DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim
Federal agencies are mandated to purchase alternative fuel vehicles, increase consumption of alternative fuels, and reduce petroleum consumption. Available plug-in electric vehicles (PEVs) provide an attractive option in the selection of alternative fuel vehicles. PEVs, which consist of both battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), have significant advantages over internal combustion engine (ICE) vehicles in terms of energy efficiency, reduced petroleum consumption, and reduced production of greenhouse gas (GHG) emissions, and they provide performance benefits with quieter, smoother operation. This study intended to evaluate the extent to which NASA Stennis Space Center (Stennis) could convert partmore » or all of their fleet of vehicles from petroleum-fueled vehicles to PEVs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim
2015-05-01
Federal agencies are mandated to purchase alternative fuel vehicles, increase consumption of alternative fuels, and reduce petroleum consumption. Available plug-in electric vehicles (PEVs) provide an attractive option in the selection of alternative fuel vehicles. PEVs, which consist of both battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), have significant advantages over internal combustion engine (ICE) vehicles in terms of energy efficiency, reduced petroleum consumption, and reduced production of greenhouse gas (GHG) emissions, and they provide performance benefits with quieter, smoother operation. This study intended to evaluate the extent to which the United States Coast Guard Headquarters (USCG HQ)more » could convert part or all of their fleet of vehicles from petroleum-fueled vehicles to PEVs.« less
Assessment of Energy Efficiency Improvement in the United States Petroleum Refining Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrow, William R.; Marano, John; Sathaye, Jayant
2013-02-01
Adoption of efficient process technologies is an important approach to reducing CO 2 emissions, in particular those associated with combustion. In many cases, implementing energy efficiency measures is among the most cost-effective approaches that any refiner can take, improving productivity while reducing emissions. Therefore, careful analysis of the options and costs associated with efficiency measures is required to establish sound carbon policies addressing global climate change, and is the primary focus of LBNL’s current petroleum refining sector analysis for the U.S. Environmental Protection Agency. The analysis is aimed at identifying energy efficiency-related measures and developing energy abatement supply curves andmore » CO 2 emissions reduction potential for the U.S. refining industry. A refinery model has been developed for this purpose that is a notional aggregation of the U.S. petroleum refining sector. It consists of twelve processing units and account s for the additional energy requirements from steam generation, hydrogen production and water utilities required by each of the twelve processing units. The model is carbon and energy balanced such that crud e oil inputs and major refinery sector outputs (fuels) are benchmarked to 2010 data. Estimates of the current penetration for the identified energy efficiency measures benchmark the energy requirements to those reported in U.S. DOE 2010 data. The remaining energy efficiency potential for each of the measures is estimated and compared to U.S. DOE fuel prices resulting in estimates of cost- effective energy efficiency opportunities for each of the twelve major processes. A combined cost of conserved energy supply curve is also presented along with the CO 2 emissions abatement opportunities that exist in the U.S. petroleum refinery sector. Roughly 1,200 PJ per year of primary fuels savings and close to 500 GWh per y ear of electricity savings are potentially cost-effective given U.S. DOE fuel price forecasts. This represents roughly 70 million metric tonnes of CO 2 emission reductions assuming 2010 emissions factor for grid electricity. Energy efficiency measures resulting in an additional 400 PJ per year of primary fuels savings and close to 1,700 GWh per year of electricity savings, and an associated 24 million metric tonnes of CO 2 emission reductions are not cost-effective given the same assumption with respect to fuel prices and electricity emissions factors. Compared to the modeled energy requirements for the U.S. petroleum refining sector, the cost effective potential represents a 40% reduction in fuel consumption and a 2% reduction in electricity consumption. The non-cost-effective potential represents an additional 13% reduction in fuel consumption and an additional 7% reduction in electricity consumption. The relative energy reduction potentials are mu ch higher for fuel consumption than electricity consumption largely in part because fuel is the primary energy consumption type in the refineries. Moreover, many cost effective fuel savings measures would increase electricity consumption. The model also has the potential to be used to examine the costs and benefits of the other CO 2 mitigation options, such as combined heat and power (CHP), carbon capture, and the potential introduction of biomass feedstocks. However, these options are not addressed in this report as this report is focused on developing the modeling methodology and assessing fuels savings measures. These opportunities to further reduce refinery sector CO 2 emissions and are recommended for further research and analysis.« less
Streche, Constantin; Cocârţă, Diana Mariana; Istrate, Irina-Aura; Badea, Adrian Alexandru
2018-02-19
Currently, there are different remediation technologies for contaminated soils, but the selection of the best technology must be not only the treatment efficiency but also the energy consumption (costs) during its application. This paper is focused on assessing energy consumption related to the electrochemical treatment of polluted soil with petroleum hydrocarbons. In the framework of a research project, two types of experiments were conducted using soil that was artificially contaminated with diesel fuel at the same level of contamination. The experimental conditions considered for each experiment were: different amounts of contaminated soils (6 kg and 18 kg, respectively), the same current intensity level (0.25A and 0.5A), three different contamination degrees (1%, 2.5% and 5%) and the same time for application of the electrochemical treatment. The remediation degree concerning the removal of petroleum hydrocarbons from soil increased over time by approximately 20% over 7 days. With regard to energy consumption, the results revealed that with an increase in the quantity of treated soil of approximately three times, the specific energy consumption decreased from 2.94 kWh/kg treated soil to 1.64 kWh/kg treated soil.
Short-Term Energy Outlook Model Documentation: Other Petroleum Products Consumption Model
2011-01-01
The other petroleum product consumption module of the Short-Term Energy Outlook (STEO) model is designed to provide U.S. consumption forecasts for 6 petroleum product categories: asphalt and road oil, petrochemical feedstocks, petroleum coke, refinery still gas, unfinished oils, and other miscvellaneous products
NASA Astrophysics Data System (ADS)
Papu, Nabam Hina; Lingfa, Pradip
2018-04-01
Navicula Sphaerophora was isolated from a fresh water reservoir in Arunachal Pradesh, India. N. Sphaerophora was grown on two different culture media, chu13 medium and Miracle Gro-medium. The maximum yield was obtained by using culture medium chu13(5.08 g/100ml of culture media). Microalgae crude oil was extracted using soxhlation method with three different solvents n-hexane, iso-propanol and hexane/ iso-propanol mixture. The maximum crude oil was obtained using n-hexane as a solvent (13.8% of dry weight biomass). The crude oil was converted into biodiesel using single stage transesterification process with sodium hydroxide (NaOH) as a base catalyst. Fuel properties of algae biodiesel satisfied biodiesel standard ASTM D6751 and use of this fuel should be comparable with petroleum diesel. Further short term engine test was conducted on single cylinder direct injection diesel engine at four different load (25%,50%,75% and 100%). Three different petroleum diesel and Microalgae Biodiesel blends (10%, 20% and 30%) were prepared. The influence of biodiesel blends on BSFC (brake specific fuel consumption), BTE (brake thermal efficiency), oxides of nitrogen (NOx), UBHC (unburnt hydrocarbons), carbonmonoxide (CO) and smoke opacity was studied and compared with petroleum diesel. Microalgae methyl ester 50% blend (B50) had lowest brake thermal efficiency (BTE) and highest Brake specific fuel consumption (BSFC) as compared to diesel; this may be due to Lower calorific value. HC, CO emission and smoke opacity reduces significantly with microalgae methyl ester. However, the NOx emission increases with all blends when compared to petroleum diesel. 10% microalgae blend with petroleum diesel showed the closet performance to petroleum diesel. Results obtained from present investigation confirmed the biofuel potentiality of Navicula Sphaerophora.
Fuel-conservative engine technology
NASA Technical Reports Server (NTRS)
Dugan, J. F., Jr.; Mcaulay, J. E.; Reynolds, T. W.; Strack, W. C.
1975-01-01
Aircraft fuel consumption is discussed in terms of its efficient use, and the conversion of energy from sources other than petroleum. Topics discussed include: fuel from coal and oil shale, hydrogen deficiency of alternate sources, alternate fuels evaluation program, and future engines.
10 CFR 490.804 - Eligible reductions in petroleum consumption.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Eligible reductions in petroleum consumption. 490.804 Section 490.804 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490.804 Eligible reductions in petroleum consumption. (a) Motor vehicles...
10 CFR 490.804 - Eligible reductions in petroleum consumption.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Eligible reductions in petroleum consumption. 490.804 Section 490.804 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490.804 Eligible reductions in petroleum consumption. (a) Motor vehicles...
10 CFR 490.804 - Eligible reductions in petroleum consumption.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Eligible reductions in petroleum consumption. 490.804 Section 490.804 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490.804 Eligible reductions in petroleum consumption. (a) Motor vehicles...
10 CFR 490.804 - Eligible reductions in petroleum consumption.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Eligible reductions in petroleum consumption. 490.804 Section 490.804 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490.804 Eligible reductions in petroleum consumption. (a) Motor vehicles...
10 CFR 490.804 - Eligible reductions in petroleum consumption.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Eligible reductions in petroleum consumption. 490.804 Section 490.804 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490.804 Eligible reductions in petroleum consumption. (a) Motor vehicles...
Benefits of VTOL aircraft in offshore petroleum logistics support
NASA Technical Reports Server (NTRS)
Wilcox, D. E.; Shovlin, M. D.
1975-01-01
The mission suitability and potential economic benefits of advanced VTOL aircraft were investigated for logistics support of petroleum operations in the North Sea and the Gulf of Mexico. Concepts such as the tilt rotor and lift/cruise fan are promising for future operations beyond 150 miles offshore, where their high cruise efficiency provides savings in trip time, fuel consumption, and capital investment. Depending upon mission requirements, the aircraft operating costs are reduced by as much as 20 percent to 50 percent from those of current helicopters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2013-03-01
This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasismore » on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.« less
Towards greener environment: Energy efficient pathways for the transportation sector in Malaysia
NASA Astrophysics Data System (ADS)
Indati, M. S.; Ghate, A. T.; Leong, Y. P.
2013-06-01
Transportation sector is the second most energy consuming sector after industrial sector, accounting for 40% of total energy consumption in Malaysia. The transportation sector is one of the most energy intensive sectors in the country and relies primarily on petroleum products, which in total account for nearly 98% of the total consumption in the sector. Since it is heavily reliant on petroleum based fuels, the sector contributes significantly to the greenhouse gas (GHG) emissions. The need to reduce the greenhouse gas emission is paramount as Malaysia at Conference of the Parties (COP15) pledged to reduce its carbon intensity by 40% by 2020 from 2005 level subject to availability of technology and finance. Transport sector will be among the first sectors that need to be addressed to achieve this goal, as two-thirds of the emissions come from fuel combustion in transport sector. This paper will analyse the factors influencing the transport sector's growth and energy consumption trends and discuss the key issues and challenges for greener environment and sustainable transportation in Malaysia. The paper will also discuss the policy and strategic options aimed towards energy efficient pathways in Malaysia.
United Kingdom Country Analysis Brief
2016-01-01
The United Kingdom (UK) is the fifth-largest economy in the world in terms of gross domestic product. Following years as a net exporter of crude oil and natural gas, the UK became a net importer of both fuels in 2004 and 2005, respectively. Production from UK oil and natural gas fields peaked in the late 1990s and has generally declined over the past several years as the discovery of new reserves and new production has not kept pace with the maturation of existing fields. Production of petroleum and other liquids increased in 2015, as investments made when oil prices were high came to fruition, but the UK remains a net importer. Renewable energy use, particularly in the electric power sector, has more than doubled over the past decade (2005-14). However, petroleum and natural gas continue to account for most of UK's energy consumption. In 2014, petroleum and natural gas accounted for 36% and 33%, respectively, of total energy consumption (Figure 2).1 Coal also continues to be a significant part of total energy consumption (16% in 2014). Energy use per unit of gross domestic product (GDP) in the UK is one of the lowest among western economies. The UK has seen total primary energy consumption decline by almost 20% over the past decade (2005-14). This decline resulted from smaller contribution of energy-intensive industry to the economy, economic contraction, and improvements in energy efficiency.
77 FR 14482 - Petroleum Reduction and Alternative Fuel Consumption Requirements for Federal Fleets
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-12
... agencies to use this methodology to determine fleet inventory targets and to prepare fleet management plans.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Federal Energy Management Program (EE... DOE receives will be made available on the Federal Energy Management Program's Federal Fleet...
Not Too Hot, Not Too Cold - Continuum Magazine | NREL
management technologies increase vehicle energy efficiency and performance while reducing costs. Mythological automobiles. Issues with thermal management cause some of these limitations. A photo of a white disk submerged sector petroleum consumption. Manufacturers and operators alike are looking to new thermal management
40 CFR 98.314 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... requirements. (a) You must measure your consumption of calcined petroleum coke using plant instruments used for accounting purposes including direct measurement weighing the petroleum coke fed into your process (by belt... used to ensure the accuracy of monthly calcined petroleum coke consumption measurements. (c) You must...
40 CFR 98.314 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirements. (a) You must measure your consumption of calcined petroleum coke using plant instruments used for accounting purposes including direct measurement weighing the petroleum coke fed into your process (by belt... used to ensure the accuracy of monthly calcined petroleum coke consumption measurements. (c) You must...
40 CFR 98.314 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... requirements. (a) You must measure your consumption of calcined petroleum coke using plant instruments used for accounting purposes including direct measurement weighing the petroleum coke fed into your process (by belt... used to ensure the accuracy of monthly calcined petroleum coke consumption measurements. (c) You must...
40 CFR 98.314 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... requirements. (a) You must measure your consumption of calcined petroleum coke using plant instruments used for accounting purposes including direct measurement weighing the petroleum coke fed into your process (by belt... used to ensure the accuracy of monthly calcined petroleum coke consumption measurements. (c) You must...
On the Road to Transportation Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2014-04-21
Reducing emissions and oil consumption are crucial worldwide goals. Reducing transportation emissions, in particular, is key to reducing overall emissions. Electric vehicles driving on electrified roadways could be a significant part of the solution. E-roadways offer a variety of benefits: reduce petroleum consumption (electricity is used instead of gasoline), decrease vehicular operating costs (from about 12 cents per mile to 4 cents per mile), and extend the operational range of electric vehicles. Plus, e-roadway power can come from renewable sources.
On the Road to Transportation Efficiency
None
2018-01-16
Reducing emissions and oil consumption are crucial worldwide goals. Reducing transportation emissions, in particular, is key to reducing overall emissions. Electric vehicles driving on electrified roadways could be a significant part of the solution. E-roadways offer a variety of benefits: reduce petroleum consumption (electricity is used instead of gasoline), decrease vehicular operating costs (from about 12 cents per mile to 4 cents per mile), and extend the operational range of electric vehicles. Plus, e-roadway power can come from renewable sources.
Performance of a small compression ignition engine fuelled by liquified petroleum gas
NASA Astrophysics Data System (ADS)
Ambarita, Himsar; Yohanes Setyawan, Eko; Ginting, Sibuk; Naibaho, Waldemar
2017-09-01
In this work, a small air cooled single cylinder of diesel engine with a rated power of 2.5 kW at 3000 rpm is tested in two different modes. In the first mode, the CI engines run on diesel fuel mode. In the second mode, the CI engine run on liquified petroleum gas (LPG) mode. In order to simulate the load, a generator is employed. The load is fixed at 800 W and engine speed varies from 2400 rpm to 3400 rpm. The out power, specific fuel consumption, and brake thermal efficiency resulted from the engine in both modes are compared. The results show that the output power of the CI engine run on LPG fuel is comparable with the engine run on diesel fuel. However, the specific fuel consumption of the CI engine with LPG fuel is higher 17.53% in average in comparison with the CI engine run on diesel fuel. The efficiency of the CI engine with LPG fuel is lower 21.43% in average in comparison with the CI engine run on diesel fuel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, A.; Repac, B.; Gonder, J.
This poster presents initial estimates of the net energy impacts of automated vehicles (AVs). Automated vehicle technologies are increasingly recognized as having potential to decrease carbon dioxide emissions and petroleum consumption through mechanisms such as improved efficiency, better routing, lower traffic congestion, and by enabling advanced technologies. However, some effects of AVs could conceivably increase fuel consumption through possible effects such as longer distances traveled, increased use of transportation by underserved groups, and increased travel speeds. The net effect on petroleum use and climate change is still uncertain. To make an aggregate system estimate, we first collect best estimates formore » the energy impacts of approximately ten effects of AVs. We then use a modified Kaya Identity approach to estimate the range of aggregate effects and avoid double counting. We find that depending on numerous factors, there is a wide range of potential energy impacts. Adoption of automated personal or shared vehicles can lead to significant fuel savings but has potential for backfire.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
BPA’s Sustainability Action Plan is grounded in our commitment to environmental stewardship and Executive Order 13514 that calls on the federal agencies to “lead by example” by setting a 2020 greenhouse gas emissions target, increasing energy efficiency; reducing fleet petroleum consumption; conserving water; reducing waste; supporting sustainable communities; and leveraging federal purchasing power to promoting environmentally responsible products and technologies.
International Energy Annual, 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-01-14
This report is prepared annually and presents the latest information and trends on world energy production and consumption for petroleum, natural gas, coal, and electricity. Trade and reserves are shown for petroleum, natural gas, and coal. Prices are included for selected petroleum products. Production and consumption data are reported in standard units as well as British thermal units (Btu) and joules.
Light-Duty Vehicle Fuel Consumption Displacement Potential up to 2045
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moawad, Ayman; Rousseau, Aymeric
2016-04-01
The U.S. Department of Energy (DOE) Vehicle Technologies Program (VTP) is developing more energy-efficient and environmentally friendly highway transportation technologies that will enable America to use less petroleum. The long-term aim is to develop "leapfrog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.
21 CFR 172.888 - Synthetic petroleum wax.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Synthetic petroleum wax. 172.888 Section 172.888... CONSUMPTION Multipurpose Additives § 172.888 Synthetic petroleum wax. Synthetic petroleum wax may be safely used in or on foods in accordance with the following conditions: (a) Synthetic petroleum wax is a...
21 CFR 172.888 - Synthetic petroleum wax.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Synthetic petroleum wax. 172.888 Section 172.888... CONSUMPTION Multipurpose Additives § 172.888 Synthetic petroleum wax. Synthetic petroleum wax may be safely used in or on foods in accordance with the following conditions: (a) Synthetic petroleum wax is a...
Issues in International Energy Consumption Analysis: Chinese Transportation Fuel Demand
2014-01-01
Since the 1990s, China has experienced tremendous growth in its transportation sector. By the end of 2010, China's road infrastructure had emerged as the second-largest transportation system in the world after the United States. Passenger vehicle sales are dramatically increasing from a little more than half a million in 2000, to 3.7 million in 2005, to 13.8 million in 2010. This represents a twenty-fold increase from 2000 to 2010. The unprecedented motorization development in China led to a significant increase in oil demand, which requires China to import progressively more petroleum from other countries, with its share of petroleum imports exceeding 50% of total petroleum demand since 2009. In response to growing oil import dependency, the Chinese government is adopting a broad range of policies, including promotion of fuel-efficient vehicles, fuel conservation, increasing investments in oil resources around the world, and many others.
Updated estimation of energy efficiencies of U.S. petroleum refineries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palou-Rivera, I.; Wang, M. Q.
2010-12-08
Evaluation of life-cycle (or well-to-wheels, WTW) energy and emission impacts of vehicle/fuel systems requires energy use (or energy efficiencies) of energy processing or conversion activities. In most such studies, petroleum fuels are included. Thus, determination of energy efficiencies of petroleum refineries becomes a necessary step for life-cycle analyses of vehicle/fuel systems. Petroleum refinery energy efficiencies can then be used to determine the total amount of process energy use for refinery operation. Furthermore, since refineries produce multiple products, allocation of energy use and emissions associated with petroleum refineries to various petroleum products is needed for WTW analysis of individual fuels suchmore » as gasoline and diesel. In particular, GREET, the life-cycle model developed at Argonne National Laboratory with DOE sponsorship, compares energy use and emissions of various transportation fuels including gasoline and diesel. Energy use in petroleum refineries is key components of well-to-pump (WTP) energy use and emissions of gasoline and diesel. In GREET, petroleum refinery overall energy efficiencies are used to determine petroleum product specific energy efficiencies. Argonne has developed petroleum refining efficiencies from LP simulations of petroleum refineries and EIA survey data of petroleum refineries up to 2006 (see Wang, 2008). This memo documents Argonne's most recent update of petroleum refining efficiencies.« less
NASA Astrophysics Data System (ADS)
Mishra, Rahul Kumar; soota, Tarun, Dr.; singh, Ranjeet
2017-08-01
Rapid exploration and lavish consumption of underground petroleum resources have led to the scarcity of underground fossil fuels moreover the toxic emissions from such fuels are pernicious which have increased the health hazards around the world. So the aim was to find an alternative fuel which would meet the requirements of petroleum or fossil fuels. Biodiesel is a clean, renewable and bio-degradable fuel having several advantages, one of the most important of which is being its eco-friendly and better knocking characteristics than diesel fuel. In this work the performance of Karanja oil was analyzed on a four stroke, single cylinder, water cooled, variable compression ratio diesel engine. The fuel used was 5% - 25% karanja oil methyl ester by volume in diesel. The results such obtained are compared with standard diesel fuel. Several properties i.e. Brake Thermal Efficiency, Brake Specific Fuel Consumptions, Exhaust Gas Temperature are determined at all operating conditions & at variable compression ratio 17 and 17.5.
Petroleum Market Model of the National Energy Modeling System. Part 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. The PMM models petroleum refining activities, the marketing of petroleum products to consumption regions, the production of natural gas liquids in gas processing plants, and domestic methanol production. The PMM projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil, both domestic and imported; other inputs including alcoholsmore » and ethers; natural gas plant liquids production; petroleum product imports; and refinery processing gain. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption. Product prices are estimated at the Census division level and much of the refining activity information is at the Petroleum Administration for Defense (PAD) District level.« less
2012-09-15
Control 19 4,321 639 Office 10 4,387 584 Hydropower 5 2,885 504 2.1.2 NTV emissions NTV petroleum consumption information is a combination of ...reductions that will occur because of planned engine efficiency changes in the floating plant . These reductions total 8,956 MTCO2e. In addition, a ...and/or the implementation of a variety of measures such as passive solar energy, planting trees and plants around buildings to achieve desired
International energy annual 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-01
The International Energy Annual presents information and trends on world energy production and consumption for petroleum, natural gas, coal, and electricity. Production and consumption data are reported in standard units as well as British thermal units (Btu). Trade and reserves are shown for petroleum, natural gas, and coal. Data are provided on crude oil refining capacity and electricity installed capacity by type. Prices are included for selected crude oils and for refined petroleum products in selected countries. Population and Gross Domestic Product data are also provided.
must reduce petroleum-based fuel consumption on a per vehicle basis and across the fleet. For non reduction in petroleum-based fuel consumption by 15% (or 7.5% for exempt vehicles) by FY 2020. The Colorado Department of Personnel and Administration may consider certain vehicles to be exempt based on agency
EIA model documentation: Petroleum market model of the national energy modeling system
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-28
The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. Documentation of the model is in accordance with EIA`s legal obligation to provide adequate documentation in support of its models. The PMM models petroleum refining activities, the marketing of petroleum products to consumption regions, the production of natural gas liquids in gas processing plants, and domestic methanol production. The PMM projects petroleum product prices and sources of supplymore » for meeting petroleum product demand. The sources of supply include crude oil, both domestic and imported; other inputs including alcohols and ethers; natural gas plant liquids production; petroleum product imports; and refinery processing gain. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption. Product prices are estimated at the Census division level and much of the refining activity information is at the Petroleum Administration for Defense (PAD) District level.« less
ERIC Educational Resources Information Center
Bureau of Naval Personnel, Washington, DC.
Basic information on petroleum is presented in this book prepared for naval logistics officers. Petroleum in national defense is discussed in connection with consumption statistics, productive capacity, world's resources, and steps in logistics. Chemical and geological analyses are made in efforts to familiarize methods of refining, measuring,…
Al-Mulali, Usama; Tang, Chor Foon; Ozturk, Ilhan
2015-10-01
The purpose of this study is to explore the effect of financial development on CO2 emission in 129 countries classified by the income level. A panel CO2 emission model using urbanisation, GDP growth, trade openness, petroleum consumption and financial development variables that are major determinants of CO2 emission was constructed for the 1980-2011 period. The results revealed that the variables are cointegrated based on the Pedroni cointegration test. The dynamic ordinary least squares (OLS) and the Granger causality test results also show that financial development can improve environmental quality in the short run and long run due to its negative effect on CO2 emission. The rest of the determinants, especially petroleum consumption, are determined to be the major source of environmental damage in most of the income group countries. Based on the results obtained, the investigated countries should provide banking loans to projects and investments that can promote energy savings, energy efficiency and renewable energy to help these countries reduce environmental damage in both the short and long run.
Clean Cities: Building Partnerships to Reduce Petroleum Use in Transportation (Brochure)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2012-03-01
This fact sheet provides an overview of the U.S. Department of Energy's Clean Cities program, which builds partnerships to reduce petroleum use in transportation in communities across the country. The U.S. Department of Energy's Clean Cities initiative advances the nation's economic, environmental, and energy security by supporting local actions to reduce petroleum consumption in transportation. Clean Cities accomplishes this work through the activities of nearly 100 local coalitions. These coalitions provide resources and technical assistance in the deployment of alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and new transportation technologies, as they emerge. Clean Cities overarching goal ismore » to reduce U.S. petroleum use by 2.5 billion gallons per year by 2020. To achieve this goal, Clean Cities employs three strategies: (1) Replace petroleum with alternative and renewable fuels, including natural gas, propane, electricity, ethanol, biodiesel, and hydrogen; (2) Reduce petroleum consumption through smarter driving practices and fuel economy improvements; and (3) Eliminate petroleum use through idle reduction and other fuel-saving technologies and practices.« less
Mousa, Ibrahim E
2016-08-15
The crude oil drilling and extraction operations are aimed to maximize the production may be counterbalanced by the huge production of contaminated produced water (PW). PW is conventionally treated through different physical, chemical, and biological technologies. The efficiency of suggested hybrid electrobiochemical (EBC) methods for the simultaneous removal of total petroleum hydrocarbon (TPH) and sulfate from PW generated by petroleum industry is studied. Also, the factors that affect the stability of PW quality are investigated. The results indicated that the effect of biological treatment is very important to keep control of the electrochemical by-products and more TPH removal in the EBC system. The maximum TPH and sulfate removal efficiency was achieved 75% and 25.3%, respectively when the detention time was about 5.1min and the energy consumption was 32.6mA/cm(2). However, a slight increasing in total bacterial count was observed when the EBC compact unit worked at a flow rate of average 20L/h. Pseudo steady state was achieved after 30min of current application in the solution. Also, the results of the study indicate that when the current intensity was increased above optimum level, no significant results occurred due to the release of gases. Copyright © 2016 Elsevier Ltd. All rights reserved.
National Clean Fleets Partnership (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2012-01-01
Provides an overview of Clean Cities National Clean Fleets Partnership (NCFP). The NCFP is open to large private-sector companies that have fleet operations in multiple states. Companies that join the partnership receive customized assistance to reduce petroleum use through increased efficiency and use of alternative fuels. This initiative provides fleets with specialized resources, expertise, and support to successfully incorporate alternative fuels and fuel-saving measures into their operations. The National Clean Fleets Partnership builds on the established success of DOE's Clean Cities program, which reduces petroleum consumption at the community level through a nationwide network of coalitions that work with localmore » stakeholders. Developed with input from fleet managers, industry representatives, and Clean Cities coordinators, the National Clean Fleets Partnership goes one step further by working with large private-sector fleets.« less
Policy in Conflict: The Struggle Between Environmental Policy and Homeland Security Goals
2013-09-01
security by reducing consumption in the most important petroleum consuming sector, that of automobile transportation. Some U.S. oil dollars may be...sustainable energy security by reducing consumption in the most important petroleum consuming sector, that of automobile transportation. Some U.S...39 A. POLICY CHOICES............................................................................. 39 B. WHY IS THIS PROBLEM IMPORTANT
Fuel Economy Regulations and Efficiency Technology Improvements in U.S. Cars Since 1975
NASA Astrophysics Data System (ADS)
MacKenzie, Donald Warren
Light-duty vehicles account for 43% of petroleum consumption and 23% of greenhouse gas emissions in the United States. Corporate Average Fuel Economy (CAFE) standards are the primary policy tool addressing petroleum consumption in the U.S., and are set to tighten substantially through 2025. In this dissertation, I address several interconnected questions on the technical, policy, and market aspects of fuel consumption reduction. I begin by quantifying historic improvements in fuel efficiency technologies since the 1970s. First. I develop a linear regression model of acceleration performance conditional on power, weight, powertrain, and body characteristics, showing that vehicles today accelerate 20-30% faster than vehicles with similar specifications in the 1970s. Second, I find that growing use of alternative materials and a switch to more weight-efficient vehicle architectures since 1975 have cut the weight of today's new cars by approximately 790 kg (46%). Integrating these results with model-level specification data, I estimate that the average fuel economy of new cars could have tripled from 1975-2009, if not for changes in performance, size, and features over this period. The pace of improvements was not uniform, averaging 5% annually from 1975-1990, but only 2% annually since then. I conclude that the 2025 standards can be met through improvements in efficiency technology, if we can return to 1980s rates of improvement, and growth in acceleration performance and feature content is curtailed. I next test the hypotheses that higher fuel prices and more stringent CAFE standards cause automotive firms to deploy efficiency technologies more rapidly. I find some evidence that higher fuel prices cause more rapid changes in technology, but little to no evidence that tighter CAFE standards increase rates of technology change. I conclude that standards alone, without continued high gasoline prices, may not drive technology improvements at rates needed to meet the 2025 CAFE standards factors determining industry support for nationwide fuel economy regulations. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)
What drives petroleum product prices
2017-01-01
This new section discusses the various factors that influence the prices of gasoline and distillate fuel oil—the two most-consumed petroleum products in the United States. Charts detailing prices, consumption, production, inventories, and trade for both petroleum products will be updated each month in the Short-Term Energy Outlook.
21 CFR 172.884 - Odorless light petroleum hydrocarbons.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Odorless light petroleum hydrocarbons. 172.884 Section 172.884 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... HUMAN CONSUMPTION Multipurpose Additives § 172.884 Odorless light petroleum hydrocarbons. Odorless light...
21 CFR 172.884 - Odorless light petroleum hydrocarbons.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Odorless light petroleum hydrocarbons. 172.884 Section 172.884 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... HUMAN CONSUMPTION Multipurpose Additives § 172.884 Odorless light petroleum hydrocarbons. Odorless light...
21 CFR 172.884 - Odorless light petroleum hydrocarbons.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Odorless light petroleum hydrocarbons. 172.884 Section 172.884 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... HUMAN CONSUMPTION Multipurpose Additives § 172.884 Odorless light petroleum hydrocarbons. Odorless light...
On the Road to Transportation Efficiency (Video)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2014-03-01
Reducing emissions and oil consumption are crucial worldwide goals. Reducing transportation emissions, in particular, is key to reducing overall emissions. Electric vehicles driving on electrified roadways could be a significant part of the solution. E-roadways offer a variety of benefits: reduce petroleum consumption (electricity is used instead of gasoline), decrease vehicular operating costs (from about 12 cents per mile to 4 cents per mile), and extend the operational range of electric vehicles. Plus, e-roadway power can come from renewable sources. This animation was sponsored by the Clean Transportation Sector Initiative, and interagency effort between the U.S. Department of Transportation andmore » the U.S. Department of Energy.« less
Toward a leaner and greener transportation system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, M.
1993-04-01
Transportation is responsible for 25% of CO{sub 2} emissions in the U.S. and is largely responsible for excessive ozone or carbon monoxide in several metropolitan areas. In turns out that emissions from new cars are much higher in use than laboratory tests and standards would appear to suggest. Transportation is also responsible for the lion`s share of U.S. petroleum consumption; and, although growth in the use of petroleum has been constrained by improvements in fuel economy, it is set to start again as the benefits of the CAFE standards are fully exploited, and travel continues to increase. In the shortmore » term, more efficient petroleum-fueled vehicles, based, e.g., on lean burn engines, sophisticated transmission management, idle off, efficient accessories and more light materials, would help. In the medium term, natural gas vehicles might provide a lower-emissions alternative with good performance and costs, and, if vehicle efficiency is high, good range. In the long term, fuel cells appear very attractive, and might profit from experience with a gaseous fuel. There are of course other interesting possibilities. R & D challenges will be discussed. One need is support for fundamental research at universities. Policies to encourage adoption of such technologies will also be addressed, including the issue of excessive reliance on regulations that are based on vehicle tests. To improve the environmental performance of such a pervasive activity as transportation a multifaceted package of policies is needed including correcting policies on the books that encourage automotive travel.« less
Terrestrial Applications of Extreme Environment Stirling Space Power Systems
NASA Technical Reports Server (NTRS)
Dyson, Rodger. W.
2012-01-01
NASA has been developing power systems capable of long-term operation in extreme environments such as the surface of Venus. This technology can use any external heat source to efficiently provide electrical power and cooling; and it is designed to be extremely efficient and reliable for extended space missions. Terrestrial applications include: use in electric hybrid vehicles; distributed home co-generation/cooling; and quiet recreational vehicle power generation. This technology can reduce environmental emissions, petroleum consumption, and noise while eliminating maintenance and environmental damage from automotive fluids such as oil lubricants and air conditioning coolant. This report will provide an overview of this new technology and its applications.
40 CFR 98.283 - Calculating GHG emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (metric tons CO2/metric ton of petroleum coke consumed). 0.65 = Adjustment factor for the amount of carbon... = Carbon content factor for petroleum coke consumed in month n from the supplier or as measured by the... = Petroleum coke consumption in month n (tons). EFCO2,n = CO2 emissions factor from month n (calculated in...
40 CFR 98.283 - Calculating GHG emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (metric tons CO2/metric ton of petroleum coke consumed). 0.65 = Adjustment factor for the amount of carbon... = Carbon content factor for petroleum coke consumed in month n from the supplier or as measured by the... = Petroleum coke consumption in month n (tons). EFCO2,n = CO2 emissions factor from month n (calculated in...
40 CFR 98.283 - Calculating GHG emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (metric tons CO2/metric ton of petroleum coke consumed). 0.65 = Adjustment factor for the amount of carbon... = Carbon content factor for petroleum coke consumed in month n from the supplier or as measured by the... = Petroleum coke consumption in month n (tons). EFCO2,n = CO2 emissions factor from month n (calculated in...
40 CFR 98.283 - Calculating GHG emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (metric tons CO2/metric ton of petroleum coke consumed). 0.65 = Adjustment factor for the amount of carbon... = Carbon content factor for petroleum coke consumed in month n from the supplier or as measured by the... = Petroleum coke consumption in month n (tons). EFCO2,n = CO2 emissions factor from month n (calculated in...
2017-01-01
Japan is the world's largest liquefied natural gas importer and ranks in the top four countries for the highest coal imports, net imports of petroleum and other liquids, and consumption of crude oil and petroleum products.
Liberian energy consumption and sectoral distribution for 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samuels, G.
1985-02-01
This report is one of a series of project papers providing background information for an assessment of energy options for Liberia, West Africa; it summarizes 1981 Liberian energy consumption data collected during 1982. Total Liberian primary energy consumption in 1981 was equivalent to 11,400,000 barrels of crude oil (BCOE) - 64% from wood, 31% from petroleum, and 5% from hydro. About 71% (8,100,000 BCOE) entered the domestic market. The difference represents exports (400,000 BCOE), refining losses (200,000 BCOE), and losses in converting wood to charcoal (2,600,000 BCOE). Of the 8,100,000 BCOE entering the domestic market, 58% was in the formmore » of wood and charcoal, 35% petroleum products, and 7% hydro. Excluding wood and charcoal, electricity generation consumed 59% of the energy entering the domestic market. The three iron ore mining companies accounted for 60% of all electricity production; the Liberia Electricity Corporation for 35%, and private organizations and individuals for 5%. The mining operations (including electricity generation and transportation uses) consumed about 60% of all petroleum products. The transportation sector consumed 30% of all petroleum of which 85% was for road transport, 12% for the railroads owned and operated by the mining companies, and 3% for sea and air transport. Nontransportation energy use in the industrial, commercial, government, and agriculture and forestry sectors is small. Together, these sectors account for less than 10% of the petroleum products consumed. Wood and charcoal were used almost entirely by the residential sector, which also consumed an additional 530,000 BCOE of other fuels. Over 90% of the 530,000 BCOE was for electricity and 290,000 (56%) was from petroleum. Over half of the petroleum (150,000 BCOE) was for generation at the mines for their associated communities. 8 references, 10 tables.« less
Petroleum Market Model of the National Energy Modeling System
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-01-01
The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. The PMM models petroleum refining activities, the marketing of petroleum products to consumption regions. The production of natural gas liquids in gas processing plants, and domestic methanol production. The PMM projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil, both domestic and imported; other inputs including alcoholsmore » and ethers; natural gas plant liquids production; petroleum product imports; and refinery processing gain. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption. Product prices are estimated at the Census division level and much of the refining activity information is at the Petroleum Administration for Defense (PAD) District level. This report is organized as follows: Chapter 2, Model Purpose; Chapter 3, Model Overview and Rationale; Chapter 4, Model Structure; Appendix A, Inventory of Input Data, Parameter Estimates, and Model Outputs; Appendix B, Detailed Mathematical Description of the Model; Appendix C, Bibliography; Appendix D, Model Abstract; Appendix E, Data Quality; Appendix F, Estimation methodologies; Appendix G, Matrix Generator documentation; Appendix H, Historical Data Processing; and Appendix I, Biofuels Supply Submodule.« less
de Abreu Domingos, Rodrigo; da Fonseca, Fabiana Valéria
2018-05-15
The oil refinery industry seeks solutions to reduce its water uptake and consumption by encouraging the reuse of internal streams and wastewater from treatment systems. After conventional treatment the petroleum refinery wastewater still contains a considerable quantity of recalcitrant organics and the adsorption on activated carbon is currently used in Brazilian refineries, although it is still expensive due to the difficulty of its regeneration. This study evaluated the use of adsorbent and ion exchange resins for the removal of organic matter from refinery wastewater after conventional treatment in order to verify its feasibility, applying successive resin regenerations and comparing the results with those obtained for activated carbon process. Adsorption isotherms experiments were used to evaluate commercial resins, and the most efficient was subjected to column experiments, where absorbance (ABS) and total organic carbon (TOC) removal were measured. The adsorption isotherm of the best resin showed an adsorptive capacity that was 55% lower than that of activated carbon. On the other hand, the column experiments indicated good removal efficiency, and the amount of TOC in the treated wastewater was as good as has been reported in the literature for activated carbon. The regeneration efficiency of the retained organics ranged from 57 to 94%, while regenerant consumption ranged from 12 to 79% above the amount recommended by the resin supplier for the removal of organic material from natural sources, showing the great resistance of these recalcitrant compounds to desorption. Finally, an estimate of the service life of the resin using intermediate regeneration conditions found it to be seven times higher than that of activated carbon when the latter is not regenerated. Copyright © 2018 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Commonly used polymeric materials, many of which are derived from petroleum, pose problems after their intended life-span. The fast-paced consumption of petroleum (roughly 100'000 times faster than nature can replenish) and the general disposal possibilities, incineration and land filling contribute...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Petroleum Marketing Monthly (PMM) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. Monthly statistics on purchases of crude oil and sales of petroleum products aremore » presented in the Petroleum Marketing Monthly in five sections: summary statistics; crude oil prices; prices of petroleum products; volumes of petroleum products; and prime supplier sales volumes of petroleum products for local consumption. 7 figs., 50 tabs.« less
Petroleum marketing monthly, February 1999 with data for November 1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1999-02-01
The Petroleum Marketing Monthly (PMM) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. Monthly statistics on purchases of crude oil and sales of petroleum products aremore » presented in the Petroleum Marketing Monthly in six sections: Initial Estimates; Summary Statistics; Crude Oil Prices; Prices of Petroleum Products; Volumes of Petroleum Products; and Prime Supplier Sales Volumes of Petroleum Products for Local Consumption. 7 figs., 50 tabs.« less
Petroleum marketing monthly, March 1999 with data for December 1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1999-03-01
The Petroleum Marketing Monthly (PMM) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. Monthly statistics on purchases of crude oil and sales of petroleum products aremore » presented in the Petroleum Marketing Monthly in five sections: summary statistics; crude oil prices; prices of petroleum products; volumes of petroleum products; and prime supplier sales volumes of petroleum products for local consumption. 7 figs., 50 tabs.« less
State of energy consumption and CO2 emission in Bangladesh.
Azad, Abul K; Nashreen, S W; Sultana, J
2006-03-01
Carbon dioxide (CO2) is one of the most important gases in the atmosphere, and is necessary for sustaining life on Earth. It is also considered to be a major greenhouse gas contributing to global warming and climate change. In this article, energy consumption in Bangladesh is analyzed and estimates are made of CO2 emission from combustion of fossil fuel (coal, gas, petroleum products) for the period 1977 to 1995. International Panel for Climate Change guidelines for national greenhouse gas inventories were used in estimating CO2 emission. An analysis of energy data shows that the consumption of fossil fuels in Bangladesh is growing by more than 5% per year. The proportion of natural gas in total energy consumption is increasing, while that of petroleum products and coal is decreasing. The estimated total CO2 release from all primary fossil fuels used in Bangladesh amounted to 5072 Gigagram (Gg) in 1977, and 14 423 Gg in 1995. The total amounts of CO2 released from petroleum products, natural gas, and coal in the period 1977-1995 were 83 026 Gg (50% of CO2 emission), 72 541 Gg (44% of CO2 emission), and 9545 Gg (6% CO2 emission), respectively. A trend in CO2 emission with projections to 2070 is generated. In 2070, total estimated CO2 emission will be 293 260 Gg with a current growth rate of 6.34% y . CO2 emission from fossil fuels is increasing. Petroleum products contribute the majority of CO2 emission load, and although the use of natural gas is increasing rapidly, its contribution to CO2 emission is less than that of petroleum products. The use of coal as well as CO2 emission from coal is expected to gradually decrease.
Petroleum supply monthly, with data for September 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-11-01
The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major U.S. geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products inmore » the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States.« less
CO₂ carbonation under aqueous conditions using petroleum coke combustion fly ash.
González, A; Moreno, N; Navia, R
2014-12-01
Fly ash from petroleum coke combustion was evaluated for CO2 capture in aqueous medium. Moreover the carbonation efficiency based on different methodologies and the kinetic parameters of the process were determined. The results show that petroleum coke fly ash achieved a CO2 capture yield of 21% at the experimental conditions of 12 g L(-1), 363°K without stirring. The carbonation efficiency by petroleum coke fly ash based on reactive calcium species was within carbonation efficiencies reported by several authors. In addition, carbonation by petroleum coke fly ash follows a pseudo-second order kinetic model. Copyright © 2014 Elsevier Ltd. All rights reserved.
Petroleum marketing monthly, June 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-06-01
The Petroleum Marketing Monthly (PMM) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. Monthly statistics on purchases of crude oil and sales of petroleum products aremore » presented in five sections: Summary Statistics; Crude Oil Prices; Prices of Petroleum Products; Volumes of Petroleum Products; and Prime Supplier Sales Volumes of Petroleum Products for Local Consumption. The feature article is entitled ``The Second Oxygenated Gasoline Season.`` 7 figs., 50 tabs.« less
NASA Astrophysics Data System (ADS)
Joost, William J.
2012-09-01
Transportation accounts for approximately 28% of U.S. energy consumption with the majority of transportation energy derived from petroleum sources. Many technologies such as vehicle electrification, advanced combustion, and advanced fuels can reduce transportation energy consumption by improving the efficiency of cars and trucks. Lightweight materials are another important technology that can improve passenger vehicle fuel efficiency by 6-8% for each 10% reduction in weight while also making electric and alternative vehicles more competitive. Despite the opportunities for improved efficiency, widespread deployment of lightweight materials for automotive structures is hampered by technology gaps most often associated with performance, manufacturability, and cost. In this report, the impact of reduced vehicle weight on energy efficiency is discussed with a particular emphasis on quantitative relationships determined by several researchers. The most promising lightweight materials systems are described along with a brief review of the most significant technical barriers to their implementation. For each material system, the development of accurate material models is critical to support simulation-intensive processing and structural design for vehicles; improved models also contribute to an integrated computational materials engineering (ICME) approach for addressing technical barriers and accelerating deployment. The value of computational techniques is described by considering recent ICME and computational materials science success stories with an emphasis on applying problem-specific methods.
Life Cycle Assessment Comparing the Use of Jatropha Biodiesel in the Indian Road and Rail Sectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitaker, M.; Heath, G.
2010-05-01
This life cycle assessment of Jatropha biodiesel production and use evaluates the net greenhouse gas (GHG) emission (not considering land-use change), net energy value (NEV), and net petroleum consumption impacts of substituting Jatropha biodiesel for conventional petroleum diesel in India. Several blends of biodiesel with petroleum diesel are evaluated for the rail freight, rail passenger, road freight, and road-passenger transport sectors that currently rely heavily on petroleum diesel. For the base case, Jatropha cultivation, processing, and use conditions that were analyzed, the use of B20 results in a net reduction in GHG emissions and petroleum consumption of 14% and 17%,more » respectively, and a NEV increase of 58% compared with the use of 100% petroleum diesel. While the road-passenger transport sector provides the greatest sustainability benefits per 1000 gross tonne kilometers, the road freight sector eventually provides the greatest absolute benefits owing to substantially higher projected utilization by year 2020. Nevertheless, introduction of biodiesel to the rail sector might present the fewest logistic and capital expenditure challenges in the near term. Sensitivity analyses confirmed that the sustainability benefits are maintained under multiple plausible cultivation, processing, and distribution scenarios. However, the sustainability of any individual Jatropha plantation will depend on site-specific conditions.« less
Remediation of Petroleum-Contaminated Soil and Simultaneous Recovery of Oil by Fast Pyrolysis.
Li, De-Chang; Xu, Wan-Fei; Mu, Yang; Yu, Han-Qing; Jiang, Hong; Crittenden, John C
2018-05-01
Petroleum-contaminated soil (PCS) caused by the accidental release of crude oil into the environment, which occurs frequently during oil exploitation worldwide, needs efficient and cost-effective remediation. In this study, a fast pyrolysis technology was implemented to remediate the PCS and concurrently recover the oil. The remediation effect related to pyrolytic parameters, the recovery rate of oil and its possible formation pathway, and the physicochemical properties of the remediated PCS and its suitability for planting were systematically investigated. The results show that 50.9% carbon was recovered in oil, whose quality even exceeds that of crude oil. Both extractable total petroleum hydrocarbon (TPH) and water-soluble organic matter (SOM) in PCS were completely removed at 500 °C within 30 min. The remaining carbon in remediated PCS was determined to be in a stable and innocuous state, which has no adverse effect on wheat growth. On the basis of the systematically characterizations of initial PCS and pyrolytic products, a possible thermochemical mechanism was proposed which involves evaporation, cracking and polymerization. In addition, the energy consumption analysis and remediation effect of various PCSs indicate that fast pyrolysis is a viable and cost-effective method for PCS remediation.
Petroleum taxation and efficiency: the Canadian system in question
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahby, M.J.
1983-08-01
The question considered in this article is whether it is possible to have a tax that appropriates resource rents without imposing a penalty on potential petroleum production. It is submitted that a system of income taxes exists which partially fulfills the above requirements. The Canadian government has been moving towards this system of taxation since 1962 but its historical development has been slow. Topics discussed include: the efficient taxation of resource rents, a history of Canadian petroleum taxation, and the efficiency of the present petroleum tax system.
International energy annual 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-02-01
The International Energy Annual presents an overview of key international energy trends for production, consumption, imports, and exports of primary energy commodities in over 220 countries, dependencies, and areas of special sovereignty. Also included are population and gross domestic product data, as well as prices for crude oil and petroleum products in selected countries. Renewable energy reported in the International Energy Annual includes hydroelectric power, geothermal, solar, and wind electric power, biofuels energy for the US, and biofuels electric power for Brazil. New in the 1996 edition are estimates of carbon dioxide emissions from the consumption of petroleum and coal,more » and the consumption and flaring of natural gas. 72 tabs.« less
77 FR 13313 - Agency Information Collection Extension
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-06
...;'' EIA-782A, ``Refiners'/Gas Plant Operators' Monthly Petroleum Product Sales Report;'' EIA-782C, ``Monthly Report of Prime Supplier Sales of Petroleum Products Sold For Local Consumption;'' EIA-821, ``Annual Fuel Oil and Kerosene Sales Report;'' EIA-856, ``Monthly Foreign Crude Oil Acquisition Report...
2017-01-01
The Monthly Energy Review (MER) is the U.S. Energy Information Administration's primary report of recent energy statistics. Included are total energy production, consumption, and trade; energy prices; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, and international petroleum; carbon dioxide emissions; and data unit conversions.
40 CFR 98.314 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... accounting purposes including direct measurement weighing the petroleum coke fed into your process (by belt... line dioxide using plant instruments used for accounting purposes including direct measurement weighing... used to ensure the accuracy of monthly calcined petroleum coke consumption measurements. (c) You must...
Gatsios, Evangelos; Hahladakis, John N; Gidarakos, Evangelos
2015-05-01
In the present work, the efficiency evaluation of electrocoagulation (EC) in removing toxic metals from a real industrial wastewater, collected from Aspropyrgos, Athens, Greece was investigated. Manganese (Mn), copper (Cu) and zinc (Zn) at respective concentrations of 5 mg/L, 5 mg/L and 10 mg/L were present in the wastewater (pH=6), originated from the wastes produced by EBO-PYRKAL munitions industry and Hellenic Petroleum Elefsis Refineries. The effect of operational parameters such as electrode combination and distance, applied current, initial pH and initial metal concentration, was studied. The results indicated that Cu and Zn were totally removed in all experiments, while Mn exhibited equally high removal percentages (approximately 90%). Decreasing the initial pH and increasing the distance between electrodes, resulted in a negative effect on the efficiency and energy consumption of the process. On the other hand, increasing the applied current, favored metal removal but resulted in a power consumption increase. Different initial concentrations did not affect metal removal efficiency. The optimal results, regarding both cost and EC efficiency, were obtained with a combination of iron electrodes, at 2 cm distance, at initial current of 0.1 A and pH=6. After 90 min of treatment, maximum removal percentages obtained were 89% for Mn, 100% for Cu and 100% for Zn, at an energy consumption of 2.55 kWh/m(3). Copyright © 2015 Elsevier Ltd. All rights reserved.
Purification and detoxification of petroleum refinery wastewater by electrocoagulation process.
Gousmi, N; Sahmi, A; Li, H Z; Poncin, S; Djebbar, R; Bensadok, K
2016-09-01
The treatment of synthetic oily wastewater having the characteristics of a typical petroleum refinery wastewater (PRW) by electrocoagulation (EC) using iron and aluminum electrodes was conducted in an electrolytic reactor equipped with fluid recirculation. During the treatment, the emulsion stability was followed by the measurement of Zeta potential and particle sizes. Effects of some operating conditions such as electrodes material, current density and electrolysis time on removal efficiencies of turbidity, and chemical oxygen demand (COD) were investigated in detail. The PRW purification by the EC process was found to be the most effective using aluminum as the anode and cathode, current density of 60 A/m(2) and 30 min of electrolysis time. Under these conditions, the process efficiencies were 83.52% and 99.94%, respectively, for COD and turbidity removals which correspond to final values of 96 mg O2/L and 0.5 NTU. A moderate energy consumption (0.341 kWh) was needed to treat 1 m(3) of PRW. Besides, the ecotoxicity test proved that toxic substances presented in the PRW, and those inhibiting the germination growth of whet, were eliminated by the EC technique.
Gargouri, Boutheina; Gargouri, Olfa Dridi; Gargouri, Bochra; Trabelsi, Souhel Kallel; Abdelhedi, Ridha; Bouaziz, Mohamed
2014-12-01
Although diverse methods exist for treating polluted water, the most promising and innovating technology is the electrochemical remediation process. This paper presents the anodic oxidation of real produced water (PW), generated by the petroleum exploration of the Petrobras plant-Tunisia. Experiments were conducted at different current densities (30, 50 and 100 mA cm(-2)) using the lead dioxide supported on tantalum (Ta/PbO2) and boron-doped diamond (BDD) anodes in an electrolytic batch cell. The electrolytic process was monitored by the chemical oxygen demand (COD) and the residual total petroleum hydrocarbon [TPH] in order to know the feasibility of electrochemical treatment. The characterization and quantification of petroleum wastewater components were performed by gas chromatography mass spectrometry. The COD removal was approximately 85% and 96% using PbO2 and BDD reached after 11 and 7h, respectively. Compared with PbO2, the BDD anode showed a better performance to remove petroleum hydrocarbons compounds from produced water. It provided a higher oxidation rate and it consumed lower energy. However, the energy consumption and process time make useless anodic oxidation for the complete elimination of pollutants from PW. Cytotoxicity has shown that electrochemical oxidation using BDD could be efficiently used to reduce more than 90% of hydrocarbons compounds. All results suggest that electrochemical oxidation could be an effective approach to treat highly concentrated organic pollutants present in the industrial petrochemical wastewater and significantly reduce the cost and time of treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Petroleum supply monthly, October 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-10-26
The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products inmore » the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics.« less
Petroleum supply monthly, January 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products inmore » the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics.« less
21 CFR 172.882 - Synthetic isoparaffinic petroleum hydrocarbons.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Synthetic isoparaffinic petroleum hydrocarbons. 172.882 Section 172.882 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO...
21 CFR 178.3710 - Petroleum wax.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Petroleum wax. 178.3710 Section 178.3710 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADJUVANTS, PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants...
21 CFR 178.3710 - Petroleum wax.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Petroleum wax. 178.3710 Section 178.3710 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADJUVANTS, PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants...
40 CFR 98.284 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... accounting purposes including direct measurement weighing the petroleum coke fed into your process (by belt... used to ensure the accuracy of monthly petroleum coke consumption measurements. (c) For CO2 process... quality assurance and quality control of the supplier data, you must conduct an annual measurement of the...
21 CFR 172.884 - Odorless light petroleum hydrocarbons.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Odorless light petroleum hydrocarbons. 172.884 Section 172.884 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR...
Vehicle Technologies Office FY 2017 Budget At-A-Glance
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-03-01
Transportation accounts for two-thirds of U.S. petroleum use, and on-road vehicles are responsible for nearly 85% of this amount. U.S. dependence on petroleum affects the national economy and potential for future growth—making it a high-value opportunity for change. The Vehicle Technologies Office (VTO) develops and overcomes barriers to the widespread use of advanced highway transportation technologies that reduce petroleum consumption and greenhouse gas emissions, while meeting or exceeding vehicle performance expectations.
Petroleum supply monthly, June 1999, with data for April 1999
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Data presented in the Petroleum Supply Monthly (PSM) describe the supply and disposition of petroleum products in the US and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the US (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the datamore » reported by these sectors approximately represent the consumption of petroleum products in the US. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics. The tables and figures in the Summary Statistics section of the PSM present a time series of selected petroleum data on a US level. The Detailed Statistics tables of the PSM present statistics for the most current month available as well as year-to-date. 16 figs., 66 tabs.« less
Petroleum supply monthly, February 1999, with data for December 1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Data presented in the Petroleum Supply Monthly (PSM) describes the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated,more » the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics. The tables and figures in the Summary Statistics section of the PSM present a time series of selected petroleum data on a US level. The Detailed Statistics tables of the PSM present statistics for the most current month available as well as year-to-date. 16 figs., 66 tabs.« less
Zhang, Fengli; Johnson, Dana M.; Wang, Jinjiang
2015-04-01
High dependence on imported oil has increased U.S. strategic vulnerability and prompted more research in the area of renewable energy production. Ethanol production from renewable woody biomass, which could be a substitute for gasoline, has seen increased interest. This study analysed energy use and greenhouse gas emission impacts on the forest biomass supply chain activities within the State of Michigan. A life-cycle assessment of harvesting and transportation stages was completed utilizing peer-reviewed literature. Results for forest-delivered ethanol were compared with those for petroleum gasoline using data specific to the U.S. The analysis from a woody biomass feedstock supply perspective uncoveredmore » that ethanol production is more environmentally friendly (about 62% less greenhouse gas emissions) compared with petroleum based fossil fuel production. Sensitivity analysis was conducted with key inputs associated with harvesting and transportation operations. The results showed that research focused on improving biomass recovery efficiency and truck fuel economy further reduced GHG emissions and energy consumption.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fengli; Johnson, Dana M.; Wang, Jinjiang
High dependence on imported oil has increased U.S. strategic vulnerability and prompted more research in the area of renewable energy production. Ethanol production from renewable woody biomass, which could be a substitute for gasoline, has seen increased interest. This study analysed energy use and greenhouse gas emission impacts on the forest biomass supply chain activities within the State of Michigan. A life-cycle assessment of harvesting and transportation stages was completed utilizing peer-reviewed literature. Results for forest-delivered ethanol were compared with those for petroleum gasoline using data specific to the U.S. The analysis from a woody biomass feedstock supply perspective uncoveredmore » that ethanol production is more environmentally friendly (about 62% less greenhouse gas emissions) compared with petroleum based fossil fuel production. Sensitivity analysis was conducted with key inputs associated with harvesting and transportation operations. The results showed that research focused on improving biomass recovery efficiency and truck fuel economy further reduced GHG emissions and energy consumption.« less
Bandwidth Study on Energy Use and Potential Energy Savings Opportunities in U.S. Petroleum Refining
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabine Brueske, Caroline Kramer, Aaron Fisher
2015-06-01
Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. petroleum refining. The study relies on multiple sources to estimate the energy used in nine individual process areas, representing 68% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.
76 FR 33019 - Notice of Projects Approved for Consumptive Uses of Water
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-07
..., 2011. 10. Aruba Petroleum, Inc., Pad ID: Lundy Well Pad, ABR-201103010, Gamble Township, Lycoming...-- 4H Drilling Pad, ABR-201104012, Gamble Township, Lycoming County, Pa.; Consumptive Use of up to 5.000...-- 4H Drilling Pad, ABR-201104013, Gamble Township, Lycoming County, Pa.; Consumptive Use of up to 5.000...
NASA Astrophysics Data System (ADS)
Hunkeler, Daniel; Höhener, Patrick; Bernasconi, Stefano; Zeyer, Josef
1999-04-01
A concept is proposed to assess in situ petroleum hydrocarbon mineralization by combining data on oxidant consumption, production of reduced species, CH 4, alkalinity and dissolved inorganic carbon (DIC) with measurements of stable isotope ratios. The concept was applied to a diesel fuel contaminated aquifer in Menziken, Switzerland, which was treated by engineered in situ bioremediation. In the contaminated aquifer, added oxidants (O 2 and NO 3-) were consumed, elevated concentrations of Fe(II), Mn(II), CH 4, alkalinity and DIC were detected and the DIC was generally depleted in 13C compared to the background. The DIC production was larger than expected based on the consumption of dissolved oxidants and the production of reduced species. Stable carbon isotope balances revealed that the DIC production in the aquifer originated mainly from microbial petroleum hydrocarbon mineralization, and that geochemical reactions such as carbonate dissolution produced little DIC. This suggests that petroleum hydrocarbon mineralization can be underestimated if it is determined based on concentrations of dissolved oxidants and reduced species.
Short-term energy outlook. Volume 2. Methodology
NASA Astrophysics Data System (ADS)
1983-05-01
Recent changes in forecasting methodology for nonutility distillate fuel oil demand and for the near-term petroleum forecasts are discussed. The accuracy of previous short-term forecasts of most of the major energy sources published in the last 13 issues of the Outlook is evaluated. Macroeconomic and weather assumptions are included in this evaluation. Energy forecasts for 1983 are compared. Structural change in US petroleum consumption, the use of appropriate weather data in energy demand modeling, and petroleum inventories, imports, and refinery runs are discussed.
Global impacts of energy demand on the freshwater resources of nations.
Holland, Robert Alan; Scott, Kate A; Flörke, Martina; Brown, Gareth; Ewers, Robert M; Farmer, Elizabeth; Kapos, Valerie; Muggeridge, Ann; Scharlemann, Jörn P W; Taylor, Gail; Barrett, John; Eigenbrod, Felix
2015-12-01
The growing geographic disconnect between consumption of goods, the extraction and processing of resources, and the environmental impacts associated with production activities makes it crucial to factor global trade into sustainability assessments. Using an empirically validated environmentally extended global trade model, we examine the relationship between two key resources underpinning economies and human well--being-energy and freshwater. A comparison of three energy sectors (petroleum, gas, and electricity) reveals that freshwater consumption associated with gas and electricity production is largely confined within the territorial boundaries where demand originates. This finding contrasts with petroleum, which exhibits a varying ratio of territorial to international freshwater consumption, depending on the origin of demand. For example, although the United States and China have similar demand associated with the petroleum sector, international freshwater consumption is three times higher for the former than the latter. Based on mapping patterns of freshwater consumption associated with energy sectors at subnational scales, our analysis also reveals concordance between pressure on freshwater resources associated with energy production and freshwater scarcity in a number of river basins globally. These energy-driven pressures on freshwater resources in areas distant from the origin of energy demand complicate the design of policy to ensure security of fresh water and energy supply. Although much of the debate around energy is focused on greenhouse gas emissions, our findings highlight the need to consider the full range of consequences of energy production when designing policy.
Global impacts of energy demand on the freshwater resources of nations
Holland, Robert Alan; Scott, Kate A.; Flörke, Martina; Brown, Gareth; Ewers, Robert M.; Farmer, Elizabeth; Kapos, Valerie; Muggeridge, Ann; Taylor, Gail; Barrett, John; Eigenbrod, Felix
2015-01-01
The growing geographic disconnect between consumption of goods, the extraction and processing of resources, and the environmental impacts associated with production activities makes it crucial to factor global trade into sustainability assessments. Using an empirically validated environmentally extended global trade model, we examine the relationship between two key resources underpinning economies and human well-being—energy and freshwater. A comparison of three energy sectors (petroleum, gas, and electricity) reveals that freshwater consumption associated with gas and electricity production is largely confined within the territorial boundaries where demand originates. This finding contrasts with petroleum, which exhibits a varying ratio of territorial to international freshwater consumption, depending on the origin of demand. For example, although the United States and China have similar demand associated with the petroleum sector, international freshwater consumption is three times higher for the former than the latter. Based on mapping patterns of freshwater consumption associated with energy sectors at subnational scales, our analysis also reveals concordance between pressure on freshwater resources associated with energy production and freshwater scarcity in a number of river basins globally. These energy-driven pressures on freshwater resources in areas distant from the origin of energy demand complicate the design of policy to ensure security of fresh water and energy supply. Although much of the debate around energy is focused on greenhouse gas emissions, our findings highlight the need to consider the full range of consequences of energy production when designing policy. PMID:26627262
Near term hybrid passenger vehicle development program, phase 1
NASA Technical Reports Server (NTRS)
1980-01-01
Missions for hybrid vehicles that promise to yield high petroleum impact were identified and a preliminary design, was developed that satisfies the mission requirements and performance specifications. Technologies that are critical to successful vehicle design, development and fabrication were determined. Trade-off studies to maximize fuel savings were used to develop initial design specifications of the near term hybrid vehicle. Various designs were "driven" through detailed computer simulations which calculate the petroleum consumption in standard driving cycles, the petroleum and electricity consumptions over the specified missions, and the vehicle's life cycle costs over a 10 year vehicle lifetime. Particular attention was given to the selection of the electric motor, heat engine, drivetrain, battery pack and control system. The preliminary design reflects a modified current compact car powered by a currently available turbocharged diesel engine and a 24 kW (peak) compound dc electric motor.
Petroleum supply monthly, February 1991. [Glossary included
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-02-01
Data presented in the Petroleum Supply Monthly (PSM) describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in Primary Supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated,more » the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections (1) the Summary Statistics and (2) the Detailed Statistics. Explanatory Notes, located at the end of this publication, present information describing data collection, sources, estimation methodology, data quality control procedures, modifications to reporting requirements and interpretation of tables. Industry terminology and product definitions are listed alphabetically in the Glossary. 12 figs., 54 tabs.« less
China?s growing appetite for minerals
Menzie, David; Tse, Pui-Kwan; Fenton, Mike; Jorgenson, John; van Oss, Hendrik
2004-01-01
During the last 15 years, China's economy and consumption have grown rapidly. This report contains figures and notes from a talk that discusses China's increasing consumption of aluminum, cement, coal, copper, iron ore, petroleum, and steel in context of its developing economy.
Petroleum supply monthly, April 1991. [Glossary included
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-04-29
Data presented in the PSM (Petroleum Supply Monthly) describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in Primary Supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated,more » the data reported by these sectors approximately represent the consumption of petroleum products in the United States. The tables and figures in the Summary Statistics section of the PSM present a time series of selected petroleum data on a US level. Most time series include preliminary estimates for one month. The Detailed Statistics tables of the PSM present statistics for the most current month available as well as year-to-date. Industry terminology and product definitions are listed alphabetically in the Glossary. 14 figs., 65 tabs.« less
Code of Federal Regulations, 2014 CFR
2014-01-01
...; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.2 Definitions. For the purposes of this part, the term: Combined energy consumption value means the weighted average of the Urban Dynamometer Driving Schedule and the Highway Fuel Economy Driving Schedule energy consumption values (weighted 55/45 percent...
Code of Federal Regulations, 2012 CFR
2012-01-01
...; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.2 Definitions. For the purposes of this part, the term: Combined energy consumption value means the weighted average of the Urban Dynamometer Driving Schedule and the Highway Fuel Economy Driving Schedule energy consumption values (weighted 55/45 percent...
Code of Federal Regulations, 2013 CFR
2013-01-01
...; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.2 Definitions. For the purposes of this part, the term: Combined energy consumption value means the weighted average of the Urban Dynamometer Driving Schedule and the Highway Fuel Economy Driving Schedule energy consumption values (weighted 55/45 percent...
Chiroma, Haruna; Abdul-kareem, Sameem; Khan, Abdullah; Nawi, Nazri Mohd; Gital, Abdulsalam Ya'u; Shuib, Liyana; Abubakar, Adamu I; Rahman, Muhammad Zubair; Herawan, Tutut
2015-01-01
Global warming is attracting attention from policy makers due to its impacts such as floods, extreme weather, increases in temperature by 0.7°C, heat waves, storms, etc. These disasters result in loss of human life and billions of dollars in property. Global warming is believed to be caused by the emissions of greenhouse gases due to human activities including the emissions of carbon dioxide (CO2) from petroleum consumption. Limitations of the previous methods of predicting CO2 emissions and lack of work on the prediction of the Organization of the Petroleum Exporting Countries (OPEC) CO2 emissions from petroleum consumption have motivated this research. The OPEC CO2 emissions data were collected from the Energy Information Administration. Artificial Neural Network (ANN) adaptability and performance motivated its choice for this study. To improve effectiveness of the ANN, the cuckoo search algorithm was hybridised with accelerated particle swarm optimisation for training the ANN to build a model for the prediction of OPEC CO2 emissions. The proposed model predicts OPEC CO2 emissions for 3, 6, 9, 12 and 16 years with an improved accuracy and speed over the state-of-the-art methods. An accurate prediction of OPEC CO2 emissions can serve as a reference point for propagating the reorganisation of economic development in OPEC member countries with the view of reducing CO2 emissions to Kyoto benchmarks--hence, reducing global warming. The policy implications are discussed in the paper.
Water intensity of transportation.
King, Carey W; Webber, Michael E
2008-11-01
As the need for alternative transportation fuels increases, it is important to understand the many effects of introducing fuels based upon feedstocks other than petroleum. Water intensity in "gallons of water per mile traveled" is one method to measure these effects on the consumer level. In this paper we investigate the water intensity for light duty vehicle (LDV) travel using selected fuels based upon petroleum, natural gas, unconventional fossil fuels, hydrogen, electricity, and two biofuels (ethanol from corn and biodiesel from soy). Fuels more directly derived from fossil fuels are less water intensive than those derived either indirectly from fossil fuels (e.g., through electricity generation) or directly from biomass. The lowest water consumptive (<0.15 gal H20/mile) and withdrawal (<1 gal H2O/mile) rates are for LDVs using conventional petroleum-based gasoline and diesel, nonirrigated biofuels, hydrogen derived from methane or electrolysis via nonthermal renewable electricity, and electricity derived from nonthermal renewable sources. LDVs running on electricity and hydrogen derived from the aggregate U.S. grid (heavily based upon fossil fuel and nuclear steam-electric power generation) withdraw 5-20 times and consume nearly 2-5 times more water than by using petroleum gasoline. The water intensities (gal H20/mile) of LDVs operating on biofuels derived from crops irrigated in the United States at average rates is 28 and 36 for corn ethanol (E85) for consumption and withdrawal, respectively. For soy-derived biodiesel the average consumption and withdrawal rates are 8 and 10 gal H2O/mile.
Jenn, Alan; Azevedo, Inês M L; Michalek, Jeremy J
2016-03-01
The United States Corporate Average Fuel Economy (CAFE) standards and Greenhouse Gas (GHG) Emission standards are designed to reduce petroleum consumption and GHG emissions from light-duty passenger vehicles. They do so by requiring automakers to meet aggregate criteria for fleet fuel efficiency and carbon dioxide (CO2) emission rates. Several incentives for manufacturers to sell alternative fuel vehicles (AFVs) have been introduced in recent updates of CAFE/GHG policy for vehicles sold from 2012 through 2025 to help encourage a fleet technology transition. These incentives allow automakers that sell AFVs to meet less-stringent fleet efficiency targets, resulting in increased fleet-wide gasoline consumption and emissions. We derive a closed-form expression to quantify these effects. We find that each time an AFV is sold in place of a conventional vehicle, fleet emissions increase by 0 to 60 t of CO2 and gasoline consumption increases by 0 to 7000 gallons (26,000 L), depending on the AFV and year of sale. Using projections for vehicles sold from 2012 to 2025 from the Energy Information Administration, we estimate that the CAFE/GHG AFV incentives lead to a cumulative increase of 30 to 70 million metric tons of CO2 and 3 to 8 billion gallons (11 to 30 billion liters) of gasoline consumed over the vehicles' lifetimes - the largest share of which is due to legacy GHG flex-fuel vehicle credits that expire in 2016. These effects may be 30-40% larger in practice than we estimate here due to optimistic laboratory vehicle efficiency tests used in policy compliance calculations.
Veerasingam, S; Venkatachalapathy, R; Sudhakar, S; Raja, P; Rajeswari, V
2011-01-01
Eight mollusc species and sediment samples collected from three different stations along Tamilnadu coast, Bay of Bengal, India were analysed for the levels of petroleum hydrocarbons to elucidate the status of the petroleum residues in mollusc meant for human consumption. The concentrations of petroleum hydrocarbons in sediments along Tamilnadu coast varied from 5.04-25.5 microg/g dw (dry weight). High concentration of petroleum hydrocarbons in the sediment of Uppanar estuary (25.5 +/- 1.45 microg/g dw) was perhaps land and marine based anthropogenic sources of this region. The petroleum hydrocarbon residues in eight mollusc species collected from Uppanar, Vellar and Coleroon estuaries varied between 2.44-6.04 microg/g ww (wet weight). Although the concentration of petroleum hydrocarbons in sediment of the Uppanar region was markedly higher than the background, the petroleum hydrocarbon residues in mollusc collected from Uppanar estuary did not suggest bioaccumulation. The results signified that industrial growth has affected the aquatic environments and regular monitoring will help to adopt stringent pollution control measures for better management of the aquatic region.
Uzbekistan Country Analysis Brief
2016-01-01
Total primary energy consumption in Uzbekistan was about 2.05 quadrillion British thermal units (Btu) in 2015, according to BP's 2016 Statistical Review. Natural gas accounted for the majority of consumption (88%), while consumption of petroleum products (5%), coal (2%), and hydroelectricity (5%) accounted for the remainder. Uzbekistan holds sizeable hydrocarbon reserves of natural gas, and its economy is highly dependent on the country’s energy resources.
Biodegradation of hexadecane using sediments from rivers and lagoons of the Southern Gulf of Mexico.
García-Cruz, N Ulises; Sánchez-Avila, Juan I; Valdés-Lozano, David; Gold-Bouchot, Gerardo; Aguirre-Macedo, Leopoldina
2018-03-01
The Southern Gulf of Mexico is an area highly impacted by crude oil extraction, refining activities and the presence of natural petroleum seepage. Oceanic currents in the Gulf of Mexico continually facilitate the transport of hydrocarbons to lagoons and rivers. This research evaluated hexadecane (HXD) degradation in marine sediment samples from lagoons and rivers that are fed by the Southern Gulf of Mexico, specifically six samples from rivers, three samples from lagoons, and one sample from a marine outfall. The highest rates of biodegradation were observed in sediments from the mouths of the Gonzalez River and the Champotón Lagoon. The lowest consumption rate was found in sediment from the mouth of the Coatzacoalcos River. With regards to the Ostión Lagoon and the Grijalva River, there was a low rate of consumption, but a high efficiency of degradation which took place at the end of the experiments. No correlation was found between the consumption rate and the environmental physicochemical parameters. Copyright © 2018 Elsevier Ltd. All rights reserved.
Biofuels done right: land efficient animal feeds enable large environmental and energy benefits.
Dale, Bruce E; Bals, Bryan D; Kim, Seungdo; Eranki, Pragnya
2010-11-15
There is an intense ongoing debate regarding the potential scale of biofuel production without creating adverse effects on food supply. We explore the possibility of three land-efficient technologies for producing food (actually animal feed), including leaf protein concentrates, pretreated forages, and double crops to increase the total amount of plant biomass available for biofuels. Using less than 30% of total U.S. cropland, pasture, and range, 400 billion liters of ethanol can be produced annually without decreasing domestic food production or agricultural exports. This approach also reduces U.S. greenhouse gas emissions by 670 Tg CO₂-equivalent per year, or over 10% of total U.S. annual emissions, while increasing soil fertility and promoting biodiversity. Thus we can replace a large fraction of U.S. petroleum consumption without indirect land use change.
Water Consumption Estimates of the Biodiesel Process in the US
As a renewable alternative to petroleum diesel, biodiesel has been widely used in the US and around the world. Along with the rapid development of the biodiesel industry, its potential impact on water resources should also be evaluated. This study investigates water consumption f...
Evaluation of pulsed corona discharge plasma for the treatment of petroleum-contaminated soil.
Li, Rui; Liu, Yanan; Mu, Ruiwen; Cheng, Wenyan; Ognier, Stéphanie
2017-01-01
Petroleum hydrocarbons released to the environment caused by leakage or illegal dumping pose a threat to human health and the natural environment. In this study, the potential of a pulsed corona discharge plasma system for treating petroleum-polluted soils was evaluated. This system removed 76.93 % of the petroleum from the soil in 60 min with an energy efficiency of 0.20 mg/kJ. Furthermore, the energy and degradation efficiencies for the remediation of soil contaminated by single polyaromatic hydrocarbons, such as phenanthrene and pyrene, were also compared, and the results showed that this technology had potential in organic-polluted soil remediation. In addition, the role of water molecules was investigated for their direct involvement in the formation and transportation of active species. The increase of soil moisture to a certain extent clearly benefitted degradation efficiency. Then, treated soils were analyzed by FTIR and GC-MS for proposing the degradation mechanism of petroleum. During the plasma discharging processes, the change of functional group and the detection of small aromatic hydrocarbons indicated that the plasma active species attached petroleum hydrocarbons and degradation occurred. This technique reported herein demonstrated significant potential for the remediation of heavily petroleum-polluted soil, as well as for the treatment of organic-polluted soils.
Improved heavy-duty vehicle fuel efficiency in India, benefits, costs and environmental impacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopal, Anand R.; Karali, Nihan; Sharpe, Ben
The main objectives of this analysis are to examine the benefits and costs of fuel-saving technologies for new heavy-duty vehicles (HDVs) in India over the next 10 years and, to explore how various scenarios for the deployment of vehicles with these technologies will impact petroleum consumption and carbon dioxide (CO 2) emissions over the next three decades. The study team developed simulation models for three representative HDV types—a 40-tonne tractor-trailer, 25-tonne rigid truck, and 16-tonne transit bus—based on top-selling vehicle models in the Indian market. The baseline technology profiles for all three vehicles were developed using India-specific engine data andmore » vehicle specification information from manufacturer literature and input from industry experts. For each of the three vehicles we developed a comprehensive set of seven efficiency technology packages drawing from five major areas: engine, transmission and driveline, tires, aerodynamics, and weight reduction. Our analysis finds that India has substantial opportunity to improve HDV fuel efficiency levels using cost-effective technologies. Results from our simulation modeling of three representative HDV types—a tractor-trailer, rigid truck, and transit bus—reveal that per-vehicle fuel consumption reductions between roughly 20% and 35% are possible with technologies that provide a return on the initial capital investment within 1 to 2 years. Though most of these technologies are currently unavailable in India, experiences in other more advanced markets such as the US and EU suggest that with sufficient incentives and robust regulatory design, significant progress can be made in developing and deploying efficiency technologies that can provide real-world fuel savings for new commercial vehicles in India over the next 10 years. Bringing HDVs in India up to world-class technology levels will yield substantial petroleum and GHG reductions. By 2030, the fuel and CO2 reductions of the scenarios range from 10% to 34%, and at the end of 2050, these reductions grow to 13% and 41%. If we constrain the analysis to select the most efficient technology package that provides the fleets with payback times of 3 years or less, there are annual fleet-wide savings of roughly 11 MTOE of diesel and 34 MMT of CO 2 in 2030, and this grows to 31 MTOE and 97 MMT by 2050.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Rui; Qin, Zhangcai; Han, Jeongwoo
This study conducted the updated simulations to depict a life cycle analysis (LCA) of the biodiesel production from soybeans and other feedstocks in the U.S. It addressed in details the interaction between LCA and induced land use change (ILUC) for biodiesel. Relative to the conventional petroleum diesel, soy biodiesel could achieve 76% reduction in GHG emissions without considering ILUC, or 66-72% reduction in overall GHG emissions when various ILUC cases were considered. Soy biodiesel’s fossil fuel consumption rate was also 80% lower than its petroleum counterpart. Furthermore, this study examined the cause and the implication of each key parameter affectingmore » biodiesel LCA results using a sensitivity analysis, which identified the hot spots for fossil fuel consumption and GHG emissions of biodiesel so that future efforts can be made accordingly. Finally, biodiesel produced from other feedstocks (canola oil and tallow) were also investigated to contrast with soy biodiesel and petroleum diesel« less
Blasing, T. J. [CDIAC, Oak Ridge National Laboratory (ORNL); Marland, Gregg [CDIAC, Oak Ridge National Laboratory (ORNL); Broniak, Christine [Oregon State University, Corvallis, Oregon
2004-07-01
The data from which these carbon-emissions estimates were derived are values of fuel consumed: in billions of cubic feet, for natural gas; in millions of barrels, for petroleum products; and in thousands of short tons, for coal. The resulting emissions estimates are expressed as teragrams of carbon. A teragram is 1012 grams, or 106 metric tons. To convert from carbon to carbon dioxide, multiply by 44/12 (=3.67). Data are available for over 30 different petroleum products, with the exact breakdown varying somewhat from year to year. These products have been treated separately here until the final step of the estimation, at which time CO2 emissions were summed and attributed to liquid petroleum products. These fuel-consumption data are available from the Energy Information Administration of the U.S. Department of Energy. They are published in the Monthly Energy Review, and are available electronically from the Energy Information Administration.
Primary Commodity Dependency: A Limiting Factor for Achieving Democracy
2010-03-24
two ~gricultural crops, minerals, petroleum, or fisheries can be considered primary commodity dependent. Tea, coffee, and cocoa ; peanuts and cotton...Rostow’s Development Model Pre-conditions for take-off mass consumption democracy. In 1960s, economists, associated democratization to a developmental...Commodities can be renewable or non-renewable. Petroleum, diamonds, cocoa , bananas, coffee, and timber are just a few of the commodities that have
EIA model documentation: Petroleum Market Model of the National Energy Modeling System
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-12-30
The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. Documentation of the model is in accordance with EIA`s legal obligation to provide adequate documentation in support of its models (Public Law 94-385, section 57.b.2). The PMM models petroleum refining activities, the marketing of products, the production of natural gas liquids and domestic methanol, projects petroleum provides and sources of supplies for meeting demand. In addition, the PMMmore » estimates domestic refinery capacity expansion and fuel consumption.« less
Chiroma, Haruna; Abdul-kareem, Sameem; Khan, Abdullah; Nawi, Nazri Mohd.; Gital, Abdulsalam Ya’u; Shuib, Liyana; Abubakar, Adamu I.; Rahman, Muhammad Zubair; Herawan, Tutut
2015-01-01
Background Global warming is attracting attention from policy makers due to its impacts such as floods, extreme weather, increases in temperature by 0.7°C, heat waves, storms, etc. These disasters result in loss of human life and billions of dollars in property. Global warming is believed to be caused by the emissions of greenhouse gases due to human activities including the emissions of carbon dioxide (CO2) from petroleum consumption. Limitations of the previous methods of predicting CO2 emissions and lack of work on the prediction of the Organization of the Petroleum Exporting Countries (OPEC) CO2 emissions from petroleum consumption have motivated this research. Methods/Findings The OPEC CO2 emissions data were collected from the Energy Information Administration. Artificial Neural Network (ANN) adaptability and performance motivated its choice for this study. To improve effectiveness of the ANN, the cuckoo search algorithm was hybridised with accelerated particle swarm optimisation for training the ANN to build a model for the prediction of OPEC CO2 emissions. The proposed model predicts OPEC CO2 emissions for 3, 6, 9, 12 and 16 years with an improved accuracy and speed over the state-of-the-art methods. Conclusion An accurate prediction of OPEC CO2 emissions can serve as a reference point for propagating the reorganisation of economic development in OPEC member countries with the view of reducing CO2 emissions to Kyoto benchmarks—hence, reducing global warming. The policy implications are discussed in the paper. PMID:26305483
United States petroleum pipelines: An empirical analysis of pipeline sizing
NASA Astrophysics Data System (ADS)
Coburn, L. L.
1980-12-01
The undersizing theory hypothesizes that integrated oil companies have a strong economic incentive to size the petroleum pipelines they own and ship over in a way that means that some of the demand must utilize higher cost alternatives. The DOJ theory posits that excess or monopoly profits are earned due to the natural monopoly characteristics of petroleum pipelines and the existence of market power in some pipelines at either the upstream or downstream market. The theory holds that independent petroleum pipelines owned by companies not otherwise affiliated with the petroleum industry (independent pipelines) do not have these incentives and all the efficiencies of pipeline transportation are passed to the ultimate consumer. Integrated oil companies on the other hand, keep these cost efficiencies for themselves in the form of excess profits.
NASA Astrophysics Data System (ADS)
Taneja, Sumit; Singh, Perminderjit, Dr; Singh, Gurtej
2018-02-01
Global warming and energy security being the global problems have shifted the focus of researchers on the renewable sources of energy which could replace petroleum products partially or as a whole. Ethanol and butanol are renewable sources of energy which can be produced through fermentation of biomass. A lot of research has already been done to develop suitable ethanol-gasoline blends. In contrast very little literature available on the butanol-gasoline blends. This research focuses on the comparison of ethanol-gasoline fuels with butanol-gasoline fuels with regard to the emission and performance in an SI engine. Experiments were conducted on a variable compression ratio SI engine at 1600 rpm and compression ratio 8. The experiments involved the measurement of carbon monoxide, carbon dioxide, oxides of nitrogen and unburned hydrocarbons emission and among performance parameters brake specific fuel consumption and brake thermal efficiency were recorded at three loads of 2.5kgs (25%), 5kgs (50%) and 7.5kgs (75%). Results show that ethanol and butanol content in gasoline have decreased brake specific fuel consumption, carbon monoxide and unburned hydrocarbon emissions while the brake thermal efficiency and oxides of nitrogen are increased. Results indicate thatbutanol-gasoline blends have improved brake specific fuel consumption, carbon monoxide emissions in an SI engine as compared to ethanol-gasoline blends. The carbon dioxide emissions and brake thermal efficiencies are comparable for ethanol-gasoline blends and butanol-gasoline blends. The butanol content has a more adverse effect on emissions of oxides of nitrogen than ethanol.
Pang, Shih-Hao; Frey, H Christopher; Rasdorf, William J
2009-08-15
Substitution of soy-based biodiesel fuels for petroleum diesel will alter life cycle emissions for construction vehicles. A life cycle inventory was used to estimate fuel cycle energy consumption and emissions of selected pollutants and greenhouse gases. Real-world measurements using a portable emission measurement system (PEMS) were made forfive backhoes, four front-end loaders, and six motor graders on both fuels from which fuel consumption and tailpipe emission factors of CO, HC, NO(x), and PM were estimated. Life cycle fossil energy reductions are estimated it 9% for B20 and 42% for B100 versus petroleum diesel based on the current national energy mix. Fuel cycle emissions will contribute a larger share of total life cycle emissions as new engines enter the in-use fleet. The average differences in life cycle emissions for B20 versus diesel are: 3.5% higher for NO(x); 11.8% lower for PM, 1.6% higher for HC, and 4.1% lower for CO. Local urban tailpipe emissions are estimated to be 24% lower for HC, 20% lower for CO, 17% lower for PM, and 0.9% lower for NO(x). Thus, there are environmental trade-offs such as for rural vs urban areas. The key sources of uncertainty in the B20 LCI are vehicle emission factors.
Working papers: applicability of Box Jenkins techniques to gasoline consumption forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Reliable consumption forecasts are needed, however, traditional linear time-series techniques don't adequately account for an environment so subject to change. This report evaluates the use of Box Jenkins techniques for gasoline consumption forecasting. Box Jenkins methods were applied to data obtained from the Colorado Petroleum Association and the Colorado Highway Users Fund to ''predict'' 1978 and 1979 consumption. These results prove the Box Jenkins techniques to be quite effective. Forecasts for 1980-81 are included along with suggestions for continuous use of the technique to monitor consumption.
Transportation Energy Pathways LDRD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barter, Garrett.; Reichmuth, David.; Westbrook, Jessica
2012-09-01
This report presents a system dynamics based model of the supply-demand interactions between the US light-duty vehicle (LDV) fleet, its fuels, and the corresponding primary energy sources through the year 2050. An important capability of our model is the ability to conduct parametric analyses. Others have relied upon scenario-based analysis, where one discrete set of values is assigned to the input variables and used to generate one possible realization of the future. While these scenarios can be illustrative of dominant trends and tradeoffs under certain circumstances, changes in input values or assumptions can have a significant impact on results, especiallymore » when output metrics are associated with projections far into the future. This type of uncertainty can be addressed by using a parametric study to examine a range of values for the input variables, offering a richer source of data to an analyst.The parametric analysis featured here focuses on a trade space exploration, with emphasis on factors that influence the adoption rates of electric vehicles (EVs), the reduction of GHG emissions, and the reduction of petroleum consumption within the US LDV fleet. The underlying model emphasizes competition between 13 different types of powertrains, including conventional internal combustion engine (ICE) vehicles, flex-fuel vehicles (FFVs), conventional hybrids(HEVs), plug-in hybrids (PHEVs), and battery electric vehicles(BEVs).We find that many factors contribute to the adoption rates of EVs. These include the pace of technological development for the electric powertrain, battery performance, as well as the efficiency improvements in conventional vehicles. Policy initiatives can also have a dramatic impact on the degree of EV adoption. The consumer effective payback period, in particular, can significantly increase the market penetration rates if extended towards the vehicle lifetime.Widespread EV adoption can have noticeable impact on petroleum consumption and greenhouse gas(GHG) emission by the LDV fleet. However, EVs alone cannot drive compliance with the most aggressive GHG emission reduction targets, even as the current electricity source mix shifts away from coal and towards natural gas. Since ICEs will comprise the majority of the LDV fleet for up to forty years, conventional vehicle efficiency improvements have the greatest potential for reductions in LDV GHG emissions over this time.These findings seem robust even if global oil prices rise to two to three times current projections. Thus,investment in improving the internal combustion engine might be the cheapest, lowest risk avenue towards meeting ambitious GHG emission and petroleum consumption reduction targets out to 2050.3 Acknowledgment The authors would like to thank Dr. Andrew Lutz, Dr. Benjamin Wu, Prof. Joan Ogden and Dr. Christopher Yang for their suggestions over the course of this project. This work was funded by the Laboratory Directed Research and Development program at Sandia National Laboratories.« less
Department of Defense Strategic Sustainability Performance Plan FY 2012
2012-01-01
electricity consumption by 2020. Over FYs 2012 and 2013, DON will determine which installations have the best opportunity to cost- effectively achieve net...continental United States, to more effectively track fuel consumption and monitor and reduce vehicle idling. With the support of other private and...biofuel is the most effective way to reduce fleet petroleum consumption . In locations where biofuel is not available, the fleet should consider
Pei, Si-Lu; Pan, Shu-Yuan; Li, Ye-Mei; Chiang, Pen-Chi
2017-09-19
A high-gravity carbonation process was deployed at a petrochemical plant using petroleum coke fly ash and blowdown wastewater to simultaneously mineralized CO 2 and remove nitrogen oxides and particulate matters from the flue gas. With a high-gravity carbonation process, the CO 2 removal efficiency was found to be 95.6%, corresponding to a capture capacity of 600 kg CO 2 per day, at a gas flow rate of 1.47 m 3 /min under ambient temperature and pressure. Moreover, the removal efficiency of nitrogen oxides and particulate matters was 99.1% and 83.2%, respectively. After carbonation, the reacted fly ash was further utilized as supplementary cementitious materials in the blended cement mortar. The results indicated that cement with carbonated fly ash exhibited superior compressive strength (38.1 ± 2.5 MPa at 28 days in 5% substitution ratio) compared to the cement with fresh fly ash. Furthermore, the environmental benefits for the high-gravity carbonation process using fly ash were critically assessed. The energy consumption of the entire high-gravity carbonation ranged from 80 to 169 kWh/t-CO 2 (0.29-0.61 GJ/t-CO 2 ). Compared with the scenarios of business-as-usual and conventional carbon capture and storage plant, the economic benefit from the high-gravity carbonation process was approximately 90 and 74 USD per ton of CO 2 fixation, respectively.
PM, carbon, and PAH emissions from a diesel generator fuelled with soy-biodiesel blends.
Tsai, Jen-Hsiung; Chen, Shui-Jen; Huang, Kuo-Lin; Lin, Yuan-Chung; Lee, Wen-Jhy; Lin, Chih-Chung; Lin, Wen-Yinn
2010-07-15
Biodiesels have received increasing attention as alternative fuels for diesel engines and generators. This study investigates the emissions of particulate matter (PM), total carbon (TC), e.g., organic/elemental carbons, and polycyclic aromatic hydrocarbons (PAHs) from a diesel generator fuelled with soy-biodiesel blends. Among the tested diesel blends (B0, B10 (10 vol% soy-biodiesel), B20, and B50), B20 exhibited the lowest PM emission concentration despite the loads (except the 5 kW case), whereas B10 displayed lower PM emission factors when operating at 0 and 10 kW than the other fuel blends. The emission concentrations or factors of EC, OC, and TC were the lowest when B10 or B20 was used regardless of the loading. Under all tested loads, the average concentrations of total-PAHs emitted from the generator using the B10 and B20 were lower (by 38% and 28%, respectively) than those using pure petroleum diesel fuel (B0), while the emission factors of total-PAHs decreased with an increasing ratio of biodiesel to premium diesel. With an increasing loading, although the brake specific fuel consumption decreased, the energy efficiency increased despite the bio/petroleum diesel ratio. Therefore, soy-biodiesel is promising for use as an alternative fuel for diesel generators to increase energy efficiency and reduce the PM, carbon, and PAH emissions. 2010 Elsevier B.V. All rights reserved.
Holmes, W.N.; Gorsline, J.; Cronshaw, J.
1979-01-01
(1) Seawater-adapted Mallard ducks maintained in the laboratory will freely consume food that has been contaminated with either any one of a variety of crude oils or a petroleum derivative such as No. 2 fuel oil. (2) During a 100-day experimental period total masses of petroleum equivalent to 50% of the mean body weight were consumed by some birds and many showed no apparent symptoms of distress. (3) The consumption of petroleum-contaminated food was frequently accompanied by a persistent hyperphagia but no clear patterns of change in body weight were associated with this condition. (4) Among those birds that survived the 100-day experimental period only small changes in mean body weight were observed between successive weighings and in most instances these represented less than 10% of the previously recorded weight. (5) In all groups, including those maintained on uncontaminated food, most of the mortality occurred following exposure to continuous mild cold stress. The total number of deaths in the groups given petroleum-contaminated food, however, was always higher than that among birds given uncontaminated food. (6) The spate of mortality that occurred in groups given petroleum-contaminated food usually occurred earlier, lasted longer, and involved more birds than it did among groups fed uncontaminated food. (7) The pattern of each episode of mortality was sometimes quantitatively related to the concentration of petroleum in the food and a striking range of relative toxicities were observed among the crude oils from different geographic regions. (8) Throughout the experiment, the mean body weight of the birds that died was always significantly less than that of the survivors in the same group; in all instances most of the loss in weight occurred during the 2 weeks preceding death. (9) Autopsy revealed that adrenal hypertrophy and lymphoepithelial involution were characteristic in all of the birds that died, suggesting that a high level of adrenocortical stimulation preceded death. Such high levels of adrenocortical stimulation, therefore, probably occurred sooner in birds consuming petroleum-contaminated food than in birds given uncontaminated food. (10) The consumption of petroleum-contaminated food seemed to constitute a nonspecific stressor and among birds already exposed to stresses, such as hyperosmotic drinking water (seawater) and persistent cold, the ingestion of petroleum seemed to render them more vulnerable to adrenocortical exhaustion, and death frequently ensued.
Petroleum Refining Footprint, October 2012 (MECS 2006)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-10-17
Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumedmore » by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.« less
Code of Federal Regulations, 2010 CFR
2010-10-01
... Federal Government exercise leadership in the reduction of petroleum consumption through improvements in... and assist their fleet management personnel in acquiring vehicles and products which comply with the...
Defense Energy Information System (DEIS): DEIS-80 Design System Specification. Revision A.
1981-07-01
and consumption of petroleum products such as aviation gasoline, jet fuels, motor gasolines, distillate, and residual oil within DoD. DEIS I software...water, fuel oil , coal, solar/thermal power, and wind power. This subsystem also reports environmental data such as degree days during a reporting period...Petroleum Oil and Lubricants Officer, the Fuels Officer, the Supply Of- ficer, or the Engineering Officer on the base or facility consolidate in
Navy mobility fuels forecasting system report: World petroleum trade forecasts for the year 2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, S.
1991-12-01
The Middle East will continue to play the dominant role of a petroleum supplier in the world oil market in the year 2000, according to business-as-usual forecasts published by the US Department of Energy. However, interesting trade patterns will emerge as a result of the democratization in the Soviet Union and Eastern Europe. US petroleum imports will increase from 46% in 1989 to 49% in 2000. A significantly higher level of US petroleum imports (principally products) will be coming from Japan, the Soviet Union, and Eastern Europe. Several regions, the Far East, Japan, Latin American, and Africa will import moremore » petroleum. Much uncertainty remains about of the level future Soviet crude oil production. USSR net petroleum exports will decrease; however, the United States and Canada will receive some of their imports from the Soviet Union due to changes in the world trade patterns. The Soviet Union can avoid becoming a net petroleum importer as long as it (1) maintains enough crude oil production to meet its own consumption and (2) maintains its existing refining capacities. Eastern Europe will import approximately 50% of its crude oil from the Middle East.« less
Chen, Rui; Qin, Zhangcai; Han, Jeongwoo; Wang, Michael; Taheripour, Farzad; Tyner, Wallace; O'Connor, Don; Duffield, James
2018-03-01
This study conducted the updated simulations to depict a life cycle analysis (LCA) of the biodiesel production from soybeans and other feedstocks in the U.S. It addressed in details the interaction between LCA and induced land use change (ILUC) for biodiesel. Relative to the conventional petroleum diesel, soy biodiesel could achieve 76% reduction in GHG emissions without considering ILUC, or 66-72% reduction in overall GHG emissions when various ILUC cases were considered. Soy biodiesel's fossil fuel consumption rate was also 80% lower than its petroleum counterpart. Furthermore, this study examined the cause and the implication of each key parameter affecting biodiesel LCA results using a sensitivity analysis, which identified the hot spots for fossil fuel consumption and GHG emissions of biodiesel so that future efforts can be made accordingly. Finally, biodiesel produced from other feedstocks (canola oil and tallow) were also investigated to contrast with soy biodiesel and petroleum diesel. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghose, M.K.; Paul, B.
The global energy requirement has grown at a phenomenal rate and the consumption of primary energy sources has been a very high positive growth. This article focuses on the consumption of different primary energy sources and it identifies that coal will continue to remain as the prime energy in the foreseeable future. It examines energy requirement perspectives for India and demands of petroleum, natural gas, and coal bed methane in the foreseeable future. It discusses the state of present day petroleum and petrochemical industries in the country and the latest advances in them to take over in the next fewmore » years. The regional pattern of consumption of primary energy sources shows that oil remains as the largest single source of primary energy in most parts of the world. However, gas dominates as the prime source in some parts of the world. Economic development and poverty alleviation depend on securing affordable energy sources and for the country's energy security; it is necessary to adopt the latest technological advances in petroleum and petrochemical industries by supportive government policies. But such energy is very much concerned with environmental degradation and must be driven by contemporary managerial acumen addressing environmental and social challenges effectively. Environmental laws for the abatement of environmental degradation are discussed in this paper. The paper concludes that energy security leading to energy independence is certainly possible and can be achieved through a planned manner.« less
1985-11-29
demerits of the governments withdrawal of petroleum subsidy, statistics just released show that consumption of all petroleum products has shown...political freedom to the masses while an injust economic system remains, they argue. Thus far the theory . One of my mam concerns is that we may be...reading about Aüssie and don’t have any’ illusions about the place. There are things ^e won’t like — there is apparently a lot of racism there too
NASA Astrophysics Data System (ADS)
McKechnie, Jon; Pourbafrani, Mohammad; Saville, Bradley A.; MacLean, Heather L.
2015-12-01
Bulk chemicals production from biomass may compete with biofuels for low-cost and sustainable biomass sources. Understanding how alternative uses of biomass compare in terms of financial and environmental parameters is therefore necessary to help ensure that efficient uses of resources are encouraged by policy and undertaken by industry. In this paper, we compare the environmental and financial performance of using ethanol as a feedstock for bioethylene production or as a transport fuel in the US life cycle-based models are developed to isolate the relative impacts of these two ethanol uses and generate results that are applicable irrespective of ethanol production pathway. Ethanol use as a feedstock for bioethylene production or as a transport fuel leads to comparable greenhouse gas (GHG) emissions and fossil energy consumption reductions relative to their counterparts produced from fossil sources. By displacing gasoline use in vehicles, use of ethanol as a transport fuel is six times more effective in reducing petroleum energy use on a life cycle basis. In contrast, bioethylene predominately avoids consumption of natural gas. Considering 2013 US ethanol and ethylene market prices, our analysis shows that bioethylene is financially viable only if significant price premiums are realized over conventional ethylene, from 35% to 65% depending on the scale of bioethylene production considered (80 000 t yr-1 to 240 000 t yr-1). Ethanol use as a transportation fuel is therefore the preferred pathway considering financial, GHG emissions, and petroleum energy use metrics, although bioethylene production could have strategic value if demand-side limitations of ethanol transport fuel markets are reached.
Extraction of cellulose microcrystalline from galam wood for biopolymer
NASA Astrophysics Data System (ADS)
Ismail, Ika; Sa'adiyah, Devy; Rahajeng, Putri; Suprayitno, Abdi; Andiana, Rocky
2018-04-01
Consumption of plastic raw materials tends to increase, but until now the meet of the consumption of plastic raw are still low, even some are still imported. Nowadays, Indonesia's plastic needs are supported by petrochemicals where raw materials are still dependent abroad and petropolymer raw materials are derived from petroleum which will soon be depleted due to rising petroleum needs. Therefore, various studies have been conducted to develop natural fiber-based polymers that are biodegradable and abundant in nature. It is because the natural polymer production process is very efficient and very environmentally friendly. There have been many studies of biopolymers especially natural fiber-based polymers from plants, due to plants containing cellulose, hemicellulose and lignin. However, cellulose is the only one who has crystalline structures. Cellulose has a high crystality compared to amorphous lignin and hemicellulose. In this study, extracted cellulose as biopolymer and amplifier on composite. The cellulose is extracted from galam wood from East Kalimantan. Cellulose extraction will be obtained in nano / micro form through chemical and mechanical treatment processes. The chemical treatment of cellulose extraction is alkalinization process using NaOH solution, bleaching using NaClO2 and acid hydrolysis using sulfuric acid. After chemical treatment, ultrasonic mechanical treatment is made to make cellulose fibers into micro or nano size. Besides, cellulose results will be characterized. Characterization was performed to analyze molecules of cellulose compounds extracted from plants using Fourier Transformation Infra Red (FTIR) testing. XRD testing to analyze cellulose crystallinity. Scanning Electron Microscope (SEM) test to analyze morphology and fiber size.
Reducing supply chain energy use in next-generation vehicle lightweighting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanes, Rebecca J.; Das, Sujit; Carpenter, Alberta
Vehicle lightweighting reduces the amount of fuel consumed in a vehicle's use phase, but depending on what lightweight materials replace the conventional materials, and in what amounts, the manufacturing energy may increase or decrease. For carbon fiber reinforced polymer (CFRP), a next-generation lightweighting material, the increase in vehicle manufacturing energy is greater than the fuel savings, resulting in a net increase in energy consumption over a vehicle's manufacturing and use relative to a standard non-lightweighted car. [1] This work explores ways to reduce the supply chain energy of CFRP lightweighted vehicles through alternative production technologies and energy efficiency improvements. Themore » objective is to determine if CFRP can offer energy savings comparable to or greater than aluminum, a conventional lightweighting material. Results of this analysis can be used to inform additional research and development efforts in CFRP production and future directions in lightweight vehicle production. The CFRP supply chain is modeled using the Material Flows through Industry (MFI) scenario modeling tool, which calculates 'mine to materials' energy consumption, material inventories and greenhouse gas emissions for industrial supply chains. In this analysis, the MFI tool is used to model the supply chains of two lightweighted vehicles, an aluminum intensive vehicle (AIV) and a carbon fiber intensive vehicle (CFV), under several manufacturing scenarios. Vehicle specifications are given in [1]. Scenarios investigated cover alternative carbon fiber (CF) feedstocks and energy efficiency improvements at various points in the vehicle supply chains. The alternative CF feedstocks are polyacrylonitrile, lignin and petroleum-derived mesophase pitch. Scenarios in which the energy efficiency of CF and CFRP production increases are explored using sector efficiency potential values, which quantify the reduction in energy consumption achievable when process equipment is upgraded to the most efficient available. Preliminary analyses indicate that producing CF from lignin instead of polyacrylonitrile, the most commonly used feedstock, reduces energy consumption in the CFRP supply chain by 7.5%, and that implementing energy efficient process equipment produces an additional 8% reduction. Final results will show if these potential reductions are sufficient to make the CFV energy savings comparable with AIV energy savings. [1] Das, S., Graziano, D., Upadhyayula, V. K., Masanet, E., Riddle, M., & Cresko, J. (2016). Vehicle lightweighting energy use impacts in US light-duty vehicle fleet. Sustainable Materials and Technologies, 8, 5-13.« less
NASA Astrophysics Data System (ADS)
Ramesha, D. K.; Thimmannachar, Rajiv K.; Simhasan, R.; Nagappa, Manjunath; Gowda, P. M.
2012-07-01
Bio-fuel is a clean burning fuel made from natural renewable energy resource; it operates in C. I. engine similar to the petroleum diesel. The rising cost of diesel and the danger caused to the environment has led to an intensive and desperate search for alternative fuels. Among them, animal fats like the fish oil have proven to be a promising substitute to diesel. In this experimental study, A computerized 4-stroke, single cylinder, constant speed, direct injection diesel engine was operated on fish oil-biodiesel of different blends. Three different blends of 10, 20, and 30 % by volume were used for this study. Various engine performance, combustion and emission parameters such as Brake Thermal Efficiency, Brake Specific Fuel Consumption, Heat Release Rate, Peak Pressure, Exhaust Gas Temperature, etc. were recorded from the acquired data. The data was recorded with the help of an engine analysis software. The recorded parameters were studied for varying loads and their corresponding graphs have been plotted for comparison purposes. Petroleum Diesel has been used as the reference. From the properties and engine test results it has been established that fish oil biodiesel is a better replacement for diesel without any engine modification.
Use and Fuel-Efficient Vehicle Requirements State-owned vehicle fleets must implement petroleum by petroleum displaced through the use of biodiesel, ethanol, other alternative fuels, the use of
Hybrid vehicle assessment. Phase 1: Petroleum savings analysis
NASA Technical Reports Server (NTRS)
Levin, R.; Liddle, S.; Deshpande, G.; Trummel, M.; Vivian, H. C.
1984-01-01
The results of a comprehensive analysis of near term electric hybrid vehicles are presented, with emphasis on their potential to save significant amounts of petroleum on a national scale in the 1990s. Performance requirements and expected annual usage patterns of these vehicles are first modeled. The projected U.S. fleet composition is estimated, and conceptual hybrid vehicle designs are conceived and analyzed for petroleum use when driven in the expected annual patterns. These petroleum consumption estimates are then compared to similar estimates for projected 1990 conventional vehicles having the same performance and driven in the same patterns. Results are presented in the form of three utility functions and comparisons of sevral conceptual designs are made. The Hybrid Vehicle (HV) design and assessment techniques are discussed and a general method is explained for selecting the optimum energy management strategy for any vehicle mission battery combination. Conclusions and recommendations are presented, and development recommendations are identified.
1983-12-01
dentlfIr by block numbher) Clean product tanker Defense Fuel Supply Center (DFSC) Handy Size Tanker (HST) Petroleum, Lubricants, and Oils (POL) Military...ccnsumer representing approximately 81 percent of tha " total. The majority of DOD energy is in the form of petro- leum, oil and lubricants (POL) with...annual consumption equating to 250 million barrels of oil . it h over five percent of *he DOD budget devoted to energy expnadiu::es, it is reasonable to
Liquid Fuels and Natural Gas in the Americas Analysis Brief
2014-01-01
This report examines the major energy trends and developments of the past decade in the Americas, focusing on liquid fuels and natural gas—particularly, reserves and resources, production, consumption, trade, and investment. The Americas, which include North America, Central America, the Caribbean, and South America, account for a significant portion of global supply, demand, and trade of both liquid fuels and natural gas. Liquid fuels include all petroleum and petroleum products, natural gas liquids, biofuels, and liquids derived from other hydrocarbon sources.
Bioremediation of petroleum-contaminated soil: A Review
NASA Astrophysics Data System (ADS)
Yuniati, M. D.
2018-02-01
Petroleum is the major source of energy for various industries and daily life. Releasing petroleum into the environment whether accidentally or due to human activities is a main cause of soil pollution. Soil contaminated with petroleum has a serious hazard to human health and causes environmental problems as well. Petroleum pollutants, mainly hydrocarbon, are classified as priority pollutants. The application of microorganisms or microbial processes to remove or degrade contaminants from soil is called bioremediation. This microbiological decontamination is claimed to be an efficient, economic and versatile alternative to physicochemical treatment. This article presents an overview about bioremediation of petroleum-contaminated soil. It also includes an explanation about the types of bioremediation technologies as well as the processes.
Systems Engineering of Electric and Hybrid Vehicles
NASA Technical Reports Server (NTRS)
Kurtz, D. W.; Levin, R. R.
1986-01-01
Technical paper notes systems engineering principles applied to development of electric and hybrid vehicles such that system performance requirements support overall program goal of reduced petroleum consumption. Paper discusses iterative design approach dictated by systems analyses. In addition to obvious peformance parameters of range, acceleration rate, and energy consumption, systems engineering also considers such major factors as cost, safety, reliability, comfort, necessary supporting infrastructure, and availability of materials.
Reid, Anna-Jean M; Budge, Suzanne M
2015-01-01
Heightened awareness of the health benefits of fish oil consumption has led to a great increase in the number of fish oil supplements available to the consumer. Therefore manufacturers are continually looking for ways to distinguish their products from those of competitors. Minimally refined or virgin fish oils provide a unique feature; however, petroleum hydrocarbon contamination from oil spills is a reality in the world's oceans. The question arises whether oil produced from fish species caught in these polluted areas is free of petroleum hydrocarbons, with particular interest in unresolved complex mixtures (UCMs). This study investigates the presence of UCMs in commercially available fish oil supplements advertised as being virgin, as well as refined. Weathered petroleum hydrocarbons in the form of a UCM were found at 523 µg g(-1) in a virgin Alaskan salmon oil supplement. Supplements that were refined were free of this contamination. Fish used in the production of fish oil supplements appear to have accumulated petrogenic hydrocarbons in their tissues which were not removed by minimal oil refining. Further study is required to determine if there are any health implications associated with long-term consumption of these contaminated supplements. © 2014 Society of Chemical Industry.
Chapelle, Frank H.; Robertson, John F.; Landmeyer, James E.; Bradley, Paul M.
2000-01-01
These two sites illustrate how the efficiency of natural attenuation processes acting on petroleum hydrocarbons can be systematically evaluated using hydrologic, geochemical, and microbiologic methods. These methods, in turn, can be used to assess the role that the natural attenuation of petroleum hydrocarbons can play in achieving overall site remediation.
REDUCING POWER PRODUCTION COSTS BY UTILIZING PETROLEUM COKE
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-09-01
A Powder River Basin subbituminous coal from the North Antelope mine and a petroleum shot coke were received from Northern States Power Company (NSP) for testing the effects of parent fuel properties on coal-coke blend grindability and evaluating the utility of petroleum coke blending as a strategy for improving electrostatic precipitator (ESP) particulate collection efficiency. Petroleum cokes are generally harder than coals, as indicated by Hardgrove grindability tests. Therefore, the weaker coal component may concentrate in the finer size fractions during the pulverizing of coal-coke blends. The possibility of a coal-coke size fractionation effect is being investigated because it maymore » adversely affect combustion performance. Although the blending of petroleum coke with coal may adversely affect combustion performance, it may enhance ESP particulate collection efficiency. Petroleum cokes contain much higher concentrations of V relative to coals. Consequently, coke blending can significantly increase the V content of fly ash resulting from coal-coke combustion. Pentavalent vanadium oxide (V{sub 2}O{sub 5}) is a known catalyst for transforming gaseous sulfur dioxide (SO{sub 2}[g]) to gaseous sulfur trioxide (SO{sub 3}[g]). The presence of SO{sub 3}(g) strongly affects fly ash resistivity and, thus, ESP performance.« less
10 CFR 474.4 - Test procedures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.4 Test procedures. (a) The electric vehicle energy... required for testing the energy consumption of electric vehicles. ...
10 CFR 474.4 - Test procedures.
Code of Federal Regulations, 2013 CFR
2013-01-01
... ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.4 Test procedures. (a) The electric vehicle energy... required for testing the energy consumption of electric vehicles. ...
10 CFR 474.4 - Test procedures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.4 Test procedures. (a) The electric vehicle energy... required for testing the energy consumption of electric vehicles. ...
10 CFR 474.4 - Test procedures.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.4 Test procedures. (a) The electric vehicle energy... required for testing the energy consumption of electric vehicles. ...
NASA Astrophysics Data System (ADS)
Keat, Sim Chong; Chun, Beh Boon; San, Lim Hwee; Jafri, Mohd Zubir Mat
2015-04-01
Climate change due to carbon dioxide (CO2) emissions is one of the most complex challenges threatening our planet. This issue considered as a great and international concern that primary attributed from different fossil fuels. In this paper, regression model is used for analyzing the causal relationship among CO2 emissions based on the energy consumption in Malaysia using time series data for the period of 1980-2010. The equations were developed using regression model based on the eight major sources that contribute to the CO2 emissions such as non energy, Liquefied Petroleum Gas (LPG), diesel, kerosene, refinery gas, Aviation Turbine Fuel (ATF) and Aviation Gasoline (AV Gas), fuel oil and motor petrol. The related data partly used for predict the regression model (1980-2000) and partly used for validate the regression model (2001-2010). The results of the prediction model with the measured data showed a high correlation coefficient (R2=0.9544), indicating the model's accuracy and efficiency. These results are accurate and can be used in early warning of the population to comply with air quality standards.
procedures to promote the cost-effective use of non-petroleum fuel vehicles and other fleet efficiency improvements. The policies must strive for the use of non-petroleum based fuels at least 90% of the time when
Novel nanoporous sorbent for solid-phase extraction in petroleum fingerprinting
NASA Astrophysics Data System (ADS)
Alayande, S. Oluwagbemiga; Hlengilizwe, Nyoni; Dare, E. Olugbenga; Msagati, Titus A. M.; Akinlabi, A. Kehinde; Aiyedun, P. O.
2016-04-01
Sample preparation is crucial in the analysis of petroleum and its derivatives. In this study, developing affordable sorbent for petroleum fingerprinting analysis using polymer waste such expanded polystyrene was explored. The potential of electrospun expanded polystyrene (EPS) as a sorbent for the solid-phase extraction (SPE) technique was investigated, and its efficiency was compared with commercial cartridges such as alumina, silica and alumina/silica hybrid commercial for petroleum fingerprinting analysis. The chromatograms showed that the packed electrospun EPS fibre demonstrated excellent properties for SPE applications relative to the hybrid cartridges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Clean Cities Now is the official semi-annual newsletter of Clean Cities, an initiative designed to reduce petroleum consumption in the transportation sector by advancing the use of alternative and renewable fuels, fuel economy improvements, idle-reduction measures, and new technologies, as they emerge.
Production of renewable diesel fuel from biologically based feedstocks.
DOT National Transportation Integrated Search
2014-09-01
Renewable diesel is an emerging option to achieve the goal set by the Federal Renewable Fuel Standard of displacing 20% of our nations petroleum consumption with : renewable alternatives by 2022. It involves converting readily available vegetable ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Jing; Lin, Zhenhong
2012-01-01
This paper studies the role of public charging infrastructure in increasing PHEV s share of driving on electricity and the resulting petroleum use reduction. Using vehicle activity data obtained from the GPS-tracking household travel survey in Austin, Texas, gasoline and electricity consumptions of PHEVs in real world driving context are estimated. Driver s within-day recharging behavior, constrained by travel activities and public charger network, is modeled as a boundedly rational decision and incorporated in the energy use estimation. The key findings from the Austin dataset include: (1) public charging infrastructure makes PHEV a competitive vehicle choice for consumers without amore » home charger; (2) providing sufficient public charging service is expected to significantly reduce petroleum consumption of PHEVs; and (3) public charging opportunities offer greater benefits for PHEVs with a smaller battery pack, as within-day recharges compensate battery capacity.« less
Hinrichsen, D
1995-01-01
This article concerns the Organization of the Petroleum Exporting Countries (OPEC) crisis and its impact on energy efficiency measures in the US. In 1985, when the OPEC collapsed, the US government had avoided the need to construct 350 gigawatts of new electric capacity. The most successful efficiency improvements, especially in household appliances and equipment, lighting and tightened energy efficiency standards in new buildings, resulted from the OPEC event. The real innovation of that time was the change in profit rules for utilities. This revolution and the way some US utilities view energy have not caught on elsewhere. Despite the initiative toward improving energy efficiency in homes, offices and industries, the change has been slow. Partly to blame are the big development banks, which pointed out that short-term conservation and efficiency measures could save at least 15% of the total energy demand without the need for major investment. The benefits of energy conservation was shown during the oil shock when per capita energy consumption fell by 5% in the member states of the Organization of Economic Cooperation and Development, while the per capita gross domestic product grew by a third. There has been a decrease in energy expenditure worldwide, and the scope for further energy savings is enormous, but governments need to recognize and seize the opportunity.
Ahlbrandt, Thomas S.
1997-01-01
The world has recently experienced rapid change to market-driven economies and increasing reliance on petroleum supplies from areas of political instability. The interplay of unprecedented growth of the global population, increasing worldwide energy demand, and political instability in two major petroleum exporting regions (the former Soviet Union and the Middle East) requires that the United States maintains a current, reliable, objective assessment of the world's energy resources. The need is compounded by the environmental implications of rapid increases in coal use in the Far East and international pressure on consumption of fossil fuels.
Energy Resources Program of the U.S. Geological Survey
Weedman, Suzanne
2001-01-01
Our Nation faces the simultaneous challenges of increasing demand for energy, declining domestic production from existing oil and gas fields, and increasing expectations for environmental protection. The Energy Information Administration (2000) forecasts that worldwide energy consumption will increase 32 percent between 1999 and 2020 because of growth of the world economy. Forecasts indicate that in the same time period, U.S. natural gas consumption will increase 62 percent, petroleum consumption will increase 33 percent, and coal consumption will increase 22 percent. The U.S. Geological Survey provides the objective scientific information our society needs for sound decisions regarding land management, environmental quality, and economic, energy, and strategic policy.
Advanced purification of petroleum refinery wastewater by catalytic vacuum distillation.
Yan, Long; Ma, Hongzhu; Wang, Bo; Mao, Wei; Chen, Yashao
2010-06-15
In our work, a new process, catalytic vacuum distillation (CVD) was utilized for purification of petroleum refinery wastewater that was characteristic of high chemical oxygen demand (COD) and salinity. Moreover, various common promoters, like FeCl(3), kaolin, H(2)SO(4) and NaOH were investigated to improve the purification efficiency of CVD. Here, the purification efficiency was estimated by COD testing, electrolytic conductivity, UV-vis spectrum, gas chromatography-mass spectrometry (GC-MS) and pH value. The results showed that NaOH promoted CVD displayed higher efficiency in purification of refinery wastewater than other systems, where the pellucid effluents with low salinity and high COD removal efficiency (99%) were obtained after treatment, and the corresponding pH values of effluents varied from 7 to 9. Furthermore, environment estimation was also tested and the results showed that the effluent had no influence on plant growth. Thus, based on satisfied removal efficiency of COD and salinity achieved simultaneously, NaOH promoted CVD process is an effective approach to purify petroleum refinery wastewater. Copyright 2010 Elsevier B.V. All rights reserved.
Jaramillo, Paulina; Griffin, W Michael; Matthews, H Scott
2008-10-15
Liquid transportation fuels derived from coal and natural gas could helpthe United States reduce its dependence on petroleum. The fuels could be produced domestically or imported from fossil fuel-rich countries. The goal of this paper is to determine the life-cycle GHG emissions of coal- and natural gas-based Fischer-Tropsch (FT) liquids, as well as to compare production costs. The results show that the use of coal- or natural gas-based FT liquids will likely lead to significant increases in greenhouse gas (GHG) emissions compared to petroleum-based fuels. In a best-case scenario, coal- or natural gas-based FT-liquids have emissions only comparable to petroleum-based fuels. In addition, the economic advantages of gas-to-liquid (GTL) fuels are not obvious: there is a narrow range of petroleum and natural gas prices at which GTL fuels would be competitive with petroleum-based fuels. CTLfuels are generally cheaper than petroleum-based fuels. However, recent reports suggest there is uncertainty about the availability of economically viable coal resources in the United States. If the U.S. has a goal of increasing its energy security, and at the same time significantly reducing its GHG emissions, neither CTL nor GTL consumption seem a reasonable path to follow.
Washington State petroleum markets data book. [Contains Glossary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagerberg, B.; Anderson, M.
1992-01-01
The Data Book is a resource for policymakers and analysis who work on energy issues. It is also for Washington citizens who are interested in knowing more about the role petroleum plays in Washington State. The Data Book is organized into four parts and four appendixes. Each part discusses a particular aspect of the petroleum market: supply (crude and refined products, refinery production, and distribution); consumption (by sector and by fuel); prices (crude and refined products, spot and transaction, wholesale and retail); and reliability of supply (stocks, reserves, emergencies, and the environment). Each part is followed by tables of supportingmore » data. The appendixes contain related and supporting tables, a glossary of technical terms, and a list of the sources of data for each part of the book.« less
Wu, Manli; Li, Wei; Dick, Warren A; Ye, Xiqiong; Chen, Kaili; Kost, David; Chen, Liming
2017-02-01
Bioremediation of hydrocarbon degradation in petroleum-polluted soil is carried out by various microorganisms. However, little information is available for the relationships between hydrocarbon degradation rates in petroleum-contaminated soil and microbial population and activity in laboratory assay. In a microcosm study, degradation rate and efficiency of total petroleum hydrocarbons (TPH), alkanes, and polycyclic aromatic hydrocarbons (PAH) in a petroleum-contaminated soil were determined using an infrared photometer oil content analyzer and a gas chromatography mass spectrometry (GC-MS). Also, the populations of TPH, alkane, and PAH degraders were enumerated by a modified most probable number (MPN) procedure, and the hydrocarbon degrading activities of these degraders were determined by the Biolog (MT2) MicroPlates assay. Results showed linear correlations between the TPH and alkane degradation rates and the population and activity increases of TPH and alkane degraders, but no correlation was observed between the PAH degradation rates and the PAH population and activity increases. Petroleum hydrocarbon degrading microbial population measured by MPN was significantly correlated with metabolic activity in the Biolog assay. The results suggest that the MPN procedure and the Biolog assay are efficient methods for assessing the rates of TPH and alkane, but not PAH, bioremediation in oil-contaminated soil in laboratory. Copyright © 2016 Elsevier Ltd. All rights reserved.
The influence of biomass energy consumption on CO2 emissions: a wavelet coherence approach.
Bilgili, Faik; Öztürk, İlhan; Koçak, Emrah; Bulut, Ümit; Pamuk, Yalçın; Muğaloğlu, Erhan; Bağlıtaş, Hayriye H
2016-10-01
In terms of today, one may argue, throughout observations from energy literature papers, that (i) one of the main contributors of the global warming is carbon dioxide emissions, (ii) the fossil fuel energy usage greatly contributes to the carbon dioxide emissions, and (iii) the simulations from energy models attract the attention of policy makers to renewable energy as alternative energy source to mitigate the carbon dioxide emissions. Although there appears to be intensive renewable energy works in the related literature regarding renewables' efficiency/impact on environmental quality, a researcher might still need to follow further studies to review the significance of renewables in the environment since (i) the existing seminal papers employ time series models and/or panel data models or some other statistical observation to detect the role of renewables in the environment and (ii) existing papers consider mostly aggregated renewable energy source rather than examining the major component(s) of aggregated renewables. This paper attempted to examine clearly the impact of biomass on carbon dioxide emissions in detail through time series and frequency analyses. Hence, the paper follows wavelet coherence analyses. The data covers the US monthly observations ranging from 1984:1 to 2015 for the variables of total energy carbon dioxide emissions, biomass energy consumption, coal consumption, petroleum consumption, and natural gas consumption. The paper thus, throughout wavelet coherence and wavelet partial coherence analyses, observes frequency properties as well as time series properties of relevant variables to reveal the possible significant influence of biomass usage on the emissions in the USA in both the short-term and the long-term cycles. The paper also reveals, finally, that the biomass consumption mitigates CO2 emissions in the long run cycles after the year 2005 in the USA.
Studies on crude oil removal from pebbles by the application of biodiesel.
Xia, Wen-xiang; Xia, Yan; Li, Jin-cheng; Zhang, Dan-feng; Zhou, Qing; Wang, Xin-ping
2015-02-15
Oil residues along shorelines are hard to remove after an oil spill. The effect of biodiesel to eliminate crude oil from pebbles alone and in combination with petroleum degrading bacteria was investigated in simulated systems. Adding biodiesel made oil detach from pebbles and formed oil-biodiesel mixtures, most of which remained on top of seawater. The total petroleum hydrocarbon (TPH) removal efficiency increased with biodiesel quantities but the magnitude of augment decreased gradually. When used with petroleum degrading bacteria, the addition of biodiesel (BD), nutrients (NUT) and BD+NUT increased the dehydrogenase activity and decreased the biodegradation half lives. When BD and NUT were replenished at the same time, the TPH removal efficiency was 7.4% higher compared to the total improvement of efficiency when BD and NUT was added separately, indicating an additive effect of biodiesel and nutrients on oil biodegradation. Copyright © 2014 Elsevier Ltd. All rights reserved.
THE SOLAR TRANSFORMITY OF OIL AND PETROLEUM NATURAL GAS
This paper presents an emergy evaluation of the biogeochemical process of petroleum formation. Unlike the previous calculation, in which the transformity of crude oil was back calculated from the relative efficiency of electricity production and factors relating coal to transport...
Energy: Selected Facts and Numbers
2006-11-29
emissions led utilities to convert a number of coal-fired powerplants to burn oil, and many new plants were designed to burn oil or natural gas. Utilities...Tables 5.13a-d. Industrial consumption of petroleum, which includes such large consumers as refineries and petrochemical industries, has remained about...1960s because it resulted in lower emissions of air pollutants, and consumption continued in the 1970s despite the price surge because natural gas was
Environmental issues of petroleum exploration and production: Introduction
Kharaka, Yousif K.; Dorsey, Nancy S.
2005-01-01
Energy is the lifeblood of our planet Earth, an essential commod- ity that powers the expanding global economy. Starting in the 1950s, oil and natural gas became the main sources of primary energy for the increasing world population, and this dominance is expected to continue for several more decades (Edwards, 1997; Energy Information Administration (EIA), 2004). In the United States, petroleum production started in 1859 when Drake's well was drilled near Titusville, Pennsylvania, and oil and natural gas currently supply approximately 63% of the energy consumption; forecasts indicate that by 2025, their use will increase by about 40% to 28.3 million bbl/day and to 31.4 tcf/yr (EIA, 2004). The clear benefits of petroleum consumption, however, can carry major environmental impacts that may be regional or global in scale, in- cluding air pollution, global climate change, and oil spills. This vol- ume of Environmental Geosciences, covering environmental impacts of petroleum exploration and production, does not address these major impacts directly because air pollution and global warming are issues related primarily to petroleum and coal uses, and major oil spills are generally attributed to marine petroleum transportation, such as the Exxon Valdez's 1989 spill of 260,000 bbl of oil into Prince William Sound, Alaska. Exploration for and production of petroleum, however, have caused local detrimental impacts to soils, surface and groundwa- ters, and ecosystems in the 36 producing states in the United States (Richter and Kreitler, 1993; Kharaka and Hanor, 2003). These im- pacts arose primarily from the improper disposal of some of the large volumes (presently estimated at 20 billion bbl/yr total pro- duced) of saline water produced with oil and gas, from accidental hydrocarbon and produced-water releases, and from abandoned oil wells that were orphaned or not correctly plugged (Kharaka et al., 1995; Veil et al., 2004). Impacts and ground-surface disturbances, in the order of several acres per well, can also arise from related activities such as site clearance, construction of roads, tank bat- teries, brine pits and pipelines, and other land modifications nec- essary for the drilling of exploration and production wells and construction of production facilities. The cumulative impacts from these operations are high, because a total of about 3.5 million oil.
Owsianiak, Mikołaj; Chrzanowski, Łukasz; Szulc, Alicja; Staniewski, Jacek; Olszanowski, Andrzej; Olejnik-Schmidt, Agnieszka K; Heipieper, Hermann J
2009-02-01
Biodegradation experiments for diesel/biodiesel blends in liquid cultures by-petroleum degrading microbial consortium showed that for low amendments of biodiesel (10%) the overall biodegradation efficiency of the mixture after seven days was lower than for petroleum diesel fuel. Preferential usage of methyl esters in the broad biodiesel concentration range and diminished biodegradation of petroleum hydrocarbons for 10% biodiesel blend was confirmed. Rhamnolipids improved biodegradation efficiency only for blends with low content of biodiesel. Emulsion formation experiments showed that biodiesel amendments significantly affected dispersion of fuel mixtures in water. The presence of rhamnolipids biosurfactant affected stability of such emulsions and altered cell surface properties of tested consortium.
Patterns and trends : New York State energy profiles, 1983-1997
DOT National Transportation Integrated Search
1998-12-01
Section 1 presents a comparison of energy consumption, selected energy prices, source of petroleum products, and other factors influencing energy demand and expenditures for the U.S. and NYS. Section 2 provides historic data for primary and net energ...
Clean Cities Now Vol. 19, No. 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2015-07-24
Now is the official bi-annual newsletter of Clean Cities, an initiative designed to reduce petroleum consumption in the transportation sector by advancing the use of alternative and renewable fuels, fuel economy improvements, idle-reduction measures, and new technologies, as they emerge.
2010-08-01
petroleum industry. Moreover, heterogeneity control strategies can be applied to improve the efficiency of a variety of in situ remediation technologies...conditions that differ significantly from those found in environmental systems . Therefore many of the design criteria used by the petroleum industry for...were helpful in constructing numerical models in up-scaled systems (2-D tanks). The UTCHEM model was able to successfully simulate 2-D experimental
Energy performance evaluation of AAC
NASA Astrophysics Data System (ADS)
Aybek, Hulya
The U.S. building industry constitutes the largest consumer of energy (i.e., electricity, natural gas, petroleum) in the world. The building sector uses almost 41 percent of the primary energy and approximately 72 percent of the available electricity in the United States. As global energy-generating resources are being depleted at exponential rates, the amount of energy consumed and wasted cannot be ignored. Professionals concerned about the environment have placed a high priority on finding solutions that reduce energy consumption while maintaining occupant comfort. Sustainable design and the judicious combination of building materials comprise one solution to this problem. A future including sustainable energy may result from using energy simulation software to accurately estimate energy consumption and from applying building materials that achieve the potential results derived through simulation analysis. Energy-modeling tools assist professionals with making informed decisions about energy performance during the early planning phases of a design project, such as determining the most advantageous combination of building materials, choosing mechanical systems, and determining building orientation on the site. By implementing energy simulation software to estimate the effect of these factors on the energy consumption of a building, designers can make adjustments to their designs during the design phase when the effect on cost is minimal. The primary objective of this research consisted of identifying a method with which to properly select energy-efficient building materials and involved evaluating the potential of these materials to earn LEED credits when properly applied to a structure. In addition, this objective included establishing a framework that provides suggestions for improvements to currently available simulation software that enhance the viability of the estimates concerning energy efficiency and the achievements of LEED credits. The primary objective was accomplished by using conducting several simulation models to determine the relative energy efficiency of wood-framed, metal-framed, and Aerated Autoclaved Concrete (AAC) wall structures for both commercial and residential buildings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moawad, Ayman; Kim, Namdoo; Shidore, Neeraj
2016-01-01
The U.S. Department of Energy (DOE) Vehicle Technologies Office (VTO) has been developing more energy-efficient and environmentally friendly highway transportation technologies that will enable America to use less petroleum. The long-term aim is to develop "leapfrog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment. This report reviews the results of the DOE VTO. It gives an assessment of the fuel and light-duty vehicle technologies that are most likely to be established, developed, and eventually commercialized during the next 30 years (up to 2045). Because of themore » rapid evolution of component technologies, this study is performed every two years to continuously update the results based on the latest state-of-the-art technologies.« less
Zabuga, G A; Katul'skiĭ, Iu N; Gorbunova, O V; Storozheva, L N
2011-01-01
The process installations and storage reservoirs of a petroleum refinery have leaks of petroleum products (PP) that pollute soil, underground waters, and eventually nearest water objects, by worsening their hygienic state. Environmental and economic assessments of the Angara River water protection system that is in operation at the petroleum refinery OAO "Angara Petroleum Company", which comprises well clusters, a gravel-filled trench, and a drainage system, have shown the high values of preventable relative natural and economic damages and other economic indicators. At the same time, comparison of the amount of PPs accumulated at the industrial site with their annual withdrawal has demonstrated a need for further development of a river protection system. Therefore the environmental protection system efficacy evaluated by the quality of goal attainment and by means of a matrix of algorithmized statements was 60% or 5 of 20 scores, which shows the necessity of special measures to protect Angara River waters. The elaboration and implementation of these measures associated with considerable expenditures make it possible not only to increase the environmental efficiency of water protection of the Angara River, but also to do the hygienic quality of water use in its related localities.
Biosurfactants: Promising Molecules for Petroleum Biotechnology Advances.
De Almeida, Darne G; Soares Da Silva, Rita de Cássia F; Luna, Juliana M; Rufino, Raquel D; Santos, Valdemir A; Banat, Ibrahim M; Sarubbo, Leonie A
2016-01-01
The growing global demand for sustainable technologies that improves the efficiency of petrochemical processes in the oil industry has driven advances in petroleum biotechnology in recent years. Petroleum industry uses substantial amounts of petrochemical-based synthetic surfactants in its activities as mobilizing agents to increase the availability or recovery of hydrocarbons as well as many other applications related to extraction, treatment, cleaning, and transportation. However, biosurfactants have several potential applications for use across the oil processing chain and in the formulations of petrochemical products such as emulsifying/demulsifying agents, anticorrosive, biocides for sulfate-reducing bacteria, fuel formulation, extraction of bitumen from tar sands, and many other innovative applications. Due to their versatility and proven efficiency, biosurfactants are often presented as valuable versatile tools that can transform and modernize petroleum biotechnology in an attempt to provide a true picture of state of the art and directions or use in the oil industry. We believe that biosurfactants are going to have a significant role in many future applications in the oil industries and in this review therefore, we highlight recent important relevant applications, patents disclosures and potential future applications for biosurfactants in petroleum and related industries.
Reducing power production costs by utilizing petroleum coke. Annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galbreath, K.C.
1998-07-01
A Powder River Basin subbituminous coal from the North Antelope mine and a petroleum shot coke were received from Northern States Power Company (NSP) for testing the effects of parent fuel properties on coal-coke blend grindability and evaluating the utility of petroleum coke blending as a strategy for improving electrostatic precipitator (ESP) particulate collection efficiency. Petroleum cokes are generally harder than coals, as indicated by Hardgrove grindability tests. Therefore, the weaker coal component may concentrate in the finer size fractions during the pulverizing of coal-coke blends. The possibility of a coal-coke size fractionation effect is being investigated because it maymore » adversely affect combustion performance, it may enhance ESP particulate collection efficiency. Petroleum cokes contain much higher concentrations of V relative to coals. Consequently, coke blending can significantly increase the V content of fly ash resulting from coal-coke combustion. Pentavalent vanadium oxide (V{sub 2}O{sub 5}) is a known catalyst for transforming gaseous sulfur dioxide (SO{sub 2}[g]) to gaseous sulfur trioxide (SO{sub 3}[g]). The presence of SO{sub 3}(g) strongly affects fly ash resistivity and, thus, ESP performance.« less
Biosurfactants: Promising Molecules for Petroleum Biotechnology Advances
De Almeida, Darne G.; Soares Da Silva, Rita de Cássia F.; Luna, Juliana M.; Rufino, Raquel D.; Santos, Valdemir A.; Banat, Ibrahim M.; Sarubbo, Leonie A.
2016-01-01
The growing global demand for sustainable technologies that improves the efficiency of petrochemical processes in the oil industry has driven advances in petroleum biotechnology in recent years. Petroleum industry uses substantial amounts of petrochemical-based synthetic surfactants in its activities as mobilizing agents to increase the availability or recovery of hydrocarbons as well as many other applications related to extraction, treatment, cleaning, and transportation. However, biosurfactants have several potential applications for use across the oil processing chain and in the formulations of petrochemical products such as emulsifying/demulsifying agents, anticorrosive, biocides for sulfate-reducing bacteria, fuel formulation, extraction of bitumen from tar sands, and many other innovative applications. Due to their versatility and proven efficiency, biosurfactants are often presented as valuable versatile tools that can transform and modernize petroleum biotechnology in an attempt to provide a true picture of state of the art and directions or use in the oil industry. We believe that biosurfactants are going to have a significant role in many future applications in the oil industries and in this review therefore, we highlight recent important relevant applications, patents disclosures and potential future applications for biosurfactants in petroleum and related industries. PMID:27843439
Biodiesel from lemon and lemon grass oil and its effect on engine performance and exhaust emission
NASA Astrophysics Data System (ADS)
Dhivagar, R.; Sundararaj, S.; Vignesh, V. R.
2018-03-01
In the present scenario many developing countries are depending on oil producing nations for their fuel resources. Due to demand and scarcity of the fuel, there has been a huge increase in fuel prices. The vehicular population is also continuously increasing and becoming a great menace to peoples. This paper aims to provide an alternate solution for petroleum based fuels. It suggests that biodiesel produced from lemon and lemon grass oil can be used as an alternative fuel. This work investigates the thermal performance of four stroke diesel engine using blends of biodiesel and diesel as a fuel. Performance parameters like brake thermal efficiency, mechanical efficiency and specific fuel consumption were measured at different loads for diesel and various combination of biofuel (L10, L20, and L30). The maximum brake thermal efficiency obtained is about 26.12%for L20 which is slightly higher than that of diesel (24.91%). Engine experimental results showed that exhaust emissions including CO2 and HC were reduced by 6% and 5% for L20 mixture of biodiesel whereas CO emission was as same as diesel. However, there was increase in NOxby 26% to the diesel fuel.
Protecting Public Health: Plug-In Electric Vehicle Charging and the Healthcare Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryder, Carrie; Lommele, Stephen
In 2014, the U.S. transportation sector consumed more than 13 million barrels of petroleum a day, approximately 70% of all domestic petroleum consumption. Internal combustion engine vehicles are major sources of greenhouse gases (GHGs), smog-forming compounds, particulate matter, and other air pollutants. Widespread use of alternative fuels and advanced vehicles, including plug-in electric vehicles (PEVs), can reduce our national dependence on petroleum and decrease the emissions that impact our air quality and public health. Healthcare organizations are major employers and community leaders that are committed to public well-being and are often early adopters of employer best practices. A growing numbermore » of hospitals are offering PEV charging stations for employees to help promote driving electric vehicles, reduce their carbon footprint, and improve local air quality.« less
Clean Cities Now Vol. 20, No. 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2017-01-13
Clean Cities Now is the official semi-annual newsletter of Clean Cities, an initiative designed to reduce petroleum consumption in the transportation sector by advancing the use of alternative and renewable fuels, fuel economy improvements, idle-reduction measures, and new technologies, as they emerge.
Clean Cities Now Vol. 19, No. 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2015-12-18
Clean Cities Now is the official bi-annual newsletter of Clean Cities, an initiative designed to reduce petroleum consumption in the transportation sector by advancing the use of alternative and renewable fuels, fuel economy improvements, idle-reduction measures, and new technologies, as they emerge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin C. Galbreath; Donald L. Toman; Christopher J. Zygarlicke
Petroleum coke, a byproduct of the petroleum-refining process, is an attractive primary or supplemental fuel for power production primarily because of a progressive and predictable increase in the production volumes of petroleum coke (1, 2). Petroleum coke is most commonly blended with coal in proportions suitable to meet sulfur emission compliance. Petroleum coke is generally less reactive than coal; therefore, the cofiring of petroleum coke with coal typically improves ignition, flame stability, and carbon loss relative to the combustion of petroleum coke alone. Although petroleum coke is a desirable fuel for producing relatively inexpensive electrical power, concerns about the effectsmore » of petroleum coke blending on combustion and pollution control processes exist in the coal-fired utility industry (3). The Energy & Environmental Research Center (EERC) completed a 2-year technical assessment of petroleum coke as a supplemental fuel. A survey questionnaire was sent to seven electric utility companies that are currently cofiring coal and petroleum coke in an effort to solicit specific suggestions on research needs and fuel selections. An example of the letter and survey questionnaire is presented in Appendix A. Interest was expressed by most utilities in evaluating the effects of petroleum coke blending on grindability, combustion reactivity, fouling, slagging, and fly ash emissions control. Unexpectedly, concern over corrosion was not expressed by the utilities contacted. Although all seven utilities responded to the question, only two utilities, Northern States Power Company (NSP) and Ameren, sent fuels to the EERC for evaluation. Both utilities sent subbituminous coals from the Power River Basin and petroleum shot coke samples. Petroleum shot coke is produced unintentionally during operational upsets in the petroleum refining process. This report evaluates the effects of petroleum shot coke blending on grindability, fuel reactivity, fouling/slagging, and electrostatic precipitator (ESP) fly ash collection efficiency.« less
Associated petroleum gas utilization in Tomsk Oblast: energy efficiency and tax advantages
NASA Astrophysics Data System (ADS)
Vazim, A.; Romanyuk, V.; Ahmadeev, K.; Matveenko, I.
2015-11-01
This article deals with oil production companies activities in increasing the utilization volume of associated petroleum gas (APG) in Tomsk Oblast. Cost-effectiveness analysis of associated petroleum gas utilization was carried out using the example of gas engine power station AGP-350 implementation at Yuzhno-Cheremshanskoye field, Tomsk Oblast. Authors calculated the effectiveness taking into account the tax advantages of 2012. The implementation of this facility shows high profitability, the payback period being less than 2 years.
Multi-Shell Nano-CarboScavengers for Petroleum Spill Remediation
Daza, Enrique A.; Misra, Santosh K.; Scott, John; Tripathi, Indu; Promisel, Christine; Sharma, Brajendra K.; Topczewski, Jacek; Chaudhuri, Santanu; Pan, Dipanjan
2017-01-01
Increasingly frequent petroleum contamination in water bodies continues to threaten our ecosystem, which lacks efficient and safe remediation tactics both on macro and nanoscales. Current nanomaterial and dispersant remediation methods neglect to investigate their adverse environmental and biological impact, which can lead to a synergistic chemical imbalance. In response to this rising threat, a highly efficient, environmentally friendly and biocompatible nano-dispersant has been developed comprising a multi-shelled nanoparticle termed ‘Nano-CarboScavengers’ (NCS) with native properties for facile recovery via booms and mesh tools. NCS treated different forms of petroleum oil (raw and distillate form) with considerable efficiency (80% and 91%, respectively) utilizing sequestration and dispersion abilities in tandem with a ~10:1 (oil: NCS; w/w) loading capacity. In extreme contrast with chemical dispersants, the NCS was found to be remarkably benign in in vitro and in vivo assays. Additionally, the carbonaceous nature of NCS broke down by human myeloperoxidase and horseradish peroxidase enzymes, revealing that incidental biological uptake can enzymatically digest the sugar based core. PMID:28157204
Multi-Shell Nano-CarboScavengers for Petroleum Spill Remediation
NASA Astrophysics Data System (ADS)
Daza, Enrique A.; Misra, Santosh K.; Scott, John; Tripathi, Indu; Promisel, Christine; Sharma, Brajendra K.; Topczewski, Jacek; Chaudhuri, Santanu; Pan, Dipanjan
2017-02-01
Increasingly frequent petroleum contamination in water bodies continues to threaten our ecosystem, which lacks efficient and safe remediation tactics both on macro and nanoscales. Current nanomaterial and dispersant remediation methods neglect to investigate their adverse environmental and biological impact, which can lead to a synergistic chemical imbalance. In response to this rising threat, a highly efficient, environmentally friendly and biocompatible nano-dispersant has been developed comprising a multi-shelled nanoparticle termed ‘Nano-CarboScavengers’ (NCS) with native properties for facile recovery via booms and mesh tools. NCS treated different forms of petroleum oil (raw and distillate form) with considerable efficiency (80% and 91%, respectively) utilizing sequestration and dispersion abilities in tandem with a ~10:1 (oil: NCS; w/w) loading capacity. In extreme contrast with chemical dispersants, the NCS was found to be remarkably benign in in vitro and in vivo assays. Additionally, the carbonaceous nature of NCS broke down by human myeloperoxidase and horseradish peroxidase enzymes, revealing that incidental biological uptake can enzymatically digest the sugar based core.
Feasibility of personal rapid transit in Ithaca, New York : final report, September 2010.
DOT National Transportation Integrated Search
2010-09-01
Personal Rapid Transit (PRT) is an emerging technology that has the potential to reduce the emission of greenhouse : gases and the consumption of petroleum products by reducing vehicle miles traveled (VMT). This research study : funded by the New Yor...
Andres, R. J. [University of Alaska, Fairbanks, Alaska (USA); Marland, Greg [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Bischof, Steve [Connecticut College, New London, Connecticut
1996-01-01
This database contains estimates of the annual mean value of 13C of CO2 emissions from fossil-fuel consumption and cement manufacture for 1860-1992. It also contains estimates of the value of 13C for 1° latitude bands for the years 1950, 1960, 1970, 1980, 1990, 1991, and 1992. These estimates of the carbon isotopic signature account for the changing mix of coal, petroleum, and natural gas being consumed and for the changing mix of petroleum from various producing areas with characteristic isotopic signatures. This time series of fossil-fuel 13C signature provides an additional constraint for balancing the sources and sinks of the global carbon cycle and complements the atmospheric 13C measurements that are used to partition the uptake of fossil carbon emissions among the ocean, atmosphere, and terrestrial biosphere reservoirs. The data are in two files ranging in size from 2.8 to 12.9 kB.
Davis, Gregory B; Laslett, Dean; Patterson, Bradley M; Johnston, Colin D
2013-03-15
Accurate estimation of biodegradation rates during remediation of petroleum impacted soil and groundwater is critical to avoid excessive costs and to ensure remedial effectiveness. Oxygen depth profiles or oxygen consumption over time are often used separately to estimate the magnitude and timeframe for biodegradation of petroleum hydrocarbons in soil and subsurface environments. Each method has limitations. Here we integrate spatial and temporal oxygen concentration data from a field experiment to develop better estimates and more reliably quantify biodegradation rates. During a nine-month bioremediation trial, 84 sets of respiration rate data (where aeration was halted and oxygen consumption was measured over time) were collected from in situ oxygen sensors at multiple locations and depths across a diesel non-aqueous phase liquid (NAPL) contaminated subsurface. Additionally, detailed vertical soil moisture (air-filled porosity) and NAPL content profiles were determined. The spatial and temporal oxygen concentration (respiration) data were modeled assuming one-dimensional diffusion of oxygen through the soil profile which was open to the atmosphere. Point and vertically averaged biodegradation rates were determined, and compared to modeled data from a previous field trial. Point estimates of biodegradation rates assuming no diffusion ranged up to 58 mg kg(-1) day(-1) while rates accounting for diffusion ranged up to 87 mg kg(-1) day(-1). Typically, accounting for diffusion increased point biodegradation rate estimates by 15-75% and vertically averaged rates by 60-80% depending on the averaging method adopted. Importantly, ignoring diffusion led to overestimation of biodegradation rates where the location of measurement was outside the zone of NAPL contamination. Over or underestimation of biodegradation rate estimates leads to cost implications for successful remediation of petroleum impacted sites. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sarma, Pullela K.; Srinivas, Vadapalli; Rao, Vedula Dharma; Kumar, Ayyagari Kiran
2011-12-01
The present investigation summarizes detailed experimental studies with standard lubricants of commercial quality known as Racer-4 of Hindustan Petroleum Corporation (India) dispersed with different mass concentrations of nanoparticles of Cu and TiO2. The test bench is fabricated with a four-stroke Hero-Honda motorbike hydraulically loaded at the rear wheel with proper instrumentation to record the fuel consumption, the load on the rear wheel, and the linear velocity. The whole range of data obtained on a stationery bike is subjected to regression analysis to arrive at various relationships between fuel consumption as a function of brake power, linear velocity, and percentage mass concentration of nanoparticles in the lubricant. The empirical relation correlates with the observed data with reasonable accuracy. Further, extension of the analysis by developing a mathematical model has revealed a definite improvement in brake thermal efficiency which ultimately affects the fuel economy by diminishing frictional power in the system with the introduction of nanoparticles into the lubricant. The performance of the engine seems to be better with nano Cu-Racer-4 combination than the one with nano TiO2.
2011-01-01
The present investigation summarizes detailed experimental studies with standard lubricants of commercial quality known as Racer-4 of Hindustan Petroleum Corporation (India) dispersed with different mass concentrations of nanoparticles of Cu and TiO2. The test bench is fabricated with a four-stroke Hero-Honda motorbike hydraulically loaded at the rear wheel with proper instrumentation to record the fuel consumption, the load on the rear wheel, and the linear velocity. The whole range of data obtained on a stationery bike is subjected to regression analysis to arrive at various relationships between fuel consumption as a function of brake power, linear velocity, and percentage mass concentration of nanoparticles in the lubricant. The empirical relation correlates with the observed data with reasonable accuracy. Further, extension of the analysis by developing a mathematical model has revealed a definite improvement in brake thermal efficiency which ultimately affects the fuel economy by diminishing frictional power in the system with the introduction of nanoparticles into the lubricant. The performance of the engine seems to be better with nano Cu-Racer-4 combination than the one with nano TiO2. PMID:21711765
Sarma, Pullela K; Srinivas, Vadapalli; Rao, Vedula Dharma; Kumar, Ayyagari Kiran
2011-03-17
The present investigation summarizes detailed experimental studies with standard lubricants of commercial quality known as Racer-4 of Hindustan Petroleum Corporation (India) dispersed with different mass concentrations of nanoparticles of Cu and TiO2. The test bench is fabricated with a four-stroke Hero-Honda motorbike hydraulically loaded at the rear wheel with proper instrumentation to record the fuel consumption, the load on the rear wheel, and the linear velocity. The whole range of data obtained on a stationery bike is subjected to regression analysis to arrive at various relationships between fuel consumption as a function of brake power, linear velocity, and percentage mass concentration of nanoparticles in the lubricant. The empirical relation correlates with the observed data with reasonable accuracy. Further, extension of the analysis by developing a mathematical model has revealed a definite improvement in brake thermal efficiency which ultimately affects the fuel economy by diminishing frictional power in the system with the introduction of nanoparticles into the lubricant. The performance of the engine seems to be better with nano Cu-Racer-4 combination than the one with nano TiO2.
NASA Astrophysics Data System (ADS)
Vatter, Marc H.
In Part I, I model a jurisdiction where residents differ by income, and housing confers benefits on neighbors. By majority vote, residents choose minima on consumption of housing that differ by neighborhood, and they separate into neighborhoods by income. In practice, such laws take the form of minimum lot sizes, bans on multi-family units, building codes, and other restrictions. This policy maximizes a benefit-cost welfare criterion. Alternative policies include no minima and a uniform minimum citywide, based on libertarian and utilitarian welfare criteria, respectively. I compare the policies in terms of efficiency, implementability, and distributional consequences, and give numerical examples based on U.S. data. Willingness to pay for the benefit-cost optimum is convex in income. This helps to explain why neighborhood stratification by income has outpaced stratification of income itself in U.S metropolitan areas since 1970. In the examples, gains to a rich household are in the thousands and losses to the poor in the hundreds of dollars annually. In Part II, I estimate the stockpile of petroleum sufficient to contain a price shock perpetrated by the OPEC. I estimate world demand for petroleum such that the long run price elasticity exceeds that in the short run, and supply from non-OPEC producers with a similar kind of lagged response. Given this structure for elasticities, OPEC profits from sudden increases in price. I simulate interaction among consumers, non-OPEC producers, OPEC, and an International Energy Agency (IEA) that punishes OPEC by releasing oil onto the market. I endow the IEA with increasingly large stockpiles until they suffice to limit price shocks to specified levels. Every 5 reduction in the shock raises present-valued world GDP by about 650 billion. The IEA now has 1.4 billion barrels of petroleum, including 700 million in the U.S. Strategic Petroleum Reserve. A 3 billion barrel stockpile would suffice to reduce a 35 price shock to 20, raising world GDP by about 2 trillion. A 5 billion barrel stockpile would cut the shock to 5. The benefits of doing so are in the trillions of dollars, while lost profits to OPEC are in the hundreds of billions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chudnovsky, Yaroslav; Kozlov, Aleksandr
Green petroleum coke (GPC) is an oil refining byproduct that can be used directly as a solid fuel or as a feedstock for the production of calcined petroleum coke. GPC contains a high amount of volatiles and sulfur. During the calcination process, the GPC is heated to remove the volatiles and sulfur to produce purified calcined coke, which is used in the production of graphite, electrodes, metal carburizers, and other carbon products. Currently, more than 80% of calcined coke is produced in rotary kilns or rotary hearth furnaces. These technologies provide partial heat utilization of the calcined coke to increasemore » efficiency of the calcination process, but they also share some operating disadvantages. However, coke calcination in an electrothermal fluidized bed (EFB) opens up a number of potential benefits for the production enhancement, while reducing the capital and operating costs. The increased usage of heavy crude oil in recent years has resulted in higher sulfur content in green coke produced by oil refinery process, which requires a significant increase in the calcinations temperature and in residence time. The calorific value of the process off-gas is quite substantial and can be effectively utilized as an “opportunity fuel” for combined heat and power (CHP) production to complement the energy demand. Heat recovered from the product cooling can also contribute to the overall economics of the calcination process. Preliminary estimates indicated the decrease in energy consumption by 35-50% as well as a proportional decrease in greenhouse gas emissions. As such, the efficiency improvement of the coke calcinations systems is attracting close attention of the researchers and engineers throughout the world. The developed technology is intended to accomplish the following objectives: - Reduce the energy and carbon intensity of the calcined coke production process. - Increase utilization of opportunity fuels such as industrial waste off-gas from the novel petroleum coke calcination process. - Increase the opportunity of heat (chemical and physical) utilization from process off-gases and solid product. - Develop a design of advanced CHP system utilizing off-gases as an “opportunity fuel” for petroleum coke calcinations and sensible heat of calcined coke. A successful accomplishment of the aforementioned objectives will contribute toward the following U.S. DOE programmatic goals: - Drive a 25% reduction in U. S. industrial energy intensity by 2017 in support of EPAct 2005; - Contribute to an 18% reduction in U.S. carbon intensity by 2012 as established by the Administration’s “National Goal to Reduce Emissions Intensity.” 8« less
,
2000-01-01
Oil and natural gas account for approximately 63 percent of the world’s total energy consumption. The U.S. Geological Survey periodically estimates the amount of oil and gas remaining to be found in the world. Since 1981, each of the last four of these assessments has shown a slight increase in the combined volume of identified reserves and undiscovered resources. The latest assessment estimates the volume of technically recoverable conventional oil and gas that may be added to the world's reserves, exclusive of the United States, in the next 30 years. The USGS World Petroleum Assessment 2000 reports an increase in global petroleum resources, including a 20-percent increase in undiscovered oil and a 14-percent decrease in undiscovered natural gas compared to the previous assessment (table 1). These results have important implications for energy prices, policy, security, and the global resource balance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabourin, T.D.; Tullis, R.E.
1981-06-01
The effects of petroleum derivatives on morality of marine invertebrates is now well established. Aromatics are considered to be the most toxic of all oil fractions. Recent studies of marine invertebrates have focused mainly upon respiration, locomotion, and growth. The filter feeding marine bivalves have received primary attention due to their proximity to coastal oil spills, importance in human food consumption and possible role in petroleum hydrocarbon bioconcentration. If these organisms are to be used as monitors in the future, then it is important to learn something of how quickly the bivalve responds metabolically to changes in ambient levels ofmore » petroleum hydrocarbons. Respiration and heart activity reveal a great deal of information concerning the physiological state of the bivalve. We report measrements of these two variables in the mussel, Mytilus californianus (Conrad), under conditions of exposure to, and recovery from, three aromatic hydrocarbons.« less
NASA Astrophysics Data System (ADS)
Imfeld, A.; Ouellet, A.; Gelinas, Y.
2016-12-01
Crude oil and petroleum products are continually being introduced into the environment during transportation, production, consumption and storage. Source identification of these organic contaminants proves challenging due to a variety of factors; samples tend to be convoluted, compounds need to be separated from an unresolved complex mixtures of highly altered aliphatic and aromatic compounds, and chemical composition and biomarker distributions can be altered by weathering, aging, and degradation processes. The aim of our research is to optimize a molecular and isotopic (δ13C, δ2H) method to fingerprint and identify petroleum contaminants in soil and sediment matrices, and to trace the temporal and spatial extent of the contamination event. This method includes the extraction, separation and analysis of the petroleum derived hydrocarbons. Sample extraction and separation is achieved using sonication, column chromatography and urea adduction. Compound identification and molecular/isotopic fingerprinting is obtained by gas chromatography with flame ionization (GC-FID) and mass spectrometer (GC-MS) detection, as well as gas chromatography coupled to an isotope ratio mass spectrometer (GC-IRMS). This method will be used to assist the Centre d'Expertise en Analyse Environnementale du Québec to determine the nature, sources and timing of contamination events as well as for investigating the residual contamination involving petroleum products.
Energy efficiency through integrated environmental management.
Benromdhane, Souad Ahmed
2015-05-01
Integrated environmental management became an economic necessity after industrial development proved to be unsustainable without consideration of environmental direct and indirect impacts. Energy dependency and air pollution along with climate change grew into major challenges facing developed and developing countries alike. Thus, a new global market structure emerged and changed the way we do trade. The search intensified for alternatives to petroleum. However, scientists, policy makers, and environmental activists agreed to focus on strategic conservation and optimization of energy use. Environmental concerns will remain partially unaddressed with the current pace of consumption because greenhouse gas emissions will continue to rise with economic growth. This paper discusses energy efficiency, steady integration of alternative sources, and increased use of best available technologies. Energy criteria developed for environmental labeling certification are presented. Our intention is to encourage manufacturers and service providers to supply consumers with less polluting and energy-consuming goods and services, inform consumers of the environmental and energy impacts, and thereby instill sustainable and responsible consumption. As several programs were initiated in developed countries, environmental labeling requirements created barriers to many exports manufactured in developing countries, affecting current world trade and putting more pressure on countries to meet those requirements. Defining an institutional and legal framework of environmental labeling is a key challenge in implementing such programs for critical economic sectors like tourism, textiles, and food production where energy needs are the most important aspect to control. A case study of Tunisia and its experience with eco-labeling is presented.
2016-01-01
Italy is the fourth largest energy consumer in Europe, after Germany, France, and United Kingdom. Italy's primary energy consumption is driven by oil and gas, which contributed to over three-quarters of Italy's total consumption. The remaining portion is made up of coal, hydro, and other renewable energy sources. Renewable energy sources, excluding hydroelectricity, have increased their share in Italy's energy consumption from less than 2% in 2005 to nearly 10% in 2015. As a net importer of crude oil and natural gas, Italy is heavily dependent on imports to meet about 90% of its oil and gas needs and to maintain its exports of refined petroleum products.
American Samoa: Energy Action Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ness, J. Erik; Haase, Scott; Conrad, Misty
2016-09-01
This document outlines actions being taken to reduce American Samoa's petroleum consumption. It describes the four near-term strategies selected by the American Samoa Renewable Energy Committee during action-planning workshops conducted in May 2016, and describes the steps that will need to be taken to implement those strategies.
DOT National Transportation Integrated Search
2000-02-01
Since the passage of the Energy Policy Act of 1992, some, albeit limited, progress has been made in acquiring alternative fuel vehicles and reducing the consumption of petroleum fuels in transportation. DOE estimates about 1 million alternative fuel ...
An alternative transportation fuels update : a case study of the developing E85 industry.
DOT National Transportation Integrated Search
2011-10-01
As the United States imports more than half of its oil and overall consumption continues to climb, : the 1992 Energy Policy Act established the goal of having alternative fuels replace at least ten : percent of petroleum fuels used in the trans...
Petroleum - politics and power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brossard, E.B.
1983-01-01
Governments all over the world are politically maneuvering themselves into positions where they can use this precious resource as a tool to gain power. Notes the author, ''Even the largest oil company can be powerless against the smallest government.'' This thesis is the foundation of Brossard's investigation of the international oil industry and the power and politics that are involved in the struggle for dominance. Contents: The petroleum age; The Russian nobles and the Soviet Union; The Majors - big oil; The complex operations of the oil industry; U.S. government controls; Natural gas - the most efficient fuel; The Organizationmore » of Petroleum Exporting Countries; OPEC and the international market; Canadian petroleum; Alaska - the hope of the Lower 48.« less
Mac A. Callaham; Arthur J. Stewart; Clara Alarcon; Sara J. McMillen
2002-01-01
Current bioremediation techniques for petroleum-contaminated soils are designed to remove contaminants as quickly and efficiently as possible, but not necessarily with postremediation soil biological quality as a primary objective. To test a simple postbioremediation technique, we added earthworms (Eisenia fetida) or wheat (Triticum aestivum...
Vasudeva, Mohit; Sharma, Sumeet; Mohapatra, S K; Kundu, Krishnendu
2016-01-01
As a substitute to petroleum-derived diesel, biodiesel has high potential as a renewable and environment friendly energy source. For petroleum importing countries the choice of feedstock for biodiesel production within the geographical region is a major influential factor. Crude rice bran oil is found to be good and viable feedstock for biodiesel production. A two step esterification is carried out for higher free fatty acid crude rice bran oil. Blends of 10, 20 and 40 % by vol. crude rice bran biodiesel are tested in a variable compression ratio diesel engine at compression ratio 15, 16, 17 and 18. Engine performance and exhaust emission parameters are examined. Cylinder pressure-crank angle variation is also plotted. The increase in compression ratio from 15 to 18 resulted in 18.6 % decrease in brake specific fuel consumption and 14.66 % increase in brake thermal efficiency on an average. Cylinder pressure increases by 15 % when compression ratio is increased. Carbon monoxide emission decreased by 22.27 %, hydrocarbon decreased by 38.4 %, carbon dioxide increased by 17.43 % and oxides of nitrogen as NOx emission increased by 22.76 % on an average when compression ratio is increased from 15 to 18. The blends of crude rice bran biodiesel show better results than diesel with increase in compression ratio.
Research Advances of Microencapsulation and Its Prospects in the Petroleum Industry
Hu, Miaomiao; Guo, Jintang; Yu, Yongjin; Cao, Lei; Xu, Yang
2017-01-01
Additives in the petroleum industry have helped form an efficient system in the past few decades. Nowadays, the development of oil and gas has been facing more adverse conditions, and smart response microcapsules with the abilities of self-healing, and delayed and targeted release are introduced to eliminate obstacles for further exploration in the petroleum industry. However, limited information is available, only that of field measurement data, and not mechanism theory and structural innovation data. Thus we propose that the basic type, preparation, as well as mechanism of microcapsules partly depend on other mature fields. In this review, we explore the latest advancements in evaluating microcapsules, such as X-ray computed tomography (XCT), simulation, and modeling. Finally, some novel microencapsulated additives with unparalleled advantages, such as flexibility, efficiency, and energy-conservation are described. PMID:28772728
Jalilian Ahmadkalaei, Seyedeh Pegah; Gan, Suyin; Ng, Hoon Kiat; Abdul Talib, Suhaimi
2017-07-01
Due to the health and environmental risks posed by the presence of petroleum-contaminated areas around the world, remediation of petroleum-contaminated soil has drawn much attention from researchers. Combining Fenton reaction with a solvent has been proposed as a novel way to remediate contaminated soils. In this study, a green solvent, ethyl lactate (EL), has been used in conjunction with Fenton's reagents for the remediation of diesel-contaminated soil. The main aim of this research is to determine how the addition of EL affects Fenton reaction for the destruction of total petroleum hydrocarbons (TPHs) within the diesel range. Specifically, the effects of different parameters, including liquid phase volume-to-soil weight (L/S) ratio, hydrogen peroxide (H 2 O 2 ) concentration and EL% on the removal efficiency, have been studied in batch experiments. The results showed that an increase in H 2 O 2 resulted in an increase in removal efficiency of TPH from 68.41% at H 2 O 2 = 0.1 M to 90.21% at H 2 O 2 = 2 M. The lowest L/S, i.e. L/S = 1, had the highest TPH removal efficiency of 85.77%. An increase in EL% up to 10% increased the removal efficiency to 96.74% for TPH, and with further increase in EL%, the removal efficiency of TPH decreased to 89.6%. EL with an optimum value of 10% was found to be best for TPH removal in EL-based Fenton reaction. The power law and pseudo-first order equations fitted well to the experimental kinetic data of Fenton reactions.
Liu, Hong; Wang, Hang; Chen, Xuehua; Liu, Na; Bao, Suriguge
2014-07-01
Three biosurfactant-producing strains designated as BS-1, BS-3, and BS-4 were screened out from crude oil-contaminated soil using a combination of surface tension measurement and oil spreading method. Thin layer chromatography and infrared analysis indicated that the biosurfactants produced by the three strains were lipopeptide, glycolipid, and phospholipid. The enhancement of solubilization and biodegradation of petroleum hydrocarbons in groundwater employing biosurfactant-producing strains was investigated. The three strain mixtures led to more solubilization of petroleum hydrocarbons in groundwater, and the solubilization rate was 10.5 mg l−1. The combination of biosurfactant-producing strains and petroleum-degrading strains exhibited a higher biodegradation efficiency of 85.4 % than the petroleum-degrading strains (71.2 %). Biodegradation was enhanced the greatest with biosurfactant-producing strains and petroleum-degrading strains in a ratio of 1:1. Fluorescence microscopy images illustrate that the oil dispersed into smaller droplets and emulsified in the presence of biosurfactant-producing strains, which attached to the oil. Thus, the biodegradation of petroleum hydrocarbons in groundwater was enhanced.
Dimethyl ether (DME) as an alternative fuel
NASA Astrophysics Data System (ADS)
Semelsberger, Troy A.; Borup, Rodney L.; Greene, Howard L.
With ever growing concerns on environmental pollution, energy security, and future oil supplies, the global community is seeking non-petroleum based alternative fuels, along with more advanced energy technologies (e.g., fuel cells) to increase the efficiency of energy use. The most promising alternative fuel will be the fuel that has the greatest impact on society. The major impact areas include well-to-wheel greenhouse gas emissions, non-petroleum feed stocks, well-to-wheel efficiencies, fuel versatility, infrastructure, availability, economics, and safety. Compared to some of the other leading alternative fuel candidates (i.e., methane, methanol, ethanol, and Fischer-Tropsch fuels), dimethyl ether appears to have the largest potential impact on society, and should be considered as the fuel of choice for eliminating the dependency on petroleum. DME can be used as a clean high-efficiency compression ignition fuel with reduced NO x, SO x, and particulate matter, it can be efficiently reformed to hydrogen at low temperatures, and does not have large issues with toxicity, production, infrastructure, and transportation as do various other fuels. The literature relevant to DME use is reviewed and summarized to demonstrate the viability of DME as an alternative fuel.
Code of Federal Regulations, 2011 CFR
2011-10-01
... or petroleum products or dump refuse or waste other than wash water from any trailer or other vehicle... industrial refuse or waste brought as such from private or municipal property; (5) Pollute or contaminate water supplies or water used for human consumption; or (6) Use a refuse container or disposal facility...
Impact of Increased Use of Hydrogen on Petroleum Consumption and Carbon Dioxide Emissions, The
2008-01-01
This report responds to a request from Senator Byron L. Dorgan for an analysis of the impacts on U.S. energy import dependence and emission reductions resulting from the commercialization of advanced hydrogen and fuel cell technologies in the transportation and distributed generation markets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uslu, T.
Turkey becomes more dependent on the external countries in energy production every year. As an average of the period 1994-2002 the total primary energy production has been 27.9 Mtoe, and consumption has been 73.06 Mtoe, so Turkey is dependent on external countries in petroleum, natural gas, and hard coal consumption. The external dependency rate of these fuels has been at levels of 89.3%, 96.6%, and 82%, respectively. In the projections of Turkey for 2020, the primary energy consumption is estimated to be 298 Mtoe, production is estimated to be 70 Mtoe, the ratio of production to consumption will be reducedmore » to 23.5%, and this situation will cause serious risks for sustainable development. In other words, Turkey will have to import 76.5% of the energy that it consumes in the 2020s.« less
Evaluation of Cities in the Context of Energy Efficient Urban Planning Approach
NASA Astrophysics Data System (ADS)
Handan Yücel Yıldırım, H.; Burcu Gültekin, Arzuhan; Tanrıvermiş, Harun
2017-10-01
Due to the increase in energy need with urbanization as a result of industrialization and rapid population growth, preservation of natural resources has become impossible. As the energy generated particularly from non-renewable natural resources that are in danger of depletion such as coal, natural gas, petroleum is limited, and as environmental issues caused by energy resources increase, means of safe and continuous access to energy are searched in the world. Owing to the limited energy resources and energy dependence on foreign sources in the world, particularly in European Union countries, efforts of increasing the share of renewable energy sources in energy consumption increased in all industries, including urban planning as well. Concordantly, it is necessary to develop policies and approaches that enable utilization of domestic resources complying with the country’s conditions, and monitor developments in energy. Such policies and approaches, which must be implemented in urban planning as well, have great importance in terms of not deteriorating habitable environments of future generations while utilizing present-day energy resources, prevalence of utilization of renewable energy sources, and utilization of energy effectively. For that purpose, this paper puts forward a conceptual framework covering the principles, strategies, and methods on energy efficient urban planning approach, and discusses the energy efficient urban area examples within the scope of the suggested framework.
Straub, Sandrine; Hirsch, Philipp E.; Burkhardt-Holm, Patricia
2017-01-01
Research on the uptake and effects of bioplastics by aquatic organisms is still in its infancy. Here, we aim to advance the field by comparing uptake and effects of microplastic particles (MPP) of a biodegradable bioMPP (polyhydroxybutyrate (PHB)) and petroleum-based MPP (polymethylmethacrylate (PMMA)) in the freshwater amphipod Gammarus fossarum. Ingestion of both MPP in different particle sizes (32–250 µm) occurred after 24 h, with highest ingestion of particles in the range 32–63 µm and almost complete egestion after 64 h. A four-week effect-experiment showed a significant decrease of the assimilation efficiency in amphipods exposed to the petroleum-based MPP from week two onwards. The petroleum-based PMMA affected assimilation efficiency significantly in contrast to the biodegradable PHB, but overall differences in direct comparison of MPP types were small. Both MPP types led to a significantly lower wet weight gain relative to the control treatments. After four weeks, differences between both MPP types and silica, used as a natural particle control, were detected. In summary, these results suggest that both MPP types provoke digestive constraints on the amphipods, which go beyond those of natural non-palatable particles. This highlights the need for more detailed research comparing environmental effects of biodegradable and petroleum-based MPP and testing those against naturally occurring particle loads. PMID:28703776
Sustainable Energy Production from Jatropha Bio-Diesel
NASA Astrophysics Data System (ADS)
Yadav, Amit Kumar; Krishna, Vijai
2012-10-01
The demand for petroleum has risen rapidly due to increasing industrialization and modernization of the world. This economic development has led to a huge demand for energy, where the major part of that energy is derived from fossil sources such as petroleum, coal and natural gas. Continued use of petroleum sourced fuels is now widely recognized as unsustainable because of depleting supplies. There is a growing interest in using Jatropha curcas L. oil as the feedstock for biodiesel production because it is non-edible and thus does not compromise the edible oils, which are mainly used for food consumption. Further, J. curcas L. seed has a high content of free fatty acids that is converted in to biodiesel by trans esterification with alcohol in the presence of a catalyst. The biodiesel produced has similar properties to that of petroleum-based diesel. Biodiesel fuel has better properties than petro diesel fuel; it is renewable, biodegradable, non-toxic, and essentially free of sulfur and aromatics. Biodiesel seems to be a realistic fuel for future. Biodiesel has the potential to economically, socially, and environmentally benefit communities as well as countries, and to contribute toward their sustainable development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-01-01
Clean Cities Now is the official semi-annual newsletter of Clean Cities, an initiative designed to reduce petroleum consumption in the transportation sector by advancing the use of alternative and renewable fuels, fuel economy improvements, idle-reduction measures, and new technologies, as they emerge.
Data and Tools | State, Local, and Tribal Governments | NREL
governments with making informed decisions about clean energy policy and projects. Photo of two people in in our podcasts Clean Energy Policy Basics Understand how to build a clean energy policy portfolio reduce petroleum consumption. Clean Energy Solutions Center No-cost expert policy assistance, webinars
Clean Cities Now, Vol. 18, No. 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2015-01-19
This is version 18.2 of Clean Cities Now, the official biannual newsletter of the Clean Cities program. Clean Cities is an initiative designed to reduce petroleum consumption in the transportation sector by advancing the use of alternative and renewable fuels, fuel economy improvements, idle-reduction measures, and new technologies, as they emerge.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-07
... and other inputs to form cylinders that are shot through with electricity and baked to produce... electricity into the furnace, heating the furnace and melting scrap steel. 11. Graphite electrodes oxidize and... consumption of graphite electrodes. 12. Petroleum needle coke, relative to other varieties of coke, is...
Mohammadi, Mohammad Javad; Ghazlavi, Ebtesam; Gamizji, Samira Rashidi; Sharifi, Hajar; Gamizji, Fereshteh Rashidi; Zahedi, Atefeh; Geravandi, Sahar; Tahery, Noorollah; Yari, Ahmad Reza; Momtazan, Mahboobeh
2018-02-01
The present work examined data obtained during the analysis of Hearing Reduction (HR) of Abadan Petroleum Refinery (Abadan PR) workers of Iran with a history of disease and injuries. To this end, all workers in the refinery were chosen. In this research, the effects of history of disease and injury including trauma, electric shock, meningitis-typhoid disease and genetic illness as well as contact with lead, mercury, CO 2 and alcohol consumption were evaluated (Lie, et al., 2016) [1]. After the completion of the questionnaires by workers, the coded data were fed into EXCELL. Statistical analysis of data was carried out, using SPSS 16.
Driving an Industry: Medium and Heavy Duty Fuel Cell Electric Truck Component Sizing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kast, James; Marcinkoski, Jason; Vijayagopal, Ram
Medium and heavy duty (MD and HD respectively) vehicles are responsible for 26 percent of the total U.S. transportation petroleum consumption [1]. Hydrogen fuel cells have demonstrated value as part of a portfolio of strategies for reducing petroleum use and emissions from MD and HD vehicles. [2] [3], but their performance and range capabilities, and associated component sizing remain less clear when compared to other powertrains. This paper examines the suitability of converting a representative sample of MD and HD diesel trucks into Fuel Cell Electric Trucks (FCETs), while ensuring the same truck performance, in terms of range, payload, acceleration,more » speed, gradeability and fuel economy.« less
Some effects of ingested petroleum on seawater-adapted ducks (Anas platyrhynchos)
Holmes, W.N.; Cronshaw, J.; Gorsline, J.
1978-01-01
Male Pekin ducks adapted to seawater and maintained under sheltered conditions (27?C) in the laboratory may consume considerable volumes of petroleum without showing overt symptoms of distress. Under these conditions, birds consuming petroleum-contaminated food have shown a persistent hyperphagia; this was most apparent among those given food contaminated with South Louisiana crude oil, least apparent among birds given No. 2 fuel oil, and intermediate among those that consumed food contaminated with Kuwait crude oil. When maintained at 27?C, some mortality occurred among the birds given South Louisiana crude oil (22.2%) and No. 2 fuel oil (35.7%), whereas none of the freshwater- and seawater-maintained birds given uncontaminated food and none of the birds given Kuwait crude oil died during this period. Following their exposure to chronic mild cold stress (3?C), mortality occurred in all groups of birds; the birds that had consumed petroleum-contaminated food tended to die earlier and in larger numbers than either the seawater- or freshwater-maintained control birds. These effects suggest that the mortality in all groups of birds was due primarily to the additive effects of a series of nonspecific stressors. Thus, at autopsy, birds that had succumbed to the effects of these stressors frequently showed adrenal hypertrophy and severe involution of the lymphoepithelial tissues. The consumption of petroleum-contaminated food seemed to constitute only one of a series of environmental stressors, and, among birds that were already exposed to stressors such as hypertonic drinking water and persistent cold, the ingestion of petroleum seemed to render them more vulnerable and death frequently ensued.
Gas Turbine Heavy Hybrid Powertrain Variants. Opportunities and Potential for Systems Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, David; Chambon, Paul H.
2015-07-01
Widespread use of alternative hybrid powertrains is currently inevitable, and many opportunities for substantial progress remain. Hybrid electric vehicles (HEVs) have attracted considerable attention due to their potential to reduce petroleum consumption and greenhouse gas emissions in the transportation sector. This capability is mainly attributed to (a) the potential for downsizing the engine, (b) the potential for recovering energy during braking and thus recharging the energy storage unit, and (c) the ability to minimize the operation of the engine outside of its most efficient brake specific fuel consumption (BSFC) regime. Hybridization of the Class 8, heavy-duty (HD) powertrain is inherentlymore » challenging due to the expected long-haul driving requirements and limited opportunities for regenerative braking. The objective of this project is to develop control strategies aiming at optimizing the operation of a Class 8 HEV that features a micro-turbine as the heat engine. The micro-turbine application shows promise in fuel efficiency, even when compared to current diesel engines, and can meet regulated exhaust emissions levels with no exhaust after-treatment system. Both parallel and series HEV variants will be examined to understand the merits of each approach of the micro-turbine to MD advanced powertrain applications. These powertrain configurations enable new paradigms in operational efficiency, particularly in the Class 8 truck fleet. The successful development of these HEV variants will require a thorough technical understanding of the complex interactions between various energy sources and energy consumption components, for various operating modes. PACCAR will be integrating the first generation of their series HEV powertrain with a Brayton Energy micro-turbine into a Class 8 HD truck tractor that has both regional haul and local pick-up and delivery (P&D) components to its drive cycle. The vehicle will be deployed into fleet operation for a demonstration period of six (6) months to assess real world operating benefits of the advanced powertrain. A parallel variant of the micro-turbine powertrain will be built and sent to the ORNL Vehicle Systems Integration Laboratory.« less
The influence of petroleum products on the methane fermentation process.
Choromański, Paweł; Karwowska, Ewa; Łebkowska, Maria
2016-01-15
In this study the influence of the petroleum products: diesel fuel and spent engine oil on the sewage sludge digestion process and biogas production efficiency was investigated. Microbiological, chemical and enzymatic analyses were applied in the survey. It was revealed that the influence of the petroleum derivatives on the effectiveness of the methane fermentation of sewage sludge depends on the type of the petroleum product. Diesel fuel did not limit the biogas production and the methane concentration in the biogas, while spent engine oil significantly reduced the process efficacy. The changes in physical-chemical parameters, excluding COD, did not reflect the effect of the tested substances. The negative influence of petroleum products on individual bacterial groups was observed after 7 days of the process, while after 14 days probably some adaptive mechanisms appeared. The dehydrogenase activity assessment was the most relevant parameter to evaluate the effect of petroleum products contamination. Diesel fuel was probably used as a source of carbon and energy in the process, while the toxic influence was observed in case of spent engine oil. Copyright © 2015 Elsevier B.V. All rights reserved.
Regulatory overkill and the petroleum industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
DiBona, C.J.
1975-12-01
The petroleum industry is one of the most heavily regulated industries in the U.S. Federal regulations as of August 31, 1975 could dictate on exploration, locating pipelines, siting of refineries, what products to make, to whom to sell (and where), in what quantities, and at what price for the products. The author believes these regulations along with the local county and state regulations have reduced the efficiency and effectiveness of the petroleum industry. The industry feels that regulations have gone too far and that it is now in the phase of ''regulatory overkill.'' In the short run it may bemore » possible to redistribute income from producers to consumers via price controls. But the long-run effects inevitably are fewer domestic petroleum reserves and less production. (MCW)« less
Al-Hawash, Adnan B; Zhang, Xiaoyu; Ma, Fuying
2018-03-25
Petroleum pollution inevitably occurs at any stage of oil production and exerts a negative impact on the environment. Some microorganisms can degrade petroleum hydrocarbons (PHs). Polluted sludge of Rumaila oil field was use to isolate the highly efficient hydrocarbon-degrading fungal strain. Aspergillus sp. RFC-1 was obtained and its degradation ability for petroleum hydrocarbons was evaluated through surface adsorption, cell uptake, hydrophobicity, surface tension, biosurfactant production, and emulsification activity. In addition, the degradation mechanism was investigated. The results indicated the strain RFC-1 showed high removal activity for PHs, including biodegradation, adsorption, and emulsifiability. On the day 7 of incubation, the removal efficiencies of crude oil, naphthalene (NAP), phenanthrene (PHE), and pyrene (PYR) reached 60.3%, 97.4%, 84.9%, and 90.7%, respectively. Biodegradation efficiencies of crude oil, NAP, PHE, and PYR were 51.8%, 84.6%, 50.3%, and 55.1%, respectively. Surface adsorption and cell absorption by live mycelial pellets followed a decreasing order: PYR ≥ PHE > NAP > crude oil. Adsorption by heat-killed mycelial pellets increased within 40 and 10 min for crude oil and PAHs, respectively, and remained constant thereafter. Effects of cell surface hydrophobicity, surface tension, and emulsification index were discussed. Intra- and extracellular enzymes of strain RFC-1 played important roles in PHs degradation. The strain RFC-1 is a prospective strain for removing PHs from aqueous environments. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Bioelectrochemical system platform for sustainable environmental remediation and energy generation.
Wang, Heming; Luo, Haiping; Fallgren, Paul H; Jin, Song; Ren, Zhiyong Jason
2015-01-01
The increasing awareness of the energy-environment nexus is compelling the development of technologies that reduce environmental impacts during energy production as well as energy consumption during environmental remediation. Countries spend billions in pollution cleanup projects, and new technologies with low energy and chemical consumption are needed for sustainable remediation practice. This perspective review provides a comprehensive summary on the mechanisms of the new bioelectrochemical system (BES) platform technology for efficient and low cost remediation, including petroleum hydrocarbons, chlorinated solvents, perchlorate, azo dyes, and metals, and it also discusses the potential new uses of BES approach for some emerging contaminants remediation, such as CO2 in air and nutrients and micropollutants in water. The unique feature of BES for environmental remediation is the use of electrodes as non-exhaustible electron acceptors, or even donors, for contaminant degradation, which requires minimum energy or chemicals but instead produces sustainable energy for monitoring and other onsite uses. BES provides both oxidation (anode) and reduction (cathode) reactions that integrate microbial-electro-chemical removal mechanisms, so complex contaminants with different characteristics can be removed. We believe the BES platform carries great potential for sustainable remediation and hope this perspective provides background and insights for future research and development. Copyright © 2015 Elsevier Inc. All rights reserved.
Yan, Beizhan; Bopp, Richard F.; Abrajano, Teofilo A.; Chaky, Damon; Chillrud, Steven N.
2014-01-01
Relative contributions of polycyclic aromatic hydrocarbons (PAHs) from combustion sources of wood, petroleum, and coal were computed in sediments from Central Park Lake in New York City (NY, USA) by chemical mass balance based on several reliable source indicators. These indicators are the ratio of retene to the sum of retene and chrysene, the ratio of 1,7-dimethylphenanthrene (DMP) to 1,7-DMP and 2,6-DMP, and the ratio of fluroanthene to fluroanthene and pyrene. The authors found that petroleum combustion–derived PAH fluxes generally followed the historical consumption data of New York State. Coal combustion-derived PAH flux peaked approximately in the late 1910s, remained at a relatively high level over the next 3 decades, then rapidly declined from the 1950s to the 1960s; according to historical New York State coal consumption data, however, there was a 2-peak trend, with peaks around the early 1920s and the mid-1940s. The 1940s peak was not observed in Central Park Lake, most likely because of the well-documented shift from coal to oil as the major residential heating fuel in New York City during the late 1930s. It was widely believed that the decreased PAH concentrations and fluxes in global sediments during the last century resulted from a major energy shift from coal to petroleum. The data, however, show that this shift occurred from 1945 through the 1960s and did not result in an obvious decline. The sharpest decrease, which occurred in the 1970s was not predominantly related to coal usage but rather was the result of multiple factors, including a decline in petroleum usage largely, the introduction of low sulfur–content fuel in New York City, and the introduction of emission-control technologies. PMID:24375577
Yan, Beizhan; Bopp, Richard F; Abrajano, Teofilo A; Chaky, Damon; Chillrud, Steven N
2014-05-01
Relative contributions of polycyclic aromatic hydrocarbons (PAHs) from combustion sources of wood, petroleum, and coal were computed in sediments from Central Park Lake in New York City (NY, USA) by chemical mass balance based on several reliable source indicators. These indicators are the ratio of retene to the sum of retene and chrysene, the ratio of 1,7-dimethylphenanthrene (DMP) to 1,7-DMP and 2,6-DMP, and the ratio of fluroanthene to fluroanthene and pyrene. The authors found that petroleum combustion-derived PAH fluxes generally followed the historical consumption data of New York State. Coal combustion-derived PAH flux peaked approximately in the late 1910s, remained at a relatively high level over the next 3 decades, then rapidly declined from the 1950s to the 1960s; according to historical New York State coal consumption data, however, there was a 2-peak trend, with peaks around the early 1920s and the mid-1940s. The 1940s peak was not observed in Central Park Lake, most likely because of the well-documented shift from coal to oil as the major residential heating fuel in New York City during the late 1930s. It was widely believed that the decreased PAH concentrations and fluxes in global sediments during the last century resulted from a major energy shift from coal to petroleum. The data, however, show that this shift occurred from 1945 through the 1960s and did not result in an obvious decline. The sharpest decrease, which occurred in the 1970s was not predominantly related to coal usage but rather was the result of multiple factors, including a decline in petroleum usage largely, the introduction of low sulfur-content fuel in New York City, and the introduction of emission-control technologies. © 2013 SETAC.
Dellagnezze, Bruna Martins; Vasconcellos, Suzan Pantaroto de; Melo, Itamar Soares de; Santos Neto, Eugênio Vaz Dos; Oliveira, Valéria Maia de
2016-01-01
Unraveling the microbial diversity and its complexity in petroleum reservoir environments has been a challenge throughout the years. Despite the techniques developed in order to improve methodologies involving DNA extraction from crude oil, microbial enrichments using different culture conditions can be applied as a way to increase the recovery of DNA from environments with low cellular density for further microbiological analyses. This work aimed at the evaluation of different matrices (arenite, shale and polyurethane foam) as support materials for microbial growth and biofilm formation in enrichments using a biodegraded petroleum sample as inoculum in sulfate reducing condition. Subsequent microbial diversity characterization was carried out using Scanning Electronic Microscopy (SEM), Denaturing Gradient Gel Electrophoresis (DGGE) and 16S rRNA gene libraries in order to compare the microbial biomass yield, DNA recovery efficiency and diversity among the enrichments. The DNA from microbial communities in petroleum enrichments was purified according to a protocol established in this work and used for 16S rRNA amplification with bacterial generic primers. The PCR products were cloned, and positive clones were screened by Amplified Ribosomal DNA Restriction Analysis (ARDRA). Sequencing and phylogenetic analyses revealed that the bacterial community was mostly represented by members of the genera Petrotoga, Bacillus, Pseudomonas, Geobacillus and Rahnella. The use of different support materials in the enrichments yielded an increase in microbial biomass and biofilm formation, indicating that these materials may be employed for efficient biomass recovery from petroleum reservoir samples. Nonetheless, the most diverse microbiota were recovered from the biodegraded petroleum sample using polyurethane foam cubes as support material. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Impact of non-petroleum vehicle fuel economy on GHG mitigation potential
NASA Astrophysics Data System (ADS)
Luk, Jason M.; Saville, Bradley A.; MacLean, Heather L.
2016-04-01
The fuel economy of gasoline vehicles will increase to meet 2025 corporate average fuel economy standards (CAFE). However, dedicated compressed natural gas (CNG) and battery electric vehicles (BEV) already exceed future CAFE fuel economy targets because only 15% of non-petroleum energy use is accounted for when determining compliance. This study aims to inform stakeholders about the potential impact of CAFE on life cycle greenhouse gas (GHG) emissions, should non-petroleum fuel vehicles displace increasingly fuel efficient petroleum vehicles. The well-to-wheel GHG emissions of a set of hypothetical model year 2025 light-duty vehicles are estimated. A reference gasoline vehicle is designed to meet the 2025 fuel economy target within CAFE, and is compared to a set of dedicated CNG vehicles and BEVs with different fuel economy ratings, but all vehicles meet or exceed the fuel economy target due to the policy’s dedicated non-petroleum fuel vehicle incentives. Ownership costs and BEV driving ranges are estimated to provide context, as these can influence automaker and consumer decisions. The results show that CNG vehicles that have lower ownership costs than gasoline vehicles and BEVs with long distance driving ranges can exceed the 2025 CAFE fuel economy target. However, this could lead to lower efficiency CNG vehicles and heavier BEVs that have higher well-to-wheel GHG emissions than gasoline vehicles on a per km basis, even if the non-petroleum energy source is less carbon intensive on an energy equivalent basis. These changes could influence the effectiveness of low carbon fuel standards and are not precluded by the light-duty vehicle GHG emissions standards, which regulate tailpipe but not fuel production emissions.
Co-Optimization of Fuels and Engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrell, John
2016-03-24
The Co-Optimization of Fuels and Engines (Co-Optima) initiative is a new DOE initiative focused on accelerating the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The simultaneous fuels and vehicles research and development (R&D) are designed to deliver maximum energy savings, emissions reduction, and on-road vehicle performance. The initiative's integrated approach combines the previously independent areas of biofuels and combustion R&D, bringing together two DOE Office of Energy Efficiency & Renewable Energy research offices, ten national laboratories, and numerous industry and academic partners to simultaneously tackle fuel and engine research and development (R&D) to maximize energymore » savings and on-road vehicle performance while dramatically reducing transportation-related petroleum consumption and greenhouse gas (GHG) emissions. This multi-year project will provide industry with the scientific underpinnings required to move new biofuels and advanced engine systems to market faster while identifying and addressing barriers to their commercialization. This project's ambitious, first-of-its-kind approach simultaneously tackles fuel and engine innovation to co-optimize performance of both elements and provide dramatic and rapid cuts in fuel use and emissions. This presentation provides an overview of the project.« less
Baoune, Hafida; Ould El Hadj-Khelil, Aminata; Pucci, Graciela; Sineli, Pedro; Loucif, Lotfi; Polti, Marta Alejandra
2018-01-01
Petroleum hydrocarbons are well known by their high toxicity and recalcitrant properties. Their increasing utilization around worldwide led to environmental contamination. Phytoremediation using plant-associated microbe is an interesting approach for petroleum degradation and actinobacteria have a great potential for that. For this purpose, our study aimed to isolate, characterize, and assess the ability of endophytic actinobacteria to degrade crude petroleum, as well as to produce plant growth promoting traits. Seventeen endophytic actinobacteria were isolated from roots of plants grown naturally in sandy contaminated soil. Among them, six isolates were selected on the basis of their tolerance to petroleum on solid minimal medium and characterized by 16S rDNA gene sequencing. All petroleum-tolerant isolates belonged to the Streptomyces genus. Determination by crude oil degradation by gas chromatorgraph-flame ionization detector revealed that five strains could use petroleum as sole carbon and energy source and the petroleum removal achieved up to 98% after 7 days of incubation. These isolates displayed an important role in the degradation of the n-alkanes (C 6 -C 30 ), aromatic and polycyclic aromatic hydrocarbons. All strains showed a wide range of plant growth promoting features such as siderophores, phosphate solubilization, 1-aminocyclopropane-1-carboxylate deaminase, nitrogen fixation and indole-3-acetic acid production as well as biosurfactant production. This is the first study highlighting the petroleum degradation ability and plant growth promoting attributes of endophytic Streptomyces. The finding suggests that the endophytic actinobacteria isolated are promising candidates for improving phytoremediation efficiency of petroleum contaminated soil. Copyright © 2017 Elsevier Inc. All rights reserved.
Petroleum Science and Technology Institute with the TeXas Earth and Space Science (TXESS) Revolution
NASA Astrophysics Data System (ADS)
Olson, H. C.; Olson, J. E.; Bryant, S. L.; Lake, L. W.; Bommer, P.; Torres-Verdin, C.; Jablonowski, C.; Willis, M.
2009-12-01
The TeXas Earth and Space Science (TXESS) Revolution, a professional development program for 8th- thru 12th-grade Earth Science teachers, presented a one-week Petroleum Science and Technology Institute at The University of Texas at Austin campus. The summer program was a joint effort between the Jackson School of Geosciences and the Department of Petroleum and Geosystems Engineering. The goal of the institute was to focus on the STEM components involved in the petroleum industry and to introduce teachers to the larger energy resources theme. The institute kicked off with a welcoming event and tour of a green, energy-efficient home (LEED Platinum certified) owned by one of the petroleum engineering faculty. Tours of the home included an introduction to rainwater harvesting, solar energy, sustainable building materials and other topics on energy efficiency. Classroom topics included drilling technology (including a simulator lab and an overview of the history of the technology), energy use and petroleum geology, well-logging technology and interpretation, reservoir engineering and volumetrics (including numerous labs combining chemistry and physics), risk assessment and economics, carbon capture and storage (CO2 sequestration technology) and hydraulic fracturing. A mid-week field trip included visiting the Ocean Star offshore platform in Galveston, the Weiss Energy Hall at the Houston Museum of Science and Schlumberger (to view 3-D visualization technology) in Houston. Teachers remarked that they really appreciated the focused nature of the institute and especially found the increased use of mathematics both a tool for professional growth, as well as a challenge for them to use more math in their science classes. STEM integration was an important feature of the summer institute, and teachers found the integration of science (earth sciences, geophysics), technology, engineering (petroleum, chemical and reservoir) and mathematics particularly valuable. Pre-conception surveys and post-tests indicate a significant gain in these teachers' knowledge of petroleum science and technology. In particular, teachers noted that a large area of new knowledge was gained in the area of carbon capture and storage technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vyas, A. D.; Patel, D. M.; Bertram, K. M.
2013-02-01
Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result ofmore » the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vyas, A. D.; Patel, D. M.; Bertram, K. M.
2013-03-01
Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result ofmore » the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less
Challenges and opportunities for animal conservation from renewable energy development
T.A. Katzner; J.A. Johnson; D.M. Evans; T.W.J. Garner; M.E. Gompper; R. Altwegg; T.A. Branch; I.J. Gordon; N. Pettorelli
2013-01-01
Global climate change is among the greatest threats confronting both human and natural systems (IPCC, 2007). A substantial component of greenhouse gas (GHG) emissions is from energy production, generated via the burning of fossil fuels, especially coal, natural gas and refined petroleum. Given that reduction in global energy consumption is unlikely over the next...
Assessment of current technologies for communition of forest residues
Dana L. Mitchell
2005-01-01
Recent legislation and energy prices have led to an increased need for alternative energy sources. Biomass, including forest residues, is expected to replace a part of the nationâs reliance on petroleum consumption. This paper provides an overview of existing literature related to the harvest, communition and transport of forest residues. Past studies have investigated...
77 FR 18718 - Petroleum Reduction and Alternative Fuel Consumption Requirements for Federal Fleets
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-28
... Statistical Tool Web-based reporting system (FAST) for FY 2005. Moreover, section 438.102(b) would require... reflected in FY 2005 FAST data, or (2) the lesser of (a) five percent of total Federal fleet vehicle fuel... event that the Federal fleet's alternative fuel use value for FY 2005 submitted through FAST did not...
Impacts of Electrification of Light-Duty Vehicles in the United States, 2010 - 2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gohlke, David; Zhou, Yan
This report examines the sales of plug-in electric vehicles (PEVs) in the United States from 2010 to 2017, exploring vehicle sales, electricity consumption, petroleum reduction, and battery production, among other factors. Over 750,000 PEVs have been sold, driving nearly 16 billion miles on electricity, thereby reducing gasoline consumption by 0.1% in 2016 and 600 million gallons cumulatively through 2017, while using over 5 terawatt-hours of electricity. Over 23 gigawatt-hours of battery capacity has been placed in vehicles, and 98% of this is still on the road, assuming typical scrappage rates.
Barul, Christine; Carton, Matthieu; Radoï, Loredana; Menvielle, Gwenn; Pilorget, Corinne; Bara, Simona; Stücker, Isabelle; Luce, Danièle
2018-04-05
To examine associations between occupational exposure to petroleum-based and oxygenated solvents and the risk of hypopharyngeal and laryngeal cancer. ICARE is a large, frequency-matched population-based case-control study conducted in France. Lifetime occupational history, tobacco smoking and alcohol consumption were collected. Analyses were restricted to men and included 383 cases of hypopharyngeal cancer, 454 cases of laryngeal cancer, and 2780 controls. Job-exposure matrices were used to assess exposure to five petroleum-based solvents (benzene; gasoline; white spirits; diesel, fuels and kerosene; special petroleum products) and to five oxygenated solvents (alcohols; ketones and esters; ethylene glycol; diethyl ether; tetrahydrofuran). Odds ratios (ORs) adjusted for smoking, alcohol drinking and other potential confounders and 95% confidence intervals (CI) were estimated with unconditional logistic models. No significant association was found between hypopharyngeal or laryngeal cancer risk and exposure to the solvents under study. Non-significantly elevated risks of hypopharyngeal cancer were found in men exposed to high cumulative levels of white spirits (OR = 1.46; 95% CI: 0.88-2.43) and tetrahydrofuran (OR = 2.63; 95CI%: 0.55-12.65), with some indication of a dose-response relationship (p for trend: 0.09 and 0.07 respectively). This study provides weak evidence for an association between hypopharyngeal cancer and exposure to white spirits and tetrahydrofuran, and overall does not suggest a substantial role of exposure to petroleum-based or oxygenated solvents in hypopharyngeal or laryngeal cancer risk.
Public Health and Medicine in an Age of Energy Scarcity: The Case of Petroleum
Parker, Cindy L.; Hess, Jeremy; Frumkin, Howard
2011-01-01
Petroleum supplies have heretofore been abundant and inexpensive, but the world petroleum production peak is imminent, and we are entering an unprecedented era of petroleum scarcity. This fact has had little impact on policies related to climate, energy, the built environment, transportation, food, health care, public health, and global health. Rising prices are likely to spur research and drive efficiency improvements, but such innovations may be unable to address an increasing gap between supply and demand. The resulting implications for health and the environment are explored in the articles we have selected as additional contributions in this special issue. Uncertainty about the timing of the peak, the shape of the production curve, and decline rates should not delay action. The time for quick, decisive, comprehensive action is now. PMID:21778506
Preface for small-molecule activation: Carbon-containing fuels
Fujita, Etsuko; Goldman, Alan S.
2015-06-01
For millennia, human transportation was fueled largely through the consumption of biomass (by humans or domestic animals) and to a lesser extent by wind. The 19th century saw a major shift to coal-fueled transportation, with trains and ships powered by steam engines. A second major shift in the fueling of transportation occurred in the 20th century, this time to petroleum. Thus, this transition was not driven by the cost or ease of obtaining energy from oil wells vs. coal mines – indeed, the cost of petroleum has always been higher than coal on a per-unit-energy basis – but rather bymore » the tremendous technical advantages of powering engines with liquids, specifically liquid hydrocarbons.« less
Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotope Signature (DB1013, V. 2016)
Andres, R. J. [CDIAC, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Boden, T. A. [CDIAC, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Marland, G. [Appalachian State University, Boone, NC (USA)
2016-01-01
The 2016 revision of this database contains estimates of the annual, global mean value of δ 13C of CO2 emissions from fossil-fuel consumption and cement manufacture for 1751-2013. These estimates of the carbon isotopic signature account for the changing mix of coal, petroleum, and natural gas being consumed and for the changing mix of petroleum from various producing areas with characteristic isotopic signatures. This time series of global fossil-fuel del 13C signature provides an additional constraint for balancing the sources and sinks of the global carbon cycle and complements the atmospheric δ 13C measurements that are used to partition the uptake of fossil carbon emissions among the ocean, atmosphere, and terrestrial biosphere reservoirs.
Diatoms: a fossil fuel of the future.
Levitan, Orly; Dinamarca, Jorge; Hochman, Gal; Falkowski, Paul G
2014-03-01
Long-term global climate change, caused by burning petroleum and other fossil fuels, has motivated an urgent need to develop renewable, carbon-neutral, economically viable alternatives to displace petroleum using existing infrastructure. Algal feedstocks are promising candidate replacements as a 'drop-in' fuel. Here, we focus on a specific algal taxon, diatoms, to become the fossil fuel of the future. We summarize past attempts to obtain suitable diatom strains, propose future directions for their genetic manipulation, and offer biotechnological pathways to improve yield. We calculate that the yields obtained by using diatoms as a production platform are theoretically sufficient to satisfy the total oil consumption of the US, using between 3 and 5% of its land area. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sarkar, Poulomi; Roy, Ajoy; Pal, Siddhartha; Mohapatra, Balaram; Kazy, Sufia K; Maiti, Mrinal K; Sar, Pinaki
2017-10-01
Intrinsic biodegradation potential of bacteria from petroleum refinery waste was investigated through isolation of cultivable strains and their characterization. Pseudomonas and Bacillus spp. populated the normal cultivable taxa while prolonged enrichment with hydrocarbons and crude oil yielded hydrocarbonoclastic bacteria of genera Burkholderia, Enterobacter, Kocuria, Pandoraea, etc. Strains isolated through enrichment showed assemblages of superior metabolic properties: utilization of aliphatic (C6-C22) and polyaromatic compounds, anaerobic growth with multiple terminal electron acceptors and higher biosurfactant production. Biodegradation of dodecane was studied thoroughly by GC-MS along with detection of gene encoding alkane hydroxylase (alkB). Microcosms bioaugmented with Enterobacter, Pandoraea and Burkholderia strains showed efficient biodegradation (98% TPH removal) well fitted in first order kinetic model with low rate constants and decreased half-life. This study proves that catabolically efficient bacteria resides naturally in complex petroleum refinery wastes and those can be useful for bioaugmentation based bioremediation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Some effects of ingested petroleum on seawater-adapted ducks (Anas platyrhynchos)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmes, W.N.; Cronshaw, J.; Gorsline, J.
1978-10-01
Male Pekin ducks adapted to seawater and maintained under sheltered conditions (27{degrees}C) in the laboratory may consume considerable volumes of petroleum without showing overt symptoms of distress. Under these conditions, birds consuming petroleum-contaminated food have shown a persistent hyperphagia; this was most apparent among those given food contaminated with South Louisiana crude oil, least apparent among birds given No. 2 fuel oil, and intermediate among those that consumed food contaminated with Kuwait crude oil. When maintained at 27{degrees}C, some mortality occurred among the birds given South Louisiana crude oil (22.2%) and No. 2 fuel oil (35.7%), whereas none of themore » freshwater- and seawater-maintained birds given uncontaminated food and none of the birds given Kuwait crude oil died during this period. Following their exposure to chronic mild cold stress (3{degrees}C), mortality occurred in all groups of birds; the birds that had consumed petroleum-contaminated food tended to die earlier and in larger numbers than either the seawater- or freshwater-maintained control birds. These effects suggest that the mortality in all groups of birds was due primarily to the additive effects of a series of nonspecific stressors. Thus, at autopsy, birds that had succumbed to the effects of these stressors frequently showed adrenal hypertrophy and severe involution of the lymphoepithelial tissues. The consumption of petroleum-contaminated food seemed to constitute only one of a series of environmental stressors, and, among birds that were already exposed to stressors such as hypertonic drinking water and persistent cold, the ingestion of petroleum seemed to render them more vulnerable and death frequently ensued.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendis, M.; Park, W.; Sabadell, A.
This report assesses the potential for substitution of electricity for petroleum in the industrial/agro-industrial sector of Costa Rica. The study includes a preliminary estimate of the process energy needs in this sector, a survey of the principal petroleum consuming industries in Costa Rica, an assessment of the electrical technologies appropriate for substitution, and an analysis of the cost trade offs of alternative fuels and technologies. The report summarizes the total substitution potential both by technical feasibility and by cost effectiveness under varying fuel price scenarios and identifies major institutional constraints to the introduction of electric based technologies. Recommendations to themore » Government of Costa Rica are presented. The key to the success of a Costa Rican program for substitution of electricity for petroleum in industry rests in energy pricing policy. The report shows that if Costa Rica Bunker C prices are increased to compare equitably with Caribbean Bunker C prices, and increase at 3 percent per annum relative to a special industrial electricity rate structure, the entire substitution program, including both industrial and national electric investment, would be cost effective. The definition of these pricing structures and their potential impacts need to be assessed in depth.« less
NASA Astrophysics Data System (ADS)
Lan, Ru; Lin, Hai; Qiao, Bing; Dong, Yingbo; Zhang, Wei; Chang, Wen
2018-02-01
In this paper, the restoration behaviour of the in-situ microorganisms in seawater and sediments to the marine accident oil spill was researched. The experimental study on the breeding of in-situ petroleum-degrading bacteria in the seawater and sediments of Hangzhou Bay and the restoration of oil spill were carried out. Making use of the reinforced microbial flora, combined with physical and chemical methods in field environment, petroleum degrading and restoration experiment were performed, the effect of the breeding of in-situ degrading bacteria was evaluated, and the standard process of in-situ bacteria sampling, laboratory screening, domestication and degradation efficiency testing were formed. This study laid a foundation for further evaluation of the advantages and disadvantages for the petroleum-degrading bacteria of Hangzhou Bay during the process of in-situ restoration. The results showed that in-situ microbes of Hangzhou Bay could reach the growth peak in 5 days with the suitable environmental factors and sufficient nutrient elements, and the degradation efficiency could reach 65.2% (or 74.8% after acclimation). And also the microbes could adapt to the local sea water and environmental conditions, with a certain degree of degradation. The research results could provide parameter support for causal judgment and quantitative assessment of oil spill damage.
Understanding Plant-Microbe Interactions for Phytoremediation of Petroleum-Polluted Soil
Nie, Ming; Wang, Yijing; Yu, Jiayi; Xiao, Ming; Jiang, Lifen; Yang, Ji; Fang, Changming; Chen, Jiakuan; Li, Bo
2011-01-01
Plant-microbe interactions are considered to be important processes determining the efficiency of phytoremediation of petroleum pollution, however relatively little is known about how these interactions are influenced by petroleum pollution. In this experimental study using a microcosm approach, we examined how plant ecophysiological traits, soil nutrients and microbial activities were influenced by petroleum pollution in Phragmites australis, a phytoremediating species. Generally, petroleum pollution reduced plant performance, especially at early stages of plant growth. Petroleum had negative effects on the net accumulation of inorganic nitrogen from its organic forms (net nitrogen mineralization (NNM)) most likely by decreasing the inorganic nitrogen available to the plants in petroleum-polluted soils. However, abundant dissolved organic nitrogen (DON) was found in petroleum-polluted soil. In order to overcome initial deficiency of inorganic nitrogen, plants by dint of high colonization of arbuscular mycorrhizal fungi might absorb some DON for their growth in petroleum-polluted soils. In addition, through using a real-time polymerase chain reaction method, we quantified hydrocarbon-degrading bacterial traits based on their catabolic genes (i.e. alkB (alkane monooxygenase), nah (naphthalene dioxygenase) and tol (xylene monooxygenase) genes). This enumeration of target genes suggests that different hydrocarbon-degrading bacteria experienced different dynamic changes during phytoremediation and a greater abundance of alkB was detected during vegetative growth stages. Because phytoremediation of different components of petroleum is performed by different hydrocarbon-degrading bacteria, plants’ ability of phytoremediating different components might therefore vary during the plant life cycle. Phytoremediation might be most effective during the vegetative growth stages as greater abundances of hydrocarbon-degrading bacteria containing alkB and tol genes were observed at these stages. The information provided by this study enhances our understanding of the effects of petroleum pollution on plant-microbe interactions and the roles of these interactions in the phytoremediation of petroleum-polluted soil. PMID:21437257
State energy price and expenditure report 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-06-01
The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the United States. The price and expenditure estimates developed in the State Energy Price and Expenditure Data System (SEPEDS) are provided by energy source and economic sector and are published for the years 1970 through 1994. Consumption estimates used to calculate expenditures and the documentation for those estimates are taken from the State Energy Data Report 1994, Consumption Estimates (SEDR), published in October 1996. Expenditures are calculated by multiplying the price estimatesmore » by the consumption estimates, which are adjusted to remove process fuel; intermediate petroleum products; and other consumption that has no direct fuel costs, i.e., hydroelectric, geothermal, wind, solar, and photovoltaic energy sources. Documentation is included describing the development of price estimates, data sources, and calculation methods. 316 tabs.« less
State energy data report 1996: Consumption estimates
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide themore » historical series necessary for EIA`s energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs.« less
Askin, Amanda Christine; Barter, Garrett; West, Todd H.; ...
2015-02-14
Here, we present a parametric analysis of factors that can influence advanced fuel and technology deployments in U.S. Class 7–8 trucks through 2050. The analysis focuses on the competition between traditional diesel trucks, natural gas vehicles (NGVs), and ultra-efficient powertrains. Underlying the study is a vehicle choice and stock model of the U.S. heavy-duty vehicle market. Moreover, the model is segmented by vehicle class, body type, powertrain, fleet size, and operational type. We find that conventional diesel trucks will dominate the market through 2050, but NGVs could have significant market penetration depending on key technological and economic uncertainties. Compressed naturalmore » gas trucks conducting urban trips in fleets that can support private infrastructure are economically viable now and will continue to gain market share. Ultra-efficient diesel trucks, exemplified by the U.S. Department of Energy's SuperTruck program, are the preferred alternative in the long haul segment, but could compete with liquefied natural gas (LNG) trucks if the fuel price differential between LNG and diesel increases. However, the greatest impact in reducing petroleum consumption and pollutant emissions is had by investing in efficiency technologies that benefit all powertrains, especially the conventional diesels that comprise the majority of the stock, instead of incentivizing specific alternatives.« less
Energy Sources, Costs and Availability. Technical Report No. 1 of a Study of School Calendars.
ERIC Educational Resources Information Center
New York State Education Dept., Albany. Div. of Research.
The first in a series of reports consolidates data about energy sources and extrapolates that information to the problems and expenses that New York has and will experience in heating public schools. A presentation of national energy consumption is followed by an examination of the availability of potential alternatives to petroleum and natural…
Environmental Assessment: Land Acquisition at Whiteman Air Force Base, Missouri
2011-06-01
Canadian clearweed (Pilea pumila), common duckweed ( Lemna minor ), common rush (Juncus effusus), cottonwood (Populus deltoides), crabgrass...resources, hazardous materials and hazardous waste, and safety. Implementation of the Proposed Action would result in minor , short-term adverse impacts...consumption of petroleum products during fence construction. As a result of implementing the Proposed Action, minor long-term adverse impacts to land use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clean Cities Now is the official semi-annual newsletter of Clean Cities, an initiative designed to reduce petroleum consumption in the transportation sector by advancing the use of alternative and renewable fuels, fuel economy improvements, idle-reduction measures, and new technologies, as they emerge.
NASA Astrophysics Data System (ADS)
Rizal, M.; Wiharna, S.; Wahyudi, A.
2017-05-01
In 2015, national domestic fuel consumption is already above 1.5 million barrels per day, while production is under 800,000 barrels per day. The gap between production and consumption will be considerably widened, serious efforts is needed to save the use of petroleum and also look for alternative replacement with renewable natural energy. Two approaches that can be taken: First, save the use of fossil fuel directly by using citronella essential oil-based bioadditive by 20 percents, equal to at least Rp. 55.2 trillions of national petroleum subsidies. Second, encourage increased utilization of biofuel mixed with that bioaditives that gradually reduce dependence on fossil fuels while developing machines which will fully operated with biofuels. Development of Sustainable Agricultural Bioindustry (SAB) system by integrating crops (candle nut, citronella) with livestock (dairy cattle) in a specific region. could contribute to: a) production of biodiesel and bioadditive feedstocks, b) production foodstuffs like beef and/or milk, c) utilitization of non-productive land, d) employment, by absorbing large number of farmer, e) increase the farmers income, f), biogas that can be used to meet daily household energy needs, and g) environmental conservation and sequestration of carbon emissions.
Wang, Jia-nan; Shi, Yan-yun; Zheng, Li-yan; Wang, Zhe; Cai, Zhang; Liu, Jie
2015-06-01
Six petroleum-degrading strains were isolated from oil-contaminated soil at Dagang oil field and oil sewage on Bohai offshore drilling platform in Tianjin using enrichment culture and isolation method. The physiological biochemical test together with 16S rDNA sequencing analysis indicated that they belonged to Bacillus (S1, S2, S3, S4), Pseudomonas (W1) and Ochrobactrum (W2), respectively. The strain S3 had the maximum degradation rate of alkane (41.3%) and aromatic hydrocarbon (30.9%) among all isolated strains showing the better degradation efficiency by endogenous bacteria when compared to that by the exogenous bacteria. The four Bacillus strains were used to construct microbiome, thereafter subjected to petroleum degradation efficiency test and analyzed. The results showed that microbiome F3 consisting of S1 and S4 had the maximum degradation rates of alkane (50.5%) and aromatic hydrocarbon (54.0%), which were 69.9% and 156.1% higher than those by single bacterium, respectively. Furthermore, they were 22.1% and 74.6% respectively higher than those by the most optimal degradation bacterium S3. Microbiome F4 consisting of S2 and S3 had the minimum degradation rates of alkane (18.5%) and aromatic hydrocarbon (18.9%) which were 55.3% and 39.0% lower than the degradation rates of single bacterium, respectively. The results also demonstrated that there were both microbial synergy promotion and antagonism inhibition among bacteria of the same genus in the petroleum degradation period. Bacteria with close affinity in Bacillus genus displayed mainly promoted petroleum degradation effect.
Preface--Environmental issues related to oil and gas exploration and production
Kharaka, Yousif K.; Otton, James K.
2007-01-01
Energy is the essential commodity that powers the expanding global economy. Starting in the 1950s, oil and natural gas became the main sources of primary energy for the rapidly increasing world population (Edwards, 1997). In 2003, petroleum was the source for 62.1% of global energy, and projections by energy information administration (EIA) indicate that oil and gas will continue their dominance, supplying 59.5% of global energy in 2030 (EIA, 2007). Unfortunately petroleum and coal consumption carry major detrimental environmental impacts that may be regional or global in scale, including air pollution, global climate change and oil spills. This special volume of Applied Geochemistry, devoted to “Environmental Issues Related to Oil and Gas Exploration and Production”, does not address these major impacts directly because air pollution and global climate change are issues related primarily to the burning of petroleum and coal, and major oil spills generally occur during ocean transport, such as the Exxon Valdez 1989 spill of 42,000 m3 (260,000 bbl) oil into Prince William Sound, Alaska.
[Effects and Biological Response on Bioremediation of Petroleum Contaminated Soil].
Yang, Qian; Wu, Man-li; Nie, Mai-qian; Wang, Ting-ting; Zhang, Ming-hui
2015-05-01
Bioaugmentation and biostimulation were used to remediate petroleum-contaminated soil which were collected from Zichang city in North of Shaanxi. The optimal bioremediation method was obtained by determining the total petroleum hydrocarbon(TPH) using the infrared spectroscopy. During the bioremediation, number of degrading strains, TPH catabolic genes, and soil microbial community diversity were determined by Most Probable Number (MPN), polymerase chain reaction (PCR) combined agarose electrophoresis, and PCR-denaturing gradient electrophoresis (DGGE). The results in different treatments showed different biodegradation effects towards total petroleum hydrocarbon (TPH). Biostimulation by adding N and P to soils achieved the best degradation effects towards TPH, and the bioaugmentation was achieved by inoculating strain SZ-1 to soils. Further analysis indicated the positive correlation between catabolic genes and TPH removal efficiency. During the bioremediation, the number of TPH and alkanes degrading strains was higher than the number of aromatic degrading strains. The results of PCR-DGGE showed microbial inoculums could enhance microbial community functional diversity. These results contribute to understand the ecologically microbial effects during the bioremediation of petroleum-polluted soil.
NASA Astrophysics Data System (ADS)
Rinanti, A.; Nainggolan, I. J.
2018-01-01
This research is about petroleum bioremediation experiment to obtain bacterial isolate from mangrove ecosystem which potentially degrade petroleum. It was conducted in an Erlenmeyer batch system filled with growth medium of Stone Mineral Salt Solution (SMSS) plus petroleum residue, placed in an incubator shaker with a rotation speed of 120 rpm, temperature 3000C, for 14 research days. Indigenous bacteria that have been isolated and identified from the roots of mangrove plants are Ochrobactrum anthropi and Bacillus sp., Ralstonia pickettii and Bacillus circulans. Those bacteriain both monoculture and consortium form (mixed culture) are incorporated into erlenmeyer as remediator agents. All bacteria can utilize hydrocarbon compounds, but Ralstonia pickettii and Bacillus circulans reached exponential phase faster with more cell count than other bacteria. Compared to single cultures, petroleum degradation by a bacterial consortium provides a higher TPH reduction efficiency, i.e. at 5%, 10%, and 15% of initial TPH of 94.4%, 72%, and 80.3%, respectively. This study proved that all bacteria could optimize hydrocarbon compounds up to 15% TPH load.
Ramasamy, Sugumar; Arumugam, Arumugam; Chandran, Preethy
2017-02-01
Efficiency of Enterobacter cloacae KU923381 isolated from petroleum hydrocarbon contaminated soil was evaluated in batch culture and bioreactor mode. The isolate were screened for biofilm formation using qualitative and quantitative assays. Response surface methodology (RSM) was used to study the effect of pH, temperature, glucose concentration, and sodium chloride on diesel degradation. The predicted values for diesel oil degradation efficiency by the statistical designs are in a close agreement with experimental data (R 2 = 99.66%). Degradation efficiency is increased by 36.78% at pH = 7, temperature = 35°C, glucose = 5%, and sodium chloride concentration = 5%. Under the optimized conditions, the experiments were performed for diesel oil degradation by gas chromatographic mass spectrometric analysis (GC-MS). GC-MS analysis confirmed that E. cloacae had highly degrade hexadecane, heptadecane, tridecane, and docosane by 99.71%, 99.23%, 99.66%, and 98.34% respectively. This study shows that rapid bioremoval of hydrocarbons in diesel oil is acheived by E. cloacae with abet of biofilm formation. The potential use of the biofilms for preparing trickling filters (gravel particles) for the degradation of hydrocarbons from petroleum wastes before their disposal in the open environment is highly suggested. This is the first successful attempt for artificially establishing petroleum hydrocarbon degrading bacterial biofilm on solid substrates in bioreactor.
Andres, R. J. [CDIAC, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Boden, T. A. [CDIAC, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Marland, G. [CDIAC, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA)
1996-01-01
The 2011 revision of this database contains estimates of the annual, global mean value of del 13C of CO2 emissions from fossil-fuel consumption and cement manufacture for 1751-2008. These estimates of the carbon isotopic signature account for the changing mix of coal, petroleum, and natural gas being consumed and for the changing mix of petroleum from various producing areas with characteristic isotopic signatures. This time series of global fossil-fuel del 13C signature provides an additional constraint for balancing the sources and sinks of the global carbon cycle and complements the atmospheric del 13C measurements that are used to partition the uptake of fossil carbon emissions among the ocean, atmosphere, and terrestrial biosphere reservoirs.
Energy efficiency and greenhouse gas emission intensity of petroleum products at U.S. refineries.
Elgowainy, Amgad; Han, Jeongwoo; Cai, Hao; Wang, Michael; Forman, Grant S; DiVita, Vincent B
2014-07-01
This paper describes the development of (1) a formula correlating the variation in overall refinery energy efficiency with crude quality, refinery complexity, and product slate; and (2) a methodology for calculating energy and greenhouse gas (GHG) emission intensities and processing fuel shares of major U.S. refinery products. Overall refinery energy efficiency is the ratio of the energy present in all product streams divided by the energy in all input streams. Using linear programming (LP) modeling of the various refinery processing units, we analyzed 43 refineries that process 70% of total crude input to U.S. refineries and cover the largest four Petroleum Administration for Defense District (PADD) regions (I, II, III, V). Based on the allocation of process energy among products at the process unit level, the weighted-average product-specific energy efficiencies (and ranges) are estimated to be 88.6% (86.2%-91.2%) for gasoline, 90.9% (84.8%-94.5%) for diesel, 95.3% (93.0%-97.5%) for jet fuel, 94.5% (91.6%-96.2%) for residual fuel oil (RFO), and 90.8% (88.0%-94.3%) for liquefied petroleum gas (LPG). The corresponding weighted-average, production GHG emission intensities (and ranges) (in grams of carbon dioxide-equivalent (CO2e) per megajoule (MJ)) are estimated to be 7.8 (6.2-9.8) for gasoline, 4.9 (2.7-9.9) for diesel, 2.3 (0.9-4.4) for jet fuel, 3.4 (1.5-6.9) for RFO, and 6.6 (4.3-9.2) for LPG. The findings of this study are key components of the life-cycle assessment of GHG emissions associated with various petroleum fuels; such assessment is the centerpiece of legislation developed and promulgated by government agencies in the United States and abroad to reduce GHG emissions and abate global warming.
Moreira, Icaro T A; Oliveira, Olivia M C; Triguis, Jorge A; Queiroz, Antonio F S; Ferreira, Sergio L C; Martins, Cintia M S; Silva, Ana C M; Falcão, Brunno A
2013-02-15
This study evaluated the efficiency of Avicennia schaueriana in the implementation of phytoremediation compared with intrinsic bioremediation in mangrove sediments contaminated by total petroleum hydrocarbons (TPHs). The experiment was conducted for 3months at a pilot scale under conditions similar to a mangrove: the dynamics of the tides were simulated, and physical, chemical, microbiological and biogeochemical parameters were monitored. After the 90 days, it was found that the phytoremediation was more efficient in the degradation of the TPHs compared to bioremediation, reducing the initial concentration of 32.2-4.2 mg/g. A. schaueriana was also more efficient in mediating the degradation of different fractions of hydrocarbons, achieving a removal efficiency of 87%. The microbiological results consisted of a higher growth in the model with the plants, demonstrating the phytostimulation ability of the plants. Finally, the experiment showed that phytoremediation is a promising alternative in mangrove impacted by oil. Copyright © 2012 Elsevier Ltd. All rights reserved.
Yoo, Jong-Chan; Lee, Chadol; Lee, Jeung-Sun; Baek, Kitae
2017-01-15
Chemical extraction and oxidation processes to clean up heavy metals and hydrocarbon from soil have a higher remediation efficiency and take less time than other remediation processes. In batch extraction/oxidation process, 3% hydrogen peroxide (H 2 O 2 ) and 0.1 M ethylenediaminetetraacetic acid (EDTA) could remove approximately 70% of the petroleum and 60% of the Cu and Pb in the soil, respectively. In particular, petroleum was effectively oxidized by H 2 O 2 without addition of any catalysts through dissolution of Fe oxides in natural soils. Furthermore, heavy metals bound to Fe-Mn oxyhydroxides could be extracted by metal-EDTA as well as Fe-EDTA complexation due to the high affinity of EDTA for metals. However, the strong binding of Fe-EDTA inhibited the oxidation of petroleum in the extraction-oxidation sequential process because Fe was removed during the extraction process with EDTA. The oxidation-extraction sequential process did not significantly enhance the extraction of heavy metals from soil, because a small portion of heavy metals remained bound to organic matter. Overall, simultaneous application of oxidation and extraction processes resulted in highly efficient removal of both contaminants; this approach can be used to remove co-contaminants from soil in a short amount of time at a reasonable cost. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-07-01
This document provides an analysis of the potential impacts associated with the proposed action, which is continued operation of Naval Petroleum Reserve No. I (NPR-1) at the Maximum Efficient Rate (MER) as authorized by Public law 94-258, the Naval Petroleum Reserves Production Act of 1976 (Act). The document also provides a similar analysis of alternatives to the proposed action, which also involve continued operations, but under lower development scenarios and lower rates of production. NPR-1 is a large oil and gas field jointly owned and operated by the federal government and Chevron U.SA Inc. (CUSA) pursuant to a Unit Planmore » Contract that became effective in 1944; the government`s interest is approximately 78% and CUSA`s interest is approximately 22%. The government`s interest is under the jurisdiction of the United States Department of Energy (DOE). The facility is approximately 17,409 acres (74 square miles), and it is located in Kern County, California, about 25 miles southwest of Bakersfield and 100 miles north of Los Angeles in the south central portion of the state. The environmental analysis presented herein is a supplement to the NPR-1 Final Environmental Impact Statement of that was issued by DOE in 1979 (1979 EIS). As such, this document is a Supplemental Environmental Impact Statement (SEIS).« less
Monthly energy review, December 1991. [Contains glossary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-12-23
This publication contains data and informative feature articles pertaining to various energy sources. The following topics are discussed: Section 1. energy overview; section 2. energy consumption; Section 3. petroleum; Section 4. natural gas; Section 5. Oil and gas resource development; Section 6. Coal; Section 7. electricity; Section 8. nuclear energy; Section 9. energy prices and Section 10. international energy. Appendix conversion factors a glossary is included. 57 tabs.,
Future petroleum energy resources of the world
Ahlbrandt, T.S.
2002-01-01
Is the world running out of oil? Where will future oil and gas supplies come from? To help answer these questions, in 2000 the U.S. Geological Survey completed a new world assessment, exclusive of the United States, of the undiscovered conventional oil and gas resources and potential additions to reserves from field growth.2 One hundred and twenty-eight provinces were assessed in a 100 man-year effort from 1995-2000. The assessed provinces included 76 priority provinces containing 95% of the world's discovered oil and gas and an additional 52 "boutique" provinces, many of which may be highly prospective. Total Petroleum Systems (TPS) were identified and described for each of these provinces along with associated Assessment Units (AU) that are the basic units for assessing undiscovered petroleum. The assessment process coupled geologic analysis with a probabilistic methodology to estimate remaining potential. Within the 128 assessed provinces were 159 TPS and 274 AU. For these provinces, the endowment of recoverable oil-which includes cumulative production, remaining reserves, reserve growth, and undiscovered resources-is estimated at about 3 trillion barrels of oil (TBO). The natural gas endowment is estimated at 2.6 trillion barrels of oil equivalent (TBOE). Oil reserves are currently 1.1 TBO; world consumption is about .028 TBO per year. Natural gas reserves are about 0.8 TBOE; world consumption is about 0.014 TBOE per year. Thus, without any additional discoveries of oil, gas or natural gas liquids, we have about 2 TBOE of proved petroleum reserves. Of the oil and gas endowment of about 5.6 TBOE, we estimate that the world has consumed about 1 TBOE, or 18%, leaving about 82% of the endowment to be utilized or found. Half of the world's undiscovered potential is offshore. Arctic basins with about 25% of undiscovered petroleum resources make up the next great frontier. An additional 279 provinces contain some oil and gas and, if considered, would increase the oil and gas endowment estimates. Whereas petroleum resources in the world appear to be significant, certain countries such as the United States may run into import deficits, particularly oil imports from Mexico and natural gas from both Canada and Mexico. The new assessment has been used as the reference supply case in energy supply models by the International Energy Agency and the Energy Information Agency of the Department of Energy. Climate energy modeling groups such as those at Stanford University, Massachusetts Institute of Technology, and others have also used USGS estimates in global climate models. Many of these models using the USGS estimates converge on potential oil shortfalls in 2036-2040. However, recent articles using the USGS (2000) estimates suggest peaking of oil in 2020-2035 and peaking of non-OPEC (Organization of Petroleum-Exporting Countries) oil in 2015-2020. Such a short time framework places greater emphasis on a transition to increased use of natural gas; i.e., a methane economy. Natural gas in turn may experience similar supply concerns in the 2050-2060 time frame according to some authors. Coal resources are considerable and provide significant petroleum potential either by extracting natural gas from them, by directly converting them into petroleum products, or by utilizing them to generate electricity, thereby reducing natural gas and oil requirements by fuel substitution. Non-conventional oil and gas are quite common in petroleum provinces of the world and represent a significant resources yet to be fully studied and developed. Seventeen non-conventional AU including coal-bed methane, basin-center gas, continuous oil, and gas hydrate occurrences have been preliminarily identified for future assessment. Initial efforts to assess heavy oil deposits and other non-conventional oil and gas deposits also are under way.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Jeongwoo; Elgowainy, Amgad; Wang, Michael
2015-07-14
In this study, we evaluated the impacts of producing HOF with a RON of 100, using a range of ethanol blending levels (E10, E25, and E40), vehicle efficiency gains, and HOF market penetration scenarios (3.4% to 70%), on WTW petroleum use and GHG emissions. In particular, we conducted LP modeling of petroleum refineries to examine the impacts of different HOF production scenarios on petroleum refining energy use and GHG emissions. We compared two cases of HOF vehicle fuel economy gains of 5% and 10% in terms of MPGGE to baseline regular gasoline vehicles. We incorporated three key factors in GREETmore » — (1) refining energy intensities of gasoline components for the various ethanol blending options and market shares, (2) vehicle efficiency gains, and (3) upstream energy use and emissions associated with the production of different crude types and ethanol — to compare the WTW GHG emissions of various HOF/vehicle scenarios with the business-as-usual baseline regular gasoline (87 AKI E10) pathway.« less
Chandrasekhar, K; Venkata Mohan, S
2012-04-01
Remediation of real-field petroleum sludge was studied under self-induced electrogenic microenvironment with the function of variable organic loads (OLs) in bio-electrochemical treatment (BET) systems. Operation under various OLs documented marked influence on both electrogenic activity and remediation efficiency. Both total petroleum hydrocarbons (TPH) and its aromatic fraction documented higher removal with OL4 operation followed by OL3, OL2, OL1 and control. Self-induced biopotential and associated multiple bio-electrocatalytic reactions during BET operation facilitated biotransformation of higher ring aromatics (5-6) to lower ring aromatic (2-3) compounds. Asphaltenes and NSO fractions showed negligible removal during BET operation. Higher electrogenic activity was recorded at OL1 (343mV; 53.11mW/m(2), 100Ω) compared to other three OLs operation. Bioaugmentation to anodic microflora with anaerobic culture documented enhanced electrogenic activity at OL4 operation. Voltammetric profiles, Tafel analysis and VFA generation were in agreement with the observed power generation and degradation efficiency. Copyright © 2012 Elsevier Ltd. All rights reserved.
2010 Vehicle Technologies Market Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Jacob; Davis, Stacy Cagle; Diegel, Susan W
2011-06-01
In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the U.S. Department of Energy s (DOE s) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop "leap frog" technologies thatmore » will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Eric C; Zhang, Yi Min; Cai, Hao
Biomass-derived hydrocarbon fuel technologies are being developed and pursued for better economy, environment, and society benefits underpinning the sustainability of transportation energy. Increasing availability and affordability of natural gas (NG) in the US can play an important role in assisting renewable fuel technology development, primarily in terms of economic feasibility. When a biorefinery is co-processing NG with biomass, the current low cost of NG coupled with the higher NG carbon conversion efficiency potentially allow for cost competitiveness of the fuel while achieving a minimum GHG emission reduction of 50 percent or higher compared to petroleum fuel. This study evaluates themore » relative sustainability of the production of high-octane gasoline blendstock via indirect liquefaction (IDL) of biomass (and with NG co-feed) through methanol/dimethyl ether intermediates. The sustainability metrics considered in this study include minimum fuel selling price (MFSP), carbon conversion efficiency, life cycle GHG emissions, life cycle water consumption, fossil energy return on investment (EROI), GHG emission avoidance cost, and job creation. Co-processing NG can evidently improve the MFSP. Evaluation of the relative sustainability can shed light on the biomass-NG synergistic impacts and sustainability trade-offs associated with the IDL as high-octane gasoline blendstock production.« less
Co-Optimization of Fuels and Engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrell, John
2016-04-11
The Co-Optimization of Fuels and Engines (Co-Optima) initiative is a new DOE initiative focused on accelerating the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The simultaneous fuels and vehicles research and development (R&D) are designed to deliver maximum energy savings, emissions reduction, and on-road vehicle performance. The initiative's integrated approach combines the previously independent areas of biofuels and combustion R&D, bringing together two DOE Office of Energy Efficiency & Renewable Energy research offices, ten national laboratories, and numerous industry and academic partners to simultaneously tackle fuel and engine research and development (R&D) to maximize energymore » savings and on-road vehicle performance while dramatically reducing transportation-related petroleum consumption and greenhouse gas (GHG) emissions. This multi-year project will provide industry with the scientific underpinnings required to move new biofuels and advanced engine systems to market faster while identifying and addressing barriers to their commercialization. This project's ambitious, first-of-its-kind approach simultaneously tackles fuel and engine innovation to co-optimize performance of both elements and provide dramatic and rapid cuts in fuel use and emissions. This presentation provides an overview of the initiative and reviews recent progress focused on both advanced spark-ignition and compression-ignition approaches.« less
Harvesting alternate energies from our planet
NASA Astrophysics Data System (ADS)
Rath, Bhakta B.
2009-04-01
Recent price fluctuations have focused attention on the phenomenal increase of global energy consumption in recent years. We have almost reached a peak in global oil production. Total world consumption of oil will rise by nearly 60% between 1999 and 2020. In 1999 consumption was 86 million barrels of oil per day, which has reached a peak of production extracted from most known oil reserves. These projections, if accurate, will present an unprecedented crisis to the global economy and industry. As an example, in the United States, nearly 40% of energy usage is provided by petroleum, of which nearly a third is used in transportation. An aggressive search for alternate energy sources, both renewable and nonrenewable, is vital. This article will review national and international perspectives on the exploration of alternate energies with a focus on energy derivable from the ocean.
2013-06-13
insurgency in the Niger Delta region of Nigeria has direct linkages to the mismanagement of petroleum sector revenues in that country. The insurgency...International 2010, 2011 and 2012a). In the area of governance and public sector management, Nigeria has issues with corruption, which ultimately affects the...Federal Government of Nigeria embarked on a scheme to privatize sectors of petroleum management ostensibly to improve efficiency in the management of
Hopkins during SODI-DCMIX 2 Experiment
2013-11-30
ISS038-E-009255 (26 Nov. 2013) --- In the International Space Station?s Destiny laboratory, NASA astronaut Michael Hopkins, Expedition 38 flight engineer, prepares to install and activate the Selectable Optics Diagnostic Instrument (SODI) cell array two in the Microgravity Science Glovebox (MSG) for the Selectable Optics Diagnostic Instrument-Diffusion Coefficient in Mixtures 2 (SODI-DCMIX 2) experiment. SODI-DCMIX 2 is supporting research to determine diffusion coefficients in different petroleum field samples and refine petroleum reservoir models to help lead to more efficient extraction of oil resources.
Hopkins during SODI-DCMIX 2 Experiment
2013-11-30
ISS038-E-009253 (26 Nov. 2013) --- In the International Space Station’s Destiny laboratory, NASA astronaut Michael Hopkins, Expedition 38 flight engineer, prepares to install and activate the Selectable Optics Diagnostic Instrument (SODI) cell array two in the Microgravity Science Glovebox (MSG) for the Selectable Optics Diagnostic Instrument-Diffusion Coefficient in Mixtures 2 (SODI-DCMIX 2) experiment. SODI-DCMIX 2 is supporting research to determine diffusion coefficients in different petroleum field samples and refine petroleum reservoir models to help lead to more efficient extraction of oil resources.
Industrial steam systems and the energy-water nexus.
Walker, Michael E; Lv, Zhen; Masanet, Eric
2013-11-19
This paper presents estimates for water consumption and steam generation within U.S. manufacturing industries. These estimates were developed through the integration of detailed, industry-level fuel use and operation data with an engineering-based steam system model. The results indicate that industrial steam systems consume approximately 3780 TBTU/yr (3.98 × 10(9) GJ/yr) to generate an estimated 2.9 trillion lb/yr (1.3 trillion kg/yr) of steam. Since a good portion of this steam is injected directly into plant processes, vented, leaked, or removed via blowdown, roughly 354 MGD of freshwater must be introduced to these systems as makeup. This freshwater consumption rate is approximately 11% of that for the entire U.S. manufacturing sector, or the total residential consumption rate of Los Angeles, the second largest city in the U.S. The majority of this consumption (>94%) can be attributed to the food, paper, petroleum refining, and chemicals industries. The results of the analyses presented herein provide previously unavailable detail on water consumption in U.S. industrial steam systems and highlight opportunities for combined energy and water savings.
Analysis of China department water consumption efficiency
NASA Astrophysics Data System (ADS)
Li, Wei; Wang, Xi-Feng; Liu, Jia-Hong
2018-03-01
The water comparable non-competitive input-out model of China in 2002, 2007 and 2012 is established to calculate the department water consumption efficiency. The water direct and complete consumption coefficients of 38 departments are analysed. Agriculture and Electricity and steam supply have the highest water consumption coefficients and utilize water resource mainly by the direct way. Manufacture of food products and tobacco products, Manufacture of textiles, Manufacture of wearing apparel and leather products and Information service activities have high water complete consumption coefficients and affect water consumption mainly by the indirect way. Water complete consumption efficiency measures the efficiency from the view of final product, which reflected the department water use driving force more precisely.
Cowie, Benjamin R; Greenberg, Bruce M; Slater, Gregory F
2010-04-01
In a petroleum impacted land-farm soil in Sarnia, Ontario, compound-specific natural abundance radiocarbon analysis identified biodegradation by the soil microbial community as a major pathway for hydrocarbon removal in a novel remediation system. During remediation of contaminated soils by a plant growth promoting rhizobacteria enhanced phytoremediation system (PEPS), the measured Delta(14)C of phospholipid fatty acid (PLFA) biomarkers ranged from -793 per thousand to -897 per thousand, directly demonstrating microbial uptake and utilization of petroleum hydrocarbons (Delta(14)C(PHC) = -1000 per thousand). Isotopic mass balance indicated that more than 80% of microbial PLFA carbon was derived from petroleum hydrocarbons (PHC) and a maximum of 20% was obtained from metabolism of more modern carbon sources. These PLFA from the contaminated soils were the most (14)C-depleted biomarkers ever measured for an in situ environmental system, and this study demonstrated that the microbial community in this soil was subsisting primarily on petroleum hydrocarbons. In contrast, the microbial community in a nearby uncontaminated control soil maintained a more modern Delta(14)C signature than total organic carbon (Delta(14)C(PLFA) = +36 per thousand to -147 per thousand, Delta(14)C(TOC) = -148 per thousand), indicating preferential consumption of the most modern plant-derived fraction of soil organic carbon. Measurements of delta(13)C and Delta(14)C of soil CO(2) additionally demonstrated that mineralization of PHC contributed to soil CO(2) at the contaminated site. The CO(2) in the uncontaminated control soil exhibited substantially more modern Delta(14)C values, and lower soil CO(2) concentrations than the contaminated soils, suggesting increased rates of soil respiration in the contaminated soils. In combination, these results demonstrated that biodegradation in the soil microbial community was a primary pathway of petroleum hydrocarbon removal in the PEPS system. This study highlights the power of natural abundance radiocarbon for determining microbial carbon sources and identifying biodegradation pathways in complex remediation systems.
Richardson, James W.; Johnson, Myriah D.; Outlaw, Joe L.
2012-05-01
As energy prices continue to climb there is an increasing interest in alternative, renewable energy sources. Currently, “most of the energy consumed in the U.S. comes from fossil fuels - petroleum, coal, and natural gas, with crude oil-based petroleum products as the dominant source of energy”. The use of renewable energy has grown, but is only making a small dent in current consumption at about eight percent of the United States total. Another concern with the use of fossil fuels is the emission of carbon dioxide into the atmosphere and complications to the climate. This is because, according to themore » U.S. Energy Information Administration (EIA) “fossil fuels are responsible for 99% of CO 2 emissions”.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgowainy, Mr. Amgad; Rousseau, Mr. Aymeric; Wang, Mr. Michael
2013-01-01
The U.S. Department of Energy (DOE), Argonne National Laboratory (Argonne), and the National Renewable Energy Laboratory (NREL) updated their analysis of the well-to-wheels (WTW) greenhouse gases (GHG) emissions, petroleum use, and the cost of ownership (excluding insurance, maintenance, and miscellaneous fees) of vehicle technologies that have the potential to significantly reduce GHG emissions and petroleum consumption. The analyses focused on advanced light-duty vehicle (LDV) technologies such as plug-in hybrid, battery electric, and fuel cell electric vehicles. Besides gasoline and diesel, alternative fuels considered include natural gas, advanced biofuels, electricity, and hydrogen. The Argonne Greenhouse Gases, Regulated Emissions, and Energy Usemore » in Transportation (GREET) and Autonomie models were used along with the Argonne and NREL H2A models.« less
Hydrogen in the U.S. energy picture
NASA Technical Reports Server (NTRS)
Kelley, J. H.; Manvi, R.
1979-01-01
A study of hydrogen in the U.S. program performed by the Hydrogen Energy Systems Technology (HEST) investigation is reported. Historic production and use of hydrogen, hydrogen use projections, hydrogen supply, economics of hydrogen production and supply, and future research and development needs are discussed. The study found current U.S. hydrogen utilization to be dominated by chemical and petroleum industries, and to represent 3% of total energy consumption. Hydrogen uses are projected to grow by a factor of 5 to 20 during the remainder of this century, and new applications in synthetic fuel from coal manufacture and directly as energy storage or fuel are expected to develop. The study concluded that development of new methods of supplying hydrogen replacing natural gas and petroleum feedstocks with alternate sources such as coal and heavy oils, and electrolysis techniques is imperative.
Latin America Report No. 2702.
1983-07-01
petroleum imports cost $241.9 million, while coffee exports amounted to 463.9 million quetzales . Then in 1981, a pronounced imbalance occurred...with crude oil imports at approximately $361 million, in comparison to coffee exports at only 294.8 million quetzales . The 1983 Oil Bill Based on an...which represents $306,866 (equivalent to quetzales ) las published]. Then, when that is added to industry’s consumption, it constitutes an outlay of
Determining the Water Bootprint of the Army’s Supply Chain
2011-05-01
water, flue gas desulfurization ) • Water consumption estimates will be compared with other modeling techniques Utility Energy Methods Army End Users...Sector Gas /Petroleum Refining Retail Less Gas /Retail Trade Food & Beverages/ Food & Drinking Places Concession/Personal Care Services CY10 Retail...this study • Data collected to support initial reporting of Greenhouse Gas (GHG) Inventory (pursuant to EO 13514) can be leveraged to support this
Energy: Selected Facts and Numbers
2008-08-08
air quality by reducing emissions led utilities to convert a number of coal-fired powerplants to burn oil, and many new plants were designed to burn...years were recently submitted, but no new plants are currently under construction or on order. Construction of major hydroelectric projects has also...5.1 and 5.13a-d. Percentages calculated by CRS. Industrial consumption of petroleum, which includes such large consumers as refineries and
Kim, Seungdo; Dale, Bruce E
2008-10-15
Polyhydroxybutyrates (PHB) are well-known biopolymers derived from sugars orvegetable oils. Cradle-to-gate environmental performance of PHB derived from corn grain is evaluated through life cycle assessment (LCA), particularly nonrenewable energy consumption and greenhouse gas emissions. Site-specific process information on the corn wet milling and PHB fermentation and recovery processes was obtained from Telles. Most of energy used in the corn wet milling and PHB fermentation and recovery processes is generated in a cogeneration power plant in which corn stover, assumed to be representative of a variety of biomass sources that could be used, is burned to generate electricity and steam. County level agricultural information is used in estimating the environmental burdens associated with both corn grain and corn stover production. Results show that PHB derived from corn grain offers environmental advantages over petroleum-derived polymers in terms of nonrenewable energy consumption and greenhouse gas emissions. Furthermore, PHB provides greenhouse gas credits, and thus PHB use reduces greenhouse gas emissions compared to petroleum-derived polymers. Corn cultivation is one of the environmentally sensitive areas in the PHB production system. More sustainable practices in corn cultivation (e.g., using no-tillage and winter cover crops) could reduce the environmental impacts of PHB by up to 72%.
2016-05-01
UNCLASSIFIED LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL... HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL REPORT TFLRF No. 477 by Adam C...August 2014 – March 2016 4. TITLE AND SUBTITLE LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FEUL EFFICIENT GEAR OILS
Renewable synthetic diesel fuel from triglycerides and organic waste materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillard, J.C.; Strassburger, R.S.
1986-03-01
A renewable, synthetic diesel fuel has been developed that employs ethanol and organic waste materials. These organic materials, such as soybean oil or animal fats, are hydrolized to yield a mixture of solid soap like materials and glycerol. These soaps, now soluble in ethanol, are blended with ethanol; the glycerol is nitrated and added as well as castor oil when necessary. The synthetic fuel is tailored to match petroleum diesel fuel in viscosity, lubricity and cetane quality and, therefore, does not require any engine modifications. Testing in a laboratory engine and in a production Oldsmobile Cutlass has revealed that thismore » synthetic fuel is superior to petroleum diesel fuel in vehicle efficiency, cetane quality, combustion noise, cold start characteristics, exhaust odor and emissions. Performance characteristics are indistinguishable from those of petroleum diesel fuel. These soaps are added to improve the calorific value, lubricity and cetane quality of the ethanol. The glycerol from the hydrolysis process is nitrated and added to the ethanol as an additional cetane quality improver. Caster oil is added to the fuel when necessary to match the viscosity and lubricity of petroleum diesel fuel as well as to act as a corrosion inhibitor, thereby, precluding any engine modifications. The cetane quality of the synthetic fuel is better than that of petroleum diesel as the fuel carries its own oxygen. The synthetic fuel is also completely miscible with petroleum diesel.« less
Pollution prevention and control procedure case study: an application for petroleum refineries.
Rodríguez, Encarnación; Martínez, Jose-Luis
2005-06-01
There is global environmental concern about the pollution from industries and other organizations that should not only be controlled but also prevented. Many alternatives are available to those in charge of environmental protection, but they should be able to draw on a systematic procedure to help implement prevention and control measures. At present, there are three immediate tasks: defining the objective of any environmental study, identifying the potential pollution sources, and selecting alternatives to these sources. However, it is necessary to evaluate these alternatives by using as large a number of criteria as possible and making them cumulative so as to enable the classification and selection of the best available techniques for each pollution source. The petroleum refining industry plays an important role in the developed economies and also has a potential for pollution generation that must be controlled. The best solution for all (i.e., petroleum companies, the public, and the environment) is pollution prevention, because this option will protect all of them and will also reduce costs in terms of lower raw materials consumption as well as reducing potential fines. The procedure we have presented in this article has been applied successfully.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lombard, K.H.
1994-08-01
The objectives of this test plan are to show the value added by using bioremediation as an effective and environmentally sound method to remediate petroleum contaminated soils (PCS) by: demonstrating bioremediation as a permanent method for remediating soils contaminated with petroleum products; establishing the best operating conditions for maximizing bioremediation and minimizing volatilization for SRS PCS during different seasons; determining the minimum set of analyses and sampling frequency to allow efficient and cost-effective operation; determining best use of existing site equipment and personnel to optimize facility operations and conserve SRS resources; and as an ancillary objective, demonstrating and optimizing newmore » and innovative analytical techniques that will lower cost, decrease time, and decrease secondary waste streams for required PCS assays.« less
Energy profiles of selected Latin American and Caribbean countries. Report series No. 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, K.
1994-07-01
Countries in this report include Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Mexico, Peru, Trinidad and Tobago, and Venezuela. These ten countries are the most important oil and gas producers in the Latin American and the Caribbean region. In the following sections, the primary energy supply (oil, gas, coal, hydroelectricity, and nuclear power whenever they are applicable), primary energy consumption, downstream oil sector development, gas utilization are discussed for each of the ten countries. The report also presents our latest forecasts of petroleum product consumption in each country toward 2000, which form the basis of the outlook for regional energy productionmore » and consumption outlined in Report No 1. Since the bulk of primary energy supply and demand is hydrocarbons for many countries, brief descriptions of the important hydrocarbons policy issues are provided at the end of the each country sections.« less
Meta-analysis and Harmonization of Life Cycle Assessment Studies for Algae Biofuels.
Tu, Qingshi; Eckelman, Matthew; Zimmerman, Julie
2017-09-05
Algae biodiesel (BioD) and renewable diesel (RD) have been recognized as potential solutions to mitigating fossil-fuel consumption and the associated environmental issues. Life cycle assessment (LCA) has been used by many researchers to evaluate the potential environmental impacts of these algae-derived fuels, yielding a wide range of results and, in some cases, even differing on indicating whether these fuels are preferred to petroleum-derived fuels or not. This meta-analysis reviews the methodological preferences and results for energy consumption, greenhouse gas emissions, and water consumption for 54 LCA studies that considered algae BioD and RD. The significant variation in reported results can be primarily attributed to the difference in scope, assumptions, and data sources. To minimize the variation in life cycle inventory calculations, a harmonized inventory data set including both nominal and uncertainty data is calculated for each stage of the algae-derived fuel life cycle.
Safeguarding our energy future
NASA Astrophysics Data System (ADS)
1993-02-01
Throughout the past several years, states have been receiving settlement monies distributed from escrow accounts maintained by the Department of Energy and various courts. These monies are paid by oil companies for alleged violations of the petroleum pricing regulations of the 1970's. These funds, commonly referred to as Petroleum Violation Escrow (PVE) or Oil Overcharge funds, have been an important tool in supporting energy efficiency programs and technologies at the state level. The aim of this publication is to highlight some of the many interesting, replicable projects funded with PVE monies and to serve as a resource for successful, energy efficiency programs in planning, technology application, and education. By capturing a number of these innovative state-level programs, this document will expand the information network on renewable energy and energy efficiency and serve as a point of departure for others pursuing similar goals. Projects referenced throughout this publication reflect some of the program areas in which the Department of Energy takes an active interest and fall into the following categories: (1) alternative fuels; (2) industrial efficiency and waste minimization; (3) electric power production from renewable resources; (4) building efficiency; (5) integrated resource planning; and (6) energy education.
Carbon taxes and the petroleum wealth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosendahl, K.E.
1995-12-31
A global carbon tax may have considerable impact on the petroleum wealth of fossil fuel producers. However, it is not clear to what extent such a tax eventually will decrease the producer prices, rather than increase the consumer prices. Thus, an interesting question is: How will the tax burden be shared between producers and consumers? This question is of course of major importance for countries with relatively large petroleum reserves, like for instance the OPEC-countries as well as Norway. In this study we are addressing this question, trying to reveal how different carbon taxes may change the petroleum wealth, bothmore » for the average producer and for Norway in particular. Even if a global climate treaty at present seems a bit distant, several OECD-countries are or have been discussing a carbon tax to restrict their emissions of CO{sub 2}. Hence, there is a fair possibility that such a tax, or eventually some quota restrictions, will be imposed in at least the main countries of the OECD-area, which stands for almost 60 percent of the worlds oil consumption. The size of this tax is difficult to foresee, and in addition, the tax may not be constant over time. However, some concrete proposals of a carbon tax have been put forward in e.g. the EU and the US, and several research projects have come up with appropriate suggestions (see e.g. Manne and Richels and Oliveira Martins et al.).« less
Pearson, Ann; Kraunz, Kimberly S.; Sessions, Alex L.; Dekas, Anne E.; Leavitt, William D.; Edwards, Katrina J.
2008-01-01
Natural remediation of oil spills is catalyzed by complex microbial consortia. Here we took a whole-community approach to investigate bacterial incorporation of petroleum hydrocarbons from a simulated oil spill. We utilized the natural difference in carbon isotopic abundance between a salt marsh ecosystem supported by the 13C-enriched C4 grass Spartina alterniflora and 13C-depleted petroleum to monitor changes in the 13C content of biomass. Magnetic bead capture methods for selective recovery of bacterial RNA were used to monitor the 13C content of bacterial biomass during a 2-week experiment. The data show that by the end of the experiment, up to 26% of bacterial biomass was derived from consumption of the freshly spilled oil. The results contrast with the inertness of a nearby relict spill, which occurred in 1969 in West Falmouth, MA. Sequences of 16S rRNA genes from our experimental samples also were consistent with previous reports suggesting the importance of Gamma- and Deltaproteobacteria and Firmicutes in the remineralization of hydrocarbons. The magnetic bead capture approach makes it possible to quantify uptake of petroleum hydrocarbons by microbes in situ. Although employed here at the domain level, RNA capture procedures can be highly specific. The same strategy could be used with genus-level specificity, something which is not currently possible using the 13C content of biomarker lipids. PMID:18083852
NASA Astrophysics Data System (ADS)
Briggs, C. K.; Borg, I. Y.
1982-10-01
Flow diagrams to describe the US energy situation are given. In 1981 the energy consumption was 73 quads (or 73 times 10 to the 15th power Btu). Use was down from 75 quads in 1980. Oil continues to dominate the picture as it comprises 45% of the total energy used. Net oil use (exclusive of oil purchased for the Strategic Petroleum Reserve and Exports) fell 8%; oil imports declined 14%. In contrast to oil, use of natural gas and coal remained at 1980 levels. Decreased use of residual oils, principally for electric power generating, account for much of the drop in oil use. Increased use of coal and nuclear energy for power generation almost compensated for the decrease in use of oil in that end use. Transmitted power remained at 1980 levels. The remainder of the drop in energy usage is attributed to price driven conservation, increased efficiencies in end use and the recession that prevailed during most of the year. The share of the energy drop attributable to the recession is estimated by various analysts to be on the order of 40 to 50%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pihl, Josh A.; Toops, Todd J.; Fisher, Galen B.
Lean gasoline engines running on ethanol/gasoline blends and equipped with a silver/alumina catalyst for selective catalytic reduction (SCR) of NO by ethanol provide a pathway to reduced petroleum consumption through both increased biofuel utilization and improved engine efficiency relative to the current stoichiometric gasoline engines that dominate the U.S. light duty vehicle fleet. A pre-commercial silver/alumina catalyst demonstrated high NO x conversions over a moderate temperature window with both neat ethanol and ethanol/gasoline blends containing at least 50% ethanol. Selectivity to NH 3 increases with HC dosing and ethanol content in gasoline blends, but appears to saturate at around 45%.more » NO 2 and acetaldehyde behave like intermediates in the ethanol SCR of NO. NH 3 SCR of NO x does not appear to play a major role in the ethanol SCR reaction mechanism. Ethanol is responsible for the low temperature SCR activity observed with the ethanol/gasoline blends. In conclusion, the gasoline HCs do not deactivate the catalyst ethanol SCR activity, but they also do not appear to be significantly activated by the presence of ethanol.« less
Galea, Karen S; Mueller, Will; Arfaj, Ayman M; Llamas, Jose L; Buick, Jennifer; Todd, David; McGonagle, Carolyn
2018-05-21
Crude oil may cause adverse dermal effects therefore dermal exposure is an exposure route of concern. Galea et al. (2014b) reported on a study comparing recovery (wipe) and interception (cotton glove) dermal sampling methods. The authors concluded that both methods were suitable for assessing dermal exposure to oil-based drilling fluids and crude oil but that glove samplers may overestimate the amount of fluid transferred to the skin. We describe a study which aimed to further evaluate the wipe sampling method to assess dermal exposure to crude oil, with this assessment including extended sample storage periods and sampling efficiency tests being undertaken at environmental conditions to mimic those typical of outdoor conditions in Saudi Arabia. The wipe sampling method was then used to assess the laboratory technicians' actual exposure to crude oil during typical petroleum laboratory tasks. Overall, acceptable storage efficiencies up to 54 days were reported with results suggesting storage stability over time. Sampling efficiencies were also reported to be satisfactory at both ambient and elevated temperature and relative humidity environmental conditions for surrogate skin spiked with known masses of crude oil and left up to 4 h prior to wiping, though there was an indication of reduced sampling efficiency over time. Nineteen petroleum laboratory technicians provided a total of 35 pre- and 35 post-activity paired hand wipe samples. Ninety-three percent of the pre-exposure paired hand wipes were less than the analytical limit of detection (LOD), whereas 46% of the post-activity paired hand wipes were less than the LOD. The geometric mean paired post-activity wipe sample measurement was 3.09 µg cm-2 (range 1.76-35.4 µg cm-2). It was considered that dermal exposure most frequently occurred through direct contact with the crude oil (emission) or via deposition. The findings of this study suggest that the wipe sampling method is satisfactory in quantifying laboratory technicians' dermal exposure to crude oil. It is therefore considered that this wipe sampling method may be suitable to quantify dermal exposure to crude oil for other petroleum workers.
Monthly energy review, August 1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Monthly Energy Review (MER) presents an overview of the Energy Information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. The MER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. 37 figs., 73 tabs.
A study of the efficiency of hydrogen liquefaction. [jet aircraft applications
NASA Technical Reports Server (NTRS)
Baker, C. R.; Shaner, R. L.
1976-01-01
The search for an environmentally acceptable fuel to eventually replace petroleum-based fuels for long-range jet aircraft has singled out liquid hydrogen as an outstanding candidate. Hydrogen liquefaction is discussed, along with the effect of several operating parameters on process efficiency. A feasible large-scale commercial hydrogen liquefaction facility based on the results of the efficiency study is described. Potential future improvements in hydrogen liquefaction are noted.
How to access and exploit natural resources sustainably: petroleum biotechnology.
Sherry, Angela; Andrade, Luiza; Velenturf, Anne; Christgen, Beate; Gray, Neil D; Head, Ian M
2017-09-01
As we transition from fossil fuel reliance to a new energy future, innovative microbial biotechnologies may offer new routes to maximize recovery from conventional and unconventional energy assets; as well as contributing to reduced emission pathways and new technologies for carbon capture and utilization. Here we discuss the role of microbiology in petroleum biotechnologies in relation to addressing UN Sustainable Development Goal 12 (ensure sustainable consumption and production patterns), with a focus on microbially-mediated energy recovery from unconventionals (heavy oil to methane), shale gas and fracking, bioelectrochemical systems for the production of electricity from fossil fuel resources, and innovations in synthetic biology. Furthermore, using wastes to support a more sustainable approach to fossil fuel extraction processes is considered as we undertake the move towards a more circular global economy. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Thermal analysis elements of liquefied gas storage tanks
NASA Astrophysics Data System (ADS)
Yanvarev, I. A.; Krupnikov, A. V.
2017-08-01
Tasks of solving energy and resource efficient usage problems, both for oil producing companies and for companies extracting and transporting natural gas, are associated with liquefied petroleum gas technology development. Improving the operation efficiency of liquefied products storages provides for conducting structural, functional, and appropriate thermal analysis of tank parks in the general case as complex dynamic thermal systems.
NASA Astrophysics Data System (ADS)
Chan, Ngo Yeung
This study is aimed at improving the current ultrasound assisted oxidative desulfurization (UAOD) process by utilizing superoxide radical as oxidant. Research was also conducted to investigate the feasibility of ultraviolet (UV) irradiation-assisted desulfurization. These modifications can enhance the process with the following achievements: (1) Meet the upcoming sulfur standards on various fuels including diesel fuel oils and residual oils; (2) More efficient oxidant with significantly lower consumption in accordance with stoichiometry; (3) Energy saving by 90%; (4) Greater selectivity in petroleum composition. Currently, the UAOD process and subsequent modifications developed in University of Southern California by Professor Yen's research group have demonstrated high desulfurization efficiencies towards various fuels with the application of 30% wt. hydrogen peroxide as oxidant. The UAOD process has demonstrated more than 50% desulfurization of refractory organic sulfur compounds with the use of Venturella type catalysts. Application of quaternary ammonium fluoride as phase transfer catalyst has significantly improved the desulfurization efficiency to 95%. Recent modifications incorporating ionic liquids have shown that the modified UAOD process can produce ultra-low sulfur, or near-zero sulfur diesels under mild conditions with 70°C and atmospheric pressure. Nevertheless, the UAOD process is considered not to be particularly efficient with respect to oxidant and energy consumption. Batch studies have demonstrated that the UAOD process requires 100 fold more oxidant than the stoichiometic requirement to achieve high desulfurization yield. The expected high costs of purchasing, shipping and storage of the oxidant would reduce the practicability of the process. The excess use of oxidant is not economically desirable, and it also causes environmental and safety issues. Post treatments would be necessary to stabilize the unspent oxidant residual to prevent the waste stream from becoming reactive or even explosive. High energy consumption is another drawback in the UAOD process. A typical 10 minutes ultrasonication applied in the UAOD process to achieve 95% desulfurization for 20g of diesel requires 450 kJ of energy, which is equivalent to approximately 50% of the energy that can be provided by the treated diesel. This great expenditure of energy is impractical for industries to adopt. In this study, modifications of the UAOD process, including the application of superoxide and selection of catalysts, were applied to lower the oxidant dosage and to improve the applicability towards heavy-distillates such as residual oil. The results demonstrated that the new system required 80% less oxidant as compared to previous generations of UAOD process without the loss of desulfurization efficiency. The new system demonstrated its suitability towards desulfurizing commercial mid-distillates including jet fuels, marine gas oil and sour diesel. This process also demonstrated a new method to desulfurize residual oil with high desulfurization yields. The new process development has been supported by Eco Energy Solutions Inc., Reno, Nevada and Intelligent Energy Inc., Long Beach, California. A feasibility study on UV assisted desulfurization by replacing ultrasound with UV irradiation was also conducted. The study demonstrated that the UV assisted desulfurization process consumes 90% less energy than the comparable process using ultrasonication. These process modifications demonstrated over 98% desulfurization efficiency on diesel oils and more than 75% on residual oils with significantly less oxidant and energy consumption. Also the feasibility to desulfurize commercial sour heavy oil was demonstrated. Based on the UAOD process and the commercialized modifications by Wan and Cheng, the feasible applications of superoxide and UV irradiation in the UAOD process could provide deep-desulfurization on various fuels with practical cost.
Production of Biomass-Based Automotive Lubricants by Reductive Etherification.
Jadhav, Deepak; Grippo, Adam M; Shylesh, Sankaranarayanapillai; Gokhale, Amit A; Redshaw, John; Bell, Alexis T
2017-06-09
Growing concern with the effects of CO 2 emissions due to the combustion of petroleum-based transportation fuels has motivated the search for means to increase engine efficiency. The discovery of ethers with low viscosity presents an important opportunity to improve engine efficiency and fuel economy. We show here a strategy for the catalytic synthesis of such ethers by reductive etherification/O-alkylation of alcohols using building blocks that can be sourced from biomass. We find that long-chain branched ethers have several properties that make them superior lubricants to the mineral oil and synthetic base oils used today. These ethers provide a class of potentially renewable alternatives to conventional lubricants produced from petroleum and may contribute to the reduction of greenhouse gases associated with vehicle emissions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bio-dissolution of Ni, V and Mo from spent petroleum catalyst using iron oxidizing bacteria.
Pradhan, Debabrata; Kim, Dong J; Roychaudhury, Gautam; Lee, Seoung W
2010-01-01
Bioleaching studies of spent petroleum catalyst containing Ni, V and Mo were carried out using iron oxidizing bacteria. Various leaching parameters such as Fe(II) concentration, pulp density, pH, temperature and particle size were studied to evaluate their effects on the leaching efficiency as well as the kinetics of dissolution. The percentage of leaching of Ni and V were higher than Mo. The leaching process followed a diffusion controlled model and the product layer was observed to be impervious due to formation of ammonium jarosite (NH(4))Fe(3)(SO(4))(2)(OH)(6). Apart from this, the lower leaching efficiency of Mo was due to a hydrophobic coating of elemental sulfur over Mo matrix in the spent catalyst. The diffusivities of the attacking species for Ni, V and Mo were also calculated.
Bioremediation of oil-contaminated soil using Candida catenulata and food waste.
Joo, Hung-Soo; Ndegwa, Pius M; Shoda, Makoto; Phae, Chae-Gun
2008-12-01
Even though petroleum-degrading microorganisms are widely distributed in soil and water, they may not be present in sufficient numbers to achieve contaminant remediation. In such cases, it may be useful to inoculate the polluted area with highly effective petroleum-degrading microbial strains to augment the exiting ones. In order to identify a microbial strain for bioaugmentation of oil-contaminated soil, we isolated a microbial strain with high emulsification and petroleum hydrocarbon degradation efficiency of diesel fuel in culture. The efficacy of the isolated microbial strain, identified as Candida catenulata CM1, was further evaluated during composting of a mixture containing 23% food waste and 77% diesel-contaminated soil including 2% (w/w) diesel. After 13 days of composting, 84% of the initial petroleum hydrocarbon was degraded in composting mixes containing a powdered form of CM1 (CM1-solid), compared with 48% of removal ratio in control reactor without inoculum. This finding suggests that CM1 is a viable microbial strain for bioremediation of oil-contaminated soil with food waste through composting processes.
Bioleaching of nickel from spent petroleum catalyst using Acidithiobacillus thiooxidans DSM- 11478.
Sharma, Mohita; Bisht, Varsha; Singh, Bina; Jain, Pratiksha; Mandal, Ajoy K; Lal, Banwari; Sarma, Priyangshu M
2015-06-01
The present work deals with optimization of culture conditions and process parameters for bioleaching of spent petroleum catalyst collected from a petroleum refinery. The efficacy of Ni bioleaching from spent petroleum catalyst was determined using pure culture of Acidithiobacillus thiooxidans DSM- 11478. The culture conditions of pH, temperature and headspace volume to media volume ratio were optimized. EDX analysis was done to confirm the presence of Ni in the spent catalyst after roasting it to decoke its surface. The optimum temperature for A. thiooxidans DSM-11478 growth was found to be 32 degrees C. The enhanced recovery of nickel at very low pH was attributed to the higher acidic strength of sulfuric acid produced in the culture medium by the bacterium. During the bioleaching process, 89% of the Ni present in the catalyst waste could be successfully recovered in optimized conditions. This environment friendly bioleaching process proved efficient than the chemical method. Taking leads from the lab scale results, bioleaching in larger volumes (1, 5 and 10 L) was also performed to provide guidelines for taking up this technology for in situ industrial waste management.
Life cycle analysis of vehicles powered by a fuel cell and by internal combustion engine for Canada
NASA Astrophysics Data System (ADS)
Zamel, Nada; Li, Xianguo
The transportation sector is responsible for a great percentage of the greenhouse gas emissions as well as the energy consumption in the world. Canada is the second major emitter of carbon dioxide in the world. The need for alternative fuels, other than petroleum, and the need to reduce energy consumption and greenhouse gases emissions are the main reasons behind this study. In this study, a full life cycle analysis of an internal combustion engine vehicle (ICEV) and a fuel cell vehicle (FCV) has been carried out. The impact of the material and fuel used in the vehicle on energy consumption and carbon dioxide emissions is analyzed for Canada. The data collected from the literature shows that the energy consumption for the production of 1 kg of aluminum is five times higher than that of 1 kg of steel, although higher aluminum content makes vehicles lightweight and more energy efficient during the vehicle use stage. Greenhouse gas regulated emissions and energy use in transportation (GREET) software has been used to analyze the fuel life cycle. The life cycle of the fuel consists of obtaining the raw material, extracting the fuel from the raw material, transporting, and storing the fuel as well as using the fuel in the vehicle. Four different methods of obtaining hydrogen were analyzed; using coal and nuclear power to produce electricity and extraction of hydrogen through electrolysis and via steam reforming of natural gas in a natural gas plant and in a hydrogen refueling station. It is found that the use of coal to obtain hydrogen generates the highest emissions and consumes the highest energy. Comparing the overall life cycle of an ICEV and a FCV, the total emissions of an FCV are 49% lower than an ICEV and the energy consumption of FCV is 87% lower than that of ICEV. Further, CO 2 emissions during the hydrogen fuel production in a central plant can be easily captured and sequestrated. The comparison carried out in this study between FCV and ICEV is extended to the use of recycled material. It is found that using 100% recycled material can reduce energy consumption by 45% and carbon dioxide emissions by 42%, mainly due to the reduced use of electricity during the manufacturing of the material.
NASA Astrophysics Data System (ADS)
Mangmeechai, Aweewan
Conventional petroleum production in many countries that supply U.S. crude oil as well as domestic production has declined in recent years. Along with instability in the world oil market, this has stimulated the discussion of developing unconventional oil production, e.g., oil sands and oil shale. Expanding the U.S. energy mix to include oil sands and oil shale may be an important component in diversifying and securing the U.S. energy supply. At the same time, life cycle GHG emissions of these energy sources and consumptive water use are a concern. In this study, consumptive water use includes not only fresh water use but entire consumptive use including brackish water and seawater. The goal of this study is to determine the life cycle greenhouse gas (GHG) emissions and consumptive water use of synthetic crude oil (SCO) derived from Canadian oil sands and U.S. oil shale to be compared with U.S. domestic crude oil, U.S. imported crude oil, and coal-to-liquid (CTL). Levelized costs of SCO derived from Canadian oil sands and U.S. oil shale were also estimated. The results of this study suggest that CTL with no carbon capture and sequestration (CCS) and current electricity grid mix is the worst while crude oil imported from United Kingdom is the best in GHG emissions. The life cycle GHG emissions of oil shale surface mining, oil shale in-situ process, oil sands surface mining, and oil sands in-situ process are 43% to 62%, 13% to 32%, 5% to 22%, and 11% to 13% higher than those of U.S. domestic crude oil. Oil shale in-situ process has the largest consumptive water use among alternative fuels, evaluated due to consumptive water use in electricity generation. Life cycle consumptive water use of oil sands in-situ process is the lowest. Specifically, fresh water consumption in the production processes is the most concern given its scarcity. However, disaggregated data on fresh water consumption in the total water consumption of each fuel production process is not available. Given current information, it is inconclusive whether unconventional oil would require more or less consumptive fresh water use than U.S. domestic crude oil production. It depends on the water conservative strategy applied in each process. Increasing import of SCO derived from Canadian oil sands and U.S. oil shale would slightly increase life cycle GHG emissions of the U.S. petroleum status quo. The expected additional 2 million bpd of Canadian SCO from oil sands and U.S. oil shale would increase life cycle GHG emissions of the U.S. petroleum status quo on average only 10 and 40 kg CO2 equiv/bbl, or about 7.5 and 29 million tons CO2 equiv/year. However this increase represents less than 1 and 5% of U.S. transportation emissions in 2007. Because U.S. oil shale resources are located in areas experiencing water scarcity, methods to manage the issue were explored. The result also shows that trading water rights between Upper and Lower Colorado River basin and transporting synthetic crude shale oil to refinery elsewhere is the best scenario for life cycle GHG emissions and consumptive water use of U.S. oil shale production. GHG emissions and costs of water supply system contribute only 1-2% of life cycle GHG emissions and 1-6% of total levelized costs. The levelized costs of using SCO from oil shale as feedstock are greater than SCO from oil sands, and CTL. The levelized costs of producing liquid fuel (gasoline and diesel) using SCO derived from Canadian oil sands as feedstock are approximately 0.80-1.00/gal of liquid fuel. The levelized costs of SCO derived from oil shale are 1.6-4.5/gal of liquid fuel (oil shale surface mining process) and 1.6-5.2/gal of liquid fuel (oil shale in-situ process). From an energy security perspective, increasing the use of Canadian oil sands, U.S. oil shale, and CTL may be preferable to increasing Middle East imports. However, oil shale and CTL has the advantage security wise over Canadian oil sands because oil shale and coal are abundant U.S. resources. From a GHG emissions and consumptive water use perspective, CTL requires less consumptive water use than oil shale in-situ process but produces more GHG emissions than oil shale in-situ and surface mining process, unless CTL plant performs CCS and renewable electricity.
Analysis and Modeling of Parallel Photovoltaic Systems under Partial Shading Conditions
NASA Astrophysics Data System (ADS)
Buddala, Santhoshi Snigdha
Since the industrial revolution, fossil fuels like petroleum, coal, oil, natural gas and other non-renewable energy sources have been used as the primary energy source. The consumption of fossil fuels releases various harmful gases into the atmosphere as byproducts which are hazardous in nature and they tend to deplete the protective layers and affect the overall environmental balance. Also the fossil fuels are bounded resources of energy and rapid depletion of these sources of energy, have prompted the need to investigate alternate sources of energy called renewable energy. One such promising source of renewable energy is the solar/photovoltaic energy. This work focuses on investigating a new solar array architecture with solar cells connected in parallel configuration. By retaining the structural simplicity of the parallel architecture, a theoretical small signal model of the solar cell is proposed and modeled to analyze the variations in the module parameters when subjected to partial shading conditions. Simulations were run in SPICE to validate the model implemented in Matlab. The voltage limitations of the proposed architecture are addressed by adopting a simple dc-dc boost converter and evaluating the performance of the architecture in terms of efficiencies by comparing it with the traditional architectures. SPICE simulations are used to compare the architectures and identify the best one in terms of power conversion efficiency under partial shading conditions.
Mahalik, Mantu Kumar; Mallick, Hrushikesh; Padhan, Hemachandra; Sahoo, Bhagaban
2018-06-03
A large number of studies have examined the linkage between income inequality and environmental quality at the individual country levels. This study attempts to examine the linkage between the two factors for the individual BRICS economies from a comparative perspective, which is scarce in the literature. It examines the selected countries (Brazil, India, China and South Africa) by endogenising the patterns of primary energy consumption (coal use and petroleum use), total primary energy consumption, economic growth, and urbanisation as key determining factors in CO 2 emission function. The long-run results based on ARDL bounds testing revealed that income inequality leads to increase in CO 2 emissions for Brazil, India and China, while the same factor leads to reduction in CO 2 emissions for South Africa. However, it observes that while coal use increases CO 2 emissions for India, China and South Africa, it has no effect for Brazil. In contrast, the use of petroleum products contributes to CO 2 emissions in Brazil, while the use of the same surprisingly results in reduction of carbon emissions in South Africa, India and China. The findings suggest that given the significance of income inequality in environmental pollution, the policy makers in these emerging economies have to take into consideration the role of income inequality, while designing the energy policy to achieve environmental sustainability.
Well-to-wake analysis of ethanol-to-jet and sugar-to-jet pathways
Han, Jeongwoo; Tao, Ling; Wang, Michael
2017-01-24
To reduce the environmental impacts of the aviation sector as air traffic grows steadily, the aviation industry has paid increasing attention to bio-based alternative jet fuels (AJFs), which may provide lower life-cycle petroleum consumption and greenhouse gas (GHG) emissions than petroleum jet fuel. Here, this study presents well-to-wake (WTWa) results for four emerging AJFs: ethanol-to-jet (ETJ) from corn and corn stover, and sugar-to-jet (STJ) from corn stover via both biological and catalytic conversion. For the ETJ pathways, two plant designs were examined: integrated (processing corn or corn stover as feedstock) and distributed (processing ethanol as feedstock). Also, three H 2more » options for STJ via catalytic conversion are investigated: external H 2 from natural gas (NG) steam methane reforming (SMR), in situ H 2, and H 2 from biomass gasification. Results demonstrate that the feedstock is a key factor in the WTWa GHG emissions of ETJ: corn- and corn stover-based ETJ are estimated to produce WTWa GHG emissions that are 16 and 73%, respectively, less than those of petroleum jet. As for the STJ pathways, this study shows that STJ via biological conversion could generate WTWa GHG emissions 59% below those of petroleum jet. STJ via catalytic conversion could reduce the WTWa GHG emissions by 28% with H 2 from NG SMR or 71% with H 2 from biomass gasification than those of petroleum jet. This study also examines the impacts of co-product handling methods, and shows that the WTWa GHG emissions of corn stover-based ETJ, when estimated with a displacement method, are lower by 11 g CO 2e/MJ than those estimated with an energy allocation method. Corn- and corn stover-based ETJ as well as corn stover-based STJ show potentials to reduce WTWa GHG emissions compared to petroleum jet. Particularly, WTWa GHG emissions of STJ via catalytic conversion depend highly on the hydrogen source. On the other hand, ETJ offers unique opportunities to exploit extensive existing corn ethanol plants and infrastructure, and to provide a boost to staggering ethanol demand, which is largely being used as gasoline blendstock.« less
Well-to-wake analysis of ethanol-to-jet and sugar-to-jet pathways
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Jeongwoo; Tao, Ling; Wang, Michael
To reduce the environmental impacts of the aviation sector as air traffic grows steadily, the aviation industry has paid increasing attention to bio-based alternative jet fuels (AJFs), which may provide lower life-cycle petroleum consumption and greenhouse gas (GHG) emissions than petroleum jet fuel. Here, this study presents well-to-wake (WTWa) results for four emerging AJFs: ethanol-to-jet (ETJ) from corn and corn stover, and sugar-to-jet (STJ) from corn stover via both biological and catalytic conversion. For the ETJ pathways, two plant designs were examined: integrated (processing corn or corn stover as feedstock) and distributed (processing ethanol as feedstock). Also, three H 2more » options for STJ via catalytic conversion are investigated: external H 2 from natural gas (NG) steam methane reforming (SMR), in situ H 2, and H 2 from biomass gasification. Results demonstrate that the feedstock is a key factor in the WTWa GHG emissions of ETJ: corn- and corn stover-based ETJ are estimated to produce WTWa GHG emissions that are 16 and 73%, respectively, less than those of petroleum jet. As for the STJ pathways, this study shows that STJ via biological conversion could generate WTWa GHG emissions 59% below those of petroleum jet. STJ via catalytic conversion could reduce the WTWa GHG emissions by 28% with H 2 from NG SMR or 71% with H 2 from biomass gasification than those of petroleum jet. This study also examines the impacts of co-product handling methods, and shows that the WTWa GHG emissions of corn stover-based ETJ, when estimated with a displacement method, are lower by 11 g CO 2e/MJ than those estimated with an energy allocation method. Corn- and corn stover-based ETJ as well as corn stover-based STJ show potentials to reduce WTWa GHG emissions compared to petroleum jet. Particularly, WTWa GHG emissions of STJ via catalytic conversion depend highly on the hydrogen source. On the other hand, ETJ offers unique opportunities to exploit extensive existing corn ethanol plants and infrastructure, and to provide a boost to staggering ethanol demand, which is largely being used as gasoline blendstock.« less
Well-to-wake analysis of ethanol-to-jet and sugar-to-jet pathways.
Han, Jeongwoo; Tao, Ling; Wang, Michael
2017-01-01
To reduce the environmental impacts of the aviation sector as air traffic grows steadily, the aviation industry has paid increasing attention to bio-based alternative jet fuels (AJFs), which may provide lower life-cycle petroleum consumption and greenhouse gas (GHG) emissions than petroleum jet fuel. This study presents well-to-wake (WTWa) results for four emerging AJFs: ethanol-to-jet (ETJ) from corn and corn stover, and sugar-to-jet (STJ) from corn stover via both biological and catalytic conversion. For the ETJ pathways, two plant designs were examined: integrated (processing corn or corn stover as feedstock) and distributed (processing ethanol as feedstock). Also, three H 2 options for STJ via catalytic conversion are investigated: external H 2 from natural gas (NG) steam methane reforming (SMR), in situ H 2 , and H 2 from biomass gasification. Results demonstrate that the feedstock is a key factor in the WTWa GHG emissions of ETJ: corn- and corn stover-based ETJ are estimated to produce WTWa GHG emissions that are 16 and 73%, respectively, less than those of petroleum jet. As for the STJ pathways, this study shows that STJ via biological conversion could generate WTWa GHG emissions 59% below those of petroleum jet. STJ via catalytic conversion could reduce the WTWa GHG emissions by 28% with H 2 from NG SMR or 71% with H 2 from biomass gasification than those of petroleum jet. This study also examines the impacts of co-product handling methods, and shows that the WTWa GHG emissions of corn stover-based ETJ, when estimated with a displacement method, are lower by 11 g CO 2 e/MJ than those estimated with an energy allocation method. Corn- and corn stover-based ETJ as well as corn stover-based STJ show potentials to reduce WTWa GHG emissions compared to petroleum jet. Particularly, WTWa GHG emissions of STJ via catalytic conversion depend highly on the hydrogen source. On the other hand, ETJ offers unique opportunities to exploit extensive existing corn ethanol plants and infrastructure, and to provide a boost to staggering ethanol demand, which is largely being used as gasoline blendstock.
Xu, Jing; Liu, Huan; Liu, Jianhua; Liang, Rubing
2015-06-04
Oil pollution poses a severe threat to ecosystems, and bioremediation is considered as a safe and efficient alternative to physicochemical. for eliminating this contaminant. In this study, a gram-negative bacteria strain SJTD-2 isolated from oil-contaminated soil was found capable of utilizing n-alkanes and crude oil as sole energy sources. The efficiency of this strain in degrading these pollutants was analyzed. Strain SJTD-2 was identified on the basis of its phenotype, its physiological features, and a comparative genetic analysis using 16S rRNA sequence. Growth of strain SJTD-2 with different carbon sources (n-alkanes of different lengths and crude oil) was assessed, and the gas chromatography-mass spectrometry method was used to analyze the degradation efficiency of strain SJTD-2 for n-alkanes and petroleum by detecting the residual n-alkane concentrations. Strain SJTD-2 was identified as Pseudomonas aeruginosa based on the phenotype, physiological features, and 16S rRNA sequence analysis. This strain can efficiently decompose medium-chain and long-chain n-alkanes (C10-C26), and petroleum as its sole carbon sources. It preferred the long-chain n-alkanes (C18-C22), and n-docosane was considered as the best carbon source for its growth. In 48 h, 500 mg/L n-docosane could be degraded completely, and 2 g/L n-docosane was decomposed to undetectable levels within 72 h. Moreover, strain SJTD-2 could utilize about 88% of 2 g/L crude oil in 7days. Compared with other alkane-utilizing strains, strain SJTD-2 showed outstanding degradation efficiency for long-chain n-alkanes and high tolerance to petroleum at elevated concentrations. The isolation and characterization of strain SJTD-2 would help researchers study the mechanisms underlying the biodegradation of n-alkanes, and this strain could be used as a potential strain for environmental governance and soil bioremediation.
Soil Physical Constraints on Intrinsic Biodegradation of Petroleum Vapors in a Layered Subsurface
Kristensen, Andreas H.; Henriksen, Kaj; Mortensen, Lars; Scow, Kate M.; Moldrup, Per
2011-01-01
Naturally occurring biodegradation of petroleum hydrocarbons in the vadose zone depends on the physical soil environment influencing field-scale gas exchange and pore-scale microbial metabolism. In this study, we evaluated the effect of soil physical heterogeneity on biodegradation of petroleum vapors in a 16-m-deep, layered vadose zone. Soil slurry experiments (soil/water ratio 10:30 w/w, 25°C) on benzene biodegradation under aerobic and well-mixed conditions indicated that the biodegradation potential in different textured soil samples was related to soil type rather than depth, in the order: sandy loam > fine sand > limestone. Similarly, O2 consumption rates during in situ respiration tests performed at the site were higher in the sandy loam than in the fine sand, although the difference was less significant than in the slurries. Laboratory and field data generally agreed well and suggested a significant potential for aerobic biodegradation, even with nutrient-poor and deep subsurface conditions. In slurries of the sandy loam, the biodegradation potential declined with increasing in situ water saturation (i.e., decreasing air-filled porosity in the field). This showed a relation between antecedent undisturbed field conditions and the slurry biodegradation potential, and suggested airfilled porosity to be a key factor for the intrinsic biodegradation potential in the field. PMID:21617737
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrington, David Bradley; Waters, Jiajia
Research and development of KIVA-hpFE for turbulent reactive and multiphase flow particularly as related to engine modeling program has relevance to National energy security and climate change. Climate change is a source problem, and energy national security is consumption of petroleum products problem. Accurately predicting engine processes leads to, lower greenhouse gas (GHG) emission, where engines in the transportation sector currently account for 26% of the U.S. GHG emissions. Less dependence on petroleum products leads to greater energy security. By Environmental Protection Agency standards, some vehicles are now reaching 42 to the 50 mpg mark. These are conventional gasoline engines.more » Continued investment and research into new technical innovations, the potential exists to save more than 4 million barrels of oil per day or approximately $200 to $400 million per day. This would be a significant decrease in emission and use of petroleum and a very large economic stimulus too! It is estimated with further advancements in combustion, the current emissions can be reduced up to 40%. Enabling better understanding of fuel injection and fuel-air mixing, thermodynamic combustion losses, and combustion/emission formation processes enhances our ability to help solve both problems. To provide adequate capability for accurately simulating these processes, minimize time and labor for development of engine technology, are the goals of our KIVA development program.« less
NASA Astrophysics Data System (ADS)
Singh, Arvind K.; Sherry, Angela; Gray, Neil D.; Jones, Martin D.; Röling, Wilfred F. M.; Head, Ian M.
The industrial revolution has led to significant increases in the consumption of petroleum hydrocarbons. Concomitant with this increase, hydrocarbon pollution has become a global problem resulting from emissions related to operational use, releases during production, pipeline failures and tanker spills. Importantly, in addition to these anthropogenic sources of hydrocarbon pollution, natural seeps alone account for about 50% of total petroleum hydrocarbon releases in the aquatic environment (National Research Council, 2003). The annual input from natural seeps would form a layer of hydrocarbons 20 molecules thick on the sea surface globally if it remained un-degraded (Prince, 2005). By contrast with natural seeps, many oil spills, e.g. Sea Empress (Milford Haven, UK), Prestige (Galicia, Spain), EXXON Valdez (Prince William Sound, Alaska, USA), released huge amounts of oil (thousands to hundreds of thousand tonnes; Table 24.1) in a locally confined area over a short period of time with a huge acute impact on the marine environment. These incidents have attracted the attention of both the general public and the scientific community due to their great impact on coastal ecosystems. Although many petroleum hydrocarbons are toxic, they are degraded by microbial consortia naturally present in marine ecosystems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... consumption, estimated annual operating cost, and energy efficiency rating, and of water use rate. 305.5... energy efficiency rating, and of water use rate. (a) Procedures for determining the estimated annual energy consumption, the estimated annual operating costs, the energy efficiency ratings, and the efficacy...
Yan, Xiaoyu; Inderwildi, Oliver R; King, David A; Boies, Adam M
2013-06-04
Bioethanol is the world's largest-produced alternative to petroleum-derived transportation fuels due to its compatibility within existing spark-ignition engines and its relatively mature production technology. Despite its success, questions remain over the greenhouse gas (GHG) implications of fuel ethanol use with many studies showing significant impacts of differences in land use, feedstock, and refinery operation. While most efforts to quantify life-cycle GHG impacts have focused on the production stage, a few recent studies have acknowledged the effect of ethanol on engine performance and incorporated these effects into the fuel life cycle. These studies have broadly asserted that vehicle efficiency increases with ethanol use to justify reducing the GHG impact of ethanol. These results seem to conflict with the general notion that ethanol decreases the fuel efficiency (or increases the fuel consumption) of vehicles due to the lower volumetric energy content of ethanol when compared to gasoline. Here we argue that due to the increased emphasis on alternative fuels with drastically differing energy densities, vehicle efficiency should be evaluated based on energy rather than volume. When done so, we show that efficiency of existing vehicles can be affected by ethanol content, but these impacts can serve to have both positive and negative effects and are highly uncertain (ranging from -15% to +24%). As a result, uncertainties in the net GHG effect of ethanol, particularly when used in a low-level blend with gasoline, are considerably larger than previously estimated (standard deviations increase by >10% and >200% when used in high and low blends, respectively). Technical options exist to improve vehicle efficiency through smarter use of ethanol though changes to the vehicle fleets and fuel infrastructure would be required. Future biofuel policies should promote synergies between the vehicle and fuel industries in order to maximize the society-wise benefits or minimize the risks of adverse impacts of ethanol.
Mao, Debin; Lookman, Richard; Van De Weghe, Hendrik; Van Look, Dirk; Vanermen, Guido; De Brucker, Nicole; Diels, Ludo
2009-02-27
Enhanced bioremediation of petroleum hydrocarbons in two biopiles was quantified by high-performance liquid chromatography (HPLC) followed by comprehensive two-dimensional gas chromatography (GCXGC). The attenuation of 34 defined hydrocarbon classes was calculated by HPLC-GCXGC analysis of representative biopile samples at start-up and after 18 weeks of biopile operation. In general, a-cyclic alkanes were most efficiently removed from the biopiles, followed by monoaromatic hydrocarbons. Cycloalkanes and polycyclic aromatic hydrocarbons (PAHs) were more resistant to degradation. A-cyclic biomarkers farnesane, trimethyl-C13, norpristane, pristane and phytane dropped to only about 10% of their initial concentrations. On the other hand, C29-C31 hopane concentrations remained almost unaltered after 18 weeks of biopile operation, confirming their resistance to biodegradation. They are thus reliable indicators to estimate attenuation potential of petroleum hydrocarbons in biopile processed soils.
Ultrasound-assisted oxidative process for sulfur removal from petroleum product feedstock.
Mello, Paola de A; Duarte, Fábio A; Nunes, Matheus A G; Alencar, Mauricio S; Moreira, Elizabeth M; Korn, Mauro; Dressler, Valderi L; Flores, Erico M M
2009-08-01
A procedure using ultrasonic irradiation is proposed for sulfur removal of a petroleum product feedstock. The procedure involves the combination of a peroxyacid and ultrasound-assisted treatment in order to comply with the required sulfur content recommended by the current regulations for fuels. The ultrasound-assisted oxidative desulfurization (UAOD) process was applied to a petroleum product feedstock using dibenzothiophene as a model sulfur compound. The influence of ultrasonic irradiation time, oxidizing reagents amount, kind of solvent for the extraction step and kind of organic acid were investigated. The use of ultrasonic irradiation allowed higher efficiency for sulfur removal in comparison to experiments performed without its application, under the same reactional conditions. Using the optimized conditions for UAOD, the sulfur removal was about 95% after 9min of ultrasonic irradiation (20kHz, 750W, run at 40%), using hydrogen peroxide and acetic acid, followed by extraction with methanol.
Xue, Jianliang; Yu, Yang; Bai, Yu; Wang, Liping; Wu, Yanan
2015-08-01
Due to the toxicity of petroleum compounds, the increasing accidents of marine oil spills/leakages have had a significant impact on our environment. Recently, different remedial techniques for the treatment of marine petroleum pollution have been proposed, such as bioremediation, controlled burning, skimming, and solidifying. (Hedlund and Staley in Int J Syst Evol Microbiol 51:61-66, 2001). This review introduces an important remedial method for marine oil pollution treatment-bioremediation technique-which is considered as a reliable, efficient, cost-effective, and eco-friendly method. First, the necessity of bioremediation for marine oil pollution was discussed. Second, this paper discussed the species of oil-degrading microorganisms, degradation pathways and mechanisms, the degradation rate and reaction model, and the factors affecting the degradation. Last, several suggestions for the further research in the field of marine oil spill bioremediation were proposed.
Kaldor, J; Harris, J A; Glazer, E; Glaser, S; Neutra, R; Mayberry, R; Nelson, V; Robinson, L; Reed, D
1984-01-01
An ecologic study design was used to investigate the relationship between exposure to air emissions produced by the petroleum and chemical industries, and average annual cancer incidence and major cause mortality rates among whites in Contra Costa County, California. Estimates for the exposure to major industrial sources of sulfur dioxide, hydrocarbons and oxides of nitrogen were used to subdivide the county by level of exposure to petroleum refinery and chemical plant emissions. Cancer incidence and major cause mortality rates were then calculated for whites in each of the exposure areas. In both males and females, residential exposure to petroleum and chemical air emissions was associated with an increased incidence of cancer of the buccal cavity and pharynx. In males, age-adjusted incidence rates for cancers of the stomach, lung, prostate and kidney and urinary organs were also associated with petroleum and chemical plant air emission exposures. In both sexes, we found a strong positive association between degree of residential exposure and death rates from cardiovascular disease and cancer, and a less strong positive association between exposure and death rates from cerebrovascular disease. There was also a positive association in men for deaths from cirrhosis of the liver. Although these observed associations occurred across areas of similar socioeconomic and broad occupational class, confounding variables and the "ecologic fallacy" must be considered as possible explanations. In particular, the stronger findings in men suggest an occupational explanation of the cancer incidence trends, and the effect observed in cirrhosis mortality suggests that lifestyle variables such as alcohol consumption were not adequately controlled for. While the public health implications of our findings remain unclear, the evidence presented is sufficient to warrant follow-up studies based on individual data in which possible biases can be more readily controlled. PMID:6734567
Computational methods for a three-dimensional model of the petroleum-discovery process
Schuenemeyer, J.H.; Bawiec, W.J.; Drew, L.J.
1980-01-01
A discovery-process model devised by Drew, Schuenemeyer, and Root can be used to predict the amount of petroleum to be discovered in a basin from some future level of exploratory effort: the predictions are based on historical drilling and discovery data. Because marginal costs of discovery and production are a function of field size, the model can be used to make estimates of future discoveries within deposit size classes. The modeling approach is a geometric one in which the area searched is a function of the size and shape of the targets being sought. A high correlation is assumed between the surface-projection area of the fields and the volume of petroleum. To predict how much oil remains to be found, the area searched must be computed, and the basin size and discovery efficiency must be estimated. The basin is assumed to be explored randomly rather than by pattern drilling. The model may be used to compute independent estimates of future oil at different depth intervals for a play involving multiple producing horizons. We have written FORTRAN computer programs that are used with Drew, Schuenemeyer, and Root's model to merge the discovery and drilling information and perform the necessary computations to estimate undiscovered petroleum. These program may be modified easily for the estimation of remaining quantities of commodities other than petroleum. ?? 1980.
Sustainable Federal Fleets: Deploying Electric Vehicles and Electric Vehicle Supply Equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) helps federal agencies reduce petroleum consumption and increase alternative fuel use through its resources for Sustainable Federal Fleets. To assist agencies with the transition to plug-in electric vehicles (PEVs), including battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), FEMP offers technical guidance on electric vehicle supply equipment (EVSE) installations and site-specific planning through partnerships with the National Renewable Energy Laboratory's (NREL's) EVSE Tiger Teams.
US energy for the rest of the century, 1984 edition
NASA Astrophysics Data System (ADS)
Gustaferro, J. F.
1984-07-01
The U.S. energy consumption and supply for two years 1983 and 2000 is presented. In 1983 the United States consumed about 70.5 quadrillion British thermal units of energy. A U.S. energy consumption of about 84 quadrillion British thermal units in the year 2000 is projected. The 84 quadrillion British thermal units consists of 13 million barrels per day of petroleum, 18 trillion cubic feet of natural gas and 3.5 trillion kilowatt hours of electricity. Coal production is projected at 1,405 million tons which includes exports. The data presented in the 1984 forecast over the spectrum of U.S. energy requirements and focus on the end use of energy operational purposes, e.g., highway transportation, space heating, lighting, and construction. Data on fuel consumption by types and energy content for 1983 and as projected for the year 2000 is provided. End users of energy in the United States currently spend $441 billion annually for energy. This includes direct taxes.
Halophiles, coming stars for industrial biotechnology.
Yin, Jin; Chen, Jin-Chun; Wu, Qiong; Chen, Guo-Qiang
2015-11-15
Industrial biotechnology aims to produce chemicals, materials and biofuels to ease the challenges of shortage on petroleum. However, due to the disadvantages of bioprocesses including energy consuming sterilization, high fresh water consumption, discontinuous fermentation to avoid microbial contamination, highly expensive stainless steel fermentation facilities and competing substrates for human consumption, industrial biotechnology is less competitive compared with chemical processes. Recently, halophiles have shown promises to overcome these shortcomings. Due to their unique halophilic properties, some halophiles are able to grow in high pH and high NaCl containing medium under higher temperature, allowing fermentation processes to run contamination free under unsterile conditions and continuous way. At the same time, genetic manipulation methods have been developed for halophiles. So far, halophiles have been used to produce bioplastics polyhydroxyalkanoates (PHA), ectoines, enzymes, and bio-surfactants. Increasing effects have been made to develop halophiles into a low cost platform for bioprocessing with advantages of low energy, less fresh water consumption, low fixed capital investment, and continuous production. Copyright © 2014 Elsevier Inc. All rights reserved.
Design methodology for integrated downstream separation systems in an ethanol biorefinery
NASA Astrophysics Data System (ADS)
Mohammadzadeh Rohani, Navid
Energy security and environmental concerns have been the main drivers for a historic shift to biofuel production in transportation fuel industry. Biofuels should not only offer environmental advantages over the petroleum fuels they replace but also should be economically sustainable and viable. The so-called second generation biofuels such as ethanol which is the most produced biofuel are mostly derived from lignocellulosic biomasses. These biofuels are more difficult to produce than the first generation ones mainly due to recalcitrance of the feedstocks in extracting their sugar contents. Costly pre-treatment and fractionation stages are required to break down lignocellulosic feedstocks into their constituent elements. On the other hand the mixture produced in fermentation step in a biorefinery contains very low amount of product which makes the subsequent separation step more difficult and more energy consuming. In an ethanol biorefinery, the dilute fermentation broth requires huge operating cost in downstream separation for recovery of the product in a conventional distillation technique. Moreover, the non-ideal nature of ethanol-water mixture which forms an iseotrope at almost 95 wt%, hinders the attainment of the fuel grade ethanol (99.5 wt%). Therefore, an additional dehydration stage is necessary to purify the ethanol from its azeotropic composition to fuel-grade purity. In order to overcome the constraint pertaining to vapor-liquid equilibrium of ethanol-water separation, several techniques have been investigated and proposed in the industry. These techniques such as membrane-based technologies, extraction and etc. have not only sought to produce a pure fuel-grade ethanol but have also aimed at decreasing the energy consumption of this energy-intensive separation. Decreasing the energy consumption of an ethanol biorefinery is of paramount importance in improving its overall economics and in facilitating the way to displacing petroleum transportation fuel and obtaining energy security. On the other hand, Process Integration (PI) as defined by Natural Resource Canada as the combination of activities which aim at improving process systems, their unit operations and their interactions in order to maximize the efficiency of using water, energy and raw materials can also help biorefineries lower their energy consumptions and improve their economics. Energy integration techniques such as pinch analysis adopted by different industries over the years have ensured using heat sources within a plant to supply the demand internally and decrease the external utility consumption. Therefore, adopting energy integration can be one of the ways biorefinery technology owners can consider in their process development as well as their business model in order to improve their overall economics. The objective of this thesis is to propose a methodology for designing integrated downstream separation in a biorefinery. This methodology is tested in an ethanol biorefinery case study. Several alternative separation techniques are evaluated in their energy consumption and economics in three different scenarios; stand-alone without energy integration, stand-alone with internal energy integration and integrated-with Kraft. The energy consumptions and capital costs of separation techniques are assessed in each scenario and the cost and benefit of integration are determined and finally the best alternative is found through techno-economic metrics. Another advantage of this methodology is the use of a graphical tool which provides insights on decreasing energy consumption by modifying the process condition. The pivot point of this work is the use of a novel energy integration method called Bridge analysis. This systematic method which originally is intended for retrofit situation is used here for integration with Kraft process. Integration potentials are identified through this method and savings are presented for each design. In stand-alone with internal integration scenario, the conventional pinch method is used for energy analysis. The results reveal the importance of energy integration in reducing energy consumption. They also show that in an ethanol biorefinery, by adopting energy integration in the conventional distillation separation, we can achieve greater energy saving compared to other alternative techniques. This in turn suggests that new alternative technologies which imply big risks for the company might not be an option for reducing the energy consumption as long as an internal and external integration is incorporated in the business model of an ethanol biorefinery. It is also noteworthy that the methodology developed in this work can be extended as a future work to include a whole biorefinery system. (Abstract shortened by UMI.).
Well-to-Wheels Water Consumption: Tracking the Virtual Flow of Water into Transportation
NASA Astrophysics Data System (ADS)
Lampert, D. J.; Elgowainy, A.; Hao, C.
2015-12-01
Water and energy resources are fundamental to life on Earth and essential for the production of consumer goods and services in the economy. Energy and water resources are heavily interdependent—energy production consumes water, while water treatment and distribution consume energy. One example of this so-called energy-water nexus is the consumption of water associated with the production of transportation fuels. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can be used to compare the environmental impacts of different transportation fuels on a consistent basis. In this presentation, the expansion of GREET to perform life cycle water accounting or the "virtual flow" of water into transportation and other energy sectors and the associated implications will be discussed. The results indicate that increased usage of alternative fuels may increase freshwater resource consumption. The increased water consumption must be weighed against the benefits of decreased greenhouse gas and fossil energy consumption. Our analysis highlights the importance of regionality, co-product allocation, and consistent system boundaries when comparing the water intensity of alternative transportation fuel production pathways such as ethanol, biodiesel, compressed natural gas, hydrogen, and electricity with conventional petroleum-based fuels such as diesel and gasoline.
MULTIPHASE FLOW AND TRANSPORT IN POROUS MEDIA
Multiphase flow and transport of compositionally complex fluids in geologic media is of importance in a number of applied problems which have major social and economic effects. n petroleum reservoir engineering efficient recovery of energy reserves is the principal goal. nfortuna...
Future perspectives of using hollow fibers as structured packings in light hydrocarbon distillation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Dali; Orler, Bruce; Tornga, Stephanie
2011-01-26
Olefin and paraffin are the largest chemical commodities. Furthermore, they are major building blocks for the petrochemical industry. Each year, petroleum refining, consumes 4,500 TBtu/yr in separation energy, making it one of the most energy-intensive industries in the United States). Just considering liquefied petroleum gas (ethane/propane/butane) and olefins (ethylene and propylene) alone, the distillation energy consumption is about 400 TBtu/yr in the US. Since petroleum distillation is a mature technology, incremental improvements in column/tray design will only provide a few percent improvements in the performance. However, each percent saving in net energy use amounts to savings of 10 TBtu/yr andmore » reduces CO{sub 2} emissions by 0.2 MTon/yr. In practice, distillation columns require 100 to 200 trays to achieve the desired separation. The height of a transfer unit (HTU) of conventional packings is typical in the range of 36-60 inch. Since 2006, we had explored using several non-selective membranes as the structured packings to replace the conventional packing materials used in propane and propylene distillation. We obtained the lowest HTU of < 8 inch for the hollow fiber column, which was >5 times shorter than that of the conventional packing materials. In 2008, we also investigated this type of packing materials in iso-/n-butane distillation. Because of a slightly larger relative volatility of iso-/n-butane than that of propane/propylene, a wider and a more stable operational range was obtained for the iso-/n-butane pair. However, all of the experiments were conducted on a small scale with flowrate of < 25 gram/min. Recently, we demonstrated this technology on a larger scale (<250 gram/min). Within the loading range of F-factor < 2.2 Pa{sup 0.5}, a pressure drop on the vapor side is below 50 mbar/m, which suggests that the pressure drop of hollow fibers packings is not an engineering barrier for the applications in distillations. The thermal stability study suggests that polypropylene hollow fibers are stable after a long time exposure to C{sub 2} - C{sub 4} mixtures. The effects of packing density on the separation efficiency will be discussed.« less
NASA Technical Reports Server (NTRS)
Knightly, W. F.
1980-01-01
About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. Computer generated reports of the fuel consumption and savings, capital costs, economics and emissions of the cogeneration energy conversion systems (ECS's) heat and power matched to the individual industrial processes are presented. National fuel and emissions savings are also reported for each ECS assuming it alone is implemented. Two nocogeneration base cases are included: coal fired and residual fired process boilers.
Winter fuels report, week ending November 12, 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-11-18
The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices; residential and wholesale pricingmore » data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.« less
NASA Technical Reports Server (NTRS)
Knightly, W. F.
1980-01-01
About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. Computer generated reports of the fuels consumption and savings, capital costs, economics and emissions of the cogeneration energy conversion systems (ECS's) heat and power matched to the individual industrial processes are presented. National fuel and emissions savings are also reported for each ECS assuming it alone is implemented. Two nocogeneration base cases are included: coal fired and residual fired process boilers.
NASA Technical Reports Server (NTRS)
Knightly, W. F.
1980-01-01
About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. Computer generated reports of the fuel consumption and savings, capital costs, economics and emissions of the cogeneration energy conversion systems (ECS's) heat and power matched to the individual industrial processes are presented. National fuel and emissions savings are also reported for each ECS assuming it alone is implemented. Two nocogeneration base cases are included: coal fired and residual fired process boilers.
Western Kentucky University Research Foundation Biodiesel Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Wei-Ping; Cao, Yan
2013-03-15
Petroleum-based liquid hydrocarbons is exclusively major energy source in the transportation sector. Thus, it is the major CO{sub 2} source which is the associated with greenhouse effect. In the United States alone, petroleum consumption in the transportation sector approaches 13.8 million barrels per day (Mbbl/d). It is corresponding to a release of 0.53 gigatons of carbon per year (GtC/yr), which accounts for approximate 7.6 % of the current global release of CO{sub 2} from all of the fossil fuel usage (7 GtC/yr). For the long term, the conventional petroleum production is predicted to peak in as little as the nextmore » 10 years to as high as the next 50 years. Negative environmental consequences, the frequently roaring petroleum prices, increasing petroleum utilization and concerns about competitive supplies of petroleum have driven dramatic interest in producing alternative transportation fuels, such as electricity-based, hydrogen-based and bio-based transportation alternative fuels. Use of either of electricity-based or hydrogen-based alternative energy in the transportation sector is currently laden with technical and economical challenges. The current energy density of commercial batteries is 175 Wh/kg of battery. At a storage pressure of 680 atm, the lower heating value (LHV) of H{sub 2} is 1.32 kWh/liter. In contrast, the corresponding energy density for gasoline can reach as high as 8.88 kWh/liter. Furthermore, the convenience of using a liquid hydrocarbon fuel through the existing infrastructures is a big deterrent to replacement by both batteries and hydrogen. Biomass-derived ethanol and bio-diesel (biofuels) can be two promising and predominant U.S. alternative transportation fuels. Both their energy densities and physical properties are comparable to their relatives of petroleum-based gasoline and diesel, however, biofuels are significantly environmental-benign. Ethanol can be made from the sugar-based or starch-based biomass materials, which is easily fermented to create ethanol. In the United States almost all starch ethanol is mainly manufactured from corn grains. The technology for manufacturing corn ethanol can be considered mature as of the late 1980s. In 2005, 14.3 % of the U.S. corn harvest was processed to produce 1.48 x10{sup 10} liters of ethanol, energetically equivalent to 1.72 % of U.S. gasoline usage. Soybean oil is extracted from 1.5 % of the U.S. soybean harvest to produce 2.56 x 10{sup 8} liters of bio-diesel, which was 0.09 % of U.S. diesel usage. However, reaching maximum rates of bio-fuel supply from corn and soybeans is unlikely because these crops are presently major contributors to human food supplies through livestock feed and direct consumption. Moreover, there currently arguments on that the conversion of many types of many natural landscapes to grow corn for feedstock is likely to create substantial carbon emissions that will exacerbate globe warming. On the other hand, there is a large underutilized resource of cellulose biomass from trees, grasses, and nonedible parts of crops that could serve as a feedstock. One of the potentially significant new bio-fuels is so called "cellulosic ethanol", which is dependent on break-down by microbes or enzymes. Because of technological limitations (the wider variety of molecular structures in cellulose and hemicellulose requires a wider variety of microorganisms to break them down) and other cost hurdles (such as lower kinetics), cellulosic ethanol can currently remain in lab scales. Considering farm yields, commodity and fuel prices, farm energy and agrichemical inputs, production plant efficiencies, byproduct production, greenhouse gas (GHG) emissions, and other environmental effects, a life-cycle evaluation of competitive indicated that corn ethanol yields 25 % more energy than the energy invested in its production, whereas soybean bio-diesel yields 93 % more. Relative to the fossil fuels they displace, greenhouse gas emissions are reduced 12 % by the production and combustion of ethanol and 41 % by bio-diesel. Bio-diesel also releases less air pollutants per net energy gain than ethanol. Bio-diesel has advantages over ethanol due to its lower agricultural inputs and more efficient conversion. Thus, to be a viable alternative, a bio-fuel firstly should be producible in large quantities without reducing food supplies. In this aspect, larger quantity supplies of cellulose biomass are likely viable alternatives. U. S. Congress has introduced an initiative and subsequently rolled into the basic energy package, which encourages the production of fuel from purely renewable resources, biomass. Secondly, a bio-fuel should also provide a net energy gain, have environmental benefits and be economically competitive. In this aspect, bio-diesel has advantages over ethanol. The commonwealth of Kentucky is fortunate to have a diverse and abundant supply of renewable energy resources. Both Kentucky Governor Beshear in the energy plan for Kentucky "Intelligent Energy Choices for Kentucky's Future", and Kentucky Renewable Energy Consortium, outlined strategies on developing energy in renewable, sustainable and efficient ways. Smart utilization of diversified renewable energy resources using advanced technologies developed by Kentucky public universities, and promotion of these technologies to the market place by collaboration between universities and private industry, are specially encouraged. Thus, the initially question answering Governor's strategic plan is if there is any economical way to make utilization of larger quantities of cellulose and hemicellulose for production of bio-fuels, especially bio-diesel. There are some possible options of commercially available technologies to convert cellulose based biomass energy to bio-fuels. Cellulose based biomass can be firstly gasified to obtain synthesis gas (a mixture of CO and H{sub 2}), which is followed up by being converted into liquid hydrocarbon fuels or oxygenate hydrocarbon fuel through Fischer-Tropsch (F-T) synthesis. Methanol production is regarded to be the most economic starting step in many-year practices of the development of F-T synthesis technology since only C{sub 1} synthesis through F-T process can potentially achieve 100% conversion efficiency. Mobil's F-T synthesis process is based on this understanding. Considering the economical advantages of bio-diesel production over ethanol and necessary supply of methanol during bio-diesel production, a new opportunity for bio-diesel production with total supplies of biomass-based raw materials through more economic reaction pathways is likely identified in this proposal. The bio-oil part of biomass can be transesterified under available methanol (or mixed alcohols), which can be synthesized in the most easy part of F-T synthesis process using synthesis gas from gasification of cellulose fractions of biomass. We propose a novel concept to make sense of bio-diesel production economically though a coupling reaction of bio-oil transesterification and methanol synthesis. It will overcome problems of current bio-diesel producing process based on separated handling of methanol and bio-oil.« less
NASA Astrophysics Data System (ADS)
Kilic, Saliha Meltem
The primary production of aluminum is done by means of the Hall-Heroult process where large amounts of carbon anodes are required and consumed. The quality of carbon anodes used in electrolysis is one of the most important parameters affecting the production of primary aluminum. The anode quality widely depends on the raw materials, one of which is the petroleum coke. Green petroleum coke is produced from the heavy residual fractions of petroleum. Petroleum cokes produced from sour crude oil sources contain high quantity of sulfur. A certain level of sulfur is needed to reduce the anode reactivities; however, the demand for anode-grade coke with acceptable sulfur content is increasing faster than the available supply. High sulfur levels in carbon anodes would have an adverse effect on environment; hence, the desulfurization of high sulfur green petroleum cokes is necessary. There are different ways of desulfurizing green petroleum cokes: solvent extraction, thermal desulfurization, and hydrodesulfurization. Coke produced by solvent extraction is prone to contamination. The thermal approach requires greater energy consumption and causes an increase in coke porosity. The global objective of this master project is to find an alternative solution for desulfurization that will produce quality calcined coke with minimum impact on environment. Hydrodesulfurization seems to be a viable option and was investigated in this study. Water was used for the hydrodesulfurization of commercially available high sulfur green petroleum coke. Different experimental systems were tried during the hydrodesulfurization experiments. A systematic approach was used to investigate the influence of hydrodesulfurization parameters including water injection temperature, duration, and water flow rate as well as coke particle size on the hydrodesulfurization of green petroleum coke. In addition to hydrodesulfurization, a number of thermal desulfurization experiments were carried out with the same green petroleum coke in this study. Sulfur removal as well as weight loss results which were obtained from the two methods were compared. The petroleum coke sulfur content as well as its structure were characterized using C-S analysis equipment, SEM-EDX, XPS, FT-IR, XRD, and helium pycnometer prior to the experiments. Hydrodesulfurized cokes which gave maximum sulfur removal were compared with thermally desulfurized cokes in terms of the degree of desulfurization and coke structure by using the above characterization techniques. This study has indicated that different parameters affect the rate of desulfurization to different extents. Maximum sulfur removal was obtained when the water was injected to coke surface at 1 ml/min flow rate for 60 min at 650°C and 850°C resulting in the removal of 22.87% and 22.60% sulfur, respectively. Weight loss percentages were 26.07% and 24.34%, respectively, under these conditions. Hydrodesulfurization involves the loss of a small quantity of carbon due to gasification of coke by water. The characterization of hydrodesulfurized coke with the highest desulfurization rate showed similar structure with its counterpart which was thermally desulfurized to the same maximum temperature. This result, thus, reveals that the hydrodesulfurization does not create a more porous calcined coke compared to that of thermal desulfurization. Therefore, it seems to be a promising method to produce anode-grade calcined coke with lower sulfur content and suitable structure for carbon anode production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brogan, J. J.; Aeppli, A. E.; Beagan, D. F.
2013-03-01
Truck, rail, water, air, and pipeline modes each serve a distinct share of the freight transportation market. The current allocation of freight by mode is the product of technologic, economic, and regulatory frameworks, and a variety of factors -- price, speed, reliability, accessibility, visibility, security, and safety -- influence mode. Based on a comprehensive literature review, this report considers how analytical methods can be used to project future modal shares and offers insights on federal policy decisions with the potential to prompt shifts to energy-efficient, low-emission modes. There are substantial opportunities to reduce the energy used for freight transportation, butmore » it will be difficult to shift large volumes from one mode to another without imposing considerable additional costs on businesses and consumers. This report explores federal government actions that could help trigger the shifts in modal shares needed to reduce energy consumption and emissions. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.« less
Material and energy dependence of services and its implications for climate change.
Nansai, Keisuke; Kagawa, Shigemi; Suh, Sangwon; Fujii, Minoru; Inaba, Rokuta; Hashimoto, Seiji
2009-06-15
As the services industry has grown and diversified, there has been a rapid rise in the share of energy and material costs in provision of services. As a result, services, which have traditionally been considered immaterial by their nature, are now absorbing substantial amounts of energy and material goods. By decomposing the CO2 emissions embodied in material goods and services, this study quantitatively analyzes the implications of energy and materials consumption in services for the change in indirect CO2 emissions by household consumers in Japan. The results show that the domestic CO2 emissions associated with the energy and material goods absorbed by services through the supply chain increased consistently during the decade 1990-2000, thereby constituting a key element in the rise in CO2 emissions due to household consumption. The energy and materials within the supply chain underlying services that have been identified as the main causes of this increase include electric power consumption, petroleum products, building renovation and repair, distribution of printed materials, plastic products and water, all of which are necessary to support the services in question. This study highlights the increasing importance of energy and materials consumption by services in the context of climate change policy.
An Indian scenario on renewable and sustainable energy sources with emphasis on algae.
Hemaiswarya, S; Raja, Rathinam; Carvalho, Isabel S; Ravikumar, R; Zambare, Vasudeo; Barh, Debmalya
2012-12-01
India is the fifth largest primary energy consumer and fourth largest petroleum consumer after USA, China, and Japan. Despite the global economic crisis, India's economy is expected to grow at 6 to 8 %/year. There is an extreme dependence on petroleum products with considerable risks and environmental issues. Petroleum-derived transport fuels are of limited availability and contribute to global warming, making renewable biofuel as the best alternative. The focus on biogas and biomass-based energy, such as bioethanol and biohydrogen, will enhance cost-effectiveness and provide an opportunity for the rural community. Among all energy sources, microalgae have received, so far, more attention due to their facile adaptability to grow in the photobioreactors or open ponds, high yields, and multiple applications. Microalgae can produce a substantial amount of triacylglycerols as a storage lipid under photooxidative stress or other adverse environmental conditions. In addition to renewable biofuels, they can provide different types of high-value bioproducts added to their advantages, such as higher photosynthetic efficiency, higher biomass production, and faster growth compared to any other energy crops. The viability of first-generation biofuels production is, however, questionable because of the conflict with food supply. In the future, biofuels should ideally create the environmental, economic, and social benefits to the communities and reflect energy efficiency so as to plan a road map for the industry to produce third-generation biofuels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-07-01
New hardware and software tools build on existing platforms and add performance and ease-of-use benefits as the struggle to find and produce hydrocarbons at the lowest cost becomes more and more competitive. Software tools now provide geoscientists and petroleum engineers with a better understanding of reservoirs from the shape and makeup of formation to behavior projections as hydrocarbons are extracted. Petroleum software tools allow scientists to simulate oil flow, predict the life expectancy of a reservoir, and even help determine how to extend the life and economic viability of the reservoir. The requirement of the petroleum industry to find andmore » extract petroleum more efficiently drives the solutions provided by software and service companies. To one extent or another, most of the petroleum software products available today have achieved an acceptable level of competency. Innovative, high-impact products from small, focussed companies often were bought out by larger companies with deeper pockets if their developers couldn`t fund their expansion. Other products disappeared from the scene, because they were unable to evolve fast enough to compete. There are still enough small companies around producing excellent products to prevent the marketplace from feeling too narrow and lacking in choice. Oil companies requiring specific solutions to their problems have helped fund product development within the commercial sector. As the industry has matured, strategic alliances between vendors, both hardware and software, have provided market advantages, often combining strengths to enter new and undeveloped areas for technology. The pace of technological development has been fast and constant.« less
Amos, Richard T.; Mayer, K. Ulrich; Bekins, Barbara A.; Delin, Geoffrey N.; Williams, Randi L.
2005-01-01
At many sites contaminated with petroleum hydrocarbons, methanogenesis is a significant degradation pathway. Techniques to estimate CH4 production, consumption, and transport processes are needed to understand the geochemical system, provide a complete carbon mass balance, and quantify the hydrocarbon degradation rate. Dissolved and vapor‐phase gas data collected at a petroleum hydrocarbon contaminated site near Bemidji, Minnesota, demonstrate that naturally occurring nonreactive or relatively inert gases such as Ar and N2 can be effectively used to better understand and quantify physical and chemical processes related to methanogenic activity in the subsurface. In the vadose zone, regions of Ar and N2 depletion and enrichment are indicative of methanogenic and methanotrophic zones, and concentration gradients between the regions suggest that reaction‐induced advection can be an important gas transport process. In the saturated zone, dissolved Ar and N2 concentrations are used to quantify degassing driven by methanogenesis and also suggest that attenuation of methane along the flow path, into the downgradient aquifer, is largely controlled by physical processes. Slight but discernable preferential depletion of N2 over Ar, in both the saturated and unsaturated zones near the free‐phase oil, suggests reactivity of N2 and is consistent with other evidence indicating that nitrogen fixation by microbial activity is taking place at this site.
KIVA-hpFE. Predictive turbulent reactive and multiphase flow in engines - An Overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrington, David Bradley
2016-05-23
Research and development of KIVA-hpFE for turbulent reactive and multiphase flow particularly as related to engine modeling program has relevance to National energy security and climate change. Climate change is a source problem, and energy national security is consumption of petroleum products problem. Accurately predicting engine processes leads to, lower greenhouse gas (GHG) emission, where engines in the transportation sector currently account for 26% of the U.S. GHG emissions. Less dependence on petroleum products leads to greater energy security. By Environmental Protection Agency standards, some vehicles are now reaching 42 to the 50 mpg mark. These are conventional gasoline engines.more » Continued investment and research into new technical innovations, the potential exists to save more than 4 million barrels of oil per day or approximately $200 to $400 million per day. This would be a significant decrease in emission and use of petroleum and a very large economic stimulus too! It is estimated with further advancements in combustion, the current emissions can be reduced up to 40%. Enabling better understanding of fuel injection and fuel-air mixing, thermodynamic combustion losses, and combustion/emission formation processes enhances our ability to help solve both problems. To provide adequate capability for accurately simulating these processes, minimize time and labor for development of engine technology, are the goals of our KIVA development program.« less
Viability assessment of regional biomass pre-processing center based bioethanol value chains
NASA Astrophysics Data System (ADS)
Carolan, Joseph E.
Petroleum accounts for 94% of all liquid fuels and 36% of the total of all energy consumed in the United States. Petroleum dependence is problematic because global petroleum reserves are estimated to last only for 40 to 60 years at current consumption rates; global supplies are often located in politically unstable or unfriendly regions; and fossil fuels have negative environmental footprints. Domestic policies have aimed at promoting alternative, renewable liquid fuels, specifically bio-fuels derived from organic matter. Cellulosic bio-ethanol is one promising alternative fuel that has featured prominently in federal bio-fuel mandates under the Energy Independence and Security Act, 2007. However, the cellulosic bio-ethanol industry faces several technical, physical and industrial organization challenges. This dissertation examines the concept of a network of regional biomass pre-treatment centers (RBPC) that form an extended biomass supply chain feeding into a simplified biorefinery as a way to overcome these challenges. The analyses conducted address the structural and transactional issues facing bio-ethanol value chain establishment; the technical and financial feasibility of a stand alone pre-treatment center (RBPC); the impact of distributed pre-treatment on biomass transport costs; a comparative systems cost evaluation of the performance of the RBPC chain versus a fully integrated biorefinery (gIBRh), followed by application of the analytical framework to three case study regions.
Alterations in morphology and hepatorenal indices in rats subacutely exposed to bitumen extract.
Otuechere, Chiagoziem A; Adesanya, Oluseyi; Otsupius, Precious; Seyitan, Nathaniel
2016-10-01
Bitumen is a complex mixture of dense and extremely viscous organic liquids produced by distillation of crude oil during petroleum refining. Nigeria has a large deposit of natural bitumen, yet to be fully exploited. Discharges of petroleum hydrocarbons and other petroleum-derived products have caused environmental pollution and adverse human health effects in several oil-rich communities. In this study, bitumen obtained from a seepage source in Agbabu, the town of first discovery, was used in sub-acute toxicity studies in a rat experimental model, in order to assess potential health risks posed to local populace sequel to full exploitation of bitumen. Dosages were chosen to accommodate low to high cases of environmental exposures. Male Wistar rats were administered, per os, dosages of bitumen extract at 5, 3, 2, and 1 mg/kg body weight. Following euthanasia 28 days later, histological findings revealed severe portal congestion and cellular infiltration in the liver, while in the kidney there were protein casts in the tubular lumen. The relative liver and kidney weights in the 5 mg/kg groups were 34% and 40% higher than in the controls, with a concomitant decrease in food and water consumption. Furthermore, plasma clinical analyses revealed marked elevation in aspartate aminotransferase and triglycerides levels in bitumen extract-intoxicated rats. The results indicate the potential hepatorenal toxicity in adult rats following repeated exposure to bitumen extract.
OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anbo Wang; Kristie L. Cooper; Gary R. Pickrell
2003-06-01
Efficient recovery of petroleum reserves from existing oil wells has been proven to be difficult due to the lack of robust instrumentation that can accurately and reliably monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multilateralmore » wells. This is the final report for the four-year program ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'', funded by the National Petroleum Technology Office of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech from October 1, 1999 to March 31, 2003. The main objective of this research program was to develop cost-effective, reliable optical fiber sensor instrumentation for real-time monitoring of various key parameters crucial to efficient and economical oil production. During the program, optical fiber sensors were demonstrated for the measurement of temperature, pressure, flow, and acoustic waves, including three successful field tests in the Chevron/Texaco oil fields in Coalinga, California, and at the world-class oil flow simulation facilities in Tulsa, Oklahoma. Research efforts included the design and fabrication of sensor probes, development of signal processing algorithms, construction of test systems, development and testing of strategies for the protection of optical fibers and sensors in the downhole environment, development of remote monitoring capabilities allowing real-time monitoring of the field test data from virtually anywhere in the world, and development of novel data processing techniques. Comprehensive testing was performed to systematically evaluate the performance of the fiber optic sensor systems in both lab and field environments.« less
Final technical report for the Center for Catalytic Hydrocarbon Functionalization (an EFRC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunnoe, Thomas Brent
Greater than 95% of all materials produced by the chemical industry are derived from a small slate of simple hydrocarbons that are derived primarily from natural gas and petroleum, predominantly through oxygenation, C–C bond formation, halogenation or amination. Yet, current technologies for hydrocarbon conversion are typically high temperature, multi-step processes that are energy and capital intensive and result in excessive emissions (including carbon dioxide). The Center for Catalytic Hydrocarbon Functionalization (CCHF) brought together research teams with the broad coalition of skills and knowledge needed to make the fundamental advances in catalysis required for next-generation technologies to convert hydrocarbons (particularly lightmore » alkanes and methane) at high efficiency and low cost. Our new catalyst technologies offer many opportunities including enhanced utilization of natural gas in the transportation sector (via conversion to liquid fuels), more efficient generation of electricity from natural gas using direct methane fuel cells, reduced energy consumption and waste production for large petrochemical processes, and the preparation of high value molecules for use in biological/medical applications or the agricultural sector. The five year collaborative project accelerated fundamental understanding of catalyst design for the conversion of C–H bonds to functionalized products, essential to achieve the goals listed above, as evidenced by the publication of 134 manuscripts. Many of these fundamental advancements provide a foundation for potential commercialization, as evidenced by the submission of 11 patents from research support by the CCHF.« less
Biofuels Potential for Transportation Fuels in Vietnam: A Status Quo and SWOT Analysis
NASA Astrophysics Data System (ADS)
Trinh, Tu Anh; Phuong Linh Le, Thi
2018-04-01
Petroleum consumption for road transportation is well-known as the largest source of CO2 emissions. Worldwide, biofuel is becoming more attractive as substitute for crude oil owing to the increasing demand for environmentally friendly energy and its contribution towards petro dependency reduction and climate change mitigation. This paper reviews the facts and prospects of biofuel production in Vietnam. A SWOT model is adopted to study the strengths, weaknesses, opportunities and threats of biofuels production. The conclusion is drawn that with advantages of weather conditions, soil conditions, the availability of biomass and commitment from government, the country has potential to develop biobuels for domestic consumption. However, threats to production are posed by social acceptance, land use, and technology. Thus, biofuels production still need more supports from government through robust policies, regulations, and institutional framework.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kavousian, A; Rajagopal, R; Fischer, M
2013-06-15
We propose a method to examine structural and behavioral determinants of residential electricity consumption, by developing separate models for daily maximum (peak) and minimum (idle) consumption. We apply our method on a data set of 1628 households' electricity consumption. The results show that weather, location and floor area are among the most important determinants of residential electricity consumption. In addition to these variables, number of refrigerators and entertainment devices (e.g., VCRs) are among the most important determinants of daily minimum consumption, while number of occupants and high-consumption appliances such as electric water heaters are the most significant determinants of dailymore » maximum consumption. Installing double-pane windows and energy-efficient lights helped to reduce consumption, as did the energy-conscious use of electric heater. Acknowledging climate change as a motivation to save energy showed correlation with lower electricity consumption. Households with individuals over 55 or between 19 and 35 years old recorded lower electricity consumption, while pet owners showed higher consumption. Contrary to some previous studies, we observed no significant correlation between electricity consumption and income level, home ownership, or building age. Some otherwise energy-efficient features such as energy-efficient appliances, programmable thermostats, and insulation were correlated with slight increase in electricity consumption. (C) 2013 Elsevier Ltd. All rights reserved.« less
Future Oil and Gas Resources of the World: A Coming Supply Crisis?
NASA Astrophysics Data System (ADS)
Ahlbrandt, T. S.
2002-05-01
Is the world running out of oil? Where will future oil and gas supplies come from? To help answer these questions, the U.S. Geological Survey completed in 2000 a new assessment of the undiscovered conventional oil and gas resources and potential additions to reserves from field growth. One hundred and twenty-eight provinces were assessed in a 100 man-year effort from 1995-2000. The assessed provinces included 76 priority provinces containing 95 percent of the world's discovered oil and gas and an additional 52 "boutique" provinces, many of which may be highly prospective. Total Petroleum Systems (TPS) were identified and described for each of these provinces along with associated Assessment Units (AU) that are the basic units for assessing undiscovered petroleum. The assessment process coupled geologic analysis with a probabilistic methodology to estimate remaining potential. Within the 128 assessed provinces, were 159 TPS and 274 AU. For these provinces, the endowment of recoverable oil, which includes cumulative production, remaining reserves, reserve growth, and undiscovered resources is estimated at about 3 trillion barrels of oil (TBO). The natural gas endowment is estimated at 2.6 trillion barrels of oil equivalent (TBOE). Oil reserves are currently 1.1 TBO; world consumption is about .028 TBO per year. Natural gas reserves are about .8 TBOE; world consumption is about .014 TBOE. Thus, without any additional discoveries of oil, gas or natural gas liquids, we have about 2 TBOE of proved petroleum reserves. Of the oil and gas endowment of about 5.6 TBOE, we estimate that the world has consumed about 1 TBOE, or 18 percent leaving about 82 percent of endowment to be utilized or found. Half of the world's undiscovered potential is offshore. Arctic basins with about 25 percent of undiscovered petroleum resources make up the next great frontier. An additional 279 provinces contain some oil and gas and, if considered, would increase the oil and gas endowment estimates. While petroleum resources in the world appear to be significant, certain countries such as the U.S. may run into import deficits particularly oil imports from Mexico and natural gas from Canada. The new assessment has been used as the reference supply case in energy supply models by the International Energy Agency and the Energy Information Agency of the Department of Energy. Climate energy modeling groups such as Stanford, Massachusetts Institute of Technology and others have also used the estimates in global climate models. Many of these models using the USGS estimates, converge on potential oil shortfalls in 2036-2040. A transition to increased use of natural gas is expected, but gas in turn may experience similar supply concerns in the 2050-2060 time frame. A coal bridge-to-the-future model as well a realistic view of non-renewable resources in the future will be discussed. Non-conventional oil and gas are quite common in the petroleum provinces of the world and represent a significant resource yet to be fully studied and developed. Seventeen non-conventional AU, including coal-bed methane, basin-center gas, continuous oil, and gas hydrate occurrences, have been preliminarily identified for future assessment. Initial efforts to assess heavy oil deposits and other non-conventional oil and gas deposits are also underway. Digital products from the World Energy Project may be downloaded at (http://energy.cr.usgs.gov/energy/WorldEnergy/WEnergy.html).
Chemicals from biomass - The U.S. prospects for the turn of the century
NASA Technical Reports Server (NTRS)
Sarbolouki, M. N.; Moacanin, J.
1980-01-01
Historically, chemicals from biomass have been and are expected to be economical in three major areas: byproducts, specialty items and polymers. Assessments of producing major chemicals from biomass in a processing plant based on the available conversion techniques indicate that they are not economically attractive, with the possible exception of conversion to ammonia and ethanol. The deterrents are the heavy capital investments, dependability of raw material supply and transportation costs for large plants, lack of operation experience, inadaptability of market variations, and competition from petroleum and coal. More importantly, it is also shown that even if chemicals from biomass were economical today, the resultant savings in petroleum would be far less than those achieved through other options available for the utilization of biomass as fuel and structural material. Thus, it is concluded that near-term research and development must be toward improved conversion processes, recovery of valuable products from waste streams at existing plants, more efficient use of biomass of energy and more efficient production of superior material products.
Fuel-Flexible Engines for Portable-Power Applications
2009-05-31
military grade, JP8, respectively. Repeated testing procedures elucidated the need for better measurement and control of the glow plug intensity ...different fuels that are currently available for market consumption. While petroleum- based fuels are being tested in this research, the researchers are...0.8 210 15 TA4, TA7 Gasoline C8-H18 0.75 280 15.1 TA7 Light Diesel C8-H18 0.85 210 15 TA7 Medium Diesel C14-H30 0.85 210 15 TA7 Heavy Diesel C21-H44
International energy annual, 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-05-08
This document presents an overview of key international energy trends for production, consumption, imports, and exports of primary energy commodities in over 200 countries, dependencies, and areas of special sovereignty. Also included are population and gross domestic product data, as well as prices for crude oil and petroleum products in selected countries. Renewable energy includes hydroelectric, geothermal, solar and wind electric power and alcohol for fuel. The data were largely derived from published sources and reports from US Embassy personnel in foreign posts. EIA also used data from reputable secondary sources, industry reports, etc.
Transportation Fuels Markets, PADD 1 and PADD 3
2016-01-01
This study examines supply, consumption, and distribution of transportation fuels in Petroleum Administration for Defense Districts (PADDs) 1 and 3, or the U.S. East Coast and the Gulf Coast, respectively. The East Coast region includes states from Maine to Florida along the U.S. Atlantic Coast. The Gulf Coast region comprises states between New Mexico in the west to Alabama in the east along the Gulf of Mexico. For this study, transportation fuels include gasoline, diesel fuel and jet fuel. Residual fuel oil supply is also analyzed where applicable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This is a Spanish-language brochure about hybrid and plug-in electric vehicles, which use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.
Engineering organisms for industrial fuel production.
Berry, David A
2010-01-01
Volatile fuel costs, the need to reduce greenhouse gas emissions and fuel security concerns are driving efforts to produce sustainable renewable fuels and chemicals. Petroleum comes from sunlight, CO(2) and water converted via a biological intermediate into fuel over a several million year timescale. It stands to reason that using biology to short-circuit this time cycle offers an attractive alternative--but only with relevant products at or below market prices. The state of the art of biological engineering over the past five years has progressed to allow for market needs to drive innovation rather than trying to adapt existing approaches to the market. This report describes two innovations using synthetic biology to dis-intermediate fuel production. LS9 is developing a means to convert biological intermediates such as cellulosic hydrolysates into drop-in hydrocarbon product replacements such as diesel. Joule Unlimited is pioneering approaches to eliminate feedstock dependency by efficiently capturing sunlight, CO(2) and water to produce fuels and chemicals. The innovations behind these companies are built with the market in mind, focused on low cost biosynthesis of existing products of the petroleum industry. Through successful deployment of technologies such as those behind LS9 and Joule Unlimited, alternative sources of petroleum products will mitigate many of the issues faced with our petroleum-based economy. © 2010 Landes Bioscience
NASA Astrophysics Data System (ADS)
Zamani, Javad; Hajabbasi, Mohammad Ali; Alaie, Ebrahim
2014-05-01
The root systems of most terrestrial plants are confronted to various abiotic and biotic stresses. One of these abiotic stresses is contamination of soil with petroleum hydrocarbon, which the efficiency of phytoremediation of petroleum hydrocarbons in soils is dependent on the ability of plant roots to development into the contaminated soils. Piriformospora indica represents a recently discovered fungus that transfers considerable beneficial impact to its host plants. A rhizotron experiment was conducted to study the effects of P. Indica inoculation on root distribution and root and shoot development of maize (Zea mays L.) in the presence of three patterns of petroleum contamination in the soil (subsurface contamination, continuous contamination and without contamination (control)). Root distribution and root and shoot development were monitored over time. The final root and shoot biomass and the final TPH concentration in the rhizosphere were determined. Analysis of digitized images which were prepared of the tracing of the appeared roots along the front rhizotrons showed the depth and total length of root network in the contamination treatments were significantly decreased. Although the degradation of TPH in the rhizosphere of maize was significant, but there were no significant differences between degradation of TPH in the rhizosphere of +P. indica plants in comparison to -P. indica plants.
75 FR 72761 - Production Measurement Documents Incorporated by Reference
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-26
... of crude oil, refined products, or lubricating oils. Natural gas liquids and liquid petroleum gases... standards into the regulations governing oil, gas, and sulphur operations in the Outer Continental Shelf... oil and gas production volumes. This will result in more efficient measurement of oil and gas...
77 FR 18916 - Production Measurement Documents Incorporated by Reference
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-29
... products, or lubricating oils. Natural gas liquids and liquid petroleum gases are excluded from this... into the regulations governing oil, gas, and sulphur operations in the Outer Continental Shelf... measuring oil and gas production volumes. This rule will result in more accurate and efficient measurement...
Terpenoids from Curcuma wenyujin increased glucose consumption on HepG2 cells.
Zhou, Chang-Xin; Zhang, Li-Sha; Chen, Fei-Fei; Wu, Hao-Shu; Mo, Jian-Xia; Gan, Li-She
2017-09-01
Thirty four terpenoids, including two new cadinane-type sesquiterpenoids containing conjugated aromatic-ketone moieties, curcujinone A (1) and curcujinone B (2), were isolated from 95% ethanol extract of the root tubers of Curcuma wenyujin. Their structures were determined by spectroscopic methods, especially 2D NMR and HRMS techniques. The relative and absolute configurations of 1 and 2 were identified by quantum chemical DFT and TDDFT calculations of the 13 C NMR chemical shifts, ECD spectra, and specific optical rotations. All compounds and extracts were evaluated for their anti-diabetic activities with a glucose consumption model on HepG2 Cells. The petroleum fraction CWP (10μg/mL) and compounds curcumenol (4), 7α,11α-epoxy-5β-hydroxy-9-guaiaen-8-one (5), curdione (17), (1S, 4S, 5S 10S)-germacrone (18), zederone (20), a mixture of curcumanolide A (25) and curcumanolide B (26), gajutsulactone B (27), and wenyujinin C (30) showed promising activities with over 45% increasing of glucose consumption at 10μM. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Diaz-Elsayed, Nancy
Between 2008 and 2035 global energy demand is expected to grow by 53%. While most industry-level analyses of manufacturing in the United States (U.S.) have traditionally focused on high energy consumers such as the petroleum, chemical, paper, primary metal, and food sectors, the remaining sectors account for the majority of establishments in the U.S. Specifically, of the establishments participating in the Energy Information Administration's Manufacturing Energy Consumption Survey in 2006, the non-energy intensive" sectors still consumed 4*109 GJ of energy, i.e., one-quarter of the energy consumed by the manufacturing sectors, which is enough to power 98 million homes for a year. The increasing use of renewable energy sources and the introduction of energy-efficient technologies in manufacturing operations support the advancement towards a cleaner future, but having a good understanding of how the systems and processes function can reduce the environmental burden even further. To facilitate this, methods are developed to model the energy of manufacturing across three hierarchical levels: production equipment, factory operations, and industry; these methods are used to accurately assess the current state and provide effective recommendations to further reduce energy consumption. First, the energy consumption of production equipment is characterized to provide machine operators and product designers with viable methods to estimate the environmental impact of the manufacturing phase of a product. The energy model of production equipment is tested and found to have an average accuracy of 97% for a product requiring machining with a variable material removal rate profile. However, changing the use of production equipment alone will not result in an optimal solution since machines are part of a larger system. Which machines to use, how to schedule production runs while accounting for idle time, the design of the factory layout to facilitate production, and even the machining parameters --- these decisions affect how much energy is utilized during production. Therefore, at the facility level a methodology is presented for implementing priority queuing while accounting for a high product mix in a discrete event simulation environment. A baseline case is presented and alternative factory designs are suggested, which lead to energy savings of approximately 9%. At the industry level, the majority of energy consumption for manufacturing facilities is utilized for machine drive, process heating, and HVAC. Numerous studies have characterized the energy of manufacturing processes and HVAC equipment, but energy data is often limited for a facility in its entirety since manufacturing companies often lack the appropriate sensors to track it and are hesitant to release this information for confidentiality purposes. Without detailed information about the use of energy in manufacturing sites, the scope of factory studies cannot be adequately defined. Therefore, the breakdown of energy consumption of sectors with discrete production is presented, as well as a case study assessing the electrical energy consumption, greenhouse gas emissions, their associated costs, and labor costs for selected sites in the United States, Japan, Germany, China, and India. By presenting energy models and assessments of production equipment, factory operations, and industry, this dissertation provides a comprehensive assessment of energy trends in manufacturing and recommends methods that can be used beyond these case studies and industries to reduce consumption and contribute to an energy-efficient future.
[Copper recovery from artificial bioleaching lixivium of waste printed circuit boards].
Cheng, Dan; Zhu, Neng-Wu; Wu, Ping-Xiao; Zou, Ding-Hui; Xing, Yi-Jia
2014-04-01
The key step to realize metal recovery from bioleaching solutions is the recovery of copper from bioleaching lixivium of waste printed circuit boards in high-grade form. The influences of cathode material, current density, initial pH and initial copper ion concentration on the efficiency and energy consumption of copper recovery from artificial bioleaching lixivium under condition of constant current were investigated using an electro-deposition approach. The results showed that the larger specific surface area of the cathode material (carbon felt) led to the higher copper recovery efficiency (the recovery efficiencies of the anode and the cathode chambers were 96.56% and 99.25%, respectively) and the smaller the total and unit mass product energy consumption (the total and unit mass product energy consumptions were 0.022 kW x h and 15.71 kW x h x kg(-1), respectively). The copper recovery efficiency and energy consumption increased with the increase of current density. When the current density was 155.56 mA x cm(-2), the highest copper recovery efficiencies in the anode and cathode chambers reached 98.51% and 99.37%, respectively. Accordingly, the highest total and unit mass product energy consumptions were 0.037 kW x h and 24.34 kW x h x kg(-1), respectively. The copper recovery efficiency was also significantly affected by the initial copper ion concentration. The increase of the initial copper ion concentration would lead to faster decrease of copper ion concentration, higher total energy consumption, and lower unit mass product consumption. However, the initial pH had no significant effect on the copper recovery efficiency. Under the optimal conditions (carbon felt for cathode materials, current density of 111.11 mA x cm(-2), initial pH of 2.0, and initial copper ion concentration of 10 g x L(-1)), the copper recovery efficiencies of the anode and cathode chambers were 96.75% and 99.35%, and the total and unit mass product energy consumptions were 0.021 kW x h and 14.61 kW x h x kg(-1), respectively. The deposited copper on the cathode material was fascicularly distributed and no oxygen was detected.
Chenglin, L.; Charpentier, R.R.
2010-01-01
The U.S. Geological Survey procedure for the estimation of the general form of the parent distribution requires that the parameters of the log-geometric distribution be calculated and analyzed for the sensitivity of these parameters to different conditions. In this study, we derive the shape factor of a log-geometric distribution from the ratio of frequencies between adjacent bins. The shape factor has a log straight-line relationship with the ratio of frequencies. Additionally, the calculation equations of a ratio of the mean size to the lower size-class boundary are deduced. For a specific log-geometric distribution, we find that the ratio of the mean size to the lower size-class boundary is the same. We apply our analysis to simulations based on oil and gas pool distributions from four petroleum systems of Alberta, Canada and four generated distributions. Each petroleum system in Alberta has a different shape factor. Generally, the shape factors in the four petroleum systems stabilize with the increase of discovered pool numbers. For a log-geometric distribution, the shape factor becomes stable when discovered pool numbers exceed 50 and the shape factor is influenced by the exploration efficiency when the exploration efficiency is less than 1. The simulation results show that calculated shape factors increase with those of the parent distributions, and undiscovered oil and gas resources estimated through the log-geometric distribution extrapolation are smaller than the actual values. ?? 2010 International Association for Mathematical Geology.
Han, Fang; Wang, Zhijie; Fan, Hong
2017-01-01
This paper proposed a new method to determine the neuronal tuning curves for maximum information efficiency by computing the optimum firing rate distribution. Firstly, we proposed a general definition for the information efficiency, which is relevant to mutual information and neuronal energy consumption. The energy consumption is composed of two parts: neuronal basic energy consumption and neuronal spike emission energy consumption. A parameter to model the relative importance of energy consumption is introduced in the definition of the information efficiency. Then, we designed a combination of exponential functions to describe the optimum firing rate distribution based on the analysis of the dependency of the mutual information and the energy consumption on the shape of the functions of the firing rate distributions. Furthermore, we developed a rapid algorithm to search the parameter values of the optimum firing rate distribution function. Finally, we found with the rapid algorithm that a combination of two different exponential functions with two free parameters can describe the optimum firing rate distribution accurately. We also found that if the energy consumption is relatively unimportant (important) compared to the mutual information or the neuronal basic energy consumption is relatively large (small), the curve of the optimum firing rate distribution will be relatively flat (steep), and the corresponding optimum tuning curve exhibits a form of sigmoid if the stimuli distribution is normal. PMID:28270760
10 CFR 431.82 - Definitions concerning commercial packaged boilers.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., and functional (or hydraulic) characteristics that affect energy consumption, energy efficiency, water consumption, or water efficiency. Btu/h or Btu/hr means British thermal units per hour. Combustion efficiency...) For service water heating in buildings but does not meet the definition of “hot water supply boiler...
Optimization methods applied to hybrid vehicle design
NASA Technical Reports Server (NTRS)
Donoghue, J. F.; Burghart, J. H.
1983-01-01
The use of optimization methods as an effective design tool in the design of hybrid vehicle propulsion systems is demonstrated. Optimization techniques were used to select values for three design parameters (battery weight, heat engine power rating and power split between the two on-board energy sources) such that various measures of vehicle performance (acquisition cost, life cycle cost and petroleum consumption) were optimized. The apporach produced designs which were often significant improvements over hybrid designs already reported on in the literature. The principal conclusions are as follows. First, it was found that the strategy used to split the required power between the two on-board energy sources can have a significant effect on life cycle cost and petroleum consumption. Second, the optimization program should be constructed so that performance measures and design variables can be easily changed. Third, the vehicle simulation program has a significant effect on the computer run time of the overall optimization program; run time can be significantly reduced by proper design of the types of trips the vehicle takes in a one year period. Fourth, care must be taken in designing the cost and constraint expressions which are used in the optimization so that they are relatively smooth functions of the design variables. Fifth, proper handling of constraints on battery weight and heat engine rating, variables which must be large enough to meet power demands, is particularly important for the success of an optimization study. Finally, the principal conclusion is that optimization methods provide a practical tool for carrying out the design of a hybrid vehicle propulsion system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCoy, G.A.
1983-11-18
The City of Longview can obtain significant fuel savings benefits by converting a portion of their vehicle fleet to operate on either compressed natural gas (CNG) or liquid petroleum gas (LPG) fuels. The conversion of 41 vehicles including police units, sedans, pickups, and light duty trucks to CNG use would offset approximately 47% of the city's 1982 gasoline consumption. The CNG conversion capital outlay of $115,000 would be recovered through fuel cost reductions. The Cascade Natural Gas Corporation sells natural gas under an interruptible tariff for $0.505 per therm, equivalent to slightly less than one gallon of gasoline. The citymore » currently purchases unleaded gasoline at $1.115 per gallon. A payback analysis indicates that 39.6 months are required for the CNG fuel savings benefits to offset the initial or first costs of the conversion. The conversion of fleet vehicles to liquid petroleum gas (LPG) or propane produces comparable savings in vehicle operating costs. The conversion of 59 vehicles including police units, pickup and one ton trucks, street sweepers, and five cubic yard dump trucks would cost approximately $59,900. The annual purchase of 107,000 gallons of propane would offset the consumption of 96,300 gallons of gasoline, or approximately 67% of the city's 1982 usage. Propane is currently retailing for $0.68 to $0.74 per gallon. A payback analysis indicates that 27.7 months are required for the fuel savings benefits to offset the initial LPG conversion costs.« less
Chapelle, F.H.
1999-01-01
Bioremediation, the use of microbial degradation processes to detoxify environmental contamination, was first applied to petroleum hydrocarbon-contaminated ground water systems in the early 1970s. Since that time, these technologies have evolved in some ways that were clearly anticipated early investigators, and in other ways that were not foreseen. The expectation that adding oxidants and nutrients to contaminated aquifers would enhance biodegradation, for example, has been born out subsequent experience. Many of the technologies now in common use such as air sparging, hydrogen peroxide addition, nitrate addition, and bioslurping, are conceptually similar to the first bioremediation systems put into operation. More unexpected, however, were the considerable technical problems associated with delivering oxidants and nutrients to heterogeneous ground water systems. Experience has shown that the success of engineered bioremediation systems depends largely on how effectively directions and rates of ground water flow can be controlled, and thus how efficiently oxidants and nutrients can be delivered to contaminated aquifer sediments. The early expectation that injecting laboratory-selected or genetically engineered cultures of hydrocarbon-degrading bacteria into aquifers would be a useful bioremediation technology has not been born out subsequent experience. Rather, it appears that petroleum hydrocarbon-degrading bacteria are ubiquitous in ground water systems and that bacterial addition is usually unnecessary. Perhaps the technology that was least anticipated early investigators was the development of intrinsic bioremediation. Experience has shown that natural attenuation mechanisms - biodegradation, dilution, and sorption - limit the migration of contaminants to some degree in all ground water systems. Intrinsic bioremediation is the deliberate use of natural attenuation processes to treat contaminated ground water to specified concentration levels at predetermined points in the aquifer. In current practice, intrinsic bioremediation of petroleum hydrocarbons requires a systematic assessment to show that ambient natural attenuation mechanisms are efficient enough to meet regulatory requirements and a monitoring program to verify that performance requirements are met in the future.
NASA Astrophysics Data System (ADS)
Abdullahi Ahmad, Kabiru; Ezree Abdullah, Mohd; Hassan, Norhidayah Abdul; Usman, Nura; Hassan, Mohd Rosli Mohd; Bilema, Munder A. M.; Modibbo Saeed, Saeed; Batari, Ahmad
2018-04-01
Concerns about the cost, availability, and environmental impact of using petroleum-based materials have led to increased usage of reclaimed asphalt pavement (RAP). Mean-while, the demand of the road industry to decrease the energy consumptions and reduce the release of greenhouse gases as well as other harmful gases, which cause serious air pollution has increased due to the amount of energy consumed is a major component of pavement construction that significantly contributes to the total cost. This paper evaluates the effects of Biobased rejuvenator known as JCO on the required heat energy and the amount of CO2 produced to increase the temperature of RAP and virgin aggregates and one binder from 25C to the point of mixing. The results showed that incorporating Biobased rejuvenator (JCO) can potentially reduce the required heat energy and amount of greenhouse gas produced by RAP and virgin, respectively.
Contribution of LPG-Derived Emissions to Air Pollution in the Metropolitan Area of Guadalajara City.
Schifter, Isaac; Magdaleno, Moises; Díaz, Luis; Melgarejo, Luis A; Barrera, Adrian; Krüger, Burkhard; Arriaga, José L; Lopez-Salinas, Esteban
2000-10-01
Measurements of hydrocarbon (HC) emissions generated by the use of liquefied petroleum gas (LPG) in the metropolitan area of Guadalajara City (MAG) are presented in this work. Based on measurements in the course of distribution, handling, and consumption, an estimated 4407 tons/yr are released into the atmosphere. The three most important contributors to LPG emissions were refilling of LPG-fueled vehicles and commercial and domestic consumption. The MAG shows a different contribution pattern of LPG emission sources compared with that of the metropolitan area of Mexico City (MAMC). These results show that each megacity has different sources of emissions, which provides more accurate strategies in the handling procedures for LPG to decrease the impact in O 3 levels. This work represents the first evaluation performed in Guadalajara City, based on current measurements, of the LPG contribution to polluting emissions.
Contribution of LPG-derived emissions to air pollution in the metropolitan area of Guadalajara City.
Schifter, I; Magdaleno, M; Díaz, L; Melgarejo, L A; Barrera, A; Krüger, B; Arriaga, J L; López-Salinas, E
2000-10-01
Measurements of hydrocarbon (HC) emissions generated by the use of liquefied petroleum gas (LPG) in the metropolitan area of Guadalajara City (MAG) are presented in this work. Based on measurements in the course of distribution, handling, and consumption, an estimated 4407 tons/yr are released into the atmosphere. The three most important contributors to LPG emissions were refilling of LPG-fueled vehicles and commercial and domestic consumption. The MAG shows a different contribution pattern of LPG emission sources compared with that of the metropolitan area of Mexico City (MAMC). These results show that each megacity has different sources of emissions, which provides more accurate strategies in the handling procedures for LPG to decrease the impact in O3 levels. This work represents the first evaluation performed in Guadalajara City, based on current measurements, of the LPG contribution to polluting emissions.
Alternative Fuels Data Center: Hydrogen Related Links
to promote understanding of hydrogen technology and to create a marketplace for pollution-free make a swift transition to pollution-free renewable energy sources and clean, petroleum-free of fuel cells and related pollution-free, efficient energy generation, storage and utilization
Belisle, A.A.; Gay, M.L.; Coon, N.C.
1981-01-01
Hydrocarbon residues in pooled eggs from a mallard duck on a diet of 25,000 ppm South Louisiana crude oil were compared after cleanup with and without saponification. The saponification procedure yielded superior reproducibility and extraction efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belisle, A.A.; Gay, M.L.; Coon, N.C.
Hydrocarbon residues in pooled eggs from a mallard duck on a diet of 25,000 ppm South Louisiana crude oil were compared after cleanup with and without saponification. The saponification procedure yielded superior reproducibility and extraction efficiency..
19 CFR 191.73 - Export summary procedure.
Code of Federal Regulations, 2014 CFR
2014-04-01
... drawback, as well as for drawback involving the substitution of finished petroleum derivatives (19 U.S.C. 1313(a), (b), (c), (j), or (p)). It is intended to improve administrative efficiency. (b) Format of... Chronological Summary of Exports to the appropriate documentary evidence of exportation (for example, Bill of...
19 CFR 191.73 - Export summary procedure.
Code of Federal Regulations, 2011 CFR
2011-04-01
... drawback, as well as for drawback involving the substitution of finished petroleum derivatives (19 U.S.C. 1313(a), (b), (c), (j), or (p)). It is intended to improve administrative efficiency. (b) Format of... Chronological Summary of Exports to the appropriate documentary evidence of exportation (for example, Bill of...
19 CFR 191.73 - Export summary procedure.
Code of Federal Regulations, 2013 CFR
2013-04-01
... drawback, as well as for drawback involving the substitution of finished petroleum derivatives (19 U.S.C. 1313(a), (b), (c), (j), or (p)). It is intended to improve administrative efficiency. (b) Format of... Chronological Summary of Exports to the appropriate documentary evidence of exportation (for example, Bill of...
19 CFR 191.73 - Export summary procedure.
Code of Federal Regulations, 2012 CFR
2012-04-01
... drawback, as well as for drawback involving the substitution of finished petroleum derivatives (19 U.S.C. 1313(a), (b), (c), (j), or (p)). It is intended to improve administrative efficiency. (b) Format of... Chronological Summary of Exports to the appropriate documentary evidence of exportation (for example, Bill of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.R.
1997-04-01
The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goalmore » is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OTT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1, 2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. Separate abstracts have been submitted to the database for contributions to this report.« less
China's transportation energy consumption and CO2 emissions from a global perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Xiang; Chen, Wenying; Eom, Jiyong
2015-07-01
ABSTRACT Rapidly growing energy demand from China's transportation sector in the last two decades have raised concerns over national energy security, local air pollution, and carbon dioxide (CO2) emissions, and there is broad consensus that China's transportation sector will continue to grow in the coming decades. This paper explores the future development of China's transportation sector in terms of service demands, final energy consumption, and CO2 emissions, and their interactions with global climate policy. This study develops a detailed China transportation energy model that is nested in an integrated assessment model—Global Change Assessment Model (GCAM)—to evaluate the long-term energy consumptionmore » and CO2 emissions of China's transportation sector from a global perspective. The analysis suggests that, without major policy intervention, future transportation energy consumption and CO2 emissions will continue to rapidly increase and the transportation sector will remain heavily reliant on fossil fuels. Although carbon price policies may significantly reduce the sector's energy consumption and CO2 emissions, the associated changes in service demands and modal split will be modest, particularly in the passenger transport sector. The analysis also suggests that it is more difficult to decarbonize the transportation sector than other sectors of the economy, primarily owing to its heavy reliance on petroleum products.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steward, Darlene; Sears, Ted
The Energy Policy Act (EPAct) of 1992, with later amendments, was enacted with the goal of reducing U.S. petroleum consumption by building a core market for alternative fuels and vehicles. The U.S. Department of Energy manages three federal programs related to EPAct; the Sustainable Federal Fleets Program, the State and Alternative Fuel Provider Program, and Clean Cities. Federal agencies and State and Alternative Fuel Provider Fleets are required to submit annual reports that document their compliance with the legislation. Clean Cities is a voluntary program aimed at building partnerships and providing technical expertise to encourage cities to reduce petroleum usemore » in transportation. This study reviews the evolution of these three programs in relation to alternative fuel and vehicle markets and private sector adoption of alternative fueled vehicles to assess the impact of the programs on reduction in petroleum use and greenhouse gas emissions both within the regulated fleets and through development of alternative fuel and vehicle markets. The increased availability of alternative fuels and use of alternative fuels in regulated fleets is expected to improve cities' ability to respond to and quickly recover from both local disasters and short- and long-term regional or national fuel supply interruptions. Our analysis examines the benefits as well as potential drawbacks of alternative fuel use for the resiliency of U.S. cities.« less
Permittivity of naphthenic acid-water mixture.
Mishra, Sabyasachi; Meda, Venkatesh; Dalai, Ajay
2007-01-01
Naphthenic acid (NA) is predominantly a mono-carboxylic acid obtained as a by-product of petroleum refining with variable composition and ingredients. It is reported that water affected by processes in the petroleum industries generally contains 40-120 mg IL of naphthenic acid which is considered to be in the range of toxicity to human consumption [Clemente et. al, 2005; McMartin, 2003]. This contaminated water needs treatment before its use as drinking water by remote communities. Recent literature suggests that NAs could be separated from diesel fuel using microwave radiation [Lingzhao et. al, 2004]. Removal of naphthenic acid from vacuum cut #1 distillate oil of Daqing using microwaves has also been reported by Huang et. al [2006]. The microwave treatment can be applied to drinking water containing small concentrations of naphthenic acid. In this case permittivity information is useful in designing a microwave applicator and modeling studies. Permittivity measurements were done using a HP 8510 Vector Network Analyzer and coaxial probe reflection method to study the dielectric properties of naphthenic acid in water. The effects of process variables such as frequency, concentration and temperature on dielectric properties were determined.
Davis, M E; Rutledge, J J; Cundiff, L V; Hauser, E R
1983-10-01
Several measures of life cycle cow efficiency were calculated using weights and individual feed consumptions recorded on 160 dams of beef, dairy and beef X dairy breeding and their progeny. Ratios of output to input were used to estimate efficiency, where outputs included weaning weights of progeny plus salvage value of the dam and inputs included creep feed consumed by progeny plus feed consumed by the dam over her entire lifetime. In one approach to estimating efficiency, inputs and outputs were weighted by probabilities that were a function of the cow herd age distribution and percentage calf crop in a theoretical herd. The second approach to estimating cow efficiency involved dividing the sum of the weights by the sum of the feed consumption values, with all pieces of information being given equal weighting. Relationships among efficiency estimates and various traits of dams and progeny were examined. Weights, heights, and weight:height ratios of dams at 240 d of age were not correlated significantly with subsequent efficiency of calf production, indicating that indirect selection for lifetime cow efficiency at an early age based on these traits would be ineffective. However, females exhibiting more efficient weight gains from 240 d to first calving tended to become more efficient dams. Correlations of efficiency with weight of dam at calving and at weaning were negative and generally highly significant. Height at withers was negatively related to efficiency. Ratio of weight to height indicated that fatter dams generally were less efficient. The effect of milk production on efficiency depended upon the breed combinations involved. Dams calving for the first time at an early age and continuing to calve at short intervals were superior in efficiency. Weaning rate was closely related to life cycle efficiency. Large negative correlations between efficiency and feed consumption of dams were observed, while correlations of efficiency with progeny weights and feed consumptions in individual parities tended to be positive though nonsignificant. However, correlations of efficiency with accumulative progeny weights and feed consumptions generally were significant.
Effects of oil on the feeding mechanism of the bowhead whale. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braithwaite, L.F.
1983-06-10
Research was designed to determine the effect of crude oil on the filtration efficiency of bowhead whale (Balaena mysticetus) baleen. An experiment apparatus was constructed with temperature-controlled, circulating sea water moving through a chamber containing mounted baleen plates. All circulating water of the apparatus flowed over and through the hair-fringed stratum of the baleen plates. Efficiency of filtration of living plankters was measured and compared for various kinds and levels of petroleum fouling. The filtering efficiency of the baleen plates decreased when the plates were fouled with Prudhoe Bay crude oil.
Hydrocarbon degradation in soils and methods for soil biotreatment.
Morgan, P; Watkinson, R J
1989-01-01
The cleanup of soils and groundwater contaminated with hydrocarbons is of particular importance in minimizing the environmental impact of petroleum and petroleum products and in preventing contamination of potable water supplies. Consequently, there is a growing industry involved in the treatment of contaminated topsoils, subsoils, and groundwater. The biotreatment methodologies employed for decontamination are designed to enhance in situ degradation by the supply of oxygen, inorganic nutrients, and/or microbial inocula to the contaminated zone. This review considers the fate and effects of hydrocarbon contaminants in terrestrial environments, with particular reference to the factors that limit biodegradation rates. The potential efficiencies, advantages, and disadvantages of biotreatment techniques are discussed and the future research directions necessary for process development are considered.
Zahed, Mohammad Ali; Aziz, Hamidi Abdul; Isa, Mohamed Hasnain; Mohajeri, Leila
2010-04-01
The effects of initial oil concentration and the Corexit 9500 dispersant on the rate of bioremediation of petroleum hydrocarbons were investigated with a series of ex-situ seawater samples. With initial oil concentrations of 100, 500, 1,000 and 2,000 mg/L, removal of total petroleum hydrocarbons (TPHs) with dispersant were 67.3%, 62.5%, 56.5% and 44.7%, respectively, and were 64.2%, 55.7%, 48.8% and 37.6% without dispersant. The results clearly indicate that the presence of dispersant enhanced crude oil biodegradation. Lower concentrations of crude oil demonstrated more efficient hydrocarbon removal. Based on these findings, bioremediation is not recommended for crude oil concentrations of 2,000 mg/L or higher.
Is Efficiency Enough? Towards a New Framework for Carbon Savingsin the California Residential Sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moezzi, Mithra; Diamond, Rick
2005-10-01
The overall implementation of energy efficiency in the United States is not adequately aligned with the environmental benefits claimed for efficiency, because it does not consider absolute levels of energy use, pollutant emissions, or consumption. In some ways, promoting energy efficiency may even encourage consumption. A more effective basis for environmental policy could be achieved by recognizing the degree and nature of the synchronization between environmental objectives and efficiency. This research seeks to motivate and initiate exploration of alternative ways of defining efficiency or otherwise moderating energy use toward reaching environmental objectives, as applicable to residential electricity use in California.more » The report offers three main recommendations: (1) produce definitions of efficiency that better integrate absolute consumption, (2) attend to the deeper social messages of energy efficiency communications, and (3) develop a more critical perspective on benefits and limitations of energy efficiency for delivering environmental benefits. In keeping with the exploratory nature of this project, the report also identifies ten questions for further investigation.« less
Omrani, Rahma; Spini, Giulia; Puglisi, Edoardo; Saidane, Dalila
2018-04-01
Environmental microbial communities are key players in the bioremediation of hydrocarbon pollutants. Here we assessed changes in bacterial abundance and diversity during the degradation of Tunisian Zarzatine oil by four indigenous bacterial consortia enriched from a petroleum station soil, a refinery reservoir soil, a harbor sediment and seawater. The four consortia were found to efficiently degrade up to 92.0% of total petroleum hydrocarbons after 2 months of incubation. Illumina 16S rRNA gene sequencing revealed that the consortia enriched from soil and sediments were dominated by species belonging to Pseudomonas and Acinetobacter genera, while in the seawater-derived consortia Dietzia, Fusobacterium and Mycoplana emerged as dominant genera. We identified a number of species whose relative abundances bloomed from small to high percentages: Dietzia daqingensis in the seawater microcosms, and three OTUs classified as Acinetobacter venetianus in all two soils and sediment derived microcosms. Functional analyses on degrading genes were conducted by comparing PCR results of the degrading genes alkB, ndoB, cat23, xylA and nidA1 with inferences obtained by PICRUSt analysis of 16S amplicon data: the two data sets were partly in agreement and suggest a relationship between the catabolic genes detected and the rate of biodegradation obtained. The work provides detailed insights about the modulation of bacterial communities involved in petroleum biodegradation and can provide useful information for in situ bioremediation of oil-related pollution.
Speciation of Mercury in Selected Areas of the Petroleum Value Chain.
Avellan, Astrid; Stegemeier, John P; Gai, Ke; Dale, James; Hsu-Kim, Heileen; Levard, Clément; O'Rear, Dennis; Hoelen, Thomas P; Lowry, Gregory V
2018-02-06
Petroleum, natural gas, and natural gas condensate can contain low levels of mercury (Hg). The speciation of Hg can affect its behavior during processing, transport, and storage so efficient and safe management of Hg requires an understanding of its chemical form in oil, gas and byproducts. Here, X-ray absorption spectroscopy was used to determine the Hg speciation in samples of solid residues collected throughout the petroleum value chain including stabilized crude oil residues, sediments from separation tanks and condensate glycol dehydrators, distillation column pipe scale, and biosludge from wastewater treatment. In all samples except glycol dehydrators, metacinnabar (β-HgS) was the primary form of Hg. Electron microscopy on particles from a crude sediment showed nanosized (<100 nm) particles forming larger aggregates, and confirmed the colocalization of Hg and sulfur. In sediments from glycol dehydrators, organic Hg(SR) 2 accounted for ∼60% of the Hg, with ∼20% present as β-HgS and/or Hg(SR) 4 species. β-HgS was the predominant Hg species in refinery biosludge and pipe scale samples. However, the balance of Hg species present in these samples depended on the nature of the crude oil being processed, i.e. sweet (low sulfur crudes) vs sour (higher sulfur crudes). This information on Hg speciation in the petroleum value chain will inform development of better engineering controls and management practices for Hg.
Liduino, Vitor S; Servulo, Eliana F C; Oliveira, Fernando J S
2018-06-07
This study evaluated the use of commercial rhamnolipid biosurfactant supplementation in the phytoremediation of a soil via sunflower (Helianthus annuus L.) cultivation. The soil, obtained from an industrial area, was co-contaminated with heavy metals and petroleum hydrocarbons. The remediation tests were monitored for 90 days. The best results for removal of contaminants were obtained from the tests in which the sunflower plants were cultivated in soil with 4 mg kg -1 of the rhamnolipid. Under these conditions, reductions of 58% and 48% were obtained in the total petroleum hydrocarbon (TPH) and polycyclic aromatic hydrocarbon (PAH) concentrations, respectively; reductions in the concentrations of the following metals were also achieved: Ni (41%), Cr (30%), Pb (29%), and Zn (20%). The PCR-DGGE analysis of soil samples collected before and after the treatments verified that the plant cultivation and biosurfactants supplementation had little effect on the structure of the dominant bacterial community in the soil. The results indicated that sunflower cultivation with the addition of a biosurfactant is a viable and efficient technology to treat soils co-contaminated with heavy metals and petroleum hydrocarbons.
Liquefaction Of Coal With Surfactant And Disposable Catalyst
NASA Technical Reports Server (NTRS)
Hickey, Gregory S.; Sharma, Pramod K.
1996-01-01
Fuels derived from coal more competitive with petroleum products. Improved coal-liquefaction process exploits synergistic effects of disposable iron oxide catalyst and cheap anionic surfactant. Efficiency of conversion achieved in significantly higher than efficiencies obtained with addition of either surfactant or catalyst alone. No costly pretreatment necessary, and increase in conversion achieved under processing conditions milder than those used heretofore in liquefaction of coal. Quality of distillates obtained after liquefaction in process expected superior to distillates obtained after liquefaction by older techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Erik
Powering commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petroleum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numerous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mowers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment to sustainability.
Chemometric assessment of enhanced bioremediation of oil contaminated soils.
Soleimani, Mohsen; Farhoudi, Majid; Christensen, Jan H
2013-06-15
Bioremediation is a promising technique for reclamation of oil polluted soils. In this study, six methods for enhancing bioremediation were tested on oil contaminated soils from three refinery areas in Iran (Isfahan, Arak, and Tehran). The methods included bacterial enrichment, planting, and addition of nitrogen and phosphorous, molasses, hydrogen peroxide, and a surfactant (Tween 80). Total petroleum hydrocarbon (TPH) concentrations and CHEMometric analysis of Selected Ion Chromatograms (SIC) termed CHEMSIC method of petroleum biomarkers including terpanes, regular, diaromatic and triaromatic steranes were used for determining the level and type of hydrocarbon contamination. The same methods were used to study oil weathering of 2 to 6 ring polycyclic aromatic compounds (PACs). Results demonstrated that bacterial enrichment and addition of nutrients were most efficient with 50% to 62% removal of TPH. Furthermore, the CHEMSIC results demonstrated that the bacterial enrichment was more efficient in degradation of n-alkanes and low molecular weight PACs as well as alkylated PACs (e.g. C₃-C₄ naphthalenes, C₂ phenanthrenes and C₂-C₃ dibenzothiophenes), while nutrient addition led to a larger relative removal of isoprenoids (e.g. norpristane, pristane and phytane). It is concluded that the CHEMSIC method is a valuable tool for assessing bioremediation efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.
31 CFR 576.308 - Iraqi petroleum and petroleum products.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Iraqi petroleum and petroleum products... SANCTIONS REGULATIONS General Definitions § 576.308 Iraqi petroleum and petroleum products. The term Iraqi petroleum and petroleum products means any petroleum, petroleum products, or natural gas originating in Iraq...
Utilization of Variable Consumption Biofuel in Diesel Engine
NASA Astrophysics Data System (ADS)
Markov, V. A.; Kamaltdinov, V. G.; Savastenko, A. A.
2018-01-01
The depletion of oil fields and the deteriorating environmental situation leads to the need for the search of new alternative sources of energy. Actuality of the article due to the need for greater use of the alternative fuels in internal combustion engines is necessary. The advantages of vegetables origin fuels using as engine fuels are shown. Diesel engine operation on mixtures of petroleum diesel and rapeseed oil is researched. A fuel delivery system of mixture biofuel with a control system of the fuel compound is considered. The results of the system experimental researches of fuel delivery of mixture biofuel are led.
Advanced propulsion system concept for hybrid vehicles
NASA Technical Reports Server (NTRS)
Bhate, S.; Chen, H.; Dochat, G.
1980-01-01
A series hybrid system, utilizing a free piston Stirling engine with a linear alternator, and a parallel hybrid system, incorporating a kinematic Stirling engine, are analyzed for various specified reference missions/vehicles ranging from a small two passenger commuter vehicle to a van. Parametric studies for each configuration, detail tradeoff studies to determine engine, battery and system definition, short term energy storage evaluation, and detail life cycle cost studies were performed. Results indicate that the selection of a parallel Stirling engine/electric, hybrid propulsion system can significantly reduce petroleum consumption by 70 percent over present conventional vehicles.
Supercritical synthesis of biodiesel.
Bernal, Juana M; Lozano, Pedro; García-Verdugo, Eduardo; Burguete, M Isabel; Sánchez-Gómez, Gregorio; López-López, Gregorio; Pucheault, Mathieu; Vaultier, Michel; Luis, Santiago V
2012-07-23
The synthesis of biodiesel fuel from lipids (vegetable oils and animal fats) has gained in importance as a possible source of renewable non-fossil energy in an attempt to reduce our dependence on petroleum-based fuels. The catalytic processes commonly used for the production of biodiesel fuel present a series of limitations and drawbacks, among them the high energy consumption required for complex purification operations and undesirable side reactions. Supercritical fluid (SCF) technologies offer an interesting alternative to conventional processes for preparing biodiesel. This review highlights the advances, advantages, drawbacks and new tendencies involved in the use of supercritical fluids (SCFs) for biodiesel synthesis.
Estimating pumping time and ground-water withdrawals using energy- consumption data
Hurr, R.T.; Litke, D.W.
1989-01-01
Evaluation of the hydrology of an aquifer requires knowledge about the volume of groundwater in storage and also about the volume of groundwater withdrawals. Totalizer flow meters may be installed at pumping plants to measure withdrawals; however, it generally is impractical to equip all pumping plants in an area with meters. A viable alternative is the use of rate-time methods. Rate-time methods may be used at individual pumping plants to decrease the data collection necessary for determining withdrawals. At sites where pumping-time measurement devices are not installed, pumping time may be determined on the basis of energy consumption and power demand. At pumping plants where energy consumption is metered, data acquired by reading of meters is used to estimate pumping time. Care needs to be taken to read these meters correctly. At pumping plants powered by electricity, the calculations need to be modified if transformers are present. At pumping plants powered by natural gas, the effects of the pressure-correction factor need to be included in the calculations. At pumping plants powered by gasoline, diesel oil, or liquid petroleum gas, the geometry of storage tanks needs to be analyzed as part of the calculations. The relation between power demand and pumping rate at a pumping plant can be described through the use of the power-consumption coefficient. Where equipment and hydrologic conditions are stable, this coefficient can be applied to total energy consumption at a site to estimate total groundwater withdrawals. Random sampling of power consumption coefficients can be used to estimate area-wide groundwater withdrawal. (USGS)
NASA Astrophysics Data System (ADS)
Ravi, K.; Pradeep Bhasker, J.; Alexander, Jim; Porpatham, E.
2017-11-01
On fuel perspective, Liquefied Petroleum Gas (LPG) provides cleaner emissions and also facilitates lean burn signifying less fuel consumption and emissions. Lean burn technology can attain better efficiencies and lesser combustion temperatures but this temperature is quite sufficient to facilitate formation of nitrogen oxide (NOx). Exhaust Gas Recirculation (EGR) for NOx reduction has been considered allover but extremely little literatures exist on the consequence of EGR on lean burn LPG fuelled spark ignition (SI) engine. The following research is carried out to find the optimal rate of EGR addition to reduce NOx emissions without settling on performance and combustion characteristics. A single cylinder diesel engine is altered to operate as LPG fuelled SI engine at a compression ratio of 10.5:1 and arrangements to provide different ratios of cooled EGR in the intake manifold. Investigations are done to arrive at optimum ratio of the EGR to reduce emissions without compromising on performance. Significant reductions in NOx emissions alongside HC and CO emissions were seen. Higher percentages of EGR further diluted the charge and lead to improper combustion and thus increased hydrocarbon emissions. Cooled EGR reduced the peak in-cylinder temperature which reduced NOx emissions but lead to misfire at lower lean limits.
Oliveira, Jussiane S S; Picoloto, Rochele S; Bizzi, Cezar A; Mello, Paola A; Barin, Juliano S; Flores, Erico M M
2015-11-01
A method for the simultaneous determination of Ni, V and S in petroleum coke by inductively coupled plasma optical emission spectrometry (ICP-OES) after microwave-assisted ultraviolet digestion (MW-UV) in closed vessels was proposed. Digestion was performed using electrodeless discharge lamps positioned inside quartz vessels and turned on by microwave radiation. The following parameters were evaluated: HNO3 concentration (15 mL of 1, 4, 7, 10 or 14.4 mol L(-1)), volume of H2O2 (30%, 1 or 3 mL), sample mass (100, 250 or 500 mg) and heating time (40 or 60 min) with or without the use of UV lamps. Digestion efficiency was evaluated by the determination of the residual carbon content (RCC) in digests. Using UV lamps lower RCC was obtained and the combination of 4 mol L(-1) HNO3 with 3 mL of H2O2 and 60 min of heating allowed a suitable digestion of up to 500 mg of petroleum coke (RCC< 21%). The agreement with the reference values for Ni, V and S (obtained by digestion of petroleum coke by microwave-induced combustion) and with a certified reference material of petroleum coke was between 96 and 101%. The proposed method was considered as advantageous when compared to American Society for Testing and Materials method because it allowed the simultaneous determination of Ni, V and S with lower limit of detection (0.22, 0.12 and 8.7 µg g(-1) for Ni, V and S, respectively) avoiding the use of concentrated nitric acid and providing digests suitable for routine analysis by ICP-OES. Copyright © 2015 Elsevier B.V. All rights reserved.
Bioremediation of Petroleum Hydrocarbon Contaminated Sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fallgren, Paul
Bioremediation has been widely applied in the restoration of petroleum hydrocarbon-contaminated. Parameters that may affect the rate and efficiency of biodegradation include temperature, moisture, salinity, nutrient availability, microbial species, and type and concentration of contaminants. Other factors can also affect the success of the bioremediation treatment of contaminants, such as climatic conditions, soil type, soil permeability, contaminant distribution and concentration, and drainage. Western Research Institute in conjunction with TechLink Environmental, Inc. and the U.S. Department of Energy conducted laboratory studies to evaluate major parameters that contribute to the bioremediation of petroleum-contaminated drill cuttings using land farming and to develop amore » biotreatment cell to expedite biodegradation of hydrocarbons. Physical characteristics such as soil texture, hydraulic conductivity, and water retention were determined for the petroleum hydrocarbon contaminated soil. Soil texture was determined to be loamy sand to sand, and high hydraulic conductivity and low water retention was observed. Temperature appeared to have the greatest influence on biodegradation rates where high temperatures (>50 C) favored biodegradation. High nitrogen content in the form of ammonium enhanced biodegradation as well did the presence of water near field water holding capacity. Urea was not a good source of nitrogen and has detrimental effects for bioremediation for this site soil. Artificial sea water had little effect on biodegradation rates, but biodegradation rates decreased after increasing the concentrations of salts. Biotreatment cell (biocell) tests demonstrated hydrocarbon biodegradation can be enhanced substantially when utilizing a leachate recirculation design where a 72% reduction of hydrocarbon concentration was observed with a 72-h period at a treatment temperature of 50 C. Overall, this study demonstrates the investigation of the effects of environmental parameters on bioremediation is important in designing a bioremediation system to reduce petroleum hydrocarbon concentrations in impacted soils.« less
the desired vehicle technology. PHEV-x means a plug-in hybrid electric vehicle with x miles of all hybrids, or more efficient conventional vehicles. To explore the effect of adding vehicles to your fleet , change the current number of vehicles to zero and enter a number of new vehicles. Petroleum and
Alternative Fuels Data Center: Biodiesel Offers an Easy Alternative for
substantial petroleum reductions and cost savings. The University has also purchased a mobile fueling station , particularly because the university chose to implement a relatively unique mobile trailer to fuel their shuttle . The mobile fueling station was the only upfront cost, but Worku says the resulting time efficiencies
Optical and thermal imaging devices are remote sensing systems that can be used to detect leaking gas compounds such as methane and benzene. Use of these systems can reduce fugitive emission losses through early detection and repair at industrial facilities by providing an effici...
Manpower Requirements Report FY 1994
1993-06-01
decrease in FY 1993 is primarily due to reductions in advanced weapons (-144), aerospace avionics (-48), materials (-37), and test and evaluation support...sub- sistence, medical goods, industrial and construction material , general and electronic supplies, and petroleum products. Logistic services include...efficiencies resulting from streamlining depots, modernizing/automating materials handling, and a projected decline in contract administration and
Creating Energy-Efficient Buildings.
ERIC Educational Resources Information Center
Burr, Donald F.
This paper was presented during the time the author was president of the Council of Educational Facility Planners, International, (CEFP/I). The presentation begins with a summary of the state of the world's natural gas and petroleum supplies and states that since one-third of all energy consumed in the United States is to heat and cool buildings,…
Biodiesel (BD) is a renewable energy source and is readily substituted in diesel engines. Combustion of biodiesel is cleaner due to the efficiency of the fuel to completely combust. Biodiesel combustion emissions contain less CO, PAHs, aldehydes, and particulate matter (PM) mas...
NASA Astrophysics Data System (ADS)
Katchasuwanmanee, Kanet; Cheng, Kai; Bateman, Richard
2016-09-01
As energy efficiency is one of the key essentials towards sustainability, the development of an energy-resource efficient manufacturing system is among the great challenges facing the current industry. Meanwhile, the availability of advanced technological innovation has created more complex manufacturing systems that involve a large variety of processes and machines serving different functions. To extend the limited knowledge on energy-efficient scheduling, the research presented in this paper attempts to model the production schedule at an operation process by considering the balance of energy consumption reduction in production, production work flow (productivity) and quality. An innovative systematic approach to manufacturing energy-resource efficiency is proposed with the virtual simulation as a predictive modelling enabler, which provides real-time manufacturing monitoring, virtual displays and decision-makings and consequentially an analytical and multidimensional correlation analysis on interdependent relationships among energy consumption, work flow and quality errors. The regression analysis results demonstrate positive relationships between the work flow and quality errors and the work flow and energy consumption. When production scheduling is controlled through optimization of work flow, quality errors and overall energy consumption, the energy-resource efficiency can be achieved in the production. Together, this proposed multidimensional modelling and analysis approach provides optimal conditions for the production scheduling at the manufacturing system by taking account of production quality, energy consumption and resource efficiency, which can lead to the key competitive advantages and sustainability of the system operations in the industry.
Mohanakrishna, Gunda; Al-Raoush, Riyadh I; Abu-Reesh, Ibrahim M
2018-07-01
Hybrid based bioelectrochemical system (BES) configured with embedded anode and cathode electrodes in soil was tested for the bioelectrochemical degradation of petroleum refinery wastewater (PRW). Four applied potentials were studied to optimize under batch mode operation, among which 2 V resulted in higher COD degradation (69.2%) and power density (725 mW/m 2 ) during 7 days of operation. Further studies with continuous mode of operation at optimized potential (2 V) showed that hydraulic retention time (HRT) of 19 h achieved the highest COD removal (37%) and highest power density (561 mW/m 2 ). BES function with respect to treatment efficiencies of other pollutants of PRW was also identified with respect to oil and grease (batch mode, 91%; continuous mode, 34%), total dissolved salts (batch mode, 53%; continuous mode, 24%) and sulfates (batch mode, 59%; continuous mode, 42%). Soil microenvironment in association with BES forms complex processes, providing suitable conditions for efficient treatment of PRW. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chen, Chunmao; Liang, Jiahao; Yoza, Brandon A; Li, Qing X; Zhan, Yali; Wang, Qinghong
2017-11-01
Novel diatomite (R1) and maifanite (R2) were utilized as support materials in an up-flow anaerobic sludge bed (UASB) reactor for the treatment of recalcitrant petroleum wastewater. At high organic loadings (11kg-COD/m 3 ·d), these materials were efficient at reducing COD (92.7% and 93.0%) in comparison with controls (R0) (88.4%). Higher percentages of large granular sludge (0.6mm or larger) were observed for R1 (30.3%) and R2 (24.6%) compared with controls (22.6%). The larger portion of granular sludge provided a favorable habitat that resulted in greater microorganism diversity. Increased filamentous bacterial communities are believed to have promoted granular sludge formation promoting a conductive environment for stimulation methanogenic Archaea. These communities had enhanced pH tolerance and produced more methane. This study illustrates a new potential use of diatomite and maifanite as support materials in UASB reactors for increased efficiency when treating refractory wastewaters. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sabati, Hoda; Motamedi, Hossein
2018-05-15
Water in oil emulsions increase oil processing costs and cause damage to refinery equipment which necessitates demulsification. Since chemical demulsifiers cause environmental pollution, biodemulsifiers have been paid more attention. This study aims to identify biodemulsifier-producing bacteria from petroleum contaminated environments. As a result, several biodemulsifier producing strains were found that Stenotrophomonas sp. strain HS7 (accession number: MF445088) which produced a cell associated biodemulsifier showed the highest demulsifying ratio, 98.57% for water in kerosene and 66.28% for water in crude oil emulsion after 48 h. 35 °C, pH 7, 48 h incubation and ammonium nitrate as nitrogen source were optimum conditions for biodemulsifier production. Furthermore, it was found that hydrophobic carbon sources like as liquid paraffin is not preferred as the sole carbon source while a combination of various carbon sources including liquid paraffin will increase demulsification efficiency of the biodemulsifier. The appropriate potential of this biodemulsifier strengthens the possibility of its application in industries especially petroleum industry.
1983-01-01
The National Program of Alcohol, PROALCOOL, started in November 1975, was created in response to the 1st petroleum crisis. Petroleum prices elevated suddenly between 1973 and 1974, and the cost of importing fuel increased extraordinarily. The PROALCOOL program was still in the early stages of development at the end of the decade when the 2nd petroleum crisis worsened the Brazilian energy situation even further. PROALCOOL had its institutional base strengthened in 1979, and new objectives and more ambitious goals were outlined for the program. A production goal of 10.7 billion liters of alcohol was set for 1985 which would essentially cover the predicted increase in consumption of gasoline for the country. The goal was equivalent, in energy terms, to making Brazil self-sufficient. The automobile industry in Brazil had been intensively developing in the 1970s, turning itself into a fundamental sector in the general process of Brazil's economic development. The distribution of goods in the country is intimately linked to highway transportation; the percentage of products transported by rail and shipping is relatively small. Urban transport is also still based on the automobile for individual transportation and the bus for mass transit. The industrial structure of Brazil was developed with an elevated dependence on gasoline, and until the 2nd crisis few had made any alterations in this picture. Although the primary cause for the development of PROALCOOL was the sharp increase in petroleum prices, another impetus was the collapse of sugar prices on the world market in November 1974. With the creation of PROALCOOL, sugar was transformed from sugar into alcohol, strengthening the options for its use. Response to the stimulus of the program came primarily from the sugar producers, who undertook rapid construction of "annex" distilleries to use the sugar. It was PROALCOOL's response to economic conditions that imparted new life into the sugar agroindustry in the State of Sao Paulo, particularly in the region of Ribeiros Preto.
Carbon Dioxide Emissions From Fossil-Fuel Consumption in Indonesia
NASA Astrophysics Data System (ADS)
Gregg, J. S.; Robert, A. J.
2005-05-01
Applying monthly sales and consumption data of coal, petroleum and natural gas, a monthly time series of carbon dioxide emissions from fossil-fuel consumption is created for Indonesia. These are then modeled with an autoregressive function to produce a quantitative description of the seasonal distribution and long-term pattern of CO2 emissions. Currently, Indonesia holds the 21st ranked position in total anthropogenic CO2 emissions among countries of the world. The demand for energy in Indonesia has been growing rapidly in recent years as Indonesia attempts to modernize and upgrade the standard of living for its citizens. With such a large population (a quarter of a billion people), the recent increase observed in the per capita energy use equates to a large escalation in total CO2 emissions. However, the economy and political climate is rather turbulent and thus emissions tend to fluctuate wildly. For example, Indonesia's energy consumption dropped substantially during the Asian economic crisis in the late 1990s. It is likely that the recent tsunami will also significantly impact energy consumption as the hard-hit Aceh region is the largest fuel-producing region of Indonesia. Therefore, Indonesia is a country whose emissions are more unpredictable than most countries that emit comparable levels of CO2. Complicating matters further, data collection practices in Indonesia are less diligent than in other countries with more stable economies. Thus, though CO2 emissions from Indonesia are a particular challenge to model, they are an important component to understanding the total global carbon cycle.
BTEX biodegradation by bacteria from effluents of petroleum refinery.
Mazzeo, Dânia Elisa Christofoletti; Levy, Carlos Emílio; de Angelis, Dejanira de Franceschi; Marin-Morales, Maria Aparecida
2010-09-15
Groundwater contamination with benzene, toluene, ethylbenzene and xylene (BTEX) has been increasing, thus requiring an urgent development of methodologies that are able to remove or minimize the damages these compounds can cause to the environment. The biodegradation process using microorganisms has been regarded as an efficient technology to treat places contaminated with hydrocarbons, since they are able to biotransform and/or biodegrade target pollutants. To prove the efficiency of this process, besides chemical analysis, the use of biological assessments has been indicated. This work identified and selected BTEX-biodegrading microorganisms present in effluents from petroleum refinery, and evaluated the efficiency of microorganism biodegradation process for reducing genotoxic and mutagenic BTEX damage through two test-systems: Allium cepa and hepatoma tissue culture (HTC) cells. Five different non-biodegraded BTEX concentrations were evaluated in relation to biodegraded concentrations. The biodegradation process was performed in a BOD Trak Apparatus (HACH) for 20 days, using microorganisms pre-selected through enrichment. Although the biodegradation usually occurs by a consortium of different microorganisms, the consortium in this study was composed exclusively of five bacteria species and the bacteria Pseudomonas putida was held responsible for the BTEX biodegradation. The chemical analyses showed that BTEX was reduced in the biodegraded concentrations. The results obtained with genotoxicity assays, carried out with both A. cepa and HTC cells, showed that the biodegradation process was able to decrease the genotoxic damages of BTEX. By mutagenic tests, we observed a decrease in damage only to the A. cepa organism. Although no decrease in mutagenicity was observed for HTC cells, no increase of this effect after the biodegradation process was observed either. The application of pre-selected bacteria in biodegradation processes can represent a reliable and effective tool in the treatment of water contaminated with BTEX mixture. Therefore, the raw petroleum refinery effluent might be a source of hydrocarbon-biodegrading microorganisms. Copyright 2010 Elsevier B.V. All rights reserved.
Machackova, Jirina; Wittlingerova, Zdena; Vlk, Kvetoslav; Zima, Jaroslav
2012-01-01
Biodegradation of petroleum hydrocarbons (TPH), mainly jet fuel, had taken place at the former Soviet Army air base in the Czech Republic. The remediation of large-scale petroleum contamination of soil and groundwater has provided valuable information about biosparging efficiency in the sandstone sedimentary bedrock. In 1997 petroleum contamination was found to be present in soil and groundwater across an area of 28 hectares, divided for the clean-up purpose into smaller clean-up fields (several hectares). The total estimated quantity of TPH released to the environment was about 7,000 metric tons. Biosparging was applied as an innovative clean-up technology at the site and was operated over a 10-year period (1997-2008). Importance of a variety of factors that affect bacterial activity in unsaturated and saturated zones was widely studied on the site and influence of natural and technological factors on clean-up efficiency in heavily contaminates areas of clean-up fields (initial contaminant mass 111-452 metric ton/ha) was evaluated. Long-term monitoring of the groundwater temperature has shown seasonal rises and falls of temperature which have caused a fluctuation in biodegradation activity during clean-up. By contrast, an overall rise of average groundwater temperature was observed in the clean-up fields, most probably as a result of the biological activity during the clean-up process. The significant rise of biodegradation rates, observed after air sparging intensification, and strong linear correlation between the air injection rates and biodegradation activities have shown that the air injection rate is the principal factor in biodegradation efficiency in heavily contaminated areas. It has a far more important role for achieving a biodegradation activity than the contamination content which appeared to have had only a slight effect after the removal of about 75% of initial contamination.
Wang, De-Mei; Yu, Zhen-Wen
2008-09-01
Field experiment was conducted in 2005 -2007 to study the effects of irrigation amount and stage on the water consumption characteristics, grain yield, and water use efficiency of wheat. The results showed that the variation coefficient of the proportion of soil water consumption amount to total water consumption amount was significantly higher than that of precipitation to total water consumption amount, suggesting the relatively wide regulation range of soil water use efficiency. The proportions of irrigation amount, precipitation, and soil water consumption amount to total water consumption amount were 31.0%, 38.9%, and 30.1% in treatment W3 (irrigated at jointing and flowering stages, with total irrigation amount of 120 mm), and 51.7%, 32.4%, and 15.9% in treatment W5 (irrigated before winter and at jointing, flowering and grain-filling stages, with total irrigation amount of 240 mm), respectively, indicating that treatment W3 had a significantly higher proportion of soil water consumption amount to total water consumption amount than treatment W5. Though treatments W2 (irrigated before winter and at jointing stage) and W3 (irrigated at jointing and flowering stages) had the same irrigation amount (120 mm), the water consumption amount during the period from flowering to maturing was significantly higher in W3 than in W2, while the water consumption amount before jointing was significantly lower in W3 than in W2. The water consumption pattern in treatment W3 was in agreement with the water requirement pattern of wheat, which was the physiological basis of high water use efficiency.
Potential reduction of energy consumption in public university library
NASA Astrophysics Data System (ADS)
Noranai, Z.; Azman, ADF
2017-09-01
Efficient electrical energy usage has been recognized as one of the important factor to reduce cost of electrical energy consumption. Various parties have been emphasized about the importance of using electrical energy efficiently. Inefficient usage of electrical energy usage lead to biggest factor increasing of administration cost in Universiti Tun Hussein Onn Malaysia. With this in view, a project the investigate potential reduction electrical energy consumption in Universiti Tun Hussein Onn Malaysia was carried out. In this project, a case study involving electrical energy consumption of Perpustakaan Tunku Tun Aminah was conducted. The scopes of this project are to identify energy consumption in selected building and to find the factors that contributing to wastage of electrical energy. The MS1525:2001, Malaysian Standard - Code of practice on energy efficiency and use of renewable energy for non-residential buildings was used as reference. From the result, 4 saving measure had been proposed which is change type of the lamp, install sensor, decrease the number of lamp and improve shading coefficient on glass. This saving measure is suggested to improve the efficiency of electrical energy consumption. Improve of human behaviour toward saving energy measure can reduce 10% from the total of saving cost while on building technical measure can reduce 90% from total saving cost.
NASA Astrophysics Data System (ADS)
Deetjen, Thomas A.; Reimers, Andrew S.; Webber, Michael E.
2018-02-01
This study estimates changes in grid-wide, energy consumption caused by load shifting via cooling thermal energy storage (CTES) in the building sector. It develops a general equation for relating generator fleet fuel consumption to building cooling demand as a function of ambient temperature, relative humidity, transmission and distribution current, and baseline power plant efficiency. The results present a graphical sensitivity analysis that can be used to estimate how shifting load from cooling demand to cooling storage could affect overall, grid-wide, energy consumption. In particular, because power plants, air conditioners and transmission systems all have higher efficiencies at cooler ambient temperatures, it is possible to identify operating conditions such that CTES increases system efficiency rather than decreasing it as is typical for conventional storage approaches. A case study of the Dallas-Fort Worth metro area in Texas, USA shows that using CTES to shift daytime cooling load to nighttime cooling storage can reduce annual, system-wide, primary fuel consumption by 17.6 MWh for each MWh of installed CTES capacity. The study concludes that, under the right circumstances, cooling thermal energy storage can reduce grid-wide energy consumption, challenging the perception of energy storage as a net energy consumer.
Influence of diet pellet hardness and particle size on food utilization by mice, rats and hamsters.
Ford, D J
1977-10-01
Increasing hardness of diet pellets reduced food wastage by each species. Also, less wastage occurred when pellets made from finely ground materials were given, an effect that was not related to hardness. The hardest diet reduced growth of the mice by reducing true food consumption and a poorer food conversion efficiency (true food consumption/growth) was obtained. Apparent food consumption increased with the softness of the diet and food utilization (apparent food consumption/growth) of the softest diets was less efficient than those of the others. Grinding of the raw materials prior to pelleting had no effect on food conversion, but food utilization was less efficient because of the greater wastage of pellets from coarsely ground materials and consequent apparent food comsumption.
[Energy requirements of petroleum workers in Western Siberia].
Bondarev, G I; Vissarionova, V Ia; Dupik, V S; Zemlianskaia, T A
1982-01-01
Energy requirements of drillers, derrick mounters and maintenance workers belonging to dispersed collectives were defined on the basis of materials available at the oil field Surgutneft named for the 50th anniversary of October. Energy requirements of the team workers were studied by the method of Douglas-Haldane during autumn-winter in the course of performing various production processes. Energy requirements were established as regards the operations made in the course of the basic technological processes. The budget of the working time was calculated in accordance with a rate-qualification manual. Energy consumption during out-of-work time was established by the method of individual questionnaires, followed by energy consumption calculation during various types of the work according to the generally accepted energy equivalents. The daily energy consumption with regard to the eight-hour work was found to constitute 3100-3660 kcal for drillers and the first assistant drillers, and 3700-3900 kcal for the second and third assistant drillers. The oilmen were distributed into groups in terms of the work intensity: group II--drillers, first assistant drillers and maintenance workers; group III--the second and third assistant drillers, assistant maintenance workers, and derrick mounters.
Alternate Energy for National Security.
NASA Astrophysics Data System (ADS)
Rath, Bhakta
2010-02-01
Recent price fluctuations at the gas pump have brought our attention to the phenomenal increase of global energy consumption in recent years. It is now evident that we have almost reached a peak in global oil production. Several projections indicate that total world consumption of oil will rise by nearly 60 per cent between 1999 and 2020. In 1999 consumption was equivalent to 86 million barrels of oil per day, which has reached a peak of production extracted from most known oil reserves. These projections, if accurate, will present an unprecedented crisis to the global economy and industry. As an example, in the US, nearly 40 per cent of energy usage is provided by petroleum, of which nearly a third is used in transportation. The US Department of Defense (DOD) is the single largest buyer of fuel, amounting to, on the average, 13 million gallons per day. Additionally, these fuels have to meet different requirements that prevent use of ethanol additives and biodiesel. An aggressive search for alternate energy sources, both renewable and nonrenewable, is vital. The presentation will review national and DOD perspectives on the exploration of alternate energy with a focus on energy derivable from the ocean. )
NASA Astrophysics Data System (ADS)
Stillwell, A. S.; Chini, C. M.; Schreiber, K. L.; Barker, Z. A.
2015-12-01
Energy and water are two increasingly correlated resources. Electricity generation at thermoelectric power plants requires cooling such that large water withdrawal and consumption rates are associated with electricity consumption. Drinking water and wastewater treatment require significant electricity inputs to clean, disinfect, and pump water. Due to this energy-water nexus, energy efficiency measures might be a cost-effective approach to reducing water use and water efficiency measures might support energy savings as well. This research characterizes the cost-effectiveness of different efficiency approaches in households by quantifying the direct and indirect water and energy savings that could be realized through efficiency measures, such as low-flow fixtures, energy and water efficient appliances, distributed generation, and solar water heating. Potential energy and water savings from these efficiency measures was analyzed in a product-lifetime adjusted economic model comparing efficiency measures to conventional counterparts. Results were displayed as cost abatement curves indicating the most economical measures to implement for a target reduction in water and/or energy consumption. These cost abatement curves are useful in supporting market innovation and investment in residential-scale efficiency.
Summary of energy planning technical support to the Government of Liberia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samuels, G.
1985-06-01
Subsequent to a general assessment of energy options for Liberia, the principal activities of this program were: (1) an assessment of the economics of wood energy in Liberia; (2) a study of the potential for energy conservation in government buildings; (3) assistance in completing the 1982 Liberian energy balance; and (4) assistance in preparing the National Energy Plan. This report discusses the first three of these activities. A draft of the National Energy Plan was submitted in January 1985 to member agencies of the Liberian National Energy Committee for their review and comments. Liberia used the equivalent of 13.2 millionmore » barrels of crude oil in 1982- 67% from fuel wood, 4% from hydro, and 29% from imported petroleum. The wood was used almost entirely (approx. 99%) by the residential sector. Iron ore mining operations accounted for about 60% of domestic consumption of petroleum products. The transportation sector accounted for another 25%. The energy consumed by the agriculture and forestry sector was less than 2% of domestic consumption and was used primarily for operations of the large rubber plantations and timber concessions. Very little energy was used for food production. Significant energy savings in government buildings would require a major remodeling effort, including replacement of the louvered windows; extensive repairs to close large gaps around windows, air conditioners, and doors; and extensive caulking. The payback period from energy savings would be long. The assessment of the economics of wood energy indicates that wood can probably be delivered to a small rural power plant at costs that make this feedstock highly competitive for some and perhaps most of Liberia's rural electric stations.« less
Global mercury emissions from combustion in light of international fuel trading.
Chen, Yilin; Wang, Rong; Shen, Huizhong; Li, Wei; Chen, Han; Huang, Ye; Zhang, Yanyan; Chen, Yuanchen; Su, Shu; Lin, Nan; Liu, Junfeng; Li, Bengang; Wang, Xilong; Liu, Wenxin; Coveney, Raymond M; Tao, Shu
2014-01-01
The spatially resolved emission inventory is essential for understanding the fate of mercury. Previous global mercury emission inventories for fuel combustion sources overlooked the influence of fuel trading on local emission estimates of many countries, mostly developing countries, for which national emission data are not available. This study demonstrates that in many countries, the mercury content of coal and petroleum locally consumed differ significantly from those locally produced. If the mercury content in locally produced fuels were used to estimate emission, then the resulting global mercury emissions from coal and petroleum would be overestimated by 4.7 and 72%, respectively. Even higher misestimations would exist in individual countries, leading to strong spatial bias. On the basis of the available data on fuel trading and an updated global fuel consumption database, a new mercury emission inventory for 64 combustion sources has been developed. The emissions were mapped at 0.1° × 0.1° resolution for 2007 and at country resolution for a period from 1960 to 2006. The estimated global total mercury emission from all combustion sources (fossil fuel, biomass fuel, solid waste, and wildfires) in 2007 was 1454 Mg (1232-1691 Mg as interquartile range from Monte Carlo simulation), among which elementary mercury (Hg(0)), divalent gaseous mercury (Hg(2+)), and particulate mercury (Hg(p)) were 725, 548, and 181 Mg, respectively. The total emission from anthropogenic sources, excluding wildfires, was 1040 Mg (886-1248 Mg), with coal combustion contributing more than half. Globally, total annual anthropogenic mercury emission from combustion sources increased from 285 Mg (263-358 Mg) in 1960 to 1040 Mg (886-1248 Mg) in 2007, owing to an increased fuel consumption in developing countries. However, mercury emissions from developed countries have decreased since 2000.
NASA Astrophysics Data System (ADS)
Miatishkin, Gennadii V.; Filinova, Anastasiia S.
2018-01-01
The paper reviews the terms of the rational consumption and distribution of the energy resources at an enterprise. The authors analyze the significance and the effect of the change of the profile of the energy consumption per hour by the enterprise. The text explores the factors influencing the discipline of the planned electricity and power consumption. The authors present a calculation of the weighted average deviations for consumers and the terms of their assessment. The authors make conclusions concerning the rationality of the means of defining the energy efficiency system through the assessment of the modes of electric energy consumption of an industrial enterprise.
Economics and siting of Fischer-Tropsch coal liquefaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, J.P. Jr.; Ferreira, J.P.; Benefiel, J.
The capital intensity and low conversion efficiency of Fischer-Tropsch synthesis makes it noncompetitive with conventional petroleum in the midterm (e.g., 5 to 10 years) under normal economic conditions. However, if crude oil prices rise to higher levels (e.g., $25 to $30/bbl), coal liquefaction processes may prove to be economical. It appears that several other processes under development may become economically attractive before Fischer-Tropsch, although Fischer-Tropsch is the only proven commercially feasible venture at present. The above statement is subject, however, to the successful demonstration and commercialization of these alternative processes. Fischer-Tropsch, as a commercially proven process, may be called uponmore » as a backup should petroleum shortages ensue, world oil prices continue to increase dramatically, and alternate coal liquefaction processes fail to fully develop.« less
Microbial biocatalyst developments to upgrade fossil fuels.
Kilbane, John J
2006-06-01
Steady increases in the average sulfur content of petroleum and stricter environmental regulations concerning the sulfur content have promoted studies of bioprocessing to upgrade fossil fuels. Bioprocesses can potentially provide a solution to the need for improved and expanded fuel upgrading worldwide, because bioprocesses for fuel upgrading do not require hydrogen and produce far less carbon dioxide than thermochemical processes. Recent advances have demonstrated that biodesulfurization is capable of removing sulfur from hydrotreated diesel to yield a product with an ultra-low sulfur concentration that meets current environmental regulations. However, the technology has not yet progressed beyond laboratory-scale testing, as more efficient biocatalysts are needed. Genetic studies to obtain improved biocatalysts for the selective removal of sulfur and nitrogen from petroleum provide the focus of current research efforts.
International Comparison of Water Resources Utilization Efficiency in the Silk Road Economic Belt
NASA Astrophysics Data System (ADS)
Yan, Long; Ma, Jing; Deng, Wei; Wang, Yong
2018-03-01
In order to get knowledge of the standard of water utilization of the Silk Road Economic Belt from international point of view, the paper analyzes the annual variation of water resources utilization in the Silk Road Economic Belt, and compares with other typical countries. The study shows that Water resources utilization efficiency has been greatly improved in recent 20 years and the water consumption per USD 10000 of GDP has been declined 87.97%. the improvement of industrial water consumption efficiency is the key driving factors for substantial decrease in water consumption.The comparison of water utilization and human development shows that the higher HDI the country is, the more efficient water utilization the country has. water consumption per USD 10000 of GDP in country with HDI>0.9 is 194m³, being 8.5% of that in country with HDI from 0.5 to 0.6. On the premise of maintaining the stable economic and social development of the Silk Road Economic Belt, the realization of the control target of total water consumption must depend on the strict control over the disorderly expansion of irrigated area, the change in the mode of economic growth, the implementation of the development strategy for new industrialization and urbanization, vigorous development of the processing industry with low water consumption as well as the high-tech and high value-added industry. Only in this way, the control target of total water consumption can be realized in the process of completing the industrialization task.
Cardone, Massimo; Prati, Maria Vittoria; Rocco, Vittorio; Seggiani, Maurizia; Senatore, Adolfo; Vitoloi, Sandra
2002-11-01
A comparison of the performance of Brassica carinata oil-derived biodiesel with a commercial rapeseed oil-derived biodiesel and petroleum diesel fuel is discussed as regards engine performance and regulated and unregulated exhaust emissions. B. carinata is an oil crop that can be cultivated in coastal areas of central-southern Italy, where it is more difficult to achieve the productivity potentials of Brassica napus (by far the most common rapeseed cultivated in continental Europe). Experimental tests were carried out on a turbocharged direct injection passenger car diesel engine fueled with 100% biodiesel. The unregulated exhaust emissions were characterized by determining the SOOT and soluble organic fraction content in the particulate matter, together with analysis of the content and speciation of polycyclic aromatic hydrocarbons, some of which are potentially carcinogenic, and of carbonyl compounds (aldehydes, ketones) that act as ozone precursors. B. carinata and commercial biodiesel behaved similarly as far as engine performance and regulated and unregulated emissions were concerned. When compared with petroleum diesel fuel, the engine test bench analysis did not show any appreciable variation of output engine torque values, while there was a significant difference in specific fuel consumption data at the lowest loads for the biofuels and petroleum diesel fuel. The biofuels were observed to produce higher levels of NOx concentrations and lower levels of PM with respect to the diesel fuel. The engine heat release analysis conducted shows that there is a potential for increased thermal NOx generation when firing biodiesel with no prior modification to the injection timing. It seems that, for both the biofuels, this behavior is caused by an advanced combustion evolution, which is particularly apparent at the higher loads. When compared with petroleum diesel fuel, biodiesel emissions contain less SOOT, and a greater fraction of the particulate was soluble. The analysis and speciation of the soluble organic fraction of biodiesel particulate suggest that the carcinogenic potential of the biodiesel emissions is probably lower than that of petroleum diesel. Its better adaptivity and productivity in clay and sandy-type soils and in semiarid temperate climate and the fact that the performance of its derived biodiesel is quite similar to commercial biodiesel make B. carinata a promising oil crop that could offer the possibility of exploiting the Mediterranean marginal areas for energetic purposes.
Microbial H2 cycling does not affect δ2H values of ground water
Landmeyer, J.E.; Chapelle, F.H.; Bradley, P.M.
2000-01-01
Stable hydrogen-isotope values of ground water (δ2H) and dissolved hydrogen concentrations (H(2(aq)) were quantified in a petroleum-hydrocarbon contaminated aquifer to determine whether the production/consumption of H2 by subsurface microorganisms affects ground water &delta2H values. The range of &delta2H observed in monitoring wells sampled (-27.8 ‰c to -15.5 ‰c) was best explained, however, by seasonal differences in recharge temperature as indicated using ground water δ18O values, rather than isotopic exchange reactions involving the microbial cycling of H2 during anaerobic petroleum-hydrocarbon biodegradation. The absence of a measurable hydrogen-isotope exchange between microbially cycled H2 and ground water reflects the fact that the amount of H2 available from the anaerobic decomposition of petroleum hydrocarbons is small relative to the amount of hydrogen present in water, even though milligram per liter concentrations of readily biodegradable contaminants are present at the study site. Additionally, isotopic fractionation calculations indicate that in order for H2 cycling processes to affect δ2H values of ground water, relatively high concentrations of H2 (>0.080 M) would have to be maintained, considerably higher than the 0.2 to 26 nM present at this site and characteristic of anaerobic conditions in general. These observations suggest that the conventional approach of using δ2H and δ18O values to determine recharge history is appropriate even for those ground water systems characterized by anaerobic conditions and extensive microbial H2 cycling.
Pan, Pan; Hong, Bo; Mbadinga, Serge Maurice; Wang, Li-Ying; Liu, Jin-Feng; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong
2017-09-01
Acetate is a key intermediate in anaerobic crude oil biodegradation and also a precursor for methanogenesis in petroleum reservoirs. The impact of iron oxides, viz. β-FeOOH (akaganéite) and magnetite (Fe 3 O 4 ), on the methanogenic acetate metabolism in production water of a high-temperature petroleum reservoir was investigated. Methane production was observed in all the treatments amended with acetate. In the microcosms amended with acetate solely about 30% of the acetate utilized was converted to methane, whereas methane production was stimulated in the presence of magnetite (Fe 3 O 4 ) resulting in a 48.34% conversion to methane. Methane production in acetate-amended, β-FeOOH (akaganéite)-supplemented microcosms was much faster and acetate consumption was greatly improved compared to the other conditions in which the stoichiometric expected amounts of methane were not produced. Microbial community analysis showed that Thermacetogenium spp. (known syntrophic acetate oxidizers) and hydrogenotrophic methanogens closely related to Methanothermobacter spp. were enriched in acetate and acetate/magnetite (Fe 3 O 4 ) microcosms suggesting that methanogenic acetate metabolism was through hydrogenotrophic methanogenesis fueled by syntrophic acetate oxidizers. The acetate/β-FeOOH (akaganéite) microcosms, however, differed by the dominance of archaea closely related to the acetoclastic Methanosaeta thermophila. These observations suggest that supplementation of β-FeOOH (akaganéite) accelerated the production of methane further, driven the alteration of the methanogenic community, and changed the pathway of acetate methanogenesis from hydrogenotrophic methanogenesis fueled by syntrophic acetate oxidizers to acetoclastic.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-25
... product as a natural soil amendment and seed coating that promotes more efficient growth of crops and... synthetic, petroleum-based polymers for soil amendment applications to achieve increased soil strength, reduced air transport, and decreased soil erosion. During processing, the biopolymer also can be...
An Integrated Analysis of the Use of Woodstoves to Supplement Fossil Fuel-Fired Domestic Heating
ERIC Educational Resources Information Center
Barto, D.; Cziraky, J.; Geerts, S.; Hack, J.; Langford, S.; Nesbitt, R.; Park, S.; Willie, N.; Xu, J.; Grogan, P.
2009-01-01
Consumers are constantly being presented with choices that have economic, environmental, and lifestyle/social dimensions. For example, is an energy-efficient hybrid car (with regenerative braking) a better choice than a regular petroleum-only vehicle when considered from all three dimensions? Surprisingly, although each and all of these dimensions…
Impacts of Increased Diesel Penetration in the Transportation Sector, The
1998-01-01
Requested by the Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy. Analyzes the impacts on petroleum prices, demand, and refinery operations of a projected increase in demand for diesel fuel stemming from greater penetration of diesel-fueled engines in the light-duty vehicle fleet of the U.S. transportation sector.
Beyond the Petroleum Age: Designing a Solar Economy. Worldwatch Paper 100.
ERIC Educational Resources Information Center
Flavin, Christopher; Lenssen, Nicholas
Alternatives to fossil fuels as energy resources are discussed. Energy from the sun and other renewable resources are cited as the alternatives. Constructed is a practical energy scenario for the year 2030 that involves a 55-percent cut in carbon dioxide emissions, greatly improved energy efficiency, and an energy production system that relies…
Technological growth of fuel efficiency in european automobile market 1975–2015
Hu, Kejia; Chen, Yuche
2016-08-29
This paper looks at the technological growth of new car fleet fuel efficiency in the European Union between 1975 and 2015. According to the analysis results, from1975 to 2006 the fuel efficiency technology improvements were largely offset by vehicles' increased weight, engine size, and consumer amenities such as acceleration capacity. After 2006, downsizing in weight and engine capacity was observed in new car fleet, while fuel consumption decreased by 32% between 2006 and 2015. We adopt a statistical method and find that from 1975 to 2015, a 1% increase in weight would result in 0.3 to 0.5% increments in fuelmore » consumption per 100 km, and a 1% reduction in 0-100 km/h acceleration time would increase fuel consumption by about 0.3%. Impacts of other attributes on fuel consumption are also assessed. To meet the European Union's 2021 fuel consumption target, downsizing of cars, as well as at least maintaining fuel efficiency technology growth trend observed between 2005 and 2015, are needed. Lastly, government policies on controlling improvement in acceleration performance or promoting alternative fuel vehicles are also important to achieve European Union 2021 target.« less
Technological growth of fuel efficiency in european automobile market 1975–2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Kejia; Chen, Yuche
This paper looks at the technological growth of new car fleet fuel efficiency in the European Union between 1975 and 2015. According to the analysis results, from1975 to 2006 the fuel efficiency technology improvements were largely offset by vehicles' increased weight, engine size, and consumer amenities such as acceleration capacity. After 2006, downsizing in weight and engine capacity was observed in new car fleet, while fuel consumption decreased by 32% between 2006 and 2015. We adopt a statistical method and find that from 1975 to 2015, a 1% increase in weight would result in 0.3 to 0.5% increments in fuelmore » consumption per 100 km, and a 1% reduction in 0-100 km/h acceleration time would increase fuel consumption by about 0.3%. Impacts of other attributes on fuel consumption are also assessed. To meet the European Union's 2021 fuel consumption target, downsizing of cars, as well as at least maintaining fuel efficiency technology growth trend observed between 2005 and 2015, are needed. Lastly, government policies on controlling improvement in acceleration performance or promoting alternative fuel vehicles are also important to achieve European Union 2021 target.« less
Evaluation of parasitic consumption for a CSP plant
NASA Astrophysics Data System (ADS)
Ramorakane, Relebohile John; Dinter, Frank
2016-05-01
With the continuous development and desire to build alternative effective and efficient power plants, Concentrated Solar Power (CSP) plants (and more specifically the Parabolic Trough CSP Plants) have proven to be one of the alternative energy resources for the future. On this regard more emphasis and research is being employed to better this power plant technology, where one of the main challenges to these plants is to improve their efficiency by optimizing the parasitic load, wherein one of the major causes of the power plants' reduced overall efficiency arises from their parasitic load consumption. This project is therefore aimed at evaluating the parasitic load on Andasol 3 Power Plant, which is a 50 MW Parabolic Trough Power Plant with a 7.5 hours of full load storage system. It was hence determined that the total power plant's parasitic load consumption is about 12% in summer season and between 16% and 24% in winter season. In an effort to improve the power plant's efficiency, a couple of measures to reduce the parasitic load consumption were recommended, and also an alternative and cheaper source of parasitic load feeding plant, during the day (when the parasitic load consumption is highest) was proposed/recommended.
Self-assembly of resins and asphaltenes facilitates asphaltene dissolution by an organic acid.
Hashmi, Sara M; Firoozabadi, Abbas
2013-03-15
Asphaltene precipitation occurs in petroleum fluids under certain unfavorable conditions, but can be controlled by tuning composition. Aromatic solvents in large quantities can prevent precipitation entirely and can dissolve already precipitated asphaltenes. Some polymeric surfactants can dissolve asphaltenes when added at much lower concentrations than required by aromatic solvents. Other dispersants can truncate asphaltene precipitation at the sub-micron length scale, creating stable colloidal asphaltene dispersants. One particular asphaltene dispersant, dodecylbenzene sulfonic acid (DBSA), can do both, namely: (1) stabilize asphaltene colloids and (2) dissolve asphaltenes to the molecular scale. Acid-base interactions are responsible for the efficiency of DBSA in dissolving asphaltenes compared to aromatic solvents. However, many details remain to be quantified regarding the action of DBSA on asphaltenes, including the effect of petroleum fluid composition. For instance, resins, naturally amphiphilic components of petroleum fluids, can associate with asphaltenes, but it is unknown whether they cooperate or compete with DBSA. Similarly, the presence of metals is known to hinder asphaltene dissolution by DBSA, but its effect on colloidal asphaltene stabilization has yet to be considered. We introduce the concepts of cooperativity and competition between petroleum fluid components and DBSA in stabilizing and dissolving asphaltenes. Notably, we find that resins cooperatively interact with DBSA in dissolving asphaltenes. We use UV-vis spectroscopy to investigate the interactions responsible for the phase transitions between unstable suspensions, stable suspensions, and molecular solutions of asphaltenes. Copyright © 2012 Elsevier Inc. All rights reserved.
A Case Study of Petroleum Degradation in Different Soil Textural Classes.
Kogbara, Reginald B; Ayotamuno, Josiah M; Worlu, Daniel C; Fubara-Manuel, Isoteim
2016-01-01
Patents have been granted for a number of techniques for petroleum biodegradation including use of micro-organisms for degradation of hydrocarbon-based substances and for hydrocarbon degradation in oil reservoirs, but there is a dearth of information on hydrocarbon degradation in different soil textures. Hence, this work investigated the effects of different soil textures on degradation of petroleum hydrocarbons during a six-week period. Five soil textural classes commonly found in Port Harcourt metropolis, Nigeria, namely sand, loamy sand, sandy loam, silty clay and clay, were employed. The soils were contaminated with the same amount of crude oil and then remediated by biostimulation. Selected soil properties were monitored over time. Bacterial numbers declined significantly in the fine soil textures after petroleum contamination, but were either unaffected or increased significantly in the coarser soil textures. Hydrocarbon losses ranged from 42% - 99%; the sandy loam had the highest, while the clay soil had the least total hydrocarbon content (THC) reduction. The total heterotrophic bacterial (THB) counts generally corroborated the THC results. Fold increase in bacterial numbers due to remediation treatment decreased with increasing clay content. The results suggest that higher sand than clay content of soil favours faster hydrocarbon degradation. Hydrocarbon degradation efficiency increased with silt content among soil groupings such as fine and coarse soils but not necessarily with increasing silt content of soil. Thus, there seems to be cut-off sand and clay contents in soil at which the effect of the silt content becomes significant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, T.T.; O'Farrell, T.P.
1986-06-01
Surveys to determine the distribution and relative abundance of blunt-nosed leopard lizards on Naval Petroleum Reserve-1 were conducted in 1980 and 1981. In 1982 radiotelemetry and pitfall trapping techniques were used to gain additional information on the species and develop alternative methods of study. Incidental observations of blunt-nosed leopard lizards were recorded and used in the distribution information for NPR-1. DOE determined during this biological assessment that the construction projects and operational activities necessary to achieve and sustain MER have not adversely affected the blunt-nosed leopard lizard and its habitat, because only approximately 6% of the potential blunt-nosed leopard lizardmore » habitat on NPR-1 was disturbed by construction and operational activities. DOE believes that the direct, indirect, and cumulative effects of MER will not jeopardize the continued existence of the species, because results of surveys indicated that blunt-nosed leopard lizards are mainly distributed near the periphery of Elk Hills where few petroleum developments occurred in the past and where they are unlikely to occur in the future. A policy of conducting preconstruction surveys to protect blunt-nosed leopard lizard habitat was initiated, a habitat restoration plan was developed and implemented, and administrative policies to reduce vehicle speeds, contain oil spills, restrict off-road vehicle (ORV) travel, and to prohibit public access, livestock grazing, and agricultural activities were maintained.« less
Petroleomics: Chemistry of the underworld
Marshall, Alan G.; Rodgers, Ryan P.
2008-01-01
Each different molecular elemental composition—e.g., CcHhNnOoSs—has a different exact mass. With sufficiently high mass resolving power (m/Δm50% ≈ 400,000, in which m is molecular mass and Δm50% is the mass spectral peak width at half-maximum peak height) and mass accuracy (<300 ppb) up to ≈800 Da, now routinely available from high-field (≥9.4 T) Fourier transform ion cyclotron resonance mass spectrometry, it is possible to resolve and identify uniquely and simultaneously each of the thousands of elemental compositions from the most complex natural organic mixtures, including petroleum crude oil. It is thus possible to separate and sort petroleum components according to their heteroatom class (NnOoSs), double bond equivalents (DBE = number of rings plus double bonds involving carbon, because each ring or double bond results in a loss of two hydrogen atoms), and carbon number. “Petroleomics” is the characterization of petroleum at the molecular level. From sufficiently complete characterization of the organic composition of petroleum and its products, it should be possible to correlate (and ultimately predict) their properties and behavior. Examples include molecular mass distribution, distillation profile, characterization of specific fractions without prior extraction or wet chemical separation from the original bulk material, biodegradation, maturity, water solubility (and oil:water emulsion behavior), deposits in oil wells and refineries, efficiency and specificity of catalytic hydroprocessing, “heavy ends” (asphaltenes) analysis, corrosion, etc. PMID:18836082
Petroleomics: chemistry of the underworld.
Marshall, Alan G; Rodgers, Ryan P
2008-11-25
Each different molecular elemental composition-e.g., C(c)H(h)N(n)O(o)S(s)-has a different exact mass. With sufficiently high mass resolving power (m/Deltam(50%) approximately 400,000, in which m is molecular mass and Deltam(50%) is the mass spectral peak width at half-maximum peak height) and mass accuracy (<300 ppb) up to approximately 800 Da, now routinely available from high-field (>/=9.4 T) Fourier transform ion cyclotron resonance mass spectrometry, it is possible to resolve and identify uniquely and simultaneously each of the thousands of elemental compositions from the most complex natural organic mixtures, including petroleum crude oil. It is thus possible to separate and sort petroleum components according to their heteroatom class (N(n)O(o)S(s)), double bond equivalents (DBE = number of rings plus double bonds involving carbon, because each ring or double bond results in a loss of two hydrogen atoms), and carbon number. "Petroleomics" is the characterization of petroleum at the molecular level. From sufficiently complete characterization of the organic composition of petroleum and its products, it should be possible to correlate (and ultimately predict) their properties and behavior. Examples include molecular mass distribution, distillation profile, characterization of specific fractions without prior extraction or wet chemical separation from the original bulk material, biodegradation, maturity, water solubility (and oil:water emulsion behavior), deposits in oil wells and refineries, efficiency and specificity of catalytic hydroprocessing, "heavy ends" (asphaltenes) analysis, corrosion, etc.
Wang, Y.; Huang, Y.; Huckins, J.N.; Petty, J.D.
2004-01-01
Compound-specific carbon and hydrogen isotope analysis (CSCIA and CSHIA) has been increasingly used to study the source, transport, and bioremediation of organic contaminants such as petroleum hydrocarbons. In natural aquatic systems, dissolved contaminants represent the bioavailable fraction that generally is of the greatest toxicological significance. However, determining the isotopic ratios of waterborne hydrophobic contaminants in natural waters is very challenging because of their extremely low concentrations (often at sub-parts ber billion, or even lower). To acquire sufficient quantities of polycyclic aromatic hydrocarbons with 10 ng/L concentration for CSHIA, more than 1000 L of water must be extracted. Conventional liquid/liquid or solid-phase extraction is not suitable for such large volume extractions. We have developed a new approach that is capable of efficiently sampling sub-parts per billion level waterborne petroleum hydrocarbons for CSIA. We use semipermeable membrane devices (SPMDs) to accumulate hydrophobic contaminants from polluted waters and then recover the compounds in the laboratory for CSIA. In this study, we demonstrate, under a variety of experimental conditions (different concentrations, temperatures, and turbulence levels), that SPMD-associated processes do not induce C and H isotopic fractionations. The applicability of SPMD-CSIA technology to natural systems is further demonstrated by determining the ??13C and ??D values of petroleum hydrocarbons present in the Pawtuxet River, RI. Our results show that the combined SPMD-CSIA is an effective tool to investigate the source and fate of hydrophobic contaminants in the aquatic environments.
High Efficiency, Low Power-Consumption DFB Quantum Cascade Lasers Without Lateral Regrowth
NASA Astrophysics Data System (ADS)
Jia, Zhi-Wei; Wang, Li-Jun; Zhang, Jin-Chuan; Liu, Feng-Qi; Zhou, Yu-Hong; Wang, Dong-Bo; Jia, Xue-Feng; Zhuo, Ning; Liu, Jun-Qi; Zhai, Shen-Qiang; Wang, Zhan-Guo
2017-04-01
Very low power-consumption distributed feedback (DFB) quantum cascade lasers (QCLs) at the wavelength around 4.9 μm were fabricated by conventional process without lateral regrowth of InP:Fe or using sidewall grating. Benefitted from the optimized materials and low waveguide loss, very low threshold current density of 0.5 kA/cm2 was obtained for a device with cavity length of 2 mm. Combined with the partial-high-reflection coating, the 1-mm-long DFB QCL achieved low power-consumption continuous wave (CW) operation up to 105 °C. The CW threshold power-consumptions were 0.72 and 0.78 W at 15 and 25 °C, respectively. The maximum CW output power was over 110 mW at 15 °C and still more than 35 mW at 105 °C. At 15 °C, wall-plug efficiency of 5.5% and slope efficiency of 1.8 W/A were deduced, which were very high for low power-consumption DFB QCLs.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Fund for Iraq, Iraqi Petroleum and Petroleum Products, and the Central Bank of Iraq. 576.206 Section... Prohibitions § 576.206 Protection granted to the Development Fund for Iraq, Iraqi Petroleum and Petroleum... petroleum and petroleum products, and interests therein, but only until title passes to the initial...
19 CFR 151.47 - Optional entry of net quantity of petroleum or petroleum products.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 19 Customs Duties 2 2011-04-01 2011-04-01 false Optional entry of net quantity of petroleum or petroleum products. 151.47 Section 151.47 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF... Petroleum and Petroleum Products § 151.47 Optional entry of net quantity of petroleum or petroleum products...
19 CFR 151.47 - Optional entry of net quantity of petroleum or petroleum products.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 2 2010-04-01 2010-04-01 false Optional entry of net quantity of petroleum or petroleum products. 151.47 Section 151.47 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF... Petroleum and Petroleum Products § 151.47 Optional entry of net quantity of petroleum or petroleum products...
10 CFR 431.222 - Definitions concerning traffic signal modules and pedestrian modules.
Code of Federal Regulations, 2013 CFR
2013-01-01
... (or hydraulic) characteristics that affect energy consumption, energy efficiency, water consumption... 10 Energy 3 2013-01-01 2013-01-01 false Definitions concerning traffic signal modules and pedestrian modules. 431.222 Section 431.222 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY...
10 CFR 431.222 - Definitions concerning traffic signal modules and pedestrian modules.
Code of Federal Regulations, 2014 CFR
2014-01-01
... (or hydraulic) characteristics that affect energy consumption, energy efficiency, water consumption... 10 Energy 3 2014-01-01 2014-01-01 false Definitions concerning traffic signal modules and pedestrian modules. 431.222 Section 431.222 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY...
10 CFR 431.222 - Definitions concerning traffic signal modules and pedestrian modules.
Code of Federal Regulations, 2012 CFR
2012-01-01
... (or hydraulic) characteristics that affect energy consumption, energy efficiency, water consumption... 10 Energy 3 2012-01-01 2012-01-01 false Definitions concerning traffic signal modules and pedestrian modules. 431.222 Section 431.222 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY...
Catalytic ozonation of petroleum refinery wastewater utilizing Mn-Fe-Cu/Al2O 3 catalyst.
Chen, Chunmao; Yoza, Brandon A; Wang, Yandan; Wang, Ping; Li, Qing X; Guo, Shaohui; Yan, Guangxu
2015-04-01
There is of great interest to develop an economic and high-efficient catalytic ozonation system (COS) for the treatment of biologically refractory wastewaters. Applications of COS require options of commercially feasible catalysts. Experiments in the present study were designed to prepare and investigate a novel manganese-iron-copper oxide-supported alumina-assisted COS (Mn-Fe-Cu/Al2O3-COS) for the pretreatment of petroleum refinery wastewater. The highly dispersed composite metal oxides on the catalyst surface greatly promoted the performance of catalytic ozonation. Hydroxyl radical mediated oxidation is a dominant reaction in Mn-Fe-Cu/Al2O3-COS. Mn-Fe-Cu/Al2O3-COS enhanced COD removal by 32.7% compared with a single ozonation system and by 8-16% compared with Mn-Fe/Al2O3-COS, Mn-Cu/Al2O3-COS, and Fe-Cu/Al2O3-COS. The O/C and H/C ratios of oxygen-containing polar compounds significantly increased after catalytic ozonation, and the biodegradability of petroleum refinery wastewater was significantly improved. This study illustrates potential applications of Mn-Fe-Cu/Al2O3-COS for pretreatment of biologically refractory wastewaters.
Iqbal, Munawar; Nisar, Jan; Adil, Muhammad; Abbas, Mazhar; Riaz, Muhammad; Tahir, M Asif; Younus, Muhammad; Shahid, Muhammad
2017-02-01
Degradation and detoxification of petroleum refinery wastewater (PRW) was carried out by advanced oxidation processes (UV/TiO 2 /H 2 O 2 and gamma radiation/H 2 O 2 ). Response surface methodology (RSM) was used to optimize the independent variables. The cytotoxicity was evaluated using Allium cepa, brime shrimp and haemolytic assays; whereas mutagenicity was tested by Ames tests (TA98 and TA100 strains). Maximum reductions in COD and BOD were recorded as 78% and 87% for UV/TiO 2 /H 2 O 2 and 77% and 86% for gamma ray/H 2 O 2 , respectively. Treatments with both methods at optimized conditions reduced the cytotoxicity and mutagenicity of PRW, however, UV/TiO 2 /H 2 O 2 system was found slightly efficient as compared to gamma ray/H 2 O 2 . From the results, it can be concluded that AOP's can successfully be utilized for the degradation of toxic pollutants in petroleum refinery wastewater. Moreover, the bioassays used in this study offered a good reliability for checking the detoxification of treated and un-treated PRW wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pugazhendi, Arulazhagan; Abbad Wazin, Hadeel; Qari, Huda; Basahi, Jalal Mohammad Al-Badry; Godon, Jean Jacques; Dhavamani, Jeyakumar
2017-10-01
Clean-up of contaminated wastewater remains to be a major challenge in petroleum refinery. Here, we describe the capacity of a bacterial consortium enriched from crude oil drilling site in Al-Khobar, Saudi Arabia, to utilize polycyclic aromatic hydrocarbons (PAHs) as sole carbon source at 60°C. The consortium reduced low molecular weight (LMW; naphthalene, phenanthrene, fluorene and anthracene) and high molecular weight (HMW; pyrene, benzo(e)pyrene and benzo(k)fluoranthene) PAH loads of up to 1.5 g/L with removal efficiencies of 90% and 80% within 10 days. PAH biodegradation was verified by the presence of PAH metabolites and evolution of carbon dioxide (90 ± 3%). Biodegradation led to a reduction of the surface tension to 34 ± 1 mN/m thus suggesting biosurfactant production by the consortium. Phylogenetic analysis of the consortium revealed the presence of the thermophilic PAH degrader Pseudomonas aeruginosa strain CEES1 (KU664514) and Bacillus thermosaudia (KU664515) strain CEES2. The consortium was further found to treat petroleum wastewater in continuous stirred tank reactor with 96 ± 2% chemical oxygen demand removal and complete PAH degradation in 24 days.
Analysis of the heat transfer in double and triple concentric tube heat exchangers
NASA Astrophysics Data System (ADS)
Rădulescu, S.; Negoiţă, L. I.; Onuţu, I.
2016-08-01
The tubular heat exchangers (shell and tube heat exchangers and concentric tube heat exchangers) represent an important category of equipment in the petroleum refineries and are used for heating, pre-heating, cooling, condensation and evaporation purposes. The paper presents results of analysis of the heat transfer to cool a petroleum product in two types of concentric tube heat exchangers: double and triple concentric tube heat exchangers. The cooling agent is water. The triple concentric tube heat exchanger is a modified constructive version of double concentric tube heat exchanger by adding an intermediate tube. This intermediate tube improves the heat transfer by increasing the heat area per unit length. The analysis of the heat transfer is made using experimental data obtained during the tests in a double and triple concentric tube heat exchanger. The flow rates of fluids, inlet and outlet temperatures of water and petroleum product are used in determining the performance of both heat exchangers. Principally, for both apparatus are calculated the overall heat transfer coefficients and the heat exchange surfaces. The presented results shows that triple concentric tube heat exchangers provide better heat transfer efficiencies compared to the double concentric tube heat exchangers.
Water Consumption in the Production of Ethanol and Petroleum Gasoline
NASA Astrophysics Data System (ADS)
Wu, May; Mintz, Marianne; Wang, Michael; Arora, Salil
2009-11-01
We assessed current water consumption during liquid fuel production, evaluating major steps of fuel lifecycle for five fuel pathways: bioethanol from corn, bioethanol from cellulosic feedstocks, gasoline from U.S. conventional crude obtained from onshore wells, gasoline from Saudi Arabian crude, and gasoline from Canadian oil sands. Our analysis revealed that the amount of irrigation water used to grow biofuel feedstocks varies significantly from one region to another and that water consumption for biofuel production varies with processing technology. In oil exploration and production, water consumption depends on the source and location of crude, the recovery technology, and the amount of produced water re-injected for oil recovery. Our results also indicate that crop irrigation is the most important factor determining water consumption in the production of corn ethanol. Nearly 70% of U.S. corn used for ethanol is produced in regions where 10-17 liters of water are consumed to produce one liter of ethanol. Ethanol production plants are less water intensive and there is a downward trend in water consumption. Water requirements for switchgrass ethanol production vary from 1.9 to 9.8 liters for each liter of ethanol produced. We found that water is consumed at a rate of 2.8-6.6 liters for each liter of gasoline produced for more than 90% of crude oil obtained from conventional onshore sources in the U.S. and more than half of crude oil imported from Saudi Arabia. For more than 55% of crude oil from Canadian oil sands, about 5.2 liters of water are consumed for each liter of gasoline produced. Our analysis highlighted the vital importance of water management during the feedstock production and conversion stage of the fuel lifecycle.
Technology in the high entropy world.
Tambo, N
2006-01-01
Modern growing society is mainly driven by oils and may be designated "petroleum civilisation". However, the basic energy used to drive the global ecosystem is solar radiation. The amount of fossil energy consumption is minimal in the whole global energy balance. Economic growth is mainly controlled by the fossil (commercial) energy consumption rate in urban areas. Water and sanitation systems are bridging economical activities and global ecosystems. Therefore, vast amounts of high entropy solar energy should always be taken into account in the water industry. Only in urban/industrial areas where most of the GDP is earned, are commercial energy driven systems inevitably introduced with maximum effort for energy saving. A water district concept to ensure appropriate quality use with the least deterioration of the environment is proposed. In other areas, decentralised water and sanitation systems driven on soft energy paths would be recommended. A process and system designed on a high entropy energy system would be the foundation for a future urban metabolic system revolution for when oil-based energy become scarce.
Annual energy outlook 1991 with projections to 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-03-01
The report examines a range of scenarios by considering and comparing the effects of three selected variations from a reference case. Fundamental forces that determine the direction of energy markets will remain in effect. Recent events and high prices may have some residual impacts on Government policy, industrial energy planners, and consumers. Higher oil prices could stimulate interest in conservation and renewable energy and encourage growth in domestic energy production capacity. United States energy consumption has held steady for the third year in a row. Oil imports increased and use of electrical power increased. Legislative initiatives could set in motionmore » significant changes in energy markets world wide. A proposed National Energy Strategy has primary goals of economic growth, energy security and environmental improvement. Energy resources and energy uses of the United States are discussed. Energy resources include petroleum, natural gas, coal, and renewable energy sources. Statistical data is presented in various tables and graphs for energy consumption by end use sector. (JF)« less
Annual energy outlook 1991 with projections to 2010
NASA Astrophysics Data System (ADS)
1991-03-01
The report examines a range of scenarios by considering and comparing the effects of three selected variations from a reference case. Fundamental forces that determine the direction of energy markets will remain in effect. Recent events and high prices may have some residual impacts on Government policy, industrial energy planners, and consumers. Higher oil prices could stimulate interest in conservation and renewable energy and encourage growth in domestic energy production capacity. United States energy consumption has held steady for the third year in a row. Oil imports increased and use of electrical power increased. Legislative initiatives could set in motion significant changes in energy markets world wide. A proposed National Energy Strategy has primary goals of economic growth, energy security and environmental improvement. Energy resources and energy uses of the United States are discussed. Energy resources include petroleum, natural gas, coal, and renewable energy sources. Statistical data is presented in various tables and graphs for energy consumption by end use sector.
NASA Technical Reports Server (NTRS)
Knightly, W. F.
1980-01-01
Various advanced energy conversion systems (ECS) are compared with each other and with current technology systems for their savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidates which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on-site gasification of coal. Computer generated reports of the fuel consumption and savings, capital costs, economics and emissions of the cogeneration energy conversion systems (ECS's) heat and power matched to the individual industrial processes are presented for coal fired process boilers. National fuel and emissions savings are also reported for each ECS assuming it alone is implemented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okoroji, C.E.I.
1982-09-01
A public consensus has developed on the need for national energy policies and better planning in the utilization of energy resources in Nigeria. A look at Nigeria's energy future is timely as a period of rapid technological growth and industrial development begins. At the present time, Nigeria exports a relatively high percentage (92%) of the petroleum produced annually. In addition, about 95% of all produced natural gas is flared. Only a relatively minor fraction of the coal produced is used and the rest exported to West African countries. Water power in Nigeria is not yet fully developed. Although the depositsmore » of uranium and oil sand may be substantial, the reserves are not currently known. The proportions in which mineral fuels are used are not related to their relative abundance. Based on present production rates, domestic reserves of petroleum will last 20 years, those of natural gas 63 years, and those of coal 1503 years. Nigeria is not currently and is not likely to become self-sufficient in terms of energy requirements. During the past decade, Nigeria's population has increased by 28.4%. Of vital concern for the immediate future in Nigeria are the demands on energy consumption and mineral resources resulting from increasing population pressure.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-07
... and green building initiatives for transit facilities and equipment. 3. For transit asset management... efficiency or reduces energy consumption/green house gas emissions. Proposers are encouraged to provide... to: 1. Improve energy efficiency or reduce energy consumption/green house gas emissions. Proposers...
Consumption Taxes and Economic Efficiency with Idiosyncratic Wage Shocks
ERIC Educational Resources Information Center
Nishiyama, Shinichi; Smetters, Kent
2005-01-01
Fundamental tax reform is examined in an overlapping-generations model in which heterogeneous agents face idiosyncratic wage shocks and longevity uncertainty. A progressive income tax is replaced with a flat consumption tax. If idiosyncratic wage shocks are insurable (i.e., no risk), this reform improves (interim) efficiency, a result consistent…
Matos, C; Briga-Sá, A; Bentes, I; Faria, D; Pereira, S
2017-05-15
Nowadays, water and energy consumption is intensifying every year in most of the countries. This perpetual increase will not be supportable in the long run, making urgently to manage these resources on a sustainable way. Domestic consumptions of water and electric energy usually are related and it's important to study that relation, identifying opportunities for use efficient improvement. In fact, without an understanding of water-energy relations, there are water efficiency measures that may lead to unintentional costs in the energy efficiency field. In order to take full advantage of combined effect between water and energy water management methodologies, it is necessary to collect data to ensure that the efforts are directed through the most effective paths. This paper presents a study based in the characterization, measurement and analysis of water and electricity consumption in a single family house (2months period) in order to find an interdependent relationship between consumptions at the end user level. The study was carried out on about 200 baths, divided in four different scenarios where the influence of two variables was tested: the flow reducer valve and the bath temperature. Data showed that the presence of flow reducer valve decreased electric energy consumption and water consumption, but increased the bath duration. Setting a lower temperature in water-heater, decreased electric consumption, water consumption and bath duration. Analysing the influence of the flow reducer valve and 60°C temperature simultaneously, it was concluded that it had a significant influence on electric energy consumption and on the baths duration but had no influence on water consumption. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ofori-Boadu, Andrea N. Y. A.
High energy consumption in the United States has been influenced by populations, climates, income and other contextual factors. In the past decades, U.S. energy policies have pursued energy efficiency as a national strategy for reducing U.S. environmental degradation and dependence on foreign oils. The quest for improved energy efficiency has led to the development of energy efficient technologies and programs. The implementation of energy programs in the complex U.S. socio-technical environment is believed to promote the diffusion of energy efficiency technologies. However, opponents doubt the fact that these programs have the capacity to significantly reduce U.S. energy consumption. In order to contribute to the ongoing discussion, this quantitative study investigated the relationships existing among electricity consumption/ intensity, energy programs and contextual factors in the U.S. buildings sector. Specifically, this study sought to identify the significant predictors of electricity consumption and intensity, as well as estimate the overall impact of selected energy programs on electricity consumption and intensity. Using state-level secondary data for 51 U.S. states from 2006 to 2009, seven random effects panel data regression models confirmed the existence of significant relationships among some energy programs, contextual factors, and electricity consumption/intensity. The most significant predictors of improved electricity efficiency included the price of electricity, public benefits funds program, building energy codes program, financial and informational incentives program and the Leadership in Energy and Environmental Design (LEED) program. Consistently, the Southern region of the U.S. was associated with high electricity consumption and intensity; while the U.S. commercial sector was the greater benefactor from energy programs. On the average, energy programs were responsible for approximately 7% of the variation observed in electricity consumption and intensity, over and above the variation associated with the contextual factors. This study also had implications in program implementation theory, and revealed that resource availability, stringency and adherence had significant impacts on program outcomes. Using seven classification tables, this study categorized and matched the predictors of electricity consumption and intensity with the specific energy sectors in which they demonstrated significance. Project developers, energy advocates, policy makers, program administrators, building occupants and other stakeholders could use study findings in conjunction with other empirical findings, to make informed decisions regarding the adoption, continuation or discontinuation of energy programs, while taking contextual factors into consideration. The adoption and efficient implementation of the most significant programs could reduce U.S. electricity consumption, and in the long term, probably reduce U.S. energy waste, environmental degradation, energy imports, energy prices, and demands for expanding energy generation and distribution infrastructure.
China's growing CO2 emissions--a race between increasing consumption and efficiency gains.
Peters, Glen P; Weber, Christopher L; Guan, Dabo; Hubacek, Klaus
2007-09-01
China's rapidly growing economy and energy consumption are creating serious environmental problems on both local and global scales. Understanding the key drivers behind China's growing energy consumption and the associated CO2 emissions is critical for the development of global climate policies and provides insight into how other emerging economies may develop a low emissions future. Using recently released Chinese economic input-output data and structural decomposition analysis we analyze how changes in China's technology, economic structure, urbanization, and lifestyles affect CO2 emissions. We find that infrastructure construction and urban household consumption, both in turn driven by urbanization and lifestyle changes, have outpaced efficiency improvements in the growth of CO2 emissions. Net trade had a small effect on total emissions due to equal, but significant, growth in emissions from the production of exports and emissions avoided by imports. Technology and efficiency improvements have only partially offset consumption growth, but there remains considerable untapped potential to reduce emissions by improving both production and consumption systems. As China continues to rapidly develop there is an opportunity to further implement and extend policies, such as the Circular Economy, that will help China avoid the high emissions path taken by today's developed countries.
Public policies, private choices: Consumer desire and the practice of energy efficiency
NASA Astrophysics Data System (ADS)
Deumling, Reuben Alexander
Refrigerator energy consumption has been the subject of regulatory attention in the US for some thirty years. Federal product standards, energy labels, and a variety of programs to get consumers to discard their existing refrigerators sooner and buy new, more energy efficient ones have transformed the refrigerator landscape and changed how many of us think about refrigerators. The results of these policies are celebrated as a successful model for how to combine regulatory objectives and consumer preferences in pursuit of environmental outcomes where everyone wins. Yet per capita refrigerator energy consumption today remains (much) higher in the US than anywhere else, in part because energy efficiency overlooks the ways behavior, habit, emulation, social norms, advertising, and energy efficiency policies themselves shape energy consumption patterns. To understand these dynamics I investigate how people replacing their refrigerators through a state-sponsored energy efficiency program make sense of the choices facing them, and how various types of information designed to aid in this process (Consumer Reports tests, Energy Guide labels, rebate programs) frame the issue of responsible refrigerator consumption. Using interviews and archival research I examine how this information is used to script the choice of a refrigerator, whose priorities shape the form and content of these cues, and what the social meanings generated by and through encounters with refrigerators and energy efficiency are. I also helped build a model for estimating historic refrigerator energy consumption in the US, to measure the repercussions of refrigerator energy inefficiency. My focus in this dissertation is on the ways the pursuit of energy efficiency improvements for domestic refrigerators intersects with and sometimes reinforces escalating demand for energy. My research suggests that the practice of pursuing energy efficiency improvements in refrigerators subordinates the issue of refrigerator energy consumption---what factors influence it, how and why it fluctuated historically, how to take it seriously---in pursuit of increased sales. The a priori assumption that consumers desire certain styles of refrigerator has become a compulsion to trade up. In evaluating the results of energy policies celebrating technical achievements without paying attention to the social dynamics which these regulations encounter is insufficient.
Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C.; Deka, Suresh
2016-01-01
The intrinsic biodegradability of hydrocarbons and the distribution of proficient degrading microorganisms in the environment are very crucial for the implementation of bioremediation practices. Among others, one of the most favorable methods that can enhance the effectiveness of bioremediation of hydrocarbon-contaminated environment is the application of biosurfactant producing microbes. In the present study, the biodegradation capacities of native bacterial consortia toward total petroleum hydrocarbons (TPH) with special emphasis to poly aromatic hydrocarbons were determined. The purpose of the study was to isolate TPH degrading bacterial strains from various petroleum contaminated soil of Assam, India and develop a robust bacterial consortium for bioremediation of crude oil of this native land. From a total of 23 bacterial isolates obtained from three different hydrocarbons contaminated samples five isolates, namely KS2, PG1, PG5, R1, and R2 were selected as efficient crude oil degraders with respect to their growth on crude oil enriched samples. Isolates KS2, PG1, and R2 are biosurfactant producers and PG5, R1 are non-producers. Fourteen different consortia were designed involving both biosurfactant producing and non-producing isolates. Consortium 10, which comprises two Bacillus strains namely, Bacillus pumilus KS2 and B. cereus R2 (identified by 16s rRNA sequencing) has shown the best result in the desired degradation of crude oil. The consortium showed degradation up to 84.15% of TPH after 5 weeks of incubation, as revealed from gravimetric analysis. FTIR (Fourier transform infrared) and GCMS (Gas chromatography-mass spectrometer) analyses were correlated with gravimetric data which reveals that the consortium has removed a wide range of petroleum hydrocarbons in comparison with abiotic control including different aliphatic and aromatic hydrocarbons. PMID:27471499
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertram, K. M.; Santini, D. J.; Anderson, J. L.
2008-01-01
This paper focuses on various major long-range (1977-2002, 1982-2002) U.S. commercial trucking trends by using U.S. Department of Commerce, Bureau of the Census Vehicle/Truck Inventory and Use Survey (VIUS/TIUS) data from this period, as well as selected 1977-2002 data from the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA) and the U.S. Department of Transportation, Federal Highway Administration's (FHWA's) Highway Statistics. Analyses are made of (1) overall passenger vehicle versus truck consumption patterns of gasoline and diesel fuel and (2) the population growth and fuels used by all commercial truck classes and selected truck types (single unit and combination).more » Selected vehicle miles traveled, gallons per vehicle miles traveled, and gallons per cargo ton-miles traveled trends, as well as the effect of cargo tons per truck on fuel consumption, are also assessed. In addition, long-range trends of related factors (such as long-haul mileages driven by heavy trucks) and their impacts on both reducing fuel consumption per cargo-ton-mile and the relative shares of total commercial fuel use among truck classes were examined. Results of these trends on U.S. petroleum consumption are identified. The effects of basic engineering design and performance, national Interstate highway construction legislation, national demographic trends (such as suburbanization), and changes in U.S. corporate operational requirements are discussed. Their impacts on both the long-distance hauling and shorter-distance urban and suburban delivery markets of the commercial trucking industry are highlighted.« less
Beauge, G
1985-01-01
This work argues that analyses of the contribution of foreign workers to economic diversification of the Gulf states should begin with a study of the structure of petroleum income and the social relations of each country. This hypothesis is in contrast to those which regard the labor market or the low activity rates of Gulf countries as the principle impetus for labor migrations in the Middle East. Although the labor importing countries differ in their degrees of development, size, existing infrastructure, agricultural development, and other key aspects, they have some important features in common. Recourse to foreign labor developed in all the countries during the early 1970s as a result of the increase in petroleum prices. Until the late 1960s, the petroleum producing countries had seen the bulk of the petroleum revenues go to the large oil companies and the consuming countries. The legitimacy of their governments rested on the support of the oil companies and on a system of internal alliances among clans in which the paramount clan redistributed the income receive from the petroleum companies. The redistributed value did not strictly speaking represent the profit but only a fraction of the world petroleum profit divided up by the oil companies. The structure of the state and the relations which attached it to the civil society continue to constitute an effective and durable block to mobilization of an internal labor force. The state, becaue of its relations to the oil companies, had no need of investments. The internal economies of gulf oil producing states were weakly diversified before the 1970s, the state was highly influential, capital as a particular aspect of wealth was poorly developed or undeveloped except in enclaves with foreign capital, internal consumption was largely imported, and no mechanism existed to break the ties of the individual clans or tribes with the state. After 1974 the large oil states undertook a sustained process of productive reallocation of surplus income whose forms depended on their possibilities of insertion in the world economy and their internal social structures. The goal was to transfer a significant fraction of income into capital. The network of alliances put into place by unproductive redistributions cannot be modified without compromising the stability of the state; recourse to foreign manpower in large part is an answer to the inability to disengage local labor. Immigration however appears to be limited by the fact that almost all tensions related to growth find expression in antagonism between nationals and foreign workers. Exportation of capital to the peripheral Arab states with large labor forces does not appear to be a satisfactory solution to the problems of massive labor importation and economic diversification.
Hybrid and Plug-in Electric Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2014-05-20
Hybrid and plug-in electric vehicles use electricity either as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles(PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use.
Engineering Robust Yeasts for Biorefinery Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Taek Soon; Niles, Brad; Chow, Ruthie
2016-06-22
Isoprene is highly-valued terpene based-chemical feedstock and can be derived from either petroleum or from fermentation of plant biomass. This project enabled more efficient isoprene fermentation using renewable resources and at yields that can compete economically with non-renewable sources. This Phase I project applied a novel synthetic biology approach, the Artificial Positive Feedback Loop (APFL) technology, to improve production yields of isoprene.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., the most important driver of the price here at home is the world oil price—making our economy... buildings, and facilitating the safe and responsible development of our natural gas resources. But for the... efficient cars and trucks, and a world-class refining sector that last year was a net exporter of petroleum...
The phage‐driven microbial loop in petroleum bioremediation
Rosenberg, Eugene; Bittan‐Banin, Gili; Sharon, Gil; Shon, Avital; Hershko, Galit; Levy, Itzik; Ron, Eliora Z.
2010-01-01
Summary During the drilling process and transport of crude oil, water mixes with the petroleum. At oil terminals, the water settles to the bottom of storage tanks. This drainage water is contaminated with emulsified oil and water‐soluble hydrocarbons and must be treated before it can be released into the environment. In this study, we tested the efficiency of a continuous flow, two‐stage bioreactor for treating drainage water from an Israeli oil terminal. The bioreactor removed all of the ammonia, 93% of the sulfide and converted 90% of the total organic carbon (TOC) into carbon dioxide. SYBR Gold staining indicated that reactor 1 contained 1.7 × 108 bacteria and 3.7 × 108 phages per millilitre, and reactor 2 contained 1.3 × 108 bacteria and 1.7 × 109 phages per millilitre. The unexpectedly high mineralization of TOC and high concentration of phage in reactor 2 support the concept of a phage‐driven microbial loop in the bioremediation of the drainage water. In general, application of this concept in bioremediation of contaminated water has the potential to increase the efficiency of processes. PMID:21255344
Effect of 29 days of simulated microgravity on maximal oxygen consumption and fat-free mass of rats
NASA Technical Reports Server (NTRS)
Woodman, Christopher R.; Stump, Craig S.; Stump, Jane A.; Rahman, Zia; Tipton, Charles M.
1991-01-01
Effects of a 29-days exposure to simulated microgravity on the values of maximal oxygen consumption and fat-free mass (FFM) and on the mechanical efficiency of running were investigated in rats randomly assigned to one of three regimens: head-down suspension (HDS) at 45 deg, horizontal suspension (HS), or cage control (CC). Before suspension and on days 7, 14, 21, and 28, five exercise performance tests were carried out, with measurements related to maximal oxygen consumption, treadmill run time, and mechanical efficiency. It was found that maximal oxygen consumption of both HDS and HS groups decreased significantly at day 7, after which the HDS rats remained decreased while the HS rats returned to presuspension values. Apparent mechanical efficiency in the HDS and HS groups decreased by 22-35 percent during the experimental period, and FFM decreased significantly.
A comparative assessment of resource efficiency in petroleum refining
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Jeongwoo; Forman, Grant S.; Elgowainy, Amgad
Because of increasing environmental and energy security concerns, a detailed understanding of energy efficiency and greenhouse gas (GHG) emissions in the petroleum refining industry is critical for fair and equitable energy and environmental policies. To date, this has proved challenging due in part to the complex nature and variability within refineries. In an effort to simplify energy and emissions refinery analysis, we delineated LP modeling results from 60 large refineries from the US and EU into broad categories based on crude density (API gravity) and heavy product (HP) yields. Product-specific efficiencies and process fuel shares derived from this study weremore » incorporated in Argonne National Laboratory’s GREET life-cycle model, along with regional upstream GHG intensities of crude, natural gas and electricity specific to the US and EU regions. The modeling results suggest that refineries that process relatively heavier crude inputs and have lower yields of HPs generally have lower energy efficiencies and higher GHG emissions than refineries that run lighter crudes with lower yields of HPs. The former types of refineries tend to utilize energy-intensive units which are significant consumers of utilities (heat and electricity) and hydrogen. Among the three groups of refineries studied, the major difference in the energy intensities is due to the amount of purchased natural gas for utilities and hydrogen, while the sum of refinery feed inputs are generally constant. These results highlight the GHG emissions cost a refiner pays to process deep into the barrel to produce more of the desirable fuels with low carbon to hydrogen ratio.« less
A Comparative Assessment of Resource Efficiency in Petroleum Refining
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Jeongwoo; Forman, G; Elgowainy, Amgad
2015-10-01
Because of increasing environmental and energy security concerns, a detailed understanding of energy efficiency and greenhouse gas (GHG) emissions in the petroleum refining industry is critical for fair and equitable energy and environmental policies. To date, this has proved challenging due in part to the complex nature and variability within refineries. In an effort to simplify energy and emissions refinery analysis, we delineated LP modeling results from 60 large refineries from the US and EU into broad categories based on crude density (API gravity) and heavy product (HP) yields. Product-specific efficiencies and process fuel shares derived from this study weremore » incorporated in Argonne National Laboratory's GREET life-cycle model, along with regional upstream GHG intensities of crude, natural gas and electricity specific to the US and EU regions. The modeling results suggest that refineries that process relatively heavier crude inputs and have lower yields of HPs generally have lower energy efficiencies and higher GHG emissions than refineries that run lighter crudes with lower yields of HPs. The former types of refineries tend to utilize energy-intensive units which are significant consumers of utilities (heat and electricity) and hydrogen. Among the three groups of refineries studied, the major difference in the energy intensities is due to the amount of purchased natural gas for utilities and hydrogen, while the sum of refinery feed inputs are generally constant. These results highlight the GHG emissions cost a refiner pays to process deep into the barrel to produce more of the desirable fuels with low carbon to hydrogen ratio. (c) 2015 Argonne National Laboratory. Published by Elsevier Ltd.« less
A comparative assessment of resource efficiency in petroleum refining
Han, Jeongwoo; Forman, Grant S.; Elgowainy, Amgad; ...
2015-03-25
Because of increasing environmental and energy security concerns, a detailed understanding of energy efficiency and greenhouse gas (GHG) emissions in the petroleum refining industry is critical for fair and equitable energy and environmental policies. To date, this has proved challenging due in part to the complex nature and variability within refineries. In an effort to simplify energy and emissions refinery analysis, we delineated LP modeling results from 60 large refineries from the US and EU into broad categories based on crude density (API gravity) and heavy product (HP) yields. Product-specific efficiencies and process fuel shares derived from this study weremore » incorporated in Argonne National Laboratory’s GREET life-cycle model, along with regional upstream GHG intensities of crude, natural gas and electricity specific to the US and EU regions. The modeling results suggest that refineries that process relatively heavier crude inputs and have lower yields of HPs generally have lower energy efficiencies and higher GHG emissions than refineries that run lighter crudes with lower yields of HPs. The former types of refineries tend to utilize energy-intensive units which are significant consumers of utilities (heat and electricity) and hydrogen. Among the three groups of refineries studied, the major difference in the energy intensities is due to the amount of purchased natural gas for utilities and hydrogen, while the sum of refinery feed inputs are generally constant. These results highlight the GHG emissions cost a refiner pays to process deep into the barrel to produce more of the desirable fuels with low carbon to hydrogen ratio.« less
Zhao, Song; Zhou, Xiehong; Wang, Chuanyi; Jia, Hanzhong
2017-08-24
Pyrolysis is potentially an effective treatment of waste oil residues for recovery of petroleum hydrocarbons, and the addition of biomass is expected to improve its dewatering and pyrolysis behavior. In this study, the dewatering and low-temperature co-pyrolysis of oil-containing sludge in the presence of various agricultural biomasses, such as rice husk, walnut shell, sawdust, and apricot shell, were explored. As a result, the water content gradually decreases with the increase of biomass addition within 0-1.0 wt % in original oily sludge. Comparatively, the dewatering efficiency of sludge in the presence of four types of biomasses follows the order of apricot shell > walnut shell > rice husk > sawdust. On the other hand, rice husk and sawdust are relatively more efficient in the recovery of petroleum hydrocarbons compared with walnut shell and apricot shell. The recovery efficiency generally increased with the increase in the biomass content in the range of 0-0.2 wt %, then exhibited a gradually decreasing trend with the increase in the biomass content from 0.2 to 1.0 wt %. The results suggest that optimum amount of biomass plays an important role in the recovery efficiency. In addition, the addition of biomass (such as rice husk) also promotes the formation of C x H y and CO, increasing the calorific value of pyrolysis residue, and controlled the pollution components of the exhaust gas discharged from residue incineration. The present work implies that biomass as addictive holds great potential in the industrial dewatering and pyrolysis of oil-containing sludge.
31 CFR 576.308 - Iraqi petroleum and petroleum products.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY IRAQ STABILIZATION AND INSURGENCY... petroleum and petroleum products means any petroleum, petroleum products, or natural gas originating in Iraq, including any Iraqi-origin oil inventories, wherever located. ...
31 CFR 576.308 - Iraqi petroleum and petroleum products.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY IRAQ STABILIZATION AND INSURGENCY... petroleum and petroleum products means any petroleum, petroleum products, or natural gas originating in Iraq, including any Iraqi-origin oil inventories, wherever located. ...
31 CFR 576.308 - Iraqi petroleum and petroleum products.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY IRAQ STABILIZATION AND INSURGENCY... petroleum and petroleum products means any petroleum, petroleum products, or natural gas originating in Iraq, including any Iraqi-origin oil inventories, wherever located. ...
NASA Astrophysics Data System (ADS)
Huang, X. Y.; Zhou, J. Q.; Wang, Z.; Deng, L. C.; Hong, S.
2017-05-01
China is now at a stage of accelerated industrialization and urbanization, with energy-intensive industries contributing a large proportion of economic growth. In this study, we examined industrial energy consumption by decomposition analysis to describe the driving factors of energy consumption in China. Based on input-output (I-O) tables from the World Input-Output Database (WIOD) website and China’s energy use data from 1995 to 2011, we studied the sectorial changes of energy efficiency during the examined period. The results showed that all industries increased their energy efficiency. Energy consumption was decomposed into three factors by the logarithmic mean Divisia index (LMDI) method. The increase in production output was the leading factor that drives up China’s energy consumption. World Trade Organization accession and financial crises had great impact on the energy consumption. Based on these results, a series of energy policy suggestions for decision-makers has been proposed.
Industrial energy-efficiency improvement program
NASA Astrophysics Data System (ADS)
1980-12-01
The industrial energy efficiency improvement program to accelerate market penetration of new and emerging industrial technologies is described. Practices which will improve energy efficiency, encourage substitution of more plentiful domestic fuels, and enhance recovery of energy and materials from industrial waste streams are enumerated. Specific reports from the chemicals and allied products; primary metals; petroleum and coal products; stone, clay, and glass, paper and allied products; food and kindred products; fabricated metals; transportation equipment; machinery (except electrical); textile mill products; rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products are discussed. A summary on progress in the utilization of recovered materials, and an analysis of industrial fuel mix is presented.
The pressure cold wind system on the impact of industrial boiler economy and security
NASA Astrophysics Data System (ADS)
Li, Henan; Qian, Hongli; Jiang, Lei; Yu, Dekai; Li, Guannan; Yuan, Hong
2017-05-01
Industrial boiler is one of the most energy-consuming equipment in china, the annual consumption of energy accounts for about one-third of the national energy consumption.Industrial boiler in service at present have several severe problems such as small capacity, low efficiency, high energy consumption and causing severe pollution on environment, the average industrial boiler operation efficiency is only 65%. If the efficiency increased by 15% ∼ 20%, which meet the international advanced level, each year 70 million tons of coal saving and reduce environmental pollution[1]. As energy conservation and emissions reduction becomes the basic national policy of our country, improving the efficiency of industrial boiler energy is facing opportunities and challenges, optimizing the operation mode of the existing units, it is necessary to increase the flexibility of the boiler control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, DR
2000-12-11
The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advantages LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NOx and 0.05 g/bhp-h particulates. The goal ismore » also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OTT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1, 2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. The design of advanced components for high-efficiency diesel engines has, in some cases, pushed the performance envelope for materials of construction past the point of reliable operation. Higher mechanical and tribological stresses and higher temperatures of advanced designs limit the engine designer; advanced materials allow the design of components that may operate reliably at higher stresses and temperatures, thus enabling more efficient engine designs. Advanced materials also offer the opportunity to improve the emissions, NVH, and performance of diesel engines for pickup trucks, vans, and sport utility vehicles.« less
RECS Data Show Decreased Energy Consumption per Household
2012-01-01
Total United States energy consumption in homes has remained relatively stable for many years as increased energy efficiency has offset the increase in the number and average size of housing units, according to the newly released data from the Residential Energy Consumption Survey (RECS). The average household consumed 90 million British thermal units (Btu) in 2009 based on RECS. This continues the downward trend in average residential energy consumption of the last 30 years. Despite increases in the number and the average size of homes plus increased use of electronics, improvements in efficiency for space heating, air conditioning, and major appliances have all led to decreased consumption per household. Newer homes also tend to feature better insulation and other characteristics, such as double-pane windows, that improve the building envelope.
10 CFR 431.82 - Definitions concerning commercial packaged boilers.
Code of Federal Regulations, 2012 CFR
2012-01-01
... that condenses part of the water vapor in the flue gases, and that includes a means of collecting and... consumption, energy efficiency, water consumption, or water efficiency. Btu/h or Btu/hr means British thermal... conditioning applications in buildings; or (2) For service water heating in buildings but does not meet the...
10 CFR 431.82 - Definitions concerning commercial packaged boilers.
Code of Federal Regulations, 2013 CFR
2013-01-01
... that condenses part of the water vapor in the flue gases, and that includes a means of collecting and... consumption, energy efficiency, water consumption, or water efficiency. Btu/h or Btu/hr means British thermal... conditioning applications in buildings; or (2) For service water heating in buildings but does not meet the...
NASA Astrophysics Data System (ADS)
Cross, Alison D.; Beauchamp, David A.; Armstrong, Janet L.; Blikshteyn, Mikhail; Boldt, Jennifer L.; Davis, Nancy D.; Haldorson, Lewis J.; Moss, Jamal H.; Myers, Katherine W.; Walker, Robert V.
2005-01-01
Prince William Sound hatcheries release over 600 million pink salmon ( Oncorhynchus gorbuscha) fry each year. The effect of the additional consumption demand by hatchery fish on prey biomass in Prince William Sound and the coastal Gulf of Alaska is unknown. The objectives of this study were to: (1) use bioenergetics models to compare spatial and temporal variation in the consumption demand and growth efficiency of hatchery and wild juvenile pink salmon in Prince William Sound and the coastal Gulf of Alaska between May and October 2001; and (2) compare localized population-level consumption in each region to the standing stock biomass of coexisting prey. In order to achieve observed growth, juvenile pink salmon consumed at 64-107% of their theoretical maximum consumption rate. Individual juvenile pink salmon consumed an average of 366.5 g of prey from marine entry through October of their first growing season. Growth efficiency ranged from 18.9% to 33.8% over the model simulation period. Juvenile salmon that migrated to the Gulf of Alaska grew more efficiently than those that remained in Prince William Sound until August, but after August juvenile salmon in Prince William Sound grew more efficiently than those in the Gulf of Alaska due to differences in prey quality between regions. Temperatures did not vary much between regions; thus differences in the thermal experience of juvenile pink salmon did not affect growth, consumption, and growth efficiency as much as the effects of different prey quality. Consumption demand by juvenile pink salmon exceeded the average standing stock biomass of key prey (large copepods, pteropods, hyperiid amphipods, and larvaceans) during some months. Our results are consistent with advection and production of these prey replenishing the forage base, or the reliance of individual pink salmon on high-density prey patches that occur at finer temporal scales than we were capable of sampling.
High Efficiency, Low Power-Consumption DFB Quantum Cascade Lasers Without Lateral Regrowth.
Jia, Zhi-Wei; Wang, Li-Jun; Zhang, Jin-Chuan; Liu, Feng-Qi; Zhou, Yu-Hong; Wang, Dong-Bo; Jia, Xue-Feng; Zhuo, Ning; Liu, Jun-Qi; Zhai, Shen-Qiang; Wang, Zhan-Guo
2017-12-01
Very low power-consumption distributed feedback (DFB) quantum cascade lasers (QCLs) at the wavelength around 4.9 μm were fabricated by conventional process without lateral regrowth of InP:Fe or using sidewall grating. Benefitted from the optimized materials and low waveguide loss, very low threshold current density of 0.5 kA/cm 2 was obtained for a device with cavity length of 2 mm. Combined with the partial-high-reflection coating, the 1-mm-long DFB QCL achieved low power-consumption continuous wave (CW) operation up to 105 °C. The CW threshold power-consumptions were 0.72 and 0.78 W at 15 and 25 °C, respectively. The maximum CW output power was over 110 mW at 15 °C and still more than 35 mW at 105 °C. At 15 °C, wall-plug efficiency of 5.5% and slope efficiency of 1.8 W/A were deduced, which were very high for low power-consumption DFB QCLs.
The petroleum exponential (again)
NASA Astrophysics Data System (ADS)
Bell, Peter M.
The U.S. production and reserves of liquid and gaseous petroleum have declined since 1960, at least in the lower 48 states. This decline stems from decreased discovery rates, as predicted by M. King Hubbert in the mid-1950's. Hubbert's once unpopular views were based on statistical analysis of the production history of the petroleum industry, and now, even with inclusion of the statistical perturbation caused by the Prudhoe Bay-North Alaskan Slope discovery (the largest oil field ever found in the United States), it seems clear again that production is following the exponential curve to depletion of the resource—to the end of the ultimate yield of petroleum from wells in the United States.In a recent report, C. Hall and C. Cleveland of Cornell University show that large atypical discoveries, such as the Prudhoe Bay find, are but minor influences on what now appears to be the crucial intersection of two exponentials [Science, 211, 576-579, 1981]: the production-per-drilled-foot curve of Hubbert, which crosses zero production no later than the year 2005; the other, a curve that plots the energy cost of drilling and extraction with time; that is, the cost-time rate of how much oil is used to drill and extract oil from the ground. The intersection, if no other discoveries the size of the Prudhoe Bay field are made, could be as early as 1990, the end of the present decade. The inclusion of each Prudhoe-Bay-size find extends the year of intersection by only about 6 years. Beyond that point, more than one barrel of petroleum would be expended for each barrel extracted from the ground. The oil exploration-extraction and refining industry is currently the second most energy-intensive industry in the U.S., and the message seems clear. Either more efficient drilling and production techniques are discovered, or domestic production will cease well before the end of this century if the Hubbert analysis modified by Hall and Cleveland is correct.
Material-balance assessment of the New Albany-Chesterian petroleum system of the Illinois basin
Lewan, M.D.; Henry, M.E.; Higley, D.K.; Pitman, Janet K.
2002-01-01
The New Albany-Chesterian petroleum system of the Illinois basin is a well-constrained system from which petroleum charges and losses were quantified through a material-balance assessment. This petroleum system has nearly 90,000 wells penetrating the Chesterian section, a single New Albany Shale source rock accounting for more than 99% of the produced oil, well-established stratigraphic and structural frameworks, and accessible source rock samples at various maturity levels. A hydrogen index (HI) map based on Rock-Eval analyses of source rock samples of New Albany Shale defines the pod of active source rock and extent of oil generation. Based on a buoyancy-drive model, the system was divided into seven secondary-migration catchments. Each catchment contains a part of the active pod of source rock from which it derives a petroleum charge, and this charge is confined to carrier beds and reservoirs within these catchments as accountable petroleum, petroleum losses, or undiscovered petroleum. A well-constrained catchment with no apparent erosional or leakage losses is used to determine an actual petroleum charge from accountable petroleum and residual migration losses. This actual petroleum charge is used to calibrate the other catchments in which erosional petroleum losses have occurred. Petroleum charges determined by laboratory pyrolysis are exaggerated relative to the actual petroleum charge. Rock-Eval charges are exaggerated by a factor of 4-14, and hydrouspyrolysis charges are exaggerated by a factor of 1.7. The actual petroleum charge provides a more meaningful material balance and more realistic estimates of petroleum losses and remaining undiscovered petroleum. The total petroleum charge determined for the New Albany-Chesterian system is 78 billion bbl, of which 11.4 billion bbl occur as a accountable in place petroleum, 9 billion bbl occur as residual migration losses, and 57.6 billion bbl occur as erosional losses. Of the erosional losses, 40 billion bbl were lost from two catchments that have highly faulted and extensively eroded sections. Anomalies in the relationship between erosional losses and degree of erosion suggest there is potential for undiscovered petroleum in one of the catchments. These results demonstrate that a material-balance assessment of migration catchments provides a useful means to evaluate and rank areas within a petroleum system. The article provides methodologies for obtaining more realistic petroleum charges and losses that can be applied to less data-rich petroleum systems.
Delia, Santi; Cannavò, Giuseppe; Parisi, Salvatore; Laganà, Pasqualina
2009-01-01
In this paper, the authors discuss energy sources, highlighting their impact on the environment and on human beings, their influence in economy and finance and on relations between governments. They attempt to analyse whether the above factors together can lead to a negative impact on health, defined as an individual's "complete physical social and psychological well being". The role of petroleum in the world economy is understandable if one considers that energy, heat, light, electricity, transportation and large part of mass production are all dependent on this energy resource. From petroleum one obtains fuel, fertilizers, pesticides, plastic, pharmaceutical products and clothing. Petroleum has become increasingly important in conjunction with expanding globalization and consumerism and the continuous growth of demand for petroleum has led to a corresponding decrease in its production and availability and an increase in its cost, all factors which have led to strong tensions between world States. The authors discuss sea and air pollution and global warming, citing some of the most relevant climatic incidents of recent years and tracing the most important events regarding attempts to contain pollution. They highlight the impact of contaminants such as greenhou se gases, electromagnetic pollution, synthetic chemicals, domestic, industrial and electronic waste products, responsible, according to neo-Lamarckian evolutionists, for the increasing incidence of chronic degenerative diseases. In conclusion the authors stress that there is a need to pursue energy efficiency while awaiting that world States succeed in their common objective of adopting new energy policies, with the use of clean energy at low cost.