Sample records for petroleum hydrocarbon contaminants

  1. Analysis of the Control Factors of Groundwater Petroleum Hydrocarbons Contamination in a City’s West Part

    NASA Astrophysics Data System (ADS)

    Sun, L. H.; Ma, Z. M.; Liu, Z. W.

    2018-05-01

    Based on study of the hydrogeological condition and the characteristics of petroleum hydrocarbons pollution in karst groundwater, an oil refinery located in western part of a certain city is chosen as the study site to have an analysis on the control factors of groundwater petroleum hydrocarbons contamination. The study result shows that the control factors of groundwater petroleum hydrocarbons contamination are hydrogeological condition and biodegradation. The soil layer of Quaternary is very thin, the limestone is exposed in the surface, which makes the petroleum hydrocarbons easy to permeate into the water bearing layer. Karst-fractured zone in aquifer determines the migration way of petroleum hydrocarbons to be convection, but the magmatic rock in northern part has certain blocking effect on the migration of petroleum hydrocarbons. Biodegradation makes both the contamination plume area of petroleum hydrocarbons and the content of petroleum hydrocarbons decreased.

  2. Treatment of petroleum hydrocarbon polluted environment through bioremediation: a review.

    PubMed

    Singh, Kriti; Chandra, Subhash

    2014-01-01

    Bioremediation play key role in the treatment of petroleum hydrocarbon contaminated environment. Exposure of petroleum hydrocarbon into the environment occurs either due to human activities or accidentally and cause environmental pollution. Petroleum hydrocarbon cause many toxic compounds which are potent immunotoxicants and carcinogenic to human being. Remedial methods for the treatment of petroleum contaminated environment include various physiochemical and biological methods. Due to the negative consequences caused by the physiochemical methods, the bioremediation technology is widely adapted and considered as one of the best technology for the treatment of petroleum contaminated environment. Bioremediation utilizes the natural ability of microorganism to degrade the hazardous compound into simpler and non hazardous form. This paper provides a review on the role of bioremediation in the treatment of petroleum contaminated environment, discuss various hazardous effects of petroleum hydrocarbon, various factors influencing biodegradation, role of various enzymes in biodegradation and genetic engineering in bioremediation.

  3. Bioremediation and reclamation of soil contaminated with petroleum oil hydrocarbons by exogenously seeded bacterial consortium: a pilot-scale study.

    PubMed

    Mukherjee, Ashis K; Bordoloi, Naba K

    2011-03-01

    Spillage of petroleum hydrocarbons causes significant environmental pollution. Bioremediation is an effective process to remediate petroleum oil contaminant from the ecosystem. The aim of the present study was to reclaim a petroleum oil-contaminated soil which was unsuitable for the cultivation of crop plants by using petroleum oil hydrocarbon-degrading microbial consortium. Bacterial consortium consisting of Bacillus subtilis DM-04 and Pseudomonas aeruginosa M and NM strains were seeded to 20% (v/w) petroleum oil-contaminated soil, and bioremediation experiment was carried out for 180 days under laboratory condition. The kinetics of hydrocarbon degradation was analyzed using biochemical and gas chromatographic (GC) techniques. The ecotoxicity of the elutriates obtained from petroleum oil-contaminated soil before and post-treatment with microbial consortium was tested on germination and growth of Bengal gram (Cicer aretinum) and green gram (Phaseolus mungo) seeds. Bacterial consortium showed a significant reduction in total petroleum hydrocarbon level in contaminated soil (76% degradation) as compared to the control soil (3.6% degradation) 180 days post-inoculation. The GC analysis confirmed that bacterial consortium was more effective in degrading the alkane fraction compared to aromatic fraction of crude petroleum oil hydrocarbons in soil. The nitrogen, sulfur, and oxygen compounds fraction was least degraded. The reclaimed soil supported the germination and growth of crop plants (C. aretinum and P. mungo). In contrast, seeds could not be germinated in petroleum oil-contaminated soil. The present study reinforces the application of bacterial consortium rather than individual bacterium for the effective bioremediation and reclamation of soil contaminated with petroleum oil.

  4. Biological Remediation of Petroleum Contaminants

    NASA Astrophysics Data System (ADS)

    Kuhad, Ramesh Chander; Gupta, Rishi

    Large volumes of hazardous wastes are generated in the form of oily sludges and contaminated soils during crude oil transportation and processing. Although many physical, chemical and biological treatment technologies are available for petroleum contaminants petroleum contaminants in soil, biological methods have been considered the most cost-effective. Practical biological remediation methods typically involve direct use of the microbes naturally occurring in the contaminated environment and/or cultured indigenous or modified microorganisms. Environmental and nutritional factors, including the properties of the soil, the chemical structure of the hydrocarbon(s), oxygen, water, nutrient availability, pH, temperature, and contaminant bioavailability, can significantly affect the rate and the extent of hydrocarbon biodegradation hydrocarbon biodegradation by microorganisms in contaminated soils. This chapter concisely discusses the major aspects of bioremediation of petroleum contaminants.

  5. Effectiveness and mechanism of natural attenuation at a petroleum-hydrocarbon contaminated site.

    PubMed

    Lv, Hang; Su, Xiaosi; Wang, Yan; Dai, Zhenxue; Liu, Mingyao

    2018-05-07

    This study applied an integrated method for evaluating the effectiveness and mechanism of natural attenuation (NA) of petroleum-hydrocarbon contaminated groundwater. Site groundwater and soil samples were analysed to characterize spatial and temporal variations in petroleum hydrocarbons, geochemical indicators, microbial diversity and isotopes. The results showed that the area of petroleum hydrocarbon contamination plume decreased almost 60% in four years, indicating the presence of natural attenuation. The 14 C content and sequence analysis indicate that there are more relatively 'old' HCO 3 - that have been produced from petroleum hydrocarbons in the upgradient portion of the contaminated plume, confirming that intrinsic biodegradation was the major factor limiting spread of the contaminated plume. The main degradation mechanisms were identified as sulfate reduction and methanogenesis based on the following: (1) more SO 4 2- have been consumed in the contamination source than downgradient, and the δ 34 S values in the resident SO 4 2- were also more enriched in the contamination source, (2) production of more CH 4 in the contamination source with the δ 13 C values for CH 4 was much lower than that of CO 2 , and the fractionation factor was 1.030-1.046. The results of this study provide significant insight for applying natural attenuation and enhanced bioremediation as alternative options for remediation of petroleum-hydrocarbon contaminated sites. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Lessons Learned Using Fractions to Assess Risk at Petroleum Release Sites

    DTIC Science & Technology

    2004-04-01

    Jet Fuel Bioavailability Hydrocarbon fractions Total Petroleum Hydrocarbons Weathered petroleum Sequestration 16. SECURITY CLASSIFICATION OF: 17...requirements at sites that were contaminated with petroleum products such as gasoline, diesel fuel , jet fuel , heating oil, lubricants and used motor oils...December 2002. Four of the demonstration sites were contaminated with jet fuel (i.e., JP-4, JP-5 or JP-8). The Misawa Air Base site was contaminated with

  7. Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination.

    PubMed

    Wu, Manli; Li, Wei; Dick, Warren A; Ye, Xiqiong; Chen, Kaili; Kost, David; Chen, Liming

    2017-02-01

    Bioremediation of hydrocarbon degradation in petroleum-polluted soil is carried out by various microorganisms. However, little information is available for the relationships between hydrocarbon degradation rates in petroleum-contaminated soil and microbial population and activity in laboratory assay. In a microcosm study, degradation rate and efficiency of total petroleum hydrocarbons (TPH), alkanes, and polycyclic aromatic hydrocarbons (PAH) in a petroleum-contaminated soil were determined using an infrared photometer oil content analyzer and a gas chromatography mass spectrometry (GC-MS). Also, the populations of TPH, alkane, and PAH degraders were enumerated by a modified most probable number (MPN) procedure, and the hydrocarbon degrading activities of these degraders were determined by the Biolog (MT2) MicroPlates assay. Results showed linear correlations between the TPH and alkane degradation rates and the population and activity increases of TPH and alkane degraders, but no correlation was observed between the PAH degradation rates and the PAH population and activity increases. Petroleum hydrocarbon degrading microbial population measured by MPN was significantly correlated with metabolic activity in the Biolog assay. The results suggest that the MPN procedure and the Biolog assay are efficient methods for assessing the rates of TPH and alkane, but not PAH, bioremediation in oil-contaminated soil in laboratory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Evaluation of Sediment Contamination in Pearl Harbor

    DTIC Science & Technology

    1992-06-01

    petroleum hydrocarbons , and silver are present at sufficiently ele- vated sediment concentrations to cause environmental concern. Overall sediment qual...application and drydock cleanup procedures were used. 17 Hydrocarbons Hydrocarbon contaminants include all petroleum -based fuel products such as diesel...150 180 lSC0  c150 170 420 710 900 E Organotins 356 34 27 25 37 21 21 s0 23 33 91 44 (ppb) E Petroleum Hydrocarbons 50 300 290 C50 400 230 54 50 72

  9. Microbial Degradation of Petroleum Hydrocarbon Contaminants: An Overview

    PubMed Central

    Das, Nilanjana; Chandran, Preethy

    2011-01-01

    One of the major environmental problems today is hydrocarbon contamination resulting from the activities related to the petrochemical industry. Accidental releases of petroleum products are of particular concern in the environment. Hydrocarbon components have been known to belong to the family of carcinogens and neurotoxic organic pollutants. Currently accepted disposal methods of incineration or burial insecure landfills can become prohibitively expensive when amounts of contaminants are large. Mechanical and chemical methods generally used to remove hydrocarbons from contaminated sites have limited effectiveness and can be expensive. Bioremediation is the promising technology for the treatment of these contaminated sites since it is cost-effective and will lead to complete mineralization. Bioremediation functions basically on biodegradation, which may refer to complete mineralization of organic contaminants into carbon dioxide, water, inorganic compounds, and cell protein or transformation of complex organic contaminants to other simpler organic compounds by biological agents like microorganisms. Many indigenous microorganisms in water and soil are capable of degrading hydrocarbon contaminants. This paper presents an updated overview of petroleum hydrocarbon degradation by microorganisms under different ecosystems. PMID:21350672

  10. Assessment of three approaches of bioremediation (Natural Attenuation, Landfarming and Bioagumentation - Assistited Landfarming) for a petroleum hydrocarbons contaminated soil.

    PubMed

    Guarino, C; Spada, V; Sciarrillo, R

    2017-03-01

    Contamination with total petroleum hydrocarbons (TPH) subsequent to refining activities, is currently one of the major environmental problems. Among the biological remediation approaches, landfarming and in situ bioremediation strategies are of great interest. Purpose of this study was to verify the feasibility of a remediation process wholly based on biological degradation applied to contaminated soils from a decommissioned refinery. This study evaluated through a pot experiment three bioremediation strategies: a) Natural Attenuation (NA), b) Landfarming (L), c) Bioaugmentation-assisted Landfarming (LB) for the treatment of a contaminated soil with petroleum hydrocarbons (TPHs). After a 90-days trial, Bioagumentation - assistited Landfarming approach produced the best results and the greatest evident effect was shown with the most polluted samples reaching a reduction of about 86% of total petroleum hydrocarbons (TPH), followed by Landfarming (70%), and Natural Attenuation (57%). The results of this study demonstrated that the combined use of bioremediation strategies was the most advantageous option for the treatment of contaminated soil with petroleum hydrocarbons, as compared to natural attenuation, bioaugmentation or landfarming applied alone. Besides, our results indicate that incubation with an autochthonous bacterial consortium may be a promising method for bioremediation of TPH-contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Reduction of petroleum hydrocarbons and toxicity in refinery wastewater by bioremediation.

    PubMed

    Płaza, Grazyna A; Jangid, Kamlesh; Lukasik, Krystyna; Nałecz-Jawecki, Grzegorz; Berry, Christopher J; Brigmon, Robin L

    2008-10-01

    The aim of the study was to investigate petroleum waste remediation and toxicity reduction by five bacterial strains: Ralstonia picketti SRS (BP-20), Alcaligenes piechaudii SRS (CZOR L-1B), Bacillus subtilis (I'-1a), Bacillus sp. (T-1), and Bacillus sp. (T'-1), previously isolated from petroleum-contaminated soils. Petroleum hydrocarbons were significantly degraded (91%) by the mixed bacterial cultures in 30 days (reaching up to 29% in the first 72 h). Similarly, the toxicity of the biodegraded petroleum waste decreased 3-fold after 30 days. This work shows the influence of bacteria on hydrocarbon degradation and associated toxicity, and its dependence on the specific microorganisms present. The ability of these mixed cultures to degrade hydrocarbons and reduce toxicity makes them candidates for environmental restoration applications at other hydrocarbon-contaminated environments.

  12. Bioremediation of Petroleum and Radiological Contaminated Soils at the Savannah River Site: Laboratory to Field Scale Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BRIGMON, ROBINL.

    In the process of Savannah River Site (SRS) operations limited amounts of waste are generated containing petroleum, and radiological contaminated soils. Currently, this combination of radiological and petroleum contaminated waste does not have an immediate disposal route and is being stored in low activity vaults. SRS developed and implemented a successful plan for clean up of the petroleum portion of the soils in situ using simple, inexpensive, bioreactor technology. Treatment in a bioreactor removes the petroleum contamination from the soil without spreading radiological contamination to the environment. This bioreactor uses the bioventing process and bioaugmentation or the addition of themore » select hydrocarbon degrading bacteria. Oxygen is usually the initial rate-limiting factor in the biodegradation of petroleum hydrocarbons. Using the bioventing process allowed control of the supply of nutrients and moisture based on petroleum contamination concentrations and soil type. The results of this work have proven to be a safe and cost-effective means of cleaning up low level radiological and petroleum-contaminated soil. Many of the other elements of the bioreactor design were developed or enhanced during the demonstration of a ''biopile'' to treat the soils beneath a Polish oil refinery's waste disposal lagoons. Aerobic microorganisms were isolated from the aged refinery's acidic sludge contaminated with polycyclic aromatic hydrocarbons (PAHs). Twelve hydrocarbon-degrading bacteria were isolated from the sludge. The predominant PAH degraders were tentatively identified as Achromobacter, Pseudomonas Burkholderia, and Sphingomonas spp. Several Ralstonia spp were also isolated that produce biosurfactants. Biosurfactants can enhance bioremediation by increasing the bioavailability of hydrophobic contaminants including hydrocarbons. The results indicated that the diversity of acid-tolerant PAH-degrading microorganisms in acidic oil wastes may be much greater than previously demonstrated and they have numerous applications to environmental restoration. Twelve of the isolates were subsequently added to the bioreactor to enhance bioremediation. In this study we showed that a bioreactor could be bioaugmented with select bacteria to enhance bioremediation of petroleum-contaminated soils under radiological conditions.« less

  13. Field study of in situ remediation of petroleum hydrocarbon contaminated soil on site using microwave energy.

    PubMed

    Chien, Yi-Chi

    2012-01-15

    Many laboratory-scale studies strongly suggested that remediation of petroleum hydrocarbon contaminated soil by microwave heating is very effective; however, little definitive field data existed to support the laboratory-scale observations. This study aimed to evaluate the performance of a field-scale microwave heating system to remediate petroleum hydrocarbon contaminated soil. A constant microwave power of 2 kW was installed directly in the contaminated area that applied in the decontamination process for 3.5h without water input. The C10-C40 hydrocarbons were destroyed, desorbed or co-evaporated with moisture from soil by microwave heating. The moisture may play an important role in the absorption of microwave and in the distribution of heat. The success of this study paved the way for the second and much larger field test in the remediation of petroleum hydrocarbon contaminated soil by microwave heating in place. Implemented in its full configuration for the first time at a real site, the microwave heating has demonstrated its robustness and cost-effectiveness in cleaning up petroleum hydrocarbon contaminated soil in place. Economically, the concept of the microwave energy supply to the soil would be a network of independent antennas which powered by an individual low power microwave generator. A microwave heating system with low power generators shows very flexible, low cost and imposes no restrictions on the number and arrangement of the antennas. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Bioremediation of Petroleum Hydrocarbon Contaminated Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fallgren, Paul

    Bioremediation has been widely applied in the restoration of petroleum hydrocarbon-contaminated. Parameters that may affect the rate and efficiency of biodegradation include temperature, moisture, salinity, nutrient availability, microbial species, and type and concentration of contaminants. Other factors can also affect the success of the bioremediation treatment of contaminants, such as climatic conditions, soil type, soil permeability, contaminant distribution and concentration, and drainage. Western Research Institute in conjunction with TechLink Environmental, Inc. and the U.S. Department of Energy conducted laboratory studies to evaluate major parameters that contribute to the bioremediation of petroleum-contaminated drill cuttings using land farming and to develop amore » biotreatment cell to expedite biodegradation of hydrocarbons. Physical characteristics such as soil texture, hydraulic conductivity, and water retention were determined for the petroleum hydrocarbon contaminated soil. Soil texture was determined to be loamy sand to sand, and high hydraulic conductivity and low water retention was observed. Temperature appeared to have the greatest influence on biodegradation rates where high temperatures (>50 C) favored biodegradation. High nitrogen content in the form of ammonium enhanced biodegradation as well did the presence of water near field water holding capacity. Urea was not a good source of nitrogen and has detrimental effects for bioremediation for this site soil. Artificial sea water had little effect on biodegradation rates, but biodegradation rates decreased after increasing the concentrations of salts. Biotreatment cell (biocell) tests demonstrated hydrocarbon biodegradation can be enhanced substantially when utilizing a leachate recirculation design where a 72% reduction of hydrocarbon concentration was observed with a 72-h period at a treatment temperature of 50 C. Overall, this study demonstrates the investigation of the effects of environmental parameters on bioremediation is important in designing a bioremediation system to reduce petroleum hydrocarbon concentrations in impacted soils.« less

  15. Bioremediation of soil contaminated crude oil by Agaricomycetes.

    PubMed

    Mohammadi-Sichani, M Maryam; Assadi, M Mazaheri; Farazmand, A; Kianirad, M; Ahadi, A M; Ghahderijani, H Hadian

    2017-01-01

    One of the most important environmental problems is the decontamination of petroleum hydrocarbons polluted soil, particularly in the oil-rich country. Bioremediation is the most effective way to remove these pollutants in the soil. Spent mushroom compost has great ability to decompose lignin-like pollution. The purpose of this study was the bioremediation of soil contaminated with crude oil by an Agaricomycetes . Soil sample amended with spent mushroom compost into 3%, 5% and 10% (w/w) with or without fertilizer. Ecotoxicity germination test was conducted with Lipidium sativa . The amplified fragment (18 s rDNA) sequence of this mushroom confirmed that the strain belonged to Pleurotus ostreatus species with complete homology (100% identity). All tests experiment sets were effective at supporting the degradation of petroleum hydrocarbons contaminated soil after three months. Petroleum contaminated soil amended with Spent mushroom compost 10% and fertilizer removed 64.7% of total petroleum hydrocarbons compared control. The germination index (%) in ecotoxicity tests ranged from 60.4 to 93.8%. This showed that the petroleum hydrocarbons contaminated soil amended with 10% Spent mushroom compost had higher bioremediation ability and reduced soil toxicity in less than three months.

  16. Petroleum hydrocarbon pollution of urban topsoil in Ibadan city, Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onianwa, P.C.

    The distribution of total petroleum hydrocarbon in topsoils from various parts of Ibadan city, Nigeria, was studied. Samples were selected from around the following zones: (a) railway tracks, (b) petrol stations, (c) refuse dumps, (d) residential areas, (e) high traffic density areas, (f) mechanical workshops, and (g) control zones. Contamination of the topsoil with hydrocarbons was significant only around petrol stations and mechanical workshops where the factors of accumulation were 10.1 and 4.72, respectively. The general trend in hydrocarbon levels was petrol station > mechanical workshop > refuse dumps > high traffic areas {ge} rail tracks > control residential areas.more » The results highlight the need to monitor urban environments that are remote from petroleum exploration activities for petroleum hydrocarbon contamination. 19 refs., 3 tabs.« less

  17. Clonal variation in survival and growth of hybrid poplar and willow in an in situ trial on soils heavily contaminated with petroleum hydrocarbons

    Treesearch

    Ronald S., Jr. Zalesny; Edmund O. Bauer; Richard B. Hall; Jill A. Zalesny; Joshua Kunzman; Chris J. Rog; Don E. Riemenschneider

    2005-01-01

    Species and hybrids between species belonging to the genera Populus (poplar) and Salix (willow) have been used successfully for phytoremediation of contaminated soils. Our objectives were to: 1) evaluate the potential for establishing genotypes of poplar and willow on soils heavily contaminated with petroleum hydrocarbons and 2)...

  18. EARLY WARNING MARINE WATER SUPPLY PROTECTION STRATEGY: THE THREAT OF OIL SPILL (PETROLEUM HYDROCARBON) CONTAMINATION

    EPA Science Inventory

    Oil spills resulting from the twice-grounded freighter New Carissa on the Central Oregon coast in the spring of 1999 caused substantial concern regarding potential petroleum hydrocarbon (PHC) contamination of Coos Bay, Alsea Bay and Yaquina Bay estuaries and resident seawater fac...

  19. Removal of petroleum hydrocarbons from contaminated groundwater by the combined technique of adsorption onto perlite followed by the O3/H2O2 process.

    PubMed

    Moussavi, Gholamreza; Bagheri, Amir

    2012-09-01

    Groundwater contaminated with petroleum hydrocarbons was treated using a combined system of adsorption onto powdered expanded perlite (PEP) followed by the O3/H2O2 process. The pretreatment investigations indicated a high capacity for PEP to remove petroleum hydrocarbons from the contaminated water. An experimental total petroleum hydrocarbon (TPH) adsorption capacity of 275 mg/g PEP was obtained at the natural pH of water. The experimental data fit best with the Freundlich isotherm model and pseudo-second-order adsorption model. The second phase of the experiment evaluated the performance of the O3/H2O2 process in the removal of residual TPH from pretreated water and compared the results with that of raw water. The O3/H202 process attained a maximum TPH removal rate for the pretreated water after 70 min, when 93% of the residual TPH in the effluent of the adsorption system was removed. Overall, the combination of adsorption onto PEP for 100 min and the subsequent treatment with the O3/H2O2 process for 70min eliminated over 99% of the TPH of highly petroleum-contaminated groundwater, with initial values of 162 mg/L. Therefore, we can conclude that the developed treatment system is an appropriate method of remediation for petroleum-contaminated waters.

  20. Geochemistry of Dissolved Organic Matter in a Spatially Highly Resolved Groundwater Petroleum Hydrocarbon Plume Cross-Section.

    PubMed

    Dvorski, Sabine E-M; Gonsior, Michael; Hertkorn, Norbert; Uhl, Jenny; Müller, Hubert; Griebler, Christian; Schmitt-Kopplin, Philippe

    2016-06-07

    At numerous groundwater sites worldwide, natural dissolved organic matter (DOM) is quantitatively complemented with petroleum hydrocarbons. To date, research has been focused almost exclusively on the contaminants, but detailed insights of the interaction of contaminant biodegradation, dominant redox processes, and interactions with natural DOM are missing. This study linked on-site high resolution spatial sampling of groundwater with high resolution molecular characterization of DOM and its relation to groundwater geochemistry across a petroleum hydrocarbon plume cross-section. Electrospray- and atmospheric pressure photoionization (ESI, APPI) ultrahigh resolution mass spectrometry (FT-ICR-MS) revealed a strong interaction between DOM and reactive sulfur species linked to microbial sulfate reduction, i.e., the key redox process involved in contaminant biodegradation. Excitation emission matrix (EEM) fluorescence spectroscopy in combination with Parallel Factor Analysis (PARAFAC) modeling attributed DOM samples to specific contamination traits. Nuclear magnetic resonance (NMR) spectroscopy evaluated the aromatic compounds and their degradation products in samples influenced by the petroleum contamination and its biodegradation. Our orthogonal high resolution analytical approach enabled a comprehensive molecular level understanding of the DOM with respect to in situ petroleum hydrocarbon biodegradation and microbial sulfate reduction. The role of natural DOM as potential cosubstrate and detoxification reactant may improve future bioremediation strategies.

  1. LABORATORY AND FIELD RESULTS LINKING HIGH CONDUCTIVITIES TO THE MICROBIAL DEGRADATION OF PETROLEUM HYDROCARBONS

    EPA Science Inventory

    The results of a field and laboratory investigation of unconsolidated sediments contaminated by petroleum hydrocarbons and undergoing natural biodegradation are presented. Fundamental to geophysical investigations of hydrocarbon impacted sediments is the assessment of how microbi...

  2. Reconnaissance investigations of potential ground-water and sediment contamination at three former underground storage tank locations, Fort Jackson, South Carolina, 1994

    USGS Publications Warehouse

    Robertson, J.F.; Nagle, Douglas D.; Rhodes, Liesl C.

    1994-01-01

    Investigations to provide initial qualitative delineation of petroleum hydrocarbon contamination at three former underground storage tank locations at Fort Jackson, South Carolina, were made during March 1994. Ground-water and sediment samples were collected using direct-push technology and analyzed on-site with a gas chromatograph, which provided real-time, semi-quantitative data. In addition, ground-water and sediment samples were collected at selected sites for laboratory analyses to provide a confirmation of the on-site data. These analyses provided qualitative data on the lateral distri- bution of petroleum hydrocarbons. Petroleum hydrocarbons were detected by on-site analysis in ground-water samples from nine locations at Site 1062, suggesting the presence of a contaminant plume. Concentrations ranged from less than the minimum detection limit to 4,511 mg/L (micrograms per liter) for benzene, 15,594 mg/L for toluene, 16,501 mg/L for ethylbenzene, and 19,391 mg/L for total xylenes. Concentrations of Total Petroleum Hydrocarbons-Gasoline Range Organics ranged from 323 mg/L to 3,364 mg/L; Total Petroleum Hydrocarbons-Diesel Range Organics were not detected. Three samples from this site were analyzed for benzene, toluene, ethylbenzene, and total xylenes at a laboratory and results showed concentrations ranging from less than the minimum detection limit to 1,070 mg/L for benzene, 7,930 mg/L for toluene, 6,890 mg/L for ethylbenzene, and 1,524 mg/L for total xylenes. Petroleum hydro- carbons were detected by on-site analysis in only one sample at Site 2438. A concentration of 131,000 micrograms per kilogram Total Petroleum Hydrocarbons-Diesel Range Organics was detected in sample number GP-2-4-13.5. Petroleum hydrocarbons were detected by on-site analysis in only one ground-water sample from Site 2444. A concentration of 3,145 mg/L Total Petroleum Hydrocarbons-Gasoline Range Organics was detected at sampling location GP-3-2.

  3. Methodology for applying monitored natural attenuation to petroleum hydrocarbon-contaminated ground-water systems with examples from South Carolina

    USGS Publications Warehouse

    Chapelle, Frank H.; Robertson, John F.; Landmeyer, James E.; Bradley, Paul M.

    2000-01-01

    These two sites illustrate how the efficiency of natural attenuation processes acting on petroleum hydrocarbons can be systematically evaluated using hydrologic, geochemical, and microbiologic methods.  These methods, in turn, can be used to assess the role that the natural attenuation of petroleum hydrocarbons can play in achieving overall site remediation.

  4. A combined approach of physicochemical and biological methods for the characterization of petroleum hydrocarbon-contaminated soil.

    PubMed

    Masakorala, Kanaji; Yao, Jun; Chandankere, Radhika; Liu, Haijun; Liu, Wenjuan; Cai, Minmin; Choi, Martin M F

    2014-01-01

    Main physicochemical and microbiological parameters of collected petroleum-contaminated soils with different degrees of contamination from DaGang oil field (southeast of Tianjin, northeast China) were comparatively analyzed in order to assess the influence of petroleum contaminants on the physicochemical and microbiological properties of soil. An integration of microcalorimetric technique with urease enzyme analysis was used with the aim to assess a general status of soil metabolism and the potential availability of nitrogen nutrient in soils stressed by petroleum-derived contaminants. The total petroleum hydrocarbon (TPH) content of contaminated soils varied from 752.3 to 29,114 mg kg(−1). Although the studied physicochemical and biological parameters showed variations dependent on TPH content, the correlation matrix showed also highly significant correlation coefficients among parameters, suggesting their utility in describing a complex matrix such as soil even in the presence of a high level of contaminants. The microcalorimetric measures gave evidence of microbial adaptation under highest TPH concentration; this would help in assessing the potential of a polluted soil to promote self-degradation of oil-derived hydrocarbon under natural or assisted remediation. The results highlighted the importance of the application of combined approach in the study of those parameters driving the soil amelioration and bioremediation.

  5. Combination of biochar amendment and phytoremediation for hydrocarbon removal in petroleum-contaminated soil.

    PubMed

    Han, Tao; Zhao, Zhipeng; Bartlam, Mark; Wang, Yingying

    2016-11-01

    Remediation of soils contaminated with petroleum is a challenging task. Four different bioremediation strategies, including natural attenuation, biochar amendment, phytoremediation with ryegrass, and a combination of biochar and ryegrass, were investigated with greenhouse pot experiments over a 90-day period. The results showed that planting ryegrass in soil can significantly improve the removal rate of total petroleum hydrocarbons (TPHs) and the number of microorganisms. Within TPHs, the removal rate of total n-alkanes (45.83 %) was higher than that of polycyclic aromatic hydrocarbons (30.34 %). The amendment of biochar did not result in significant improvement of TPH removal. In contrast, it showed a clear negative impact on the growth of ryegrass and the removal of TPHs by ryegrass. The removal rate of TPHs was significantly lower after the amendment of biochar. The results indicated that planting ryegrass is an effective remediation strategy, while the amendment of biochar may not be suitable for the phytoremediation of soil contaminated with petroleum hydrocarbons.

  6. Phytoremediation of petroleum hydrocarbon-contaminated saline-alkali soil by wild ornamental Iridaceae species.

    PubMed

    Cheng, Lijuan; Wang, Yanan; Cai, Zhang; Liu, Jie; Yu, Binbin; Zhou, Qixing

    2017-03-04

    As a green remediation technology, phytoremediation is becoming one of the most promising methods for treating petroleum hydrocarbons (PHCs)-contaminated soil. Pot culture experiments were conducted in this study to investigate phytoremediation potential of two representative Iridaceae species (Iris dichotoma Pall. and Iris lactea Pall.) in remediation of petroleum hydrocarbon-contaminated saline-alkali soil from the Dagang Oilfield in Tianjin, China. The results showed that I. lactea was more endurable to extremely high concentration of PHCs (about 40,000 mg/kg), with a relatively high degradation rate of 20.68%.The degradation rate of total petroleum hydrocarbons (TPHs) in soils contaminated with 10,000 and 20,000 mg/kg of PHCs was 30.79% and 19.36% by I. dichotoma, and 25.02% and 19.35% by I. lactea, respectively, which improved by 10-60% than the unplanted controls. The presence of I. dichotoma and I. lactea promoted degradation of PHCs fractions, among which saturates were more biodegradable than aromatics. Adaptive specialization was observed within the bacterial community. In conclusion, phytoremediation by I. dichotoma should be limited to soils contaminated with ≤20,000 mg/kg of PHCs, while I. lactea could be effectively applied to phytoremediation of contaminated soils by PHCs with at least 40,000 mg/kg.

  7. Rapid identification of oil-contaminated soils using visible near-infrared diffuse reflectance spectroscopy.

    PubMed

    Chakraborty, Somsubhra; Weindorf, David C; Morgan, Cristine L S; Ge, Yufeng; Galbraith, John M; Li, Bin; Kahlon, Charanjit S

    2010-01-01

    In the United States, petroleum extraction, refinement, and transportation present countless opportunities for spillage mishaps. A method for rapid field appraisal and mapping of petroleum hydrocarbon-contaminated soils for environmental cleanup purposes would be useful. Visible near-infrared (VisNIR, 350-2500 nm) diffuse reflectance spectroscopy (DRS) is a rapid, nondestructive, proximal-sensing technique that has proven adept at quantifying soil properties in situ. The objective of this study was to determine the prediction accuracy of VisNIR DRS in quantifying petroleum hydrocarbons in contaminated soils. Forty-six soil samples (including both contaminated and reference samples) were collected from six different parishes in Louisiana. Each soil sample was scanned using VisNIR DRS at three combinations of moisture content and pretreatment: (i) field-moist intact aggregates, (ii) air-dried intact aggregates, (iii) and air-dried ground soil (sieved through a 2-mm sieve). The VisNIR spectra of soil samples were used to predict total petroleum hydrocarbon (TPH) content in the soil using partial least squares (PLS) regression and boosted regression tree (BRT) models. Each model was validated with 30% of the samples that were randomly selected and not used in the calibration model. The field-moist intact scan proved best for predicting TPH content with a validation r2 of 0.64 and relative percent difference (RPD) of 1.70. Because VisNIR DRS was promising for rapidly predicting soil petroleum hydrocarbon content, future research is warranted to evaluate the methodology for identifying petroleum contaminated soils.

  8. Pilot-scale bioremediation of a petroleum hydrocarbon-contaminated clayey soil from a sub-Arctic site.

    PubMed

    Akbari, Ali; Ghoshal, Subhasis

    2014-09-15

    Bioremediation is a potentially cost-effective solution for petroleum contamination in cold region sites. This study investigates the extent of biodegradation of petroleum hydrocarbons (C16-C34) in a pilot-scale biopile experiment conducted at 15°C for periods up to 385 days, with a clayey soil, from a crude oil-impacted site in northern Canada. Although several studies on bioremediation of petroleum hydrocarbon-contaminated soils from cold region sites have been reported for coarse-textured, sandy soils, there are limited studies of bioremediation of petroleum contamination in fine-textured, clayey soils. Our results indicate that aeration and moisture addition was sufficient for achieving 47% biodegradation and an endpoint of 530 mg/kg for non-volatile (C16-C34) petroleum hydrocarbons. Nutrient amendment with 95 mg-N/kg showed no significant effect on biodegradation compared to a control system without nutrient but similar moisture content. In contrast, in a biopile amended with 1340 mg-N/kg, no statistically significant biodegradation of non-volatile fraction was detected. Terminal Restriction Fragment Length Polymorphism (T-RFLP) analyses of alkB and 16S rRNA genes revealed that inhibition of hydrocarbon biodegradation was associated with a lack of change in microbial community composition. Overall, our data suggests that biopiles are feasible for attaining the bioremediation endpoint in clayey soils. Despite the significantly lower biodegradation rate of 0.009 day(-1) in biopile tank compared to 0.11 day(-1) in slurry bioreactors for C16-C34 hydrocarbons, the biodegradation extents for this fraction were comparable in these two systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Arbuscular mycorrhizal fungi in chronically petroleum-contaminated soils in Mexico and the effects of petroleum hydrocarbons on spore germination.

    PubMed

    Franco-Ramírez, Alicia; Ferrera-Cerrato, Ronald; Varela-Fregoso, Lucía; Pérez-Moreno, Jesús; Alarcón, Alejandro

    2007-10-01

    Arbuscular mycorrhizal fungi (AMF) have been hypothesized to enhance plant adaptation and growth in petroleum-contaminated soils. Nevertheless, neither AMF-biodiversity under chronically petroleum-contaminated soils nor spore germination response to petroleum hydrocarbons has been well studied. Chronically petroleum-contaminated rhizosphere soil and roots from Echinochloa polystachya, Citrus aurantifolia and C. aurantium were collected from Activo Cinco Presidentes, Tabasco, Mexico. Root colonization and spore abundance were evaluated. Additionally, rhizosphere soil samples were propagated using Sorghum vulgare L. as a plant trap under greenhouse conditions; subsequently, AMF-spores were identified. AMF-colonization ranged from 63 to 77% while spore number ranged from 715 to 912 in 100 g soil, suggesting that AMF tolerate the presence of petroleum hydrocarbons in the rhizosphere. From grass species, four AMF-morphospecies were identified: Glomus ambisporum, G. sinuosum (previously described as Sclerocystis sinuosum), Acaulospora laevis, and Ambispora gerdermanni. From citrus trees, four AMF-species were also identified: Scutellospora heterogama, G. ambisporum, Acaulospora scrobiculata, and G. citricola. In a second study, it was observed that spore germination and hyphal length of G. mosseae, G. ambisporum, and S. heterogama were significantly reduced by either volatile compounds of crude oil or increased concentrations of benzo[a ]pyrene or phenanthrene in water-agar.

  10. Assessing soil and groundwater contamination in a metropolitan redevelopment project.

    PubMed

    Yun, Junki; Lee, Ju Young; Khim, Jeehyeong; Ji, Won Hyun

    2013-08-01

    The purpose of this study was to assess contaminated soil and groundwater for the urban redevelopment of a rapid transit railway and a new mega-shopping area. Contaminated soil and groundwater may interfere with the progress of this project, and residents and shoppers may be exposed to human health risks. The study area has been remediated after application of first remediation technologies. Of the entire area, several sites were still contaminated by waste materials and petroleum. For zinc (Zn) contamination, high Zn concentrations were detected because waste materials were disposed in the entire area. For petroleum contamination, high total petroleum hydrocarbon (TPH) and hydrocarbon degrading microbe concentrations were observed at the depth of 7 m because the underground petroleum storage tank had previously been located at this site. Correlation results suggest that TPH (soil) concentration is still related with TPH (groundwater) concentration. The relationship is taken into account in the Spearman coefficient (α).

  11. Characterization of Crude Oil Degrading Bacteria Isolated from Contaminated Soils Surrounding Gas Stations.

    PubMed

    Abou-Shanab, Reda A I; Eraky, Mohamed; Haddad, Ahmed M; Abdel-Gaffar, Abdel-Rahman B; Salem, Ahmed M

    2016-11-01

    A total of twenty bacterial cultures were isolated from hydrocarbon contaminated soil. Of the 20 isolates, RAM03, RAM06, RAM13, and RAM17 were specifically chosen based on their relatively higher growth on salt medium amended with 4 % crude oil, emulsion index, surface tension, and degradation percentage. These bacterial cultures had 16S rRNA gene sequences that were most similar to Ochrobactrum cytisi (RAM03), Ochrobactrum anthropi (RAM06 and RAM17), and Sinorhizobium meliloti (RAM13) with 96 %, 100 % and 99 %, and 99 % similarity. The tested strains revealed a promising potential for bioremediation of petroleum oil contamination as they could degrade >93 % and 54 % of total petroleum hydrocarbons (TPHs) in a liquid medium and soil amended with 4 % crude oil, respectively, after 30 day incubation. These bacteria could effectively remove both aliphatic and aromatic petroleum hydrocarbons. In conclusion, these strains could be considered as good prospects for their application in bioremediation of hydrocarbon contaminated environment.

  12. Assessment of the horizontal transfer of functional genes as a suitable approach for evaluation of the bioremediation potential of petroleum-contaminated sites: a mini-review.

    PubMed

    Shahi, Aiyoub; Ince, Bahar; Aydin, Sevcan; Ince, Orhan

    2017-06-01

    Petroleum sludge contains recalcitrant residuals. These compounds because of being toxic to humans and other organism are of the major concerns. Therefore, petroleum sludge should be safely disposed. Physicochemical methods which are used by this sector are mostly expensive and need complex devices. Bioremediation methods because of being eco-friendly and cost-effective overcome most of the limitations of physicochemical treatments. Microbial strains capable to degrade petroleum hydrocarbons are practically present in all soils and sediments and their population density increases in contact with contaminants. Bacterial strains cannot degrade alone all kinds of petroleum hydrocarbons, rather microbial consortium should collaborate with each other for degradation of petroleum hydrocarbon mixtures. Horizontal transfer of functional genes between bacteria plays an important role in increasing the metabolic potential of the microbial community. Therefore, selecting a suitable degrading gene and tracking its horizontal transfer would be a useful approach to evaluate the bioremediation process and to assess the bioremediation potential of contaminated sites.

  13. Determination of microbial carbon sources and cycling during remediation of petroleum hydrocarbon impacted soil using natural abundance (14)C analysis of PLFA.

    PubMed

    Cowie, Benjamin R; Greenberg, Bruce M; Slater, Gregory F

    2010-04-01

    In a petroleum impacted land-farm soil in Sarnia, Ontario, compound-specific natural abundance radiocarbon analysis identified biodegradation by the soil microbial community as a major pathway for hydrocarbon removal in a novel remediation system. During remediation of contaminated soils by a plant growth promoting rhizobacteria enhanced phytoremediation system (PEPS), the measured Delta(14)C of phospholipid fatty acid (PLFA) biomarkers ranged from -793 per thousand to -897 per thousand, directly demonstrating microbial uptake and utilization of petroleum hydrocarbons (Delta(14)C(PHC) = -1000 per thousand). Isotopic mass balance indicated that more than 80% of microbial PLFA carbon was derived from petroleum hydrocarbons (PHC) and a maximum of 20% was obtained from metabolism of more modern carbon sources. These PLFA from the contaminated soils were the most (14)C-depleted biomarkers ever measured for an in situ environmental system, and this study demonstrated that the microbial community in this soil was subsisting primarily on petroleum hydrocarbons. In contrast, the microbial community in a nearby uncontaminated control soil maintained a more modern Delta(14)C signature than total organic carbon (Delta(14)C(PLFA) = +36 per thousand to -147 per thousand, Delta(14)C(TOC) = -148 per thousand), indicating preferential consumption of the most modern plant-derived fraction of soil organic carbon. Measurements of delta(13)C and Delta(14)C of soil CO(2) additionally demonstrated that mineralization of PHC contributed to soil CO(2) at the contaminated site. The CO(2) in the uncontaminated control soil exhibited substantially more modern Delta(14)C values, and lower soil CO(2) concentrations than the contaminated soils, suggesting increased rates of soil respiration in the contaminated soils. In combination, these results demonstrated that biodegradation in the soil microbial community was a primary pathway of petroleum hydrocarbon removal in the PEPS system. This study highlights the power of natural abundance radiocarbon for determining microbial carbon sources and identifying biodegradation pathways in complex remediation systems.

  14. Sand amendment enhances bioelectrochemical remediation of petroleum hydrocarbon contaminated soil.

    PubMed

    Li, Xiaojing; Wang, Xin; Ren, Zhiyong Jason; Zhang, Yueyong; Li, Nan; Zhou, Qixing

    2015-12-01

    Bioelectrochemical system is an emerging technology for the remediation of soils contaminated by petroleum hydrocarbons. However, performance of such systems can be limited by the inefficient mass transport in soil. Here we report a new method of sand amendment, which significantly increases both oxygen and proton transports, resulting to increased soil porosity (from 44.5% to 51.3%), decreased Ohmic resistance (by 46%), and increased charge output (from 2.5 to 3.5Cg(-1)soil). The degradation rates of petroleum hydrocarbons increased by up to 268% in 135d. The degradation of n-alkanes and polycyclic aromatic hydrocarbons with high molecular weight was accelerated, and denaturing gradient gel electrophoresis showed that the microbial community close to the air-cathode was substantially stimulated by the induced current, especially the hydrocarbon degrading bacteria Alcanivorax. The bioelectrochemical stimulation imposed a selective pressure on the microbial community of anodes, including that far from the cathode. These results suggested that sand amendment can be an effective approach for soil conditioning that will enhances the bioelectrochemical removal of hydrocarbons in contaminated soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Interference of avian guano in analyses of fuel-contaminated soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, D.E.; Johnson, T.E.; Kreamer, D.K.

    1996-01-01

    Site characterization on Johnston Island, Johnston Atoll, Pacific Ocean, has yielded preliminary data that seabird guano can be an interference in three common petroleum hydrocarbon quantification methods. Volatiles from seabird guano were measured on a hydrocarbon-specific handheld vapor meter (catalytic detector) in concentrations as high as 256 ppm by volume total hydrocarbon. Analysis of guano solids produced measurable concentrations of total petroleum hydrocarbon (TPH) as diesel using both an immunoassay test and the EPA 8015 Modified Method. The testing was conducted on one surface sample of guano collected from a seabird roosting and nesting area. Source species were not identified.more » Positive hydrocarbon test results for guano raise concerns regarding the effectiveness of standard methods of petroleum-contaminated site characterization for Johnston island, other Pacific islands, and coastal areas with historic or contemporary seabird populations.« less

  16. Engineered in situ bioremediation of a petroleum hydrocarbon-contaminated aquifer: assessment of mineralization based on alkalinity, inorganic carbon and stable carbon isotope balances

    NASA Astrophysics Data System (ADS)

    Hunkeler, Daniel; Höhener, Patrick; Bernasconi, Stefano; Zeyer, Josef

    1999-04-01

    A concept is proposed to assess in situ petroleum hydrocarbon mineralization by combining data on oxidant consumption, production of reduced species, CH 4, alkalinity and dissolved inorganic carbon (DIC) with measurements of stable isotope ratios. The concept was applied to a diesel fuel contaminated aquifer in Menziken, Switzerland, which was treated by engineered in situ bioremediation. In the contaminated aquifer, added oxidants (O 2 and NO 3-) were consumed, elevated concentrations of Fe(II), Mn(II), CH 4, alkalinity and DIC were detected and the DIC was generally depleted in 13C compared to the background. The DIC production was larger than expected based on the consumption of dissolved oxidants and the production of reduced species. Stable carbon isotope balances revealed that the DIC production in the aquifer originated mainly from microbial petroleum hydrocarbon mineralization, and that geochemical reactions such as carbonate dissolution produced little DIC. This suggests that petroleum hydrocarbon mineralization can be underestimated if it is determined based on concentrations of dissolved oxidants and reduced species.

  17. Petroleum contamination of soil and water, and their effects on vegetables by statistically analyzing entire data set.

    PubMed

    Zhang, Juan; Fan, Shu-kai; Yang, Jun-cheng; Du, Xiao-ming; Li, Fa-sheng; Hou, Hong

    2014-04-01

    Aliphatic hydrocarbons have been used to assess total oil concentrations, petroleum sources, and petroleum degradation. In this study, surface soil, groundwater, surface water, and vegetables were collected from the outskirts of Xi'an, the largest city in northwestern China, and the samples were analyzed for aliphatic hydrocarbon contents. The concentrations of n-alkanes were 1.06-4.01 μg/g in the soil. The concentrations and the geochemical characteristics of n-alkanes showed that the low carbon number hydrocarbons were mainly from petroleum sources, whereas the high carbon number hydrocarbons received more hydrocarbons from herbaceous plants. The concentrations of n-alkanes were 9.20-93.44 μg/L and 23.74-118.27 μg/L in the groundwater and the surface water, respectively. The water had characteristics of petroleum and submerged/floating macrophytes and was found in concentrations that would cause chronic disruption of sensitive organisms. The concentrations and geochemical characteristics of n-alkanes in Brassica chinensis L. and Apium graveolens were different, but both were contaminated by petroleum hydrocarbons. The results from principal component analysis (PCA) indicated that the sorption of n-alkanes to soil particles could not be described by linear models. The distributions of n-alkanes in vegetables were positively correlated with those in soil, and the correlation coefficient was up to 0.9310 using the constructed vectors. Therefore, the researchers should pay close attention to the effect of soil contamination on vegetables. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Hydrocarbon degradation in soils and methods for soil biotreatment.

    PubMed

    Morgan, P; Watkinson, R J

    1989-01-01

    The cleanup of soils and groundwater contaminated with hydrocarbons is of particular importance in minimizing the environmental impact of petroleum and petroleum products and in preventing contamination of potable water supplies. Consequently, there is a growing industry involved in the treatment of contaminated topsoils, subsoils, and groundwater. The biotreatment methodologies employed for decontamination are designed to enhance in situ degradation by the supply of oxygen, inorganic nutrients, and/or microbial inocula to the contaminated zone. This review considers the fate and effects of hydrocarbon contaminants in terrestrial environments, with particular reference to the factors that limit biodegradation rates. The potential efficiencies, advantages, and disadvantages of biotreatment techniques are discussed and the future research directions necessary for process development are considered.

  19. Bacterial Community Response to Petroleum Hydrocarbon Amendments in Freshwater, Marine, and Hypersaline Water-Containing Microcosms

    PubMed Central

    Jurelevicius, Diogo; Alvarez, Vanessa Marques; Marques, Joana Montezano; de Sousa Lima, Laryssa Ribeiro Fonseca; Dias, Felipe de Almeida

    2013-01-01

    Hydrocarbon-degrading bacterial communities from freshwater, marine, and hypersaline Brazilian aquatic ecosystems (with water salinities corresponding to 0.2%, 4%, and 5%, respectively) were enriched with different hydrocarbons (heptadecane, naphthalene, or crude oil). Changes within the different microcosms of bacterial communities were analyzed using cultivation approaches and molecular methods (DNA and RNA extraction, followed by genetic fingerprinting and analyses of clone libraries based on the 16S rRNA-coding gene). A redundancy analysis (RDA) of the genetic fingerprint data and a principal component analysis (PCA) of the clone libraries revealed hydrocarbon-enriched bacterial communities specific for each ecosystem studied. However, within the same ecosystem, different bacterial communities were selected according to the petroleum hydrocarbon used. In general, the results demonstrated that Acinetobacter and Cloacibacterium were the dominant genera in freshwater microcosms; the Oceanospirillales order and the Marinobacter, Pseudomonas, and Cycloclasticus genera predominated in marine microcosms; and the Oceanospirillales order and the Marinobacter genus were selected in the different hydrocarbon-containing microcosms in hypersaline water. Determination of total petroleum hydrocarbons (TPHs) in all microcosms after 32 days of incubation showed a decrease in the hydrocarbon concentration compared to that for the controls. A total of 50 (41.3%) isolates from the different hydrocarbon-contaminated microcosms were associated with the dominant operational taxonomic units (OTUs) obtained from the clone libraries, and their growth in the hydrocarbon contaminating the microcosm from which they were isolated as the sole carbon source was observed. These data provide insight into the general response of bacterial communities from freshwater, marine, and hypersaline aquatic ecosystems to petroleum hydrocarbon contamination. PMID:23872573

  20. Sedimentary organic biomarkers suggest detrimental effects of PAHs on estuarine microbial biomass during the 20th century in San Francisco Bay, CA, USA

    USGS Publications Warehouse

    Nilsen, Elena B.; Rosenbauer, Robert J.; Fuller, Christopher C.; Jaffe, Bruce E.

    2014-01-01

    Hydrocarbon contaminants are ubiquitous in urban aquatic ecosystems, and the ability of some microbial strains to degrade certain polycyclic aromatic hydrocarbons (PAHs) is well established. However, detrimental effects of petroleum hydrocarbon contamination on nondegrader microbial populations and photosynthetic organisms have not often been considered. In the current study, fatty acid methyl ester (FAME) biomarkers in the sediment record were used to assess historical impacts of petroleum contamination on microbial and/or algal biomass in South San Francisco Bay, CA, USA. Profiles of saturated, branched, and monounsaturated fatty acids had similar concentrations and patterns downcore. Total PAHs in a sediment core were on average greater than 20× higher above ∼200 cm than below, which corresponds roughly to the year 1900. Isomer ratios were consistent with a predominant petroleum combustion source for PAHs. Several individual PAHs exceeded sediment quality screening values. Negative correlations between petroleum contaminants and microbial and algal biomarkers – along with high trans/cis ratios of unsaturated FA, and principle component analysis of the PAH and fatty acid records – suggest a negative impacts of petroleum contamination, appearing early in the 20th century, on microbial and/or algal ecology at the site.

  1. Assessment of soil-gas and soil contamination at the South Prong Creek Disposal Area, Fort Gordon, Georgia, 2009-2010

    USGS Publications Warehouse

    Caldwell, Andral W.; Falls, W. Fred; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    Soil gas and soil were assessed for contaminants at the South Prong Creek Disposal Area at Fort Gordon, Georgia, from October 2009 to September 2010. The assessment included identifying and delineating organic contaminants present in soil-gas and inorganic contaminants present in soil samples collected from the area estimated to be the South Prong Creek Disposal Area, including two seeps and the hyporheic zone. This assessment was conducted to provide environmental contamination data to Fort Gordon personnel pursuant to requirements for the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. All soil-gas samplers in the two seeps and the hyporheic zone contained total petroleum hydrocarbons above the method detection level. The highest total petroleum hydrocarbon concentration detected from the two seeps was 54.23 micrograms per liter, and the highest concentration in the hyporheic zone was 344.41 micrograms per liter. The soil-gas samplers within the boundary of the South Prong Creek Disposal Area and along the unnamed road contained total petroleum hydrocarbon mass above the method detection level. The highest total petroleum hydrocarbon mass detected was 147.09 micrograms in a soil-gas sampler near the middle of the unnamed road that traverses the South Prong Creek Disposal Area. The highest undecane mass detected was 4.48 micrograms near the location of the highest total petroleum hydrocarbon mass. Some soil-gas samplers detected undecane mass greater than the method detection level of 0.04 micrograms, with the highest detection of toluene mass of 109.72 micrograms in the same location as the highest total petroleum hydrocarbon mass. Soil-gas samplers installed in areas of high contaminant mass had no detections of explosives and chemical agents above their respective method detection levels. Inorganic concentrations in five soil samples did not exceed regional screening levels established by the U.S. Environmental Protection Agency. Barium concentrations, however, were up to four times higher than the background concentrations reported in similar Coastal Plain sediments of South Carolina.

  2. Compound-specific carbon and hydrogen isotope analysis of sub-parts per billion level waterborne petroleum hydrocarbons

    USGS Publications Warehouse

    Wang, Y.; Huang, Y.; Huckins, J.N.; Petty, J.D.

    2004-01-01

    Compound-specific carbon and hydrogen isotope analysis (CSCIA and CSHIA) has been increasingly used to study the source, transport, and bioremediation of organic contaminants such as petroleum hydrocarbons. In natural aquatic systems, dissolved contaminants represent the bioavailable fraction that generally is of the greatest toxicological significance. However, determining the isotopic ratios of waterborne hydrophobic contaminants in natural waters is very challenging because of their extremely low concentrations (often at sub-parts ber billion, or even lower). To acquire sufficient quantities of polycyclic aromatic hydrocarbons with 10 ng/L concentration for CSHIA, more than 1000 L of water must be extracted. Conventional liquid/liquid or solid-phase extraction is not suitable for such large volume extractions. We have developed a new approach that is capable of efficiently sampling sub-parts per billion level waterborne petroleum hydrocarbons for CSIA. We use semipermeable membrane devices (SPMDs) to accumulate hydrophobic contaminants from polluted waters and then recover the compounds in the laboratory for CSIA. In this study, we demonstrate, under a variety of experimental conditions (different concentrations, temperatures, and turbulence levels), that SPMD-associated processes do not induce C and H isotopic fractionations. The applicability of SPMD-CSIA technology to natural systems is further demonstrated by determining the ??13C and ??D values of petroleum hydrocarbons present in the Pawtuxet River, RI. Our results show that the combined SPMD-CSIA is an effective tool to investigate the source and fate of hydrophobic contaminants in the aquatic environments.

  3. Bioaccumulation Potential of Contaminants from Bedded and Suspended Oakland Harbor Deepening Project Sediments to San Francisco Bay Flatfish and Bivalve Mollusks

    DTIC Science & Technology

    1994-08-01

    Descriptive Statistics of Sediment Conventional Parameters and Statistical Comparisons of Oil and Grease and Total Petroleum Hydrocarbon Concentrations in...7000 Series, USEPA 1986, Bloom and Crecelius 1987). Oil and grease, total petroleum hydrocarbons . BPNL. Oil and grease were determined accord- ing to...infrared spectrometer. Total petroleum hydrocarbons were determined according to Method 418.1 (USEPA 1983). Sediment samples were extracted with freon

  4. Biological activity of a leached chernozem contaminated with the products of combustion of petroleum gas and its restoration upon phytoremediation

    NASA Astrophysics Data System (ADS)

    Kireeva, N. A.; Novoselova, E. I.; Shamaeva, A. A.; Grigoriadi, A. S.

    2009-04-01

    It is shown that contamination of leached chernozems by combustion products of petroleum gas favors changes in the biological activity of the soil: the number of hydrocarbon-oxidizing bacteria and micromycetes has increased, as well as the activity of catalase and lipase and phytotoxicity. Bromopsis inermis Leys used as a phytoameliorant has accelerated the destruction of hydrocarbons in the rhizosphere. The benzpyrene concentration in plants on contaminated soils considerably exceeds its background concentration.

  5. Characterization of contamination, source and degradation of petroleum between upland and paddy fields based on geochemical characteristics and phospholipid fatty acids.

    PubMed

    Zhang, Juan; Wang, Renqing; Du, Xiaoming; Li, Fasheng; Dai, Jiulan

    2012-01-01

    To evaluate contamination caused by petroleum, surface soil samples were collected from both upland and paddy fields along the irrigation canals in the Hunpu wastewater irrigation region in northeast China. N-alkanes, terpanes, steranes, and phospholipid fatty acids (PLFA) in the surface soil samples were analyzed. The aliphatic hydrocarbon concentration was highest in the samples obtained from the upland field near an operational oil well; it was lowest at I-3P where wastewater irrigation promoted the downward movement of hydrocarbons. The Hunpu region was found contaminated by heavy petroleum from oxic lacustrine fresh water or marine deltaic source rocks. Geochemical parameters also indicated significantly heavier contamination and degradation in the upland fields compared with the paddy fields. Principal component analysis based on PLFA showed various microbial communities between petroleum contaminated upland and paddy fields. Gram-negative bacteria indicated by 15:0, 3OH 12:0, and 16:1(9) were significantly higher in the paddy fields, whereas Gram-positive bacteria indicated by i16:0 and 18:1(9)c were significantly higher in the upland fields (p < 0.05). These PLFAs were related to petroleum contamination. Poly-unsaturated PLFA (18:2omega6, 9; indicative of hydrocarbon-degrading bacteria and fungi) was also significantly elevated in the upland fields. This paper recommends more sensitive indicators of contamination and degradation of petroleum in soil. The results also provide guidelines on soil pollution control and remediation in the Hunpu region and other similar regions.

  6. Volatile hydrocarbons and fuel oxygenates: Chapter 12

    USGS Publications Warehouse

    Cozzarelli, Isabelle M.

    2014-01-01

    Petroleum hydrocarbons and fuel oxygenates are among the most commonly occurring and widely distributed contaminants in the environment. This chapter presents a summary of the sources, transport, fate, and remediation of volatile fuel hydrocarbons and fuel additives in the environment. Much research has focused on the transport and transformation processes of petroleum hydrocarbons and fuel oxygenates, such as benzene, toluene, ethylbenzene, and xylenes and methyl tert‐butyl ether, in groundwater following release from underground storage tanks. Natural attenuation from biodegradation limits the movement of these contaminants and has received considerable attention as an environmental restoration option. This chapter summarizes approaches to environmental restoration, including those that rely on natural attenuation, and also engineered or enhanced remediation. Researchers are increasingly combining several microbial and molecular-based methods to give a complete picture of biodegradation potential and occurrence at contaminated field sites. New insights into the fate of petroleum hydrocarbons and fuel additives have been gained by recent advances in analytical tools and approaches, including stable isotope fractionation, analysis of metabolic intermediates, and direct microbial evidence. However, development of long-term detailed monitoring programs is required to further develop conceptual models of natural attenuation and increase our understanding of the behavior of contaminant mixtures in the subsurface.

  7. QUANTIFICATION AND INTERPRETATION OF TOTAL PETROLEUM HYDROCARBONS IN SEDIMENT SAMPLES BY A GC/MS METHOD AND COMPARISON WITH EPA 418.1 AND A RAPID FIELD METHOD

    EPA Science Inventory

    ABSTRACT: Total Petroleum hydrocarbons (TPH) as a lumped parameter can be easily and rapidly measured or monitored. Despite interpretational problems, it has become an accepted regulatory benchmark used widely to evaluate the extent of petroleum product contamination. Three cu...

  8. Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater

    PubMed Central

    Gargouri, Boutheina; Mhiri, Najla; Karray, Fatma; Aloui, Fathi; Sayadi, Sami

    2015-01-01

    Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons. PMID:26339653

  9. Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater.

    PubMed

    Gargouri, Boutheina; Mhiri, Najla; Karray, Fatma; Aloui, Fathi; Sayadi, Sami

    2015-01-01

    Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons.

  10. Biosurfactant-assisted phytoremediation of multi-contaminated industrial soil using sunflower (Helianthus annuus L.).

    PubMed

    Liduino, Vitor S; Servulo, Eliana F C; Oliveira, Fernando J S

    2018-06-07

    This study evaluated the use of commercial rhamnolipid biosurfactant supplementation in the phytoremediation of a soil via sunflower (Helianthus annuus L.) cultivation. The soil, obtained from an industrial area, was co-contaminated with heavy metals and petroleum hydrocarbons. The remediation tests were monitored for 90 days. The best results for removal of contaminants were obtained from the tests in which the sunflower plants were cultivated in soil with 4 mg kg -1 of the rhamnolipid. Under these conditions, reductions of 58% and 48% were obtained in the total petroleum hydrocarbon (TPH) and polycyclic aromatic hydrocarbon (PAH) concentrations, respectively; reductions in the concentrations of the following metals were also achieved: Ni (41%), Cr (30%), Pb (29%), and Zn (20%). The PCR-DGGE analysis of soil samples collected before and after the treatments verified that the plant cultivation and biosurfactants supplementation had little effect on the structure of the dominant bacterial community in the soil. The results indicated that sunflower cultivation with the addition of a biosurfactant is a viable and efficient technology to treat soils co-contaminated with heavy metals and petroleum hydrocarbons.

  11. Hydrous pyrolysis/oxidation process for in situ destruction of chlorinated hydrocarbon and fuel hydrocarbon contaminants in water and soil

    DOEpatents

    Knauss, Kevin G.; Copenhaver, Sally C.; Aines, Roger D.

    2000-01-01

    In situ hydrous pyrolysis/oxidation process is useful for in situ degradation of hydrocarbon water and soil contaminants. Fuel hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, petroleum distillates and other organic contaminants present in the soil and water are degraded by the process involving hydrous pyrolysis/oxidation into non-toxic products of the degradation. The process uses heat which is distributed through soils and water, optionally combined with oxygen and/or hydrocarbon degradation catalysts, and is particularly useful for remediation of solvent, fuel or other industrially contaminated sites.

  12. Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation.

    PubMed

    Xun, Feifei; Xie, Baoming; Liu, Shasha; Guo, Changhong

    2015-01-01

    To investigate the effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) on phytoremediation in saline-alkali soil contaminated by petroleum, saline-alkali soil samples were artificially mixed with different amount of oil, 5 and 10 g/kg, respectively. Pot experiments with oat plants (Avena sativa) were conducted under greenhouse condition for 60 days. Plant biomass, physiological parameters in leaves, soil enzymes, and degradation rate of total petroleum hydrocarbon were measured. The result demonstrated that petroleum inhibited the growth of the plant; however, inoculation with PGPR in combination with AMF resulted in an increase in dry weight and stem height compared with noninoculated controls. Petroleum stress increased the accumulation of malondialdehyde (MDA) and free proline and the activities of the antioxidant enzyme such as superoxide dismutase, catalase, and peroxidase. Application of PGPR and AMF augmented the activities of three enzymes compared to their respective uninoculated controls, but decreased the MDA and free proline contents, indicating that PGPR and AMF could make the plants more tolerant to harmful hydrocarbon contaminants. It also improved the soil quality by increasing the activities of soil enzyme such as urease, sucrase, and dehydrogenase. In addition, the degradation rate of total petroleum hydrocarbon during treatment with PGPR and AMF in moderately contaminated soil reached a maximum of 49.73%. Therefore, we concluded the plants treated with a combination of PGPR and AMF had a high potential to contribute to remediation of saline-alkali soil contaminated with petroleum.

  13. Assessment of petroleum-hydrocarbon contamination in the surficial sediments and ground water at three former underground storage tank locations, Fort Jackson, South Carolina, 1995

    USGS Publications Warehouse

    Robertson, J.F.

    1996-01-01

    Ground-water and sediment contamination by petroleum hydrocarbons resulting from leaks and overfills was detected during tank removal activities at three former underground storage tank locations at Fort Jackson, near Columbia, South Carolina. Investigations were initiated to assess the effect of contamination to the surficial aquifer at Sites 1062, 2438, and 2444. These investigations involved the installation of permanent monitoring wells and the collection and analysis of sediment and ground-water samples at the three sites. Water-level data were collected at all sites to determine hydraulic gradients and the direction of ground-water flow. In addition, aquifer tests were made at Site 1062 to determine the hydraulic conductivity of the surficial aquifer at that site. Sediment borings were made at the three sites to collect subsurface-sediment samples for lithologic description and laboratory analyses, and for the installation of ground-water monitoring wells. Laboratory analyses of sediment samples collected from boreholes at Site 1062 indicated elevated concentrations of petroleum hydrocarbons at three locations. Total Petroleum Hydrocarbons - Diesel Range Organics were detected at one borehole at a concentration of 388,000 micrograms per kilogram. Total benzene, toluene, ethylbenzene, and xylene concentrations in sediment from the site ranged from less than 350 to over 100,000 micrograms per kilogram. Total lead was detected at concentrations ranging from 2,900 to 5,900 micrograms per kilogram. Petroleum hydrocarbons were detected at Site 2438 in one borehole at a trace concentration of 112 micrograms per kilogram of para- and meta-xylenes. No concentrations exceeding the detection limits were reported for petroleum hydrocarbons in sediment samples collected from Site 2444; however, total lead was detected in sediment samples from two boreholes, each at concentrations of 600 micrograms per kilogram. Ground-water samples were collected from each site for laboratory analysis and field-property determinations. Petroleum hydrocarbons and lead were detected at concentrations exceeding regulatory limits for drinking water in ground water from Site 1062 only. Petroleum hydrocarbons were detected in ground water from three wells at Site 1062, with the highest concentrations occurring in the area of the former underground storage tanks. Benzene was detected at concentrations as much as 28 micrograms per liter; toluene as much as 558 micrograms per liter; para- and meta-xylenes as much as 993 micrograms per liter; and naphthalene as much as 236 micrograms per liter. Ethylbenzene and ortho-xylene were detected in one well at concentrations of 70 and 6 micrograms per liter, respectively. Dissolved lead was detected in ground water from four wells at concentrations from 5 to 152 micrograms per liter. Analysis of ground-water samples collected from Sites 2438 and 2444 showed little evidence of petroleum-hydrocarbon contamination. Petroleum hydrocarbons were not detected in any of the ground-water samples collected from Site 2438. With the exception of a low concentration of naphthalene (11 micrograms per liter) detected in ground water from one well, petroleum hydrocarbons and lead were not detected in ground water collected from Site 2444.

  14. A novel bioremediation strategy for petroleum hydrocarbon pollutants using salt tolerant Corynebacterium variabile HRJ4 and biochar.

    PubMed

    Zhang, Hairong; Tang, Jingchun; Wang, Lin; Liu, Juncheng; Gurav, Ranjit Gajanan; Sun, Kejing

    2016-09-01

    The present work aimed to develop a novel strategy to bioremediate the petroleum hydrocarbon contaminants in the environment. Salt tolerant bacterium was isolated from Dagang oilfield, China and identified as Corynebacterium variabile HRJ4 based on 16S rRNA gene sequence analysis. The bacterium had a high salt tolerant capability and biochar was developed as carrier for the bacterium. The bacteria with biochar were most effective in degradation of n-alkanes (C16, C18, C19, C26, C28) and polycyclic aromatic hydrocarbons (NAP, PYR) mixture. The result demonstrated that immobilization of C. variabile HRJ4 with biochar showed higher degradation of total petroleum hydrocarbons (THPs) up to 78.9% after 7-day of incubation as compared to the free leaving bacteria. The approach of this study will be helpful in clean-up of petroleum-contamination in the environments through bioremediation process using eco-friendly and cost effective materials like biochar. Copyright © 2016. Published by Elsevier B.V.

  15. Evaluation of pulsed corona discharge plasma for the treatment of petroleum-contaminated soil.

    PubMed

    Li, Rui; Liu, Yanan; Mu, Ruiwen; Cheng, Wenyan; Ognier, Stéphanie

    2017-01-01

    Petroleum hydrocarbons released to the environment caused by leakage or illegal dumping pose a threat to human health and the natural environment. In this study, the potential of a pulsed corona discharge plasma system for treating petroleum-polluted soils was evaluated. This system removed 76.93 % of the petroleum from the soil in 60 min with an energy efficiency of 0.20 mg/kJ. Furthermore, the energy and degradation efficiencies for the remediation of soil contaminated by single polyaromatic hydrocarbons, such as phenanthrene and pyrene, were also compared, and the results showed that this technology had potential in organic-polluted soil remediation. In addition, the role of water molecules was investigated for their direct involvement in the formation and transportation of active species. The increase of soil moisture to a certain extent clearly benefitted degradation efficiency. Then, treated soils were analyzed by FTIR and GC-MS for proposing the degradation mechanism of petroleum. During the plasma discharging processes, the change of functional group and the detection of small aromatic hydrocarbons indicated that the plasma active species attached petroleum hydrocarbons and degradation occurred. This technique reported herein demonstrated significant potential for the remediation of heavily petroleum-polluted soil, as well as for the treatment of organic-polluted soils.

  16. DEMONSTRATION BULLETIN: GRACE DEARBORN INC. DARAMEND™ BIOREMEDIATION TECHNOLOGY

    EPA Science Inventory

    The DARAMEND™ Bioremediation Technology may be applied to the remediation of soils and sediments contaminated by a wide variety of organic contaminants including chlorinated phenols, polynuclear aromatic hydrocarbons (PAHs), and petroleum hydrocarbons. The technology may be ap...

  17. Improvement of phytoremediation of an aged petroleum hydrocarbon-contaminated soil by Rhodococcus erythropolis CD 106 strain.

    PubMed

    Płociniczak, Tomasz; Fic, Ewa; Pacwa-Płociniczak, Magdalena; Pawlik, Małgorzata; Piotrowska-Seget, Zofia

    2017-07-03

    The aim of this study was to assess the impact of soil inoculation with the Rhodococcus erythropolis CD 106 strain on the effectiveness of the phytoremediation of an aged hydrocarbon-contaminated [approx. 1% total petroleum hydrocarbon (TPH)] soil using ryegrass (Lolium perenne). The introduction of CD 106 into the soil significantly increased the biomass of ryegrass and the removal of hydrocarbons in planted soil. The fresh weight of the shoots and roots of plants inoculated with CD 106 increased by 49% and 30%, respectively. After 210 days of the experiment, the concentration of TPH was reduced by 31.2%, whereas in the planted, non-inoculated soil, it was reduced by 16.8%. By contrast, the concentration of petroleum hydrocarbon decreased by 18.7% in non-planted soil bioaugmented with the CD 106 strain. The rifampicin-resistant CD 106 strain survived after inoculation into soil and was detected in the soil during the entire experimental period, but the number of CD 106 cells decreased constantly during the enhanced phytoremediation and bioaugmentation experiments. The plant growth-promoting and hydrocarbon-degrading properties of CD 106, which are connected with its long-term survival and limited impact on autochthonous microflora, make this strain a good candidate for improving the phytoremediation efficiency of soil contaminated with hydrocarbons.

  18. LABORATORY AND FIELD RESULTS LINKING HIGH CONDUCTIVITIES TO THE MICROBIAL DEGRADATION OF PETROLEUM HYDROCARBONS

    EPA Science Inventory

    The results of a l6-month field and l6-month meso-scale laboratory investigation of unconsolidated sandy environments contaminated by petroleum hydrocarbons that are undergoing natural biodegradation is presented. The purpose was to understand the processes responsible for causin...

  19. The performance of ammonium exchanged zeolite for the biodegradation of petroleum hydrocarbons migrating in soil water.

    PubMed

    Freidman, Benjamin L; Gras, Sally L; Snape, Ian; Stevens, Geoff W; Mumford, Kathryn A

    2016-08-05

    Nitrogen deficiency has been identified as the main inhibiting factor for biodegradation of petroleum hydrocarbons in low nutrient environments. This study examines the performance of ammonium exchanged zeolite to enhance biodegradation of petroleum hydrocarbons migrating in soil water within laboratory scale flow cells. Biofilm formation and biodegradation were accelerated by the exchange of cations in soil water with ammonium in the pores of the exchanged zeolite when compared with natural zeolite flow cells. These results have implications for sequenced permeable reactive barrier design and the longevity of media performance within such barriers at petroleum hydrocarbon contaminated sites deficient in essential soil nutrients. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Bioremediation of petroleum-contaminated soil: A Review

    NASA Astrophysics Data System (ADS)

    Yuniati, M. D.

    2018-02-01

    Petroleum is the major source of energy for various industries and daily life. Releasing petroleum into the environment whether accidentally or due to human activities is a main cause of soil pollution. Soil contaminated with petroleum has a serious hazard to human health and causes environmental problems as well. Petroleum pollutants, mainly hydrocarbon, are classified as priority pollutants. The application of microorganisms or microbial processes to remove or degrade contaminants from soil is called bioremediation. This microbiological decontamination is claimed to be an efficient, economic and versatile alternative to physicochemical treatment. This article presents an overview about bioremediation of petroleum-contaminated soil. It also includes an explanation about the types of bioremediation technologies as well as the processes.

  1. Contaminant risks from biosolids land application: contemporary organic contaminant levels in digested sewage sludge from five treatment plants in Greater Vancouver, British Columbia.

    PubMed

    Bright, D A; Healey, N

    2003-01-01

    This study examines the potential for environmental risks due to organic contaminants at sewage sludge application sites, and documents metals and various potential organic contaminants (volatile organics, chlorinated pesticides, PCBs, dioxins/furans, extractable petroleum hydrocarbons, PAHs, phenols, and others) in current production biosolids from five wastewater treatment plants (WWTPs) within the Greater Vancouver Regional District (GVRD). There has been greater focus in Europe, North America and elsewhere on metals accumulation in biosolids-amended soil than on organic substances, with the exception of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. Another objective, therefore, was to evaluate the extent to which management of biosolids re-use based on metal/metalloid levels coincidentally minimizes environmental risks from organic contaminants. Historical-use contaminants such as chlorophenols, PCBs, and chlorinated pesticides were not detected at environmentally relevant concentrations in any of the 36 fresh biosolids samples, and appear to have virtually eliminated from sanitary collection system inputs. The few organic contaminants found in freshly produced biosolids samples that exhibited high concentrations relative to British Columbia and Canadian soil quality benchmarks included p-cresol, phenol, phenanthrene, pyrene, naphthalene, and heavy extractable petroleum hydrocarbons (HEPHs--nCl9-C34 effective carbon chain length). It was concluded that, with the exception of these petroleum hydrocarbon constituents or their microbial metabolites, the mixing of biosolids with uncontaminated soils during land application and based on the known metal concentrations in biosolids from the Greater Vancouver WWTPs investigated provides adequate protection against the environmental risks associated with organic substances such as dioxins and furans, phthalate esters, or volatile organics. Unlike many other organic contaminants, the concentrations of petroleum hydrocarbon derived substances in biosolids has not decreased within the last decade or more in the WWTPs studied, and--unlike persistent chlorinated compounds--the associated PAHs and other hydrocarbon constituents merit careful consideration, especially in the context of repeated land-application of biosolid.

  2. Factors affecting the distribution of hydrocarbon contaminants and hydrogeochemical parameters in a shallow sand aquifer

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Yong; Cheon, Jeong-Yong; Lee, Kang-Kun; Lee, Seok-Young; Lee, Min-Hyo

    2001-07-01

    The distributions of hydrocarbon contaminants and hydrogeochemical parameters were investigated in a shallow sand aquifer highly contaminated with petroleum hydrocarbons leaked from solvent storage tanks. For these purposes, a variety of field investigations and studies were performed, which included installation of over 100 groundwater monitoring wells and piezometers at various depths, soil logging and analyses during well and piezometer installation, chemical analysis of groundwater, pump tests, and slug tests. Continuous water level monitoring at three selected wells using automatic data-logger and manual measuring at other wells were also conducted. Based on analyses of the various investigations and tests, a number of factors were identified to explain the distribution of the hydrocarbon contaminants and hydrogeochemical parameters. These factors include indigenous biodegradation, hydrostratigraphy, preliminary pump-and-treat remedy, recharge by rainfall, and subsequent water level fluctuation. The permeable sandy layer, in which the mean water table elevation is maintained, provided a dominant pathway for contaminant transport. The preliminary pump-and-treat action accelerated the movement of the hydrocarbon contaminants and affected the redox evolution pattern. Seasonal recharge by rain, together with indigenous biodegradation, played an important role in the natural attenuation of the petroleum hydrocarbons via mixing/dilution and biodegradation. The water level fluctuations redistributed the hydrocarbon contaminants by partitioning them into the soil and groundwater. The identified factors are not independent but closely inter-correlated.

  3. Identification of unresolved complex mixtures (UCMs) of hydrocarbons in commercial fish oil supplements.

    PubMed

    Reid, Anna-Jean M; Budge, Suzanne M

    2015-01-01

    Heightened awareness of the health benefits of fish oil consumption has led to a great increase in the number of fish oil supplements available to the consumer. Therefore manufacturers are continually looking for ways to distinguish their products from those of competitors. Minimally refined or virgin fish oils provide a unique feature; however, petroleum hydrocarbon contamination from oil spills is a reality in the world's oceans. The question arises whether oil produced from fish species caught in these polluted areas is free of petroleum hydrocarbons, with particular interest in unresolved complex mixtures (UCMs). This study investigates the presence of UCMs in commercially available fish oil supplements advertised as being virgin, as well as refined. Weathered petroleum hydrocarbons in the form of a UCM were found at 523 µg g(-1) in a virgin Alaskan salmon oil supplement. Supplements that were refined were free of this contamination. Fish used in the production of fish oil supplements appear to have accumulated petrogenic hydrocarbons in their tissues which were not removed by minimal oil refining. Further study is required to determine if there are any health implications associated with long-term consumption of these contaminated supplements. © 2014 Society of Chemical Industry.

  4. Development of a hybrid proximal sensing method for rapid identification of petroleum contaminated soils.

    PubMed

    Chakraborty, Somsubhra; Weindorf, David C; Li, Bin; Ali Aldabaa, Abdalsamad Abdalsatar; Ghosh, Rakesh Kumar; Paul, Sathi; Nasim Ali, Md

    2015-05-01

    Using 108 petroleum contaminated soil samples, this pilot study proposed a new analytical approach of combining visible near-infrared diffuse reflectance spectroscopy (VisNIR DRS) and portable X-ray fluorescence spectrometry (PXRF) for rapid and improved quantification of soil petroleum contamination. Results indicated that an advanced fused model where VisNIR DRS spectra-based penalized spline regression (PSR) was used to predict total petroleum hydrocarbon followed by PXRF elemental data-based random forest regression was used to model the PSR residuals, it outperformed (R(2)=0.78, residual prediction deviation (RPD)=2.19) all other models tested, even producing better generalization than using VisNIR DRS alone (RPD's of 1.64, 1.86, and 1.96 for random forest, penalized spline regression, and partial least squares regression, respectively). Additionally, unsupervised principal component analysis using the PXRF+VisNIR DRS system qualitatively separated contaminated soils from control samples. Fusion of PXRF elemental data and VisNIR derivative spectra produced an optimized model for total petroleum hydrocarbon quantification in soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Fluorescence in situ hybridization (CARD-FISH) of microorganisms in hydrocarbon contaminated aquifer sediment samples.

    PubMed

    Tischer, Karolin; Zeder, Michael; Klug, Rebecca; Pernthaler, Jakob; Schattenhofer, Martha; Harms, Hauke; Wendeberg, Annelie

    2012-12-01

    Groundwater ecosystems are the most important sources of drinking water worldwide but they are threatened by contamination and overexploitation. Petroleum spills account for the most common source of contamination and the high carbon load results in anoxia and steep geochemical gradients. Microbes play a major role in the transformation of petroleum hydrocarbons into less toxic substances. To investigate microbial populations at the single cell level, fluorescence in situ hybridization (FISH) is now a well-established technique. Recently, however, catalyzed reporter deposition (CARD)-FISH has been introduced for the detection of microbes from oligotrophic environments. Nevertheless, petroleum contaminated aquifers present a worst case scenario for FISH techniques due to the combination of high background fluorescence of hydrocarbons and the presence of small microbial cells caused by the low turnover rates characteristic of groundwater ecosystems. It is therefore not surprising that studies of microorganisms from such sites are mostly based on cultivation techniques, fingerprinting, and amplicon sequencing. However, to reveal the population dynamics and interspecies relationships of the key participants of contaminant degradation, FISH is an indispensable tool. In this study, a protocol for FISH was developed in combination with cell quantification using an automated counting microscope. The protocol includes the separation and purification of microbial cells from sediment particles, cell permeabilization and, finally, CARD-FISH in a microwave oven. As a proof of principle, the distribution of Archaea and Bacteria was shown in 60 sediment samples taken across the contaminant plume of an aquifer (Leuna, Germany), which has been heavily contaminated with several ten-thousand tonnes of petroleum hydrocarbons since World War II. Copyright © 2012 Elsevier GmbH. All rights reserved.

  6. Biodegradation of petroleum hydrocarbons in estuarine sediments: metal influence.

    PubMed

    Almeida, Raquel; Mucha, Ana P; Teixeira, Catarina; Bordalo, Adriano A; Almeida, C Marisa R

    2013-02-01

    In this work, the potential effect of metals, such as Cd, Cu and Pb, on the biodegradation of petroleum hydrocarbons in estuarine sediments was investigated under laboratory conditions. Sandy and muddy non-vegetated sediments were collected in the Lima River estuary (NW Portugal) and spiked with crude oil and each of the metals. Spiked sediments were left in the dark under constant shaking for 15 days, after which crude oil biodegradation was evaluated. To estimate microbial abundance, total cell counts were obtained by DAPI staining and microbial community structure was characterized by ARISA. Culturable hydrocarbon degraders were determined using a modified most probable number protocol. Total petroleum hydrocarbons concentrations were analysed by Fourier Transform Infrared Spectroscopy after their extraction by sonication, and metal contents were determined by atomic absorption spectrometry. The results obtained showed that microbial communities had the potential to degrade petroleum hydrocarbons, with a maximum of 32 % degradation obtained for sandy sediments. Both crude oil and metals changed the microbial community structure, being the higher effect observed for Cu. Also, among the studied metals, only Cu displayed measurable deleterious effect on the hydrocarbons degradation process, as shown by a decrease in the hydrocarbon degrading microorganisms abundance and in the hydrocarbon degradation rates. Both degradation potential and metal influence varied with sediment characteristics probably due to differences in contaminant bioavailability, a feature that should be taken into account in developing bioremediation strategies for co-contaminated estuarine sites.

  7. Soil pollution in the railway junction Niš (Serbia) and possibility of bioremediation of hydrocarbon-contaminated soil

    NASA Astrophysics Data System (ADS)

    Jovanovic, Larisa; Aleksic, Gorica; Radosavljevic, Milan; Onjia, Antonije

    2015-04-01

    Mineral oil leaking from vehicles or released during accidents is an important source of soil and ground water pollution. In the railway junction Niš (Serbia) total 90 soil samples polluted with mineral oil derivatives were investigated. Field work at the railway Niš sites included the opening of soil profiles and soil sampling. The aim of this work is the determination of petroleum hydrocarbons concentration in the soil samples and the investigation of the bioremediation technique for treatment heavily contaminated soil. For determination of petroleum hydrocarbons in the soil samples method of gas-chromatography was carried out. On the basis of measured concentrations of petroleum hydrocarbons in the soil it can be concluded that: Obtained concentrations of petroleum hydrocarbons in 60% of soil samples exceed the permissible values (5000 mg/kg). The heavily contaminated soils, according the Regulation on the program of systematic monitoring of soil quality indicators for assessing the risk of soil degradation and methodology for development of remediation programs, Annex 3 (Official Gazette of RS, No.88 / 2010), must be treated using some of remediation technologies. Between many types of phytoremediation of soil contaminated with mineral oils and their derivatives, the most suitable are phytovolatalisation and phytostimulation. During phytovolatalisation plants (poplar, willow, aspen, sorgum, and rye) absorb organic pollutants through the root, and then transported them to the leaves where the reduced pollutants are released into the atmosphere. In the case of phytostimulation plants (mulberry, apple, rye, Bermuda) secrete from the roots enzymes that stimulates the growth of bacteria in the soil. The increase in microbial activity in soil promotes the degradation of pollutants. Bioremediation is performed by composting the contaminated soil with addition of composting materials (straw, manure, sawdust, and shavings), moisture components, oligotrophs and heterotrophs bacteria.

  8. The ecological and physiological responses of the microbial community from a semiarid soil to hydrocarbon contamination and its bioremediation using compost amendment.

    PubMed

    Bastida, F; Jehmlich, N; Lima, K; Morris, B E L; Richnow, H H; Hernández, T; von Bergen, M; García, C

    2016-03-01

    The linkage between phylogenetic and functional processes may provide profound insights into the effects of hydrocarbon contamination and biodegradation processes in high-diversity environments. Here, the impacts of petroleum contamination and the bioremediation potential of compost amendment, as enhancer of the microbial activity in semiarid soils, were evaluated in a model experiment. The analysis of phospholipid fatty-acids (PLFAs) and metaproteomics allowed the study of biomass, phylogenetic and physiological responses of the microbial community in polluted semiarid soils. Petroleum pollution induced an increase of proteobacterial proteins during the contamination, while the relative abundance of Rhizobiales lowered in comparison to the non-contaminated soil. Despite only 0.55% of the metaproteome of the compost-treated soil was involved in biodegradation processes, the addition of compost promoted the removal of polycyclic aromatic hydrocarbons (PAHs) and alkanes up to 88% after 50 days. However, natural biodegradation of hydrocarbons was not significant in soils without compost. Compost-assisted bioremediation was mainly driven by Sphingomonadales and uncultured bacteria that showed an increased abundance of catabolic enzymes such as catechol 2,3-dioxygenases, cis-dihydrodiol dehydrogenase and 2-hydroxymuconic semialdehyde. For the first time, metaproteomics revealed the functional and phylogenetic relationships of petroleum contamination in soil and the microbial key players involved in the compost-assisted bioremediation. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Emulsification of hydrocarbons by subsurface bacteria

    USGS Publications Warehouse

    Francy, D.S.; Thomas, J.M.; Raymond, R.L.; Ward, C.H.

    1991-01-01

    Biosurfactants have potential for use in enhancement of in situ biorestoration by increasing the bioavailability of contaminants. Microorganisms isolated from biostimulated, contaminated and uncontaminated zones at the site of an aviation fuel spill and hydrocarbon-degrading microorganisms isolated from sites contaminated with unleaded gasoline were examined for their abilities to emulsify petroleum hydrocarbons. Emulsifying ability was quantified by a method involving agitation and visual inspection. Biostimulated-zone microbes and hydrocarbon-degrading microorganisms were the best emulsifiers as compared to contaminated and uncontaminated zone microbes. Biostimulation (nutrient and oxygen addition) may have been the dominant factor which selected for and encouraged growth of emulsifiers; exposure to hydrocarbon was also important. Biostimulated microorganisms were better emulsifiers of aviation fuel (the contaminant hydrocarbon) than of heavier hydrocarbon to which they were not previously exposed. By measuring surface tension changes of culture broths, 11 out of 41 emulsifiers tested were identified as possible biosurfactant producers and two isolates produced large surface tension reductions indicating the high probability of biosurfactant production.Biosurfactants have potential for use in enhancement of in situ biorestoration by increasing the bioavailability of contaminants. Microorganisms isolated from biostimulated, contaminated and uncontaminated zones at the site of an aviation fuel spill and hydrocarbon-degrading microorganisms isolated from sites contaminated with unleaded gasoline were examined for their abilities to emulsify petroleum hydrocarbons. Emulsifying ability was quantified by a method involving agitation and visual inspection. Biostimulated-zone microbes and hydrocarbon-degrading microorganisms were the best emulsifiers as compared to contaminated and uncontaminated zone microbes. Biostimulation (nutrient and oxygen addition) may have been the dominant factor which selected for and encouraged growth of emulsifiers; exposure to hydrocarbon was also important. Biostimulated microorganisms were better emulsifiers of aviation fuel (the contaminant hydrocarbon) than of heavier hydrocarbon to which they were not previously exposed. By measuring surface tension changes of culture broths, 11 out of 41 emulsifiers tested were identified as possible biosurfactant producers and two isolates produced large surface tension reductions, indicating a high probability of biosurfactant production.

  10. Bioremediation of petroleum hydrocarbon-contaminated ground water: The perspectives of history and hydrology

    USGS Publications Warehouse

    Chapelle, F.H.

    1999-01-01

    Bioremediation, the use of microbial degradation processes to detoxify environmental contamination, was first applied to petroleum hydrocarbon-contaminated ground water systems in the early 1970s. Since that time, these technologies have evolved in some ways that were clearly anticipated early investigators, and in other ways that were not foreseen. The expectation that adding oxidants and nutrients to contaminated aquifers would enhance biodegradation, for example, has been born out subsequent experience. Many of the technologies now in common use such as air sparging, hydrogen peroxide addition, nitrate addition, and bioslurping, are conceptually similar to the first bioremediation systems put into operation. More unexpected, however, were the considerable technical problems associated with delivering oxidants and nutrients to heterogeneous ground water systems. Experience has shown that the success of engineered bioremediation systems depends largely on how effectively directions and rates of ground water flow can be controlled, and thus how efficiently oxidants and nutrients can be delivered to contaminated aquifer sediments. The early expectation that injecting laboratory-selected or genetically engineered cultures of hydrocarbon-degrading bacteria into aquifers would be a useful bioremediation technology has not been born out subsequent experience. Rather, it appears that petroleum hydrocarbon-degrading bacteria are ubiquitous in ground water systems and that bacterial addition is usually unnecessary. Perhaps the technology that was least anticipated early investigators was the development of intrinsic bioremediation. Experience has shown that natural attenuation mechanisms - biodegradation, dilution, and sorption - limit the migration of contaminants to some degree in all ground water systems. Intrinsic bioremediation is the deliberate use of natural attenuation processes to treat contaminated ground water to specified concentration levels at predetermined points in the aquifer. In current practice, intrinsic bioremediation of petroleum hydrocarbons requires a systematic assessment to show that ambient natural attenuation mechanisms are efficient enough to meet regulatory requirements and a monitoring program to verify that performance requirements are met in the future.

  11. Ecological-Evaluation of Organotin-Contaminated Sediment.

    DTIC Science & Technology

    1985-07-01

    the potential for bioaccumulation of cadmium, chromium, copper, mercury , silver, pesticides, PCBs, petroleum hydrocarbons, and organotins RESULTS The...tissues were frozen for subsequent bioaccumulation estimates. Tissues and sediment samples were analyzed for cadmium, chromium, copper, mercury , silver...spectroscopy; mercury was analyzed by cold vapor atomic absorption spectroscopy. Pesticides, PCBs, and petroleum hydrocarbons were measured by gas

  12. Evaluation of quicklime mixing for the remediation of petroleum contaminated soils.

    PubMed

    Schifano, V; Macleod, C; Hadlow, N; Dudeney, R

    2007-03-15

    Quicklime mixing is an established solidification/stabilization technique to improve mechanical properties and immobilise contaminants in soils. This study examined the effects of quicklime mixing on the concentrations and leachability of petroleum hydrocarbon compounds, in two natural soils and on a number of artificial sand/kaolinite mixtures. Several independent variables, such as clay content, moisture content and quicklime content were considered in the study. After mixing the soils with the quicklime, pH, temperature, moisture content, Atterberg limits and concentrations of petroleum hydrocarbon compounds were determined on soil and leachate samples extracted from the treated soils. Significant decreases in concentrations of petroleum hydrocarbon compounds were measured in soils and leachates upon quicklime mixing, which may be explained by a number of mechanisms such as volatilization, degradation and encapsulation of the hydrocarbon compounds promoted by the quicklime mixing. The increase in temperature due to the exothermic hydration reaction of quicklime when in contact with porewater helps to volatilize the light compounds but may not be entirely responsible for their concentration decreases and for the decrease of heavy aliphatics and aromatics concentrations.

  13. An Approach that Uses the Concentrations of Hydrocarbon Compounds in Soil Gas at the Source of Contamination to Evaluate the Potential for Intrusion of Petroleum Vapors into Buildings (PVI)

    EPA Science Inventory

    If motor fuels are spilled from underground storage tanks, petroleum hydrocarbons can vaporize from the spill and move as a vapor through the unsaturated zone. If a building is sited above or near the spill, the hydrocarbons may intrude into the air space of the building. This ...

  14. Industrial, agricultural, and petroleum contaminants in cormorants wintering near the Houston Ship Channel, Texas, USA

    USGS Publications Warehouse

    King, K.A.; Stafford, C.J.; Cain, B.W.; Mueller, A.J.; Hall, H.D.

    1987-01-01

    Double-crested cormorants (Phalacrocorax auritus ) collected in the Houston Ship Channel, Texas, USA, in November shortly after their fall migration contained residues of several industrial, agricultural, and petroleum contaminants including polychlorinated styrenes (PCS's), polychlorinated biphenyls (PCB's), DDE, and petroleum hydrocarbons. PCS concentrations in over-wintering birds collected in late February were three times higher than those in birds collected in November. PCB and petroleum concentrations remained at about the same level throughout the 3-month winter period. Petroleum hydrocarbons were present in all cormorants and residues in some individuals exceeded 25 ppm (wet weight). Mean DDE residues in samples collected in November and February were less than 1 ppm. Low concentrations of five other organochlorine compounds, not detected in cormorants collected in November, were recovered in birds collected in February.

  15. Bioremediation of oil-contaminated soil using Candida catenulata and food waste.

    PubMed

    Joo, Hung-Soo; Ndegwa, Pius M; Shoda, Makoto; Phae, Chae-Gun

    2008-12-01

    Even though petroleum-degrading microorganisms are widely distributed in soil and water, they may not be present in sufficient numbers to achieve contaminant remediation. In such cases, it may be useful to inoculate the polluted area with highly effective petroleum-degrading microbial strains to augment the exiting ones. In order to identify a microbial strain for bioaugmentation of oil-contaminated soil, we isolated a microbial strain with high emulsification and petroleum hydrocarbon degradation efficiency of diesel fuel in culture. The efficacy of the isolated microbial strain, identified as Candida catenulata CM1, was further evaluated during composting of a mixture containing 23% food waste and 77% diesel-contaminated soil including 2% (w/w) diesel. After 13 days of composting, 84% of the initial petroleum hydrocarbon was degraded in composting mixes containing a powdered form of CM1 (CM1-solid), compared with 48% of removal ratio in control reactor without inoculum. This finding suggests that CM1 is a viable microbial strain for bioremediation of oil-contaminated soil with food waste through composting processes.

  16. Occurrence, source and ecological assessment of baseline hydrocarbons in the intertidal marine sediments along the shoreline of Douglas Channel to Hecate Strait in British Columbia.

    PubMed

    Yang, Zeyu; Hollebone, Bruce P; Laforest, Sonia; Lambert, Patrick; Brown, Carl E; Yang, Chun; Shah, Keval; Landriault, Mike; Goldthorp, Michael

    2017-09-15

    The occurrence, source and ecological assessment of baseline hydrocarbons in the intertidal zone along the northern British shoreline were evaluated based on analyzing total petroleum hydrocarbons (TPH), n-alkanes, petroleum related biomarkers such as terpanes and steranes, and polycyclic aromatic hydrocarbons (PAHs) including non-alkylated and alkylated homologues (APAHs). The TPH levels, n-alkanes, petroleum biomarkers and PAHs in all the sampling sites, except for Masset Harbor/York Point at Gil Island were low, without obvious unresolved complex mixture (UCM) and petroleum contamination input. Specifically, n-alkanes showed a major terrestrial plants input; PAHs with abundant non-alkylated PAHs but minor APAHs showed a major pyrogenic input. However, obvious petroleum-derived hydrocarbons have impacted Masset Harbor. A historical petroleum input was found in York Point at Gil Island, due to the presence of the low level of petroleum biomarkers. Ecological assessment of 13 non-alkylated PAHs in Masset Harbor indicated no potential toxicity to the benthic organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Degradation of Total Petroleum Hydrocarbon (TPH) in Contaminated Soil Using Bacillus pumilus MVSV3.

    PubMed

    Varma, Surendra Sheeba; Lakshmi, Mahalingam Brinda; Rajagopal, Perumalsam; Velan, Manickam

    2017-01-01

     A study on bioremediation of soil contaminated with petroleum sludge was performed using Bacillus pumilus/MVSV3 (Accession number JN089707). In this study, 5 kg of agricultural soil was mixed well with 5% oil sludge and fertilizers containing nitrogen, phosphorus and potassium (N:P:K). The treatment resulted in 97% removal of total petroleum hydrocarbon (TPH) in 122 d in bacteria mixed contaminated soil when compared to 12% removal of TPH in uninoculated contaminated soil. The population of the microorganism remained stable after introduced into the oil environment. The physical and chemical parameters of the soil mixed with sludge showed variation indicating improvement and the pH level decreased during the experiment period. Elemental analysis and Gas Chromatography-Mass Spectroscopy (GC-MS) analysis revealed the bacterial ability to degrade oil sludge components. Growth experiments with Trigonellafoenumgraecum (Fenugreek) showed the applicability of bioremediated soil for the production.

  18. Permeable bio-reactive barriers to address petroleum hydrocarbon contamination at subantarctic Macquarie Island.

    PubMed

    Freidman, Benjamin L; Terry, Deborah; Wilkins, Dan; Spedding, Tim; Gras, Sally L; Snape, Ian; Stevens, Geoffrey W; Mumford, Kathryn A

    2017-05-01

    A reliance on diesel generated power and a history of imperfect fuel management have created a legacy of petroleum hydrocarbon contamination at subantarctic Macquarie Island. Increasing environmental awareness and advances in contaminant characterisation and remediation technology have fostered an impetus to reduce the environmental risk associated with legacy sites. A funnel and gate permeable bio-reactive barrier (PRB) was installed in 2014 to address the migration of Special Antarctic Blend diesel from a spill that occurred in 2002, as well as older spills and residual contaminants in the soil at the Main Power House. The PRB gate comprised of granular activated carbon and natural clinoptilolite zeolite. Petroleum hydrocarbons migrating in the soil water were successfully captured on the reactive materials, with concentrations at the outflow of the barrier recorded as being below reporting limits. The nutrient and iron concentrations delivered to the barrier demonstrated high temporal variability with significant iron precipitation observed across the bed. The surface of the granular activated carbon was largely free from cell attachment while natural zeolite demonstrated patchy biofilm formation after 15 months following PRB installation. This study illustrates the importance of informed material selection at field scale to ensure that adsorption and biodegradation processes are utilised to manage the environmental risk associated with petroleum hydrocarbon spills. This study reports the first installation of a permeable bio-reactive barrier in the subantarctic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Fate and transport of petroleum hydrocarbons in soil and ground water at Big South Fork National River and Recreation Area, Tennessee and Kentucky, 2002-2003

    USGS Publications Warehouse

    Williams, Shannon D.; Ladd, David E.; Farmer, James

    2006-01-01

    In 2002 and 2003, the U.S. Geological Survey (USGS), by agreement with the National Park Service (NPS), investigated the effects of oil and gas production operations on ground-water quality at Big South Fork National River and Recreation Area (BISO) with particular emphasis on the fate and transport of petroleum hydrocarbons in soils and ground water. During a reconnaissance of ground-water-quality conditions, samples were collected from 24 different locations (17 springs, 5 water-supply wells, 1 small stream, and 1 spring-fed pond) in and near BISO. Benzene, toluene, ethylbenzene, and xylene (BTEX) compounds were not detected in any of the water samples, indicating that no widespread contamination of ground-water resources by dissolved petroleum hydrocarbons probably exists at BISO. Additional water-quality samples were collected from three springs and two wells for more detailed analyses to obtain additional information on ambient water-quality conditions at BISO. Soil gas, soil, water, and crude oil samples were collected at three study sites in or near BISO where crude oil had been spilled or released (before 1993). Diesel range organics (DRO) were detected in soil samples from all three of the sites at concentrations greater than 2,000 milligrams per kilogram. Low concentrations (less than 10 micrograms per kilogram) of BTEX compounds were detected in lab-analyzed soil samples from two of the sites. Hydrocarbon-degrading bacteria counts in soil samples from the most contaminated areas of the sites were not greater than counts for soil samples from uncontaminated (background) sites. The elevated DRO concentrations, the presence of BTEX compounds, and the low number of -hydrocarbon-degrading bacteria in contaminated soils indicate that biodegradation of petroleum hydrocarbons in soils at these sites is incomplete. Water samples collected from the three study sites were analyzed for BTEX and DRO. Ground-water samples were collected from three small springs at the two sites located on ridge tops. BTEX and DRO were not detected in any of the water samples, and petroleum hydrocarbons do not appear to have leached into ground water at these sites. Ground-water samples were collected from a small spring and from three auger holes at the third site, which is located in a stream valley. BTEX and DRO were not detected in these ground-water samples, and currently, petroleum hydrocarbons do not appear to be leaching into ground water at this site. Weathered crude oil, however, was detected at the water surface in one of the auger holes, indicating that soluble petroleum hydrocarbons may have leached into the ground water and may have migrated downgradient from the site in the past. The concentration of soluble petroleum hydrocarbons present in the ground water would depend on the concentration of the hydrocarbons in the crude oil at the site. A laboratory study was conducted to examine the dissolution of petroleum hydrocarbons from a fresh crude oil sample collected from one of the study sites. The effective solubility of benzene, toluene, ethylbenzene, and total xylenes for the crude oil sample was determined to be 1,900, 1,800, 220, and 580 micrograms per liter (?g/L), respectively. These results indicate that benzene and toluene could be present at concentrations greater than maximum contaminant levels (5 ?g/L for benzene and 1,000 ?g/L for toluene for drinking water) in ground water that comes into contact with fresh crude oil from the study area.

  20. Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands

    USGS Publications Warehouse

    Lovley, D.R.; Woodward, J.C.; Chapelle, F.H.

    1994-01-01

    Contamination of ground waters with water-soluble aromatic hydrocarbons, common components of petroleum pollution, often produces anoxic conditions under which microbial degradation of the aromatics is slow. Oxygen is often added to contaminated ground water to stimulate biodegradation, but this can be technically difficult and expensive. Insoluble Fe(III) oxides, which are generally abundant in shallow aquifers, are alternative potential oxidants, but are difficult for microorganisms to access. Here we report that adding organic ligands that bind to Fe(III) dramatically increases its bioavailability, and that in the presence of these ligands, rates of degradation of aromatic hydrocarbons in anoxic aquifer sediments are comparable to those in oxic sediments. We find that even benzene, which is notoriously refractory in the absence of oxygen, can be rapidly degraded. Our results suggest that increasing the bioavailability of Fe(III) by adding suitable ligands provides a potential alternative to oxygen addition for the bioremediation of petroleum-contaminated aquifers.Contamination of ground waters with water-soluble aromatic hydrocarbons, common components of petroleum pollution, often produces anoxic conditions under which microbial degradation of the aromatics is slow. Oxygen is often added to contaminated ground water to stimulate biodegradation, but this can be technically difficult and expensive. Insoluble Fe(III) oxides, which are generally abundant in shallow aquifers, are alternative potential oxidants, but are difficult for microorganisms to access. Here we report that adding organic ligands that bind to Fe(III) dramatically increases its bioavailability, and that in the presence of these ligands, rates of degradation of aromatic hydrocarbons in anoxic aquifer sediments are comparable to those in oxic sediments. We find that even benzene, which is notoriously refractory in the absence of oxygen, can be rapidly degraded. Our results suggest that increasing the bioavailability of Fe(III) by adding suitable ligands provides a potential alternative to oxygen addition for the bioremediation of petroleum-contamined aquifers.

  1. Inexpensive metagenomic DNA extraction protocol with high quality from marine sediments contaminated by petroleum hydrocarbons.

    PubMed

    García-Bautista, I; Toledano-Thompson, T; Dantán-González, E; González-Montilla, J; Valdez-Ojeda, R

    2017-09-21

    Marine environments are a reservoir of relevant information on dangerous contaminants such as hydrocarbons, as well as microbial communities with probable degradation skills. However, to access microbial diversity, it is necessary to obtain high-quality DNA. An inexpensive, reliable, and effective metagenomic DNA (mgDNA) extraction protocol from marine sediments contaminated with petroleum hydrocarbons was established in this study from modifications to Zhou's protocol. The optimization included pretreatment of sediment with saline solutions for the removal of contaminants, a second precipitation and enzymatic degradation of RNA, followed by purification of mgDNA extracted by electroelution. The results obtained indicated that the modifications applied to 12 sediments with total petroleum hydrocarbon (TPH) concentrations from 22.6-174.3 (µg/g dry sediment) yielded 20.3-321.3 ng/µL mgDNA with A 260 /A 280 and A 260 /A 230 ratios of 1.75 ± 0.08 and 1.19 ± 0.22, respectively. The 16S rRNA amplification confirmed the purity of the mgDNA. The suitability of this mgDNA extraction protocol lies in the fact that all chemical solutions utilized are common in all molecular biology laboratories, and the use of dialysis membrane does not require any sophisticated or expensive equipment, only an electrophoretic chamber.

  2. Petroleum Vapor Intrusion

    EPA Pesticide Factsheets

    One type of vapor intrusion is PVI, in which vapors from petroleum hydrocarbons such as gasoline, diesel, or jet fuel enter a building. Intrusion of contaminant vapors into indoor spaces is of concern.

  3. Effects of diurnal temperature variation on microbial community and petroleum hydrocarbon biodegradation in contaminated soils from a sub-Arctic site.

    PubMed

    Akbari, Ali; Ghoshal, Subhasis

    2015-12-01

    Contaminated soils are subject to diurnal and seasonal temperature variations during on-site ex-situ bioremediation processes. We assessed how diurnal temperature variations similar to that in summer at the site from which petroleum hydrocarbon-contaminated soil was collected affect the soil microbial community and the extent of biodegradation of petroleum hydrocarbons compared with constant temperature regimes. Microbial community analyses for 16S rRNA and alkB genes by pyrosequencing indicated that the microbial community for soils incubated under diurnal temperature variation from 5°C to 15°C (VART5-15) evolved similarly to that for soils incubated at constant temperature of 15°C (CST15). In contrast, under a constant temperature of 5°C (CST5), the community evolved significantly different. The extent of biodegradation of C10-C16 hydrocarbons in the VART5-15 systems was 48%, comparable with the 41% biodegradation in CST15 systems, but significantly higher than CST5 systems at 11%. The enrichment of Gammaproteobacteria was observed in the alkB gene-harbouring communities in VART5-15 and CST15 but not in CST5 systems. However, the Actinobacteria was abundant at all temperature regimes. The results suggest that changes in microbial community composition as a result of diurnal temperature variations can significantly influence petroleum hydrocarbon bioremediation performance in cold regions. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Development of an Efficient Bacterial Consortium for the Potential Remediation of Hydrocarbons from Contaminated Sites

    PubMed Central

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C.; Deka, Suresh

    2016-01-01

    The intrinsic biodegradability of hydrocarbons and the distribution of proficient degrading microorganisms in the environment are very crucial for the implementation of bioremediation practices. Among others, one of the most favorable methods that can enhance the effectiveness of bioremediation of hydrocarbon-contaminated environment is the application of biosurfactant producing microbes. In the present study, the biodegradation capacities of native bacterial consortia toward total petroleum hydrocarbons (TPH) with special emphasis to poly aromatic hydrocarbons were determined. The purpose of the study was to isolate TPH degrading bacterial strains from various petroleum contaminated soil of Assam, India and develop a robust bacterial consortium for bioremediation of crude oil of this native land. From a total of 23 bacterial isolates obtained from three different hydrocarbons contaminated samples five isolates, namely KS2, PG1, PG5, R1, and R2 were selected as efficient crude oil degraders with respect to their growth on crude oil enriched samples. Isolates KS2, PG1, and R2 are biosurfactant producers and PG5, R1 are non-producers. Fourteen different consortia were designed involving both biosurfactant producing and non-producing isolates. Consortium 10, which comprises two Bacillus strains namely, Bacillus pumilus KS2 and B. cereus R2 (identified by 16s rRNA sequencing) has shown the best result in the desired degradation of crude oil. The consortium showed degradation up to 84.15% of TPH after 5 weeks of incubation, as revealed from gravimetric analysis. FTIR (Fourier transform infrared) and GCMS (Gas chromatography-mass spectrometer) analyses were correlated with gravimetric data which reveals that the consortium has removed a wide range of petroleum hydrocarbons in comparison with abiotic control including different aliphatic and aromatic hydrocarbons. PMID:27471499

  5. Effect of Piriformospora indica inoculation on root development and distribution of maize (Zea mays L.) in the presence of petroleum contaminated soil

    NASA Astrophysics Data System (ADS)

    Zamani, Javad; Hajabbasi, Mohammad Ali; Alaie, Ebrahim

    2014-05-01

    The root systems of most terrestrial plants are confronted to various abiotic and biotic stresses. One of these abiotic stresses is contamination of soil with petroleum hydrocarbon, which the efficiency of phytoremediation of petroleum hydrocarbons in soils is dependent on the ability of plant roots to development into the contaminated soils. Piriformospora indica represents a recently discovered fungus that transfers considerable beneficial impact to its host plants. A rhizotron experiment was conducted to study the effects of P. Indica inoculation on root distribution and root and shoot development of maize (Zea mays L.) in the presence of three patterns of petroleum contamination in the soil (subsurface contamination, continuous contamination and without contamination (control)). Root distribution and root and shoot development were monitored over time. The final root and shoot biomass and the final TPH concentration in the rhizosphere were determined. Analysis of digitized images which were prepared of the tracing of the appeared roots along the front rhizotrons showed the depth and total length of root network in the contamination treatments were significantly decreased. Although the degradation of TPH in the rhizosphere of maize was significant, but there were no significant differences between degradation of TPH in the rhizosphere of +P. indica plants in comparison to -P. indica plants.

  6. A Case Study of Petroleum Degradation in Different Soil Textural Classes.

    PubMed

    Kogbara, Reginald B; Ayotamuno, Josiah M; Worlu, Daniel C; Fubara-Manuel, Isoteim

    2016-01-01

    Patents have been granted for a number of techniques for petroleum biodegradation including use of micro-organisms for degradation of hydrocarbon-based substances and for hydrocarbon degradation in oil reservoirs, but there is a dearth of information on hydrocarbon degradation in different soil textures. Hence, this work investigated the effects of different soil textures on degradation of petroleum hydrocarbons during a six-week period. Five soil textural classes commonly found in Port Harcourt metropolis, Nigeria, namely sand, loamy sand, sandy loam, silty clay and clay, were employed. The soils were contaminated with the same amount of crude oil and then remediated by biostimulation. Selected soil properties were monitored over time. Bacterial numbers declined significantly in the fine soil textures after petroleum contamination, but were either unaffected or increased significantly in the coarser soil textures. Hydrocarbon losses ranged from 42% - 99%; the sandy loam had the highest, while the clay soil had the least total hydrocarbon content (THC) reduction. The total heterotrophic bacterial (THB) counts generally corroborated the THC results. Fold increase in bacterial numbers due to remediation treatment decreased with increasing clay content. The results suggest that higher sand than clay content of soil favours faster hydrocarbon degradation. Hydrocarbon degradation efficiency increased with silt content among soil groupings such as fine and coarse soils but not necessarily with increasing silt content of soil. Thus, there seems to be cut-off sand and clay contents in soil at which the effect of the silt content becomes significant.

  7. Public health assessment for Pasley Solvents and Chemicals Inc. , Garden City, Nassau County, New York, Region 2. Cerclis No. NYD991292004. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-08-22

    The Pasley Solvents and Chemicals site, which is on the National Priorities List, is situated between the borders of the Village of Garden City and Uniondale in the Town of Hempstead, Nassau County, New York. Soils at the site are contaminated with volatile organic compounds (VOCs), primarily solvent constituents and petroleum hydrocarbons compounds; semi-volatile compounds (primarily polycyclic aromatic hydrocarbon compounds); and several metals. Groundwater in the shallow and deep aquifers under the site is contaminated with VOCs, primarily solvent constituents and petroleum hydrocarbons compounds, and two semi-volatile compounds at the concentrations exceeding public health assessment comparison values. Limited information ismore » available on soil gas intrusion and indoor air contamination, and this pathway is of concern since occupied buildings are nearby and above contaminated groundwater plumes.« less

  8. Metagenomic profiling for assessing microbial diversity and microbial adaptation to degradation of hydrocarbons in two South African petroleum-contaminated water aquifers.

    PubMed

    Kachienga, Leonard; Jitendra, Keshri; Momba, Maggy

    2018-05-15

    Biodegradation of hydrocarbons by indigenous populations of microorganisms found in petroleum-contaminated water sources represents one of the primary mechanisms by which petroleum and other hydrocarbon pollutants are eliminated from the aquatic environment. The identification of these microorganisms, which have capabilities to convert the majority of toxic hydrocarbons into compounds that are less harmful for end-users, is therefore crucial for bioremediation purposes. The aim of this study was to profile the microbial diversity of two South African petroleum-contaminated water aquifer sites and to determine the microbial adaptation to hydrocarbon degradation using a metagenomics approach. The sequenced samples revealed that protozoa (62.04%) were found to be the most dominant group, followed by fungi (24.49%), unknown (12.87%), and finally other sequences such as Animalia and plantae which were <(0.10%) domains in the first oil-polluted aquifer site. In the second site, protozoa (61.90%), unknown (16.51%), fungi (11.41%) in that order. According to the classification at the genus level, the dominant group was Naegleria (15.21%), followed by Vorticella (6.67%) as the only ciliated protozoan genus, other species such as Arabidopsis (2.97%), Asarum (1.84%) Populus (1.04%) were significantly low and drastically lower in the first site. Regarding the second site, the dominant group was Naegleria (18.29%) followed by Colpoda (9.86%) with the remainder of the genera representing <2%. Overall results demonstrated the ability of various groups of microorganisms to adapt and survive in petroleum oil-polluted water sites regardless of their respective distributions and this can be explored further for their role in bioremediation and environmental management.

  9. A Field Study of NMR Logging to Quantify Petroleum Contamination in Subsurface Sediments

    NASA Astrophysics Data System (ADS)

    Fay, E. L.; Knight, R. J.; Grunewald, E. D.

    2016-12-01

    Nuclear magnetic resonance (NMR) measurements are directly sensitive to hydrogen-bearing fluids including water and petroleum products. NMR logging tools can be used to detect and quantify petroleum hydrocarbon contamination in the sediments surrounding a well or borehole. An advantage of the NMR method is that data can be collected in both cased and uncased holes. In order to estimate the volume of in-situ hydrocarbon, there must be sufficient contrast between either the relaxation times (T2) or the diffusion coefficients (D) of water and the contaminant. In a field study conducted in Pine Ridge, South Dakota, NMR logging measurements were used to investigate an area of hydrocarbon contamination from leaking underground storage tanks. A contaminant sample recovered from a monitoring well at the site was found to be consistent with a mixture of gasoline and diesel fuel. NMR measurements were collected in two PVC-cased monitoring wells; D and T2 measurements were used together to detect and quantify contaminant in the sediments above and below the water table at both of the wells. While the contrast in D between the fluids was found to be inadequate for fluid typing, the T2 contrast between the contaminant and water in silt enabled the estimation of the water and contaminant volumes. This study shows that NMR logging can be used to detect and quantify in-situ contamination, but also highlights the importance of sediment and contaminant properties that lead to a sufficiently large contrast in T2 or D.

  10. Specialized Hydrocarbonoclastic Bacteria Prevailing in Seawater around a Port in the Strait of Malacca

    PubMed Central

    Teramoto, Maki; Queck, Shu Yeong; Ohnishi, Kouhei

    2013-01-01

    Major degraders of petroleum hydrocarbons in tropical seas have been indicated only by laboratory culturing and never through observing the bacterial community structure in actual environments. To demonstrate the major degraders of petroleum hydrocarbons spilt in actual tropical seas, indigenous bacterial community in seawater at Sentosa (close to a port) and East Coast Park (far from a port) in Singapore was analyzed. Bacterial species was more diverse at Sentosa than at the Park, and the composition was different: γ-Proteobacteria (57.3%) dominated at Sentosa, while they did not at the Park. Specialized hydrocarbonoclastic bacteria (SHCB), which use limited carbon sources with a preference for petroleum hydrocarbons, were found as abundant species at Sentosa, indicating petroleum contamination. On the other hand, SHCB were not the abundant species at the Park. The abundant species of SHCB at Sentosa were Oleibacter marinus and Alcanivorax species (strain 2A75 type), which have previously been indicated by laboratory culturing as important petroleum-aliphatic-hydrocarbon degraders in tropical seas. Together with the fact that SHCB have been identified as major degraders of petroleum hydrocarbons in marine environments, these results demonstrate that the O. marinus and Alcanivorax species (strain 2A75 type) would be major degraders of petroleum aliphatic hydrocarbons spilt in actual tropical seas. PMID:23824553

  11. Petroleum degradation by endophytic Streptomyces spp. isolated from plants grown in contaminated soil of southern Algeria.

    PubMed

    Baoune, Hafida; Ould El Hadj-Khelil, Aminata; Pucci, Graciela; Sineli, Pedro; Loucif, Lotfi; Polti, Marta Alejandra

    2018-01-01

    Petroleum hydrocarbons are well known by their high toxicity and recalcitrant properties. Their increasing utilization around worldwide led to environmental contamination. Phytoremediation using plant-associated microbe is an interesting approach for petroleum degradation and actinobacteria have a great potential for that. For this purpose, our study aimed to isolate, characterize, and assess the ability of endophytic actinobacteria to degrade crude petroleum, as well as to produce plant growth promoting traits. Seventeen endophytic actinobacteria were isolated from roots of plants grown naturally in sandy contaminated soil. Among them, six isolates were selected on the basis of their tolerance to petroleum on solid minimal medium and characterized by 16S rDNA gene sequencing. All petroleum-tolerant isolates belonged to the Streptomyces genus. Determination by crude oil degradation by gas chromatorgraph-flame ionization detector revealed that five strains could use petroleum as sole carbon and energy source and the petroleum removal achieved up to 98% after 7 days of incubation. These isolates displayed an important role in the degradation of the n-alkanes (C 6 -C 30 ), aromatic and polycyclic aromatic hydrocarbons. All strains showed a wide range of plant growth promoting features such as siderophores, phosphate solubilization, 1-aminocyclopropane-1-carboxylate deaminase, nitrogen fixation and indole-3-acetic acid production as well as biosurfactant production. This is the first study highlighting the petroleum degradation ability and plant growth promoting attributes of endophytic Streptomyces. The finding suggests that the endophytic actinobacteria isolated are promising candidates for improving phytoremediation efficiency of petroleum contaminated soil. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Oil contamination in Ogoniland, Niger Delta.

    PubMed

    Lindén, Olof; Pålsson, Jonas

    2013-10-01

    The study shows extensive oil contamination of rivers, creeks, and ground waters in Ogoniland, Nigeria. The levels found in the more contaminated sites are high enough to cause severe impacts on the ecosystem and human health: extractable petroleum hydrocarbons (EPHs) (>10-C40) in surface waters up to 7420 μg L(-1), drinking water wells show up to 42 200 μg L(-1), and benzene up to 9000 μg L(-1), more than 900 times the WHO guidelines. EPH concentrations in sediments were up to 17 900 mg kg(-1). Polycyclic aromatic hydrocarbons concentrations reached 8.0 mg kg(-1), in the most contaminated sites. The contamination has killed large areas of mangroves. Although the natural conditions for degradation of petroleum hydrocarbons are favorable with high temperatures and relatively high rainfall, the recovery of contaminated areas is prevented due to the chronic character of the contamination. Oil spills of varying magnitude originates from facilities and pipelines; leaks from aging, dilapidated, and abandoned infrastructure; and from spills during transport and artisanal refining of stolen oil under very primitive conditions.

  13. Natural attenuation of petroleum hydrocarbons-a study of biodegradation effects in groundwater (Vitanovac, Serbia).

    PubMed

    Marić, Nenad; Matić, Ivan; Papić, Petar; Beškoski, Vladimir P; Ilić, Mila; Gojgić-Cvijović, Gordana; Miletić, Srđan; Nikić, Zoran; Vrvić, Miroslav M

    2018-01-20

    The role of natural attenuation processes in groundwater contamination by petroleum hydrocarbons is of intense scientific and practical interest. This study provides insight into the biodegradation effects in groundwater at a site contaminated by kerosene (jet fuel) in 1993 (Vitanovac, Serbia). Total petroleum hydrocarbons (TPH), hydrochemical indicators (O 2 , NO 3 - , Mn, Fe, SO 4 2- , HCO 3 - ), δ 13 C of dissolved inorganic carbon (DIC), and other parameters were measured to demonstrate biodegradation effects in groundwater at the contaminated site. Due to different biodegradation mechanisms, the zone of the lowest concentrations of electron acceptors and the zone of the highest concentrations of metabolic products of biodegradation overlap. Based on the analysis of redox-sensitive compounds in groundwater samples, redox processes ranged from strictly anoxic (methanogenesis) to oxic (oxygen reduction) within a short distance. The dependence of groundwater redox conditions on the distance from the source of contamination was observed. δ 13 C values of DIC ranged from - 15.83 to - 2.75‰, and the most positive values correspond to the zone under anaerobic and methanogenic conditions. Overall, results obtained provide clear evidence on the effects of natural attenuation processes-the activity of biodegradation mechanisms in field conditions.

  14. Biosurfactant-producing strains in enhancing solubilization and biodegradation of petroleum hydrocarbons in groundwater.

    PubMed

    Liu, Hong; Wang, Hang; Chen, Xuehua; Liu, Na; Bao, Suriguge

    2014-07-01

    Three biosurfactant-producing strains designated as BS-1, BS-3, and BS-4 were screened out from crude oil-contaminated soil using a combination of surface tension measurement and oil spreading method. Thin layer chromatography and infrared analysis indicated that the biosurfactants produced by the three strains were lipopeptide, glycolipid, and phospholipid. The enhancement of solubilization and biodegradation of petroleum hydrocarbons in groundwater employing biosurfactant-producing strains was investigated. The three strain mixtures led to more solubilization of petroleum hydrocarbons in groundwater, and the solubilization rate was 10.5 mg l−1. The combination of biosurfactant-producing strains and petroleum-degrading strains exhibited a higher biodegradation efficiency of 85.4 % than the petroleum-degrading strains (71.2 %). Biodegradation was enhanced the greatest with biosurfactant-producing strains and petroleum-degrading strains in a ratio of 1:1. Fluorescence microscopy images illustrate that the oil dispersed into smaller droplets and emulsified in the presence of biosurfactant-producing strains, which attached to the oil. Thus, the biodegradation of petroleum hydrocarbons in groundwater was enhanced.

  15. Comparison of landfarming amendments to improve bioremediation of petroleum hydrocarbons in Niger Delta soils.

    PubMed

    Brown, David M; Okoro, Samson; van Gils, Juami; van Spanning, Rob; Bonte, Matthijs; Hutchings, Tony; Linden, Olof; Egbuche, Uzoamaka; Bruun, Kim Bye; Smith, Jonathan W N

    2017-10-15

    Large scale landfarming experiments, using an extensive range of treatments, were conducted in the Niger-Delta, Nigeria to study the degradation of oil in contaminated soils. In this work the effect of nutrient addition, biosurfactant, Eisenia fetida (earthworm) enzyme extract, bulking and sorption agents and soil neutralization were tested. It was found that these treatments were successful in removing up to 53% of the total petroleum hydrocarbon in the soil within 16 weeks. A comparison between treatments demonstrated that most were no more effective than agricultural fertilizer addition alone. One strategy that did show better performance was a combination of nutrients, biochar and biosurfactant, which was found to remove 23% more Total Petroleum Hydrocarbons (TPH) than fertilizer alone. However, when performance normalized costs were considered, this treatment became less attractive as a remedial option. Based on this same analysis it was concluded that fertilizer only was the most cost effective treatment. As a consequence, it is recommended that fertilizer is used to enhance the landfarming of hydrocarbon contaminated soils in the Niger Delta. The attenuation rates of both bulk TPH and Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG) fractions are also provided. These values represent one of the first large scale and scientifically tested datasets for treatment of contaminated soil in the Niger Delta region. An inverse correlation between attenuation rates and hydrocarbon molecular weight was observed with heavy fractions showing much slower degradation rates than lighter fractions. Despite this difference, the bioremediation process resulted in significant removal of all TPH compounds independent of carbon number. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Investigating bioremediation of petroleum hydrocarbons through landfarming using apparent electrical conductivity measurements

    NASA Astrophysics Data System (ADS)

    Van De Vijver, Ellen; Van Meirvenne, Marc; Seuntjens, Piet

    2015-04-01

    Bioremediation of soil contaminated with petroleum hydrocarbons through landfarming has been widely applied commercially at large scale. Biodegradation is one of the dominant pollutant removal mechanisms involved in landfarming, but strongly depends on the environmental conditions (e.g. presence of oxygen, moisture content). Conventionally the biodegradation process is monitored by the installation of field monitoring equipment and repeated sample collection and analysis. Because the presence of petroleum hydrocarbons and their degradation products can affect the electrical properties of the soil, proximal soil sensors such as electromagnetic induction (EMI) sensors may provide an alternative to investigate the biodegradation process of these contaminants. We investigated the relation between the EMI-based apparent electrical conductivity (ECa) of a landfarm soil and the presence and degradation status of petroleum hydrocarbons. The 3 ha study area was located in an oil refinery complex contaminated with petroleum hydrocarbons, mainly composed of diesel. At the site, a landfarm was constructed in 1999. The most recent survey of the petroleum hydrocarbon concentrations was conducted between 2011 and 2013. The sampling locations were defined by a grid with a 10 m by 10 m cell size and on each location a sample was taken from four successive soil layers with a thickness of 0.5 m each. Because the survey was carried out in phases using different georeferencing methods, the final dataset suffered from uncertainty in the coordinates of the sampling locations. In September 2013 the landfarm was surveyed for ECa with a multi-receiver electromagnetic induction sensor (DUALEM-21S) using motorized conveyance. The horizontal measurement resolution was 1 m by 0.25 m. On each measurement location the sensor recorded four ECa values representative of measurement depths of 0.5 m, 1.0 m, 1.6 m and 3.2 m. After the basic processing, the ECa measurements were filtered to remove anomalies resulting from small metallic objects. Next, the ECa measurements were interpolated to average values for blocks of 2.5 m by 2.5 m using ordinary block kriging to meet the location uncertainty of the corresponding hydrocarbon concentration observations. Comparison of the block ECa values representative of different depths with the petroleum hydrocarbons concentrations observed in the different landfarm layers suggested a relationship between ECa and the level of biodegradation. Zones with a large ECa corresponded to zones where high microbial degradation activity was expected and vice versa. This indicates that EMI-based ECa surveying can support the monitoring of the bioremediation process in landfarms and subsequent decisions on operating parameters. Furthermore, studying the relationship between ECa and the petroleum hydrocarbon concentrations can improve the understanding of microbial degradation processes.

  17. Effect of the ultrasound-Fenton oxidation process with the addition of a chelating agent on the removal of petroleum-based contaminants from soil.

    PubMed

    Li, Ying; Li, Fangmin; Li, Fanxiu; Yuan, Fuqian; Wei, Pingfang

    2015-12-01

    The effects of ultrasonic irradiation, the chelating agent modified Fenton reaction, and a combination of ultrasound and the Fenton method in removing petroleum contaminants from a soil were studied. The results showed that the contaminant removal rate of the Fenton treatment combined with an oxalic acid chelating agent was 55.6% higher than that without a chelating agent. The average removal rate of the contaminants using the ultrasound-Fenton treatment was 59.0% higher than that without ultrasonic treatment. A combination of ultrasound and an Fe(2+)/Fe(3+)-oxalate complex-modified Fenton reagent resulted in significantly higher removal rates of n-alkanes (C(n)H(2n+2), n < 28), isoprenoid hydrocarbons, aromatic hydrocarbons, and saturated polycyclic terpenes compared with the ultrasound treatment alone or the Fenton method. The Fenton reaction and the ultrasound-Fenton treatment can unselectively remove multiple components of residual hydrocarbons and a number of benzene rings in polycyclic aromatic hydrocarbons. The chemistry of the heterocyclic compounds and the position and number of substituents can affect the degradation process.

  18. Characterization of hydrocarbon-degrading and biosurfactant-producing Pseudomonas sp. P-1 strain as a potential tool for bioremediation of petroleum-contaminated soil.

    PubMed

    Pacwa-Płociniczak, Magdalena; Płaza, Grażyna Anna; Poliwoda, Anna; Piotrowska-Seget, Zofia

    2014-01-01

    The Pseudomonas sp. P-1 strain, isolated from heavily petroleum hydrocarbon-contaminated soil, was investigated for its capability to degrade hydrocarbons and produce a biosurfactant. The strain degraded crude oil, fractions A5 and P3 of crude oil, and hexadecane (27, 39, 27 and 13% of hydrocarbons added to culture medium were degraded, respectively) but had no ability to degrade phenanthrene. Additionally, the presence of gene-encoding enzymes responsible for the degradation of alkanes and naphthalene in the genome of the P-1 strain was reported. Positive results of blood agar and methylene blue agar tests, as well as the presence of gene rhl, involved in the biosynthesis of rhamnolipid, confirmed the ability of P-1 for synthesis of glycolipid biosurfactant. 1H and 13C nuclear magnetic resonance, Fourier transform infrared spectrum and mass spectrum analyses indicated that the extracted biosurfactant was affiliated with rhamnolipid. The results of this study indicate that the P-1 and/or biosurfactant produced by this strain have the potential to be used in bioremediation of hydrocarbon-contaminated soils.

  19. Petroleum pollution in surface sediments of Daya Bay, South China, revealed by chemical fingerprinting of aliphatic and alicyclic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Gao, Xuelu; Chen, Shaoyong

    2008-10-01

    Nine surface sediments collected from Daya Bay have been Soxhlet-extracted with 2:1 (v/v) dichloromethane-methanol. The non-aromatic hydrocarbon (NAH) fraction of solvent extractable organic matter (EOM) and some bulk geochemical parameters have been analyzed to determine petroleum pollution of the bay. The NAH content varies from 32 to 276 μg g -1 (average 104 μg g -1) dry sediment and accounts for 5.8-64.1% (average 41.6%) of the EOM. n-Alkanes with carbon number ranging from 15 to 35 are identified to be derived from both biogenic and petrogenic sources in varying proportions. The contribution of marine authigenic input to the sedimentary n-alkanes is lower than the allochthonous input based on the average n-C 31/ n-C 19 alkane ratio. 25.6-46.5% of the n-alkanes, with a mean of 35.6%, are contributed by vascular plant wax. Results of unresolved complex mixture, isoprenoid hydrocarbons, hopanes and steranes also suggest possible petroleum contamination. There is strong evidence of a common petroleum contamination source in the bay.

  20. Hydrocarbon pollution in the sediment from the Jarzouna-Bizerte coastal area of Tunisia (Mediterranean Sea).

    PubMed

    Zrafi-Nouira, I; Khedir-Ghenim, Z; Zrafi, F; Bahri, R; Cheraeif, I; Rouabhia, M; Saidane-Mosbahi, D

    2008-06-01

    This study investigated the presence and origin of hydrocarbon pollution in industrial waste water sediments found near the Jarzouna (Bizerte, Tunisia) oil refinery. Analyses of surface sediments (layer 1) and deep sediments (layer 2) showed that Total Hydrocarbon (TH) concentrations ranged from 602 +/- 7.638 microg/g in layer-1 to 1270 +/- 2.176 microg/g in layer-2. The results suggest that the deeper the sediment, the higher the level of total hydrocarbon found. The sedimentary Non Aromatic Hydrocarbon (NAH) and Aromatic Hydrocarbon (AH) concentrations ranged from 66.22 +/- 1.516 to 211.82 +/- 10.670 microg/g for NAH, and from 13.84 +/- 0.180 to 115.60 +/- 2.479 microg/g for AH. The high variability of these concentrations was associated with the location of the sediment collection sites. Aliphatic biomarker analysis revealed petroleum contamination close to the refinery rejection site, and biogenic sources further away. Petroleum contamination may be associated with increased industrial activity in the area of Jarzouna-Bizerte in the Mediterranean Sea.

  1. Hydrocarbons in the sediments of the Bermuda region lagoonal to abyssal depths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sletter, T.D.; Butler, J.N.; Barbash, J.E.

    1980-01-01

    Gas chromatographic analyses of the pentane fraction derived from surface sediments collected from 20 stations (50 cores) around Bermuda from the subtidal zone to 40 m depth and one deep-water sediment sample from 1400 m depth showed that outside the protective boiler reef, the total aliphatic (pentane-extractable) hydrocarbon content was less than inside the reef (3-10 jg/g dry weight outside vs. 10-65 jg/g inside). Samples from the 1400 m depth showed < 1.0 jg/g aliphatic hydrocarbon content. The chromatograms from the shipping channels showed fresh petroleum source concentrations of 8-31 jg/g; harbors yielded chromatograms typical of chronic petroleum contamination, withmore » 30-110 jg/g concentrations. Several biogenic compounds (including C15 and C17 n-alkanes and most probably derived from marine algae) were observed, in addition to the petroleum-derived hydrocarbons. The criteria adopted for distinguishing biogenic and petroleum hydrocarbons are given.« less

  2. Effect of petroleum hydrocarbons in copper phytoremediation by a salt marsh plant (Juncus maritimus) and the role of autochthonous bioaugmentation.

    PubMed

    Montenegro, I P F M; Mucha, A P; Reis, I; Rodrigues, P; Almeida, C M R

    2016-10-01

    This work aimed to investigate, under controlled but environmental relevant conditions, the effects of the presence of both inorganic and organic contaminants (copper and petroleum hydrocarbons) on phytoremediation potential of the salt marsh plant Juncus maritimus. Moreover, bioaugmentation, with an autochthonous microbial consortium (AMC) resistant to Cu, was tested, aiming an increase in the remediation potential of this plant in the presence of a co-contamination. Salt marsh plants with sediment attached to their roots were collected, placed in vessels, and kept in greenhouses, under tidal simulation. Sediments were contaminated with Cu and petroleum, and the AMC was added to half of the vessels. After 5 months, plants accumulated significant amounts of Cu but only in belowground structures. The amount of Cu was even higher in the presence of petroleum. AMC addition increased Cu accumulation in belowground tissues, despite decreasing Cu bioavailability, promoting J. maritimus phytostabilization potential. Therefore, J. maritimus has potential to phytoremediate co-contaminated sediments, and autochthonous bioaugmentation can be a valuable strategy for the recovery and management of moderately impacted estuaries. This approach can contribute for a sustainable use of the environmental resources. Graphical abstract ᅟ.

  3. Ecotoxicity monitoring and bioindicator screening of oil-contaminated soil during bioremediation.

    PubMed

    Shen, Weihang; Zhu, Nengwu; Cui, Jiaying; Wang, Huajin; Dang, Zhi; Wu, Pingxiao; Luo, Yidan; Shi, Chaohong

    2016-02-01

    A series of toxicity bioassays was conducted to monitor the ecotoxicity of soils in the different phases of bioremediation. Artificially oil-contaminated soil was inoculated with a petroleum hydrocarbon-degrading bacterial consortium containing Burkholderia cepacia GS3C, Sphingomonas GY2B and Pandoraea pnomenusa GP3B strains adapted to crude oil. Soil ecotoxicity in different phases of bioremediation was examined by monitoring total petroleum hydrocarbons, soil enzyme activities, phytotoxicity (inhibition of seed germination and plant growth), malonaldehyde content, superoxide dismutase activity and bacterial luminescence. Although the total petroleum hydrocarbon (TPH) concentration in soil was reduced by 64.4%, forty days after bioremediation, the phytotoxicity and Photobacterium phosphoreum ecotoxicity test results indicated an initial increase in ecotoxicity, suggesting the formation of intermediate metabolites characterized by high toxicity and low bioavailability during bioremediation. The ecotoxicity values are a more valid indicator for evaluating the effectiveness of bioremediation techniques compared with only using the total petroleum hydrocarbon concentrations. Among all of the potential indicators that could be used to evaluate the effectiveness of bioremediation techniques, soil enzyme activities, phytotoxicity (inhibition of plant height, shoot weight and root fresh weight), malonaldehyde content, superoxide dismutase activity and luminescence of P. phosphoreum were the most sensitive. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Effects of humic acid on phytodegradation of petroleum hydrocarbons in soil simultaneously contaminated with heavy metals.

    PubMed

    Park, Soyoung; Kim, Ki Seob; Kim, Jeong-Tae; Kang, Daeseok; Sung, Kijune

    2011-01-01

    The use of humic acid (HA) to enhance the efficiency of phytodegradation of petroleum hydrocarbons in soil contaminated with diesel fuel was evaluated in this study. A sample of soil was artificially contaminated with commercially available diesel fuel to an initial total petroleum hydrocarbons (TPH) concentration of 2300 mg/kg and four heavy metals with concentrations of 400 mg/kg for Pb, 200 mg/kg for Cu, 12 mg/kg for Cd, and 160 mg/kg for Ni. Three plant species, Brassica campestris, Festuca arundinacea, and Helianthus annuus, were selected for the phytodegradation experiment. Percentage degradation of TPH in the soil in a control pot supplemented with HA increased to 45% from 30% without HA. The addition of HA resulted in an increases in the removal of TPH from the soil in pots planted with B. campestris, E arundinacea, and H. annuus, enhancing percentage degradation to 86%, 64%, and 85% from 45%, 54%, and 66%, respectively. The effect of HA was also observed in the degradation of n-alkanes within 30 days. The rates of removal of n-alkanes in soil planted with B. campestris and H. annuus were high for n-alkanes in the range of C11-C28. A dynamic increase in dehydrogenase activity was observed during the last 15 days of a 30-day experimental period in all the pots amended with HA. The enhanced biodegradation performance for TPHs observed might be due to an increase in microbial activities and bioavailable TPH in soils caused by combined effects of plants and HA. The results suggested that HA could act as an enhancing agent for phytodegradation of petroleum hydrocarbons in soil contaminated with diesel fuel and heavy metals.

  5. Evaluation of microbial population and functional genes during the bioremediation of petroleum-contaminated soil as an effective monitoring approach.

    PubMed

    Shahi, Aiyoub; Aydin, Sevcan; Ince, Bahar; Ince, Orhan

    2016-03-01

    This study investigated the abundance and diversity of soil n-alkane and polycyclic aromatic hydrocarbon (PAH)-degrading bacterial communities. It also investigated the quantity of the functional genes, the occurrence of horizontal gene transfer (HGT) in the identified bacterial communities and the effect that such HGT can have on biostimulation process. Illumina sequencing was used to detect the microbial diversity of petroleum-polluted soil prior to the biostimulation process, and quantitative real-time PCR was used to determine changes in the bacterial community and functional genes (alkB, phnAc and nah) expressions throughout the biostimulation of petroleum-contaminated soil. The illumine results revealed that γ-proteobacteria, Chloroflexi, Firmicutes, and δ-proteobacteria were the most dominant bacterial phyla in the contaminated site, and that most of the strains were Gram-negative. The results of the gene expression results revealed that gram-negative bacteria and alkB are critical to successful bioremediation. Failure to maintain the stability of hydrocarbon-degrading bacteria and functional gene will reduce the extend to which alkanes and PAHs are degraded. According to the results of the study, the application of a C:N:P ratio of was 100:15:1 in the biodegradation experiment resulted in the highest rate at which petroleum hydrocarbons were biodegraded. The diversity of pollutant-degrading bacteria and the effective transfer of degrading genes among resident microorganisms are essential factors for the successful biostimulation of petroleum hydrocarbons. As such, screening these factors throughout the biostimulation process represents an effective monitoring approach by which the success of the biostimulation can be assessed. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. "Unresolved Complex Mixture" (UCM): A brief history of the term and moving beyond it.

    PubMed

    Farrington, John W; Quinn, James G

    2015-07-15

    The term "Unresolved Complex Mixture" (UCM) has been used extensively for decades to describe a gas chromatographic characteristic indicative of the presence of fossil fuel hydrocarbons (mainly petroleum hydrocarbons) in hydrocarbons isolated from aquatic samples. We chronicle the origin of the term. While it is still a useful characteristic for screening samples, more modern higher resolution two dimensional gas chromatography and gas chromatography coupled with advanced mass spectrometry techniques (Time-of-Flight or Fourier Transform-Ion Cyclotron Resonance) should be employed for analyses of petroleum contaminated samples. This will facilitate advances in understanding of the origins, fates and effects of petroleum compounds in aquatic environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Potential of vetiver (vetiveria zizanioides (L.) Nash) for phytoremediation of petroleum hydrocarbon-contaminated soils in Venezuela.

    PubMed

    Brandt, Regine; Merkl, Nicole; Schultze-Kraft, Rainer; Infante, Carmen; Broll, Gabriele

    2006-01-01

    Venezuela is one of the largest oil producers in the world. For the rehabilitation of oil-contaminated sites, phytoremediation represents a promising technology whereby plants are used to enhance biodegradation processes in soil. A greenhouse study was conducted to determine the tolerance of vetiver (Vetiveria zizanioides (L.) Nash) to a Venezuelan heavy crude oil in soil. Additionally, the plant's potential for stimulating the biodegradation processes of petroleum hydrocarbons was tested under the application of two fertilizer levels. In the presence of contaminants, biomass and plant height were significantly reduced. As for fertilization, the lower fertilizer level led to higher biomass production. The specific root surface area was reduced under the effects of petroleum. However, vetiver was found to tolerate crude-oil contamination in a concentration of 5% (w/w). Concerning total oil and grease content in soil, no significant decrease under the influence of vetiver was detected when compared to the unplanted control. Thus, there was no evidence of vetiver enhancing the biodegradation of crude oil in soil under the conditions of this trial. However, uses of vetiver grass in relation to petroleum-contaminated soils are promising for amelioration of slightly polluted sites, to allow other species to get established and for erosion control.

  8. Enzymatic bioremediation of polyaromatic hydrocarbons by fungal consortia enriched from petroleum contaminated soil and oil seeds.

    PubMed

    Balaji, V; Arulazhagan, P; Ebenezer, P

    2014-05-01

    The present study focuses on fungal strains capable of secreting extracellular enzymes by utilizing hydrocarbons present in the contaminated soil. Fungal strains were enriched from petroleum hydrocarbons contaminated soil samples collected from Chennai city, India. The potential fungi were isolated and screened for their enzyme secretion such as lipase, laccase, peroxidase and protease and also evaluated fungal enzyme mediated PAHs degradation. Total, 21 potential PAHs degrading fungi were isolated from PAHs contaminated soil, which belongs to 9 genera such as Aspergillus, Curvularia, Drechslera, Fusarium, Lasiodiplodia, Mucor Penicillium, Rhizopus, Trichoderma, and two oilseed-associated fungal genera such as Colletotrichum and Lasiodiplodia were used to test their efficacy in degradation of PAHs in polluted soil. Maximum lipase production was obtained with P. chrysogenum, M. racemosus and L. theobromae VBE1 under optimized cultural condition, which utilized PAHs in contaminated soil as sole carbon source. Fungal strains, P. chrysogenum, M. racemosus and L. theobromae VBE1, as consortia, used in the present study were capable of degrading branched alkane isoprenoids such as pristine (C17) and pyrene (C18) present in PAHs contaminated soil with high lipase production. The fungal consortia acts as potential candidate for bioremediation of PAHs contaminated environments.

  9. In situ thermally enhanced biodegradation of petroleum fuel hydrocarbons and halogenated organic solvents

    DOEpatents

    Taylor, Robert T.; Jackson, Kenneth J.; Duba, Alfred G.; Chen, Ching-I

    1998-01-01

    An in situ thermally enhanced microbial remediation strategy and a method for the biodegradation of toxic petroleum fuel hydrocarbon and halogenated organic solvent contaminants. The method utilizes nonpathogenic, thermophilic bacteria for the thermal biodegradation of toxic and carcinogenic contaminants, such as benzene, toluene, ethylbenzene and xylenes, from fuel leaks and the chlorinated ethenes, such as trichloroethylene, chlorinated ethanes, such as 1,1,1-trichloroethane, and chlorinated methanes, such as chloroform, from past solvent cleaning practices. The method relies on and takes advantage of the pre-existing heated conditions and the array of delivery/recovery wells that are created and in place following primary subsurface contaminant volatilization efforts via thermal approaches, such as dynamic underground steam-electrical heating.

  10. In situ thermally enhanced biodegradation of petroleum fuel hydrocarbons and halogenated organic solvents

    DOEpatents

    Taylor, R.T.; Jackson, K.J.; Duba, A.G.; Chen, C.I.

    1998-05-19

    An in situ thermally enhanced microbial remediation strategy and a method for the biodegradation of toxic petroleum fuel hydrocarbon and halogenated organic solvent contaminants are described. The method utilizes nonpathogenic, thermophilic bacteria for the thermal biodegradation of toxic and carcinogenic contaminants, such as benzene, toluene, ethylbenzene and xylenes, from fuel leaks and the chlorinated ethenes, such as trichloroethylene, chlorinated ethanes, such as 1,1,1-trichloroethane, and chlorinated methanes, such as chloroform, from past solvent cleaning practices. The method relies on and takes advantage of the pre-existing heated conditions and the array of delivery/recovery wells that are created and in place following primary subsurface contaminant volatilization efforts via thermal approaches, such as dynamic underground steam-electrical heating. 21 figs.

  11. The effect of plants on the degradation and toxicity of petroleum contaminants in soil: a field assessment.

    PubMed

    Banks, M K; Schwab, P; Liu, B; Kulakow, P A; Smith, J S; Kim, R

    2003-01-01

    A field project located at the US Naval Base at Port Hueneme, California was designed to evaluate changes in contaminant concentrations and toxicity during phytoremediation. Vegetated plots were established in petroleum (diesel and heavy oil) contaminated soil and were evaluated over a two-year period. Plant species were chosen based on initial germination studies and included native California grasses. The toxicity of the impacted soil in vegetated and unvegetated plots was evaluated using Microtox, earthworm, and seed germination assays. The reduction of toxicity was affected more by contaminant aging than the establishment of plants. However, total petroleum hydrocarbon concentrations were lower by the end of the study in the vegetated plots when compared to the unvegetated soil. Although phytoremediation is an effective approach for cleaning-up of petroleum contaminated soil, a long-term management plan is required for significant reductions in contaminant concentrations.

  12. Decontamination of Petroleum-Contaminated Soils Using The Electrochemical Technique: Remediation Degree and Energy Consumption.

    PubMed

    Streche, Constantin; Cocârţă, Diana Mariana; Istrate, Irina-Aura; Badea, Adrian Alexandru

    2018-02-19

    Currently, there are different remediation technologies for contaminated soils, but the selection of the best technology must be not only the treatment efficiency but also the energy consumption (costs) during its application. This paper is focused on assessing energy consumption related to the electrochemical treatment of polluted soil with petroleum hydrocarbons. In the framework of a research project, two types of experiments were conducted using soil that was artificially contaminated with diesel fuel at the same level of contamination. The experimental conditions considered for each experiment were: different amounts of contaminated soils (6 kg and 18 kg, respectively), the same current intensity level (0.25A and 0.5A), three different contamination degrees (1%, 2.5% and 5%) and the same time for application of the electrochemical treatment. The remediation degree concerning the removal of petroleum hydrocarbons from soil increased over time by approximately 20% over 7 days. With regard to energy consumption, the results revealed that with an increase in the quantity of treated soil of approximately three times, the specific energy consumption decreased from 2.94 kWh/kg treated soil to 1.64 kWh/kg treated soil.

  13. Remediation of petroleum hydrocarbon-contaminated sites by DNA diagnosis-based bioslurping technology.

    PubMed

    Kim, Seungjin; Krajmalnik-Brown, Rosa; Kim, Jong-Oh; Chung, Jinwook

    2014-11-01

    The application of effective remediation technologies can benefit from adequate preliminary testing, such as in lab-scale and Pilot-scale systems. Bioremediation technologies have demonstrated tremendous potential with regards to cost, but they cannot be used for all contaminated sites due to limitations in biological activity. The purpose of this study was to develop a DNA diagnostic method that reduces the time to select contaminated sites that are good candidates for bioremediation. We applied an oligonucleotide microarray method to detect and monitor genes that lead to aliphatic and aromatic degradation. Further, the bioremediation of a contaminated site, selected based on the results of the genetic diagnostic method, was achieved successfully by applying bioslurping in field tests. This gene-based diagnostic technique is a powerful tool to evaluate the potential for bioremediation in petroleum hydrocarbon contaminated soil. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Bioremediation of petroleum contaminated soil to combat toxicity on Withania somnifera through seed priming with biosurfactant producing plant growth promoting rhizobacteria.

    PubMed

    Das, Amar Jyoti; Kumar, Rajesh

    2016-06-01

    Soil contaminated by Petroleum oil cannot be utilized for agricultural purposes due to hydrocarbon toxicity. Oil contaminated soil induces toxicity affecting germination, growth and productivity. Several technologies have been proposed for bioremediation of oil contaminated sites, but remediation through biosurfactant producing plant growth promontory rhizobacteria (PGPR) is considered to be most promising methods. In the present study the efficacy of seed priming on growth and pigment of Withania somnifera under petroleum toxicity is explored. Seeds of W. somnifera were primed with biosurfactant producing Pseudomonas sp. AJ15 with plant growth promoting traits having potentiality to utilized petroleum as carbon source. Results indicates that plant arose from priming seeds under various petroleum concentration expressed high values for all the parameters studied namely germination, shoot length, root length, fresh and dry weight and pigments (chlorophyll and carotenoid) as compared to non primed seed. Hence, the present study signifies that petroleum degrarding biosurfactant producing PGPR could be further used for management and detoxification of petroleum contaminated soils for growing economically important crops. Copyright © 2016. Published by Elsevier Ltd.

  15. An Approach for Developing Site-Specific Lateral and Vertical Inclusion Zones within which Structures Should be Evaluated for Petroleum Vapor Intrusion due to Releases of Motor Fuel from Underground Storage Tanks

    EPA Science Inventory

    Buildings may be at risk from Petroleum Vapor Intrusion (PVI) when they overlie petroleum hydrocarbon contamination in the unsaturated zone or dissolved in groundwater. The U.S. EPA Office of Underground Storage Tanks (OUST) is preparing Guidance for Addressing Petroleum Vapor I...

  16. The effect of Piriformospora indica on the root development of maize (Zea mays L.) and remediation of petroleum contaminated soil.

    PubMed

    Zamani, Javad; Hajabbasi, Mohammad Ali; Alaie, Ebrahim; Sepehri, Mozhgan; Leuchtmann, Adrian; Schulin, Rainer

    2016-01-01

    As the depth of soil petroleum contamination can vary substantially under field conditions, a rhizotron experiment was performed to investigate the influence of endophyte, P. indica, on maize growth and degradation of petroleum components in a shallow and a deep-reaching subsurface layer of a soil. For control, a treatment without soil contamination was also included. The degree in contamination and the depth to which it extended had a strong effect on the growth of the plant roots. Contaminated soil layers severely inhibited root growth thus many roots preferred to bypass the shallow contaminated layer and grow in the uncontaminated soil. While the length and branching pattern of these roots were similar to those of uncontaminated treatment. Inoculation of maize with P. indica could improve root distribution and root and shoot growth in all three contamination treatments. This inoculation also enhanced petroleum degradation in soil, especially in the treatment with deep-reaching contamination, consequently the accumulation of petroleum hydrocarbons (PAHs) in the plant tissues were increased.

  17. Consistency between health risks and microbial response mechanism of various petroleum components in a typical wastewater-irrigated farmland.

    PubMed

    Zhang, Juan; Fan, Shu-kai

    2016-06-01

    Various petroleum components possess distinctive migration and toxicity characteristics. Evaluation of contamination levels on the basis of total concentrations of petroleum hydrocarbons in soil and groundwater is limited. Hunpu, a typical wastewater-irrigated area, is located at the southwest of Shenyang City, Liaoning Province, China. In this study, various fractions, exposure pathways, and soil microbial communities were taken into account to make petroleum contamination evaluation more effective and precise in the region. The concentrations and hazard quotients of aliphatic fractions, as the bulk of an oil, verified that the groundwater must not be drunk directly. The total concentrations of aliphatic hydrocarbons (TAHs) for C10-34 were 68.90-199.87 μg g(-1) in soil in Hunpu, which required cleanup according to Oklahoma criteria. However, both health and ecological risks indicated that petroleum contamination in surface soil was not serious. Microbes may use aliphatic fractions as carbon and energy source for their growth, which was indicated by positive correlation between them. TAHsC12-16 posed highest human health risks and had the most significant effect on the soil microbial composition, although its concentration was low in both the groundwater and the soil. Straight-, branched-chain saturated, and cyclopropyl phospholipid fatty acids had more closely positive correlation with TAHsC12-16, which indicated that regulation of bacterial membrane fluidity to toxic petroleum pollutants. This study can also provide the guidelines for assessment and management of petroleum contamination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Anaerobic hydrocarbon degradation in petroleum-contaminated harbor sediments under sulfate-reducing and artificially imposed iron-reducing conditions

    USGS Publications Warehouse

    Coates, J.D.; Anderson, R.T.; Woodward, J.C.; Phillips, E.J.P.; Lovley, D.R.

    1996-01-01

    The potential use of iron(III) oxide to stimulate in-situ hydrocarbon degradation in anaerobic petroleum-contaminated harbor sediments was investigated. Previous studies have indicated that Fe(III)-reducing bacteria (FeRB) can oxidize some electron donors more effectively than sulfate- reducing bacteria (SRB). In contrast to previous results in freshwater sediments, the addition of Fe(III) to marine sediments from San Diego Bay, CA did not switch the terminal electron-accepting process (TEAP) from sulfate reduction to Fe-(III) reduction. Addition of Fe(III) also did not stimulate anaerobic hydrocarbon oxidation. Exposure of the sediment to air [to reoxidize Fe(II) to Fe(III)] followed by anaerobic incubation of the sediments, resulted in Fe-(III) reduction as the TEAP, but contaminant degradation was not stimulated and in some instances was inhibited. The difference in the ability of FeRB to compete with the SRB in the different sediment treatments was related to relative population sizes. Although the addition of Fe(III) did not stimulate hydrocarbon degradation, the results presented here as well as other recent studies demonstrate that there may be significant anaerobic hydrocarbon degradation under sulfate-reducing conditions in harbor sediments.

  19. Pyrolytic Treatment and Fertility Enhancement of Soils Contaminated with Heavy Hydrocarbons.

    PubMed

    Vidonish, Julia E; Zygourakis, Kyriacos; Masiello, Caroline A; Gao, Xiaodong; Mathieu, Jacques; Alvarez, Pedro J J

    2016-03-01

    Pyrolysis of contaminated soils at 420 °C converted recalcitrant heavy hydrocarbons into "char" (a carbonaceous material similar to petroleum coke) and enhanced soil fertility. Pyrolytic treatment reduced total petroleum hydrocarbons (TPH) to below regulatory standards (typically <1% by weight) within 3 h using only 40-60% of the energy required for incineration at 600-1200 °C. Formation of polycyclic aromatic hydrocarbons (PAHs) was not observed, with post-pyrolysis levels well below applicable standards. Plant growth studies showed a higher biomass production of Arabidopsis thaliana and Lactuca sativa (Simpson black-seeded lettuce) (80-900% heavier) in pyrolyzed soils than in contaminated or incinerated soils. Elemental analysis showed that pyrolyzed soils contained more carbon than incinerated soils (1.4-3.2% versus 0.3-0.4%). The stark color differences between pyrolyzed and incinerated soils suggest that the carbonaceous material produced via pyrolysis was dispersed in the form of a layer coating the soil particles. Overall, these results suggest that soil pyrolysis could be a viable thermal treatment to quickly remediate soils impacted by weathered oil while improving soil fertility, potentially enhancing revegetation.

  20. DEVELOPMENT AND VERIFICATION OF A SCREENING MODEL FOR SURFACE SPREADING OF PETROLEUM

    EPA Science Inventory

    Overflows and leakage from aboveground storage tanks and pipelines carrying crude oil and petroleum products occur frequently. The spilled hydrocarbons pose environmental threats by contaminating the surrounding soil and the underlying ground water. Predicting the fate and transp...

  1. Petroleum contaminated soil in Oman: evaluation of bioremediation treatment and potential for reuse in hot asphalt mix concrete.

    PubMed

    Jamrah, Ahmad; Al-Futaisi, Ahmed; Hassan, Hossam; Al-Oraimi, Salem

    2007-01-01

    This paper presents a study that aims at evaluating the leaching characteristics of petroleum contaminated soils as well as their application in hot mix asphalt concrete. Soil samples are environmentally characterized in terms of their total heavy metals and hydrocarbon compounds and leachability. The total petroleum hydrocarbon (TPH) present in the PCS before and after treatment was determined to be 6.8% and 5.3% by dry weight, indicating a reduction of 1% in the TPH of PCS due to the current treatment employed. Results of the total heavy metal analysis on soils indicate that the concentrations of heavy metals are lower when extraction of the soil samples is carried out using hexane in comparison to TCE. The results show that the clean soils present in the vicinity of contaminated sites contain heavy metals in the following decreasing order: nickel (Ni), followed by chromium (Cr), zinc (Zn), copper (Cu), lead (Pb), and vanadium (V). The current treatment practice employed for remediation of the contaminated soil reduces the concentrations of nickel and chromium, but increases the concentrations of all remaining heavy metals.

  2. Assessment of molecular marker compounds as an index of the biodegradation of diesel fuel hydrocarbons in soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voos, G.; Mills, G.; O`Neill, J.

    1996-10-01

    The weathering of petroleum hydrocarbons in the soil environment is the sum of biological, physical and chemical processes. It is often difficult to clearly discern microbial from abiotic contributions to the overall process. This is especially important in assessing the effectiveness of various in-situ bioremediation technologies. We examined molecular marker compounds, including pristane, phytane, diterpenoid hydrocarbons, farnesane and norpristane, and the ratios n-C17/pristane and n-C18/phytane to evaluate their use as an index of biodegradation of diesel fuel in contaminated soil. The study was conducted using microcosms containing 200 g of contaminated soil. Microcosms were destructively sampled on days 0, 1,more » 2, 4, 8, 14, 33 and 64 of the experiment. The soil was analyzed for straight-chained, branched-chained, and alicyclic petroleum hydrocarbons using high-resolution gas chromatography. Results indicate that by day 33 of the experiment, pristane and phytane were present at significantly greater concentrations than their corresponding n-alkanes and the other marker compounds analyzed. There is a strong correlation between the amount of pristane and phytane present in the soil and the amount of total extractable petroleum hydrocarbons (TEPH) measured during the course of the experiment.« less

  3. CO2-efflux measurements for evaluating source zone natural attenuation rates in a petroleum hydrocarbon contaminated aquifer.

    PubMed

    Sihota, Natasha J; Singurindy, Olga; Mayer, K Ulrich

    2011-01-15

    In order to gain regulatory approval for source zone natural attenuation (SZNA) at hydrocarbon-contaminated sites, knowledge regarding the extent of the contamination, its tendency to spread, and its longevity is required. However, reliable quantification of biodegradation rates, an important component of SZNA, remains a challenge. If the rate of CO(2) gas generation associated with contaminant degradation can be determined, it may be used as a proxy for the overall rate of subsurface biodegradation. Here, the CO(2)-efflux at the ground surface is measured using a dynamic closed chamber (DCC) method to evaluate whether this technique can be used to assess the areal extent of the contaminant source zone and the depth-integrated rate of contaminant mineralization. To this end, a field test was conducted at the Bemidji, MN, crude oil spill site. Results indicate that at the Bemidji site the CO(2)-efflux method is able to both delineate the source zone and distinguish between the rates of natural soil respiration and contaminant mineralization. The average CO(2)-efflux associated with contaminant degradation in the source zone is estimated at 2.6 μmol m(-2) s(-1), corresponding to a total petroleum hydrocarbon mineralization rate (expressed as C(10)H(22)) of 3.3 g m(-2) day(-1).

  4. Use of dissolved and vapor‐phase gases to investigate methanogenic degradation of petroleum hydrocarbon contamination in the subsurface

    USGS Publications Warehouse

    Amos, Richard T.; Mayer, K. Ulrich; Bekins, Barbara A.; Delin, Geoffrey N.; Williams, Randi L.

    2005-01-01

    At many sites contaminated with petroleum hydrocarbons, methanogenesis is a significant degradation pathway. Techniques to estimate CH4 production, consumption, and transport processes are needed to understand the geochemical system, provide a complete carbon mass balance, and quantify the hydrocarbon degradation rate. Dissolved and vapor‐phase gas data collected at a petroleum hydrocarbon contaminated site near Bemidji, Minnesota, demonstrate that naturally occurring nonreactive or relatively inert gases such as Ar and N2 can be effectively used to better understand and quantify physical and chemical processes related to methanogenic activity in the subsurface. In the vadose zone, regions of Ar and N2 depletion and enrichment are indicative of methanogenic and methanotrophic zones, and concentration gradients between the regions suggest that reaction‐induced advection can be an important gas transport process. In the saturated zone, dissolved Ar and N2 concentrations are used to quantify degassing driven by methanogenesis and also suggest that attenuation of methane along the flow path, into the downgradient aquifer, is largely controlled by physical processes. Slight but discernable preferential depletion of N2 over Ar, in both the saturated and unsaturated zones near the free‐phase oil, suggests reactivity of N2 and is consistent with other evidence indicating that nitrogen fixation by microbial activity is taking place at this site.

  5. [Effects and Biological Response on Bioremediation of Petroleum Contaminated Soil].

    PubMed

    Yang, Qian; Wu, Man-li; Nie, Mai-qian; Wang, Ting-ting; Zhang, Ming-hui

    2015-05-01

    Bioaugmentation and biostimulation were used to remediate petroleum-contaminated soil which were collected from Zichang city in North of Shaanxi. The optimal bioremediation method was obtained by determining the total petroleum hydrocarbon(TPH) using the infrared spectroscopy. During the bioremediation, number of degrading strains, TPH catabolic genes, and soil microbial community diversity were determined by Most Probable Number (MPN), polymerase chain reaction (PCR) combined agarose electrophoresis, and PCR-denaturing gradient electrophoresis (DGGE). The results in different treatments showed different biodegradation effects towards total petroleum hydrocarbon (TPH). Biostimulation by adding N and P to soils achieved the best degradation effects towards TPH, and the bioaugmentation was achieved by inoculating strain SZ-1 to soils. Further analysis indicated the positive correlation between catabolic genes and TPH removal efficiency. During the bioremediation, the number of TPH and alkanes degrading strains was higher than the number of aromatic degrading strains. The results of PCR-DGGE showed microbial inoculums could enhance microbial community functional diversity. These results contribute to understand the ecologically microbial effects during the bioremediation of petroleum-polluted soil.

  6. Petroleum-degrading microbial numbers in rhizosphere and non-rhizosphere crude oil-contaminated soil.

    PubMed

    Kirkpatrick, W D; White, P M; Wolf, D C; Thoma, G J; Reynolds, C M

    2008-01-01

    Phytoremediation can be a cost-effective and environmentally acceptable method to clean up crude oil-contaminated soils in situ. Our research objective was to determine the effects of nitrogen (N) additions and plant growth on the number of total hydrocarbon (TH)-, alkane-, and polycyclic aromatic hydrocarbon (PAH)-degrading microorganisms in weathered crude oil-contaminated soil. A warm-season grass, sudangrass (Sorghum sudanense (Piper) Stapf), was grown for 7 wk in soil with a total petroleum hydrocarbon (TPH) level of 16.6 g TPH/kg soil. Nitrogen was added based upon TPH-C:added total N (TPH-C:TN) ratios ranging from 44:1 to 11:1. Unvegetated and unamended controls were also evaluated. The TH-, alkane-, and PAH-degrading microbial numbers per gram of dry soil were enumerated from rhizosphere and non-rhizosphere soil for vegetated pots and non-rhizosphere soil populations were enumerated from non-vegetated pots. Total petroleum-degrading microbial numbers were also calculated for each pot. The TH-, alkane-, and PAH-degrading microbial numbers per gram of dry soil in the sudangrass rhizosphere were 3.4, 2.6, and 4.8 times larger, respectively, than those in non-rhizosphere soil across all N rates. The presence of sudangrass resulted in significantly more TH-degrading microorganisms per pot when grown in soil with a TPH-C:TN ratio of 11:1 as compared to the control. Increased plant root growth in a crude oil-contaminated soil and a concomitant increase in petroleum-degrading microbial numbers in the rhizosphere have the potential to enhance phytoremediation.

  7. Distribution of petroleum hydrocarbons and organochlorinated contaminants in marine biota and coastal sediments from the ROPME Sea Area during 2005.

    PubMed

    de Mora, Stephen; Tolosa, Imma; Fowler, Scott W; Villeneuve, Jean-Pierre; Cassi, Roberto; Cattini, Chantal

    2010-12-01

    The composition and spatial distribution of various petroleum hydrocarbons (PHs), comprising both aliphatic and polycyclic aromatic hydrocarbons (PAHs), and selected chlorinated pesticides and PCBs were measured in biota and coastal sediments from seven countries in the Persian Gulf and the Gulf of Oman (Bahrain, Iran, Kuwait, Oman, Qatar, Saudi Arabia and the United Arab Emirates). Evidence of extensive marine contamination with respect to organochlorinated compounds and PHs was not observed. Only one site, namely the BAPCO oil refinery in Bahrain, was considered to be chronically contaminated. Comparison of the results from this survey for Σ DDTs and Σ PCBs in rock oysters from the Gulf of Oman with similar measurements made at the same locations over the past two decades indicates a temporal trend of overall decreasing Σ PCB concentrations in oysters, whereas Σ DDTs levels have little changed during that period. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Genome analysis of crude oil degrading Franconibacter pulveris strain DJ34 revealed its genetic basis for hydrocarbon degradation and survival in oil contaminated environment.

    PubMed

    Pal, Siddhartha; Kundu, Anirban; Banerjee, Tirtha Das; Mohapatra, Balaram; Roy, Ajoy; Manna, Riddha; Sar, Pinaki; Kazy, Sufia K

    2017-10-01

    Franconibacter pulveris strain DJ34, isolated from Duliajan oil fields, Assam, was characterized in terms of its taxonomic, metabolic and genomic properties. The bacterium showed utilization of diverse petroleum hydrocarbons and electron acceptors, metal resistance, and biosurfactant production. The genome (4,856,096bp) of this strain contained different genes related to the degradation of various petroleum hydrocarbons, metal transport and resistance, dissimilatory nitrate, nitrite and sulfite reduction, chemotaxy, biosurfactant synthesis, etc. Genomic comparison with other Franconibacter spp. revealed higher abundance of genes for cell motility, lipid transport and metabolism, transcription and translation in DJ34 genome. Detailed COG analysis provides deeper insights into the genomic potential of this organism for degradation and survival in oil-contaminated complex habitat. This is the first report on ecophysiology and genomic inventory of Franconibacter sp. inhabiting crude oil rich environment, which might be useful for designing the strategy for bioremediation of oil contaminated environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Using dynamic flux chambers to estimate the natural attenuation rates in the subsurface at petroleum contaminated sites.

    PubMed

    Verginelli, Iason; Pecoraro, Roberto; Baciocchi, Renato

    2018-04-01

    In this work, we introduce a screening method for the evaluation of the natural attenuation rates in the subsurface at sites contaminated by petroleum hydrocarbons. The method is based on the combination of the data obtained from standard source characterization with dynamic flux chambers measurements. The natural attenuation rates are calculated as difference between the flux of contaminants estimated with a non-reactive diffusive model starting from the concentrations of the contaminants detected in the source (soil and/or groundwater) and the effective emission rate of the contaminants measured using dynamic flux chambers installed at ground level. The reliability of this approach was tested in a contaminated site characterized by the presence of BTEX in soil and groundwater. Namely, the BTEX emission rates from the subsurface were measured in 4 seasonal campaigns using dynamic flux chambers installed in 14 sampling points. The comparison of measured fluxes with those predicted using a non-reactive diffusive model, starting from the source concentrations, showed that, in line with other recent studies, the modelling approach can overestimate the expected outdoor concentration of petroleum hydrocarbons even up to 4 orders of magnitude. On the other hand, by coupling the measured data with the fluxes estimated with the diffusive non-reactive model, it was possible to perform a mass balance to evaluate the natural attenuation loss rates of petroleum hydrocarbons during the migration from the source to ground level. Based on this comparison, the estimated BTEX loss rates in the test site were up to almost 0.5kg/year/m 2 . These rates are in line with the values reported in the recent literature for natural source zone depletion. In short, the method presented in this work can represent an easy-to-use and cost-effective option that can provide a further line of evidence of natural attenuation rates expected at contaminated sites. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs.

    PubMed

    Chen, Ming; Xu, Piao; Zeng, Guangming; Yang, Chunping; Huang, Danlian; Zhang, Jiachao

    2015-11-01

    Increasing soil pollution problems have caused world-wide concerns. Large numbers of contaminants such as polycyclic aromatic hydrocarbons (PAHs), petroleum and related products, pesticides, chlorophenols and heavy metals enter the soil, posing a huge threat to human health and natural ecosystem. Chemical and physical technologies for soil remediation are either incompetent or too costly. Composting or compost addition can simultaneously increase soil organic matter content and soil fertility besides bioremediation, and thus is believed to be one of the most cost-effective methods for soil remediation. This paper reviews the application of composting/compost for soil bioremediation, and further provides a critical view on the effects of this technology on microbial aspects in contaminated soils. This review also discusses the future research needs for contaminated soils. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Advances in applications of rhamnolipids biosurfactant in environmental remediation: A review.

    PubMed

    Liu, Guansheng; Zhong, Hua; Yang, Xin; Liu, Yang; Shao, Binbin; Liu, Zhifeng

    2018-04-01

    The objective of this review is to provide a comprehensive overview of the advances in the applications of rhamnolipids biosurfactants in soil and ground water remediation for removal of petroleum hydrocarbon and heavy metal contaminants. The properties of rhamnolipids associated with the contaminant removal, that is, solubilization, emulsification, dispersion, foaming, wetting, complexation, and the ability to modify bacterial cell surface properties, were reviewed in the first place. Then current remediation technologies with integration of rhamnolipid were summarized, and the effects and mechanisms for rhamnolipid to facilitate contaminant removal for these technologies were discussed. Finally rhamnolipid-based methods for remediation of the sites co-contaminated by petroleum hydrocarbons and heavy metals were presented and discussed. The review is expected to enhance our understanding on environmental aspects of rhamnolipid and provide some important information to guide the extending use of this fascinating chemical in remediation applications. © 2017 Wiley Periodicals, Inc.

  12. Analyzing tree cores to detect petroleum hydrocarbon-contaminated groundwater at a former landfill site in the community of Happy Valley-Goose Bay, eastern Canadian subarctic.

    PubMed

    Fonkwe, Merline L D; Trapp, Stefan

    2016-08-01

    This research examines the feasibility of analyzing tree cores to detect benzene, toluene, ethylbenzene, and m, p, o-xylene (BTEX) compounds and methyl tertiary-butyl ether (MTBE) in groundwater in eastern Canada subarctic environments, using a former landfill site in the remote community of Happy Valley-Goose Bay, Labrador. Petroleum hydrocarbon contamination at the landfill site is the result of environmentally unsound pre-1990s disposal of households and industrial solid wastes. Tree cores were taken from trembling aspen, black spruce, and white birch and analyzed by headspace-gas chromatography-mass spectrometry. BTEX compounds were detected in tree cores, corroborating known groundwater contamination. A zone of anomalously high concentrations of total BTEX constituents was identified and recommended for monitoring by groundwater wells. Tree cores collected outside the landfill site at a local control area suggest the migration of contaminants off-site. Tree species exhibit different concentrations of BTEX constituents, indicating selective uptake and accumulation. Toluene in wood exhibited the highest concentrations, which may also be due to endogenous production. Meanwhile, MTBE was not found in the tree cores and is considered to be absent in the groundwater. The results demonstrate that tree-core analysis can be useful for detecting anomalous concentrations of petroleum hydrocarbons, such as BTEX compounds, in subarctic sites with shallow unconfined aquifers and permeable soils. This method can therefore aid in the proper management of contamination during landfill operations and after site closures.

  13. Recent advances in petroleum microbiology.

    PubMed

    Van Hamme, Jonathan D; Singh, Ajay; Ward, Owen P

    2003-12-01

    Recent advances in molecular biology have extended our understanding of the metabolic processes related to microbial transformation of petroleum hydrocarbons. The physiological responses of microorganisms to the presence of hydrocarbons, including cell surface alterations and adaptive mechanisms for uptake and efflux of these substrates, have been characterized. New molecular techniques have enhanced our ability to investigate the dynamics of microbial communities in petroleum-impacted ecosystems. By establishing conditions which maximize rates and extents of microbial growth, hydrocarbon access, and transformation, highly accelerated and bioreactor-based petroleum waste degradation processes have been implemented. Biofilters capable of removing and biodegrading volatile petroleum contaminants in air streams with short substrate-microbe contact times (<60 s) are being used effectively. Microbes are being injected into partially spent petroleum reservoirs to enhance oil recovery. However, these microbial processes have not exhibited consistent and effective performance, primarily because of our inability to control conditions in the subsurface environment. Microbes may be exploited to break stable oilfield emulsions to produce pipeline quality oil. There is interest in replacing physical oil desulfurization processes with biodesulfurization methods through promotion of selective sulfur removal without degradation of associated carbon moieties. However, since microbes require an environment containing some water, a two-phase oil-water system must be established to optimize contact between the microbes and the hydrocarbon, and such an emulsion is not easily created with viscous crude oil. This challenge may be circumvented by application of the technology to more refined gasoline and diesel substrates, where aqueous-hydrocarbon emulsions are more easily generated. Molecular approaches are being used to broaden the substrate specificity and increase the rates and extents of desulfurization. Bacterial processes are being commercialized for removal of H(2)S and sulfoxides from petrochemical waste streams. Microbes also have potential for use in removal of nitrogen from crude oil leading to reduced nitric oxide emissions provided that technical problems similar to those experienced in biodesulfurization can be solved. Enzymes are being exploited to produce added-value products from petroleum substrates, and bacterial biosensors are being used to analyze petroleum-contaminated environments.

  14. Recent Advances in Petroleum Microbiology

    PubMed Central

    Van Hamme, Jonathan D.; Singh, Ajay; Ward, Owen P.

    2003-01-01

    Recent advances in molecular biology have extended our understanding of the metabolic processes related to microbial transformation of petroleum hydrocarbons. The physiological responses of microorganisms to the presence of hydrocarbons, including cell surface alterations and adaptive mechanisms for uptake and efflux of these substrates, have been characterized. New molecular techniques have enhanced our ability to investigate the dynamics of microbial communities in petroleum-impacted ecosystems. By establishing conditions which maximize rates and extents of microbial growth, hydrocarbon access, and transformation, highly accelerated and bioreactor-based petroleum waste degradation processes have been implemented. Biofilters capable of removing and biodegrading volatile petroleum contaminants in air streams with short substrate-microbe contact times (<60 s) are being used effectively. Microbes are being injected into partially spent petroleum reservoirs to enhance oil recovery. However, these microbial processes have not exhibited consistent and effective performance, primarily because of our inability to control conditions in the subsurface environment. Microbes may be exploited to break stable oilfield emulsions to produce pipeline quality oil. There is interest in replacing physical oil desulfurization processes with biodesulfurization methods through promotion of selective sulfur removal without degradation of associated carbon moieties. However, since microbes require an environment containing some water, a two-phase oil-water system must be established to optimize contact between the microbes and the hydrocarbon, and such an emulsion is not easily created with viscous crude oil. This challenge may be circumvented by application of the technology to more refined gasoline and diesel substrates, where aqueous-hydrocarbon emulsions are more easily generated. Molecular approaches are being used to broaden the substrate specificity and increase the rates and extents of desulfurization. Bacterial processes are being commercialized for removal of H2S and sulfoxides from petrochemical waste streams. Microbes also have potential for use in removal of nitrogen from crude oil leading to reduced nitric oxide emissions provided that technical problems similar to those experienced in biodesulfurization can be solved. Enzymes are being exploited to produce added-value products from petroleum substrates, and bacterial biosensors are being used to analyze petroleum-contaminated environments. PMID:14665675

  15. High-throughput metagenomic analysis of petroleum-contaminated soil microbiome reveals the versatility in xenobiotic aromatics metabolism.

    PubMed

    Bao, Yun-Juan; Xu, Zixiang; Li, Yang; Yao, Zhi; Sun, Jibin; Song, Hui

    2017-06-01

    The soil with petroleum contamination is one of the most studied soil ecosystems due to its rich microorganisms for hydrocarbon degradation and broad applications in bioremediation. However, our understanding of the genomic properties and functional traits of the soil microbiome is limited. In this study, we used high-throughput metagenomic sequencing to comprehensively study the microbial community from petroleum-contaminated soils near Tianjin Dagang oilfield in eastern China. The analysis reveals that the soil metagenome is characterized by high level of community diversity and metabolic versatility. The metageome community is predominated by γ-Proteobacteria and α-Proteobacteria, which are key players for petroleum hydrocarbon degradation. The functional study demonstrates over-represented enzyme groups and pathways involved in degradation of a broad set of xenobiotic aromatic compounds, including toluene, xylene, chlorobenzoate, aminobenzoate, DDT, methylnaphthalene, and bisphenol. A composite metabolic network is proposed for the identified pathways, thus consolidating our identification of the pathways. The overall data demonstrated the great potential of the studied soil microbiome in the xenobiotic aromatics degradation. The results not only establish a rich reservoir for novel enzyme discovery but also provide putative applications in bioremediation. Copyright © 2016. Published by Elsevier B.V.

  16. Petroleum hydrocarbon biodegradation under seasonal freeze-thaw soil temperature regimes in contaminated soils from a sub-Arctic site.

    PubMed

    Chang, Wonjae; Klemm, Sara; Beaulieu, Chantale; Hawari, Jalal; Whyte, Lyle; Ghoshal, Subhasis

    2011-02-01

    Several studies have shown that biostimulation in ex situ systems such as landfarms and biopiles can facilitate remediation of petroleum hydrocarbon contaminated soils at sub-Arctic sites during summers when temperatures are above freezing. In this study, we examine the biodegradation of semivolatile (F2: C10-C16) and nonvolatile (F3: C16-C34) petroleum hydrocarbons and microbial respiration and population dynamics at post- and presummer temperatures ranging from -5 to 14 °C. The studies were conducted in pilot-scale tanks with soils obtained from a historically contaminated sub-Arctic site in Resolution Island (RI), Canada. In aerobic, nutrient-amended, unsaturated soils, the F2 hydrocarbons decreased by 32% during the seasonal freeze-thaw phase where soils were cooled from 2 to -5 °C at a freezing rate of -0.12 °C d(-1) and then thawed from -5 to 4 °C at a thawing rate of +0.16 °C d(-1). In the unamended (control) tank, the F2 fraction only decreased by 14% during the same period. Biodegradation of individual hydrocarbon compounds in the nutrient-amended soils was also confirmed by comparing their abundance over time to that of the conserved diesel biomarker, bicyclic sesquiterpanes (BS). During this period, microbial respiration was observed, even at subzero temperatures when unfrozen liquid water was detected during the freeze-thaw period. An increase in culturable heterotrophs and 16S rDNA copy numbers was noted during the freezing phase, and the (14)C-hexadecane mineralization in soil samples obtained from the nutrient-amended tank steadily increased. Hydrocarbon degrading bacterial populations identified as Corynebacterineae- and Alkanindiges-related strains emerged during the freezing and thawing phases, respectively, indicating there were temperature-based microbial community shifts.

  17. PHOTO-INDUCED TOXICITY OF PAHS TO HYALELLA AZTECA AND CHIRONOMUS TENTANS: EFFECTS OF MIXTURES AND BEHAVIOR. (R823873)

    EPA Science Inventory

    In the aquatic environment, polycyclic aromatic hydrocarbon (PAH) contamination can result from several anthropogenic sources such as petroleum runoff, industrial processes, and petroleum spills. When ultraviolet light (UV) is present at sufficient intensity, the acute toxicity o...

  18. Assessment of soil-gas and soil contamination at the Old Metal Workshop Hog Farm Area, Fort Gordon, Georgia, 2009-2010

    USGS Publications Warehouse

    Caldwell, Andral W.; Falls, W. Fred; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    Soil gas and soil were assessed for contaminants at the Old Metal Workshop Hog Farm Area at Fort Gordon, Georgia, from October 2009 to September 2010. The assessment included delineating organic contaminants present in soil-gas and inorganic contaminants present in soil samples collected from the area estimated to be the Old Metal Workshop Hog Farm Area. This assessment was conducted to provide environmental contamination data to Fort Gordon personnel pursuant to requirements for the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. All soil-gas samplers contained total petroleum hydrocarbons above the method detection level. The highest total petroleum hydrocarbon mass detected was 121.32 micrograms in a soil-gas sampler from the western corner of the Old Metal Workshop Hog Farm Area along Sawmill Road. The highest undecane mass detected was 73.28 micrograms at the same location as the highest total petroleum hydrocarbon mass. Some soil-gas samplers detected toluene mass greater than the method detection level of 0.02 microgram; the highest detection of toluene mass was 0.07 microgram. Some soil-gas samplers were installed in areas of high-contaminant mass to assess for explosives and chemical agents. Explosives or chemical agents were not detected above their respective method detection levels for all soil-gas samplers installed. Inorganic concentrations in five soil samples collected did not exceed regional screening levels established by the U.S. Environmental Protection Agency. Barium concentrations, however, were up to eight times higher than the background concentrations reported in similar Coastal Plain sediments of South Carolina.

  19. Bioremediation of petroleum-contaminated soil using aged refuse from landfills.

    PubMed

    Liu, Qingmei; Li, Qibin; Wang, Ning; Liu, Dan; Zan, Li; Chang, Le; Gou, Xuemei; Wang, Peijin

    2018-05-10

    This study explored the effects and mechanisms of petroleum-contaminated soil bioremediation using aged refuse (AR) from landfills. Three treatments of petroleum-contaminated soil (47.28 mg·g -1 ) amended with AR, sterilized aged refuse (SAR) and petroleum-contaminated soil only (as a control) were tested. During 98 days of incubation, changes in soil physicochemical properties, residual total petroleum hydrocarbon (TPH), biodegradation kinetics, enzyme activities and the microbial community were investigated. The results demonstrated that AR was an effective soil conditioner and biostimulation agent that could comprehensively improve the quality of petroleum-contaminated soil and promote microbial growth, with an 74.64% TPH removal rate, 22.36 day half-life for SAR treatment, compared with the control (half-life: 138.63 days; TPH removal rate: 22.40%). In addition, the petroleum-degrading bacteria isolation results demonstrated that AR was also a petroleum-degrading microbial agent containing abundant microorganisms. AR addition significantly improved both the biotic and abiotic conditions of petroleum-contaminated soil without other additives. The cooperation of conditioner addition, biostimulation and bioaugmentation in AR treatment led to better bioremediation effects (half-life: 13.86 days; TPH removal rate: 89.83%). In conclusion, AR amendment is a cost-effective, easy-to-use method facilitating in situ large-scale application while simultaneously recycling huge amounts of AR from landfills. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Microbiological characteristics of multi-media PRB reactor in the bioremediation of groundwater contaminated by petroleum hydrocarbons.

    PubMed

    Liu, Hong; Zhang, Lanying; Deng, Haijing; Liu, Na; Liu, Cuizhu

    2011-10-01

    A multi-media bio-PRB reactor was designed to treat groundwater contaminated with petroleum hydrocarbons. After a 208-day bioremediation, combined with the total petroleum hydrocarbons content in the groundwater flowed through the reactor, microbiological characteristics of the PRB reactor including microbes immobilized and its dehydrogenase activity were investigated. TPH was significantly reduced by as much as 65% in the back of the second media layer, whereas in the third layer, the TPH content reached lower than 1 mg l⁻¹. For microbes immobilized on the media, the variations with depth in different media were significantly the same and the regularity was obvious in the forepart of the media, which increased with depth at first and then reduced gradually, while in the back-end, the microbes almost did not have any variations with depth but decreased with the distance. The dehydrogenase activity varied from 2.98 to 16.16 mg TF L⁻¹ h⁻¹ and its distribution illustrated a similar trend with numbers of microbial cell, therefore, the noticeable correlation was found between them.

  1. The Amoco CadizOil Spill: Evolution of Petroleum Hydrocarbons in the Ile Grande Salt Marshes (Brittany) after a 13-year Period

    NASA Astrophysics Data System (ADS)

    Mille, G.; Munoz, D.; Jacquot, F.; Rivet, L.; Bertrand, J.-C.

    1998-11-01

    The Ile Grande salt marshes (Brittany coast) were polluted by petroleum hydrocarbons after theAmoco Cadizgrounding in 1978. Thirteen years after the oil spill, sediments were analysed for residual hydrocarbons in order to monitor the aliphatic and aromatic hydrocarbon signatures and to assess both qualitatively and quantitatively the changes in composition of theAmoco Cadizoil. Six stations were selected in the Ile Grande salt marshes and sediments were sampled to a depth of 20 cm. For each sample, the hydrocarbon compositions were determined for alkanes, alkenes, aromatics and biomarkers (terpanes, steranes, diasteranes). Hydrocarbon levels drastically decreased between 1978 and 1991, but to different extents according to the initial degree of contamination. In 1991, hydrocarbon concentrations never exceeded 1·7 g kg-1sediment dry weight, and in most cases were less than 0·1 g kg-1sediment dry weight. Even though petroleum hydrocarbons are still present, natural hydrocarbons were also detected at several stations. Changes in some biomarker distributions were observed 13 years after the oil spill. Nevertheless, most of the biomarkers are very stable in the salt marsh environment and remain unaltered even after a 13-year period.

  2. Characteristics of petroleum contaminants and their distribution in Lake Taihu, China.

    PubMed

    Guo, Jixiang; Fang, Jia; Cao, Jingjing

    2012-08-31

    Taihu Lake is a typical plain eutrophic shallow lake. With rapidly economic development of the lake area, the petroleum products and oil wastewater produced in various processes have been inevitably discharged into Taihu Lake. As the major fresh water resource in the economically developed region of Yangtze River Delta, the water quality and environmental condition of Taihu Lake have the direct bearing on the natural environment and sustainable development of economy in this region. For this reason we carried out the study to explore the composition, distribution characteristics and sources of petroleum contaminants in Taihu Lake. The aim of this study was to provide the basis for standard management and pollution control of the Taihu Lake environment. The result showed that water samples from near industrial locations were of relatively higher petroleum contaminants concentrations. The oil pollutants concentrations in different areas of Lake Taihu ranged from 0.106 mg/L to 1.168 mg/L, and the sequence of total contents distribution characteristics of petroleum pollutants from high to low in different regions of Taihu Lake was: "Dapu", "Xiaomeikou", "Zhushan Bay", "Lake center", "Qidu". The results showed that total concentrations of n-alkanes and PAHs ranged from 0.045 to 0.281 mg/L and from 0.011 to 0.034 mg/L respectively. In the same region, the concentrations of hydrocarbon pollutants in the surface and bottom of the lake were higher than that in the middle. This paper reached a conclusion that the petroleum contaminants in Taihu Lake mainly derived from petroleum pollution caused by human activities as indicated by OEP, bimodal distribution, CPI, Pr/Ph ratio, the LMW/HMW ratio and other evaluation indices for sources of n-alkanes and polycyclic aromatic hydrocarbons (PAHs).

  3. Management of Bottom Sediments Containing Toxic Substances: Proceedings of the U.S. Japan Experts Meeting (7th) held at New York City on 2-4 November 1981

    DTIC Science & Technology

    1983-10-01

    and man- made perturbations. For instance, mollusks experimentally exposed to an environment contaminated by petroleum hydrocarbons developed depressed...poten- tials. METABOLIC ENZYMES As indicated above for petroleum hydrocarbons and excess heat, the EC drops rapidly under certain chemical or...analyzed for chemical content to provide an indication of potential for bioaccumulation . On September 7, 1977, this bioassay test procedure became mandatory

  4. Bioaccumulation of hydrocarbons derived from terrestrial and anthropogenic sources in the Asian clam, Potamocorbula amurensis, in San Francisco Bay estuary

    USGS Publications Warehouse

    Pereira, Wilfred E.; Hostettler, Frances D.; Rapp, John B.

    1992-01-01

    An assessment was made in Suisun Bay, California, of the distributions of hydrocarbons in estuarine bed and suspended sediments and in the recently introduced asian clam, Potamocorbula amurensis. Sediments and clams were contaminated with hydrocarbons derived from petrogenic and pyrogenic sources. Distributions of alkanes and of hopane and sterane biomarkers in sediments and clams were similar, indicating that petroleum hydrocarbons associated with sediments are bioavailable to Potamocorbula amurensis. Polycyclic aromatic hydrocarbons in the sediments and clams were derived mainly from combustion sources. Potamocorbula amurensis is therefore a useful bioindicator of hydrocarbon contamination, and may be used as a biomonitor of hydrocarbon pollution in San Francisco Bay.

  5. Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments

    PubMed Central

    Fathepure, Babu Z.

    2014-01-01

    Many hypersaline environments are often contaminated with petroleum compounds. Among these, oil and natural gas production sites all over the world and hundreds of kilometers of coastlines in the more arid regions of Gulf countries are of major concern due to the extent and magnitude of contamination. Because conventional microbiological processes do not function well at elevated salinities, bioremediation of hypersaline environments can only be accomplished using high salt-tolerant microorganisms capable of degrading petroleum compounds. In the last two decades, there have been many reports on the biodegradation of hydrocarbons in moderate to high salinity environments. Numerous microorganisms belonging to the domain Bacteria and Archaea have been isolated and their phylogeny and metabolic capacity to degrade a variety of aliphatic and aromatic hydrocarbons in varying salinities have been demonstrated. This article focuses on our growing understanding of bacteria and archaea responsible for the degradation of hydrocarbons under aerobic conditions in moderate to high salinity conditions. Even though organisms belonging to various genera have been shown to degrade hydrocarbons, members of the genera Halomonas Alcanivorax, Marinobacter, Haloferax, Haloarcula, and Halobacterium dominate the published literature. Despite rapid advances in understanding microbial taxa that degrade hydrocarbons under aerobic conditions, not much is known about organisms that carry out similar processes in anaerobic conditions. Also, information on molecular mechanisms and pathways of hydrocarbon degradation in high salinity is scarce and only recently there have been a few reports describing genes, enzymes and breakdown steps for some hydrocarbons. These limited studies have clearly revealed that degradation of oxygenated and non-oxygenated hydrocarbons by halophilic and halotolerant microorganisms occur by pathways similar to those found in non-halophiles. PMID:24795705

  6. BIOREMEDIATION OF PETROLEUM HYDROCARBON CONTAMINANTS IN MARINE HABITATS

    EPA Science Inventory

    Bioremediation is being increasingly seen as an effective environmentally benign treatment for shorelines contaminated as a result of marine oil spills. Despite a relatively long history of research on oil-spill bioremediation, it remains an essentially empirical technology and m...

  7. Characterization Of Contaminant Migration Potential In The Vicinity Of An In-Place Sand Cap

    EPA Science Inventory

    This study characterized the chemical transport potential of polycyclic aromatic hydrocarbons (PAHs) and total petroleum hydrocarbons (TPHs) in the vicinity of a sand cap placed in the nearshore zone of a tidal marine embayment. Groundwater seepage was investigated along the per...

  8. PETROLEUM HYDROCARBONS IN THE NORTHERN PUGET SOUND AREA. A PILOT DESIGN STUDY

    EPA Science Inventory

    Hydrocarbon baseline data are needed to assess the potential impact of oil contamination from increased tanker traffic in the Strait of Juan de Fuca. Initial studies were directed to intertidal sediments, mussels and snails from two physically similar areas: Port Angeles, WA and ...

  9. Risk assessment of petroleum-contaminated soil using soil enzyme activities and genotoxicity to Vicia faba.

    PubMed

    Ma, Jun; Shen, Jinglong; Liu, Qingxing; Fang, Fang; Cai, Hongsheng; Guo, Changhong

    2014-05-01

    Pollution caused by petroleum is one of the most serious problems worldwide. To better understand the toxic effects of petroleum-contaminated soil on the microflora and phytocommunity, we conducted a comprehensive field study on toxic effects of petroleum contaminated soil collected from the city of Daqing, an oil producing region of China. Urease, protease, invertase, and dehydrogenase activity were significantly reduced in microflora exposed to contaminated soils compared to the controls, whereas polyphenol oxidase activity was significantly increased (P < 0.05). Soil pH, electrical conductivity, and organic matter content were correlated with total petroleum hydrocarbons (TPHs) and a correlation (P < 0.01) existed between the C/N ratio and TPHs. Protease, invertase and catalase were correlated with TPHs. The Vicia faba micronucleus (MN) test, chromosome aberrant (CA) analyses, and the mitotic index (MI) were used to detect genotoxicity of water extracts of the soil. Petroleum-contaminated samples indicated serious genotoxicity to plants, including decreased index level of MI, increased frequency of MN and CA. The combination of enzyme activities and genotoxicity test via Vicia faba can be used as an important indicator for assessing the impact of TPH on soil ecosystem.

  10. USING PLANTS TO REMEDIATE PETROLEUM-CONTAMINATED SOIL: PROJECT CONTINUATION

    EPA Science Inventory

    Crude oil contamination of soil often occurs adjacent to wellheads and storage facilities. Phytoremediation is a promising tool that can be used to remediate such sites and uses plants and agronomic techniques to enhance biodegradation of hydrocarbons. This project has conduct...

  11. OBSERVATIONS FROM CONTAMINANT PLUMES ON LONG ISLAND

    EPA Science Inventory

    The aquifers of Long Island serve as a sole source drinking water supply for the entire
    local population of about three million people. Where the shallow Upper Glacial Aquifer has been contaminated with petroleum hydrocarbons and methyl tert-butyl ether (MTBE), intensive site ...

  12. Validating potential toxicity assays to assess petroleum hydrocarbon toxicity in polar soil.

    PubMed

    Harvey, Alexis Nadine; Snape, Ian; Siciliano, Steven Douglas

    2012-02-01

    Potential microbial activities are commonly used to assess soil toxicity of petroleum hydrocarbons (PHC) and are assumed to be a surrogate for microbial activity within the soil ecosystem. However, this assumption needs to be evaluated for frozen soil, in which microbial activity is limited by liquid water (θ(liquid)). Influence of θ(liquid) on in situ toxicity was evaluated and compared to the toxicity endpoints of potential microbial activities using soil from an aged diesel fuel spill at Casey Station, East Antarctica. To determine in situ toxicity, gross mineralization and nitrification rates were determined by the stable isotope dilution technique. Petroleum hydrocarbon-contaminated soil (0-8,000 mg kg(-1)), packed at bulk densities of 1.4, 1.7, and 2.0 g cm(-3) to manipulate liquid water content, was incubated at -5°C for one, two, and three months. Although θ(liquid) did not have a significant effect on gross mineralization or nitrification, gross nitrification was sensitive to PHC contamination, with toxicity decreasing over time. In contrast, gross mineralization was not sensitive to PHC contamination. Toxic response of gross nitrification was comparable to potential nitrification activity (PNA) with similar EC25 (effective concentration causing a 25% effect in the test population) values determined by both measurement endpoints (400 mg kg(-1) for gross nitrification compared to 200 mg kg(-1) for PNA), indicating that potential microbial activity assays are good surrogates for in situ toxicity of PHC contamination in polar regions. Copyright © 2011 SETAC.

  13. GC estimation of organic hydrocarbons that threaten shallow Quaternary sandy aquifer Northwestern Gulf of Suez, Egypt.

    PubMed

    Zawrah, M F; Ebiad, M A; Rashad, A M; El-Sayed, E; Snousy, Moustafa Gamal; Tantawy, M A

    2014-11-01

    Soil and groundwater contamination is one of the important environmental problems at petroleum-related sites, which causes critical environmental and health defects. Severe petroleum hydrocarbon contamination from coastal refinery plant was detected in a shallow Quaternary sandy aquifer is bordered by Gulf in the Northwestern Gulf of Suez, Egypt. The overall objective of this investigation is to estimate the organic hydrocarbons in shallow sandy aquifers, released from continuous major point-source of pollution over a long period of time (91 years ago). This oil refinery contamination resulted mainly in the improper disposal of hydrocarbons and produced water releases caused by equipment failures, vandalism, and accidents that caused direct groundwater pollution or discharge into the gulf. In order to determine the fate of hydrocarbons, detailed field investigations were made to provide intensive deep profile information. Eight composite randomly sediment samples from a test plot were selected for demonstration. The tested plot was 50 m long × 50 m wide × 70 cm deep. Sediment samples were collected using an American auger around the point 29° 57' 33″ N and 32° 30' 40″ E in 2012 and covered an area of 2,500 m(2) which represents nearly 1/15 of total plant area (the total area of the plant is approximately 3.250 km(2)). The detected total petroleum hydrocarbons (TPHs) were 2.44, 2.62, 4.54, 4.78, 2.83, 3.22, 2.56, and 3.13 wt%, respectively. TPH was calculated by differences in weight and subjected to gas chromatography (GC). Hydrocarbons were analyzed on Hewlett-Packard (HP-7890 plus) gas chromatograph equipped with a flame ionization detector (FID). The percentage of paraffine of the investigated TPH samples was 7.33, 7.24, 7.58, 8.25, 10.25, 9.89, 14.77, and 17.53 wt%, respectively.

  14. Investigation of ethyl lactate as a green solvent for desorption of total petroleum hydrocarbons (TPH) from contaminated soil.

    PubMed

    Jalilian Ahmadkalaei, Seyedeh Pegah; Gan, Suyin; Ng, Hoon Kiat; Abdul Talib, Suhaimi

    2016-11-01

    Treatment of oil-contaminated soil is a major environmental concern worldwide. The aim of this study is to examine the applicability of a green solvent, ethyl lactate (EL), in desorption of diesel aliphatic fraction within total petroleum hydrocarbons (TPH) in contaminated soil and to determine the associated desorption kinetics. Batch desorption experiments were carried out on artificially contaminated soil at different EL solvent percentages (%). In analysing the diesel range of TPH, TPH was divided into three fractions and the effect of solvent extraction on each fraction was examined. The experimental results demonstrated that EL has a high and fast desorbing power. Pseudo-second order rate equation described the experimental desorption kinetics data well with correlation coefficient values, R 2 , between 0.9219 and 0.9999. The effects of EL percentage, initial contamination level of soil and liquid to solid ratio (L/S (v/w)) on initial desorption rate have also been evaluated. The effective desorption performance of ethyl lactate shows its potential as a removal agent for remediation of TPH-contaminated soil worldwide.

  15. A TOXICITY ASSESSMENT APPROACH FOR EVALUATION OF IN-SITU BIOREMEDIATION OF PAH CONTAMINATED SEDIMENTS

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons (PAHs) represent a group of organic contaminants known for their prevalence and persistence in petroleum-impacted environment such as groundwater, soils and sediments. Many high molecular weight PAHs are suspected carcinogens and the existence of...

  16. DEMONSTRATION BULLETIN: IN SITU STEAM ENHANCED RECOVERY PROCESS - HUGHES ENVIRONMENTAL SYSTEMS, INC.

    EPA Science Inventory

    The Steam Enhanced Recovery Process (SERP) is designed to remove volatile compounds such as halogenated solvents and petroleum hydrocarbons, and semi-volatile compounds from contaminated soils in situ. The vapor pressures of most contaminants will increase by the addition of ste...

  17. Influence of biochar and compost on phytoremediation of oil-contaminated soil.

    PubMed

    Saum, Lindsey; Jiménez, Macario Bacilio; Crowley, David

    2018-01-02

    The use of pyrolyzed carbon, biochar, as a soil amendment is of potential interest for improving phytoremediation of soil that has been contaminated by petroleum hydrocarbons. To examine this question, the research reported here compared the effects of biochar, plants (mesquite tree seedlings), compost and combinations of these treatments on the rate of biodegradation of oil in a contaminated soil and the population size of oil-degrading bacteria. The presence of mesquite plants significantly enhanced oil degradation in all treatments except when biochar was used as the sole amendment without compost. The greatest extent of oil degradation was achieved in soil planted with mesquite and amended with compost (44% of the light hydrocarbon fraction). Most probable number assays showed that biochar generally reduced the population size of the oil-degrading community. The results of this study suggest that biochar addition to petroleum-contaminated soils does not improve the rate of bioremediation. In contrast, the use of plants and compost additions to soil are confirmed as important bioremediation technologies.

  18. Biological remediation of oil contaminated soil with earthworms Eisenia andrei

    NASA Astrophysics Data System (ADS)

    Chachina, S. B.; Voronkova, N. A.; Baklanova, O. N.

    2017-08-01

    The study was performed on the bioremediation efficiency of the soil contaminated with oil (20 to 100 g/kg), petroleum (20 to 60 g/kg) and diesel fuel (20 to 40 g/kg) with the help of earthworms E. andrei in the presence of bacteria Pseudomonas, nitrogen fixing bacteria Azotobacter and Clostridium, yeasts Saccharomyces, fungi Aspergillus and Penicillium, as well as Actinomycetales, all being components of biopreparation Baykal-EM. It was demonstrated that in oil-contaminated soil, the content of hydrocarbons decreased by 95-97% after 22 weeks in the presence of worms and bacteria. In petroleum-contaminated soil the content of hydrocarbons decreased by 99% after 22 weeks. The presence of the diesel fuel in the amount of 40 g per 1 kg soil had an acute toxic effect and caused the death of 50 % earthworm species in 14 days. Bacteria introduction enhanced the toxic effect of the diesel fuel and resulted in the death of 60 % earthworms after 7 days.

  19. Assessment of heavy metal and petroleum hydrocarbon contamination in the Sultanate of Oman with emphasis on harbours, marinas, terminals and ports.

    PubMed

    Jupp, Barry P; Fowler, Scott W; Dobretsov, Sergey; van der Wiele, Henk; Al-Ghafri, Ahmed

    2017-08-15

    The assessment here includes data on levels of contaminants (petroleum hydrocarbons and heavy metals) in sediments and biomonitor organisms, including the eulittoral rock oyster Saccostrea cucullata and subtidal biomonitors, the barnacle Balanus trigonus and the antipatharian coral Antipathes sp., at harbours, marinas, terminals and large ports along the coastline of Oman. TBT levels in harbour and port sediments up to a maximum of 100ppb TBT dry weight are highlighted. Oysters contained concentrations up to 367ppm mg TPH/kg dry weight. The maximum levels of Cd, Cu, Pb and Zn were found in the subtidal sediments and barnacles at the oil tanker loading Single Buoy Mooring stations in Mina Al Fahal. In general, the levels of most of the contaminants analysed are at low to moderate concentrations compared to those in highly contaminated sites such as shipyards and dry docks, but continued monitoring is recommended especially during any dredging campaigns. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Proceedings of Conference on Hydrocarbon Contaminated Soils (3rd) Held in Amherst, Massachusetts on September 1989 (Petroleum Contaminated Soils. Volume 3)

    DTIC Science & Technology

    1990-10-01

    Center Amherst, MA 01003-0081 REPORT DATE: October 1 , 1990 TYPE OF REPORT: Final Proceedings - PREPARED FOR: U.S. ARMY MEDICAL RESEARCH AND...Environmental Health Sciences Program University of Massachusetts, Amherst 1 * LEWIS PUBLISHERS I Library of Congress Cataloging-in-Publication Data...and 30, 1987"-V. 1 , pref. "The proceedings of the Third National Conference on Petroleum Contami- nated Soils held at the University of Massachusetts

  1. Soil contamination by petroleum products. Southern Algerian case

    NASA Astrophysics Data System (ADS)

    Belabbas, Amina; Boutoutaou, Djamel; Segaï, Sofiane; Segni, Ladjel

    2016-07-01

    Contamination of soil by petroleum products is a current problem in several countries in the world. In Algeria, this negative phenomenon is highly remarked in Saharan region. Numerous studies at the University of Ouargla that we will review in this paper, have tried to find an effective solution to eliminate the hydrocarbons from the soil by the technique of "biodegradation" which is a natural process based on microorganisms such as Bacillus megaterium and Pseudomonas aeruginosa. Presence of aboriginal strain Bacillus megaterium in the soil samples with different ages of contamination has shown a strong degradation of pollutants. This strain chosen for its short time of generation which is performing as seen the best yields of elimination of hydrocarbons assessed at 98 % biostimule by biosurfactant, also 98% on a sample wich bioaugmente by urea, and 86 % of the sample which biostimule by nutrient solution. The rate of biodegradation of the contaminated soil by crude oil using the strain Pseudomonas aeruginosa is higher in the presence of biosurfactant 53 % that in his absence 35 %. Another elimination technique wich is washing the contaminated soil's sample by centrifugation in the presence of biosurfactant where The rate of hydrocarbons mobilized after washing soil by centrifugation is of 50 % and 76 % but without centrifugation it was of 46% to 79%. Those processes have great capacity in the remobilization of hydrocarbons and acceleration of their biodegradation; thus, they deserve to be further developed in order to prevent environmental degradation in the region of Ouargla.

  2. Comparison of trees and grasses for rhizoremediation of petroleum hydrocarbons.

    PubMed

    Cook, Rachel L; Hesterberg, Dean

    2013-01-01

    Rhizoremediation of petroleum contaminants is a phytoremediation process that depends on interactions among plants, microbes, and soils. Trees and grasses are commonly used for phytoremediation, with trees typically being chosen for remediation of BTEX while grasses are more commonly used for remediation of PAHs and total petroleum hydrocarbons. The objective of this review was to compare the effectiveness of trees and grasses for rhizoremediation of hydrocarbons and address the advantages of each vegetation type. Grasses were more heavily represented in the literature and therefore demonstrated a wider range of effectiveness. However, the greater biomass and depth of tree roots may have greater potential for promoting environmental conditions that can improve rhizoremediation, such as increased metabolizable organic carbon, oxygen, and water. Overall, we found little difference between grasses and trees with respect to average reduction of hydrocarbons for studies that compared planted treatments with a control. Additional detailed investigations into plant attributes that most influence hydrocarbon degradation rates should provide data needed to determine the potential for rhizoremediation with trees or grasses for a given site and identify which plant characteristics are most important.

  3. Reclamation of petrol oil contaminated soil by rhamnolipids producing PGPR strains for growing Withania somnifera a medicinal shrub.

    PubMed

    Kumar, Rajesh; Das, Amar Jyoti; Juwarkar, Asha A

    2015-02-01

    Soil contaminated by hydrocarbons, cannot be used for agricultural intents due to their toxic effect to the plants. Surfactants producing by plant growth promotory rhizobacteria (PGPR) can effectively rig the problem of petroleum hydrocarbon contamination and growth promotion on such contaminated soils. In the present study three Pseudomonas strains isolated from contaminated soil identified by 16S rRNA analysis were ascertained for PGPR as well as biosurfactants property. Biosurfactants produced by the strains were further characterized and essayed for rhamnolipids. Inoculation of the strains in petrol hydrocarbon contaminated soil and its interaction with Withania somnifera in presence of petrol oil hydrocarbons depict that the strains helped in growth promotion of Withania somnifera in petrol oil contaminated soil while rhamnolipids helped in lowering the toxicity of petrol oil. The study was found to be beneficial as the growth and antioxidant activity of Withania sominfera was enhanced. Hence the present study signifies that rhamnolipids producing PGPR strains could be a better measure for reclamation of petrol contaminated sites for growing medicinal plants.

  4. Forensic identification of spilled biodiesel and its blends with petroleum oil based on fingerprinting information.

    PubMed

    Yang, Zeyu; Hollebone, Bruce P; Wang, Zhendi; Yang, Chun; Brown, Carl; Landriault, Mike

    2013-06-01

    A case study is presented for the forensic identification of several spilled biodiesels and its blends with petroleum oil using integrated forensic oil fingerprinting techniques. The integrated fingerprinting techniques combined SPE with GC/MS for obtaining individual petroleum hydrocarbons (aliphatic hydrocarbons, polyaromatic hydrocarbons and their alkylated derivatives and biomarkers), and biodiesel hydrocarbons (fatty acid methyl esters, free fatty acids, glycerol, monoacylglycerides, and free sterols). HPLC equipped with evaporative scattering laser detector was also used for identifying the compounds that conventional GC/MS could not finish. The three environmental samples (E1, E2, and E3) and one suspected source sample (S2) were dominant with vegetable oil with high acid values and low concentration of fatty acid methyl ester. The suspected source sample S2 was responsible for the three spilled samples although E1 was slightly contaminated by petroleum oil with light hydrocarbons. The suspected source sample S1 exhibited with the high content of glycerol, low content of glycerides, and high polarity, indicating its difference from the other samples. These samples may be the separated byproducts in producing biodiesel. Canola oil source is the most possible feedstock for the three environmental samples and the suspected source sample S2. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Assessment of soil-gas and soil contamination at the Patterson Anti-Tank Range, Fort Gordon, Georgia, 2009-2010

    USGS Publications Warehouse

    Caldwell, Andral W.; Falls, W. Fred; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    Soil gas and soil were assessed for contaminants at the Patterson Anti-Tank Range at Fort Gordon, Georgia, from October 2009 to September 2010. The assessment included identifying and delineating organic contaminants present in soil-gas samplers from the area estimated to be the Patterson Anti-Tank Range and in the hyporheic zone and floodplain of Brier Creek. This assessment was conducted to provide environmental contamination data to Fort Gordon personnel pursuant to requirements for the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Soil-gas samplers in the hyporheic zone and floodplain of Brier Creek contained total petroleum hydrocarbons, benzene, octane, and pentadecane concentrations above method detection levels. All soil-gas samplers within the boundary of the Patterson Anti-Tank Range contained total petroleum hydrocarbons above the method detection level. The highest total petroleum hydrocarbon mass detected was 147.09 micrograms in a soil-gas sampler located near the middle of the site and near the remnants of a manmade earthen mound and trench. The highest toluene mass detected was 1.04 micrograms and was located in the center of the Patterson Anti-Tank Range and coincides with a manmade earthen mound. Some soil-gas samplers installed detected undecane masses greater than the method detection level of 0.04 microgram, with the highest detection of soil-gas undecane mass of 58.64 micrograms collected along the southern boundary of the site. Some soil-gas samplers were installed in areas of high-contaminant mass to assess for explosives and chemical agents. Explosives or chemical agents were not detected above their respective method detection levels for all soil-gas samplers installed.

  6. Large scale treatment of total petroleum-hydrocarbon contaminated groundwater using bioaugmentation.

    PubMed

    Poi, Gregory; Shahsavari, Esmaeil; Aburto-Medina, Arturo; Mok, Puah Chum; Ball, Andrew S

    2018-05-15

    Bioaugmentation or the addition of microbes to contaminated sites has been widely used to treat contaminated soil or water; however this approach is often limited to laboratory based studies. In the present study, large scale bioaugmentation has been applied to total petroleum hydrocarbons (TPH)-contaminated groundwater at a petroleum facility. Initial TPH concentrations of 1564 mg L -1 in the field were reduced to 89 mg L -1 over 32 days. This reduction was accompanied by improved ecotoxicity, as shown by Brassica rapa germination numbers that increased from 52 at day 0 to 82% by the end of the treatment. Metagenomic analysis indicated that there was a shift in the microbial community when compared to the beginning of the treatment. The microbial community was dominated by Proteobacteria and Bacteroidetes from day 0 to day 32, although differences at the genus level were observed. The predominant genera at the beginning of the treatment (day 0 just after inoculation) were Cloacibacterium, Sediminibacterium and Brevundimonas while at the end of the treatment members of Flavobacterium dominated, reaching almost half the population (41%), followed by Pseudomonas (6%) and Limnobacter (5.8%). To the author's knowledge, this is among the first studies to report the successful large scale biodegradation of TPH-contaminated groundwater (18,000 L per treatment session) at an offshore petrochemical facility. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation.

    PubMed

    Agnello, A C; Bagard, M; van Hullebusch, E D; Esposito, G; Huguenot, D

    2016-09-01

    Biological remediation technologies are an environmentally friendly approach for the treatment of polluted soils. This study evaluated through a pot experiment four bioremediation strategies: a) natural attenuation, b) phytoremediation with alfalfa (Medicago sativa L.), c) bioaugmentation with Pseudomonas aeruginosa and d) bioaugmentation-assisted phytoremediation, for the treatment of a co-contaminated soil presenting moderate levels of heavy metals (Cu, Pb and Zn at 87, 100 and 110mgkg(-1) DW, respectively) and petroleum hydrocarbons (3800mgkg(-1) DW). As demonstrated by plant biomass and selected physiological parameters alfalfa plants were able to tolerate and grow in the co-contaminated soil, especially when soil was inoculated with P. aeruginosa, which promoted plant growth (56% and 105% increase for shoots and roots, respectively) and appeared to alleviate plant stress. The content of heavy metals in alfalfa plants was limited and followed the order: Zn>Cu>Pb. Heavy metals were mainly concentrated in plant roots and were poorly translocated, favouring their stabilization in the root zone. Bioaugmentation of planted soil with P. aeruginosa generally led to a decrease of plant metal concentration and translocation. The highest degree of total petroleum hydrocarbon removal was obtained for bioaugmentation-assisted phytoremediation treatment (68%), followed by bioaugmentation (59%), phytoremediation (47%) and natural attenuation (37%). The results of this study demonstrated that the combined use of plant and bacteria was the most advantageous option for the treatment of the present co-contaminated soil, as compared to natural attenuation, bioaugmentation or phytoremediation applied alone. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Responses of meiofauna and nematode communities to crude oil contamination in a laboratory microcosm experiment

    NASA Astrophysics Data System (ADS)

    Kang, Teawook; Oh, Je Hyeok; Hong, Jae-Sang; Kim, Dongsung

    2016-09-01

    We examined the effects of crude oil contamination on community assemblages of meiofauna and nematodes after exposure to total petroleum hydrocarbons in the laboratory. We administered a seawater solution that had been contaminated with total petroleum hydrocarbons to seven treatment groups at different concentrations, while the control group received uncontaminated filtered seawater. The average density of total meiofauna in the experimental microcosms diluted with 0.5%, 1%, 2%, and 4% contaminated seawater was higher than the density in the control. The average density of total meiofauna in the 8%, 15%, and 20% microcosms was lower than the density in the control. The density of nematodes was similar to that of the total meiofauna. Cluster analysis divided the microcosms into group 1 (control, 0.5%, 1%, 2%, and 4% microcosms) and group 2 (8%, 15%, and 20% microcosms). However, SIMPROF analysis showed no significant difference between the two groups ( p > 0.05). Bolbolaimus spp. (37.1%) were dominant among the nematodes. Cluster analysis showed similar results for nematode and meiofaunal communities. The total meiofaunal density, nematode density, and number of Bolbolaimus spp. individuals were significantly negatively associated with the concentration of total petroleum hydrocarbons (Spearman correlation coefficients, p < 0.05). Within the nematodes, epistrate feeders (group 2A: 46%) were the most abundant trophic group. Among the treatment groups, the abundance of group 2A increased in low-concentration microcosms and decreased in high-concentration microcosms. Thus, our findings provide information on the effects of oil pollution on meiofauna in the intertidal zones of sandy beaches.

  9. Biodegradation of effluent contaminated with diesel fuel and gasoline.

    PubMed

    Vieira, P A; Vieira, R B; de França, F P; Cardoso, V L

    2007-02-09

    We studied the effects of fuel concentration (diesel and gasoline), nitrogen concentration and culture type on the biodegradation of synthetic effluent similar to what was found at inland fuel distribution terminals. An experimental design with two levels and three variables (2(3)) was used. The mixed cultures used in this study were obtained from lake with a history of petroleum contamination and were named culture C(1) (collected from surface sediment) and C(2) (collected from a depth of approximately 30cm). Of the parameters studied, the ones that had the greatest influence on the removal of total petroleum hydrocarbons (TPH) were a nitrogen concentration of 550mg/L and a fuel concentration of 4% (v/v) in the presence of culture C(1). The biodegradability study showed a TPH removal of 90+/-2% over a process period of 49 days. Analysis using gas chromatography identified 16 hydrocarbons. The aromatic compounds did not degrade as readily as the other hydrocarbons that were identified.

  10. Bioaccumulation of petroleum hydrocarbons in arctic amphipods in the oil development area of the Alaskan Beaufort Sea.

    PubMed

    Neff, Jerry M; Durell, Gregory S

    2012-04-01

    An objective of a multiyear monitoring program, sponsored by the US Department of the Interior, Bureau of Ocean Energy Management was to examine temporal and spatial changes in chemical and biological characteristics of the Arctic marine environment resulting from offshore oil exploration and development activities in the development area of the Alaskan Beaufort Sea. To determine if petroleum hydrocarbons from offshore oil operations are entering the Beaufort Sea food web, we measured concentrations of hydrocarbons in tissues of amphipods, Anonyx nugax, sediments, Northstar crude oil, and coastal peat, collected between 1999 and 2006 throughout the development area. Mean concentrations of polycyclic aromatic hydrocarbons (PAH), saturated hydrocarbons (SHC), and sterane and triterpane petroleum biomarkers (StTr) were not significantly different in amphipods near the Northstar oil production facility, before and after it came on line in 2001, and in amphipods from elsewhere in the study area. Forensic analysis of the profiles (relative composition and concentrations) of the 3 hydrocarbon classes revealed that hydrocarbon compositions were different in amphipods, surface sediments where the amphipods were collected, Northstar crude oil, and peat from the deltas of 4 North Slope rivers. Amphipods and sediments contained a mixture of petrogenic, pyrogenic, and biogenic PAH. The SHC in amphipods were dominated by pristane derived from zooplankton, indicating that the SHC were primarily from the amphipod diet of zooplankton detritus. The petroleum biomarker StTr profiles did not resemble those in Northstar crude oil. The forensic analysis revealed that hydrocarbons in amphipod tissues were not from oil production at Northstar. Hydrocarbons in amphipod tissues were primarily from their diet and from river runoff and coastal erosion of natural diagenic and fossil terrestrial materials, including seep oils, kerogens, and peat. Offshore oil and gas exploration and development do not appear to be causing an increase in petroleum hydrocarbon contamination of the Beaufort Sea food web. Copyright © 2011 SETAC.

  11. Environmental Forensics: Using Compound-Specific Stable Carbon Isotope Analysis to Track Petroleum Contamination

    NASA Astrophysics Data System (ADS)

    Imfeld, A.; Ouellet, A.; Gelinas, Y.

    2016-12-01

    Crude oil and petroleum products are continually being introduced into the environment during transportation, production, consumption and storage. Source identification of these organic contaminants proves challenging due to a variety of factors; samples tend to be convoluted, compounds need to be separated from an unresolved complex mixtures of highly altered aliphatic and aromatic compounds, and chemical composition and biomarker distributions can be altered by weathering, aging, and degradation processes. The aim of our research is to optimize a molecular and isotopic (δ13C, δ2H) method to fingerprint and identify petroleum contaminants in soil and sediment matrices, and to trace the temporal and spatial extent of the contamination event. This method includes the extraction, separation and analysis of the petroleum derived hydrocarbons. Sample extraction and separation is achieved using sonication, column chromatography and urea adduction. Compound identification and molecular/isotopic fingerprinting is obtained by gas chromatography with flame ionization (GC-FID) and mass spectrometer (GC-MS) detection, as well as gas chromatography coupled to an isotope ratio mass spectrometer (GC-IRMS). This method will be used to assist the Centre d'Expertise en Analyse Environnementale du Québec to determine the nature, sources and timing of contamination events as well as for investigating the residual contamination involving petroleum products.

  12. Bioaugmentation of soil contaminated with high-level crude oil through inoculation with mixed cultures including Acremonium sp.

    PubMed

    Ma, Xiao-Kui; Ding, Ning; Peterson, Eric Charles

    2015-06-01

    Heavy contamination of soil with crude oil has caused significant negative environmental impacts and presents substantial hazards to human health. To explore a highly efficient bioaugmentation strategy for these contaminations, experiments were conducted over 180 days in soil heavily contaminated with crude oil (50,000 mg kg(-1)), with four treatments comprised of Bacillus subtilis inoculation with no further inoculation (I), or reinoculation after 100 days with either B. subtilis (II), Acremonium sp.(III), or a mixture of both organisms (IV). The removal values of total petroleum hydrocarbons were 60.1 ± 2.0, 60.05 ± 3.0, 71.3 ± 5.2 and 74.2 ± 2.7 % for treatment (I-IV), respectively. Treatments (III-IV) significantly enhanced the soil bioremediation compared with treatments (I-II) (p < 0.05). Furthermore, significantly (p < 0.05) greater rates of degradation for petroleum hydrocarbon fractions were observed in treatments (III-IV) compared to treatments (I-II), and this was especially the case with the degradative rates for polycyclic aromatic hydrocarbons and crude oil heavy fractions. Dehydrogenase activity in treatment (III-IV) containing Acremonium sp. showed a constant increase until the end of experiments. Therefore reinoculation with pure fungus or fungal-bacterial consortium should be considered as an effective strategy in bioaugmentation for soil heavily contaminated with crude oil.

  13. A simple method for calculating growth rates of petroleum hydrocarbon plumes

    USGS Publications Warehouse

    Bekins, B.A.; Cozzarelli, I.M.; Curtis, G.P.

    2005-01-01

    Consumption of aquifer Fe(III) during biodegradation of ground water contaminants may result in expansion of a contaminant plume, changing the outlook for monitored natural attenuation. Data from two research sites contaminated with petroleum hydrocarbons show that toluene and xylenes degrade under methanogenic conditions, but the benzene and ethylbenzene plumes grow as aquifer Fe(III) supplies are depleted. By considering a one-dimensional reaction front in a constant unidirectional flow field, it is possible to derive a simple expression for the growth rate of a benzene plume. The method balances the mass flux of benzene with the Fe(III) content of the aquifer, assuming that the biodegradation reaction is instantaneous. The resulting expression shows that the benzene front migration is retarded relative to the ground water velocity by a factor that depends on the concentrations of hydrocarbon and bioavailable Fe(III). The method provides good agreement with benzene plumes at a crude oil study site in Minnesota and a gasoline site in South Carolina. Compared to the South Carolina site, the Minnesota site has 25% higher benzene flux but eight times the Fe(III), leading to about one-sixth the expansion rate. Although it was developed for benzene, toluene, ethylbenzene, and xylenes, the growth-rate estimation method may have applications to contaminant plumes from other persistent contaminant sources. Copyright ?? 2005 National Ground Water Association.

  14. Effect of initial oil concentration and dispersant on crude oil biodegradation in contaminated seawater.

    PubMed

    Zahed, Mohammad Ali; Aziz, Hamidi Abdul; Isa, Mohamed Hasnain; Mohajeri, Leila

    2010-04-01

    The effects of initial oil concentration and the Corexit 9500 dispersant on the rate of bioremediation of petroleum hydrocarbons were investigated with a series of ex-situ seawater samples. With initial oil concentrations of 100, 500, 1,000 and 2,000 mg/L, removal of total petroleum hydrocarbons (TPHs) with dispersant were 67.3%, 62.5%, 56.5% and 44.7%, respectively, and were 64.2%, 55.7%, 48.8% and 37.6% without dispersant. The results clearly indicate that the presence of dispersant enhanced crude oil biodegradation. Lower concentrations of crude oil demonstrated more efficient hydrocarbon removal. Based on these findings, bioremediation is not recommended for crude oil concentrations of 2,000 mg/L or higher.

  15. Source identification of petroleum hydrocarbons in soil and sediments from Iguaçu River Watershed, Paraná, Brazil using the CHEMSIC method (CHEMometric analysis of Selected Ion Chromatograms).

    PubMed

    Gallotta, Fabiana D C; Christensen, Jan H

    2012-04-27

    A chemometric method based on principal component analysis (PCA) of pre-processed and combined sections of selected ion chromatograms (SICs) is used to characterise the hydrocarbon profiles in soil and sediment from Araucária, Guajuvira, General Lúcio and Balsa Nova Municipalities (Iguaçu River Watershed, Paraná, Brazil) and to indicate the main sources of hydrocarbon pollution. The study includes 38 SICs of polycyclic aromatic compounds (PACs) and four of petroleum biomarkers in two separate analyses. The most contaminated samples are inside the Presidente Getúlio Vargas Refinery area. These samples represent a petrogenic pattern and different weathering degrees. Samples from outside the refinery area are either less or not contaminated, or contain mixtures of diagenetic, pyrogenic and petrogenic inputs where different proportions predominate. The locations farthest away from industrial activity (Balsa Nova) contains the lowest levels of PAC contamination. There are no evidences to conclude positive matches between the samples from outside the refinery area and the Cusiana spilled oil. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Accumulation of Hydrocarbons by Maize (Zea mays L.) in Remediation of Soils Contaminated with Crude Oil.

    PubMed

    Liao, Changjun; Xu, Wending; Lu, Guining; Liang, Xujun; Guo, Chuling; Yang, Chen; Dang, Zhi

    2015-01-01

    This study has investigated the use of screened maize for remediation of soil contaminated with crude oil. Pots experiment was carried out for 60 days by transplanting maize seedlings into spiked soils. The results showed that certain amount of crude oil in soil (≤2 147 mg·kg(-1)) could enhance the production of shoot biomass of maize. Higher concentration (6 373 mg·kg(-1)) did not significantly inhibit the growth of plant maize (including shoot and root). Analysis of plant shoot by GC-MS showed that low molecular weight polycyclic aromatic hydrocarbons (PAHs) were detected in maize tissues, but PAHs concentration in the plant did not increase with higher concentration of crude oil in soil. The reduction of total petroleum hydrocarbon in planted soil was up to 52.21-72.84%, while that of the corresponding controls was only 25.85-34.22% in two months. In addition, data from physiological and biochemical indexes demonstrated a favorable adaptability of maize to crude oil pollution stress. This study suggested that the use of maize (Zea mays L.) was a good choice for remediation of soil contaminated with petroleum within a certain range of concentrations.

  17. Bioremediation and phytoremediation of total petroleum hydrocarbons (TPH) under various conditions.

    PubMed

    McIntosh, Patrick; Schulthess, Cristian P; Kuzovkina, Yulia A; Guillard, Karl

    2017-08-03

    Remediation of contaminated soils is often studied using fine-textured soils rather than low-fertility sandy soils, and few studies focus on recontamination events. This study compared aerobic and anaerobic treatments for remediation of freshly introduced used motor oil on a sandy soil previously phytoremediated and bioacclimated (microorganisms already adapted in the soil environment) with some residual total petroleum hydrocarbon (TPH) contamination. Vegetated and unvegetated conditions to remediate anthropogenic fill containing residual TPH that was spiked with nonaqueous phase liquids (NAPLs) were evaluated in a 90-day greenhouse pot study. Vegetated treatments used switchgrass (Panicum virgatum). The concentration of aerobic bacteria were orders of magnitude higher in vegetated treatments compared to unvegetated. Nevertheless, final TPH concentrations were low in all saturated soil treatments, and high in the presence of switchgrass. Concentrations were also low in unvegetated pots with fertilizer. Acclimated indigenous microbial communities were shown to be more effective in breaking down hydrocarbons than introducing microbes from the addition of plant treatments in sandy soils. Remediation of fresh introduced NAPLs on pre-phytoremediated and bioacclimated soil was most efficient in saturated, anaerobic environments, probably due to the already pre-established microbial associations, easily bioavailable contaminants, and optimized soil conditions for microbial establishment and survival.

  18. Intrinsic Anaerobic Bioremediation of Hydrocarbons in Contaminated Subsurface Plumes and Marine Sediments

    NASA Astrophysics Data System (ADS)

    Nanny, M. A.; Nanny, M. A.; Suflita, J. M.; Suflita, J. M.; Davidova, I.; Kropp, K.; Caldwell, M.; Philp, R.; Gieg, L.; Rios-Hernandez, L. A.

    2001-05-01

    In recent years, several classes of petroleum hydrocarbons contaminating subsurface and marine environments have been found susceptible to anaerobic biodegradation using novel mechanisms entirely distinct from aerobic metabolic pathways. For example, the anaerobic decay of toluene can be initiated by the addition of the aryl methyl group to the double bond of fumarate, resulting in a benzylsuccinic acid metabolite. Our work has shown that an analogous mechanism also occurs with ethylbenzene and the xylene isomers, yielding 3-phenyl-1,2-butane dicarboxylic acid and methylbenzylsuccinic acid, respectively. Moreover, these metabolites have been detected in contaminated environments. Most recently, we have identified metabolites resulting from the initial attack of H26- or D26-n-dodecane during degradation by a sulfate-reducing bacterial culture. Using GC-MS, these metabolites were identified as fatty acids that result from C-H or C-D addition across the double bond of fumarate to give dodecylsuccinic acids in which all 26 protons or deuteriums of the parent alkane were retained. Further, when this enrichment culture was challenged with hexane or decane, hexylsuccinic acid or decylsuccinic acid were identified as resulting metabolites. Similarly, the study of an ethylcyclopentane-degrading sulfate-reducing enrichment produced a metabolite, which is consistent with the addition of fumarate to the parent substrate. These novel anaerobic addition products are characterized by similar, distinctive mass spectral (MS) features (ions specific to the succinic acid portion of the molecule) that can potentially be used to probe contaminated environments for evidence of intrinsic remediation of hydrocarbons. Indeed, analyses of water extracts from two gas condensate-contaminated sites resulted in the tentative detection of alkyl- and cycloalkylsuccinic acids ranging from C3 to C9, including ethylcyclopentyl-succinic acid. In water extracts collected from an area underlying a petroleum production plant, MS profiles consistent with the addition products of methylcycloalkenes were observed. This work helps attests to: 1) the extrapolatability of laboratory results to the field, 2) the unifying metabolic features for the anaerobic destruction of diverse types of hydrocarbons, and 3) how this information can be used to assess the intrinsic bioremediation processes in petroleum-contaminated environments.

  19. Monitoring the effect of poplar trees on petroleum-hydrocarbon and chlorinated-solvent contaminated ground water

    USGS Publications Warehouse

    Landmeyer, James E.

    2001-01-01

    At contaminated groundwater sites, poplar trees can be used to affect ground-water levels, flow directions, and ultimately total groundwater and contaminant flux to areas downgradient of the trees. The magnitude of the hydrologic changes can be monitored using fundamental concepts of groundwater hydrology, in addition to plant physiology-based approaches, and can be viewed as being almost independent of the contaminant released. The affect of poplar trees on the fate of groundwater contaminants, however, is contaminant dependent. Some petroleum hydrocarbons or chlorinated solvents may be mineralized or transformed to innocuous compounds by rhizospheric bacteria associated with the tree roots, mineralized or transformed by plant tissues in the transpiration stream or leaves after uptake, or passively volatilized and rapidly dispersed or oxidized in the atmosphere. These processes also can be monitored using a combination of physiological- or geochemical-based field or laboratory approaches. When combined, such hydrologic and contaminant monitoring approaches can result in a more accurate assessment of the use of poplar trees to meet regulatory goals at contaminated groundwater sites, verify that these goals continue to be met in the future, and ultimately lead to a consensus on how the performance of plant-based remedial strategies (phytoremediation) is to be assessed.

  20. 21 CFR 172.884 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... in processing beet sugar and yeast Complying with § 173.340 of this chapter. As a float on... wild yeast contamination during fermentation In an amount not to exceed good manufacturing practice. In...

  1. Rapid toluene mineralization by aquifer microorganisms at Adak, Alaska: Implications for intrinsic bioremediation in cold environments

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    1995-01-01

    Sediments from a relatively cold (5??C), petroleum hydrocarbon-contaminated aquifer in Adak, AK, mineralized [14C]toluene at an aerobic rate (16.3% day-1 at 5??C) comparable to that (5.1% day-1 at 20??C) of sediments from a more temperate aquifer at Hanahan, SC. In addition, rates of overall microbial metabolism in sediments from the two aquifers, as estimated by [1 -14C]acetate mineralization, were similar (???10.6% h-1) at their respective in situ temperatures. These results are not consistent with the common assumption that biodegradation rates in cold ground-water systems are depressed relative to more temperate systems. Furthermore, these results suggest that intrinsic bioremediation of petroleum hydrocarbon contaminants in cold groundwater systems may be technically feasible, in some cases.

  2. The Willow Microbiome Is Influenced by Soil Petroleum-Hydrocarbon Concentration with Plant Compartment-Specific Effects

    PubMed Central

    Tardif, Stacie; Yergeau, Étienne; Tremblay, Julien; Legendre, Pierre; Whyte, Lyle G.; Greer, Charles W.

    2016-01-01

    The interaction between plants and microorganisms, which is the driving force behind the decontamination of petroleum hydrocarbon (PHC) contamination in phytoremediation technology, is poorly understood. Here, we aimed at characterizing the variations between plant compartments in the microbiome of two willow cultivars growing in contaminated soils. A field experiment was set-up at a former petrochemical plant in Canada and after two growing seasons, bulk soil, rhizosphere soil, roots, and stems samples of two willow cultivars (Salix purpurea cv. FishCreek, and Salix miyabeana cv. SX67) growing at three PHC contamination concentrations were taken. DNA was extracted and bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) regions were amplified and sequenced using an Ion Torrent Personal Genome Machine (PGM). Following multivariate statistical analyses, the level of PHC-contamination appeared as the primary factor influencing the willow microbiome with compartment-specific effects, with significant differences between the responses of bacterial, and fungal communities. Increasing PHC contamination levels resulted in shifts in the microbiome composition, favoring putative hydrocarbon degraders, and microorganisms previously reported as associated with plant health. These shifts were less drastic in the rhizosphere, root, and stem tissues as compared to bulk soil, probably because the willows provided a more controlled environment, and thus, protected microbial communities against increasing contamination levels. Insights from this study will help to devise optimal plant microbiomes for increasing the efficiency of phytoremediation technology. PMID:27660624

  3. Methanogenic degradation of petroleum hydrocarbons in subsurface environments remediation, heavy oil formation, and energy recovery.

    PubMed

    Gray, N D; Sherry, A; Hubert, C; Dolfing, J; Head, I M

    2010-01-01

    Hydrocarbons are common constituents of surface, shallow, and deep-subsurface environments. Under anaerobic conditions, hydrocarbons can be degraded to methane by methanogenic microbial consortia. This degradation process is widespread in the geosphere. In comparison with other anaerobic processes, methanogenic hydrocarbon degradation is more sustainable over geological time scales because replenishment of an exogenous electron acceptor is not required. As a consequence, this process has been responsible for the formation of the world's vast deposits of heavy oil, which far exceed conventional oil assets such as those found in the Middle East. Methanogenic degradation is also a potentially important component of attenuation in hydrocarbon contamination plumes. Studies of the organisms, syntrophic partnerships, mechanisms, and geochemical signatures associated with methanogenic hydrocarbon degradation have identified common themes and diagnostic markers for this process in the subsurface. These studies have also identified the potential to engineer methanogenic processes to enhance the recovery of energy assets as biogenic methane from residual oils stranded in petroleum systems. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Phase 1 remediation of jet fuel contaminated soil and groundwater at JFK International Airport using dual phase extraction and bioventing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, R.; Bianco, P. Rizzo, M.; Pressly, N.

    1995-12-31

    Soil and groundwater contaminated with jet fuel at Terminal One of the JFK International Airport in New York have been remediated using dual phase extraction (DPE) and bioventing. Two areas were remediated using 51 DPE wells and 20 air sparging/air injection wells. The total area remediated by the DPE wells is estimated to be 4.8 acres. Groundwater was extracted to recover nonaqueous phase and aqueous phase jet fuel from the shallow aquifer and treated above ground by the following processes; oil/water separation, iron-oxidation, flocculation, sedimentation, filtration, air stripping and liquid-phase granular activated carbon (LPGAC) adsorption. The extracted vapors were treatedmore » by vapor-phase granular activated carbon (VPGAC) adsorption in one area, and catalytic oxidation and VPGAC adsorption in another area. After 6 months of remediation, approximately 5,490 lbs. of volatile organic compounds (VOCs) were removed by soil vapor extraction (SVE), 109,650 lbs. of petroleum hydrocarbons were removed from the extracted groundwater, and 60,550 lbs. of petroleum hydrocarbons were biologically oxidized by subsurface microorganisms. Of these three mechanisms, the rate of petroleum hydrocarbon removal was the highest for biological oxidation in one area and by groundwater extraction in another area.« less

  5. Influence of petroleum hydrocarbon contamination on microalgae and microbial activities in a long-term contaminated soil.

    PubMed

    Megharaj, M; Singleton, I; McClure, N C; Naidu, R

    2000-05-01

    Petroleum hydrocarbons are widespread environmental pollutants. Although biodegradation of petroleum hydrocarbons has been the subject of numerous investigations, information on their toxicity to microorganisms in soil is limited, with virtually no work conducted on soil algae. We carried out a screening experiment for total petroleum hydrocarbons (TPH) and their toxicity to soil algal populations, microbial biomass, and soil enzymes (dehydrogenase and urease) in a long-term TPH-polluted site with reference to an adjacent unpolluted site. Microbial biomass, soil enzyme activity, and microalgae declined in medium to high-level (5,200-21,430 mg kg(-1) soil) TPH-polluted soils, whereas low-level (<2,120 mg kg(-1) soil) pollution stimulated the algal populations and showed no effect on microbial biomass and enzymes. However, inhibition of all the tested parameters was more severe in soil considered to have medium-level pollution than in soils that were highly polluted. This result could not be explained by chemical analysis alone. Of particular interest was an observed shift in the species composition of algae in polluted soils with elimination of sensitive species in the medium to high polluted soils. Also, an algal growth inhibition test carried out using aqueous eluates prepared from polluted soils supported these results. Given the sensitivity of algae to synthetic pollutants, alteration in the algal species composition can serve as a useful bioindicator of pollution. The results of this experiment suggest that chemical analysis alone is not adequate for toxicological estimations and should be used in conjunction with bioassays. Furthermore, changes in species composition of algae proved to be more sensitive than microbial biomass and soil enzyme activity measurements.

  6. Evaluation of ethyl lactate as solvent in Fenton oxidation for the remediation of total petroleum hydrocarbon (TPH)-contaminated soil.

    PubMed

    Jalilian Ahmadkalaei, Seyedeh Pegah; Gan, Suyin; Ng, Hoon Kiat; Abdul Talib, Suhaimi

    2017-07-01

    Due to the health and environmental risks posed by the presence of petroleum-contaminated areas around the world, remediation of petroleum-contaminated soil has drawn much attention from researchers. Combining Fenton reaction with a solvent has been proposed as a novel way to remediate contaminated soils. In this study, a green solvent, ethyl lactate (EL), has been used in conjunction with Fenton's reagents for the remediation of diesel-contaminated soil. The main aim of this research is to determine how the addition of EL affects Fenton reaction for the destruction of total petroleum hydrocarbons (TPHs) within the diesel range. Specifically, the effects of different parameters, including liquid phase volume-to-soil weight (L/S) ratio, hydrogen peroxide (H 2 O 2 ) concentration and EL% on the removal efficiency, have been studied in batch experiments. The results showed that an increase in H 2 O 2 resulted in an increase in removal efficiency of TPH from 68.41% at H 2 O 2  = 0.1 M to 90.21% at H 2 O 2  = 2 M. The lowest L/S, i.e. L/S = 1, had the highest TPH removal efficiency of 85.77%. An increase in EL% up to 10% increased the removal efficiency to 96.74% for TPH, and with further increase in EL%, the removal efficiency of TPH decreased to 89.6%. EL with an optimum value of 10% was found to be best for TPH removal in EL-based Fenton reaction. The power law and pseudo-first order equations fitted well to the experimental kinetic data of Fenton reactions.

  7. Growth and biosurfactant synthesis by Nigerian hydrocarbon-degrading estuarine bacteria.

    PubMed

    Adebusoye, Sunday A; Amund, Olukayode O; Ilori, Matthew O; Domeih, Dupe O; Okpuzor, Joy

    2008-12-01

    The ability of microorganisms to degrade petroleum hydrocarbons is important for finding an environmentally-friendly method to restoring contaminated environmental matrices. Screening of hydrocarbon-utilizing and biosurfactant-producing abilities of organisms from an estuarine ecosystem in Nigeria, Africa, resulted in the isolation of five microbial strains identified as Corynebacterium sp. DDV1, Flavobacterium sp. DDV2, Micrococcus roseus DDV3, Pseudomonas aeruginosa DDV4 and Saccharomyces cerevisae DDV5. These isolates grew readily on several hydrocarbons including hexadecane, dodecane, crude oil and petroleum fractions. Axenic cultures of the organisms utilized diesel oil (1.0% v/v) with generation times that ranged significantly (t-test, P < 0.05) between 3.25 and 3.88 day, with concomitant production of biosurfactants. Kinetics of growth indicates that biosurfactant synthesis occurred predominantly during exponential growth phase, suggesting that the bioactive molecules are primary metabolites. Strains DDV1 and DDV4 were evidently the most metabolically active in terms of substrate utilization and biosurfactant synthesis compared to other strains with respective emulsification index of 63 and 78%. Preliminary biochemical characterization indicates that the biosurfactants are heteropolymers consisting of lipid, protein and carbohydrate moieties. The hydrocarbon catabolic properties coupled with biosurfactant-producing capabilities is an asset that could be exploited for cleanup of oil-contaminated matrices and also in food and cosmetic industries.

  8. METHODS AND ANALYSES FOR IMPLEMENTING NATURAL ATTENUATION PROTOCOLS

    EPA Science Inventory

    Technical protocols for evaluating natural attenuation at petroleum hydrocarbon and chlorinated solvent contaminated sites specify the analysis of electron acceptors and metabolic by-products for identifying and quantifying natural attenuation processes. However, these protocols ...

  9. Feasibility of oxidation-biodegradation serial foam spraying for total petroleum hydrocarbon removal without soil disturbance.

    PubMed

    Bajagain, Rishikesh; Park, Yoonsu; Jeong, Seung-Woo

    2018-06-01

    This study evaluated surface foam spraying technology, which avoids disturbing the soil, to deliver chemical oxidant and oil-degrading microbes to unsaturated soil for 30 days. Hydrogen peroxide foam was sprayed once onto diesel contaminated soil for oxidation of soil total petroleum hydrocarbon (TPH). Periodic bioaugmentation foam was sprayed every three days for biodegradation of soil TPH. Foam spraying employing oxidation-bioaugmentation serial application significantly reduced soil TPH concentrations to 550 mg·kg -1 from an initial 7470 mg·kg -1 . This study selected an optimal hydrogen peroxide concentration of 5%, which is capable of treating diesel oil contaminated soil following biodegradation without supplementary iron. Application of hydrogen peroxide by foam spraying increased the infiltration of hydrogen peroxide into the unsaturated soil. Surface foam spraying provided the aqueous phase of remediation agents evenly to the unsaturated soil and resulted in relatively similar soil water content throughout the soil. The easy and even infiltration of remediation reagents increased their contact with contaminants, resulting in enhanced oxidation and biodegradation. Fractional analysis of TPH showed C18-C22 present in diesel as biodegradation recalcitrant hydrocarbons. Recalcitrant hydrocarbons were reduced by 92% using oxidation-biodegradation serial foam, while biodegradation alone only reduced the recalcitrant fraction by 25%. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Petroleum contaminated water and health symptoms: a cross-sectional pilot study in a rural Nigerian community.

    PubMed

    Kponee, Kalé Zainab; Chiger, Andrea; Kakulu, Iyenemi Ibimina; Vorhees, Donna; Heiger-Bernays, Wendy

    2015-11-06

    The oil-rich Niger Delta suffers from extensive petroleum contamination. A pilot study was conducted in the region of Ogoniland where one community, Ogale, has drinking water wells highly contaminated with a refined oil product. In a 2011 study, the United Nations Environment Programme (UNEP) sampled Ogale drinking water wells and detected numerous petroleum hydrocarbons, including benzene at concentrations as much as 1800 times higher than the USEPA drinking water standard. UNEP recommended immediate provision of clean drinking water, medical surveillance, and a prospective cohort study. Although the Nigerian government has provided emergency drinking water, other UNEP recommendations have not been implemented. We aimed to (i) follow up on UNEP recommendations by investigating health symptoms associated with exposure to contaminated water; and (ii) assess the adequacy and utilization of the government-supplied emergency drinking water. We recruited 200 participants from Ogale and a reference community, Eteo, and administered questionnaires to investigate water use, perceived water safety, and self-reported health symptoms. Our multivariate regression analyses show statistically significant associations between exposure to Ogale drinking water and self-reported health symptoms consistent with petroleum exposure. Participants in Ogale more frequently reported health symptoms related to neurological effects (OR = 2.8), hematological effects (OR = 3.3), and irritation (OR = 2.7). Our results are the first from a community relying on drinking water with such extremely high concentrations of benzene and other hydrocarbons. The ongoing exposure and these pilot study results highlight the need for more refined investigation as recommended by UNEP.

  11. How Specific Microbial Communities Benefit the Oil Industry: Dynamics of Alcanivorax spp. in Oil-Contaminated Intertidal Beach Sediments Undergoing Bioremediation

    NASA Astrophysics Data System (ADS)

    Singh, Arvind K.; Sherry, Angela; Gray, Neil D.; Jones, Martin D.; Röling, Wilfred F. M.; Head, Ian M.

    The industrial revolution has led to significant increases in the consumption of petroleum hydrocarbons. Concomitant with this increase, hydrocarbon pollution has become a global problem resulting from emissions related to operational use, releases during production, pipeline failures and tanker spills. Importantly, in addition to these anthropogenic sources of hydrocarbon pollution, natural seeps alone account for about 50% of total petroleum hydrocarbon releases in the aquatic environment (National Research Council, 2003). The annual input from natural seeps would form a layer of hydrocarbons 20 molecules thick on the sea surface globally if it remained un-degraded (Prince, 2005). By contrast with natural seeps, many oil spills, e.g. Sea Empress (Milford Haven, UK), Prestige (Galicia, Spain), EXXON Valdez (Prince William Sound, Alaska, USA), released huge amounts of oil (thousands to hundreds of thousand tonnes; Table 24.1) in a locally confined area over a short period of time with a huge acute impact on the marine environment. These incidents have attracted the attention of both the general public and the scientific community due to their great impact on coastal ecosystems. Although many petroleum hydrocarbons are toxic, they are degraded by microbial consortia naturally present in marine ecosystems.

  12. Reconstructing Contaminant Deposition in a San Francisco Bay Marina, California

    PubMed Central

    Love, Adam H.; Esser, Bradley K.; Hunt, James R.

    2010-01-01

    Two sediment cores were collected from a marina in the San Francisco Bay to characterize historical sediment contamination resulting from the direct discharge of industrial wastewater from Naval Air Station Alameda. Depth profiles of trace metals, petroleum hydrocarbons, and radionuclides were determined with a 12-cm spacing down to a depth of 120 cm. The chronology of sediment accumulation is established by depth profiles of sedimentary time markers in conjunction with information on site history. The traditional approach of determining sediment accumulation rates by measuring atmospheric 210Pb deposition was obscured by a larger source of 210Pb in the sediments from the decay of anthropogenic 226Ra, likely from luminescent paints used at this facility and released to the marina. The sedimentation rates inferred from the data indicate that the greatest amount of contamination by trace metals and petroleum hydrocarbons took place between 1940 and 1960. In addition, anthropogenic 226Ra activities are positively correlated with some of the contaminants in the sediments, allowing the wastewater discharged from the facility to be distinguished from baywide contamination. In locations such as this, where there is a complex history of contaminant deposition, a source-specific tracer may be the only feasible method of attributing historical contamination to a point source. PMID:20333267

  13. Identification of refined petroleum products in contaminated soils using an identification index for GC chromatograms.

    PubMed

    Kwon, Dongwook; Ko, Myoung-Soo; Yang, Jung-Seok; Kwon, Man Jae; Lee, Seung-Woo; Lee, Seunghak

    2015-08-01

    Hydrocarbons found in the environment are typically characterized by gas chromatography (GC). The shape of the GC chromatogram has been used to identify the source of petroleum contamination. However, the conventional practice of simply comparing the peak patterns of source products to those of environmental samples is dependent on the subjective decisions of individual analysts. We have developed and verified a quantitative analytical method for interpreting GC chromatograms to distinguish refined petroleum products in contaminated soils. We found that chromatograms for gasoline, kerosene, and diesel could be divided into three ranges with boundaries at C6, C8, C16, and C26. In addition, the relative peak area (RPA(GC)) of each range, a dimensionless ratio of the peak area within each range to that of the total range (C6-C26), had a unique value for each petroleum product. An identification index for GC chromatograms (ID(GC)), defined as the ratio of RPA(GC) of C8-C16 to that of C16-C26, was able to identify diesel and kerosene sources in samples extracted from artificially contaminated soils even after weathering. Thus, the ID(GC) can be used to effectively distinguish between refined petroleum products in contaminated soils.

  14. Can two-dimensional gas chromatography/mass spectrometric identification of bicyclic aromatic acids in petroleum fractions help to reveal further details of aromatic hydrocarbon biotransformation pathways?

    PubMed

    West, Charles E; Pureveen, Jos; Scarlett, Alan G; Lengger, Sabine K; Wilde, Michael J; Korndorffer, Frans; Tegelaar, Erik W; Rowland, Steven J

    2014-05-15

    The identification of key acid metabolites ('signature' metabolites) has allowed significant improvements to be made in our understanding of the biodegradation of petroleum hydrocarbons, in reservoir and in contaminated natural systems, such as aquifers and seawater. On this basis, anaerobic oxidation is now more widely accepted as one viable mechanism, for instance. However, identification of metabolites in the complex acid mixtures from petroleum degradation is challenging and would benefit from use of more highly resolving analytical methods. Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GCxGC/TOFMS) with both nominal mass and accurate mass measurement was used to study the complex mixtures of aromatic acids (as methyl esters) in petroleum fractions. Numerous mono- and di-aromatic acid isomers were identified in a commercial naphthenic acids fraction from petroleum and in an acids fraction from a biodegraded petroleum. In many instances, compounds were identified by comparison of mass spectral and retention time data with those of authentic compounds. The identification of a variety of alkyl naphthalene carboxylic and alkanoic and alkyl tetralin carboxylic and alkanoic acids, plus identifications of a range of alkyl indane acids, provides further evidence for 'signature' metabolites of biodegradation of aromatic petroleum hydrocarbons. Identifications such as these now offer the prospect of better differentiation of metabolites of bacterial processes (e.g. aerobic, methanogenic, sulphate-reducing) in polar petroleum fractions. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Ecopiling: a combined phytoremediation and passive biopiling system for remediating hydrocarbon impacted soils at field scale

    PubMed Central

    Germaine, Kieran J.; Byrne, John; Liu, Xuemei; Keohane, Jer; Culhane, John; Lally, Richard D.; Kiwanuka, Samuel; Ryan, David; Dowling, David N.

    2015-01-01

    Biopiling is an ex situ bioremediation technology that has been extensively used for remediating a wide range of petrochemical contaminants in soils. Biopiling involves the assembling of contaminated soils into piles and stimulating the biodegrading activity of microbial populations by creating near optimum growth conditions. Phytoremediation is another very successful bioremediation technique and involves the use of plants and their associated microbiomes to degrade, sequester or bio-accumulate pollutants from contaminated soil and water. The objective of this study was to investigate the effectiveness of a combined phytoremediation/biopiling system, termed Ecopiling, to remediate hydrocarbon impacted industrial soil. The large scale project was carried out on a sandy loam, petroleum impacted soil [1613 mg total petroleum hydrocarbons (TPHs) kg-1 soil]. The contaminated soil was amended with chemical fertilizers, inoculated with TPH degrading bacterial consortia and then used to construct passive biopiles. Finally, a phyto-cap of perennial rye grass (Lolium perenne) and white clover (Trifolium repens) was sown on the soil surface to complete the Ecopile. Monitoring of important physico-chemical parameters was carried out at regular intervals throughout the trial. Two years after construction the TPH levels in the petroleum impacted Ecopiles were below detectable limits in all but one subsample (152 mg TPH kg-1 soil). The Ecopile system is a multi-factorial bioremediation process involving bio-stimulation, bio-augmentation and phytoremediation. One of the key advantages to this system is the reduced costs of the remediation process, as once constructed, there is little additional cost in terms of labor and maintenance (although the longer process time may incur additional monitoring costs). The other major advantage is that many ecological functions are rapidly restored to the site and the process is esthetically pleasing. PMID:25601875

  16. Ecopiling: a combined phytoremediation and passive biopiling system for remediating hydrocarbon impacted soils at field scale.

    PubMed

    Germaine, Kieran J; Byrne, John; Liu, Xuemei; Keohane, Jer; Culhane, John; Lally, Richard D; Kiwanuka, Samuel; Ryan, David; Dowling, David N

    2014-01-01

    Biopiling is an ex situ bioremediation technology that has been extensively used for remediating a wide range of petrochemical contaminants in soils. Biopiling involves the assembling of contaminated soils into piles and stimulating the biodegrading activity of microbial populations by creating near optimum growth conditions. Phytoremediation is another very successful bioremediation technique and involves the use of plants and their associated microbiomes to degrade, sequester or bio-accumulate pollutants from contaminated soil and water. The objective of this study was to investigate the effectiveness of a combined phytoremediation/biopiling system, termed Ecopiling, to remediate hydrocarbon impacted industrial soil. The large scale project was carried out on a sandy loam, petroleum impacted soil [1613 mg total petroleum hydrocarbons (TPHs) kg(-1) soil]. The contaminated soil was amended with chemical fertilizers, inoculated with TPH degrading bacterial consortia and then used to construct passive biopiles. Finally, a phyto-cap of perennial rye grass (Lolium perenne) and white clover (Trifolium repens) was sown on the soil surface to complete the Ecopile. Monitoring of important physico-chemical parameters was carried out at regular intervals throughout the trial. Two years after construction the TPH levels in the petroleum impacted Ecopiles were below detectable limits in all but one subsample (152 mg TPH kg(-1) soil). The Ecopile system is a multi-factorial bioremediation process involving bio-stimulation, bio-augmentation and phytoremediation. One of the key advantages to this system is the reduced costs of the remediation process, as once constructed, there is little additional cost in terms of labor and maintenance (although the longer process time may incur additional monitoring costs). The other major advantage is that many ecological functions are rapidly restored to the site and the process is esthetically pleasing.

  17. Advanced multivariate analysis to assess remediation of hydrocarbons in soils.

    PubMed

    Lin, Deborah S; Taylor, Peter; Tibbett, Mark

    2014-10-01

    Accurate monitoring of degradation levels in soils is essential in order to understand and achieve complete degradation of petroleum hydrocarbons in contaminated soils. We aimed to develop the use of multivariate methods for the monitoring of biodegradation of diesel in soils and to determine if diesel contaminated soils could be remediated to a chemical composition similar to that of an uncontaminated soil. An incubation experiment was set up with three contrasting soil types. Each soil was exposed to diesel at varying stages of degradation and then analysed for key hydrocarbons throughout 161 days of incubation. Hydrocarbon distributions were analysed by Principal Coordinate Analysis and similar samples grouped by cluster analysis. Variation and differences between samples were determined using permutational multivariate analysis of variance. It was found that all soils followed trajectories approaching the chemical composition of the unpolluted soil. Some contaminated soils were no longer significantly different to that of uncontaminated soil after 161 days of incubation. The use of cluster analysis allows the assignment of a percentage chemical similarity of a diesel contaminated soil to an uncontaminated soil sample. This will aid in the monitoring of hydrocarbon contaminated sites and the establishment of potential endpoints for successful remediation.

  18. Hydrocarbon contamination of coastal sediments from the Sfax area (Tunisia), Mediterranean Sea.

    PubMed

    Louati, A; Elleuch, B; Kallel, M; Saliot, A; Dagaut, J; Oudot, J

    2001-06-01

    The coastal area off the city of Sfax (730,000 inhabitants), well-known for fisheries and industrial activities, receives high inputs of organic matter mostly anthropogenic. Eighteen stations were selected in the vicinity of the direct discharge of industrial sewage effluents in the sea in order to study the spatial distribution of the organic contamination. Surface sediments sampled in the shallow shelf were analysed for hydrocarbons by Fourier transform infrared spectroscopy, gas chromatography and gas chromatography/mass spectrometry. Total hydrocarbon distributions revealed high contamination as compared to other coastal Mediterranean sites, with an average concentration of 1865 ppm/dry weight sediment. Gas chromatographic distribution patterns, values of unresolved mixture/n-alkane ratio and distributions of steranes and hopanes confirmed a petroleum contamination of the Arabian light crude oil type. Biogenic compounds were also identified with a series of short-chain carbon-numbered n-alkenes in the carbon range 16-24.

  19. Petroleum contamination and bioaugmentation in bacterial rhizosphere communities from Avicennia schaueriana.

    PubMed

    Dealtry, Simone; Ghizelini, Angela Michelato; Mendonça-Hagler, Leda C S; Chaloub, Ricardo Moreira; Reinert, Fernanda; Campos, Tácio M P de; Gomes, Newton C M; Smalla, Kornelia

    2018-06-01

    Anthropogenic activity, such as accidental oil spills, are typical sources of urban mangrove pollution that may affect mangrove bacterial communities as well as their mobile genetic elements. To evaluate remediation strategies, we followed over the time the effects of a petroleum hydrocarbon degrading consortium inoculated on mangrove tree Avicennia schaueriana against artificial petroleum contamination in a phytoremediation greenhouse experiment. Interestingly, despite plant protection due to the inoculation, denaturing gradient gel electrophoresis of the bacterial 16S rRNA gene fragments amplified from the total community DNA indicated that the different treatments did not significantly affect the bacterial community composition. However, while the bacterial community was rather stable, pronounced shifts were observed in the abundance of bacteria carrying plasmids. A PCR-Southern blot hybridization analysis indicated an increase in the abundance of IncP-9 catabolic plasmids. Denaturing gradient gel electrophoresis of naphthalene dioxygenase (ndo) genes amplified from cDNA (RNA) indicated the dominance of a specific ndo gene in the inoculated petroleum amendment treatment. The petroleum hydrocarbon degrading consortium characterization indicated the prevalence of bacteria assigned to Pseudomonas spp., Comamonas spp. and Ochrobactrum spp. IncP-9 plasmids were detected for the first time in Comamonas sp. and Ochrobactrum spp., which is a novelty of this study. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  20. Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance.

    PubMed

    Bell, Terrence H; Yergeau, Etienne; Maynard, Christine; Juck, David; Whyte, Lyle G; Greer, Charles W

    2013-06-01

    Increased exploration and exploitation of resources in the Arctic is leading to a higher risk of petroleum contamination. A number of Arctic microorganisms can use petroleum for growth-supporting carbon and energy, but traditional approaches for stimulating these microorganisms (for example, nutrient addition) have varied in effectiveness between sites. Consistent environmental controls on microbial community response to disturbance from petroleum contaminants and nutrient amendments across Arctic soils have not been identified, nor is it known whether specific taxa are universally associated with efficient bioremediation. In this study, we contaminated 18 Arctic soils with diesel and treated subsamples of each with monoammonium phosphate (MAP), which has successfully stimulated degradation in some contaminated Arctic soils. Bacterial community composition of uncontaminated, diesel-contaminated and diesel+MAP soils was assessed through multiplexed 16S (ribosomal RNA) rRNA gene sequencing on an Ion Torrent Personal Genome Machine, while hydrocarbon degradation was measured by gas chromatography analysis. Diversity of 16S rRNA gene sequences was reduced by diesel, and more so by the combination of diesel and MAP. Actinobacteria dominated uncontaminated soils with <10% organic matter, while Proteobacteria dominated higher-organic matter soils, and this pattern was exaggerated following disturbance. Degradation with and without MAP was predictable by initial bacterial diversity and the abundance of specific assemblages of Betaproteobacteria, respectively. High Betaproteobacteria abundance was positively correlated with high diesel degradation in MAP-treated soils, suggesting this may be an important group to stimulate. The predictability with which bacterial communities respond to these disturbances suggests that costly and time-consuming contaminated site assessments may not be necessary in the future.

  1. Development, optimization, validation and application of faster gas chromatography - flame ionization detector method for the analysis of total petroleum hydrocarbons in contaminated soils.

    PubMed

    Zubair, Abdulrazaq; Pappoe, Michael; James, Lesley A; Hawboldt, Kelly

    2015-12-18

    This paper presents an important new approach to improving the timeliness of Total Petroleum Hydrocarbon (TPH) analysis in the soil by Gas Chromatography - Flame Ionization Detector (GC-FID) using the CCME Canada-Wide Standard reference method. The Canada-Wide Standard (CWS) method is used for the analysis of petroleum hydrocarbon compounds across Canada. However, inter-laboratory application of this method for the analysis of TPH in the soil has often shown considerable variability in the results. This could be due, in part, to the different gas chromatography (GC) conditions, other steps involved in the method, as well as the soil properties. In addition, there are differences in the interpretation of the GC results, which impacts the determination of the effectiveness of remediation at hydrocarbon-contaminated sites. In this work, multivariate experimental design approach was used to develop and validate the analytical method for a faster quantitative analysis of TPH in (contaminated) soil. A fractional factorial design (fFD) was used to screen six factors to identify the most significant factors impacting the analysis. These factors included: injection volume (μL), injection temperature (°C), oven program (°C/min), detector temperature (°C), carrier gas flow rate (mL/min) and solvent ratio (v/v hexane/dichloromethane). The most important factors (carrier gas flow rate and oven program) were then optimized using a central composite response surface design. Robustness testing and validation of model compares favourably with the experimental results with percentage difference of 2.78% for the analysis time. This research successfully reduced the method's standard analytical time from 20 to 8min with all the carbon fractions eluting. The method was successfully applied for fast TPH analysis of Bunker C oil contaminated soil. A reduced analytical time would offer many benefits including an improved laboratory reporting times, and overall improved clean up efficiency. The method was successfully applied for the analysis of TPH of Bunker C oil in contaminated soil. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  2. Shallow subtidal survey of the Washington outer coast and Olympic National park to determine the distribution, fate, and effects of spilled bunker C fuel oil. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carney, D.; Kvitek, R.G.

    1990-12-01

    The report provides an evaluation of the impacts of the bunker C fuel oil spill on the shallow subtidal benthic communities of the Washington coast. The study is designed to provide a subtidal extension of the intertidal investigation performed by Battelle Laboratories. As such, the study sites and many of the methodologies are the same. There are four objectives of the study. They are: (1) to identify and define from existing data, the probable distribution of subtidal deposits along the Washington coast, (2) to document petroleum hydrocarbon contamination in shallow subtidal sediments in the Olympic National Park and along themore » Washington outer coast, (3) to characterize petroleum hydrocarbon contamination in molluscan and other species' tissues of opportunity in subtidal habitats along the Washington outer coast, and (4) to collect the initial faunal and sediment samples required for possible future analyses should oil-spill related hydrocarbons be detected from initial sediment and tissue analyses.« less

  3. Petroleum hydrocarbons in water from a Brazilian tropical estuary facing industrial and port development.

    PubMed

    Lemos, Rafael Thompson de Oliveira; de Carvalho, Paulo Sérgio Martins; Zanardi-Lamardo, Eliete

    2014-05-15

    A fast paced industrial and port development has occurred at Suape Estuary, Northeast Brazil, but no information about hydrocarbon concentrations in water is available to this area. Considering that, the contamination level of Suape was determined by UV-Fluorescence in terms of dissolved and/or dispersed petroleum hydrocarbons (DDPHs), during wet and dry seasons. DDPHs ranged between 0.05 and 4.59 μg L(-1) Carmópolis oil equivalents and 0.01-1.39 μg L(-1) chrysene equivalents, indicating DDPHs close to a baseline contamination level. Some relatively high concentrations (>1 μg L(-1)) were probably associated with shipyard operations (hull paintings and ship docking), pollutants remobilization by dredging operations, occasional industrial discharges and oil derivatives released by vessels. DDPHs concentrations were lower in the wet season suggesting that the increased dilution rates caused by rainfall dominated upon the wet deposition of atmospheric combustion-derived PAHs process. Results in this study may be used as baseline to further studies in this area. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. A compositional multiphase model for groundwater contamination by petroleum products: 1. Theoretical considerations

    USGS Publications Warehouse

    Corapcioglu, M. Yavuz; Baehr, Arthur L.

    1987-01-01

    A mathematical model is developed to describe the fate of hydrocarbon constituents of petroleum products introduced to soils as an immiscible liquid from sources such as leaking underground storage tanks and ruptured pipelines. The problem is one of multiphase transport (oil (immiscible), air, and water phases) of a reactive contaminant with constituents such as benzene, toluene, and xylene found in refined petroleum products like gasoline. In the unsaturated zone, transport of each constituent can occur as a solute in the water phase, vapor in the air phase, and as an unaltered constituent in the oil phase. Additionally, the model allows for adsorption. Molecular transformations, microbially mediated or abiotic, are incorporated as sink terms in the conservation of mass equations. An equilibrium approximation, applicable to any immiscible organic contaminant is applied to partition constituent mass between the air, oil, water, and adsorbed phases for points in the region where the oil phase exists. Outside the oil plume the equilibrium approximation takes on a simpler form to partition constituent mass between the air, water, and adsorbed phases only. Microbial degradation of petroleum products is first discussed in a general model, then the conservation of mass equation for oxygen is incorporated into the analysis which takes advantage of the key role played by oxygen in the metabolism of hydrocarbon utilizing microbes in soil environments. Approximations to two subproblems, oil plume establishment in the unsaturated zone, and solute and vapor transport subsequent to immiscible plume establishment are then developed from the general model.

  5. Distribution of petroleum degrading genes and factor analysis of petroleum contaminated soil from the Dagang Oilfield, China

    PubMed Central

    Liu, Qinglong; Tang, Jingchun; Bai, Zhihui; Hecker, Markus; Giesy, John P.

    2015-01-01

    Genes that encode for enzymes that can degrade petroleum hydrocarbons (PHs) are critical for the ability of microorganisms to bioremediate soils contaminated with PHs. Distributions of two petroleum-degrading genes AlkB and Nah in soils collected from three zones of the Dagang Oilfield, Tianjin, China were investigated. Numbers of copies of AlkB ranged between 9.1 × 105 and 1.9 × 107 copies/g dry mass (dm) soil, and were positively correlated with total concentrations of PHs (TPH) (R2 = 0.573, p = 0.032) and alkanes (C33 ~ C40) (R2 = 0.914, p < 0.01). The Nah gene was distributed relatively evenly among sampling zones, ranging between 1.9 × 107 and 1.1 × 108 copies/g dm soil, and was negatively correlated with concentrations of total aromatic hydrocarbons (TAH) (R2 = −0.567, p = 0.035) and ∑16 PAHs (R2 = −0.599, p = 0.023). Results of a factor analysis showed that individual samples of soils were not ordinated as a function of the zones. PMID:26086670

  6. Hydrocarbons and heavy metals in the different sewer deposits in the 'Le Marais' catchment (Paris, France): stocks, distributions and origins.

    PubMed

    Rocher, Vincent; Azimi, Sam; Moilleron, Régis; Chebbo, Ghassan

    2004-05-05

    The knowledge of the pollution stored in combined sewers is of prime importance in terms of management of wet weather flow pollution since sewer deposits play a significant role as source of pollution in combined sewer overflows. This work, which focused on the hydrocarbon (aliphatic and aromatic hydrocarbons) and metallic (Fe, Zn, Pb, Cu and Cd) pollution fixed to the different kinds of sewer deposits (gross bed sediment [GBS], organic layer [OL] and biofilm), was performed in order to provide a complete overview of the contaminant storage in the 'Le Marais' combined sewer (Central Paris, France). Firstly, our results have shown that, for all kinds of pollutants, a major part was stored in the GBS (87 to 98%), a lesser part in the OL (2 to 13%) and an insignificant part in the biofilm (<1%). These results demonstrated that the potential contribution of biofilm to wet weather pollution was negligible compared to the OL one. Secondly, the investigation of hydrocarbon fingerprints in each deposit has provided relevant information about contamination origins: (1) aliphatic hydrocarbon distributions were indicative of petroleum input in the GBS and reflected a mixture of biogenic and petroleum inputs in the OL and biofilm, (2) aromatic hydrocarbon distributions suggested an important pyrolytic contamination in all the deposits. Finally, the study of pollutant fingerprints in the different deposits and in the suspended solids going through the collector has shown that: (1) the suspended solids were the major component of OL and biofilm while urban runoff seemed to be the main transport mechanism introducing pollutants in the GBS and (2) the residence times in sewer of OL and biofilm were quite short compared to those for GBS.

  7. Bacterial community shift and hydrocarbon transformation during bioremediation of short-term petroleum-contaminated soil.

    PubMed

    Wu, Manli; Ye, Xiqiong; Chen, Kaili; Li, Wei; Yuan, Jing; Jiang, Xin

    2017-04-01

    A laboratory study was conducted to evaluate the impact of bioaugmentation plus biostimulation (BR, added both nutrients and bacterial consortia), and natural attenuation (NA) on hydrocarbon degradation efficiency and microflora characterization during remediation of a freshly contaminated soil. After 112 days of remediation, the initial level of total petroleum hydrocarbon (TPH) (61,000 mg/kg soil) was reduced by 4.5% and 5.0% in the NA and BR treatments, respectively. Bioremediation did not significantly enhance TPH biodegradation compared to natural attenuation. The degradation of the aliphatic fraction was the most active with the degradation rate of 30.3 and 28.7 mg/kg/day by the NA and BR treatments, respectively. Soil microbial activities and counts in soil were generally greater for bioremediation than for natural attenuation. MiSeq sequencing indicated that the diversity and structure of microbial communities were affected greatly by bioremediation. In response to bioremediation treatment, Promicromonospora, Pseudomonas, Microcella, Mycobacterium, Alkanibacter, and Altererythrobacter became dominant genera in the soil. The result indicated that combining bioaugmentation with biostimulation did not improve TPH degradation, but soil microbial activities and structure of microbial communities are sensitive to bioremediation in short-term and heavily oil-contaminated soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. MASS BALANCE ANALYSIS FOR MICROBIAL DECHLORINATION OF TETRACHLOROETHENE

    EPA Science Inventory

    Contamination of subsurface environments by chlorinated aliphatic solvents and petroleum hydrocarbons is a significant public health concern because groundwater is one of the major drinking water resources in the United States. Biotic and abiotic techniques have been widely exam...

  9. Phytoremediation in the tropics--influence of heavy crude oil on root morphological characteristics of graminoids.

    PubMed

    Merkl, Nicole; Schultze-Kraft, Rainer; Infante, Carmen

    2005-11-01

    When studying species for phytoremediation of petroleum-contaminated soils, one of the main traits is the root zone where enhanced petroleum degradation takes place. Root morphological characteristics of three tropical graminoids were studied. Specific root length (SRL), surface area, volume and average root diameter (ARD) of plants grown in crude oil-contaminated and uncontaminated soil were compared. Brachiaria brizantha and Cyperus aggregatus showed coarser roots in polluted soil compared to the control as expressed in an increased ARD. B. brizantha had a significantly larger specific root surface area in contaminated soil. Additionally, a shift of SRL and surface area per diameter class towards higher diameters was found. Oil contamination also caused a significantly smaller SRL and surface area in the finest diameter class of C. aggregatus. The root structure of Eleusine indica was not significantly affected by crude oil. Higher specific root surface area was related to higher degradation of petroleum hydrocarbons found in previous studies.

  10. 21 CFR 178.3530 - Isoparaffinic petroleum hydrocarbons, synthetic.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Isoparaffinic petroleum hydrocarbons, synthetic... hydrocarbons, synthetic. Isoparaffinic petroleum hydrocarbons, synthetic, may be safely used in the production... isoparaffinic petroleum hydrocarbons, produced by synthesis from petroleum gases consist of a mixture of liquid...

  11. 21 CFR 178.3530 - Isoparaffinic petroleum hydrocarbons, synthetic.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Isoparaffinic petroleum hydrocarbons, synthetic... hydrocarbons, synthetic. Isoparaffinic petroleum hydrocarbons, synthetic, may be safely used in the production... isoparaffinic petroleum hydrocarbons, produced by synthesis from petroleum gases consist of a mixture of liquid...

  12. Concentrations and sources of polycyclic aromatic hydrocarbons in surface coastal sediments of the northern Gulf of Mexico

    PubMed Central

    2014-01-01

    Background Coastal sediments in the northern Gulf of Mexico have a high potential of being contaminated by petroleum hydrocarbons, such as polycyclic aromatic hydrocarbons (PAHs), due to extensive petroleum exploration and transportation activities. In this study we evaluated the spatial distribution and contamination sources of PAHs, as well as the bioavailable fraction in the bulk PAH pool, in surface marsh and shelf sediments (top 5 cm) of the northern Gulf of Mexico. Results PAH concentrations in this region ranged from 100 to 856 ng g−1, with the highest concentrations in Mississippi River mouth sediments followed by marsh sediments and then the lowest concentrations in shelf sediments. The PAH concentrations correlated positively with atomic C/N ratios of sedimentary organic matter (OM), suggesting that terrestrial OM preferentially sorbs PAHs relative to marine OM. PAHs with 2 rings were more abundant than those with 5–6 rings in continental shelf sediments, while the opposite was found in marsh sediments. This distribution pattern suggests different contamination sources between shelf and marsh sediments. Based on diagnostic ratios of PAH isomers and principal component analysis, shelf sediment PAHs were petrogenic and those from marsh sediments were pyrogenic. The proportions of bioavailable PAHs in total PAHs were low, ranging from 0.02% to 0.06%, with higher fractions found in marsh than shelf sediments. Conclusion PAH distribution and composition differences between marsh and shelf sediments were influenced by grain size, contamination sources, and the types of organic matter associated with PAHs. Concentrations of PAHs in the study area were below effects low-range, suggesting a low risk to organisms and limited transfer of PAHs into food web. From the source analysis, PAHs in shelf sediments mainly originated from direct petroleum contamination, while those in marsh sediments were from combustion of fossil fuels. PMID:24641695

  13. Bioconversion of petroleum hydrocarbons in soil using apple filter cake

    PubMed Central

    Medaura, M. Cecilia; Ércoli, Eduardo C.

    2008-01-01

    The aim of this study was to investigate the feasibility of using apple filter cake, a fruit-processing waste to enhance the bioremediation of petroleum contaminated soil. A rotating barrel system was used to study the bioconversion of the xenobiotic compound by natural occurring microbial population. The soil had been accidentally polluted with a total petroleum hydrocarbon concentration of 41,000 ppm. Although this global value was maintained during the process, microbial intervention was evidenced through transformation of the petroleum fractions. Thus, fractions that represent a risk for the environment (GRO, Gasoline Range Organics i.e., C6 to C10–12; DRO, Diesel Range Organics i.e., C8–12 to C24–26 and RRO, Residual Range Organics i.e., C25 to C35) were significantly reduced, from 2.95% to 1.39%. On the contrary, heavier weight fraction from C35 plus other organics increased in value from 1.15% to 3.00%. The noticeable diminution of low molecular weight hydrocarbons content and hence environmental risk by the process plus the improvement of the physical characteristics of the soil, are promising results with regard to future application at large scale. PMID:24031241

  14. Bioremediation of crude oil-contaminated soil: comparison of different biostimulation and bioaugmentation treatments.

    PubMed

    Xu, Yaohui; Lu, Mang

    2010-11-15

    Biostimulation with inorganic fertilizer and bioaugmentation with hydrocarbon utilizing indigenous bacteria were employed as remedial options for 12 weeks in a crude oil-contaminated soil. To promote oil removal, biocarrier for immobilization of indigenous hydrocarbon-degrading bacteria was developed using peanut hull powder. Biodegradation was enhanced with free-living bacterial culture and biocarrier with a total petroleum hydrocarbon removal ranging from 26% to 61% after a 12-week treatment. Oil removal was also enhanced when peanut hull powder was only used as a bulking agent, which accelerated the mass transfer rate of water, oxygen, nutrients and hydrocarbons, and provided nutrition for the microflora. Dehydrogenase activity in soil was remarkably enhanced by the application of carrier material. Metabolites of polycyclic aromatic hydrocarbons were identified by Fourier transform ion cyclotron resonance mass spectrometry. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Annotated Bibliography of Bioassays Related to Sediment Toxicity Testing in Washington State

    DTIC Science & Technology

    1990-10-01

    effects of sediments contaminated with heavy metals, petroleum hydrocarbons , synthetic organic compounds and radionuclides. It also provides an... molluscs (adults only), echinoderm larvae and fish), and bioassay procedures with selected toxicants (metals, petrochemicals, pesticides, contaminated...reference sediment + 15 mm test sediment. Bioaccumulation tests (with same organisms) are a’so discussed. EPA/COE (U.S. Environmental Protection Agency

  16. Bioremediation of petroleum hydrocarbon contaminated soil by Rhodobacter sphaeroides biofertilizer and plants.

    PubMed

    Jiao, Haihua; Luo, Jinxue; Zhang, Yiming; Xu, Shengjun; Bai, Zhihui; Huang, Zhanbin

    2015-09-01

    Bio-augmentation is a promising technique for remediation of polluted soils. This study aimed to evaluate the bio-augmentation effect of Rhodobacter sphaeroides biofertilizer (RBF) on the bioremediation of total petroleum hydrocarbons (TPH) contaminated soil. A greenhouse pot experiment was conducted over a period of 120 days, three methods for enhancing bio-augmentation were tested on TPH contaminated soils, including single addition RBF, planting, and combining of RBF and three crop species, such as wheat (W), cabbage (C) and spinach (S), respectively. The results demonstrated that the best removal of TPH from contaminated soil in the RBF bio-augmentation rhizosphere soils was found to be 46.2%, 65.4%, 67.5% for W+RBF, C+RBF, S+RBF rhizosphere soils respectively. RBF supply impacted on the microbial community diversity (phospholipid fatty acids, PLFA) and the activity of soil enzymes, such as dehydrogenase (DH), alkaline phosphatase (AP) and urease (UR). There were significant difference among the soil only containing crude oil (CK), W, C and S rhizosphere soils and RBF bio-augmentation soils. Moreover, the changes were significantly distinct depended on crops species. It was concluded that the RBF is a valuable material for improving effect of remediation of TPH polluted soils.

  17. Bioaccessible Porosity in Soil Aggregates and Implications for Biodegradation of High Molecular Weight Petroleum Compounds.

    PubMed

    Akbari, Ali; Ghoshal, Subhasis

    2015-12-15

    We evaluated the role of soil aggregate pore size on biodegradation of essentially insoluble petroleum hydrocarbons that are biodegraded primarily at the oil-water interface. The size and spatial distribution of pores in aggregates sampled from biodegradation experiments of a clayey, aggregated, hydrocarbon-contaminated soil with relatively high bioremediation end point were characterized by image analyses of X-ray micro-CT scans and N2 adsorption. To determine the bioaccessible pore sizes, we performed separate experiments to assess the ability of hydrocarbon degrading bacteria isolated from the soil to pass through membranes with specific sized pores and to access hexadecane (model insoluble hydrocarbon). Hexadecane biodegradation occurred only when pores were 5 μm or larger, and did not occur when pores were 3 μm and smaller. In clayey aggregates, ∼ 25% of the aggregate volume was attributed to pores larger than 4 μm, which was comparable to that in aggregates from a sandy, hydrocarbon-contaminated soil (~23%) scanned for comparison. The ratio of volumes of inaccessible pores (<4 μm) to bioaccessible pores (>4 μm) in the clayey aggregates was 0.32, whereas in the sandy aggregates it was approximately 10 times lower. The role of soil microstructure on attainable bioremediation end points could be qualitatively assessed in various soils by the aggregate characterization approach outlined herein.

  18. The origin of high hydrocarbon groundwater in shallow Triassic aquifer in Northwest Guizhou, China.

    PubMed

    Liu, Shan; Qi, Shihua; Luo, Zhaohui; Liu, Fangzhi; Ding, Yang; Huang, Huanfang; Chen, Zhihua; Cheng, Shenggao

    2018-02-01

    Original high hydrocarbon groundwater represents a kind of groundwater in which hydrocarbon concentration exceeds 0.05 mg/L. The original high hydrocarbon will significantly reduce the environment capacity of hydrocarbon and lead environmental problems. For the past 5 years, we have carried out for a long-term monitoring of groundwater in shallow Triassic aquifer in Northwest Guizhou, China. We found the concentration of petroleum hydrocarbon was always above 0.05 mg/L. The low-level anthropogenic contamination cannot produce high hydrocarbon groundwater in the area. By using hydrocarbon potential, geochemistry and biomarker characteristic in rocks and shallow groundwater, we carried out a comprehensive study in Dalongjing (DLJ) groundwater system to determine the hydrocarbon source. We found a simplex hydrogeology setting, high-level water-rock-hydrocarbon interaction and obviously original hydrocarbon groundwater in DLJ system. The concentration of petroleum hydrocarbon in shallow aquifer was found to increase with the strong water-rock interaction. Higher hydrocarbon potential was found in the upper of Guanling formation (T 2 g 3 ) and upper of Yongningzhen formation (T 1 yn 4 ). Heavily saturated carbon was observed from shallow groundwater, which presented similar distribution to those from rocks, especially from the deeper groundwater. These results indicated that the high concentrations of original hydrocarbon in groundwater could be due to the hydrocarbon release from corrosion and extraction out of strata over time.

  19. Geophysical Responses of Hydrocarbon-impacted Zones at the Various Contamination Conditions

    NASA Astrophysics Data System (ADS)

    Kim, C.; Ko, K.; Son, J.; Kim, J.

    2008-12-01

    One controlled experiment and two field surveys were conducted to investigate the geoelectrical responses of hydrocarbon-contaminated zones, so called smeared zone, on the geophysical data at the hydrocarbon- contaminated sites with various conditions. One controlled physical model experiment with GPR using fresh gasoline and two different 3-D electrical resistivity investigations at the aged sites. One field site (former military facilities for arms maintenance) was mainly contaminated with lubricating oils and the other (former gas station) was contaminated with gasoline and diesel, respectively. The results from the physical model experiment show that GPR signals were enhanced when LNAPL was present as a residual saturation in the water-saturated system due to less attenuation of the electromagnetic energy through the soil medium of the hydrocarbon-impacted zone (no biodegradation), compared to when the medium was saturated with only water (no hydrocarbon impaction). In the former gas station site, 3-D resistivity results demonstrate that the highly contaminated zones were imaged with low resistivity anomalies since the biodegradation of petroleum hydrocarbons has been undergone for many years, causing the drastic increase in the TDS at the hydrocarbon-impacted zones. Finally, 3-D resistivity data obtained from the former military maintenance site show that the hydrocarbon-contaminated zones show high resistivity anomalies since the hydrocarbons such as lubricating oils at the contaminated soils were not greatly influenced by microbial degradation and has relatively well kept their original physical properties of high electrical resistivity. The results of the study illustrated that the hydrocarbon-impacted zones under various contamination conditions yielded various geophysical responses which include (1) enhanced GPR amplitudes at the fresh LNAPL (Gasoline to middle distillates) spill sites, (2) low electrical resistivity anomalies due to biodegradation at the aged LNAPL- impacted sites, and (3) high electrical resistivity anomalies at the fresh or aged sites contaminated with residual products of crude oils (lubricating oils). The study results also show that the geophysical methods, as a non-invasive sounding technique, can be effectively applied to mapping hydrocarbon-contaminated zones.

  20. Meta-transcriptomics indicates biotic cross-tolerance in willow trees cultivated on petroleum hydrocarbon contaminated soil.

    PubMed

    Gonzalez, Emmanuel; Brereton, Nicholas J B; Marleau, Julie; Guidi Nissim, Werther; Labrecque, Michel; Pitre, Frederic E; Joly, Simon

    2015-10-12

    High concentrations of petroleum hydrocarbon (PHC) pollution can be hazardous to human health and leave soils incapable of supporting agricultural crops. A cheap solution, which can help restore biodiversity and bring land back to productivity, is cultivation of high biomass yielding willow trees. However, the genetic mechanisms which allow these fast-growing trees to tolerate PHCs are as yet unclear. Salix purpurea 'Fish Creek' trees were pot-grown in soil from a former petroleum refinery, either lacking or enriched with C10-C50 PHCs. De novo assembled transcriptomes were compared between tree organs and impartially annotated without a priori constraint to any organism. Over 45% of differentially expressed genes originated from foreign organisms, the majority from the two-spotted spidermite, Tetranychus urticae. Over 99% of T. urticae transcripts were differentially expressed with greater abundance in non-contaminated trees. Plant transcripts involved in the polypropanoid pathway, including phenylalanine ammonia-lyase (PAL), had greater expression in contaminated trees whereas most resistance genes showed higher expression in non-contaminated trees. The impartial approach to annotation of the de novo transcriptomes, allowing for the possibility for multiple species identification, was essential for interpretation of the crop's response treatment. The meta-transcriptomic pattern of expression suggests a cross-tolerance mechanism whereby abiotic stress resistance systems provide improved biotic resistance. These findings highlight a valuable but complex biotic and abiotic stress response to real-world, multidimensional contamination which could, in part, help explain why crops such as willow can produce uniquely high biomass yields on challenging marginal land.

  1. Returning property to the tax rolls, a case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aveggio, J.

    1995-09-01

    A major deterrent to the redevelopment of intercity areas is the high cost associated with mitigating residual soil and groundwater contamination resulting from years of industrial activities. If the properties remain undeveloped, their revenue to the local taxing authority remains at minimal levels. It is not unreasonable to assume that a redeveloped property would increase 10 to 100 times in assessed value. In California, the local taxing authority bases its tax assessment as a percentage of the assessed value. Therefore, it is in the taxing authority`s best interest to encourage and provide incentives for redevelopment. The City of Eureka andmore » Price-Costco combined to remediate a contaminated property, build a Costco store, provide jobs, and return a property to the tax rolls. The effort was accomplished through the negotiation of site specific cleanup levels for petroleum hydrocarbons and remediation of approximately 16,000 tons of soil by thermal desorption. Site specific cleanup levels were established by using a leaching procedure to establish the contaminant concentration in soil that would impact groundwater, and through an economic analysis of cleanup level versus benefit. Petroleum contaminated soil was excavated from 11 sources areas and transported to an on-site thermal desorber for treatment. The soil contained the full spectrum of petroleum hydrocarbons, from gasoline to heavy oils. The thermal desorber was able to consistently treat this wide variety of contamination to nondetectable levels. Following treatment, the soil was backfilled and compacted into the excavations. The entire cleanup was complete in approximately 2 months and was performed concurrently with the construction of the store.« less

  2. APPROXIMATE MULTIPHASE FLOW MODELING BY CHARACTERISTIC METHODS

    EPA Science Inventory

    The flow of petroleum hydrocarbons, organic solvents and other liquids that are immiscible with water presents the nation with some of the most difficult subsurface remediation problems. One aspect of contaminant transport associated releases of such liquids is the transport as a...

  3. Chemical signatures of the Anthropocene in the Clyde estuary, UK: sediment-hosted Pb, (207/206)Pb, total petroleum hydrocarbon, polyaromatic hydrocarbon and polychlorinated biphenyl pollution records.

    PubMed

    Vane, C H; Chenery, S R; Harrison, I; Kim, A W; Moss-Hayes, V; Jones, D G

    2011-03-13

    The sediment concentrations of total petroleum hydrocarbons (TPHs), polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), Pb and (207/206)Pb isotope ratios were measured in seven cores from the middle Clyde estuary (Scotland, UK) with an aim of tracking the late Anthropocene. Concentrations of TPHs ranged from 34 to 4386 mg kg(-1), total PAHs from 19 to 16,163 μg kg(-1) and total PCBs between less than 4.3 to 1217 μg kg(-1). Inventories, distributions and isomeric ratios of the organic pollutants were used to reconstruct pollutant histories. Pre-Industrial Revolution and modern non-polluted sediments were characterized by low TPH and PAH values as well as high relative abundance of biogenic-sourced phenanthrene and naphthalene. The increasing industrialization of the Clyde gave rise to elevated PAH concentrations and PAH isomeric ratios characteristic of both grass/wood/coal and petroleum and combustion (specifically petroleum combustion). Overall, PAHs had the longest history of any of the organic contaminants. Increasing TPH concentrations and a concomitant decline in PAHs mirrored the lessening of coal use and increasing reliance on petroleum fuels from about the 1950s. Thereafter, declining hydrocarbon pollution was followed by the onset (1950s), peak (1965-1977) and decline (post-1980s) in total PCB concentrations. Lead concentrations ranged from 6 to 631 mg kg(-1), while (207/206)Pb isotope ratios spanned 0.838-0.876, indicative of various proportions of 'background', British ore/coal and Broken Hill type petrol/industrial lead. A chronology was established using published Pb isotope data for aerosol-derived Pb and applied to the cores.

  4. Pre-Construction Biogeochemical Analysis of Mercury in Wetlands Bordering the Hamilton Army Airfield (HAAF) Wetlands Restoration Site. Part 2

    DTIC Science & Technology

    2007-09-01

    2004). Hydrophobic organic contaminants ( petroleum hydrocarbons , polynuclear aromatic hydrocarbons , and polychlorinated biphenyls) dissolved in the...Effect of 3.4% GAC contact on the 56-d bioaccumulation of THg and MeHg in Nereis virens...wetland restoration project. The bioaccumulation factor (BAF) values were greater for MeHg than for THg. The THg and MeHg body burdens of Nereis

  5. Microbial communities along biogeochemical gradients in a hydrocarbon-contaminated aquifer.

    PubMed

    Tischer, Karolin; Kleinsteuber, Sabine; Schleinitz, Kathleen M; Fetzer, Ingo; Spott, Oliver; Stange, Florian; Lohse, Ute; Franz, Janett; Neumann, Franziska; Gerling, Sarah; Schmidt, Christian; Hasselwander, Eyk; Harms, Hauke; Wendeberg, Annelie

    2013-09-01

    Micro-organisms are known to degrade a wide range of toxic substances. How the environment shapes microbial communities in polluted ecosystems and thus influences degradation capabilities is not yet fully understood. In this study, we investigated microbial communities in a highly complex environment: the capillary fringe and subjacent sediments in a hydrocarbon-contaminated aquifer. Sixty sediment sections were analysed using terminal restriction fragment length polymorphism (T-RFLP) fingerprinting, cloning and sequencing of bacterial and archaeal 16S rRNA genes, complemented by chemical analyses of petroleum hydrocarbons, methane, oxygen and alternative terminal electron acceptors. Multivariate statistics revealed concentrations of contaminants and the position of the water table as significant factors shaping the microbial community composition. Micro-organisms with highest T-RFLP abundances were related to sulphate reducers belonging to the genus Desulfosporosinus, fermenting bacteria of the genera Sedimentibacter and Smithella, and aerobic hydrocarbon degraders of the genus Acidovorax. Furthermore, the acetoclastic methanogens Methanosaeta, and hydrogenotrophic methanogens Methanocella and Methanoregula were detected. Whereas sulphate and sulphate reducers prevail at the contamination source, the detection of methane, fermenting bacteria and methanogenic archaea further downstream points towards syntrophic hydrocarbon degradation. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  6. Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance

    PubMed Central

    Bell, Terrence H; Yergeau, Etienne; Maynard, Christine; Juck, David; Whyte, Lyle G; Greer, Charles W

    2013-01-01

    Increased exploration and exploitation of resources in the Arctic is leading to a higher risk of petroleum contamination. A number of Arctic microorganisms can use petroleum for growth-supporting carbon and energy, but traditional approaches for stimulating these microorganisms (for example, nutrient addition) have varied in effectiveness between sites. Consistent environmental controls on microbial community response to disturbance from petroleum contaminants and nutrient amendments across Arctic soils have not been identified, nor is it known whether specific taxa are universally associated with efficient bioremediation. In this study, we contaminated 18 Arctic soils with diesel and treated subsamples of each with monoammonium phosphate (MAP), which has successfully stimulated degradation in some contaminated Arctic soils. Bacterial community composition of uncontaminated, diesel-contaminated and diesel+MAP soils was assessed through multiplexed 16S (ribosomal RNA) rRNA gene sequencing on an Ion Torrent Personal Genome Machine, while hydrocarbon degradation was measured by gas chromatography analysis. Diversity of 16S rRNA gene sequences was reduced by diesel, and more so by the combination of diesel and MAP. Actinobacteria dominated uncontaminated soils with <10% organic matter, while Proteobacteria dominated higher-organic matter soils, and this pattern was exaggerated following disturbance. Degradation with and without MAP was predictable by initial bacterial diversity and the abundance of specific assemblages of Betaproteobacteria, respectively. High Betaproteobacteria abundance was positively correlated with high diesel degradation in MAP-treated soils, suggesting this may be an important group to stimulate. The predictability with which bacterial communities respond to these disturbances suggests that costly and time-consuming contaminated site assessments may not be necessary in the future. PMID:23389106

  7. PHYTOREMEDIATION OF TPH IN SOILS: AN RTDF PROJECT

    EPA Science Inventory

    The Remediation Technology Development Forum has undertaken a project to investigate the use of plants in remediation of sites contaminated by petroleum hydrocarbons. Since sites have been established at a number of locations the project will be able to consider climate, contain...

  8. Naphthalene and benzene degradation under Fe(III)-reducing conditions in petroleum-contaminated aquifers

    USGS Publications Warehouse

    Anderson, Robert T.; Lovely, Derek R.

    1999-01-01

    Naphthalene was oxidized anaerobically to CO2 in sediments collected from a petroleum-contaminated aquifer in Bemidji, Minnesota in which Fe(III) reduction was the terminal electron-accepting process. Naphthalene was not oxidized in sediments from the methanogenic zone at Bemidji or in sediments from the Fe(III)-reducing zone of other petroleum-contaminated aquifers studied. In a profile across the Fe(III)-reducing zone of the Bemidji aquifer, rates of naphthalene oxidation were fastest in sediments with the highest proportion of Fe(III), which was also the zone of the most rapid degradation of benzene, toluene, and acetate. The comparative studies attempted to elucidate factors that might account for the fact that unsubstituted aromatic hydrocarbons such as benzene and naphthalene were degraded under Fe(III)-reducing conditions at Bemidji, but not at the other aquifers examined. These studies indicated that the ability of Fe(III)-reducing microorganisms to degrade benzene and naphthalene at the Bemidji site cannot be attributed to groundwater components that make Fe(III) more available for reduction or other potential factors that were evaluated. However, unlike the other aquifers evaluated, uncontaminated sediments at the Bemidji site could be adapted for anaerobic benzene degradation merely with the addition of benzene. These findings indicate that Bemidji sediments naturally contain Fe(III) reducers capable of degradation of unsubstituted aromatic hydrocarbons.

  9. Evaluation of gastrointestinal solubilization of petroleum hydrocarbon residues in soil using an in vitro physiologically based model.

    PubMed

    Holman, Hoi-Ying N; Goth-Goldstein, Regine; Aston, David; Yun, Mao; Kengsoontra, Jenny

    2002-03-15

    Petroleum hydrocarbon residues in weathered soils may pose risks to humans through the ingestion pathway. To understand the factors controlling their gastrointestinal (GI) absorption, a newly developed experimental extraction protocol was used to model the GI solubility of total petroleum hydrocarbon (TPH) residues in highly weathered soils from different sites. The GI solubility of TPH residues was significantly higher for soil contaminated with diesel than with crude oil. Compared to the solubility of TPH residues during fasted state,the solubility of TPH residues during fat digestion was much greater. Diesel solubility increased from an average of 8% during the "gallbladder empty" phase of fasting (and less than 0.2% during the otherfasting phase) to an average of 16% during fat digestion. For crude oil, the solubility increased from an average of 1.2% during the gallbladder empty phase of fasting (and undetectable during the other fasting phase) to an average of 4.5% during fat digestion. Increasing the concentration of bile salts also increased GI solubility. GI solubility was reduced by soil organic carbon but enhanced by the TPH content.

  10. The effect of soil type on the bioremediation of petroleum contaminated soils.

    PubMed

    Haghollahi, Ali; Fazaelipoor, Mohammad Hassan; Schaffie, Mahin

    2016-09-15

    In this research the bioremediation of four different types of contaminated soils was monitored as a function of time and moisture content. The soils were categorized as sandy soil containing 100% sand (type I), clay soil containing more than 95% clay (type II), coarse grained soil containing 68% gravel and 32% sand (type III), and coarse grained with high clay content containing 40% gravel, 20% sand, and 40% clay (type IV). The initially clean soils were contaminated with gasoil to the concentration of 100 g/kg, and left on the floor for the evaporation of light hydrocarbons. A full factorial experimental design with soil type (four levels), and moisture content (10 and 20%) as the factors was employed. The soils were inoculated with petroleum degrading microorganisms. Soil samples were taken on days 90, 180, and 270, and the residual total petroleum hydrocarbon (TPH) was extracted using soxhlet apparatus. The moisture content of the soils was kept almost constant during the process by intermittent addition of water. The results showed that the efficiency of bioremediation was affected significantly by the soil type (Pvalue < 0.05). The removal percentage was the highest (70%) for the sandy soil with the initial TPH content of 69.62 g/kg, and the lowest for the clay soil (23.5%) with the initial TPH content of 69.70 g/kg. The effect of moisture content on bioremediation was not statistically significant for the investigated levels. The removal percentage in the clay soil was improved to 57% (within a month) in a separate experiment by more frequent mixing of the soil, indicating low availability of oxygen as a reason for low degradation of hydrocarbons in the clay soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Toxicity assessment for petroleum-contaminated soil using terrestrial invertebrates and plant bioassays.

    PubMed

    Hentati, Olfa; Lachhab, Radhia; Ayadi, Mariem; Ksibi, Mohamed

    2013-04-01

    The assessment of soil quality after a chemical or oil spill and/or remediation effort may be measured by evaluating the toxicity of soil organisms. To enhance our understanding of the soil quality resulting from laboratory and oil field spill remediation, we assessed toxicity levels by using earthworms and springtails testing and plant growth experiments. Total petroleum hydrocarbons (TPH)-contaminated soil samples were collected from an oilfield in Sfax, Tunisia. Two types of bioassays were performed. The first assessed the toxicity of spiked crude oil (API gravity 32) in Organization for Economic Co-operation and Development artificial soil. The second evaluated the habitat function through the avoidance responses of earthworms and springtails and the ability of Avena sativa to grow in TPH-contaminated soils diluted with farmland soil. The EC50 of petroleum-contaminated soil for earthworms was 644 mg of TPH/kg of soil at 14 days, with 67 % of the earthworms dying after 14 days when the TPH content reached 1,000 mg/kg. The average germination rate, calculated 8 days after sowing, varied between 64 and 74 % in low contaminated soils and less than 50 % in highly contaminated soils.

  12. Hydrocarbons in sediments along a tropical estuary-shelf transition area: Sources and spatial distribution.

    PubMed

    Maciel, Daniele Claudino; de Souza, José Roberto Botelho; Taniguchi, Satie; Bícego, Márcia Caruso; Schettini, Carlos Augusto França; Zanardi-Lamardo, Eliete

    2016-12-15

    Estuaries generally act as sediment traps and may retain a range of contaminants associated to this matrix. Aliphatic hydrocarbons (AHs) were investigated in Capibaribe Estuarine System and adjacent shelf, Northeast of Brazil, to evaluate the contamination and to better understand its functionality related to the coast. Fourteen sediment samples were analyzed, using gas chromatography with flame ionization detection. Total AHs concentrations ranged from 7.5 to 190.3μgg -1 and n-alkanes ranged from below detection limit (

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAlexander, Benjamin L., E-mail: bmcalexander@trihydro.com

    Petroleum-contaminated site management typically counts destruction of hydrocarbons by either natural or engineered processes as a beneficial component of remediation. While such oxidation of spilled hydrocarbons is often necessary for achieving risk reduction for nearby human and ecological receptors, site assessments tend to neglect that this also means that the pollutants are converted to greenhouse gases and emitted to the atmosphere. This article presents a suggestion that the current and long term greenhouse gas emissions from spilled hydrocarbons be incorporated to petroleum site assessments. This would provide a more complete picture of pollutant effects that could then be incorporated tomore » remedial objectives. At some sites, this additional information may affect remedy selection. Possible examples include a shift in emphasis to remedial technologies that reduce pollutant greenhouse gas effects (e.g., by conversion of methane to carbon dioxide in the subsurface), and a more holistic context for considering remedial technologies with low emission footprints.« less

  14. INTERNET COURSE ON MODELING SUBSURFACE TRANSPORT OF PETROLEUM HYDROCARBONS

    EPA Science Inventory

    Assessment of leaks from underground storage tanks relies on knowledge of contaminant fate and transport, hydrology and in some cases modeling. EPA is developing an interactive, on-line training course to provide states with a low-cost training opportunity for these areas. Two ...

  15. SCREENING PLANT SPECIES FOR GROWTH ON WEATHERED, PETROLEUM HYDROCARBON-CONTAMINATED SEDIMENTS. (R825413)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  16. A STRATEGY FOR PROTECTING CIRCULATING SEAWATER SYSTEMS FROM OIL SPILLS

    EPA Science Inventory

    The double grounding of the freighter New Carissa, and resultant oil spills, on the central Oregon coast in spring of 1999 caused great concern regarding possible petroleum hydrocarbon (PHC) contamination of Coos Bay, Alsea Bay, and Yaquina Bay estuaries. Among these concerns wa...

  17. BIOACCUMULATION AND HISTOPATHOLOGICAL EFFECTS OF OIL ON A STONY CORAL

    EPA Science Inventory

    Colonies of the shallow-water Caribbean coral Manicina areolata incorporated petroleum hydrocarbons into their tissues during exposure to water accommodated fractions of No. 2 fuel oil for three months. This contamination was not removed after depuration periods of up to two week...

  18. Effect of nutrient amendments on indigenous hydrocarbon biodegradation in oil-contaminated beach sediments.

    PubMed

    Xu, Ran; Obbard, Jeffrey P

    2003-01-01

    Nutrient amendment to oil-contaminated beach sediments is a critical factor for the enhancement of indigenous microbial activity and biodegradation of petroleum hydrocarbons in the intertidal marine environment. In this study, we investigated the stimulatory effect of the slow-release fertilizers Osmocote (Os; Scotts, Marysville, OH) and Inipol EAP-22 (Ip; ATOFINA Chemicals, Philadelphia, PA) combined with inorganic nutrients on the bioremediation of oil-spiked beach sediments using an open irrigation system with artificial seawater over a 45-d period. Osmocote is comprised of a semipermeable membrane surrounding water-soluble inorganic N, P, and K. Inipol, which contains organic N and P, has been used for oil cleanup on beach substrate. Nutrient concentrations and microbial activity in sediments were monitored by analyzing sediment leachates and metabolic dehydrogenase activity of the microbial biomass, respectively. Loss of aliphatics (n-C12 to n-C33, pristane, and phytane) was significantly greater (total loss between 95 and 97%) in oil-spiked sediments treated with Os alone or in combination with other nutrient amendments, compared with an unamended oil-spiked control (26% loss) or sediments treated with the other nutrient amendments (28-65% loss). A combination of Os and soluble nutrients (SN) was favorable for the rapid metabolic stimulation of the indigenous microbial biomass, the sustained release of nutrients, and the enhanced biodegradation of petroleum hydrocarbons in leached, oil-contaminated sediments.

  19. Biotechnological potential of Bacillus salmalaya 139SI: a novel strain for remediating water polluted with crude oil waste.

    PubMed

    Ismail, Salmah; Dadrasnia, Arezoo

    2015-01-01

    Environmental contamination by petroleum hydrocarbons, mainly crude oil waste from refineries, is becoming prevalent worldwide. This study investigates the bioremediation of water contaminated with crude oil waste. Bacillus salamalaya 139SI, a bacterium isolated from a private farm soil in the Kuala Selangor in Malaysia, was found to be a potential degrader of crude oil waste. When a microbial population of 108 CFU ml-1 was used, the 139SI strain degraded 79% and 88% of the total petroleum hydrocarbons after 42 days of incubation in mineral salt media containing 2% and 1% of crude oil waste, respectively, under optimum conditions. In the uninoculated medium containing 1% crude oil waste, 6% was degraded. Relative to the control, the degradation was significantly greater when a bacteria count of 99 × 108 CFU ml-1 was added to the treatments polluted with 1% oil. Thus, this isolated strain is useful for enhancing the biotreatment of oil in wastewater.

  20. Biotechnological Potential of Bacillus salmalaya 139SI: A Novel Strain for Remediating Water Polluted with Crude Oil Waste

    PubMed Central

    2015-01-01

    Environmental contamination by petroleum hydrocarbons, mainly crude oil waste from refineries, is becoming prevalent worldwide. This study investigates the bioremediation of water contaminated with crude oil waste. Bacillus salamalaya 139SI, a bacterium isolated from a private farm soil in the Kuala Selangor in Malaysia, was found to be a potential degrader of crude oil waste. When a microbial population of 108 CFU ml-1 was used, the 139SI strain degraded 79% and 88% of the total petroleum hydrocarbons after 42 days of incubation in mineral salt media containing 2% and 1% of crude oil waste, respectively, under optimum conditions. In the uninoculated medium containing 1% crude oil waste, 6% was degraded. Relative to the control, the degradation was significantly greater when a bacteria count of 99 × 108 CFU ml-1 was added to the treatments polluted with 1% oil. Thus, this isolated strain is useful for enhancing the biotreatment of oil in wastewater. PMID:25875763

  1. Reactive Transport of Petroleum Hydrocarbon Constituents in a Shallow Aquifer: Modeling Geochemical Interactions Between Organic and Inorganic Species

    NASA Astrophysics Data System (ADS)

    McNab, W. W.; Narasimhan, T. N.

    1995-08-01

    Dissolved organic contaminants such as petroleum hydrocarbon constituents are often observed to degrade in groundwater environments through biologically mediated transformation reactions into carbon dioxide, methane, or intermediate organic compounds. Such transformations are closely tied to local geochemical conditions. Favorable degradation pathways depend upon local redox conditions through thermodynamic constraints and the availability of appropriate mediating microbial populations. Conversely, the progress of the degradation reactions may affect the chemical composition of groundwater through changes in electron donor/acceptor speciation and pH, possibly inducing mineral precipitation/dissolution reactions. Transport of reactive organic and inorganic aqueous species through open systems may enhance the reaction process by mixing unlike waters and producing a state of general thermodynamic disequilibrium. In this study, field data from an aquifer contaminated by petroleum hydrocarbons have been analyzed using a mathematical model which dynamically couples equilibrium geochemistry of inorganic constituents, kinetically dominated sequential degradation of organic compounds, and advective-dispersive chemical transport. Simulation results indicate that coupled geochemical processes inferred from field data, such as organic biodegradation, iron reduction and dissolution, and methanogenesis, can be successfully modeled using a partial-redox-disequilibrium approach. The results of this study also suggest how the modeling approach can be used to study system sensitivity to various physical and chemical parameters, such as the effect of dispersion on the position of chemical fronts and the impact of alternative buffering mineral phases (e.g., goethite versus amorphous Fe(OH)3) on water chemistry.

  2. Organic pollutants in the coastal environment off San Diego, California. 2: Petrogenic and biogenic sources of aliphatic hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tran, K.; Yu, C.C.; Zeng, E.Y.

    1997-02-01

    The results from the measurements of aliphatic hydrocarbons suggest that hydrocarbons suggest that hydrocarbons in the Point Loma Wastewater Treatment Plant (PLWTP) effluents are mainly petroleum derived; those in the Tijuana River runoff have largely originated from terrestrial plants with visible petroleum contamination; and those in the sea surface microlayer, sediment traps, and sediments at various coastal locations off San Diego have mostly resulted from biogenic contributions with enhanced microbial products in the summer season. Rainfall in the winter season appeared to amplify the inputs from terrestrial higher plants to the coastal areas. The PLWTP discharged approximately 3.85 metric tonsmore » of n-alkanes (C{sub 10}-C{sub 35}) in 1994, well below the level (136 metric tons) estimated in 1979. The input of aliphatic hydrocarbons from the Tijuana River was about 0.101 metric tons in 1994. Diffusion, solubilization, evaporation, and microbial degradation seemed partially responsible for the difference in the concentrations and compositions of aliphatic hydrocarbons in different sample media, although the relative importance of each mechanism cannot be readily discerned from the available data. The results from analyses of aliphatic hydrocarbon compositional indices are generally consistent with those of polycyclic aromatic hydrocarbons.« less

  3. Phytoremediation of petroleum hydrocarbons by using a freshwater fern species Azolla filiculoides Lam.

    PubMed

    Kösesakal, Taylan; Ünal, Muammer; Kulen, Oktay; Memon, Abdülrezzak; Yüksel, Bayram

    2016-01-01

    In this study, the phytoremediation capacity of Azolla filiculoides Lam. for the water resources contaminated with petroleum hydrocarbons was investigated. The plants were grown in nitrogen-free Hoagland nutrient solution containing 0.005%, 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, and 0.5% crude oil under greenhouse conditions for 15 days. Although the growth rate of the plants were not negatively influenced by the presence of crude oil in the media for the concentration of 0.005% and 0.01% v/v, a gradual impeding effect of crude oil in the growth media has been observed at concentrations 0.05-0.1%. More than 0.1% crude oil in the growth medium ostensibly retarded the growth. For example, 0.2% oil in the media reduced growth approximately 50% relative to the control, and the presence of crude oil at concentrations 0.3% or more were lethal. The data about the percentage of plant growth, fresh weight increase and root growth clearly indicated that the tolerance level of A. filiculoides plants to crude oil ranges between 0.1% and 0.2%. In comparison to control samples, the biodegradation rate of total aliphatic and aromatic (phenathrene) hydrocarbons at 0.05-0.2% oil concentrations, was 94-73% and 81-77%, respectively. On the other hand, in case of further increases in oil concentration in media, i.e.; 0.3-0.5%, the biodegradation rate was still higher in the experimental samples, respectively 71-63% and 75-71%. The high biodegradation rates of petroleum hydrocarbons in the experimental samples suggested that A. filiculoides plants could be a promising candidate to be used for the phytoremediation of low crude oil contaminated precious freshwater resources.

  4. Assessment of soil pollution based on total petroleum hydrocarbons and individual oil substances.

    PubMed

    Pinedo, J; Ibáñez, R; Lijzen, J P A; Irabien, Á

    2013-11-30

    Different oil products like gasoline, diesel or heavy oils can cause soil contamination. The assessment of soils exposed to oil products can be conducted through the comparison between a measured concentration and an intervention value (IV). Several national policies include the IV based on the so called total petroleum hydrocarbons (TPH) measure. However, the TPH assessment does not indicate the individual substances that may produce contamination. The soil quality assessment can be improved by including common hazardous compounds as polycyclic aromatic hydrocarbons (PAHs) and aromatic volatile hydrocarbons like benzene, toluene, ethylbenzene and xylenes (BTEX). This study, focused on 62 samples collected from different sites throughout The Netherlands, evaluates TPH, PAH and BTEX concentrations in soils. Several indices of pollution are defined for the assessment of individual variables (TPH, PAH, B, T, E, and X) and multivariables (MV, BTEX), allowing us to group the pollutants and simplify the methodology. TPH and PAH concentrations above the IV are mainly found in medium and heavy oil products such as diesel and heavy oil. On the other hand, unacceptable BTEX concentrations are reached in soils contaminated with gasoline and kerosene. The TPH assessment suggests the need for further action to include lighter products. The application of multivariable indices allows us to include these products in the soil quality assessment without changing the IV for TPH. This work provides useful information about the soil quality assessment methodology of oil products in soils, focussing the analysis into the substances that mainly cause the risk. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Persistence and biodegradation of oil at the ocean floor following Deepwater Horizon

    PubMed Central

    Bagby, Sarah C.; Reddy, Christopher M.; Aeppli, Christoph; Fisher, G. Burch; Valentine, David L.

    2017-01-01

    The 2010 Deepwater Horizon disaster introduced an unprecedented discharge of oil into the deep Gulf of Mexico. Considerable uncertainty has persisted regarding the oil’s fate and effects in the deep ocean. In this work we assess the compound-specific rates of biodegradation for 125 aliphatic, aromatic, and biomarker petroleum hydrocarbons that settled to the deep ocean floor following release from the damaged Macondo Well. Based on a dataset comprising measurements of up to 168 distinct hydrocarbon analytes in 2,980 sediment samples collected within 4 y of the spill, we develop a Macondo oil “fingerprint” and conservatively identify a subset of 312 surficial samples consistent with contamination by Macondo oil. Three trends emerge from analysis of the biodegradation rates of 125 individual hydrocarbons in these samples. First, molecular structure served to modulate biodegradation in a predictable fashion, with the simplest structures subject to fastest loss, indicating that biodegradation in the deep ocean progresses similarly to other environments. Second, for many alkanes and polycyclic aromatic hydrocarbons biodegradation occurred in two distinct phases, consistent with rapid loss while oil particles remained suspended followed by slow loss after deposition to the seafloor. Third, the extent of biodegradation for any given sample was influenced by the hydrocarbon content, leading to substantially greater hydrocarbon persistence among the more highly contaminated samples. In addition, under some conditions we find strong evidence for extensive degradation of numerous petroleum biomarkers, notably including the native internal standard 17α(H),21β(H)-hopane, commonly used to calculate the extent of oil weathering. PMID:27994146

  6. Persistence and biodegradation of oil at the ocean floor following Deepwater Horizon.

    PubMed

    Bagby, Sarah C; Reddy, Christopher M; Aeppli, Christoph; Fisher, G Burch; Valentine, David L

    2017-01-03

    The 2010 Deepwater Horizon disaster introduced an unprecedented discharge of oil into the deep Gulf of Mexico. Considerable uncertainty has persisted regarding the oil's fate and effects in the deep ocean. In this work we assess the compound-specific rates of biodegradation for 125 aliphatic, aromatic, and biomarker petroleum hydrocarbons that settled to the deep ocean floor following release from the damaged Macondo Well. Based on a dataset comprising measurements of up to 168 distinct hydrocarbon analytes in 2,980 sediment samples collected within 4 y of the spill, we develop a Macondo oil "fingerprint" and conservatively identify a subset of 312 surficial samples consistent with contamination by Macondo oil. Three trends emerge from analysis of the biodegradation rates of 125 individual hydrocarbons in these samples. First, molecular structure served to modulate biodegradation in a predictable fashion, with the simplest structures subject to fastest loss, indicating that biodegradation in the deep ocean progresses similarly to other environments. Second, for many alkanes and polycyclic aromatic hydrocarbons biodegradation occurred in two distinct phases, consistent with rapid loss while oil particles remained suspended followed by slow loss after deposition to the seafloor. Third, the extent of biodegradation for any given sample was influenced by the hydrocarbon content, leading to substantially greater hydrocarbon persistence among the more highly contaminated samples. In addition, under some conditions we find strong evidence for extensive degradation of numerous petroleum biomarkers, notably including the native internal standard 17α(H),21β(H)-hopane, commonly used to calculate the extent of oil weathering.

  7. [Humus composition of petroleum hydrocarbon-contaminated soil].

    PubMed

    Feng, Jun; Tang, Li-Na; Zhang, Jin-Jing; Dou, Sen

    2008-05-01

    An abandoned petroleum well which had been exploited for about twenty years in Songyuan city of Jilin Province, China, was selected to study the compositions and characteristics of soil humus using revised humus composition method and Simon-Kumada method. Soil samples were collected at 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5 and 10.5 m apart from the well head. Results show that the petroleum contents increase from 0.08 g/kg (10.5 m to the well head) to 153.3 g/kg (0.5 m to the well head). With the increase in petroleum content, the contents of soil organic carbon and water soluble organic carbon increase; for total soil humus, the contents of extractable humus (HE) and humic acid (HA) decrease whereas that of humin (HM) increase; the percentage of HA/HE (PQ 72.0%-8.05%) decrease and HM/HE ratio (31.4-76.7) increase; for different combined humus, the contents of loosely combined humus (HI) and stably combined humus (HII) have a decrease tendency while that of tightly combined humus (HIII) increase; the HI/HII ratio (0.19-0.39) shows an increase tendency, whereas HI/HIII ratio (0.032-0.003) and HII/HIII ratio (0.096-0.009) decrease; the PQs of HI (3.21%-1.42%) and HIII (58.1%-35.5%) also decrease, and the range of PQ change is less in HI than in HII; the color coefficient (deltalogk) of water soluble organic matter (WSOM) decreases, whereas no obvious change for HA. The above results indicate that petroleum hydrocarbon promotes the formation of HM but not HA. The decrease in HA is mainly due to the restraining effect of petroleum hydrocarbon on the formation of stably combined HA. Petroleum hydrocarbon leads molecular structure of WSOM more complex but no effect on molecular structure of HA.

  8. Optimization of Enterobacter cloacae (KU923381) for diesel oil degradation using response surface methodology (RSM).

    PubMed

    Ramasamy, Sugumar; Arumugam, Arumugam; Chandran, Preethy

    2017-02-01

    Efficiency of Enterobacter cloacae KU923381 isolated from petroleum hydrocarbon contaminated soil was evaluated in batch culture and bioreactor mode. The isolate were screened for biofilm formation using qualitative and quantitative assays. Response surface methodology (RSM) was used to study the effect of pH, temperature, glucose concentration, and sodium chloride on diesel degradation. The predicted values for diesel oil degradation efficiency by the statistical designs are in a close agreement with experimental data (R 2 = 99.66%). Degradation efficiency is increased by 36.78% at pH = 7, temperature = 35°C, glucose = 5%, and sodium chloride concentration = 5%. Under the optimized conditions, the experiments were performed for diesel oil degradation by gas chromatographic mass spectrometric analysis (GC-MS). GC-MS analysis confirmed that E. cloacae had highly degrade hexadecane, heptadecane, tridecane, and docosane by 99.71%, 99.23%, 99.66%, and 98.34% respectively. This study shows that rapid bioremoval of hydrocarbons in diesel oil is acheived by E. cloacae with abet of biofilm formation. The potential use of the biofilms for preparing trickling filters (gravel particles) for the degradation of hydrocarbons from petroleum wastes before their disposal in the open environment is highly suggested. This is the first successful attempt for artificially establishing petroleum hydrocarbon degrading bacterial biofilm on solid substrates in bioreactor.

  9. Surfactants selectively reallocated the bacterial distribution in soil bioelectrochemical remediation of petroleum hydrocarbons.

    PubMed

    Li, Xiaojing; Zhao, Qian; Wang, Xin; Li, Yongtao; Zhou, Qixing

    2018-02-15

    Soil contaminated by aged petroleum hydrocarbons is faced with scarcity of electron acceptors, low activity of functional microbes and inefficient electron transfer, which hinder the bioremediation application. The soil microbial fuel cell (MFC) simultaneously solves these problems with bioelectricity production. In this study, five types of surfactants were introduced to enhance the bioavailability of aged petroleum hydrocarbon in soils. The ampholytic surfactant (lecithos) was optimal due to the highest bioelectricity generation (0.321Cd -1 g -1 ) and promoted hydrocarbon degradation (328%), while the nonionic (glyceryl monostearate) and cationic (cetyltrimethylammonium bromide) surfactants were inefficient. The surfactants induced a special microbial enrichment affiliated with Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Chloroflexi, Planctomycetes and Acidobacteria (93%-99% of total) in soil MFCs. The anionic surfactant (sodium dodecyl sulfate) exhibited the strongest selectivity, and α-proteobacteria and γ-proteobacteria abundances decreased while Clostridia increased, much like the result obtained with the biosurfactant β-cyclodextrin. Furthermore, Bacillus abundance was increased in connected soil MFCs, except addition of lecithos in which Clostridium increased to 14.88% from 3.61% in the control. The high correlations among Bacillus, Phenylobacterium, Solibacillus (0.9162-0.9577) and among Alcaligenes, Dysgonomonas, Sedimentibacter (0.9538-0.9966) indicated a metabolic network of microorganisms in the soil bioelectrochemical remediation system. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Enhanced bioremediation of nutrient-amended, petroleum hydrocarbon-contaminated soils over a cold-climate winter: The rate and extent of hydrocarbon biodegradation and microbial response in a pilot-scale biopile subjected to natural seasonal freeze-thaw temperatures.

    PubMed

    Kim, Jihun; Lee, Aslan Hwanhwi; Chang, Wonjae

    2018-01-15

    A pilot-scale biopile field experiment for nutrient-amended petroleum-contaminated fine-grained soils was performed over the winter at a cold-climate site. The rate and extent of hydrocarbon biodegradation and microbial responses were determined and corresponded to the on-site soil phase changes (from unfrozen to partially frozen, deeply frozen, and thawed) associated with natural seasonal freeze-thaw conditions. Treated and untreated biopiles were constructed (~3500kg each) on an open outdoor surface at a remediation facility in Saskatoon, Canada. The treated biopile received N-P-K-based nutrient and humate amendments before seasonal freezing. Real-time field monitoring indicated significant unfrozen water content in the treated and untreated biopiles throughout the freezing period, from the middle of November to early March. Unfrozen water was slightly more available in the treated biopile due to the aqueous nutrient supply. Soil CO 2 production and O 2 consumption in the treated biopile were generally greater than in the untreated biopile. Total removal percentages for F2 (>C10-C16), F3 (>C16-C34), and total petroleum hydrocarbons (TPH) in the treated biopile were 57, 58, and 58%, respectively, of which 26, 39, and 33% were removed during seasonal freezing and early thawing between November to early March. F3 degradation largely occurred during freezing while F2 hydrocarbons were primarily removed during thawing. Biomarker-based hydrocarbon analyses confirmed enhanced biodegradation in the treated biopile during freezing. The soil treatment increased the first-order rate constants for F2, F3, and TPH degradation by a factor of 2 to 7 compared to the untreated biopile. Shifts in bacterial community appeared in both biopiles as the biopile soils seasonally froze and thawed. Increased alkB1 gene copy numbers in the treated biopile, especially in the partially thawed phase during early thawing, suggest extended hydrocarbon biodegradation to the seasonal freeze-thaw season, due to the nutrients supplied prior to seasonal freezing. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Assessment of soil and water contaminants from selected locations in and near the Idaho Army National Guard Orchard Training Area, Ada County, Idaho, 2001-2003

    USGS Publications Warehouse

    Parliman, D.J.

    2004-01-01

    In 2001, the National Guard Bureau and the U.S. Geological Survey began a project to compile hydrogeologic data and determine presence or absence of soil, surface-water, and ground-water contamination at the Idaho Army National Guard Orchard Training Area in southwestern Idaho. Between June 2002 and April 2003, a total of 114 soil, surface-water, ground-water, precipitation, or dust samples were collected from 68 sample sites (65 different locations) in the Orchard Training Area (OTA) or along the vehicle corridor to the OTA. Soil and water samples were analyzed for concentrations of selected total trace metals, major ions, nutrients, explosive compounds, semivolatile organics, and petroleum hydrocarbons. Water samples also were analyzed for concentrations of selected dissolved trace metals and major ions. Distinguishing naturally occurring large concentrations of trace metals, major ions, and nutrients from contamination related to land and water uses at the OTA was difficult. There were no historical analyses for this area to compare with modern data, and although samples were collected from 65 locations in and near the OTA, sampled areas represented only a small part of the complex OTA land-use areas and soil types. For naturally occurring compounds, several assumptions were made?anomalously large concentrations, when tied to known land uses, may indicate presence of contamination; naturally occurring concentrations cannot be separated from contamination concentrations in mid- and lower ranges of data; and smallest concentrations may represent the lowest naturally occurring range of concentrations and (or) the absence of contaminants related to land and water uses. Presence of explosive, semivolatile organic (SVOC), and petroleum hydrocarbon compounds in samples indicates contamination from land and water uses. In areas along the vehicle corridor and major access roads within the OTA, most trace metal, major ion, and nutrient concentrations in soil samples were not in the upper 10th percentile of data, but concentrations of 25 metals, ions, or nutrients were in the upper 10th percentile in a puddle sample near the heavy equipment maneuvering area, MPRC-H. The largest concentrations of tin, ammonia, and nitrite plus nitrate (as nitrogen) in water from the OTA were detected in a sample from this puddle. Petroleum hydrocarbons were the most common contaminant, detected in all soil and surface-water samples. An SVOC, bis (2-ethylhexyl) phthalate, a plasticizer, was detected at a site along the vehicle corridor. In Maneuver Areas within the OTA, many soil samples contained at least one trace metal, major ion, or nutrient in the upper 10th percentile of data, and the largest concentrations of cobalt, iron, mercury, titanium, sodium, ammonia, or total phosphorus were detected in 6 of 13 soil samples outside the Tadpole Lake area. The largest concentrations of aluminum, arsenic, beryllium, nickel, selenium, silver, strontium, thallium, vanadium, chloride, potassium, sulfate, and nitrite plus nitrate were detected in soil samples from the Tadpole Lake area. Water from Tadpole Lake contained the largest total concentrations of 19 trace metals, 4 major ions, and 1 nutrient. Petroleum hydrocarbons were detected in 5 soil samples and water from Tadpole Lake. SVOCs related to combustion of fuel or plasticizers were detected in 1 soil sample. Explosive compounds were detected in 1 precipitation sample.In the Impact Area within the OTA, most soil samples contained at least one trace metal, major ion, or nutrient in the upper 10th percentile of data, and the largest concentrations of barium, chromium, copper, manganese, lead, or orthophosphate were detected in 6 of the 18 soil samples. Petroleum hydrocarbons were detected in 4 soil samples, SVOCs in 6 samples, and explosive compounds in 4 samples. In the mobilization and training equipment site (MATES) compound adjacent to the OTA, all soil and water samples contained at lea

  12. Technical and Regulatory Guidance for In Situ Chemical Oxidation of Contaminated Soil and Groundwater Second Edition

    DTIC Science & Technology

    2005-01-01

    PA Ozone (full scale) Silty sand underlain by fractured schist and shale Petroleum hydrocarbons Former Wood Treatment Site, Sonoma County , CA...Wood Treatment Site, Sonoma County , California Contaminant: Pentachlorophenol and creosote (i.e., PAHs) Oxidant: Ozone Regulatory Agency Contact...topography is essentially flat and paved, and the facility is located on northern Sonoma County , California. The site subsurface consists of very

  13. LABORATORY AND FIELD RESULTS LINKING HIGH BULK CONDUCTIVITIES TO THE MICROBIAL DEGRADATION OF PETROLEUM HYDROCARBONS

    EPA Science Inventory

    Diesel contaminated layer (i.e. 32-45 cm) was the most geoelectrically conductive and showed the peak microbial activity. Below the saturated zone microbial enhanced mineral weathering increases the ionic concentration of pore fluids, leading to increased bulk electrical conducit...

  14. Microbial degradation of petroleum hydrocarbons.

    PubMed

    Varjani, Sunita J

    2017-01-01

    Petroleum hydrocarbon pollutants are recalcitrant compounds and are classified as priority pollutants. Cleaning up of these pollutants from environment is a real world problem. Bioremediation has become a major method employed in restoration of petroleum hydrocarbon polluted environments that makes use of natural microbial biodegradation activity. Petroleum hydrocarbons utilizing microorganisms are ubiquitously distributed in environment. They naturally biodegrade pollutants and thereby remove them from the environment. Removal of petroleum hydrocarbon pollutants from environment by applying oleophilic microorganisms (individual isolate/consortium of microorganisms) is ecofriendly and economic. Microbial biodegradation of petroleum hydrocarbon pollutants employs the enzyme catalytic activities of microorganisms to enhance the rate of pollutants degradation. This article provides an overview about bioremediation for petroleum hydrocarbon pollutants. It also includes explanation about hydrocarbon metabolism in microorganisms with a special focus on new insights obtained during past couple of years. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. In Situ Hydrocarbon Degradation by Indigenous Nearshore Bacterial Populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherrier, J.

    Potential episodic hydrocarbon inputs associated with oil mining and transportation together with chronic introduction of hydrocarbons via urban runoff into the relatively pristine coastal Florida waters poses a significant threat to Florida's fragile marine environment. It is therefore important to understand the extent to which indigenous bacterial populations are able to degrade hydrocarbon compounds and also determine factors that could potentially control and promote the rate at which these compounds are broken down in situ. Previous controlled laboratory experiments carried out by our research group demonstrated that separately both photo-oxidation and cometabolism stimulate bacterial hydrocarbon degradation by natural bacterial assemblagesmore » collected from a chronically petroleum contaminated site in Bayboro Bay, Florida. Additionally, we also demonstrated that stable carbon and radiocarbon abundances of respired CO{sub 2} could be used to trace in situ hydrocarbon degradation by indigenous bacterial populations at this same site. This current proposal had two main objectives: (a) to evaluate the cumulative impact of cometabolism and photo-oxidation on hydrocarbon degradation by natural bacterial assemblages collected the same site in Bayboro Bay, Florida and (b) to determine if in situ hydrocarbon degradation by indigenous bacterial populations this site could be traced using natural radiocarbon and stable carbon abundances of assimilated bacterial carbon. Funds were used for 2 years of full support for one ESI Ph.D. student, April Croxton. To address our first objective a series of closed system bacterial incubations were carried out using photo-oxidized petroleum and pinfish (i.e. cometabolite). Bacterial production of CO{sub 2} was used as the indicator of hydrocarbon degradation and {delta}{sup 13}C analysis of the resultant CO{sub 2} was used to evaluate the source of the respired CO{sub 2} (i.e. petroleum hydrocarbons or the pinfish cometabolite). Results from these time series experiments demonstrated that short-term exposure of petroleum to UV light enhanced hydrocarbon degradation by 48% over that observed for non-photo-oxidized petroleum. Despite the greater bio-availability of the photo-oxidized over the non-photo-oxidized petroleum, an initial lag in CO{sub 2} production was observed indicating potential phototoxicity of the photo- by-products. {delta}{sup 13}C analysis and mass balance calculations reveal that co-metabolism with pinfish resulted in increased hydrocarbon degradation for both photo-oxidized and non-photo-oxidized petroleum each by over 100%. These results demonstrate the cumulative effect of photo-oxidation and co-metabolism on petroleum hydrocarbon degradation by natural bacterial populations indigenous to systems chronically impacted by hydrocarbon input. To address the second objective of this proposal bacterial concentrates were collected from Bayboro Harbor in April 2001 for nucleic acid extraction and subsequent natural radiocarbon abundance analyses. Unfortunately, however, all of these samples were lost due to a faulty compressor in our -70 freezer. The freezer was subsequently repaired and samples were again collected from Bayboro Harbor in June 2002 and again December 2002. Several attempts were made to extract the nucleic acid samples--however, the student was not able to successfully extract and an adequate amount of uncontaminated nucleic acid samples for subsequent natural radiocarbon abundance measurements of the bacterial carbon by accelerator mass spectrometry (i.e. require at least 50 {micro}g carbon for AMS measurement). Consequently, we were not able to address the second objective of this proposed work.« less

  16. Great Lakes and St. Lawrence Seaway Navigation Season Extension. Volume V. Appendix G. Fish and Wildlife Coordination Act Report.

    DTIC Science & Technology

    1979-08-01

    eating contaminated fish and birds. Oil on feathers of birds carried to their eggs can kill the embryos. Heavier petroleum products, if spilled, would...result in death or sickness. Petroleum products on shore or in the water can get on bird feathers. Birds in the water lose both insulation and buoyancy...lake basin did not find detectable levels of hazardous substances such as arsenic, phenols, mercury, PCB’s and other chlorinated hydrocarbons . The

  17. Characteristics of petroleum-contaminated groundwater during natural attenuation: a case study in northeast China.

    PubMed

    Qian, Hong; Zhang, Yuling; Wang, Jiali; Si, Chaoqun; Chen, Zaixing

    2018-01-13

    The objective of this study was to investigate a petroleum-contaminated groundwater site in northeast China. We determined the physicochemical properties of groundwater that contained total petroleum hydrocarbons (TPH) with a view to developing a scientifically robust strategy for controlling and remediating pollution of groundwater already contaminated with petroleum. Samples were collected at regular intervals and were analyzed for dissolved oxygen (DO), iron (Fe 3+ ), sulfate (SO 4 2- ), electrical conductivity (Eh), pH, hydrogen carbonate (HCO 3 - ), and enzyme activities of catalase (CAT), peroxidase (HRP), catechol 1,2-dioxygenase (C12O), and catechol 2,3-dioxygenase (C23O). We used factor analysis in SPSS to determine the main environmental characteristics of the groundwater samples. The results confirmed that the study site was slightly contaminated and that TPH levels were decreasing slightly. Some of the physicochemical variables showed regular fluctuations; DO, Fe 3+ , and SO 4 2- contents decreased gradually, while the concentrations of one of the microbial degradation products, HCO 3 - , increased. Microorganism enzyme activities decreased gradually. The microbiological community deteriorated noticeably during the natural attenuation process, so microbiological degradation of pollutants receded gradually. The HCO 3 - content increased and the pH and Eh decreased gradually. The groundwater environment tended to be reducing.

  18. Bioremediation of a weathered and a recently oil-contaminated soils from Brazil: a comparison study.

    PubMed

    Trindade, P V O; Sobral, L G; Rizzo, A C L; Leite, S G F; Soriano, A U

    2005-01-01

    The facility with which hydrocarbons can be removed from soils varies inversely with aging of soil samples as a result of weathering. Weathering refers to the result of biological, chemical and physical processes that can affect the type of hydrocarbons that remain in a soil. These processes enhance the sorption of hydrophobic organic contaminants (HOCs) to the soil matrix, decreasing the rate and extent of biodegradation. Additionally, pollutant compounds in high concentrations can more easily affect the microbial population of a recently contaminated soil than in a weathered one, leading to inhibition of the biodegradation process. The present work aimed at comparing the biodegradation efficiencies obtained in a recently oil-contaminated soil (spiked one) from Brazil and an weathered one, contaminated for four years, after the application of bioaugmentation and biostimulation techniques. Both soils were contaminated with 5.4% of total petroleum hydrocarbons (TPHs) and the highest biodegradation efficiency (7.4%) was reached for the weathered contaminated soil. It could be concluded that the low biodegradation efficiencies reached for all conditions tested reflect the treatment difficulty of a weathered soil contaminated with a high crude oil concentration. Moreover, both soils (weathered and recently contaminated) submitted to bioaugmentation and biostimulation techniques presented biodegradation efficiencies approximately twice as higher as the ones without the aforementioned treatment (natural attenuation).

  19. 21 CFR 178.3650 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Odorless light petroleum hydrocarbons. 178.3650... SANITIZERS Certain Adjuvants and Production Aids § 178.3650 Odorless light petroleum hydrocarbons. Odorless light petroleum hydrocarbons may be safely used, as a component of nonfood articles intended for use in...

  20. 21 CFR 178.3650 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Odorless light petroleum hydrocarbons. 178.3650... SANITIZERS Certain Adjuvants and Production Aids § 178.3650 Odorless light petroleum hydrocarbons. Odorless light petroleum hydrocarbons may be safely used, as a component of nonfood articles intended for use in...

  1. 21 CFR 178.3650 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Odorless light petroleum hydrocarbons. 178.3650... SANITIZERS Certain Adjuvants and Production Aids § 178.3650 Odorless light petroleum hydrocarbons. Odorless light petroleum hydrocarbons may be safely used, as a component of nonfood articles intended for use in...

  2. 21 CFR 178.3650 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Odorless light petroleum hydrocarbons. 178.3650... SANITIZERS Certain Adjuvants and Production Aids § 178.3650 Odorless light petroleum hydrocarbons. Odorless light petroleum hydrocarbons may be safely used, as a component of nonfood articles intended for use in...

  3. Fingerprinting aliphatic hydrocarbon pollutants over agricultural lands surrounding Tehran oil refinery.

    PubMed

    Bayat, Javad; Hashemi, Seyed Hossein; Khoshbakht, Korros; Deihimfard, Reza

    2016-11-01

    The analysis of aliphatic hydrocarbons, which are composed of n-alkanes as well as branched and cyclic alkanes, can be used to distinguish between the sources of hydrocarbon contamination. In this study, the concentration of aliphatic hydrocarbons, soil pH, and organic matter in agricultural soils located south of Tehran were monitored. Eighty-three soil samples were taken from two depth ranges of 0-30 and 30-60 cm. The results showed that aliphatic compounds ranged from 0.22-68.11 mg kg -1 at the top to 0.33-53.18 mg kg -1 at subsoil. The amount of hydrocarbons increases from the northern parts toward the south, and hydrocarbon pollutants originated from both petroleum and non-petroleum sources. Higher concentrations of aliphatic compounds in the southern parts indicated that, aside from the practice of irrigating with untreated wastewater, leakage from oil refinery storage tanks possibly contributed to soil pollution. The results also showed that several sources have polluted the agricultural soils. It is necessary to develop a new local pollution criterion as a diagnostic index that includes not only hydrocarbons but also other parameters such as heavy metal content in both soil and untreated wastewater, surface runoff, and other irrigation water resources to determine the exact origin of pollution.

  4. Effects of Low Temperature and Freeze-Thaw Cycles on Hydrocarbon Biodegradation in Arctic Tundra Soil

    PubMed Central

    Eriksson, Mikael; Ka, Jong-Ok; Mohn, William W.

    2001-01-01

    Degradation of petroleum hydrocarbons was monitored in microcosms with diesel fuel-contaminated Arctic tundra soil incubated for 48 days at low temperatures (−5, 0, and 7°C). An additional treatment was incubation for alternating 24-h periods at 7 and −5°C. Hydrocarbons were biodegraded at or above 0°C, and freeze-thaw cycles may have actually stimulated hydrocarbon biodegradation. Total petroleum hydrocarbon (TPH) removal over 48 days in the 7, 0, and 7 and −5°C treatments, respectively, was 450, 300, and 600 μg/g of soil. No TPH removal was observed at −5°C. Total carbon dioxide production suggested that TPH removal was due to biological mineralization. Bacterial metabolic activity, indicated by RNA/DNA ratios, was higher in the middle of the experiment (day 21) than at the start, in agreement with measured hydrocarbon removal and carbon dioxide production activities. The total numbers of culturable heterotrophs and of hydrocarbon degraders did not change significantly over the 48 days of incubation in any of the treatments. At the end of the experiment, bacterial community structure, evaluated by ribosomal intergenic spacer length analysis, was very similar in all of the treatments but the alternating 7 and −5°C treatment. PMID:11679333

  5. [Use of Leersia hexandra (Poaceae) for soil phytoremediation in soils contaminated with fresh and weathered oil].

    PubMed

    Arias-Trinidad, Alfredo; Rivera-Cruz, María del Carmen; Roldán-Garrigós, Antonio; Aceves-Navarro, Lorenzo Armando; Quintero-Lizaola, Roberto; Hernández-Guzmán, Javier

    2017-03-01

    The oil industry has generated chronic oil spills and their accumulation in wetlands of the state of Tabasco, in Southeastern Mexico. Waterlogging is a factor that limits the use of remediation technologies because of its high cost and low levels of oil degradation. However, Leersia hexandra is a grass that grows in these contaminated areas with weathered oil. The aim of the study was to evaluate the bacteria density, plant biomass production and phytoremediation of L. hexandra in contaminated soil. For this, two experiments in plastic tunnel were performed with fresh (E1) and weathered petroleum (E2) under waterlogging experimental conditions. The E1 was based on eight doses: 6 000, 10 000, 30 000, 60 000, 90 000, 120 000, 150 000 and 180 000 mg.kg-1 dry basis (d. b.) of total petroleum hydrocarbons fresh (TPH-F), and the E2, that evaluated five doses: 14 173, 28 400, 50 598, 75 492 and 112 142 mg. kg-1 d. b. of total petroleum hydrocarbons weathered (TPH-W); a control treatment with 2 607 mg.kg-1 d. b. was used. Each experiment, with eight replicates per treatment, evaluated after three and six months: a) microbial density of total free-living nitrogen-fixing bacteria (NFB) of Azospirillum (AZP) and Azotobacter group (AZT), for viable count in serial plate; b) dry matter production (DMP), quantified gravimetrically as dry weight of L. hexandra; and c) the decontamination percentage of hydrocarbons (PDH) by Soxhlet extraction. In soil with TPH-F, the NFB, AZP y AZT populations were stimulated five times more than the control both at the three and six months; however, concentrations of 150 000 and 180 000 mg.kg-1 d. b. inhibited the bacterial density between 70 and 89 %. Likewise, in soil with TPH-W, the FNB, AZP and AZT inhibitions were 90 %, with the exception of the 14 173 mg.kg-1 d. b. treatment, which stimulated the NFB and AZT in 2 and 0.10 times more than the control, respectively. The DMP was continued at the six months in the experiments, with values of 63 and 89 g in fresh and weathered petroleum, respectively; had no significant differences with the control (p≤0.05). The PDH reached values of 66 to 87 % both TPH-F and TPH-W at six months, respectively. These results demonstrated the ability the L. hexandra rhizosphere to stimulate the high NFB density, vegetal biomass production and phytoremediation of contaminated soils (with fresh and weathered petroleum), in a tropical waterlogging environment.

  6. Earthworm Comet Assay for Assessing the Risk of Weathered Petroleum Hydrocarbon Contaminated Soils: Need to Look Further than Target Contaminants.

    PubMed

    Ramadass, Kavitha; Palanisami, Thavamani; Smith, Euan; Mayilswami, Srinithi; Megharaj, Mallavarapu; Naidu, Ravi

    2016-11-01

    Earthworm toxicity assays contribute to ecological risk assessment and consequently standard toxicological endpoints, such as mortality and reproduction, are regularly estimated. These endpoints are not enough to better understand the mechanism of toxic pollutants. We employed an additional endpoint in the earthworm Eisenia andrei to estimate the pollutant-induced stress. In this study, comet assay was used as an additional endpoint to evaluate the genotoxicity of weathered hydrocarbon contaminated soils containing 520 to 1450 mg hydrocarbons kg -1 soil. Results showed that significantly higher DNA damage levels (two to sixfold higher) in earthworms exposed to hydrocarbon impacted soils. Interestingly, hydrocarbons levels in the tested soils were well below site-specific screening guideline values. In order to explore the reasons for observed toxicity, the contaminated soils were leached with rainwater and subjected to earthworm tests, including the comet assay, which showed no DNA damage. Soluble hydrocarbon fractions were not found originally in the soils and hence no hydrocarbons leached out during soil leaching. The soil leachate's Electrical Conductivity (EC) decreased from an average of 1665 ± 147 to 204 ± 20 µS cm -1 . Decreased EC is due to the loss of sodium, magnesium, calcium, and sulphate. The leachate experiment demonstrated that elevated salinity might cause the toxicity and not the weathered hydrocarbons. Soil leaching removed the toxicity, which is substantiated by the comet assay and soil leachate analysis data. The implication is that earthworm comet assay can be included in future eco (geno) toxicology studies to assess accurately the risk of contaminated soils.

  7. Applications of Biosurfactants in the Petroleum Industry and the Remediation of Oil Spills

    PubMed Central

    Silva, Rita de Cássia F. S.; Almeida, Darne G.; Rufino, Raquel D.; Luna, Juliana M.; Santos, Valdemir A.; Sarubbo, Leonie Asfora

    2014-01-01

    Petroleum hydrocarbons are important energy resources. However, petroleum is also a major pollutant of the environment. Contamination by oil and oil products has caused serious harm, and increasing attention has been paid to the development and implementation of innovative technologies for the removal of these contaminants. Biosurfactants have been extensively used in the remediation of water and soil, as well as in the main stages of the oil production chain, such as extraction, transportation, and storage. This diversity of applications is mainly due to advantages such as biodegradability, low toxicity and better functionality under extreme conditions in comparison to synthetic counterparts. Moreover, biosurfactants can be obtained with the use of agro-industrial waste as substrate, which helps reduce overall production costs. The present review describes the potential applications of biosurfactants in the oil industry and the remediation of environmental pollution caused by oil spills. PMID:25029542

  8. Applications of biosurfactants in the petroleum industry and the remediation of oil spills.

    PubMed

    de Cássia F S Silva, Rita; Almeida, Darne G; Rufino, Raquel D; Luna, Juliana M; Santos, Valdemir A; Sarubbo, Leonie Asfora

    2014-07-15

    Petroleum hydrocarbons are important energy resources. However, petroleum is also a major pollutant of the environment. Contamination by oil and oil products has caused serious harm, and increasing attention has been paid to the development and implementation of innovative technologies for the removal of these contaminants. Biosurfactants have been extensively used in the remediation of water and soil, as well as in the main stages of the oil production chain, such as extraction, transportation, and storage. This diversity of applications is mainly due to advantages such as biodegradability, low toxicity and better functionality under extreme conditions in comparison to synthetic counterparts. Moreover, biosurfactants can be obtained with the use of agro-industrial waste as substrate, which helps reduce overall production costs. The present review describes the potential applications of biosurfactants in the oil industry and the remediation of environmental pollution caused by oil spills.

  9. Complete genome of Martelella sp. AD-3, a moderately halophilic polycyclic aromatic hydrocarbons-degrading bacterium.

    PubMed

    Cui, Changzheng; Li, Zhijie; Qian, Jiangchao; Shi, Jie; Huang, Ling; Tang, Hongzhi; Chen, Xin; Lin, Kuangfei; Xu, Ping; Liu, Yongdi

    2016-05-10

    Martelella sp. strain AD-3, a moderate halophilic bacterium, was isolated from a petroleum-contaminated soil with high salinity in China. Here, we report the complete genome of strain AD-3, which contains one circular chromosome and two circular plasmids. An array of genes related to metabolism of polycyclic aromatic hydrocarbons and halophilic mechanism in this bacterium was identified by the whole genome analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Utility of the Scope for Growth Index to Assess the Physiological Impact of Black Rock Harbor Suspended Sediment on the Blue Mussel, Mytilus edulis: A Laboratory Evaluation.

    DTIC Science & Technology

    1985-09-01

    effect between SFG and aromatic petroleum -v hydrocarbon exposure concentrations in M. edulis. 36 ... . ........... 48. The results of another index, O:N...determine the degree of correlation of tissue residues resulting from the bioaccumulation of contaminants from dredged material and ecologically...The BRH dredged material contains polychlorinated biphenyls (PCB) (6800 ng/g), polynuclear hydrocarbons (PAH) (9800 ng/g), and trace metals (Cu, Cr, and

  11. 21 CFR 172.882 - Synthetic isoparaffinic petroleum hydrocarbons.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Synthetic isoparaffinic petroleum hydrocarbons... hydrocarbons. Synthetic isoparaffinic petroleum hydrocarbons may be safely used in food, in accordance with the... liquid hydrocarbons meeting the following specifications: Boiling point 93-260 °C as determined by ASTM...

  12. Phytoremediation of petroleum-polluted soils: application of Polygonum aviculare and its root-associated (penetrated) fungal strains for bioremediation of petroleum-polluted soils.

    PubMed

    Mohsenzadeh, Fariba; Nasseri, Simin; Mesdaghinia, Alireza; Nabizadeh, Ramin; Zafari, Doustmorad; Khodakaramian, Gholam; Chehregani, Abdolkarim

    2010-05-01

    Petroleum-polluted soils are a common disaster in many countries. Bioremediation of oil contamination in soils is based on the stimulation of petroleum-hydrocarbon-degrading fungal and microbial communities. A field study was conducted in a petroleum-contaminated site to find petroleum-resistant plants and their root-associated fungal strains for use in bioremediation of petroleum-polluted soils. Results and observations showed that the amounts of petroleum pollution in nonvegetated soils were several times higher than in vegetated soils. Plants collected from petroleum-polluted areas were identified using morphological characters. Results indicated that seven plant species were growing on the contaminated sites: Alhaji cameleron L. (Fabaceae), Amaranthus retroflexus L. var. retroflexus (Amaranthaceae), Convolvulus arvensis L. (Convolvulaceae), Chrozophora hierosolymitana Spreg. (Euphorbiaceae), Noea mucronata L. (Boraginaceae), Poa sp. (Poaceae), and Polygonum aviculare L. (Polygonaceae). The root-associated fungi of each plant were determined and results showed the presence of 11 species that associated with and also penetrated the roots of plants growing in the polluted areas. Altenaria sp. was common to all of the plants and the others had species-specific distribution within the plants. The largest numbers of fungal species (six) were determined for P. aviculare and Poa sp. in polluted areas. However, the variation of fungal strains in the plants collected from petroleum-polluted areas was greater than for nonpolluted ones. Culture of fungi in oil-contaminated media showed that all the studied fungi were resistant to low petroleum pollution (1% v/v) and a few species, especially Fusarium species, showed resistance to higher petroleum pollution (10% v/v) and may be suitable for bioremediation in highly polluted areas. Bioremediation tests with P. aviculare, with and without fungal strains, showed that application of both the plant and its root-associated fungal strains was more effective than of the plant and fungi separately, and Fusarium species were the most effective. Results indicated that fungal strains had the main role in bioremediation of petroleum-polluted soils, but plant roots enhanced the process. Copyright 2009 Elsevier Inc. All rights reserved.

  13. Hydrocarbons in surface sediments from the Sfax coastal zone, (Tunisia) Mediterranean Sea.

    PubMed

    Zaghden, Hatem; Kallel, Monem; Louati, Afifa; Elleuch, Boubaker; Oudot, Jean; Saliot, Alain

    2005-11-01

    The Semi-enclosed Mediterranean Sea records various signals of high anthropic pressures from surrounding countries and the industrialized European countries. This is particularly true for oil pollution. Although accounting for 1% of the world's ocean surface, it receives about 25% of the petroleum inputs to the ocean. To achieve a global budget we need to collect information from different parts of the Mediterranean. Particularly, we focus in this paper on the Southern Mediterranean, where data are presently very scarce. In this context, the University of Sfax has undertaken an estimation of hydrocarbon pollution along the coasts of Sfax and Gabès Gulf. Non-aromatic hydrocarbons were analysed in 8 surface sediments by FT/IR and GC/MS. Non-aromatic hydrocarbon concentrations vary in the range 310-1406 microg g(-1) sediments dry weight, which is high, compared to other Mediterranean sites. GC/MS data indicate a large group of unresolved compounds suggesting a petroleum contamination, confirmed by the identification of hopanes with predominant C29 and C30alpha,beta compounds and steranes with predominance of C27 over C28) and C29 compounds.

  14. Bio-treatment of oily sludge: the contribution of amendment material to the content of target contaminants, and the biodegradation dynamics.

    PubMed

    Kriipsalu, Mait; Marques, Marcia; Nammari, Diauddin R; Hogland, William

    2007-09-30

    The objective was to investigate the aerobic biodegradation of oily sludge generated by a flotation-flocculation unit (FFU) of an oil refinery wastewater treatment plant. Four 1m(3) pilot bioreactors with controlled air-flow were filled with FFU sludge mixed with one of the following amendments: sand (M1); matured oil compost (M2); kitchen waste compost (M3) and shredded waste wood (M4). The variables monitored were: pH, total petroleum hydrocarbons (TPHs), polycyclic aromatic hydrocarbons (PAHs), total carbon (C(tot)), total nitrogen (N(tot)) and total phosphorus (P(tot)). The reduction of TPH based on mass balance in M1, M2, M3 and M4 after 373 days of treatment was 62, 51, 74 and 49%; the reduction of PAHs was 97%, +13% (increase), 92 and 88%, respectively. The following mechanisms alone or in combination might explain the results: (i) most organics added with amendments biodegrade faster than most petroleum hydrocarbons, resulting in a relative increase in concentration of these recalcitrant contaminants; (ii) some amendments result in increased amounts of TPH and PAHs to be degraded in the mixture; (iii) sorption-desorption mechanisms involving hydrophobic compounds in the organic matrix reduce bioavailability, biodegradability and eventually extractability; (iv) mixture heterogeneity affecting sampling. Total contaminant mass reduction seems to be a better parameter than concentration to assess degradation efficiency in mixtures with high content of biodegradable amendments.

  15. The use of poultry litter as co-substrate and source of inorganic nutrients and microorganisms for the ex situ biodegradation of petroleum compounds.

    PubMed

    Williams, C M; Grimes, J L; Mikkelsen, R L

    1999-07-01

    The purpose of this investigation was to determine the feasibility of utilizing poultry litter as a source of microorganisms, C co-substrate, N, and P to enhance the biodegradation of petroleum compounds in contaminated soil. An initial laboratory-scale study utilized soil contaminated with approximately 3,000 mg/kg (ppm) total petroleum hydrocarbons (TPHC) as diesel fuel. Biotreatment units, each containing 10 L of contaminated soil, were supplemented (0, 1, 10, and 20%, total weight basis) with broiler litter containing 3.65% N and 1.89% P. Petroleum-degrading microorganisms previously enriched from broiler and turkey litter were also inoculated into the litter-treated units. A significant first order rate of TPHC biodegradation was measured for all treatment units containing broiler litter (P < 0.05). Based on these results, a subsequent study was conducted at the site of a commercial facility permitted to treat soil (ex situ) contaminated with hazardous compounds. Soil treatment plots, each containing approximately 1 ton of soil contaminated with approximately 1,200 to 1,600 mg/kg diesel fuel were established. Each plot was replicated four times and the experiment was conducted for 35 d. Treatments were as follows: control, soil only; soil + commercial blend of bioremediation nutrients; soil + commercial fertilizer; soil + poultry litter (1% by volume); soil + poultry litter (10% by volume); soil + pelleted poultry litter (10% by volume). The results showed that the remediation of soil contaminated with petroleum compounds is significantly (P < 0.05) enhanced when supplemented with poultry litter (pelleted or nonpelleted) in concentrations of 10% soil volume. These results demonstrate the potential for a specialized market for the use of poultry litter.

  16. Seasonal distribution and contamination levels of total PHCs, PAHs and heavy metals in coastal waters of the Alang-Sosiya ship scrapping yard, Gulf of Cambay, India.

    PubMed

    Srinivasa Reddy, M; Basha, Shaik; Joshi, H V; Ramachandraiah, G

    2005-12-01

    Alang-Sosiya situated on the Gulf of Cambay is one of the largest ship breaking yard in the world. The seasonal distribution and contamination levels of dissolved and/or dispersed total petroleum hydrocarbons (PHCs), total polycyclic aromatic hydrocarbons (PAHs) and heavy metals in seawater during high tide are investigated. The concentrations of petroleum hydrocarbons and heavy metals are higher in the winter than in the monsoon and summer. The concentrations of total PHCs and PAHs are about three times higher in the winter and two times in the monsoon or summer at Along-Sosiya and about twice in all seasons at two stations one on either side 5 km away from it as compared to the reference station at Mahuva, 60 km away towards the south. Further, the levels of PHCs are correlated with salinity and compared with those of other regions. The concentration of all metals is the highest in the winter season followed by the monsoon and summer. We carried out the quantitative analysis of the possible relationships among 13 variables such as Al, Fe, Pb, Mn, Cu, Zn, Cd, Cr, Co, pH, NO3-, NO2 and PO4(3-).

  17. [Analysis of fluorescence spectrum of petroleum-polluted water].

    PubMed

    Huang, Miao-Fen; Song, Qing-Jun; Xing, Xu-Feng; Jian, Wei-Jun; Liu, Yuan; Zhao, Zu-Long

    2014-09-01

    In four ratio experiments, natural waters, sampled from the mountain reservoir and the sea water around Dalian city, were mixed with the sewage from petroleum refinery and petroleum exploitation plants. The fluorescence spectra of water samples containing only chromophoric dissolved organic matters(CDOM), samples containing only petroleum, and samples containing a mixture of petroleum and CDOM were analyzed, respectively. The purpose of this analysis is to provide a basis for determining the contribution of petroleum substances and CDOM to the total absorption coefficient of the petroleum-contaminated water by using fluorescence technique. The results showed that firstly, CDOM in seawater had three main fluorescence peaks at Ex: 225-230 nm/Em: 320-330 nm, Ex: 280 nm/Em: 340 nm and Ex: 225-240 nm/Em: 430-470 nm, respectively, and these may arise from the oceanic chlorophyll. CDOM in natural reservoir water had two main fluorescence peaks at EX: 240- 260 nm/Em: 420-450 nm and Ex: 310~350 nm/Em: 420--440 nm, respectively, and these may arise from the terrestrial sources; secondly, the water samples containing only petroleum extracted with n-hexane had one to three fluorescence spectral peaksat Ex: 220-240 nm/Em: 320-340 nm, Ex: 270-290 nm/Em: 310-340 nm and Ex: 220-235 nm/Em: 280-310 nm, respectively, caused by their hydrocarbon component; finally, the water samples containing both petroleum and CDOM showed a very strong fluorescence peak at Ex: 230-250 nm/Em: 320-370 nm, caused by the combined effect of CDOM and petroleum hydrocarbons.

  18. Microbial H2 cycling does not affect δ2H values of ground water

    USGS Publications Warehouse

    Landmeyer, J.E.; Chapelle, F.H.; Bradley, P.M.

    2000-01-01

    Stable hydrogen-isotope values of ground water (δ2H) and dissolved hydrogen concentrations (H(2(aq)) were quantified in a petroleum-hydrocarbon contaminated aquifer to determine whether the production/consumption of H2 by subsurface microorganisms affects ground water &delta2H values. The range of &delta2H observed in monitoring wells sampled (-27.8 ‰c to -15.5 ‰c) was best explained, however, by seasonal differences in recharge temperature as indicated using ground water δ18O values, rather than isotopic exchange reactions involving the microbial cycling of H2 during anaerobic petroleum-hydrocarbon biodegradation. The absence of a measurable hydrogen-isotope exchange between microbially cycled H2 and ground water reflects the fact that the amount of H2 available from the anaerobic decomposition of petroleum hydrocarbons is small relative to the amount of hydrogen present in water, even though milligram per liter concentrations of readily biodegradable contaminants are present at the study site. Additionally, isotopic fractionation calculations indicate that in order for H2 cycling processes to affect δ2H values of ground water, relatively high concentrations of H2 (>0.080 M) would have to be maintained, considerably higher than the 0.2 to 26 nM present at this site and characteristic of anaerobic conditions in general. These observations suggest that the conventional approach of using δ2H and δ18O values to determine recharge history is appropriate even for those ground water systems characterized by anaerobic conditions and extensive microbial H2 cycling.

  19. An integrated bioremediation process for petroleum hydrocarbons removal and odor mitigation from contaminated marine sediment.

    PubMed

    Zhang, Zhen; Lo, Irene M C; Yan, Dickson Y S

    2015-10-15

    This study developed a novel integrated bioremediation process for the removal of petroleum hydrocarbons and the mitigation of odor induced by reduced sulfur from contaminated marine sediment. The bioremediation process consisted of two phases. In Phase I, acetate was dosed into the sediment as co-substrate to facilitate the sulfate reduction process. Meanwhile, akaganeite (β-FeOOH) was dosed in the surface layer of the sediment to prevent S(2-) release into the overlying seawater. In Phase II, NO3(-) was injected into the sediment as an electron acceptor to facilitate the denitrification process. After 20 weeks of treatment, the sequential integration of the sulfate reduction and denitrification processes led to effective biodegradation of total petroleum hydrocarbons (TPH), in which about 72% of TPH was removed. In Phase I, the release of S(2-) was effectively controlled by the addition of akaganeite. The oxidation of S(2-) by Fe(3+) and the precipitation of S(2-) by Fe(2+) were the main mechanisms for S(2-) removal. In Phase II, the injection of NO3(-) completely inhibited the sulfate reduction process. Most of residual AVS and S(0) were removed within 4 weeks after NO3(-) injection. The 16S rRNA clone library-based analysis revealed a distinct shift of bacterial community structure in the sediment over different treatment phases. The clones affiliated with Desulfobacterales and Desulfuromonadales were the most abundant in Phase I, while the clones related to Thioalkalivibrio sulfidophilus, Thiohalomonas nitratireducens and Sulfurimonas denitrificans predominated in Phase II. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Health assessment for Waldick Aerospace Devices, Monmouth County, New Jersey, Region 2. CERCLIS No. NJD054981337. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-02-29

    The 1.72-acre Waldrick Aerospace Devices site is located in Wall Township, Monmouth County, New Jersey. Surface soils and ground water are contaminated with volatile organic chemicals, petroleum hydrocarbons, chromium, and cadmium; building interiors are contaminated by a wide variety of process chemicals and pesticides. Although there are small, on-site areas with high concentrations of soil contaminants, the areas are vegetated and partially fenced to discourage trespassing. Access to these areas should be restricted until the soils are decontaminated or removed.

  1. Petroleum hydrocarbon concentrations in eight mollusc species along Tamilnadu coast, Bay of Bengal, India.

    PubMed

    Veerasingam, S; Venkatachalapathy, R; Sudhakar, S; Raja, P; Rajeswari, V

    2011-01-01

    Eight mollusc species and sediment samples collected from three different stations along Tamilnadu coast, Bay of Bengal, India were analysed for the levels of petroleum hydrocarbons to elucidate the status of the petroleum residues in mollusc meant for human consumption. The concentrations of petroleum hydrocarbons in sediments along Tamilnadu coast varied from 5.04-25.5 microg/g dw (dry weight). High concentration of petroleum hydrocarbons in the sediment of Uppanar estuary (25.5 +/- 1.45 microg/g dw) was perhaps land and marine based anthropogenic sources of this region. The petroleum hydrocarbon residues in eight mollusc species collected from Uppanar, Vellar and Coleroon estuaries varied between 2.44-6.04 microg/g ww (wet weight). Although the concentration of petroleum hydrocarbons in sediment of the Uppanar region was markedly higher than the background, the petroleum hydrocarbon residues in mollusc collected from Uppanar estuary did not suggest bioaccumulation. The results signified that industrial growth has affected the aquatic environments and regular monitoring will help to adopt stringent pollution control measures for better management of the aquatic region.

  2. Bioremediation of acidic oily sludge-contaminated soil by the novel yeast strain Candida digboiensis TERI ASN6.

    PubMed

    Sood, Nitu; Patle, Sonali; Lal, Banwari

    2010-03-01

    Primitive wax refining techniques had resulted in almost 50,000 tonnes of acidic oily sludge (pH 1-3) being accumulated inside the Digboi refinery premises in Assam state, northeast India. A novel yeast species Candida digboiensis TERI ASN6 was obtained that could degrade the acidic petroleum hydrocarbons at pH 3 under laboratory conditions. The aim of this study was to evaluate the degradation potential of this strain under laboratory and field conditions. The ability of TERI ASN6 to degrade the hydrocarbons found in the acidic oily sludge was established by gravimetry and gas chromatography-mass spectroscopy. Following this, a feasibility study was done, on site, to study various treatments for the remediation of the acidic sludge. Among the treatments, the application of C. digboiensis TERI ASN6 with nutrients showed the highest degradation of the acidic oily sludge. This treatment was then selected for the full-scale bioremediation study conducted on site, inside the refinery premises. The novel yeast strain TERI ASN6 could degrade 40 mg of eicosane in 50 ml of minimal salts medium in 10 days and 72% of heneicosane in 192 h at pH 3. The degradation of alkanes yielded monocarboxylic acid intermediates while the polycyclic aromatic hydrocarbon pyrene found in the acidic oily sludge yielded the oxygenated intermediate pyrenol. In the feasibility study, the application of TERI ASN6 with nutrients showed a reduction of solvent extractable total petroleum hydrocarbon (TPH) from 160 to 28.81 g kg(-1) soil as compared to a TPH reduction from 183.85 to 151.10 g kg(-1) soil in the untreated control in 135 days. The full-scale bioremediation study in a 3,280-m(2) area in the refinery showed a reduction of TPH from 184.06 to 7.96 g kg(-1) soil in 175 days. Degradation of petroleum hydrocarbons by microbes is a well-known phenomenon, but most microbes are unable to withstand the low pH conditions found in Digboi refinery. The strain C. digboiensis could efficiently degrade the acidic oily sludge on site because of its robust nature, probably acquired by prolonged exposure to the contaminants. This study establishes the potential of novel yeast strain to bioremediate hydrocarbons at low pH under field conditions. Acidic oily sludge is a potential environmental hazard. The components of the oily sludge are toxic and carcinogenic, and the acidity of the sludge further increases this problem. These results establish that the novel yeast strain C. digboiensis was able to degrade hydrocarbons at low pH and can therefore be used for bioremediating soils that have been contaminated by acidic hydrocarbon wastes generated by other methods as well.

  3. Removal of polycyclic aromatic hydrocarbons in soil spiked with model mixtures of petroleum hydrocarbons and heterocycles using biosurfactants from Rhodococcus ruber IEGM 231.

    PubMed

    Ivshina, Irina; Kostina, Ludmila; Krivoruchko, Anastasiya; Kuyukina, Maria; Peshkur, Tatyana; Anderson, Peter; Cunningham, Colin

    2016-07-15

    Removal of polycyclic aromatic hydrocarbons (PAHs) in soil using biosurfactants (BS) produced by Rhodococcus ruber IEGM 231 was studied in soil columns spiked with model mixtures of major petroleum constituents. A crystalline mixture of single PAHs (0.63g/kg), a crystalline mixture of PAHs (0.63g/kg) and polycyclic aromatic sulfur heterocycles (PASHs), and an artificially synthesized non-aqueous phase liquid (NAPL) containing PAHs (3.00g/kg) dissolved in alkanes C10-C19 were used for spiking. Percentage of PAH removal with BS varied from 16 to 69%. Washing activities of BS were 2.5 times greater than those of synthetic surfactant Tween 60 in NAPL-spiked soil and similar to Tween 60 in crystalline-spiked soil. At the same time, amounts of removed PAHs were equal and consisted of 0.3-0.5g/kg dry soil regardless the chemical pattern of a model mixture of petroleum hydrocarbons and heterocycles used for spiking. UV spectra for soil before and after BS treatment were obtained and their applicability for differentiated analysis of PAH and PASH concentration changes in remediated soil was shown. The ratios A254nm/A288nm revealed that BS increased biotreatability of PAH-contaminated soils. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Characterization of the Rhodococcus sp. MK1 strain and its pilot application for bioremediation of diesel oil-contaminated soil.

    PubMed

    Kis, Ágnes Erdeiné; Laczi, Krisztián; Zsíros, Szilvia; Kós, Péter; Tengölics, Roland; Bounedjoum, Naila; Kovács, Tamás; Rákhely, Gábor; Perei, Katalin

    2017-12-01

    Petroleum hydrocarbons and derivatives are widespread contaminants in both aquifers and soil, their elimination is in the primary focus of environmental studies. Microorganisms are key components in biological removal of pollutants. Strains capable to utilize hydrocarbons usually appear at the contaminated sites, but their metabolic activities are often restricted by the lack of nutrients and/or they can only utilize one or two components of a mixture. We isolated a novel Rhodococcus sp. MK1 strain capable to degrade the components of diesel oil simultaneously. The draft genome of the strain was determined and besides the chromosome, the presence of one plasmid could be revealed. Numerous routes for oxidation of aliphatic and aromatic compounds were identified. The strain was tested in ex situ applications aiming to compare alternative solutions for microbial degradation of hydrocarbons. The results of bioaugmentation and biostimulation experiments clearly demonstrated that - in certain cases - the indigenous microbial community could be exploited for bioremediation of oil-contaminated soils. Biostimulation seems to be efficient for removal of aged contaminations at lower concentration range, whereas bioaugmentation is necessary for the treatment of freshly and highly polluted sites.

  5. Accumulation of 14C-naphthalene in the tissues of redhead ducks fed oil-contaminated crayfish

    USGS Publications Warehouse

    Tarshis, I.B.; Rattner, B.A.

    1982-01-01

    Crayfish, artificially contaminated with14C-naphthalene-5% water-soluble fraction of No. 2 fuel oil, were force-fed to one-year-old redhead ducks to determine the accumulation of petroleum hydrocarbons. The relative distribution of carbon-14 activity in the gall bladder containing bile, and fat were similar, and significantly greater (P < 0.05) than the activity in the blood, brain, liver, and kidney. There was a significant increase (P < 0.05) in the disintegrations per minute per gram (dpm/g) in the blood, brain, kidney, and liver between days 1 and 3 of feeding, indicating a progressive accumulation of carbon-14 activity (naphthalene and presumably its metabolites). There was no significant effect of sex or the interaction of the duration of feeding and sex on carbon-14 activity in any of the tissues. The low daily dose of petroleum hydrocarbons (a total of approximately 1.25 mg/day) received by the ducks from the crayfish and the relatively short feeding regimen did not cause any overt signs of toxicity in the ducks.

  6. Alternative methodology for isolation of biosurfactant-producing bacteria.

    PubMed

    Krepsky, N; Da Silva, F S; Fontana, L F; Crapez, M A C

    2007-02-01

    Wide biosurfactant application on biorremediation is limited by its high production cost. The search for cheaper biossurfactant production alternatives has guided our study. The use of selective media containing sucrose (10 g x L(-1)) and Arabian Light oil (2 g x L(-1)) as carbon sources showed to be effective to screen and maintain biosurfactant-producing consortia isolated from mangrove hydrocarbon-contaminated sediment. The biosurfactant production was assayed by kerosene, gasoline and Arabian Light Emulsification activity and the bacterial growth curve was determined by bacterial quantification. The parameters analyzed for biosurfactant production were the growth curve, salinity concentration, flask shape and oxygenation. All bacteria consortia screened were able to emulsify the petroleum derivatives tested. Biosurfactant production increased according to the incubation time; however the type of emulsification (non-aqueous phase or aqueous phase) did not change with time but with the compound tested. The methodology was able to isolate biosurfactant-producing consortia from superficial mangrove sediment contaminated by petroleum hydrocarbons and was recommended for selection of biosurfactant producing bacteria in tropical countries with low financial resources.

  7. Immobilization of Microbes for Bioremediation of Crude Oil Polluted Environments: A Mini Review

    PubMed Central

    Bayat, Zeynab; Hassanshahian, Mehdi; Cappello, Simone

    2015-01-01

    Petroleum hydrocarbons are the most common environmental pollutants in the world and oil spills pose a great hazard to terrestrial and marine ecosystems. Oil pollution may arise either accidentally or operationally whenever oil is produced, transported, stored and processed or used at sea or on land. Oil spills are a major menace to the environment as they severely damage the surrounding ecosystems. To improve the survival and retention of the bioremediation agents in the contaminated sites, bacterial cells must be immobilized. Immobilized cells are widely tested for a variety of applications. There are many types of support and immobilization techniques that can be selected based on the sort of application. In this review article, we have discussed the potential of immobilized microbial cells to degrade petroleum hydrocarbons. In some studies, enhanced degradation with immobilized cells as compared to free living bacterial cells for the treatment of oil contaminated areas have been shown. It was demonstrated that immobilized cell to be effective and is better, faster, and can be occurred for a longer period PMID:26668662

  8. Biodegradation of Hopane Prevents Use As Conservative Biomarker During Bioremediation of PAHs in Petroleum Contaminated Soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huesemann, Michael H.; Hausmann, Tom S.; Fortman, Timothy J.

    The pentacyclic triterpane C30 17a (H), 21b (H)-hopane, a biomarker commonly used in hydrocarbon bioremediation laboratory experiments and field studies, was found to be completely removed without the formation of the demethylated intermediate nor-hopane in a crude oil contaminated soil undergoing slurry biotreatment while PAHs such as benzo(e)pyrene were recalcitrant. The partial or complete biodegradation of hopane has also been previously reported in a few bioremediation studies and has been explored by petroleum geochemists in an effort to characterize crude oil deposits. It is currently not clear what conditions induce hopane biodegradation or biotransformation, although the use of microbial enrichmentmore » cultures appears to speed up the process. Considering that hopane is not necessarily conserved during a bioremediation study, the uncritical normalization of hydrocarbon concentrations using this biomarker can lead to incorrect estimates of biodegradation rates and extents. If hopane is found to be unstable in a particular case, other potential biomarkers such as pentahopane, oleanane, or vanadium may be used instead.« less

  9. Aqueous solubility calculation for petroleum mixtures in soil using comprehensive two-dimensional gas chromatography analysis data.

    PubMed

    Mao, Debin; Lookman, Richard; Van De Weghe, Hendrik; Vanermen, Guido; De Brucker, Nicole; Diels, Ludo

    2009-04-03

    An assessment of aqueous solubility (leaching potential) of soil contaminations with petroleum hydrocarbons (TPH) is important in the context of the evaluation of (migration) risks and soil/groundwater remediation. Field measurements using monitoring wells often overestimate real TPH concentrations in case of presence of pure oil in the screened interval of the well. This paper presents a method to calculate TPH equilibrium concentrations in groundwater using soil analysis by high-performance liquid chromatography followed by comprehensive two-dimensional gas chromatography (HPLC-GCXGC). The oil in the soil sample is divided into 79 defined hydrocarbon fractions on two GCXGC color plots. To each of these fractions a representative water solubility is assigned. Overall equilibrium water solubility of the non-aqueous phase liquid (NAPL) present in the sample and the water phase's chemical composition (in terms of the 79 fractions defined) are then calculated using Raoult's law. The calculation method was validated using soil spiked with 13 different TPH mixtures and 1 field-contaminated soil. Measured water solubilities using a column recirculation equilibration experiment agreed well to calculated equilibrium concentrations and water phase TPH composition.

  10. Biodegradation of Diesel, Crude Oil and Spent Lubricating Oil by Soil Isolates of Bacillus spp.

    PubMed

    Raju, Maddela Naga; Leo, Rodriguez; Herminia, Sanaguano Salguero; Morán, Ricardo Ernesto Burgos; Venkateswarlu, Kadiyala; Laura, Scalvenzi

    2017-05-01

    Two species of Bacillus, B. thuringiensis B3 and B. cereus B6, isolated from crude oil-contaminated sites in Ecuador, were tested for their capability in degrading polycyclic aromatic hydrocarbons (PAHs) in diesel (shake-flask), and to remove total petroleum hydrocarbons (TPHs) from crude oil- or spent lubricating oil-polluted soils (plot-scale). TPHs and PAHs were analyzed by Gas chromatography-Flame ionization detector (GC-FID) and High performance liquid chromatography (HPLC), respectively. Degradation percentages of PAHs by strain B6 were in the range of 11-83 after 30 days. A mixed culture of both the strains removed 84% and 28% of TPHs from crude oil- and spent lubricating oil-polluted soils, respectively. Reduction in the abundance of total n-alkane fractions (C 8 -C 40 ) of spent lubricating oil was 94%, which was 18% higher than the control. Our results clearly indicate that the selected strains have great potential in degrading petroleum hydrocarbons at both laboratory- and field-scales.

  11. Phytoremediation in mangrove sediments impacted by persistent total petroleum hydrocarbons (TPH's) using Avicennia schaueriana.

    PubMed

    Moreira, Icaro T A; Oliveira, Olivia M C; Triguis, Jorge A; Queiroz, Antonio F S; Ferreira, Sergio L C; Martins, Cintia M S; Silva, Ana C M; Falcão, Brunno A

    2013-02-15

    This study evaluated the efficiency of Avicennia schaueriana in the implementation of phytoremediation compared with intrinsic bioremediation in mangrove sediments contaminated by total petroleum hydrocarbons (TPHs). The experiment was conducted for 3months at a pilot scale under conditions similar to a mangrove: the dynamics of the tides were simulated, and physical, chemical, microbiological and biogeochemical parameters were monitored. After the 90 days, it was found that the phytoremediation was more efficient in the degradation of the TPHs compared to bioremediation, reducing the initial concentration of 32.2-4.2 mg/g. A. schaueriana was also more efficient in mediating the degradation of different fractions of hydrocarbons, achieving a removal efficiency of 87%. The microbiological results consisted of a higher growth in the model with the plants, demonstrating the phytostimulation ability of the plants. Finally, the experiment showed that phytoremediation is a promising alternative in mangrove impacted by oil. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. 40 CFR 180.526 - Synthetic isoparaffinic petroleum hydrocarbons; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hydrocarbons; tolerances for residues. 180.526 Section 180.526 Protection of Environment ENVIRONMENTAL... FOOD Specific Tolerances § 180.526 Synthetic isoparaffinic petroleum hydrocarbons; tolerances for residues. (a) General. Synthetic isoparaffinic petroleum hydrocarbons complying with 21 CFR 172.882 (a) and...

  13. 40 CFR 180.526 - Synthetic isoparaffinic petroleum hydrocarbons; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hydrocarbons; tolerances for residues. 180.526 Section 180.526 Protection of Environment ENVIRONMENTAL... FOOD Specific Tolerances § 180.526 Synthetic isoparaffinic petroleum hydrocarbons; tolerances for residues. (a) General. Synthetic isoparaffinic petroleum hydrocarbons complying with 21 CFR 172.882 (a) and...

  14. Magnetic susceptibility as an indicator to paleo-environmental pollution in an urban lagoon near Istanbul city

    NASA Astrophysics Data System (ADS)

    Alpar, Bedri; Unlu, Selma; Altinok, Yildiz; Ongen, Sinan

    2014-05-01

    For assessing anthropogenic pollution, magnetic susceptibility profiles and accompanying data were measured along three short cores recovered at the southern part of an urban lagoon; Kucukcekmece, Istanbul, Turkey. This marine inlet, connected to the Sea of Marmara by a very narrow channel, was used as a drinking water reservoir 40-50 years ago before it was contaminated by municipal, agricultural and industrial activities, mainly carried by three streams feeding the lagoon. The magnetic signals decrease gradually from the lake bottom towards the core base showing some characteristic anomalies. These signatures were tested as an environmental magnetic parameter against the lithological diversity (silici-clastic, total organic matter and carbonate), metal enrichments with larger variations (Pb, Mn, Zn, Ni, Co, Cr, U and Al) and probable hydrocarbon contamination. Mineral assemblage was determined by a computer driven X-ray diffractometer. The heavy metal concentrations and total petroleum hydrocarbons (TPH) were measured by ICP-MS and UVF spectrometry, respectively. Magnetic susceptibility shows slightly higher values in interlayers containing higher silici-clastic material and organic content which may suggest first-order changes in the relative supplies of terrigenous and biogenic materials. On the basis of cluster analyses, enhanced magnetic signals could be correlated with the elevated concentrations of Co, Zn, U, Pb and TPH along the cores. The Pb concentrations at the upper parts of the cores were higher than the "Severe Effect Level" and could pose a potential risk for living organisms. Greater amounts of organic carbon tend to accumulate in muddy sediments. In fact, there are a few studies reporting some relationship between enhanced magnetic signals and organic contamination mainly due to petroleum aromatic hydrocarbons. In conclusion, the magnetic susceptibility changes in sedimentary depositional environments could be used as a rapid and cost-effective tool in identification of silici-clastic content, enrichment of some metals (iron cycling and bacterial activity) and increased TPH concentrations in hydrocarbon contaminated sediments along the cores.

  15. Sensitivity of the Endogeic Tropical Earthworm Pontoscolex corethrurus to the Presence of Heavy Crude Oil.

    PubMed

    Del Carmen Cuevas-Díaz, María; Vázquez-Luna, Dinora; Martínez-Hernández, Sergio; Guzmán-López, Oswaldo; Ortíz-Ceballos, Angel I

    2017-08-01

    Contamination of soil with petroleum is common in oil-producing areas across the tropical regions of the world. There is limited knowledge on the sensitivity of endogeic tropical earthworms to the contamination of soil with total petroleum hydrocarbons (TPH) present in crude oil. Pontoscolex corethrurus is a dominant species in tropical agroecosystems around oil-processing facilities. The sensitivity of P. corethrurus to soil artificially contaminated with "Maya" Mexican heavy crude oil was investigated through avoidance and acute ecotoxicity tests, using the following measured concentrations: 0 (reference soil), 551, 969, 4845, 9991 and 14,869 mg/kg. The avoidance test showed that P. corethrurus displayed a significant avoidance behavior to heavy crude oil at a concentration of 9991 mg/kg or higher. In contrast, acute toxicity tests indicate that the median lethal concentration (LC 50 ) was 3067.32 mg/kg; however, growth (weight loss) was more sensitive than mortality. Our study revealed that P. corethrurus is sensitive to TPH, thus highlighting the importance of P. corethrurus for petroleum ecotoxicological tests.

  16. Site characterization and analysis penetrometer system

    NASA Astrophysics Data System (ADS)

    Heath, Jeff

    1995-04-01

    The site characterization and analysis penetrometer system (SCAPS) with laser induced fluorescence (LIF) sensors is being demonstrated as a quick field screening technique to determine the physical and chemical characteristics of subsurface soil and contaminants at hazardous waste sites SCAPS is a collaborative development effort of the Navy, Army, and Air Force under the Tri-Service SCAPS Program. The current SCAPS configuration is designed to quickly and cost-effectively distinguish areas contaminated with petroleum products (hydrocarbons) from unaffected areas.

  17. Field Verification Program (Aquatic Disposal): Comparison of Field and Laboratory Bioaccumulation of Organic and Inorganic Contaminants from Black Rock Harbor Dredged Material

    DTIC Science & Technology

    1988-05-01

    include poly- chlorinated biphenyls (PCBs) and related chlorinated pesticides of similar polarity in addition to the petroleum hydrocarbons . The...Ui It tILL (JV: FIELD VERIFICATION PROGRAM (AQUATIC DISPOSAL).’Wh TECHNICAL REPORT D-87-6 COMPARISON OF FIELD AND LABORATORY BIOACCUMULATION OF...Laboratory Bioaccumulation of Organic and Inorganic Contaminants from Black Rock Harbor Dredged Material 12 PERSONAL AUTHOR(S) Lake, James L.; Galloway

  18. Enhanced biodegradation of petroleum hydrocarbons in the mycorrhizosphere of sub-boreal forest soils.

    PubMed

    Robertson, Susan J; Kennedy, Nabla M; Massicotte, Hugues B; Rutherford, P Michael

    2010-08-01

    Petroleum hydrocarbon (PHC) contamination is becoming more common in boreal forest soils. However, linkages between PHC biodegradation and microbial community dynamics in the mycorrhizosphere of boreal forest soils are poorly understood. Seedlings (lodgepole pine, paper birch, lingonberry) were established in reconstructed soil systems, consisting of an organic layer (mor humus, coarse woody debris, or previously oil-contaminated mor humus) overlying mineral (Ae, Bf) horizons. Light crude oil was applied to the soil surface after 4 months; systems were destructively sampled at 1 and 16 weeks following treatment. Soil concentrations of four PHC fractions were determined using acetone-hexane extraction followed by gas chromatography - flame ionization detection analysis. Genotypic profiles of root-associated bacterial communities were generated using length heterogeneity-PCR of 16S rDNA. Most plant-soil treatments showed significant loss in the smaller fraction PHCs indicating an inherent capacity for biodegradation. Concentrations of total PHCs declined significantly only in planted (pine-woody debris and birch-humus) systems (averaging 59% and 82% loss between 1 and 16 weeks respectively), reinforcing the importance of the mycorrhizosphere for enhancing microbial catabolism. Bacterial community structure was correlated more with mycorrhizosphere type and complexity than with PHC contamination. However, results suggest that communities in PHC-contaminated and pristine soils may become distinct over time. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  19. Suitability of Scirpus maritimus for petroleum hydrocarbons remediation in a refinery environment.

    PubMed

    Couto, M Nazaré P F S; Basto, M Clara P; Vasconcelos, M Teresa S D

    2012-01-01

    In the ambit of a project searching for appropriate biological approaches for recovering a refinery soil contaminated with petroleum hydrocarbons (PHC), we compared results obtained in the absence and in the presence of the salt marsh plant Scirpus maritimus or Juncus maritimus or an association of these two plants, which were tested in the refinery environment. Synergistic effects caused by addition of a non-ionic surfactant and/or a bioaugmentation product were also investigated. Major challenges of this study were: field conditions and weathered contamination. Transplants of the plants were carried out in individual containers filled with a weathered contaminated soil, which was recontaminated with turbine oil with two purposes: for increasing PHC level and allowing a comparison of the potential of plants for remediation of ancient and recent contamination. Analysis of total PHC led to the conclusion that, after 24-month exposure, neither J. maritimus nor the association caused any improvement in remediation. In contrast, S. maritimus revealed potential for PHC remediation, favoring degradation of both recent and older contamination (which was refractory to natural attenuation). About 15% of remediation improvement was found in the soil layer with higher root density (5-10 cm). A more marked improvement in that layer (28%) was observed when non-ionic surfactant amendment and bioaugmentation were used jointly. The fact that S. maritimus has demonstrated capability for PHC remediation, leads to admit that it has potential to be also used for recovering sediments that have suffered accidental oil spills.

  20. Microbial Community Analysis of a Coastal Salt Marsh Affected by the Deepwater Horizon Oil Spill

    PubMed Central

    Beazley, Melanie J.; Martinez, Robert J.; Rajan, Suja; Powell, Jessica; Piceno, Yvette M.; Tom, Lauren M.; Andersen, Gary L.; Hazen, Terry C.; Van Nostrand, Joy D.; Zhou, Jizhong; Mortazavi, Behzad; Sobecky, Patricia A.

    2012-01-01

    Coastal salt marshes are highly sensitive wetland ecosystems that can sustain long-term impacts from anthropogenic events such as oil spills. In this study, we examined the microbial communities of a Gulf of Mexico coastal salt marsh during and after the influx of petroleum hydrocarbons following the Deepwater Horizon oil spill. Total hydrocarbon concentrations in salt marsh sediments were highest in June and July 2010 and decreased in September 2010. Coupled PhyloChip and GeoChip microarray analyses demonstrated that the microbial community structure and function of the extant salt marsh hydrocarbon-degrading microbial populations changed significantly during the study. The relative richness and abundance of phyla containing previously described hydrocarbon-degrading bacteria (Proteobacteria, Bacteroidetes, and Actinobacteria) increased in hydrocarbon-contaminated sediments and then decreased once hydrocarbons were below detection. Firmicutes, however, continued to increase in relative richness and abundance after hydrocarbon concentrations were below detection. Functional genes involved in hydrocarbon degradation were enriched in hydrocarbon-contaminated sediments then declined significantly (p<0.05) once hydrocarbon concentrations decreased. A greater decrease in hydrocarbon concentrations among marsh grass sediments compared to inlet sediments (lacking marsh grass) suggests that the marsh rhizosphere microbial communities could also be contributing to hydrocarbon degradation. The results of this study provide a comprehensive view of microbial community structural and functional dynamics within perturbed salt marsh ecosystems. PMID:22815990

  1. Uptake and trans-membrane transport of petroleum hydrocarbons by microorganisms

    PubMed Central

    Hua, Fei; Wang, Hong Qi

    2014-01-01

    Petroleum-based products are a primary energy source in the industry and daily life. During the exploration, processing, transport and storage of petroleum and petroleum products, water or soil pollution occurs regularly. Biodegradation of the hydrocarbon pollutants by indigenous microorganisms is one of the primary mechanisms of removal of petroleum compounds from the environment. However, the physical contact between microorganisms and hydrophobic hydrocarbons limits the biodegradation rate. This paper presents an updated review of the petroleum hydrocarbon uptake and transport across the outer membrane of microorganisms with the help of outer membrane proteins. PMID:26740752

  2. Sub-soil contamination due to oil spills in zones surrounding oil pipeline-pump stations and oil pipeline right-of-ways in Southwest-Mexico.

    PubMed

    Iturbe, Rosario; Flores, Carlos; Castro, Alejandrina; Torres, Luis G

    2007-10-01

    Oil spills due to oil pipelines is a very frequent problem in Mexico. Petroleos Mexicanos (PEMEX), very concerned with the environmental agenda, has been developing inspection and correction plans for zones around oil pipelines pumping stations and pipeline right-of-way. These stations are located at regular intervals of kilometres along the pipelines. In this study, two sections of an oil pipeline and two pipeline pumping stations zones are characterized in terms of the presence of Total Petroleum Hydrocarbons (TPHs) and Polycyclic Aromatic Hydrocarbons (PAHs). The study comprehends sampling of the areas, delimitation of contamination in the vertical and horizontal extension, analysis of the sampled soils regarding TPHs content and, in some cases, the 16 PAHs considered as priority by USEPA, calculation of areas and volumes contaminated (according to Mexican legislation, specifically NOM-EM-138-ECOL-2002) and, finally, a proposal for the best remediation techniques suitable for the contamination levels and the localization of contaminants.

  3. Hydrocarbon degraders establish at the costs of microbial richness, abundance and keystone taxa after crude oil contamination in permafrost environments.

    PubMed

    Yang, Sizhong; Wen, Xi; Shi, Yulan; Liebner, Susanne; Jin, Huijun; Perfumo, Amedea

    2016-11-25

    Oil spills from pipeline ruptures are a major source of terrestrial petroleum pollution in cold regions. However, our knowledge of the bacterial response to crude oil contamination in cold regions remains to be further expanded, especially in terms of community shifts and potential development of hydrocarbon degraders. In this study we investigated changes of microbial diversity, population size and keystone taxa in permafrost soils at four different sites along the China-Russia crude oil pipeline prior to and after perturbation with crude oil. We found that crude oil caused a decrease of cell numbers together with a reduction of the species richness and shifts in the dominant phylotypes, while bacterial community diversity was highly site-specific after exposure to crude oil, reflecting different environmental conditions. Keystone taxa that strongly co-occurred were found to form networks based on trophic interactions, that is co-metabolism regarding degradation of hydrocarbons (in contaminated samples) or syntrophic carbon cycling (in uncontaminated samples). With this study we demonstrate that after severe crude oil contamination a rapid establishment of endemic hydrocarbon degrading communities takes place under favorable temperature conditions. Therefore, both endemism and trophic correlations of bacterial degraders need to be considered in order to develop effective cleanup strategies.

  4. Hydrocarbon degraders establish at the costs of microbial richness, abundance and keystone taxa after crude oil contamination in permafrost environments

    PubMed Central

    Yang, Sizhong; Wen, Xi; Shi, Yulan; Liebner, Susanne; Jin, Huijun; Perfumo, Amedea

    2016-01-01

    Oil spills from pipeline ruptures are a major source of terrestrial petroleum pollution in cold regions. However, our knowledge of the bacterial response to crude oil contamination in cold regions remains to be further expanded, especially in terms of community shifts and potential development of hydrocarbon degraders. In this study we investigated changes of microbial diversity, population size and keystone taxa in permafrost soils at four different sites along the China-Russia crude oil pipeline prior to and after perturbation with crude oil. We found that crude oil caused a decrease of cell numbers together with a reduction of the species richness and shifts in the dominant phylotypes, while bacterial community diversity was highly site-specific after exposure to crude oil, reflecting different environmental conditions. Keystone taxa that strongly co-occurred were found to form networks based on trophic interactions, that is co-metabolism regarding degradation of hydrocarbons (in contaminated samples) or syntrophic carbon cycling (in uncontaminated samples). With this study we demonstrate that after severe crude oil contamination a rapid establishment of endemic hydrocarbon degrading communities takes place under favorable temperature conditions. Therefore, both endemism and trophic correlations of bacterial degraders need to be considered in order to develop effective cleanup strategies. PMID:27886221

  5. [Isolation and Identification of Petroleum Degradation Bacteria and Interspecific Interactions Among Four Bacillus Strains].

    PubMed

    Wang, Jia-nan; Shi, Yan-yun; Zheng, Li-yan; Wang, Zhe; Cai, Zhang; Liu, Jie

    2015-06-01

    Six petroleum-degrading strains were isolated from oil-contaminated soil at Dagang oil field and oil sewage on Bohai offshore drilling platform in Tianjin using enrichment culture and isolation method. The physiological biochemical test together with 16S rDNA sequencing analysis indicated that they belonged to Bacillus (S1, S2, S3, S4), Pseudomonas (W1) and Ochrobactrum (W2), respectively. The strain S3 had the maximum degradation rate of alkane (41.3%) and aromatic hydrocarbon (30.9%) among all isolated strains showing the better degradation efficiency by endogenous bacteria when compared to that by the exogenous bacteria. The four Bacillus strains were used to construct microbiome, thereafter subjected to petroleum degradation efficiency test and analyzed. The results showed that microbiome F3 consisting of S1 and S4 had the maximum degradation rates of alkane (50.5%) and aromatic hydrocarbon (54.0%), which were 69.9% and 156.1% higher than those by single bacterium, respectively. Furthermore, they were 22.1% and 74.6% respectively higher than those by the most optimal degradation bacterium S3. Microbiome F4 consisting of S2 and S3 had the minimum degradation rates of alkane (18.5%) and aromatic hydrocarbon (18.9%) which were 55.3% and 39.0% lower than the degradation rates of single bacterium, respectively. The results also demonstrated that there were both microbial synergy promotion and antagonism inhibition among bacteria of the same genus in the petroleum degradation period. Bacteria with close affinity in Bacillus genus displayed mainly promoted petroleum degradation effect.

  6. 21 CFR 573.740 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.740 Odorless light petroleum hydrocarbons. Odorless light petroleum... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Odorless light petroleum hydrocarbons. 573.740...

  7. 21 CFR 573.740 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.740 Odorless light petroleum hydrocarbons. Odorless light petroleum... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Odorless light petroleum hydrocarbons. 573.740...

  8. 21 CFR 573.740 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.740 Odorless light petroleum hydrocarbons. Odorless light petroleum... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Odorless light petroleum hydrocarbons. 573.740...

  9. 21 CFR 573.740 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.740 Odorless light petroleum hydrocarbons. Odorless light petroleum... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Odorless light petroleum hydrocarbons. 573.740...

  10. 21 CFR 573.740 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.740 Odorless light petroleum hydrocarbons. Odorless light petroleum... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Odorless light petroleum hydrocarbons. 573.740...

  11. Ecosystem effects and the management of petroleum-contaminated soils on subantarctic islands.

    PubMed

    Errington, Ingrid; King, Catherine K; Wilkins, Daniel; Spedding, Tim; Hose, Grant C

    2018-03-01

    Human activity in the Polar Regions has resulted in petroleum contamination of soils. In this context, subantarctic islands are a unique management challenge for climatic, biological and logistical reasons. In this review we identify the main abiotic factors affecting petroleum-contaminated soils in the subantarctic environment, the primary effects of such contamination on biota, and lessons learned with regards to remediation techniques in this region. The sensitivity of biota to contamination depends on organism life stage, on soil properties, and on the degree of contaminant weathering. Initial studies using species endemic to subantarctic islands suggest that for fresh diesel fuel, sensitivities may range between 103 and 20 000 mg total petroleum hydrocarbons (TPH) kg -1 soil. Diesel that has undergone a short period of weathering is generally more toxic, with sensitivities ranging between 52 and 13 000 mg TPH kg -1 soil for an earthworm and a grass respectively (based on EC 20 and IC 50 values). A sufficient body of data from which to develop remediation targets for existing spills in the region does not yet exist for the region, but there has been a recent increase in research attention to address this data gap. A range of remediation methods have also now been trialled, and techniques such as in-ground aeration and nutrient addition have achieved some success. Passive management techniques such as permeable reactive barriers and phytoremediation are in preliminary stages of investigation for the region and show promise, not least because they cause less collateral disturbance than other methods. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  12. Chemometric assessment of enhanced bioremediation of oil contaminated soils.

    PubMed

    Soleimani, Mohsen; Farhoudi, Majid; Christensen, Jan H

    2013-06-15

    Bioremediation is a promising technique for reclamation of oil polluted soils. In this study, six methods for enhancing bioremediation were tested on oil contaminated soils from three refinery areas in Iran (Isfahan, Arak, and Tehran). The methods included bacterial enrichment, planting, and addition of nitrogen and phosphorous, molasses, hydrogen peroxide, and a surfactant (Tween 80). Total petroleum hydrocarbon (TPH) concentrations and CHEMometric analysis of Selected Ion Chromatograms (SIC) termed CHEMSIC method of petroleum biomarkers including terpanes, regular, diaromatic and triaromatic steranes were used for determining the level and type of hydrocarbon contamination. The same methods were used to study oil weathering of 2 to 6 ring polycyclic aromatic compounds (PACs). Results demonstrated that bacterial enrichment and addition of nutrients were most efficient with 50% to 62% removal of TPH. Furthermore, the CHEMSIC results demonstrated that the bacterial enrichment was more efficient in degradation of n-alkanes and low molecular weight PACs as well as alkylated PACs (e.g. C₃-C₄ naphthalenes, C₂ phenanthrenes and C₂-C₃ dibenzothiophenes), while nutrient addition led to a larger relative removal of isoprenoids (e.g. norpristane, pristane and phytane). It is concluded that the CHEMSIC method is a valuable tool for assessing bioremediation efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Petroleum Contamination and Plant Identity Influence Soil and Root Microbial Communities While AMF Spores Retrieved from the Same Plants Possess Markedly Different Communities

    PubMed Central

    Iffis, Bachir; St-Arnaud, Marc; Hijri, Mohamed

    2017-01-01

    Phytoremediation is a promising in situ green technology based on the use of plants to cleanup soils from organic and inorganic pollutants. Microbes, particularly bacteria and fungi, that closely interact with plant roots play key roles in phytoremediation processes. In polluted soils, the root-associated microbes contribute to alleviation of plant stress, improve nutrient uptake and may either degrade or sequester a large range of soil pollutants. Therefore, improving the efficiency of phytoremediation requires a thorough knowledge of the microbial diversity living in the rhizosphere and in close association with plant roots in both the surface and the endosphere. This study aims to assess fungal ITS and bacterial 16S rRNA gene diversity using high-throughput sequencing in rhizospheric soils and roots of three plant species (Solidago canadensis, Populus balsamifera, and Lycopus europaeus) growing spontaneously in three petroleum hydrocarbon polluted sedimentation basins. Microbial community structures of rhizospheric soils and roots were compared with those of microbes associated with arbuscular mycorrhizal fungal (AMF) spores to determine the links between the root and rhizosphere communities and those associated with AMF. Our results showed a difference in OTU richness and community structure composition between soils and roots for both bacteria and fungi. We found that petroleum hydrocarbon pollutant (PHP) concentrations have a significant effect on fungal and bacterial community structures in both soils and roots, whereas plant species identity showed a significant effect only on the roots for bacteria and fungi. Our results also showed that the community composition of bacteria and fungi in soil and roots varied from those associated with AMF spores harvested from the same plants. This let us to speculate that in petroleum hydrocarbon contaminated soils, AMF may release chemical compounds by which they recruit beneficial microbes to tolerate or degrade the PHPs present in the soil. PMID:28848583

  14. Petroleum Contamination and Plant Identity Influence Soil and Root Microbial Communities While AMF Spores Retrieved from the Same Plants Possess Markedly Different Communities.

    PubMed

    Iffis, Bachir; St-Arnaud, Marc; Hijri, Mohamed

    2017-01-01

    Phytoremediation is a promising in situ green technology based on the use of plants to cleanup soils from organic and inorganic pollutants. Microbes, particularly bacteria and fungi, that closely interact with plant roots play key roles in phytoremediation processes. In polluted soils, the root-associated microbes contribute to alleviation of plant stress, improve nutrient uptake and may either degrade or sequester a large range of soil pollutants. Therefore, improving the efficiency of phytoremediation requires a thorough knowledge of the microbial diversity living in the rhizosphere and in close association with plant roots in both the surface and the endosphere. This study aims to assess fungal ITS and bacterial 16S rRNA gene diversity using high-throughput sequencing in rhizospheric soils and roots of three plant species ( Solidago canadensis, Populus balsamifera , and Lycopus europaeus ) growing spontaneously in three petroleum hydrocarbon polluted sedimentation basins. Microbial community structures of rhizospheric soils and roots were compared with those of microbes associated with arbuscular mycorrhizal fungal (AMF) spores to determine the links between the root and rhizosphere communities and those associated with AMF. Our results showed a difference in OTU richness and community structure composition between soils and roots for both bacteria and fungi. We found that petroleum hydrocarbon pollutant (PHP) concentrations have a significant effect on fungal and bacterial community structures in both soils and roots, whereas plant species identity showed a significant effect only on the roots for bacteria and fungi. Our results also showed that the community composition of bacteria and fungi in soil and roots varied from those associated with AMF spores harvested from the same plants. This let us to speculate that in petroleum hydrocarbon contaminated soils, AMF may release chemical compounds by which they recruit beneficial microbes to tolerate or degrade the PHPs present in the soil.

  15. Deep-sea oil plume enriches psychrophilic oil-degrading bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazen, T.C.; Dubinsky, E.A.; DeSantis, T.Z.

    The biological effects and expected fate of the vast amount of oil in the Gulf of Mexico from the Deepwater Horizon blowout are unknown owing to the depth and magnitude of this event. Here, we report that the dispersed hydrocarbon plume stimulated deep-sea indigenous {gamma}-Proteobacteria that are closely related to known petroleum degraders. Hydrocarbon-degrading genes coincided with the concentration of various oil contaminants. Changes in hydrocarbon composition with distance from the source and incubation experiments with environmental isolates demonstrated faster-than-expected hydrocarbon biodegradation rates at 5 C. Based on these results, the potential exists for intrinsic bioremediation of the oil plumemore » in the deep-water column without substantial oxygen drawdown.« less

  16. Bioremediation of weathered petroleum hydrocarbon soil contamination in the Canadian High Arctic: laboratory and field studies.

    PubMed

    Sanscartier, David; Laing, Tamsin; Reimer, Ken; Zeeb, Barbara

    2009-11-01

    The bioremediation of weathered medium- to high-molecular weight petroleum hydrocarbons (HCs) in the High Arctic was investigated. The polar desert climate, contaminant characteristics, and logistical constraints can make bioremediation of persistent HCs in the High Arctic challenging. Landfarming (0.3 m(3) plots) was tested in the field for three consecutive years with plots receiving very little maintenance. Application of surfactant and fertilizers, and passive warming using a greenhouse were investigated. The field study was complemented by a laboratory experiment to better understand HC removal mechanisms and limiting factors affecting bioremediation on site. Significant reduction of total petroleum HCs (TPH) was observed in both experiments. Preferential removal of compounds nC16 occurred, whereas in the field, TPH reduction was mainly limited to removal of compounds nC16 was observed in the fertilized field plots only. The greenhouse increased average soil temperatures and extended the treatment season but did not enhance bioremediation. Findings suggest that temperature and low moisture content affected biodegradation of HCs in the field. Little volatilization was measured in the laboratory, but this process may have been predominant in the field. Low-maintenance landfarming may be best suited for remediation of HCs compounds

  17. Effects of different remediation treatments on crude oil contaminated saline soil.

    PubMed

    Gao, Yong-Chao; Guo, Shu-Hai; Wang, Jia-Ning; Li, Dan; Wang, Hui; Zeng, De-Hui

    2014-12-01

    Remediation of the petroleum contaminated soil is essential to maintain the sustainable development of soil ecosystem. Bioremediation using microorganisms and plants is a promising method for the degradation of crude oil contaminants. The effects of different remediation treatments, including nitrogen addition, Suaeda salsa planting, and arbuscular mycorrhiza (AM) fungi inoculation individually or combined, on crude oil contaminated saline soil were assessed using a microcosm experiment. The results showed that different remediation treatments significantly affected the physicochemical properties, oil contaminant degradation and bacterial community structure of the oil contaminated saline soil. Nitrogen addition stimulated the degradation of total petroleum hydrocarbon significantly at the initial 30d of remediation. Coupling of different remediation techniques was more effective in degrading crude oil contaminants. Applications of nitrogen, AM fungi and their combination enhanced the phytoremediation efficiency of S. salsa significantly. The main bacterial community composition in the crude oil contaminated saline soil shifted with the remediation processes. γ-Proteobacteria, β-Proteobacteria, and Actinobacteria were the pioneer oil-degraders at the initial stage, and Firmicutes were considered to be able to degrade the recalcitrant components at the later stage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Environmental Assessment: Installation of Thermally Stable Jet Fuel (JPTS) Above Ground Storage System Westover Air Reserve Base, Chicopee, Massachusetts

    DTIC Science & Technology

    2004-06-30

    gasoline fuels is a result ofleaking USTs in the Aqua System Site (SS-19) to the north. Volatile petroleum hydrocarbon ( VPH ) contamination from the...in- situ enhanced bioremediation plan wilJ be implemented to reduce the concentrations of VPH that are present in soils in the groundwater saturated

  19. Enhancement of biodegradation of crude petroleum-oil in contaminated water by the addition of nitrogen sources.

    PubMed

    Mukred, A M; Hamid, A A; Hamzah, A; Yusoff, W M Wan

    2008-09-01

    Addition of nitrogen sources as supplementary nutrient into MSM medium to enhance biodegradation by stimulating the growth four isolates, Acinetobacter faecalis, Staphylococcus sp., Pseudomonas putida and Neisseria elongata isolated from petroleum contaminated groundwater, wastewater aeration pond and biopond at the oil refinery Terengganu Malaysia was investigated. The organic nitrogen sources tested not only supported growth but also enhances biodegradation of 1% Tapis crude oil. All four isolates showed good growth especially when peptone was employed as the organic nitrogen compared to growth in the basal medium. Gas chromatography showed that more then 91, 93, 94 and 95% degradation of total hydrocarbon was observed after 5 days of incubation by isolates Pseudomonas putida, Neisseria elongate, Acinetobacter faecalis and Staphylococcus sp., respectively.

  20. An assessment of subsurface contamination of an urban coastal aquifer due to oil spill.

    PubMed

    Nambi, Indumathi M; Rajasekhar, Bokam; Loganathan, Vijay; RaviKrishna, R

    2017-04-01

    Incidences of leakages of chemicals from underground oil storage tanks or oil-carrying pipelines have posed huge threat to the coastal aquifers around the world. One such leak was recently identified and notified by the people of Tondiarpet, Chennai, India. The assessment of the contamination level was done by obtaining electrical resistivity maps of the subsurface, drilling of 20 new borewells for soil and water analysis, and testing the water quality of 30 existing borewells. Samples were collected from the borewells, and observations were made that included parameters such as odor, moisture, contamination characteristics, lithology, groundwater level, thickness of the free product that are used to demarcate the extent of soil, and water contamination. Furthermore, a multigas detector was used to detect hydrocarbon presence as soil vapor. Moreover, to capture the transport of dissolved hydrocarbons, 10 samples were collected in the periphery of the study area and were analyzed for the presence of petroleum hydrocarbon and polyaromatic hydrocarbon. Analysis of the data indicated the presence of free-phase hydrocarbon in soil and groundwater close to the junction of Thiruvottiyur high (TH) road (TH) and Varadaja Perumal Koil (VPK) street. Although the contaminant plume is confined to a limited area, it has spread more to the southern and eastern side of the pipeline possibly due to continuous abstraction of groundwater by residential apartments. After cutting a trench along the VPK street and plotting of the plume delineation map, observations indicated that the source of the hydrocarbon leak is present in VPK street close to TH road. A multipronged strategy was suggested targeting the remediation of oil in various phases.

  1. Salinity and Conductivity Amendment of Soil Enhanced the Bioelectrochemical Degradation of Petroleum Hydrocarbons.

    PubMed

    Li, Xiaojing; Wang, Xin; Zhang, Yueyong; Zhao, Qian; Yu, Binbin; Li, Yongtao; Zhou, Qixing

    2016-09-06

    The extreme salinity and high internal resistance of saline-alkali soil contaminated by petroleum hydrocarbons were two key limitations for using the bioelectrochemical remediation. In order to solve two problems, we simply rinsed soil, added carbon fiber to polluted soil. The charge output was enhanced by 110% with increase of the maximum current densities from 81 to 304 mA·m(-2) while hydrocarbons degradation rate enhanced by 484%, especially the high molecular weight fractions (C28-C36 of n-alkanes and 4-6 rings of PAHs). These effects were possibly due to the selective enrichment of species belonged to δ-Proteobacteria (Proteobacteria), Flavobacteriia (Bacteroidetes) or Clostridia (Firmicutes), the activities of biological electron transfer and enzymes. As we know, oxygenase gene that directly decided the process of degradation, was surveyed for the first time in soil bioelectrochemical remediation system. The results confirmed that the bio-current stimulated the activities of naphthalene dioxygenase and xylene monooxygenase and thus the hydrocarbons degradation and the electricity generation. Given that electricity generation and the remediation performance are governed by multiple factors, understanding of microbial community and enzyme gene is crucial to promote the power yield and the bioelectrochemical remediation applicability.

  2. Salinity and Conductivity Amendment of Soil Enhanced the Bioelectrochemical Degradation of Petroleum Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Li, Xiaojing; Wang, Xin; Zhang, Yueyong; Zhao, Qian; Yu, Binbin; Li, Yongtao; Zhou, Qixing

    2016-09-01

    The extreme salinity and high internal resistance of saline-alkali soil contaminated by petroleum hydrocarbons were two key limitations for using the bioelectrochemical remediation. In order to solve two problems, we simply rinsed soil, added carbon fiber to polluted soil. The charge output was enhanced by 110% with increase of the maximum current densities from 81 to 304 mA·m-2 while hydrocarbons degradation rate enhanced by 484%, especially the high molecular weight fractions (C28-C36 of n-alkanes and 4-6 rings of PAHs). These effects were possibly due to the selective enrichment of species belonged to δ-Proteobacteria (Proteobacteria), Flavobacteriia (Bacteroidetes) or Clostridia (Firmicutes), the activities of biological electron transfer and enzymes. As we know, oxygenase gene that directly decided the process of degradation, was surveyed for the first time in soil bioelectrochemical remediation system. The results confirmed that the bio-current stimulated the activities of naphthalene dioxygenase and xylene monooxygenase and thus the hydrocarbons degradation and the electricity generation. Given that electricity generation and the remediation performance are governed by multiple factors, understanding of microbial community and enzyme gene is crucial to promote the power yield and the bioelectrochemical remediation applicability.

  3. Salinity and Conductivity Amendment of Soil Enhanced the Bioelectrochemical Degradation of Petroleum Hydrocarbons

    PubMed Central

    Li, Xiaojing; Wang, Xin; Zhang, Yueyong; Zhao, Qian; Yu, Binbin; Li, Yongtao; Zhou, Qixing

    2016-01-01

    The extreme salinity and high internal resistance of saline-alkali soil contaminated by petroleum hydrocarbons were two key limitations for using the bioelectrochemical remediation. In order to solve two problems, we simply rinsed soil, added carbon fiber to polluted soil. The charge output was enhanced by 110% with increase of the maximum current densities from 81 to 304 mA·m−2 while hydrocarbons degradation rate enhanced by 484%, especially the high molecular weight fractions (C28–C36 of n-alkanes and 4–6 rings of PAHs). These effects were possibly due to the selective enrichment of species belonged to δ-Proteobacteria (Proteobacteria), Flavobacteriia (Bacteroidetes) or Clostridia (Firmicutes), the activities of biological electron transfer and enzymes. As we know, oxygenase gene that directly decided the process of degradation, was surveyed for the first time in soil bioelectrochemical remediation system. The results confirmed that the bio-current stimulated the activities of naphthalene dioxygenase and xylene monooxygenase and thus the hydrocarbons degradation and the electricity generation. Given that electricity generation and the remediation performance are governed by multiple factors, understanding of microbial community and enzyme gene is crucial to promote the power yield and the bioelectrochemical remediation applicability. PMID:27597387

  4. Grounding of the Bahia Paraiso at Arthur Harbor, Antarctica. 1. Distribution and fate of oil spill related hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennicutt, M.C. II; Sweet, S.T.; Fraser, W.R.

    1991-03-01

    In January to March 1989 water, organisms, and sediments within a 2-mile radius of Arthur Harbor were contaminated with an estimated 600,000 L of petroleum spilled by the Bahia Paraiso. All components of the ecosystem were contaminated to varying degrees during the spill, including birds, limpets, macroalgae, clams, bottom-feeding fish, and sediments. The high-energy environment, the relatively small volume of material released, and the volatility of the released product all contributed to limiting toxic effects in time and space. The most effective removal processes were evaporation, dilution, winds, and currents. Sedimentation, biological uptake, microbial oxidation, and photooxidation accounted for removalmore » of only a minor portion of the spill. One year after the spill several areas still exhibited contamination. Subtidal sediments and the more distant intertidal locations were devoid of detectable PAH contaminants whereas sediments near the docking facility at Palmer Station continued to reflect localized nonspill-related activities in the area. Arthur Harbor and adjacent areas continue to be chronically exposed to low-level petroleum contamination emanating from the Bahia Paraiso.« less

  5. 25 years monitoring of PAHs and petroleum hydrocarbons biodegradation in soil.

    PubMed

    Harmsen, Joop; Rietra, René P J J

    2018-05-10

    Biodegradation of polycyclic aromatic hydrocarbons (PAHs) and total petroleum hydrocarbons (TPH) in sediment and soil has been monitored on seven experimental fields during periods up to 25 years. With this unique dataset, we investigated long-term very slow biodegradation under field conditions. . The data show that three biodegradation rates can be distinguished for PAHs: 1) rapid degradation during the first year, 2) slow degradation during the following 6 years and 3), subject of this paper, a very slow degradation after 7 years until at least 25 years. Beside 2-, 3- and 4-ring PAHs, also 5- and 6-ring PAHs (aromatic rings) were degraded, all at the same rate during very slow degradation. In the period of very slow degradation, 6% yr -1 of the PAHs present were removed in five fields and 2% yr -1 in two other fields, while in the same period no very slow degradation of TPH could be observed. The remaining petroleum hydrocarbons were high boiling and non-toxic. Using the calculated degradation rates and the independently measured bioavailability of the PAHs (Tenax-method), the PAHs degradation curves of all seven monitored fields could be modelled. Applying the model and data obtained with the Tenax-method for fresh contaminated material, results of long-term biodegradation can be predicted, which can support the use of bioremediation in order to obtain a legally acceptable residual concentration. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Environmental contaminants in redheads wintering in coastal Louisiana and Texas

    USGS Publications Warehouse

    Michot, T.C.; Custer, T.W.; Nault, A.J.; Mitchell, C.A.

    1994-01-01

    Whole body and liver analyses indicated that wintering redheads (Aythya americana; n = 70) in coastal Louisiana (one site) and Texas (two sites) were relatively free of contamination with common trace elements, organochlorines, and hydrocarbons. Most trace elements, including As, Cr, Hg, Mg, Mn, Ni, Pb, Se, Sr, and Zn, were within background concentrations in livers; levels of B, Cd, Cu, and Fe were elevated in some specimens. Only one organochlorine, DDE, was detected in redhead carcasses, but its concentration was below reported toxic levels in waterfowl. Body burdens of aliphatic and aromatic hydrocarbons were generally low, but levels of pristane, total hydrocarbons, and the ratios of phytane:n-octadecane and pristane:n-heptadecane were indicative of possible chronic exposure to petroleum. Based on brain cholinesterase assays, redheads were not recently exposed to organophosphorous or carbamate pesticides. Of 30 elements or compounds tested for seasonal differences, only Se increased from early to late winter at one of the three sites. Eight of 57 contaminants differed among the three sites; no sex or age differences were found.

  7. APPLICATION, PERFORMANCE, AND COSTS OF ...

    EPA Pesticide Factsheets

    A critical review of biological treatment processes for remediation of contaminated soils is presented. The focus of the review is on documented cost and performance of biological treatment technologies demonstrated at full- or field-scale. Some of the data were generated by the U.S. Environmental Protection Agency's (EPA's) Bioremediation in the Field Program, jointly supported by EPA's Office of Research and Development, EPA's Office of Solid Waste and Emergency Waste, and the EPA Regions through the Superfund Innovative Technology Evaluation Program (SITE) Program. Military sites proved to be another fertile data source. Technologies reviewed in this report include both ex-situ processes, (land treatment, biopile/biocell treatment, composting, and bioslurry reactor treatment) and in-situ alternatives (conventional bioventing, enhanced or cometabolic bioventing, anaerobic bioventing, bioslurping, phytoremediation, and natural attenuation). Targeted soil contaminants at the documented sites were primarily organic chemicals, including BTEX, petroleum hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), chlorinated aliphatic hydrocarbons (CAHs), organic solvents, polychlorinated biphenyls (PCBs), pesticides, dioxin, and energetics. The advantages, limitations, and major cost drivers for each technology are discussed. Box and whisker plots are used to summarize before and after concentrations of important contaminant groups for those technologies consider

  8. A quantum cascade laser infrared spectrometer for CO2 stable isotope analysis: Field implementation at a hydrocarbon contaminated site under bio-remediation.

    PubMed

    Guimbaud, Christophe; Noel, Cécile; Chartier, Michel; Catoire, Valéry; Blessing, Michaela; Gourry, Jean Christophe; Robert, Claude

    2016-02-01

    Real-time methods to monitor stable isotope ratios of CO2 are needed to identify biogeochemical origins of CO2 emissions from the soil-air interface. An isotope ratio infra-red spectrometer (IRIS) has been developed to measure CO2 mixing ratio with δ(13)C isotopic signature, in addition to mixing ratios of other greenhouse gases (CH4, N2O). The original aspects of the instrument as well as its precision and accuracy for the determination of the isotopic signature δ(13)C of CO2 are discussed. A first application to biodegradation of hydrocarbons is presented, tested on a hydrocarbon contaminated site under aerobic bio-treatment. CO2 flux measurements using closed chamber method is combined with the determination of the isotopic signature δ(13)C of the CO2 emission to propose a non-intrusive method to monitor in situ biodegradation of hydrocarbons. In the contaminated area, high CO2 emissions have been measured with an isotopic signature δ(13)C suggesting that CO2 comes from petroleum hydrocarbon biodegradation. This first field implementation shows that rapid and accurate measurement of isotopic signature of CO2 emissions is particularly useful in assessing the contribution of contaminant degradation to the measured CO2 efflux and is promising as a monitoring tool for aerobic bio-treatment. Copyright © 2016. Published by Elsevier B.V.

  9. Regulatory Evaluation of Petroleum Hydrocarbons in Dredged Material: Proceedings of a Workshop Held in Vicksburg, Mississippi on 15-17 March 1988

    DTIC Science & Technology

    1990-07-01

    in Daphnia magna" 8909 Draft TN: Effects of Petroleum Hydrocarbon Bioaccumulation in Aquatic Animals 9009 Input to EPA/CE Implementation Manuals CONT...database for bioaccumulation of the 15 PAHs as indicative of levels of concern for petroleum hydrocarbons in marine and freshwater. ASSESSMENT OF THE PROBLEM...mc I LEIU OCy, JMISCELLANEOUS PAPER EL-90-11 of EREGULATORY EVALUATION OF PETROLEUM HYDROCARBONS IN DREDGED MATERIAL PROCEEDINGS OF A WORKSHOP

  10. Phase 2 Site Investigations Report. Volume 1 of 3: General Annex-Wide Information

    DTIC Science & Technology

    1994-09-01

    completeness PCB Polychlorinated Biphenyl PCE Tetrachloroethene or Perchloroethene PHC Petroleum hydrocarbons PID Photoionization Detector POLs Petroleum , Oil...TEPS Total Environmental Program Support TIC Tentatively Identified Compound TOC Total Organic Carbon TPHC Total Petroleum Hydrocarbons TRC Technical... hydrocarbons were identified within some soil and sediment samples near the detection limit. These could result from urban runoff. No petroleum

  11. Biomarker responses in the bivalve Chlamys farreri to the water-soluble fraction of crude oil

    NASA Astrophysics Data System (ADS)

    Jiang, Fenghua; Zhang, Li; Yang, Baijuan; Zheng, Li; Sun, Chengjun

    2015-07-01

    To investigate the effect of the water soluble fraction of crude oil (WSF) on marine bivalves, the scallop Chlamys farreri was exposed to three WSF concentrations (0.18 mg/L, 0.32 mg/L, and 0.51 mg/L, respectively) in seawater. Petroleum hydrocarbon contents in scallops and a suite of enzymes [7-Ethoxyresorufin-O-deethylase (EROD), aryl hydrocarbon hydroxylase (AHH), glutathione S-transferase (GST), and glutathione peroxidase (GPx)] in gills and digestive glands were monitored over 10 days. The results revealed that WSF affected the activity of the four enzymes in the gills and digestive glands. EROD activity in the gills was significantly induced in most individuals of the three test groups, while in the digestive gland it was significantly induced in the low-concentration group within 4 days but was inhibited in the middle- and high-concentration groups on days 1, 4, and 10. AHH activity in the gills of all treatment groups was significantly induced on day 1. In the digestive gland, AHH activity was induced in most individuals from the treatment groups. In all treatment groups, GST activity was significantly inhibited from days 2 to 10 in the gills and was induced after day 4 in the digestive gland. GPx activity in the gills was significantly inhibited throughout the exposure period in all treatment groups. There was no overall significant difference in GPx activity in the digestive gland between the control and treatment groups. Our results also revealed that petroleum hydrocarbon concentrations in the tissues increased linearly with exposure time. EROD activity in the digestive gland and GST and GPx activity in the gill tissue were negatively correlated with petroleum hydrocarbon body burden. These enzymes play important roles in detoxification and can act as potential biomarkers for monitoring petroleum hydrocarbon contaminants in the marine environment.

  12. Biodegradation of Hydrocarbons as a Remediation Method for Petroleum Contaminants in the Environment or as a Treatment Method for Petroleum Wastes (A Review and Analysis of Recent Field Study Literature)

    DTIC Science & Technology

    1989-12-01

    vitality and propaqation. I1-C-2. Shelford’s Law of Tolerance Atlas and Bartha ( Atlas and Bartha , 1987) interpret this law to state: the abundance of...structure will eventually be released as carbon dioxide ( Atlas and Bartha , 1987; Grubbs and Molnaa,. 1988; Lee, 1989; Stover, 1989) Aerobic heterotrophs... Atlas and Bartha (1987) 37 .A-I established between inflow and effluent once the tank is filled ( Atlas and Bartha , 1987; Thomas et al., 1987a

  13. Phytoremediation of contaminated soils containing gasoline using Ludwigia octovalvis (Jacq.) in greenhouse pots.

    PubMed

    Al-Mansoory, Asia Fadhile; Idris, Mushrifah; Abdullah, Siti Rozaimah Sheikh; Anuar, Nurina

    2017-05-01

    Greenhouse experiments were carried out to determine the phytotoxic effects on the plant Ludwigia octovalvis in order to assess its applicability for phytoremediation gasoline-contaminated soils. Using plants to degrade hydrocarbons is a challenging task. In this study, different spiked concentrations of hydrocarbons in soil (1, 2, and 3 g/kg) were tested. The results showed that the mean efficiency of total petroleum hydrocarbon (TPH) removal over a 72-day culture period was rather high. The maximum removal of 79.8 % occurred for the 2 g/kg concentration, while the removal rate by the corresponding unplanted controls was only (48.6 %). The impact of gasoline on plants included visual symptoms of stress, yellowing, growth reduction, and perturbations in the developmental parameters. The dry weight and wet weight of the plant slightly increased upon exposure to gasoline until day 42. Scanning electron microscopy (SEM) indicated change to the root and stem structure in plant tissue due to the direct attachment with gasoline contaminated compared to the control sample. The population of living microorganisms in the contaminated soil was found to be able to adapt to different gasoline concentrations. The results showed that L. octovalvis and rhizobacteria in gasoline-contaminated soil have the potential to degrade organic pollutants.

  14. Environmental contamination associated with a marine landfill ('seafill') beside a coral reef.

    PubMed

    Jones, Ross

    2010-11-01

    In Bermuda, bulk waste such as scrap metal, cars, etc., and blocks of cement-stabilized incinerator ash (produced from burning garbage) are disposed of in a foreshore reclamation site, i.e., a seafill. Chemical analyses show that seawater leaching out of the dump regularly exceeds water quality guidelines for Zn and Cu, and that the surrounding sediments are enriched in multiple contaminant classes (metals, polycyclic aromatic hydrocarbons, petroleum hydrocarbons, dioxins and furans, polychlorinated biphenyls and an organochlorine pesticide), i.e., there is a halo of contamination. When compared against biological effects-based sediment quality guidelines (SQGs), numerous sediment samples exceeded the low-range values (where biological effects become possible), and for Hg and Zn exceeded the mid-range value (where they become probable). A few metres away from the edge of the 25 acre dump lies a small coral patch reef, proposed here as most contaminated coral reef in the world. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. The microbial community structure in petroleum-contaminated sediments corresponds to geophysical signatures

    USGS Publications Warehouse

    Allen, J.P.; Atekwana, E.A.; Duris, J.W.; Werkema, D.D.; Rossbach, S.

    2007-01-01

    The interdependence between geoelectrical signatures at underground petroleum plumes and the structures of subsurface microbial communities was investigated. For sediments contaminated with light non-aqueousphase liquids, anomalous high conductivity values have been observed. Vertical changes in the geoelectrical properties of the sediments were concomitant with significant changes in the microbial community structures as determined by the construction and evaluation of 16S rRNA gene libraries. DNA sequencing of clones from four 16S rRNA gene libraries from different depths of a contaminated field site and two libraries from an uncontaminated background site revealed spatial heterogeneity in the microbial community structures. Correspondence analysis showed that the presence of distinct microbial populations, including the various hydrocarbon-degrading, syntrophic, sulfate-reducing, and dissimilatory-iron-reducing populations, was a contributing factor to the elevated geoelectrical measurements. Thus, through their growth and metabolic activities, microbial populations that have adapted to the use of petroleum as a carbon source can strongly influence their geophysical surroundings. Since changes in the geophysical properties of contaminated sediments parallel changes in the microbial community compositions, it is suggested that geoelectrical measurements can be a cost-efficient tool to guide microbiological sampling for microbial ecology studies during the monitoring of natural or engineered bioremediation processes. Copyright ?? 2007, American Society for Microbiology. All Rights Reserved.

  16. Bioremediation of heavy metals and petroleum hydrocarbons in diesel contaminated soil with the earthworm: Eudrilus eugeniae.

    PubMed

    Ekperusi, Ogheneruemu Abraham; Aigbodion, Iruobe Felix

    2015-01-01

    A laboratory study on the bioremediation of diesel contaminated soil with the earthworm Eudrilus eugeniae (Kingberg) was conducted. 5 ml of diesel was contaminated into soils in replicates and inoculated with E. eugeniae for 90 days. Physicochemical parameters, heavy metals and total petroleum hydrocarbons were analyzed using AAS. BTEX in contaminated soil and tissues of earthworms were determined with GC-FID. The activities of earthworms resulted in a decrease in pH (3.0 %), electrical conductivity (60.66 %), total nitrogen (47.37 %), chloride (60.66 %), total organic carbon (49.22 %), sulphate (60.59 %), nitrate (60.65 %), phosphate (60.80 %), sodium (60.65 %), potassium (60.67 %), calcium (60.67 %), magnesium (60.68 %), zinc (60.59 %), manganese (60.72 %), copper (60.68 %), nickel (60.58 %), cadmium (60.44 %), vanadium (61.19 %), chromium (53.60 %), lead (60.38 %), mercury (61.11 %), arsenic (80.85 %), TPH (84.99 %). Among the BTEX constituents, only benzene (8.35 %) was detected in soil at the end of the study. Earthworm tissue analysis showed varying levels of TPH (57.35 %), benzene (38.91 %), toluene (27.76 %), ethylbenzene (42.16 %) and xylene (09.62 %) in E. eugeniae at the end of the study. The study has shown that E. eugeniae could be applied as a possible bioremediator in diesel polluted soil.

  17. Field Investigation of Natural Attenuation of a Petroleum Hydrocarbon Contaminated Aquifer, Gyeonggi Province, Korea

    NASA Astrophysics Data System (ADS)

    Yang, J.; Lee, K.; Bae, G.

    2004-12-01

    In remediation of a petroleum hydrocarbon contaminated aquifer, natural attenuation may be significant as a remedial alternative. Therefore, natural attenuation should be investigated in the field in order to effectively design and evaluate the remediation strategy at the contaminated site. This study focused on evaluating the natural attenuation for benzene, toluene, ethylbenzene, and xylene (BTEX) at a contaminated site in South Korea. At the study site, the aquifer is composed of a high permeable gravel layer and relatively low permeable sandy-silt layers. Groundwater level vertically fluctuated between 1m and 2m throughout the year (April, 2003~June, 2004) and showed direct response to rainfall events. Chemical analyses of sampled groundwater were performed to investigate the concentrations of various chemical species which are associated with the natural attenuation processes. To evaluate the degree of the biodegradation, the expressed biodegradation capacity (EBC) analysis was done using aerobic respiration, nitrate reduction, manganese reduction, ferric iron reduction, and sulfate reduction as an indicator. High EBC value of sulfate indicate that anaerobic biodegradation by sulfate reduction was a dominant process of mineralization of BTEX at this site. The EBC values decrease sensitively when heavy rainfall occurs due to the dilution and inflow of electron acceptors through a gravel layer. The first-order biodegradation rates of BTEX were estimated by means of the Buscheck and Alcantar method (1995). Results show that the natural attenuation rate of benzene was the highest among the BTEX.

  18. Urban soil exploration through multi-receiver electromagnetic induction and stepped-frequency ground penetrating radar.

    PubMed

    Van De Vijver, Ellen; Van Meirvenne, Marc; Vandenhaute, Laura; Delefortrie, Samuël; De Smedt, Philippe; Saey, Timothy; Seuntjens, Piet

    2015-07-01

    In environmental assessments, the characterization of urban soils relies heavily on invasive investigation, which is often insufficient to capture their full spatial heterogeneity. Non-invasive geophysical techniques enable rapid collection of high-resolution data and provide a cost-effective alternative to investigate soil in a spatially comprehensive way. This paper presents the results of combining multi-receiver electromagnetic induction and stepped-frequency ground penetrating radar to characterize a former garage site contaminated with petroleum hydrocarbons. The sensor combination showed the ability to identify and accurately locate building remains and a high-density soil layer, thus demonstrating the high potential to investigate anthropogenic disturbances of physical nature. In addition, a correspondence was found between an area of lower electrical conductivity and elevated concentrations of petroleum hydrocarbons, suggesting the potential to detect specific chemical disturbances. We conclude that the sensor combination provides valuable information for preliminary assessment of urban soils.

  19. Effects of contaminated soil on the growth performance of young Salix (Salix schwerinii E. L. Wolf) and the potential for phytoremediation of heavy metals.

    PubMed

    Salam, Mir Md Abdus; Kaipiainen, Erik; Mohsin, Muhammad; Villa, Aki; Kuittinen, Suvi; Pulkkinen, Pertti; Pelkonen, Paavo; Mehtätalo, Lauri; Pappinen, Ari

    2016-12-01

    Salix schwerinii was tested in a pot experiment to assess plant growth performance i.e., relative height and dry biomass and the potential for heavy metal uptake in soils polluted with chromium, zinc, copper, nickel and total petroleum hydrocarbons. The soil used in the pot experiment was collected from a landfill area in Finland. Peat soil was added at different quantities to the polluted soil to stimulate plant growth. The plants were irrigated with tap water or processed water (municipal waste water) to further investigate the effects of nutrient loading on plant biomass growth. The soil was treated at two pH levels (4 and 6). The results showed that the addition of 40-70% peat soil at pH 6 to a polluted soil, and irrigation with processed water accelerated plant growth and phytoextraction efficiency. In the pot experiment, Salix grown in chromium, zinc, copper, nickel and total petroleum hydrocarbons -contaminated field soil for 141 days were unaffected by the contaminated soil and took up excess nutrients from the soil and water. Total mean chromium concentration in the plant organs ranged from 17.05 to 250.45 mg kg -1 , mean zinc concentration ranged from 142.32 to 1616.59 mg kg -1 , mean copper concentration ranged from 12.11 to 223.74 mg kg -1 and mean nickel concentration ranged from 10.11 to 75.90 mg kg -1 . Mean chromium concentration in the plant organs ranged from 46 to 94%, mean zinc concentration ranged from 44 to 76%, mean copper concentration ranged from 19 to 54% and mean nickel concentration ranged from 8 to 21% across all treatments. Under the different treatments, chromium was taken up by Salix in the largest quantities, followed by zinc, copper and nickel respectively. Salix also produced a moderate reduction in total petroleum total petroleum hydrocarbons in the polluted soil. The results from the pot experiment suggest that Salix schwerinii has the potential to accumulate significant amounts of chromium, zinc, copper and nickel. However, long term research is needed to verify the phytoextraction abilities of Salix observed in the pot experiment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Endophytic Bacteria Associated with Hieracium piloselloides: Their Potential for Hydrocarbon-Utilizing and Plant Growth-Promotion.

    PubMed

    Pawlik, Małgorzata; Piotrowska-Seget, Zofia

    2015-01-01

    The aim of this study was to assess the potential of 18 crude-oil-degrading endophytic bacteria for removal of hydrocarbons and promotion of plant growth. Strains were isolated from Hieracium piloselloides (tall hawkweed), which grows in soil heavily polluted with petroleum hydrocarbons. Bacteria from the genus Pseudomonas were abundant among the isolates. The potential for hydrocarbon degradation was evaluated by polymerase chain reaction (PCR) analyses of the genes alkB, alkH, C23O, P450, and pah. It was found that 88.89% of the endophytic bacteria contained gene-encoding polycyclic aromatic hydrocarbon (PAH) initial dioxygenase, 61% possessed the 2,3-catechol dioxygenase gene, and 39% of strains that were tested had the cytochrome P-450 hydroxylase gene. All isolates were capable of producing indole-3-acetic acid (1.8-76.4 μg/ml). Only 17% of them were able to produce siderophores, excrete cellulase, and solubilize phosphate. Hydrogen cyanide synthesis occurred in 33% of endophytic bacteria. The 1-aminocyclopropane-1-carboxylate deaminase activity in isolates that were screened was in the range of 2.6 to 74.1 μmol α-ketobutyrate/mg/h. This feature of the bacteria indicated that isolates may enhance the phytoremediation process. Data suggest that crude-oil-degrading endophytic bacteria possess potential to be promising candidates for enhancement of phytoremediation of hydrocarbon-contaminated soil. Further evaluation of these bacteria is needed in order to assess the role played in the degradation of petroleum hydrocarbons.

  1. Point-of-entry treatment of petroleum contaminated water supplies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malley, J.P. Jr.; Eliason, P.A.; Wagler, J.L.

    1993-03-01

    Contamination of individual wells in rural area from leaking petroleum storage tanks poses unique problems for regulatory agencies utilities, and potentially responsible parties. A potential solution is the use of point-of-entry (POE) treatment techniques. Results indicate POE systems using aeration followed by granular activated carbon (GAC) are a viable, cost effective, short-term solution while ground water remediation is performed or an alternate drinking water supply is secured. Selection and design of POE systems should consider variations in water usage and contaminant concentrations. Iron and manganese did not affect POE system performance at the ten sites studied. However, iron precipitation wasmore » observed and may pose problems in some POE applications. Increased concentrations of nonpurgeable dissolved organic carbon consisting primarily of methy-t-butyl ether (MTBE) and hydrophilic petroleum hydrocarbons were found in the raw waters but did not affect volatile organic chemical (VOC) removals by aeration of GAC. Microbial activity as measured by heterotrophie plate count significantly increased through four of the ten POE systems studied. Reliability of the POE systems will best be achieved by specifying top quality system components, educating POE users, and providing routine maintenance and VOC monitoring. 20 refs., 9 figs., 4 tabs.« less

  2. 21 CFR 172.884 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Odorless light petroleum hydrocarbons. 172.884 Section 172.884 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... HUMAN CONSUMPTION Multipurpose Additives § 172.884 Odorless light petroleum hydrocarbons. Odorless light...

  3. 21 CFR 172.884 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Odorless light petroleum hydrocarbons. 172.884 Section 172.884 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... HUMAN CONSUMPTION Multipurpose Additives § 172.884 Odorless light petroleum hydrocarbons. Odorless light...

  4. 21 CFR 172.884 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Odorless light petroleum hydrocarbons. 172.884 Section 172.884 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... HUMAN CONSUMPTION Multipurpose Additives § 172.884 Odorless light petroleum hydrocarbons. Odorless light...

  5. Petroleum hydrocarbons, fluorescent aromatic compounds in fish bile and organochlorine pesticides from areas surrounding the spill of the Kab121 well, in the Southern Gulf of Mexico: a case study.

    PubMed

    Gold-Bouchot, G; Ceja-Moreno, V; Chan-Cocom, E; Zapata-Perez, O

    2014-01-01

    In October 2007, a light crude oil spill took place in the off shore Kab121 oil well, 32 km north of the mouth of the Grijalva River, Tabasco, Mexico. In order to estimate the possible effects of oil spill on the biota in the area surrounding the spilled well, the level of different fractions of petroleum hydrocarbons were measured in fish, as well as the concentration of some chlorinated hydrocarbons and PCBs. The organisms examined were cat fish (Ariopsis felis), in addition fluorescent aromatic compounds in bile, the contaminants above mentioned and their relationship with cyotochrome P-450 and Ethoxyresorufin-O-deethylase, Glutathion-S-Transferase and catalase activities in liver were determined. The concentration of most pollutants were low, except PAHs. Spatial distribution of these compounds, as well as most biomarkers, reflected the highest exposure of fish to pollutants in the area adjacent to well, as well as in the proximity of rivers. The profile of exposure to this environment was chronic in nature and not temporary.

  6. Mapping polycyclic aromatic hydrocarbon and total toxicity equivalent soil concentrations by visible and near-infrared spectroscopy.

    PubMed

    Okparanma, Reuben N; Coulon, Frederic; Mayr, Thomas; Mouazen, Abdul M

    2014-09-01

    In this study, we used data from spectroscopic models based on visible and near-infrared (vis-NIR; 350-2500 nm) diffuse reflectance spectroscopy to develop soil maps of polycyclic aromatic hydrocarbons (PAHs) and total toxicity equivalent concentrations (TTEC) of the PAH mixture. The TTEC maps were then used for hazard assessment of three petroleum release sites in the Niger Delta province of Nigeria (5.317°N, 6.467°E). As the paired t-test revealed, there were non-significant (p > 0.05) differences between soil maps of PAH and TTEC developed with chemically measured and vis-NIR-predicted data. Comparison maps of PAH showed a slight to moderate agreement between measured and predicted data (Kappa coefficient = 0.19-0.56). Using proposed generic assessment criteria, hazard assessment showed that the degree of action for site-specific risk assessment and/or remediation is similar for both measurement methods. This demonstrates that the vis-NIR method may be useful for monitoring hydrocarbon contamination in a petroleum release site. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Determination of a risk management primer at petroleum-contaminated sites: developing new human health risk assessment strategy.

    PubMed

    Park, In-Sun; Park, Jae-Woo

    2011-01-30

    Total petroleum hydrocarbon (TPH) is an important environmental contaminant that is toxic to human and environmental receptors. However, human health risk assessment for petroleum, oil, and lubricant (POL)-contaminated sites is especially challenging because TPH is not a single compound, but rather a mixture of numerous substances. To address this concern, this study recommends a new human health risk assessment strategy for POL-contaminated sites. The strategy is based on a newly modified TPH fractionation method and includes an improved analytical protocol. The proposed TPH fractionation method is composed of ten fractions (e.g., aliphatic and aromatic EC8-10, EC10-12, EC12-16, EC16-22 and EC22-40). Physicochemical properties and toxicity values of each fraction were newly defined in this study. The stepwise ultrasonication-based analytical process was established to measure TPH fractions. Analytical results were compared with those from the TPH Criteria Working Group (TPHCWG) Direct Method. Better analytical efficiencies in TPH, aliphatic, and aromatic fractions were achieved when contaminated soil samples were analyzed with the new analytical protocol. Finally, a human health risk assessment was performed based on the developed tiered risk assessment framework. Results showed that a detailed quantitative risk assessment should be conducted to determine scientifically and economically appropriate cleanup target levels, although the phase II process is useful for determining the potency of human health risks posed by POL-contamination. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Biogeochemical assessment of natural attenuation of JP-4-contaminated ground water in the presence of fluorinated surfactants.

    PubMed

    Levine, A D; Libelo, E L; Bugna, G; Shelley, T; Mayfield, H; Stauffer, T B

    1997-12-22

    The biogeochemistry of the natural attenuation of petroleum-contaminated ground water was investigated in a field study. The focus of the study was a fire training site located on Tyndall Air Force Base in Florida. The site has been used by the Air Force for approximately 11 years in fire fighting exercises. An on-site above-ground tank of JP-4 provided fuel for setting controlled fires for the exercises. Various amounts of water and aqueous film forming foams (AFFF) were applied to extinguish the fires. The sources of contamination included leaks from pipelines transporting the fuel, leaks from an oil/water separator and runoff and percolation from the fire fighting activities. Previous investigations had identified jet fuel contamination at the site, however, no active remediation efforts have been conducted to date. The goal of this study was to use biogeochemical monitoring data to delineate redox zones within the site and to identify evidence of natural attenuation of JP-4 contamination. In addition to identifying several hydrocarbon metabolites, fluorinated surfactants (AFFF) were detected down-gradient of the hydrocarbon plume.

  9. [Ecologo-hygienic criteria and monitoring indices of oil-contaminated peaty soils].

    PubMed

    Dubinina, O N; Khusnutdinova, N Yu; Mikhailova, L V; Yakhina, M R

    2014-01-01

    Intensive oil extraction in Khanty-Mansi Autonomous Okrug is not uncommon accompanied by emergency situations giving rise to the pollution of soil, surface and groundwater and causing an elevation in the population morbidity rate. The purpose of the study is to substantiate the basis for information value of hygienic indices of peat soils with low levels of oil contamination: from background values to exceeding the latters as much as 10-20 times, to apply in the study results in hygienic monitoring and oil regulation. The study was performed in accordance with the current methodological regulations. There was established the expediency of determination in transforming in the soil, composition of the petroleum hydrocarbons not only alkanes but arenes and resin-asphaltene fractions, indices of phytotoxicity, translocation of petroleum products into plants testing of soil extracts on protozoa and invertebrates.

  10. Simultaneous application of chemical oxidation and extraction processes is effective at remediating soil Co-contaminated with petroleum and heavy metals.

    PubMed

    Yoo, Jong-Chan; Lee, Chadol; Lee, Jeung-Sun; Baek, Kitae

    2017-01-15

    Chemical extraction and oxidation processes to clean up heavy metals and hydrocarbon from soil have a higher remediation efficiency and take less time than other remediation processes. In batch extraction/oxidation process, 3% hydrogen peroxide (H 2 O 2 ) and 0.1 M ethylenediaminetetraacetic acid (EDTA) could remove approximately 70% of the petroleum and 60% of the Cu and Pb in the soil, respectively. In particular, petroleum was effectively oxidized by H 2 O 2 without addition of any catalysts through dissolution of Fe oxides in natural soils. Furthermore, heavy metals bound to Fe-Mn oxyhydroxides could be extracted by metal-EDTA as well as Fe-EDTA complexation due to the high affinity of EDTA for metals. However, the strong binding of Fe-EDTA inhibited the oxidation of petroleum in the extraction-oxidation sequential process because Fe was removed during the extraction process with EDTA. The oxidation-extraction sequential process did not significantly enhance the extraction of heavy metals from soil, because a small portion of heavy metals remained bound to organic matter. Overall, simultaneous application of oxidation and extraction processes resulted in highly efficient removal of both contaminants; this approach can be used to remove co-contaminants from soil in a short amount of time at a reasonable cost. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. High Molecular Weight Petrogenic and Pyrogenic Hydrocarbons in Aquatic Environments

    NASA Astrophysics Data System (ADS)

    Abrajano, T. A., Jr.; Yan, B.; O'Malley, V.

    2003-12-01

    Geochemistry is ultimately the study of sources, movement, and fate of chemicals in the geosphere at various spatial and temporal scales. Environmental organic geochemistry focuses such studies on organic compounds of toxicological and ecological concern (e.g., Schwarzenbach et al., 1993, 1998; Eganhouse, 1997). This field emphasizes not only those compounds with potential toxicological properties, but also the geological systems accessible to the biological receptors of those hazards. Hence, the examples presented in this chapter focus on hydrocarbons with known health and ecological concern in accessible shallow, primarily aquatic, environments.Modern society depends on oil for energy and a variety of other daily needs, with present mineral oil consumption throughout the 1990s exceeding 3×109 t yr-1 (NRC, 2002). In the USA, e.g., ˜40% of energy consumed and 97% of transportation fuels are derived from oil. In the process of extraction, refinement, transport, use, and waste production, a small but environmentally significant fraction of raw oil materials, processed products, and waste are released inadvertently or purposefully into the environment. Because their presence and concentration in the shallow environments are often the result of human activities, these organic materials are generally referred to as "environmental contaminants." Although such reference connotes some form of toxicological or ecological hazard, specific health or ecological effects of many organic "environmental contaminants" remain to be demonstrated. Some are, in fact, likely innocuous at the levels that they are found in many systems, and simply adds to the milieu of biogenic organic compounds that naturally cycle through the shallow environment. Indeed, virtually all compounds in crude oil and processed petroleum products have been introduced naturally to the shallow environments as oil and gas seepage for millions of years ( NRC, 2002). Even high molecular weight (HMW) polyaromatic compounds were introduced to shallow environments through forest fires and natural coking of crude oil ( Ballentine et al., 1996; O'Malley et al., 1997). The full development of natural microbial enzymatic systems that can utilize HMW hydrocarbons as carbon or energy source attests to the antiquity of hydrocarbon dispersal processes in the environment. The environmental concern is, therefore, primarily due to the rate and spatial scale by which petroleum products are released in modern times, particularly with respect to the environmental sensitivity of some ecosystems to these releases ( Schwarzenbach et al., 1993; Eganhouse, 1997; NRC, 2002).Crude oil is produced by diagenetic and thermal maturation of terrestrial and marine plant and animal materials in source rocks and petroleum reservoirs. Most of the petroleum in use today is produced by thermal and bacterial decomposition of phytoplankton material that once lived near the surface of the world's ocean, lake, and river waters (Tissot and Welte, 1984). Terrestrially derived organic matter can be regionally significant, and is the second major contributor to the worldwide oil inventory ( Tissot and Welte, 1984; Peters and Moldowan, 1993; Engel and Macko, 1993). The existing theories hold that the organic matter present in crude oil consists of unconverted original biopolymers and new compounds polymerized by reactions promoted by time and increasing temperature in deep geologic formations. The resulting oil can migrate from source to reservoir rocks where the new geochemical conditions may again lead to further transformation of the petrogenic compounds. Any subsequent changes in reservoir conditions brought about by uplift, interaction with aqueous fluids, or even direct human intervention (e.g., drilling, water washing) likewise could alter the geochemical makeup of the petrogenic compounds. Much of our understanding of environmental sources and fate of hydrocarbon compounds in shallow environments indeed borrowed from the extensive geochemical and analytical framework that was meticulously built by petroleum geochemists over the years (e.g., Tissot and Welte, 1984; Peters et al., 1992; Peters and Moldowan, 1993; Engel and Macko, 1993; Moldowan et al., 1995; Wang et al., 1999; Faksness et al., 2002).Hydrocarbon compounds present in petroleum or pyrolysis by-products can be classified based on their composition, molecular weight, organic structure, or some combination of these criteria. For example, a report of the Committee on Intrinsic Remediation of the US NRC classified organic contaminants into HMW hydrocarbons, low molecular weight (LMW) hydrocarbons, oxygenated hydrocarbons, halogenated aliphatics, halogenated aromatics, and nitroaromatics (NRC, 2000). Hydrocarbons are compounds comprised exclusively of carbon and hydrogen and they are by far the dominant components of crude oil, processed petroleum hydrocarbons (gasoline, diesel, kerosene, fuel oil, and lubricating oil), coal tar, creosote, dyestuff, and pyrolysis waste products. These hydrocarbons often occur as mixtures of a diverse group of compounds whose behavior in near-surface environments is governed by their chemical structure and composition, the geochemical conditions and media of their release, and biological factors, primarily microbial metabolism, controlling their transformation and degradation.Hydrocarbons comprise from 50% to 99% of compounds present in refined and unrefined oil, and compounds containing other elements such as oxygen, nitrogen, and sulfur are present in relatively smaller proportions. Hydrocarbon compounds have carbons joined together as single C - C bonds (i.e., alkanes), double or triple C=C bonds (i.e., alkenes or olefins), or via an aromatic ring system with resonating electronic structure (i.e., aromatics). Alkanes, also called paraffins, are the dominant component of crude oil, with the carbon chain forming either straight (n-alkanes), branched (iso-alkanes), or cyclic (naphthenes) arrangement of up to 60 carbons (Figure 1). Aromatic compounds are the second major component of crude oil, with asphalthenes, consisting of stacks of highly polymerized aromatic structures (average of 16 rings), completing the list of major oil hydrocarbon components. Also shown in Figure 1 are several important classes of compounds that are extensively used in "fingerprinting" crude oil or petroleum sources: sterols derived from steroid, hopanol derived from bacteriohopanetetrols, and pristane and phytane derived from phytol (from chlorophyll) during diagenesis.

  12. High Magnetic Susceptibility in a Highly Saline Sulfate-Rich Aquifer Undergoing Biodegradation of Hydrocarbon Results from Sulfate Reduction.

    NASA Astrophysics Data System (ADS)

    Atekwana, E. A.; Enright, A.; Ntarlagiannis, D.; Slater, L. D.; Bernier, R.; Beaver, C. L.; Rossbach, S.

    2016-12-01

    We investigated the chemical and stable carbon isotope composition of groundwater in a highly saline aquifer contaminated with hydrocarbon. Our aim to evaluate hydrocarbon degradation and to constrain the geochemical conditions that generated high anomalous magnetic susceptibility (MS) signatures observed at the water table interface. The occurrence of high MS in the water table fluctuating zone has been attributed to microbial iron reduction, suggesting the use of MS as a proxy for iron cycling. The highly saline aquifer had total dissolved solids concentrations of 3.7 to 29.3 g/L and sulfate concentrations of 787 to 37,100 mg/L. We compared our results for groundwater locations with high hydrocarbon contamination (total petroleum hydrocarbon (TPH) >10 mg/L), at lightly contaminated (TPH <10 mg/L) and locations with no contaminations. Our results for the terminal electron acceptors (TEAs) dissolved oxygen (DO), nitrate (NO3-), dissolved iron (Fe2+) , dissolved manganese (Mn2+), sulfate (SO42-) and methane (CH4) suggest a chemically heterogeneous aquifer, probably controlled by heterogeneous distribution of TEAs and contamination (type of hydrocarbon, phase and age of contamination). The concentrations of dissolved inorganic carbon (DIC) ranged from 67 to 648 mg C/L and the stable carbon isotope (δ13CDIC) ranged from -30.0‰ to 1.0 ‰ and DIC-δ13CDIC modeling indicates that the carbon in the DIC is derived primarily from hydrocarbon degradation. The concentrations of Fe2+ in the aquifer ranged from 0.1 to 55.8 mg/L, but was mostly low, averaging 2.7+10.9 mg/L. Given the low Fe2+ [AE1] in the aqueous phase and the high MS at contaminated locations, we suggest that the high MS observed does not arise from iron reduction but rather from sulfate reduction. Sulfate reduction produces H2S which reacts with Fe2+ to produce ferrous sulfide (Fe2+S) or the mixed valence greigite (Fe2+Fe3+2S4). We conclude that in highly saline aquifers with high concentrations of sulfate and contaminated with hydrocarbon, dominance of sulfate reduction as the TEA is responsible for iron cycling and therefore the high MS associated with biodegradation. [AE1]What about sulfate concentrations? And the range in salinity? You need to add these values to the bastrcat

  13. Feasibility Report and Environmental Impact Statement for Navigation Improvements at Bayou La Batre, Alabama

    DTIC Science & Technology

    1988-09-12

    an active openwater disposal site. The results of their analyses indicated that petroleum hydrocarbon residues were predominant within the top 200 cm...Island. At this site petroleum hydrocarbons , concentrations of up to 50 ppm, were encountered within the top 100 cm of sediment. Other sites within the...general area showed low levels of petroleum hydrocarbons in surficial sediments with natural terrestrial hydrocarbons being predominant. Sediment

  14. Concentrations in human blood of petroleum hydrocarbons associated with the BP/Deepwater Horizon oil spill, Gulf of Mexico.

    PubMed

    Sammarco, Paul W; Kolian, Stephan R; Warby, Richard A F; Bouldin, Jennifer L; Subra, Wilma A; Porter, Scott A

    2016-04-01

    During/after the BP/Deepwater Horizon oil spill, cleanup workers, fisherpersons, SCUBA divers, and coastal residents were exposed to crude oil and dispersants. These people experienced acute physiological and behavioral symptoms and consulted a physician. They were diagnosed with petroleum hydrocarbon poisoning and had blood analyses analyzed for volatile organic compounds; samples were drawn 5-19 months after the spill had been capped. We examined the petroleum hydrocarbon concentrations in the blood. The aromatic compounds m,p-xylene, toluene, ethylbenzene, benzene, o-xylene, and styrene, and the alkanes hexane, 3-methylpentane, 2-methylpentane, and iso-octane were detected. Concentrations of the first four aromatics were not significantly different from US National Health and Nutritional Examination Survey/US National Institute of Standards and Technology 95th percentiles, indicating high concentrations of contaminants. The other two aromatics and the alkanes yielded equivocal results or significantly low concentrations. The data suggest that single-ring aromatic compounds are more persistent in the blood than alkanes and may be responsible for the observed symptoms. People should avoid exposure to crude oil through avoidance of the affected region, or utilizing hazardous materials suits if involved in cleanup, or wearing hazardous waste operations and emergency response suits if SCUBA diving. Concentrations of alkanes and PAHs in the blood of coastal residents and workers should be monitored through time well after the spill has been controlled.

  15. Bacteria associated with arbuscular mycorrhizal fungi within roots of plants growing in a soil highly contaminated with aliphatic and aromatic petroleum hydrocarbons.

    PubMed

    Iffis, Bachir; St-Arnaud, Marc; Hijri, Mohamed

    2014-09-01

    Arbuscular mycorrhizal fungi (AMF) belong to phylum Glomeromycota, an early divergent fungal lineage forming symbiosis with plant roots. Many reports have documented that bacteria are intimately associated with AMF mycelia in the soil. However, the role of these bacteria remains unclear and their diversity within intraradical AMF structures has yet to be explored. We aim to assess the bacterial communities associated within intraradical propagules (vesicles and intraradical spores) harvested from roots of plant growing in the sediments of an extremely petroleum hydrocarbon-polluted basin. Solidago rugosa roots were sampled, surface-sterilized, and microdissected. Eleven propagules were randomly collected and individually subjected to whole-genome amplification, followed by PCRs, cloning, and sequencing targeting fungal and bacterial rDNA. Ribotyping of the 11 propagules showed that at least five different AMF OTUs could be present in S. rugosa roots, while 16S rRNA ribotyping of six of the 11 different propagules showed a surprisingly high bacterial richness associated with the AMF within plant roots. Most dominant bacterial OTUs belonged to Sphingomonas sp., Pseudomonas sp., Massilia sp., and Methylobacterium sp. This study provides the first evidence of the bacterial diversity associated with AMF propagules within the roots of plants growing in extremely petroleum hydrocarbon-polluted conditions. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  16. Changes in Magnetic Mineralogy Through a Depth Sequence of Hydrocarbon Contaminated Sediments

    NASA Astrophysics Data System (ADS)

    Ameen, N. N.; Klüglein, N.; Appel, E.; Petrovsky, E.; Kappler, A.

    2013-12-01

    Sediments, soils and groundwater can act as a natural storage for many types of pollution. This study aims to investigate ferro(i)magnetic phase formation and transformation in the presence of organic contaminants (hydrocarbons) and its relation to bacterial activity, in particular in the zone of fluctuating water levels. The work extends previous studies conducted at the same site. The study area is a former military air base at Hradčany, Czech Republic (50°37'22.71"N, 14°45'2.24"E). Due to leaks in petroleum storage tanks and jet fuelling stations over years of active use the site was heavily contaminated with petroleum hydrocarbons, until the base was closed in 1991. This site is one of the most important sources of high quality groundwater in the Czech Republic. During remediation processes the groundwater level in the sediments fluctuated, driving the hydrocarbon contaminants to lower depth levels along with the groundwater and leading to magnetite formation (Rijal et al., Environ.Pollut., 158, 1756-1762, 2010). In our study we drilled triplicate cores at three locations which were studied earlier. Magnetic susceptibility (MS) profiles combined with other magnetic properties were analyzed to obtain the ferro(i)magnetic concentration distributions along the depth sections. Additionally the sediment properties, hydrocarbon content and bacterial activity were studied. The triplicate cores were used to statistically discriminate outliers and to recognize significant magnetic signatures with depth. The results show that the highest concentration of ferrimagnetic phases (interpreted as newly formed magnetite) exists at the probable top of the groundwater fluctuation (GWF) zone. For example at one of the sites this zone is found between 1.4-1.9 m depth (groundwater table at ~2.3 m depth). High S-ratio and the correlation of ARM with MS values confirm the contribution of magnetite for the ferro(i)magnetic enhancement in the GWF zone. In the previous studies the MS signals revealed small-scale isolated features, but with the use of triplicate cores significant trends of MS could be identified, showing an increase from the lowermost position of the groundwater table upward. Bacterial activity is likely responsible for magnetite formation in this depth range as indicated by most probable number (MPN) results of iron-reducing bacteria.

  17. Measurement and Modeling of Ecosystem Risk and Recovery for In Situ Treatment of Contaminated Sediments

    DTIC Science & Technology

    2013-08-01

    Hydrocarbons in Petroleum- Impacted Sediments." Environmental Science & Technology 47(2): 1024-1032. Choi, Y., Y. M. Cho, et al. (2013). "Measurement and...4020 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Strategic Environmental Research and Development...was prepared under contract to the Department of Defense Strategic Environmental Research and Development Program (SERDP). The publication of this

  18. Cable Bacteria and the Bioelectrochemical Snorkel: The Natural and Engineered Facets Playing a Role in Hydrocarbons Degradation in Marine Sediments

    PubMed Central

    Matturro, Bruna; Cruz Viggi, Carolina; Aulenta, Federico; Rossetti, Simona

    2017-01-01

    The composition and metabolic traits of the microbial communities acting in an innovative bioelectrochemical system were here investigated. The system, known as Oil Spill Snorkel, was recently developed to stimulate the oxidative biodegradation of petroleum hydrocarbons in anoxic marine sediments. Next Generation Sequencing was used to describe the microbiome of the bulk sediment and of the biofilm growing attached to the surface of the electrode. The analysis revealed that sulfur cycling primarily drives the microbial metabolic activities occurring in the bioelectrochemical system. In the anoxic zone of the contaminated marine sediment, petroleum hydrocarbon degradation occurred under sulfate-reducing conditions and was lead by different families of Desulfobacterales (46% of total OTUs). Remarkably, the occurrence of filamentous Desulfubulbaceae, known to be capable to vehicle electrons deriving from sulfide oxidation to oxygen serving as a spatially distant electron acceptor, was demonstrated. Differently from the sediment, which was mostly colonized by Deltaproteobacteria, the biofilm at the anode hosted, at high extent, members of Alphaproteobacteria (59%) mostly affiliated to Rhodospirillaceae family (33%) and including several known sulfur- and sulfide-oxidizing genera. Overall, we showed the occurrence in the system of a variety of electroactive microorganisms able to sustain the contaminant biodegradation alone or by means of an external conductive support through the establishment of a bioelectrochemical connection between two spatially separated redox zones and the preservation of an efficient sulfur cycling. PMID:28611751

  19. Determination of Total Petroleum Hydrocarbons in Australian Groundwater Through the Improvised Gas Chromatography-Flame Ionization Detection Technique.

    PubMed

    Faustorilla, Maria Vilma; Chen, Zuliang; Dharmarajan, Rajarathnam; Naidu, Ravendra

    2017-09-01

    Assessment of total petroleum hydrocarbons (TPHs) from contaminated sites demands routine and reliable measurement at trace levels. However, the detection limits of these methods need to be improved. This study developed the programmable temperature vaporization-large volume injection (PTV-LVI) method to quantify TPHs through gas chromatography-flame ionization detection. This configuration enhances the method sensitivity for trace level detections through large volume injections and pre-concentration of analytes along the injection liner. The method was evaluated for the three commonly observed hydrocarbon fractions: C10-C14, C15-C28 and C29-C36. In comparison with conventional injection methods (splitless and pulsed splitless), PTV-LVI showed R2 values > 0.999 with enhanced limits of detection and limits of quantification values. The method was applied to real samples for routine environmental monitoring of TPHs in an Australian contaminated site characterized by refueling station. Analysis of groundwater samples in the area showed a wide range of TPH concentrations as follows: 66-1,546,000 (C10-C14), 216-22,762 (C15-C28) and 105-2,103 (C29-C36) μg/L. This method has detected trace levels, thereby measuring a wider concentration range of TPHs. These more accurate measurements can lead to the appropriate application of risk assessments and remediation techniques. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Cultivation of a bacterial consortium with the potential to degrade total petroleum hydrocarbon using waste activated sludge.

    PubMed

    Sivakumar, S; Song, Y C; Kim, S H; Jang, S H

    2015-11-01

    Waste activated sludge was aerobically treated to demonstrate multiple uses such as cultivating an oil degrading bacterial consortium; studying the influence of a bulking agent (peat moss) and total petroleum hydrocarbon concentration on bacterial growth and producing a soil conditioner using waste activated sludge. After 30 days of incubation, the concentration of oil-degrading bacteria was 4.3 x 10(8) CFU g(-1) and 4.5 x 10(8) CFU g(-1) for 5 and 10 g of total petroleum hydrocarbon, respectively, in a mixture of waste activated sludge (1 kg) and peat moss (0.1 kg). This accounts for approximately 88.4 and 91.1%, respectively, of the total heterotrophic bacteria (total-HB). The addition of bulking agent enhanced total-HB population and total petroleum hydrocarbon-degrading bacterial population. Over 90% of total petroleum hydrocarbon degradation was achieved by the mixture of waste activated sludge, bulking agent and total petroleum hydrocarbon. The results of physico-chemical parameters of the compost (waste activated sludge with and without added peat moss compost) and a substantial reduction in E. coli showed that the use of this final product did not exhibit risk when used as soil conditioner. Finally, the present study demonstrated that cultivation of total petroleum hydrocarbon-degrading bacterial consortium and production of compost from waste activated sludge by aerobic treatment was feasible.

  1. Characterization of EPA's 16 priority pollutant polycyclic aromatic hydrocarbons (PAHs) in tank bottom solids and associated contaminated soils at oil exploration and production sites in Texas.

    PubMed

    Bojes, Heidi K; Pope, Peter G

    2007-04-01

    The purpose of this study was to determine the concentration and types of polycyclic aromatic hydrocarbons (PAHs), a group of environmentally toxic and persistent chemicals, at contaminated oil exploration and production (E&P) sites located in environmentally sensitive and geographically distinct areas throughout Texas. Samples of tank bottom solids, the oily sediment that collects at the bottom of the tanks, were collected from inactive crude oil storage tanks at E&P sites and hydrocarbon contaminated soil samples were collected from the area surrounding each tank that was sampled. All samples were analyzed for the 16 PAH priority pollutant listed by US EPA and for total petroleum hydrocarbons (TPH). The results demonstrate that overall average PAH concentrations were significantly higher in tank bottom solids than in contaminated soils. Total PAH concentrations decreased predictably with diminishing hydrocarbon concentrations; but the percent fraction of carcinogenic PAHs per total measured PAH content increased from approximately 12% in tank bottom solids to about 46% in the contaminated soils. These results suggest that the PAH content found in tank bottom solids cannot reliably be used to predict the PAH content in associated contaminated soil. Comparison of PAHs to conservative risk-based screening levels for direct exposure to soil and leaching from soil to groundwater indicate that PAHs are not likely to exceed default risk-based thresholds in soils containing TPH of 1% (10,000mg/kg) or less. These results show that the magnitude of TPH concentration may be a useful indicator of potential risk from PAHs in crude oil-contaminated soils. The results also provide credibility to the 1% (10,000mg/kg) TPH cleanup level, used in Texas as a default management level at E&P sites located in non-sensitive areas, with respect to PAH toxicity.

  2. INNOVATIVE TECHNOLOGY VERIFICATION REPORT "FIELD MEASUREMENT TECHNOLOGIES FOR TOTAL PETROLEUM HYDROCARBONS IN SOIL" CHEMETRICS, INC., AND AZUR ENVIRONMENTAL LTD REMEDIAID TOTAL PETROLEUM HYDROCARBON STARTER KIT

    EPA Science Inventory

    The RemediAidTm Total Petroleum Hydrocarbon Starter Kit (RemediAidTm kit) developed by CHEMetries, Inc. (CHEMetrics), and AZUR Environmental Ltd was demonstrated under the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation Program in June 2000 at the ...

  3. Magnetic properties changes due to hydrocarbon contaminated groundwater table fluctuations

    NASA Astrophysics Data System (ADS)

    Ameen, Nawrass

    2013-04-01

    This study aims to understand the mechanisms and conditions which control the formation and transformation of ferro(i)magnetic minerals caused by hydrocarbon contaminated groundwater, in particular in the zone of fluctuating water levels. The work extends previous studies conducted at the same site. The study area is a former military air base at Hradčany, Czech Republic (50°37'22.71"N, 14°45'2.24"E). The site was heavily contaminated with petroleum hydrocarbons, due to leaks in petroleum storage tanks and jet fuelling stations over years of active use by the Soviet Union, which closed the base in 1991. The site is one of the most important sources of high quality groundwater in the Czech Republic. In a previous study, Rijal et al. (2010) concluded that the contaminants could be flushed into the sediments as the water level rose due to remediation processes leading to new formation of magnetite. In this previous study three different locations were investigated; however, from each location only one core was obtained. In order to recognize significant magnetic signatures versus depth three cores from each of these three locations were drilled in early 2012, penetrating the unsaturated zone, the groundwater fluctuation (GWF) zone and extending to about one meter below the groundwater level (~2.3 m depth at the time of sampling). Magnetic susceptibility (MS) profiles combined with other magnetic properties were analyzed to obtain a significant depth distribution of the ferro(i)magnetic concentration. Sediment properties, hydrocarbon content and bacterial activity were additionally studied. The results show that the highest ferrimagnetic mineral concentrations exist between 1.4-1.9 m depth from the baseline which is interpreted as the top of the GWF zone. Spikes of MS detected in the previous studies turned out to represent small-scale isolated features, but the trend of increasing MS values from the lowermost position of the groundwater table upward was verified. Mineral magnetic parameters indicate that magnetite is responsible for the MS signal which confirms the previous results (Rijal et al., 2010). The so far existing uncertainty of the groundwater level position could be solved. Bacterial activity is studied at particular depth horizons as it is assumed to be responsible for iron mineralogy changes. References: Rijal M.L., Appel E., Petrovský E. and Blaha U., 2010. Change of magnetic properties due to fluctuations of hydrocarbon contaminated groundwater in unconsolidated sediments. Environ.Pollut., 158, 1756-1762.

  4. Insights into the biodegradation of weathered hydrocarbons in contaminated soils by bioaugmentation and nutrient stimulation.

    PubMed

    Jiang, Ying; Brassington, Kirsty J; Prpich, George; Paton, Graeme I; Semple, Kirk T; Pollard, Simon J T; Coulon, Frédéric

    2016-10-01

    The potential for biotransformation of weathered hydrocarbon residues in soils collected from two commercial oil refinery sites (Soil A and B) was studied in microcosm experiments. Soil A has previously been subjected to on-site bioremediation and it was believed that no further degradation was possible while soil B has not been subjected to any treatment. A number of amendment strategies including bioaugmentation with hydrocarbon degrader, biostimulation with nutrients and soil grinding, were applied to the microcosms as putative biodegradation improvement strategies. The hydrocarbon concentrations in each amendment group were monitored throughout 112 days incubation. Microcosms treated with biostimulation (BS) and biostimulation/bioaugmentation (BS + BA) showed the most significant reductions in the aliphatic and aromatic hydrocarbon fractions. However, soil grinding was shown to reduce the effectiveness of a nutrient treatment on the extent of biotransformation by up to 25% and 20% for the aliphatic and aromatic hydrocarbon fractions, respectively. This is likely due to the disruption to the indigenous microbial community in the soil caused by grinding. Further, ecotoxicological responses (mustard seed germination and Microtox assays) showed that a reduction of total petroleum hydrocarbon (TPH) concentration in soil was not directly correlable to reduction in toxicity; thus monitoring TPH alone is not sufficient for assessing the environmental risk of a contaminated site after remediation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Draft genome sequence of Mycobacterium rufum JS14(T), a polycyclic-aromatic-hydrocarbon-degrading bacterium from petroleum-contaminated soil in Hawaii.

    PubMed

    Kwak, Yunyoung; Li, Qing X; Shin, Jae-Ho

    2016-01-01

    Mycobacterium rufum JS14(T) (=ATCC BAA-1377(T), CIP 109273(T), JCM 16372(T), DSM 45406(T)), a type strain of the species Mycobacterium rufum sp. . belonging to the family Mycobacteriaceae, was isolated from polycyclic aromatic hydrocarbon (PAH)-contaminated soil in Hilo (HI, USA) because it harbors the capability of degrading PAH. Here, we describe the first genome sequence of strain JS14(T), with brief phenotypic characteristics. The genome is composed of 6,176,413 bp with 69.25 % G + C content and contains 5810 protein-coding genes with 54 RNA genes. The genome information on M. rufum JS14(T) will provide a better understanding of the complexity of bacterial catabolic pathways for degradation of specific chemicals.

  6. The Interaction between Plants and Bacteria in the Remediation of Petroleum Hydrocarbons: An Environmental Perspective

    PubMed Central

    Gkorezis, Panagiotis; Daghio, Matteo; Franzetti, Andrea; Van Hamme, Jonathan D.; Sillen, Wouter; Vangronsveld, Jaco

    2016-01-01

    Widespread pollution of terrestrial ecosystems with petroleum hydrocarbons (PHCs) has generated a need for remediation and, given that many PHCs are biodegradable, bio- and phyto-remediation are often viable approaches for active and passive remediation. This review focuses on phytoremediation with particular interest on the interactions between and use of plant-associated bacteria to restore PHC polluted sites. Plant-associated bacteria include endophytic, phyllospheric, and rhizospheric bacteria, and cooperation between these bacteria and their host plants allows for greater plant survivability and treatment outcomes in contaminated sites. Bacterially driven PHC bioremediation is attributed to the presence of diverse suites of metabolic genes for aliphatic and aromatic hydrocarbons, along with a broader suite of physiological properties including biosurfactant production, biofilm formation, chemotaxis to hydrocarbons, and flexibility in cell-surface hydrophobicity. In soils impacted by PHC contamination, microbial bioremediation generally relies on the addition of high-energy electron acceptors (e.g., oxygen) and fertilization to supply limiting nutrients (e.g., nitrogen, phosphorous, potassium) in the face of excess PHC carbon. As an alternative, the addition of plants can greatly improve bioremediation rates and outcomes as plants provide microbial habitats, improve soil porosity (thereby increasing mass transfer of substrates and electron acceptors), and exchange limiting nutrients with their microbial counterparts. In return, plant-associated microorganisms improve plant growth by reducing soil toxicity through contaminant removal, producing plant growth promoting metabolites, liberating sequestered plant nutrients from soil, fixing nitrogen, and more generally establishing the foundations of soil nutrient cycling. In a practical and applied sense, the collective action of plants and their associated microorganisms is advantageous for remediation of PHC contaminated soil in terms of overall cost and success rates for in situ implementation in a diversity of environments. Mechanistically, there remain biological unknowns that present challenges for applying bio- and phyto-remediation technologies without having a deep prior understanding of individual target sites. In this review, evidence from traditional and modern omics technologies is discussed to provide a framework for plant–microbe interactions during PHC remediation. The potential for integrating multiple molecular and computational techniques to evaluate linkages between microbial communities, plant communities and ecosystem processes is explored with an eye on improving phytoremediation of PHC contaminated sites. PMID:27917161

  7. The Interaction between Plants and Bacteria in the Remediation of Petroleum Hydrocarbons: An Environmental Perspective.

    PubMed

    Gkorezis, Panagiotis; Daghio, Matteo; Franzetti, Andrea; Van Hamme, Jonathan D; Sillen, Wouter; Vangronsveld, Jaco

    2016-01-01

    Widespread pollution of terrestrial ecosystems with petroleum hydrocarbons (PHCs) has generated a need for remediation and, given that many PHCs are biodegradable, bio- and phyto-remediation are often viable approaches for active and passive remediation. This review focuses on phytoremediation with particular interest on the interactions between and use of plant-associated bacteria to restore PHC polluted sites. Plant-associated bacteria include endophytic, phyllospheric, and rhizospheric bacteria, and cooperation between these bacteria and their host plants allows for greater plant survivability and treatment outcomes in contaminated sites. Bacterially driven PHC bioremediation is attributed to the presence of diverse suites of metabolic genes for aliphatic and aromatic hydrocarbons, along with a broader suite of physiological properties including biosurfactant production, biofilm formation, chemotaxis to hydrocarbons, and flexibility in cell-surface hydrophobicity. In soils impacted by PHC contamination, microbial bioremediation generally relies on the addition of high-energy electron acceptors (e.g., oxygen) and fertilization to supply limiting nutrients (e.g., nitrogen, phosphorous, potassium) in the face of excess PHC carbon. As an alternative, the addition of plants can greatly improve bioremediation rates and outcomes as plants provide microbial habitats, improve soil porosity (thereby increasing mass transfer of substrates and electron acceptors), and exchange limiting nutrients with their microbial counterparts. In return, plant-associated microorganisms improve plant growth by reducing soil toxicity through contaminant removal, producing plant growth promoting metabolites, liberating sequestered plant nutrients from soil, fixing nitrogen, and more generally establishing the foundations of soil nutrient cycling. In a practical and applied sense, the collective action of plants and their associated microorganisms is advantageous for remediation of PHC contaminated soil in terms of overall cost and success rates for in situ implementation in a diversity of environments. Mechanistically, there remain biological unknowns that present challenges for applying bio- and phyto-remediation technologies without having a deep prior understanding of individual target sites. In this review, evidence from traditional and modern omics technologies is discussed to provide a framework for plant-microbe interactions during PHC remediation. The potential for integrating multiple molecular and computational techniques to evaluate linkages between microbial communities, plant communities and ecosystem processes is explored with an eye on improving phytoremediation of PHC contaminated sites.

  8. Bioremediation of petroleum hydrocarbons from crude oil-contaminated soil with the earthworm: Hyperiodrilus africanus.

    PubMed

    Ekperusi, O A; Aigbodion, F I

    2015-12-01

    A study on the bioremediation potentials of the earthworm Hyperiodrilus africanus (Beddard) in soil contaminated with crude oil was investigated. Dried and sieved soils were contaminated with 5 ml each of crude oil with replicates and inoculated with earthworms and monitored daily for 12 weeks. Physicochemical parameters such as pH, total organic carbon, sulfate, nitrate, phosphate, sodium, potassium, calcium and magnesium were determined using standard procedures. Total petroleum hydrocarbon (TPH) was determined using atomic absorption spectrophotometer (AAS), while BTEX constituents and earthworms tissues were analyzed using Gas Chromatography with Flame Ionization Detector (GC-FID). The results showed that the earthworm significantly enhanced the physicochemical parameters of the contaminated soil resulting in a decrease of the total organic carbon (56.64 %), sulfate (57.66 %), nitrate (57.69 %), phosphate (57.73 %), sodium (57.69 %), potassium (57.68 %), calcium (57.69 %) and magnesium (57.68 %) except pH (3.90 %) that slightly increased. There was a significant decrease in the TPH (84.99 %), benzene (91.65 %), toluene (100.00 %), ethylbenzene (100.00 %) and xylene (100.00 %). Analyses of the tissues of the earthworm at the end of the experiment showed that the earthworms bioaccumulated/biodegraded 57.35/27.64 % TPH, 38.91/52.73 % benzene, 27.76/72.24 % toluene, 42.16/57.85 % ethylbenzene and 09.62/90.38 % xylene. The results showed that the earthworms H. africanus could be used to bioremediate moderately polluted soil with crude oil contamination in the Niger Delta region of Nigeria.

  9. Total petroleum hydrocarbons in edible marine biota from Northern Persian Gulf.

    PubMed

    Nozar, Seyedeh Laili Mohebbi; Pauzi, Mohamad Zakaria; Salarpouri, Ali; Daghooghi, Behnam; Salimizadeh, Maryam

    2015-04-01

    To provide a baseline information for consumer's health, distribution of total petroleum hydrocarbons in 18 edible marine biota species from northern Persian Gulf was evaluated. The samples were purchased from fish market of Hormozgan Province, South of Iran. Marine biota samples included different species with various feeding habits and were analyzed based on ultraviolet florescence spectroscopy. Petroleum hydrocarbons showed narrow variation, ranging from 0.67 to 3.36 μg/g dry weight. The maximum value was observed in silver pomfret. Anchovy and silver pomfret with the highest content of petroleum hydrocarbons were known as good indicator for oil pollution in the studied area. From public health point of view, the detected concentrations for total petroleum hydrocarbons were lower than hazardous guidelines. The results were recorded as background data and information in the studied area; the continuous monitoring of pollutants is recommended, according to the rapid extension of industrial and oily activities in Hormozgan Province.

  10. Natural Attenuation of Fuel Hydrocarbon Contaminants: Correlation of Biodegradation with Hydraulic Conductivity in a Field Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Guoping; Zheng, Chunmiao

    Two biodegradation models are developed to represent natural attenuation of fuel-hydrocarbon contaminants as observed in a comprehensive natural-gradient tracer test in a heterogeneous aquifer on the Columbus Air Force Base in Mississippi, USA. The first, a first-order mass loss model, describes the irreversible losses of BTEX and its individual components, i.e., benzene (B), toluene (T), ethyl benzene (E), and xylene (X). The second, a reactive pathway model, describes sequential degradation pathways for BTEX utilizing multiple electron acceptors, including oxygen, nitrate, iron and sulfate, and via methanogenesis. The heterogeneous aquifer is represented by multiple hydraulic conductivity (K) zones delineated on themore » basis of numerous flowmeter K measurements. A direct propagation artificial neural network (DPN) is used as an inverse modeling tool to estimate the biodegradation rate constants associated with each of the K zones. In both the mass loss model and the reactive pathway model, the biodegradation rate constants show an increasing trend with the hydraulic conductivity. The finding of correlation between biodegradation kinetics and hydraulic conductivity distributions is of general interest and relevance to characterization and modeling of natural attenuation of hydrocarbons in other petroleum-product contaminated sites.« less

  11. Natural attenuation of fuel hydrocarbon contaminants: Hydraulic conductivity dependency of biodegradation rates in a field case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Guoping; Zheng, Chunmiao

    Two biodegradation models are developed to represent natural attenuation of fuel-hydrocarbon contaminants as observed in a comprehensive natural-gradient tracer test in a heterogeneous aquifer on the Columbus Air Force Base in Mississippi. The first, a first-order mass loss model, describes the irreversible losses of BTEX and its individual components, i.e., benzene (B), toluene (T), ethyl benzene (E), and xylene (X). The second, a reactive pathway model, describes sequential degradation pathways for BTEX utilizing multiple electron acceptors, including oxygen, nitrate, iron and sulfate, and via methanogenesis. The heterogeneous aquifer is represented by multiple hydraulic conductivity (K) zones delineated on the basismore » of numerous flowmeter K measurements. A direct propagation artificial neural network (DPN) is used as an inverse modeling tool to estimate the biodegradation rate constants associated with each of the K zones. In both the mass loss model and the reactive pathway model, the biodegradation rate constants show an increasing trend with the hydraulic conductivity. The finding of correlation between biodegradation kinetics and hydraulic conductivity distributions is of general interest and relevance to characterization and modeling of natural attenuation of hydrocarbons in other petroleum-product contaminated sites.« less

  12. Biodegradation of low and high molecular weight hydrocarbons in petroleum refinery wastewater by a thermophilic bacterial consortium.

    PubMed

    Pugazhendi, Arulazhagan; Abbad Wazin, Hadeel; Qari, Huda; Basahi, Jalal Mohammad Al-Badry; Godon, Jean Jacques; Dhavamani, Jeyakumar

    2017-10-01

    Clean-up of contaminated wastewater remains to be a major challenge in petroleum refinery. Here, we describe the capacity of a bacterial consortium enriched from crude oil drilling site in Al-Khobar, Saudi Arabia, to utilize polycyclic aromatic hydrocarbons (PAHs) as sole carbon source at 60°C. The consortium reduced low molecular weight (LMW; naphthalene, phenanthrene, fluorene and anthracene) and high molecular weight (HMW; pyrene, benzo(e)pyrene and benzo(k)fluoranthene) PAH loads of up to 1.5 g/L with removal efficiencies of 90% and 80% within 10 days. PAH biodegradation was verified by the presence of PAH metabolites and evolution of carbon dioxide (90 ± 3%). Biodegradation led to a reduction of the surface tension to 34 ± 1 mN/m thus suggesting biosurfactant production by the consortium. Phylogenetic analysis of the consortium revealed the presence of the thermophilic PAH degrader Pseudomonas aeruginosa strain CEES1 (KU664514) and Bacillus thermosaudia (KU664515) strain CEES2. The consortium was further found to treat petroleum wastewater in continuous stirred tank reactor with 96 ± 2% chemical oxygen demand removal and complete PAH degradation in 24 days.

  13. Sediment-associated aliphatic and aromatic hydrocarbons in coastal British Columbia, Canada: concentrations, composition, and associated risks to protected sea otters.

    PubMed

    Harris, Kate A; Yunker, Mark B; Dangerfield, Neil; Ross, Peter S

    2011-10-01

    Sediment-associated hydrocarbons can pose a risk to wildlife that rely on benthic marine food webs. We measured hydrocarbons in sediments from the habitat of protected sea otters in coastal British Columbia, Canada. Alkane concentrations were dominated by higher odd-chain n-alkanes at all sites, indicating terrestrial plant inputs. While remote sites were dominated by petrogenic polycyclic aromatic hydrocarbons (PAHs), small harbour sites within sea otter habitat and sites from an urban reference area reflected weathered petroleum and biomass and fossil fuel combustion. The partitioning of hydrocarbons between sediments and adjacent food webs provides an important exposure route for sea otters, as they consume ∼25% of their body weight per day in benthic invertebrates. Thus, exceedences of PAH sediment quality guidelines designed to protect aquatic biota at 20% of the sites in sea otter habitat suggest that sea otters are vulnerable to hydrocarbon contamination even in the absence of catastrophic oil spills. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Electrolysis-driven bioremediation of crude oil-contaminated marine sediments.

    PubMed

    Bellagamba, Marco; Cruz Viggi, Carolina; Ademollo, Nicoletta; Rossetti, Simona; Aulenta, Federico

    2017-09-25

    Bioremediation is an effective technology to tackle crude oil spill disasters, which takes advantage of the capacity of naturally occurring microorganisms to degrade petroleum hydrocarbons under a range of environmental conditions. The enzymatic process of breaking down oil is usually more rapid in the presence of oxygen. However, in contaminated sediments, oxygen levels are typically too low to sustain the rapid and complete biodegradation of buried hydrocarbons. Here, we explored the possibility to electrochemically manipulate the redox potential of a crude oil-contaminated marine sediment in order to establish, in situ, conditions that are conducive to contaminants biodegradation by autochthonous microbial communities. The proposed approach is based on the exploitation of low-voltage (2V) seawater electrolysis to drive oxygen generation (while minimizing chlorine evolution) on Dimensionally Stable Anodes (DSA) placed within the contaminated sediment. Results, based on a laboratory scale setup with chronically polluted sediments spiked with crude oil, showed an increased redox potential and a decreased pH in the vicinity of the anode of 'electrified' treatments, consistent with the occurrence of oxygen generation. Accordingly, hydrocarbons biodegradation was substantially accelerated (up to 3-times) compared to 'non-electrified' controls, while sulfate reduction was severely inhibited. Intermittent application of electrolysis proved to be an effective strategy to minimize the energy requirements of the process, without adversely affecting degradation performance. Taken as a whole, this study suggests that electrolysis-driven bioremediation could be a sustainable technology for the management of contaminated sediments. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Tidal river sediments in the Washington, D.C. area. 11. Distribution and sources of organic containmants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wade, T.L.; Velinsky, D.J.; Reinharz, E.

    1994-06-01

    Concentrations of aliphatic, aromatic, and chlorinated hydrocarbons were determined from 33 surface-sediment samples taken from the Tidal Basin, Washington Ship Channel, and the Anacostia and Potomac rivers in Washington, D.C. In conjunction with these samples, selected storm sewers and outfalls also were sampled to help elucidate general sources of contamination to the area. All of the sediments contained detectable concentrations of aliphatic and aromatic hydrocarbons, DDT (total dichlorodiphenytrichloroethande), DDE (dichlorodiphenyldichloroethene), DDD (dichlorodiphenyldichloroethane), PCBx (total polychlorinated biphenyls) and total chlordanes (oxy-, {alpha}-, and {gamma}-chlordane and cis + trans-nonachlor). Sediment concentrations of most contaminants were highest in the Anacostia River just downstreammore » of the Washington Navy Yard, except for total chlordane, which appeared to have upstream sources in addition to storm and combined sewer runoff. This area has the highest number of storm and combined sewer outfalls in the river. Potomac River stations had lower concentrations than other stations. Polycyclic aromatic hydrocarbons, saturated hydrocarbons, and the unresolved complex mixture (UCM) distributions reflect mixtures of combustion products and direct discharges of petroleum products. Sources of PCBs appear to be related to specific outfalls, while hydrocarbon inputs, especially PAHs, are diffuse, and may be related to street runoff. This study indicates that in large urban areas, nonpoint sources deliver substantial amounts of contaminants to ecosystems through storm and combined sewer systems, and control of these inputs must be addressed. 33 refs., 6 figs., 3 tabs.« less

  16. Does lead affect microbial metabolism in aquifer sediments under different terminal electron accepting conditions?

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Vroblesky, D.A.

    1993-01-01

    In groundwater from a petroleum hydrocarbon-contaminated aquifer. Substantial accumulation of aliphatic organic acids occurred only in methanogenic microcosms, and only trace amounts of acetic acid were detected in sulfate-reducing microcosms. This pattern parallels field observations in which high organic acid concentrations were detected in methanogenic zones, but only low concentrations of acetic acid were detected in sulfate-reducing zones. -from Authors

  17. Potential impact of soil microbial heterogeneity on the persistence of hydrocarbons in contaminated subsurface soils.

    PubMed

    Aleer, Sam; Adetutu, Eric M; Weber, John; Ball, Andrew S; Juhasz, Albert L

    2014-04-01

    In situ bioremediation is potentially a cost effective treatment strategy for subsurface soils contaminated with petroleum hydrocarbons, however, limited information is available regarding the impact of soil spatial heterogeneity on bioremediation efficacy. In this study, we assessed issues associated with hydrocarbon biodegradation and soil spatial heterogeneity (samples designated as FTF 1, 5 and 8) from a site in which in situ bioremediation was proposed for hydrocarbon removal. Test pit activities showed similarities in FTF soil profiles with elevated hydrocarbon concentrations detected in all soils at 2 m below ground surface. However, PCR-DGGE-based cluster analysis showed that the bacterial community in FTF 5 (at 2 m) was substantially different (53% dissimilar) and 2-3 fold more diverse than communities in FTF 1 and 8 (with 80% similarity). When hydrocarbon degrading potential was assessed, differences were observed in the extent of (14)C-benzene mineralisation under aerobic conditions with FTF 5 exhibiting the highest hydrocarbon removal potential compared to FTF 1 and 8. Further analysis indicated that the FTF 5 microbial community was substantially different from other FTF samples and dominated by putative hydrocarbon degraders belonging to Pseudomonads, Xanthomonads and Enterobacteria. However, hydrocarbon removal in FTF 5 under anaerobic conditions with nitrate and sulphate electron acceptors was limited suggesting that aerobic conditions were crucial for hydrocarbon removal. This study highlights the importance of assessing available microbial capacity prior to bioremediation and shows that the site's spatial heterogeneity can adversely affect the success of in situ bioremediation unless area-specific optimizations are performed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Visualizing and Quantifying Bioaccessible Pores in Field-Aged Petroleum Hydrocarbon-Contaminated Clay Soils Using Synchrotron-based X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Chang, W.; Kim, J.; Zhu, N.; McBeth, J. M.

    2015-12-01

    Microbial hydrocarbon degradation is environmentally significant and applicable to contaminated site remediation practices only when hydrocarbons (substrates) are physically bioaccessible to bacteria in soil matrices. Powerful X-rays are produced by synchrotron radiation, allowing for bioaccessible pores in soil (larger than 4 microns), where bacteria can be accommodated, colonize and remain active, can be visualized at a much higher resolution. This study visualized and quantified such bioaccessible pores in intact field-aged, oil-contaminated unsaturated soil fractions, and examined the relationship between the abundance of bioaccessible pores and hydrocarbon biodegradation. Using synchrotron-based X-ray Computed Tomography (CT) at the Canadian Light Source, a large dataset of soil particle characteristics, such as pore volumes, surface areas, number of pores and pore size distribution, was generated. Duplicate samples of five different soil fractions with different soil aggregate sizes and water contents (13, 18 and 25%) were examined. The method for calculating the number and distribution of bioaccessible pores using CT images was validated using the known porosity of Ottawa sand. This study indicated that the distribution of bioaccessible pore sizes in soil fractions are very closely related to microbial enhancement. A follow-up aerobic biodegradation experiment for the soils at 17 °C (average site temperature) over 90 days confirmed that a notable decrease in hydrocarbon concentrations occurred in soils fractions with abundant bioaccessible pores and with a larger number of pores between 10 and 100 μm. The hydrocarbon degradation in bioactive soil fractions was extended to relatively high-molecular-weight hydrocarbons (C16-C34). This study provides quantitative information about how internal soil pore characteristics can influence bioremediation performance.

  19. Self-potential and Complex Conductivity Monitoring of In Situ Hydrocarbon Remediation in Microbial Fuel Cell

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Revil, A.; Ren, Z.; Karaoulis, M.; Mendonca, C. A.

    2013-12-01

    Petroleum hydrocarbon contamination of soil and groundwater in both non-aqueous phase liquid and dissolved forms generated from spills and leaks is a wide spread environmental issue. Traditional cleanup of hydrocarbon contamination in soils and ground water using physical, chemical, and biological remedial techniques is often expensive and ineffective. Recent studies show that the microbial fuel cell (MFC) can simultaneously enhance biodegradation of hydrocarbons in soil and groundwater and yield electricity. Non-invasive geophysical techniques such as self-potential (SP) and complex conductivity (induced polarization) have shown the potential to detect and characterize the nature of electron transport mechanism of in situ bioremediation of organic contamination plumes. In this study, we deployed both SP and complex conductivity in lab scale MFCs to monitor time-laps geophysical response of degradation of hydrocarbons by MFC. Two different sizes of MFC reactors were used in this study (DI=15 cm cylinder reactor and 94.5cm x 43.5 cm rectangle reactor), and the initial hydrocarbon concentration is 15 g diesel/kg soil. SP and complex conductivity measurements were measured using non-polarizing Ag/AgCl electrodes. Sensitivity study was also performed using COMSOL Multiphysics to test different electrode configurations. The SP measurements showed stronger anomalies adjacent to the MFC than locations afar, and both real and imaginary parts of complex conductivity are greater in areas close to MFC than areas further away and control samples without MFC. The joint use of SP and complex conductivity could in situ evaluate the dynamic changes of electrochemical parameters during this bioremediation process at spatiotemporal scales unachievable with traditional sampling methods. The joint inversion of these two methods to evaluate the efficiency of MFC enhanced hydrocarbon remediation in the subsurface.

  20. Scenario-based modelling of mass transfer mechanisms at a petroleum contaminated field site-numerical implications.

    PubMed

    Vasudevan, M; Nambi, Indumathi M; Suresh Kumar, G

    2016-06-15

    Knowledge about distribution of dissolved plumes and their influencing factors is essential for risk assessment and remediation of light non-aqueous phase liquid contamination in groundwater. Present study deals with the applicability of numerical model for simulating various hydro-geological scenarios considering non-uniform source distribution at a petroleum contaminated site in Chennai, India. The complexity associated with the hydrogeology of the site has limited scope for on-site quantification of petroleum pipeline spillage. The change in fuel composition under mass-transfer limited conditions was predicted by simultaneously comparing deviations in aqueous concentrations and activity coefficients (between Raoult's law and analytical approaches). The effects of source migration and weathering on the dissolution of major soluble fractions of petroleum fuel were also studied in relation to the apparent change in their activity coefficients and molar fractions. The model results were compared with field observations and found that field conditions were favourable for biodegradation, especially for the aromatic fraction (benzene and toluene (nearly 95% removal), polycyclic aromatic hydrocarbons (up to 65% removal) and xylene (nearly 45% removal). The results help to differentiate the effect of compositional non-ideality from rate-limited dissolution towards tailing of less soluble compounds (alkanes and trimethylbenzene). Although the effect of non-ideality decreased with distance from the source, the assumption of spatially varying residual saturation could effectively illustrate post-spill scenario by estimating the consequent decrease in mass transfer rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Gene transcription patterns in response to low level petroleum contaminants in Mytilus trossulus from field sites and harbors in southcentral Alaska

    NASA Astrophysics Data System (ADS)

    Bowen, Lizabeth; Miles, A. Keith; Ballachey, Brenda; Waters, Shannon; Bodkin, James; Lindeberg, Mandy; Esler, Daniel

    2018-01-01

    The 1989 Exxon Valdez oil spill damaged a wide range of natural resources, including intertidal communities, and post-spill studies demonstrated acute and chronic exposure and injury to an array of species. Standard toxicological methods to evaluate petroleum contaminants have assessed tissue burdens, with fewer assays providing indicators of health or physiology, particularly when contaminant levels are low and chronic. Marine mussels are a ubiquitous and crucial component of the nearshore environment, and new genomic technologies exist to quantify molecular responses of individual mussels to stimuli, including exposure to polycyclic aromatic hydrocarbons (PAHs). We used gene-based assays of exposure and physiological function to assess chronic oil contamination using the Pacific blue mussel, Mytilus trossulus. We developed a diagnostic gene transcription panel to investigate exposure to PAHs and other contaminants and its effects on mussel physiology and health. During 2012-2015, we analyzed mussels from five field sites in western Prince William Sound, Alaska, with varying oil histories from the 1989 Exxon Valdez oil spill, and from three boat harbors in the area. Gene transcription patterns of mussels from harbors were consistent with elevated exposure to PAHs or other contaminants, whereas transcription patterns of mussels sampled from shorelines in areas affected by the oil spill indicated no PAH exposure.

  2. Bioremediation of coal contaminated soil under sulfate-reducing condition.

    PubMed

    Kuwano, Y; Shimizu, Y

    2006-01-01

    The objective of this study was to investigate the biodegradation of coal-derived hydrocarbons, especially high molecular weight (HMW) components, under anaerobic conditions. For this purpose biodegradation experiments were performed, using specifically designed soil column bioreactors. For the experiment, coal-contaminated soil was prepared, which contains high molecular weight hydrocarbons at high concentration (approx. 55.5 mgC g-drysoil(-1)). The experiment was carried out in two different conditions: sulfate reducing (SR) condition (SO4(2-) = 10 mmol l(-1) in the liquid medium) and control condition (SO4(2-)<0.5 mmol l(-1)). Although no degradation was observed under the control condition, the resin fraction decreased to half (from 6,541 to 3,386 mgC g-soil(-1)) under SR condition, with the concomitant increase of two PAHs (phenanthrene and fluoranthene, 9 and 2.5 times, respectively). From these results, we could conclude that high molecular hydrocarbons were biodegradable and transformed to low molecular weight PAHs under the sulfate-reducing condition. Since these PAHs are known to be biologically degraded under aerobic condition, a serial combination of anaerobic (sulfate reducing) and then aerobic bioremediations could be effective and useful for the soil pollution by petroleum and/or coal derived hydrocarbons.

  3. Assessment of nonpoint-source contamination of the High Plains Aquifer in south-central Kansas, 1987

    USGS Publications Warehouse

    Helgesen, John O.; Stullken, Lloyd E.; Rutledge, A.T.

    1994-01-01

    Ground-water quality was assessed in a 5,000-square-mile area of the High Plains aquifer in south-central Kansas that is susceptible to nonpoint-source contamination from agricultural and petroleum-production activities. Of particular interest was the presence of agricultural chemicals and petroleum-derived hydrocarbons that might have been associated with brines that formerly were disposed into unlined ponds. Random sampling of ground water was done within a framework of discrete land-use areas (irrigated cropland, petroleum-production land containing former brine-disposal ponds, and undeveloped rangeland) of 3-10 square miles. Although true baseline water-quality conditions probably are rare, in this region they are represented most closely by ground water in areas of undeveloped rangeland. The sampling design enabled statistical hypothesis testing, using nonparametric procedures, of the effects of land use, unsaturated-zone lithology, and type of well sampled. Results indicate that regional ground-water quality has been affected by prevailing land-use activities, as shown by increased concentrations of several inorganic constituents. Ground water beneath irrigated cropland was characterized by significantly larger concentrations of hardness, alkalinity, calcium, magnesium, potassium, fluofide, and nitrite plus nitrate than was water beneath undeveloped rangeland. Few nondegraded pesticides were detected in the aquifer, probably because of degradation and sorption. Atrazine was the most common, but only in small concentrations. round water beneath petroleum-production land was characterized by significantly larger concentrations of hardness, alkalinity, dissolved solids, sodium, and chloride than was water beneath undeveloped rangeland. Nonpoint-source contamination by oil-derived hydrocarbons was not discernible. The occurrences of trace organic compounds were similar between petroleum-production land and undeveloped rangeland, which indicates a natural origin for these compounds. The unsaturated zone in the study area is lithologically heterogeneous and contains substantial amounts of clay that inhibit the downward movement of water and solutes. Within the aquifer, the rate of lateral regional flow and solute transport is slow enough so that the ground-water quality reflects overlying land use in discrete areas of several square miles, but it is still sufficiently rapid so that the type of well sampled is not important in regional characterizations of water quality beneath irrigated cropland; the seasonal pumping of irrigation wells does not appear to divert regional flow enough to cause substantial local anomalies of more mineralized ground water.

  4. TPH-contaminated Mexican refinery soil: health risk assessment and the first year of changes.

    PubMed

    Iturbe, Rosario; Flores, Rosa M; Flores, Carlos R; Torres, Luis G

    2004-02-01

    The soil of a coastal Mexican refinery is quite contaminated, especially by hydrocarbons, with detected concentrations up to 130000 mg kg(-1) as TPHs (total petroleum hydrocarbons). The main sources of contamination are pipelines, valves, and old storage tanks, besides the land disposal of untreated hydrocarbon sediments derived from the cleaning of storage tanks. A health risk assessment (HRA) was carried out in order to measure the risk hazard indexes and clean-up standards for the refinery soil. HRA suggested the following actions to be taken: benzene concentrations must be reduced in eight of the 16 studied refinery zones to 0.0074-0.0078 mg kg(-1). Also, vanadium concentration must be reduced in two zones up to a concentration of 100 mg kg(-1). In only one of all of the studied zones, benzo(a)pyrene concentration must be reduced to 0.1 mg kg(-1). After 1 yr, TPHs showed a diminution of about 52%. Even though TPHs concentrations were variable, during 1999 the average concentrations were as much as 15.5 times the goal concentration. For year 2000, TPHs concentrations were only 7.4-fold the proposed value. For the 1999-2000 period, PAHs (polycyclic aromatic hydrocarbons) concentrations decreased by 82%. Some PAHs with 2, 3, 4, and 5 aromatic rings were removed up to 100% values.

  5. Successful phytoremediation of crude-oil contaminated soil at an oil exploration and production company by plants-bacterial synergism.

    PubMed

    Fatima, Kaneez; Imran, Asma; Amin, Imran; Khan, Qaiser M; Afzal, Muhammad

    2018-06-07

    Phytoremediation is a promising approach for the cleanup of soil contaminated with petroleum hydrocarbons. This study aimed to develop plant-bacterial synergism for the successful remediation of crude oil-contaminated soil. A consortia of three endophytic bacteria was augmented to two grasses, Leptochloa fusca and Brachiaria mutica, grown in oil-contaminated soil (46.8 g oil kg -1 soil) in the vicinity of an oil exploration and production company. Endophytes augmentation improved plant growth, crude oil degradation, and soil health. Maximum oil degradation (80%) was achieved with B. mutica plants augmented with the endophytes and it was significantly (P < 0.05) higher than the use of plants or bacteria individually. Moreover, endophytes showed more persistence, the abundance and expression of alkB gene in the rhizosphere as well as in the endosphere of the tested plants than in unvegetated soil. A positive relationship (r = 0.70) observed between gene expression and crude oil reduction indicates that catabolic gene expression is important for hydrocarbon mineralization. This investigation showed that the use of endophytes with appropriate plant is an effective strategy for the cleanup of oil-contaminated soil under field conditions.

  6. Methodology for Estimating Times of Remediation Associated with Monitored Natural Attenuation

    USGS Publications Warehouse

    Chapelle, Francis H.; Widdowson, Mark A.; Brauner, J. Steven; Mendez, Eduardo; Casey, Clifton C.

    2003-01-01

    Natural attenuation processes combine to disperse, immobilize, and biologically transform anthropogenic contaminants, such as petroleum hydrocarbons and chlorinated ethenes, in ground-water systems. The time required for these processes to lower contaminant concentrations to levels protective of human health and the environment, however, varies widely between different hydrologic systems, different chemical contaminants, and varying amounts of contaminants. This report outlines a method for estimating timeframes required for natural attenuation processes, such as dispersion, sorption, and biodegradation, to lower contaminant concentrations and mass to predetermined regulatory goals in groundwater systems. The time-of-remediation (TOR) problem described in this report is formulated as three interactive components: (1) estimating the length of a contaminant plume once it has achieved a steady-state configuration from a source area of constant contaminant concentration, (2) estimating the time required for a plume to shrink to a smaller, regulatoryacceptable configuration when source-area contaminant concentrations are lowered by engineered methods, and (3) estimating the time needed for nonaqueous phase liquid (NAPL) contaminants to dissolve, disperse, and biodegrade below predetermined levels in contaminant source areas. This conceptualization was used to develop Natural Attenuation Software (NAS), an interactive computer aquifers. NAS was designed as a screening tool and requires the input of detailed site information about hydrogeology, redox conditions, and the distribution of contaminants. Because NAS is based on numerous simplifications of hydrologic, microbial, and geochemical processes, the program may introduce unacceptable errors for highly heterogeneous hydrologic systems. In such cases, application of the TOR framework outlined in this report may require more detailed, site-specific digital modeling. The NAS software may be downloaded from the Web site http://www.cee.vt.edu/NAS/ Application of NAS illustrates several general characteristics shared by all TOR problems. First, the distance of stabilization of a contaminant plume is strongly dependent on the natural attenuation capacity of particular ground-water systems. The time that it takes a plume to reach a steady-state configuration, however, is independent of natural attenuation capacity. Rather, the time of stabilization is most strongly affected by the sorptive capacity of the aquifer, which is dependent on the organic matter content of the aquifer sediments, as well as the sorptive properties of individual contaminants. As a general rule, a high sorptive capacity retards a plume.s growth or shrinkage, and increases the time of stabilization. Finally, the time of NAPL dissolution depends largely on NAPL mass, composition, geometry, and hydrologic factors, such as ground-water flow rates. An example TOR analysis for petroleum hydrocarbon NAPL was performed for the Laurel Bay site in South Carolina. About 500 to 1,000 pounds of gasoline leaked into the aquifer at this site in 1991, and the NAS simulations suggested that TOR would be on the order of 10 years for soluble and poorly sorbed compounds, such as benzene and methyl tertiary-butyl ether (MTBE). Conversely, TOR would be on the order of 40 years for less soluble, more strongly sorbed compounds, such as toluene, ethylbenzene, and xylenes (TEX). These TOR estimates are roughly consistent with contaminant concentrations observed over 10 years of monitoring at this site where benzene and MTBE concentrations were observed to decrease rapidly and are approaching regulatory maximum concentration limits, whereas toluene, ethylbenzene, and xylene concentrations decreased at a slower rate and have remained relatively high. An example TOR analysis for petroleum hydrocarbon NAPL was performed for the Laurel Bay site in South Carolina. About 500 to 1,000 pounds of gasoline leaked into the a

  7. A protocol for assessing the biotreatability of hydrocarbon contaminated exploration and production site soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tezak, J.; Miller, J.A.; Lawrence, A.W.

    1995-12-01

    It is estimated that there are over 260,000 natural gas production wells in the continental United States. Production or reserve pits exist which ma require remediation depending on several conditions such as: the manner in which they were initially closed; whether or not they were lined; and the local climate, soil type, and depth to groundwater. As part of the Gas Research Institute (GRI) research program on exploration and production (E&P) site remediation, a treatability Protocol is being developed to facilitate the rapid assessment of the amenability of the contaminated soils to remediation by biological processes. This paper describes themore » treatability protocol and the results of a series of treatability tests on a spectrum of hydrocarbon contaminated E&P soils collected from various operating locations throughout the United States. The soils are subjected to physical and chemical characterization prior to treatability testing. Potential biotoxic characteristics of the soils are determined by a respirometry screening technique. Presuming that the soils are not toxic to aerobic soil microorganisms, 20 percent by weight aqueous slurries of the soils are prepared and subjected to continuous batch aeration for a six week period. Conditions favorable to microbial growth are maintained in the reactors by monitoring and augmentation is needed of pH, microbial nutrients and oxygen for microbial respiration. The extent of microbial degradation of the contaminant hydrocarbons is monitored by periodic measurement of total petroleum hydrocarbons (TPH), oil and grease, and individual hydrocarbon compounds as determined by gas chromatography. Microbial plate counts are prepared to document the biological viability of the treatment process. The factors influencing the amenability of these soils to bioremediation as determined from the test results are discussed.« less

  8. Preliminary investigation of soil and ground-water contamination at a U.S. Army Petroleum Training Facility, Fort Lee, Virginia, September-October 1989

    USGS Publications Warehouse

    Wright, W.G.; Powell, J.D.

    1990-01-01

    Fuel-oil constituents in the soil and groundwater at the Fort Lee Petroleum Training Facility near Petersburg, Virginia, were studied by the U.S. Geological Survey (USGS) in cooperation with the Department of Defense, U.S. Army. The study included installation of 25 groundwater monitoring wells and description of groundwater flow patterns of the shallow-aquifer system underlying the facility. Soil and groundwater samples were collected to determine the concentrations of fuel-oil constituents and to determine the potential for off-site migration of the constituents. Total petroleum hydrocarbon concentrations up to 18,400 mg/km were reported in soil samples. Concentrations of benzene in water from wells at the facility were up to 130 micrograms per liter (ug/L), and concentrations of ethylbenzene and xylene were up to 54 and 120 ug/L, respectively. Potential exists for off-site migration of the contaminants and migration of contaminants downward to deeper aquifers. Further investigations of these potential contamination-migration pathways are warranted. Risk identification at the Petroleum Training Facility cannot be properly addressed because the distribution of the fuel-oil constituents has not been fully characterized. Preliminary identification of risk, however is presented by an examination of toxicity data for the chemical constituents reported in the groundwater at the facility. Concentrations of constituents were compared to the maximum contaminant levels (MCLs) for drinking water established by the U.S. Environmental Protection Agency (USEPA). Concentrations of benzene in water from wells at the facility exceed the USEPA 's 5 ug/L MCL by as much as 26 times. Sufficient data are not available to fully design the remedial-action plan for the facility; however, general responses to contamination of the type associated with the facility include no-action, monitoring, institutional controls, removal, and treatment. (USGS)

  9. 40 CFR 180.526 - Synthetic isoparaffinic petroleum hydrocarbons; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Synthetic isoparaffinic petroleum... PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.526 Synthetic isoparaffinic petroleum hydrocarbons; tolerances for...

  10. 40 CFR 180.526 - Synthetic isoparaffinic petroleum hydrocarbons; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Synthetic isoparaffinic petroleum... PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.526 Synthetic isoparaffinic petroleum hydrocarbons; tolerances for...

  11. 40 CFR 180.526 - Synthetic isoparaffinic petroleum hydrocarbons; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Synthetic isoparaffinic petroleum... PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.526 Synthetic isoparaffinic petroleum hydrocarbons; tolerances for...

  12. Management of Bottom Sediments Containing Toxic Substances: Proceedings of the U.S./Japan Experts Meeting (10th) Held at Kyoto, Japan on 30-31 October 1984.

    DTIC Science & Technology

    1985-10-01

    potential for bioaccumulation of cadmium, chromium, copper, mercury, silver, pesticides, PCBs, petroleum hydrocarbons , and organotins. The concentration...the dredging projects indicated environmentally significant mortality poten- tial to benthic life. Bioaccumulation analyses for petroleum hydrocarbons ...ocean disposal, bioaccumulation analysis is conducted for total petroleum hydrocarbons (PHC), polychlorinated biphenyls (PCB), DDT, mercury (Hg), and

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, R.

    Scientists from NOAA and Exxon dispute whether the Prince William Sound ecosystem is recovering from the Exxon Valdez spill. NOAA scientists claim that the Sound is still staggering from a major ecological blow and that crude oil weathering products are contaminating vast numbers of Alaskan wildlife. Exxon scientists claim that most of the biota of the Sound is returning to full strength and is largely free of oil from the spill. At the heart of the dispute is the technique of hydrocarbon fingerprinting to identify the source of crude. Exxon scientists claim that government scientists do not know how tomore » interpret the data, and that what they claim is contamination from Valdez crude actually comes from other sources, such as diesel soot from the smokestacks of ships used to collect fish for study. NOAA scientists claim that hydrocarbon fingerprinting is an inappropriate method for tracking oil-spill damage to biota, due to the varied ways in which living organisms metabolize petroleum.« less

  14. Petroleum and individual polycyclic aromatic hydrocarbons

    USGS Publications Warehouse

    Albers, Peter H.; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John

    1995-01-01

    Crude petroleum, refined-petroleum products, and individual polycyclic aromatic hydrocarbons (PAHs) contained within petroleum are found throughout the world. their presence has been detected in living and nonliving components of ecosystems. Petroleum can be an environmental hazard for wild animals and plants. Individual PAHs are also hazardous to wildlife, but they are most commonly associated with human illnesses. Because petroleum is a major environmental source of these PAHs, petroleum and PAHs are jointly presented in this chapter. Composition, sources, environmental fate, and toxic effects on all living components of aquatic and terrestrial environments are addessed.

  15. Evaluation of the Total Petroleum Hydrocarbon Standard for Cleanup of Petroleum Contaminated Sites

    DTIC Science & Technology

    1993-09-01

    100-500 20-100 Hawaii .05-1.7 10-21 1.4-7 Idaho 40-200 Illinois 11.705 0.005 Indiana X 20 Iowa 100 Kansas 100 1.4 XXX Kentucky 1 Louisiana X * * Maine...100 Hawaii 0.5-1.7 10-20 1.4-7 XXX Idaho 100 llinois 11.705 0.005 XXX Indiana X 20 Iowa 100 Kansas 100 1.4 XXX Kentucky XXX Louisiana X Maine X FIELD...Alaska X X Arizona X X Arkansas X X California X X X Colorado X X Connecticut (I) Delaware X X lorida X Georstia, X IX I Hawaii X X Idaho X X illinois X X

  16. Poland petroleum refinery sludge lagoon demonstration project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altman, D.J.

    The US Department of Energy and the Institute for Ecology of Industrial Area have been working together to develop mutually beneficial, cost-effective environmental remediation technologies such as the demonstration of bioremediation techniques for the clean up of acidic petroleum sludge impacted soils at an oil refinery in southern Poland. After an expedited site characterization, treatability study, and a risk assessment study, a remediation strategy was devised. The waste material was composed primarily of high molecular weight paraffinic and polynuclear aromatic hydrocarbons. A biopile design which employed a combination of passive and active aeration in conjunction with nutrient and surfactant applicationmore » as used to increase the biodegradation of the contaminants of concern.« less

  17. Study utilization of extractable petroleum hydrocarbons biodegradation waste as the main material for making solid fuels

    NASA Astrophysics Data System (ADS)

    Hendrianie, Nuniek; Juliastuti, Sri Rachmania; Ar-rosyidah, Fanny Husna; Rochman, Hilal Abdur

    2017-05-01

    Nowadays the existence of energy sources of oil and was limited. Therefore, it was important to searching for new innovations of renewable energy sources by utilizing the waste into a source of energy. On the other hand, the process of extractable petroleum hydrocarbons biodegradation generated sludge that had calorific value and untapped. Because of the need for alternative sources of energy innovation with the concept of zero waste and the fuel potential from extractable petroleum hydrocarbons biodegradation waste, so it was necessary to study the use of extractable petroleum hydrocarbons biodegradation waste as the main material for making solid fuel. In addition, sawdust is a waste that had a great quantities and also had a high calorific value to be mixed with extractable petroleum hydrocarbons biodegradation waste. The purpose of this study was to determine the characteristics of the extractable petroleum hydrocarbons biodegradation waste and to determine the potential and a combination of a mixture of extractable petroleum hydrocarbons biodegradation waste and sawdust which has the best calorific value. The variables of this study was the composition of the waste and sawdust as follows 1:1; 1:3; and 3:1 (mass of sawdust : mass of waste) and time of sawdust carbonization was 10, 15 and 20 minutes. Sawdust was carbonized to get the high heating value. The characteristic of main material and fuel analysis performed with proximate analysis. While the calorific value analysis was performed with a bomb calorimeter. From the research, it was known that extractable petroleum hydrocarbons biodegradation waste had a moisture content of 3.06%; volatile matter 19.98%; ash content of 0.56%; fixed carbon content of 76.4% and a calorific value of 717 cal/gram. And a mixture that had the highest calorific value (4286.5 cal/gram) achieved in comparison sawdust : waste (3:1) by carbonization of sawdust for 20 minutes.

  18. Studies on organic and in-organic biostimulants in bioremediation of diesel-contaminated arable soil.

    PubMed

    Nwankwegu, Amechi S; Orji, Michael U; Onwosi, Chukwudi O

    2016-11-01

    In this study, use of inorganic fertilizer (N.P.K) was compared with organic manure (compost) in the bioremediation of diesel-polluted agricultural soil over a two-month period. Renewal by enhanced natural attenuation was used as control. The results revealed that total petroleum hydrocarbon removal from polluted soil was 71.40 ± 5.60% and 93.31 ± 3.60% for N.P.K and compost amended options, respectively. The control (natural attenuation) had 57.90 ± 3.98% of total petroleum hydrocarbon removed. Experimental data fitted second order kinetic model adequately for compost amended option. The fertilizer amended option was found to be 1.04 times slower (k2 = 4.00 ± 1.40 × 10(-7)gmg(-1)d(-1), half-life = 28.15 d) than compost amended option (k2 = 1.39 ± 0.54 × 10(-5) gmg(-1)d(-1), half-life = 8.10 d) but 1.21 times (20.6%) faster than the control (k2 = 2.57 ± 0.16 × 10(-7) gmg(-1)d(-1), half-life = 43.81 d). The hydrocarbon utilizers isolated from the diesel contaminated soil were: Bacillus nealsoni, Micrococcus luteus, Aspergillus awamori, and Fusarium proliferatum. The phytotoxicity test showed that germination indices for natural attenuation (control), fertilizer (NPK) and compost amended options were 34%, 56%, and 89%, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Characterization of oily sludge from a Tehran oil refinery.

    PubMed

    Heidarzadeh, Nima; Gitipour, Saeid; Abdoli, Mohammad Ali

    2010-10-01

    In this study, oily sludge samples generated from a Tehran oil refinery (Pond I) were evaluated for their contamination levels and to propose an adequate remediation technique for the wastes. A simple, random, sampling method was used to collect the samples. The samples were analyzed to measure Total petroleum hydrocarbon (TPH), polyaromatic hydrocarbon (PAH) and heavy metal concentrations in the sludge. Statistical analysis showed that seven samples were adequate to assess the sludge with respect to TPH analyses. The mean concentration of TPHs in the samples was 265,600 mg kg⁻¹. A composite sample prepared from a mix of the seven samples was used to determine the sludge's additional characteristics. Composite sample analysis showed that there were no detectable amounts of PAHs in the sludge. In addition, mean concentrations of the selected heavy metals Ni, Pb, Cd and Zn were 2700, 850, 100, 6100 mg kg⁻¹, respectively. To assess the sludge contamination level, the results from the analysis above were compared with soil clean-up levels. Due to a lack of national standards for soil clean-up levels in Iran, sludge pollutant concentrations were compared with standards set in developed countries. According to these standards, the sludge was highly polluted with petroleum hydrocarbons. The results indicated that incineration, biological treatment and solidification/stabilization treatments would be the most appropriate methods for treatment of the sludges. In the case of solidification/stabilization, due to the high organic content of the sludge, it is recommended to use organophilic clays prior to treatment of the wastes.

  20. Public health assessment for Petro-Chemical, Inc. (Turtle Bayou) Liberty, Liberty County, Texas, Region 6. CERCLIS No. TXD980873350. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-03-30

    The Petro-Chemical Systems, Inc. site, located near Liberty, Texas, is a site where unauthorized disposal of petroleum-based oils has taken place. Although there is evidence of past exposure to site contaminants, the best available evidence does not indicate that humans are currently being exposed to site contaminants at levels that could cause adverse health effects. Contaminated ground water, surface water, soils, and surface water sediments have been found on the site. Although sampling was done for 144 priority pollutants, the primary contaminants of concern are benzene, ethylbenzene, xylene, naphthalene, polycyclic aromatic hydrocarbons, and lead. Because the greatest threat to publicmore » health would be contamination of drinking water, the Agency for Toxic Substances and Disease Registry (ATSDR) has recommended that necessary actions are taken to insure that private wells do not become contaminated with site contaminants.« less

  1. UNDERSTANDING THE FATE OF PETROLEUM HYDROCARBONS IN THE SUBSURFACE ENVIRONMENT

    EPA Science Inventory

    Sinca a significant number of the two or more million underground storage tank (UST) systems used for petroleum products leak, their cleanup poses a major environmental challenge. Our understnading of the fate of petroleum hydrocarbons in the subsurface environment is critical t...

  2. Visible and Near-Infrared Spectroscopy Analysis of a Polycyclic Aromatic Hydrocarbon in Soils

    PubMed Central

    Okparanma, Reuben N.; Mouazen, Abdul M.

    2013-01-01

    Visible and near-infrared (VisNIR) spectroscopy is becoming recognised by soil scientists as a rapid and cost-effective measurement method for hydrocarbons in petroleum-contaminated soils. This study investigated the potential application of VisNIR spectroscopy (350–2500 nm) for the prediction of phenanthrene, a polycyclic aromatic hydrocarbon (PAH), in soils. A total of 150 diesel-contaminated soil samples were used in the investigation. Partial least-squares (PLS) regression analysis with full cross-validation was used to develop models to predict the PAH compound. Results showed that the PAH compound was predicted well with residual prediction deviation of 2.0–2.32, root-mean-square error of prediction of 0.21–0.25 mg kg−1, and coefficient of determination (r 2) of 0.75–0.83. The mechanism of prediction was attributed to covariation of the PAH with clay and soil organic carbon. Overall, the results demonstrated that the methodology may be used for predicting phenanthrene in soils utilizing the interrelationship between clay and soil organic carbon. PMID:24453798

  3. Hydrocarbon Degradation and Lead Solubility in a Soil Polluted with Lead and Used Motor Oil Treated by Composting and Phytoremediation.

    PubMed

    Escobar-Alvarado, L F; Vaca-Mier, M; López, R; Rojas-Valencia, M N

    2018-02-01

    Used lubricant oils and metals can be common soil pollutants in abandoned sites. When soil is contaminated with various hazardous wastes, the efficiency of biological treatments could be affected. The purpose of this work was to investigate the effect of combining phytoremediation and composting on the efficiency of hydrocarbon degradation and lead solubility in a soil contaminated with 31,823 mg/kg of total petroleum hydrocarbon (TPH) from used motor oil and 8260 mg/kg of lead. Mexican cactus (Opuntia ficus indica) and yard trimmings were added in the composting process, and lucerne (Medicago sativa) was used in the phytoremediation process. After a 9 week composting process, only 13% of the initial TPH concentration was removed. The following 20 week phytoremediation process removed 48% of TPH. The highest TPH degradation percentage (66%), was observed in the experiment with phytoremediation only. This work demonstrates sustainable technologies, such as biological treatments, represent low-cost options for remediation; however, they are not frequently used because they require long periods of time for success.

  4. San Francisco Deep Ocean Dredged Material Disposal Site (SF-DODS) Monitoring Program. Physical, Chemical, and Benthic Community Monitoring

    DTIC Science & Technology

    2003-08-29

    analyzed for total volatile solids, total organic carbon, oil and grease/total petroleum hydrocarbons , grain size distribution, metals, polycyclic...TBT Tri-Butyltin TOC Total Organic Carbon TPCB Total Polychlorinated Biphenyls TPH Total Petroleum Hydrocarbons USACE U.S. Army Corps of Engineers U.S...Health PQL Practical Quantitation Limit RCRA Resource Conservation and Recovery Act SIM Selected Ion Monitoring TPH Total Petroleum Hydrocarbons tr Trace

  5. [Phytoremediation of Petroleum Contaminated Soils with Iris pseudacorus L. and the Metabolic Analysis in Roots].

    PubMed

    Wang, Ya-nan; Cheng, Li-juan; Zhou, Qi-xing

    2016-04-15

    In this study, we performed a greenhouse pot-culture experiment to investigate the potential of a wild ornamental plant Iris pseudacorus L. in remediating petroleum contaminated soils from the Dagang Oilfield in Tianjin, China. The results suggested that Iris pseudacorus L. had great resistance to ≤ 40,000 mg · kg(⁻¹ of total petroleum hydrocarbons (TPHs). The removal rate of TPHs with concentrations of 10,000 mg · kg⁻¹, 20,000 mg · kg⁻¹ and 40,000 mg · kg⁻¹ in soils by Iris pseudacorus L. was 42.1%, 33.1% 31.2%, respectively, much higher than those in the corresponding controls (31.8%, 21.3% 11.9%, respectively) (P < 0.05). The root specific surface area of Iris pseudacorus L. was determined by the root scanner. The results suggested that TPHs with concentrations of 10,000 mg · kg⁻¹, 20,000 mg · kg⁻¹ and 40,000 mg · kg⁻¹ in soils increased the root specific surface area comparing with the controls. Additionally, the metabolic analysis showed that root metabolism changed to different degrees under the stress of TPHs, and the levels or species of metabolites had a significant change (P < 0.001). Furthermore, the results showed that 5 of 11 metabolites (VIP value > 1.2) with the root specific surface area from the PLS-DA model analysis, including ethanedioic acid, lactic acid, 2-butenedioic acid, phosphate and propanedioic acid, were positively correlated with the root specific surface area, but the others, gluconic acid, uridine, butanoic acid, maltose, 9,12-octadecadienoic acid, phenylalanine, were negatively correlated with it. In conclusion, using Iris pseudacorus L. to remediate petroleum contaminated soils is feasible, and the metabolic analysis in roots is useful to better understand the metabolic response of plants exposure to petroleum contaminated soils, and then reveals its remediated mechanisms.

  6. Response of the microbial community to seasonal groundwater level fluctuations in petroleum hydrocarbon-contaminated groundwater.

    PubMed

    Zhou, Ai-xia; Zhang, Yu-ling; Dong, Tian-zi; Lin, Xue-yu; Su, Xiao-si

    2015-07-01

    The effects of seasonal groundwater level fluctuations on the contamination characteristics of total petroleum hydrocarbons (TPH) in soils, groundwater, and the microbial community were investigated at a typical petrochemical site in northern China. The measurements of groundwater and soil at different depths showed that significant TPH residue was present in the soil in this study area, especially in the vicinity of the pollution source, where TPH concentrations were up to 2600 mg kg(-1). The TPH concentration in the groundwater fluctuated seasonally, and the maximum variation was 0.8 mg L(-1). The highest TPH concentrations were detected in the silty clay layer and lied in the groundwater level fluctuation zones. The groundwater could reach previously contaminated areas in the soil, leading to higher groundwater TPH concentrations as TPH leaches into the groundwater. The coincident variation of the electron acceptors and TPH concentration with groundwater-table fluctuations affected the microbial communities in groundwater. The microbial community structure was significantly different between the wet and dry seasons. The canonical correspondence analysis (CCA) results showed that in the wet season, TPH, NO3(-), Fe(2+), TMn, S(2-), and HCO3(-) were the major factors correlating the microbial community. A significant increase in abundance of operational taxonomic unit J1 (97% similar to Dechloromonas aromatica sp.) was also observed in wet season conditions, indicating an intense denitrifying activity in the wet season environment. In the dry season, due to weak groundwater level fluctuations and low temperature of groundwater, the microbial activity was weak. But iron and sulfate-reducing were also detected in dry season at this site. As a whole, groundwater-table fluctuations would affect the distribution, transport, and biodegradation of the contaminants. These results may be valuable for the control and remediation of soil and groundwater pollution at this site and in other petrochemical-contaminated areas. Furthermore, they are probably helpful for reducing health risks to the general public from contaminated groundwater.

  7. BTEX biodegradation by bacteria from effluents of petroleum refinery.

    PubMed

    Mazzeo, Dânia Elisa Christofoletti; Levy, Carlos Emílio; de Angelis, Dejanira de Franceschi; Marin-Morales, Maria Aparecida

    2010-09-15

    Groundwater contamination with benzene, toluene, ethylbenzene and xylene (BTEX) has been increasing, thus requiring an urgent development of methodologies that are able to remove or minimize the damages these compounds can cause to the environment. The biodegradation process using microorganisms has been regarded as an efficient technology to treat places contaminated with hydrocarbons, since they are able to biotransform and/or biodegrade target pollutants. To prove the efficiency of this process, besides chemical analysis, the use of biological assessments has been indicated. This work identified and selected BTEX-biodegrading microorganisms present in effluents from petroleum refinery, and evaluated the efficiency of microorganism biodegradation process for reducing genotoxic and mutagenic BTEX damage through two test-systems: Allium cepa and hepatoma tissue culture (HTC) cells. Five different non-biodegraded BTEX concentrations were evaluated in relation to biodegraded concentrations. The biodegradation process was performed in a BOD Trak Apparatus (HACH) for 20 days, using microorganisms pre-selected through enrichment. Although the biodegradation usually occurs by a consortium of different microorganisms, the consortium in this study was composed exclusively of five bacteria species and the bacteria Pseudomonas putida was held responsible for the BTEX biodegradation. The chemical analyses showed that BTEX was reduced in the biodegraded concentrations. The results obtained with genotoxicity assays, carried out with both A. cepa and HTC cells, showed that the biodegradation process was able to decrease the genotoxic damages of BTEX. By mutagenic tests, we observed a decrease in damage only to the A. cepa organism. Although no decrease in mutagenicity was observed for HTC cells, no increase of this effect after the biodegradation process was observed either. The application of pre-selected bacteria in biodegradation processes can represent a reliable and effective tool in the treatment of water contaminated with BTEX mixture. Therefore, the raw petroleum refinery effluent might be a source of hydrocarbon-biodegrading microorganisms. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Biosurfactant from red ash trees enhances the bioremediation of PAH contaminated soil at a former gasworks site.

    PubMed

    Blyth, Warren; Shahsavari, Esmaeil; Morrison, Paul D; Ball, Andrew S

    2015-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are persistent contaminants that accumulate in soil, sludge and on vegetation and are produced through activities such as coal burning, wood combustion and in the use of transport vehicles. Naturally occurring surfactants have been known to enhance PAH-removal from soil by improving PAH solubilization thereby increasing PAH-microbe interactions. The aim of this research was to determine if a biosurfactant derived from the leaves of the Australian red ash (Alphitonia excelsa) would enhance bioremediation of a heavily PAH-contaminated soil and to determine how the microbial community was affected. Results of GC-MS analysis show that the extracted biosurfactant was significantly more efficient than the control in regards to the degradation of total 16 US EPA priority PAHs (78.7% degradation compared to 62.0%) and total petroleum hydrocarbons (TPH) (92.9% degradation compared to 44.3%). Furthermore the quantification of bacterial genes by qPCR analysis showed that there was an increase in the number of gene copies associated with Gram positive PAH-degrading bacteria. The results suggest a commercial potential for the use of the Australian red ash tree as a source of biosurfactant for use in the accelerated degradation of hydrocarbons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Combination of surfactant enhanced soil washing and electro-Fenton process for the treatment of soils contaminated by petroleum hydrocarbons.

    PubMed

    Huguenot, David; Mousset, Emmanuel; van Hullebusch, Eric D; Oturan, Mehmet A

    2015-04-15

    In order to improve the efficiency of soil washing treatment of hydrocarbon contaminated soils, an innovative combination of this soil treatment technique with an electrochemical advanced oxidation process (i.e. electro-Fenton (EF)) has been proposed. An ex situ soil column washing experiment was performed on a genuinely diesel-contaminated soil. The washing solution was enriched with surfactant Tween 80 at different concentrations, higher than the critical micellar concentration (CMC). The impact of soil washing was evaluated on the hydrocarbons concentration in the leachates collected at the bottom of the soil columns. These eluates were then studied for their degradation potential by EF treatment. Results showed that a concentration of 5% of Tween 80 was required to enhance hydrocarbons extraction from the soil. Even with this Tween 80 concentration, the efficiency of the treatment remained very low (only 1% after 24 h of washing). Electrochemical treatments performed thereafter with EF on the collected eluates revealed that the quasi-complete mineralization (>99.5%) of the hydrocarbons was achieved within 32 h according to a linear kinetic trend. Toxicity was higher than in the initial solution and reached 95% of inhibition of Vibrio fischeri bacteria measured by Microtox method, demonstrating the presence of remaining toxic compounds even after the complete degradation. Finally, the biodegradability (BOD₅/COD ratio) reached a maximum of 20% after 20 h of EF treatment, which is not enough to implement a combined treatment with a biological treatment process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Occurrence, sources and health risk of polycyclic aromatic hydrocarbons in soils around oil wells in the border regions between oil fields and suburbs.

    PubMed

    Fu, Xiao-Wen; Li, Tian-Yuan; Ji, Lei; Wang, Lei-Lei; Zheng, Li-Wen; Wang, Jia-Ning; Zhang, Qiang

    2018-08-15

    The Yellow River Delta (YRD) is a typical region where oil fields generally overlap cities and towns, leading to complex soil contamination from both the oil fields and human activities. To clarify the distribution, speciation, potential sources and health risk of polycyclic aromatic hydrocarbons (PAHs) in soils of border regions between oil fields and suburbs of the YRD, 138 soil samples (0-20 cm) were collected among 12 sampling sites located around oil wells with different extraction histories. The 16 priority control PAHs (16PAHs), as selected by the United States Environmental Protection Agency (USEPA), were extracted via an accelerated solvent extraction and detected by GC-MS. The results showed that soils of the study area were generally polluted by the 16PAHs. Among these pollutions, chrysene and phenanthrene were the dominant components, and 4-ring PAHs were the most abundant. A typical temporal distribution pattern of the 16PAHs was revealed in soils from different sampling sites around oil wells with different exploitation histories. The concentrations of total 16PAHs and high-ring PAHs (HPAHs) both increased with the extraction time of the nearby oil wells. Individual PAH ratios and PCA method revealed that the 16PAHs in soil with newly developed oil wells were mainly from petroleum pollutants, whereas PAHs in soils around oil wells with a long exploitation history were probably from petroleum contamination; combustion of petroleum, fuel, and biomass; and degradation and migration of PAHs from petroleum. Monte Carlo simulation was used to evaluate the health risks of the 7 carcinogenic PAHs and 9 non-carcinogenic PAHs in the study area. The results indicated that ingestion and dermal contact were the predominant pathways of exposure to PAH residues in soils. Both the carcinogenic and non-carcinogenic burden of the 16PAHs in soils of the oil field increased significantly with exploitation time of nearby oil wells. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Bioremediation of a diesel fuel contaminated aquifer: simulation studies in laboratory aquifer columns

    NASA Astrophysics Data System (ADS)

    Hess, A.; Höhener, P.; Hunkeler, D.; Zeyer, J.

    1996-08-01

    The in situ bioremediation of aquifers contaminated with petroleum hydrocarbons is commonly based on the infiltration of groundwater supplemented with oxidants (e.g., O 2, NO 3-) and nutrients (e.g., NH 4+, PO 43-). These additions stimulate the microbial activity in the aquifer and several field studies describing the resulting processes have been published. However, due to the heterogeneity of the subsurface and due to the limited number of observation wells usually available, these field data do not offer a sufficient spatial and temporal resolution. In this study, flow-through columns of 47-cm length equipped with 17 sampling ports were filled with homogeneously contaminated aquifer material from a diesel fuel contaminated in situ bioremediation site. The columns were operated over 96 days at 12°C with artificial groundwater supplemented with O 2, NO 3- and PO 43-. Concentration profiles of O 2, NO 3-, NO 2-, dissolved inorganic and organic carbon (DIC and DOC, respectively), protein, microbial cells and total residual hydrocarbons were measured. Within the first 12 cm, corresponding to a mean groundwater residence time of < 3.6 h, a steep O 2 decrease from 4.6 to < 0.3 mg l -1, denitrification, a production of DIC and DOC, high microbial cell numbers and a high removal of hydrocarbons were observed. Within a distance of 24 to 40.5 cm from the infiltration, O 2 was below 0.1 mg l -1 and a denitrifying activity was found. In the presence and in the absence of O 2, n-alkanes were preferentially degraded compared to branched alkanes. The results demonstrate that: (1) infiltration of aerobic groundwater into columns filled with aquifer material contaminated with hydrocarbons leads to a rapid depletion of O 2; (2) O 2 and NO 3- can serve as oxidants for the mineralization of hydrocarbons; and (3) the modelling of redox processes in aquifers has to consider denitrifying activity in presence of O 2.

  12. Using Conventional Monitoring Wells to Collect Data Necessary to Understand Petroleum Vapor Intrusion (PVI)

    EPA Science Inventory

    Recent work has clearly established that the possibility for vapor intrusion of petroleum hydrocarbons is greatly reduced by aerobic biodegradation of the hydrocarbons in unsaturated soil. The rate and extent of aerobic biodegradation of benzene (or any other fuel hydrocarbon) in...

  13. Remediation of Petroleum-Contaminated Soil and Simultaneous Recovery of Oil by Fast Pyrolysis.

    PubMed

    Li, De-Chang; Xu, Wan-Fei; Mu, Yang; Yu, Han-Qing; Jiang, Hong; Crittenden, John C

    2018-05-01

    Petroleum-contaminated soil (PCS) caused by the accidental release of crude oil into the environment, which occurs frequently during oil exploitation worldwide, needs efficient and cost-effective remediation. In this study, a fast pyrolysis technology was implemented to remediate the PCS and concurrently recover the oil. The remediation effect related to pyrolytic parameters, the recovery rate of oil and its possible formation pathway, and the physicochemical properties of the remediated PCS and its suitability for planting were systematically investigated. The results show that 50.9% carbon was recovered in oil, whose quality even exceeds that of crude oil. Both extractable total petroleum hydrocarbon (TPH) and water-soluble organic matter (SOM) in PCS were completely removed at 500 °C within 30 min. The remaining carbon in remediated PCS was determined to be in a stable and innocuous state, which has no adverse effect on wheat growth. On the basis of the systematically characterizations of initial PCS and pyrolytic products, a possible thermochemical mechanism was proposed which involves evaporation, cracking and polymerization. In addition, the energy consumption analysis and remediation effect of various PCSs indicate that fast pyrolysis is a viable and cost-effective method for PCS remediation.

  14. Total petroleum hydrocarbon degradation by hybrid electrobiochemical reactor in oilfield produced water.

    PubMed

    Mousa, Ibrahim E

    2016-08-15

    The crude oil drilling and extraction operations are aimed to maximize the production may be counterbalanced by the huge production of contaminated produced water (PW). PW is conventionally treated through different physical, chemical, and biological technologies. The efficiency of suggested hybrid electrobiochemical (EBC) methods for the simultaneous removal of total petroleum hydrocarbon (TPH) and sulfate from PW generated by petroleum industry is studied. Also, the factors that affect the stability of PW quality are investigated. The results indicated that the effect of biological treatment is very important to keep control of the electrochemical by-products and more TPH removal in the EBC system. The maximum TPH and sulfate removal efficiency was achieved 75% and 25.3%, respectively when the detention time was about 5.1min and the energy consumption was 32.6mA/cm(2). However, a slight increasing in total bacterial count was observed when the EBC compact unit worked at a flow rate of average 20L/h. Pseudo steady state was achieved after 30min of current application in the solution. Also, the results of the study indicate that when the current intensity was increased above optimum level, no significant results occurred due to the release of gases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Sediment quantity and quality in three impoundments in Massachusetts

    USGS Publications Warehouse

    Zimmerman, Marc James; Breault, Robert F.

    2003-01-01

    As part of a study with an overriding goal of providing information that would assist State and Federal agencies in developing screening protocols for managing sediments impounded behind dams that are potential candidates for removal, the U.S Geological Survey determined sediment quantity and quality at three locations: one on the French River and two on Yokum Brook, a tributary to the west branch of the Westfield River. Data collected with a global positioning system, a geographic information system, and sediment-thickness data aided in the creation of sediment maps and the calculation of sediment volumes at Perryville Pond on the French River in Webster, Massachusetts, and at the Silk Mill and Ballou Dams on Yokum Brook in Becket, Massachusetts. From these data the following sediment volumes were determined: Perryville Pond, 71,000 cubic yards, Silk Mill, 1,600 cubic yards, and Ballou, 800 cubic yards. Sediment characteristics were assessed in terms of grain size and concentrations of potentially hazardous organic compounds and metals. Assessment of the approaches and methods used at study sites indicated that ground-penetrating radar produced data that were extremely difficult and time-consuming to interpret for the three study sites. Because of these difficulties, a steel probe was ultimately used to determine sediment depth and extent for inclusion in the sediment maps. Use of these methods showed that, where sampling sites were accessible, a machine-driven coring device would be preferable to the physically exhausting, manual sediment-coring methods used in this investigation. Enzyme-linked immunosorbent assays were an effective tool for screening large numbers of samples for a range of organic contaminant compounds. An example calculation of the number of samples needed to characterize mean concentrations of contaminants indicated that the number of samples collected for most analytes was adequate; however, additional analyses for lead, copper, silver, arsenic, total petroleum hydrocarbons, and chlordane are needed to meet the criteria determined from the calculations. Particle-size analysis did not reveal a clear spatial distribution pattern at Perryville Pond. On average, less than 65 percent of each sample was greater in size than very fine sand. The sample with the highest percentage of clay-sized particles (24.3 percent) was collected just upstream from the dam and generally had the highest concentrations of contaminants determined here. In contrast, more than 90 percent of the sediment samples in the Becket impoundments had grain sizes larger than very fine sand; as determined by direct observation, rocks, cobbles, and boulders constituted a substantial amount of the material impounded at Becket. In general, the highest percentages of the finest particles, clays, occurred in association with the highest concentrations of contaminants. Enzyme-linked immunosorbent assays of the Perryville samples showed the widespread presence of petroleum hydrocarbons (16 out of 26 samples), polycyclic aromatic hydrocarbons (23 out of 26 samples), and chlordane (18 out of 26 samples); polychlorinated biphenyls were detected in five samples from four locations. Neither petroleum hydrocarbons nor polychlorinated biphenyls were detected at Becket, and chlordane was detected in only one sample. All 14 Becket samples contained polycyclic aromatic hydrocarbons. Replicate quality-control analyses revealed consistent results between paired samples. Samples from throughout Perryville Pond contained a number of metals at potentially toxic concentrations. These metals included arsenic, cadmium, copper, lead, nickel, and zinc. At Becket, no metals were found in elevated concentrations. In general, most of the concentrations of organic compounds and metals detected in Perryville Pond exceeded standards for benthic organisms, but only rarely exceeded standards for human contact. The most highly contaminated samples were

  16. A case study of the intrinsic bioremediation of petroleum hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, G.W.; Raterman, K.T.; Fisher, J.B.

    1995-12-31

    Condensate liquids have been found to contaminate soil and groundwater at two gas production sites in the Denver Basin operated by Amoco Production Co. These sites have been closely monitored since July 1993 to determine whether intrinsic aerobic or anaerobic bioremediation of hydrocarbons occurs at a sufficient rate and to an adequate endpoint to support a no-intervention decision. Groundwater monitoring and analysis of soil cores suggest that intrinsic bioremediation is occurring at these sites by multiple pathways including aerobic oxidation, Fe{sup 3+} reduction, and sulfate reduction. In laboratory experiments the addition of gas condensate hydrocarbons to saturated soil from themore » gas production site stimulated sulfate reduction under anaerobic and oxygen-limiting conditions, and nitrate and Fe{sup 3+} reduction under oxygen-limiting conditions, compared to biotic controls that lacked hydrocarbon and sterile controls. The sulfate reduction corresponded to a reduction in the amount of toluene relative to other hydrocarbons. These results confirmed that subsurface soils at the gas production site have the potential for intrinsic bioremediation of hydrocarbons.« less

  17. Hydrocarbonoclastic bacteria isolated from petroleum contaminated sites in Tunisia: isolation, identification and characterization of the biotechnological potential.

    PubMed

    Mahjoubi, Mouna; Jaouani, Atef; Guesmi, Amel; Ben Amor, Sonia; Jouini, Ahlem; Cherif, Hanen; Najjari, Afef; Boudabous, Abdellatif; Koubaa, Nedra; Cherif, Ameur

    2013-09-25

    Petroleum hydrocarbons are important energy resources used by industry and in our daily life, whose production contributes highly to environmental pollution. To control such risk, bioremediation constitutes an environmentally friendly alternative technology that has been established and applied. It constitutes the primary mechanism for the elimination of hydrocarbons from contaminated sites by natural existing populations of microorganisms. In this work, a collection of 125 strains, adapted to grow on minimal medium supplemented with crude oil, was obtained from contaminated sediments and seawater from a refinery harbor of the Bizerte coast in the North of Tunisia. The diversity of the bacterial collection was analyzed by amplification of the internal transcribed spacers between the 16S and the 23S rRNA genes (ITS-PCR) and by 16S rRNA sequencing. A total of 36 distinct ITS haplotypes were detected on agarose matrix. Partial 16S rRNA gene sequencing performed on 50 isolates showed high level of identity with known sequences. Strains were affiliated to Ochrabactrum, Sphingobium, Acinetobacter, Gordonia, Microbacterium, Brevundimonas, Novosphingobium, Stenotrophomonas, Luteibacter, Rhodococcus, Agrobacterium, Achromobacter, Bacilllus, Kocuria and Pseudomonas genera. Acinetobacter and Stenotrophomons were found to be the most abundant species characterized by a marked microdiversity as shown through ITS typing. Culture-independent approach (DGGE) showed high diversity in the microbial community in all the studied samples with a clear correlation with the hydrocarbon pollution rate. Sequencing of the DGGE bands revealed a high proportion of Proteobacteria represented by the Alpha and Gamma subclasses. The predominant bacterial detected by both dependent and independent approaches were the Proteobacteria. The biotechnological potential of the isolates revealed a significant production of biosurfactants with important emulsification activities useful in bioremediation. The highest emulsification activity was detected in Pseudomonas geniculata with 52.77% of emulsification. Our overall results suggest that the obtained bacterial isolates may constitute potential candidates for bioremediation and can be useful for biotechnological applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Environmental Fate and Transport of Poly- and Perfluoroalkyl Substances at Aqueous Film-Forming Foam Impacted Sites

    NASA Astrophysics Data System (ADS)

    Higgins, C.

    2017-12-01

    Poly and perfluoroalkyl substances (PFASs) are constituents in aqueous film-forming foam (AFFF) used to extinguish fuel fires. Substantially elevated PFAS groundwater concentrations have been observed at firefighter protection training areas, where co-contaminants such as chlorinated solvents and fuel hydrocarbons are also commonly present. Research into the fate and transport potential of PFASs at AFFF-impacted sites will be presented, with a particular focus on how co-contaminants and co-contaminant remediation technologies may alter the composition and transport behavior of PFASs at these sites. A detailed analysis of data collected from a U.S. Air Force site (Ellsworth Air Force Base, South Dakota) indicates that that conversion of polyfluoroalkyl chemicals to perfluoroalkyl acids (PFAAs) in situ due to natural and enhanced remediation of petroleum hydrocarbons. In addition, bench-scale studies examining the effects of various chemical oxidants, typically employed via in situ chemical oxidation (ISCO), indicates that oxidation-based remediation technologies have the potential to alter the release and composition of PFASs in AFFF-impacted source zones. Future challenges in addressing PFAS contamination will be discussed, particularly with respect to closing the mass balance on PFAAs and their precursors at AFFF-impacted sites.

  19. Proceedings of a Seminar on Attaining Water Quality Goals through Water Management Procedures, 17-18 February 1982, Dallas, Texas,

    DTIC Science & Technology

    1982-02-01

    slightly above the level of detection. In both projects low-level accumulation of petroleum hydrocarbons was observed. Because of the complex nature of... petroleum hydrocarbons , PCB, total DDT, Cd and lig in test and control organisms surviving a 10-day, solid phlase bioassay for project A. Organisms...of petroleum hydrocarbons , PCB, total DDT, Cd and Hig in test and control organisms surviving a 10-day solid phase bioassay for project B. Organisms

  20. Gene transcription patterns in response to low level petroleum contaminants in Mytilus trossulus from field sites and harbors in southcentral Alaska

    USGS Publications Warehouse

    Bowen, Lizabeth; Miles, A. Keith; Ballachey, Brenda E.; Waters, Shannon C.; Bodkin, James L.; Lindeberg, Mandy; Esler, Daniel N.

    2017-01-01

    The 1989 Exxon Valdez oil spill damaged a wide range of natural resources, including intertidal communities, and post-spill studies demonstrated acute and chronic exposure and injury to an array of species. Standard toxicological methods to evaluate petroleum contaminants have assessed tissue burdens, with fewer assays providing indicators of health or physiology, particularly when contaminant levels are low and chronic. Marine mussels are a ubiquitous and crucial component of the nearshore environment, and new genomic technologies exist to quantify molecular responses of individual mussels to stimuli, including exposure to polycyclic aromatic hydrocarbons (PAHs). We used gene-based assays of exposure and physiological function to assess chronic oil contamination using the Pacific blue mussel, Mytilus trossulus. We developed a diagnostic gene transcription panel to investigate exposure to PAHs and other contaminants and its effects on mussel physiology and health. During 2012–2015, we analyzed mussels from five field sites in western Prince William Sound, Alaska, with varying oil histories from the 1989 Exxon Valdez oil spill, and from three boat harbors in the area. Gene transcription patterns of mussels from harbors were consistent with elevated exposure to PAHs or other contaminants, whereas transcription patterns of mussels sampled from shorelines in areas affected by the oil spill indicated no PAH exposure.

  1. Evaluation of Empirical Data and Modeling Studies to Support Soil Vapor Intrusion Screening Criteria for Petroleum Hydrocarbon Compounds

    EPA Science Inventory

    This study is an evaluation of empirical data and select modeling studies of the behavior of petroleum hydrocarbon (PHC) vapors in subsurface soils and how they can affect subsurface-to-indoor air vapor intrusion (VI), henceforth referred to as petroleum vapor intrusion or “PVI” ...

  2. Morphological, biochemical, and histopathological indices and contaminant burdens of cotton rats (Sigmodon hispidus) at three hazardous waste sites near Houston, Texas, USA

    USGS Publications Warehouse

    Rattner, B.A.; Flickinger, Edward L.; Hoffman, D.J.

    1993-01-01

    Male cotton rats (Sigmodon hispidus) were studied at three industrial waste sites near Houston, Texas, to determine whether various morphological, biochemical, and histopathological indices provided evidence of contaminant exposure and toxic insult. Only modest changes were detected in cotton rats residing at waste sites compared with reference sites. No single parameter was consistently altered, except hepatic cytochrome P-450 concentration which was lower ( [Formula: see text] ) at two waste sites, and tended to be lower ( [Formula: see text] ) at a third waste site. Elevated petroleum hydrocarbon concentrations were detected in rats at one waste site, but contaminant burdens of rats from the other sites were unremarkable. Unlike rats captured in summer, those trapped in winter exhibited hepatocellular hypertrophy and up to a 65% increase in liver: body weight ratio, cytochrome P-450 concentration, and activities of aniline hydroxylase, aryl hydrocarbon hydroxylase, and glutathione S-transferase. Although genotoxicity has been previously documented in cotton rats residing at two of the waste sites, biomarkers in the present study provided little evidence of exposure and damage

  3. A compositional multiphase model for groundwater contamination by petroleum products: 2. Numerical solution

    USGS Publications Warehouse

    Baehr, Arthur L.; Corapcioglu, M. Yavuz

    1987-01-01

    In this paper we develop a numerical solution to equations developed in part 1 (M. Y. Corapcioglu and A. L. Baehr, this issue) to predict the fate of an immiscible organic contaminant such as gasoline in the unsaturated zone subsequent to plume establishment. This solution, obtained by using a finite difference scheme and a method of forward projection to evaluate nonlinear coefficients, provides estimates of the flux of solubilized hydrocarbon constituents to groundwater from the portion of a spill which remains trapped in a soil after routine remedial efforts to recover the product have ceased. The procedure was used to solve the one-dimensional (vertical) form of the system of nonlinear partial differential equations defining the transport for each constituent of the product. Additionally, a homogeneous, isothermal soil with constant water content was assumed. An equilibrium assumption partitions the constituents between air, water, adsorbed, and immiscible phases. Free oxygen transport in the soil was also simulated to provide an upper bound estimate of aerobic biodgradation rates. Results are presented for a hypothetical gasoline consisting of eight groups of hydrocarbon constituents. Rates at which hydrocarbon mass is removed from the soil, entering either the atmosphere or groundwater, or is biodegraded are presented. A significant sensitivity to model parameters, particularly the parameters characterizing diffusive vapor transport, was discovered. We conclude that hydrocarbon solute composition in groundwater beneath a gasoline contaminated soil would be heavily weighted toward aromatic constituents like benzene, toluene, and xylene.

  4. Aliphatic hydrocarbons recovered in vegetables from soils based on their in-situ distribution in various soil humus fractions using a successive extraction method.

    PubMed

    Zhang, Juan; Fan, Shu-Kai; Zhang, Ming-Hua; Grieneisen, Michael L; Zhang, Jian-Feng

    2018-03-15

    Aliphatic hydrocarbons (AHs) are major petroleum contaminants in the environment. In this study, the AHs bound to various soil endogenetic humus fractions were separated through successive extraction. Most of the AHs (46.1%) in soils were adsorbed onto/into humic acids (HA) and a small quantity of AHs (9.6%) were organic solvent extractable. AHs in B. chinensis were also analyzed since their potential risks to the residents through ingestion. AHs from C 21 to C 34 , so called high molecular weight AHs (HMWAHs), were dominant AHs in B. chinensis (85.5%) and soils (70.4%), followed by AHs from C 16 to C 21, whose mobility can be enhanced via binding to fulvic acids and then can be taken up by plant root lipids (soil-plant pathway). HMWAHs were mainly HA-bound and then were detained in the top soil layers. HMWAHs associated with fine topsoil particles could be transported to B. chinensis via the soil-air-plant pathway, including resuspension and aboveground plant cuticle capture. Results from Principal Component Analysis combined with Regression Analysis supported this assumption due to the positive correlations between HMWAHs concentration in B. chinensis and fine particle contents in soils. This work presents the distributions of petroleum contaminants that result from previously described behavior mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Kinetic modeling and half life study on bioremediation of crude oil dispersed by Corexit 9500.

    PubMed

    Zahed, Mohammad Ali; Aziz, Hamidi Abdul; Isa, Mohamed Hasnain; Mohajeri, Leila; Mohajeri, Soraya; Kutty, Shamsul Rahman Mohamed

    2011-01-30

    Hydrocarbon pollution in marine ecosystems occurs mainly by accidental oil spills, deliberate discharge of ballast waters from oil tankers and bilge waste discharges; causing site pollution and serious adverse effects on aquatic environments as well as human health. A large number of petroleum hydrocarbons are biodegradable, thus bioremediation has become an important method for the restoration of oil polluted areas. In this research, a series of natural attenuation, crude oil (CO) and dispersed crude oil (DCO) bioremediation experiments of artificially crude oil contaminated seawater was carried out. Bacterial consortiums were identified as Acinetobacter, Alcaligenes, Bacillus, Pseudomonas and Vibrio. First order kinetics described the biodegradation of crude oil. Under abiotic conditions, oil removal was 19.9% while a maximum of 31.8% total petroleum hydrocarbons (TPH) removal was obtained in natural attenuation experiment. All DCO bioreactors demonstrated higher and faster removal than CO bioreactors. Half life times were 28, 32, 38 and 58 days for DCO and 31, 40, 50 and 75 days for CO with oil concentrations of 100, 500, 1000 and 2000 mg/L, respectively. The effectiveness of Corexit 9500 dispersant was monitored in the 45 day study; the results indicated that it improved the crude oil biodegradation rate. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Phytoremediation potential and ecological and phenological changes of native pioneer plants from weathered oil spill-impacted sites at tropical wetlands.

    PubMed

    Palma-Cruz, Felipe de J; Pérez-Vargas, Josefina; Rivera Casado, Noemí Araceli; Gómez Guzmán, Octavio; Calva-Calva, Graciano

    2016-08-01

    Pioneer native plant species from weathered oil spill-affected sites were selected to study their potential for phytoremediation on the basis of their ecological and phenological changes during the phytoremediation process. Experiments were conducted in field and in greenhouse. In field, native plants from aged oil spill-impacted sites with up 400 g of weathered petroleum hydrocarbons per kilogram soil were selected. In the impacted sites, the principal dominant plant species with potential for hydrocarbons removal were Cyperus laxus, Cyperus esculentus, and Ludwigia peploides. In greenhouse, the phenology of the selected plant species was drastically affected by the hydrocarbons level above 325 g total petroleum hydrocarbons (TPH) per kilogram soil after 2 years of phytoremediation of soils from the aged oil spill-impacted sites. From the phytoremediation treatments, a mix-culture of C. laxus, C. esculentus, and L. peploides in soil containing 325 g TPH/kg soil, from which 20.3 % were polyaromatic hydrocarbons (PAH) and 34.2 % were asphaltenes (ASF), was able to remove up 93 % of the TPH, while in unvegetated soil the TPH removal was 12.6 %. Furthermore, evaluation of the biodiversity and life forms of plant species in the impacted sites showed that phytoremediation with C. esculentus, alone or in a mix-culture with C. laxus and L. peploides, reduces the TPH to such extent that the native plant community was progressively reestablished by replacing the cultivated species resulting in the ecological recovery of the affected soil. These results demonstrate that native Cyperus species from weathered oil spill-affected sites, specifically C. esculentus and C. laxus, alone or in a mix-culture, have particular potential for phytoremediation of soils from tropical wetlands contaminated with weathered oil hydrocarbons.

  7. Isolation and characterization of Halomonas sp. strain C2SS100, a hydrocarbon-degrading bacterium under hypersaline conditions.

    PubMed

    Mnif, S; Chamkha, M; Sayadi, S

    2009-09-01

    To isolate and characterize an efficient hydrocarbon-degrading bacterium under hypersaline conditions, from a Tunisian off-shore oil field. Production water collected from 'Sercina' petroleum reservoir, located near the Kerkennah island, Tunisia, was used for the screening of halotolerant or halophilic bacteria able to degrade crude oil. Bacterial strain C2SS100 was isolated after enrichment on crude oil, in the presence of 100 g l(-1) NaCl and at 37 degrees C. This strain was aerobic, Gram-negative, rod-shaped, motile, oxidase + and catalase +. Phenotypic characters and phylogenetic analysis based on the 16S rRNA gene of the isolate C2SS100 showed that it was related to members of the Halomonas genus. The degradation of several compounds present in crude oil was confirmed by GC-MS analysis. The use of refined petroleum products such as diesel fuel and lubricating oil as sole carbon source, under the same conditions of temperature and salinity, showed that significant amounts of these heterogenic compounds could be degraded. Strain C2SS100 was able to degrade hexadecane (C16). During growth on hexadecane, cells surface hydrophobicity and emulsifying activity increased indicating the production of biosurfactant by strain C2SS100. A halotolerant bacterial strain Halomonas sp. C2SS100 was isolated from production water of an oil field, after enrichment on crude oil. This strain is able to degrade hydrocarbons efficiently. The mode of hydrocarbon uptake is realized by the production of a biosurfactant which enhances the solubility of hydrocarbons and renders them more accessible for biodegradation. The biodegradation potential of the Halomonas sp. strain C2SS100 gives it an advantage for possibly application on bioremediation of water, hydrocarbon-contaminated sites under high-salinity level.

  8. Total petroleum hydrocarbons in sediments from the coastline and mangroves of the northern Persian Gulf.

    PubMed

    Mohebbi-Nozar, Seyedeh Laili; Zakaria, Mohamad Pauzi; Ismail, Wan Ruslan; Mortazawi, Mohammad Seddiq; Salimizadeh, Maryam; Momeni, Mohammad; Akbarzadeh, Gholamali

    2015-06-15

    To provide baseline information for the marine ecosystem of Hormozgan province, the distribution of petroleum hydrocarbons was evaluated in 52 stations involved in the mangrove and coastline ecosystem. Coastline sampling sites included areas facing harbor, river, domestic and industrial discharge. Sediment samples were analyzed based on ultraviolet fluorescence spectroscopy. Petroleum hydrocarbons showed narrow variations ranging from non-detectable (ND) to 1.71 and from 0.2 to 0.63μg/g dry weight for coastline and mangrove sediments, respectively. The detected concentrations for total petroleum hydrocarbons were lower than guideline values for ecological risk. Furthermore, the minimum environmental risk was confirmed by background levels for the Persian Gulf, the Sea of Oman, and detected values for reference areas. The results were regarded as background data in the studied area, and, considering the rapid expansion of activities related to the petroleum industry in Hormozgan province, the continuous monitoring of pollutants is recommended. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Petroleum hydrocarbon contamination in boreal forest soils: a mycorrhizal ecosystems perspective.

    PubMed

    Robertson, Susan J; McGill, William B; Massicotte, Hugues B; Rutherford, P Michael

    2007-05-01

    The importance of developing multi-disciplinary approaches to solving problems relating to anthropogenic pollution is now clearly appreciated by the scientific community, and this is especially evident in boreal ecosystems exposed to escalating threats of petroleum hydrocarbon (PHC) contamination through expanded natural resource extraction activities. This review aims to synthesize information regarding the fate and behaviour of PHCs in boreal forest soils in both ecological and sustainable management contexts. From this, we hope to evaluate potential management strategies, identify gaps in knowledge and guide future research. Our central premise is that mycorrhizal systems, the ubiquitous root symbiotic fungi and associated food-web communities, occupy the structural and functional interface between decomposition and primary production in northern forest ecosystems (i.e. underpin survival and productivity of the ecosystem as a whole), and, as such, are an appropriate focal point for such a synthesis. We provide pertinent basic information about mycorrhizas, followed by insights into the ecology of ecto- and ericoid mycorrhizal systems. Next, we review the fate and behaviour of PHCs in forest soils, with an emphasis on interactions with mycorrhizal fungi and associated bacteria. Finally, we summarize implications for ecosystem management. Although we have gained tremendous insights into understanding linkages between ecosystem functions and the various aspects of mycorrhizal diversity, very little is known regarding rhizosphere communities in PHC-contaminated soils. This makes it difficult to translate ecological knowledge into environmental management strategies. Further research is required to determine which fungal symbionts are likely to survive and compete in various ecosystems, whether certain fungal - plant associations gain in ecological importance following contamination events, and how PHC contamination may interfere with processes of nutrient acquisition and exchange and metabolic processes. Research is also needed to assess whether the metabolic capacity for intrinsic decomposition exists in these ecosystems, taking into account ecological variables such as presence of other organisms (and their involvement in syntrophic biodegradation), bioavailability and toxicity of mixtures of PHCs, and physical changes to the soil environment.

  10. Enhanced ex situ bioremediation of crude oil contaminated beach sand by supplementation with nutrients and rhamnolipids.

    PubMed

    Nikolopoulou, M; Pasadakis, N; Norf, H; Kalogerakis, N

    2013-12-15

    Mediterranean coastal regions are particularly exposed to oil pollution due to extensive industrialization, urbanization and transport of crude and refined oil to and from refineries. Bioremediation of contaminated beach sand through landfarming is both simple and cost-effective to implement compared to other treatment technologies. The purpose of the present study was to investigate the effect of alternative nutrients on biodegradation of crude oil contaminated beach sand in an effort to reduce the time required for bioremediation employing only indigenous hydrocarbon degraders. A natural sandy soil was collected from Agios Onoufrios beach (Chania, Greece) and was contaminated with weathered crude oil. The indigenous microbial population in the contaminated sand was tested alone (control treatment) or in combination with inorganic nutrients (KNO3 and K2HPO4) to investigate their effects on oil biodegradation rates. In addition, the ability of biosurfactants (rhamnolipids), in the presence of organic nutrients (uric acid and lecithin), to further stimulate biodegradation was investigated in laboratory microcosms over a 45-day period. Biodegradation was tracked by GC/MS analysis of aliphatic and polycyclic aromatic hydrocarbons components and the measured concentrations were corrected for abiotic removal by hopane normalizations. It was found that the saturated fraction of the residual oil is degraded more extensively than the aromatic fraction and the bacterial growth after an incubation period of approximately 3 weeks was much greater from the bacterial growth in the control. The results show that the treatments with inorganic or organic nutrients are equally effective over almost 30 days where C12-C35n-alkanes were degraded more than 97% and polyaromatic hydrocarbons with two or three rings were degraded more than 95% within 45 days. The results clearly show that the addition of nutrients to contaminated beach sand significantly enhanced the activity of indigenous microorganisms, as well as the removal of total recoverable petroleum hydrocarbons (TRPH) over a 45-day study period. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Petroleum hydrocarbons in a water-sediment system from Yellow River estuary and adjacent coastal area, China: Distribution pattern, risk assessment and sources.

    PubMed

    Wang, Min; Wang, Chuanyuan; Li, Yuanwei

    2017-09-15

    Aliphatic hydrocarbons (AHs), biomarker and polycyclic aromatic hydrocarbons (PAHs) concentrations of surface water and sediment samples collected from Yellow River Estuary and adjacent coastal area in China were measured to determine their spatial distributions, analyze their sources and evaluate the ecological risk of PAHs in the water-sediment system. The spatial distributions of n-alkane in sediments are mainly controlled by the mixing inputs of terrigenous and marine components. In comparison with AHs, the total concentrations of Σ16PAHs in surface sediments from a transect of the offshore area were noticeably higher than that of the riverine and estuary areas. Additionally, the AHs and total PAHs concentrations all indicated an overall pattern of a seaward decrease. The PAHs concentrations during the dry season (mainly in the form of dissolved phase) were higher than that of PAHs (mainly dissolved phase and particulate phase form) in the flooding season. In comparison with global concentration levels of PAHs, the level of PAHs in suspended particulate matter and sediments from the Yellow River Estuary was lower than those from other countries, while the concentration of PAHs in the dissolved phase were in the middle range. Petroleum contamination, mainly from oil exploration and discharge of pollutants from rivers, was the main source of n-alkanes. The PAHs in the river were mostly of petrogenic origin, while those in the estuarial and marine areas originated mainly from pyrogenic sources. The results of the toxicology assessment suggested that the PAHs in sediments from Yellow River Estuary and adjacent coastal area exhibited a low potential eco-toxicological contamination level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Characterization of Athabasca lean oil sands and mixed surficial materials: Comparison of capillary electrophoresis/low-resolution mass spectrometry and high-resolution mass spectrometry.

    PubMed

    MacLennan, Matthew S; Peru, Kerry M; Swyngedouw, Chris; Fleming, Ian; Chen, David D Y; Headley, John V

    2018-05-15

    Oil sands mining in Alberta, Canada, requires removal and stockpiling of considerable volumes of near-surface overburden material. This overburden includes lean oil sands (LOS) which cannot be processed economically but contain sparingly soluble petroleum hydrocarbons and naphthenic acids, which can leach into environmental waters. In order to measure and track the leaching of dissolved constituents and distinguish industrially derived organics from naturally occurring organics in local waters, practical methods were developed for characterizing multiple sources of contaminated water leakage. Capillary electrophoresis/positive-ion electrospray ionization low-resolution time-of-flight mass spectrometry (CE/LRMS), high-resolution negative-ion electrospray ionization Orbitrap mass spectrometry (HRMS) and conventional gas chromatography/flame ionization detection (GC/FID) were used to characterize porewater samples collected from within Athabasca LOS and mixed surficial materials. GC/FID was used to measure total petroleum hydrocarbon and HRMS was used to measure total naphthenic acid fraction components (NAFCs). HRMS and CE/LRMS were used to characterize samples according to source. The amounts of total petroleum hydrocarbon in each sample as measured by GC/FID ranged from 0.1 to 15.1 mg/L while the amounts of NAFCs as measured by HRMS ranged from 5.3 to 82.3 mg/L. Factors analysis (FA) on HRMS data visually demonstrated clustering according to sample source and was correlated to molecular formula. LRMS coupled to capillary electrophoresis separation (CE/LRMS) provides important information on NAFC isomers by adding analyte migration time data to m/z and peak intensity. Differences in measured amounts of total petroleum hydrocarbons by GC/FID and NAFCs by HRMS indicate that the two methods provide complementary information about the nature of dissolved organic species in a soil or water leachate samples. NAFC molecule class O x S y is a possible tracer for LOS seepage. CE/LRMS provides complementary information and is a feasible and practical option for source evaluation of NAFCs in water. Copyright © 2018 John Wiley & Sons, Ltd.

  13. Remediation of spilled petroleum hydrocarbons by in situ landfarming at an arctic site

    USGS Publications Warehouse

    McCarthy, K.; Walker, L.; Vigoren, L.; Bartel, J.

    2004-01-01

    A simple, economical landfarming operation was implemented to treat 3600 m3 of soil at a site just northeast of Barrow, AK (latitude 71.3 ??N). Prior to landfarming, diesel-range organics (DRO) and trimethylbenzenes (TMB) were present in the soil at concentrations more than an order of magnitude greater than the established cleanup goals, and moderate levels of gasoline-range organics (GRO) and BTEX compounds were also present. The landfarming operation included application of a commercial fertilizer mix at a rate designed to approach, but not exceed, soil concentrations of 100 mg N/kg soil and 50 mg P/kg soil, and an aggressive schedule of soil tilling using heavy equipment that was readily available from a local source. The operation was designed to continue through the brief thaw season-a scheduled duration of 70 days-but was successfully completed more than 2 weeks ahead of schedule. This work demonstrates that even in extremely harsh climates, soils that are moderately contaminated with petroleum hydrocarbons can be effectively and economically remediated within reasonable time frames via landfarming. ?? 2004 Elsevier B.V. All rights reserved.

  14. Effects of the Exxon Valdez oil spill on migrant shorebirds using rocky intertidal habitats of Prince William Sound, Alaska, during spring, 1989. Exxon Valdez oil spill state/federal natural resource damage assessment final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, P.D.

    1993-12-01

    A minimum of a few 10,000`s of surfbirds (Aphriza virgata) and black turnstones (Arenaria melanocephala) used rocky intertidal habitats of southwestern Prince William sound in spring 1989. Virtually all the shorebirds were found using shorelines, primarily on northern Montague Island, subjectively classified in the field as lightly oiled or unoiled. Surfbirds and black turnstones preyed mainly on herring eggs, blue mussels, and barnacles. Samples of these prey items from oiled areas contained petroleum-derived hydrocarbons, as did at some of the samples from the relatively clean portions of Montague Island. The results of chemical analysis of a small sample of shorebirdmore » liver tissues provided only limited support for the hypothesis that shorebirds had ingested significant quantities of petroleum-derived hydrocarbons. Surfbirds and black turnstones probably escaped significant population impacts as a result of the EVOs because shorelines which received heavy use by these species were largely spared contamination.« less

  15. Microbial degradation of total petroleum hydrocarbons in crude oil: a field-scale study at the low-land rainforest of Ecuador.

    PubMed

    Maddela, Naga Raju; Scalvenzi, Laura; Venkateswarlu, Kadiyala

    2017-10-01

    A field-level feasibility study was conducted to determine total petroleum hydrocarbon (TPH)-degrading potential of two bacterial strains, Bacillus thuringiensis B3 and B. cereus B6, and two fungi, Geomyces pannorum HR and Geomyces sp. strain HV, all soil isolates obtained from an oil field located in north-east region of Ecuador. Crude oil-treated soil samples contained in wooden boxes received a mixture of all the four microorganisms and were incubated for 90 days in an open low-land area of Amazon rainforest. The percent removal of TPHs in soil samples that received the mixed microbial inoculum was 87.45, indicating the great potential of the soil isolates in field-scale removal of crude oil. The TPHs-degrading efficiency was verified by determining the toxicity of residues, remained in soil after biodegradation, toward viability of Artemia salina or seed germination and plant growth of cowpea. Our results clearly suggest that the selected soil isolates of bacteria and fungi could be effectively used for large-scale bioremediation of sites contaminated with crude oil.

  16. Phytoremediation of a petroleum-hydrocarbon contaminated shallow aquifer in Elizabeth City, North Carolina, USA

    USGS Publications Warehouse

    Nichols, Elizabeth Guthrie; Cook, Rachel L.; Landmeyer, James E.; Atkinson, Brad; Malone, Donald R.; Shaw, George; Woods, Leilani

    2014-01-01

    A former bulk fuel terminal in North Carolina is a groundwater phytoremediation demonstration site where 3,250 hybrid poplars, willows, and pine trees were planted from 2006 to 2008 over approximately 579,000 L of residual gasoline, diesel, and jet fuel. Since 2011, the groundwater altitude is lower in the area with trees than outside the planted area. Soil-gas analyses showed a 95 percent mass loss for total petroleum hydrocarbons (TPH) and a 99 percent mass loss for benzene, toluene, ethylbenzene, and xylenes (BTEX). BTEX and methyl tert-butyl ether concentrations have decreased in groundwater. Interpolations of free-phase, fuel product gauging data show reduced thicknesses across the site and pooling of fuel product where poplar biomass is greatest. Isolated clusters of tree mortalities have persisted in areas with high TPH and BTEX mass. Toxicity assays showed impaired water use for willows and poplars exposed to the site's fuel product, but Populus survival was higher than the willows or pines on-site, even in a noncontaminated control area. All four Populus clones survived well at the site.

  17. Toxicology of oil field wastes. Hazards to livestock associated with the petroleum industry.

    PubMed

    Edwards, W C

    1989-07-01

    In oil-producing states, the proximity of livestock to drilling operations and production sites often results in poisoning of animals from ingestion of crude oil, condensate, salt water, heavy metals, and caustic chemicals. The heavy metals encountered most frequently are lead from pipe joint compound and arsenicals and chromates used as corrosion inhibitors. Numerous toxic and caustic chemicals are used in drilling muds and fluids. Crude oil and salt water spills are common occurrences around production sites. Pipeline breaks may result in exposure of livestock to crude oil or refined petroleum hydrocarbons. Ingestion of petroleum hydrocarbons may result in sudden death from peracute bloat. The most common cause of illness or death following exposure to petroleum hydrocarbons is aspiration pneumonia, which may cause a chronic progressive deterioration of health, with death after several days or weeks. Cases in which livestock are exposed to oil, salt water, or caustic chemicals, but do not die acutely or from aspiration pneumonia are more frustrating to diagnose. In these cases, parasitism, poor nutrition, and other debilitating diseases must be considered. Anorexia, weight loss, and decreased rumen motility may be caused by a disruption of normal rumen function. Petroleum hydrocarbons, salt water, and caustic chemicals have the potential of altering rumen flora and enzymatic processes as well as damaging the ruminal and gastrointestinal epithelium. The toxicity of petroleum hydrocarbons appears to be related more closely to the volatility and viscosity of the product than to other factors. The more volatile straight chain and aromatic petroleum hydrocarbons have a greater potential for aspiration pneumonia and may produce an anesthetic-like action if absorbed systemically. The more volatile petroleum hydrocarbons also are more irritating to skin and mucous membranes and appear to be more damaging to rumen flora. Treatment of petroleum hydrocarbon ingestion is aimed at preventing aspiration pneumonia and the animal's absorption of highly volatile components. Activated charcoal slurries and, in some instances, vegetable oil may be used to absorb the ingested petroleum or alter its viscosity to minimize absorption and aspiration. These procedures should be followed by the administration of rumenatories or saline cathartics to hasten the evacuation of the gastrointestinal tract. Chronic poor performance animals with anorexia and rumen dysfunction may respond to fresh rumen inoculant, intravenous glucose, and B-complex vitamins. Prognosis primarily hinges on whether or not aspiration pneumonia has occurred. Treatment of aspiration pneumonia rarely is effe

  18. U. S. EPA’S NA APPROACH FOR PETROLEUM HYDROCARBONS

    EPA Science Inventory

    Most evaluations of NA of petroleum hydrocarbons use geochemical data to document the NA through biodegradation. The expected trends during biodegradation (plume interior vs. background concentrations) are Dissolved oxygen concentrations below background, Nitrate concentrations ...

  19. BIOREMEDIATION OF PETROLEUM HYDROCARBONS: A FLEXIBLE VARIABLE SPEED TECHNOLOGY

    EPA Science Inventory

    The bioremediation of petroleum hydrocarbons has evolved into a number of different processes. These processes include in-situ aquifer bioremediation, bioventing, biosparging, passive bioremediation with oxygen release compounds, and intrinsic bioremediation. Although often viewe...

  20. Environmental Assessment/Section 404(b) Evaluation and Finding of no Significant Impact for the Main-Tenance Dredging of the Black Rock Harbor-Cedar Creek Federal Navigation Channel, Bridgeport, Connecticut.

    DTIC Science & Technology

    1982-07-01

    petroleum hydrocarbons will be bioaccumulated in quantity. In view of the findings noted above special handling of the sediments would appear appropriate...indicate the fractions of the generic group, petroleum hydrocarbons , that were analyzed. This information is needed for interpreting the bioaccumulation ...results for petroleum hydrocarbons . We continue to object to the use of two controls in the bioassay/ bioaccumulation tests. We also question the use of a

  1. New insight on petroleum system modeling of Ghadames basin, Libya

    NASA Astrophysics Data System (ADS)

    Bora, Deepender; Dubey, Siddharth

    2015-12-01

    Underdown and Redfern (2008) performed a detailed petroleum system modeling of the Ghadames basin along an E-W section. However, hydrocarbon generation, migration and accumulation changes significantly across the basin due to complex geological history. Therefore, a single section can't be considered representative for the whole basin. This study aims at bridging this gap by performing petroleum system modeling along a N-S section and provides new insights on source rock maturation, generation and migration of the hydrocarbons using 2D basin modeling. This study in conjunction with earlier work provides a 3D context of petroleum system modeling in the Ghadames basin. Hydrocarbon generation from the lower Silurian Tanezzuft formation and the Upper Devonian Aouinet Ouenine started during the late Carboniferous. However, high subsidence rate during middle to late Cretaceous and elevated heat flow in Cenozoic had maximum impact on source rock transformation and hydrocarbon generation whereas large-scale uplift and erosion during Alpine orogeny has significant impact on migration and accumulation. Visible migration observed along faults, which reactivated during Austrian unconformity. Peak hydrocarbon expulsion reached during Oligocene for both the Tanezzuft and the Aouinet Ouenine source rocks. Based on modeling results, capillary entry pressure driven downward expulsion of hydrocarbons from the lower Silurian Tanezzuft formation to the underlying Bir Tlacsin formation observed during middle Cretaceous. Kinetic modeling has helped to model hydrocarbon composition and distribution of generated hydrocarbons from both the source rocks. Application of source to reservoir tracking technology suggest some accumulations at shallow stratigraphic level has received hydrocarbons from both the Tanezzuft and Aouinet Ouenine source rocks, implying charge mixing. Five petroleum systems identified based on source to reservoir correlation technology in Petromod*. This Study builds upon the original work of Underdown and Redfern, 2008 and offers new insights and interpretation of the data.

  2. Bioremediation potential of diesel-contaminated Libyan soil.

    PubMed

    Koshlaf, Eman; Shahsavari, Esmaeil; Aburto-Medina, Arturo; Taha, Mohamed; Haleyur, Nagalakshmi; Makadia, Tanvi H; Morrison, Paul D; Ball, Andrew S

    2016-11-01

    Bioremediation is a broadly applied environmentally friendly and economical treatment for the clean-up of sites contaminated by petroleum hydrocarbons. However, the application of this technology to contaminated soil in Libya has not been fully exploited. In this study, the efficacy of different bioremediation processes (necrophytoremediation using pea straw, bioaugmentation and a combination of both treatments) together with natural attenuation were assessed in diesel contaminated Libyan soils. The addition of pea straw was found to be the best bioremediation treatment for cleaning up diesel contaminated Libyan soil after 12 weeks. The greatest TPH degradation, 96.1% (18,239.6mgkg(-1)) and 95% (17,991.14mgkg(-1)) were obtained when the soil was amended with pea straw alone and in combination with a hydrocarbonoclastic consortium respectively. In contrast, natural attenuation resulted in a significantly lower TPH reduction of 76% (14,444.5mgkg(-1)). The presence of pea straw also led to a significant increased recovery of hydrocarbon degraders; 5.7log CFU g(-1) dry soil, compared to 4.4log CFUg(-1) dry soil for the untreated (natural attenuation) soil. DGGE and Illumina 16S metagenomic analyses confirm shifts in bacterial communities compared with original soil after 12 weeks incubation. In addition, metagenomic analysis showed that original soil contained hydrocarbon degraders (e.g. Pseudoxanthomonas spp. and Alcanivorax spp.). However, they require a biostimulant (in this case pea straw) to become active. This study is the first to report successful oil bioremediation with pea straw in Libya. It demonstrates the effectiveness of pea straw in enhancing bioremediation of the diesel-contaminated Libyan soil. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Volatile hydrocarbons inhibit methanogenic crude oil degradation

    PubMed Central

    Sherry, Angela; Grant, Russell J.; Aitken, Carolyn M.; Jones, D. Martin; Head, Ian M.; Gray, Neil D.

    2014-01-01

    Methanogenic degradation of crude oil in subsurface sediments occurs slowly, but without the need for exogenous electron acceptors, is sustained for long periods and has enormous economic and environmental consequences. Here we show that volatile hydrocarbons are inhibitory to methanogenic oil biodegradation by comparing degradation of an artificially weathered crude oil with volatile hydrocarbons removed, with the same oil that was not weathered. Volatile hydrocarbons (nC5–nC10, methylcyclohexane, benzene, toluene, and xylenes) were quantified in the headspace of microcosms. Aliphatic (n-alkanes nC12–nC34) and aromatic hydrocarbons (4-methylbiphenyl, 3-methylbiphenyl, 2-methylnaphthalene, 1-methylnaphthalene) were quantified in the total hydrocarbon fraction extracted from the microcosms. 16S rRNA genes from key microorganisms known to play an important role in methanogenic alkane degradation (Smithella and Methanomicrobiales) were quantified by quantitative PCR. Methane production from degradation of weathered oil in microcosms was rapid (1.1 ± 0.1 μmol CH4/g sediment/day) with stoichiometric yields consistent with degradation of heavier n-alkanes (nC12–nC34). For non-weathered oil, degradation rates in microcosms were significantly lower (0.4 ± 0.3 μmol CH4/g sediment/day). This indicated that volatile hydrocarbons present in the non-weathered oil inhibit, but do not completely halt, methanogenic alkane biodegradation. These findings are significant with respect to rates of biodegradation of crude oils with abundant volatile hydrocarbons in anoxic, sulphate-depleted subsurface environments, such as contaminated marine sediments which have been entrained below the sulfate-reduction zone, as well as crude oil biodegradation in petroleum reservoirs and contaminated aquifers. PMID:24765087

  4. Radiocarbon-depleted CO2 evidence for fuel biodegradation at the Naval Air Station North Island (USA) fuel farm site.

    PubMed

    Boyd, Thomas J; Pound, Michael J; Lohr, Daniel; Coffin, Richard B

    2013-05-01

    Dissolved CO(2) radiocarbon and stable carbon isotope ratios were measured in groundwater from a fuel contaminated site at the North Island Naval Air Station in San Diego, CA (USA). A background groundwater sampling well and 16 wells in the underground fuel contamination zone were evaluated. For each sample, a two end-member isotopic mixing model was used to determine the fraction of CO(2) derived from fossil fuel. The CO(2) fraction from fossil sources ranged from 8 to 93% at the fuel contaminated site, while stable carbon isotope values ranged from -14 to +5‰VPDB. Wells associated with highest historical and contemporary fuel contamination showed the highest fraction of CO(2) derived from petroleum (fossil) sources. Stable carbon isotope ratios indicated sub-regions on-site with recycled CO(2) (δ(13)CO(2) as high as +5‰VPDB) - most likely resulting from methanogenesis. Ancillary measurements (pH and cations) were used to determine that no fossil CaCO(3), for instance limestone, biased the analytical conclusions. Radiocarbon analysis is verified as a viable and definitive technique for confirming fossil hydrocarbon conversion to CO(2) (complete oxidation) at hydrocarbon-contaminated groundwater sites. The technique should also be very useful for assessing the efficacy of engineered remediation efforts and by using CO(2) production rates, contaminant mass conversion over time and per unit volume.

  5. Rapid Development of Microbial Strains for Bioremediation of Military Soils and Dredged Materials Contaminated with Polycyclic Aromatic Hydrocarbons.

    DTIC Science & Technology

    1993-09-01

    Ecology 20, 197-209. Bartha , R., and Atlas , R. M. (1977). ’"The microbiology of aquatic oil spills," Advances in Applied Microbiology 22, 225-226. Bellin, C...are reviewed by Atlas (1981); Jones (1977); Westlake, Jobson, and Cook (1978); Dibble and Bartha (1979): Fedorak and Westlake (1981); Aamand et al... Bartha and Atlas (1977), Atlas (1981), and the National Academy of Science (1984). According to this information, petroleum components, including the

  6. Assessment of undiscovered hydrocarbon resources of sub-Saharan Africa

    USGS Publications Warehouse

    Brownfield, Michael E.

    2016-01-01

    The assessment was geology-based and used the total petroleum system (TPS) concept. The geologic elements of a TPS are hydrocarbon source rocks (source rock maturation and hydrocarbon generation and migration), reservoir rocks (quality and distribution), and traps where hydrocarbon accumulates. Using these geologic criteria, 16 conventional total petroleum systems and 18 assessment units in the 13 provinces were defined. The undiscovered, technically recoverable oil and gas resources were assessed for all assessment units.

  7. Detailed analysis of petroleum hydrocarbon attenuation in biopiles by high-performance liquid chromatography followed by comprehensive two-dimensional gas chromatography.

    PubMed

    Mao, Debin; Lookman, Richard; Van De Weghe, Hendrik; Van Look, Dirk; Vanermen, Guido; De Brucker, Nicole; Diels, Ludo

    2009-02-27

    Enhanced bioremediation of petroleum hydrocarbons in two biopiles was quantified by high-performance liquid chromatography (HPLC) followed by comprehensive two-dimensional gas chromatography (GCXGC). The attenuation of 34 defined hydrocarbon classes was calculated by HPLC-GCXGC analysis of representative biopile samples at start-up and after 18 weeks of biopile operation. In general, a-cyclic alkanes were most efficiently removed from the biopiles, followed by monoaromatic hydrocarbons. Cycloalkanes and polycyclic aromatic hydrocarbons (PAHs) were more resistant to degradation. A-cyclic biomarkers farnesane, trimethyl-C13, norpristane, pristane and phytane dropped to only about 10% of their initial concentrations. On the other hand, C29-C31 hopane concentrations remained almost unaltered after 18 weeks of biopile operation, confirming their resistance to biodegradation. They are thus reliable indicators to estimate attenuation potential of petroleum hydrocarbons in biopile processed soils.

  8. Identification of Electrode Respiring, Hydrocarbonoclastic Bacterial Strain Stenotrophomonas maltophilia MK2 Highlights the Untapped Potential for Environmental Bioremediation

    PubMed Central

    Venkidusamy, Krishnaveni; Megharaj, Mallavarapu

    2016-01-01

    Electrode respiring bacteria (ERB) possess a great potential for many biotechnological applications such as microbial electrochemical remediation systems (MERS) because of their exoelectrogenic capabilities to degrade xenobiotic pollutants. Very few ERB have been isolated from MERS, those exhibited a bioremediation potential toward organic contaminants. Here we report once such bacterial strain, Stenotrophomonas maltophilia MK2, a facultative anaerobic bacterium isolated from a hydrocarbon fed MERS, showed a potent hydrocarbonoclastic behavior under aerobic and anaerobic environments. Distinct properties of the strain MK2 were anaerobic fermentation of the amino acids, electrode respiration, anaerobic nitrate reduction and the ability to metabolize n-alkane components (C8–C36) of petroleum hydrocarbons (PH) including the biomarkers, pristine and phytane. The characteristic of diazoic dye decolorization was used as a criterion for pre-screening the possible electrochemically active microbial candidates. Bioelectricity generation with concomitant dye decolorization in MERS showed that the strain is electrochemically active. In acetate fed microbial fuel cells (MFCs), maximum current density of 273 ± 8 mA/m2 (1000 Ω) was produced (power density 113 ± 7 mW/m2) by strain MK2 with a coulombic efficiency of 34.8%. Further, the presence of possible alkane hydroxylase genes (alkB and rubA) in the strain MK2 indicated that the genes involved in hydrocarbon degradation are of diverse origin. Such observations demonstrated the potential of facultative hydrocarbon degradation in contaminated environments. Identification of such a novel petrochemical hydrocarbon degrading ERB is likely to offer a new route to the sustainable bioremedial process of source zone contamination with simultaneous energy generation through MERS. PMID:28018304

  9. Growth of four tropical tree species in petroleum-contaminated soil and effects of crude oil contamination.

    PubMed

    Pérez-Hernández, I; Ochoa-Gaona, S; Adams, R H; Rivera-Cruz, M C; Pérez-Hernández, V; Jarquín-Sánchez, A; Geissen, V; Martínez-Zurimendi, P

    2017-01-01

    Under greenhouse conditions, we evaluated establishment of four tree species and their capacity to degrade crude oil recently incorporated into the soil; the species were as follows: Cedrela odorata (tropical cedar), Haematoxylum campechianum (tinto bush), Swietenia macrophylla (mahogany), and Tabebuia rosea (macuilis). Three-month-old plants were planted in soil with three treatments of heavy petroleum and a control (C0 0 mg kg -1 ; C1 18,000 mg kg -1 ; C2 31,700 mg kg -1 ; C3 47,100 mg kg -1 ) with four repetitions per treatment and species; the experiment was carried out for 245 days. Height and biomass of all species significantly diminished as petroleum concentration increased, although plant survival was not affected. The quantity of colony-forming units (CFU) of rhizospheric bacteria varied among tree species and treatments; petroleum stimulated bacterial CFU for S. macrophylla. The number of fungi CFU for S. macrophylla and T. rosea was significantly greater in C0 than in soil with petroleum, but among species and among different concentrations, no significant differences were found. The greatest percentage of total petroleum hydrocarbon (TPH) degradation was found in C1 for soil without plants (45 %). Differences from the remaining treatments (petroleum concentrations in soil and plant species) were not significant (P < 0.05). Among all trees, H. campechianum had the greatest TPH degradation (32.5 % in C2). T. rosea (C1) and H. campechianum (C2) resulted in petroleum degradation at levels ranging from 20.5 to 32.5 %. On the basis of this experiment, the tree species used did not improve TPH degradation. However, all of them showed high rates of survival and vigor. So, as tree species provide goods and services, experiments with inoculation of hydrocarbonclastic microorganisms, addition of fertilizers, and mixture of tree and grasses are recommended.

  10. Molecular application for identification of polycyclic aromatic hydrocarbons degrading bacteria (PAHD) species isolated from oil polluted soil in Dammam, Saud Arabia.

    PubMed

    Ibrahim, Mohamed M; Al-Turki, Ameena; Al-Sewedi, Dona; Arif, Ibrahim A; El-Gaaly, Gehan A

    2015-09-01

    Soil contamination with petroleum hydrocarbon products such as diesel and engine oil is becoming one of the major environmental problems. This study describes hydrocarbons degrading bacteria (PHAD) isolated from long-standing petrol polluted soil from the eastern region, Dammam, Saudi Arabia. The isolated strains were firstly categorized by accessible shape detection, physiological and biochemistry tests. Thereafter, a technique established on the sequence analysis of a 16S rDNA gene was used. Isolation of DNA from the bacterial strains was performed, on which the PCR reaction was carried out. Strains were identified based on 16S rDNA sequence analysis, As follows amplified samples were spontaneously sequenced automatically and the attained results were matched to open databases. Among the isolated bacterial strains, S1 was identified as Staphylococcus aureus and strain S1 as Corynebacterium amycolatum.

  11. Hydrocarbon Mineralization in Sediments and Plasmid Incidence in Sediment Bacteria from the Campeche Bank

    PubMed Central

    Leahy, Joseph G.; Somerville, Charles C.; Cunningham, Kelly A.; Adamantiades, Grammenos A.; Byrd, Jeffrey J.; Colwell, Rita R.

    1990-01-01

    Rates of degradation of radiolabeled hydrocarbons and incidence of bacterial plasmid DNA were investigated in sediment samples collected from the Campeche Bank, Gulf of Mexico, site of an offshore oil field containing several petroleum platforms. Overall rates of mineralization of [14C]hexadecane and [14C]phenanthrene measured for sediments were negligible; <1% of the substrate was converted to CO2 in all cases. Low mineralization rates are ascribed to nutrient limitations and to lack of adaptation by microbial communities to hydrocarbon contaminants. Plasmid frequency data for sediment bacteria similarly showed no correlation with proximity to the oil field, but, instead, showed correlation with water column depth at each sampling site. Significant differences between sites were observed for proportion of isolates carrying single or multiple plasmids and mean number of plasmids per isolate, each of which increased as a function of depth. PMID:16348204

  12. Biological treatment process for removing petroleum hydrocarbons from oil field produced waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tellez, G.; Khandan, N.

    1995-12-31

    The feasibility of removing petroleum hydrocarbons from oil fields produced waters using biological treatment was evaluated under laboratory and field conditions. Based on previous laboratory studies, a field-scale prototype system was designed and operated over a period of four months. Two different sources of produced waters were tested in this field study under various continuous flow rates ranging from 375 1/D to 1,800 1/D. One source of produced water was an open storage pit; the other, a closed storage tank. The TDS concentrations of these sources exceeded 50,000 mg/l; total n-alkanes exceeded 100 mg/l; total petroleum hydrocarbons exceeded 125 mg/l;more » and total BTEX exceeded 3 mg/l. Removals of total n-alkanes, total petroleum hydrocarbons, and BTEX remained consistently high over 99%. During these tests, the energy costs averaged $0.20/bbl at 12 bbl/D.« less

  13. Investigation of Underground Hydrocarbon Leakage using Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Srigutomo, Wahyu; Trimadona; Agustine, Eleonora

    2016-08-01

    Ground Penetrating Radar (GPR) survey was carried out in several petroleum plants to investigate hydrocarbon contamination beneath the surface. The hydrocarbon spills are generally recognized as Light Non-Aqueous Phase Liquids (LNAPL) if the plume of leakage is distributed in the capillary fringe above the water table and as Dense Non-Aqueous Phase Liquids (DNAPL) if it is below the water table. GPR antennas of 200 MHz and 400 MHz were deployed to obtain clear radargrams until 4 m deep. In general, the interpreted radargram sections indicate the presence of surface concrete layer, the compacted silty soill followed by sand layer and the original clayey soil as well as the water table. The presence of hydrocarbon plumes are identified as shadow zones (radar velocity and intensity contrasts) in the radargram that blur the layering pattern with different intensity of reflected signal. Based on our results, the characteristic of the shadow zones in the radargram is controlled by several factors: types of hydrocarbon (fresh or bio-degraded), water moisture in the soil, and clay content which contribute variation in electrical conductivity and dielectric constants of the soil.

  14. Avian endocrine responses to environmental pollutants

    USGS Publications Warehouse

    Rattner, B.A.; Eroschenko, V.P.; Fox, G.A.; Fry, D.M.; Gorsline, J.

    1984-01-01

    Many environmental contaminants are hazardous to populations of wild birds. Chlorinated hydrocarbon pesticides and industrial pollutants are thought to be responsible for population declines of several species of predatory birds through eggshell thinning. Studies have demonstrated that these contaminants have estrogenic potency and may affect the functioning of the gonadal and thyroidal endocrine subsystems. Petroleum crude oil exerts toxicity externally, by oiling of plumage, and internally, by way of ingestion of oil while feeding or preening. Extensive ultrastructural damage to the inner zone of the adrenal, diminished adrenal responsiveness to adrenocorticotrophic hormone, and reduced corticosterone secretion rate suggest that low levels of plasma corticosterone reflect a direct effect of petroleum on the adrenal gland. Suppressive effects of oil on the ovary and decreases in circulating prolactin have been associated with impaired reproductive function. Large-scale field studies of free-living seabirds have confirmed some of the inhibitory effects of oil on reproduction that have been observed in laboratory studies. Organophosphorus insecticides, representing the most widely used class of pesticides in North America, have been shown to impair reproductive function, possibly by altering secretion of luteinizing hormone and progesterone. Relevant areas of future research on the effects of contaminants on avian endocrine function are discussed.

  15. Bioremediation of Crude Oil Contaminated Desert Soil: Effect of Biostimulation, Bioaugmentation and Bioavailability in Biopile Treatment Systems

    PubMed Central

    Benyahia, Farid; Embaby, Ahmed Shams

    2016-01-01

    This work was aimed at evaluating the relative merits of bioaugmentation, biostimulation and surfactant-enhanced bioavailability of a desert soil contaminated by crude oil through biopile treatment. The results show that the desert soil required bioaugmentation and biostimulation for bioremediation of crude oil. The bioaugmented biopile system led to a total petroleum hydrocarbon (TPH) reduction of 77% over 156 days while the system with polyoxyethylene (20) sorbitan monooleate (Tween 80) gave a 56% decrease in TPH. The biostimulated system with indigenous micro-organisms gave 23% reduction in TPH. The control system gave 4% TPH reduction. The addition of Tween 80 led to a respiration rate that peaked in 48 days compared to 88 days for the bioaugmented system and respiration declined rapidly due to nitrogen depletion. The residual hydrocarbon in the biopile systems studied contained polyaromatics (PAH) in quantities that may be considered as hazardous. Nitrogen was found to be a limiting nutrient in desert soil bioremediation. PMID:26891314

  16. Bioremediation of Crude Oil Contaminated Desert Soil: Effect of Biostimulation, Bioaugmentation and Bioavailability in Biopile Treatment Systems.

    PubMed

    Benyahia, Farid; Embaby, Ahmed Shams

    2016-02-15

    This work was aimed at evaluating the relative merits of bioaugmentation, biostimulation and surfactant-enhanced bioavailability of a desert soil contaminated by crude oil through biopile treatment. The results show that the desert soil required bioaugmentation and biostimulation for bioremediation of crude oil. The bioaugmented biopile system led to a total petroleum hydrocarbon (TPH) reduction of 77% over 156 days while the system with polyoxyethylene (20) sorbitan monooleate (Tween 80) gave a 56% decrease in TPH. The biostimulated system with indigenous micro-organisms gave 23% reduction in TPH. The control system gave 4% TPH reduction. The addition of Tween 80 led to a respiration rate that peaked in 48 days compared to 88 days for the bioaugmented system and respiration declined rapidly due to nitrogen depletion. The residual hydrocarbon in the biopile systems studied contained polyaromatics (PAH) in quantities that may be considered as hazardous. Nitrogen was found to be a limiting nutrient in desert soil bioremediation.

  17. Long-term Effects of Nutrient Addition and Phytoremediation on Diesel and Crude Oil Contaminated Soils in subarctic Alaska

    PubMed Central

    Leewis, Mary-Cathrine; Reynolds, Charles M.; Leigh, Mary Beth

    2014-01-01

    Phytoremediation is a potentially inexpensive method of detoxifying contaminated soils using plants and associated soil microorganisms. The remote locations and cold climate of Alaska provide unique challenges associated with phytoremediation such as finding effective plant species that can achieve successful site clean-up despite the extreme environmental conditions and with minimal site management. A long-term assessment of phytoremediation was performed which capitalized on a study established in Fairbanks in 1995. The original study sought to determine how the introduction of plants (Festuca rubra, Lolium multiflorum), nutrients (fertilizer), or their combination would affect degradation of petroleum hydrocarbon (TPH) contaminated soils (crude oil or diesel) over time. Within the year following initial treatments, the plots subjected to both planting and/or fertilization showed greater overall decreases in TPH concentrations in both the diesel and crude oil contaminated soils relative to untreated plots. We re-examined this field site after 15 years with no active site management to assess the long-term effects of phytoremediation on colonization by native and non-native plants, their rhizosphere microbial communities and on petroleum removal from soil. Native and non-native vegetation had extensively colonized the site, with more abundant vegetation found on the diesel contaminated soils than the more nutrient-poor, more coarse, and acidic crude oil contaminated soils. TPH concentrations achieved regulatory clean up levels in all treatment groups, with lower TPH concentrations correlating with higher amounts of woody vegetation (trees & shrubs). In addition, original treatment type has affected vegetation recruitment to each plot with woody vegetation and more native plants in unfertilized plots. Bacterial community structure also varies according to the originally applied treatments. This study suggests that initial treatment with native tree species in combination with grasses could be an effective means for phytoremediating petroleum contaminated soils and promoting ecological recovery in cold regions. PMID:24501438

  18. Major factors affecting in situ biodegradation rates of jet-fuel during large-scale biosparging project in sedimentary bedrock.

    PubMed

    Machackova, Jirina; Wittlingerova, Zdena; Vlk, Kvetoslav; Zima, Jaroslav

    2012-01-01

    Biodegradation of petroleum hydrocarbons (TPH), mainly jet fuel, had taken place at the former Soviet Army air base in the Czech Republic. The remediation of large-scale petroleum contamination of soil and groundwater has provided valuable information about biosparging efficiency in the sandstone sedimentary bedrock. In 1997 petroleum contamination was found to be present in soil and groundwater across an area of 28 hectares, divided for the clean-up purpose into smaller clean-up fields (several hectares). The total estimated quantity of TPH released to the environment was about 7,000 metric tons. Biosparging was applied as an innovative clean-up technology at the site and was operated over a 10-year period (1997-2008). Importance of a variety of factors that affect bacterial activity in unsaturated and saturated zones was widely studied on the site and influence of natural and technological factors on clean-up efficiency in heavily contaminates areas of clean-up fields (initial contaminant mass 111-452 metric ton/ha) was evaluated. Long-term monitoring of the groundwater temperature has shown seasonal rises and falls of temperature which have caused a fluctuation in biodegradation activity during clean-up. By contrast, an overall rise of average groundwater temperature was observed in the clean-up fields, most probably as a result of the biological activity during the clean-up process. The significant rise of biodegradation rates, observed after air sparging intensification, and strong linear correlation between the air injection rates and biodegradation activities have shown that the air injection rate is the principal factor in biodegradation efficiency in heavily contaminated areas. It has a far more important role for achieving a biodegradation activity than the contamination content which appeared to have had only a slight effect after the removal of about 75% of initial contamination.

  19. Evaluation of Water Repellency in Petroleum Drilling Cuttings Treated by Thermal Desorption: Implications for Use in Construction and Agriculture

    NASA Astrophysics Data System (ADS)

    Domínguez-Rodríguez, Verónica I.; Guzmán-Osorio, Francisco J.; Adams Schroeder, Randy H.; Bautista-Margulis, Raúl G.

    2010-05-01

    Thermal desorption is one of many methods used for the remediation of hydrocarbon contaminated soils and similar materials. It has several advantages over competing technologies, especially with respect to treatment times. While the biological treatment of contaminated soils may take several months depending principally on the type of hydrocarbons and starting concentration, thermal desorption typically takes less than one month, depending on the treatment capacities of the equipment involved, and the volume of material requiring treatment. In the petroleum producing region of southeastern Mexico, this has been one of the principal methods used for the treatment of drilling cuttings, due mostly to the short time required. As with most remediation projects, as well as in the treatment of exploration and production (E&P) wastes, the criteria used to consider the remediation finalized is the concentration of hydrocarbons in the treated material. This is based on the supposition that at some (relatively low) hydrocarbon concentration, the toxicological affects are reduced to acceptable levels. However, little attention has been paid to the physical-chemical properties of supposedly treated material, which may suffer from water repellency, especially in thermal treatment methods. This could greatly reduce the options for final use of treated materials, especially to support plant growth. Conversely, there may be some construction uses of treated material in which some water repellence could be beneficial (caps for land fills, for example). Considering the relevance of the physical-chemical impacts of petroleum on soil and similar materials, we felt it was important to evaluate the efficiency of the principal method used to treat E&P wastes in Mexico (thermal desporption) based on these factors. In this study different operating conditions (temperature and residence time) of a sub-pilot scale thermal desorption unit were evaluated with respect not only to reduction in hydrocarbon concentration, but also based on water repellency. To our knowledge this is the first study of this type. Water repellency severity was measured in petroleum drilling cuttings which had been treated by thermal desorption to reduce the concentration of total petroleum hydrocarbons (TPHs). The initial TPH concentration in the untreated material was 16850mg/Kg (dry). The prototype batch rotary oven used in this study was operated at 25 rpm, at three temperatures and three treatment times: at 150, 200, and 300°C, for 10, 15, and 20 minutes. Four of the nine treatments complied with the Mexican environmental norm (TPH less than 3000 mg/Kg), these being: at 200°C for 20 minutes and at 300°C for 10, 15 and 20 minutes. The treatments at 150°C resulted in a TPH reduction insufficient to comply with Mexican norm, and also resulted in high MED values (3,46 - 3,67). At 200°C, the decrease in repellency was directly proportional to the treatment time (r=-0,950), with a final value of MED=2,61 after 20 minutes. At 300°C, an increase in water repellency was observed to be directly proportional to the treatment time (r=0,9997), with a final value of MED=3,73 (severe repellence) after 20 minutes. This may be due to the partial combustion (rather than only desorption) of hydrocarbons at this temperature, and their deposition on soil surfaces. Based on these observations, operating conditions of 200°C for 20 minutes are recommended to achieve effective thermal desorption while reducing water repellency in the treated material. If a final material with more severe water repellency is desired for use in construction, a higher operation temperature is required (300°C) for at least 15-20 minutes.

  20. Biodegradation of aged diesel in diverse soil matrixes: impact of environmental conditions and bioavailability on microbial remediation capacity.

    PubMed

    Sutton, Nora B; van Gaans, Pauline; Langenhoff, Alette A M; Maphosa, Farai; Smidt, Hauke; Grotenhuis, Tim; Rijnaarts, Huub H M

    2013-07-01

    While bioremediation of total petroleum hydrocarbons (TPH) is in general a robust technique, heterogeneity in terms of contaminant and environmental characteristics can impact the extent of biodegradation. The current study investigates the implications of different soil matrix types (anthropogenic fill layer, peat, clay, and sand) and bioavailability on bioremediation of an aged diesel contamination from a heterogeneous site. In addition to an uncontaminated sample for each soil type, samples representing two levels of contamination (high and low) were also used; initial TPH concentrations varied between 1.6 and 26.6 g TPH/kg and bioavailability between 36 and 100 %. While significant biodegradation occurred during 100 days of incubation under biostimulating conditions (64.4-100 % remediation efficiency), low bioavailability restricted full biodegradation, yielding a residual TPH concentration. Respiration levels, as well as the abundance of alkB, encoding mono-oxygenases pivotal for hydrocarbon metabolism, were positively correlated with TPH degradation, demonstrating their usefulness as a proxy for hydrocarbon biodegradation. However, absolute respiration and alkB presence were dependent on soil matrix type, indicating the sensitivity of results to initial environmental conditions. Through investigating biodegradation potential across a heterogeneous site, this research illuminates the interplay between soil matrix type, bioavailability, and bioremediation and the implications of these parameters for the effectiveness of an in situ treatment.

  1. Assessment of intrinsic bioremediation of jet fuel contamination in a shallow aquifer, Beaufort, South Carolina

    USGS Publications Warehouse

    Chapelle, Frank; Landmeyer, J.E.; Bradley, P.M.

    1995-01-01

    Field and laboratory studies show that microorganisms indigenous to the ground-water system underlying Tank Farm C, Marine Corps Air Station Beaufort, S.C., degrade petroleum hydrocarbons under aerobic and anaerobic conditions. Under aerobic conditions, sediments from the shallow aquifer underlying the site mineralized radiolabeled (14C) toluene to 14CO2 with first-order rate constants of about -0.29 per day. Sediments incubated under anaerobic conditions mineralized radiolabeled toluene more slowly, with first-order rate constants of -0.001 per day. Although anaerobic rates of biodegradation are low, they are significant in the hydrologic and geochemical context of the site. Because of low hydraulic conductivities (1.9-9.1 feet per day) and low hydraulic gradients (about 0.004 feet per feet), ground water flows slowly (approximately 20 feet per year) at this site. Furthermore, aquifer sediments contain organic-rich peat that has a high sorptive capacity. Under these conditions, hydrocarbon contaminants have moved no further than 10 feet downgradient of the jet fuel free product. Digital solute-transport simulations, using the range of model parameters measured at the site, show that dissolved contaminants will be completely degraded before they are discharged from the aquifer into adjacent surface-water bodies. These results show that natural attenuation processes are containing the migration of soluble hydrocarbons, and that intrinsic bioremediation is a potentially effective remedial strategy at this site.

  2. Microbial activity and soil organic matter decay in roadside soils polluted with petroleum hydrocarbons

    NASA Astrophysics Data System (ADS)

    Mykhailova, Larysa; Fischer, Thomas; Iurchenko, Valentina

    2015-04-01

    It has been demonstrated previously that hydrocarbon addition to soil provokes soil organic matter priming (Zyakun et al., 2011). It has further been shown that petroleum hydrocarbons deposit to roadside soils bound to fine mineral particles and together with vehicle spray (Mykhailova et al., 2014), and that hydrocarbon concentrations decrease to safe levels within the first 15 m from the road, reaching background concentrations at 60-100 m distance (Mykhailova et al., 2013). It was the aim of this study to (I) identify the bioavailability of different petroleum hydrocarbon fractions to degradation and to (II) identify the native (i.e. pedogenic) C fraction affected by hydrocarbon-mediated soil organic matter priming during decay. To address this aim, we collected soil samples at distances from 1 to 100 m (sampling depth 15 cm) near the Traktorostroiteley avenue and the Pushkinskaya street in Kharkov, as well as near the country road M18 near Kharkov, Ukraine. The roads have been under exploitation for several decades, so microbial adaptation to enhanced hydrocarbon levels and full expression of effects could be assumed. The following C fractions were quantified using 13C-CP/MAS-NMR: Carbohydrates, Proteins, Lignin, Aliphates, Carbonyl/Carboxyl as well as black carbon according to Nelson and Baldock (2005). Petroleum hydrocarbons were determind after hexane extraction using GC-MS and divided into a light fraction (chain-length C27, Mykhailova et al., 2013). Potential soil respiration was determined every 48 h by trapping of CO2 evolving from 20 g soil in NaOH at 20 ° C and at 60% of the maximum water holding capacity and titration after a total incubation period of 4 weeks in the lab. It was found that soil respiration positively correlated with the ratio of the light fraction to the sum of medium and heavy fractions of petroleum hydrocarbons, which indicates higher biodegradation primarily of the light petroleum hydrocarbon fraction. Further, soil respiration was positively correlated with the carbohydrate fraction and negatively correlated with the aliphatic fraction of the soil C, while carbohydrate-C and alkyl-C increased and decreased with distance from the road, respectively. It is proposed that petroleum hydrocarbons supress soil biological activity at concentrations above 1500 mg kg-1, and that soil organic matter priming primarily affects the carbohydrate fraction of soil organic matter. It can be concluded that the abundance of solid carbohydrates (O-alkyl C) is of paramount importance for the hydrocarbon mineralization under natural conditions, compared to more recalcitrant SOM fractions (mainly aromatic and alkyl C). References Mykhailova, L., Fischer, T., Iurchenko, V. (2013) Distribution and fractional composition of petroleum hydrocarbons in roadside soils. Applied and Environmental Soil Science, vol. 2013, Article ID 938703, 6 pages, DOI 10.1155/2013/938703 Mykhailova, L., Fischer, T., Iurchenko, V. (2014) Deposition of petroleum hydrocarbons with sediment trapped in snow in roadside areas. Journal of Environmental Engineering and Landscape Management 22(3):237-244, DOI 10.3846/16486897.2014.889698 Nelson P.N. and Baldock J.A. (2005) Estimating the molecular composition of a diverse range of natural organic materials from solid-state 13C NMR and elemental analyses, 2005, Biogeochemistry (2005) 72: 1-34, DOI 10.1007/s10533-004-0076-3 Zyakun, A., Nii-Annang, S., Franke, G., Fischer, T., Buegger, F., Dilly, O. (2011) Microbial Actvity and 13C/12C Ratio as Evidence of N-Hexadecane and N-Hexadecanoic Acid Biodegradation in Agricultural and Forest Soils. Geomicrobiology Journal 28:632-647, DOI 10.1080/01490451.2010.489922

  3. FIELD TRAPPING OF SUBSURFACE VAPOR PHASE PETROLEUM HYDROCARBONS

    EPA Science Inventory

    Soil gas samples from intact soil cores were collected on adsorbents at a field site, then thermally desorbed and analyzed by laboratory gas chromatography (GC). ertical concentration profiles of predominant vapor phase petroleum hydrocarbons under ambient conditions were obtaine...

  4. Petroleum geology of Carter sandstone (upper Mississippian), Black Warrior Basin, Alabama

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bearden, B.L.; Mancini, E.A.

    1985-03-01

    The presence of combination petroleum traps makes the Black Warrior basin of northwestern Alabama an attractive area for continued hydrocarbon exploration. More than 1,500 wells have been drilled, and more than 90 separate petroleum pools have been discovered. The primary hydrocarbon reservoirs are Upper Mississippian sandstones. The Carter sandstone is the most productive petroleum reservoir in the basin. Productivity of the Carter sandstone is directly related to its environment of deposition. The Carter accumulated within a high constructive elongate to lobate delta, which prograded into the basin from the northwest to the southeast. Carter bar-finger and distal-bar lithofacies constitute themore » primary hydrocarbon reservoirs. Primary porosity in the Carter sandstone has been reduced by quartz overgrowths and calcite cementation. Petroleum traps in the Carter sandstone in central Fayette and Lamar Counties, Alabama, are primarily stratigraphic and combination (structural-stratigraphic) traps. The potential is excellent for future development of hydrocarbon reservoirs in the Upper Mississippian Carter sandstone. Frontier regions south and east of the known productive limits of the Black Warrior basin are ideal areas for continued exploration.« less

  5. Assessment of Undiscovered Oil and Gas Resources of the Uinta-Piceance Province of Colorado and Utah, 2002

    USGS Publications Warehouse

    ,

    2002-01-01

    The U.S. Geological Survey (USGS) recently completed an assessment of the undiscovered oil and gas potential of the UintaPiceance Province of northwestern Colorado and northeastern Utah (fig. 1). The assessment of the Uinta-Piceance Province is geology based and uses the Total Petroleum System concept. The geologic elements of Total Petroleum Systems include hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (sequence stratigraphy, petrophysical properties), and hydrocarbon traps (trap formation and timing). Using this geologic framework, the USGS defined five Total Petroleum Systems and 20 Assessment Units within these Total Petroleum Systems, and quantitatively estimated the undiscovered oil and gas resources within each Assessment Unit (table 1).

  6. Mapping the petroleum system - An investigative technique to explore the hydrocarbon fluid system

    USGS Publications Warehouse

    Magoon, L.B.; Dow, W.G.

    2000-01-01

    Creating a petroleum system map includes a series of logical steps that require specific information to explain the origin in time and space of discovered hydrocarbon occurrences. If used creatively, this map provides a basis on which to develop complementary plays and prospects. The logical steps include the characterization of a petroleum system (that is, to identify, map, and name the hydrocarbon fluid system) and the summary of these results on a folio sheet. A petroleum system map is based on the understanding that there are several levels of certainty from "guessing" to "knowing" that specific oil and gas accumulations emanated from a particular pod of active source rock. Levels of certainty start with the close geographic proximity of two or more accumulations, continues with the close stratigraphic proximity, followed by the similarities in bulk properties, and then detailed geochemical properties. The highest level of certainty includes the positive geochemical correlation of the hydrocarbon fluid in the accumulations to the extract of the active source rock. A petroleum system map is created when the following logic is implemented. Implementation starts when the oil and gas accumulations of a petroleum province are grouped stratigraphically and geographically. Bulk and geochemical properties are used to further refine the groups through the determination of genetically related oil and gas types. To this basic map, surface seeps and well shows are added. Similarly, the active source rock responsible for these hydrocarbon occurrences are mapped to further define the extent of the system. A folio sheet constructed for a hypothetical case study of the Deer-Boar(.) petroleum system illustrates this methodology.

  7. [Distribution and sources of polycyclic aromatic hydrocarbons in sediments from rivers of Pearl River Delta and its nearby South China Sea].

    PubMed

    Luo, Xiao-Jun; Chen, She-Jun; Mai, Bi-Xian; Zeng, Yong-Ping; Sheng, Guo-Ying; Fu, Jia-Mo

    2005-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are measured in surface sediments from rivers and estuary of Pearl River Delta and its nearby South China Sea. Total PAH concentration varied from 255.9 - 16 670.3 ng/g and a moderate to low level compare to relevant areas worldwide. The order of PAHs concentration in sediments was: rivers of Pearl River Delta > estuary > South China Sea, and the most significant PAH contamination was at Guangzhou channel of Zhujiang river. A decrease trend for PAHs concentration with distance from estuary to open sea can be sees in South China Sea. Coal and biomass combustion is the major source of PAHs in nearshore of South China Sea, and petroleum combustion is the main source of pyrolytic PAHs in rivers and estuary of Pearl River Delta according to PAHs diagnostic ratios. Petroleum PAHs are revealed have a high contribution to PAHs in Xijiang River, estuary and some stations in Zhujiang River. A comparison of data from study in 1997 with data from present study indicates that there is no clear change in the PAH concentration over time but the source of PAHs in Pearl River Delta have been change from a main coal combustion to petroleum combustion and being reflect in the sediments in rivers and estuary of Pearl River Delta where there have high sedimentation rate.

  8. Numerical simulation of in-situ chemical oxidation (ISCO) and biodegradation of petroleum hydrocarbons using a coupled model for bio-geochemical reactive transport

    NASA Astrophysics Data System (ADS)

    Marin, I. S.; Molson, J. W.

    2013-05-01

    Petroleum hydrocarbons (PHCs) are a major source of groundwater contamination, being a worldwide and well-known problem. Formed by a complex mixture of hundreds of organic compounds (including BTEX - benzene, toluene, ethylbenzene and xylenes), many of which are toxic and persistent in the subsurface and are capable of creating a serious risk to human health. Several remediation technologies can be used to clean-up PHC contamination. In-situ chemical oxidation (ISCO) and intrinsic bioremediation (IBR) are two promising techniques that can be applied in this case. However, the interaction of these processes with the background aquifer geochemistry and the design of an efficient treatment presents a challenge. Here we show the development and application of BIONAPL/Phreeqc, a modeling tool capable of simulating groundwater flow, contaminant transport with coupled biological and geochemical processes in porous or fractured porous media. BIONAPL/Phreeqc is based on the well-tested BIONAPL/3D model, using a powerful finite element simulation engine, capable of simulating non-aqueous phase liquid (NAPL) dissolution, density-dependent advective-dispersive transport, and solving the geochemical and kinetic processes with the library Phreeqc. To validate the model, we compared BIONAPL/Phreeqc with results from the literature for different biodegradation processes and different geometries, with good agreement. We then used the model to simulate the behavior of sodium persulfate (NaS2O8) as an oxidant for BTEX degradation, coupled with sequential biodegradation in a 2D case and to evaluate the effect of inorganic geochemistry reactions. The results show the advantages of a treatment train remediation scheme based on ISCO and IBR. The numerical performance and stability of the integrated BIONAPL/Phreeqc model was also verified.

  9. Ecological Evaluation of Proposed Discharge of Dredged Material into Ocean Waters.

    DTIC Science & Technology

    1977-07-01

    Methyl mercury Ref. 6 Oil and grease p. 229 - 5 5 Step 7.3 Petroleum hydrocarbons p. 226 Step 6.3 Phenol p. 241 Method SlO Method )I 78 p. 514 p. 4...and its compounds c. Cadmium and its compounds d. Petroleum hydrocarbons e. Known or suspected carcinogens, mutagens, or teratogens. 6 (This is a...its compounds 12 Cadmium and its compounds 12 6 0 Petroleum hydrocarbons : Aliphat ic 13 Aromatic 13 G8 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Table

  10. Source profiles for nonmethane organic compounds in the atmosphere of Cairo, Egypt.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doskey, P. V.; Fukui, Y.; Sultan, M.

    1999-07-01

    Profiles of the sources of nonmethane organic compounds (NMOCs) were developed for emissions from vehicles, petroleum fuels (gasoline, liquefied petroleum gas (LPG), and natural gas), a petroleum refinery, a smelter, and a cast iron factory in Cairo, Egypt. More than 100 hydrocarbons and oxygenated hydrocarbons were tentatively identified and quantified. Gasoline-vapor and whole-gasoline profiles could be distinguished from the other profiles by high concentrations of the C{sub 5} and C{sub 6} saturated hydrocarbons. The vehicle emission profile was similar to the whole-gasoline profile, with the exception of the unsaturated and aromatic hydrocarbons, which were present at higher concentrations in themore » vehicle emission profile. High levels of the C{sub 2}-C{sub 4} saturated hydrocarbons, particularly n-butane, were characteristic features of the petroleum refinery emissions. The smelter and cast iron factory emissions were similar to the refinery emissions; however, the levels of benzene and toluene were greater in the former two sources. The LPG and natural gas emissions contained high concentrations of n-butane and ethane, respectively. The NMOC source profiles for Cairo were distinctly different from profiles for U.S. sources, indicating that NMOC source profiles are sensitive to the particular composition of petroleum fuels that are used in a location.« less

  11. Determination of hydrocarbons transported by urban runoff in sediments of São Gonçalo Channel (Pelotas - RS, Brazil).

    PubMed

    Sanches Filho, Pedro J; Böhm, Emerson M; Böhm, Giani M B; Montenegro, Gissele O; Silveira, Lucas A; Betemps, Glauco R

    2017-01-30

    A high concentration of hydrocarbons in the environment is indicative of pollution. To evaluate the effect of hydrocarbons transported by urban runoff, the present study analyzed total petroleum hydrocarbons (TPHs), aliphatic hydrocarbons (AHs), unresolved complex mixture (UCM), and n-alkanes of the sediments of the canal that cross the urban area of Pelotas, Rio Grande do Sul, Brazil. The carbon preference index (CPI), terrigenous/aquatic ratio (TAR), and pristane/phytane ratio were determined. The TPH content ranged from 177,043.7μg·kg -1 ±13.4% to 5,892,667.0μg·kg -1 ±5.9%. The total aliphatic content ranged from 116,268.8μg·kg -1 ±11.1% to 2,393,592.6μg·kg -1 ±7.7%, indicating chronic contamination of n-alkanes petrogenic and biogenic sources. The levels of hydrocarbons (TPH, AHs, and n-alkanes) were considered relatively high, confirming the effect of urban runoff on the drainage system of cities and their consequent effect on the estuarine region of Patos Lagoon and other water resources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The response of maize (Zea mays L.) plant assisted with bacterial consortium and fertilizer under oily sludge.

    PubMed

    Shahzad, Asim; Saddiqui, Samina; Bano, Asghari

    2016-01-01

    The objective of this study was to evaluate the role of PGPR consortium and fertilizer alone and in combination on the physiology of maize grown under oily sludge stress environment as well on the soil nutrient status. Consortium was prepared from Bacillus cereus (Acc KR232400), Bacillus altitudinis (Acc KF859970), Comamonas (Delftia) belonging to family Comamonadacea (Acc KF859971) and Stenotrophomonasmaltophilia (Acc KF859973). The experiment was conducted in pots with complete randomized design with four replicates and kept in field. Oily sludge was mixed in ml and Ammonium nitrate and Diammonium phosphate (DAP) were added at 70 ug/g and 7 ug/g at sowing. The plant was harvested at 21 d for estimation of protein, proline and antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD). To study the degradation, total petroleum hydrocarbon was extracted by soxhelt extraction and extract was analyzed by GC-FID at different period after incubation. Combined application of consortium and fertilizer enhanced the germination %, protein and, proline content by 90,130 and 99% higher than untreated maize plants. Bioavailability of macro and micro nutrient was also enhanced with consortium and fertilizer in oily sludge. The consortium and fertilizer in combined treatment decreased the superoxide dismutase (SOD), peroxidase dismutase (POD) of the maize leaves grown in oily sludge. Degradation of total petroleum hydrocarbon (TPHs) was 59% higher in combined application of consortium and fertilizer than untreated maize at 3 d. The bacterial consortium can enhanced the maize tolerance to oily sludge and enhanced degradation of total petroleum hydrocarbon (TPHs). The maize can be considered as tolerant plant species to remediate oily sludge contaminated soils.

  13. Response of microbial community and catabolic genes to simulated petroleum hydrocarbon spills in soils/sediments from different geographic locations.

    PubMed

    Liu, Q; Tang, J; Liu, X; Song, B; Zhen, M; Ashbolt, N J

    2017-10-01

    Study the response of microbial communities and selected petroleum hydrocarbon (PH)-degrading genes on simulated PH spills in soils/sediments from different geographic locations. A microcosm experiment was conducted by spiking mixtures of petroleum hydrocarbons (PHs) to soils/sediments collected from four different regions of China, including the Dagang Oilfield (DG), Sand of Bohai Sea (SS), Northeast China (NE) and Xiamen (XM). Changes in bacterial community and the abundance of PH-degrading genes (alkB, nah and phe) were analysed by denaturing gradient electrophoresis (DGGE) and qPCR, respectively. Degradation of alkanes and PAHs in SS and NE materials were greater (P < 0·05) than those in DG and XM. Clay content was negatively correlated with the degradation of total alkanes by 112 days and PAHs by 56 days, while total organic carbon content was negatively correlated with initial degradation of total alkanes as well as PAHs. Abundances of alkB, nah and phe genes increased 10- to 100-fold and varied by soil type over the incubation period. DGGE fingerprints identified the dominance of α-, β- and γ-Proteobacteria (Gram -ve) and Actinobacteria (Gram +ve) bacteria associated with degradation of PHs in the materials studied. The geographic divergence resulting from the heterogeneity of physicochemical properties of soils/sediments appeared to influence the abundance of metabolic genes and community structure of microbes capable of degrading PHs. When developing practical in-situ bioremediation approaches for PHs contamination of soils/sediment, appropriate microbial community structures and the abundance of PH-degrading genes appear to be influenced by geographic location. © 2017 The Society for Applied Microbiology.

  14. Recovering Greater Fungal Diversity from Pristine and Diesel Fuel Contaminated Sub-Antarctic Soil Through Cultivation Using Both a High and a Low Nutrient Media Approach

    PubMed Central

    Ferrari, Belinda C.; Zhang, Chengdong; van Dorst, Josie

    2011-01-01

    Novel cultivation strategies for bacteria are widespread and well described for recovering greater diversity from the “hitherto” unculturable majority. While similar approaches have not yet been demonstrated for fungi it has been suggested that of the 1.5 million estimated species less than 5% have been recovered into pure culture. Fungi are known to be involved in many degradative processes, including the breakdown of petroleum hydrocarbons, and it has been speculated that in Polar Regions they contribute significantly to bioremediation of contaminated soils. Given the biotechnological potential of fungi there is a need to increase efforts for greater species recovery, particularly from extreme environments such as sub-Antarctic Macquarie Island. In this study, like the yet-to-be cultured bacteria, high concentrations of nutrients selected for predominantly different fungal species to that recovered using a low nutrient media. By combining both media approaches to the cultivation of fungi from contaminated and non-contaminated soils, 91 fungal species were recovered, including 63 unidentified species. A preliminary biodegradation activity assay on a selection of isolates found that a high proportion of novel and described fungal species from a range of soil samples were capable of hydrocarbon degradation and should be characterized further. PMID:22131985

  15. Carbon fiber enhanced bioelectricity generation in soil microbial fuel cells.

    PubMed

    Li, Xiaojing; Wang, Xin; Zhao, Qian; Wan, Lili; Li, Yongtao; Zhou, Qixing

    2016-11-15

    The soil microbial fuel cell (MFC) is a promising biotechnology for the bioelectricity recovery as well as the remediation of organics contaminated soil. However, the electricity production and the remediation efficiency of soil MFC are seriously limited by the tremendous internal resistance of soil. Conductive carbon fiber was mixed with petroleum hydrocarbons contaminated soil and significantly enhanced the performance of soil MFC. The maximum current density, the maximum power density and the accumulated charge output of MFC mixed carbon fiber (MC) were 10, 22 and 16 times as high as those of closed circuit control due to the carbon fiber productively assisted the anode to collect the electron. The internal resistance of MC reduced by 58%, 83% of which owed to the charge transfer resistance, resulting in a high efficiency of electron transfer from soil to anode. The degradation rates of total petroleum hydrocarbons enhanced by 100% and 329% compared to closed and opened circuit controls without the carbon fiber respectively. The effective range of remediation and the bioelectricity recovery was extended from 6 to 20cm with the same area of air-cathode. The mixed carbon fiber apparently enhanced the bioelectricity generation and the remediation efficiency of soil MFC by means of promoting the electron transfer rate from soil to anode. The use of conductively functional materials (e.g. carbon fiber) is very meaningful for the remediation and bioelectricity recovery in the bioelectrochemical remediation. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Application of in situ biosparging to remediate a petroleum-hydrocarbon spill site: field and microbial evaluation.

    PubMed

    Kao, C M; Chen, C Y; Chen, S C; Chien, H Y; Chen, Y L

    2008-02-01

    In this study, a full-scale biosparging investigation was conducted at a petroleum-hydrocarbon spill site. Field results reveal that natural attenuation was the main cause of the decrease in major contaminants [benzene, toluene, ethylbenzene, and xylenes (BTEX)] concentrations in groundwater before the operation of biosparging system. Evidence of the occurrence of natural attenuation within the BTEX plume includes: (1) decrease of DO, nitrate, sulfate, and redox potential, (2) production of dissolved ferrous iron, sulfide, methane, and CO(2), (3) decreased BTEX concentrations along the transport path, (4) increased microbial populations, and (5) limited spreading of the BTEX plume. Field results also reveal that the operation of biosparging caused the shifting of anaerobic conditions inside the plume to aerobic conditions. This variation can be confirmed by the following field observations inside the plume due to the biosparging process: (1) increase in DO, redox potential, nitrate, and sulfate, (2) decrease dissolved ferrous iron, sulfide, and methane, (3) increased total cultivable heterotrophs, and (4) decreased total cultivable anaerobes as well as methanogens. Results of polymerase chain reaction, denaturing gradient gel electrophoresis, and nucleotide sequence analysis reveal that three BTEX biodegraders (Candidauts magnetobacterium, Flavobacteriales bacterium, and Bacteroidetes bacterium) might exist at this site. Results show that more than 70% of BTEX has been removed through the biosparging system within a 10-month remedial period at an averaged groundwater temperature of 18 degrees C. This indicates that biosparging is a promising technology to remediate BTEX contaminated groundwater.

  17. Effects of adding bulking agent, inorganic nutrient and microbial inocula on biopile treatment for oil-field drilling waste.

    PubMed

    Ma, Jie; Yang, Yongqi; Dai, Xiaoli; Chen, Yetong; Deng, Hanmei; Zhou, Huijun; Guo, Shaohui; Yan, Guangxu

    2016-05-01

    Contamination from oil-field drilling waste is a worldwide environmental problem. This study investigated the performance of four bench-scale biopiles in treating drilling waste: 1) direct biopile (DW), 2) biopile plus oil-degrading microbial consortium (DW + M), 3) biopile plus microbial consortium and bulking agents (saw dust) (DW + M + BA), 4) biopile plus microbial consortium, bulking agents, and inorganic nutrients (Urea and K2HPO4) (DW + M + BA + N). Ninety days of biopiling removed 41.0%, 44.0%, 55.7% and 87.4% of total petroleum hydrocarbon (TPH) in the pile "DW", "DW + M", "DW + M + BA", and "DW + M + BA + N" respectively. Addition of inorganic nutrient and bulking agents resulted in a 56.9% and 26.6% increase in TPH removal efficiency respectively. In contrast, inoculation of hydrocarbon-degrading microorganisms only slightly enhanced the contaminant removal (increased 7.3%). The biopile with stronger contaminant removal also had higher pile temperature and lower pile pH (e.g., in "DW + M + BA + N"). GC-MS analysis shows that biopiling significantly reduced the total number of detected contaminants and changed the chemical composition. Overall, this study shows that biopiling is an effective remediation technology for drilling waste. Adding inorganic nutrients and bulking agents can significantly improve biopile performance while addition of microbial inocula had minimal positive impacts on contaminant removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Transport and release of chemicals from plastics to the environment and to wildlife.

    PubMed

    Teuten, Emma L; Saquing, Jovita M; Knappe, Detlef R U; Barlaz, Morton A; Jonsson, Susanne; Björn, Annika; Rowland, Steven J; Thompson, Richard C; Galloway, Tamara S; Yamashita, Rei; Ochi, Daisuke; Watanuki, Yutaka; Moore, Charles; Viet, Pham Hung; Tana, Touch Seang; Prudente, Maricar; Boonyatumanond, Ruchaya; Zakaria, Mohamad P; Akkhavong, Kongsap; Ogata, Yuko; Hirai, Hisashi; Iwasa, Satoru; Mizukawa, Kaoruko; Hagino, Yuki; Imamura, Ayako; Saha, Mahua; Takada, Hideshige

    2009-07-27

    Plastics debris in the marine environment, including resin pellets, fragments and microscopic plastic fragments, contain organic contaminants, including polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons, petroleum hydrocarbons, organochlorine pesticides (2,2'-bis(p-chlorophenyl)-1,1,1-trichloroethane, hexachlorinated hexanes), polybrominated diphenylethers, alkylphenols and bisphenol A, at concentrations from sub ng g(-1) to microg g(-1). Some of these compounds are added during plastics manufacture, while others adsorb from the surrounding seawater. Concentrations of hydrophobic contaminants adsorbed on plastics showed distinct spatial variations reflecting global pollution patterns. Model calculations and experimental observations consistently show that polyethylene accumulates more organic contaminants than other plastics such as polypropylene and polyvinyl chloride. Both a mathematical model using equilibrium partitioning and experimental data have demonstrated the transfer of contaminants from plastic to organisms. A feeding experiment indicated that PCBs could transfer from contaminated plastics to streaked shearwater chicks. Plasticizers, other plastics additives and constitutional monomers also present potential threats in terrestrial environments because they can leach from waste disposal sites into groundwater and/or surface waters. Leaching and degradation of plasticizers and polymers are complex phenomena dependent on environmental conditions in the landfill and the chemical properties of each additive. Bisphenol A concentrations in leachates from municipal waste disposal sites in tropical Asia ranged from sub microg l(-1) to mg l(-1) and were correlated with the level of economic development.

  19. Transport and release of chemicals from plastics to the environment and to wildlife

    PubMed Central

    Teuten, Emma L.; Saquing, Jovita M.; Knappe, Detlef R. U.; Barlaz, Morton A.; Jonsson, Susanne; Björn, Annika; Rowland, Steven J.; Thompson, Richard C.; Galloway, Tamara S.; Yamashita, Rei; Ochi, Daisuke; Watanuki, Yutaka; Moore, Charles; Viet, Pham Hung; Tana, Touch Seang; Prudente, Maricar; Boonyatumanond, Ruchaya; Zakaria, Mohamad P.; Akkhavong, Kongsap; Ogata, Yuko; Hirai, Hisashi; Iwasa, Satoru; Mizukawa, Kaoruko; Hagino, Yuki; Imamura, Ayako; Saha, Mahua; Takada, Hideshige

    2009-01-01

    Plastics debris in the marine environment, including resin pellets, fragments and microscopic plastic fragments, contain organic contaminants, including polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons, petroleum hydrocarbons, organochlorine pesticides (2,2′-bis(p-chlorophenyl)-1,1,1-trichloroethane, hexachlorinated hexanes), polybrominated diphenylethers, alkylphenols and bisphenol A, at concentrations from sub ng g–1 to µg g–1. Some of these compounds are added during plastics manufacture, while others adsorb from the surrounding seawater. Concentrations of hydrophobic contaminants adsorbed on plastics showed distinct spatial variations reflecting global pollution patterns. Model calculations and experimental observations consistently show that polyethylene accumulates more organic contaminants than other plastics such as polypropylene and polyvinyl chloride. Both a mathematical model using equilibrium partitioning and experimental data have demonstrated the transfer of contaminants from plastic to organisms. A feeding experiment indicated that PCBs could transfer from contaminated plastics to streaked shearwater chicks. Plasticizers, other plastics additives and constitutional monomers also present potential threats in terrestrial environments because they can leach from waste disposal sites into groundwater and/or surface waters. Leaching and degradation of plasticizers and polymers are complex phenomena dependent on environmental conditions in the landfill and the chemical properties of each additive. Bisphenol A concentrations in leachates from municipal waste disposal sites in tropical Asia ranged from sub µg l–1 to mg l–1 and were correlated with the level of economic development. PMID:19528054

  20. Understanding Plant-Microbe Interactions for Phytoremediation of Petroleum-Polluted Soil

    PubMed Central

    Nie, Ming; Wang, Yijing; Yu, Jiayi; Xiao, Ming; Jiang, Lifen; Yang, Ji; Fang, Changming; Chen, Jiakuan; Li, Bo

    2011-01-01

    Plant-microbe interactions are considered to be important processes determining the efficiency of phytoremediation of petroleum pollution, however relatively little is known about how these interactions are influenced by petroleum pollution. In this experimental study using a microcosm approach, we examined how plant ecophysiological traits, soil nutrients and microbial activities were influenced by petroleum pollution in Phragmites australis, a phytoremediating species. Generally, petroleum pollution reduced plant performance, especially at early stages of plant growth. Petroleum had negative effects on the net accumulation of inorganic nitrogen from its organic forms (net nitrogen mineralization (NNM)) most likely by decreasing the inorganic nitrogen available to the plants in petroleum-polluted soils. However, abundant dissolved organic nitrogen (DON) was found in petroleum-polluted soil. In order to overcome initial deficiency of inorganic nitrogen, plants by dint of high colonization of arbuscular mycorrhizal fungi might absorb some DON for their growth in petroleum-polluted soils. In addition, through using a real-time polymerase chain reaction method, we quantified hydrocarbon-degrading bacterial traits based on their catabolic genes (i.e. alkB (alkane monooxygenase), nah (naphthalene dioxygenase) and tol (xylene monooxygenase) genes). This enumeration of target genes suggests that different hydrocarbon-degrading bacteria experienced different dynamic changes during phytoremediation and a greater abundance of alkB was detected during vegetative growth stages. Because phytoremediation of different components of petroleum is performed by different hydrocarbon-degrading bacteria, plants’ ability of phytoremediating different components might therefore vary during the plant life cycle. Phytoremediation might be most effective during the vegetative growth stages as greater abundances of hydrocarbon-degrading bacteria containing alkB and tol genes were observed at these stages. The information provided by this study enhances our understanding of the effects of petroleum pollution on plant-microbe interactions and the roles of these interactions in the phytoremediation of petroleum-polluted soil. PMID:21437257

  1. [The relationship between abiotic factors and microbial activities of microbial eco-system in contaminated soil with petroleum hydrocarbons].

    PubMed

    Jia, Jian-li; Li, Guang-he; Zhong, Yi

    2004-05-01

    By means of the biostimulation and bioaugmentation in the micro-ecological environment of contaminated soil with petrochemical hydrocarbons, the biodegradation rates and mode of the contaminants were significantly improved. Based on the investigations carried out in some oilfields and petrochemical industrial area of Northern China, the relationship between the abiotic factors such as nutrient, pH, contaminants, water content, alkalinity, etc., and microbial activities was interpreted and identified in this paper. The results from the investigations and indoor and in-situ experiments conducted recent years indicated that the soils in the areas, to the extent, have been polluted by the different kinds of organic compounds composed of monoaromatic benzene, PAHs, chlorinated solvent, and alkanes, and the concentrations of the compounds mostly were elevated as compared to the background, with the highest 34,000 mg/kg dry soil. The column chromatography analysis results showed that the alkyl and aromatic compounds were accounted for more than 50% of the total hydrocarbon contents, which was readily degraded by degrading bacteria and improved the degrading microbe activities. The effective nitrogen and phosphorus encountered in the soil was less than 30 mg/kg dry soil and 10 mg/kg dry soil, only about 5% of total contents of them respectively. Based on the stoichiometric calculation and reasonable ratio of carbon to nutrient content regarding the biodegradation of organic compounds, the nutrient levels mainly composed of nitrogen and phosphorus in polluted soil as importantly limiting factors to degrading bacterial growth and activity were insufficient to the biodegradation of petrochemicals, and it is needed to add the nutrient for the bioremediation of contaminated soil. It is undoubted that the optimization of abiotic factors play significant role in increasing the microbial activity and improving the biodegradation rates.

  2. An assessment of natural biotransformation of petroleum hydrocarbons and chlorinated solvents at an aquifer plume transect

    NASA Astrophysics Data System (ADS)

    Skubal, Karen L.; Barcelona, Michael J.; Adriaens, Peter

    2001-05-01

    Field biogeochemical characterization and laboratory microcosm studies were performed to assess the potential for future biotransformation of trichloroethylene (TCE) and toluene in a plume containing petroleum hydrocarbons and chlorinated solvents at the former Wurtsmith Air Force Base in Oscoda, MI. In situ terminal electron accepting processes (TEAPs), contaminant composition and microbial phylogeny were studied at a plume transect 100 m downgradient of the source. The presence of reduced electron acceptors, relevant microbial communities, and elevated dissolved methane and carbon dioxide concentrations at the transect, as well as downgradient accumulation of BTEX metabolites and dechlorination products, indicated that past or current reductive dechlorination at the transect was likely driven by BTEX biodegradation in the methanogenic zone. However, TCE and toluene mineralization in sediment-groundwater microcosms without added electron acceptors did not exceed 5% during 300 days of incubation and was nearly invariant with original sediment TEAP, even following amendments of nitrogen and phosphorus. Mineralization rates were on the order of 0.0015-0.03 μmol/g day. After 8 months, microcosms showed evidence of methanogenesis, but CH 4 and CO 2 production arose from the degradation of contaminants other than toluene. Cis-dichloroethylene was observed in only one methanogenic microcosm after more than 500 days. It appears likely that spatially and temporally dynamic redox zonation at the plume transect will prevent future sustained reductive dehalogenation of highly chlorinated solvents, for during the course of a year, the predominant TEAP at the highly contaminated water table shifted from methanogenesis to iron- and sulfate-reduction. It is recommended that biotransformation studies combine considerations of long-term, spatially relevant changes in redox zonation with laboratory-scale studies of electron donor utilization and cometabolic substrate transformation to yield a more accurate assessment of natural bioattenuation of specific pollutants in aquifers contaminated by undefined organic waste mixtures.

  3. 21 CFR 178.3530 - Isoparaffinic petroleum hydrocarbons, synthetic.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... millimicrons—1.5 maximum. 320-329 millimicrons—0.08 maximum. 330-350 millimicrons—0.05 maximum. Nonvolatile residue 0.002 gram per 100 milliliters maximum. Synthetic isoparaffinic petroleum hydrocarbons containing... from the American Society for Testing Materials, 100 Barr Harbor Dr., West Conshohocken, Philadelphia...

  4. Do your extractable TPH concentrations represent dissolved petroleum? An update on applied research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zemo, D.A.

    1997-12-31

    Elevated concentrations of {open_quotes}dissolved-phase{close_quotes} extractable total petroleum hydrocarbons (TPH) in groundwater samples can be a significant impediment to site closure in states that regulate groundwater using TPH criteria. These analytical results are inconsistent with petroleum chemistry because of the relatively low water solubility of petroleum products. This paper presents an update of our research into the source of medium- to high-boiling TPH detections in groundwater samples and application of the results to multiple projects. This work follows from a 1995 publication in which positive interferences to the Method 8015M (GC-FID) TPH measurement by soluble, non-petroleum hydrocarbons resulting from intrinsic bioremediationmore » or non-dissolved petroleum adhered to particulates was described. The 1995 paper was largely theoretical and focused on one case study. Since 1995, we have evaluated the source of TPH detections in groundwater at numerous petroleum sites and have demonstrated the significance of interferences to the Method 8015M measurement to the California regulatory community. Our work has shown conclusively that elevated concentrations of extractable TPH are not representative of dissolved petroleum constituents. We have shown that a sample cleanup prior to analysis using silica gel cleanup (to remove polar non-petroleum hydrocarbons) and/or laboratory filtration (to reduce petroleum-affected particulates) is required to overcome the false positives caused by interferences to the Method 8015M measurement.« less

  5. Coagulation-flocculation process applied to wastewaters generated in hydrocarbon-contaminated soil washing: Interactions among coagulant and flocculant concentrations and pH value.

    PubMed

    Torres, Luis G; Belloc, Claudia; Vaca, Mabel; Iturbe, Rosario; Bandala, Erick R

    2009-11-01

    Wastewater produced in the contaminated soil washing was treated by means of coagulation-flocculation (CF) process. The wastewater contained petroleum hydrocarbons, a surfactant, i.e., sodium dodecyl sulfate (SDS) as well as salts, brownish organic matter and other constituents that were lixiviated from the soil during the washing process. The main goal of this work was to develop a process for treating the wastewaters generated when washing hydrocarbon-contaminated soils in such a way that it could be recycled to the washing process, and also be disposed at the end of the process properly. A second objective was to study the relationship among the coagulant and flocculant doses and the pH at which the CF process is developed, for systems where methylene blue active substances (MBAS) as well as oil and greases were present. The results for the selection of the right coagulant and flocculant type and dose, the optimum pH value for the CF process and the interactions among the three parameters are detailed along this work. The best coagulant and flocculant were FeCl(3) and Tecnifloc 998 at doses of 4,000 and 1 mg/L, correspondingly at pH of 5. These conditions gave color, turbidity, chemical oxygen demand (COD) and conductivity removals of 99.8, 99.6, 97.1 and 35%, respectively. It was concluded that it is feasible to treat the wastewaters generated in the contaminated soil washing process through CF process, and therefore, wastewaters could be recycled to the washing process or disposed to drainage.

  6. Simultaneous determination of hydrocarbon renewable diesel, biodiesel and petroleum diesel contents in diesel fuel blends using near infrared (NIR) spectroscopy and chemometrics.

    PubMed

    Alves, Julio Cesar Laurentino; Poppi, Ronei Jesus

    2013-11-07

    Highly polluting fuels based on non-renewable resources such as fossil fuels need to be replaced with potentially less polluting renewable fuels derived from vegetable or animal biomass, these so-called biofuels, are a reality nowadays and many countries have started the challenge of increasing the use of different types of biofuels, such as ethanol and biodiesel (fatty acid alkyl esters), often mixed with petroleum derivatives, such as gasoline and diesel, respectively. The quantitative determination of these fuel blends using simple, fast and low cost methods based on near infrared (NIR) spectroscopy combined with chemometric methods has been reported. However, advanced biofuels based on a mixture of hydrocarbons or a single hydrocarbon molecule, such as farnesane (2,6,10-trimethyldodecane), a hydrocarbon renewable diesel, can also be used in mixtures with biodiesel and petroleum diesel fuel and the use of NIR spectroscopy for the quantitative determination of a ternary fuel blend of these two hydrocarbon-based fuels and biodiesel can be a useful tool for quality control. This work presents a development of an analytical method for the quantitative determination of hydrocarbon renewable diesel (farnesane), biodiesel and petroleum diesel fuel blends using NIR spectroscopy combined with chemometric methods, such as partial least squares (PLS) and support vector machines (SVM). This development leads to a more accurate, simpler, faster and cheaper method when compared to the standard reference method ASTM D6866 and with the main advantage of providing the individual quantification of two different biofuels in a mixture with petroleum diesel fuel. Using the developed PLS model the three fuel blend components were determined simultaneously with values of root mean square error of prediction (RMSEP) of 0.25%, 0.19% and 0.38% for hydrocarbon renewable diesel, biodiesel and petroleum diesel, respectively, the values obtained were in agreement with those suggested by reference methods for the determination of renewable fuels.

  7. Soil sampling strategies for site assessments in petroleum-contaminated areas.

    PubMed

    Kim, Geonha; Chowdhury, Saikat; Lin, Yen-Min; Lu, Chih-Jen

    2017-04-01

    Environmental site assessments are frequently executed for monitoring and remediation performance evaluation purposes, especially in total petroleum hydrocarbon (TPH)-contaminated areas, such as gas stations. As a key issue, reproducibility of the assessment results must be ensured, especially if attempts are made to compare results between different institutions. Although it is widely known that uncertainties associated with soil sampling are much higher than those with chemical analyses, field guides or protocols to deal with these uncertainties are not stipulated in detail in the relevant regulations, causing serious errors and distortion of the reliability of environmental site assessments. In this research, uncertainties associated with soil sampling and sample reduction for chemical analysis were quantified using laboratory-scale experiments and the theory of sampling. The research results showed that the TPH mass assessed by sampling tends to be overestimated and sampling errors are high, especially for the low range of TPH concentrations. Homogenization of soil was found to be an efficient method to suppress uncertainty, but high-resolution sampling could be an essential way to minimize this.

  8. Fate and degradation of petroleum hydrocarbons in stormwater bioretention cells

    NASA Astrophysics Data System (ADS)

    LeFevre, Gregory Hallett

    This dissertation describes the investigation of the fate of hydrocarbons in stormwater bioretention areas and those mechanisms that affect hydrocarbon fate in such systems. Seventy-five samples from 58 bioretention areas were collected and analyzed to measure total petroleum hydrocarbon (TPH) residual and biodegradation functional genes. TPH residual in bioretention areas was greater than background sites but low overall (<3 µg/kg), and well below either the TPH concentration of concern or the expected concentration, assuming no losses. Bioretention areas with deep-root vegetation contained significantly greater quantites of bacterial 16S rRNA genes and two functional genes involved in hydrocarbon biodegradation. Field soils were capable of mineralizing naphthalene, a polycyclic aromatic hydrocarbon (PAH) when incubated in the laboratory. In an additional laboratory investigation, a column study was initiated to comprehensively determine naphthalene fate in a simulated bioretention cell using a 14C-labeled tracer. Sorption to soil was the greatest sink of naphthalene in the columns, although biodegradation and vegetative uptake were also important loss mechanisms. Little leaching occurred following the first flush, and volatilization was insignificant. Significant enrichment of naphthalene degrading bacteria occurred over the course of the experiment as a result of naphthalene exposure. This was evident from enhanced naphthalene biodegradation kinetics (measured via batch tests), significant increases in naphthalene dioxygenase gene quantities, and a significant correlation observed between naphthalene residual and biodegradation functional genes. Vegetated columns outperformed the unplanted control column in terms of total naphthalene removal and biodegradation kinetics. As a result of these experiments, a final study focused on why planted systems outperform unplanted systems was conducted. Plant root exudates were harvested from hydroponic setups for three types of plants. Additionally, a solution of artificial root exudates (AREs) as prepared. Exudates were digested using soil bacteria to create metabolized exudates. Raw and metabolized exudates were characterized for dissolved organic carbon, specific UV absorbance, spectral slope, florescence index, excitation-emission matrices, and surface tension. Significant differences on character were observed between the harvested exudates and the AREs, as well as between the raw and metabolized exudates. Naphthalene desorption from an aged soil was enhanced in the presence of raw exudates. The surface tension in samples containing raw harvested exudates was reduced compared to samples containing the metabolized exudates. Plant root exudates may therefore facilitate phytoremediation by enhancing contaminant desorption and improving bioavailability. Overall, this research concludes that heavily planted bioretention systems are a sustainable solution to mitigating stormwater hydrocarbon pollution as a result of likely enhanced contaminant desorption, and improved biodegradation and plant uptake in such systems.

  9. Environmental Impacts of Petroleum Production: Initial Results from the Osage-Skiatook Petroleum Environmental Research Sites, Osage County, Oklahoma

    USGS Publications Warehouse

    Kharaka, Yousif K.; Otton, James K.

    2003-01-01

    Exploration for and production of petroleum have caused major detrimental impacts to soils, surface and ground waters, and the local ecosystems in the United States. These impacts arise primarily from the improper disposal of large volumes of saline water produced with oil and gas, from accidental hydrocarbon and produced water releases, and from abandoned oil wells that were not correctly sealed. It is important to understand the long-term and short-term effects of produced water and hydrocarbon releases from these sites in order to develop risk-based remediation plans. Remediation is particularly needed in aging and depleted fields where land use is changing from petroleum production to residential, agricultural or recreational uses. About 20 scientists from the USGS and other governmental agencies and academia are involved in a multidisciplinary investigation to study the transport, fate, and natural attenuation of inorganic salts, trace metals, organic compounds and radionuclides present in produced water, and their impacts at the Osage-Skiatook Petroleum Environmental Research (OSPER) 'A' and 'B' sites, located on the Osage Reservation in Osage County, Oklahoma. Stakeholders in the project include the Osage Nation, which holds the mineral rights, the Bureau of Indian Affairs with trust responsibility, and the Army Corps of Engineers, which owns the surface rights at these sites and manages adjacent Skiatook Lake. The 4250-hectare Skiatook Lake provides drinking water to local Tulsa suburban communities and a rural water district, and offers recreational fishing and boating opportunities to tens of thousands of visitors each year. Approximately 1.5 and 1.0 hectare of land at the OSPER 'A' (depleted Lester lease) and 'B' (active Branstetter lease) sites, respectively, are affected by salt scarring, tree kills, soil salinization and brine and petroleum contamination due to the leakage of produced water and associated hydrocarbons from brine pits and accidental releases from active and inactive pipes and tank batteries. The leases are typical of many depleted and aging petroleum fields in Osage County, which ranks among the top oil and gas producing counties in Oklahoma with about 39,000 wells. Oil and gas production has occurred in Osage county for over one hundred years, but current production is mainly from stripper wells (averaging ~2.8 bbl/d oil and >30 bbl/d brine) that are shallow, mostly 300-700 m in depth, and produce from several sandstones of Pennsylvanian age. Results to date show that the produced water source is a Na-Ca-Cl brine (~150,000 mg/L total dissolved solids), with relatively high concentrations of Mg, Sr, and NH4, but low SO4 and H2S. With the exception of Fe and Mn, the concentrations of trace metals are low. Results also show that some and, eventually, the bulk, of inorganic salts and some dissolved organic species in the released brine from both sites will reach Skiatook Lake. Results at the 'A' site show that the salts have essentially been removed from the sandy soil which formed in a surficial layer of eolian sand, but degraded and weathered oil persists on the surface of old oil and brine pits, close to sites of old tanks, on old channels that carried oil from tanks to the oil pits and other impacted areas. Results also show a plume of high salinity water (5,000-30,600 mg/L TDS) is present at intermediate depths that extend from below the old oil and brine pits to Skiatook Lake. No liquid petroleum was found in the contaminated groundwater, but soluble petroleum byproducts, including organic acid anions and other volatile organic compounds (VOCs) are present. Results to date clearly show that significant amounts of salts from produced-water releases and petroleum hydrocarbons still remain in the soils and rocks of the impacted area after more than 60 years of natural attenuation. At the 'B' site significant amounts of produced water from the two active brine pits percolate into th

  10. Macondo-1 well oil-derived polycyclic aromatic hydrocarbons in mesozooplankton from the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Mitra, Siddhartha; Kimmel, David G.; Snyder, Jessica; Scalise, Kimberly; McGlaughon, Benjamin D.; Roman, Michael R.; Jahn, Ginger L.; Pierson, James J.; Brandt, Stephen B.; Montoya, Joseph P.; Rosenbauer, Robert J.; Lorenson, Thomas D.; Wong, Florence L.; Campbell, Pamela L.

    2012-01-01

    Mesozooplankton (>200 μm) collected in August and September of 2010 from the northern Gulf of Mexico show evidence of exposure to polycyclic aromatic hydrocarbons (PAHs). Multivariate statistical analysis revealed that distributions of PAHs extracted from mesozooplankton were related to the oil released from the ruptured British Petroleum Macondo-1 (M-1) well associated with the R/V Deepwater Horizon blowout. Mesozooplankton contained 0.03-97.9 ng g-1 of total PAHs and ratios of fluoranthene to fluoranthene + pyrene less than 0.44, indicating a liquid fossil fuel source. The distribution of PAHs isolated from mesozooplankton extracted in this study shows that the 2010 Deepwater Horizon spill may have contributed to contamination in the northern Gulf of Mexico ecosystem.

  11. Macondo-1 well oil-derived polycyclic aromatic hydrocarbons in mesozooplankton from the northern Gulf of Mexico

    USGS Publications Warehouse

    Mitra, Siddhartha; Kimmel, David G.; Snyder, Jessica; Scalise, Kimberly; McGlaughon, Benjamin D.; Roman, Michael R.; Jahn, Ginger L.; Pierson, James J.; Brandt, Stephen B.; Montoya, Joseph P.; Rosenbauer, Robert J.; Lorenson, T.D.; Wong, Florence L.; Campbell, Pamela L.

    2012-01-01

    Mesozooplankton (>200 μm) collected in August and September of 2010 from the northern Gulf of Mexico show evidence of exposure to polycyclic aromatic hydrocarbons (PAHs). Multivariate statistical analysis revealed that distributions of PAHs extracted from mesozooplankton were related to the oil released from the ruptured British Petroleum Macondo-1 (M-1) well associated with the R/VDeepwater Horizon blowout. Mesozooplankton contained 0.03–97.9 ng g−1 of total PAHs and ratios of fluoranthene to fluoranthene + pyrene less than 0.44, indicating a liquid fossil fuel source. The distribution of PAHs isolated from mesozooplankton extracted in this study shows that the 2010 Deepwater Horizon spill may have contributed to contamination in the northern Gulf of Mexico ecosystem.

  12. DEMONSTRATION BULLETIN: HNU-HANBY PCP IMMUNOASSAY TEST KIT - HNU - SYSTEMS, INC.

    EPA Science Inventory

    The HNU-Hanby test kit rapidly analyzes for petroleum hydrocarbons in soil and water samples. The test kit can be used to estimate pentachlorophenol (PCP) concentrations in samples when the carrier solvent is a petroleum hydrocarbon. The test kit estimates PCP concentrations in ...

  13. 21 CFR 172.882 - Synthetic isoparaffinic petroleum hydrocarbons.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Synthetic isoparaffinic petroleum hydrocarbons. 172.882 Section 172.882 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO...

  14. Toxicity testing of crude oil and related compounds using early life stages of the crimson-spotted rainbowfish (Melanotaenia fluviatilis).

    PubMed

    Pollino, Carmel A; Holdway, Douglas A

    2002-07-01

    The toxicity of petroleum hydrocarbons to marine aquatic organisms has been widely investigated; however, the effects on freshwater environments have largely been ignored. In the Australian freshwater environment, the potential impacts of petroleum hydrocarbons are virtually unknown. The toxicity of crude oil and related compounds were measured in the sensitive early life stages of the crimson-spotted rainbowfish (Melanotaenia fluviatilis). Waterborne petroleum hydrocarbons crossed the chorion of embryonic rainbowfish, reducing survival and hatchability. Acute exposures resulted in developmental abnormalities at and above 0.5 mg/L total petroleum hydrocarbons (TPH). Deformities included pericardial edema, disturbed axis formation, and abnormal jaw development. When assessing the acute toxicities of the water-accommodated fraction (WAF) of crude oil, dispersants, dispersant-oil mixtures, and naphthalene to larval rainbowfish, the lowest to highest 96-h median lethal concentrations for day of hatch larvae were naphthalene (0.51 mg/L), dispersed crude oil WAF (DCWAF)-9527 (0.74 mg/L TPH), WAF (1.28 mg/L TPH), DCWAF-9500 (1.37 mg/L TPH), Corexit 9500 (14.5 mg/L TPH), and Corexit 9527 (20.1 mg/L). Using naphthalene as a reference toxicant, no differences were found between the sensitivities of larval rainbowfish collected from adults exposed to petroleum hydrocarbons during embryonic development and those collected from unexposed adults.

  15. Performance of deep-rooted phreatophytic trees at a site containing total petroleum hydrocarbons.

    PubMed

    Ferro, Ari M; Adham, Tareq; Berra, Brett; Tsao, David

    2013-01-01

    Poplar and willow tree stands were installed in 2003 at a site in Raleigh, North Carolina containing total petroleum hydrocarbon - contaminated groundwater. The objective was groundwater uptake and plume control. The water table was 5 to 6 m below ground surface (bgs) and therefore methods were used to encourage deep root development. Growth rates, rooting depth and sap flow were measured for trees in Plot A located in the center of the plume and in Plot B peripheral to the plume. The trees were initially sub-irrigated with vertically installed drip-lines and by 2005 had roots 4 to 5 m bgs. Water balance calculations suggested groundwater uptake. In 2007, the average sap flow was higher for Plot B (approximately 59 L per day per tree) than for Plot A (approximately 23 L per day per tree), probably as a result of TPH-induced stress in Plot A. Nevertheless, the estimated rate of groundwater uptake for Plot A was sufficient, relative to the calculated rate of groundwater flux beneath the stand, that a high level of plume control was achieved based on MODFLOW modeling results. Down-gradient groundwater monitoring wells installed in late 2011 should provide quantitative data for plume control.

  16. Field and Laboratory Evaluation of the Potential for Monitored Natural Attenuation of Perchlorate in Groundwater

    DTIC Science & Technology

    2007-07-01

    Petroleum hydrocarbons mg/L 1.03 50.3 0.19 PHC as Gasoline µg/L 10,700 224,000 2160 PHC as Diesel Fuel mg/L 0.25 16 ɘ.095 Water Quality Total Organic...Intrinsic Bioremediation . Ground Water 33(2):180-189. Borden, R. C., M. J. Hunt, M. B. Shafer, M. A. Barlaz, 1997a. Environmental Research Brief...and J. Pollock, 2003. Potential for In Situ Bioremediation of Perchlorate in Contaminated Environments. Presented at: In Situ and On- Site

  17. Applied remediation of petroleum hydrocarbons 3(6)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinchee, R.E.; Kittel, J.A.; Reisinger, H.J.

    1995-12-31

    This volume provides sound scientific and engineering approaches. Sections of this volume cover bioremediation markets, general technology overviews, and selected case studies of crude oil spills in marine environments, heavy-metal co-contamination, steam injection, nitrate-based bioremediation, land farming, nutrient addition, confined aquifers, anaerobic biodegradation, free-product recovery technologies, bioremediation in low permeability soils and rock, biopile treatment, field-scale studies, oily waste organics as soil amendments, BTEX degradation in a biofilter, surfactant-aided recovery, mass transport in BTEX removal, electron acceptor selection and delivery strategies, and electrokinetic moisture and nutrient control in unsaturated soils.

  18. Ecotoxicological assessment of diamondback terrapin (Malaclemys terrapin) pond habitat, prey and eggs in Bermuda.

    PubMed

    Outerbridge, Mark E; O'Riordan, Ruth; Fort, Douglas J; Davenport, John

    2016-01-15

    Total petroleum hydrocarbons, PAH and various trace metal residues were extracted and analyzed from fresh whole diamondback terrapin (Malaclemys terrapin) eggs, whole brackish-water gastropods (terrapin prey) and benthic sediment from anchialine pond environments in Bermuda inhabited by terrapins. Gastropods and terrapin eggs showed higher concentrations of trace metals and organic contaminants than sediments. Conversely, PAHs were mostly found within the sediment and smaller amounts detected in gastropods and terrapin eggs. Results indicated that contaminants in prey were transferred to terrapin eggs, and that concentrations of several contaminants exceeded potentially toxic concentrations for aquatic vertebrates. Necropsy of unhatched eggs from nests that had yielded viable hatchlings showed significantly compromised embryonic development. Bermudian diamondback terrapins reside and feed in brackish wetland habitats characterized by widespread, multifactorial contamination. This study suggests that environmental contamination plays a role in the recorded low hatching success in terrapin eggs in Bermuda. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. 40 CFR 86.521-90 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Analyzers used with petroleum fuels and liquefied petroleum gas-fuel shall be optimized using propane. Analyzers used with natural gas-fuel for measurement of hydrocarbons shall be optimized using methane. If a... gas-fuel. Alternate methods yielding equivalent results may be used, if approved in advance by the...

  20. 40 CFR 86.521-90 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Analyzers used with petroleum fuels and liquefied petroleum gas-fuel shall be optimized using propane. Analyzers used with natural gas-fuel for measurement of hydrocarbons shall be optimized using methane. If a... gas-fuel. Alternate methods yielding equivalent results may be used, if approved in advance by the...

Top