton. The Pongola Supergroup includes two subdivisions, the Nsuze and the Mozaan Groups. The Nsuze Group is composed of clastic rocks, minor carbonate units, and basalt. Nsuze sandstones are dominated by granite-derived sediments, and minor basaltic-derived detritus. Most Nsuze sedimentary rocks are sandstones that include both quartz-fieldspar and lithic-rich varieties. The mineralogy of Nsuze sandstones reflects the mixing of debris derived from two distinctive sources: (1) a sialic plutonic sourcemore » yielding quartz and microcline and (2) a basaltic source yielding basaltic lithic detritus and plagioclase. The most likely source rocks for the Nsuze sandstones in the Wit M'folozi Inlier were Archean granitic basement, represented by the Mpuluzi batholith, and Nsuze basaltic volcanic rocks. Both continental arc and rift settings have been proposed for the Pongola Supergroup. Nsuze sandstones show similarities to continental arc sandstone suites. However, there is no report of the existence of high standing stratovolcanoes, calc-alkaline plutonism, or contact and regional metamorphism of the intruded volcanic-sedimentary and basement rocks in the Pongola basin, features that are typically associated with continental arcs. The dominance of continent-derived detritus in the Nsuze Group argues that volcanic rocks made up a minor part of the exposed source area and that volcanism was largely restricted to the basin of deposition. Collectively, available evidence favors an intracratonic rift for the depositional setting of the Nsuze Group.« less
New geological model of the Lagoa Real uraniferous albitites from Bahia (Brazil)
NASA Astrophysics Data System (ADS)
de Oliveira Chaves, Alexandre
2013-09-01
New evidence supported by petrography (including mineral chemistry), lithogeochemistry, U-Pb geochronology by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), and physicochemical study of fluid and melt inclusions by LA-ICP-MS and microthermometry, point to an orogenic setting of Lagoa Real (Bahia-Brazil) involving uraniferous mineralization. Unlike the previous models in which uraniferous albitites represent Na-metasomatised 1.75 Ga anorogenic granitic rocks, it is understood here that they correspond to metamorphosed sodium-rich and quartz-free 1.9 Ga late-orogenic syenitic rocks (Na-metasyenites). These syenitic rocks are rich not only in albite, but also in U-rich titanite (source of uranium). The interpretation of geochemical data points to a petrogenetic connection between alkali-diorite (local amphibolite protolith) and sodic syenite by fractional crystallization through a transalkaline series. This magmatic differentiation occurred either before or during shear processes, which in turn led to albitite and amphibolite formation. The metamorphic reactions, which include intense recrystallization of magmatic minerals, led uraninite to precipitate at 1.87 Ga under Oxidation/Reduction control. A second population of uraninites was also generated by the reactivation of shear zones during the 0.6 Ga Brasiliano Orogeny. The geotectonic implications include the importance of the Orosirian event in the Paramirim Block during paleoproterozoic Săo Francisco Craton edification and the influence of the Brasiliano event in the Paramirim Block during the West-Gondwana assembly processes. The regional microcline-gneiss, whose protolith is a 2.0 Ga syn-collisional potassic granite, represents the albitite host rock. The microcilne-gneiss has no petrogenetic association to the syenite (albitite protolith) in magmatic evolutionary terms.
NASA Astrophysics Data System (ADS)
Chen, W. S.; Syu, S. J.; Yeh, J. J.
2017-12-01
Foreland basin receives large amounts of synorogenic infill that is eroded from the adjacent exhumed mountain belt, and therefore provides the important information on exhumation evolution. Furthermore, a complete stratigraphic sequence of Taiwan mountain belt consists of five units of Miocene sedimentary rocks (the Western Foothills and the uppermost sequence on the proto-Taiwan mountain belt), Oligocene argillite (the Hsuehshan Range), Eocene quartzite (the Hsuehshan Range), Eocene-Miocene slate and schist (Backbone Range), and Cretaceous schist (Backbone Range) from top to bottom. Based on the progressive unroofing history, the initiation of foreland basin received sedimentary lithic sediments from the uppermost sequence of proto-Taiwan mountain belt, afterwards, and receiving low- to medium-grade metamorphic lithic sediments in ascending order of argillite, quartzite, slate, and schist clasts. Therefore, the sedimentary lithics from mountain belt were deposited which represents the onset of the mountain uplift. In this study, the first appearance of sedimentary lithic sediments occurs in the Hengchun Peninsula at the middle Miocene (ca. 12-10 Ma). Thus, sandstone petrography of the late Miocene formation (10-5.3 Ma) shows a predominantly recycled sedimentary and low-grade metamorphic sources, including sandstone, argillite and quartzite lithic sediments of 10-25% which records erosion to slightly deeper metamorphic terrane on the mountain belt. Based on the results of previous thermogeochronological studies of the Yuli belt, it suggests that the middle Miocene occurred mountain uplift. The occurrence of low-grade metamorphic lithic sediments in the Hengchun Peninsula during late Miocene is coincident with the cooling ages of uplift and denuded Yuli schist belt at the eastern limb of Backbone Range.
Spatial distribution of eclogite in the Slave cratonic mantle: The role of subduction
NASA Astrophysics Data System (ADS)
Kopylova, Maya G.; Beausoleil, Yvette; Goncharov, Alexey; Burgess, Jennifer; Strand, Pamela
2016-03-01
We reconstructed the spatial distribution of eclogites in the cratonic mantle based on thermobarometry for 240 xenoliths in 4 kimberlite pipes from different parts of the Slave craton (Canada). The accuracy of depth estimates is ensured by the use of a recently calibrated thermometer, projection of temperatures onto well-constrained local peridotitic geotherms, petrological screening for unrealistic temperature estimates, and internal consistency of all data. The depth estimates are based on new data on mineral chemistry and petrography of 148 eclogite xenoliths from the Jericho and Muskox kimberlites of the northern Slave craton and previously reported analyses of 95 eclogites from Diavik and Ekati kimberlites (Central Slave). The majority of Northern Slave eclogites of the crustal, subduction origin occurs at 110-170 km, shallower than in the majority of the Central Slave crustal eclogites (120-210 km). The identical geochronological history of these eclogite populations and the absence of steep suture boundaries between the central and northern Slave craton suggest the lateral continuity of the mantle layer relatively rich in eclogites. We explain the distribution of eclogites by partial preservation of an imbricated and plastically dispersed oceanic slab formed by easterly dipping Proterozoic subduction. The depths of eclogite localization do not correlate with geophysically mapped discontinuities. The base of the depleted lithosphere of the Slave craton constrained by thermobarometry of peridotite xenoliths coincides with the base of the thickened lithospheric slab, which supports contribution of the recycled oceanic lithosphere to formation of the cratonic root. Its architecture may have been protected by circum-cratonic subduction and shielding of the shallow Archean lithosphere from the destructive asthenospheric metasomatism.
Cognate xenoliths in Mt. Etna lavas: witnesses of the high-velocity body beneath the volcano
NASA Astrophysics Data System (ADS)
Corsaro, Rosa Anna; Rotolo, Silvio Giuseppe; Cocina, Ornella; Tumbarello, Gianvito
2014-01-01
Various xenoliths have been found in lavas of the 1763 ("La Montagnola"), 2001, and 2002-03 eruptions at Mt. Etna whose petrographic evidence and mineral chemistry exclude a mantle origin and clearly point to a cognate nature. Consequently, cognate xenoliths might represent a proxy to infer the nature of the high-velocity body (HVB) imaged beneath the volcano by seismic tomography. Petrography allows us to group the cognate xenoliths as follows: i) gabbros with amphibole and amphibole-bearing mela-gabbros, ii) olivine-bearing leuco-gabbros, iii) leuco-gabbros with amphibole, and iv) Plg-rich leuco gabbros. Geobarometry estimates the crystallization pressure of the cognate xenoliths between 1.9 and 4.1 kbar. The bulk density of the cognate xenoliths varies from 2.6 to 3.0 g/cm3. P wave velocities (V P ), calculated in relation to xenolith density, range from 4.9 to 6.1 km/s. The integration of mineralogical, compositional, geobarometric data, and density-dependent V P with recent literature data on 3D V P seismic tomography enabled us to formulate the first hypothesis about the nature of the HVB which, in the depth range of 3-13 km b.s.l., is likely made of intrusive gabbroic rocks. These are believed to have formed at the "solidification front", a marginal zone that encompasses a deep region (>5 km b.s.l.) of Mt. Etna's plumbing system, within which magma crystallization takes place. The intrusive rocks were afterwards fragmented and transported as cognate xenoliths by the volatile-rich and fast-ascending magmas of the 1763 "La Montagnola", 2001 and 2002-03 eruptions.
NASA Astrophysics Data System (ADS)
da Fonseca, Gabriela Magalhães; Jordt-Evangelista, Hanna; Queiroga, Gláucia Nascimento
2018-03-01
In the worldwide known Quadrilátero Ferrífero and the adjacent terrains, southeastern Brazil, many serpentinite and soapstone quarries, and some rare bodies of metaultramafic rocks that partially preserve minerals or textures from the original igneous protolith can be found. It is not known if the protoliths and the ages of the metaultramafic rocks found in the Quadrilátero Ferrífero (and its oriental basement) and Mineiro Belt regions are the same or if they represent distinct magmatic episodes. The petrogenetic investigation, specially concerning the REE contents, aimed to gather informations about the type of magmatism and the mantle source in order to compare the metaultramafic rocks of both regions. The interpretation of the data concerning petrography, mineral chemistry and geochemistry shows that the metaultramafic rocks are similar to komatiitic peridotites, with MgO contents > 22 wt % and TiO2 < 0.9 wt %. The plot of the REE for the lithotypes found in the Quadrilátero Ferrífero shows decrease in LREE possibly reflecting the depletion of the mantle source. On the other hand the samples from the Mineiro Belt are enriched in LREE suggesting a mantle source enriched in these elements. This enrichment may have been caused by mantle metassomatism that occurred during accretion of the Paleoproterozoic magmatic arc that generated the Mineiro belt. In this paper, we therefore suggest two periods of ultramafic magmatism. The first one found in the Archean basement of the Quadrilátero Ferrífero, with a depleted mantle source. The second occurred in the Paleoproterozoic basement of the Mineiro belt, having a metassomatized mantle as source.
Thermochemical sulphate reduction can improve carbonate petroleum reservoir quality
NASA Astrophysics Data System (ADS)
Jiang, Lei; Worden, Richard H.; Yang, Changbing
2018-02-01
Interest in the creation of secondary pore spaces in petroleum reservoirs has increased because of a need to understand deeper and more complex reservoirs. The creation of new secondary porosity that enhances overall reservoir quality in deeply buried carbonate reservoirs is controversial and some recent studies have concluded it is not an important phenomenon. Here we present petrography, geochemistry, fluid inclusion data, and fluid-rock interaction reaction modeling results from Triassic Feixianguan Formation, Sichuan Basin, China, core samples and explore the relative importance of secondary porosity due to thermochemical sulphate reduction (TSR) during deep burial diagenesis. We find that new secondary pores result from the dissolution of anhydrite and possibly from dissolution of the matrix dolomite. Assuming porosity before TSR was 16% and the percentage of anhydrite was 6%, modelling shows that, due to TSR, 1.6% additional porosity was created that led to permeability increasing from 110 mD (range 72-168 mD within a 95% confidence interval) to 264 mD (range 162-432 mD within a 95% confidence interval). Secondary porosity results from the density differences between reactant anhydrite and product calcite, the addition of new water during TSR, and the generation of acidity during the reaction of new H2S with the siderite component in pre-existing dolomite in the reservoir. Fluid pressure was high during TSR, and approached lithostatic pressure in some samples; this transient overpressure may have led to the maintenance of porosity due to the inhibition of compactional processes. An additional 1.6% porosity is significant for reserve calculations, especially considering that it occurs in conjunction with elevated permeability that results in faster flow rates to the production wells.
An integrated and accessible sample data library for Mars sample return science
NASA Astrophysics Data System (ADS)
Tuite, M. L., Jr.; Williford, K. H.
2015-12-01
Over the course of the next decade or more, many thousands of geological samples will be collected and analyzed in a variety of ways by researchers at the Jet Propulsion Laboratory (California Institute of Technology) in order to facilitate discovery and contextualize observations made of Mars rocks both in situ and here on Earth if samples are eventually returned. Integration of data from multiple analyses of samples including petrography, thin section and SEM imaging, isotope and organic geochemistry, XRF, XRD, and Raman spectrometry is a challenge and a potential obstacle to discoveries that require supporting lines of evidence. We report the development of a web-accessible repository, the Sample Data Library (SDL) for the sample-based data that are generated by the laboratories and instruments that comprise JPL's Center for Analysis of Returned Samples (CARS) in order to facilitate collaborative interpretation of potential biosignatures in Mars-analog geological samples. The SDL is constructed using low-cost, open-standards-based Amazon Web Services (AWS), including web-accessible storage, relational data base services, and a virtual web server. The data structure is sample-centered with a shared registry for assigning unique identifiers to all samples including International Geo-Sample Numbers. Both raw and derived data produced by instruments and post-processing workflows are automatically uploaded to online storage and linked via the unique identifiers. Through the web interface, users are able to find all the analyses associated with a single sample or search across features shared by multiple samples, sample localities, and analysis types. Planned features include more sophisticated search and analytical interfaces as well as data discoverability through NSF's EarthCube program.
Chemical evolution of groundwater in the Wilcox aquifer of the northern Gulf Coastal Plain, USA
NASA Astrophysics Data System (ADS)
Haile, Estifanos; Fryar, Alan E.
2017-12-01
The Wilcox aquifer is a major groundwater resource in the northern Gulf Coastal Plain (lower Mississippi Valley) of the USA, yet the processes controlling water chemistry in this clastic aquifer have received relatively little attention. The current study combines analyses of solutes and stable isotopes in groundwater, petrography of core samples, and geochemical modeling to identify plausible reactions along a regional flow path ˜300 km long. The hydrochemical facies evolves from Ca-HCO3 upgradient to Na-HCO3 downgradient, with a sequential zonation of terminal electron-accepting processes from Fe(III) reduction through SO4 2- reduction to methanogenesis. In particular, decreasing SO4 2- and increasing δ34S of SO4 2- along the flow path, as well as observations of authigenic pyrite in core samples, provide evidence of SO4 2- reduction. Values of δ13C in groundwater suggest that dissolved inorganic carbon is contributed both by oxidation of sedimentary organic matter and calcite dissolution. Inverse modeling identified multiple plausible sets of reactions between sampled wells, which typically involved cation exchange, pyrite precipitation, CH2O oxidation, and dissolution of amorphous Fe(OH)3, calcite, or siderite. These reactions are consistent with processes identified in previous studies of Atlantic Coastal Plain aquifers. Contrasts in groundwater chemistry between the Wilcox and the underlying McNairy and overlying Claiborne aquifers indicate that confining units are relatively effective in limiting cross-formational flow, but localized cross-formational mixing could occur via fault zones. Consequently, increased pumping in the vicinity of fault zones could facilitate upward movement of saline water into the Wilcox.
Origin and geodynamic setting of Late Cenozoic granitoids in Sulawesi, Indonesia
NASA Astrophysics Data System (ADS)
Maulana, Adi; Imai, Akira; Van Leeuwen, Theo; Watanabe, Koichiro; Yonezu, Kotaro; Nakano, Takanori; Boyce, Adrian; Page, Laurence; Schersten, Anders
2016-07-01
Late Cenozoic granitoids are widespread in a 1600 km long belt forming the Western and Northern Sulawesi tectono-magmatic provinces. They can be divided into three rock series: shoshonitic (HK), high-K felsic calc-alkaline (CAK), and normal calc-alkaline to tholeiitic (CA-TH). Representative samples collected from eleven plutons, which were subjected to petrography, major element, trace element, Sr, Nd, Pb isotope and whole-rock δ18O analyses, are all I-type and metaluminous to weakly peraluminous. The occurrence of the two K-rich series is restricted to Western Sulawesi, where they formed in an extensional, post-subduction tectonic setting with astenospheric upwelling providing thermal perturbation and adiabatic decompression. Two parental magma sources are proposed: enriched mantle or lower crustal equivalent for HK magmas, and Triassic igneous rocks in a Gondwana-derived fragment thrust beneath the cental and northern parts of Western Sulawesi for CAK magmas. The latter interpretation is based on striking similarities in radiogenic isotope and trace element signatures. CA-TH granitoids are found mostly in Northern Sulawesi. Partial melting of lower-middle crust amphibolites in an active subduction environment is the proposed origin of these rocks. Fractional crystallization and crustal contamination have played a significant role in magma petrogenesis, particularly in the case of the HK and CAK series. Contamination by organic carbon-bearing sedimentary rocks of the HK and CAK granitoids in the central part of Western Sulawesi is suggested by their ilmenite-series (reduced) character. The CAK granitoids further to the north and CA-TH granitoids in Northern Sulawesi are typical magnetite-series (oxidized). This may explain differences in mineralization styles in the two regions.
NASA Astrophysics Data System (ADS)
Fosdick, J. C.
2017-12-01
Double and triple dating of minerals using multiple geo-thermochronometers has revolutionized efforts to evaluate complex thermotectonic histories of orogens, isolate unique sedimentary sources, and quantify basin burial reheating. A persisting challenge is to distinguish volcanic sources from rapidly exhumed sources, with the simplistic premise that coincident cooling dates among high- to low-temperature thermochronometers are diagnostic of volcanic sources. Coupled zircon U/Pb and (U-Th)/He geo-thermochronometry from the Miocene Bermejo foreland basin in the southern Central Andes reveals a high temporal resolution of unroofing signatures of the Choiyoi Group, a Permian-Triassic silicic volcanic and plutonic complex, and the Pennsylvanian-Permian Colangüil batholith. Both units are important sediment sources within the High Andes for the Cenozoic east-flowing sediment routing systems. Results show fluvial sourcing of Colangüil detrital zircons with progressively greater partial loss of He (<8% to 12-23% fractional loss from 9.5 Ma to 6 Ma), as indicated by upsection younging of zircon He dates for a given U/Pb age cluster. These findings suggest erosion of increasingly deeper levels of the Colangüil arc during late Miocene development of the High Andes. This progression of higher He loss and thus younger He dates during sedimentation for a given U/Pb age cluster is analogous to the magmatic arc unroofing trend revealed by undissected to dissected arc provenance fields in sandstone petrography. Multi-method thermochronometry of detrital minerals may reveal an added level of information regarding rates of cooling, unroofing, and thermal evolution of magmatic systems as preserved in the detrital record.
NASA Astrophysics Data System (ADS)
Gao, Wenyuan; Ciobanu, Cristiana L.; Cook, Nigel J.; Huang, Fei; Meng, Lin; Gao, Shang
2017-12-01
Permian mafic-ultramafic layered intrusions in the central part of the Emeishan Large Igneous Province (ELIP), Southwestern China, host Fe-Ti-V-oxide ores that have features which distinguish them from other large layered intrusion-hosted deposits. The origin of these ores is highly debated. Careful petrographic examination, whole rock analysis, electron probe microanalysis, and measurement and mapping of trace element concentrations by laser ablation inductively coupled plasma mass spectrometry in all major and minor minerals (clinopyroxene, plagioclase, olivine, amphibole, titanomagnetite, ilmenite, pleonaste and pyrrhotite) has been undertaken on samples from the Lanjiahuoshan deposit, representing the Middle, Lower and Marginal Zone of the Panzhihua intrusion. Features are documented that impact on interpretation of intrusion petrology and with implications for genesis of the Fe-Ti-V-oxide ores. Firstly, there is evidence, as symplectites between clinopyroxene and plagioclase, for introduction of complex secondary melts. Secondly, reaction between a late hydrothermal fluid and clinopyroxene is recognized, which has led to formation of hydrated minerals (pargasite, phlogopite), as well as a potassium metasomatic event, postdating intrusion solidification, which led to formation of K-feldspar. Lastly, partitioning of trace elements between titanomagnetite and silicates needs to consider scavenging of metals by ilmenite (Mn, Sc, Zr, Nb, Sn, Hf and Ta) and sulfides, as well as the marked partitioning of Co, Ni, Zn, Ga, As and Sb into spinels exsolved from titanomagnetite. The role of these less abundant phases may have been understated in previous studies, highlighting the importance of petrographic examination of complex silicate-oxide-sulfide assemblages, as well as the need for a holistic approach to trace element analysis, acknowledging all minerals within the assemblage.
A complex magma mixing origin for rocks erupted in 1915, Lassen Peak, California
Clynne, M.A.
1999-01-01
The eruption of Lassen Peak in May 1915 produced four volcanic rock types within 3 days, and in the following order: (1) hybrid black dacite lava containing (2) undercooled andesitic inclusions, (3) compositionally banded pumice with dark andesite and light dacite bands, and (4) unbanded light dacite. All types represent stages of a complex mixing process between basaltic andesite and dacite that was interrupted by the eruption. They contain disequilibrium phenocryst assemblages characterized by the co-existence of magnesian olivine and quartz and by reacted and unreacted phenocrysts derived from the dacite. The petrography and crystal chemistry of the phenocrysts and the variation in rock compositions indicate that basaltic andesite intruded dacite magma and partially hybridized with it. Phenocrysts from the dacite magma were reacted. Cooling, cyrstallization, and vesiculation of the hybrid andesite magma converted it to a layer of mafic foam. The decreased density of the andesite magma destabilized and disrupted the foam. Blobs of foam rose into and were further cooled by the overlying dacite magma, forming the andesitic inclusions. Disaggregation of andesitic inclusions in the host dacite produced the black dacite and light dacite magmas. Formation of foam was a dynamic process. Removal of foam propagated the foam layer downward into the hybrid andesite magma. Eventually the thermal and compositional contrasts between the hybrid andesite and black dacite magmas were reduced. Then, they mixed directly, forming the dark andesite magma. About 40-50% andesitic inclusions were disaggregated into the host dacite to produce the hybrid black dacite. Thus, disaggregation of inclusions into small fragments and individual crystals can be an efficient magma-mixing process. Disaggregation of undercooled inclusions carrying reacted host-magma phenocrysts produces co-existing reacted and unreacted phenocrysts populations.
NASA Astrophysics Data System (ADS)
Chattopadhaya, Soumi; Ghosh, Biswajit; Morishita, Tomoaki; Nandy, Sandip; Tamura, Akihiro; Bandyopadhyay, Debaditya
2017-05-01
The onset of the end-Mesozoic continental rift magmatism in the Deccan volcanic province (DVP), India is marked by alkali magmatism. Lithospheric fragments occurring as xenoliths/xenocrysts entrapped in alkaline basalts from the Kutch area of the DVP preserve reaction microtextures giving an insight into the processes linked to their origin. We interpret the flower texture, an aggregate of systematically arranged tiny diopside crystals, as a product of interactions between ghost quartz xenocrysts with alkaline silica-undersaturated melt. The mantle xenoliths, mostly represented by spinel lherzolites and wehrlites have been infiltrated by melt. The orthopyroxenes present at the margin of the xenoliths or in contact with infiltrated melt exhibit a coronal texture composed of olivine, clinopyroxene and glass around them. The compositions of cores of primary olivines at places retain mantle signatures, whereas, the margins are reequilibrated. Secondary olivines and clinopyroxenes at reaction coronas have a wide range of compositions. Primary clinopyroxenes and spinels in close vicinity to the orthopyroxene corona display a sieve texture defined by clear inclusion-free cores and a compositionally different spongy altered rim with worm-shaped or bubbly inclusions dominantly filled with glass. The rims are marked with higher Ca, Mg-lower Na, Al for clinopyroxenes and higher Ti, Cr-lower Mg, Al for spinels in comparison to their cores. The coronal texture around orthopyroxenes and spongy texture in clinopyroxenes and spinels in these xenoliths are interpreted to be genetically linked. The silicate glasses in the xenoliths show large compositional variations and they are much more siliceous and alkali-rich in comparison to the host basalts. The petrography and mineral chemistry suggest host magma-peridotite interaction during or after the entrainment of the xenoliths, corroborating well with the experimental findings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sippel, M.; Luff, K.D.; Hendricks, M.L.
1998-07-01
This topical report is a compilation of characterizations by different disciplines of the Mississippian Ratcliffe in portions of Richland County, MT. Goals of the report are to increase understanding of the reservoir rocks, oil-in-place, heterogeneity and methods for improved recovery. The report covers investigations of geology, petrography, reservoir engineering and seismic. The Ratcliffe is a low permeability oil reservoir which appears to be developed across much of the study area and occurs across much of the Williston Basin. The reservoir has not been a primary drilling target in the study area because average reserves have been insufficient to payout themore » cost of drilling and completion despite the application of hydraulic fracture stimulation. Oil trapping does not appear to be structurally controlled. For the Ratcliffe to be a viable drilling objective, methods need to be developed for (1) targeting better reservoir development and (2) better completions. A geological model is presented for targeting areas with greater potential for commercial reserves in the Ratcliffe. This model can be best utilized with the aid of 3D seismic. A 3D seismic survey was acquired and is used to demonstrate a methodology for targeting the Ratcliffe. Other data obtained during the project include oriented core, special formation-imaging log, pressure transient measurements and oil PVT. Although re-entry horizontal drilling was unsuccessfully tested, this completion technology should improve the economic viability of the Ratcliffe. Reservoir simulation of horizontal completions with productivity of three times that of a vertical well suggested two or three horizontal wells in a 258-ha (640-acre) area could recover sufficient reserves for profitable drilling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lasemi, Z.; Treworgy, J.D.; Norby, R.D.
1994-08-01
Recent drilling in Enfield South and Johnsonville fields in southern Illinois has encountered prolific petroleum-producing zones within the Ullin (Warsaw) Limestone. This and large cumulative production from a number of older wells in the Illinois basin indicate that the Ullin has greater reservoir potential than previously recognized. The Ullin reservoir facies is mainly a fenestrate bryozoan-dominated bafflestone developed on the flanks of Waulsortian-type mud mounds or on transported skeletal sand buildups. Subsurface geology and petrography reveal such porous bryozoan bafflestone facies (some with shows of oil) at various horizons within the Ullin. However, in part because of water problems inmore » some areas, only the upper part of the Ullin has been tested thus far and, as a result, significant reservoirs in the deeper part of the unit may have been missed. Preliminary data indicate several facies in the Ullin that vary in their aerial distribution in the basin. These facies include (1) skeletal sand-wave facies and/or bryozoan bafflestone in the upper Ullin, (2) bryozoan bafflestone with a dense Waulsortian mud mound core, (3) thick bryozoan bafflestone over a skeletal grainstone facies, and (4) thick mud mound-dominated facies with thin porous flanking bafflestone/grainstone facies. Areas with facies type 1 and 2 have the highest potential for commercial reservoir development. Facies type 3, although quite porous, is commonly wet, and the porous facies type 4 may be localized and not extensive enough to be commercial. Petrographic examination shows excellent preservation of primary intra- and interparticle porosities within the bryozoan bafflestone facies. The generally stable original mineralogy prevented extensive dissolution-reprecipitation and occlusion of porosity. Further, the stable mineralogy and minor early marine cementation prevented later compaction and burial diagenesis.« less
NASA Astrophysics Data System (ADS)
Gourcerol, B.; Kontak, D. J.; Thurston, P. C.; Petrus, J. A.
2018-01-01
Quantitative laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) element distribution maps combined with traverse mode analyses have been acquired on various sulfides (pyrite, pyrrhotite, arsenopyrite) from three Canadian Algoma-type BIF-hosted gold deposits ( 4 Moz Au Meadowbank, ≥ 2.8 Moz Au Meliadine district, 6 Moz Au Musselwhite). These data, in conjunction with detailed petrographic and SEM-EDS observations, provide insight into the nature and relative timing of gold events, the presence and implication of trace element zoning regarding crystallization processes, and elemental associations that fingerprint gold events. Furthermore, the use of an innovative method of processing the LA-ICP-MS data in map and traverse modes, whereby the results are fragmented into time-slice data, to generate various binary plots (Ag versus Ni) provides a means to identify elemental associations (Te, Bi) not otherwise apparent. This integrated means of treating geochemical data, along with petrography, allows multiple gold events and remobilization processes to be recognized and their elemental associations determined. The main gold event in each of these deposits is characterized by the coupling of an As-Se-Te-Ag element association coincident with intense stratabound sulfide-replacement of the Fe-rich host rock. Additionally, the data indicate presence of a later remobilization event, which upgraded the Au tenor, as either non-refractory or refractory type, along fracture networks due to the ingress of subsequent base metal-bearing metamorphic fluids (mainly a Pb-Bi association). Furthermore, the data reveal a stratigraphic influence, as reflected in the elemental associations and the elemental enrichments observed and the nature of the sulfide phase hosting the gold mineralization (arsenopyrite versus pyrite).
McCubbin, Francis M.; Boyce, Jeremy W.; Novak-Szabo, Timea; Santos, Alison; Tartese, Romain; Muttik, Nele; Domokos, Gabor; Vazquez, Jorge A.; Keller, Lindsay P.; Moser, Desmond E.; Jerolmack, Douglas J.; Shearer, Charles K.; Steele, Andrew; Elardo, Stephen M.; Rahman, Zia; Anand, Mahesh; Delhaye, Thomas; Agee, Carl B.
2016-01-01
The timing and mode of deposition for Martian regolith breccia Northwest Africa (NWA) 7034 were determined by combining petrography, shape analysis, and thermochronology. NWA 7034 is composed of igneous, impact, and brecciated clasts within a thermally annealed submicron matrix of pulverized crustal rocks and devitrified impact/volcanic glass. The brecciated clasts are likely lithified portions of Martian regolith with some evidence of past hydrothermal activity. Represented lithologies are primarily ancient crustal materials with crystallization ages as old as 4.4 Ga. One ancient zircon was hosted by an alkali-rich basalt clast, confirming that alkalic volcanism occurred on Mars very early. NWA 7034 is composed of fragmented particles that do not exhibit evidence of having undergone bed load transport by wind or water. The clast size distribution is similar to terrestrial pyroclastic deposits. We infer that the clasts were deposited by atmospheric rainout subsequent to a pyroclastic eruption(s) and/or impact event(s), although the ancient ages of igneous components favor mobilization by impact(s). Despite ancient components, the breccia has undergone a single pervasive thermal event at 500–800°C, evident by groundmass texture and concordance of ~1.5 Ga dates for bulk rock K-Ar, U-Pb in apatite, and U-Pb in metamict zircons. The 1.5 Ga age is likely a thermal event that coincides with rainout/breccia lithification. We infer that the episodic process of regolith lithification dominated sedimentary processes during the Amazonian Epoch. The absence of pre-Amazonian high-temperature metamorphic events recorded in ancient zircons indicates source domains of static southern highland crust punctuated by episodic impact modification.
Diagenetic evaluation of Pannonian lacustrine deposits in the Makó Trough, southeastern Hungary
NASA Astrophysics Data System (ADS)
Szőcs, Emese; Milovský, Rastislav; Gier, Susanne; Hips, Kinga; Sztanó, Orsolya
2017-04-01
The Makó Trough is the deepest sub-basin of the Pannonian Basin. As a possible shale gas and tight gas accumulation the area was explored by several hydrocarbon companies. In this study, we present the preliminary results on the diagenetic history and the porosity evolution of sandstones and shales. Petrographic (optical microscopy, CL, blue light microscopy) and geochemical methods (SEM-EDX, WDX, O and C stable isotopes) were applied on core samples of Makó-7 well (3408- 5479 m). Processes which influenced the porosity evolution of the sandstones were compaction, cementation, mineral replacement and dissolution. The most common diagenetic minerals are carbonates (non-ferroan and Fe-bearing calcite, dolomite and ankerite), clay minerals (kaolinite, mixed layer illite-smectite and chlorite) and other silicates (quartz and feldspar). Initial clay mineral and ductile grain content also influences reservoir quality. The volumetrically most significant diagenetic minerals are calcite and clay minerals. The petrography of calcite is variable (bright orange to dull red luminescence color, pore-filling cement, replacive phases which are occasionally scattered in the matrix). The δ13 C-PDB values of calcite range from 1.7 ‰ to -5.5 ‰, while δ18 O-PDB values range from 0.5 ‰ to -9.1 ‰, no depth related trend was observed. These data suggest that calcite occurs in more generations, i.e. eogenetic pre-compactional and mesogenetic post-compactional. Kaolinite is present in mottles in size similar to detrital grains, where remnants of feldspars can be seen. This indicates feldspar alteration via influx of water rich in organic derived carbon dioxide. Secondary porosity can be observed in carbonates and feldspars at some levels, causing the improvement of the reservoir quality.
NASA Astrophysics Data System (ADS)
Meller, Carola; Ledésert, Béatrice
2017-12-01
In the framework of the European Soultz-sous-Forêts enhanced geothermal system (EGS) in Alsace, France, 20 years of scientific and preindustrial tests had to be performed before the site began production of electricity in 2008. Stimulation tests were designed to enhance the permeability because most of the numerous natural fractures that crosscut the granite body were sealed by secondary minerals that crystallized as an effect of the circulation of local hot brines. The deep-seated granitic reservoir is located between 4,500 and 5,000 m depths. Hydraulic stimulations were conducted in the four deep wells (GPK1, GPK2, GPK3, and GPK4) inducing different microseismic event patterns, which cannot be explained by tectonic structures alone. In the present work, we provide a review of the hydraulic tests and reinterpret them in the light of mineralogical data obtained along the boreholes. A clear relationship appears between mineralogy (mainly clay and calcite content) and the petrophysical, mechanical, and hydraulic behaviors of the rock mass. High calcite contents are correlated with an abundance of clay minerals, low Young's modulus, low magnetic susceptibility, and variation in spectral gamma ray. Microearthquakes are generated in the fresh granite zones, while clay and calcite-rich zones, linked with hydrothermal alteration, might behave aseismically during hydraulic stimulations. These findings highlight the importance of a detailed knowledge of the petrography of a reservoir to conduct an effective stimulation while keeping the seismic hazard at a minimum.
Characterization of Mason Gully (H5): The second recovered fall from the Desert Fireball Network
NASA Astrophysics Data System (ADS)
Dyl, Kathryn A.; Benedix, Gretchen K.; Bland, Phil A.; Friedrich, Jon M.; Spurný, Pavel; Towner, Martin C.; O'Keefe, Mary Claire; Howard, Kieren; Greenwood, Richard; Macke, Robert J.; Britt, Daniel T.; Halfpenny, Angela; Thostenson, James O.; Rudolph, Rebecca A.; Rivers, Mark L.; Bevan, Alex W. R.
2016-03-01
Mason Gully, the second meteorite recovered using the Desert Fireball Network (DFN), is characterized using petrography, mineralogy, oxygen isotopes, bulk chemistry, and physical properties. Geochemical data are consistent with its classification as an H5 ordinary chondrite. Several properties distinguish it from most other H chondrites. Its 10.7% porosity is predominantly macroscopic, present as intergranular void spaces rather than microscopic cracks. Modal mineralogy (determined via PS-XRD, element mapping via energy dispersive spectroscopy [EDS], and X-ray tomography [for sulfide, metal, and porosity volume fractions]) consistently gives an unusually low olivine/orthopyroxene ratio (0.67-0.76 for Mason Gully versus ~1.3 for typical H5 ordinary chondrites). Widespread "silicate darkening" is observed. In addition, it contains a bright green crystalline object at the surface of the recovered stone (diameter ≈ 1.5 mm), which has a tridymite core with minor α-quartz and a rim of both low- and high-Ca pyroxene. The mineralogy allows the calculation of the temperatures and ƒ(O2) characterizing thermal metamorphism on the parent body using both the two-pyroxene and the olivine-chromite geo-oxybarometers. These indicate that MG experienced a peak metamorphic temperature of ~900 °C and had a similar ƒ(O2) to Kernouvé (H6) that was buffered by the reaction between olivine, metal, and pyroxene. There is no evidence for shock, consistent with the observed porosity structure. Thus, while Mason Gully has some unique properties, its geochemistry indicates a similar thermal evolution to other H chondrites. The presence of tridymite, while rare, is seen in other OCs and likely exogenous; however, the green object itself may result from metamorphism.
NASA Astrophysics Data System (ADS)
Liou, Y. S.; Yi-Chang, L.
2017-12-01
Numerous stone artifacts, ceramics, bone tools, metal objects, and etc., had been unearthed from the Huagangshan site of Hualien City, eastern Taiwan, during the excavations of 2008-2010 and 2012. Of particular importance is more than ten thousands of potsherds were discovered. A stratigraphic sequence spanning the late Early Neolithic (ca. 5000 BP) through to the prehistoric of Taiwan (300 BP) was excavated. This study focuses on potteries from the Late Neolithic (ca. 3500-2800 BP), owing to some ceramics exhibiting distinct stylistic motifs and morphological attributes were recognized to be not produced locally. Have these wares been brought to the area by exchange trade and/or by immigrants? Or had they been made by local potters through the imitation of exotic styles? It is still unclear and is one of the most important archaeological issues in eastern Taiwan. To clarify this subject, understanding the raw material compositions and sources, manufacturing techniques, and etc. are considered to be the best ways. Thus, 21 potsherds from excavations and 6 river sand samples near the site were studied by petrographic analysis. The results of petrographic study show that temper components in the potsherds are quartz, pyroxene, amphibole, plagioclase, sedimentary rock fragments (sandstone), igneous rock fragments (andesite), and metamorphic rock fragments (metasandstone, slate, schist), and the contents and proportions are different in these samples. Petrography shows that the ceramic have multiple origins. A ternary plot of rock fragments shows three compositional groups. This result discriminates two types of ceramics from the others and confirms those ceramics producing non-locally. However, one type of potsherds have local origins through they were recognized to be exotic ones.
Multi-Method Provenance Analysis of Namibian Desert Sand
NASA Astrophysics Data System (ADS)
Vermeesch, P.; Garzanti, E.
2014-12-01
Mineralogical, geochemical and geochronological provenance proxies each have their own strengths and weaknesses: a. Bulk geochemistry, framework petrography and heavy mineral compositions can differentiate between source areas characterised by different lithologies, but are sensitive to hydraulic sorting and chemical alteration. b. Detrital zircon U-Pb geochronology is insensitive to winnowing effects, but is 'blind' to lithologies devoid of zircon and cannot differentiate between first cycle and recycled sediments. c. Cosmogenic neon isotopes can be used to identify different generations of surface exposure while simultaneously tracking different magmatic sources. The challenge is then to combine these different proxies into a self consistent story, and do so in as objective a manner as possible. We here present a case study of Namibia's Namib Sand Sea and Skeleton Coast ergs, in which all the aforementioned methods have been combined using a three-way multidimensional scaling (aka INDividual Differences SCALing or INDSCAL) analysis: 1. Each of the datasets was represented by a 'dissimilarity matrix' of pairwise distances between samples. 2. The set of these matrices was fed into the INDSCAL algorithm, which produces two pieces of graphical output: the 'group configuration', which is a scatter plot or 'map' in which similar samples plot close together and dissimilar samples plot far apart, and the 'proxy weights', in which not the samples but the proxies are plotted according to the weight they attached to the 'group configuration' axes. The INDSCAL map of the Namibia dataset indicates that (a) long-shore drift of Orange River sediments dominates the coastal sediment compositions all along the Namibian coast until Angola, and (b) that light and heavy minerals tell complementary parts of the provenance story.
On the Basic Principles of Igneous Petrology
NASA Astrophysics Data System (ADS)
Marsh, B. D.
2014-12-01
How and why Differentiation occurs has dominated Igneous Petrology since its beginning (~1880) even though many of the problems associated with it have been thoroughly solved. Rediscovery of the proverbial wheel with new techniques impedes progress. As soon as thin section petrography was combined with rock and mineral chemistry, rock diversity, compositional suites, and petrographic provinces all became obvious. The masterful 1902 CIPW norm in a real sense solved the chemical mystery of differentiation: rocks are related by the addition and subtraction of minerals in the anciently appreciated process of fractional crystallization. Yet few believed this, even after phase equilibria arrived. Assimilation, gas transfer, magma mixing, Soret diffusion, immiscibility, and other processes had strong adherents, even though by 1897 Becker conclusively showed the ineffectiveness of molecular diffusion in large-scale processes. The enormity of heat to molecular diffusion (today's Lewis no.) should have been convincing; but few paid attention. Bowen did, and he refined and restated the result; few still paid attention. And in spite of his truly masterful command of experiment and field relations in promoting fractional crystallization, Fenner and others fought him with odd arguments. The beauty of phase equilibria eventually dominated at the expense of knowing the physical side of differentiation. Bowen himself saw and struggled with the connection between physical and chemical processes. Progress has come from new concepts in heat transfer, kinetics, and slurry dynamics. The key approach is understanding the dynamic competition between spatial rates of solidification and all other processes. The lesson is clear: Scholarship and combined field, laboratory and technical expertise are critical to understanding magmatic processes. Magma is a limitlessly enchanting and challenging material wherein physical processes buttressed by chemistry govern.
NASA Astrophysics Data System (ADS)
Trujillo, N. A.; Heath, J. E.; Mozley, P.; Dewers, T. A.; Cather, M.
2016-12-01
Assessment of caprock sealing behavior for secure CO2 storage is a multiscale endeavor. Sealing behavior arises from the nano-scale capillarity of pore throats, but sealing lithologies alone do not guarantee an effective seal since bypass systems, such as connected, conductive fractures can compromise the integrity of the seal. We apply pore-to-formation-scale data to characterize the multiscale caprock sealing behavior of the Morrow shale and Thirteen Finger Limestone. This work is part of the Southwest Regional Partnership on Carbon Sequestration's Phase III project at the Farnsworth Unit, Texas. The caprock formations overlie the Morrow sandstone, the target for enhanced oil recovery and injection of over one million metric tons of anthropogenically-sourced CO2. Methods include: focused ion beam-scanning electron microscopy; laser scanning confocal microscopy; electron and optical petrography; multi-stress path mechanical testing and constitutive modeling; core examinations of sedimentary structures and fractures; and a noble gas profile for formation-scale transport of the sealing lihologies and the reservoir. We develop relationships between diagenetic characteristics of lithofacies to mechanical and petrophysical measurements of the caprocks. The results are applied as part of a caprock sealing behavior performance assessment. Funding for this project is provided by the U.S. Department of Energy's National Energy Technology Laboratory through the Southwest Regional Partnership on Carbon Sequestration (SWP) under Award No. DE-FC26-05NT42591. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Zuffa, G.G.; Normark, W.R.; Serra, F.; Brunner, C.A.
2000-01-01
Escanaba Trough is the southernmost segment of the Gorda Ridge and is filled by sandy turbidites locally exceeding 500 m in thickness. New results from Ocean Drilling Program (ODP) Sites 1037 and 1038 that include accelerator mass spectrometry (AMS) 14C dates and revised petrographic evaluation of the sediment provenance, combined with high-resolution seismic-reflection profiles, provide a lithostratigraphic framework for the turbidite deposits. Three fining-upward units of sandy turbidites from the upper 365 m at ODP Site 1037 can be correlated with sediment recovered at ODP Site 1038 and Deep Sea Drilling Program (DSDP) Site 35. Six AMS 14C ages in the upper 317 m of the sequence at Site 1037 indicate that average deposition rates exceeded 10 m/k.yr. between 32 and 11 ka, with nearly instantaneous deposition of one ~60-m interval of sand. Petrography of the sand beds is consistent with a Columbia River source for the entire sedimentary sequence in Escanaba Trough. High-resolution acoustic stratigraphy shows that the turbidites in the upper 60 m at Site 1037 provide a characteristic sequence of key reflectors that occurs across the floor of the entire Escanaba Trough. Recent mapping of turbidite systems in the northeast Pacific Ocean suggests that the turbidity currents reached the Escanaba Trough along an 1100-km-long pathway from the Columbia River to the west flank of the Gorda Ridge. The age of the upper fining-upward unit of sandy turbidites appears to correspond to the latest Wisconsinan outburst of glacial Lake Missoula. Many of the outbursts, or jokulhlaups, from the glacial lakes probably continued flowing as hyperpycnally generated turbidity currents on entering the sea at the mouth of the Columbia River.
Lazzari, Marisa; Pereyra Domingorena, Lucas; Stoner, Wesley D; Scattolin, María Cristina; Korstanje, María Alejandra; Glascock, Michael D
2017-05-16
The circulation and exchange of goods and resources at various scales have long been considered central to the understanding of complex societies, and the Andes have provided a fertile ground for investigating this process. However, long-standing archaeological emphasis on typological analysis, although helpful to hypothesize the direction of contacts, has left important aspects of ancient exchange open to speculation. To improve understanding of ancient exchange practices and their potential role in structuring alliances, we examine material exchanges in northwest Argentina (part of the south-central Andes) during 400 BC to AD 1000 (part of the regional Formative Period), with a multianalytical approach (petrography, instrumental neutron activation analysis, laser ablation inductively coupled plasma mass spectrometry) to artifacts previously studied separately. We assess the standard centralized model of interaction vs. a decentralized model through the largest provenance database available to date in the region. The results show: ( i ) intervalley heterogeneity of clays and fabrics for ordinary wares; ( ii ) intervalley homogeneity of clays and fabrics for a wide range of decorated wares (e.g., painted Ciénaga); ( iii ) selective circulation of two distinct polychrome wares (Vaquerías and Condorhuasi); ( iv ) generalized access to obsidian from one major source and various minor sources; and ( v ) selective circulation of volcanic rock tools from a single source. These trends reflect the multiple and conflicting demands experienced by people in small-scale societies, which may be difficult to capitalize by aspiring elites. The study undermines centralized narratives of exchange for this period, offering a new platform for understanding ancient exchange based on actual material transfers, both in the Andes and beyond.
Dewanckele, J; De Kock, T; Boone, M A; Cnudde, V; Brabant, L; Boone, M N; Fronteau, G; Van Hoorebeke, L; Jacobs, P
2012-02-01
Weathering processes have been studied in detail for many natural building stones. The most commonly used analytical techniques in these studies are thin-section petrography, SEM, XRD and XRF. Most of these techniques are valuable for chemical and mineralogical analysis of the weathering patterns. However, to obtain crucial quantitative information on structural evolutions like porosity changes and growth of weathering crusts in function of time, non-destructive techniques become necessary. In this study, a Belgian historical calcareous sandstone, the Lede stone, was exposed to gaseous SO(2) under wet surface conditions according to the European Standard NBN EN 13919 (2003). Before, during and after the strong acid test, high resolution X-ray tomography has been performed to visualize gypsum crust formation to yield a better insight into the effects of gaseous SO(2) on the pore modification in 3D. The tomographic scans were taken at the Centre for X-ray Tomography at Ghent University (UGCT). With the aid of image analysis, partial porosity changes were calculated in different stadia of the process. Increasing porosity has been observed visually and quantitatively below the new superficial formed layer of gypsum crystals. In some cases micro-cracks and dissolution zones were detected on the grain boundaries of quartz. By using Morpho+, an in-house developed image analysis program, radial porosity, partial porosity, ratio of open and closed porosity and equivalent diameter of individual pore structures have been calculated. The results obtained in this study are promising for a better understanding of gypsum weathering mechanisms, porosity changes and patterns on natural building stones in four dimensions. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sundell, K. E.; Saylor, J.; Lapen, T. J.; Styron, R. H.; Villarreal, D. P.; Usnayo Perales, W. P.; Cárdenas, J.
2017-12-01
Stratigraphy of the Peruvian Altiplano contains valuable information salient to debated geodynamic processes active during the Cenozoic construction of the Andean Plateau. Central to this discussion is the relative timing, location, and magnitude of basin subsidence and surface uplift; however, records of these processes are limited in the Andean Plateau of southern Peru. We measured 6200 m of non-marine clastic stratigraphy in the northernmost Altiplano, characterized through lithofacies and paleocurrent analysis, conglomerate clast counts, sandstone petrography, and detrital zircon U-Pb geochronology. We employ a host of new quantitative detrital zircon techniques including multidimensional scaling, mixture modeling, and quantification of zircon roundness. Results consistently show sediment sourcing from the Western Cordillera and/or western Altiplano, despite close proximity to the modern Eastern Cordillera. Sediment accumulation rates based on new detrital zircon U-Pb maximum depositional ages define an upward-convex, Paleogene subsidence profile with rates increasing from 36 m/Myr to >150 m/Myr. These rates are consistent with deposition and northeastward migration of a Paleogene flexural foreland basin system, which requires coeval lithospheric loading in the Western Cordillera and/or western Altiplano and relative subsidence in the location of the modern Eastern Cordillera. Transition to hinterland basin deposition is marked by a latest Oligocene to middle Miocene angular unconformity. Following this transition, sediment accumulation rates increase to >800 m/Myr during the late Miocene, consistent with strike-slip-induced subsidence, likely under Airy isostatic support. Results in the context of the greater Andean Plateau highlight along-strike variability in rates and timing of deposition in a regionally-contiguous foreland basin system extending from southern Peru to northwest Argentina, and support models of cyclical orogenic processes.
Complex origins of silicate veinlets in HED meteorites: A case study of Northwest Africa 1109
NASA Astrophysics Data System (ADS)
Pang, Run-Lian; Zhang, Ai-Cheng; Wang, Ru-Cheng
2017-10-01
We report on the petrography and mineralogy of three types of silicate veinlets in the brecciated eucrite Northwest Africa (NWA) 1109. These include Fe-rich olivine, Mg-rich olivine, and pyroxene veinlets. The Fe-rich olivine veinlets mainly infill fractures in pyroxene and also occur along grain boundaries between pyroxene and plagioclase crystals, in both nonequilibrated and equilibrated lithic clasts. The host pyroxene of Fe-rich olivine veinlets shows large chemical variations between and within grains. The Fe-rich olivine veinlets also contain fine-grained Fe3+-bearing chromite, highly calcic plagioclase, merrillite, apatite, and troilite. Based on texture and mineral chemistry, we argue that the formation of Fe-rich olivine was related to fluid deposition at relatively high temperatures. However, the source of Fe-rich olivine in the veinlets remains unclear. Magnesium-rich olivine veinlets were found in three diogenitic lithic clasts. In one of these, the Mg-rich olivine veinlets only occur in one of the fine-grained interstitial regions and extend into fractures within surrounding coarse-grained orthopyroxene. Based on the texture of the interstitial materials, we suggest that the Mg-rich olivine veinlets formed by shock-induced localized melting and recrystallization. Pyroxene veinlets were only observed in one clast where they infill fractures within large plagioclase grains and are associated with fine-grained pyroxene surrounding coarse-grained pyroxene. The large chemical variations in pyroxene and the fracture-filling texture indicate that the pyroxene veinlets might also have formed by shock-induced localized melting and rapid crystallization. Our study demonstrates that silicate veinlets formed by a range of different surface processes on the surface of Vesta.
NASA Astrophysics Data System (ADS)
Dabard, Marie Pierre
1990-11-01
Formations with interbedded cherts constitute an important part of the Lower Brioverian succession (Upper Proterozoic age) in the Armorican Massif (northwest France). These formations are composed of shale-sandstone alternations with interbedded siliceous carbonaceous members. Petrographic and geochemical study of the detrital facies shows that these rocks are compositionally immature. The wackes are rich in lithic fragments (volcanic fragments: 3-20% modal; sedimentary and metamorphic fragments: 0-7% modal) and in feldspar (5-16%). From the geochemical point of view, they are relatively enriched in Fe 2+MgO (about 5.5%) and in alkalis with {Na 2O }/{K 2O } ratios greater than 1. The CaO contents are low (about 0.3%). Slightly negative Eu anomalies are observed ( {Eu}/{Eu ∗} = 0.8 ). Their chemical compositions are in agreement with a dominantly acidic source area with deposition in a continental active margin setting. Compared with other Upper Proterozoic deposits of the Armorican Massif, the interbedded-chert formations appear rather similar to other deposits in North Brittany which accumulated in an intra-arc or back-arc basin environment. The formations with interbedded cherts are interpreted as having been deposited during an early stage of magmatic arc activity (around 640-630 Ma ago) in an immature marginal basin. The clastic supply to these formations is derived in part from early volcanic products (acidic to intermediate) which are linked to subduction beneath the North Armorican Domain. Another component is inherited from the reworking of 2000 Ma old basement relics. The opening of the back-arc domain, with associated basaltic volcanism, would bring about a progressive displacement of the interbedded-chert depositional basin towards the continental margin.
NASA Astrophysics Data System (ADS)
Ahmad, Iftikhar; Mondal, M. E. A.; Satyanarayanan, M.
2016-08-01
Basement complex of the Aravalli craton (NW India) known as the Banded Gneissic Complex (BGC) is classified into two domains viz. Archean BGC-I and Proterozoic BGC-II. We present first comprehensive geochemical study of the Archean metasedimentary rocks occurring within the BGC-I. These rocks occur associated with intrusive amphibolites in a linear belt within the basement gneisses. The association is only concentrated on the western margin of the BGC-I. The samples are highly mature (MSm) to very immature (MSi), along with highly variable geochemistry. Their major (SiO2/Al2O3, Na2O/K2O and Al2O3/TiO2) and trace (Th/Sc, Cr/Th, Th/Co, La/Sc, Zr/Sc) element ratios, and rare earth element (REE) patterns are consistent with derivation of detritus from the basement gneisses and its mafic enclaves, with major contribution from the former. Variable mixing between the two end members and closed system recycling (cannibalism) resulted in the compositional heterogeneity. Chemical index of alteration (CIA) of the samples indicate low to moderate weathering of the source terrain in a sub-tropical environment. In A-CN-K ternary diagram, some samples deceptively appear to have undergone post-depositional K-metasomatism. Nevertheless, their petrography and geochemistry (low K2O and Rb) preclude the post-depositional alteration. We propose non-preferential leaching of elements during cannibalism as the cause of the deceptive K-metasomatism as well as enigmatic low CIA values of some highly mature samples. The Archean metasedimentary rocks were deposited on stable basement gneisses, making the BGC-I a plausible participant in the Archean Ur supercontinent.
Review of Excess Weapons Plutonium Disposition LLNL Contract Work in Russia-(English)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jardine, L; Borisov, G B
This third meeting of the recently completed and ongoing Russian plutonium immobilization contract work was held at the State Education Center (SEC) in St. Petersburg on January 14-18, 2002. The meeting agenda is reprinted here as Appendix A and the attendance list as Appendix B. The meeting had 58 Russian participants from 21 Russian organizations, including the industrial sites (Mayak, Krasonayarsk-26, Tomsk), scientific institutes (VNIINM, KRI, VNIPIPT, RIAR), design organizations (VNIPIET and GSPI), universities (Nyzhny Novgorod, Urals Technical), Russian Academy of Sciences (Institute of Physical Chemistry or IPhCh, Institute of Ore-Deposit Geology, Petrography, Mineralogy, and Geochemistry or IGEM), Radon-Moscow, S&TCmore » Podol'osk, Kharkov-Ukraine, GAN-SEC-NRS and SNIIChM, the RF Ministry of Atomic Energy (Minatom) and Gosatomnadzor (GAN). This volume, published by LLNL, documents this third annual meeting. Forty-nine technical papers were presented by the Russian participants, and nearly all of these have been collected in this Proceedings. The two objectives for the meeting were to: (1) Bring together the Russian organizations, experts, and managers performing this contract work into one place for four days to review and discuss their work amongst each other. (2) Publish a meeting summary and proceedings of all the excellent Russian plutonium immobilization and other plutonium disposition contract work in one document so that the wide extent of the Russian immobilization activities are documented, referencable and available for others to use, as were the Proceedings of the two previous meetings. Attendees gave talks describing their LLNL contract work and submitted written papers documenting their contract work (in English and Russian), in both hard copy and on computer disks. Simultaneous translation into Russian and English was used for presentations made at the State Region Educational Center (SEC).« less
J. W. Goethe - poet engaged in Earth sciences
NASA Astrophysics Data System (ADS)
Nemec, Vaclav
2014-05-01
The famous German poet Johann Wolfgang Goethe (1749 - 1832) was a man of an outstanding interest for the Earth sciences. In the Czech geological dictionary his own biography remembers his frequent visits to the famous West Bohemian health resorts. In this region he was focusing his attention to the geological history, petrography and mineralogy, genesis of mineral water springs etc. Some of his studies were published. His geological points of view were not always correct (as seen from a recent knowledge) but his efforts to deepen studies of this territory cannot be forgotten. - In his rich correspondence with the count Kaspar Maria Sternberg (1761 - 1838) - founder of the (nowadays) National Museum in Prague - the author of this article has recently discovered in the Prague archives a letter written just one week before the death of the poet. It is a confession of his deep relation especially to the region if West Bohemia where he found lot of enjoyment and new knowledge in the course of numerous visits and stays. - Goethe had the largest private collection of minerals in all of Europe (17800 rock samples). A mineral goethite has been named after him. - The Czech composer Václav Jan Tomášek (1774 - 1850) describing his visit paid to Goethe in Cheb (Eger) in 1822 remembers also mineralogical interest of the poet and his excursions to the region for collecting local minerals. The main reason for personal contact in this case was the art (Tomášek composed songs using Goethe's poems). But Tomášek described also his frequent talks on science with the famous Swedish chemist Jöns Jacob Berzelius (1779 - 1848) in Karlsbad (1822). From other sources a common stay of Berzelius, Goethe and Sternberg in Marienbad (also 1822) is reported.
X-ray digital imaging petrography of lunar mare soils: modal analyses of minerals and glasses
NASA Technical Reports Server (NTRS)
Taylor, L. A.; Patchen, A.; Taylor, D. H.; Chambers, J. G.; McKay, D. S.
1996-01-01
It is essential that accurate modal (i.e., volume) percentages of the various mineral and glass phases in lunar soils be used for addressing and resolving the effects of space weathering upon reflectance spectra, as well as for their calibration such data are also required for evaluating the resource potential of lunar minerals for use at a lunar base. However, these data are largely lacking. Particle-counting information for lunar soils, originally obtained to study formational processes, does not provide these necessary data, including the percentages of minerals locked in multi-phase lithic fragments and fused-soil particles, such as agglutinates. We have developed a technique for modal analyses, sensu stricto, of lunar soils, using digital imaging of X-ray maps obtained with an energy-dispersive spectrometer mounted on an electron microprobe. A suite of nine soils (90 to 150 micrometers size fraction) from the Apollo 11, 12, 15, and 17 mare sites was used for this study. This is the first collection of such modal data on soils from all Apollo mare sites. The abundances of free-mineral fragments in the mare soils are greater for immature and submature soils than for mature soils, largely because of the formation of agglutinitic glass as maturity progresses. In considerations of resource utilization at a lunar base, the best lunar soils to use for mineral beneficiation (i.e., most free-mineral fragments) have maturities near the immature/submature boundary (Is/FeO approximately or = 30), not the mature soils with their complications due to extensive agglutination. The particle data obtained from the nine mare soils confirm the generalizations for lunar soils predicted by L.A. Taylor and D.S. McKay (1992, Lunar Planet Sci. Conf. 23rd, pp. 1411-1412 [Abstract]).
NASA Astrophysics Data System (ADS)
Prince, K.; Laya, J. C.; Betzler, C.; Eberli, G. P.; Zarikian, C.; Swart, P. K.; Blättler, C. L.; Reolid, J.; Reijmer, J.
2017-12-01
The Maldives record nearly continuous carbonate deposition from the Eocene to the Holocene, and its stable tectonic regime and lack of clastic input make it an ideal example for understanding the depositional and diagenetic dynamics of isolated carbonate platforms. The Kardiva platform ultimately drowned, but the amplitude and frequency of sea-level changes in the Miocene make it likely that subaerial exposure occurred during its evolution. Abundant moldic porosity has been interpreted as meteoric diagenesis, but stable isotope evidence to support this has not been reported. Using bulk stable isotope analyses and petrographic methods, we sought to identify evidence of meteoric diagenesis by investigating the variations in grains, cements, porosity, δ13C, and δ18O at IODP Sites U1645, U1469, and U1470. Within the platform, grain distribution is variable with algae, benthic foraminifera, and corals representing the most abundant grain types. Cement abundance generally increases while porosity decreases with depth, with some variability. δ18O and δ13C range from -7.0‰ to 3.2‰ and -7‰ to 2.5‰, respectively. Petrography and isotope values show evidence for subaerial exposure and alteration by meteoric fluids, with a cross-plot of δ13C and δ18O showing the characteristic inverted "J" trend associated with dissolution and precipitation reactions mediated by meteoric fluids, resulting in more negative values. These results are compared to isotopic values for unaltered red algae and corals to account for the possibility of vital effects, but vital effects alone do not yield such low values. This evidence for meteoric diagenesis of the Kardiva Platform indicates variation between wet and dry periods, and also potential high-amplitude sea-level fluctuations during the Miocene in the Indo-Pacific region.
A biomineralization study of the Indo-Pacific giant clam Tridacna gigas
NASA Astrophysics Data System (ADS)
Gannon, M. E.; Pérez-Huerta, A.; Aharon, P.; Street, S. C.
2017-06-01
The giant clam, Tridacna gigas, is an important faunal component of reef ecosystems of the Indo-Pacific region. In addition to its ecological role, shells of this bivalve species are useful bioarchives for past climate and environmental reconstructions. However, the biomineralization processes involved in shell aragonite deposition are insufficiently understood. Here, we present a study of the shell microstructure of modern specimens from Palm Island, Great Barrier Reef (GBR), Australia, and Huon Peninsula, Papua New Guinea (PNG), using a combination of petrography, scanning electron microscopy, electron backscatter diffraction, Raman spectroscopy and stable carbon isotope ratios. Daily growth increments were recognizable in all specimens through ontogeny, and counting these growth lines provides a robust specimen age estimate. For the internal layers, paired increments of organized aragonitic needles and compact, oblong crystals were recognized in a specimen from PNG, whereas specimens from GBR were composed of shield-like crystals that were not definable at the microscale. The combination of nutrient availability, rainfall and solar irradiance are likely to be the most significant factors controlling shell growth and may explain the observed differences in microstructure. The external layer, identical in all specimens, was composed of dendritic microstructure that is significantly enriched in 13C compared to the internal layer, suggesting different metabolic controls on layer deposition. We propose that the mineralization of the internal and external layers is independent from each other and associated with the activity of specific mantles. Future studies using T. gigas shells as bioarchives should consider the microstructure as it reflects the environment in which the individual lived and the differences in mineralization pathways of internal and external layers.
NASA Astrophysics Data System (ADS)
Owona, Sébastien; Tichomirowa, Marion; Ratschbacher, Lothar; Ondoa, Joseph Mvondo; Youmen, Dieudonné; Pfänder, Jörg; Tchoua, Félix M.; Affaton, Pascal; Ekodeck, Georges Emmanuel
2012-10-01
Three meta-igneous bodies from the Yaounde Group have been analyzed for their petrography, geochemistry, and 207Pb/206Pb zircon ages. According to their geochemical patterns, they represent meta-diorites. The meta-plutonites yielded identical zircon ages with a mean of 624 ± 2 Ma interpreted as their intrusion age. This age is in agreement with previously published zircon ages of meta-diorites from the Yaounde Group. The meta-diorites derived mainly from crustal rocks with minor contribution from mantle material. The 87Rb/86Sr isochron ages of one meta-diorite sample and three meta-sedimentary host rocks are significantly younger than the obtained intrusion age. Therefore, they are not related to igneous processes. 87Rb/86Sr isochron ages differ from sample to sample (599 ± 3, 572 ± 4, 554 ± 5, 540 ± 5 Ma) yielding the oldest Neoproterozoic age (~600 Ma) for a paragneiss sample at a more northern location. The youngest Rb/Sr isochron age (~540 Ma) was obtained for a mica schist sample at a more southern location closer to the border of the Congo Craton. The 87Rb/86Sr whole rock-biotite ages are interpreted as cooling ages related to transpressional processes during exhumation. Therefore, several discrete metamorphic events related to the exhumation of the Yaounde Group were dated. It could be shown by Rb/Sr dating for the first time that these late tectonic processes occurred earlier at more distant northern locations of the Yaounde Group and lasted at least until early Cambrian (~540 Ma) more closely to the border of the Congo Craton.
NASA Astrophysics Data System (ADS)
Vidal, Jeanne; Patrier, Patricia; Genter, Albert; Beaufort, Daniel; Dezayes, Chrystel; Glaas, Carole; Lerouge, Catherine; Sanjuan, Bernard
2018-01-01
Two geothermal wells, GRT-1 and GRT-2, were drilled into the granite at Rittershoffen (Alsace, France) in the Upper Rhine Graben to exploit geothermal resources at the sediment-basement interface. Brine circulation occurs in a permeable fracture network and leads to hydrothermal alteration of the host rocks. The goal of the study was to characterize the petrography and mineralogy of the altered rocks with respect to the permeable fracture zones in the granitic basement. As clay minerals are highly reactive to hydrothermal alteration, they can be used as indicators of present-day and paleo-circulation systems. Special attention has been paid to the textural, structural and chemical properties of these minerals. The fine-grained clay fraction (< 5 μm) was analyzed around the originally permeable fracture zones to observe the crystal structure of clay minerals using X-ray diffraction. Chemical microanalysis of the clay minerals was performed using scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. The occurrences of mixed layers illite-smectite ( 10% smectite) provide a promising guide for identifying the fracture zones that control the present-day circulation of geothermal fluids in the Rittershoffen wells. However, multistage paleo-circulation systems could lead to an abundance of heterogeneous and fine-grained illitic minerals that could plug the fracture system. The permeability of fracture zones in the GRT-1 well was likely reduced because of an intense illitization, and the well was stimulated. The occurrence of chlorite in the permeable fracture zones of GRT-2 is indicative of less intense illitization, and the natural permeability is much higher in GRT-2 than in GRT-1.
NASA Astrophysics Data System (ADS)
Shkolyar, S.; Farmer, J. D.
2015-12-01
Major priorities for Mars science include assessing the preservation potential and impact of diagenesis on biosignature preservation in aqueous sedimentary environments. We address these priorities with field and lab studies of playa evaporites of the Verde Formation (upper Pliocene) in Arizona. Evaporites studied include bottom-nucleated halite and displacive growth gypsum in magnesite-rich mudstone. These lithotypes are potential analogs for ancient lacustrine habitable environments on Mars. This study aimed to understand organic matter preservation potential under different diagenetic histories. Methods combined outcrop-scale field observations and lab analyses, including: (1) thin-section petrography to understand diagenetic processes and paragenesis; (2) X-ray powder diffraction to obtain bulk mineralogy; (3) Raman spectroscopy to identify and place phases (and kerogenous fossil remains) within a microtextural context; (4) Total Organic Carbon (TOC) analyses to estimate weight percentages of preserved organic carbon for each subfacies endmember; and (5) electron microprobe to create 2D kerogen maps semi-quantifying kerogen preservation in each subfacies. Results revealed complex diagenetic histories for each evaporite subfacies and pathways for organic matter preservation. Secondary gypsum grew displacively within primary playa lake mudstones during early diagenesis. Mudstones then experienced cementation by Mg-carbonates. Displacive-growth gypsum was sometimes dissolved, forming crystal molds. These molds were later either infilled by secondary sulfates or recrystallized to gypsum pseudomorphs with minor phases present (i.e., glauberite). These observations helped define taphonomic models for organic matter preservation in each subfacies. This work has the potential to inform in situ target identification, sampling strategies, and data interpretations for future Mars Sample Return missions (e.g., sample caching strategies for NASA's Mars 2020 mission).
NASA Astrophysics Data System (ADS)
Godfrey, Conan; Fan, Majie; Jesmok, Greg; Upadhyay, Deepshikha; Tripati, Aradhna
2018-05-01
Cenozoic sedimentary rocks in the southern Texas Gulf Coastal Plains contain abundant continental carbonates that are useful for reconstructing terrestrial paleoclimate and paleoenvironment in a region near sea-level. Our field observations and thin section characterizations of the Oligocene and Miocene continental carbonates in south Texas identified three types of pedogenic carbonates, including rhizoliths, carbonate nodules, and platy horizons, and two types of groundwater carbonates, including carbonate-cemented beds and carbonate concretions, with distinctive macromorphologic and micromorphologic features. Based on preservations of authigenic microfabrics and variations of carbon and oxygen isotopic compositions, we suggest these carbonates experienced minimal diagenesis, and their stable isotopic compositions reflect paleoclimate and paleoenvironment in south Texas. Our Oligocene and Miocene carbonate clumped isotope temperatures (T(Δ47)) are 23-28 °C, slightly less than or comparable to the range of modern mean annual and mean warm season air temperature (21-27 °C) in the study area. These T(Δ47) values do not show any dependency on carbonate-type, or trends through time suggesting that groundwater carbonates were formed at shallow depths. These data could indicate that air temperature in south Texas was relatively stable since the early Oligocene. The reconstructed paleo-surface water δ18O values are similar to modern surface water which could indicate that meteoric water δ18O values also remained stable since the early Oligocene. Mean pedogenic carbonate δ13C values increased - 4.6‰ during the late Miocene, most likely reflecting an expansion of C4 grassland in south Texas. This study provides the first mid- and late Cenozoic continental records of paleoclimate and paleoecology in a low-latitude, near sea-level region.
NASA Astrophysics Data System (ADS)
Shu, Qiao; Brey, Gerhard P.; Pearson, D. Graham
2018-06-01
We describe the petrography and mineral chemistry of sixteen eclogite and garnet pyroxenite xenoliths from the reworked Boshof road dump (Kimberley) and define three groups that stem from different depths. Group A, the shallowest derived, has low HREE (heavy rare earth element) abundances, flat middle to heavy REE patterns and high Mg# [= 100·Mg/(Mg + Fe)]. Their protoliths probably were higher pressure cumulates ( 0.7 GPa) of mainly clinopyroxene (cpx) and subordinate orthopyroxene (opx) and olivine (ol). Group B1 xenoliths, derived from the graphite/diamond boundary and below show similarities to present-day N-MORB that were modified by partial melting (higher Mg# and positively inclined MREE (middle REE) and HREE (heavy REE) patterns of calculated bulk rocks). Group B2 samples from greatest depth are unique amongst eclogites reported so far worldwide. The calculated bulk rocks have humped REE patterns with very low La and Lu and prominent maxima at Sm or Eu and anomalously high Na2O (up to 5 wt%) which makes protolith identification difficult. The complex trace element signatures of the full spectrum of Kimberley eclogites belie a multi-stage history of melt depletion and metasomatism with the introduction of new phases especially of phlogopite (phlog). Phlogopite appears to be characteristic for Kimberley eclogites and garnet peridotites. Modelling the metasomatic overprint indicates that groups A and B1 were overprinted by volatile- and potassium-rich melts probably by a process of chromatographic fractionation. Using constraints from other metasomatized Kimberley mantle rocks suggest that much of the metasomatic phlogopite in the eclogites formed during an intense episode of metasomatism that affected the mantle beneath this region 1.1 Gyr ago.
Pereyra Domingorena, Lucas; Stoner, Wesley D.; Scattolin, María Cristina; Korstanje, María Alejandra; Glascock, Michael D.
2017-01-01
The circulation and exchange of goods and resources at various scales have long been considered central to the understanding of complex societies, and the Andes have provided a fertile ground for investigating this process. However, long-standing archaeological emphasis on typological analysis, although helpful to hypothesize the direction of contacts, has left important aspects of ancient exchange open to speculation. To improve understanding of ancient exchange practices and their potential role in structuring alliances, we examine material exchanges in northwest Argentina (part of the south-central Andes) during 400 BC to AD 1000 (part of the regional Formative Period), with a multianalytical approach (petrography, instrumental neutron activation analysis, laser ablation inductively coupled plasma mass spectrometry) to artifacts previously studied separately. We assess the standard centralized model of interaction vs. a decentralized model through the largest provenance database available to date in the region. The results show: (i) intervalley heterogeneity of clays and fabrics for ordinary wares; (ii) intervalley homogeneity of clays and fabrics for a wide range of decorated wares (e.g., painted Ciénaga); (iii) selective circulation of two distinct polychrome wares (Vaquerías and Condorhuasi); (iv) generalized access to obsidian from one major source and various minor sources; and (v) selective circulation of volcanic rock tools from a single source. These trends reflect the multiple and conflicting demands experienced by people in small-scale societies, which may be difficult to capitalize by aspiring elites. The study undermines centralized narratives of exchange for this period, offering a new platform for understanding ancient exchange based on actual material transfers, both in the Andes and beyond. PMID:28461485
NASA Astrophysics Data System (ADS)
Shen, Ping; Pan, Hongdi; Zhou, Taofa; Wang, Jingbin
2014-08-01
Tuwu is the largest porphyry copper deposit discovered in the Eastern Tianshan Mountains, Xinjiang, China. A newly recognized volcanic complex in the Early Carboniferous Qi'eshan Group at Tuwu consists of basalt, andesite, and diorite porphyry. The plagiogranite porphyry was emplaced into this complex at 332.8±2.5 Ma (U-Pb zircon SIMS determination). Whole-rock element geochemistry shows that the volcanic complex and plagiogranite porphyry formed in the same island arc, although the complex was derived by partial melting of the mantle wedge and the plagiogranite porphyry by partial melting of a subducting slab. The diorite and the plagiogranite porphyries have both been subjected to intense hydrothermal alteration and associated mineralization, but the productive porphyry is the plagiogranite porphyry. Three alteration and mineralization stages, including pre-, syn- and post-ore stages, have been recognized. The pre-ore stage formed a barren propylitic alteration which is widespread in the volcanic complex. The syn-ore stage is divided into three sub-stages: Stage 1 is characterized by potassic alteration with chalcopyrite + bornite + chalcocite; Stage 2 is marked by chlorite-sericite-albite alteration with chalcopyrite ± pyrite ± bornite; Stage 3 is represented by phyllic alteration with chalcopyrite + pyrite ± molybdenite. The post-ore stage produced a barren argillic alteration limited to the diorite porphyry. A specific feature of the Tuwu deposit is that the productive porphyry was emplaced into a very mafic package, and reaction of the resulting fluids with the ferrous iron-rich hostrocks was a likely reason that Tuwu is the largest porphyry in the district.
Mechanical and physical properties of hydrothermally altered rocks, Taupo Volcanic Zone, New Zealand
NASA Astrophysics Data System (ADS)
Wyering, L. D.; Villeneuve, M. C.; Wallis, I. C.; Siratovich, P. A.; Kennedy, B. M.; Gravley, D. M.; Cant, J. L.
2014-11-01
Mechanical characterization of hydrothermally altered rocks from geothermal reservoirs will lead to an improved understanding of rock mechanics in a geothermal environment. To characterize rock properties of the selected formations, we prepared samples from intact core for non-destructive (porosity, density and ultrasonic wave velocities) and destructive laboratory testing (uniaxial compressive strength). We characterised the hydrothermal alteration assemblage using optical mineralogy and existing petrography reports and showed that lithologies had a spread of secondary mineralisation that occurred across the smectite, argillic and propylitic alteration zones. The results from the three geothermal fields show a wide variety of physical rock properties. The testing results for the non-destructive testing shows that samples that originated from the shallow and low temperature section of the geothermal field had higher porosity (15 - 56%), lower density (1222 - 2114 kg/m3) and slower ultrasonic waves (1925 - 3512 m/s (vp) and 818 - 1980 m/s (vs)), than the samples from a deeper and higher temperature section of the field (1.5 - 20%, 2072 - 2837 kg/m3, 2639 - 4593 m/s (vp) and 1476 - 2752 m/s (vs), respectively). The shallow lithologies had uniaxial compressive strengths of 2 - 75 MPa, and the deep lithologies had strengths of 16 - 211 MPa. Typically samples of the same lithologies that originate from multiple wells across a field have variable rock properties because of the different alteration zones from which each sample originates. However, in addition to the alteration zones, the primary rock properties and burial depth of the samples also have an impact on the physical and mechanical properties of the rock. Where this data spread exists, we have been able to derive trends for this specific dataset and subsequently have gained an improved understanding of how hydrothermal alteration affects physical and mechanical properties.
NASA Astrophysics Data System (ADS)
Burton-Johnson, A.; Halpin, J.; Whittaker, J. M.; Graham, F. S.; Watson, S. J.
2017-12-01
We present recently published findings (Burton-Johnson et al., 2017) on the variability of Antarctic sub-glacial heat flux and the impact from upper crustal geology. Our new method reveals that the upper crust contributes up to 70% of the Antarctic Peninsula's subglacial heat flux, and that heat flux values are more variable at smaller spatial resolutions than geophysical methods can resolve. Results indicate a higher heat flux on the east and south of the Peninsula (mean 81 mWm-2) where silicic rocks predominate, than on the west and north (mean 67 mWm-2) where volcanic arc and quartzose sediments are dominant. Whilst the data supports the contribution of HPE-enriched granitic rocks to high heat flux values, sedimentary rocks can be of comparative importance dependent on their provenance and petrography. Models of subglacial heat flux must utilize a heterogeneous upper crust with variable radioactive heat production if they are to accurately predict basal conditions of the ice sheet. Our new methodology and dataset facilitate improved numerical model simulations of ice sheet dynamics. The most significant challenge faced remains accurate determination of crustal structure, particularly the depths of the HPE-enriched sedimentary basins and the sub-glacial geology away from exposed outcrops. Continuing research (particularly detailed geophysical interpretation) will better constrain these unknowns and the effect of upper crustal geology on the Antarctic ice sheet. Burton-Johnson, A., Halpin, J.A., Whittaker, J.M., Graham, F.S., and Watson, S.J., 2017, A new heat flux model for the Antarctic Peninsula incorporating spatially variable upper crustal radiogenic heat production: Geophysical Research Letters, v. 44, doi: 10.1002/2017GL073596.
Cement Distribution and Diagenetic Pathway of the Miocene Sediments on Kardiva Platform, Maldives.
NASA Astrophysics Data System (ADS)
Laya, J. C.; Prince, K.; Betzler, C.; Eberli, G. P.; Blättler, C. L.; Swart, P. K.; Reolid, J.; Alvarez Zarikian, C. A.; Reijmer, J.
2017-12-01
The Maldives archipelago is an ideal example for understanding the dynamics of isolated carbonate platforms. While previous sedimentological studies have focused on oceanographic and climatic controls on deposition, there have been limited studies on the diagenetic evolution of the Maldives archipelago. This project seeks to establish a relationship between the facies, cement distribution, and diagenetic evolution of the Kardiva Platform and associated diagenetic fluids. Samples from cores of IODP Expedition 359 at Sites U1645, U1469, and U1470 were analyzed for stable isotope geochemistry and detailed petrography including SEM, confocal and CL microscopy to investigate variations in facies, cements, porosity and diagenetic products. The facies analyzed consist mainly of planktonic and benthic foraminifers, red coralline algae, echinoderm, coral and skeletal fragments. The main facies include foraminifera grain/packstone, red algae rich grain/packstone, algal floatstone and coral floatstone. Those facies present a cyclic and general shallowing upwards trend. These facies are interpreted as shallow platform deposits on proximal areas to the margin associated with the oligophotic zone. Cement volume varies between 5% and 48%, and they have been classified as isopachous, bladed to fibrous (dog tooth), drusy and equant. Equant and drusy show recognizable growth bands with CL and confocal. Evidence of intense dissolution is shown by extensive moldic porosity within phreatic and limited vadose zones. In addition, dolomite appears as a replacement phase associated with red-algae-rich horizons and as cement on pore walls and voids. These deposits experienced a variety of diagenetic processes driven by the evolution of diagenetic fluid chemistry and by the nature of the skeletal components. Those processes can be tied to external controls such as climate (monsoonal effects), sea-level and currents.
NASA Astrophysics Data System (ADS)
McCanta, Molly C.; Hatfield, Robert G.; Thomson, Bradley J.; Hook, Simon J.; Fisher, Elizabeth
2015-12-01
Understanding the frequency, magnitude, and nature of explosive volcanic eruptions is essential for hazard planning and risk mitigation. Terrestrial stratigraphic tephra records can be patchy and incomplete due to subsequent erosion and burial processes. In contrast, the marine sedimentary record commonly preserves a more complete historical record of volcanic activity as individual events are archived within continually accumulating background sediments. While larger tephra layers are often identifiable by changes in sediment color and/or texture, smaller fallout layers may also be present that are not visible to the naked eye. These cryptotephra are commonly more difficult to identify and often require time-consuming and destructive point counting, petrography, and microscopy work. Here we present several rapid, nondestructive, and quantitative core scanning methodologies (magnetic susceptibility, visible to shortwave infrared spectroscopy, and XRF core scanning) which, when combined, can be used to identify the presence of increased volcaniclastic components (interpreted to be cryptotephra) in the sedimentary record. We develop a new spectral parameter (BDI1000VIS) that exploits the absorption of the 1 µm near-infrared band in tephra. Using predetermined mixtures, BDI1000VIS can accurately identify tephra layers in concentrations >15-20%. When applied to the upper ˜270 kyr record of IODP core U1396C from the Caribbean Sea, and verified by traditional point counting, 29 potential cryptotephra layers were identified as originating from eruptions of the Lesser Antilles Volcanic Arc. Application of these methods in future coring endeavors can be used to minimize the need for physical disaggregation of valuable drill core material and allow for near-real-time recognition of tephra units, both visible and cryptotephra. This article was corrected on 23 DEC 2015. See the end of the full text for details.
NASA Astrophysics Data System (ADS)
Yousif, Ibrahim M.; Abdullatif, Osman M.; Makkawi, Mohammad H.; Bashri, Mazin A.; Abdulghani, Waleed M.
2018-03-01
This study characterizes the lithofacies, paleoenvironment and stratigraphic architecture of the D5 and D6 members of carbonates Dhruma Formation outcrops in central Saudi Arabia. The study integrates detailed lithofacies analysis based on vertical and lateral profiles, in addition to thin-sections petrography to reveal the high-resolution architecture framework. Nine lithofacies types (LFTs) were defined namely: (1) skeletal peletal spiculitic wackestone (15%), (2) peloidal echinoderm packstone (19%), (3) fissile shale (36%), (4) peloidal spiculitic echinoderm pack-grainstone (5%), (5) cross-bedded peloidal skeletal oolitic grainstone (7%), (6) oolitic grainstone (2%), (7) intraformational rudstone (<1%), (8) skeletal peloidal foraminiferal packstone (12%) and (9) skeletal foraminiferal wackestone (4%). These lithofacies types were grouped into five major carbonate paleoenvironments that range from distal-to-proximal carbonate ramp setting. The detailed stratigraphic analysis revealed around 53 cycles and cycle sets with 5th to 6th orders magnitude, and thickness ranges from a few centimeters up to 6 m with an average of 1.5 m. Those are stacked to form four high-frequency sequences with thickness range from 1 m up to 14 m. The latter were grouped into a single depositional sequence of 3rd order magnitude. The architectural analysis also shows that the potential reservoir units were intensively affected by muddy-textured rocks which act as reservoir seals. These variations in the stratigraphic sequences in Middle Jurassic Dhruma Formation and its equivalents could be attributed to the eustatic sea-level changes, climate, tectonics, and local paleoenvironments. This study attempts to provide detailed insight into reservoir heterogeneity and architecture. The analog may help to understand and predict lithofacies heterogeneity, architecture, and quality in the subsurface equivalent reservoirs.
Listvenite logging on D/V CHIKYU: Hole BT1B, Oman Drilling Project
NASA Astrophysics Data System (ADS)
Kelemen, P. B.; Beinlich, A.; Morishita, T.; Greenberger, R. N.; Johnson, K. T. M.; Lafay, R.; Michibayashi, K.; Harris, M.; Phase I Science Party, T. O. D. P.
2017-12-01
Listvenite, quartz-carbonate altered ultramafic rock containing minor fuchsite (Cr-muscovite) forms by complete carbonation of peridotite and is thus an attractive objective for carbon mitigation studies. However, reaction controls and evolution of listvenite are still enigmatic. Here we present the first results of Phase 1 of the ICDP (International Continental Drilling Program) Oman Drilling Project and subsequent core logging using the analytical facilities on board the research vessel D/V CHIKYU. Hole BT1B contains 300 m of continuous drill core intersecting alluvium, listvenite-altered serpentinite, serpentinite, ophicarbonate and the underlying metamorphic sole of the Semail ophiolite, Oman. The drill core has been systematically investigated by visual core description, thin section petrography, X-ray fluorescence core logging, X-ray diffractometry, visible-shortwave infrared imaging spectroscopy and X-ray Computer Tomography. Our observations show that listvenite is highly variable in texture and color on the mm to m scale. Listvenite was visually categorized into 5 principal color groups: the dominant dark red (47 %), light red (19 %), orange (14 %), pale (2 %) and green (16 %). The presence of hematite/goethite results in dark reddish, red and orange hues. Light grey or pale colored listvenite lacks hematite and/or goethite veins and may represent the `true' listvenite. Green listvenite is characterized by the presence of cm-sized quartz-fuchsite intergrowths. Five zones of serpentinite, which vary in thickness between several tens of cm and 4 m, are intercalated within the massive listvenite of Hole BT1B. Gradational listvenite-serpentinite transition zones contain the ophicarbonate assemblage (magnesite + serpentine) and sometimes additional talc, representing intermediate carbonation reaction progress. Preservation of the former mesh texture and bastite after orthopyroxene in the listvenite suggest that the listvenite precursor had already been serpentinized prior to infiltration of the CO2-bearing alteration fluid.
NASA Technical Reports Server (NTRS)
Ryder, Graham
1994-01-01
On the Earth there is no firm evidence that impacts can induce volcanic activity. However, the Moon does provide a very likely example of volcanism induced by an immense impact: the Imbrium basin-forming event was immediately succeeded by a crustal partial melting event that released basalt flows characterized by K, rare-earth elements (REE), P, and other trace elements (KREEP) over a wide area creating the Apennine Bench Formation. Impact total melting is inconsistent with the chemistry and petrography of these Apollo 15 KREEP basalts, which are quite unlike the impact melts recognized at Taurus-Littrow as the products of the Serenitatis impact. The Imbrium impact and the KREEP volcanic events are indistinguishable in radiometric age, and thus the volcanism occurred less than about 20 Ma later than the impact (less than about 0.5% of lunar history). The sample record indicates that such KREEP volcanism had not occurred in the region prior to that time, and demonstrates that it never occurred again. Such coincidence in time implies a genetic relationship between the two events, and impact-induced partial melting or release appears to be the only feasible process. Nonetheless, the characteristics of the Apollo 15 KREEP basalts suggest large-degree crustal melting that is not easy to reconcile with the inability of lunar pressure release alone to induce partial melting unless the source was already almost at its melting point. The earliest history of the surface of the Earth, at a time of greater internal heat production and basin-forming impacts, could have been greatly influenced by impact-induced melting.
NASA Astrophysics Data System (ADS)
Carr, D.; Loocke, M. P.; Snow, J. E.; Gazel, E.
2017-12-01
The Santa Elena Ophiolite (SEO), located on the northwestern coast of Costa Rica, consists primarily of preserved oceanic mantle and crustal rocks thrust above an accretionary complex. The SEO is predominantly characterized by mantle peridotites (i.e., primarily spinel lherzolite with minor amounts of harzburgite and dunite) cut and intruded by minor pegmatitic gabbros, layered gabbros, plagiogranites, and doleritic and basaltic dykes. Previous studies have concluded that the complex formed in a suprasubduction zone (SSZ) setting based on the geochemical nature of the layered gabbros and plagiogranites (i.e., depleted LREE and HFSE and enriched LILE and Pb), as well, as the peridotites (i.e., low-TiO2, Zr, and V, and high MgO, Cr, and Ni)(Denyer and Gazel, 2009). Eighteen ultramafic samples collected during the winter 2010/2011 field season (SECR11) exhibit abundant evidence for melt-rock reaction (e.g., disseminated plagioclase and plagioclase-spinel, clinopyroxene-spinel, and plagioclase-clinopyroxene symplectites) and provide a unique opportunity to characterize the textural and chemical nature of melt-rock reaction in the SEO. We present the results of a petrologic investigation (i.e., petrography and electron probe microanalysis) of 28 thin sections (19 spinel lherzolites, of which 14 are plagioclase-bearing, 4 pyroxenite veins, and 5 harzburgites) derived from the SECR11 sample set. The results of this investigation have the potential to better our understanding of the nature of melt generation and migration and melt-rock interaction in the SEO mantle section and shed further light on the complex petrogenetic history of the SEO. Denyer, P., Gazel, E., 2009, Journal of South American Earth Sciences, 28:429-442.
Mozley, Peter S.; Heath, Jason E.; Dewers, Thomas A.; ...
2016-01-01
The Mount Simon Sandstone and Eau Claire Formation represent a principal reservoir - caprock system for wastewater disposal, geologic CO 2 storage, and compressed air energy storage (CAES) in the Midwestern United States. Of primary concern to site performance is heterogeneity in flow properties that could lead to non-ideal injectivity and distribution of injected fluids (e.g., poor sweep efficiency). Using core samples from the Dallas Center Structure, Iowa, we investigate pore structure that governs flow properties of major lithofacies of these formations. Methods include gas porosimetry and permeametry, mercury intrusion porosimetry, thin section petrography, and X-ray diffraction. The lithofacies exhibitmore » highly variable intra- and inter-informational distributions of pore throat and body sizes. Based on pore-throat size, samples fall into four distinct groups. Micropore-throat dominated samples are from the Eau Claire Formation, whereas the macropore-, mesopore-, and uniform-dominated samples are from the Mount Simon Sandstone. Complex paragenesis governs the high degree of pore and pore-throat size heterogeneity, due to an interplay of precipitation, non-uniform compaction, and later dissolution of cements. Furthermore, the cement dissolution event probably accounts for much of the current porosity in the unit. The unusually heterogeneous nature of the pore networks in the Mount Simon Sandstone indicates that there is a greater-than-normal opportunity for reservoir capillary trapping of non-wetting fluids — as quantified by CO 2 and air column heights — which should be taken into account when assessing the potential of the reservoir-caprock system for CO 2 storage and CAES.« less
NASA Astrophysics Data System (ADS)
Vola, Gabriele; Sarandrea, Luca; Della Porta, Giovanna; Cavallo, Alessandro; Jadoul, Flavio; Cruciani, Giuseppe
2017-12-01
This study evaluates the influence of chemical, mineralogical and petrographic features of the Neoarchean limestone from the Ouplaas Mine (Griqualand West, South Africa) on its burnability and quicklime reactivity, considering the main use as raw material for high-grade lime production in twin shaft regenerative (TSR) kilns. This limestone consists of laminated clotted peloidal micrite and fenestrate microbial boundstone with herringbone calcite and organic carbon (kerogen) within stylolites. Diagenetic modifications include hypidiotopic dolomite, micrite to microsparite recrystallization, stylolites, poikilotopic calcite, chert and saddle dolomite replacements. Burning and technical tests widely attest that the Neoarchean limestone is sensitive to high temperature, showing an unusual and drastically pronounced sintering or overburning tendency. The slaking reactivity, according to EN 459-2 is high for lime burnt at 1050 °C, but rapidly decreases for lime burnt at 1150 °C. The predominant micritic microbial textures, coupled with the organic carbon, are key-factors influencing the low burnability and the high sintering tendency. The presence of burial cementation, especially poikilotopic calcite, seems to promote higher burnability, either in terms of starting calcination temperature, or in terms of higher carbonate dissociation rate. In fact, the highest calcination velocity determined by thermal analysis is consistent with the highest slaking reactivity of the lower stratum of the quarry, enriched in poikilotopic calcite. Secondly, locally concentered dolomitic marly limestones, and sporadic back shales negatively affects the quicklime reactivity, as well. This study confirms that a multidisciplinary analytical approach is essential for selecting the best raw mix for achieving the highest lime reactivity in TSR kilns.
NASA Astrophysics Data System (ADS)
Rosolen, Vania; Bueno, Guilherme Taitson; Melfi, Adolpho José; Montes, Célia Regina; de Sousa Coelho, Carla Vanessa; Ishida, Débora Ayumi; Govone, José Silvio
2017-11-01
Extensive flat plateaus are typical landforms in the cratonic compartment of tropical regions. Paleoclimate, pediplanation, laterization, and dissection have created complex and distinct geological, geomorphological, and pedological features in these landscapes. In the Brazilian territory, the flat plateau sculpted in sandstone of Marília Formation (Neocretaceous) belonging to the Sul-Americana surface presents a very clayey and pisolitic Ferralsol (Red and Yellow Latossolo in the Brazilian soil classification). The clayey texture of soil and the pisolites have been considered as weathering products of a Cenozoic detritical formation which is believed to overlay the Marília Formation sandstones. Using data of petrography (optical microscopy and SEM), mineralogy (RXD), and macroscopic structures (description in the field of the arrangement of horizons and layers), a complete profile of Ferralsol with ferricrete and pisolites was studied. The complex succession of facies is in conformity with a sedimentary structure of Serra da Galga member (uppermost member of Marília Formation). The hardening hematite concentration appears as layered accretions in the subparallel clayey lenses of sandstone saprolite, preserving its structure. Iron contents varied according to different soil fabrics. Higher concentrations of iron are found in the massive ferricrete or in pisolites in the mottled horizon. Kaolinite is a dominant clay mineral and shows two micro-organizations: (1) massive fabric intrinsic to the sedimentary rock, and (2) reworked in pisolites and illuviated features. The pisolites are relicts of ferricrete in the soft bioturbated topsoil. The continuous sequence of ferricrete from saprolite to the Ferralsol indicates that the regolith is autochthonous, developed directly from sandstones of Marília Formation, through a long and intense process of laterization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grant, C.W.; Reed, A.A.
1991-03-01
At Buena Vista field, California, 120 ft of post-steamflood core, spanning the middle Pliocene Wilhelm Member of the Etchegoin Formation, was taken to assess the influence of stratigraphy on light-oil steamflood (LOSF) processes and to determine what steam-rock reactions occurred and how these affected reservoir properties. High-quality steam (600F (300C)) had been injected ({approximately}1,700 psi) into mixed tidal flat and estuarine facies in an injector well located 55 ft from the cored well. Over a period of 20 months, steam rapidly channeled through a thin ({approximately}7 ft), relatively permeable (1-1,000 md), flaser-bedded sandstone unit. Conductive heating above this permeable unitmore » produced, in the vicinity of the cored well, a 35-ft steam-swept zone (oil saturation = 0), overlain by a 29-ft steam-affected zone in which oil saturation had been reduced to 13%, far below the presteam saturation of 30%. Steam-induced alteration ('artificial diagenesis') of the clay-rich reservoir rock was recognized using SEM, petrography, and X-ray diffraction. Salient dissolution effects were the complete to partial removal of siliceous microfossils, Fe-dolomite, volcanic rock fragments, and labile heavy minerals. The artificial diagenetic effects are first encountered in the basal 6 ft of the 29-ft steam-affected zone. Based on the distribution of the authigenic phases, the authors conclude that the reactions took place, or were at least initiated, in the steam condensate bank ahead of the advancing steam front. Although these changes presumably reduced permeability, the steamflood process was effective in reducing oil saturation to zero in the steam-contacted portion of the reservoir.« less
Eucrite Impact Melt NWA 5218 - Evidence for a Large Crater on Vesta
NASA Technical Reports Server (NTRS)
Wittmann, Axel; Hiroi, Takahiro; Ross, Daniel K.; Herrin, Jason S.; Rumble, Douglas, III; Kring, David A.
2011-01-01
Northwest Africa (NWA) 5218 is a 76 g achondrite that is classified as a eucrite [1]. However, an initial classification [2] describes it as a "eucrite shock-melt breccia...(in which) large, partially melted cumulate basalt clasts are set in a shock melt flow...". We explore the petrology of this clast-bearing impact melt rock (Fig. 1), which could be a characteristic lithology at large impact craters on asteroid Vesta [3]. Methods: Optical microscopy, scanning electronmicroscopy, and Raman spectroscopy were used on a thin section (Fig. 1) for petrographic characterization. The impact melt composition was determined by 20 m diameter defocused-beam analyses with a Cameca SX-100 electron microprobe. The data from 97 spots were corrected for mineral density effects [4]. Constituent mineral phases were analyzed with a focusedbeam. Bidirectonal visible and near-infrared (VNIR) and biconical FT-IR reflectance spectra were measured on the surface of a sample slab on its central melt area and on an eucrite clast, and from 125-500 m and <125 m powders of melt. Results: General petrography: The sample specimen is a coherent, medium dark-grey (N4), melt rock. The thin section captures a central, subophitic-textured melt that contains 1 cm to tens of m-size subangular to rounded, variably-shocked eucrite clasts. Clasts >100 m are coarse-grained with equigranular 1 mm size plagioclase, quartz, and clinopyroxene (Fig. 1). Single crystals of chromite, ilmenite, zircon, Ca-Mg phosphate, Fe-metal, and troilite are embedded in the melt. Polymineralic clasts are mostly compositionally similar to the above mentioned larger clasts but scarce granulitic fragments are observed as well.
26Al-26Mg systematics in chondrules from Kaba and Yamato 980145 CV3 carbonaceous chondrites
NASA Astrophysics Data System (ADS)
Nagashima, Kazuhide; Krot, Alexander N.; Komatsu, Mutsumi
2017-03-01
We report the mineralogy, petrography, and in situ measured 26Al-26Mg systematics in chondrules from the least metamorphosed CV3 (Vigarano-type) chondrites, Kaba and Yamato (Y) 980145. Two Y 980145 chondrules measured show no resolvable excesses in 26Mg (26Mg∗), a decay product of a short-lived (t1/2 ∼0.7 Ma) radionuclide 26Al. Plagioclase in one of the chondrules is replaced by nepheline, indicative of thermal metamorphism. The lack of 26Mg∗ in the Y 980145 chondrules is most likely due to disturbance of their 26Al-26Mg systematics during the metamorphism. Although Kaba experienced extensive metasomatic alteration (<300 °C), it largely avoided subsequent thermal metamorphism, and the 26Al-26Mg systematics of its chondrules appear to be undisturbed. All eight Kaba chondrules measured show 26Mg∗, corresponding to the initial 26Al/27Al ratios [(26Al/27Al)0] ranging from (2.9 ± 1.7) × 10-6 to (6.3 ± 2.7) × 10-6. If CV parent asteroid accreted rapidly after chondrule formation, the inferred (26Al/27Al)0 ratios in Kaba chondrules provide an upper limit on 26Al available in this asteroid at the time of its accretion. The estimated initial abundance of 26Al in the CV asteroid is too low to melt it and contradicts the existence of a molten core in this body suggested from the paleomagnetic records of Allende [Carporzen et al. (2011) Magnetic evidence for a partially differentiated carbonaceous chondrite parent body. Proc. Natl. Acad. Sci. USA108, 6386-6389] and Kaba [Gattacceca et al. (2013) More evidence for a partially differentiated CV parent body from the meteorite Kaba. Lunar Planet. Sci.44, abstract#1721].
NASA Astrophysics Data System (ADS)
van Acken, D.; Luguet, A.; Pearson, D. G.; Nowell, G. M.; Fonseca, R. O. C.; Nagel, T. J.; Schulz, T.
2017-04-01
Highly siderophile element (HSE) concentration and 187Os/188Os isotopic heterogeneity has been observed on various scales in the Earth's mantle. Interaction of residual mantle peridotite with infiltrating melts has been suggested to overprint primary bulk rock HSE signatures originating from partial melting, contributing to the heterogeneity seen in the global peridotite database. Here we present a detailed study of harzburgitic xenolith 474527 from the Kangerlussuaq suite, West Greenland, coupling the Re-Os isotope geochemistry with petrography of both base metal sulfides (BMS) and silicates to assess the impact of overprint induced by melt-rock reaction on the Re-Os isotope system. Garnet harzburgite sample 474527 shows considerable heterogeneity in the composition of its major phases, most notably olivine and Cr-rich garnet, suggesting formation through multiple stages of partial melting and subsequent metasomatic events. The major BMS phases show a fairly homogeneous pentlandite-rich composition typical for BMS formed via metasomatic reaction, whereas the 187Os/188Os compositions determined for 17 of these BMS are extremely heterogeneous ranging between 0.1037 and 0.1981. Analyses by LA-ICP-MS reveal at least two populations of BMS grains characterized by contrasting HSE patterns. One type of pattern is strongly enriched in the more compatible HSE Os, Ir, and Ru over the typically incompatible Pt, Pd, and Re, while the other type shows moderate enrichment of the more incompatible HSE and has overall lower compatible HSE/incompatible HSE composition. The small-scale heterogeneity observed in these BMS highlights the need for caution when utilizing the Re-Os system to date mantle events, as even depleted harzburgite samples such as 474527 are likely to have experienced a complex history of metasomatic overprinting, with uncertain effects on the HSE.
Supra-subduction and mid-ocean ridge peridotites from the Piranshahr area, NW Iran
NASA Astrophysics Data System (ADS)
Hajialioghli, Robab; Moazzen, Mohssen
2014-11-01
The Piranshahr metaperidotites in the northwestern end of the Zagros orogen were emplaced following the closure of the Neotethys ocean. The ophiolitic rocks were emplaced onto the passive margin of the northern edge of the Arabian plate as a result of northeastward subduction and subsequent accretion of the continental fragments. The metaperidotites have compositions ranging from low-clinopyroxene lherzolite to harzburgite and dunite. They are mantle residues with distinct geochemical signatures of both mid-ocean ridge and supra subduction zone (SSZ) affinities. The abyssal peridotites are characterized by high Al2O3 and Cr2O3 contents and low Mg-number in pyroxenes. The Cr-number in the coexisting spinel is also low. The SSZ mantle peridotites are characterized by low Al2O3 contents in pyroxenes as well as low Al2O3 and high Cr-number in spinel. Mineral chemical data indicate that the MOR- and SSZ-type peridotites are the residues from ∼15-20% and ∼30-35% of mantle melting, respectively. Considering petrography, mineralogy and textural evidence, the petrological history of the Piranshahr metaperidotites can be interpreted in three stages: mantle stable stage, serpentinization and metamorphism. The temperature conditions in the mantle are estimated using the Ca-in-orthopyroxene thermometer as 1210 ± 26 °C. The rocks have experienced serpentinization. Based on the textural observations, olivine and pyroxene transformed into lizardite and/or chrysotile with pseudomorphic textures at temperatures below 300 °C during the initial stage of serpentinization. Subsequent orogenic metamorphism affected the rocks at temperatures lower than 600 °C under lower-amphibolite facies metamorphism.
Composition of fluid inclusions in Permian salt beds, Palo Duro Basin, Texas, U.S.A.
Roedder, E.; d'Angelo, W. M.; Dorrzapf, A.F.; Aruscavage, P. J.
1987-01-01
Several methods have been developed and used to extract and chemically analyze the two major types of fluid inclusions in bedded salt from the Palo Duro Basin, Texas. Data on the ratio K: Ca: Mg were obtained on a few of the clouds of tiny inclusions in "chevron" salt, representing the brines from which the salt originally crystallized. Much more complete quantitative data (Na, K, Ca, Mg, Sr, Cl, SO4 and Br) were obtained on ??? 120 individual "large" (mostly ???500 ??m on an edge, i.e., ??? ??? 1.6 ?? 10-4 g) inclusions in recrystallized salt. These latter fluids have a wide range of compositions, even in a given piece of core, indicating that fluids of grossly different composition were present in these salt beds during the several (?) stages of recrystallization. The analytical results indicating very large inter-and intra-sample chemical variation verify the conclusion reached earlier, from petrography and microthermometry, that the inclusion fluids in salt and their solutes are generally polygenetic. The diversity in composition stems from the combination of a variety of sources for the fluids (Permian sea, meteoric, and groundwater, as well as later migrating ground-, formation, or meteoric waters of unknown age), and a variety of subsequent geochemical processes of dissolution, precipitation and rock-water interaction. The compositional data are frequently ambiguous but do provide constraints and may eventually yield a coherent history of the events that produced these beds. Such an understanding of the past history of the evaporite sequence of the Palo Duro Basin should help in predicting the future role of the fluids in the salt if a nuclear waste repository is sited there. ?? 1987.
Petrography and preliminary interpretations of the crystalline breccias from the Manson M-1 core
NASA Technical Reports Server (NTRS)
Bell, M. S.; Reagan, M. K.; Anderson, R. R.; Foster, C. T., Jr.
1993-01-01
The M-1 core was drilled on the eastern edge of the central uplift within the Manson Impact Structure in Iowa. The lower 107.9 m of the core consists of crystalline breccias. Twelve intervals of thin sections from this core have been studied for preliminary discussion. The breccias are divided into three units by matrix size and abundance. Unit 1 is characterized by a high volume fraction of matrix, and a decreasing proportion of matrix with depth. This matrix is nearly isotropic and consists of grains less than 0.005 to less than 0.02 mm in length. The matrix between 112 and 146 meters depth consists of a crystalline intergrowth of felsic and opaque minerals with or without chlorite. This was the hottest section of the core after impact, and may have undergone high temperature metamorphic recrystallization. Unit 2 is transitional between units 1 and 3, and is delineated by a rapid increase in grain size to .01-.04 mm and a decrease in matrix abundance to 10 percent. Unit 3 has a coarse, often porous matrix, whose abundance changes from about 10 percent at the top to about 2 percent at the base. Grain sizes range from 0.01-0.1 mm over this interval and coarsen with depth. Changes in the character of the matrix as well as the changes in clast lithology and abundance outlined below suggest that unit 3 is in-situ brecciated basement with injected melt and shale fragments; unit 1 is a crater veneer deposit consisting of transported basement materials and unit 2 is a mixed zone between units 1 and 3.
NASA Astrophysics Data System (ADS)
Huang, Wentao; Dupont-Nivet, Guillaume; Lippert, Peter C.; van Hinsbergen, Douwe J. J.; Dekkers, Mark J.; Waldrip, Ross; Ganerød, Morgan; Li, Xiaochun; Guo, Zhaojie; Kapp, Paul
2015-03-01
The Paleogene latitude of the Lhasa terrane (southern Tibet) can constrain the age of the onset of the India-Asia collision. Estimates for this latitude, however, vary from 5°N to 30°N, and thus, here, we reassess the geochronology and paleomagnetism of Paleogene volcanic rocks from the Linzizong Group in the Linzhou basin. The lower and upper parts of the section previously yielded particularly conflicting ages and paleolatitudes. We report consistent 40Ar/39Ar and U-Pb zircon dates of 52 Ma for the upper Linzizong, and 40Ar/39Ar dates ( 51 Ma) from the lower Linzizong are significantly younger than U-Pb zircon dates (64-63 Ma), suggesting that the lower Linzizong was thermally and/or chemically reset. Paleomagnetic results from 24 sites in lower Linzizong confirm a low apparent paleolatitude of 5°N, compared to the upper part ( 20°N) and to underlying Cretaceous strata ( 20°N). Detailed rock magnetic analyses, end-member modeling of magnetic components, and petrography from the lower and upper Linzizong indicate widespread secondary hematite in the lower Linzizong, whereas hematite is rare in upper Linzizong. Volcanic rocks of the lower Linzizong have been hydrothermally chemically remagnetized, whereas the upper Linzizong retains a primary remanence. We suggest that remagnetization was induced by acquisition of chemical and thermoviscous remanent magnetizations such that the shallow inclinations are an artifact of a tilt correction applied to a secondary remanence in lower Linzizong. We estimate that the Paleogene latitude of Lhasa terrane was 20 ± 4°N, consistent with previous results suggesting that India-Asia collision likely took place by 52 Ma at 20°N.
NASA Astrophysics Data System (ADS)
Rezeau, Hervé; Moritz, Robert; Beaudoin, Georges
2017-03-01
The Lac Herbin deposit consists of a network of mineralized, parallel steep-reverse faults within the synvolcanic Bourlamaque granodiorite batholith at Val-d'Or in the Archean Abitibi greenstone belt. There are two related quartz-tourmaline-carbonate fault-fill vein sets in the faults, which consist of subvertical fault-fill veins associated with subhorizontal veins. The paragenetic sequence is characterized by a main vein filling ore stage including quartz, tourmaline, carbonate, and pyrite-hosted gold, chalcopyrite, tellurides, pyrrhotite, and cubanite inclusions. Most of the gold is located in fractures in deformed pyrite and quartz in equilibrium with chalcopyrite and carbonates, with local pyrrhotite, sphalerite, galena, cobaltite, pyrite, or tellurides. Petrography and microthermometry on quartz from the main vein filling ore stage reveal the presence of three unrelated fluid inclusion types: (1) gold-bearing aqueous-carbonic inclusions arranged in three-dimensional intragranular clusters in quartz crystals responsible for the main vein filling stage, (2) barren high-temperature, aqueous, moderately saline inclusions observed in healed fractures, postdating the aqueous-carbonic inclusions, and considered as a remobilizing agent of earlier precipitated gold in late fractures, and (3) barren low-temperature, aqueous, high saline inclusions in healed fractures, similar to the crustal brines reported throughout the Canadian Shield and considered to be unrelated to the gold mineralization. At the Lac Herbin deposit, the aqueous-carbonic inclusions are interpreted to have formed first and to represent the gold-bearing fluid, which were generated contemporaneous with regional greenschist facies metamorphism. In contrast, the high-temperature aqueous fluid dissolved gold from the main vein filling ore stage transported and reprecipitated it in late fractures during a subsequent local thermal event.
NASA Technical Reports Server (NTRS)
Dressler, Burkhard O.; Sharpton, Virgil L.; Schwandt, Craig S.; Ames, Doreen
2004-01-01
The impact breccias encountered in drill hole Yaxcopoil-1 (Yax-1) in the Chicxulub impact structure have been subdivided into six units. The two uppermost units are redeposited suevite and suevite, and together are only 28 m thick. The two units below are interpreted as a ground surge deposit similar to a pyroclastic flow in a volcanic regime with a fine-grained top (unit 3; 23 m thick; nuee ardente) and a coarse breccia (unit 4; approx.15 m thick) below. As such, they consist of a melange of clastic matrix breccia and melt breccia. The pyroclastic ground surge deposit and the two units 5 and 6 below are related to the ejecta curtain. Unit 5 (approx.24 m thick) is a silicate impact melt breccia, whereas unit 6 (10 m thick) is largely a carbonate melt breccia with some clastic-matrix components. Unit 5 and 6 reflect an overturning of the target stratigraphy. The suevites of units 1 and 2 were deposited after emplacement of the ejecta curtain debris. Reaction of the super-heated breccias with seawater led to explosive activity similar to phreomagmatic steam explosion in volcanic regimes. This activity caused further brecciation of melt and melt fragments. The fallback suevite deposit of units 1 and 2 is much thinner than suevite deposits at larger distances from the center of the impact structure than the 60 km of the Yax-1 drill site. This is evidence that the fallback suevite deposit (units 1 and 2) originally was much thicker. Unit 1 exhibits sedimentological features suggestive of suevite redeposition. Erosion possibly has occurred right after the IUT impact due to seawater backsurge, but erosion processes spanning thousands of years may also have been active. Therefore, the top of the 100 m thick impactite sequence at Yaxcopoil, in our opinion, is not the K/T boundary.
NASA Astrophysics Data System (ADS)
Ray, D.; Mahajan, R. R.; Shukla, A. D.; Goswami, T. K.; Chakraborty, S.
2017-08-01
A single piece of meteorite fell on Kamargaon village in the state of Assam in India on November 13, 2015. Based on mineralogical, chemical, and oxygen isotope data, Kamargaon is classified as an L-chondrite. Homogeneous olivine (Fa: 25 ± 0.7) and low-Ca pyroxene (Fs: 21 ± 0.4) compositions with percent mean deviation of <2, further suggest that Kamargaon is a coarsely equilibrated, petrologic type 6 chondrite. Kamargaon is thermally metamorphosed with an estimated peak metamorphic temperature of 800 °C as determined by two-pyroxene thermometry. Shock metamorphism studies suggest that this meteorite include portions of different shock stages, e.g., S3 and S4 (Stöffler et al.; however, local presence of quenched metal-sulfide melt within shock veins/pockets suggest disequilibrium melting and relatively higher shock stage of up to S5 (Bennett and McSween). Based on noble gas isotopes, the cosmic-ray exposure age is estimated as 7.03 ± 1.60 Ma and nitrogen isotope composition (δ15N = 18‰) also correspond well with the L-chondrite group. The He-U, Th, and K-Ar yield younger ages (170 ± 25 Ma 684 ± 93, respectively) and are discordant. A loss of He during the resetting event is implied by the lower He-U and Th age. Elemental ratios of trapped Ar, Kr, and Xe can be explained through the presence of a normal Q noble gas component. Relatively low activity of 26Al (39 dpm/kg) and the absence of 60Co activity suggest a likely low shielding depth and envisage a small preatmospheric size of the meteoroid (<10 cm in radius). The Kr isotopic ratios (82Kr/84Kr) further argue that the meteorite was derived from a shallow depth.
NASA Astrophysics Data System (ADS)
Regan, S.; Williams, M. L.; Mahan, K. H.; Orlandini, O. F.; Jercinovic, M. J.; Leslie, S. R.; Holland, M.
2012-12-01
Ultramylonitic shear zones typically involve intense strain localization, and when developed over large regions can introduce considerable heterogeneity into the crust. The Cora Lake shear zone (CLsz) displays several 10's to 100's of meters-wide zones of ultramylonite distributed throughout its full 3-5 km mylonitized width. Detailed mapping, petrography, thermobarometry, and in-situ monazite geochronology suggest that it formed during the waning phases of granulite grade metamorphism and deformation, within one of North America's largest exposures of polydeformed lower continental crust. Anastomosing zones of ultramylonite contain recrystallized grain-sizes approaching the micron scale and might appear to suggest lower temperature mylonitization. However, feldspar and even clinopyroxene are dynamically recrystallized, and quantitative thermobarometry of syn-deformational assemblages indicate high P and T conditions ranging from 0.9 -10.6 GPa and 775-850 °C. Even at these high T's, dynamic recovery and recrystallization were extremely limited. Rocks with low modal quartz have extremely small equilibrium volumes. This is likely the result of inefficient diffusion, which is further supported by the unannealed nature of the crystals. Local carbonate veins suggests that H2O poor, CO2 rich conditions may have aided in the preservation of fine grain sizes, and may have inhibited dynamic recovery and recrystallization. The Cora Lake shear zone is interpreted to have been relatively strong and to have hardened during progressive deformation. Garnet is commonly fractured perpendicular to host rock fabric, and statically replaced by both biotite and muscovite. Pseudotachylite, with the same sense of shear, occurs in several ultramylonitized mafic granulites. Thus, cataclasis and frictional melt are interpreted to have been produced in the lower continental crust, not during later reactivation. We suggest that strengthening of rheologically stiffer lithologies led to extreme localization, and potentially earthquakes in quartz-absent hardened lithologies. Cora Lake shearing represents the culmination of a deformation trend of increasing strength, strain partitioning, and localization within a polydeformed, strengthened lower continental crust.
First description of Phanerozoic radiaxial fibrous dolomite
NASA Astrophysics Data System (ADS)
Richter, D. K.; Heinrich, F.; Geske, A.; Neuser, R. D.; Gies, H.; Immenhauser, A.
2014-05-01
The petrographic analysis and crystallographic analysis of concretionary carbonate cements ("coal balls") from Carboniferous paralic swamp deposits reveal the presence of (length fast) radiaxial fibrous dolomite (RFD), a fabric not previously reported from the Phanerozoic. This finding is of significance as earlier reports of Phanerozoic radiaxial fibrous carbonates are exclusively of calcite mineralogy. Dolomite concretions described here formed beneath marine transgressive intervals within palustrine coal seams. This is of significance as seawater was arguably the main source of Mg2 + ions for dolomite formation. Here, data from optical microscopy, cathodoluminescence, electron backscattered diffraction, X-ray diffraction and geochemical analyses are presented to characterize three paragenetic dolomite phases and one calcite phase in these concretions. The main focus is on the earliest diagenetic, non-stoichiometric (degree of order: 0.41-0.46) phase I, characterized by botryoidal dolomite constructed of fibres up to 110 μm wide with a systematic undulatory extinction and converging crystal axes. Petrographic and crystallographic evidence clearly qualifies phase I dolomite as radiaxial fibrous. Conversely, fascicular optical fabrics were not found. Carbon-isotope ratios (δ13C) are depleted (between - 11.8 and - 22.1‰) as expected for carbonate precipitation from marine pore-fluids in organic-matter-rich, paralic sediment. Oxygen isotope (δ18O) ratios range between - 1.3 and - 6.0‰. The earliest diagenetic nature of these cements is documented by the presence of ubiquitous, non-compacted fossil plant remains encased in phase I dolomite as well as by the complex zoned luminescence patterns in the crystals and is supported by crystallographic and thermodynamic considerations. It is argued that organic matter, and specifically carboxyl groups, reduced thermodynamic barriers for dolomite formation and facilitated Mg/CaCO3 precipitation. The data shown here reveal a hitherto unknown level of complexity with respect to radiaxial fibrous carbonates and are of importance for those concerned with dolomite and carbonate petrography in general.
NASA Astrophysics Data System (ADS)
Siewers, Fredrick D.; Phillips, Tom L.
2015-11-01
Petrographic analyses of 25 coal balls from well-studied paleobotanical profiles in the Middle Pennsylvanian Herrin Coal (Westphalian D, Illinois Basin) and five select coal balls from university collections, indicate that Herrin Coal-ball peats were permineralized by fibrous and non-fibrous carbonates. Fibrous carbonates occur in fan-like to spherulitic arrays in many intracellular (within tissue) pores, and are best developed in relatively open extracellular (between plant) pore spaces. Acid etched fibrous carbonates appear white under reflected light and possess a microcrystalline texture attributable to abundant microdolomite. Scanning electron microscopy, X-ray diffraction, and electron microprobe analysis demonstrate that individual fibers have a distinct trigonal prism morphology and are notable for their magnesium content (≈ 9-15 mol% MgCO3). Non-fibrous carbonates fill intercrystalline spaces among fibers and pores within the peat as primary precipitates and neomorphic replacements. In the immediate vicinity of plant cell walls, non-fibrous carbonates cut across fibrous carbonates as a secondary, neomorphic phase attributed to coalification of plant cell walls. Dolomite occurs as diagenetic microdolomite associated with the fibrous carbonate phase, as sparite replacements, and as void-filling cement. Maximum dolomite (50-59 wt.%) is in the top-of-seam coal-ball zone at the Sahara Mine, which is overlain by the marine Anna Shale. Coal-ball formation in the Herrin Coal began with the precipitation of fibrous high magnesium calcite. The trigonal prism morphology of the carbonate fibers suggests rapid precipitation from super-saturated, meteoric pore waters. Carbonate precipitation from marine waters is discounted on the basis of stratigraphic, paleobotanical, and stable isotopic evidence. Most non-fibrous carbonate is attributable to later diagenetic events, including void-fill replacements, recrystallization, and post-depositional fracture fills. Evidence suggests that CO2 degassing was important in coal-ball formation in the Herrin Coal, which mainly occurred sequentially upward with peat accumulation in the sites studied.
Settling equivalence of detrital minerals and grain-size dependence of sediment composition
NASA Astrophysics Data System (ADS)
Garzanti, Eduardo; Andò, Sergio; Vezzoli, Giovanni
2008-08-01
This study discusses the laws which govern sediment deposition, and consequently determine size-dependent compositional variability. A theoretical approach is substantiated by robust datasets on major Alpine, Himalayan, and African sedimentary systems. Integrated (bulk-petrography, heavy-mineral, X-ray powder diffraction) multiple-window analyses at 0.25ϕ to 0.50ϕ sieve interval of eighty-five fluvial, beach, and eolian-dune samples, ranging from very fine silt to coarse sand, document homologous intrasample compositional trends, revealed by systematic concentration of denser grains in finer-grained fractions (“size-density sorting”). These trends are explained by the settling-equivalence principle, stating that detrital minerals are deposited together if their settling velocity is the same. Settling of silt is chiefly resisted by fluid viscosity, and Stokes' law predicts that size differences between detrital minerals in ϕ units (“size shifts”) are half the difference between the logarithms of their submerged densities. Settling of pebbles is chiefly resisted by turbulence effects, and the Impact law predicts double size shifts than Stokes' law. Settling of sand is resisted by both viscosity and turbulence, the settling-equivalence formula is complex, and size shifts increase - with increasing settling velocity and grain size - from those predicted by Stokes' law to those predicted by the Impact law. In wind-laid sands, size shifts match those predicted by the Impact law; size-density sorting is thus greater than in water-laid fine sands. New analytical, graphical, and statistical techniques for rigorous settling-equivalence analysis of terrigenous sediments are illustrated. Deviations associated with non-spherical shape, density anomalies, inheritance from source rocks, or mixing of detrital species with contrasting provenance and different size distribution are also tentatively assessed. Such integrated theoretical and experimental approach allows us to mathematically predict intrasample compositional variability of water-laid and wind-laid sediments, once the density of detrital components is known.
Petrography and geochemistry of precambrian rocks from GT-2 and EE-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laughlin, A.W.; Eddy, A.
1977-08-01
During the drilling of GT-2 and EE-1, 27 cores totaling about 35 m were collected from the Precambrian section. Samples of each different lithology in each core were taken for petrographic and whole-rock major- and trace-element analyses. Whole-rock analyses are now completed on 37 samples. From these data four major Precambrian units were identified at the Fenton Hill site. Geophysical logs and cuttings were used to extrapolate between cores. The most abundant rock type is an extremely variable gneissic unit comprising about 75% of the rock penetrated. This rock is strongly foliated and may range compositionally from syenogranitic to tonaliticmore » over a few centimeters. The bulk of the unit falls within the monzogranite field. Interlayered with the gneiss is a ferrohastingsite-biotite schist which compositionally resembles a basaltic andesite. A fault contact between the schist and gneiss was observed in one core. Intrusive into this metamorphic complex are two igneous rocks. A leucocratic monzogranite occurs as at least two 15-m-thick dikes, and a biotite-granodiorite body was intercepted by 338 m of drill hole. Both rocks are unfoliated and equigranular. The biotite granodiorite is very homogeneous and is characterized by high modal contents of biotite and sphene and by high K/sub 2/O, TiO/sub 2/, and P/sub 2/O/sub 5/ contents. Although all of the cores examined show fractures, most of these are tightly sealed or healed. Calcite is the most abundant fracture filling mineral, but epidote, quartz, chlorite, clays or sulfides have also been observed. The degree of alteration of the essential minerals normally increases as these fractures are approached. The homogeneity of the biotite granodiorite at the bottom of GT-2 and the high degree of fracture filling ensure an ideal setting for the Hot Dry Rock Experiment.« less
Catalog of Apollo 17 rocks. Volume 1: Stations 2 and 3 (South Massif)
NASA Technical Reports Server (NTRS)
Ryder, Graham
1993-01-01
The Catalog of Apollo 17 Rocks is a set of volumes that characterize each of 334 individually numbered rock samples (79 larger than 100 g) in the Apollo 17 collection, showing what each sample is and what is known about it. Unconsolidated regolith samples are not included. The catalog is intended to be used by both researchers requiring sample allocations and a broad audience interested in Apollo 17 rocks. The volumes are arranged geographically, with separate volumes for the South Massif and Light Mantle, the North Massif, and two volumes for the mare plains. Within each volume, the samples are arranged in numerical order, closely corresponding with the sample collection stations. The present volume, for the South Massif and Light Mantle, describes the 55 individual rock fragments collected at Stations two, two-A, three, and LRV-five. Some were chipped from boulders, others collected as individual rocks, some by raking, and a few by picking from the soil in the processing laboratory. Information on sample collection, petrography, chemistry, stable and radiogenic isotopes, rock surface characteristics, physical properties, and curatorial processing is summarized and referenced as far as it is known up to early 1992. The intention has been to be comprehensive: to include all published studies of any kind that provide information on the sample, as well as some unpublished information. References which are primarily bulk interpretations of existing data or mere lists of samples are not generally included. Foreign language journals were not scrutinized, but little data appears to have been published only in such journals. We have attempted to be consistent in format across all of the volumes, and have used a common reference list that appears in all volumes. Where possible, ages based on Sr and Ar isotopes have been recalculated using the 'new' decay constants recommended by Steiger and Jager; however, in many of the reproduced diagrams the ages correspond with the 'old' decay constants. In this volume, mg' or Mg' = atomic Mg/(Mg +Fe).
Petrogenesis of Western Cascades Silicic Volcanics Near Sweet Home, Oregon
NASA Astrophysics Data System (ADS)
Cook, G. W.; White, C. M.
2002-12-01
Silicic lavas in the Menagerie Wilderness east of Sweet Home, Oregon are Oligocene to Miocene in age and range in composition from dacite (low K) to trachydacite (high K) and rhyolite (medium K). Three distinct silicic centers have been distinguished through a combination of field observation, chemistry and petrography. Phenocryst assemblages in rocks of the centers are plagioclase-hornblende-magnetite (Rooster Rock rhyolite), plagioclase-quartz-magnetite (Soda Fork rhyolite) and quartz-plagioclase-biotite-hornblende-magnetite (Moose Mt. rhyolite). The silicic volcanics in the study area are similar in terms of mineral content and overall chemical composition. Despite this, chemical evidence suggests that the three centers are petrologically unrelated. REE variations and least squares modeling of major element compositions are consistent with fractionation of plagioclase and hornblende. The rhyolites have moderate Eu anomalies and have flat MREE and HREE signatures. Least squares models and bivariate plots of major and trace elements also suggest fractionation of the aforementioned phases for both the andesite to dacite, and dacite to rhyolite steps. Comparisons with similar silicic centers show the Menagerie rocks share affinities with High Cascades rocks thought to have been derived through fractional crystallization (Crater Lake and South Sister). Plots of ratios of incompatible trace elements were utilized to determine if assimilation played some role alongside fractional crystallization in differentiation. Plots of Ba/La vs. Ba, Rb/Zr vs. Rb and Rb/Th vs. Rb show systematic positive increases in the ratios between a plausible parent magma (icelandite) and the rhyolites. These increases are not easily explained by fractional crystallization but can be modeled by assimilation of silicic crust. Overall, it seems likely that the three centers evolved independently through similar petrogenetic processes from an andesitic parent. The most plausible petrogenetic scenario involves some combination of fractional crystallization and assimilation of partial melts of silicic crust.
Yang, Y.; Mahler, B.J.; Van Metre, P.C.; Ligouis, B.; Werth, C.J.
2010-01-01
Measurements of black carbon (BC) using either chemical or thermal oxidation methods are generally thought to indicate the amount of char and/or soot present in a sample. In urban environments, however, asphalt and coal-tar particles worn from pavement are ubiquitous and, because of their pyrogenic origin, could contribute to measurements of BC. Here we explored the effect of the presence of asphalt and coal-tar particles on the quantification of BC in a range of urban environmental sample types, and evaluated biases in the different methods used for quantifying BC. Samples evaluated were pavement dust, residential and commercial area soils, lake sediments from a small urban watershed, and reference materials of asphalt and coal tar. Total BC was quantified using chemical treatment through acid dichromate (Cr2O7) oxidation and chemo-thermal oxidation at 375??C (CTO-375). BC species, including soot and char/charcoal, asphalt, and coal tar, were quantified with organic petrographic analysis. Comparison of results by the two oxidation methods and organic petrography indicates that both coal tar and asphalt contribute to BC quantified by Cr2O7 oxidation, and that coal tar contributes to BC quantified by CTO-375. These results are supported by treatment of asphalt and coal-tar reference samples with Cr2O7 oxidation and CTO-375. The reference asphalt is resistant to Cr2O7 oxidation but not to CTO-375, and the reference coal tar is resistant to both Cr2O7 oxidation and CTO-375. These results indicate that coal tar and/or asphalt can contribute to BC measurements in samples from urban areas using Cr2O7 oxidation or CTO-375, and caution is advised when interpreting BC measurements made with these methods. ?? 2010 Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMechan et al.
2001-08-31
Existing reservoir models are based on 2-D outcrop;3-D aspects are inferred from correlation between wells,and so are inadequately constrained for reservoir simulations. To overcome these deficiencies, we initiated a multidimensional characterization of reservoir analogs in the Cretaceous Ferron Sandstone in Utah.The study was conducted at two sites(Corbula Gulch Coyote Basin); results from both sites are contained in this report. Detailed sedimentary facies maps of cliff faces define the geometry and distribution of potential reservoir flow units, barriers and baffles at the outcrop. High resolution 2-D and 3-D ground penetrating radar(GPR) images extend these reservoir characteristics into 3-D to allow developmentmore » of realistic 3-D reservoir models. Models use geometric information from the mapping and the GPR data, petrophysical data from surface and cliff-face outcrops, lab analyses of outcrop and core samples, and petrography. The measurements are all integrated into a single coordinate system using GPS and laser mapping of the main sedimentologic features and boundaries. The final step is analysis of results of 3-D fluid flow modeling to demonstrate applicability of our reservoir analog studies to well siting and reservoir engineering for maximization of hydrocarbon production. The main goals of this project are achieved. These are the construction of a deterministic 3-D reservoir analog model from a variety of geophysical and geologic measurements at the field sites, integrating these into comprehensive petrophysical models, and flow simulation through these models. This unique approach represents a significant advance in characterization and use of reservoir analogs. To data,the team has presented five papers at GSA and AAPG meetings produced a technical manual, and completed 15 technical papers. The latter are the main content of this final report. In addition,the project became part of 5 PhD dissertations, 3 MS theses,and two senior undergraduate research projects.« less
NASA Astrophysics Data System (ADS)
Aird, H. M.
2016-12-01
A research project into the local petrology was integrated into the Spring 2016 Petrology and Optical Mineralogy course at California State University, Chico. This is a required majors course, typically taken during spring of the junior year, with an enrollment of 10-20 students. Since the labs for this course have a strong focus on petrography, a research project was introduced to give students experience in using a multi-faceted approach to investigate a problem. In many cases, this is their first taste of research. During the first week of the Spring 2016 class, students were introduced to the research question: In the broader context of Californian tectonic history, are the Bucks Lake and Grizzly plutons of the northern Sierra Nevada petrogenetically related? With faculty guidance over the course of the semester, students carried out fieldwork and sampling, lithologic description, selection of the best samples for further analysis, thin section production, petrographic description, and analysis and interpretation of published geochemical data. Research activities were strategically scheduled within the course framework such that students were academically prepared to carry out each task. Each student was responsible for generating all the data for one sample, and data were then collated as a class, so students wrote their individual final reports using all the data collected by the class. Careful scaffolding of writing assignments throughout the semester guided students through the preparation of an academic-style scientific report, while allowing for repeated feedback on their writing style and content. In mid-May, the class presented a group poster at the College of Natural Sciences annual poster symposium, and were awarded `Best Student Class Project' by the judges. Anecdotal student feedback indicated they highly valued the research experience and some were inspired to pursue individual undergraduate research projects under faculty supervision.
Hower, J.C.; Ruppert, L.F.; Eble, C.F.
2007-01-01
The Middle Pennsylvanian/Langsettian (Westphalian A) Elswick coal bed, correlative to the Upper Banner of Virginia, is a rare example of a mined high-sulfur (> 2%) coal in Eastern Kentucky, a region known for low-sulfur coals. To characterize lateral variation in the geochemistry, petrography, and palynology of the Elswick coal bed, three sites were sampled along a southeast-northwest transect within a single mine. At the southeastern site, the lower 101??cm of the 116-cm thick coal is dull, generally dominated by durain and dull clarain. While all benches at this site fit within the previously-defined "mixed palynoflora - moderate/low vitrinite group," suggesting a stressed environment of deposition, the palynology of the benches of the dull interval show greater diversity than might be expected just from the petrology. Lithology is generally similar between the sites, but each site has some differences in the petrology. Overall, the coal bed shows significant lateral variation in properties at the mine scale, some of which can be attributed to the gain or loss of upper and lower lithologies, either through an actual physical merging or through the change in character of lithotypes. Sulfur content varies between the three sites examined for this study. Site 3, located in the northwestern portion of the study area is characterized by a strikingly high sulfur zone (7.45%) in the middle of the coal bed, a feature missing at the other sites. Pyrite and marcasite, in a mid-seam lithotype at the northwestern site (site 3), show signs of overgrowths, indicating multiple generations of sulfide emplacement. The high-sulfur site 3 lithologies all have massive overgrowths of euhedral and framboidal pyrite, fracture- and cleat-fill pyrite, and sulfide emplacement in fusinite lumens. Sulfur is high throughout the mine area, but variations are evident in the extent of secondary growth of sulfides. ?? 2006 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Curry, Adam; Caricchi, Luca; Lipman, Peter
2017-04-01
Large, explosive volcanic eruptions can have both immediate and long-term negative effects on human societies. Statistical analyses of volcanic eruptions show that the frequency of the largest eruptions on Earth (> ˜450 km3) differs from that observed for smaller eruptions, suggesting different physical processes leading to eruption. This project will characterize the petrography, whole-rock geochemistry, mineral chemistry, and zircon geochronology of four caldera-forming ignimbrites from the San Juan caldera cluster, Colorado, to determine the physical processes leading to eruption. We collected outflow samples along stratigraphy of the three caldera-forming ignimbrites of the San Luis caldera complex: the Nelson Mountain Tuff (>500 km3), Cebolla Creek Tuff (˜250 km3), and Rat Creek Tuff (˜150 km3); and we collected samples of both outflow and intracaldera facies of the Snowshoe Mountain Tuff (>500 km3), which formed the Creede caldera. Single-crystal sanidine 40Ar/39Ar ages show that these eruptions occurred in rapid succession between 26.91 ± 0.02 Ma (Rat Creek) and 26.87 ± 0.02 Ma (Snowshoe Mountain), providing a unique opportunity to investigate the physical processes leading to a rapid sequence of large, explosive volcanic eruptions. Recent studies show that the average flux of magma is an important parameter in determining the frequency and magnitude of volcanic eruptions. High-precision isotope-dilution thermal ionization mass spectrometry (ID-TIMS) zircon geochronology will be performed to determine magma fluxes, and cross-correlation of chemical profiles in minerals will be performed to determine the periodicity of magma recharge that preceded these eruptions. Our project intends to combine these findings with similar data from other volcanic regions around the world to identify physical processes controlling the regional and global frequency-magnitude relationships of volcanic eruptions.
NASA Astrophysics Data System (ADS)
Pacle, Nichole Anthony D.; Dimalanta, Carla B.; Ramos, Noelynna T.; Payot, Betchaida D.; Faustino-Eslava, Decibel V.; Queaño, Karlo L.; Yumul, Graciano P.
2017-07-01
The Cenozoic sedimentary sequences of southern Samar Island in eastern Philippines were examined to understand the unroofing history of an ancient arc terrane. Petrographic and geochemical data revealed varying degrees of inputs from the ophiolite basement and differences in modal compositions. The sedimentary units are mostly made up of lithic fragments. The Late Oligocene to Early Miocene Daram Formation contains more chert and volcanic fragments whereas the late Middle Miocene to Early Pliocene Catbalogan Formation is dominantly composed of ultramafic components. These variances are correspondingly reflected in the geochemical signatures of these two sedimentary formations. The Catbalogan Formation clastic rocks have higher volatile-free MgO and Fe2O3 values (average: 8.4% for both oxides) compared to the Daram Formation samples (average: 5.1 and 6.3%, respectively). Geochemical variations are also reflected in the Co, Cr and Ni values: the Catbalogan Formation samples reflect higher concentrations (Co: 15-57 ppm; Cr: 231-1094 ppm; Ni: 84-484 ppm) compared to the Daram Formation samples (Co: 24-32 ppm; Cr: 234-418 ppm; Ni: 212-323 ppm). These observations suggest that the Daram Formation eroded and transported more of the crustal portions of the ophiolite, while the younger Catbalogan Formation represents a later exhumation and subsequent erosion of the ultramafic section. An oceanic island arc (OIA) setting is proposed for the two formations based on several tectonic discrimination diagrams (e.g., Th-La-Sc, La vs. Th). The OIA signature is further supported by their smooth chondrite-normalized rare earth element (REE) patterns with no obvious Eu anomaly as well as LREE enrichment which are typical of sediments deposited in OIA setting. Based on the dominantly ophiolitic provenance of the Daram and Catbalogan formations, the post-emplacement history of the nearby Samar Ophiolite is constrained during the Late Oligocene to Early Pliocene period.
Fluid-rock Interactions recorded in Serpentinites subducted to 60-80 km Depth
NASA Astrophysics Data System (ADS)
Peters, D.; John, T.; Scambelluri, M.; Pettke, D. T.
2016-12-01
The HP metamorphic serpentinised peridotites of Erro-Tobbio (ET, Italy) offer a unique possibility to study fluid-rock interactions in subducted ultrabasic rocks that reached 550-650°C at 2-2.5 GPa. They contain metamorphic olivine + Ti-clinohumite in both the serpentinite matrix and veins cutting the rock foliation, interpreted to represent partial serpentinite dehydration fluid pathways [1,2] being variably retrogressed as e.g., indicated by chrysotile/lizardite mesh textures in vein olivine in strongly altered samples. This study aims to constraining the origin of fluid(s) and the scale(s) of fluid-rock interaction based on major to trace element systematics employing detailed bulk rock (nanoparticulate pressed powder pellet LA-ICP-MS [3] and ion chromatography / liquid ICP-MS analysis), and in situ mineral analysis (work in progress). Bulk data show moderate fluid-mobile element (FME) enrichment for Cs, Rb, Ba, Pb, As, and Sb (up to 100 times primitive mantle (PM)), W (1000 PM), and B (10000 PM). Alkali over U ratios of compiled serpentinite data (n ˜ 620) reveal distinctive global FME enrichment trends for MOR vs. forearc (FA) serpentinisation. ET serpentinites fall into the latter, indicating both sediment-equilibrated fluids and the preservation of characteristic FME enrichment patterns in HP serpentinites. Petrography reveals a multiphase evolution of the HP veins including retrograde serpentinisation, whereas serpentinite hosts have remained largely unaffected by retrogression. Comparison of vein vs. wall rock bulk data indicate vein-forming fluids in equilibrium with wall rocks, however, without evidence for external fluid ingress. The preservation of multiple fluid-rock interaction episodes and the lack of external fluid ingress in the ET HP serpentinites indicate near-closed system behaviour throughout subduction and imprint of characteristic fluid signatures onto the mantle. [1] Scambelluri et al. (1995) Geology, 23, 459-462. [2] John et al. (2011) Earth Planet Sci Lett 308, 65-76. [3] Peters and Pettke (2016) GGR, DOI: 10.1111/ggr.12125.
NASA Astrophysics Data System (ADS)
Kyle, J. Richard; Ahn, Hyein; Gilg, H. Albert
2018-02-01
The Sierra Mojada District comprises multiple types of near-surface mineral concentrations ranging from polymetallic sulfide zones, "nonsulfide Zn" (NSZ) deposits, and a silver-rich Pb carbonate deposit hosted by lower Cretaceous carbonate strata. Hypogene concentrations of Fe-Zn-Pb-Cu-Ag sulfides and sulfosalts are locally preserved and are associated with hydrothermal dolomite and silica. Alteration mineralogy and sulfur isotope data suggest primary Zn-Pb-Ag mineralization from circa 200 °C hydrothermal fluids. The NSZ deposits dominantly consist of smithsonite and hemimorphite associated with local Mn-Fe oxides. The Red Zinc Zone consists of strata-bound zones dominantly of hemimorphite that fills pores in residual and resedimented Fe oxides. The White Zinc Zone shows local dissolution features, including internal sediments interbanded with and cemented by smithsonite. Similar Pb isotopic compositions of smithsonite, hemimorphite, and cerussite to Sierra Mojada galena document that the NSZ deposits originated from polymetallic carbonate-replacement sulfide deposits, with flow of metal-bearing groundwater being controlled by local topography and structural features in this extensional terrane. Oxygen isotope values for Sierra Mojada smithsonite are relatively constant (δ18OVSMOW = 20.9 to 23.3‰) but are unusually low compared to other supergene smithsonites. Using δ18OVSMOW (- 8‰) of modern groundwater at nearby Cuatrociénegas, smithsonite formational temperatures are calculated to have been between 26 to 35 °C. Smithsonite precipitation was favored by near-neutral conditions typical of carbonate terranes, whereas hemimorphite precipitated by reaction with wallrock silica and locally, or episodically, more acidic conditions resulting from sulfide oxidation. Transition to, and stabilization of, the modern desert climate over the past 9000 years from the Late Pleistocene wetter, cooler climate of northern Mexico resulted in episodic drawdown of the water table and termination of local supergene metal mobilization.
Ash Shutbah: A possible impact structure in Saudi Arabia
NASA Astrophysics Data System (ADS)
Gnos, Edwin; Hofmann, Beda A.; Schmieder, Martin; Al-Wagdani, Khalid; Mahjoub, Ayman; Al-Solami, Abdulaziz A.; Habibullah, Siddiq N.; Matter, Albert; Alwmark, Carl
2014-10-01
We have investigated the Ash Shutbah circular structure in central Saudi Arabia (21°37'N 45°39'E) using satellite imagery, field mapping, thin-section petrography, and X-ray diffraction of collected samples. The approximately 2.1 km sized structure located in flat-lying Jurassic Tuwaiq Mountain Limestone has been nearly peneplained by erosional processes. Satellite and structural data show a central area consisting of Dhruma Formation sandstones with steep bedding and tight folds plunging radially outward. Open folding occurs in displaced, younger Tuwaiq Mountain Limestone Formation blocks surrounding the central area, but is absent outside the circular structure. An approximately 60 cm thick, unique folded and disrupted orthoquartzitic sandstone marker bed occurring in the central area of the structure is found 140 m deeper in undisturbed escarpment outcrops located a few hundred meters west of the structure. With exception of a possible concave shatter cone found in the orthoquartzite of the central area, other diagnostic shock features are lacking. Some quartz-rich sandstones from the central area show pervasive fracturing of quartz grains with common concussion fractures. This deformation was followed by an event of quartz dissolution and calcite precipitation consistent with local sea- or groundwater heating. The combination of central stratigraphic uplift of 140 m, concussion features in discolored sandstone, outward-dipping concentric folds in the central area, deformation restricted to the rocks of the ring structure, a complex circular structure of 2.1 km diameter that appears broadly consistent with what one would expect from an impact structure in sedimentary targets, and a possible shatter cone all point to an impact origin of the Ash Shutbah structure. In fact, the Ash Shutbah structure appears to be a textbook example of an eroded, complex impact crater located in flat-lying sedimentary rocks, where the undisturbed stratigraphic section can be studied in escarpment outcrops in the vicinity of the structure.
Metasomatic hydration of the Oeyama forearc peridotites: Tectonic implications
NASA Astrophysics Data System (ADS)
Nozaka, Toshio
2014-01-01
In contrast to the widely recognized aspects of serpentinization, initial stages of hydration and tectonic processes of unserpentinized peridotites are still unclear, but have important implications for understanding the lithospheric architecture of supra-subduction zones. This study provides petrological evidence from the Oeyama ophiolite, SW Japan, of the effects of high-temperature metasomatic hydration immediately before the cooling and ductile deformation of forearc peridotites. Key findings in this study are: 1) complex association of high-temperature metasomatic minerals: tremolitic amphibole, cummingtonite, phlogopite, chlorite, olivine and orthopyroxene in veins and in mylonites; 2) the systematic variation in Si and Na + K contents of the tremolitic amphibole, corresponding to its mode of occurrence and mineral association; and 3) the presence of thin (< 0.7 mm) veins of fine-grained olivine accompanied by a narrow diffusion zone of the host primary olivine. On the basis of petrography and mineral chemistry, the temporal sequence of hydration and deformation of the Oeyama ophiolite is considered as follows: 1) infiltration of slab-derived fluids, causing decomposition of primary pyroxene and chemical modification of primary olivine, 2) metasomatic formation of variable modal amounts of amphibole, phlogopite, chlorite, vein-forming olivine and secondary orthopyroxene at 650-750 °C; 3) early-stage mylonitization of the hydrous peridotites in localized shear zones; and 4) syntectonic serpentinization at 400-600 °C to form serpentinite mylonites. Paragenesis and amphibole compositions suggest comparable temperature conditions for metasomatism and early-stage mylonitization. Mylonitization occurred exclusively in hydrous peridotites, and the peridotite mylonites were preferentially overprinted by syntectonic serpentinization. Diffusion profiles of olivine cut by a vein suggest rapid cooling immediately after the metasomatic fluid infiltration. From these observations and calculations, it is concluded that the exhumation of the forearc peridotites was closely related to the infiltration of high-temperature metasomatic fluids and hydration occurred under a wide range of temperature conditions.
Downs, Drew
2016-01-01
The Taupo Volcanic Zone (TVZ), New Zealand, encompasses a wide variety of arc-related strata, although most of its small-volume (non-caldera-forming) eruptions are poorly-exposed and extensively hydrothermally altered. The Mihi Breccia is a stratigraphic sequence consisting of interbedded rhyolitic pyroclastic flows and lacustrine sediments with eruption ages of 281 ± 18 to at least 239 ± 6 ka (uncertainties at 2σ). In contrast to other small-volume rhyolitic eruptions within the TVZ, Mihi Breccia is relatively well-exposed within the Paeroa fault block, and contains minimal hydrothermal alteration. Pyroclastic flow characteristics and textures including: 1) breadcrusted juvenile clasts, 2) lack of welding, 3) abundant ash-rich matrix, 4) lack of fiamme and eutaxitic textures, 5) lack of thermal oxidation colors, 6) lack of cooling joints, 7) exclusive lacustrine sediment lithic clasts, and 8) interbedding with lacustrine sediments, all indicating that Mihi Breccia strata originated in a paleo-lake system. This ephemeral paleo-lake system is inferred to have lasted for > 50 kyr (based on Mihi Breccia age constraints), and referred to as Huka Lake. Mihi Breccia pyroclastic flow juvenile clast geochemistry and petrography correspond with similar-aged (264 ± 8, 263 ± 10, and 247 ± 4 ka) intra-caldera rhyolite domes filling the Reporoa caldera (source of the 281 ± 81 Kaingaroa Formation ignimbrite). These exposed intra-caldera rhyolite domes (as well as geophysically inferred subsurface domes) are proposed to be source vents for the Mihi Breccia pyroclastic flows. Soft-sediment deformation associated with Mihi Breccia strata indicate either seismic shock, rapid sediment loading during pyroclastic flow emplacement, or both. Thus, the Mihi Breccia reflects a prolonged series of subaqueous rhyolite dome building and associated pyroclastic flows, accompanied by seismic activity, emplaced into a large paleo-lake system within the TVZ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pigott, J.D.; Geiger, C.
1994-07-01
Recent field reconnaissance, petrography, nanno and foraminifera age determinations, and seismic stratigraphy of the Sepik and Piore subbasins of northern New Guinea reveal the existence of an extensive, tectonically unstable, Miocene-Pliocene carbonate shelf system. These findings represent the first recorded evidence of northern Papuan limestones coeval in age to those of the hydrocarbon productive Salawati Basin of Irian Jaya. Moreover, these observations also demonstrate the significance of episodic activities of the northern New Guinea fault zone upon the changes in carbonate sedimentation and diagenesis. During the Neogene, algal biosparites to foraminiferal biomicrites defined the clean portion of a mixed clastic-carbonatemore » shelf system of the northern New Guinea basin, which began at the central New Guinea cordillera and deepened northward. This shelf was interrupted by coral-coralline algal boundstone fringing- to patch-reef buildups with associated skeletal grainstones. Clean carbonates were spatially and temporally restricted to basement blocks, which episodically underwent uplift while terrigenous dilutes carbonates were more common in adjacently subsiding basement block bathymetric lows. These tectonic expressions were caused by the spatially transient nature of constraining bends of the evolving north New Guinea faults. As shown by seismic stratigraphy, by the late Miocene to the early Pliocene the uplift of the Bewani-Torricelli Mountains sagittally divided the shelf of the northern New Guinea basin into the Ramu-Sepik and the Piore basins. Continued regional sinistral transpression between the Pacific and the New Guinea leading edge of the Indo-Australian plates led to the reverse tilting of the Piore basin, the shallowing of the former distal shelf with concomitant extensive biolithite development (e.g., on subsiding volcanic islands) eventual uplifting of the Oenake Range, and en echelon faulting of the Bewani-Torricelli Mountains.« less
Assessment of CO2 Mineralization and Dynamic Rock Properties at the Kemper Pilot CO2 Injection Site
NASA Astrophysics Data System (ADS)
Qin, F.; Kirkland, B. L.; Beckingham, L. E.
2017-12-01
CO2-brine-mineral reactions following CO2 injection may impact rock properties including porosity, permeability, and pore connectivity. The rate and extent of alteration largely depends on the nature and evolution of reactive mineral interfaces. In this work, the potential for geochemical reactions and the nature of the reactive mineral interface and corresponding hydrologic properties are evaluated for samples from the Lower Tuscaloosa, Washita-Fredericksburg, and Paluxy formations. These formations have been identified as future regionally extensive and attractive CO2 storage reservoirs at the CO2 Storage Complex in Kemper County, Mississippi, USA (Project ECO2S). Samples from these formations were obtained from the Geological Survey of Alabama and evaluated using a suite of complementary analyses. The mineral composition of these samples will be determined using petrography and powder X-ray Diffraction (XRD). Using these compositions, continuum-scale reactive transport simulations will be developed and the potential CO2-brine-mineral interactions will be examined. Simulations will focus on identifying potential reactive minerals as well as the corresponding rate and extent of reactions. The spatial distribution and accessibility of minerals to reactive fluids is critical to understanding mineral reaction rates and corresponding changes in the pore structure, including pore connectivity, porosity and permeability. The nature of the pore-mineral interface, and distribution of reactive minerals, will be determined through imaging analysis. Multiple 2D scanning electron microscopy (SEM) backscattered electron (BSE) images and energy dispersive x-ray spectroscopy (EDS) images will be used to create spatial maps of mineral distributions. These maps will be processed to evaluate the accessibility of reactive minerals and the potential for flow-path modifications following CO2 injection. The "Establishing an Early CO2 Storage Complex in Kemper, MS" project is funded by the U.S. Department of Energy's National Energy Technology Laboratory and cost-sharing partners.
NASA Astrophysics Data System (ADS)
Downs, Drew T.
2016-11-01
The Taupo Volcanic Zone (TVZ), New Zealand, encompasses a wide variety of arc-related strata, although most of its small-volume (non-caldera-forming) eruptions are poorly-exposed and extensively hydrothermally altered. The Mihi Breccia is a stratigraphic sequence consisting of interbedded rhyolitic pyroclastic flows and lacustrine sediments with eruption ages of 281 ± 18 to at least 239 ± 6 ka (uncertainties at 2σ). In contrast to other small-volume rhyolitic eruptions within the TVZ, Mihi Breccia is relatively well-exposed within the Paeroa fault block, and contains minimal hydrothermal alteration. Pyroclastic flow characteristics and textures include: 1) prismatically jointed juvenile clasts, 2) lack of welding, 3) abundant ash-rich matrix, 4) lack of fiamme and eutaxitic textures, 5) lack of thermal oxidation colors, 6) lack of cooling joints, 7) exclusive lacustrine sediment lithic clasts, and 8) interbedding with lacustrine sediments, all indicating that Mihi Breccia strata originated in a paleo-lake system. This ephemeral paleo-lake system is inferred to have lasted for > 50 kyr (based on Mihi Breccia age constraints), and referred to as Huka Lake. Mihi Breccia pyroclastic flow juvenile clast geochemistry and petrography correspond with similar-aged (264 ± 8, 263 ± 10, and 247 ± 4 ka) intra-caldera rhyolite domes filling the Reporoa caldera (source of the 281 ka Kaingaroa Formation ignimbrite). These exposed intra-caldera rhyolite domes (as well as geophysically inferred subsurface domes) are proposed to be source vents for the Mihi Breccia pyroclastic flows. Soft-sediment deformation associated with Mihi Breccia strata indicates either seismic shock, rapid sediment loading during pyroclastic flow emplacement, or both. Thus, the Mihi Breccia reflects a prolonged series of subaqueous rhyolite dome building and associated pyroclastic flows, accompanied by seismic activity, emplaced into a large paleo-lake system within the TVZ.
A Petrographic History of Martian Meteorite ALH84001: Two Shocks and an Ancient Age
NASA Technical Reports Server (NTRS)
Treiman, Allan H.
1995-01-01
ALH84001 is an igneous meteorite, an orthopyroxenite of martian origin. It contains petrographic evidence of two shock metamorphic events, separated by thermal and chemical events. The evidence for two shock events suggests that ALH84001 is ancient and perhaps a sample of the martian highlands. From petrography and mineral chemistry, the history of ALH84001 must include: crystallization from magma, a first shock (impact) metamorphism, thermal metamorphism, low-temperature chemical alteration, and a second shock (impact) metamorphism. Originally, ALH84001 was igneous, an orthopyroxene-chromite cumulate. In the first shock event, the igneous rock was cut by melt-breccia or cataclastic veinlets, now bands of equigranular fine-grained pyroxene and other minerals (crush zones). Intact fragments of the cumulate were fractured and strained (now converted to polygonized zones). The subsequent thermal metamorphism (possibly related to the first shock) annealed the melt-breccia or cataclastic veinlets to their present granoblastic texture and permitted chemical homogenization of all mineral species present. The temperature of metamorphism was at least 875 C, based on mineral thermometers. Next, Mg-Fe-Ca carbonates and pyrite replaced plagioclase in both clasts and granular bands, producing ellipsoidal carbonate globules with sub-micron scale compositional stratigraphy, repeated identically in all globules, The second shock event produced microfault offsets of carbonate stratigraphy and other mineral contacts, radial fractures around chromite and maskelynite, and strain birefringence in pyroxene. Maskelynite could not have been preserved from the first shock event, because it would have crystallized back to plagioclase. The martian source area for ALH84001 must permit this complex, multiple impact history. Very few craters on young igneous surfaces are on or near earlier impact features. It is more likely that ALH84001 was ejected from an old igneous unit (Hesperian or Noachian age), pocked by numerous impact craters over its long exposure at the martian surface.
NASA Astrophysics Data System (ADS)
Dill, H. G.; Nolte, N.; Hansen, B. T.
2014-04-01
The Neo-Tethyan basin is known for its sediment-hosted Sr deposits in Spain, Turkey, Cyprus, and the Gulf Region. Sediment-hosted Sr-F deposits with base metals formed in the rim sinks and on top of salt domes resulting from halokinesis of Triassic evaporites near the southern edge of the Mediterranean Sea in Tunisia. These evaporites delivered part of the elements, created a basin-and-swell topography and provided the local and regional unconformities to which many of the mineral deposits are related. Five mineralizing processes, each with characteristic sedimentary ore textures, are related to this subsurface salt movement: (1 + 2) Early- and late-stage replacement ("zebra rocks"), (3) hydraulic fracturing ("fitting breccia" sensuDill and Weber, 2010b), (4) remobilization ("spinifex structures"), and (5) open-space filling ("caves and vein-like deposits"). Basinal brines from Mesozoic aquifers delivered Pb, Zn, Cd, REE, Y, Hg, and Se, while Sr, Cs, Be, Li, Cu and Co have been derived from Cenozoic salinas of the Neo-Tethyan basin. Mixing of Mesozoic and Cenozoic brines between 28 and 19 Ma provoked the emplacement of Sr-F mineralization at temperatures below 200 °C under strong alkaline conditions. Epigenetic polyphase Sr-F deposits bearing base-metals which are closely related to salt domes (Tunisian-Type) may be traced into epigenetic monophase Sr deposits within bioherms (Cyprus-Type) devoid of Pb, Zn and F. Moving eastward, syndiagenetic monophase Sr deposits in biostromes (Gulf-Type) herald the beginning of Sr concentration in Miocene sabkhas of the Neo-Tethys. The current results are based upon field-related sediment petrography and on mineralogical studies, which were supplemented by chemical studies. The present studies bridge the gap between epigenetic carbonate-hosted MVT and syndiagenetic evaporite deposits, both of which developed during the same time span (Neogene) and were hosted by the same environment (near-shore marine marginal facies of the Neo-Tethys basin).
Holdgate, G.R.; McLoughlin, S.; Drinnan, A.N.; Finkelman, R.B.; Willett, J.C.; Chiehowsky, L.A.
2005-01-01
Sampled outcrops of Permian coal seams of the Bainmedart Coal Measures in the Lambert Graben, eastern Antarctica, have been analysed for their proximates, ultimates, ash constituents and trace elements. A similar series of samples has been analysed for their principle maceral and microlithotype components and vitrinite reflectance. The coals are sub-bituminous to high volatile bituminous in rank; maturity increases markedly in southern exposures around Radok Lake where the oldest part of the succession is exposed and some strata have been intruded by mafic dykes and ultramafic sills. The coal ash is mostly silica and aluminium oxides, indicating that the mineral ash component is mostly quartz and various clay minerals. The ratio of silica to aluminium oxides appears to increase in an upward stratigraphic direction. The coal macerals include a relatively high liptinite content (mainly sporinite) that is significantly higher than for typical Gondwana coals. Greater degrees of weathering within the floodbasin/peat mire environments associated with climatic drying towards the end of the Permian might account for both preferential sporopollenin preservation and increased silica:aluminium oxide ratios up-section. Correlation of the coal maceral components to adjacent peninsula India coals indicates the closest comparative coals of similar age and rank occur within the Godavari Basin, rather then the Mahanadi Basin, which is traditionally interpreted to have been contiguous with the Lambert Graben before Gondwanan breakup. The petrological characteristics suggest that either previous interpretations of Palaeozoic basin alignments between Antarctica and India are incorrect, or that environmental settings and post-Permian burial histories of these basins were strongly independent of their tectonic juxtaposition. A permineralized peat bed within the succession reveals that the coals predominantly comprise wood- and leaf-rich debris derived from low-diversity forest-mire communities dominated by glossopterid and noeggerathiopsid gymnosperms. ?? 2005 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Peate, Ingrid Ukstins; Baker, Joel A.; Al-Kadasi, Mohamed; Al-Subbary, Abdulkarim; Knight, Kim B.; Riisager, Peter; Thirlwall, Matthew F.; Peate, David W.; Renne, Paul R.; Menzies, Martin A.
2005-12-01
A new stratigraphy for bimodal Oligocene flood volcanism that forms the volcanic plateau of northern Yemen is presented based on detailed field observations, petrography and geochemical correlations. The >1 km thick volcanic pile is divided into three phases of volcanism: a main basaltic stage (31 to 29.7 Ma), a main silicic stage (29.7 to 29.5 Ma), and a stage of upper bimodal volcanism (29.5 to 27.7 Ma). Eight large-volume silicic pyroclastic eruptive units are traceable throughout northern Yemen, and some units can be correlated with silicic eruptive units in the Ethiopian Traps and to tephra layers in the Indian Ocean. The silicic units comprise pyroclastic density current and fall deposits and a caldera-collapse breccia, and they display textures that unequivocally identify them as primary pyroclastic deposits: basal vitrophyres, eutaxitic fabrics, glass shards, vitroclastic ash matrices and accretionary lapilli. Individual pyroclastic eruptions have preserved on-land volumes of up to ˜850 km3. The largest units have associated co-ignimbrite plume ash fall deposits with dispersal areas >1×107 km2 and estimated maximum total volumes of up to 5,000 km3, which provide accurate and precisely dated marker horizons that can be used to link litho-, bio- and magnetostratigraphy studies. There is a marked change in eruption style of silicic units with time, from initial large-volume explosive pyroclastic eruptions producing ignimbrites and near-globally distributed tuffs, to smaller volume (<50 km3) mixed effusive-explosive eruptions emplacing silicic lavas intercalated with tuffs and ignimbrites. Although eruption volumes decrease by an order of magnitude from the first stage to the last, eruption intervals within each phase remain broadly similar. These changes may reflect the initiation of continental rifting and the transition from pre-break-up thick, stable crust supporting large-volume magma chambers, to syn-rift actively thinning crust hosting small-volume magma chambers.
NASA Astrophysics Data System (ADS)
Lira, Raúl; Poklepovic, María F.
2017-12-01
Tourmaline orbicules hosted in peraluminous granites are documented worldwide. Seven occurrences were identified in Argentina. Petrography, mineral chemistry, whole-rock geochemistry mass balance and microthermometric studies were performed in orbicules formed at the cupola of a peraluminous A-type leucogranite (Los Riojanos pluton), as well as complementary investigation was achieved in other orbicules of similar geological setting. Mass balance computations in zoned orbicules consistently confirmed immobility of Si both in core and halo, immobility of K and little loss of Al during halo reactions. Elements gained and lost in the schorl-rich core are Fe, Al, Mg, Ti, Ba, Sr, Y and Zr, and Na, K, Rb and Nb, respectively; in the halo, K, Ba, Sr, Y, Zr and locally CaO, were gained, and Fe, Mg, Na, Al, Rb and Nb were lost. The schorl-rich core is enriched in LREE relative to the leucogranite host. A temperature-salinity plot from fluid inclusion data delineates a magmatic-meteoric mixing trend of diluting salinity with descending temperature. Computed δDH20 values from Los Riojanos orbicule schorl suggest magmatic and magmatic-meteoric mixed origins. In Los Riojanos, mass balance constraints suggest that Fe, Mg, Ba, Sr and metallic traces like Zn and V (±Pb) were most likely derived from country-rock schists and gneisses through fluid-rock exchange reactions. A late magmatic-, volatile-rich- fluid exsolution scenario for the formation of orbicules is envisaged. Schorl crystallization was likely delayed to the latest stages of leucogranite consolidation, not only favored by the high diffusivity of B2O3 preferentially partitioned into the exsolved aqueous-rich fluid, but also likely limited to the low availability of Fe and Mg from the scarce granitic biotite, and to the high F- content of the melt. The spatial confination of orbicules to the contact zone granite-metasediments suggests that orbicules were not formed until exsolved fluids reached the boundary with the biotite-rich country-rock.
NASA Astrophysics Data System (ADS)
Michels, A.; Johnson, L.; Niemi, T. M.
2017-12-01
Plio-Quaternary sediments of the Tirabuzón, Infierno, and Santa Rosalía formations record syntectonic deposition in the Santa Rosalía basin—an oblique-rift-margin basin along the Gulf of California in Baja California Sur, Mexico. These deposits unconformably overlie the upper Miocene, Cu-Zn-Co-Mn-rich Boleo Formation. The Mesa Soledad outcrops, exposed on the Minera Boleo mine property, show interfingering of marine and terrestrial deposits of the three formations along the inland margin of the basin in an area that has not previously been studied. Faults that cut the Pliocene section of the mesa are mostly steeply-dipping, NW- and NE-striking faults with normal displacement determined from stratigraphic offset and steep plunge in striations. Two stratigraphic sections were measured on either side of one of these high-angle, NW-striking fault that has a normal throw of 26 m. Our analyses of sediment grain size, fossil assemblages, and sedimentary petrography indicate a mismatch of the stratigraphic units across the fault and suggest a component of strike slip. North of the fault, poorly-sorted, well-rounded, fluvial gravels from the Pliocene-aged, Tirabuzón Formation unconformably underlie fossiliferous marine deposits from the late-Pliocene to Pleistocene? -aged Infierno Formation. South of the fault, marine deposits of the Tirabuzón Formation grade upward into imbricated, clast-supported beach gravel, and finally into non-marine conglomerates. The absence of the Infierno Formation on the southern side of the fault suggests the deposits were either eroded unevenly due to uplift or laterally displaced by strike-slip movement. Fossiliferous sandstones and conglomerates of the Santa Rosalía Formation unconformably cap the entire outcrop and show no displacement from faulting. The Santa Rosalía Formation is overlain by the 1.4 Ma La Reforma ignimbrite (Schmidt 2006), indicating that the style of deformation of the basin changed at approximately this time.
Petrology and volatile content of magmas erupted from Tolbachik Volcano, Kamchatka, 2012-13
NASA Astrophysics Data System (ADS)
Plechov, Pavel; Blundy, Jon; Nekrylov, Nikolay; Melekhova, Elena; Shcherbakov, Vasily; Tikhonova, Margarita S.
2015-12-01
We report petrography, and bulk rock, mineral and glass analyses of eruptive products of the 2012-13 eruption of Tolbachik volcano, Central Kamchatka Depression, Russia. Magmas are shoshonitic in composition, with phenocrysts of olivine and plagioclase; clinopyroxene phenocrysts are scarce. Samples collected as bombs from the active vent, from liquid lava at the active lava front, and as naturally solidified ;toothpaste; lava allow us to quantify changes in porosity and crystallinity that took place during 5.25 km of lava flow and during solidification. Olivine-hosted melt inclusions from rapidly-cooled, mm-size tephra have near-constant H2O contents (1.19 ± 0.1 wt%) over a wide range of CO2 contents (< 900 ppm), consistent with degassing. The groundmass glasses from tephras lie at the shallow end of this degassing trend with 0.3 wt% H2O and 50 ppm CO2. The presence of small saturation, rather than shrinkage, bubbles testifies to volatile saturation at the time of entrapment. Calculated saturation pressures are 0.3 to 1.7 kbar, in agreement with the depths of earthquake swarms during November 2012 (0.6 to 7.5 km below the volcano). Melt inclusions from slowly-cooled and hot-collected lavas have H2O contents that are lower by an order of magnitude than tephras, despite comparable CO2 contents. We ascribe this to diffusive H2O loss through olivine host crystals during cooling. The absence of shrinkage bubbles in the inclusions accounts for the lack of reduction in dissolved CO2 (and S and Cl). Melt inclusions from tephras experienced < 3 wt% post-entrapment crystallisation. Melt inclusion entrapment temperatures are around 1080 °C. Compared to magmas erupted elsewhere in the Kluchevskoy Group, the 2012-13 Tolbachik magmas appear to derive from an unusually H2O-poor and K2O-rich basaltic parent.
The Khoy ophiolite: new field observations, geochemistry and geochronology
NASA Astrophysics Data System (ADS)
Lechmann, Anna; Burg, Jean-Pierre; Mohammadi, Ali; Faridi, Mohammad
2017-04-01
The tectonic assemblage at the junction of the Bitlis-Zagros and Izmir-Ankara-Erzincan suture zones is exposed in the region of the Khoy Ophiolitic Complex, in the Azerbaijan Province of NW Iran. We present new petrography, major and trace element analyses, LA-ICP-MS U-Pb zircon ages and Sr-Nd-Pb isotope data of mantle and crustal suites together with field observations and stratigraphic ages obtained from foraminifera-bearing sediments. Ultramafic rocks crop out as mappable (km-scale) continuous units with fault bounded contacts to neighbouring lithologies and as blocks (m-scale) within an olistostrome. They vary from fresh lherzolite, harzburgite and dunite tectonites with primary mantle structures to completely serpentinized and metasomatized (with metamorphic olivine) samples. Rodingite dikes with MORB-REE signatures are common. Gabbros, also with MORB signature, occur only in small volumes. Pillow basalts have either a MORB or a calc-alkaline signature depending on sample location. First results show that the Khoy Ophiolitic Complex formed during the Jurassic (152-159 Ma) and came in a supra-subduction position, with calc-alkaline magmatism showing negative Nb-Ta and Ti anomalies, in Albian (105-109 Ma) times. Heavy minerals including Cr-spinel and serpentine within the turbidites of the region indicate that the ophiolites were being eroded as early as the Late Cretaceous. An Early Miocene olistostrome, containing blocks of the ophiolitic sequences unconformably covers the ophiolitic complex and the Late-Cretaceous to Eocene turbiditic sequences. A tuff layer dated at 43 Ma within a fine-grained and thin-bedded sandstone block within the olistostrome witnesses continuing volcanic activity in Eocene times. The Khoy Ophiolite compares well with the Inner Zagros and North Makran ophiolites, recording Jurassic extension in the Iranian continental margin followed by Late Cretaceous subduction. This work is supported by SNF Research Grant (project 200021_153124/1).
Coordinated STEM/FIB/NanoSIMS Analyses of Presolar Silicates in Comet Dust and Primitive Meteorites
NASA Technical Reports Server (NTRS)
Keller, Lindsay; Nguyen, A.; Rahman, Z.; Messenger, S.
2012-01-01
Silicate grains were among the most abundant mineralogical building blocks of our Solar System. These grains were the detritus from earlier generations of stars that have been recycled in the early solar nebula. Rare sub-micrometer survivors of this processing have been identified in meteorites, micrometeorites and interplanetary dust particles (IDPs). These silicate grains are recognized as presolar in origin because of their extremely anomalous isotopic compositions that reflect nucleosynthetic processes in their stellar sources (evolved stars, novae and supernovae). We perform coordinated chemical, mineralogical and isotopic studies of these grains to determine their origins and histories. We examine the complex mineralogy and petrography of presolar silicates using imaging, diffraction and chemical data obtained from thin sections with the JSC JEOL 2500 field-emission STEM equipped with a Noran thin window energy dispersive x-ray (EDX) spectrometer and a Gatan Tridiem GIF. Quantitative element x-ray maps (spectrum images) are acquired by rastering a 4 nm incident probe whose dwell time is minimized to avoid beam damage and element diffusion during mapping. Successive image layers are acquired and combined in order to achieve approx 1% counting statistics for major elements. The IDP samples are prepared by ultramicrotomy of particles embedded in epoxy or elemental sulfur. After EDX mapping, the sections are subjected to C, N, and O isotopic imaging with the JSC NanoSIMS 50L ion microprobe. We prepare sections of some meteorite grains using the JSC FEI Quanta 3D focused ion beam (FIB) instrument. The specimen surface is protected from the FIB milling process by layers of electron beam-deposited C and Pt followed by an ion-deposited Pt layer. We also use the FIB to preferentially remove surrounding grains to reduce the background in subsequent NanoSIMS measurements. For mineralogical studies, we again employ the FIB instrument to deposit a protective cap over the grain of interest and then extract the grain and thin it to electron transparency for TEM analysis.
NASA Astrophysics Data System (ADS)
Fong de Los Santos, Luis E.
Development of a scanning superconducting quantum interference device (SQUID) microscope system with interchangeable sensor configurations for imaging magnetic fields of room-temperature (RT) samples with sub-millimeter resolution. The low-critical-temperature (Tc) niobium-based monolithic SQUID sensor is mounted in the tip of a sapphire rod and thermally anchored to the cryostat helium reservoir. A 25 mum sapphire window separates the vacuum space from the RT sample. A positioning mechanism allows adjusting the sample-to-sensor spacing from the top of the Dewar. I have achieved a sensor-to-sample spacing of 100 mum, which could be maintained for periods of up to 4 weeks. Different SQUID sensor configurations are necessary to achieve the best combination of spatial resolution and field sensitivity for a given magnetic source. For imaging thin sections of geological samples, I used a custom-designed monolithic low-Tc niobium bare SQUID sensor, with an effective diameter of 80 mum, and achieved a field sensitivity of 1.5 pT/Hz1/2 and a magnetic moment sensitivity of 5.4 x 10-18 Am2/Hz1/2 at a sensor-to-sample spacing of 100 mum in the white noise region for frequencies above 100 Hz. Imaging action currents in cardiac tissue requires higher field sensitivity, which can only be achieved by compromising spatial resolution. I developed a monolithic low-Tc niobium multiloop SQUID sensor, with sensor sizes ranging from 250 mum to 1 mm, and achieved sensitivities of 480 - 180 fT/Hz1/2 in the white noise region for frequencies above 100 Hz, respectively. For all sensor configurations, the spatial resolution was comparable to the effective diameter and limited by the sensor-to-sample spacing. Spatial registration allowed us to compare high-resolution images of magnetic fields associated with action currents and optical recordings of transmembrane potentials to study the bidomain nature of cardiac tissue or to match petrography to magnetic field maps in thin sections of geological samples.
Geology, geochemistry and geochronology of the Songwe Hill carbonatite, Malawi
NASA Astrophysics Data System (ADS)
Broom-Fendley, Sam; Brady, Aoife E.; Horstwood, Matthew S. A.; Woolley, Alan R.; Mtegha, James; Wall, Frances; Dawes, Will; Gunn, Gus
2017-10-01
Songwe Hill, Malawi, is one of the least studied carbonatites but has now become particularly important as it hosts a relatively large rare earth deposit. The results of new mapping, petrography, geochemistry and geochronology indicate that the 0.8 km diameter Songwe Hill is distinct from the other Chilwa Alkaline Province carbonatites in that it intruded the side of the much larger (4 × 6 km) and slightly older (134.6 ± 4.4 Ma) Mauze nepheline syenite and then evolved through three different carbonatite compositions (C1-C3). Early C1 carbonatite is scarce and is composed of medium-coarse-grained calcite carbonatite containing zircons with a U-Pb age of 132.9 ± 6.7 Ma. It is similar to magmatic carbonatite in other carbonatite complexes at Chilwa Island and Tundulu in the Chilwa Alkaline Province and others worldwide. The fine-grained calcite carbonatite (C2) is the most abundant stage at Songwe Hill, followed by a more REE- and Sr-rich ferroan calcite carbonatite (C3). Both stages C2 and C3 display evidence of extensive (carbo)-hydrothermal overprinting that has produced apatite enriched in HREE (<2000 ppm Y) and, in C3, synchysite-(Ce). The final stages comprise HREE-rich apatite fluorite veins and Mn-Fe-rich veins. Widespread brecciation and incorporation of fenite into carbonatite, brittle fracturing, rounded clasts and a fenite carapace at the top of the hill indicate a shallow level of emplacement into the crust. This shallow intrusion level acted as a reservoir for multiple stages of carbonatite-derived fluid and HREE-enriched apatite mineralisation as well as LREE-enriched synchysite-(Ce). The close proximity and similar age of the large Mauze nepheline syenite suggests it may have acted as a heat source driving a hydrothermal system that has differentiated Songwe Hill from other Chilwa carbonatites.
A modeling study of the long-term mineral trapping in deep saline marine sands aquifers (Invited)
NASA Astrophysics Data System (ADS)
Aagaard, P.; Pham, V.; Hellevang, H.
2009-12-01
Simulation of geochemical processes due to CO2 injection and storage are dependent on sediment petrography and the kinetics of mineral fluid reactions. Mineral trapping of CO2 in the Utsira sand and similar marine sand reservoirs have been revisited based on critical review of rate data and geochemical constraints on formation waters. Reaction paths calculations were done with the PHREEQC modeling software at relevant reservoir conditions covering a temperature range of 30-100 °C and corresponding reservoir pressures. Initial CO2 saturation was determined by the fluid fugacity corresponding with reservoir conditions. The mineral dissolution kinetics was expressed with a chemical affinity term (Aagaard & Helgeson,1982) while a critical super-saturation for mineral growth was included in the precipitation rate expression. The redox conditions and the H2S fugacity in the simulations were constrained by the acetic/propionic acid buffer trend and the magnetite-pyrite buffer (Aagaard et al. 2001) respectively. We used a revised mineralogical composition for the Utsira sand also performed a sensitivity analyses with respect to mineral content. The simulations were run over a period of 10000 years. The main simulation results included dissolution of glauconite, smectite, pyrite, muscovite and albite, with precipitation of the carbonates siderite, ankerite, and minor dawsonite, as well as kaolinite, silica (either chalcedony or quartz), and K-feldspar. The uncertainties in the simulations are specially connected with initial mineral abundances. The effect of critical super-saturation and reactive surface area for precipitation needs to be further evaluated and tested. Aagaard, P. and H.C. Helgeson (1982). Thermodynamic and Kinetic Constraints on Reaction Rates among Minerals and Aqueous Solutions. I. Theoretical Considerations. Am. J. Sci., v. 282, p. 257-285. P. Aagaard, J. Jahren & S.N. Ehrenberg (2001) H2S controling reactions in clastic hydrocarbon reservoirs from the Norwegian Shelf and Gulf Coast, in Cidu, R.(ed) Water-Rock Interaction, WRI-10, Balkema, p. 129-132.
Lunar and Planetary Science XXXVI, Part 16
NASA Technical Reports Server (NTRS)
2005-01-01
Contents include the folowing: Experimental Study of Fe-, Co- and Ni-partitioning Between Forsterite and low-Co Fe,Ni-Alloys: Implications for Formation of Olivine Condensates in Equilibrium with Primitive Metal. Channels and Fan-like Features on Titan Surface Imaged by the Cassini RADAR. The Oxygen Isotope Similarity of the Earth and Moon: Source Region or Formation Process? The Mn-53-Cr-53 System in CAIs: An Update. Comparative Planetary Mineralogy: Valence State Partitioning of Cr, Fe, Ti, and V Among Crystallographic Sites in Olivine, Pyroxene, and Spinel from Planetary Basalts. CAI Thermal History Constraints from Spinel: Ti Zoning Profiles and Melilite Boundary Clinopyroxenes. Noble Gas Study of New Enstatite SaU 290 with High Solar Gases. A Marine Origin for the Meridiani Planum Landing Site? A Mechanism for the Formation and Evolution of Tharsis as a Consequence of Mantle Overturn: Large Scale Lateral Heterogeneity in a Stably Stratified Mantle. Endolithic Colonization of Fluid Inclusion Trails in Mineral Grains. Microbial Preservation in Sulfates in the Haughton Impact Structure Suggests Target in Search for Life on Mars. Ascraeus Mons Fan-shaped Deposit, Mars: Geological History and Volcano-Ice Interactions of a Cold-based Glacier. Weathering Pits in the Antarctic Dry Valleys: Insolation-induced Heating and Melting, and Applications to Mars. Mineralogy and Petrography of Lunar Mare Regolith Breccia Meteorite MET 01-210. Geological Mapping of Ganymede. A Quantitative Analysis of Plate Motion on Europa: Implications for the Role of Rigid vs. Nonrigid Behavior of the Lithosphere. Comparison of Terrestrial Morphology, Ejecta, and Sediment Transport of Small Craters: Volcanic and Impact Analogs to Mars. An Integrated Study of OMEGA-Identified Mineral Deposits in Eastern Hebes Chasma, Mars. Global Spectral and Compositional Diversity of Mars: A Test of CRISM Global Mapping with Mars Express OMEGA Data. On Origin of Sedna. Processing ISS Images of Titan s Surface. LA-ICP-MS Study of Trace Elements in the Chaunskij Metal.
NASA Astrophysics Data System (ADS)
Roban, R. D.; Krézsek, C.; Melinte-Dobrinescu, M. C.
2017-06-01
The mid Cretaceous is characterized by high eustatic sea-levels with widespread oxic conditions that made possible the occurrence of globally correlated Oceanic Red Beds. However, very often, these eustatic signals have been overprinted by local tectonics, which in turn resulted in Lower Cretaceous closed and anoxic basins, as in the Eastern Carpathians. There, the black shale to red bed transition occurs in the latest Albian up to the early Cenomanian. Although earlier studies discussed the large-scale basin configuration, no detailed petrography and sedimentology study has been performed in the Eastern Carpathians. This paper describes the Hauterivian to Turonian lithofacies and interprets the depositional settings based on their sedimentological features. The studied sections crop out only in tectonic half windows of the Eastern Carpathians, part of the Vrancea Nappe. The lithofacies comprises black shales interbedded with siderites and sandstones, calcarenites, marls, radiolarites and red shales. The siliciclastic muddy lithofacies in general reflects accumulation by suspension settling of pelagites and hemipelagites in anoxic (black shale) to dysoxic (dark gray and gray to green shales) and oxic (red shales) conditions. The radiolarites alternate with siliceous shales and are considered as evidence of climate changes. The sandstones represent mostly low and high-density turbidite currents in deep-marine lobes, as well as channel/levee systems. The source area is an eastern one, e.g., the Eastern Carpathians Foreland, given the abundance of low grade metamorphic clasts. The Hauterivian - lower Albian sediments are interpreted as deep-marine, linear and multiple sourced mud dominated systems deposited in a mainly anoxic to dysoxic basin. The anoxic conditions existed in the early to late Albian, but sedimentation changed to a higher energy mud/sand-dominated submarine channels and levees. This coarsening upwards tendency is interpreted as the effect of the Aptian to Albian compressional tectonics of the Carpathians. The deepening of the Moldavide Basin from the Cenomanian is most probably linked to a significant sea-level rise.
Filling in the Gaps: Xenoliths in Meteorites are Samples of "Missing" Asteroid Lithologies
NASA Technical Reports Server (NTRS)
Zolensky, Mike
2016-01-01
We know that the stones that fall to earth as meteorites are not representative of the full diversity of small solar system bodies, because of the peculiarities of the dynamical processes that send material into Earth-crossing paths [1] which result in severe selection biases. Thus, the bulk of the meteorites that fall are insufficient to understand the full range of early solar system processes. However, the situation is different for pebble- and smaller-sized objects that stream past the giant planets and asteroid belts into the inner solar system in a representative manner. Thus, micrometeorites and interplanetary dust particles have been exploited to permit study of objects that do not provide meteorites to earth. However, there is another population of materials that sample a larger range of small solar system bodies, but which have received little attention - pebble-sized foreign clasts in meteorites (also called xenoliths, dark inclusions, clasts, etc.). Unfortunately, most previous studies of these clasts have been misleading, in that these objects have simply been identified as pieces of CM or CI chondrites. In our work we have found this to be generally erroneous, and that CM and especially CI clasts are actually rather rare. We therefore test the hypothesis that these clasts sample the full range of small solar system bodies. We have located and obtained samples of clasts in 81 different meteorites, and have begun a thorough characterization of the bulk compositions, mineralogies, petrographies, and organic compositions of this unique sample set. In addition to the standard e-beam analyses, recent advances in technology now permit us to measure bulk O isotopic compositions, and major- though trace-element compositions of the sub-mm-sized discrete clasts. Detailed characterization of these clasts permit us to explore the full range of mineralogical and petrologic processes in the early solar system, including the nature of fluids in the Kuiper belt and the outer main asteroid belt, as revealed by the mineralogy of secondary phases.
Exploring Archean seawater sulfate via triple S isotopes in carbonate associated sulfate.
NASA Astrophysics Data System (ADS)
Paris, G.; Fischer, W. W.; Sessions, A. L.; Adkins, J. F.
2015-12-01
Multiple sulfur isotope ratios in Archean sedimentary rocks provide powerful insights into the behavior of the ancient sulfur cycle, the redox state of fluid Earth, and the timing of the rise of atmospheric oxygen [1]. The Archean sulfur isotope record is marked by pronounced mass-independent fractionation (Δ33S≠0)—signatures widely interpreted as the result of SO2 photolysis from "short-wavelength" UV light resulting in a reduced phase carrying positive Δ33S values (ultimately recorded in pyrite) and an oxidized phase carrying negative Δ33S values carried by sulfate [2]. Support for this hypothesis rests on early laboratory experiments and observations of negative Δ33S from barite occurrences in mixed volcanic sedimentary strata in Mesoarchean greenstone terrains. Despite forming the framework for understanding Archean sulfur cycle processes, this hypothesis is still largely untested, notably due to the lack of sulfate minerals in Archean strata. Using a new MC-ICP-MS approach combined with petrography and X-ray spectroscopy we have generated a growing S isotope dataset from CAS extracted from Archean carbonates from a range of sedimentary successions, including: the 2.6 to 2.521 Ga Campbellrand-Malmani carbonate platform (Transvaal Supergroup, South Africa), 2.7 Ga Cheshire Formation (Zimbabwe), and 2.9 Ga Steep Rock Formation (Canada). Importantly, we observe positive δ34S and Δ33S values across a range of different lithologies and depositional environments. These results demonstrate that dissolved sulfate in seawater was characterized by positive Δ33S values—a result that receives additional support from recent laboratory and theoretical experiments [e.g. 4, 5]. [1] Farquhar et al., 2000, Science [2] Farquhar et al., 2001, Journal of Geophysical Research: Planets [3] Paris et al., 2014, Science. [4] Whitehill et al., 2013, Proceedings of the National Academy of Sciences. [5] Claire et al., 2014 Geochimica et Cosmochimica Acta
NASA Astrophysics Data System (ADS)
Dietterich, H. R.; Stelten, M. E.; Downs, D. T.; Champion, D. E.
2017-12-01
Harrat Rahat is a predominantly mafic, 20,000 km2 volcanic field in western Saudi Arabia with an elongate volcanic axis extending 310 km north-south. Prior mapping suggests that the youngest eruptions were concentrated in northernmost Harrat Rahat, where our new geologic mapping and geochronology reveal >300 eruptive vents with ages ranging from 1.2 Ma to a historic eruption in 1256 CE. Eruption compositions and styles vary spatially and temporally within the volcanic field, where extensive alkali basaltic lavas dominate, but more evolved compositions erupted episodically as clusters of trachytic domes and small-volume pyroclastic flows. Analysis of vent locations, compositions, and eruption styles shows the evolution of the volcanic field and allows assessment of the spatio-temporal probabilities of vent opening and eruption styles. We link individual vents and fissures to eruptions and their deposits using field relations, petrography, geochemistry, paleomagnetism, and 40Ar/39Ar and 36Cl geochronology. Eruption volumes and deposit extents are derived from geologic mapping and topographic analysis. Spatial density analysis with kernel density estimation captures vent densities of up to 0.2 %/km2 along the north-south running volcanic axis, decaying quickly away to the east but reaching a second, lower high along a secondary axis to the west. Temporal trends show slight younging of mafic eruption ages to the north in the past 300 ka, as well as clustered eruptions of trachytes over the past 150 ka. Vent locations, timing, and composition are integrated through spatial probability weighted by eruption age for each compositional range to produce spatio-temporal models of vent opening probability. These show that the next mafic eruption is most probable within the north end of the main (eastern) volcanic axis, whereas more evolved compositions are most likely to erupt within the trachytic centers further to the south. These vent opening probabilities, combined with corresponding eruption properties, can be used as the basis for lava flow and tephra fall hazard maps.
NASA Astrophysics Data System (ADS)
Font, Eric; Veiga-Pires, Cristina; Pozo, Manuel; Carvallo, Claire; de Siqueira Neto, António Carlos; Camps, Pierre; Fabre, Sébastien; Mirão, José
2014-11-01
Environmental magnetism of speleothems is still in its early stage of development. Here we report on our investigation of the environmental and paleomagnetic information that has been recorded in speleothems, and what are the factors that control its preservation and reliability. To address these issues, we used a multidisciplinary approach, including rock magnetism, petrography, scanning electron microscopy, stable carbon and oxygen isotope compositions, and major and trace element concentrations. We applied this to a set of samples from different stages of speleothem evolution: present-day dripwater (glass plates), a weathered stalactite, a fresh stalagmite, cave sediments, and terra rossa soils. These samples come from the Penico and Excentricas caves, located in two distinct aquifers of the Algarve region, South Portugal. Our results show that the main magnetic carriers of the speleothems under study are primary (detrital) and consist of maghemite (and magnetite?). Similarities in coercivity and temperature dependence of the studied set of samples suggest that iron oxides are inherited from the terra rossa soils that cap the cave and were transported to the speleothems by dripwater. Hence, they represent a regional environmental signature. Interestingly, a stable and probably detrital remanent magnetization could be isolated in the fresh stalagmite, whereas the weathered stalactite yielded chaotic magnetic directions and very low remanent intensities. We propose that these low intensities can be the result from (i) different remanence acquisition mechanisms between stalagmite and stalactite and/or (ii) iron dissolution by fungal activity. We also suggest that magnetic properties and color and the content in detrital elements in the fresh speleothem inform about environmental processes acting on the interface of rock (soil)-atmosphere, while oxygen isotope composition and alkaline-earth element concentrations inform about calcite-water interaction processes. These results provide a better understanding of how environmental information is recorded in speleothems and what the factors are that control the reliability of the paleomagnetic and paleo-environmental signal.
Mineralogy, petrography, geochemistry, and classification of the Košice meteorite
NASA Astrophysics Data System (ADS)
OzdíN, Daniel; PlavčAn, Jozef; HoråáčKová, Michaela; Uher, Pavel; PorubčAn, VladimíR.; Veis, Pavel; Rakovský, Jozef; Tóth, Juraj; KonečNý, Patrik; Svoreå, JáN.
2015-05-01
The Košice meteorite was observed to fall on 28 February 2010 at 23:25 UT near the city of Košice in eastern Slovakia and its mineralogy, petrology, and geochemistry are described. The characteristic features of the meteorite fragments are fan-like, mosaic, lamellar, and granular chondrules, which were up to 1.2 mm in diameter. The fusion crust has a black-gray color with a thickness up to 0.6 mm. The matrix of the meteorite is formed mainly by forsterite (Fo80.6); diopside; enstatite (Fs16.7); albite; troilite; Fe-Ni metals such as iron and taenite; and some augite, chlorapatite, merrillite, chromite, and tetrataenite. Plagioclase-like glass was also identified. Relative uniform chemical composition of basic silicates, partially brecciated textures, as well as skeletal taenite crystals into troilite veinlets suggest monomict breccia formed at conditions of rapid cooling. The Košice meteorite is classified as ordinary chondrite of the H5 type which has been slightly weathered, and only short veinlets of Fe hydroxides are present. The textural relationships indicate an S3 degree of shock metamorphism and W0 weathering grade. Some fragments of the meteorite Košice are formed by monomict breccia of the petrological type H5. On the basis of REE content, we suggest the Košice chondrite is probably from the same parent body as H5 chondrite Morávka from Czech Republic. Electron-microprobe analysis (EMPA) with focused and defocused electron beam, whole-rock analysis (WRA), inductively coupled plasma mass and optical emission spectroscopy (ICP MS, ICP OES), and calibration-free laser induced breakdown spectroscopy (CF-LIBS) were used to characterize the Košice fragments. The results provide further evidence that whole-rock analysis gives the most accurate analyses, but this method is completely destructive. Two other proposed methods are partially destructive (EMPA) or nondestructive (CF-LIBS), but only major and minor elements can be evaluated due to the significantly lower sample consumption.
Rare Mineralogy in Alkaline Ultramafic Rocks, Western Kentucky Fluorspar District
NASA Astrophysics Data System (ADS)
Anderson, W.
2017-12-01
The alkaline ultramafic intrusive dike complex in the Western Kentucky Fluorspar District contains unusual mineralogy that was derived from mantle magma sources. Lamprophyre and peridotite petrologic types occur in the district where altered fractionated peridotites are enriched in Rare Earth Elements (REE) and some lamprophyre facies are depleted in incompatible elements. Unusual minerals in dikes, determined by petrography and X-ray diffraction, include schorlomite and andradite titanium garnets, astrophyllite, spodumene, niobium rutile, wüstite, fluoro-tetraferriphlogopite, villiaumite, molybdenite, and fluocerite, a REE-bearing fluoride fluorescent mineral. Mixing of MVT sphalerite ore fluids accompanies a mid-stage igneous alteration and intrusion event consistent with paragenetic studies. The presence of lithium in the spodumene and fluoro-tetraferriphlogopite suggests a lithium phase in the mineral fluids, and the presence of enriched REE in dikes and fluorite mineralization suggest a metasomatic event. Several of these rare minerals have never been described in the fluorspar district, and their occurrence suggests deep mantle metasomatism. Several REE-bearing fluoride minerals occur in the dikes and in other worldwide occurrences, they are usually associated with nepheline syenite and carbonatite differentiates. There is an early and late stage fluoride mineralization, which accompanied dike intrusion and was also analyzed for REE content. One fluorite group is enriched in LREE and another in MREE, which suggests a bimodal or periodic fluorite emplacement. Whole-rock elemental analysis was chondrite normalized and indicates that some of the dikes are slightly enriched in light REE and show a classic fractionation enrichment. Variations in major-element content; high titanium, niobium, and zirconium values; and high La/Yb, Zr/Y, Zr/Hf, and Nb/Ta ratios suggest metasomatized lithospheric-asthenospheric mantle-sourced intrusions. The high La/Yb ratios in some dikes in the titanium garnet facies suggest a magma melt trend toward the carbonation phase of a fractionated peridotite parent magma.
Using Zircon Geochronology to Unravel the History of the Naga Hills Ophiolite
NASA Astrophysics Data System (ADS)
Roeder, T.; Aitchison, J. C.; Clarke, G. L.; Ireland, T. R.; Ao, A.; Bhowmik, S. K.
2014-12-01
Outcrops of the Naga Hills Ophiolite (NHO), a possible eastern extension of the ophiolitic belt running along the India-Asia suture, in Northeast India include a full suite of ophiolitic rocks. The ophiolite has been dated Upper Jurassic based on radiolarian studies of the unit (Baxter et al., 2011) but details of its emplacement onto the Indian margin have not been the subject of detailed investigation. Conglomerates of the Phokphur Formation unconformably overlie an eroded surface on top of dismembered ophiolite fragments and include sediments sourced from both the ophiolite and the margin of the Indian subcontinent. Notably no Asian margin-derived detritus is recognised (similar to the Liuqu conglomerates of Tibet (Davis et al., 2002)). Thus, a detailed study of the Phokphur sediments can produce valuable details of the NHO history, including constraining the timing of ophiolite emplacement. Studies of detrital sandstone petrography confirm a recycled orogen provenance for the Phokphur Formation and thus serve as validation of the methods of Dickinson and Suczek (1979) and Garzanti et al. (2007). Detrital zircon data provides further insight as to the age of source rocks of Phokphur sediments and help to further constrain the timing of ophiolite emplacement. We present results of sedimentary and detrital zircon geochronology analyses of Phokphur sediments from outcrops near the villages of Salumi and Wazeho as a contribution to furthering research on aspects of the India-Asia collision. Baxter, A.T., et al. 2011. Upper Jurassic radiolarians from the Naga Ophiolite, Nagaland, northeast India. Gondwana Research, 20: 638-644. Davis, A.M., et al. 2002. Paleogene island arc collision-related conglomerates, Yarlung-Tsangpo suture zone, Tibet. Sedimentary Geology, 150: 247-273. Dickinson, W.R. and Suczek, C.A., 1979. Plate tectonics and sandstone compositions. Am. Assoc. Pet. Geol. Bull., 63, 2164-2182, (1979). Garzanti, E., et al., 2007. Orogenic belts and orogenic sediment provenance. The Journal of Geology, 115: 315-334.
Alford, Susan E.; Alt, Jeffrey C.; Shanks, Wayne C.
2011-01-01
Sulfide petrography plus whole rock contents and isotope ratios of sulfur were measured in a 1.5 km section of oceanic gabbros in order to understand the geochemistry of sulfur cycling during low-temperature seawater alteration of the lower oceanic crust, and to test whether microbial effects may be present. Most samples have low SO4/ΣS values (≤ 0.15), have retained igneous globules of pyrrhotite ± chalcopyrite ± pentlandite, and host secondary aggregates of pyrrhotite and pyrite laths in smectite ± iron-oxyhydroxide ± magnetite ± calcite pseudomorphs of olivine and clinopyroxene. Compared to fresh gabbro containing 100–1800 ppm sulfur our data indicate an overall addition of sulfide to the lower crust. Selection of samples altered only at temperatures ≤ 110 °C constrains microbial sulfate reduction as the only viable mechanism for the observed sulfide addition, which may have been enabled by the production of H2 from oxidation of associated olivine and pyroxene. The wide range in δ34Ssulfide values (− 1.5 to + 16.3‰) and variable additions of sulfide are explained by variable εsulfate-sulfide under open system pathways, with a possible progression into closed system pathways. Some samples underwent oxidation related to seawater penetration along permeable fault horizons and have lost sulfur, have high SO4/ΣS (≥ 0.46) and variable δ34Ssulfide (0.7 to 16.9‰). Negative δ34Ssulfate–δ34Ssulfide values for the majority of samples indicate kinetic isotope fractionation during oxidation of sulfide minerals. Depth trends in sulfide–sulfur contents and sulfide mineral assemblages indicate a late-stage downward penetration of seawater into the lower 1 km of Hole 735B. Our results show that under appropriate temperature conditions, a subsurface biosphere can persist in the lower oceanic crust and alter its geochemistry.
Campbell, Kathleen A; Lynne, Bridget Y; Handley, Kim M; Jordan, Sacha; Farmer, Jack D; Guido, Diego M; Foucher, Frédéric; Turner, Susan; Perry, Randall S
2015-10-01
New Zealand and Argentine (Late Jurassic-Recent) siliceous hot-spring deposits (sinter) reveal preservation pathways of environmentally controlled, microbe-dominated sedimentary facies over geological time scales. Texturally distinctive, laminated to thinly layered, dense and vertically oriented, microtubular "palisade" fabric is common in low-temperature (<40°C) sinter-apron terraces. In modern hot springs, the dark green to brown, sheathed, photosynthetic cyanobacterium Calothrix spp. (family Rivulariaceae) constructs felted palisade mats in shallow terrace(tte) pools actively accreting opaline silica. The resulting stacked layers of silicified coarse filaments-a stromatolite-are highly porous and readily modified by postdepositional environmental perturbations, secondary silica infill, and diagenetic silica phase mineral transformations (opal-A to quartz). Fossil preservation quality is affected by relative timing of silicification, and later environmental and geological events. A systematic approach was used to characterize palisade fabric in sinters of different ages to refine tools for recognizing biosignatures in extreme environments and to track their long-term preservation pathways into the geological record. Molecular techniques, scanning electron microscopy, Raman spectrometry, X-ray powder diffraction, petrography, and lipid biomarker analyses were applied. Results indicate that microbial communities vary at the micron scale and that early and rapid silicification is paramount to long-term preservation, especially where minimal postdepositional disturbance follows fossilization. Overall, it appears that the most robust biomarkers of fossil microbial activity in hot-spring deposits are their characteristic macro- and microtextures and laser micro-Raman identified carbon. Studies of Phanerozoic geothermal deposits with mineralized microbial components are relevant analogs for Precambrian geobiology because early life is commonly preserved as microbial microfossils and biofilms in silica, some of it hydrothermal in origin. Yet the diagenetic "movie" has already been run. Hence, studying younger sinters of a range of ages provides an opportunity to "play it again" and follow the varied influences on biosignatures into the deep-time geological record.
Modes of Contintental Sediment Storage and the History of Atmospheric Oxygen
NASA Astrophysics Data System (ADS)
Husson, J. M.; Peters, S. E.
2015-12-01
Documenting the history of atmospheric oxygen levels, and the processes that have governed that history, are among the most fundamental of problems in Earth science. Diverse observations from sedimentary petrography, isotope geochemistry, stratigraphy and trace element geochemistry have led to a model wherein concentrations of oxygen experienced two significant rises: the first 'Great Oxidation Event' near the Archean-Proterozoic boundary, and a second near the Proterozoic-Phanerozoic boundary. Despite ongoing debates over important details in the history of atmospheric O2, there is widespread agreement that the burial and long-term storage of sedimentary organic matter derived from photosynthesis, which represents net O2 production over consumption by respiration, is the primary driver of oxygenation of the atmosphere. In this regard, sedimentation on the continents is vitally important; today, >90% of buried organic matter occurs in sediments deposited on continental crust. Here we use 23,813 rock units, distributed among 949 geographic regions in North America, from the Macrostrat database to constrain patterns of sedimentation through Earth history. Sedimentary packages are low in number in the Archean, increase to a higher steady state value across the transition to the Proterozoic, and rise again across the Proterozoic-Phanerozoic boundary during the final stage in the formation of the Great Unconformity. Map-based data from polar Eurasia and Australia show qualitatively similar macrostratigraphic patterns of sediment abundance. The temporal similarities between continental sedimentation and the putative history of pO2 are sensible in the context of organic carbon burial. A simple model of burial and weathering on North America predicts two significant rises in pO2. These results suggest that the changing ability of the continents to serve as long-term organic carbon storage reservoirs, presumably due to geodynamic processes, has exerted a first-order control on the stepwise oxygenation of Earth's atmosphere.
Petrography and Geochemistry of Feldspathic Lunar Meteorite Larkman Nunatak 06638
NASA Technical Reports Server (NTRS)
Zeigler, Ryan A.; Korotev, R. L.
2013-01-01
LAR 06638 is a glassy-matrix lunar regolith breccia based on the presence of glass spherules, which also contains prominent clasts of a feldspathic fragmental breccia lithology. The similarity in composition of the two lithologies is unsurprising given the observed similarities in the clast populations and mineral compositions in both lithologies. The small differences in composition are likely explained by the incorporation of small amounts of more diverse material into the regolith breccia lithologies, e.g., KREEPy glass clasts to account for the higher siderophile and ITE concentrations and excess plagioclase to account for the lower concentrations of mafic elements and increased Na concentrations. Given the relatively small masses analyzed (approx.120 mg of each lithology), these small compositional differences could also be sampling effects. The presense of multiple generations of glass coatings on LAR 06638 is, to our knowledge, unique among lunar meteorites. The more mafic, schlieren and nanophase Fe bearing glass is similar in morphology to the South Ray Crater glass coatings at the Apollo 16 site [3] and likely has a similar origin. The outer, more feldspathic glass has a morphology typical of fusion crust observed on other feldspathic lunar meteorites. It is unclear at this time whether the partially melted glass area represents a partially formed fusion crust or incipient melting due to heating on the lunar surface, likely from an overlying (and possibly ablated) glass splash coating. LAR 06638 is unlikely to be source-crater paired with any other lunar meteorites. For all elements, it plots right in the range of "typical feldspathic lunar meteorites" [4]. Among lunar meteorites from Antarctica, LAR 06638 most closely resembles MAC 88104/5 in composition, although it is slightly more feldspathic and 1.8 richer in siderophile elements. Compositionally it is more similar to hot-desert meteorites like Dhofar 490/1084 and NWA 2200 [4].
Relict chondrules in primitive achondrites: Remnants from their precursor parent bodies
NASA Astrophysics Data System (ADS)
Schrader, Devin L.; McCoy, Timothy J.; Gardner-Vandy, Kathryn
2017-05-01
We studied the petrography, analyzed the chemical compositions, constrained the closure temperatures (via geothermometry), and determined the oxidation states of relict chondrules in Campo del Cielo (IAB iron meteorite), Graves Nunataks (GRA) 98028 (acapulcoite), and Netschaëvo (IIE iron meteorite) to constrain their formation conditions and investigate links to known meteorite groups. Despite having been thermally metamorphosed, mineral phases within relict chondrules retain information about their precursor compositions. The sizes and textures of relict chondrules, and silicate and chromite compositions indicate that Campo del Cielo, GRA 98028, and Netschaëvo had distinct parent bodies that were similar to, but different from, known chondrite groups. To determine the utility of relict chondrule sizes in thermally metamorphosed meteorites, we determined the chondrule size distributions in the LL chondrites Semarkona (LL3.00), Soko-Banja (LL4), Siena (LL5), and Saint-Séverin (LL6), and the H chondrites Clovis (No. 1) (H3.6), Kesen (H4), Arbol Solo (H5), and Estacado (H6). As expected, mean chondrule diameters increase with degree of thermal metamorphism. We find that Campo del Cielo and GRA 98028 were reduced during thermal metamorphism, consistent with previous studies, indicating that their precursors were initially more FeO-rich than their current compositions. In contrast to previous studies, we find no evidence for reduction of silicates in Netschaëvo. Normal zoning of olivine in Netschaëvo is consistent with crystallization and suggests its silicates are near their primary FeO-contents. The presence of elongated chromite grains along olivine grain boundaries in Netschaëvo indicates formation during thermal metamorphism under oxidizing conditions. Due to the absence of reduction and the composition of chromite being distinct from that of metamorphosed H chondrites, we conclude that Netschaëvo, and by extension the IIE iron meteorites, are not from the H chondrite parent body.
NASA Astrophysics Data System (ADS)
Nehme, Carole; Verheyden, Sophie; Breitenbach, Sebastian F. M.; Gillikin, David P.; Verheyden, Anouk; Cheng, Hai; Edwards, Laurence; Hellstrom, John; Noble, Stephen R.; Farrant, Andrew R.; Sahy, Diana; Goovaerts, Thomas; Salem, Ghada; Claeys, Philippe
2017-04-01
Little is known about terrestrial climate dynamics of the Levant during the penultimate interglacial-glacial period. A well-dated stalagmite ( 194 to 154 ka) from Kanaan cave, located near the Mediterranean in Lebanon, is examined for its petrography, growth history, and stable isotope geochemistry to answer the climate instability pattern of the glacial MIS 6 and possible wet phases. A highly resolved continental climate record from the northern Levant has been recovered from this precisely U-Th-dated speleothem, spanning the late penultimate interglacial (equivalent of the MIS 7) to the mid-penultimate glacial period ( MIS 6). The stalagmite grew slowly and discontinuously with an unstable isotopic pattern from 194 and at least up to 178 ka. Subsequently, the stalagmite ceased growing from 169.5 to 163.1 ka (interpolated ages) with a hiatus of ca. 6.24 ka according to the model age. However, low δ 18O and δ 13C values indicate generally cold, but overall more humid climate compared to the last glacial (MIS 3). Higher growth rates during the mid-penultimate glacial period ( 163-154 ka) are most probably linked to increased water recharge in the vadose zone. A short More distinct layering in the upper section compared to the basal part of the stalagmite suggests stronger seasonality from 163 ka to 154 ka. Negative oxygen and carbon isotope excursions were found at ˜155.5 ka, ˜156 ka, between ˜159.6 and ˜160.1 ka and at ˜162.6 ka. The inferred Kanaan cave humid intervals during the mid-penultimate period follow variations of pollen records in the Eastern and Western Mediterranean basins and correlate well with the synthetic Greenland records and East Asian Summer Monsoon Interstadials, indicating short warm/wet periods similar to the D-O events during MIS 4-3 in the Eastern Mediterranean region.
On morphology of methane-derived authigenic carbonates
NASA Astrophysics Data System (ADS)
Logvina, E.; Matveeva, T.
2009-04-01
Studies of methane-derived carbonates revealed a great variety their morphological types. Although the processes of these carbonates formation is not clearly understood, it has been suggested that in general bacterially mediated processes of hydrocarbon oxidation, coupled with sulphate reduction, produce unusually high levels of alkalinity and dissolved inorganic carbon in the pore fluids that is partitioned between the precipitating carbonate and CO2 rich plumes which emanate into the water column (Aharon, 1994). These carbonates consist by three main CaCO3 polymorphs - calcite, aragonite and dolomite. Carbonates with different petrography cemented from these polymorphs can be classified according to their specific locality mode of formation and biogenic or non-biogenic origin (Greinert et al., 2002). There are classifications for the authigenic carbonates which are based on petrography, morphology, or based on age and origin. In this work we will consider the petrographical and morphological differences of authigenic carbonates. The large structures vary from 10 to 200 m size, named as chemoherm carbonates. Usually they cemented by pure aragonite with minor Mg-calcite admixture. These chemoherms rise up to 50 m above the seafloor. The structures are irregular in shape and have numerous pores and open pathways resulting from plumbing system of fluid expulsion. This type of authigenic carbonates was observed in the NE Black Sea (Michaelis et al., 2002), at the Hydrate Ridge area (Greinert et al., 2001), at Aleutian accretionary margin (Greinert et al., 2002). Diagenetic carbonates - carbonate cemented sediments both growing at the seafloor or within the sediment framework and showing a large variety of shapes (chimneys, crusts, concretions est.), with grey to dark-grey color. Petrographically the carbonate cement represents by Mg-calcite, protodolomite and dolomite. The diagenetic carbonates occur widely in the fluid venting areas. In particular, diagenetic carbonate chimneys were observed in the NE Atlantic, in the Gulf of Cadiz (Diaz del Rio et al., 2003), offshore Morocco (Magalhães et al., 2002), at northern Kattegat (Jensen et al., 1992), in the Pobitite Kamani area, in north-eastern Bulgaria (Botz et al., 1993). Clathrites (gas hydrate carbonates) are formed at the seawater/sediment interface or within the sediment in close contact with gas hydrates and bacterial mats. This type of the authigenic carbonates in direct contact with gas hydrates were identified and described by G. Bohrmann at Hydrate Ridge in 1998. According to (Bohrmann et al., 1998), they characterize by carbonate-cemented breccia composed of angular clasts cementing by Mg-calcite and aragonite. The brecciated structure causes by gas hydrate formation processes. A pure aragonite layers which form in elongated pores formerly occupied by gas hydrate are typical. This pseudomorphism resembles gas hydrate bubble structures. As a whole, clathrites are associated with bacterial mats on the seafloor next to gas hydrates and within the gas hydrate pore structure. References: G. Bohrmann, J. Greinert, E. Suess and M. Torres. Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability: Geology, 1998, v. 26, pp. 647-650. J. Greinert, G. Bohrmann, and E. Suess. Gas hydrate-associated carbonates and methane-venting at Hydrate Ridge: Classification, distribution, and origin of authigenic lithologies, in Paull, C. and Dillon W.P. ed., Natural gas hydrates: Occurrence, distribution, and detection: Geophysical Monograph 124: 87-98, American Geophysical Union, 2001, pp. 99-113. J. Greinert, G. Bohrmann, and M. Elvert Stromatolitic fabric of authigenic carbonate crusts in 4850 m water depth, Aleutian accretionary margin: Result of anaerobic methane oxidation by Archaea at cold seeps. International Journal of Earth Sciences, 2002, 91, pp. 698-711. P. Aharon. Carbon and oxygen isotope tracers of submarine hydrocarbon emissions: Northern Gulf of Mexico. Israel Journal of earth Sciences, 1994, 43, pp. 157-164. P. Jensen, I. Aagaard, R. A. Burke Jr et al. "Bubbling reefs" in the Kattegat: submarine landscapes of carbonate-cemented rocks support a diverse ecosystem at methane seeps, Mar. Ecol. Prog. Ser., 1992, 83, pp. 103-112. R.W. Botz, V. Georgiev, P. Stoffers, et al. Stable isotope study of carbonate-cemented rocks from the Pobitite Kamani area, north-eastern Bulgaria. Geologische Rundschau, 1993, 82, pp. 663- 666. V. Diaz del Rio, L. Somoza, J. Martinez-Frias, et al. Vast field of hydrocarbon-derived carbonate chimneys related to the accretionary wedge/olistostrome of the Gulf of Cadiz. Marine Geology, 2003, 195, pp.177-200. V. Magalhães, C. Vasconcelos, L. Gaspar et al. Methane related aythigenic carbonates, chimneys and crusts from the Gulf of Cadiz, Geophysical Research Abstracts, 2002, Vol. 5, 12842. W. Michaelis, R. Seifert, K. Nauhaus, T. et al. Microbial Reefs in the Black Sea Fueled by Anaerobic Oxidation of Methane. Science, 2002, 297, pp. 1013-1015.
NASA Astrophysics Data System (ADS)
Vinci, Francesco; Iannace, Alessandro; Parente, Mariano; Pirmez, Carlos; Torrieri, Stefano; Giorgioni, Maurizio
2017-12-01
A multidisciplinary study of the dolomitized bodies present in the Lower Cretaceous platform carbonates of Mt. Faito (Southern Apennines - Italy) was carried out in order to explore the connection between early dolomite formation and fluctuating climate conditions. The Berriasian-Aptian investigated succession is 466 m thick and mainly consists of shallow-water lagoonal limestones with frequent dolomite caps. The dolomitization intensity varies along the succession and reaches its peak in the upper Hauterivian-lower Barremian interval, where it is present a completely dolomitized interval about 100-m-thick. Field relations, petrography, mineralogy, and geochemistry of the analyzed dolomite bodies allowed identifying two populations of early dolomites, a fine-medium crystalline (FMdol) and a coarse crystalline dolomite (Cdol), both interpreted as the product of mesohaline water reflux. According to our interpretation, FMdol precipitated from concentrated brines in the very early stage of the reflux process, producing typical sedimentary features as dolomite caps. In the successive step of the process, the basin-ward 'latent' reflux precipitated Cdol from less concentrated brines. A peculiar feature of the studied succession is the great consistency between stratigraphic distribution of dolomite bodies and their geochemical signature. The completely dolomitized Hauterivian-Barremian interval, in fact, is characterized by geochemical values suggesting an origin from distinctly saltier brines. Considering that the observed near-surface dolomitization process is controlled by physical and chemical parameters reflecting the paleoenvironmental and paleoclimatic conditions during dolomite formation, we propose that the stratigraphically controlled dolomitization intensity reflects periodic fluctuations in the salinity of dolomitizing fluid, in turn controlled by long-term climate oscillations. The present work highlights that the stratigraphic distribution of early diagenetic dolomite may be used as proxy to define the climatic fluctuations that have influenced the sedimentary dynamics in the Early Cretaceous. Moreover, considering that a comparable early dolomite distribution is present also in the Dinaric Platform, we suggest that a regional scale climate control acted on early dolomite formation and distribution. Refining the knowledge of such a key control may have a significative impact on hydrocarbon reservoir characterization and exploration in the Periadriatic area.
MINERALOGY, PETROGRAPHY, AND RADIOACTIVITY OF REPRESENTATIVE SAMPLES OF CHATTANOOGA SHALE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bates, T.F.; Strahl, E.O.
1957-01-01
Qualitative and quantitative mineralogical studies of the Chattanooga Shale are in progress. Problems of separation and analysis of mineral and organic components are difficult because the rock is fine-grained. However, the applicaiion of light and electron microscopy, x-ray diffraction, nuclear-track study, and other methods has provided data of interest. Megascopically, the shalc is a massive chocolate-brown sediment which displays faint indications of lamination. Some pyrite lenses, nodules, and crystals and a few mica flakes are large enough to be seen with a hand lens. In thin section the rock is seen to consist of grains of quartz and feldspar inmore » a matrix of yellow to red--brown organic material, which incorporates shreds of mica and probably clay particles and is dotted by small clusters of pyrite. Larger organic fragments with associated pyrite are common and take various forms. Individual mineral particles range from pyrite cubes less than 0.15 micron on a side to quartz and feldspar grains as large as 0.10 mm. X-ray studies show the clay minerals to be illite, kaolinite, and chlorite in decreasing order of abundance. Tourmaline, zircon, and apatite are the characteristic heavy minerals of the sediment. Quantitative studies, accomplished by a combination of chemical and mineralogical methods, have shown the composition of a batch sample of this rock to be approxiinately: 22% quartz, 9% feldspar, 31% illite and kaolinite, 22% organic matter, 11% pyrite and marcasite, 2% chlorite, 2% iron oxides, and l% tourmaline, zircon, and apatite. Alphatrack studies of cniulsion-covered thin sections indicate that no uranium mineral is present. Approximately 70% of the uranium atoms is randomly distributed throughout the finegrained matrix of the rock, whereas another 25% is concentrated in organic-pyrite-clay complexes such as pyrite nodules and discrete organic bodies. In unweathered samples there is no relationship between uranium distribution and textural fcatures such as bedding. The data indicate that the uranium was precipitated from sea water under reducing conditions and has not been redistributed following compaction of the sediment. (auth)« less
NASA Technical Reports Server (NTRS)
Taylor, Lawrence A.; Pieters, Carle; McKay, David S.
1998-01-01
Inferences about the igneous and impact evolution of planetary bodies are based upon spectral remote sensing of their surfaces. However, it is not the rocks of a body that are seen by the remote sensing, but rather the regolith, that may contain small pieces of rock but also many other phases as well. Indeed, recent flybys of objects even as small as asteroid Ida have shown that these objects are covered by a regolith. Thus, spectral properties cannot be directly converted into information about the igneous history of the object. It is imperative to fully understand the nature of the regolith, particularly its finer fraction termed "soil," to appreciate the possible effects of "space weathering" on the reflectance spectra. We have initiated a study of our nearest, regolith-bearing body, the Moon, as "ground truth" for further probes of planetary and asteroidal surfaces. the foundation for remote chemical and mineralogical analyses lies in the physics underlying optical absorption and the linking of spectral properties of materials measured in the laboratory to well understood mineral species and their mixtures. From this statement, it is obvious that there should be a thorough integration of the material science of lunar rocks and soils with the remote-sensing observations. That is, the lunar samples returned by the Apollo missions provide a direct means for evaluation of spectral characteristics of the Moon. However, this marriage of the remote-sensing and lunar sample communities has suffered from a prolonged unconsummated betrothal, nurtured by an obvious complacency by both parties. To make more direct and quantitative links between soil chemistry/mineralogy and spectral properties, we have initiated a program to (1) obtain accurate characterization of the petrography of lunar soils (in terms relevant to remote analyses), coupled with (2) measurement of precise reflectance spectra, with testing and use of appropriate analytical tools that identify and characterize individual mineral and glass components. It is the finest-sized fractions of the bulk lunar soil that dominate the observed spectral signatures.
NASA Astrophysics Data System (ADS)
Kim, J.; Park, J. W.; Lee, J.; Kyle, P. R.; Lee, M. J.
2017-12-01
The magma evolution of The Pleiades, a Quaternary alkaline volcanic complex in northern Victoria Land, Antarctica, is investigated using major and trace elements, and Sr, Nd and Pb isotopic data. The volcanic rocks can be subdivided into two distinct magmatic lineages based on petrography and whole-rock compositions: (1) a sodic silica-undersaturated alkaline lineage with abundant kaersutite phenocrysts, and (2) a mildly-potassic and mildly-alkaline, nearly silica-saturated lineage containing olivine but not kaersutite. The basanite and trachybasalt of both lineages exhibit similar degrees of negative K anomalies, moderately steep rare earth element patterns, and elevated trace element ratios such as Ce/Pb (> 20) and Nb/U (> 38), suggesting their primary magmas were generated by low degree (≤3%) of partial melting of amphibole and garnet-bearing mantle sources. The sodic lineage is characterized by elevated 206Pb/204Pb (>19.5) ratios and narrow ranges of 87Sr/86Sr (0.70313-0.70327) and 143Nd/144Nd (0.51289-0.51290) ratios consistent with a significant HIMU component typical of Neogene volcanic rocks in Antarctica. The mafic rocks of the potassic lineage have isotopic compositions similar to those of the sodic lineage, however the evolved lavas in the lineage have higher 87Sr/86Sr (> 0.7035) and lower 143Nd/144Nd (< 0.51285) and 206Pb/204Pb (< 19.3) ratios than the mafic rocks, suggesting significant amounts of crustal contamination. The pressure-temperature paths estimated by clinopyroxene-liquid thermobarometry are similar in each lineage. The mafic magmas were emplaced at Moho depths ( 1.2 GPa) and the evolved magmas pooled at middle-crustal depths ( 0.7 GPa). Mass-balance calculations based on whole-rock and mineral compositions show that kaersutite fractionation has played a major role in magma differentiation of the sodic lineage whereas the compositional variations of the potassic lineage can be ascribed to fractionation of a kaersutite-free mineral assemblage and a maximum of 17% crustal assimilation.
NASA Astrophysics Data System (ADS)
Belkin, Harvey E.; Raia, Federica; Rolandi, Giuseppe; Jackson, John C.; de Vivo, Benedetto
2010-05-01
The Campanian Plain in southern Italy has been volcanically active during the last 600 ka. The largest and best known eruption at 39 ka formed the Campanian Ignimbrite (CI), which has the largest volume (~310 km3) and the greatest areal extent. However, significant, but scattered deposits of older ignimbrites underlie the CI and document a long history of trachytic eruptions. We examined the geochemistry and mineralogy of 11 older ignimbrite strata by optical petrography, electron microprobe, scanning electron microscope, X-ray diffraction, and various whole-rock geochemical techniques. Strata at Durazzano (116.1 ka), Moschiano (184.7 ka), Seiano Valley A (245.9 ka), Seiano Valley B (289.6 ka), Taurano 7 (205.6 and 210.4 ka), Taurano 9 (183.8 ka), and Taurano 14 (157.4 ka) have been previously dated by the 40Ar/39Ar technique (Rolandi et al., 2003, Min. & Pet., 79) on hand-picked sanidine. The older ignimbrites are trachytic, but are highly altered with LOI from 8 to 17 wt%. Whole-rock compositions reflect variable element mobility during weathering; TiO2, Al2O3, Fe-oxide, and CaO tend to be enriched relative to average CI composition, whereas Na2O and K2O are depleted. X-ray diffraction identified major chabazite, kaolinite, and illite-smectite alteration products in some samples. The phenocryst mineralogy in all of the strata is typical for trachyte magma and consists of plagioclase (~An80 to ~An40), potassium feldspar (~Or50 to ~Or80), biotite (TiO2 = ~4.6 wt%, BaO = ~0.70 wt%, F = ~0.65 wt%), diopside (~Ca47Mg48Fe5 to ~Ca48Mg34Fe18), titanomagnetite, and uncommon Ca-amphibole. Relatively immobile trace elements Zr, Hf, Nb, and Th display similar abundance, linear trends, and ratios as those measured in the Campanian Ignimbrite: Th/Hf = ~4, Zr/Hf = ~50, and Zr/Nb = ~6. The similarity of trace element systematics and phenocryst mineralogy among the Campanian Ignimbrite and the older ignimbrites suggests that the magmagenesis processes and parental source have been relatively constant during the long period of trachyte volcanism in the Campanian Plain.
NASA Astrophysics Data System (ADS)
Gutierrez-Cirlos, A. G.; Perez-Drago, G.; Perez-Cruz, L.; Urrutia-Fucugauchi, J.
2008-12-01
Chicxulub impact crater is the best preserved of the three large multi-ring structures documented in the terrestrial record. Chicxulub, formed 65 Ma ago, is associated with the Cretaceous/Tertiary (K/T) boundary layer and the impact related to the organism extinctions and events marking the boundary. The crater is buried under Tertiary sediments in the Yucatan carbonate platform in the southern Gulf of Mexico. The structure was initially recognized from gravity and magnetic anomalies in the PEMEX exploration surveys of the northwestern Yucatan peninsula. The exploration program included eight deep boreholes completed from 1952 through the 1970s. The investigations showing Chicxulub as a large complex impact crater formed at the K/T boundary have relayed on the PEMEX decades-long exploration program. However, despite frequent use of PEMEX information and core samples, significant parts of the database and cores remain to be evaluated, analyzed and incorporated with results from recent efforts. Access to PEMEX Core Repository has permitted to study the cores and collect new samples from some of the boreholes. We analyzed cores from Yucatan-6, Chicxulub-1, Sacapuc-1, Ticul-1, Yucatan-1 and Yucatan-4 boreholes to make new detailed stratigraphic correlations and petrographic characterization, using information from PEMEX database and the recent studies. In C-1 cores, breccias show 4-8 cm clasts of fine grained altered melt dispersed in a medium to coarse grained matrix composed of pyroxene and feldspar with little macroscopic alteration. Clasts contain 0.2 to 0.1 cm fragments of silicate material (basement) that show variable degrees of digestion. Melt samples from C-1 N10 comes from interval 1,393-1,394 m, and show a fine-to-medium grained coherent microcrystalline groundmass. Melt and breccias in Y-6 extend from about 1,100 m to more than 1,400 m. Sequence is well sorted, with an apparent gradation in both the lithic and melt clasts. In this presentation we report on initial results from this new joint project for the carbonate sequences and impact lithologies.
NASA Astrophysics Data System (ADS)
Lewis, M.; Bucholz, C. E.; Jagoutz, O. E.; Eddy, M. P.
2017-12-01
Magmatic differentiation in arc settings is likely a polybaric process, with crystallization of primitive basalts occurring primarily in the lower crust and more evolved melts in the upper crust. The general lack of mafic-ultramafic cumulates in the silicic paleo-arc upper crust supports this model. However, the Sierra Nevada Batholith preserves numerous mafic intrusions up to 25 km2, suggesting that significant volumes of mafic magma may differentiate at shallow crustal levels. Previous studies on several such intrusions report ages contemporaneous with Cretaceous batholith emplacement (Coleman et al., 1995), but only a few have investigated their chemistry and relationship to arc magmatism (Frost, 1987; Frost & Mahood, 1987; Sisson et al., 1996). We present field observations, petrography, mineral chemistry, and bulk rock compositional data for the Hidden Lakes Mafic Complex (HLMC), located in the Central Sierra Nevada Batholith. Preliminary CA-ID-TIMS U-Pb zircon ages constrain crystallization between 90 and 95 Ma, slightly older than the surrounding Cretaceous felsic plutons (89-90 Ma) and younger than adjacent Jurassic granodiorites (172 Ma). This 2.2 km2 complex consists of biotite+amphibole gabbros through qtz-monzonites, in gradational contact, and contains local pods of biotite- and amphibole-bearing olivine-orthopyroxenites and gabbronorites. Mineral compositions and field relations suggest that these lithologies were derived from a common crystallization sequence. The most primitive olivine-pyroxenite contains olivine and orthopyroxene in equilibrium with a melt with Mg# 54. Subsequent crystallization over a temperature range of 1025 to 700°C produced more evolved lithologies up to qtz-monzonites. Al-in-hornblende calculations for HLMC qtz-monzonites indicate a crystallization depth of 9-10 km, well into the upper crust. The early crystallization of amphibole requires a parental basalt with >6 wt% H2O, which may have enabled it to ascend into the upper crust due to decreased density and viscosity. However, the estimated parental melt is not primitive (rather than Mg# 70), suggesting that differentiation of a more mafic precursor parental melt in the lower crust modified the chemistry and rheological properties of the melt prior to its ascent into the upper crust.
NASA Astrophysics Data System (ADS)
Xin, Wei; Sun, Feng-Yue; Li, Liang; Yan, Jia-Ming; Zhang, Yu-Ting; Wang, Ying-Chao; Shen, Ting-Shuo; Yang, Yi-Jun
2018-07-01
The Wulonggou Pluton is located in Wulonggou area, eastern segment of the Eastern Kunlun Orogenic Belt, NW China, and consists of mainly alkali-feldspar granites covering an area of about 150 km2. Petrogenesis of these granitoids has been investigated through an integrated study of petrography, zircon Usbnd Pb ages, whole-rock geochemistry, and Hfsbnd Nd isotopic compositions. Usbnd Pb dating of magmatic zircons indicated these granites crystallized during 426-424 Ma in the middle Silurian. The granites display high SiO2 (75.26-77.55 wt%), K2O + Na2O (7.98-9.03 wt%), extremely low MgO (0.04-0.19 wt%), CaO (0.28-0.61 wt%), and TiO2 (0.05-0.09 wt%) contents showing metaluminous, calcic-alkali and ferroan features; enrichment in Rb and some HFSEs (Zr, U, Nb, Ta, and Y), depletion in Sr, Ba, P, and Ti, mostly right-inclined REE curve, flat HREE patterns, high 10,000 ∗ Ga/Al and intensively negative Eu anomalies, exhibiting an A2-type granite affinity with Y/Nb > 1.2 mostly. The primitive magma of these large quantities of granites was generated under a high temperature, low pressure, reduced and anhydrous environment indicating intense upwelling of asthenosphere. Combining with the positive uniform zircon εHf(t) values of -0.2 to +3.8 and decoupled εNd(t) values of -4.9 to -2.1 at t = 424 Ma, it can be concluded that subduction-related juvenile materials, probably calc-alkaline granitoids, are the source of these A-type granites. Geochemical studies of Wulonggou granites, spatial and temporal distributions of regional magmatism, metamorphism, and sedimentary records throughout the Eastern Kunlun Orogen Belt jointly indicate that the whole orogenic belt was in a typical post-collision extension setting and experienced an isostatic uplift during the middle Silurian triggered by delamination after the convergence of the northeastern margin of Gondwana.
Mapping Intraplate Volcanic Fields: A Case Study from Harrat Rahat, Saudi Arabia
NASA Astrophysics Data System (ADS)
Downs, D. T.; Stelten, M. E.; Champion, D. E.; Dietterich, H. R.
2017-12-01
Continental intraplate mafic volcanoes are typically small-volume (<1 km3), but are one of the most prevalent volcanic landforms on Earth, particularly in the >200 volcanic fields proposed to be active worldwide during the Holocene. Their small individual eruption volumes make any hazards low, however their high prevalence offsets this by raising the risk to populations and infrastructure. The western Arabian Plate hosts at least 15 continental, intra-plate volcanic fields that stretch >3,000 km south to north from Yemen to Turkey. In total, these volcanic fields comprise one of the largest alkali basalt volcanic provinces on Earth, covering an area of 180,000 km2. With a total volume of 20,000 km3, Harrat Rahat in western Saudi Arabia is one of the largest of these volcanic fields. Our study focused on mapping the northern third of the Harrat Rahat volcanic field using a multidisciplinary approach. We have discriminated >200 individual eruptive units, mainly basaltic lava flows throughout Harrat Rahat that are distinguished through a combination of field observations, petrography, geochemistry, paleomagnetism, and 40Ar/39Ar radiometric and 36Cl cosmogenic surface-exposure dating. We have compiled these results into a high-resolution geologic map, which provides new information about the timing, compositions, and eruptive processes of Quaternary volcanism in Harrat Rahat. For example, prior mapping and geochronology undertaken during the 1980s suggested that the majority of mafic and silicic volcanics erupted during the Miocene and Pliocene, whereas several of the youngest-appearing lava flows were interpreted to be Neolithic ( 7,000 to 4,500 years BP) to post-Neolithic. New mapping and age-constrained stratigraphic relations indicate that all exposed volcanic units within the northern third of Harrat Rahat erupted during the Pleistocene, with the exception of a single Holocene eruption in 1256 AD. This new multidisciplinary mapping is critical for understanding the overall spatial, temporal, and compositional evolution of Harrat Rahat, timescales of magmatic processes in the mantle and crust, and understanding hazards and risks associated with the varied styles of volcanism in the region.
NASA Astrophysics Data System (ADS)
Brandstätter, J.; Kurz, W.; Krenn, K.; Micheuz, P.
2015-12-01
We present new data from microthermometric analyses of fluid inclusions entrapped in hydrothermal veins within lithified sediments and Cocos Ridge (CCR) basalt from IODP Expedition 344 site U1414 (Costa Rica) and concern on a primary task of Expedition 344, i.e. to evaluate fluid/rock interaction, the hydrologic system, and the geochemical processes (indicated by composition and volume of fluids) active within the incoming Cocos Plate. Mineralization of the veins and crosscutting relationships gives constraints for the different generation of veins. Calcium carbonate, commonly aragonite in the upper part and calcite in the lower part of the igneous basement, is usually present in veins as a late phase following the quartz precipitation and the clay minerals formation. The sequence of vein generations in the lithified sediments close to the contact within the CCR basalt is characterized by smaller veins filled by quartz, followed by massive intersecting calcite veins. A high fluid pressure can be concluded, due to wall rock fragments embedded within the filling and fractured mineral grains in the ground mass, which are close to the veins. This requires that the magmatic basement and the lithified sediments were covered by sequences of low permeability sediments forming a barrier that enabled build up elevated fluid pressure. The investigation of fluid inclusions in the lowest units of borehole 344-U1414, give clues about the source of the fluids and about the vein evolution within the incoming Cocos Plate close to Middle American Trench. The microthermometric analyses of the primary, almost aqueous, inclusions indicate a temperature range during entrapment between 200 and 420°C. The data indicate that seawater within the Cocos Ridge aquifer communicated with high-temperature fluids and/or were modified by heat advection. We consider the Galapagos hotspot and/ or the Cocos-Nazca spreading center as heat source. Fluids originated from mobilized sediment pore water and invaded seawater. Isotope and heat flow data indicate a deep fluid source within the Cocos Plate oceanic crust too.
NASA Astrophysics Data System (ADS)
Dos Santos, Thisiane; Kneller, Benjamin; Morton, Andrew; Armelenti, Garibaldi; Pantopoulos, George; De Ros, Luiz Fernando
2017-04-01
The Rosario Formation forms part of the Peninsular Ranges forearc basin complex, which crops out discontinuously along the Pacific coast of the Baja California Peninsula, Mexico. This study concerns the upper, deep marine part of the Rosario Formation , which includes several slope channel systems, one of these, the San Fernando channel systems consists of five channel complex sets (CCS1 to CCS5), each characterized by three filling stages. Stage I consists of predominantly clast and matrix-supported conglomerates, with subordinate medium to coarse grained sandstones. Stage II consists of units of clast-supported conglomerates with subordinate medium to coarse-grained sandstones, separated by mainly thinly-bedded turbidites (intercalation of thin beds of fine-grained sandstones and mudstones). Stage III consists mainly of hemipelagic mudstones. The main objective of this research is to determine source area and to compare the coarse fraction and finer fraction (fragments <2 cm) from conglomerates of each channel set, combining provenance methodology such as heavy minerals, clast counting, geochemistry, bulk petrography and U/Pb in detrital zircons by LA-ICPMS and SHRIMP. The heavy minerals assembly identified were Ca amphibole, epidote, clinozoisite, titanite, garnet, tourmaline, apatite, rutile and zircon, among them amphiboles are by far the most abundant detrital mineral. Clast counting and petrographic characterization showed that the pebble fraction of the conglomerates is constituted at least 18 different, and the majority being composed by pyroclastic, porphyritic volcanic and sandstone rocks. Bulk quantification indicates that the main provenance tectonic mode of the fine fraction of the conglomerates can be interpreted as dissected magmatic arc, with subordinate uplifted basement and recycled orogenic contributions. The preliminary conclusion is that the sedimentary supply to the Rosario Formation was mostly derived from volcanic and plutonic rocks of the Upper Peninsular Ranges Arc complex known as the Alisitos Arc, which follows the western margin of the Peninsular Ranges batholith, as well as from older magmatic arc, and from recycling of sedimentary/metasedimentary terrains.
NASA Technical Reports Server (NTRS)
Vetter, Scott K.; Shervais, John W.
1993-01-01
Early studies of mare basalts from the Apollo 15 site established that two distinct groups are represented: the olivine-normative basalts (ONB) and the quartz-normative basalts (QNB). The ONB and QNB suites are distinguished petrographically by their phenocryst assemblages (the ONB's are olivine-phyric, the QNB's are generally pyroxene-phyric) and chemically by their major element compositions: the QNB's are higher in SiO2 and MgO/FeO, and lower in FeO and TiO2 than ONB's with similar MgO contents. Experimental data show that the QNB suite is derived from a more magnesian, olivine-normative parent magma, a conclusion which is supported by the recent discovery of high-SiO2 olivine-normative basalt clasts in breccia 15498. The high-SiO2 ONB's fall on olivine control lines with primitive QNB's, and least-squares mixing calculations are consistent with the high-SiO2 ONB's being parental to the more evolved QNB suite. These high-SiO2 ONB's are included as part of the 'QNB suite'. Our major element modeling results also are consistent with the conclusions of earlier studies which showed that the ONB and QNB suites cannot be related to one another by low pressure crystal fractionation. The combination of high Mg#, high SiO2, and low TiO2 in the QNB suite precludes a relationship to the ONB suite by simple removal of liquidus minerals (olivine and pigeonite). Despite these significant differences in petrography and major element composition, both groups have nearly identical trace element concentrations and chondrite-normalized abundance patterns. The major question to be addressed by any petrogenetic model for Apollo 15 mare basalts is how to form mare basalt suites with distinctly different major element characteristics but nearly identical trace element compositions. The similarity in trace element concentrations imply compositionally similar source regions and similar percent melting, but these conclusions are not easily reconciled with the observed differences in major element compositions, which require sources with distinct mineralogies or large differences in percent melt.
Chicxulub: testing for post-impact hydrothermal inputs into the Tertiary ocean
NASA Astrophysics Data System (ADS)
Rowe, A.; Wilkinson, J.; Morgan, J.
2003-04-01
Large terrestrial impacts produce intense fracturing of the crust and large melt sheets, providing ideal conditions for extensive hydrothermal circulation. In marine settings, such as Chicxulub, there is the potential for downward penetration of cold seawater, heating by the thermal anomaly at the impact site and leaching of metals, prior to buoyancy driven flow back to the surface. There, fluids may undergo venting into the water column. A large proportion of the metals in such vent fluids precipitate close to the site of discharge; however, a proportion of the fluid is dispersed as a hydrothermal plume. Dissolved and particulate materials (in particular manganese and iron oxyhydroxides) can be carried for several hundreds of kilometers, before falling out to form metal-rich sediments. A series of Tertiary core samples has been obtained from the International Continental Drilling Program at Chicxulub (CSDP). These comprise fine-grained cream coloured carbonate sediments with fine laminations. Transmitted light and cathodoluminescence petrography have been used to carry out a preliminary characterization of the samples. Multi-element analysis has also been undertaken by ICP-AES. Samples were reduced to powder and digested using a nitric-perchloric-hydrofluoric acid attack. Rare earth elements (REE) have been analysed by ICP-MS and solutions were prepared using a modified nitric-perchloric-hydrofluoric acid attack. Geochemical analyses have been carried out to test for characteristic signals of hydrothermal input, such as enrichments in Mn, Fe, Cu, Zn, Pb, Mg, Ba, Co, Cr and Ni. The REE are scavenged from seawater onto iron oxide surfaces in the plume; hence anomalous REE concentrations are also indicative of hydrothermal addition. Furthermore, the type of anomaly can differentiate between sediments proximal (+ve Eu) distal (-ve Ce) to the vent site. The stratigraphic extent of any anomalies can be used to constrain the duration of any post-impact circulation. The wider significance of such hydrothermal circulation, if identified, include the potential formation of hydrothermal mineralization and vent-related ecosystems in the Chicxulub crater. The results will also have implications for the exploration of impact-related hydrothermal ecosystems on other planets.
An Apollo 15 Mare Basalt Fragment and Lunar Mare Provinces
NASA Technical Reports Server (NTRS)
Ryder, Graham; Burling, Trina Cox
1996-01-01
Lunar sample 15474,4 is a tiny fragment of olivine-augite vitrophyre that is a mare basalt. Although petroraphically distinct from all other Apollo 15 samples, it has been ignored since its first brief description. Our new petrographic and mineral chemical data show that the olivines and pyroxenes are distinct from those in other basalts. The basalt cooled and solidified extremely rapidly; some of the olivine might be cumulate or crystallized prior to extrusion. Bulk-chemical data show that the sample is probably similar to an evolved Apollo 15 olivine-normative basalt in major elements but is distinct in its rare earth element pattern. Its chemical composition and petrography both show that 15474,4 cannot be derived from other Apollo 15 mare basalts by shallow-level crystal fractionation. It represents a distinct extrusion of magma. Nonetheless, the chemical features that 15474,4 has in common with other Apollo 15 mare basalts, including the high FeO/Sc, the general similarity of the rare earth element pattern, and the common (and chondritic) TiO2/Sm ratio, emphasize the concept of a geochemical province at the Apollo 15 site that is distinct from basalts and provinces elsewhere. In making a consistent picture for the derivation of all of the Apollo 15 basalts, both the commonalities and the differences among the basalts must be explained. The Apollo 15 commonalities and differences suggest that the sources must have consisted of major silicate phases with the same composition but with varied amounts of a magma trapped from a contemporary magma ocean. They probably had a high olivine/pyroxene ratio and underwent small and reasonably consistent degrees of partial melting to produce the basalts. These inferences may be inconsistent with models that suggest greatly different depths of melting among basalts, primitive sources for the green glasses, or extensive olivine fractionation during ascent. An integrated approach to lunar mare provinces, of which the Apollo 15 mare basalts constitute only one, offers advances in our understanding of the physical and chemical processes of source formation and mare production but has so far not been utilized.
NASA Astrophysics Data System (ADS)
Roverato, Matteo; Juliani, Caetano; Capra, Lucia; Dias Fernandes, Carlos Marcelo
2016-04-01
Precambrian volcanism played an important role in geological evolution and formation of new crust. Most of the literature on Precambrian volcanic rocks describes settings belonging to subaqueous volcanic systems. This is likely because subaerial volcanic rocks in Proterozoic and Archean volcano-sedimentary succession are poorly preserved due to erosive/weathering processes. The late Paleoproterozoic Sobreiro Formation (SF) here described, seems to be one of the rare exceptions to the rule and deserves particular attention. SF represents the subaerial expression of an andesitic magmatism that, linked with the upper felsic Santa Rosa F., composes the Uatumã Group. Uatumã Group is an extensive magmatic event located in the Xingú region, southwestern of Pará state, Amazonian Craton (northern Brazil). The Sobreiro volcanism is thought to be related to an ocean-continent convergent margin. It is characterized by ~1880 Ma well-preserved calc-alkaline basaltic/andesitic to andesitic lava flows, pyroclastic rocks and associated reworked successions. The superb preservation of its rock-textures allowed us to describe in detail a large variety of volcaniclastic deposits. We divided them into primary and secondary, depending if they result from a direct volcanic activity (pyroclastic) or reworked processes. Our study reinforces the importance of ancient volcanic arcs and rocks contribution to the terrestrial volcaniclastic sedimentation and evolution of plate tectonics. The volcanic activity that produced pyroclastic rocks influenced the amount of detritus shed into sedimentary basins and played a major role in the control of sedimentary dispersal patterns. This study aims to provide, for the first time, an analysis of the physical volcanic processes for the subaerial SF, based in field observation, lithofacies analysis, thin section petrography and less geochemical data. The modern volcanological approach here used can serve as a model about the evolution of Precambrian volcano-sedimentary basins. Our approach permits to better identify different processes operating on volcanic edifices and to constrain the depositional environment and thus geodynamic setting of Precambrian continental volcanic belts. Acknowledgments: We acknowledge CAPES/CNPq project n° 402564/2012-0 (Programa Ciências sem Fronteiras), CNPq/CT-Mineral (Proc. 550.342/2011-7) and INCT-Geociam (573733/2008-2) - CNPq/MCT/FAPESPA/PETROBRAS.
NASA Astrophysics Data System (ADS)
Plumlee, G. S.
2015-12-01
I have been fortunate to be able to follow a varied career path from economic geology, to environmental geochemistry, to geochemistry and human health, to environmental disasters. I have been privileged to collaborate with many exceptional scientists from across and well beyond the earth sciences (e.g., public heath, engineering, economics, emergency response, microbiology). Much of this transdisciplinary work has intriguing links back to economic geology/geochemistry. Geological characteristics of different ore deposit types predictably influence the environmental and health impacts of mining, and so can help anticipate and prevent adverse impacts before they occur. Geologic maps showing potential for natural occurrences of asbestos or erionite are analogous to permissive tract maps used for mineral-resource assessments, and can be correlated with epidemiological data to help understand whether living on or near such rocks poses a risk for developing asbestos-related diseases. Mineral particles that are taken up by the human body along inhalation or incidental ingestion exposure routes are "weathered" by reactions with diverse body fluids that differ greatly in composition between and along the different exposure routes. These in vivo chemical reactions (e.g., dissolution, alteration, metal complexation, oxidation/reduction, reprecipitation) are in ways analogous to processes of ore deposit formation and weathering, and some can be shown (in collaboration with toxicologists) to play a role in toxicity. Concepts of ore petrography and paragenesis can be applied to interpret (in collaboration with pathologists) the origin, physiological implications, and toxicity effects of mineral matter in human tissue samples obtained by biopsy, transplant or autopsy. Some disaster materials can originate from mining- or mineral-processing sources, and methods originally developed to study ore deposits or mining-environmental issues can also be applied to understand many disaster materials. These examples illustrate an appropriate core role for earth scientists in transdisciplinary research: applying our expertise and toolkits to help understand topics well beyond earth sciences, but doing so in collaboration with experts from disciplines that traditionally examine those topics.
Caulfield, John; Chelliah, Merlyn; Comte, Jean-Christophe; Cassidy, Rachel; Flynn, Raymond
2014-12-01
Identifying groundwater contributions to baseflow forms an essential part of surface water body characterisation. The Gortinlieve catchment (5 km(2)) comprises a headwater stream network of the Carrigans River, itself a tributary of the River Foyle, NW Ireland. The bedrock comprises poorly productive metasediments that are characterised by fracture porosity. We present the findings of a multi-disciplinary study that integrates new hydrochemical and mineralogical investigations with existing hydraulic, geophysical and structural data to identify the scales of groundwater flow and the nature of groundwater/bedrock interaction (chemical denudation). At the catchment scale, the development of deep weathering profiles is controlled by NE-SW regional scale fracture zones associated with mountain building during the Grampian orogeny. In-situ chemical denudation of mineral phases is controlled by micro- to meso-scale fractures related to Alpine compression during Palaeocene to Oligocene times. The alteration of primary muscovite, chlorite (clinochlore) and albite along the surfaces of these small-scale fractures has resulted in the precipitation of illite, montmorillonite and illite-montmorillonite clay admixtures. The interconnected but discontinuous nature of these small-scale structures highlights the role of larger scale faults and fissures in the supply and transportation of weathering solutions to/from the sites of mineral weathering. The dissolution of primarily mineral phases releases the major ions Mg, Ca and HCO3 that are shown to subsequently form the chemical makeup of groundwaters. Borehole groundwater and stream baseflow hydrochemical data are used to constrain the depths of groundwater flow pathways influencing the chemistry of surface waters throughout the stream profile. The results show that it is predominantly the lower part of the catchment, which receives inputs from catchment/regional scale groundwater flow, that is found to contribute to the maintenance of annual baseflow levels. This study identifies the importance of deep groundwater in maintaining annual baseflow levels in poorly productive bedrock systems. Copyright © 2014 Elsevier B.V. All rights reserved.
Sulphur cycling in a Neoarchaean microbial mat.
Meyer, N R; Zerkle, A L; Fike, D A
2017-05-01
Multiple sulphur (S) isotope ratios are powerful proxies to understand the complexity of S biogeochemical cycling through Deep Time. The disappearance of a sulphur mass-independent fractionation (S-MIF) signal in rocks <~2.4 Ga has been used to date a dramatic rise in atmospheric oxygen levels. However, intricacies of the S-cycle before the Great Oxidation Event remain poorly understood. For example, the isotope composition of coeval atmospherically derived sulphur species is still debated. Furthermore, variation in Archaean pyrite δ 34 S values has been widely attributed to microbial sulphate reduction (MSR). While petrographic evidence for Archaean early-diagenetic pyrite formation is common, textural evidence for the presence and distribution of MSR remains enigmatic. We combined detailed petrographic and in situ, high-resolution multiple S-isotope studies (δ 34 S and Δ 33 S) using secondary ion mass spectrometry (SIMS) to document the S-isotope signatures of exceptionally well-preserved, pyritised microbialites in shales from the ~2.65-Ga Lokammona Formation, Ghaap Group, South Africa. The presence of MSR in this Neoarchaean microbial mat is supported by typical biogenic textures including wavy crinkled laminae, and early-diagenetic pyrite containing <26‰ μm-scale variations in δ 34 S and Δ 33 S = -0.21 ± 0.65‰ (±1σ). These large variations in δ 34 S values suggest Rayleigh distillation of a limited sulphate pool during high rates of MSR. Furthermore, we identified a second, morphologically distinct pyrite phase that precipitated after lithification, with δ 34 S = 8.36 ± 1.16‰ and Δ 33 S = 5.54 ± 1.53‰ (±1σ). We propose that the S-MIF signature of this secondary pyrite does not reflect contemporaneous atmospheric processes at the time of deposition; instead, it formed by the influx of later-stage sulphur-bearing fluids containing an inherited atmospheric S-MIF signal and/or from magnetic isotope effects during thermochemical sulphate reduction. These insights highlight the complementary nature of petrography and SIMS studies to resolve multigenerational pyrite formation pathways in the geological record. © 2017 The Authors Geobiology Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Fedele, Lorenzo; Seghedi, Ioan; Chung, Sun-Lin; Laiena, Fabio; Lin, Te-Hsien; Morra, Vincenzo; Lustrino, Michele
2016-12-01
Post-collisional magmatism in the Late Miocene Rodna-Bârgău subvolcanic district (East Carpathians) gave rise to a wide variety of rock compositions, allowing recognition of four groups of calcalkaline rocks with distinctive petrography, mineral chemistry, whole-rock geochemistry and Sr-Nd-Hf isotope features. New U-Pb zircon datings, together with literature data, indicate that the emplacement of the four rock groups was basically contemporaneous in the 11.5-8 Ma time span. The low potassium group (LKG) includes the most abundant lithotypes of the area, ranging from basaltic andesite to dacite, characterized by K-poor tschermakitic amphibole, weak enrichment in LILE and LREE, relatively low 87Sr/86Sr, coupled with relatively high 143Nd/144Nd and 176Hf/177Hf. The high potassium group (HKG) includes amphibole-bearing microgabbro, amphibole andesite and amphibole- and biotite dacite, with K-richer magnesio-hastingsite to hastingsite amphibole, more marked enrichments in incompatible elements, higher 87Sr/86Sr and lower 143Nd/144Nd and 176Hf/177Hf. These two main rock groups seem to have originated from similar juxtaposed mantle sources, with the HKG possibly related to slightly more enriched domains (with higher H2O reflected by the higher modal amphibole) with respect to LKG (with higher plagioclase/amphibole ratios). The evolution of the two rock series involved also open-system processes, taking place mainly in the upper crust for the HKG, in the lower crust for LKG magmas. In addition, limited occurrences of generally younger strongly evolved peraluminous rhyolites and microgranites (Acid group) and sialic-dominated "leucocratic" andesites and dacites (LAD group) were also recognized to the opposite outermost areas of the district. These two latter rock groups were generated by the melting of a basic metamorphic crustal source (respectively in hydrous and anhydrous conditions), favored by the heat released by mantle melts from the adjoining central area. The peculiar distribution of the products of the four rock groups in well defined sectors argues for a strong control of the local crustal tectonic regime on magmatism, influenced by the change from a transpressional to trastensional stage.
Modern Sedimentation along the SE Bangladesh Coast Reveal Surprisingly Low Accumulation Rates
NASA Astrophysics Data System (ADS)
McHugh, C.; Mustaque, S.; Mondal, D. R.; Akhter, S. H.; Iqbal, M.
2016-12-01
Recent sediments recovered along the SE coast of Bangladesh, from Teknaf to Cox's Bazar and drainage basin analyses reveal sediment sources and very low sedimentation rates of 1mm/year. These low rates are surprisingly low given that this coast is adjacent to the Ganges-Brahmaputra Delta with a yearly discharge of 1GT. The Teknaf anticline (elevation 200 m), part of the western Burma fold-thrust belt dominates the topography extending across and along the Teknaf peninsula. It is thought to have begun evolving since the Miocene (Alam et al. 2003 & Allen et al. 2008). Presently the anticline foothills on the west are flanked by uplifted terraces, the youngest linked to coseismic displacement during the 1762 earthquake (Mondal et al. 2015), and a narrow beach 60-200 m in width. Petrography, semi-quantitative bulk mineralogy and SEM/EDX analyses were conducted on sediments recovered along the west coast from 1-4 m deep trenches and three 4-8 m deep drill holes. GIS mapping of drainage basins and quartz-feldspar-lithic (QFL) ternary plots based on grain counting show mixing of sediments from multiple sources: Himalayan provenance of metamorphic and igneous origin (garnet-mostly almandine, tourmaline, rutile, kyanite, zircon, sillimanite and clinopyroxene) similar to Uddin et al. (2007); Brahmaputra provenance of igneous and metamorphic origin (amphibole, epidote, plagioclase 40% Na and 60% Ca, apatite, ilmenite, magnetite, Cr-spinel and garnet-mostly grossular,) as indicated by Garzanti et al. (2010) & Rahman et al. (2016) and Burmese sources (cassiterite and wolframite) (Zaw 1990 & Searle et al. 2007). Low sedimentation rates are the result of two main factors: 1. Strong longshore currents from the south-east that interact with high tidal ranges as evidenced by the morphology of sand waves and ridge and runnel landforms along the beach. 2. Streams draining the Teknaf anticline are dry during the winter and during summer monsoon rains, the sediments bypass the narrow beach and are washed out offshore. These sedimentation patterns together with the offshore reversing monsoon circulation are shaping the coast by contributing to erosion, mixing of sediments and transporting minerals from the Burma drainage basin in the south.
NASA Astrophysics Data System (ADS)
Endo, Takahiro; Tsunogae, Toshiaki; Santosh, M.; Shaji, E.; Rambeloson, Roger A.
2017-06-01
Incipient charnockites representing granulite formation on a mesoscopic scale occur in the Ambodin Ifandana area of Ikalamavony sub-domain in south-central Madagascar. Here we report new petrological data from these rocks, and discuss the process of granulite formation on the basis of petrography, mineral equilibrium modeling, and fluid inclusion studies. The incipient charnockites occur as brownish patches, lenses, and layers characterized by an assemblage of biotite + orthopyroxene + K-feldspar + plagioclase + quartz + magnetite + ilmenite within host orthopyroxene-free biotite gneiss with an assemblage of biotite + K-feldspar + plagioclase + quartz + magnetite + ilmenite. Lenses and layers of calc-silicate rock (clinopyroxene + garnet + plagioclase + quartz + titanite + calcite) are typically associated with the charnockite. Coarse-grained charnockite occurs along the contact between the layered charnockite and calc-silicate rock. The application of mineral equilibrium modeling on the mineral assemblages in charnockite and biotite gneiss employing the NCKFMASHTO system as well as fluid inclusion study on coarse-grained charnockite defines a P-T range of 8.5-10.5 kbar and 880-900 °C, which is nearly consistent with the inferred P-T condition of the Ikalamavony sub-domain (8.0-10.5 kbar and 820-880 °C). The result of T versus H2O activity (a(H2O)) modeling demonstrates that orthopyroxene-bearing assemblage in charnockite is stable under relatively low a(H2O) condition of 0.42-0.43, which is consistent with the popular models of incipient-charnockite formation related to the lowering of water activity and stabilization of orthopyroxene through dehydration of biotite. The occurrence of calc-silicate rocks adjacent to the charnockite suggests that the CO2-bearing fluid that caused dehydration and incipient-charnockite formation might have been derived through decarbonation of calc-silicate rocks during the initial stage of decompression slightly after the peak metamorphism. The calc-silicate rocks might have also behaved as a cap rock that trapped CO2 infiltrated from an external source. 'CO2-rich fluid ponds' formed beneath calc-silicate layers could have enhanced dehydration of biotite to orthopyroxene, and produced layers of coarse-grained charnockite adjacent to calc-silicate layers.
NASA Astrophysics Data System (ADS)
Fahad, M.; Iqbal, Y.; Riaz, M.; Ubic, R.; Redfern, S. A. T.
2015-12-01
The KP province of Pakistan hosts widespread deposits of thermo-metamorphic marbles that were extensively used as a building and ornamental stones since the time of earliest flourishing civilization in this region known as Indus Valley Civilization (2500 BC). The macroscopic characteristics of 22 marble varieties collected from three different areas of Lesser Himalayas (Northwest Pakistan), its chemical, mineralogical, petrographic features, temperature conditions of metamorphic re-crystallization, and the main physical properties are presented in order to provide a solid basis for possible studies on the provenance and distribution of building stones from this region. The results provide a set of diagnostic parameters that allow discriminating the investigated marbles and quarries. Studied marbles overlap in major phase assemblage, but the accessory mineral content, chemistry, the maximum grain size (MGS) and other petrographic characteristics are particularly useful in the distinction between them. On the basis of macroscopic features, the studied marbles can be classifies into four groups: (i) white (ii) grey-to-brown veined, (iii) brown-reddish to yellowish and (iv) dark-grey to blackish veined marbles. The results show that the investigated marbles are highly heterogeneous in both their geochemical parameters and minero-petrographic features. Microscopically, the white, grey-to-brown and dark-grey to blackish marbles display homeoblastic/granoblastic texture, and the brown-reddish to yellowish marbles display a heteroblastic texture with traces of slightly deformed polysynthetic twining planes. Minero-petrography, XRD, SEM and EPMA revealed that the investigated marbles chiefly consist of calcite along with dolomite, quartz, muscovite, pyrite, K-feldspar, Mg, Ti and Fe-oxides as subordinates. The magnesium content of calcite coexisting with dolomite was estimated by both XRD and EPMA/EDS, indicating the metamorphic temperature of re-crystallization from 414 - 628oC. The multi-analytical approach applied in the present study allows the best possible discrimination. The detailed databank relating to the quarried material, created here for the first time, provides a solid basis for possible studies on the provenance and distribution of building stones from these areas.
The modern Nile sediment system: Processes and products
NASA Astrophysics Data System (ADS)
Garzanti, Eduardo; Andò, Sergio; Padoan, Marta; Vezzoli, Giovanni; El Kammar, Ahmed
2015-12-01
We trace compositional changes of Nile sediments for 7400 km, from their sources in equatorial rift highlands of Burundi and Rwanda to their sink in the Mediterranean Sea. All chemical and physical controls on sediment petrography, mineralogy and geochemistry, including weathering, grain-size, hydraulic sorting, mechanical breakdown, anthropic impact, mixing and recycling are investigated in detail. The Nile course is controlled along its entire length by the East African-Red Sea Rift. In this anorogenic setting, detritus is derived in various proportions from volcanic fields associated with tectonic extension (Anorogenic Volcanic provenance) and from igneous, metamorphic and sedimentary rocks uplifted on the rift shoulders or exposed on the craton (Continental Block provenance). The entire spectrum of such detrital signatures is displayed in the Nile catchment. Volcaniclastic Atbara sand is generated by focused erosion of the Ethiopian basaltic plateau in semiarid climate, whereas quartzose White Nile sand reflects low erosion rates, extensive weathering and sediment trapping in lakes and swamps at equatorial to subequatorial latitudes. In the main Nile, as in its main tributary the Blue Nile, suspended load is volcaniclastic, whereas feldspatho-quartzose bedload is derived largely from basement sources, with fine to medium-grained eolian sand added along the lower course. Mixing of detrital populations with different provenance and grain size is reflected in diverse violations of settling-equivalence relationships in fluvial and deltaic sediments. Sediment delivery from Sudan has been cut off after closure of the Aswan High Dam and accelerated erosion of deltaic cusps is leading to local formation of placer lags dominated by ultradense Fe-Ti-Cr oxides, but mineralogical changes caused by man's radical modification of fluvial regimes have been minor so far. In beaches of Sinai, Gaza and Israel, the Nile volcaniclastic trace gets progressively diluted by quartzose sand recycled from eolian coastal deposits and carbonaticlastic detritus eroded from the Levant rift shoulder. Studying the compositional variability of modern sediments in big-river systems allows us to appreciate the richness of natural processes occurring in the vast drainage basin, and provides us with a key to understand the information stored in sedimentary archives and to reconstruct the evolution of the Earth's surface from the recent to the less recent past.
NASA Astrophysics Data System (ADS)
Mitra, A.; Dey, S.
2017-12-01
Geochemical characteristics of clastic sedimentary rocks deposited and later preserved in ancient supracrustal sequences of Archaean terrain are competent representation of their source rocks in provenance. These rocks usually sample a wide geographic area and bear signature of subsequently destroyed and dismembered terrains. In this study the quartz pebble conglomerate-quartz sandstone association of Sigegudda and Bababudan belt of western Dharwar craton (WDC), Southern India have been studied to understand the nature of their provenance. Both Sigegudda and Bababudan belt represent younger (2.8-2.6 Ga) greenstone sequences of WDC. They start with a prominent band of conglomerate-quartzite lying over Palaeo to Meso Archaean Peninsular Gneiss (3.35-3.29 Ga) with older Sargur greentone (3.35-3.28 Ga) enclaves along an unconformity. Here, we present a comprehensive provenance (mainly source rock characterization) study of major and trace element composition of low to moderately metamorphosed basal siliciclastics of the younger greenstone sequences of WDC. Chemically they are enriched in Th, U, HFSE (Hf, Nb, Zr) and depleted in Sc, Co, Cr and Eu content with elevated La/Sc and Th/Sc values depicting a differentiated felsic source. This is further supported by fractionated LREE (10.64 - 14.66), significant negative Eu anomaly (0.67 - 0.55) and nearly flat HREE indicating granitoid rocks as source. In La-Th-Cr/100 and La-Th-Sc triangular diagram, quartz arenite field overlap with the Peninsular Gneiss and plotted far away from the mafic-ultramafics of Sargur. The chemical index of alteration (CIA) values of arenites of Sigegudda (71) and Bababudan (75), Peninsular Gneisses (avg-50) and Sargur group (avg-30) implies their derivation from the underlying gneisses associated with a prolonged weathering. The presence of a thick conglomerate-quartz sandstone association with differently sized quartz in their framework and matrix, depicts the development of a stable craton in WDC during the Mesoarchaean. The geochemical results of conglomerate - quartzites along with their supported petrography strongly recommend the Peninsular gneiss as their provenance with prolonged erosion and sediment recycling.
NASA Astrophysics Data System (ADS)
Favier, Alexiane; Navelot, Vivien; Verati, Chrystèle; Lardeaux, Jean-Marc; Corsini, Michel; Diraison, Marc; Géraud, Yves; Mercier de Lépinay, Jeanne; Munschy, Marc
2017-04-01
This survey takes part in the GEOTREF project (high enthalpy geothermal energy in fractured reservoirs), supported by the French government program "Investments for the future". The program focuses on the exploration of geothermal resource in the Lesser Antilles volcanic arc. An exclusive license has been issued in the Vieux-Habitants area (Basse-Terre, Guadeloupe) to carry on the development of high-temperature geothermal energy in this active volcanic region. The deep geothermal reservoir on the Basse-Terre island could be characterized in exhumed paleosystems. The reference paleosystem in the Guadeloupe archipelago is located in Terre-de-Haut. Four major fault directions have been highlighted N000-N020, N050-N070, N090-N110 and N130-N140. Field observations emphasize three major cleavage directions overlaying the fault systems: N035-N060, N080-N110, N145-N165. Volcanic rocks affected by cleavage display several metamorphic transformation grades. The more transformed calc-alkaline rocks are located at the intersection of several cleavage directions. Mineralogical transformations due to metamorphism and surimposed fractures are also responsible for strong changes of petrophysical properties. In comparison with the reference protolith of andesitic lava flows outcropping in Vieux-Habitants, which have porosity and permeability lower than 5 % and 10-15 m2, andesites of Terre-de-Haut have better reservoir properties with connected porosity and permeability higher than 15 % and 10-14-10-15 m2 respectively. Thermodynamic modelling based on petrography and chemical composition of the most transformed rocks highlights a steady state mineral assemblage between 0.25 - 1.5 kbar and 350 - 450 ˚ C. It corresponds to a geothermal gradient higher than 120 to 150˚ C/km. This is consistent with temperatures measured in Bouillante wells. However, this geothermal gradient is notably higher to a usual volcanic arc conductive gradient estimated to 70-100˚ C/km. It can be explained by the addition of a convective processes caused by hydrothermal fluid flows.
Bartosova, Katerina; Gier, Susanne; Horton, J. Wright; Koeberl, Christian; Mader, Dieter; Dypvik, Henning
2010-01-01
The ICDP–USGS Eyreville drill cores in the Chesapeake Bay impact structure reached a total depth of 1766 m and comprise (from the bottom upwards) basement-derived schists and granites/pegmatites, impact breccias, mostly poorly lithified gravelly sand and crystalline blocks, a granitic slab, sedimentary breccias, and postimpact sediments. The gravelly sand and crystalline block section forms an approximately 26 m thick interval that includes an amphibolite block and boulders of cataclastic gneiss and suevite. Three gravelly sands (basal, middle, and upper) are distinguished within this interval. The gravelly sands are poorly sorted, clast supported, and generally massive, but crude size-sorting and subtle, discontinuous layers occur locally. Quartz and K-feldspar are the main sand-size minerals and smectite and kaolinite are the principal clay minerals. Other mineral grains occur only in accessory amounts and lithic clasts are sparse (only a few vol%). The gravelly sands are silica rich (~80 wt% SiO2). Trends with depth include a slight decrease in SiO2 and slight increase in Fe2O3. The basal gravelly sand (below the cataclasite boulder) has a lower SiO2 content, less K-feldspar, and more mica than the higher sands, and it contains more lithic clasts and melt particles that are probably reworked from the underlying suevite. The middle gravelly sand (below the amphibolite block) is finer-grained, contains more abundant clay minerals, and displays more variable chemical compositions than upper gravelly sand (above the block). Our mineralogical and geochemical results suggest that the gravelly sands are avalanche deposits derived probably from the nonmarine Potomac Formation in the lower part of the target sediment layer, in contrast to polymict diamictons higher in the core that have been interpreted as ocean-resurge debris flows, which is in agreement with previous interpretations. The mineralogy and geochemistry of the gravelly sands are typical for a passive continental margin source. There is no discernible mixing with marine sediments (no glauconite or Paleogene marine microfossils noted) during the impact remobilization and redeposition. The unshocked amphibolite block and cataclasite boulder might have originated from the outer parts of the transient crater.
NASA Astrophysics Data System (ADS)
Upton, B. G. J.; Craven, J. A.; Kirstein, L. A.
2006-11-01
Aillikites (carbonated, melilite-free ultramafic lamprophyres grading to carbonatites) are minor components of the Gardar alkaline igneous province. They occur principally as minor intrusions and as clasts in diatremes, but more voluminous aillikitic intrusions crop out near the Ilímaussaq Complex, which they predate by a few million years. These larger intrusions were emplaced at 1160 ± 5 Ma. They are essentially carbonate-free and, consisting almost wholly of ferromagnesian silicate and oxide minerals, are mela-aillikites. Typically the mela-aillikites are fine-grained rocks composed largely of olivine, clinopyroxene, phlogopite and magnetite that crystallised in open systems, permitting loss of volatile-rich residues. The petrography is highly complex, involving at least 28 mineral species. Pyroxenitic veins were emplaced while the host-rocks were still at high temperatures and represent channels through which fluorinated silico-carbonatitic residual melts escaped, with exsolving CO 2 as propellant. Precipitation of Ca-rich minerals including monticellite, perovskite, vesuvianite, wollastonite and cuspidine was a result of dissociation of the calcium carbonate in the residual melts. Late-stage crystallisation was in a highly oxidising environment in which the 'common minerals' attain extreme compositions (almost pure forsterite, ferrian-diopside, highly magnesian ilmenite, Ba-Ti-rich phlogopite and Sr-rich kaersutite). Spatially associated diatremes may be vents through which CO 2-rich gases erupted. The whole-rock compositions are considered to be well removed from those of co-existing melts: compaction and expulsion of highly mobile residual melts is inferred to have left the mela-aillikites as aberrant cumulates. The mela-aillikites are a late-Gardar manifestation of the aillikitic magmatism that occurred intermittently in the province for over 120 Ma. Repetitive formation of metasomite vein systems in the deep lithospheric mantle is postulated. These readily fusible metasomites had short residence histories, experiencing either adiabatic melting or thermal melting as a result of plume activity. The abnormally large volumes of ultramafic lamprophyre magma, from which the mela-aillikites crystallised, may denote the culmination of metasomatic processes in the closing stages of the evolution of the Gardar Province.
Leo, Gerhard W.; Pavich, M.J.; Obermeier, Stephen F.
1977-01-01
Undisturbed cores of saprolite developed on crystalline rocks of the Piedmont Province in Fairfax County, Virginia have been obtained using a combination of Shelby tubes, Denison sampler, and modified diamond core-drilling. The principal purpose of the core study is to correlate variations in chemistry, mineralogy and texture with engineering properties throughout the weathering profile. Coring sites were chosen to obtain a maximum depth of weathering on diverse lithologies. The rocks investigated include pelitic schist, metagraywacke, granite, diabase and serpentinite. Four to twelve samples per core were selected, depending on thickness of 1) the weathering profile (from about 1 m in serpentinite to more than 30 m in pelitic schist) and on 2) megascopic changes in saprolite character for analysis of petrography, texture, clay mineralogy andd major element chemistry. Shear strength and compressibility were determined on corresponding segments of core. Standard penetration tests were performed adjacent to coring sites to evaluate engineering properties in situ. Geochemical changes of saprolite developed from each rock type follow predictable trends from fresh rock to soil profile, with relative Increases in Si, Ti, Al, Fe3+ and H20; variable K; and relative loss of Fe 2+, Mg, Ca, and Na. These variations are more pronounced in the weathering profiles over mafic and ultramafic rocks than metagraywacke. Clay minerals in granite, schist and metagraywacke saprolite are kaolinite, dioctahedral vermiculite, interlayered micavermiculite, and minor illite. Gibbsite is locally developed in near-surface samples of schist. Standard penetration test data for the upper 7 m of saprolite over schist and metagraywacke suggest alternations between stronger and weaker horizons than probably reflect variations in lithology including the presence of quartz lenses. Results for granite saprolite are most consistent but indicate lower strength. Shear strength increases fairly regularly downward in the weathering profile. The engineering behavior of diabase saprolite is controlled by a dense, plastic, near-surface clay layer (montmorillonite and kaolinite)overlying rock which is weathered to a granular state (grus), while engineering properties of serpentinite are determined by a very thin weathering profile.
NASA Astrophysics Data System (ADS)
Bailey, S. W.; Ross, D. S.
2015-12-01
Primary mineral dissolution (i.e. weathering) is a critical process in forested catchments as an important consumer of acidity and CO2, the principle source of nutrients such as Ca, K, and P, as well as the source of toxic cations such as Al. Two common limitations of weathering studies are inadequate determination of mineralogic composition and insufficient sampling depth to determine location and advancement of weathering reactions. We determined mineral stocks through EPMA mapping of Al, Ca, Fe, P, and Si content of soil samples and development of an image analysis routine that assigned mineral composition based on the content of these five elements. Portions of the classified maps were confirmed by optical petrography and full elemental analysis by SEM-EDS. Samples were analyzed for soil profiles >2m depth (~1.5m past the upper boundary of the "unweathered" C horizon). Study sites spanned a range of weatherability found in catchments in glaciated northeastern USA including Winnisook, NY (sandstone parent material, 100 ppm Ca), Hubbard Brook, NH (granite, 0.9% Ca), and Sleepers River, VT (calcareous granulite, 3.5% Ca). All profiles exhibited a weathering front, or threshold above which the most reactive minerals (calcite, apatite) have been depleted. However, in all cases this threshold was below the rooting zone, and in many profiles, it was well below the C horizon interface. Catchment scale Ca exports reflect this deeper weathering source while rooting zone exchangeable Ca was highly variable, probably reflecting spatial patterns of hydrologic flowpaths which bring deeper weathering products to the surface only in certain landscape positions. These results suggest that nutrient cycling and critical loads models, which assume that ecologically relevant weathering is confined to the rooting zone, need to be refined to account for deeper weathering and spatial patterns of lateral and upward hydrologic fluxes. Similarly, recovery from cultural acidification may be limited in portions of catchments where hydrologic connections do not provide a vehicle for weathering products to recharge the biologically active portion of the subsurface.
NASA Astrophysics Data System (ADS)
Yara, Irfan; Schulz, Bernhard; Tichomirowa, Marion; Mohammad, Yousif; Matschullat, Jörg
2014-05-01
Geochemistry and metamorphic evolution of a Ti-metagabbro in the Asnawa Group of the Shalair terrain (Sanandaj-Sirjan Zone), Kurdistan region, Iraq. We present geochemical data, mineral chemistry, petrography, and theP-T conditions of a Ti-metagabbro from the Asnawa Group in the Shalair Terrain (Sanandaj-Sirjan Zone).Geochemical data indicate that this Ti-metagabbro has tholeiitic characteristics with low-K contents. Factor analyses of the elements indicate fractionation of common mineral phases such as clinopyroxene, hornblende, plagioclase, Ti-bearing phases (rutile, ilmenite, titanite), and apatite. The normal mid-oceanic ridge basalt (N-MORB)-normalized incompatible trace element diagram shows close similarity with typical N-MORB pattern. Tectonomagmatic discrimination diagrams suggest a dominating MORB environment. The rock/chondrite-normalized REE diagram of the amphibolites also shows their N-MORB-type signature, with relative enrichment in LREE. The rock derived from mixed primitive and depleted mantel. The formation and preservation of the various metamorphic mineral assemblages and their mineral chemical characteristicsare strongly affected by the original magmatic whole-rock composition. This can be demonstrated by different microdomains, which contain different amphiboles and plagioclases. The metamorphic history can be subdivided into the stages M1-M2-M3. The first stage of metamorphism was recorded by crystallisation of actinolite replacing clinopyroxene and igneous amphibole (M1 stage, 410< T < 490°C; 1.8 < P <2.2 kbar). Increase of temperature resulted in the formation of hornblende pseudomorphism and hornblende and sphene coronae growing on previous amphibole or clinopyroxene and ilmenite, respectively (M2 stage, 540 < T <580°C; 4.5 < P < 5.5 kbar). The third stage (M3 stage, 730 < T °C < 780°C; 6.5 < P < 7.5 kbar) led to the formation of a ferro-tschermakite corona, around the M2 amphibole, and rutile that developed on the sphene and ilmenite of M2, This as a result of continental collisional process, in Eocene between Arabian and Iranian plates.
Micro-X-ray diffraction assessment of shock stage in enstatite chondrites
NASA Astrophysics Data System (ADS)
Izawa, Matthew R. M.; Flemming, Roberta L.; Banerjee, Neil R.; McCausland, Philip J. A.
2011-05-01
A new method for assessing the shock stage of enstatite chondrites has been developed, using in situ micro-X-ray diffraction (μXRD) to measure the full width at half maximum (FWHMχ) of peak intensity distributed along the direction of the Debye rings, or chi angle (χ), corresponding to individual lattice reflections in two-dimensional XRD patterns. This μXRD technique differs from previous XRD shock characterization methods: it does not require single crystals or powders. In situ μXRD has been applied to polished thin sections and whole-rock meteorite samples. Three frequently observed orthoenstatite reflections were measured: (020), (610), and (131); these were selected as they did not overlap with diffraction lines from other phases. Enstatite chondrites are commonly fine grained, stained or darkened by weathering, shock-induced oxidation, and metal/sulfide inclusions; furthermore, most E chondrites have little olivine or plagioclase. These characteristics inhibit transmitted-light petrography, nevertheless, shock stages have been assigned MacAlpine Hills (MAC) 02837 (EL3) S3, Pecora Escarpment (PCA) 91020 (EL3) S5, MAC 02747 (EL4) S4, Thiel Mountains (TIL) 91714 (EL5) S2, Allan Hills (ALHA) 81021 (EL6) S2, Elephant Moraine (EET) 87746 (EH3) S3, Meteorite Hills (MET) 00783 (EH4) S4, EET 96135 (EH4-5) S2, Lewis Cliff (LEW) 88180 (EH5) S2, Queen Alexandra Range (QUE) 94204 (EH7) S2, LaPaz Icefield (LAP) 02225 (EH impact melt) S1; for the six with published shock stages, there is agreement with the published classification. FWHMχ plotted against petrographic shock stage demonstrates positive linear correlation. FWHMχ ranges corresponding to shock stages were assigned as follows: S1 < 0.7°, S2 = 0.7-1.2°, S3 = 1.2-2.3°, S4 = 2.3-3.5°, S5 > 3.5°, S6—not measured. Slabs of Abee (EH impact-melt breccia), and Northwest Africa (NWA) 2212 (EL6) were examined using μXRD alone; FWHMχ values place both in the S2 range, consistent with literature values. Micro-XRD analysis may be applicable to other shocked orthopyroxene-bearing rocks.
Fluid Sources at the Panasqueira Tungsten-Vein Deposit
NASA Astrophysics Data System (ADS)
Lecumberri-Sanchez, P.; Heinrich, C. A.; Wälle, M.; Codeço, M.; Weis, P.; Pinto, F.; Vieira, R.
2017-12-01
Panasqueira is a world-class tungsten-vein deposit. Several paragenetic stages have been proposed (Polya et al., 2000) including two pre-ore stages (crack-seal quartz-seam, and muscovite selvages) and four ore stages (main oxide-silicate stage, main sulfide stage, pyrrhotite alteration stage, and late carbonate stage). In this study, compositions of the mineralizing fluids at Panasqueira have been determined by a combination of detailed petrography, microthermometric measurements and LA-ICPMS analyses. We have characterized the fluids related to several mineralizing stages and determined the information they provide about the fluid sources in this system. Three fluid generations recorded in pseudosecondary to secondary fluid inclusions have been identified at Panasqueira. The first fluid generation identified consists of CO2-bearing fluid inclusions with homogenization temperatures ranging between 260 and 320 °C and salinities between 5 and 8 eq wt % NaCl. Petrographic constraints indicate that this first generation (1) is paragenetically related to the main oxide-silicate stage. Two lower-temperature CO2-absent fluid generations (2a and 2b) have been identified and are represented by secondary fluid inclusions postdating the main oxide-silicate stage. This stage was likely trapped under high pressures and lithostatic conditions (Jacques and Pascal, 2017). Generation (2a) consists of high-salinity (20-30 eq wt % NaCl) fluids with homogenization temperatures ranging between 180°C and 250°C. Generation (2b) consists of low-salinity (<2 wt %) low homogenization temperature (100-150°C) fluid inclusions. Conclusive petrographic evidence of the relationship between these two late-stage fluid generations and specific late mineral stages are scarce. However, fluid compositions suggests that generation (2a) is related to the main sulfide stage and generation (2b) is related to the late carbonate stage. The PTX evolution of fluids at Panasqueira indicate a transition from magmatic dominated fluids to a likely influx of non-magmatic fluids at least in the latest stages of mineralization (main sulfide stage and late carbonate stage) which is in good agreement with recent results from isotopic studies (Codeço et al., 2017).
Geochemistry of contaminated komatiites from the Umburanas greenstone belt, Bahia State, Brazil
NASA Astrophysics Data System (ADS)
Menezes Leal, Angela Beatriz de; Santos, André Luis Dias; Bastos Leal, Luiz Rogério; Cunha, José Carlos
2015-08-01
The late Archaean Umburanas greenstone belt (UGB) is located in the São Francisco Craton, southwest of Bahia State, Brazil. The lower unit of UGB comprises basal komatiite lavas and tholeiitic basalts intercalated with felsic volcanic rocks. The regional crystalline basement rocks, the Gavião block, predominantly consist of granitic, granodioritic and migmatitic gneiss along with tonalite-trondhjemite-granodiorite (TTG) associations. Petrographic studies of UGB komatiites reveal characteristic spinifex igneous texture although primary mineralogy is rarely preserved. Based on textural relationships, komatiites are divided into cumulate, spinifex, and massive types. The MgO content varies in the range 31.5-40.4 wt%. The MgO-SiO2 negative correlation in komatiites suggests olivine fractionation trend. The UGB komatiites are of Al-undepleted type, characterized by Al2O3/TiO2 (21-48) ratio, enriched in highly incompatible LILE relative to moderately incompatible HFSE and distinct negative Nb, Sr and Eu anomalies. Also shows depletion of light rare earths, convex-downward rare earth patterns typically not observed in komatiites world-wide, and primitive mantle normalized Gd/Yb (1.03-1.23) and La/Sm (2.36-4.99) ratios. The negative Eu anomaly is attributed to the circulation of H2O-rich fluid, whereas the negative Nb and Sr anomalies are attributed to contamination from granitic basement rocks of the Gavião block. The UGB komatiites are most likely derived from adiabatic decompressional melting of a mantle plume. The melting took place at liquidus temperatures in the range 1572-1711 °C, which is consistent with mantle-plume origin invoked for several other komatiites in Archaean greenstone belts elsewhere. The melts were more likely generated at a depth shallower than 100 km (pressure < 2.5 GPa) where garnet was absent in the source mineralogy. Geochemical characteristics suggest contamination of primary melts with granitic basement rocks either during ascent of melt or during emplacement of magma in a continental basin setting. Greenschist to low-T amphibolite facies metamorphism at ˜2Ga may also have played a role in modifying the original komatiite petrography and composition.
NASA Astrophysics Data System (ADS)
Carracedo-Sánchez, M.; Sarrionandia, F.; Arostegui, J.; Errandonea-Martin, J.; Gil-Ibarguchi, J. I.
2016-11-01
We present the results of a petrographic and geochemical study carried out on a layer of achnelithic tephra outcropping at the base of the volcanic cone of Las Herrerías (Miocene-Quaternary volcanic region of Campo de Calatrava, Spain). The tephra, with a composition of nephelinite and ash (< 1 mm) to coarse lapilli (ca. 1 cm) in size, is made of intact isolated achneliths (mostly elongated and spheroidal, including Pele's tears), achnelith fragments and rare welded achneliths. The achneliths at Las Herrerías were generated in a gas-rich fire fountain that fragmented the magma into micro- to nanometre particles. The low viscosity of the nephelinitic blebs (< 1235 Pa.s) inside the hottest (ca. 900 °C), inner zone of the fountain allowed the development of the characteristic fluidal shapes of these pyroclasts and their welding above the glass transition temperature (533-669 °C). The sideromelane glass of the achneliths, also nephelinitic in composition, is variably altered to palagonite. The palagonitization was isovolumetric and took place in a near closed system at the achnelith scale. Palagonitization involved depletion in the concentration (g/cm3) of all major elements and notable increase in H2O content. The elements liberated by this process formed smectite with an average structural formula comprised between those of beidellite and nontronite end terms: (Na0.01K0.03Ca0.18) (Mg0.22Fe0.16)2 + (Fe0.48Al1.02)3 + (Ti0.18)4 + (Si3.58Al0.42) O10(OH)2. The degree of palagonitization in each achnelith was likely related to the amount of water incorporated by individual clasts at the moment of their deposition in a volcanic maar lake. Afterwards, there was no more water circulation through the achnelithic tephra, which was sealed from water by overlying hydrovolcanic tuff deposits. It was this isolation that made possible the preservation of glass to the present day.
NASA Astrophysics Data System (ADS)
Scambelluri, M.; Bebout, G. E.; Gilio, M.; Belmonte, D.; Campomenosi, N.; Crispini, L.
2015-12-01
Release of COH fluids from hydrous minerals and carbonates influences element recycling and magmatism at subduction zones. Contradictory interpretations exist regarding the retention/storage of C in subducting plates and in the forearc to subarc mantle. Multiple lines of evidence indicate mobility of C in forearcs; however, the magnitude of this loss is highly uncertain[1-5]. A poorly constrained fraction of the 40-115 Mt/y of C initially subducted is released into fluids (e.g., by decarbonation, carbonate dissolution), and 18-43 Mt/y is returned at arc volcanoes[2-5, refs. therein]. The imbalance could reflect subduction into the deeper mantle or forearc/subarc storage[4-7]. We examine the fate of C in slab/interface ultramafic rocks, and by analogy serpentinized mantle wedge, via study of fluid-rock evolution of marble and variably carbonated serpentinite (Ligurian Alps). Based on petrography, and major/trace element and C and O isotope compositions, we demonstrate that serpentinite dehydration at 2-2.5 GPa, 550°C released aqueous fluids triggering breakdown of dolomite in nearby marbles, thus releasing C into fluids. Carbonate + olivine veins document flow of COH fluids; interaction of these COH fluids with serpentinite led to formation of high-pressure carbonated ultramafic-rock domains, thus resulting in retention of C in some rocks at an ancient subduction interface. We stress that lithologically complex interfaces could contain sites of both C release and C addition, further confounding estimates of net C loss at forearc and subarc depths [cf 4,5]. Sites of C retention, also including carbonate veins and graphite as reduced carbonate[7], could influence the transfer of slab C to at least the depths beneath volcanic fronts. 1. Poli S et al. 2009 EPSL; 2. Ague and Nicolescu 2014 Nat Geosci; 3. Cook-Collars et al. 2014 Chem Geol; 4. Collins et al. 2015 Chem Geol; 5. Kelemen and Manning 2015 PNAS; 6. Sapienza et al. 2009 CMP; 7 Galvez et al. 2013 Nat Geosci
The provenance of Taklamakan desert sand
NASA Astrophysics Data System (ADS)
Rittner, Martin; Vermeesch, Pieter; Carter, Andrew; Bird, Anna; Stevens, Thomas; Garzanti, Eduardo; Andò, Sergio; Vezzoli, Giovanni; Dutt, Ripul; Xu, Zhiwei; Lu, Huayu
2016-03-01
Sand migration in the vast Taklamakan desert within the Tarim Basin (Xinjiang Uyghur Autonomous region, PR China) is governed by two competing transport agents: wind and water, which work in diametrically opposed directions. Net aeolian transport is from northeast to south, while fluvial transport occurs from the south to the north and then west to east at the northern rim, due to a gradual northward slope of the underlying topography. We here present the first comprehensive provenance study of Taklamakan desert sand with the aim to characterise the interplay of these two transport mechanisms and their roles in the formation of the sand sea, and to consider the potential of the Tarim Basin as a contributing source to the Chinese Loess Plateau (CLP). Our dataset comprises 39 aeolian and fluvial samples, which were characterised by detrital-zircon U-Pb geochronology, heavy-mineral, and bulk-petrography analyses. Although the inter-sample differences of all three datasets are subtle, a multivariate statistical analysis using multidimensional scaling (MDS) clearly shows that Tarim desert sand is most similar in composition to rivers draining the Kunlun Shan (south) and the Pamirs (west), and is distinctly different from sediment sources in the Tian Shan (north). A small set of samples from the Junggar Basin (north of the Tian Shan) yields different detrital compositions and age spectra than anywhere in the Tarim Basin, indicating that aeolian sediment exchange between the two basins is minimal. Although river transport dominates delivery of sand into the Tarim Basin, wind remobilises and reworks the sediment in the central sand sea. Characteristic signatures of main rivers can be traced from entrance into the basin to the terminus of the Tarim River, and those crossing the desert from the south to north can seasonally bypass sediment through the sand sea. Smaller ephemeral rivers from the Kunlun Shan end in the desert and discharge their sediment there. Both river run-off and wind intensity are strongly seasonal, their respective transport strength and opposing directions maintain the Taklamakan in its position and topography.
NASA Astrophysics Data System (ADS)
Li, Rong
2017-04-01
The carbon isotopic composition (δ13Ccarb) recorded in shelf carbonates has been widely used as a proxy for the isotopic composition (δ13CDIC) of surface ocean water to establish paleocean chemistry and circulation patterns. However, δ13Ccarb values do not necessarily preserve the δ13CDIC, due to post-depositional diagenetic alteration. In order to examine the early Griesbachian surface-to-deep δ13CDIC gradient with depth, the diagenetic features of the Permian-Triassic boundary interval (beds 18 to 35) from Yangou section, located in the Yangtze carbonate platform interior, South China, are delineated to compare with those of the slope GSSP Meishan section. The petrographic and geochemical observations show that the early Griesbachian carbonates in the Yangou section underwent pervasive dolomitization in its early diagenetic history. Three types of early replacement dolomites and one type of dolomite cement are present. The dolomite crystals display internal zonation, with high-Ca calcian dolomite (HCD) core being encased successively by calcite and an outermost Fe-rich HCD cortex. The initial dolomitization took place in anoxic seawater, and underwent subsequent diagenetic system involved with meteoric water. The two most negative δ13C values in claystones of Beds 21-3 and 35 are probably related to meteoric diagenesis. Above and/or below the meteorically influenced beds, the dolomite and calcite have uniformly positive δ13C values. The primary carbon isotopic compositions are probably preserved in the early Griesbachian carbonate from the platform Yangou section, which could probably be related to the poor formation of the outermost Fe-rich HCD cortex. Compared to the slope carbonate from the Meishan section, the platform carbonate from the Yangou section has lower primary δ13Ccarb values. It is estimated that the δ13CDIC gradient with depth between Yangou and Meishan is less than the previously suggested. The results highlight the need for evaluation of local δ13Ccarb as record of δ13CDIC in paleoseawater, and carry important implications for understanding the Permian-Triassic carbonate successions throughout the world.
NASA Astrophysics Data System (ADS)
Liang, Qianyong; Hu, Yu; Feng, Dong; Peckmann, Jörn; Chen, Linying; Yang, Shengxiong; Liang, Jinqiang; Tao, Jun; Chen, Duofu
2017-06-01
Authigenic carbonates recovered from two newly discovered active cold seeps on the northwestern slope of the South China Sea have been studied using petrography, mineralogy, stable carbon and oxygen isotopic, as well as trace element compositions, together with AMS 14C ages of shells of seep-dwelling bivalves to unravel fluid sources, formation conditions, and seepage dynamics. The two seeps (ROV1 and ROV2), referred to as 'Haima seeps' herein, are approximately 7 kilometers apart, and are typified by abundant carbonate rocks represented bycrusts and nodules. Aragonite and high-Mg calcite are the main carbonate minerals. Based on low δ13Ccarbonate values ranging from -43.0‰ to -27.5‰ (V-PDB) methane is apparently the predominant carbon source of seep carbonates. The corresponding δ18O values, varying from 2.5‰ to 5.8‰ (V-PDB), mostly are higher than calculated values representing precipitation in equilibrium with seawater (2.5‰ to 3.8‰), which probably reflects past destabilization of locally abundant gas hydrates. In addition, we found that carbonates with bivalve shells are generally aragonite-dominated, and bear no barium enrichment but uranium enrichments, reflecting shallow formation depths close to the seafloor. In contrast, carbonate crusts without bivalve shells and nodules contain more calcite, and are characterized by major molybdenum enrichment and different degrees of barium enrichment, agreeing with precipitation at greater depth under strictly anoxic conditions. AMS 14C ages suggest that a major episode of carbonate precipitation occurred between 6.1 ka and 5.1 ka BP at the Haima seeps, followed by a possibly subordinate episode from approximately 3.9 ka to 2.9 ka BP. The common occurrence of dead bivalves at both sites indicates that chemosynthesis-based communities flourished to a greater extent in the past, probably reflecting a decline of seepage activity in recent times. Overall, these results confirm that authigenic carbonates from gas hydrate-bearing areas can provide insight into long-term seepage dynamics and the genesis and fate of marine gas hydrate reservoirs.
TIMS U-series dating and stable isotopes of the last interglacial event in Papua New Guinea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stein, M.; Wasserburg, G.J.; Chen, J.H.
1993-06-01
The extensive flight of uplifted reef terraces which occurs along the Vitiaz strait on the northern flank of the Huon Peninsula in PNG (Papua New Guinea) contains a particularly good record of sea level changes in the last 250 ky. The Huon terraces were the target of an international expedition which took place in July--August 1988. In particular, the authors searched for suitable samples for U-series dating in a reef complex designated as VII, which is correlated with the last interglacial episode and high sea level stand. This complex is composed of a barrier reef (VIIb), a lagoon, and amore » fringing reef (VIIa). Twelve corals from these terraces and two corals from the older reef complex VIII were selected for analysis. The petrography, oxygen and carbon isotope compositions, and magnesium and strontium concentrations were determined along with the concentrations and isotopic compositions of uranium and thorium. The simplest model for sea level height for terrace VII is a continuous rise between 134 and 118 ky. Alternatively, there may have been two periods of rapid sea level rise. In contrast, in the Bahamas, there is evidence that sea level remained rather constant over the time interval 132 to 120 ky. The absence of ages between 132 and 120 ky in PNG could be the result of changes in the local tectonic uplift rates during that time, or erosion that disrupted the continuous record. In any event, the authors find no basis for accepting a single brief time for the age of the last interglacial and applying this age as a precise chronometer for worldwide correlation, or as a test of climatic models. The older ages reported here precede the Milankovitch solar insolation peak at 128 ky, and the younger ages are [approximately]10 ky after this peak. If the present high-precision data are correct, then it will be necessary to reassess the validity of the Milankovitch theory of climatic changes. 76 refs., 6 figs., 6 tabs.« less
NASA Astrophysics Data System (ADS)
Rogerson, Michael; Saunders, Paul; Mercedes-Martin, Ramon; Brasier, Alex; Pedley, Martyn
2015-04-01
Non-marine carbonates comprise a hugely diverse family of deposits, which reflect a constellation of forcing factors from local hydraulics to regional climatology. However, the two dominant controls on precipitation are solution chemistry and benthic microbial biogeochemistry. Here, we present a unifying concept for understanding how these controls influence deposit characteristics, and re-emphasise the importance of biofilms. It is generally accepted that biofilms play an important part in the precipitation of authigenic minerals in a wide variety of settings. In carbonate settings, biofilms are recognised to increase the amount of calcite precipitation and alter the geometry and coarse scale petrography of the precipitate. They determine at what water marginal water chemistries calcite starts to precipitate and microbialites give way to chemical limestones. Biofilms also interact with ambient water, controlling chemical accumulation transport. New evidence, drawn from unique experimental approaches, is demonstrating that biofilm influence extends to control of calcite trace element composition, and crystal scale fabric. Under tightly controlled temperature and chemical conditions, fully replicated experiments show that Mg incorporation into tufa carbonate defies the expected thermodynamic control. However, there is a pronounced influence on (Mg/Ca)calcite from precipitation rate, so that rapidly forming precipitates develop with very low magnesium content indicating kinetic control on fractionation. Calcite precipitation rate in these experiments is controlled by biofilm growth rate and reflects kinetic fractionation arises from the electrochemical activity of extracellular organic acids. These effects are therefore likely to occur wherever these molecules occur, including stromatolites, soil and lake carbonates and (via colloidal organic acids) speleothems. The presence of Extracellular polymeric substances (EPS), even without the presence of cells, also alters precipitation style. Spherular and shrubby calcite growths are well known from the geological record, but their environmental significance is not clear. Sterile, microcosm experiments have shown that these forms occur in saline, hyperalkaline settings ' but only in the presence of organic acid molecules in solution. The presence of inorganic materials (hydrated magnesium clays) does not impact on precipitate morphology, and reduces the precipitation rate of calcite.
NASA Astrophysics Data System (ADS)
Alvear, B.; Morata, D.; Leisen, M.; Reich, M.; Barra, F.
2017-12-01
The study of mineral textures coupled with trace element geochemistry has proven to be a useful tool to understand the evolution of geological environments. The purpose of this study is to provide new constrains on the formation of an active geothermal system, specifically the Cerro Pabellón field. The Cerro Pabellón system is located at 4500 m above sea level and is the first geothermal power plant in operation in Chile and South America. Thirteen samples were collected from a 550 m long drill core. Samples were first studied under petrographic microscopy followed by scanning electron microscopy coupled with a cathodoluminescence detector (CL-SEM). The different textures recognized using petrography and the CL-SEM technique were later analyzed by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) in order to determine variations in the trace element concentrations as a function of silica textures. Two vein types (A and B) with different silica polymorphs were identified by CL-SEM. Vein type A has only a colloform texture, whereas vein type B, younger and crosscutting the type A, shows zonation, colloform, and jigsaw textures. LA-ICPMS results show high concentrations of Li, Al, Na, K, As, and Sb for all types of silica. A comparison between vein type A and B, show that vein type A is Al-Na-K-Li poor (2088, 36, 309, and 122 ppm average, respectively) and As-Sb rich (43 and 249 ppm average, respectively). On the other hand, vein type B has variable concentrations of Al-Na-K-Li-Sb, but usually higher than in vein type A. Overall, the Cerro Pabellón geothermal system shows high concentrations of Li and Sb, reaching up to 360 and 703 ppm, respectively. Our preliminary results show that the trace element geochemistry is strongly related to the different silica textures, which formed as a response to different thermodynamic conditions and fluid-rock ratios. This work is a contribution to the FONDAP-CONICYT 15090013 Project.
Dyman, T.S.; Tysdal, R.G.; Perry, W.J.; Nichols, D.J.; Obradovich, J.D.
2008-01-01
Stratigraphic, sedimentologic, and palynologic data were used to correlate the Frontier Formation of the western Centennial Mountains with time-equivalent rocks in the Lima Peaks area and other nearby areas in southwestern Montana. The stratigraphic interval studied is in the middle and upper parts (but not uppermost) of the formation based on a comparison of sandstone petrography, palynologic age data, and our interpretation of the structure using a seismic line along the frontal zone of the Centennial Mountains and the adjacent Centennial Valley. The Frontier Formation is comprised of sandstone, siltstone, mudstone, limestone, and silty shale in fluvial and coastal depositional settings. A distinctive characteristic of these strata in the western Centennial Mountains is the absence of conglomerate and conglomeratic sandstone beds. Absence of conglomerate beds may be due to lateral facies changes associated with fluvial systems, a distal fining of grain size, and the absence of both uppermost and lower Frontier rocks in the study area. Palynostratigraphic data indicate a Coniacian age for the Frontier Formation in the western Centennial Mountains. These data are supported by a geochronologic age from the middle part of the Frontier at Lima Peaks indicating a possible late Coniacian-early Santonian age (86.25 ?? 0.38 Ma) for the middle Frontier there. The Frontier Formation in the western Centennial Mountains is comparable in age and thickness to part of the Frontier at Lima Peaks. These rocks represent one of the thickest known sequences of Frontier strata in the Rocky Mountain region. Deposition was from about 95 to 86 Ma (middle Cenomanian to at least early Santonian), during which time, shoreface sandstone of the Telegraph Creek Formation and marine shale of the Cody Shale were deposited to the east in the area now occupied by the Madison Range in southwestern Montana. Frontier strata in the western Centennial Mountains are structurally isolated from other Cretaceous rocks in the region and are part of the Lima thrust sheet that lies at the leading edge of the Sevier-style overthrusting in this part of southwestern Montana and adjacent southeastern Idaho.
NASA Astrophysics Data System (ADS)
Bloch, E. M.; Ganguly, J.
2009-12-01
Fe-Mg diffusion profiles have been measured in olivine xenocrysts within alkalic basalts in order to constrain the timescales of magma stagnation beneath Mauna Kea volcano, Hawaii. It has been suggested that during the main tholeiitic shield-building stage, and postshield eruptive stages of Mauna Kea, magmas were stalled and stagnated near the Moho, at a depth of ~15 km. Evidence in support of this hypothesis comes from cumulates formed by gravity-settling and in situ crystallization within magma chambers (Fodor and Galar, 1997), and from clinopyroxene-wholerock thermobarometry on Hamakua basalts (Putirka, in press). The cumulates represent a ‘fossil’ magma chamber which formed primarily from tholeiitic basalts; during the later capping-lava stage of Mauna Kea, alkalic basalts tore off chunks of these cumulates during ascent to the surface. We have measured several diffusion profiles in olivine xenocrysts from a single basalt sample. Because these xenocrysts have homogenous core compositions identical to a neighboring dunite cumulate, and because they are much larger and texturally distinct from compositionally dissimilar olivine phenocrysts, they are interpreted to be cumulate olivines which were dislodged during magma recharge/mixing in the stagnation zone. Although the orientations of the phenocrysts are not yet known, the diffusion profiles have been fit using diffusion coefficients parallel to the c and a crystallographic axes (i.e. minimum and maximum values). Modeling diffusion profiles yields ∫Ddt ≤4.5 x 10-5 cm2. Assuming that the xenocrysts were broken off from the cumulate immediately when the magma chamber was recharged, it is possible to calculate the maximum stagnation time of the basalts. Thus, the retrieved ∫Ddt value yields a maximum stagnation time of ~0.7 years. References: Fodor RV, Galar, PA (1997). A View into the Subsurface of Mauna Kea Volcano, Hawaii: Crystallization Processes Interpreted through the Petrology and Petrography of Gabbroic and Ultramafic Xenoliths. Journal of Petrology 38: 581-624. Putirka KD (in press). Thermometers and Barometers for Volcanic Systems. Reviews in Mineralogy and Geochemistry 69: 61-120.
NASA Astrophysics Data System (ADS)
Wang, Zhijun; Meyer, Michael C.; Hoffmann, Dirk L.
2016-08-01
The Chusang travertine is situated in southern Tibet at an altitude of ~ 4200 m asl. in a cold-arid, periglacial environment and is characterized by interbedding of hydrothermal carbonate with colluvium. Here we present sedimentological and petrographical data to elucidate the depositional environment and sedimentary processes responsible for hydrothermal carbonate precipitation and early diagenetic alteration as well as clastic sediment accumulation and provide initial 230Th/U ages to constrain the time-depth of this travertine-colluvium succession. Three main travertine lithofacies have been identified: 1) a dense laminated lithofacies, 2) a porous layered lithofacies and 3) an intraclastic lithofacies that results from erosion of pre-existing hot spring carbonate. The colluvium is composed of cohesive debris flow layers that derived from mass-wasting events from the adjacent hillslopes. Micro-fabric analyses suggest that dense laminated travertine forms via rapid calcite precipitation from hot spring water seasonally subjected to severe winter cooling, while porous layered travertine results from seasonal dilution of hot spring water with rain water during the summer monsoon months, which in turn stimulates biological productivity and gives rise to a porous summer layer. Early diagenesis in the form of recrystallization and extensive formation of pore cements is common in the Chusang travertine, but never eradicates the original crystal fabrics completely. The sedimentary architecture of the deposit is conditioned by (i) the gently dipping (~ 10°) pre-existing terrain on which hot spring water is discharged from multiple travertine mounds causing laterally extensive travertine sheets to precipitate, and (ii) the adjacent much steeper (up to 30°) periglacial hillslopes that are the source area of repeated debris flows that accumulate on the travertine surface. The resulting travertine-colluvium succession has a total thickness of ~ 24 m and 230Th/U dating suggests that the base of this succession has a minimum age of ~ 486 ka, while the upper part (top-most ~ 8 m) of the succession started accumulating in the earliest Holocene. We hypothesize that hot spring activity (and thus travertine precipitation) and the occurrence of debris flow events has a climatic nexus, i.e. are both triggered by phases of enhanced Indian summer monsoon.
NASA Astrophysics Data System (ADS)
Hahn, K. E.; Turner, E. C.; Kontak, D. J.; Fayek, M.
2018-02-01
Ancient carbonate rocks commonly contain numerous post-depositional phases (carbonate minerals; quartz) recording successive diagenetic events that can be deciphered and tied to known or inferred geological events using a multi-pronged in situ analytical protocol. The framework voids of large, deep-water microbial carbonate seep-mounds in Arctic Canada (Mesoproterozoic Ikpiarjuk Formation) contain multiple generations of synsedimentary and late cement. An in situ analytical study of the post-seafloor cements used optical and cathodoluminescence petrography, SEM-EDS analysis, fluid inclusion (FI) microthermometry and evaporate mound analysis, LA-ICP-MS analysis, and SIMS δ18O to decipher the mounds' long-term diagenetic history. The six void-filling late cements include, in paragenetic order: inclusion-rich euhedral dolomite (ED), finely crystalline clear dolomite (FCD), hematite-bearing dolomite (HD), coarsely crystalline clear dolomite (CCD), quartz (Q), replacive calcite (RC) and late calcite (LC). Based on the combined analytical results, the following fluid-flow history is defined: (1) ED precipitation by autocementation during shallow burial (fluid 1; Mesoproterozoic); (2) progressive mixing of Ca-rich hydrothermal fluid with the connate fluid, resulting in precipitation of FCD followed by HD (fluid 2; also Mesoproterozoic); (3) precipitation of hydrothermal dolomite (CCD) from high-Ca and K-rich fluids (fluid 3; possibly Mesoproterozoic, but timing unclear); (4) hydrothermal Q precipitation (fluid 4; timing unclear), and (5) RC and LC precipitation from a meteoric-derived water (fluid 5) in or since the Mesozoic. Fluids associated with FCD, HD, and CCD may have been mobilised during deposition of the upper Bylot Supergroup; this time interval was the most tectonically active episode in the region's Mesoproterozoic to Recent history. The entire history of intermittent fluid migration and cement precipitation recorded in seemingly unimportant void-filling mineral phases spans over 1 billion years, and was decipherable only because of the in situ protocol used. The multiple-method in situ analytical protocol employed in this study substantially augments the knowledge of an area's geological history, parts of which cannot be discerned by means other than meticulous study of diagenetic phases, and should become routine in similar studies.
NASA Astrophysics Data System (ADS)
Fong, L. E.; Holzer, J. R.; McBride, K. K.; Lima, E. A.; Baudenbacher, F.; Radparvar, M.
2005-05-01
We have developed a scanning superconducting quantum interference device (SQUID) microscope system with interchangeable sensor configurations for imaging magnetic fields of room-temperature (RT) samples with submillimeter resolution. The low-critical-temperature (Tc) niobium-based monolithic SQUID sensors are mounted on the tip of a sapphire and thermally anchored to the helium reservoir. A 25μm sapphire window separates the vacuum space from the RT sample. A positioning mechanism allows us to adjust the sample-to-sensor spacing from the top of the Dewar. We achieved a sensor-to-sample spacing of 100μm, which could be maintained for periods of up to four weeks. Different SQUID sensor designs are necessary to achieve the best combination of spatial resolution and field sensitivity for a given source configuration. For imaging thin sections of geological samples, we used a custom-designed monolithic low-Tc niobium bare SQUID sensor, with an effective diameter of 80μm, and achieved a field sensitivity of 1.5pT/Hz1/2 and a magnetic moment sensitivity of 5.4×10-18Am2/Hz1/2 at a sensor-to-sample spacing of 100μm in the white noise region for frequencies above 100Hz. Imaging action currents in cardiac tissue requires a higher field sensitivity, which can only be achieved by compromising spatial resolution. We developed a monolithic low-Tc niobium multiloop SQUID sensor, with sensor sizes ranging from 250μm to 1mm, and achieved sensitivities of 480-180fT /Hz1/2 in the white noise region for frequencies above 100Hz, respectively. For all sensor configurations, the spatial resolution was comparable to the effective diameter and limited by the sensor-to-sample spacing. Spatial registration allowed us to compare high-resolution images of magnetic fields associated with action currents and optical recordings of transmembrane potentials to study the bidomain nature of cardiac tissue or to match petrography to magnetic field maps in thin sections of geological samples.
Striking Graphite Bearing Clasts Found in Two Ordinary Chondrite Samples; NWA6169 and NWA8330
NASA Technical Reports Server (NTRS)
Johnson, Jessica M.; Zolensky, Michael E.; Chan, Queenie; Kring, David A.
2015-01-01
Meteorites play an integral role in understanding the history of the solar system. Not only can they contain some of the oldest material found in the solar system they also can contain material that is unique. Many lithologies are only found as foreign clasts within distinctly different host meteorites. In this investigation two foreign clasts within the meteorites, NWA6169 and NWA8330 were studied. The purpose of this investigation was to examine the mineralogy and petrography of the clasts within the samples. From there an identification and possible origin were to be inferred. NWA6169 is an unclassified ordinary chondrite that has a presumed petrologic type of L3. NWA8330 is a classified ordinary chondrite that has a petrologic type of LL3. Both meteorites were found to contain clasts that were similar; both modally were comprised of about 5% acicular graphite. Through SEM and Raman Spectroscopy it was found that they contained olivine, pyroxene, plagioclase, Fe-Ni sulfides, graphite, and metals. They were found to portray an igneous texture with relationships that suggest concurrent growth. Analytical microprobe results for NWA6169 revealed mineral compositions of Fa31-34, Fs23-83, and Ab7-85. For NWA8330 these were Fa28-32, Fs10-24, and Ab4-83. Only one similar material has been reported, in the L3 chondrite Krymka (Semenenko & Girich, 1995). The clast they described exhibited similar mineralogies including the unusual graphite. Krymka data displayed compositional values of Fa28.5-35.0 and Fs9-25.9. These ranges are fairly similar to that of NWA6169 and NWA8330. These samples may all be melt clasts, probably of impact origin. Two possibilities are (1) impact of a C-type asteroid onto the L chondrite parent asteroid, and (2) a piece of proto-earth ejected from the moon-forming collision event. These possibilities present abundant questions, and can be tested. The measurement of oxygen isotope compositions from the clasts should reveal the original source of the melt clasts. It may also be possible to perform Ar dating of the plagioclase present. Former analyses are now being performed.
A Century of Geology-Curriculum Response to Society: A Case Study at Oregon State University
NASA Astrophysics Data System (ADS)
Grunder, A.; Johnson, J. A.
2014-12-01
Over the past century, the geology curriculum at Oregon State University has remained constant in some areas and changed in others in response to internal (faculty and university) and external (economic, and intellectual) drivers. A decadal summary of 100 years of the geology curriculum at Oregon State University reveals socio-economic patterns. From 1913, when the School of Mines was established, to 1932, when it was dismembered, the geology curriculum was designed in support mining engineering. In that time, the geology department (est. 1914) moved from the School of Mines to the School of Science. Several decades of paleontology-intensive curriculum followed under the leadership of noted paleontologist Earl Packard, as dean and chair. The curriculum transitioned from support of the oil industry in the 60s and 70s, with a strong field emphasis engendered by "Doc" Wilkinson, to increased structure and tectonics emphasis in response to the tectonic revolution under the leadership of structural geologist Robert Yeats. In the last few decades the program has grown diverse in environmental and climatic interests. The early curriculum required a three-course series in determinative mineralogy plus petrography and 3 courses in petrology (igneous, sedimentary and metamorphic), making a core of seven; we require 3 courses today. Like all students in the School of Mines, those with the geology specialization were required to take a field course in surveying and to spend several summer months working in the mining industry. This strong field tradition persisted through time with an introductory field methods class coupled with a summer field camp. The total number of weeks dedicated to field classes, excluding the work experience requirement, has varied from as high as 12 credit-hours to the present 6 (quarters basis). On the other hand, increased short field experiences are reflected by incorporation of more field trips in nearly all courses since the 80's, fostered by accessible transportation. General education courses delivered by geology faculty have mimicked these changes, from early service courses in basic geology for engineering, mining and agriculture to a diverse slate of courses from basic geology to natural hazards and climate.
NASA Astrophysics Data System (ADS)
Ünal, Alp; Kamacı, Ömer; Altunkaynak, Şafak
2014-05-01
The post collisional magmatic activity produced several volcano-plutonic complexes in NW Anatolia (Turkey) during the late Oligocene- Middle Miocene. One of the major volcano-plutonic complexes, the Solarya volcano-plutonic complex is remarkable for its coeval and cogenetic plutonic (Solarya pluton), hypabysal and volcanic rocks of Early Miocene (24-21 Ma) age. Solarya pluton is an epizonal pluton which discordantly intruded into metamorphic and nonmetamorphic basement rocks of Triassic age. It is a N-S trending magmatic body covering an area of 220 km2,approximatelly 20 km in length and 10 km in width. Based on the field and petrographic studies, three main rock groups distinguished in Solarya pluton; K-feldspar megacrystalline granodiorite, microgranite-granodiorite and haplogranite. Porphyritic and graphic-granophyric textures are common in these three rock groups. Pluton contains magmatic enclaves and syn-plutonic dykes of dioritic composition. Hypabyssal rocks are represented by porphyritic microdiorite and porphyritic quartz-diorite. They form porphyry plugs, sheet inrusions and dykes around the pluton. Porphyrites have microcrystalline-cryptocrystalline groundmass displaying micrographic and granophyric textures. Petrographically similar to the hypabyssal rocks, volcanic rocks are formed from andesitic and dasitic lavas and pyroclastic rocks. Plutonic, hypabyssal and volcanic rocks of Solarya volcano-plutonic complex show similar major-trace element and Sr-Nd-Pb isotopic compositions, indicating common magmatic evolution and multicomponent melt sources including mantle and crustal components. They are mainly metaluminous, medium to high-K calc alkaline rocks and display enrichment in LILE and depletion in Nb, Ta, P and Ti. They have initial 87Sr/86Sr values of 0.70701- 0.70818 and 143Nd/144Nd values of 0.51241-0.51250. These geochemical characteristics and isotopic signatures are considered to reflect the composition of the magmas derived from a metasomatized lithospheric mantle beneath NW Anatolia and from the overlying crust. Compositional variations in Solarya volcano-plutonic complex are interpreted as a result of AFC. Convective removal or partial delamination of the base of mantle lithosphere and asthenospheric upwelling can be considered as possible mechanisms to provide melting of subcontinental lithospheric mantle metasomatized by earlier subduction, resulting in post collisional magmatic activity in NW Anatolia and the adjacent regions.
Petrology of forearc basalt-related isotropic gabbros from the Bonin Ridge, Izu-Bonin forearc
NASA Astrophysics Data System (ADS)
Garcia, S. E.; Loocke, M. P.; Snow, J. E.
2017-12-01
The early arc volcanic rocks exposed on the Bonin Ridge (BR), a large forearc massif in the Izu-Bonin arc, have provided us with a natural laboratory for the study of subduction initiation and early arc development. The BR has been the subject of focused sampling by way of dredging, diving, and drilling (IODP EXP352) expeditions which have revealed a composite stratigraphy consisting, from bottom to top, of intercalated peridotites and gabbros, isotropic gabbros, sheeted dykes, and a lava sequence which transitions from forearc basalt (FAB) to more arc-like volcanics up section. Although little has been published regarding the moho-transition zone rocks of the BR in comparison to the volcanic rocks, even less work has been published regarding the isotropic gabbros recovered in close association with FABs. Ishizuka et al. (2011) determined that the isotropic gabbros are compositionally and temporally related to the FABs. We provide the first petrologic characterization, including petrography and electron probe microanalysis, of a suite of FAB-related gabbros recovered by dredge D42 of the 2007 R/V Hakuho Maru KH07-02 dredging cruise. Preliminary petrographic observations of the fourteen thin sections reveal that all of the samples contain variable amounts of relict orthopyroxene and consist of five disseminated oxide gabbros, 5 oxide gabbros, and 2 gabbros. We note that all of the D42 gabbros exhibit strong textural variability akin to the varitextured gabbros described in the dyke-gabbro transition of ophiolites (e.g., MacLeod and Yaouancq, 2000). Geochemical data from this critically understudied horizon have the potential to inform regarding the nature of crustal accretion during subduction initiation and the formation, migration, and evolution of FABs. Further, with many authors comparing the volcanic record and crustal stratigraphy of the BR to ophiolites (e.g., Ishizuka et al., 2014), these data would provide another in situ analogue for comparison with the gabbroic sections of ophiolites. MacLeod, C.J., Yaouancq, G., 2000, Earth and Planetary Science Letters, 176:357-373. Ishizuka, O., et al., 2011, Earth and Planetary Science Letters, 306: 229-240. Ishizuka, O., Tani, K., Reagan, M.K., 2014, Elements, 10:115-120.
NASA Astrophysics Data System (ADS)
Espinoza, M. E.; Oliveros, V.; Celis, C.
2016-12-01
As plate-tectonic processes ultimately control the location, initiation, and evolution of sedimentary basins, the study of these is crucial to understand the geodynamic framework of a specific period. In northern Chile, Late Triassic depocenters crop out along the Coastal Cordillera and Precordillera. These basins have been typically associated to a continental rifting unrelated to subduction prior to the Andean orogeny. In this work, we characterize these basins and present field and analytical data suggesting the development of these basins during an active subduction system. U-Pb geochronology show the opening of these basins probably during the Anisian-Carnian (>233 Ma) with the deposition of highly mature sediments in fluvial systems, followed by the initiation of the volcanism and associated fluvial-alluvial redeposition. Furthermore, a continental (fluvial and lacustrine) deposition and its transition to shallow marine facies are recorded during the Norian to Raethian (212-200 Ma), contemporaneous with the development of acidic volcanic centers. The sedimentary provenance evidence a main detrital supply of Early Permian age ( 297-283 Ma) corresponding to volcanic and plutonic basement rocks and a minor supply close to 478 Ma related to the exhumed Famatinian arc to the east. Geochemical results from volcanic products present in the basins show a typical subduction signal (calc-alkaline trend, low HFS/LILE ratio and Nb-Ta negative anomalies), while petrography indicate a wide compositional variation more than a bimodal distribution. These basins present half-graben geometries with the recognition of structural highs separating local depocenters. Kinematic analyses carried in synrift extensional faults show a bimodal distribution of the maximum strain axes from a NE-SW to a subordinate NW-SE direction of elongation. This bimodality could be related to the co-existence of two competing strain directions associated to the breakup of Pangea and the presence of a subducting slab. These results integrates the magmatic, sedimentary and tectonic record pointing to a subduction-related extensional basin model developed over a continental substratum. The recognition of this ancient examples are important to understand an actual underrepresented basin setting.
Geboy, Nicholas J.; Olea, Ricardo A.; Engle, Mark A.; Martin-Fernandez, Jose Antonio
2013-01-01
This study presents geostatistical simulations of coal-quality parameters, major oxides and trace metals for an area covering roughly 812 km2 of the Blue Gem coal bed in southeastern Kentucky, USA. The Blue Gem, characterized by low ash yield and low sulfur content, is an important economic resource. Past studies have characterized the Blue Gem's geochemistry, palynology and petrography and inferred a depositional setting of a planar peat deposit that transitioned to slightly domed later in its development. These studies have focused primarily on vertical geochemical trends within the coal bed. Simulated maps of chemical elements derived from 45 measured sample locations across the study area provide an opportunity to observe changes in the horizontal direction within the coal bed. As the Blue Gem coal bed shows significant vertical chemical trends, care was taken in this study to try to select samples from a single, middle portion of the coal. By revealing spatial distribution patterns of elements across the middle of the bed, associations between different components of the coal can be seen. The maps therefore help to provide a picture of the coal-forming peat bog at an instant in geologic time and allow interpretation of a depositional setting in the horizontal direction. Results from this middle portion of the coal suggest an association of SiO2 with both K2O and TiO2 in different parts of the study area. Further, a pocket in the southeast of the study area shows elevated concentrations of elements attributable to observed carbonate-phase minerals (MgO, CaO, Ba and Sr) as well as elements commonly associated with sulfide-phase minerals (Cu, Mo and Ni). Areas of relatively high ash yield are observed in the north and south of the mapped area, in contrast to the low ash yields seen towards the east. Additionally, we present joint probability maps where multiple coal-quality parameters are plotted simultaneously on one figure. This application allows researchers to investigate associations of more than two components in a straight-forward manner useful in guiding resource exploration.
NASA Astrophysics Data System (ADS)
Baratoux, L.; Jessell, M.; Söderlund, U.; Ernst, R. E.; Benoit, M.; Naba, S.; Cournede, C.; Perrouty, S.; Metelka, V.; Yatte, D.; Diallo, D. P.; Ndiaye, P. M.; Dioh, E.; Baratoux, D.
2016-12-01
Over 20 sets of dolerite dykes crosscutting Paleoproterozoic basement in West Africa were distinguished via the interpretation of regional and high-resolution airborne magnetic data available over the West African Craton. Some of the dykes reach over 300 km in length and are considered parts of much larger systems of mafic dyke swarms which form the plumbing system of Large Igneous Provinces (LIPs). Five different dyke swarms in Burkina Faso, Niger, Ghana and Senegal were investigated. In terms of petrography and composition, the mafic dykes correspond to tholeiitic basalts and are typically composed of plagioclase + clinopyroxene ± orthopyroxene ± olivine. They display a doleritic texture of variable grain size. Eleven ID-TIMS U-Pb ages obtained on baddeleyite define five generations of Proterozoic age. The N10 Libiri dyke swarm, found in western Niger, yielded an age of ca. 1790 Ma. The N40 Bassari swarm in Senegal was dated at ca. 1764 Ma, and is potentially linked to the 1790 Ma Libiri swarm, 1400 km away. The 300 by 400 km Korsimoro N100 dyke swarm transects central Burkina Faso and was dated at ca. 1575 Ma. Five ca. 1520 Ma ages were obtained for dykes of the Essakane swarm, three in Burkina Faso, one from Ghana (N130 orientation) and one from Senegal (E-W orientation), and document a large extent (600 km wide and 1500 km long) and short duration of dyke emplacement. The Manso N350 dyke swarm in southern Ghana, which is about 400 km long and about 200 km wide, yields a preliminary age of ca 870 Ma. A mantle plume origin is suggested for these swarms, especially the 1790-1765 Ma Libiri-Bassari swarm and the 1520 Ma Essakane swarms (which have lithosphere-contaminated E-MORB chemistry), whose scale is similar to largest giant radiating swarms (e.g. CAMP and Mackenzie). The 870 Ma Manso swarm has composition closer to OIB, consistent with a plume/hotspot origin. The 1575 Ma Korsimoro swarm has composition between EMORB and NMORB, which suggests a rift setting.
Serpentinite-driven Exhumation of the UHP Lago di Cignana Unit in the Fossil Alpine Plate Interface
NASA Astrophysics Data System (ADS)
Scambelluri, M.; Gilio, M.; Angiboust, S.; Godard, M.; Pettke, T.
2015-12-01
The Lago di Cignana Unit (LCU) is a coesite- [1] and diamond-bearing [2] slice of oceanic-derived eclogites and metasediments recording Alpine UHP metamorphism at 600 °C-3.2 GPa (~110 km depth) [3]. The LCU is tectonically sandwiched between the eclogitic Zermatt-Saas Zone (ZSZ; 540 °C-3.2 GPa) [4] and the blueschist Combin Zone (400 °C-0.9 GPa) [5] along a tectonic structure joining HP units recording a ~1.2 GPa (40 km) pressure difference. So far, the ZSZ has been attributed to normal HP conditions and the mechanism driving exhumation and accretion of the LCU in its present structural position is not fully understood.We performed petrography and bulk-rock trace element analyses of rocks from LCU and ZSZ serpentinites. We observed that, while serpentinites in the core of the ZSZ show normal subduction zone trace elements and REE's patterns, the Ol+Ti-chu+Chl veins and host serpentinites enveloping the LCU are strongly enriched in sediment-derived fluid-mobile elements (U, Th, Nb, Ta, Ce, Y, As, Sb) and REE's: their patterns well match those of the closely associated LCU-UHP rocks.The presence of extremely enriched Ol+Ti-chu+Chl veins in the serpentinites at direct contact with the UHP Lago di Cignana Unit suggests that fluid exchange between serpentinite and LCU crustal rocks occurred at peak metamorphic conditions. Their coupling therefore occurred during subduction burial and/or peak UHP conditions. As such, the buoyancy force originating from the relatively light serpentinites fuelled the exhumation of the Lago di Cignana Unit. In this contest, the tectonic contact between the Zermatt-Saas Zone and the Combin Zone evolved into a true tectonic plate interface surface.1. Reinecke (1998). Lithos 42(3), 147-189; 2. Frezzotti et al. (2011). Nat. Geosci. 4(10), 703-706; 3. Groppo et al. (2009). J. Metam. Geol. 27(3), 207-231; 4. Angiboust et al. (2009). Terra Nova 21(3), 171-180; 5. Reddy et al. (1999). J. Metam. Geol. 17, 573-590.
Winters, W.; Walker, M.; Hunter, R.; Collett, T.; Boswell, R.; Rose, K.; Waite, W.; Torres, M.; Patil, S.; Dandekar, A.
2011-01-01
This study characterizes cored and logged sedimentary strata from the February 2007 BP Exploration Alaska, Department of Energy, U.S. Geological Survey (BPXA-DOE-USGS) Mount Elbert Gas Hydrate Stratigraphic Test Well on the Alaska North Slope (ANS). The physical-properties program analyzed core samples recovered from the well, and in conjunction with downhole geophysical logs, produced an extensive dataset including grain size, water content, porosity, grain density, bulk density, permeability, X-ray diffraction (XRD) mineralogy, nuclear magnetic resonance (NMR), and petrography.This study documents the physical property interrelationships in the well and demonstrates their correlation with the occurrence of gas hydrate. Gas hydrate (GH) occurs in three unconsolidated, coarse silt to fine sand intervals within the Paleocene and Eocene beds of the Sagavanirktok Formation: Unit D-GH (614.4. m-627.9. m); unit C-GH1 (649.8. m-660.8. m); and unit C-GH2 (663.2. m-666.3. m). These intervals are overlain by fine to coarse silt intervals with greater clay content. A deeper interval (unit B) is similar lithologically to the gas-hydrate-bearing strata; however, it is water-saturated and contains no hydrate.In this system it appears that high sediment permeability (k) is critical to the formation of concentrated hydrate deposits. Intervals D-GH and C-GH1 have average "plug" intrinsic permeability to nitrogen values of 1700 mD and 675 mD, respectively. These values are in strong contrast with those of the overlying, gas-hydrate-free sediments, which have k values of 5.7. mD and 49 mD, respectively, and thus would have provided effective seals to trap free gas. The relation between permeability and porosity critically influences the occurrence of GH. For example, an average increase of 4% in porosity increases permeability by an order of magnitude, but the presence of a second fluid (e.g., methane from dissociating gas hydrate) in the reservoir reduces permeability by more than an order of magnitude. ?? 2010.
Winters, William J.; Walker, Michael; Hunter, Robert; Collett, Timothy S.; Boswell, Ray M.; Rose, Kelly K.; Waite, William F.; Torres, Marta; Patil, Shirish; Dandekar, Abhijit
2011-01-01
This study characterizes cored and logged sedimentary strata from the February 2007 BP Exploration Alaska, Department of Energy, U.S. Geological Survey (BPXA-DOE-USGS) Mount Elbert Gas Hydrate Stratigraphic Test Well on the Alaska North Slope (ANS). The physical-properties program analyzed core samples recovered from the well, and in conjunction with downhole geophysical logs, produced an extensive dataset including grain size, water content, porosity, grain density, bulk density, permeability, X-ray diffraction (XRD) mineralogy, nuclear magnetic resonance (NMR), and petrography. This study documents the physical property interrelationships in the well and demonstrates their correlation with the occurrence of gas hydrate. Gas hydrate (GH) occurs in three unconsolidated, coarse silt to fine sand intervals within the Paleocene and Eocene beds of the Sagavanirktok Formation: Unit D-GH (614.4 m-627.9 m); unit C-GH1 (649.8 m-660.8 m); and unit C-GH2 (663.2 m-666.3 m). These intervals are overlain by fine to coarse silt intervals with greater clay content. A deeper interval (unit B) is similar lithologically to the gas-hydrate-bearing strata; however, it is water-saturated and contains no hydrate. In this system it appears that high sediment permeability (k) is critical to the formation of concentrated hydrate deposits. Intervals D-GH and C-GH1 have average "plug" intrinsic permeability to nitrogen values of 1700 mD and 675 mD, respectively. These values are in strong contrast with those of the overlying, gas-hydrate-free sediments, which have k values of 5.7 mD and 49 mD, respectively, and thus would have provided effective seals to trap free gas. The relation between permeability and porosity critically influences the occurrence of GH. For example, an average increase of 4% in porosity increases permeability by an order of magnitude, but the presence of a second fluid (e.g., methane from dissociating gas hydrate) in the reservoir reduces permeability by more than an order of magnitude.
Making Sense of 'Big Data' in Provenance Studies
NASA Astrophysics Data System (ADS)
Vermeesch, P.
2014-12-01
Huge online databases can be 'mined' to reveal previously hidden trends and relationships in society. One could argue that sedimentary geology has entered a similar era of 'Big Data', as modern provenance studies routinely apply multiple proxies to dozens of samples. Just like the Internet, sedimentary geology now requires specialised statistical tools to interpret such large datasets. These can be organised on three levels of progressively higher order:A single sample: The most effective way to reveal the provenance information contained in a representative sample of detrital zircon U-Pb ages are probability density estimators such as histograms and kernel density estimates. The widely popular 'probability density plots' implemented in IsoPlot and AgeDisplay compound analytical uncertainty with geological scatter and are therefore invalid.Several samples: Multi-panel diagrams comprising many detrital age distributions or compositional pie charts quickly become unwieldy and uninterpretable. For example, if there are N samples in a study, then the number of pairwise comparisons between samples increases quadratically as N(N-1)/2. This is simply too much information for the human eye to process. To solve this problem, it is necessary to (a) express the 'distance' between two samples as a simple scalar and (b) combine all N(N-1)/2 such values in a single two-dimensional 'map', grouping similar and pulling apart dissimilar samples. This can be easily achieved using simple statistics-based dissimilarity measures and a standard statistical method called Multidimensional Scaling (MDS).Several methods: Suppose that we use four provenance proxies: bulk petrography, chemistry, heavy minerals and detrital geochronology. This will result in four MDS maps, each of which likely show slightly different trends and patterns. To deal with such cases, it may be useful to use a related technique called 'three way multidimensional scaling'. This results in two graphical outputs: an MDS map, and a map with 'weights' showing to what extent the different provenance proxies influence the horizontal and vertical axis of the MDS map. Thus, detrital data can not only inform the user about the provenance of sediments, but also about the causal relationships between the mineralogy, geochronology and chemistry.
NASA Astrophysics Data System (ADS)
Derbyshire, E. J.; O'Driscoll, B.; Lenaz, D.; Gertisser, R.; Kronz, A.
2013-03-01
The mantle sequence of the ~ 492 Ma Shetland Ophiolite Complex (SOC; Scotland) contains abundant compositionally heterogeneous podiform chromitite bodies enclosed in elongate dunite lenses in the vicinity of the petrological Moho. Chromitite petrogenesis and late-stage alteration events recorded in these seams are examined here using petrography, mineral chemistry and crystal structural data. The resistant nature of Cr-spinel to serpentinisation and other late-stage alteration means that primary igneous compositions are preserved in unaltered crystal cores. Chromitite mineralogy and texture from five sampled localities at The Viels, Hagdale, Harold's Grave, Nikka Vord and Cliff reveal significant inter-pod chemical heterogeneity. The Cr-spinel mineral chemistry is consistent with supra-subduction zone melt extraction from the SOC peridotites. The occurrence of chromitite seams in the centres of the dunite lenses combined with variable Cr-spinel compositions at different chromitite seam localities supports a model of chromitite formation from spatially (and temporally?) fluctuating amounts of melt-rock interaction through channelised and/or porous melt flow. Pervasive serpentinisation of the SOC has led to the almost complete replacement of the primary (mantle) silicate mineral assemblages with serpentine (lizardite with minor chrysotile and antigorite). Magmatic sulphide (e.g., pentlandite) in dunite and chromitite is locally converted to reduced Ni-sulphide varieties (e.g., heazlewoodite and millerite). A post-serpentinisation (prograde) oxidisation event is recorded in the extensively altered Cliff chromitite seams in the west of the studied area, where chromitite Cr-spinel is extensively altered to ferritchromit. The ferritchromit may comprise > 50% of the volume of the Cliff Cr-spinels and contain appreciable quantities of 1-2 μm inclusions of sperrylite (PtAs2) and Ni-arsenide, signifying the coeval formation of these minerals with ferritchromit at temperatures of up to ~ 500 °C. The SOC chromitite Cr-spinels thus not only preserve key insights into the complex melting processes occurring in the upper mantle wedge but can also be utilised to construct a comprehensive alteration history of the lower mantle portions of such supra-subduction zone ophiolites.
The magmatism and metamorphism at the Malayer area, Western Iran
NASA Astrophysics Data System (ADS)
Ahadnejad, V.; Valizadeh, M. V.; Esmaeily, D.
2009-04-01
The Malayer area is located in the NW-SE aligned Sanandaj-Sirjan metamorphic belt, western Iran and consists mainly of Mesozoic schists so-called Hamadan Phyllites, Jurassic to Tertiary intrusive rocks and related contact metamorphic aureoles, aplites and pegmatites. The Sanandj-Sirjan Zone is produced by oblique collisional event between Arabian plate and Central Iran microcontinent. Highest level of regional metamorphism in the area is greenschist facies and injection of felsic magmas is caused contact metamorphism. Magmatism is consist of a general northwest trend large felsic to intermediate intrusive bodies. The main trend of structural features i.e. faults, fractures and other structural features is NW-SE. The Malayer granitoid complex is ellipsoid in shape and has NW-SE foliation especially at the corners of the intrusions. Petrography of the magmatic rocks revealed recrystallization of quartz and feldspars, bending of biotite, and aligment of minerals paralle to the main trend of magmatic and metamorphic country rocks. These indicated that intrusion of felsic magma is coincide to the regional metamorphism and is syn-tectoinc. Non-extensive contact metamorphism aureoles and rareness of pegmatite and aplite in the area are interpreted as injection of felsic magmas into the high-strain metamorphic zone. The regional metamorphic rocks mainly consist of meta-sandstone, slate, phyllite, schist. These gray to dark metasedimentary rocks are consist of quartz, muscovite, turmaline, epidote, biotite and chlorite. Sheeted minerals form extended schistosity and study of porphyroblast-matrix relationships shows that injection of granitic magma into the country rocks is syn to post-tectonic. Syn-tectonic indicating porphyroblast growth synchronous with the development of the external fabric. The thermal contact area of the granite can be observed in the contact margin of granite and regional metamorphic rocks, where it produced hornfelses, andalusit-garnet schists and local feldspatisation. Hornfels has surrounded the Malayer intrusive body in its southern, eastern and to some extent northeastern parts. It shows a rather sharp contact with the granodiorite. According to field and microscopic investigations, an original clay-sandstone has been converted into hornfels due to contact metamorphism. Some small highly altered granitic patches are seen in the hornfels unit, especially close to its contact with the Malayer intrusive body.
NASA Astrophysics Data System (ADS)
Arnaud, N. O.; Garcia, S.; Bergerat, F.
2003-04-01
Dykes constitute unique indicators of local paleostress. When compiled over a large area and over a significant time span they also underline larger changes in the global field stress and thus may be used together with the present day finite deformation to address global geodynamical problems. However, their use has often proved problematic because of their cryptic nature favouring excess argon retention or intake from the host rocks, as well as hydrothermal circulations and groundmass alteration. These flaws can be overtaken by careful sampling and specific sample preparation to get rid of “polluting” phases, reduction of the amount of used material using only hand picked glassy mesostasis, and replication of the analysis on several aliquots. This protocol allows to increase the number of significant results. In Iceland, rift zones have kept jumping for the past 20 Ma and probably even earlier as a response to the discontinuous capture of the mid-ocean ridge by the underlying Icelandic hotspot. However, direct determination of the age and location of paleorift zones has proven problematic because of rapid changes in the dipping of the lavas associated to overcasting of the oldest flows by younger ones, and also because of the retreat and discontinuity of flows associated with the severe glacial erosion. Dykes however do not suffer such problems and constitute excellent space/time indicators. About 65 dykes have systematically been dated on a 350 km long E-W cross section across the Northern Volcanic Zone, from the Vatnsnes peninsula to the east coast across the presently active Krafla rift. Excess argon proved to be rare, probably because of similar age and petrography between host rocks and intrusive dykes, although the basaltic dykes remain poor in potassium. Alteration of the groundmass was sometimes severe but replicate analysis usually helped in assessing a significant age. The final age distribution profile obtained from this important amount of data allows to position the paleorift and to infer that successive rifts were in fact simultaneously active for 5-5.5 Ma. The position/age relations of the dykes yields diverging plate velocities along the rifts margins from 10 Ma to the present day in agreement with the global plate motion and validate the approach by direct dating of the dykes as a powerful tool in tectonic studies.
Fast Spreading Mid Ocean Ridge Magma Chamber Processes: New Constraints from Hess Deep
NASA Astrophysics Data System (ADS)
MacLeod, C. J.; Lissenberg, J. C.; Howard, K. A.; Ildefonse, B.; Morris, A.; JC21 Scientific Party
2011-12-01
Hess Deep, on the northern edge of the Galapagos Microplate, is a rift valley located at the tip of the Cocos Nazca spreading centre. It is actively propagating westwards into young lithosphere formed at the East Pacific Rise (EPR). Previous studies have shown that the centre of Hess Deep, in the vicinity of a horst block termed the intra-rift ridge (IRR), is characterised by outcrops of gabbro and (minor) peridotite that form the most extensive and complete exposure yet known of lower crust and shallow mantle from a fast spreading mid-ocean ridge. In the absence of a total crustal penetration borehole, the tectonic window of Hess Deep provides our best opportunity to study fast-spreading magma chamber processes and lower crustal accretion by direct observation. Using the Isis ROV we collected high-resolution bathymetry and video data from an 11 sq km area of seafloor, from the nadir of Hess Deep (5400 mbsl) up to the IRR, and sampled outcrops from the region in detail. Of 145 samples in total 94 were gabbro (s.l.). Accounting as much as possible for the complex tectonic disruption of the region we have reassembled these gabbros into a stratigraphic section through an EPR lower crust that we estimate to have been originally about 4350 m thick. The upper half of this plutonic section, which includes a dyke to gabbro transition at the top, is more or less intact on the IRR; however the lower half has been tectonically thinned by active gravity driven faulting and is incomplete. Within this lower section we nevertheless believe we have representative samples from the entire interval. At its base, in addition to primitive olivine gabbro we also recovered dunite, troctolite and residual mantle harzburgite. We here present a synthesis of the petrography and whole rock and mineral compositions of the gabbros from the reconstructed lower crustal section, coupled with a quantitative (electron backscatter diffraction and magnetic) study of their petrofabrics. From this, in conjunction with the mineral trace element constraints presented elsewhere in this session by Lissenberg et al., we review the constraints they provide upon magma chamber models derived from the Oman ophiolite. Whether through sheeted sills or otherwise we conclude that in situ crystallisation mechanisms dominate, and that wholesale gabbro glacier crystal subsidence is unlikely to be an important mechanism.
NASA Astrophysics Data System (ADS)
Vieten, Rolf; Winter, Amos; Scholz, Denis; Black, David; Spoetl, Christoph; Winterhalder, Sophie; Koltai, Gabriella; Schroeder-Ritzrau, Andrea; Terzer, Stefan; Zanchettin, Davide; Mangini, Augusto
2016-04-01
A multi-proxy speleothem study tracks the regional hydrological variability in Puerto Rico and highlights its close relation to the Atlantic Multidecadal Oscillation (AMO) describing low-frequency sea-surface temperature (SST) variability in the North Atlantic ocean. Our proxy record extends instrumental observations 600 years into the past, and reveals the range of natural hydrologic variability for the region. A detailed interpretation and understanding of the speleothem climate record is achieved by the combination of multi-proxy measurements, thin section petrography, XRD analysis and cave monitoring results. The speleothem was collected in Cueva Larga, a one mile-long cave system that has been monitored since 2012. MC-ICPMS 230Th/U-dating reveals that the speleothem grew constantly over the last 600 years. Trace element ratios (Sr/Ca and Mg/Ca) as well as stable isotope ratios (δ18O and δ13C) elucidate significant changes in atmospheric precipitation at the site. Monthly cave monitoring results demonstrate that the epikarst system responds to multi-annual changes in seepage water recharge. The drip water isotope and trace element composition lack short term or seasonal variability. This hydrological system creates favorable conditions to deduce decadal climate variability from Cueva Larga's climate record. The speleothem time series mimics the most recent AMO reconstruction over the last 200 years (Svendsen et al., 2014) with a time lag of 10-20 years. The lag seems to results from slow atmospheric signal transmission through the epikarst but the effect of dating uncertainties cannot be ruled out. Warm SSTs in the North Atlantic are related to drier conditions in Puerto Rico. During times of decreased rainfall a relative increase in prior calcite precipitation seems to be the main process causing increased Mg/Ca trace element ratios. High trace element ratios correlate to higher δ13C values. The increase in both proxies indicates a shift towards time periods of decreased rainfall. Before 1800 there were two intervals of increased Mg/Ca and δ13C values (dryer conditions) lasting several decades in our speleothem record centered around 1680 CE and 1470 CE. The elevated ratios indicate that drier conditions than present may have occurred in the region during periods of warm Atlantic surface waters.
NASA Astrophysics Data System (ADS)
Vogel, S. W.; Tulaczyk, S. M.; Carter, S.; Grunow, A.
2003-12-01
The West-Antarctic Ice Sheet (WAIS) is the second largest ice sheet in the world. Its dynamic is extensively studied due to the proposed threat of rapid disintegration and associated sea level rise (Mercer, 1971). Most of its ice drains through a few fast flowing (>100 m/yr) ice streams and outlet glaciers. Subglacial conditions in particular the distribution of basal water and the availability of subglacial sediment plays an important role for their location and extent. Subglacial geology in particular the distribution of sedimentary basin fill, providing material for a lubricating subglacial till layer, may pose a limit on the inland extent of the fast flowing ice stream. Subglacial volcanism and associated elevated geothermal heat fluxes may provide crucial subglacial melt water for ice stream lubrication. We have studied sediment from the base of the WAIS to elucidate questions about the existence of subglacial volcanism and to determine the provenance of the subglacial sediment. Within this study we measured clay mineralogy, sand petrography, magnetic and geochemical properties of subglacial and englacial sediment from different locations in the Ross Sea-catchment area of the WAIS. Our samples come from Whillans-, Kamb- and Bindschadler Ice Stream as well as from Siple Dome, Crary Ice Rise and Byrd Station. Most of our sediment samples represent samples of subglacial till, which in earlier studies have been characterized as reworked marine sediment of Cenozoic age. The englacial sediment samples come from basal ice. Our study so far has found no positive evidence for the existence of subglacial volcanism beneath the WAIS. The mineralogy as well as the REE-pattern of our samples correspond better with a crustal source for the sediment than Cenozoic basalts. The isotopic composition of our samples (Nd/Sm, Rb/Sr) show differences between individual ice streams locations as well as differences between different grain size fractions. TDM-ages range from ~900 Ma to 1800 Ma; ENd between -4 to -12 and 87Sr/86Sr ~0.715 to ~0.735. Our preliminary geochemical results so far point to rocks from outcrops in the upstream areas of the individual ice streams as provenance for their sediment (Horlick Mountains and Whitmore Mountains) with a possibly small East-Antarctic component.
Paleosol Proxies for Low Elevation Paleoclimate East of the Andes, Northwestern Argentina
NASA Astrophysics Data System (ADS)
Rosario, J. J.; Jordan, T. E.; Garzione, C. N.; Higgins, P.; Hernandez, R.; Hernandez, J.
2009-12-01
Paleosols can be used as a proxy for paleoclimate, paleoenvironment, and geomorphological reconstructions. The weathering imprint in the minerals in paleosols can be used as a proxy for moisture conditions, while other environmental information can be obtained from stable isotopes in their minerals such as δ13C and δ18O. The goal of this study is to document changes in paleosol characteristics’ driven by climate change in NW Argentina over the time period between ~14 Ma and 5.1 Ma during a time of significant uplift and climate change in the Altiplano. During this time interval, landscape of the low elevation foreland basin changed as the consequence of the propagation of Andean thrust-fold deformation. Paleosols are interbedded in three stratigraphic sections that are described, sampled, and studied along the Iruya, Peña Colorada, and La Porcelana rivers, distributed from west to east, respectively. Field observations of the paleosols, stratigraphic column construction, thin section petrography and textures, x-ray diffraction (XRD), and stable isotopes together provide climatic proxies. These The stratigraphic columns represent a distributary depositional system, or megafan, whose syn-deformational nature is documented by Echevarría et al. (2003). Argillic-calcic paleosols developed on silty and sandy mudstones in the floodplain environment, with pedogenic calcium carbonate formed as nodules and rizoliths. The Microscopic features show that paleosols on the floodplain contain argillans. Semi-humid to semi-arid conditions are suggested by clay lessivage and calcium carbonate precipitation respectively. The mineralogy reflected by the XRD shows kaolinite, illite, and calcium carbonate in the western stratigraphic column that represents moderate climatic conditions (semi-humid to semi-arid). The coexistence of these minerals suggests seasonal variations in moisture. The eastern columns exhibit wetter soil conditions, including oxide minerals as well as hematite and goethite. Carbon isotopes show C3 vegetation with an increase in δ13C values most likely resulting from increasing seasonality in more recent times. There is little variation in δ18O values through time. In conclusion, these proxies show that soils were developed on interchannel areas, with illuviation of clays during the wet season and precipitation of calcium carbonate during the dry season. Although the megafan migrated eastward and the Altiplano rose, oxygen isotopes suggest that neither rainfall amount nor source of water vapor changed through the approximately 10 million years time interval.
NASA Astrophysics Data System (ADS)
Henriques, S. B. A.; Neiva, A. M. R.; Tajčmanová, L.; Dunning, G. R.
2017-01-01
A well preserved Cadomian basement is exposed in the Iberian Massif, Central Portugal, at the Ossa Morena/Central Iberian zone boundary, which allows the determination of reliable geochemical data. A sequence of Cadomian and Variscan magmatic and tectonometamorphic events has been already described for this area and are documented in other areas of the Avalonian-Cadomian orogen. However, the geochemical information concerning the Cadomian basement for this area is still limited. We present whole rock geochemical and oxygen isotopic information to characterize the igneous protoliths of the Sardoal Complex, located within the Tomar-Badajoz-Córdoba Shear Zone, and identify their tectonic setting. We use detailed petrography, mineral chemistry and P-T data to characterize the final Cadomian tectonometamorphic event. The Sardoal Complex contains orthogneiss and amphibolite units. The protoliths of the orthogneiss are calc-alkaline magmas of acid composition and peraluminous character that were generated in an active continental margin in three different stages (ca. 692 Ma, ca. 569 Ma and ca. 548 Ma). The most significant processes in their petrogenesis are the partial melting of old metasedimentary and meta-igneous crust at different crustal levels and the crystal fractionation of plagioclase, alkali feldspars, apatite, zircon and Fe-Ti oxides. The protoliths of the amphibolite, older than ca. 540 Ma, are tholeiitic and calc-alkaline magmas of basic composition that display N-, T- and E-MORB affinities. They were generated in an active continental margin. Crustal contamination and fractional crystallization of hornblende and diopside were involved in their petrogenesis. However, the fractional crystallization was not significant. The magmatic activity recorded in the Sardoal Complex indicates the existence of a long-lived continental arc (ca. 692-540 Ma) with coeval felsic and mafic magmatism. The final stage of the Cadomian metamorphism is usually represented in other areas of the Cadomian basement as a LP-HT metamorphic event. However, the P-T data obtained by thermodynamic modelling indicates medium pressure/high temperature conditions at ca. 540 Ma. These data suggest that the Sardoal Complex represents a deeper level of the exhumed Cadomian basement where the final stage of the Cadomian metamorphism was recorded.
NASA Astrophysics Data System (ADS)
Castillo, P.; Lacassie, J. P.; Hervé, F.; Fanning, C. M.
2009-04-01
The Trinity Peninsula Group (TPG) crops out in northern Graham Land and consists of a mostly non-fossiliferous metasedimentary succession of Permo-Triassic(?) age, which was accreted prior to the initiation of the Gondwana breakup. This succession has been sub-divided, from north to south, into five formations, namely: Hope Bay (HBF), View Point (VPF), Legoupil (LgF), Charlotte Bay (ChBF) and Paradise Harbour (PHF) formations. However, there are still large areas with unknown stratigraphic allocation, age and extension. Twenty TPG samples (12 sandstones and 8 mudstones) were collected from four localities in the Antarctic Peninsula, including Hope Bay; Paradise Harbour, Cape Legoupil and Charlotte Bay. Twelve sandstones were selected for modal analysis and 15 samples (7 sandstones and 8 mudstones) for whole rock chemical analysis. The geochemical data of the TPG samples was compared with the geochemical data of other sedimentary successions of different provenance and tectonic setting, by using unsupervised artificial neural networks. The modal composition of the sandstones is dominated by quartz and, in similar but smaller proportions by feldspar, and according to the discrimination scheme of Dickinson et al. (1983) is consistent with the product of erosion of the plutonic roots of a magmatic arc. The chemical data suggest a relatively evolved source, with a composition similar to a typical granodioritic continental magmatic arc. The deposition of the detritus is most likely to have occurred within an active continental margin. Three sandstone samples from the HBF, LgF and PHF were selected for U-Pb dating of detrital zircons by SHRIMP. For the HBF and PHF samples, the major age component is Permian (270-280 Ma). Only the sample from LgF has two important peaks at ~270 and ~470 Ma. In all cases, the youngest dated zircon is Permian (~257 Ma). These results show that there are strong chemical and chronological similarities between the TPG, the Duque de York Complex (DYC, Patagonia), the Rakaia Terrane (New Zealand) and the LeMay Group (Alexander Island, Antarctic Peninsula). These similarities suggest that these successions derive from the same active continental margin. Into this context, the subtle petrographical differences between TPG and DYC could possibly indicate that both units correspond to different petrofacies of a common source, as has been proposed for the Rakaia Terrane in New Zealand.
Muffler, L.J.P.; Clynne, M.A.; Calvert, A.T.; Champion, D.E.
2011-01-01
The Poison Lake chain consists of small, monogenetic, calc-alkaline basaltic volcanoes located east of the Cascade arc axis, 30 km ENE of Lassen Peak in northeastern California. This chain consists of 39 distinguishable units in a 14-km-long and 2-kmwide zone trending NNW, parallel to nearby Quaternary normal faults. The 39 units fall into nine coherent groups based on stratigraphy, field characteristics, petrography, and major-element compositions. Petrographic differences among groups are expressed by different amounts and proportions of phenocrysts. MgO-SiO 2, K 2O-SiO 2, and TiO 2-SiO 2 variation diagrams illustrate clear differences in compatible and incompatible elements among the groups. Variation of K 2O/ TiO 2 and K 2O/P 2O 5 with MgO indicates that most of the basalts of the Poison Lake chain cannot be related by crystal fractionation at different pressures and that compositions have not been affected significantly by incorporation of low-degree silicic crustal melt or interaction with sialic crust. Limited traceelement and whole-rock isotopic data also suggest little if any incorporation of uppercrustal material, and that compositional variation among groups primarily reflects source compositional differences. Precise 40Ar/ 39Ar determinations show that the lavas were erupted between 100 and 110 ka. The migration of paleomagnetic remanent directions over 30?? suggests that the entire Poison Lake chain could represent three short-lived episodes of volcanism within a period as brief as 500 yr. The diverse geologic, petrographic, chemical, paleomagnetic, and age data indicate that each of the nine groups represents a small, discrete magma batch generated in the mantle and stored briefly in the lower crust. A NNW normal fault zone provided episodic conduits that allowed rapid ascent of these batches to the surface, where they erupted as distinct volcanic groups, each aligned along a segment of the Poison Lake chain. Compositional diversity of these primitive magmas argues against widespread, long-lived ponding of uniform basalt magma at the base of the crust in this region and against interaction with a zone of melting, assimilation, storage, and homogenization (MASH) in the lower crust. ?? 2011 Geological Society of America.
NASA Astrophysics Data System (ADS)
Ledevin, M.; Arndt, N.; Simionovici, A.
2014-05-01
A 100 m-thick complex of near-vertical carbonaceous chert dikes marks the transition from the Mendon to Mapepe Formations (3260 Ma) in the Barberton Greenstone Belt, South Africa. Fracturing was intense in this area, as shown by the profusion and width of the dikes (ca. 1 m on average) and by the abundance of completely shattered rocks. The dike-and-sill organization of the fracture network and the upward narrowing of some of the large veins indicate that at least part of the fluid originated at depth and migrated upward in this hydrothermal plumbing system. Abundant angular fragments of silicified country rock are suspended and uniformly distributed within the larger dikes. Jigsaw-fit structures and confined bursting textures indicate that hydraulic fracturing was at the origin of the veins. The confinement of the dike system beneath an impact spherule bed suggests that the hydrothermal circulations were triggered by the impact and located at the external margin of a large crater. From the geometry of the dikes and the petrography of the cherts, we infer that the fluid that invaded the fractures was thixotropic. On one hand, the injection of black chert into extremely fine fractures is evidence for low viscosity at the time of injection; on the other hand, the lack of closure of larger veins and the suspension of large fragments in a chert matrix provide evidence of high viscosity soon thereafter. The inference is that the viscosity of the injected fluid increased from low to high as the fluid velocity decreased. Such rheological behavior is characteristic of media composed of solid and colloidal particles suspended in a liquid. The presence of abundant clay-sized, rounded particles of silica, carbonaceous matter and clay minerals, the high proportion of siliceous matrix and the capacity of colloidal silica to form cohesive 3-D networks through gelation, account for the viscosity increase and thixotropic behavior of the fluid that filled the veins. Stirring and shearing of the siliceous mush as it was injected imparted a low viscosity by decreasing internal particle interactions; then, as the flow rate declined, the fluid became highly viscous as the inter-particulate bonds (siloxane bonds, Si-O-Si) were reconstituted. The gelation of the chert was rapid and the structure persisted at low temperature (T < 200 °C) before fractures were sealed and chert indurated.
NASA Astrophysics Data System (ADS)
Ibraimo, Daniel Luis; Larsen, Rune B.
2015-11-01
The Atchiza mafic and ultramafic-layered suite (hereafter, "Atchiza Suite) crops out in an area 330 km2 west of the Mozambican Tete province. In an early account of the geology of this intrusion, it was considered the continuation of the Great Dyke of Zimbabwe, an idea that was aborted after detailed studies. Nevertheless, the Ni concentrations in the Atchiza outcrop rocks are considerable. Our investigation used field evidence, hand specimens and petrography descriptions, mineral chemistry studies using electron microprobe analysis and tectonic analysis to arrive at a plausible mineralogical composition and understanding of the tectonic setting for the igneous evolution. The mineral composition from the Atchiza Suite indicates that these are cumulates. The magmatic segregation from the petrographic and mineral composition reasoning indicates that dunite-lherzolitic peridotite-olivine gabbro-gabbronorite-gabbro-pegmatitic gabbro is the rock formation sequence. Olivine and chromite were the first phases formed, followed by pyroxene and plagioclase. In addition, it is shown that these minerals are near-liquidus crystallization products of basaltic magma with olivine Fo: 87.06 in dunite, mean values of clinopyroxene are (Wo: 36.4, En: 48.0, Fs: 15.2), orthopyroxene (Wo: 2.95, En: 73.0, Fs: 24.2) and plagioclase An: 71.3, respectively. Opaque minerals comprise Fe-Ti oxides and (Fe, Cr) spinel up to 4.8 vol.%, but chromitite layers are not present. Most of the opaque minerals are interstitial to pyroxene. Sulphides are common in gabbros, with pyrrhotite, pentlandite, chalcopyrite, pyrite and covellite together comprising 0.4-2.0 vol.%. The whole rock Rare Earth Element (REE) concentrations are mainly a result of differentiation, but slight crustal contamination/assimilation contributed to the REE contents. In addition, they also show Eu enrichment, suggesting that plagioclase fractionation was important in the rock. The Atchiza Suite preserves a deep-seated plumbing system of the continental rift environment. The intrusion resulted from the emplacement of mafic magma in space created by extensional forces. Space was created through a connecting fault generated as a result of overall extensional, torsion and slab displacement in a rift system. The geometry of the body is tectonically controlled, and it agrees with the tectonic framework of the Zambezi Belt during the Rodinia breakup in the early Neoproterozoic.
NASA Astrophysics Data System (ADS)
Agustín-Flores, Javier; Siebe, Claus; Guilbaud, Marie-Noëlle
2011-04-01
This study focuses on the geology and geochemistry of three closely-spaced monogenetic volcanoes that are located in the NE sector of the Sierra Chichinautzin Volcanic Field near México City. Pelagatos (3020 m.a.s.l.) is a small scoria cone (0.0017 km 3) with lava flows (0.036 km 3) that covered an area of 4.9 km 2. Cerro del Agua scoria cone (3480 m.a.s.l., 0.028 km 3) produced several lava flows (0.24 km 3) covering an area of 17.6 km 2. Dos Cerros is a lava shield which covers an area of 80.3 km 2 and is crowned by two scoria cones: Tezpomayo (3080 m.a.s.l., 0.022 km 3) and La Ninfa (3000 m.a.s.l., 0.032 km 3). The eruptions of Cerro del Agua and Pelagatos occurred between 2500 and 14,000 yr BP. The Dos Cerros eruption took place close to 14,000 yr BP as constrained by radiocarbon dating. Rocks from these three volcanoes are olivine-hypersthene normative basaltic andesites and andesites with porphyritic, aphanitic, and glomeroporphyritic textures. Their mineral assemblages include olivine, clinopyroxene, and orthopyroxene phenocrysts (≤ 10 vol.%) embedded in a trachytic groundmass which consists mainly of plagioclase microlites and glass. Pelagatos rocks also present quartz xenocrysts. Due to their high Cr and Ni contents, and high Mg#s, Pelagatos rocks are considered to be derived from primitive magmas, hence the importance of this volcano for understanding petrogenetic processes in this region. Major and trace element abundances and petrography of products from these volcanoes indicate a certain degree of crystal fractionation during ascent to the surface. However, the magmas that formed the volcanoes evolved independently from each other and are not cogenetically related. REE, HFSE, LILE, and isotopic (Sr, Nd, and Pb) compositions point towards a heterogeneous mantle source that has been metasomatized by aqueous/melt phases from the subducted Cocos slab. There is no clear evidence of important crustal contributions in the compositions of Pelagatos and Cerro del Agua rocks. The Sr-isotopic composition of Dos Cerros, however, indicates a small degree of crustal contamination.
NASA Astrophysics Data System (ADS)
Liu, Yi-Can; Zhang, Pin-Gang; Wang, Cheng-Cheng; Groppo, Chiara; Rolfo, Franco; Yang, Yang; Li, Yuan; Deng, Liang-Peng; Song, Biao
2017-10-01
Impure calcite marbles from the Precambrian metamorphic basement of the Wuhe Complex, southeastern margin of the North China Craton, provide an exceptional opportunity to understand the depositional processes during the Late Archean and the subsequent Palaeoproterozoic metamorphic evolution of one of the oldest cratons in the world. The studied marbles are characterized by the assemblage calcite + clinopyroxene + plagioclase + K-feldspar + quartz + rutile ± biotite ± white mica. Based on petrography and geochemistry, the marbles can be broadly divided into two main types. The first type (type 1) is rich in REE with a negative Eu anomaly, whereas the second type (type 2) is relatively poor in REE with a positive Eu anomaly. Notably, all marbles exhibit remarkably uniform REE patterns with moderate LREE/HREE fractionation, suggesting a close genetic relationship. Cathodoluminescence imaging, trace elements and mineral inclusions reveal that most zircons from two dated samples display distinct core-rim structures. Zircon cores show typical igneous features with oscillatory growth zoning and high Th/U ratios (mostly in the range 0.3-0.7) and give ages of 2.53 - 2.48 Ga, thus dating the maximum age of deposition of the protolith. Zircon rims overgrew during granulite-facies metamorphism, as evidenced by calcite + clinopyroxene + rutile + plagioclase + quartz inclusions, by Ti-in-zircon temperatures in the range 660-743 °C and by the low Th/U (mostly < 0.1) and Lu/Hf (< 0.001) ratios. Zircon rims from two dated samples yield ages of 1839 ± 7 Ma and 1848 ± 23 Ma, respectively, suggesting a Palaeoproterozoic age for the granulite-facies metamorphic event. These ages are consistent with those found in other Precambrian basement rocks and lower-crustal xenoliths in the region, and are critical for the understanding of the tectonic history of the Wuhe Complex. Positive Eu anomalies and high Sr and Ba contents in type 2 marbles are ascribed to syn-depositional felsic hydrothermal activity which occurred at 2.53 - 2.48 Ga. Our results, together with other published data and the inferred tectonic setting, suggest that the marbles' protolith is an impure limestone, rich in detrital silicates of igneous origin, deposited in a back-arc basin within an active continental margin during the late Archean and affected by synchronous high-T hydrothermalism at the southeastern margin of the North China Craton.
Extraction of hydrocarbons from high-maturity Marcellus Shale using supercritical carbon dioxide
Jarboe, Palma B.; Philip A. Candela,; Wenlu Zhu,; Alan J. Kaufman,
2015-01-01
Shale is now commonly exploited as a hydrocarbon resource. Due to the high degree of geochemical and petrophysical heterogeneity both between shale reservoirs and within a single reservoir, there is a growing need to find more efficient methods of extracting petroleum compounds (crude oil, natural gas, bitumen) from potential source rocks. In this study, supercritical carbon dioxide (CO2) was used to extract n-aliphatic hydrocarbons from ground samples of Marcellus shale. Samples were collected from vertically drilled wells in central and western Pennsylvania, USA, with total organic carbon (TOC) content ranging from 1.5 to 6.2 wt %. Extraction temperature and pressure conditions (80 °C and 21.7 MPa, respectively) were chosen to represent approximate in situ reservoir conditions at sample depth (1920−2280 m). Hydrocarbon yield was evaluated as a function of sample matrix particle size (sieve size) over the following size ranges: 1000−500 μm, 250−125 μm, and 63−25 μm. Several methods of shale characterization including Rock-Eval II pyrolysis, organic petrography, Brunauer−Emmett−Teller surface area, and X-ray diffraction analyses were also performed to better understand potential controls on extraction yields. Despite high sample thermal maturity, results show that supercritical CO2 can liberate diesel-range (n-C11 through n-C21) n-aliphatic hydrocarbons. The total quantity of extracted, resolvable n-aliphatic hydrocarbons ranges from approximately 0.3 to 12 mg of hydrocarbon per gram of TOC. Sieve size does have an effect on extraction yield, with highest recovery from the 250−125 μm size fraction. However, the significance of this effect is limited, likely due to the low size ranges of the extracted shale particles. Additional trends in hydrocarbon yield are observed among all samples, regardless of sieve size: 1) yield increases as a function of specific surface area (r2 = 0.78); and 2) both yield and surface area increase with increasing TOC content (r2 = 0.97 and 0.86, respectively). Given that supercritical CO2 is able to mobilize residual organic matter present in overmature shales, this study contributes to a better understanding of the extent and potential factors affecting the extraction process.
Warwick, Peter D.; Hook, Robert W.
1995-01-01
Two coal zones, the San Pedro and the overlying Santo Tomas, are present for nearly 35 km in outcrop, surface and underground mines, and shallow drill holes along the strike of the middle part of the Claiborne Group (Eocene) in Webb County, Texas. A sandstone-dominated interval of 25 to 35 m separates the two coal zones, which range up to 3 m in thickness. Each coal zone contains carbonaceous shales, thin (<0.75 m) impure coal beds, and thin (<0.85 m) but commercially significant nonbanded coal beds. The nonbanded coals are different from other Tertiary coals of the Gulf of Mexico Coastal Plain: unlike lignites that are typical of the older Wilcox Group (Paleocene-Eocene) and younger Jackson Group (Eocene), nonbanded coals of the Claiborne Group have high vitrinite-reflectance values (0.53 Rmax) and high calorific yields (average 6670 kcal/kg or 12,000 Btu, dry basis). The coals are weakly agglomerating (free-swelling index is 1.5–2.0) and have an apparent rank of high-volatile bituminous.The coal-bearing portion of the middle Claiborne Group in the Rio Grande area represents a fining-upward transition from sandstone-dominated, marine-influenced, lower delta plain depositional environments to more inland, mudstone-rich, predominantly freshwater deltaic settings. Discontinuities within the San Pedro coal zone are attributed mainly to the influence of contemporaneous deposition of distributary mouth-bar sand bodies. The less variable nature of the Santo Tomas coal zone reflects its origin in the upper part of an interlobe basin that received only minor clastic influx.Petrographic attributes of the nonbanded coals indicate that they formed subaqueously in fresh to possibly brackish waters. A highly degraded groundmass composed of eugelinite is the main petrographic component (approximately 71%, mineral-matter-free basis). An enriched liptinite fraction (approximately 23%) probably accounts for unusually high calorific values. There is negligible inertinite. Petrographic study of polished blocks indicates that approximately 10 percent of the nonbanded coal from both coal zones is composed of green algae fructifications, which also occur in clastic rocks of the coal-bearing interval. Such algal material cannot be identified or quantified by conventional coal petrographic techniques that utilize particle pellets or by palynological analyses that include acid preparation.