Science.gov

Sample records for petroleum hydrocarbon contents

  1. Microbial degradation of petroleum hydrocarbons.

    PubMed

    Varjani, Sunita J

    2017-01-01

    Petroleum hydrocarbon pollutants are recalcitrant compounds and are classified as priority pollutants. Cleaning up of these pollutants from environment is a real world problem. Bioremediation has become a major method employed in restoration of petroleum hydrocarbon polluted environments that makes use of natural microbial biodegradation activity. Petroleum hydrocarbons utilizing microorganisms are ubiquitously distributed in environment. They naturally biodegrade pollutants and thereby remove them from the environment. Removal of petroleum hydrocarbon pollutants from environment by applying oleophilic microorganisms (individual isolate/consortium of microorganisms) is ecofriendly and economic. Microbial biodegradation of petroleum hydrocarbon pollutants employs the enzyme catalytic activities of microorganisms to enhance the rate of pollutants degradation. This article provides an overview about bioremediation for petroleum hydrocarbon pollutants. It also includes explanation about hydrocarbon metabolism in microorganisms with a special focus on new insights obtained during past couple of years. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Total Petroleum Hydrocarbons (TPH): ToxFAQs

    MedlinePlus

    ... a state: This map displays locations where Total Petroleum Hydrocarbons (TPH) is known to be present. On ... I get more information? ToxFAQs TM for Total Petroleum Hydrocarbons (TPH) ( Hidrocarburos Totales de Petróleo (TPH) ) August ...

  3. Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis

    SciTech Connect

    Ekechukwu, A.A.

    2002-05-10

    Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

  4. Bioremediation of Petroleum Hydrocarbon Contaminated Sites

    SciTech Connect

    Fallgren, Paul

    2009-03-30

    Bioremediation has been widely applied in the restoration of petroleum hydrocarbon-contaminated. Parameters that may affect the rate and efficiency of biodegradation include temperature, moisture, salinity, nutrient availability, microbial species, and type and concentration of contaminants. Other factors can also affect the success of the bioremediation treatment of contaminants, such as climatic conditions, soil type, soil permeability, contaminant distribution and concentration, and drainage. Western Research Institute in conjunction with TechLink Environmental, Inc. and the U.S. Department of Energy conducted laboratory studies to evaluate major parameters that contribute to the bioremediation of petroleum-contaminated drill cuttings using land farming and to develop a biotreatment cell to expedite biodegradation of hydrocarbons. Physical characteristics such as soil texture, hydraulic conductivity, and water retention were determined for the petroleum hydrocarbon contaminated soil. Soil texture was determined to be loamy sand to sand, and high hydraulic conductivity and low water retention was observed. Temperature appeared to have the greatest influence on biodegradation rates where high temperatures (>50 C) favored biodegradation. High nitrogen content in the form of ammonium enhanced biodegradation as well did the presence of water near field water holding capacity. Urea was not a good source of nitrogen and has detrimental effects for bioremediation for this site soil. Artificial sea water had little effect on biodegradation rates, but biodegradation rates decreased after increasing the concentrations of salts. Biotreatment cell (biocell) tests demonstrated hydrocarbon biodegradation can be enhanced substantially when utilizing a leachate recirculation design where a 72% reduction of hydrocarbon concentration was observed with a 72-h period at a treatment temperature of 50 C. Overall, this study demonstrates the investigation of the effects of

  5. Quantifying Microbial Utilization of Petroleum Hydrocarbons in Salt Marsh Sediments by Using the 13C Content of Bacterial rRNA▿

    PubMed Central

    Pearson, Ann; Kraunz, Kimberly S.; Sessions, Alex L.; Dekas, Anne E.; Leavitt, William D.; Edwards, Katrina J.

    2008-01-01

    Natural remediation of oil spills is catalyzed by complex microbial consortia. Here we took a whole-community approach to investigate bacterial incorporation of petroleum hydrocarbons from a simulated oil spill. We utilized the natural difference in carbon isotopic abundance between a salt marsh ecosystem supported by the 13C-enriched C4 grass Spartina alterniflora and 13C-depleted petroleum to monitor changes in the 13C content of biomass. Magnetic bead capture methods for selective recovery of bacterial RNA were used to monitor the 13C content of bacterial biomass during a 2-week experiment. The data show that by the end of the experiment, up to 26% of bacterial biomass was derived from consumption of the freshly spilled oil. The results contrast with the inertness of a nearby relict spill, which occurred in 1969 in West Falmouth, MA. Sequences of 16S rRNA genes from our experimental samples also were consistent with previous reports suggesting the importance of Gamma- and Deltaproteobacteria and Firmicutes in the remineralization of hydrocarbons. The magnetic bead capture approach makes it possible to quantify uptake of petroleum hydrocarbons by microbes in situ. Although employed here at the domain level, RNA capture procedures can be highly specific. The same strategy could be used with genus-level specificity, something which is not currently possible using the 13C content of biomarker lipids. PMID:18083852

  6. Petroleum and individual polycyclic aromatic hydrocarbons

    USGS Publications Warehouse

    Albers, Peter H.; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John

    1995-01-01

    Crude petroleum, refined-petroleum products, and individual polycyclic aromatic hydrocarbons (PAHs) contained within petroleum are found throughout the world. their presence has been detected in living and nonliving components of ecosystems. Petroleum can be an environmental hazard for wild animals and plants. Individual PAHs are also hazardous to wildlife, but they are most commonly associated with human illnesses. Because petroleum is a major environmental source of these PAHs, petroleum and PAHs are jointly presented in this chapter. Composition, sources, environmental fate, and toxic effects on all living components of aquatic and terrestrial environments are addessed.

  7. Biodegradation of petroleum hydrocarbons in estuarine sediments: metal influence.

    PubMed

    Almeida, Raquel; Mucha, Ana P; Teixeira, Catarina; Bordalo, Adriano A; Almeida, C Marisa R

    2013-02-01

    In this work, the potential effect of metals, such as Cd, Cu and Pb, on the biodegradation of petroleum hydrocarbons in estuarine sediments was investigated under laboratory conditions. Sandy and muddy non-vegetated sediments were collected in the Lima River estuary (NW Portugal) and spiked with crude oil and each of the metals. Spiked sediments were left in the dark under constant shaking for 15 days, after which crude oil biodegradation was evaluated. To estimate microbial abundance, total cell counts were obtained by DAPI staining and microbial community structure was characterized by ARISA. Culturable hydrocarbon degraders were determined using a modified most probable number protocol. Total petroleum hydrocarbons concentrations were analysed by Fourier Transform Infrared Spectroscopy after their extraction by sonication, and metal contents were determined by atomic absorption spectrometry. The results obtained showed that microbial communities had the potential to degrade petroleum hydrocarbons, with a maximum of 32 % degradation obtained for sandy sediments. Both crude oil and metals changed the microbial community structure, being the higher effect observed for Cu. Also, among the studied metals, only Cu displayed measurable deleterious effect on the hydrocarbons degradation process, as shown by a decrease in the hydrocarbon degrading microorganisms abundance and in the hydrocarbon degradation rates. Both degradation potential and metal influence varied with sediment characteristics probably due to differences in contaminant bioavailability, a feature that should be taken into account in developing bioremediation strategies for co-contaminated estuarine sites.

  8. Simultaneous determination of hydrocarbon renewable diesel, biodiesel and petroleum diesel contents in diesel fuel blends using near infrared (NIR) spectroscopy and chemometrics.

    PubMed

    Alves, Julio Cesar Laurentino; Poppi, Ronei Jesus

    2013-11-07

    Highly polluting fuels based on non-renewable resources such as fossil fuels need to be replaced with potentially less polluting renewable fuels derived from vegetable or animal biomass, these so-called biofuels, are a reality nowadays and many countries have started the challenge of increasing the use of different types of biofuels, such as ethanol and biodiesel (fatty acid alkyl esters), often mixed with petroleum derivatives, such as gasoline and diesel, respectively. The quantitative determination of these fuel blends using simple, fast and low cost methods based on near infrared (NIR) spectroscopy combined with chemometric methods has been reported. However, advanced biofuels based on a mixture of hydrocarbons or a single hydrocarbon molecule, such as farnesane (2,6,10-trimethyldodecane), a hydrocarbon renewable diesel, can also be used in mixtures with biodiesel and petroleum diesel fuel and the use of NIR spectroscopy for the quantitative determination of a ternary fuel blend of these two hydrocarbon-based fuels and biodiesel can be a useful tool for quality control. This work presents a development of an analytical method for the quantitative determination of hydrocarbon renewable diesel (farnesane), biodiesel and petroleum diesel fuel blends using NIR spectroscopy combined with chemometric methods, such as partial least squares (PLS) and support vector machines (SVM). This development leads to a more accurate, simpler, faster and cheaper method when compared to the standard reference method ASTM D6866 and with the main advantage of providing the individual quantification of two different biofuels in a mixture with petroleum diesel fuel. Using the developed PLS model the three fuel blend components were determined simultaneously with values of root mean square error of prediction (RMSEP) of 0.25%, 0.19% and 0.38% for hydrocarbon renewable diesel, biodiesel and petroleum diesel, respectively, the values obtained were in agreement with those suggested by

  9. 21 CFR 172.882 - Synthetic isoparaffinic petroleum hydrocarbons.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Synthetic isoparaffinic petroleum hydrocarbons... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.882 Synthetic isoparaffinic petroleum hydrocarbons. Synthetic isoparaffinic petroleum hydrocarbons may be safely used in food, in accordance with the...

  10. 21 CFR 178.3530 - Isoparaffinic petroleum hydrocarbons, synthetic.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Isoparaffinic petroleum hydrocarbons, synthetic... AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3530 Isoparaffinic petroleum hydrocarbons, synthetic. Isoparaffinic petroleum hydrocarbons, synthetic, may be safely used in the production...

  11. 21 CFR 178.3530 - Isoparaffinic petroleum hydrocarbons, synthetic.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Isoparaffinic petroleum hydrocarbons, synthetic... AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3530 Isoparaffinic petroleum hydrocarbons, synthetic. Isoparaffinic petroleum hydrocarbons, synthetic, may be safely used in the production...

  12. 21 CFR 172.882 - Synthetic isoparaffinic petroleum hydrocarbons.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Synthetic isoparaffinic petroleum hydrocarbons... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.882 Synthetic isoparaffinic petroleum hydrocarbons. Synthetic isoparaffinic petroleum hydrocarbons may be safely used in food, in accordance with the...

  13. 21 CFR 172.882 - Synthetic isoparaffinic petroleum hydrocarbons.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Synthetic isoparaffinic petroleum hydrocarbons... Multipurpose Additives § 172.882 Synthetic isoparaffinic petroleum hydrocarbons. Synthetic isoparaffinic petroleum hydrocarbons may be safely used in food, in accordance with the following conditions: (a) They are...

  14. 21 CFR 178.3530 - Isoparaffinic petroleum hydrocarbons, synthetic.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Isoparaffinic petroleum hydrocarbons, synthetic... AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3530 Isoparaffinic petroleum hydrocarbons, synthetic. Isoparaffinic petroleum hydrocarbons, synthetic, may be safely used in the production...

  15. 21 CFR 178.3530 - Isoparaffinic petroleum hydrocarbons, synthetic.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Isoparaffinic petroleum hydrocarbons, synthetic... and Production Aids § 178.3530 Isoparaffinic petroleum hydrocarbons, synthetic. Isoparaffinic petroleum hydrocarbons, synthetic, may be safely used in the production of nonfood articles intended for use...

  16. 21 CFR 178.3530 - Isoparaffinic petroleum hydrocarbons, synthetic.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Isoparaffinic petroleum hydrocarbons, synthetic... AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3530 Isoparaffinic petroleum hydrocarbons, synthetic. Isoparaffinic petroleum hydrocarbons, synthetic, may be safely used in the production...

  17. 21 CFR 178.3650 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Odorless light petroleum hydrocarbons. 178.3650... SANITIZERS Certain Adjuvants and Production Aids § 178.3650 Odorless light petroleum hydrocarbons. Odorless light petroleum hydrocarbons may be safely used, as a component of nonfood articles intended for use...

  18. 21 CFR 178.3650 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Odorless light petroleum hydrocarbons. 178.3650... SANITIZERS Certain Adjuvants and Production Aids § 178.3650 Odorless light petroleum hydrocarbons. Odorless light petroleum hydrocarbons may be safely used, as a component of nonfood articles intended for use...

  19. 21 CFR 178.3650 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Odorless light petroleum hydrocarbons. 178.3650... SANITIZERS Certain Adjuvants and Production Aids § 178.3650 Odorless light petroleum hydrocarbons. Odorless light petroleum hydrocarbons may be safely used, as a component of nonfood articles intended for use...

  20. 21 CFR 172.884 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Odorless light petroleum hydrocarbons. 172.884 Section 172.884 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... § 172.884 Odorless light petroleum hydrocarbons. Odorless light petroleum hydrocarbons may be...

  1. 21 CFR 178.3650 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Odorless light petroleum hydrocarbons. 178.3650... SANITIZERS Certain Adjuvants and Production Aids § 178.3650 Odorless light petroleum hydrocarbons. Odorless light petroleum hydrocarbons may be safely used, as a component of nonfood articles intended for use...

  2. 21 CFR 178.3650 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Odorless light petroleum hydrocarbons. 178.3650 Section 178.3650 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Production Aids § 178.3650 Odorless light petroleum hydrocarbons. Odorless light petroleum hydrocarbons...

  3. 21 CFR 573.740 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Odorless light petroleum hydrocarbons. 573.740 Section 573.740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... ANIMALS Food Additive Listing § 573.740 Odorless light petroleum hydrocarbons. Odorless light petroleum...

  4. Oxygenation of petroleum hydrocarbons after the Deepwater Horizon disaster

    NASA Astrophysics Data System (ADS)

    Aeppli, C.; Valentine, D. L.; Arakawa, N.; Aluwihare, L. I.; Redmond, M. C.; Nelson, R. K.; Reddy, C. M.

    2012-12-01

    The release of petroleum hydrocarbons after the Deepwater Horizon incident served as a model to study petroleum oxygenation in marine systems. While such processes are well established to remove select hydrocarbons from the ocean, little attention has been given to the formed product of oil weathering: oxygenated hydrocarbons (OxHC). As they are outside the analytical windows of most commonly used method for oil spill research, OxHC have mostly been overlooked so far. However, we found that OxHC were rapidly formed during the first 100 days after the onset of the Deepwater Horizon spill, and made up 50-90% of the weathered oil mass thereafter. The OxHC fraction had an oxygen content of >10% by mass, contained carboxylic acids and alcohols, and was petroleum-derived, as confirmed by radiocarbon analysis (Aeppli et al, 2012). To investigate the oxygen incorporation processes and products, we used two strategies. First, we employed selective chemical modification of OxHC that preserved their carbon backbones while making the compounds amenable to gas chromatography for structural elucidation. This strategy allowed us to identify saturated and aromatic compounds as parent compounds of OxHC. Second, we used stable oxygen isotopes as a proxy for oxygenation, and observed O-18 enrichment with increasing degree of weathering. Overall, this study sheds light on how oil hydrocarbons are oxygenated via microbial and photochemical transformation, leading to recalcitrant products of oil weathering. Reference: Aeppli et al., (2012). Environ Sci Technol, doi:10.1021/es3015138

  5. INNOVATIVE TECHNOLOGY VERIFICATION REPORT "FIELD MEASUREMENT TECHNOLOGIES FOR TOTAL PETROLEUM HYDROCARBONS IN SOIL" HORIBA INSTRUMENTS INCORPORATED OCMA-350 CONTENT ANALYZER

    EPA Science Inventory


    The OCMA-350 Oil Content Analyzer(OCMA-350) developed by Horiba Instruments Incorporated (Horiba), was demonstrated under the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation Program in June 2000 at the Navy Base Ventura County site in Port Huen...

  6. INNOVATIVE TECHNOLOGY VERIFICATION REPORT "FIELD MEASUREMENT TECHNOLOGIES FOR TOTAL PETROLEUM HYDROCARBONS IN SOIL" HORIBA INSTRUMENTS INCORPORATED OCMA-350 CONTENT ANALYZER

    EPA Science Inventory


    The OCMA-350 Oil Content Analyzer(OCMA-350) developed by Horiba Instruments Incorporated (Horiba), was demonstrated under the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation Program in June 2000 at the Navy Base Ventura County site in Port Huen...

  7. Treatment of petroleum hydrocarbon polluted environment through bioremediation: a review.

    PubMed

    Singh, Kriti; Chandra, Subhash

    2014-01-01

    Bioremediation play key role in the treatment of petroleum hydrocarbon contaminated environment. Exposure of petroleum hydrocarbon into the environment occurs either due to human activities or accidentally and cause environmental pollution. Petroleum hydrocarbon cause many toxic compounds which are potent immunotoxicants and carcinogenic to human being. Remedial methods for the treatment of petroleum contaminated environment include various physiochemical and biological methods. Due to the negative consequences caused by the physiochemical methods, the bioremediation technology is widely adapted and considered as one of the best technology for the treatment of petroleum contaminated environment. Bioremediation utilizes the natural ability of microorganism to degrade the hazardous compound into simpler and non hazardous form. This paper provides a review on the role of bioremediation in the treatment of petroleum contaminated environment, discuss various hazardous effects of petroleum hydrocarbon, various factors influencing biodegradation, role of various enzymes in biodegradation and genetic engineering in bioremediation.

  8. Site characterization and petroleum hydrocarbon plume mapping

    SciTech Connect

    Ravishankar, K.

    1996-12-31

    This paper presents a case study of site characterization and hydrocarbon contamination plume mapping/delineation in a gas processing plant in southern Mexico. The paper describes innovative and cost-effective use of passive (non-intrusive) and active (intrusive) techniques, including the use of compound-specific analytical methods for site characterization. The techniques used, on a demonstrative basis, include geophysical, geochemical, and borehole drilling. Geochemical techniques used to delineate the horizontal extent of hydrocarbon contamination at the site include soil gas surveys. The borehole drilling technique used to assess the vertical extent of contamination and confirm geophysical and geochemical data combines conventional hollow-stem auguring with direct push-probe using Geoprobe. Compound-specific analytical methods, such as hydrocarbon fingerprinting and a modified method for gasoline range organics, demonstrate the inherent merit and need for such analyses to properly characterize a site, while revealing the limitations of noncompound-specific total petroleum hydrocarbon analysis. The results indicate that the techniques used in tandem can properly delineate the nature and extent of contamination at a site; often supplement or complement data, while reducing the risk of errors and omissions during the assessment phase; and provide data constructively to focus site-specific remediation efforts. 7 figs.

  9. 21 CFR 172.884 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Odorless light petroleum hydrocarbons. 172.884 Section 172.884 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... HUMAN CONSUMPTION Multipurpose Additives § 172.884 Odorless light petroleum hydrocarbons. Odorless...

  10. 21 CFR 573.740 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Odorless light petroleum hydrocarbons. 573.740 Section 573.740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... ANIMALS Food Additive Listing § 573.740 Odorless light petroleum hydrocarbons. Odorless light...

  11. 21 CFR 172.884 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Odorless light petroleum hydrocarbons. 172.884 Section 172.884 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... HUMAN CONSUMPTION Multipurpose Additives § 172.884 Odorless light petroleum hydrocarbons. Odorless...

  12. 21 CFR 573.740 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Odorless light petroleum hydrocarbons. 573.740 Section 573.740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... ANIMALS Food Additive Listing § 573.740 Odorless light petroleum hydrocarbons. Odorless light...

  13. 21 CFR 172.884 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Odorless light petroleum hydrocarbons. 172.884 Section 172.884 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... HUMAN CONSUMPTION Multipurpose Additives § 172.884 Odorless light petroleum hydrocarbons. Odorless...

  14. 21 CFR 573.740 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Odorless light petroleum hydrocarbons. 573.740 Section 573.740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... ANIMALS Food Additive Listing § 573.740 Odorless light petroleum hydrocarbons. Odorless light...

  15. 21 CFR 573.740 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Odorless light petroleum hydrocarbons. 573.740 Section 573.740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... ANIMALS Food Additive Listing § 573.740 Odorless light petroleum hydrocarbons. Odorless light...

  16. 21 CFR 172.884 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Odorless light petroleum hydrocarbons. 172.884 Section 172.884 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... HUMAN CONSUMPTION Multipurpose Additives § 172.884 Odorless light petroleum hydrocarbons. Odorless...

  17. Effects of soil moisture on biodegradation of petroleum hydrocarbons

    SciTech Connect

    Holman, H.Y.; Tsang, Y.W.

    1995-12-31

    Soil water content has been shown empirically to affect the rate of degradation of petroleum products by indigenous microorganisms in a highly polluted soil. The kinetics of degradation under different soil water content were evaluated by measuring {sup 14}CO{sub 2} produced and released by microbes as they metabolized n-[1-{sup 14}C]hexadecane, [methyl-{sup 14}C]toluene, [ring-{sup 14}C]toluene, [1-{sup 14}C]naphthalene, [9-{sup 14}C]phenanthrene, and [side ring-{sup 14}C]anthracene. Measurements from batch kinetic experiments showed that the degradation of {sup 14}C-labeled petroleum compounds depends strongly on soil water content for the silt loam soil tested. The dependency, however, is compound specific, and very likely soil specific as well, although only one soil type was tested here. For aromatic hydrocarbons, a soil water content between 50% and 70% of field capacity appears to be optimum for the biodegradation process to proceed at a maximum rate. The fit of {sup 14}CO{sub 2} measurements to a first-order kinetic model also depends on the complexity of the hydrocarbons and the soil water content.

  18. Bioremediation of Petroleum Hydrocarbons in Heterogeneous Soils

    SciTech Connect

    Song Jin; Paul Fallgren; Terry Brown

    2006-03-02

    Western Research Institute (WRI) in conjunction with the University of Wyoming, Department of Renewable Resources and the U.S. Department of Energy, under Task 35, conducted a laboratory-scale study of hydrocarbon biodegradation rates versus a variety of physical and chemical parameters to develop a base model. By using this model, biodegradation of Petroleum hydrocarbons in heterogeneous soils can be predicted. The base model, as developed in this study, have been tested by both field and laboratory data. Temperature, pH, and nutrients appear to be the key parameters that can be incorporate into the model to predict biodegradation rates. Results to date show the effect of soil texture and source on the role of each parameter in the rates of hydrocarbon biodegradation. Derived from the existing study, an alternative approach of using CO{sub 2} accumulation data has been attempted by our collaborators at the University of Wyoming. The model has been modified and fine tuned by incorporating these data to provide more information on biodegradation.

  19. Total petroleum hydrocarbons in edible marine biota from Northern Persian Gulf.

    PubMed

    Nozar, Seyedeh Laili Mohebbi; Pauzi, Mohamad Zakaria; Salarpouri, Ali; Daghooghi, Behnam; Salimizadeh, Maryam

    2015-04-01

    To provide a baseline information for consumer's health, distribution of total petroleum hydrocarbons in 18 edible marine biota species from northern Persian Gulf was evaluated. The samples were purchased from fish market of Hormozgan Province, South of Iran. Marine biota samples included different species with various feeding habits and were analyzed based on ultraviolet florescence spectroscopy. Petroleum hydrocarbons showed narrow variation, ranging from 0.67 to 3.36 μg/g dry weight. The maximum value was observed in silver pomfret. Anchovy and silver pomfret with the highest content of petroleum hydrocarbons were known as good indicator for oil pollution in the studied area. From public health point of view, the detected concentrations for total petroleum hydrocarbons were lower than hazardous guidelines. The results were recorded as background data and information in the studied area; the continuous monitoring of pollutants is recommended, according to the rapid extension of industrial and oily activities in Hormozgan Province.

  20. Bioconversion of petroleum hydrocarbons in soil using apple filter cake

    PubMed Central

    Medaura, M. Cecilia; Ércoli, Eduardo C.

    2008-01-01

    The aim of this study was to investigate the feasibility of using apple filter cake, a fruit-processing waste to enhance the bioremediation of petroleum contaminated soil. A rotating barrel system was used to study the bioconversion of the xenobiotic compound by natural occurring microbial population. The soil had been accidentally polluted with a total petroleum hydrocarbon concentration of 41,000 ppm. Although this global value was maintained during the process, microbial intervention was evidenced through transformation of the petroleum fractions. Thus, fractions that represent a risk for the environment (GRO, Gasoline Range Organics i.e., C6 to C10–12; DRO, Diesel Range Organics i.e., C8–12 to C24–26 and RRO, Residual Range Organics i.e., C25 to C35) were significantly reduced, from 2.95% to 1.39%. On the contrary, heavier weight fraction from C35 plus other organics increased in value from 1.15% to 3.00%. The noticeable diminution of low molecular weight hydrocarbons content and hence environmental risk by the process plus the improvement of the physical characteristics of the soil, are promising results with regard to future application at large scale. PMID:24031241

  1. The nutrient, total petroleum hydrocarbon and heavy metal contents in the seawater of Bohai Bay, China: Temporal-spatial variations, sources, pollution statuses, and ecological risks.

    PubMed

    Peng, Shitao

    2015-06-15

    Seawater samples collected between 2007 and 2012 were determined the concentrations of nutrient (DIN and DIP), total petroleum hydrocarbon (TPH), and six different heavy metals (As, Cu, Zn, Pb, Cd and Hg). The DIN, DIP, TPH, Pb, and Cd concentrations decreased from 2007 to 2009 or 2010 and increased after 2010. However, the Hg and Cu concentrations increased from 2007 to 2012. In contrast, the As and Zn gradually decreased during the study period. All of the pollutant concentrations gradually decreased from the shoreline to the offshore sites. PCA result showed that urban and port areas, agriculture, and atmospheric deposition were the main sources of pollutants in the bay. Although most of the pollutants were present at concentrations bellow the highest seawater quality standards in China, eutrophication was a risk in Bohai Bay. In addition, DIN was the main pollutant and was responsible for the eutrophication risk in Bohai Bay.

  2. U. S. EPA’S NA APPROACH FOR PETROLEUM HYDROCARBONS

    EPA Science Inventory

    Most evaluations of NA of petroleum hydrocarbons use geochemical data to document the NA through biodegradation. The expected trends during biodegradation (plume interior vs. background concentrations) are Dissolved oxygen concentrations below background, Nitrate concentrations ...

  3. FIELD TRAPPING OF SUBSURFACE VAPOR PHASE PETROLEUM HYDROCARBONS

    EPA Science Inventory

    Soil gas samples from intact soil cores were collected on adsorbents at a field site, then thermally desorbed and analyzed by laboratory gas chromatography (GC). ertical concentration profiles of predominant vapor phase petroleum hydrocarbons under ambient conditions were obtaine...

  4. BIOREMEDIATION OF PETROLEUM HYDROCARBONS: A FLEXIBLE VARIABLE SPEED TECHNOLOGY

    EPA Science Inventory

    The bioremediation of petroleum hydrocarbons has evolved into a number of different processes. These processes include in-situ aquifer bioremediation, bioventing, biosparging, passive bioremediation with oxygen release compounds, and intrinsic bioremediation. Although often viewe...

  5. FIELD TRAPPING OF SUBSURFACE VAPOR PHASE PETROLEUM HYDROCARBONS

    EPA Science Inventory

    Soil gas samples from intact soil cores were collected on adsorbents at a field site, then thermally desorbed and analyzed by laboratory gas chromatography (GC). ertical concentration profiles of predominant vapor phase petroleum hydrocarbons under ambient conditions were obtaine...

  6. BIOREMEDIATION OF PETROLEUM HYDROCARBONS: A FLEXIBLE VARIABLE SPEED TECHNOLOGY

    EPA Science Inventory

    The bioremediation of petroleum hydrocarbons has evolved into a number of different processes. These processes include in-situ aquifer bioremediation, bioventing, biosparging, passive bioremediation with oxygen release compounds, and intrinsic bioremediation. Although often viewe...

  7. U. S. EPA’S NA APPROACH FOR PETROLEUM HYDROCARBONS

    EPA Science Inventory

    Most evaluations of NA of petroleum hydrocarbons use geochemical data to document the NA through biodegradation. The expected trends during biodegradation (plume interior vs. background concentrations) are Dissolved oxygen concentrations below background, Nitrate concentrations ...

  8. Study utilization of extractable petroleum hydrocarbons biodegradation waste as the main material for making solid fuels

    NASA Astrophysics Data System (ADS)

    Hendrianie, Nuniek; Juliastuti, Sri Rachmania; Ar-rosyidah, Fanny Husna; Rochman, Hilal Abdur

    2017-05-01

    Nowadays the existence of energy sources of oil and was limited. Therefore, it was important to searching for new innovations of renewable energy sources by utilizing the waste into a source of energy. On the other hand, the process of extractable petroleum hydrocarbons biodegradation generated sludge that had calorific value and untapped. Because of the need for alternative sources of energy innovation with the concept of zero waste and the fuel potential from extractable petroleum hydrocarbons biodegradation waste, so it was necessary to study the use of extractable petroleum hydrocarbons biodegradation waste as the main material for making solid fuel. In addition, sawdust is a waste that had a great quantities and also had a high calorific value to be mixed with extractable petroleum hydrocarbons biodegradation waste. The purpose of this study was to determine the characteristics of the extractable petroleum hydrocarbons biodegradation waste and to determine the potential and a combination of a mixture of extractable petroleum hydrocarbons biodegradation waste and sawdust which has the best calorific value. The variables of this study was the composition of the waste and sawdust as follows 1:1; 1:3; and 3:1 (mass of sawdust : mass of waste) and time of sawdust carbonization was 10, 15 and 20 minutes. Sawdust was carbonized to get the high heating value. The characteristic of main material and fuel analysis performed with proximate analysis. While the calorific value analysis was performed with a bomb calorimeter. From the research, it was known that extractable petroleum hydrocarbons biodegradation waste had a moisture content of 3.06%; volatile matter 19.98%; ash content of 0.56%; fixed carbon content of 76.4% and a calorific value of 717 cal/gram. And a mixture that had the highest calorific value (4286.5 cal/gram) achieved in comparison sawdust : waste (3:1) by carbonization of sawdust for 20 minutes.

  9. UNDERSTANDING THE FATE OF PETROLEUM HYDROCARBONS IN THE SUBSURFACE ENVIRONMENT

    EPA Science Inventory

    Sinca a significant number of the two or more million underground storage tank (UST) systems used for petroleum products leak, their cleanup poses a major environmental challenge. Our understnading of the fate of petroleum hydrocarbons in the subsurface environment is critical t...

  10. UNDERSTANDING THE FATE OF PETROLEUM HYDROCARBONS IN THE SUBSURFACE ENVIRONMENT

    EPA Science Inventory

    Sinca a significant number of the two or more million underground storage tank (UST) systems used for petroleum products leak, their cleanup poses a major environmental challenge. Our understnading of the fate of petroleum hydrocarbons in the subsurface environment is critical t...

  11. Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination.

    PubMed

    Wu, Manli; Li, Wei; Dick, Warren A; Ye, Xiqiong; Chen, Kaili; Kost, David; Chen, Liming

    2017-02-01

    Bioremediation of hydrocarbon degradation in petroleum-polluted soil is carried out by various microorganisms. However, little information is available for the relationships between hydrocarbon degradation rates in petroleum-contaminated soil and microbial population and activity in laboratory assay. In a microcosm study, degradation rate and efficiency of total petroleum hydrocarbons (TPH), alkanes, and polycyclic aromatic hydrocarbons (PAH) in a petroleum-contaminated soil were determined using an infrared photometer oil content analyzer and a gas chromatography mass spectrometry (GC-MS). Also, the populations of TPH, alkane, and PAH degraders were enumerated by a modified most probable number (MPN) procedure, and the hydrocarbon degrading activities of these degraders were determined by the Biolog (MT2) MicroPlates assay. Results showed linear correlations between the TPH and alkane degradation rates and the population and activity increases of TPH and alkane degraders, but no correlation was observed between the PAH degradation rates and the PAH population and activity increases. Petroleum hydrocarbon degrading microbial population measured by MPN was significantly correlated with metabolic activity in the Biolog assay. The results suggest that the MPN procedure and the Biolog assay are efficient methods for assessing the rates of TPH and alkane, but not PAH, bioremediation in oil-contaminated soil in laboratory.

  12. Field reconnaissance and estimation of petroleum hydrocarbon and heavy metal contents of soils affected by the Ebocha-8 oil spillage in Niger Delta, Nigeria.

    PubMed

    Osuji, Leo C; Onojake, Chukunedum M

    2006-04-01

    Field reconnaissance of the Ebocha-8 oil spill-affected site at Obiobi/Obrikom in the Niger Delta region of Nigeria was carried out to assess the extent of damage to the terrestrial ecosystem and delimit the epicenter of oil spillage. Following three successive reconnaissance surveys, the area to be sampled was delimited (200 x 200 m2), and soil samples were collected using the grid method from three replicate quadrats at two depths, surface (0-15 cm) and subsurface (15-30 cm). A geographically similar area located 50 m adjacent to the oil-polluted area was used as a reference (control) site. Total hydrocarbon content (THC) and heavy metal concentrations were later determined in the laboratory by extraction and spetrophotemetric techniques. Generally, the THC of soils at surface and subsurface depths of the oil-polluted plots was 2.06 x 10(4) +/- 4.97 x 10(3) mg/kg and 1.67 x 10(3) +/- 3.61 x 10(2) mg/kg soil, respectively, (no overlap in standard errors at 95% confidence limit) while concentrations of heavy metals(Pb, Cd, V, Cu and Ni) were enhanced, especially at the surface. The high levels of THC and heavy metals may predispose the site, which hitherto served as arable agricultural land, to impaired fertility and possible conflagration. When concentrations of heavy metals reach the levels obtained in this study, they may become toxic to plants or possibly bio-accumulate, thus leading to toxic reactions along the food chain. While the spilled-oil may have contributed to the enhanced levels of the metals in the affected soils, physico-chemical properties of the soils, mobility of metals, and the intense rainfall and flooding that preceded the period of study may have also contributed in part to their enhanced concentrations. The presence of high hydrocarbon content may cause oxygen deprivation, which may result in the death of soil fauna by asphyxiation. There is, therefore, an urgent need to clear the affected site of these excess hydrocarbon deposits so as to

  13. Petroleum hydrocarbon pollution of urban topsoil in Ibadan city, Nigeria

    SciTech Connect

    Onianwa, P.C.

    1995-08-01

    The distribution of total petroleum hydrocarbon in topsoils from various parts of Ibadan city, Nigeria, was studied. Samples were selected from around the following zones: (a) railway tracks, (b) petrol stations, (c) refuse dumps, (d) residential areas, (e) high traffic density areas, (f) mechanical workshops, and (g) control zones. Contamination of the topsoil with hydrocarbons was significant only around petrol stations and mechanical workshops where the factors of accumulation were 10.1 and 4.72, respectively. The general trend in hydrocarbon levels was petrol station > mechanical workshop > refuse dumps > high traffic areas {ge} rail tracks > control residential areas. The results highlight the need to monitor urban environments that are remote from petroleum exploration activities for petroleum hydrocarbon contamination. 19 refs., 3 tabs.

  14. Concerning the petroleum hydrocarbons migration in the permafrost zone

    NASA Astrophysics Data System (ADS)

    Goncharov, I. V.; Panova, E.; Grinko, A.; Dudarev, O.; Semiletov, I. P.

    2015-12-01

    In order to understand the mechanisms controlling methane emissions in the Laptev Sea it is extremely important to know the distribution patterns of subsea permafrost in the coastal zone. One possible solution to this problem is to analyze the hydrocarbon fluids in the bottom sediments. The object of our study was the core sample from Ivashkinskaya lagoon (Lena Delta, Sakha Republic). Pyrolytic studies were performed for this core sample (ROCK- EVAL 6 TURBO). According to the pyrolysis results there were 5 samples from the upper section in the range 0.36-5.58m selected for the further studies. The common feature of these samples is high content level of the pelitic component. They contain more than 1.0% of TOC and are composed of volatile organic compounds. Extracts obtained from the core sample were analyzed by GC-MS («Hewlett Packard» 6890/5973). Analyzed extracts demonstrated different classes of organic compounds in their composition with saturated and unsaturated hydrocarbons and acids dominating. Here are the histograms of n-alkanes in function of the carbon atoms number in the molecule (Figure). Considering our work experience with the Black Sea sediments we suggest that the samples with a high degree of even n-alkanes are confined to zones of petroleum hydrocarbons migration coming from the deep oil deposits. Figure. Typical n-alkanes distribution in the extracts (horizontal axis - the number of carbon atoms in the molecule, vertical axis - relative abundance)

  15. Effect of salinity on the bioremediation of petroleum hydrocarbons in a saline-alkaline soil.

    PubMed

    Qin, X; Tang, J C; Li, D S; Zhang, Q M

    2012-09-01

     The aim of this paper is to check the effect of salinity on the bioremediation process of petroleum hydrocarbons in the saline-alkaline soil.  In this study, soil salinity was adjusted to different levels by water leaching method and the bioremediation process was conducted for 28 days. Soil pH increased after leaching and decreased during bioremediation process. At initial time, moderate salinity enhanced the biodegradation and addition of microbial consortium was not effective in enhancing degradation rate of petroleum hydrocarbons. At day of 28 days, higher degradation rate was found in treatments with more leaching times with a maximum value of 42·36%. Dehydrogenase activity increased with the progress of bioremediation and positive correlation was found between dehydrogenase activity and degradation rate of petroleum hydrocarbons. Denaturing gradient gel electrophoresis analysis result showed decreased microbial community diversity with increased salt content.  The result suggested that salinity had great impact on bioremediation, and leaching and addition of inoculated consortium were effective in enhancing biodegradation of petroleum hydrocarbons in the saline-alkaline soil.  The result of this study is important for understanding the bioremediation process of petroleum in contaminated soil. New remediation method of petroleum contaminated soil can be developed based on this study. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  16. Petroleum hydrocarbon contamination of the Southern Black Sea Shelf, Turkey.

    PubMed

    Balkıs, Nuray; Aksu, Abdullah; Erşan, Mahmut S

    2012-02-01

    In this study, total petroleum hydrocarbon (TPH) contents and some aliphatic and aromatic hydrocarbon concentrations were analysed in coastal sediments of hot points collected from along the Southern Black Sea Shelf. Surface sediment (0-2 cm) samples were collected from the locations using a Van Veen type grab sampler in September 2008 during a cruise on the Pollution Monitoring R/V ARAR. All sampling procedures were carried out according to internationally recognized guide-lines (UNEP 1991). Samples were analysed using a UV-fluorescence spec-trophotometry (UNEP/IOC/IAEA 1992) and gas chromatog- raphy (GC) via a Hewlett-Packard HP6890N series with a selective detector (GC-MSD) after hexane/ dichloromethane extraction. The ratio C(17)/C(18) varied between 2.2 and 2.9 for the surface sediments of TRK 34Y (Samsun), TRK46 (Giresun), and TRK55 (Rize), respectively. These results showed higher marine organic matter accumulation. However, pyrolytic PAHs were found predominant in these areas. In contrast, petrogenic contributions were found at Stations TRK1 (İğneada), TRK13 (Zonguldak), TRK53 (Trabzon) and TRK61 (Hopa). TPH contents of surface sediments varied between 0.29 and 363 μg g(-1) (dry wt) throughout the shelf. The lowest values were measured at Stations TRK1 (İğneada) and TRK 19 (Bartın), whereas the highest values were found at Stations TRK13 (Zonguldak) and TRK 53 (Trabzon).

  17. Petroleum hydrocarbon contamination in surface sediments of Beiluohe Basins, China.

    PubMed

    Shi, Helin; Zhang, Li; Yue, Leping; Zheng, Guozhang

    2008-10-01

    Twenty-two surface sediment samples were collected from Beiluohe River, China, in 2005. Saturated hydrocarbons analysis was carried out on different river sediments in order to detect possible contaminations by petroleum development. Total concentrations of hydrocarbons in the sediments ranged from 6.4-147.3 microg g(-1) (dry wt) with an average of 76.8 microg g(-1), revealing relatively low to medium contamination in studied areas in spite of oil development for many years. The THC levels in the mainstream of Beiluohe River were relatively low. Sediment samples with higher total hydrocarbon concentrations were from the sites related to the petroleum activities or urban discharges. Gas chromatographic distribution patterns of n-alkanes are characteristic of petroleum in most samples. They show a strong unresolved complex mixture (UCM) with a small predominance of odd on even numbered n-alkanes. On the other hand, pentacyclic triterpanes and steranes occurred in all analyzed sediments and displayed similar signatures that are characteristic of mature organic matter contribution from oil contaminations. Hydrocarbons of terrestrial origin were also detected in the samples. However, contribution from plantwax hydrocarbons is overshadowed in samples by hydrocarbons of petroleum origin. This is obvious by the presence of the high relative abundance of UCM, and the identification of mature hopane and sterane in samples.

  18. Biodegradation of petroleum hydrocarbons in hypersaline environments

    PubMed Central

    Martins, Luiz Fernando; Peixoto, Raquel Silva

    2012-01-01

    Literature on hydrocarbon degradation in extreme hypersaline media presents studies that point to a negative effect of salinity increase on hydrocarbonoclastic activity, while several others report an opposite tendency. Based on information available in the literature, we present a discussion on the reasons that justify these contrary results. Despite the fact that microbial ability to metabolize hydrocarbons is found in extreme hypersaline media, indeed some factors are critical for the occurrence of hydrocarbon degradation in such environments. How these factors affect hydrocarbon degradation and their implications for the assessment of hydrocarbon biodegradation in hypersaline environments are presented in this review. PMID:24031900

  19. Biodegradation of petroleum hydrocarbons in hypersaline environments.

    PubMed

    Martins, Luiz Fernando; Peixoto, Raquel Silva

    2012-07-01

    Literature on hydrocarbon degradation in extreme hypersaline media presents studies that point to a negative effect of salinity increase on hydrocarbonoclastic activity, while several others report an opposite tendency. Based on information available in the literature, we present a discussion on the reasons that justify these contrary results. Despite the fact that microbial ability to metabolize hydrocarbons is found in extreme hypersaline media, indeed some factors are critical for the occurrence of hydrocarbon degradation in such environments. How these factors affect hydrocarbon degradation and their implications for the assessment of hydrocarbon biodegradation in hypersaline environments are presented in this review.

  20. Petroleum and Individual polycyclic aromatic hydrocarbons

    USGS Publications Warehouse

    Albers, P.H.; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John=

    2003-01-01

    A general treatment of petroleum and PAHs including presentations on composition and characteristics, sources, environmental fate, and effects on plants, invertebrates, fish, reptiles and amphibians, birds, and mammals. A revision of the 1995 book chapter of the same title.

  1. New selective solvents of aromatic hydrocarbons based on petroleum sulfides

    SciTech Connect

    Nikitin, Yu.E.; Baikova, A.Ya.; Vakhitova, N.G.; Khorosheva, S.I.; Murinov, Yu.I.

    1985-01-01

    The present work examines the extractive properties of petroleum sulfoxides (PSO) and their mixtures with other industrial extraction agents. Substitutes are tested to find inexpensive, high-boiling selective solvents and as extractive rectification agents for aromatic hydrocarbons. Effective extraction agents were proposed for the recovery of benzene and toluene from hydrocarbon mixtures during extractive rectification. Petroleum sulfoxides and their synergistic mixtures with diethylene glycol and dimethylformamide, enabled benzene and toluene to be recovered to the extent of 91-99% with a purity of 92-98%; when recovery is from a mixture enriched with benzene, purity increases to 99.5%.

  2. Reclamation and reuse of Freon in total petroleum hydrocarbon analyses

    SciTech Connect

    Ekechukwu, A.A.; Young, J.E.

    1997-12-31

    At the Savannah River Technology Center (SRTC), we have successfully demonstrated the use of a solvent recycling system to reclaim spent Freon solvent in total petroleum hydrocarbon (TPH) analyses of radioactive samples. A wide variety of sample types including ground water, organics, laboratory waste, process control, sludge, soils, and others are received by our lab for total petroleum hydrocarbon analysis. This paper demonstrates the successful use of a commercially available carbon bed recycle system which we modified to enable the recovery of 95-98 percent of the radioactive contaminated Freon. This system has been used successfully in our lab for the past three years.

  3. ASSESSMENT OF GENOTOXIC ACTIVITY OF PETROLEUM HYDROCARBON-BIOREMEDIATED SOIL

    SciTech Connect

    BRIGMON, ROBIN

    2004-10-20

    The relationship between toxicity and soil contamination must be understood to develop reliable indicators of environmental restoration for bioremediation. Two bacterial rapid bioassays: SOS chromotest and umu-test with and without metabolic activation (S-9 mixture) were used to evaluate genotoxicity of petroleum hydrocarbon-contaminated soil following bioremediation treatment. The soil was taken from an engineered biopile at the Czor Polish oil refinery. The bioremediation process in the biopile lasted 4 years, and the toxicity measurements were done after this treatment. Carcinogens detected in the soil, polyaromatic hydrocarbons (PAHs), were reduced to low concentrations (2 mg/kg dry wt) by the bioremediation process. Genotoxicity was not observed for soils tested with and without metabolic activation by a liver homogenate (S-9 mixture). However, umu-test was more sensitive than SOS-chromotest in the analysis of petroleum hydrocarbon-bioremediated soil. Analytical results of soil used in the bioassays confirmed that the bioremediation process reduced 81 percent of the petroleum hydrocarbons including PAHs. We conclude that the combined test systems employed in this study are useful tools for the genotoxic examination of remediated petroleum hydrocarbon-contaminated soil.

  4. Extraction of petroleum hydrocarbons from soil by mechanical shaking

    SciTech Connect

    Schwab, A.P.; Su, J.; Wetzel, S.; Pekarek, S.; Banks, M.K.

    1999-06-01

    A shaking extraction method for petroleum hydrocarbons in soil was developed and compared to Soxhlet extraction. Soxhlet extraction is an EPA-approved method for volatile and semivolatile organic contaminants from solid materials, but it has many disadvantages including long extraction periods and potential loss of volatile compounds. When field-moist soils are used, variability in subsamples is higher, and the extraction of hydrocarbons with a nonpolar solvent may be less efficient. A shaking method was designed to fill the need for simpler and more efficient extraction of petroleum hydrocarbons from soil. A systematic study of extraction conditions was performed for various soil types, soil weights, solvents, extraction times, and extraction cycles. The results were compared to those for Soxhlet extraction. Shaking 1 g of soil with a sequence of three 10-mL aliquots of dichloromethane or acetone was found to be equivalent to Soxhlet extraction for total petroleum hydrocarbons and polycyclic aromatic hydrocarbons. Shaking with acetone was more consistent than all other methods for the extraction of specific compounds from aged, contaminated soil. The shaking method appears to be applicable to a wide range of soil types and petroleum contaminants but should be compared to Soxhlet extraction for new conditions.

  5. Effect of petroleum hydrocarbons on algae

    SciTech Connect

    Bhadauria, S. ); Sengar, R.M.S. ); Mittal, S.; Bhattacharjee, S. )

    1992-01-01

    Algal species (65) were isolated from oil refinery effluent. Twenty-five of these species were cultured in Benecke's medium in a growth chamber, along with controls. Retardation in algal growth, inhibition in algal photosynthesis, and discoloration was observed in petroleum enriched medium. Few forms, viz. Cyclotella sp., Cosmarium sp., and Merismopedia sp. could not survive. The lag phase lengthened by several days and slope of exponential phase was also depressed. Chlamydomonas sp., Scenedesmus sp., Ankistrodesmus sp., Nitzschia sp. and Navicula sp. were comparatively susceptible to petroleum. Depression in carbon fixation, cell numbers, and total dry algal mass was noticeable, showing toxicity to both diatoms and green algae.

  6. Biodegradation of Petroleum Hydrocarbon Vapors in the Vadose Zone

    EPA Science Inventory

    The current state of practice to estimate the risk from intrusion of vapors of petroleum hydrocarbons from spills of gasoline is to measure the concentration of the chemical of concern in ground water under the spill, use Henry’s Law to estimate a concentration of the chemical ...

  7. Biodegradation of Petroleum Hydrocarbon Vapors in the Vadose Zone

    EPA Science Inventory

    The current state of practice to estimate the risk from intrusion of vapors of petroleum hydrocarbons from spills of gasoline is to measure the concentration of the chemical of concern in ground water under the spill, use Henry’s Law to estimate a concentration of the chemical ...

  8. In situ bioremediation of petroleum hydrocarbon and other organic compounds

    SciTech Connect

    Alleman, B.C.; Leeson, A.

    1999-10-01

    From supertanker oil spills to the leaking underground storage tank at the corner gas station, contamination from petroleum hydrocarbon fuels and other organic compounds is an environmental concern that affects nearly every small hamlet and major metropolis throughout the world. Moreover, the world`s rivers, estuaries, and oceans are threatened by contamination from petroleum leaks and spills. Fortunately, most petroleum hydrocarbons are amenable to biodegradation, and a considerable body of experience has been built up over the past two decades in applying in situ bioremediation to a variety of contaminants in all media. Good progress is being made in terms of developing innovative, cost-effective in situ approaches to bioremediation. This volume provides a comprehensive guide to the latest technological breakthroughs in both the laboratory and the field, covering such topics as air sparging, cometabolic biodegradation, treatment of MTBE, real-time control systems, nutrient addition, rapid biosensor analysis, multiphase extraction, and accelerated bioremediation.

  9. Respirometry for assessing the biodegradation of petroleum hydrocarbons.

    PubMed

    Plaza, G; Ulfig, K; Worsztynowicz, A; Malina, G; Krzeminska, B; Brigmon, R L

    2005-02-01

    The respiration method using the Micro-Oxymax respirometer was applied to evaluate the bioremediation potential of hydrocarbon-contaminated soils in two biopiles at the oil refinery in Czechowice-Dziedzice, Poland. In biopiles 1 and 2, two different technologies, i.e., enhanced (engineered) bioremediation and monitored natural attenuation (MNA) were used, respectively. In biopiles 1 and 2, the bioremediation process lasted 6 years and 8 months, respectively. The biodegradation of petroleum hydrocarbons was evaluated on the basis of CO2 production and O2 uptake. The CO2 production and O2 consumption rates during hydrocarbon biodegradation were calculated from the slopes of cumulative curve linear regressions. The results confirmed the hydrocarbon biodegradation process in both biopiles. However, in biopile 2 the process was more effective compared to biopile 1. In biopile 2, the O2 consumption and CO2 production means were 3.37 and 2.4 milliliters per kilogram of soil (dry weight) per minute, respectively. Whereas, in biopile 1, the O2 consumption and CO2 production means were 1.52 and 1.07 milliliters per kilogram of soil (dry weight) per minute, respectively. The mean biodegradation rate for biopile 2 was two times higher--67 mg hydrocarbons kg d.w.(-1)day(-1) compared with biopile 1, where the mean was 30 mg hydrocarbons kg d.w.(-1)day(-l). The results were correlated with petroleum hydrocarbon concentrations and microbial activity measured by dehydrogenase assay.

  10. Development of toxicity criteria for petroleum hydrocarbon fractions in the Petroleum Hydrocarbon Criteria Working Group approach for risk-based management of total petroleum hydrocarbons in soil.

    PubMed

    Twerdok, L E

    1999-02-01

    The Total Petroleum Hydrocarbon Criteria Working Croup (TPHCWG) was formed in 1993 based on the observation that widely different clean-up requirements were being used by states at sites that were contaminated with hydrocarbon materials such as fuels, lubricating oils, and crude oils. These requirements were usually presented as concentration of total petroleum hydrocarbon (TPH), and ranged from 10 to over 10,000 mg TPH/kg soil. Members of this multi-disciplinary group, consisting of representatives from industry, government and academia, jointly recognized that the numerical standard was not based on a scientific assessment of human health risk and established the following goal for the effort: To develop scientifically defensible information for establishing soil cleanup levels that are protective of human health at hydrocarbon contaminated sites. The approach developed by the TPHCWG for TPH hazard assessment consisted of dividing the petroleum hydrocarbon material into multichemical-containing fractions with similar fate and transport characteristics. These fractions were then assigned fate and transport properties (volatilization factor, soil leaching factor, etc.) and toxicity values (RfDs/RfCs) representative of the fraction. The actual site specific hazard assessment and derivation of cleanup levels is accomplished by analyzing sites to determine which fraction(s) is present and applying the appropriate fate, transport and toxicity factors. The method used by this group to determine TPH Faction specific toxicity criteria is a surrogate approach intended to supplement the indicator approach. Indicators are single, carcinogenic hydrocarbon compounds which are evaluated/regulated individually at either the federal or state level. The TPHCWG surrogate approach utilized all appropriate fraction specific toxicity data (single compound and mixture/product), minus the carcinogenic indicator compounds, to derive the fraction specific RfDs and RfCs. This hazard

  11. Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications.

    PubMed

    Fuentes, Sebastián; Méndez, Valentina; Aguila, Patricia; Seeger, Michael

    2014-06-01

    Bioremediation is an environmental sustainable and cost-effective technology for the cleanup of hydrocarbon-polluted soils and coasts. In spite of that longer times are usually required compared with physicochemical strategies, complete degradation of the pollutant can be achieved, and no further confinement of polluted matrix is needed. Microbial aerobic degradation is achieved by the incorporation of molecular oxygen into the inert hydrocarbon molecule and funneling intermediates into central catabolic pathways. Several families of alkane monooxygenases and ring hydroxylating dioxygenases are distributed mainly among Proteobacteria, Actinobacteria, Firmicutes and Fungi strains. Catabolic routes, regulatory networks, and tolerance/resistance mechanisms have been characterized in model hydrocarbon-degrading bacteria to understand and optimize their metabolic capabilities, providing the basis to enhance microbial fitness in order to improve hydrocarbon removal. However, microbial communities taken as a whole play a key role in hydrocarbon pollution events. Microbial community dynamics during biodegradation is crucial for understanding how they respond and adapt to pollution and remediation. Several strategies have been applied worldwide for the recovery of sites contaminated with persistent organic pollutants, such as polycyclic aromatic hydrocarbons and petroleum derivatives. Common strategies include controlling environmental variables (e.g., oxygen availability, hydrocarbon solubility, nutrient balance) and managing hydrocarbon-degrading microorganisms, in order to overcome the rate-limiting factors that slow down hydrocarbon biodegradation.

  12. Investigating bioremediation of petroleum hydrocarbons through landfarming using apparent electrical conductivity measurements

    NASA Astrophysics Data System (ADS)

    Van De Vijver, Ellen; Van Meirvenne, Marc; Seuntjens, Piet

    2015-04-01

    Bioremediation of soil contaminated with petroleum hydrocarbons through landfarming has been widely applied commercially at large scale. Biodegradation is one of the dominant pollutant removal mechanisms involved in landfarming, but strongly depends on the environmental conditions (e.g. presence of oxygen, moisture content). Conventionally the biodegradation process is monitored by the installation of field monitoring equipment and repeated sample collection and analysis. Because the presence of petroleum hydrocarbons and their degradation products can affect the electrical properties of the soil, proximal soil sensors such as electromagnetic induction (EMI) sensors may provide an alternative to investigate the biodegradation process of these contaminants. We investigated the relation between the EMI-based apparent electrical conductivity (ECa) of a landfarm soil and the presence and degradation status of petroleum hydrocarbons. The 3 ha study area was located in an oil refinery complex contaminated with petroleum hydrocarbons, mainly composed of diesel. At the site, a landfarm was constructed in 1999. The most recent survey of the petroleum hydrocarbon concentrations was conducted between 2011 and 2013. The sampling locations were defined by a grid with a 10 m by 10 m cell size and on each location a sample was taken from four successive soil layers with a thickness of 0.5 m each. Because the survey was carried out in phases using different georeferencing methods, the final dataset suffered from uncertainty in the coordinates of the sampling locations. In September 2013 the landfarm was surveyed for ECa with a multi-receiver electromagnetic induction sensor (DUALEM-21S) using motorized conveyance. The horizontal measurement resolution was 1 m by 0.25 m. On each measurement location the sensor recorded four ECa values representative of measurement depths of 0.5 m, 1.0 m, 1.6 m and 3.2 m. After the basic processing, the ECa measurements were filtered to remove

  13. Novel applications of light hydrocarbons chemistry in petroleum exploration

    SciTech Connect

    Mango, F.D. )

    1991-03-01

    The light hydrocarbons in petroleum are products of a kerogen-specific catalytic process. The catalysts are believed to be the transition metals entrained in kerogen. The process is controlled by the metals in the active sites and the kerogenous organic structures surrounding the active sites. Different catalytic sites are suggested to yield distinct distributions of light hydrocarbons. The author recognizes three dominant (primary) distributions, with all other distributions adequately represented by some linear combination of the three primary distributions. Three catalytic sites, therefore, can be associated with the generation of light hydrocarbons. He introduces a simple and inexpensive procedure using cross plots of various product ratios to correlate oils and source rocks. It has proven to be a remarkably articulate and powerful tool for deconvoluting diverse oils into genetic groups. The light hydrocarbons are also indicators of oil-generation temperature and other physical parameters associated with oil generation. The analysis of light hydrocarbons from this perspective is new. It provides the exploration geochemist with a novel technique for gaining insight into the fundamental chemistry of petroleum generation.

  14. Sand amendment enhances bioelectrochemical remediation of petroleum hydrocarbon contaminated soil.

    PubMed

    Li, Xiaojing; Wang, Xin; Ren, Zhiyong Jason; Zhang, Yueyong; Li, Nan; Zhou, Qixing

    2015-12-01

    Bioelectrochemical system is an emerging technology for the remediation of soils contaminated by petroleum hydrocarbons. However, performance of such systems can be limited by the inefficient mass transport in soil. Here we report a new method of sand amendment, which significantly increases both oxygen and proton transports, resulting to increased soil porosity (from 44.5% to 51.3%), decreased Ohmic resistance (by 46%), and increased charge output (from 2.5 to 3.5Cg(-1)soil). The degradation rates of petroleum hydrocarbons increased by up to 268% in 135d. The degradation of n-alkanes and polycyclic aromatic hydrocarbons with high molecular weight was accelerated, and denaturing gradient gel electrophoresis showed that the microbial community close to the air-cathode was substantially stimulated by the induced current, especially the hydrocarbon degrading bacteria Alcanivorax. The bioelectrochemical stimulation imposed a selective pressure on the microbial community of anodes, including that far from the cathode. These results suggested that sand amendment can be an effective approach for soil conditioning that will enhances the bioelectrochemical removal of hydrocarbons in contaminated soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Microbial Degradation of Petroleum Hydrocarbon Contaminants: An Overview

    PubMed Central

    Das, Nilanjana; Chandran, Preethy

    2011-01-01

    One of the major environmental problems today is hydrocarbon contamination resulting from the activities related to the petrochemical industry. Accidental releases of petroleum products are of particular concern in the environment. Hydrocarbon components have been known to belong to the family of carcinogens and neurotoxic organic pollutants. Currently accepted disposal methods of incineration or burial insecure landfills can become prohibitively expensive when amounts of contaminants are large. Mechanical and chemical methods generally used to remove hydrocarbons from contaminated sites have limited effectiveness and can be expensive. Bioremediation is the promising technology for the treatment of these contaminated sites since it is cost-effective and will lead to complete mineralization. Bioremediation functions basically on biodegradation, which may refer to complete mineralization of organic contaminants into carbon dioxide, water, inorganic compounds, and cell protein or transformation of complex organic contaminants to other simpler organic compounds by biological agents like microorganisms. Many indigenous microorganisms in water and soil are capable of degrading hydrocarbon contaminants. This paper presents an updated overview of petroleum hydrocarbon degradation by microorganisms under different ecosystems. PMID:21350672

  16. In situ bioremediation of petroleum hydrocarbon and other organic compounds

    SciTech Connect

    Alleman, B.C.; Leeson, A.

    1999-01-01

    From supertanker oil spills to the leaking underground storage tank at the corner gas station, contamination from petroleum hydrocarbon fuels and other organic compounds is an environmental concern that affects nearly every small hamlet and major metropolis throughout the world. Most petroleum hydrocarbons are amenable to biodegradation, and a considerable body of experience has been built up over the past two decades in applying in situ bioremediation to a variety of contaminants in all media. This volume provides a comprehensive guide to the latest technological breakthroughs in both the laboratory and the field, covering such topics as air sparging, co-metabolic biodegradation, treatment of MTBE, real-time control systems, nutrient addition, rapid biosensor analysis, multiphase extraction, and accelerated bioremediation.

  17. In situ bioremediation of petroleum hydrocarbon and other organic compounds

    SciTech Connect

    Alleman, B.C.; Leeson, A.

    1999-11-01

    From supertanker oil spills to the leaking underground storage tank at the corner gas station, contamination from petroleum hydrocarbon fuels and other organic compounds is an environmental concern that affects nearly every small hamlet and major metropolis throughout the world. Most petroleum hydrocarbons are amenable to biodegradation, and a considerable body of experience has been built up over the past two decades in applying in situ bioremediation to a variety of contaminants in all media. This volume provides a comprehensive guide to the latest technological breakthroughs in both the laboratory and the field, covering such topics as air sparging, co-metabolic biodegradation, treatment of MTBE, real-time control systems, nutrient addition, rapid biosensor analysis, multiphase extraction, and accelerated bioremediation.

  18. A new biodegradation prediction model specific to petroleum hydrocarbons.

    PubMed

    Howard, Philip; Meylan, William; Aronson, Dallas; Stiteler, William; Tunkel, Jay; Comber, Michael; Parkerton, Thomas F

    2005-08-01

    A new predictive model for determining quantitative primary biodegradation half-lives of individual petroleum hydrocarbons has been developed. This model uses a fragment-based approach similar to that of several other biodegradation models, such as those within the Biodegradation Probability Program (BIOWIN) estimation program. In the present study, a half-life in days is estimated using multiple linear regression against counts of 31 distinct molecular fragments. The model was developed using a data set consisting of 175 compounds with environmentally relevant experimental data that was divided into training and validation sets. The original fragments from the Ministry of International Trade and Industry BIOWIN model were used initially as structural descriptors and additional fragments were then added to better describe the ring systems found in petroleum hydrocarbons and to adjust for nonlinearity within the experimental data. The training and validation sets had r2 values of 0.91 and 0.81, respectively.

  19. Joint chemical flushing of soils contaminated with petroleum hydrocarbons.

    PubMed

    Zhou, Qixing; Sun, Fuhong; Liu, Rui

    2005-08-01

    How to increase the efficiency of chemical flushing and decrease the remediation expenses of contaminated soils are two key scientific and technological issues to be solved. Joint chemical flushing was tested and compared with the water-flushing. The joint acid-flushing could effectively remove petroleum hydrocarbons in contaminated aquorizem and the dosage of washing powder as a flushing agent was greatly reduced, thereby, saving approximately 1200 US dollars of expenses relative to the water-flushing. The joint salt-flushing could be an optimal method for the cleanup of meadow burozem contaminated with petroleum hydrocarbons under the experimental conditions. Moreover, the amount of surfactant remained in the two washed soils after the joint acid-flushing and the joint-salt-flushing was minimal.

  20. Solvency of nonpolar hydrocarbons in petroleum disperse systems

    SciTech Connect

    Pigunov, B.V.; Nadirov, N.K.; Anisimov, B.F.; Naurzalin, G.B.; Antoshkin, A.S.

    1987-09-01

    The authors mathematically establish the premise that the magnitude of the relative change in kinematic viscosity of petroleum systems due to the presence of nonpolar solvents increases in proportion to the density of the solvent molecules per unit volume and experimentally verify the premise in comparative assessments of several hydrocarbon solvents--benzene, cyclohexane, hexane, heptane, octane, and isooctane--and their action on the viscosities of crudes from the Karazhanbas, Kara-Arna, and Uzen fields in the Soviet Union.

  1. 40 CFR 180.526 - Synthetic isoparaffinic petroleum hydrocarbons; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Synthetic isoparaffinic petroleum... FOOD Specific Tolerances § 180.526 Synthetic isoparaffinic petroleum hydrocarbons; tolerances for residues. (a) General. Synthetic isoparaffinic petroleum hydrocarbons complying with 21 CFR 172.882 (a) and...

  2. 40 CFR 180.526 - Synthetic isoparaffinic petroleum hydrocarbons; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Synthetic isoparaffinic petroleum... FOOD Specific Tolerances § 180.526 Synthetic isoparaffinic petroleum hydrocarbons; tolerances for residues. (a) General. Synthetic isoparaffinic petroleum hydrocarbons complying with 21 CFR 172.882 (a) and...

  3. 40 CFR 180.526 - Synthetic isoparaffinic petroleum hydrocarbons; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Synthetic isoparaffinic petroleum... FOOD Specific Tolerances § 180.526 Synthetic isoparaffinic petroleum hydrocarbons; tolerances for residues. (a) General. Synthetic isoparaffinic petroleum hydrocarbons complying with 21 CFR 172.882 (a) and...

  4. 40 CFR 180.526 - Synthetic isoparaffinic petroleum hydrocarbons; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Synthetic isoparaffinic petroleum... FOOD Specific Tolerances § 180.526 Synthetic isoparaffinic petroleum hydrocarbons; tolerances for residues. (a) General. Synthetic isoparaffinic petroleum hydrocarbons complying with 21 CFR 172.882 (a) and...

  5. 40 CFR 180.526 - Synthetic isoparaffinic petroleum hydrocarbons; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Synthetic isoparaffinic petroleum... FOOD Specific Tolerances § 180.526 Synthetic isoparaffinic petroleum hydrocarbons; tolerances for residues. (a) General. Synthetic isoparaffinic petroleum hydrocarbons complying with 21 CFR 172.882 (a) and...

  6. The microbiology of hydrocarbon degradation in subsurface petroleum reservoirs: perspectives and prospects.

    PubMed

    Röling, Wilfred F M; Head, Ian M; Larter, Steve R

    2003-06-01

    The majority of the Earth's petroleum resource is partly biodegraded. This is of considerable practical significance and can limit economic exploitation of petroleum reserves and lead to problems during petroleum production. Knowledge of the microorganisms present in petroleum reservoirs, their physiological properties and the biochemical potential for hydrocarbon degradation benefits successful petroleum exploration. Anaerobic conditions prevail in petroleum reservoirs and biological hydrocarbon degradation is apparently inhibited at temperatures above 80-90 degrees C. We summarise available knowledge and conjecture on the dominant biological processes active during subsurface petroleum biodegradation.

  7. Environmental hazard and risk characterisation of petroleum substances: a guided "walking tour" of petroleum hydrocarbons.

    PubMed

    Bierkens, Johan; Geerts, Lieve

    2014-05-01

    Petroleum substances are used in large quantities, primarily as fuels. They are complex mixtures whose major constituents are hydrocarbons derived from crude oil by distillation and fractionation. Determining the complete molecular composition of petroleum and its refined products is not feasible with current analytical techniques because of the huge number of molecular components. This complex nature of petroleum products, with their varied number of constituents, all of them exhibiting different fate and effect characteristics, merits a dedicated hazard and risk assessment approach. From a regulatory perspective they pose a great challenge in a number of REACH processes, in particular in the context of dossier and substance evaluation but also for priority setting activities. In order to facilitate the performance of hazard and risk assessment for petroleum substances the European oil company association, CONCAWE, has developed the PETROTOX and PETRORISK spreadsheet models. Since the exact composition of many petroleum products is not known, an underlying assumption of the PETROTOX and PETRORISK tools is that the behaviour and fate of a total petroleum substance can be simulated based on the physical-chemical properties of representative structures mapped to hydrocarbon blocks (HBs) and on the relative share of each HB in the total mass of the product. To assess how differing chemical compositions affect the simulated chemical fate and toxicity of hydrocarbon mixtures, a series of model simulations were run using an artificial petroleum substance, containing 386 (PETROTOX) or 160 (PETRORISK) HBs belonging to different chemical classes and molecular weight ranges, but with equal mass assigned to each of them. To this artificial petroleum substance a guided series of subsequent modifications in mass allocation to a delineated number of HBs belonging to different chemical classes and carbon ranges was performed, in what we perceived as a guided "walking tour

  8. Comparison of trees and grasses for rhizoremediation of petroleum hydrocarbons.

    PubMed

    Cook, Rachel L; Hesterberg, Dean

    2013-01-01

    Rhizoremediation of petroleum contaminants is a phytoremediation process that depends on interactions among plants, microbes, and soils. Trees and grasses are commonly used for phytoremediation, with trees typically being chosen for remediation of BTEX while grasses are more commonly used for remediation of PAHs and total petroleum hydrocarbons. The objective of this review was to compare the effectiveness of trees and grasses for rhizoremediation of hydrocarbons and address the advantages of each vegetation type. Grasses were more heavily represented in the literature and therefore demonstrated a wider range of effectiveness. However, the greater biomass and depth of tree roots may have greater potential for promoting environmental conditions that can improve rhizoremediation, such as increased metabolizable organic carbon, oxygen, and water. Overall, we found little difference between grasses and trees with respect to average reduction of hydrocarbons for studies that compared planted treatments with a control. Additional detailed investigations into plant attributes that most influence hydrocarbon degradation rates should provide data needed to determine the potential for rhizoremediation with trees or grasses for a given site and identify which plant characteristics are most important.

  9. Petroleum.

    ERIC Educational Resources Information Center

    McManus, T. R.; And Others

    1989-01-01

    This review of petroleum covers: crude oil; fuels, gaseous and liquid; lubricants, oils, and greases; asphalts, bitumens, tars, and pitches; hydrocarbons; physical properties; metals in oil; nonmetallic elements and heterocompounds; and analytical methods and apparatus. (MVL)

  10. Petroleum.

    ERIC Educational Resources Information Center

    McManus, T. R.; And Others

    1989-01-01

    This review of petroleum covers: crude oil; fuels, gaseous and liquid; lubricants, oils, and greases; asphalts, bitumens, tars, and pitches; hydrocarbons; physical properties; metals in oil; nonmetallic elements and heterocompounds; and analytical methods and apparatus. (MVL)

  11. Interpreting Interactions between Ozone and Residual Petroleum Hydrocarbons in Soil.

    PubMed

    Chen, Tengfei; Delgado, Anca G; Yavuz, Burcu M; Maldonado, Juan; Zuo, Yi; Kamath, Roopa; Westerhoff, Paul; Krajmalnik-Brown, Rosa; Rittmann, Bruce E

    2017-01-03

    We evaluated how gas-phase O3 interacts with residual petroleum hydrocarbons in soil. Total petroleum hydrocarbons (TPH) were 18 ± 0.6 g/kg soil, and TPH carbon constituted ∼40% of the dichloromethane-extractable carbon (DeOC) in the soil. At the benchmark dose of 3.4 kg O3/kg initial TPH, TPH carbon was reduced by nearly 6 gC/kg soil (40%), which was accompanied by an increase of about 4 gC/kg soil in dissolved organic carbon (DOC) and a 4-fold increase in 5-day biochemical oxygen demand (BOD5). Disrupting gas channeling in the soil improved mass transport of O3 to TPH bound to soil and increased TPH removal. Ozonation resulted in two measurable alterations of the composition of the organic carbon. First, part of DeOC was converted to DOC (∼4.1 gC/kg soil), 75% of which was not extractable by dichloromethane. Second, the DeOC containing saturates, aromatics, resins, and asphaltenes (SARA), was partially oxidized, resulting in a decline in saturates and aromatics, but increases in resins and asphaltenes. Ozone attack on resins, asphaltenes, and soil organic matter led to the production of NO3(-), SO4(2-), and PO4(3-). The results illuminate the mechanisms by which ozone gas interacted with the weathered petroleum residuals in soil to generate soluble and biodegradable products.

  12. Influence of soil and hydrocarbon properties on the solvent extraction of high-concentration weathered petroleum from contaminated soils.

    PubMed

    Sui, Hong; Hua, Zhengtao; Li, Xingang; Li, Hong; Wu, Guozhong

    2014-05-01

    Petroleum ether was used to extract petroleum hydrocarbons from soils collected from six oil fields with different history of exploratory and contamination. It was capable of fast removing 76-94 % of the total petroleum hydrocarbons including 25 alkanes (C11-C35) and 16 US EPA priority polycyclic aromatic hydrocarbons from soils at room temperature. The partial least squares analysis indicated that the solvent extraction efficiencies were positively correlated with soil organic matter, cation exchange capacity, moisture, pH, and sand content of soils, while negative effects were observed in the properties reflecting the molecular size (e.g., molecular weight and number of carbon atoms) and hydrophobicity (e.g., water solubility, octanol-water partition coefficient, soil organic carbon partition coefficient) of hydrocarbons. The high concentration of weathered crude oil at the order of 10(5) mg kg(-1) in this study was demonstrated adverse for solvent extraction by providing an obvious nonaqueous phase liquid phase for hydrocarbon sinking and increasing the sequestration of soluble hydrocarbons in the insoluble oil fractions during weathering. A full picture of the mass distribution and transport mechanism of petroleum contaminants in soils will ultimately require a variety of studies to gain insights into the dynamic interactions between environmental indicator hydrocarbons and their host oil matrix.

  13. Uptake and trans-membrane transport of petroleum hydrocarbons by microorganisms.

    PubMed

    Hua, Fei; Wang, Hong Qi

    2014-03-04

    Petroleum-based products are a primary energy source in the industry and daily life. During the exploration, processing, transport and storage of petroleum and petroleum products, water or soil pollution occurs regularly. Biodegradation of the hydrocarbon pollutants by indigenous microorganisms is one of the primary mechanisms of removal of petroleum compounds from the environment. However, the physical contact between microorganisms and hydrophobic hydrocarbons limits the biodegradation rate. This paper presents an updated review of the petroleum hydrocarbon uptake and transport across the outer membrane of microorganisms with the help of outer membrane proteins.

  14. Reclamation and reuse of freon in total petroleum hydrocarbon analyses

    SciTech Connect

    Ekechukwu, A.A.; Peterson, S.F.

    1996-04-01

    ADS is using a commercially available solvent reclamation system to recycle 95-97 percent of the Freon used in total petroleum hydrocarbon analyses. ADS has further developed the commercially available solvent reclamation system to accommodate radioactive contaminated Freon. This report establishes the following: validity of the method; success of recycling; and effect of radionuclides in recycling radioactive contaminated Freon. The standard analysis method for determining total petroleum hydrocarbons (commonly known as oil and grease determination) involves solvent extraction of the hydrocarbons using Freon followed by quantitation using infrared detection. This has been the method of choice because it is simple, rugged, inexpensive, and applicable to both solid and liquid samples and to radioactive samples. Due to its deleterious effect on the ozone layer, the use of Freon and other chloro-fluorocarbons (CFCs) has been greatly restricted. Freon has become very expensive (800$/liter) and will soon be unavailable entirely. Several methods have been proposed to replace the Freon extraction method. These methods include solid-phase extraction, solvent extraction, and supercritical fluid extraction all of which use gravimetric determination or infrared analysis of the extracted hydrocarbons. These methods are not as precise or as sensitive as the Freon extraction method, and a larger amount of sample is therefore required due to the decreased sensitivity. The solid phase extraction method cannot accommodate solid samples. Supercritical fluid extraction requires expensive instrumentation. ADS opted to keep the existing Freon method and recycle the solvent. An inexpensive solvent reclamation system was procured to reclaim the spent Freon. This reclaimer removes hydrocarbons from the Freon solvent by passage through an activated carbon bed.

  15. Risk-based approach to petroleum hydrocarbon remediation. Research study

    SciTech Connect

    Miller, R.N.; Haas, P.; Faile, M.; Taffinder, S.

    1994-12-31

    The risk-based approach utilizes tools developed under the BTEX, Intrinsic Remediation (natural attenuation), Bioslurper, and Bioventing Initiatives of the Air Force Center for Environmental Excellence Technology Transfer Division (AFCEE/ERT) to construct a risk-based cost-effective approach to the cleanup of petroleum contaminated sites. The AFCEE Remediation Matrix (Enclosure 1) identifies natural attenuation as the first remediation alternative for soil and ground water contaminated with petroleum hydrocarbons. The intrinsic remediation (natural attenuation) alternative requires a scientifically defensible risk assessment based on contaminant sources, pathways, and receptors. For fuel contaminated sites, the first step is to determine contaminants of interest. For the ground water pathway (usually considered most important by regulators), this will normally be the most soluble, mobile, and toxic compounds, namely benzene, toluene, ethyl benzene, and o, m, p, xylene (BTEX).

  16. LABORATORY AND FIELD RESULTS LINKING HIGH CONDUCTIVITIES TO THE MICROBIAL DEGRADATION OF PETROLEUM HYDROCARBONS

    EPA Science Inventory

    The results of a field and laboratory investigation of unconsolidated sediments contaminated by petroleum hydrocarbons and undergoing natural biodegradation are presented. Fundamental to geophysical investigations of hydrocarbon impacted sediments is the assessment of how microbi...

  17. LABORATORY AND FIELD RESULTS LINKING HIGH CONDUCTIVITIES TO THE MICROBIAL DEGRADATION OF PETROLEUM HYDROCARBONS

    EPA Science Inventory

    The results of a field and laboratory investigation of unconsolidated sediments contaminated by petroleum hydrocarbons and undergoing natural biodegradation are presented. Fundamental to geophysical investigations of hydrocarbon impacted sediments is the assessment of how microbi...

  18. Kidney cancer and hydrocarbon exposures among petroleum refinery workers.

    PubMed Central

    Poole, C; Dreyer, N A; Satterfield, M H; Levin, L; Rothman, K J

    1993-01-01

    To evaluate the hypothesis of increased kidney cancer risk after exposure to hydrocarbons, especially those present in gasoline, we conducted a case-control study in a cohort of approximately 100,000 male refinery workers from five petroleum companies. A review of 18,323 death certificates identified 102 kidney cancer cases, to each of whom four controls were matched by refinery location and decade of birth. Work histories, containing an average of 15.7 job assignments per subject, were found for 98% of the cases and 94% of the controls. To each job, industrial hygienists assigned semiquantitative ratings for the intensity and frequency of exposures to three hydrocarbon categories: nonaromatic liquid gasoline distillates, aromatic hydrocarbons, and the more volatile hydrocarbons. Ratings of "present" or "absent" were assigned for seven additional exposures: higher boiling hydrocarbons, polynuclear aromatic hydrocarbons, asbestos, chlorinated solvents, ionizing radiation, and lead. Each exposure had either no association or a weak association with kidney cancer. For the hydrocarbon category of principal a priori interest, the nonaromatic liquid gasoline distillates, the estimated relative risk (RR) for any exposure above refinery background was 1.0 (95% confidence interval [CI] 0.5-1.9). Analyses of cumulative exposures and of exposures in varying time periods before kidney cancer occurrence also produced null or near-null results. In an analysis of the longest job held by each subject (average duration 9.2 years or 40% of the refinery work history), three groups appeared to be at increased risk: laborers (RR = 1.9, 95% CI 1.0-3.9); workers in receipt, storage, and movements (RR = 2.5, 95% CI 0.9-6.6); and unit cleaners (RR = 2.3, 95% CI 0.5-9.9). PMID:8020449

  19. Kidney cancer and hydrocarbon exposures among petroleum refinery workers

    SciTech Connect

    Poole, C.; Dreyer, N.A.; Satterfield, M.H.; Levin, L.

    1993-12-01

    To evaluate the hypothesis of increased kidney cancer risk after exposure to hydrocarbons, especially those present in gasoline, we conducted a case-control study in a cohort of approximately 100,000 male refinery workers from five petroleum companies. A review of 18,323 death certificates identified 102 kidney cancer cases, to each of whom four controls were matched by refinery location and decade of birth. Work histories, containing an average of 15.7 job assignments per subject, were found for 98% of the cases and 94% of the controls. Tb each job, industrial hygienists assigned semiquantitative ratings for the intensity and frequency of exposures to three hydrocarbon categories: nonaromatic liquid gasoline distillates, aromatic hydrocarbons, and the more volatile hydrocarbons. Ratings of {open_quotes}present{close_quotes} or {open_quotes}absent{close_quotes} were assigned for seven additional exposures: higher boiling hydrocarbons, polynuclear aromatic hydrocarbons, asbestos, chlorinated solvents, ionizing radiation, and lead. Each exposure had either no association or a weak association with kidney cancer. For the hydrocarbon category of principal a priori interest, the nonaromatic liquid gasoline distillates, the estimated relative risk (RR) for any exposure above refinery background was 1.0 (95% confidence interval [CI] 0.5-1.9). Analyses of cumulative exposures and of exposures in varying time periods before kidney cancer occurrence also produced null or near-null results. In an analysis of the longest job held by each subject (average duration 9.2 years or 40% of the refiner&y work history), three groups appeared to be at increased risk: laborers (RR = 1.9,95% CI 1.0-3.9); workers in receipt, storage, and movements (RR = 2.5,95% CI 0.9-6.6); and unit cleaners (RR = 2.3, 95% CI 0.5-9.9). 53 refs., 7 tabs.

  20. Effects of Temperature Changes on Biodegradation of Petroleum Hydrocarbons in Contaminated Soils from an Arctic Site

    NASA Astrophysics Data System (ADS)

    Chang, W.; Klemm, S.; Whyte, L.; Ghoshal, S.

    2009-05-01

    Bioremediation is being considered as a cost-effective and a minimally disruptive remedial option at remote sites in the Arctic and sub-Arctic impacted by petroleum NAPL contamination. The implementation of on-site bioremediation in cold environments has been generally limited in the short, non-freezing summer months since ground remains frozen for 8-9 months of the year. This study evaluates the effect of different temperature regimes on petroleum hydrocarbon biodegradation rates and extent, as well as on the microbial activity. A series of pilot-scale landfarming bioremediation experiments (1 m×0.6 m×0.35 m soil tank dimension) was performed using aged, petroleum fuel-contaminated soils shipped from Resolution Island, Nunavut, Canada. These experiments were conducted under the following temperature conditions: (1) variable daily average field temperatures (1 to 10°C) representative of summers at the site; (2) constant mean temperature-mode with 6°C, representing typical stable laboratory incubation; and (3) under seasonal freeze-thaw conditions (-8°C to 10°C). Data to be presented include changes with time of petroleum hydrocarbons concentration fractionated by C-lengths, soil moisture (unfrozen water) contents, O2 and CO2 concentrations in soil pore gas, microbial population size and community composition in nutrient- amended and untreated landfarms. Hydrocarbon biodegradation and heterotrophic respiration activity was more rapid under the variable temperature cycle (1 to 10°C) than at a constant average temperature of 6°C, and total petroleum hydrocarbon (TPH) concentrations were reduced by 55% due to biodegradation over a 60 day test period under the variable temperature regime, compared to only 21% in soil tanks which were subjected to a constant temperature of 6°C. Shifts in microbial community were clearly observed in the both temperature modes using PCR-DGGE analyses and the emergence of a hydrocarbon-degrading population, Alkanindiges, was

  1. Effects of petroleum hydrocarbons on hepatic function in the duck

    USGS Publications Warehouse

    Patton, J.F.; Dieter, M.P.

    1980-01-01

    1. The indocyanine green dye clearance test for hepatic function was determined in mallard ducks before and during the chronic ingestion (7 months) of representative paraffinic or aromatic petroleum hydrocarbons (PH).2. No mortality or visible symptoms of toxicity occured in any of the tests. Ingestion of 4000 ppm aromatic PH produced significant increases in liver (25%), plasma clearance of indocyanine green (33%) and hepatic blood flow (30%).3. Although the aromatics elicited a greater hepatic stress response than the paraffins, the ducks tolerated high concentrations of PH for extended periods.

  2. Effects of petroleum hydrocarbons on hepatic function in the duck

    USGS Publications Warehouse

    Patton, J.F.; Dieter, M.P.

    1980-01-01

    1. The indocyanine green dye clearance test for hepatic function was determined in mallard ducks before and during the chronic ingestion (7 months) of representative paraffinic or aromatic petroleum hydrocarbons (PH). 2. No mortality or visible symptoms of toxicity occured in any of the tests. Ingestion of 4000 ppm aromatic PH produced significant increases in liver (25%), plasma clearance of indocyanine green (33%) and hepatic blood flow (30%). 3. Although the aromatics elicited a greater hepatic stress response than the paraffins, the ducks tolerated high concentrations of PH for extended periods.

  3. Identification of natural, anthropogenic and petroleum hydrocarbons in aquatic sediments.

    PubMed

    Volkman, J K; Holdsworth, D G; Neill, G P; Bavor, H J

    1992-03-01

    Complex distributions of hydrocarbons occur in most aquatic sediments. Total concentrations can range from a few parts per million in non-polluted intertidal and oceanic areas to parts per thousand in heavily contaminated estuarine, lake and near-shore environments. Iatroscan TLC-FID provides a quick assessment of the total hydrocarbon load, but capillary GC, HPLC and GC-MS are essential for obtaining detailed composition data from which information on possible sources can be derived. Alkenes from microalgae, such as n-C21:6, n-C17:1 and unusual C25 and C30 isoprenoid alkenes, are often the most abundant single components in sedimentary hydrocarbon distributions. Some hydrocarbons are also produced from diagenetic transformation of functionalised lipids present in the sediment. Long-chain alkanes typical of plant waxes can be important constituents, even in marine sediments far from the coast. These distributions display a strong predominance of odd chain lengths, whereas n-alkane distributions in oils usually show little or no predominance of either odd or even chain lengths. However, the presence of this type of distribution in a sediment may not indicate petroleum contamination since biological sources for similar distributions are now recognised. Petroleum-derived residues are common in coastal and estuarine areas, particularly those near urban or industrial centers. This contamination is readily seen in capillary gas chromatograms of the alkanes as an unresolved complex mixture (UCM). The source of the oil can often be deduced from characteristic distributions of biomarker steranes, rearranged steranes, hopanes and methyl hopanes determined by capillary gas chromatography-mass spectrometry. Methyl hopanes are major polycyclic alkanes in oils from carbonate source rocks, such as those from the Middle East, but are uncommon in Australian oils. GC-MS fingerprinting techniques show that lubricating oils are a major source of hydrocarbon pollution in many estuaries

  4. Benzene and total hydrocarbons exposures in the downstream petroleum industries.

    PubMed

    Verma, D K; Johnson, D M; Shaw, M L; des Tombe, K

    2001-01-01

    A review of studies, including both articles published in peer-reviewed journals and reports that were not peer reviewed, regarding occupational exposure to benzene and total hydrocarbons in the downstream petroleum industry operations was performed. The objective was to provide a broad estimate of exposures by compiling exposure data according to the following categories: refinery, pipeline, marine, rail, bulk terminals and trucks, service stations, underground storage tanks, tank cleaning, and site remediations. The data in each category was divided into personal occupational long-term and short-term samples. The summarized data offers valuable assistance to hygienists by providing them with an estimate and range of exposures. The traditional 8-hour time-weighted average (TWA) exposure and the 40-hour workweek do not generally coincide with exposure periods applicable to workers in marine, pipeline, railcar, and trucking operations. They are more comparable with short-term exposure or task-based exposure assessments. The marine sector has a large number of high exposures. Although relatively few workers are exposed, their exposures to benzene and total hydrocarbons are sometimes an order of magnitude higher than the respective exposure limits. It is recommended that in the future, it would be preferable to do more task-based exposure assessments and fewer traditional TWA long-term exposure assessments within the various sectors of the downstream petroleum industry.

  5. Toxicity of petroleum hydrocarbon distillates to soil organisms.

    PubMed

    Cermak, Janet H; Stephenson, Gladys L; Birkholz, Detlef; Wang, Zhendi; Dixon, D George

    2010-12-01

    Canadian standards for petroleum hydrocarbons in soil are based on four distillate ranges (F1, C6-C10; F2, >C10-C16; F3, >C16-C34; and F4, >C34). Concerns have arisen that the ecological soil contact standards for F3 may be overly conservative. Oil distillates were prepared and characterized, and the toxicity of F3 and two subfractions, F3a (>C16-C23) and F3b (>C23-C34), to earthworms (Eisenia andrei), springtails (Orthonychiurus folsomi), and northern wheatgrass (Elymus lanceolatus), as well as the toxicity of F2 to earthworms, was determined. Clean soil was spiked with individual distillates and measured concentrations were determined for select tests. Results agree with previous studies with these distillates. Reported toxicities of crude and petroleum products to invertebrates were generally comparable to that of F3 and F3a. The decreasing order of toxicity was F3a > F3 > F3b with invertebrates, and F3a > F3b > F3 with plants. The toxicities of F3a and F3b were not sufficiently different to recommend regulating hydrocarbons based on these distillate ranges. The results also suggest that test durations may be insufficient for determining toxicity of higher distillate ranges, and that the selection of species and endpoints may significantly affect interpretation of toxicity test results.

  6. [Bioremediation of petroleum hydrocarbon-contaminated soils by cold-adapted microorganisms: research advance].

    PubMed

    Wang, Shi-jie; Wang, Xiang; Lu, Gui-lan; Wang, Qun-hui; Li, Fa-sheng; Guo, Guan-lin

    2011-04-01

    Cold-adapted microorganisms such as psychrotrophs and psychrophiles widely exist in the soils of sub-Arctic, Arctic, Antarctic, alpine, and high mountains, being the important microbial resources for the biodegradation of petroleum hydrocarbons at low temperature. Using the unique advantage of cold-adapted microorganisms to the bioremediation of petroleum hydrocarbon-contaminated soils in low temperature region has become a research hotspot. This paper summarized the category and cold-adaptation mechanisms of the microorganisms able to degrade petroleum hydrocarbon at low temperature, biodegradation characteristics and mechanisms of different petroleum fractions under the action of cold-adapted microorganisms, bio-stimulation techniques for improving biodegradation efficiency, e. g., inoculating petroleum-degrading microorganisms and adding nutrients or bio-surfactants, and the present status of applying molecular biotechnology in this research field, aimed to provide references to the development of bioremediation techniques for petroleum hydrocarbon-contaminated soils.

  7. Petroleum geological framework and hydrocarbon potential in the Yellow Sea

    NASA Astrophysics Data System (ADS)

    Wu, Shiguo; Ni, Xiangnong; Cai, Feng

    2008-02-01

    Sedimentary basins in the Yellow Sea can be grouped tectonically into the North Yellow Sea Basin (NYSB), the northern basin of the South Yellow Sea (SYSNB) and the southern basin of the South Yellow Sea (SYSSB). The NYSB is connected to Anju Basin to the east. The SYSSB extends to Subei Basin to the west. The acoustic basement of basins in the North Yellow Sea and South Yellow Sea is disparate, having different stratigraphic evolution and oil accumulation features, even though they have been under the same stress regime since the Late Triassic. The acoustic basement of the NYSB features China-Korea Platform crystalline rocks, whereas those in the SYSNB and SYSSB are of the Paleozoic Yangtze Platform sedimentary layers or metamorphic rocks. Since the Late Mesozoic terrestrial strata in the eastern of the NYSB (West Korea Bay Basin) were discovered having industrial hydrocarbon accumulation, the oil potential in the Mesozoic strata in the west depression of the basin could be promising, although the petroleum exploration in the South Yellow Sea has made no break-through yet. New deep reflection data and several drilling wells have indicated the source rock of the Mesozoic in the basins of South Yellow Sea, and the Paleozoic platform marine facies in the SYSSB and Central Rise could be the other hosts of oil or natural gas. The Mesozoic hydrocarbon could be found in the Mesozoic of the foredeep basin in the SYSNB that bears potential hydrocarbon in thick Cretaceous strata, and so does the SYSSB where the same petroleum system exists to that of oil-bearing Subei Basin.

  8. Determination of Trace Water Content in Petroleum and Petroleum Products.

    PubMed

    Frink, Lillian A; Armstrong, Daniel W

    2016-08-16

    Measurement of water in petroleum and petroleum-based products is of industrial and economic importance; however, the varied and complex matrixes make the analyses difficult. These samples tend to have low amounts of water and contain many compounds which react with iodine, causing Karl Fischer titration (KFT) to give inaccurate, typically higher, results. A simple, rapid, automated headspace gas chromatography (HSGC) method which requires modified instrumentation and ionic liquid stationary phases was developed. Measurement of water in 12 petroleum products along with 3 National Institute of Standards and Technology reference materials was performed with the developed method. The range of water found in these samples was ∼12-3300 ppm. This approach appeared to be unaffected by complicated matrixes. The solvent-free nature of the HSGC method also negates the solubility limitations which are common with KFT.

  9. Polycyclic aromatic hydrocarbons and petroleum biomarkers in São Sebastião Channel, Brazil: assessment of petroleum contamination.

    PubMed

    da Silva, Denis A M; Bícego, Márcia C

    2010-06-01

    Polycyclic aromatic hydrocarbons (PAHs) and non-aromatic hydrocarbons (NAHs), including n-alkanes, isoprenoids and petroleum biomarkers (terpanes, hopanes, steranes and diasteranes), were quantified by gas chromatography with flame ionization and mass spectrometer detectors in sediment samples collected from the São Sebastião Channel (SSC), Brazil, where the largest Brazilian maritime petroleum terminal is located. The concentrations of total PAHs, total n-alkanes and petroleum biomarkers ranged from below the detection limits to 370ngg(-1), 28microgg(-1), 2200ngg(-1) (dry weight), respectively. The analysis of PAH distribution suggested combustion sources of PAHs as the main input for these compounds with smaller amount from petroleum contamination. The distribution of petroleum biomarkers undoubtedly demonstrated petroleum as a source of anthropogenic contamination throughout the region. The assessment of petrogenic sources of contamination in marine sediment is more challenging if only PAH analysis were carried out, which demonstrates that more stable hydrocarbons such as petroleum biomarkers are useful for investigating potential presence of petroleum.

  10. Bioelectrochemical stimulation of petroleum hydrocarbon degradation in saline soil using U-tube microbial fuel cells.

    PubMed

    Wang, Xin; Cai, Zhang; Zhou, Qixing; Zhang, Zhineng; Chen, Cuihong

    2012-02-01

    Bioremediation is a cost-effective and eco-friendly approach to decontaminate soils polluted by petroleum hydrocarbons. However, this technique usually requires a long time due to the slow degradation rate by bacteria. By applying U-tube microbial fuel cells (MFCs) designed here, the degradation rate of petroleum hydrocarbons close to the anode (<1 cm) was enhanced by 120% from 6.9 ± 2.5% to 15.2 ± 0.6% with simultaneous 125 ± 7 C of charge output (0.85 ± 0.05 mW/m(2) , 1 kΩ) in the tested period (25 days). Hydrocarbon fingerprint analysis showed that the degradation rate of both alkanes and polycyclic aromatic hydrocarbons (PAHs) was accelerated. The decrease of initial water content from 33% to 28% and 23% resulted in a decrease on charge output and hydrocarbon degradation rate, which could be attributed to the increase of internal resistance. A salt accumulation was observed in each reactor due to the evaporation of water from the air-cathode, possibly inhibited the activity of exoelectrogenic bacteria (EB) and resulted in the elimination of the current at the end of the tested period. The number of hydrocarbon degradation bacteria (HDB) in soil close to the anode increased by nearly two orders of magnitude in the MFC assisted system (373 ± 56 × 10(3)  CFU/g-soil) than that in the disconnected control (8 ± 2 × 10(3)  CFU/g-soil), providing a solid evidence for in situ biostimulation of HDB growth by colonization of EB in the same system.

  11. Pressure-temperature microscopy of petroleum-derived hydrocarbons

    SciTech Connect

    Perrotta, A.J.; McCullough, J.P.; Beuther, H.

    1983-03-01

    An apparatus allowing microscopy of petroleum derived hydrocarbons at pressures and temperatures comparable to those encountered in the hydroprocessing of coal and oil, and its use in the study of pressure and temperature effects on the crystallization behavior of a decant oil-derived air blown-pitch (DODAB) is described in this paper. Crystallization of the mesophase from aromatic rich precursors can be used as a tracking vehicle whose anisotropy allows easy detection under the polarizing microscope. Mesophase formation pressure dependence using N/sub 2/ and H/sub 2/ reveals that there is a chemical effect associated with H/sub 2/ since N/sub 2/ pressure to 1900 psig had no effect on mesophase formation. In both cases a fine grained anisotropic phase forms initially at the crystallization temperature and 25 psig. In pyrolyzed material mesophase formation under N/sub 2/ is a pressure dependent transformation.

  12. Fate and degradation of petroleum hydrocarbons in stormwater bioretention cells

    NASA Astrophysics Data System (ADS)

    LeFevre, Gregory Hallett

    This dissertation describes the investigation of the fate of hydrocarbons in stormwater bioretention areas and those mechanisms that affect hydrocarbon fate in such systems. Seventy-five samples from 58 bioretention areas were collected and analyzed to measure total petroleum hydrocarbon (TPH) residual and biodegradation functional genes. TPH residual in bioretention areas was greater than background sites but low overall (<3 µg/kg), and well below either the TPH concentration of concern or the expected concentration, assuming no losses. Bioretention areas with deep-root vegetation contained significantly greater quantites of bacterial 16S rRNA genes and two functional genes involved in hydrocarbon biodegradation. Field soils were capable of mineralizing naphthalene, a polycyclic aromatic hydrocarbon (PAH) when incubated in the laboratory. In an additional laboratory investigation, a column study was initiated to comprehensively determine naphthalene fate in a simulated bioretention cell using a 14C-labeled tracer. Sorption to soil was the greatest sink of naphthalene in the columns, although biodegradation and vegetative uptake were also important loss mechanisms. Little leaching occurred following the first flush, and volatilization was insignificant. Significant enrichment of naphthalene degrading bacteria occurred over the course of the experiment as a result of naphthalene exposure. This was evident from enhanced naphthalene biodegradation kinetics (measured via batch tests), significant increases in naphthalene dioxygenase gene quantities, and a significant correlation observed between naphthalene residual and biodegradation functional genes. Vegetated columns outperformed the unplanted control column in terms of total naphthalene removal and biodegradation kinetics. As a result of these experiments, a final study focused on why planted systems outperform unplanted systems was conducted. Plant root exudates were harvested from hydroponic setups for three

  13. Bench scale studies of the soil aeration process for bioremediation of petroleum hydrocarbons

    SciTech Connect

    Hinchee, R.E.; Arthur, M.

    1991-12-31

    An alternative to traditional hydrocarbon bioremediation is to pump air through unsaturated soils to create aerobic conditions and induce biodegradation. This study examines the effects of moisture and nutrient augmentation on biodegradation of petroleum hydrocarbons in aerated soils. Findings indicate that forced aeration, coupled with additions of nutrients and moisture, stimulate hydrocarbon-degrading microorganisms and present a feasible approach to bioremediation management.

  14. [Petroleum hydrocarbon contamination and impact on soil characteristics from oilfield Momoge Wetland].

    PubMed

    Wang, Xiao-yu; Feng, Jiang; Wang, Jing

    2009-08-15

    Momoge Wetland is an important international wetland. Crude oil exploration and production have been the largest anthropogenic factor contributing to the degradation of Momoge Wetland, China. To study the effects of crude oil residuals on wetland soils, the total petroleum hydrocarbon (TPH), total organic carbon (TOC), total nitrogen (TN) and total phosphorus (TP) were examined, as well as for pH and electricity conductivity (EC) from oilfield and uncontaminated area in Momoge Wetland. All contaminated areas had significantly higher (p < 0.05) contents of TPH than those of the uncontaminated areas. For 5 a, 10 a and 20 a oil wells, the TPH were 30-fold, 60-fold, and 111-fold of the control sites. Soils from 10 a or over 10 a oil wells in oilfield were the major petroleum contamination area with values ranging from 16,885 mg x kg(-1) to 31,230 mg x kg(-1). There was a significantly positive correlation between TOC and TPH contents in oilfield(r = 0.88, p < 0.05). Oil residuals in soil caused the decrease of TN and TP and the maximum of decline were 33% and 28%, respectively. Contaminated sites also exhibited significantly higher (p < 0.05) pH values, C:N and C:P ratios. These trends became progressively obvious with the length of time the oil well was in production. Soil petroleum contamination also resulted the increase of the EC, however the impact of TPH on EC were not significant(p > 0.05). Collectively, petroleum hydrocarbon pollution has caused some major changes in soil properties in Momoge Wetland.

  15. Effect of alcohol addition on the movement of petroleum hydrocarbon fuels in soil.

    PubMed

    Adam, Gillian; Gamoh, Keiji; Morris, David G; Duncan, Harry

    2002-03-08

    Groundwater contamination by fuel spills from aboveground and underground storage tanks has been of growing concern in recent years. This problem has been magnified by the addition of oxygenates, such as ethanol and methyl-tertiary-butyl ether (MTBE) to fuels to reduce vehicular emissions to the atmosphere. These additives, although beneficial in reducing atmospheric pollution, may, however, increase groundwater contamination due to the co-solvency of petroleum hydrocarbons and by the provision of a preferential substrate for microbial utilisation. With the introduction of ethanol to diesel fuel imminent and the move away from MTBE use in many states of the USA, the environmental implications associated with ethanol additive fuels must be thoroughly investigated. Diesel fuel movement was followed in a 1-m soil column and the effect of ethanol addition to diesel fuel on this movement determined. The addition of 5% ethanol to diesel fuel was found to enhance the downward migration of the diesel fuel components, thus increasing the risk of groundwater contamination. A novel method using soil packed HPLC columns allowed the influence of ethanol on individual aromatic hydrocarbon movement to be studied. The levels of ethanol addition investigated were at the current additive level (approx. 25%) for ethanol additive fuels in Brazil and values above (50%) and below (10%) this level. An aqueous ethanol concentration above 10% was required for any movement to occur. At 25% aqueous ethanol, the majority of hydrocarbons were mobilised and the retention behaviour of the soil column lessened. At 50% aqueous ethanol, all the hydrocarbons were found to move unimpeded through the columns. The retention behaviour of the soil was found to change significantly when both organic matter content and silt/clay content was reduced. Unexpectedly, sandy soil with low organic matter and low silt/clay was found to have a retentive behaviour similar to sandy subsoil with moderate silt

  16. The performance of ammonium exchanged zeolite for the biodegradation of petroleum hydrocarbons migrating in soil water.

    PubMed

    Freidman, Benjamin L; Gras, Sally L; Snape, Ian; Stevens, Geoff W; Mumford, Kathryn A

    2016-08-05

    Nitrogen deficiency has been identified as the main inhibiting factor for biodegradation of petroleum hydrocarbons in low nutrient environments. This study examines the performance of ammonium exchanged zeolite to enhance biodegradation of petroleum hydrocarbons migrating in soil water within laboratory scale flow cells. Biofilm formation and biodegradation were accelerated by the exchange of cations in soil water with ammonium in the pores of the exchanged zeolite when compared with natural zeolite flow cells. These results have implications for sequenced permeable reactive barrier design and the longevity of media performance within such barriers at petroleum hydrocarbon contaminated sites deficient in essential soil nutrients.

  17. Petroleum hydrocarbon concentrations in eight mollusc species along Tamilnadu coast, Bay of Bengal, India.

    PubMed

    Veerasingam, S; Venkatachalapathy, R; Sudhakar, S; Raja, P; Rajeswari, V

    2011-01-01

    Eight mollusc species and sediment samples collected from three different stations along Tamilnadu coast, Bay of Bengal, India were analysed for the levels of petroleum hydrocarbons to elucidate the status of the petroleum residues in mollusc meant for human consumption. The concentrations of petroleum hydrocarbons in sediments along Tamilnadu coast varied from 5.04-25.5 microg/g dw (dry weight). High concentration of petroleum hydrocarbons in the sediment of Uppanar estuary (25.5 +/- 1.45 microg/g dw) was perhaps land and marine based anthropogenic sources of this region. The petroleum hydrocarbon residues in eight mollusc species collected from Uppanar, Vellar and Coleroon estuaries varied between 2.44-6.04 microg/g ww (wet weight). Although the concentration of petroleum hydrocarbons in sediment of the Uppanar region was markedly higher than the background, the petroleum hydrocarbon residues in mollusc collected from Uppanar estuary did not suggest bioaccumulation. The results signified that industrial growth has affected the aquatic environments and regular monitoring will help to adopt stringent pollution control measures for better management of the aquatic region.

  18. Carbon isotope systematics of individual hydrocarbons in hydrothermal petroleum from Escanaba Trough, Northeastern Pacific Ocean

    USGS Publications Warehouse

    Simoneit, B.R.T.; Schoell, M.; Kvenvolden, K.A.

    1997-01-01

    We submitted individual aliphatic and polycyclic aromatic hydrocarbons in samples of hydrothermal petroleum from Escanaba trough to compound specific isotope analysis to trace their origins. The carbon isotope compositions of the alkanes and polycyclic aromatic hydrocarbons (means -27.5 and -24.7%, respectively) reflect a primarily terrestrial organic matter source.We submitted individual aliphatic and polycyclic aromatic hydrocarbons in samples of hydrothermal petroleum from Escanaba Trough to compound specific isotope analysis to trace their origins. The carbon isotope compositions of the alkanes and polycyclic aromatic hydrocarbons (means -27.5 and -24.7 per mill, respectively) reflect a primarily terrestrial organic matter source.

  19. Human Resource Local Content in Ghana's Upstream Petroleum Industry

    NASA Astrophysics Data System (ADS)

    Benin, Papa

    Enactment of Ghana's Petroleum (Local Content and Local Participation) Regulations, 2013 (L.I. 2204) was intended to regulate the percentage of local products, personnel, financing, and goods and services rendered within Ghana's upstream petroleum industry value chain. Five years after the inception of Ghana's upstream oil and gas industry, a gap is evident between the requirements of L.I. 2204 and professional practice. Drawing on Lewin's change theory, a cross-sectional study was conducted to examine the extent of differences between the prevailing human resource local content and the requirements of L.I. 2204 in Ghana's upstream petroleum industry. The extent to which training acquired by indigenous Ghanaians seeking jobs in Ghana's oil fields affects the prevalent local content in its upstream petroleum industry was also examined. Survey data were collected from 97 management, technical, and other staff in 2 multinational petroleum companies whose oil and gas development plans have been approved by the Petroleum Commission of Ghana. To answer the research questions and test their hypotheses, one-way ANOVA was performed with staff category (management, technical, and other) as the independent variable and prevalent local content as the dependent variable. Results indicated that prevailing local content in Ghana's upstream petroleum industry meets the requirements of L.I. 2204. Further, training acquired by indigenous Ghanaians seeking jobs in Ghana's oil fields affects the prevalent local content in its offshore petroleum industry. Findings may encourage leaders within multinational oil companies and the Petroleum Commission of Ghana to organize educational seminars that equip indigenous Ghanaians with specialized skills for working in Ghana's upstream petroleum industry.

  20. Hydrocarbon geochemistry of hydrothermally generated petroleum from Escanaba trough, offshore Californi U.S.A.

    USGS Publications Warehouse

    Kvenvolden, K.A.; Rapp, J.B.; Hostettler, F.D.

    1990-01-01

    In 1986, three samples of sulfide-rich sediments, impregnated with hydrothermally derived, asphaltic petroleum, were recovered in a dredge and by submersible from Escanaba Trough, the sediment-covered, southern end of the Gorda Ridge spreading axis, offshore northern California. The molecular distributions of hydrocarbons in the two pyrrhotite-rich samples recovered by submersible are similar and compare well the hydrocarbon composition of the first pyrrhotite-rich samples containing petroleum discovered at a 1985 dredge site about 30 km to the south of the site of the submersible dive. In contrast, the 1986 dredge sample, composed of a polymetallic assemblage of sulfides, containes petroleum in which the distribution of hydrocarbons indicates a slightly higher of maturity relative to the other samples. The observation that petroleum of variable composition occurs with metallic sulfides at two and probably more distinct site indicates that petroleum generation may be a common process in the hydrothermally active Escanaba Trough. ?? 1990.

  1. Reduction of petroleum hydrocarbons and toxicity in refinery wastewater by bioremediation.

    PubMed

    Płaza, Grazyna A; Jangid, Kamlesh; Lukasik, Krystyna; Nałecz-Jawecki, Grzegorz; Berry, Christopher J; Brigmon, Robin L

    2008-10-01

    The aim of the study was to investigate petroleum waste remediation and toxicity reduction by five bacterial strains: Ralstonia picketti SRS (BP-20), Alcaligenes piechaudii SRS (CZOR L-1B), Bacillus subtilis (I'-1a), Bacillus sp. (T-1), and Bacillus sp. (T'-1), previously isolated from petroleum-contaminated soils. Petroleum hydrocarbons were significantly degraded (91%) by the mixed bacterial cultures in 30 days (reaching up to 29% in the first 72 h). Similarly, the toxicity of the biodegraded petroleum waste decreased 3-fold after 30 days. This work shows the influence of bacteria on hydrocarbon degradation and associated toxicity, and its dependence on the specific microorganisms present. The ability of these mixed cultures to degrade hydrocarbons and reduce toxicity makes them candidates for environmental restoration applications at other hydrocarbon-contaminated environments.

  2. Petroleum hydrocarbons and organic chemicals in ground water -- prevention, detection and restoration: Proceedings

    SciTech Connect

    Not Available

    1993-01-01

    The 1993 Petroleum Hydrocarbons Conference was comprised of 3 days of technical presentations within the following topic areas: pollution prevention and cost control; development of remediation levels; free-phase and dissolved hydrocarbon contamination management; investigation and analysis of petroleum hydrocarbons; applications of computer modeling for remediation; design and implementation of bioventing; design and implementation of air sparging; soil vapor extraction as a remediation technique; and ground water remediation using natural bacteria. In addition, more than 100 leading companies in the ground water and petroleum industries participated in the Conference Exposition in which a variety of equipment and services for preventing, detecting and remediating ground water contaminated by petroleum hydrocarbons and other organic chemicals was showcased. Individual papers have been processed separately for inclusion in the appropriate data bases.

  3. Pilot-scale bioremediation of a petroleum hydrocarbon-contaminated clayey soil from a sub-Arctic site.

    PubMed

    Akbari, Ali; Ghoshal, Subhasis

    2014-09-15

    Bioremediation is a potentially cost-effective solution for petroleum contamination in cold region sites. This study investigates the extent of biodegradation of petroleum hydrocarbons (C16-C34) in a pilot-scale biopile experiment conducted at 15°C for periods up to 385 days, with a clayey soil, from a crude oil-impacted site in northern Canada. Although several studies on bioremediation of petroleum hydrocarbon-contaminated soils from cold region sites have been reported for coarse-textured, sandy soils, there are limited studies of bioremediation of petroleum contamination in fine-textured, clayey soils. Our results indicate that aeration and moisture addition was sufficient for achieving 47% biodegradation and an endpoint of 530 mg/kg for non-volatile (C16-C34) petroleum hydrocarbons. Nutrient amendment with 95 mg-N/kg showed no significant effect on biodegradation compared to a control system without nutrient but similar moisture content. In contrast, in a biopile amended with 1340 mg-N/kg, no statistically significant biodegradation of non-volatile fraction was detected. Terminal Restriction Fragment Length Polymorphism (T-RFLP) analyses of alkB and 16S rRNA genes revealed that inhibition of hydrocarbon biodegradation was associated with a lack of change in microbial community composition. Overall, our data suggests that biopiles are feasible for attaining the bioremediation endpoint in clayey soils. Despite the significantly lower biodegradation rate of 0.009 day(-1) in biopile tank compared to 0.11 day(-1) in slurry bioreactors for C16-C34 hydrocarbons, the biodegradation extents for this fraction were comparable in these two systems.

  4. Embryotoxic and teratogenic effects of petroleum hydrocarbons in mallards (Anas platyrhynchos).

    PubMed

    Hoffman, D J

    1979-09-01

    Egg surface applications of microliter quantities of crude and refined oils of high aromatic content are embryotoxic to mallards (Anas platyrhynchos) and other avian species; applications of aliphatic hydrocarbons have virtually no effect. Mallard eggs at 72 h of development were exposed to a mixture of aromatic hydrocarbons or to aromatic compounds representative to those present in crude oil to assess their toxicity. The class composition of the mixture was similar to that of South Louisiana crude oil, an American Petroleum Institute reference oil. Application of 20 microliter of the mixture reduced embryonic survival by nearly 70%. The temporal pattern of embryonic death was similar to that after exposure to South Louisiana crude oil. Embryonic growth was stunted, as reflected by weight, crown-rump length, and bill length, and there was a significant increase in the incidence of abnormal survivors. When individual classes of aromatic hydrocarbons were tested, tetracyclics caused some embryonic death at the concentrations in the mixture. When classes were tested in all possible combinations of two, no combination appeared to be as toxic as the entire mixture. Addition of the tetracyclic compound chrysene to the aromatic mixture considerably enhanced embryotoxicity, but could not completely account for the toxicity of the crude oil. The presence of additional unidentified polycyclic aromatic hydrocarbons as well as methylated derivatives of polycyclic aromatic compounds such as chrysene may further account for the embryotoxicity of the crude oil.

  5. Embryotoxic and teratogenic effects of petroleum hydrocarbons in mallards (Anas platyrhynchos)

    USGS Publications Warehouse

    Hoffman, D.J.

    1979-01-01

    Egg surface applications of microliter quantities of crude and refined oils of high aromatic content are embryotoxic to mallards (Anas platyrhynchos) and other avian species; applications of aliphatic hydrocarbons have virtually no effect. Mallard eggs at 72 h of development were exposed to a mixture of aromatic hydrocarbons or to aromatic compounds representative to those present in crude oil to assess their toxicity. The class composition of the mixture was similar to that of South Louisiana crude oil, an American Petroleum Institute reference oil. Application of 20 microliter of the mixture reduced embryonic survival by nearly 70%. The temporal pattern of embryonic death was similar to that after exposure to South Louisiana crude oil. Embryonic growth was stunted, as reflected by weight, crown-rump length, and bill length, and there was a significant increase in the incidence of abnormal survivors. When individual classes of aromatic hydrocarbons were tested, tetracyclics caused some embryonic death at the concentrations in the mixture. When classes were tested in all possible combinations of two, no combination appeared to be as toxic as the entire mixture. Addition of the tetracyclic compound chrysene to the aromatic mixture considerably enhanced embryotoxicity, but could not completely account for the toxicity of the crude oil. The presence of additional unidentified polycyclic aromatic hydrocarbons as well as methylated derivatives of polycyclic aromatic compounds such as chrysene may further account for the embryotoxicity of the crude oil.

  6. Petroleum hydrocarbon concentrations in ten commercial fish species along Tamilnadu coast, Bay of Bengal, India.

    PubMed

    Veerasingam, S; Venkatachalapathy, R; Raja, P; Sudhakar, S; Rajeswari, V; Asanulla, R Mohamed; Mohan, R; Sutharsan, P

    2011-05-01

    The aim of the present study was to evaluate the distribution of petroleum hydrocarbons in ten commercial fish species and water samples in three estuaries along Tamilnadu coast, Bay of Bengal, India. Fish and water samples collected from Tamilnadu coast, India, were extracted and analyzed for petroleum hydrocarbons by ultraviolet fluorescence (UVF) spectroscopy. The petroleum hydrocarbon concentration (PHC) in coastal waters and fish species varied between 2.28 and 14.02 μg/l and 0.52 and 2.05 μg/g, respectively. The highest PHC concentration was obtained in Uppanar estuarine waters (14.02 ± 0.83) and the lowest was observed in Vellar estuarine waters (2.28 ± 0.25). Among the ten fish species, Sardinella longiceps have high PHC concentration from all the locations. This study suggests that S. longiceps can be used as a good biological indicator for petroleum hydrocarbon pollution in water. The concentration of petroleum hydrocarbons in coastal waters along Tamilnadu coast is markedly higher than that in the background, but there is no evidence for its increase in fish of this region. From a public health point, petroleum hydrocarbon residue levels in all fish samples analyzed in this study are considerably lower than the hazardous levels. At present, as Tamilnadu coastal area is in a rapid development stage of new harbour, chemical industries, power plants, oil exploration and other large-scale industries, further assessment of petroleum hydrocarbons and the various hydrodynamic conditions acting in the region are to be studied in detail and continuous pollution monitoring studies should be conducted for improving the aquatic environment. The results will also be useful for pollution monitoring program along the coastal region and also to check the levels of petroleum hydrocarbons.

  7. Multimedia fate of petroleum hydrocarbons in the soil: oil matrix of constructed biopiles.

    PubMed

    Coulon, Frédéric; Whelan, Michael J; Paton, Graeme I; Semple, Kirk T; Villa, Raffaella; Pollard, Simon J T

    2010-12-01

    A dynamic multimedia fugacity model was used to evaluate the partitioning and fate of petroleum hydrocarbon fractions and aromatic indicator compounds within the soil: oil matrix of three biopiles. Each biopile was characterised by four compartments: air, water, soil solids and non-aqueous phase liquid (NAPL). Equilibrium partitioning in biopile A and B suggested that most fractions resided in the NAPL, with the exception of the aromatic fraction with an equivalent carbon number from 5 to 7 (EC(5-7)). In Biopile C, which had the highest soil organic carbon content (13%), the soil solids were the most important compartment for both light aliphatic fractions (EC(5-6) and EC(6-8)) and aromatic fractions, excluding the EC(16-21) and EC(21-35). Our starting hypothesis was that hydrocarbons do not degrade within the NAPL. This was supported by the agreement between predicted and measured hydrocarbon concentrations in Biopile B when the degradation rate constant in NAPL was set to zero. In all scenarios, biodegradation in soil was predicted as the dominant removal process for all fractions, except for the aliphatic EC(5-6) which was predominantly lost via volatilization. The absence of an explicit NAPL phase in the model yielded a similar prediction of total petroleum hydrocarbon (TPH) behaviour; however the predicted concentrations in the air and water phases were significantly increased with consequent changes in potential mobility. Further comparisons between predictions and measured data, particularly concentrations in the soil mobile phases, are required to ascertain the true value of including an explicit NAPL in models of this kind.

  8. Exposure to Petroleum Hydrocarbon: Implications in Lung Lipid Peroxidation and Antioxidant Defense System in Rat

    PubMed Central

    Azeez, Oyebisi M; Akhigbe, Roland E.; Anigbogu, Chikodi N

    2012-01-01

    Objective: Various studies have implicated automobile exhausts as risk factors in cardiovascular and pulmonary diseases; however, there is little or no documentation on the role of the main source of the exhausts, petroleum hydrocarbons, on cardiopulmonary pathologies. Thus, we investigated the effect of petroleum hydrocarbons, using various petroleum products, on histomorphology of the lung and the role of lipid peroxidation in it. Materials and Methods: Control rats were not exposed to any of the petroleum products, whereas petrol-exposed, diesel-exposed, and kerosene-exposed rats were exposed to petrol, diesel, and kerosene by inhalation, respectively. Results: Exposure to petroleum hydrocarbons significantly induced lipid peroxidation with a consequent rise in malondialdehyde (MDA), and a decrease in superoxide dismutase (SOD) and catalase (CAT) activities and glutathione (GSH) level. Exposure to petroleum hydrocarbons also caused an alteration in the histomorphology of lung tissues. Conclusion: Our findings imply that exposure to petroleum hydrocarbons by inhalation is a risk factor in the pathophysiology of pulmonary dysfunction. This is associated with oxidative stress. PMID:23293471

  9. Use of thermal desorption/gas chromatography as a performance-based screening method for petroleum hydrocarbons

    SciTech Connect

    Slavin, P.J. |; Crandall, K.; Dawson, L.; Kottenstette, R.; Wade, M. |

    1996-08-01

    Thermal desorption/gas chromatography (TD/GC) was used to screen soil samples on site for total petroleum hydrocarbon (TPH) content during a RCRA Facility Investigation (RFI). It proved to be a rapid, cost- effective tool for detecting non-aromatic mineral oil in soil. The on- site TD/GC results correlated well with those generated at an off- site laboratory for samples analyzed in accordance with EPA Method 418.1.

  10. Biodegradation of Petroleum Hydrocarbon Vapors In Unsaturated Alluvial Sand

    NASA Astrophysics Data System (ADS)

    Höhener, P.; Duwig, C.; Pasteris, G.; Dakhel, N.; Kaufmann, K.; Werner, D.

    Biodegradation rates are critical parameters in models aimed at predicting the nat- ural attenuation of volatile organic compounds (VOCs) in the unsaturated zone. In this study the kinetic rate laws for the aerobic biodegradation of selected petroleum hydrocarbons and MTBE were investigated in unsaturated alluvial sand exposed to the vapors from a fuel mixture. Laboratory column and batch experiments were per- formed at room temperature under aerobic conditions. An analytical reactive transport model for VOC vapors in soil based on Monod kinetics is used for data interpretation. In the column experiment, steady-state diffusive vapor transport was reached after 23 days. Monod kinetic parameters were derived from the column profiles for toluene, m-xylene, octane and hexane. The degradation of cyclic alkanes, isooctane, and 1,2,4- trimethylbenzene was best described by first-order kinetics. MTBE, pentane and chlo- rofluorocarbons were recalcitrant. Batch experiments suggested first-order disappear- ance rate laws for all VOCs except octane, which followed zero-order kinetics. For some compounds including MTBE, disappearance rates in abiotic batch experiments were as high as in live batches. Abiotic disappearance is explained by slow intraparti- cle diffusion and sorption. It is concluded that the column approach is preferable for determining biodegradation rate parameters to be used in risk assessment models.

  11. Suitability of different salt marsh plants for petroleum hydrocarbons remediation.

    PubMed

    Couto, M Nazaré P F S; Basto, M Clara P; Vasconcelos, M Teresa S D

    2011-08-01

    The suitability of the salt-marsh species Halimione portulacoides, Scirpus maritimus, Juncus maritimus and an association of the last two for remediation of petroleum hydrocarbons (PHC) in soil was investigated. An outdoor laboratory experiment (microcosm-scale) was carried out using contaminated soil collected in a refinery, as a complement of another study carried out in the refinery environment (mesocosm-scale). Soil samples with old contamination (mainly crude oil) and with a mixture of the old and recent (turbine oil) contamination were tested. Studies in both micro- and mesocosm-scale provided results coherent in substance. The presence of S. maritimus caused removal of old contamination which was refractory to natural attenuation (after 7months of exposure, efficiency was 13% when only old contamination was present and 40% when the soil also contained recent contamination). H. portulacoides (only included in the microcosm-scale study) revealed also potentiality for PHC remediation, although with less efficiency than S. maritimus. Degradation of recent contamination was also faster in the presence of plants (after 7months: 100% in the presence of S. maritimus vs. 63% in its absence). As these species are common in salt marsh areas in Atlantic coast of Europe, it is probable they will be also useful for recovering coast sediments. In contrast, J. maritimus and association did not reveal capability to remove PHC from soil, the presence of J. maritimus inhibiting the capability of S. maritimus. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Validating potential toxicity assays to assess petroleum hydrocarbon toxicity in polar soil.

    PubMed

    Harvey, Alexis Nadine; Snape, Ian; Siciliano, Steven Douglas

    2012-02-01

    Potential microbial activities are commonly used to assess soil toxicity of petroleum hydrocarbons (PHC) and are assumed to be a surrogate for microbial activity within the soil ecosystem. However, this assumption needs to be evaluated for frozen soil, in which microbial activity is limited by liquid water (θ(liquid)). Influence of θ(liquid) on in situ toxicity was evaluated and compared to the toxicity endpoints of potential microbial activities using soil from an aged diesel fuel spill at Casey Station, East Antarctica. To determine in situ toxicity, gross mineralization and nitrification rates were determined by the stable isotope dilution technique. Petroleum hydrocarbon-contaminated soil (0-8,000 mg kg(-1)), packed at bulk densities of 1.4, 1.7, and 2.0 g cm(-3) to manipulate liquid water content, was incubated at -5°C for one, two, and three months. Although θ(liquid) did not have a significant effect on gross mineralization or nitrification, gross nitrification was sensitive to PHC contamination, with toxicity decreasing over time. In contrast, gross mineralization was not sensitive to PHC contamination. Toxic response of gross nitrification was comparable to potential nitrification activity (PNA) with similar EC25 (effective concentration causing a 25% effect in the test population) values determined by both measurement endpoints (400 mg kg(-1) for gross nitrification compared to 200 mg kg(-1) for PNA), indicating that potential microbial activity assays are good surrogates for in situ toxicity of PHC contamination in polar regions.

  13. Carbon isotope systematics of individual hydrocarbons in hydrothermal petroleum from Escanaba Trough, northeastern Pacific Ocean.

    PubMed

    Simoneit, B R; Schoell, M; Kvenvolden, K A

    1997-01-01

    We submitted individual aliphatic and polycyclic aromatic hydrocarbons in samples of hydrothermal petroleum from Escanaba Trough to compound specific isotope analysis to trace their origins. The carbon isotope compositions of the alkanes and polycyclic aromatic hydrocarbons (means -27.5 and -24.7%, respectively) reflect a primarily terrestrial organic matter source.

  14. Total petroleum hydrocarbons in sediments from the coastline and mangroves of the northern Persian Gulf.

    PubMed

    Mohebbi-Nozar, Seyedeh Laili; Zakaria, Mohamad Pauzi; Ismail, Wan Ruslan; Mortazawi, Mohammad Seddiq; Salimizadeh, Maryam; Momeni, Mohammad; Akbarzadeh, Gholamali

    2015-06-15

    To provide baseline information for the marine ecosystem of Hormozgan province, the distribution of petroleum hydrocarbons was evaluated in 52 stations involved in the mangrove and coastline ecosystem. Coastline sampling sites included areas facing harbor, river, domestic and industrial discharge. Sediment samples were analyzed based on ultraviolet fluorescence spectroscopy. Petroleum hydrocarbons showed narrow variations ranging from non-detectable (ND) to 1.71 and from 0.2 to 0.63μg/g dry weight for coastline and mangrove sediments, respectively. The detected concentrations for total petroleum hydrocarbons were lower than guideline values for ecological risk. Furthermore, the minimum environmental risk was confirmed by background levels for the Persian Gulf, the Sea of Oman, and detected values for reference areas. The results were regarded as background data in the studied area, and, considering the rapid expansion of activities related to the petroleum industry in Hormozgan province, the continuous monitoring of pollutants is recommended.

  15. INNOVATIVE TECHNOLOGY VERIFICATION REPORT "FIELD MEASUREMENT TECHNOLOGIES FOR TOTAL PETROLEUM HYDROCARBONS IN SOIL" CHEMETRICS, INC., AND AZUR ENVIRONMENTAL LTD REMEDIAID TOTAL PETROLEUM HYDROCARBON STARTER KIT

    EPA Science Inventory

    The RemediAidTm Total Petroleum Hydrocarbon Starter Kit (RemediAidTm kit) developed by CHEMetries, Inc. (CHEMetrics), and AZUR Environmental Ltd was demonstrated under the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation Program in June 2000 at the ...

  16. INNOVATIVE TECHNOLOGY VERIFICATION REPORT "FIELD MEASUREMENT TECHNOLOGIES FOR TOTAL PETROLEUM HYDROCARBONS IN SOIL" CHEMETRICS, INC., AND AZUR ENVIRONMENTAL LTD REMEDIAID TOTAL PETROLEUM HYDROCARBON STARTER KIT

    EPA Science Inventory

    The RemediAidTm Total Petroleum Hydrocarbon Starter Kit (RemediAidTm kit) developed by CHEMetries, Inc. (CHEMetrics), and AZUR Environmental Ltd was demonstrated under the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation Program in June 2000 at the ...

  17. Application of glass capillary columns to monitor petroleum-type hydrocarbons in marine sediments.

    PubMed

    Overton, E B; Bracken, J; Laseter, J L

    1977-05-10

    High resolution glass capillary columns coated with SE 52 liquid phase were used to resolve the indigenous hydrocarbons extracted from sediment samples collected from three outer continental shelf areas. The extracts were than spiked with small amounts of aliphatic or aromatic components isolated from a Louisiana crude oil and rechromatographed. The resolution was sufficient to separate almost all the isoprenoid, branched and cyclic alkanes associated with petroleum. Additionally, many of the key petroleum aromatics could also be resolved from naturally occurring organics. Such chromatographic procedures will aid in distinguishing between indigenous hydrocarbons of contemporary origin and those known to be associated with fossil hydrocarbon pollution of marine sediments.

  18. 40 CFR Table 6 to Subpart Vvvv of... - Default Organic HAP Contents of Petroleum Solvent Groups

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Petroleum Solvent Groups 6 Table 6 to Subpart VVVV of Part 63 Protection of Environment ENVIRONMENTAL... Contents of Petroleum Solvent Groups As specified in § 63.5758(a)(6), when detailed organic HAP content..., Naphthol Spirits, Petroleum Spirits, Petroleum Oil, Petroleum Naphtha, Solvent Naphtha, Solvent Blend.) 3...

  19. A combined approach of physicochemical and biological methods for the characterization of petroleum hydrocarbon-contaminated soil.

    PubMed

    Masakorala, Kanaji; Yao, Jun; Chandankere, Radhika; Liu, Haijun; Liu, Wenjuan; Cai, Minmin; Choi, Martin M F

    2014-01-01

    Main physicochemical and microbiological parameters of collected petroleum-contaminated soils with different degrees of contamination from DaGang oil field (southeast of Tianjin, northeast China) were comparatively analyzed in order to assess the influence of petroleum contaminants on the physicochemical and microbiological properties of soil. An integration of microcalorimetric technique with urease enzyme analysis was used with the aim to assess a general status of soil metabolism and the potential availability of nitrogen nutrient in soils stressed by petroleum-derived contaminants. The total petroleum hydrocarbon (TPH) content of contaminated soils varied from 752.3 to 29,114 mg kg(−1). Although the studied physicochemical and biological parameters showed variations dependent on TPH content, the correlation matrix showed also highly significant correlation coefficients among parameters, suggesting their utility in describing a complex matrix such as soil even in the presence of a high level of contaminants. The microcalorimetric measures gave evidence of microbial adaptation under highest TPH concentration; this would help in assessing the potential of a polluted soil to promote self-degradation of oil-derived hydrocarbon under natural or assisted remediation. The results highlighted the importance of the application of combined approach in the study of those parameters driving the soil amelioration and bioremediation.

  20. Arbuscular mycorrhizal fungi in chronically petroleum-contaminated soils in Mexico and the effects of petroleum hydrocarbons on spore germination.

    PubMed

    Franco-Ramírez, Alicia; Ferrera-Cerrato, Ronald; Varela-Fregoso, Lucía; Pérez-Moreno, Jesús; Alarcón, Alejandro

    2007-10-01

    Arbuscular mycorrhizal fungi (AMF) have been hypothesized to enhance plant adaptation and growth in petroleum-contaminated soils. Nevertheless, neither AMF-biodiversity under chronically petroleum-contaminated soils nor spore germination response to petroleum hydrocarbons has been well studied. Chronically petroleum-contaminated rhizosphere soil and roots from Echinochloa polystachya, Citrus aurantifolia and C. aurantium were collected from Activo Cinco Presidentes, Tabasco, Mexico. Root colonization and spore abundance were evaluated. Additionally, rhizosphere soil samples were propagated using Sorghum vulgare L. as a plant trap under greenhouse conditions; subsequently, AMF-spores were identified. AMF-colonization ranged from 63 to 77% while spore number ranged from 715 to 912 in 100 g soil, suggesting that AMF tolerate the presence of petroleum hydrocarbons in the rhizosphere. From grass species, four AMF-morphospecies were identified: Glomus ambisporum, G. sinuosum (previously described as Sclerocystis sinuosum), Acaulospora laevis, and Ambispora gerdermanni. From citrus trees, four AMF-species were also identified: Scutellospora heterogama, G. ambisporum, Acaulospora scrobiculata, and G. citricola. In a second study, it was observed that spore germination and hyphal length of G. mosseae, G. ambisporum, and S. heterogama were significantly reduced by either volatile compounds of crude oil or increased concentrations of benzo[a ]pyrene or phenanthrene in water-agar.

  1. [Petroleum hydrocarbon pollution status in shellfish culture area of Sanggou Bay and effect on quality safety of shellfish].

    PubMed

    Qiao, Xiang-Ying; Chen, Bi-Juan; Zhou, Ming-Ying; Cui, Zheng-Guo

    2011-08-01

    Petroleum hydrocarbon concentrations in seawater, surface sediments and culture shellfish were investigated in shellfish culture area of Sanggou Bay from Jan. to Nov. in 2008. Investigation was conducted on the distribution and variation of petroleum hydrocarbon concentrations in seawater and sediments in the shellfish culture area of Sanggou Bay, as well as on the levels and the differences in petroleum hydrocarbon concentrations among the shellfish species. In addition, the petroleum hydrocarbon pollution status in the three media was evaluated and the effects of accumulated petroleum hydrocarbon in shellfish on the food safety risk were discussed. The results indicated: 1) Petroleum hydrocarbon concentrations in seawater in the shellfish culture area of Sanggou Bay were in the range of 3.61 - 98.21 microg/L; the mean values of petroleum hydrocarbon concentrations in sediments were in the range of 6.75-25.95 mg/kg; petroleum hydrocarbon concentrations in culture shellfish were in the range of 2.14- 42.87 mg/kg; and petroleum hydrocarbon concentrations in shellfish varied largely among different species, with the mean values in the sequence of clam Venerupis variegata > oyster > scallop; 2) Monthly petroleum hydrocarbon concentrations in seawater and surface sediments varied significantly in Sanggou Bay shellfish culture area, with the highest and the lowest values of petroleum hydrocarbon concentrations in seawater that occurred in July and in August, respectively, and with the highest and the lowest values of petroleum hydrocarbon concentrations in surface sediments that occurred in September and in March, respectively; 3) According to the corresponding evaluation criteria, the petroleum hydrocarbon pollution status in surface sediments in Sanggou Bay shellfish culture area was unpolluted but the status in surface seawater was polluted. The culture shellfish was also polluted by petroleum hydrocarbon with different degrees among three species, namely, the

  2. Petroleum hydrocarbon concentrations in marine sediments along Nagapattinam - Pondicherry coastal waters, Southeast coast of India.

    PubMed

    Kamalakannan, K; Balakrishnan, S; Sampathkumar, P

    2017-04-15

    In this present study, petroleum hydrocarbons were statistically analyzed in three different coastal sediment cores viz., (N1, P1 and P2) from the Southeast coast of Tamil Nadu, India to examine the viability of PHCs. The significant positive relationship between mud (silt+clay+sand) and PHC unveiled that high specific surface of area of mud content raise the level of PHCs. Cluster analysis was used to discriminate the sediment samples based on their degree of contamination. The present study shows that instead of expensive and destructive PHC chemical methods, magnetic susceptibility is found to be a suitable, cheap and rapid method for detailed study of PHC in marine sediments. This baseline PHCs data can be used for regular ecological monitoring and effective management for the mining and tourism related activities in the coastal ecosystem. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Electrokinetic remediation and microbial community shift of β-cyclodextrin-dissolved petroleum hydrocarbon-contaminated soil.

    PubMed

    Wan, Chunli; Du, Maoan; Lee, Duu-Jong; Yang, Xue; Ma, Wencheng; Zheng, Lina

    2011-03-01

    Electrokinetic (EK) migration of β-cyclodextrin (β-CD), which is inclusive of total petroleum hydrocarbon (TPH), is an economically beneficial and environmentally friendly remediation process for oil-contaminated soils. Remediation studies of oil-contaminated soils generally prepared samples using particular TPHs. This study investigates the removal of TPHs from, and electromigration of microbial cells in field samples via EK remediation. Both TPH content and soil respiration declined after the EK remediation process. The strains in the original soil sample included Bacillus sp., Sporosarcina sp., Beta proteobacterium, Streptomyces sp., Pontibacter sp., Azorhizobium sp., Taxeobacter sp., and Williamsia sp. Electromigration of microbial cells reduced the biodiversity of the microbial community in soil following EK remediation. At 200 V m(-1) for 10 days, 36% TPH was removed, with a small population of microbial cells flushed out, demonstrating that EK remediation is effective for the present oil-contaminated soils collected in field.

  4. Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater.

    PubMed

    Gargouri, Boutheina; Mhiri, Najla; Karray, Fatma; Aloui, Fathi; Sayadi, Sami

    2015-01-01

    Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons.

  5. Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater

    PubMed Central

    Gargouri, Boutheina; Mhiri, Najla; Karray, Fatma; Aloui, Fathi; Sayadi, Sami

    2015-01-01

    Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons. PMID:26339653

  6. Development of Interspecies Correlation Models for Petroleum Hydrocarbons

    EPA Science Inventory

    Estimating the consequences of petroleum products to water column organisms has commonly been hampered by limited acute toxicity data, which exists only for a relatively small number of test species. In this study, we developed petroleum-specific Interspecies Correlation Estimati...

  7. Development of Interspecies Correlation Models for Petroleum Hydrocarbons

    EPA Science Inventory

    Estimating the consequences of petroleum products to water column organisms has commonly been hampered by limited acute toxicity data, which exists only for a relatively small number of test species. In this study, we developed petroleum-specific Interspecies Correlation Estimati...

  8. Application of the Salmonella mutagenicity assay and determination of polycyclic aromatic hydrocarbons in workplaces exposed to petroleum pitch and petroleum coke.

    PubMed

    Monarca, S; Pasquini, R; Sforzolini, G S; Viola, V; Fagioli, F

    1982-02-01

    Workplaces of an Italian carbon electrode factory, exposed to petroleum pitch and petroleum coke, were studied using a coupled chemical and biological approach to evaluate occupational mutagenic/carcinogenic hazards. Analytical procedures for the determination of polycyclic aromatic hydrocarbons (PAH) and Salmonella/microsome mutagenicity tests (with TA98 and TA100 strains) were performed on both industrial ingredients (pitch and coke) and airborne particulate matter of the working environment, after fractionating by sequential Soxhlet extractions with four organic solvents of increasing polarity (benzene, chloroform, methanol and acetone). The results showed: (a) the presence of extraordinarily high PAH (carcinogenic and non-carcinogenic) contents in the benzene extracts of petroleum pitch (3.6 wt% of total PAH) and of airborne particulate samples (up to 0.35 wt% of total PAH), in correlation with very high indirect (after metabolic activation) mutagenic responses of benzene extracts with strain TA98; (b) very high indirect mutagenic responses in the other extracts of the airborne particulate samples (especially with strain TA98); (c) the production during the processing at high temperatures of directly acting mutagens (without metabolic activation) which were absent in the starting materials and their release in the air of workplaces. The comparison of chemical analytical and mutagenicity data has proved to be an interesting approach for better defining the relative health hazards due to occupational exposure to potentially mutagenic/carcinogenic petroleum products.

  9. Biological treatment process for removing petroleum hydrocarbons from oil field produced waters

    SciTech Connect

    Tellez, G.; Khandan, N.

    1995-12-31

    The feasibility of removing petroleum hydrocarbons from oil fields produced waters using biological treatment was evaluated under laboratory and field conditions. Based on previous laboratory studies, a field-scale prototype system was designed and operated over a period of four months. Two different sources of produced waters were tested in this field study under various continuous flow rates ranging from 375 1/D to 1,800 1/D. One source of produced water was an open storage pit; the other, a closed storage tank. The TDS concentrations of these sources exceeded 50,000 mg/l; total n-alkanes exceeded 100 mg/l; total petroleum hydrocarbons exceeded 125 mg/l; and total BTEX exceeded 3 mg/l. Removals of total n-alkanes, total petroleum hydrocarbons, and BTEX remained consistently high over 99%. During these tests, the energy costs averaged $0.20/bbl at 12 bbl/D.

  10. Bioremediation of weathered petroleum hydrocarbon soil contamination in the Canadian High Arctic: laboratory and field studies.

    PubMed

    Sanscartier, David; Laing, Tamsin; Reimer, Ken; Zeeb, Barbara

    2009-11-01

    The bioremediation of weathered medium- to high-molecular weight petroleum hydrocarbons (HCs) in the High Arctic was investigated. The polar desert climate, contaminant characteristics, and logistical constraints can make bioremediation of persistent HCs in the High Arctic challenging. Landfarming (0.3 m(3) plots) was tested in the field for three consecutive years with plots receiving very little maintenance. Application of surfactant and fertilizers, and passive warming using a greenhouse were investigated. The field study was complemented by a laboratory experiment to better understand HC removal mechanisms and limiting factors affecting bioremediation on site. Significant reduction of total petroleum HCs (TPH) was observed in both experiments. Preferential removal of compounds nC16 occurred, whereas in the field, TPH reduction was mainly limited to removal of compounds nC16 was observed in the fertilized field plots only. The greenhouse increased average soil temperatures and extended the treatment season but did not enhance bioremediation. Findings suggest that temperature and low moisture content affected biodegradation of HCs in the field. Little volatilization was measured in the laboratory, but this process may have been predominant in the field. Low-maintenance landfarming may be best suited for remediation of HCs compounds

  11. Variability of soil potential for biodegradation of petroleum hydrocarbons in a heterogeneous subsurface.

    PubMed

    Kristensen, Andreas H; Poulsen, Tjalfe G; Mortensen, Lars; Moldrup, Per

    2010-07-15

    Quantifying the spatial variability of factors affecting natural attenuation of hydrocarbons in the unsaturated zone is important to (i) performing a reliable risk assessment and (ii) evaluating the possibility for bioremediation of petroleum-polluted sites. Most studies to date have focused on the shallow unsaturated zone. Based on a data set comprising analysis of about 100 soil samples taken in a 16 m-deep unsaturated zone polluted with volatile petroleum compounds, we statistically and geostatistically analysed values of essential soil properties. The subsurface of the site was highly layered, resulting in an accumulation of pollution within coarse sandy lenses. Air-filled porosity, readily available phosphorous, and the first-order rate constant (k(1)) of benzene obtained from slurry biodegradation experiments were found to depend on geologic sample characterization (P<0.05), while inorganic nitrogen was homogenously distributed across the soil stratigraphy. Semivariogram analysis showed a spatial continuity of 4-8.6 m in the vertical direction, while it was 2-5 times greater in the horizontal direction. Values of k(1) displayed strong spatial autocorrelation. Even so, the soil potential for biodegradation was highly variable, which from autoregressive state-space modeling was partly explained by changes in soil air-filled porosity and gravimetric water content. The results suggest considering biological heterogeneity when evaluating the fate of contaminants in the subsurface.

  12. Loads Limits Values of Soils with Petroleum Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Dumitru, Mihail; Vladimirescu, Andreea

    2017-04-01

    The high demand for oil and associated products as a source of energy, resulting in increased oil exploitation, producing, refining, transportation, storage, marketing and use led to high levels of environmental pollution. The optimum bioremediation variant proved to be the one in which fertilizer (potassium humate in NPK matrix with microelements and 8% monosaccharides) applied in a 650 l/ha dose was used together with the Zeba absorbent in 32 kg/ha dose, where the TPH level dropped by 58% in 45 days from the pollution with 3% crude oil. Most of these areas are affected by historical pollution. Many organic contaminants may undergo an ongoing process in the soil, whereby over time contaminant become less and less subject to decomposition even though relatively can still be detected in the laboratory analyses. In Romania about 50.000 ha are polluted with oil and/or brine. The bioremediation was the main method of rehabilitation. The Regulation on the assessment of environmental pollution, the following are presented as guide values for total oil hydrocarbons content in soil: - normal: less than 100 mg/kg; - alert values for sensitive soils: 200 mg/kg; - alert values for less sensitive soils: 1000 mg/kg; - intervention values for sensitive soils: 500 mg/kg; - intervention values for less sensitive soils: 2000 mg/kg. Researches done in laboratory monitored the effect of various concentrations of oil (under 2000 mg/kg, 3000 mg/kg, 5000 mg/kg, 7000 mg/kg, 10 000 mg/kg) on germination of wheat seeds at 5 and 7 days after seeding and (fresh and dry) biomass production after 40 days. Tree experiments were done: one with recently contaminated light oil, one with recently contaminated heavy oil and one with old contamination. After 5 days from sowing, the largest number of germinated seeds was found in the experiments with old contamination. The fewest germinated seeds was found in the experience with light oil. The experience with heavy oil showed an intermediate number of

  13. Biosurfactant-producing strains in enhancing solubilization and biodegradation of petroleum hydrocarbons in groundwater.

    PubMed

    Liu, Hong; Wang, Hang; Chen, Xuehua; Liu, Na; Bao, Suriguge

    2014-07-01

    Three biosurfactant-producing strains designated as BS-1, BS-3, and BS-4 were screened out from crude oil-contaminated soil using a combination of surface tension measurement and oil spreading method. Thin layer chromatography and infrared analysis indicated that the biosurfactants produced by the three strains were lipopeptide, glycolipid, and phospholipid. The enhancement of solubilization and biodegradation of petroleum hydrocarbons in groundwater employing biosurfactant-producing strains was investigated. The three strain mixtures led to more solubilization of petroleum hydrocarbons in groundwater, and the solubilization rate was 10.5 mg l−1. The combination of biosurfactant-producing strains and petroleum-degrading strains exhibited a higher biodegradation efficiency of 85.4 % than the petroleum-degrading strains (71.2 %). Biodegradation was enhanced the greatest with biosurfactant-producing strains and petroleum-degrading strains in a ratio of 1:1. Fluorescence microscopy images illustrate that the oil dispersed into smaller droplets and emulsified in the presence of biosurfactant-producing strains, which attached to the oil. Thus, the biodegradation of petroleum hydrocarbons in groundwater was enhanced.

  14. Zoogloea oleivorans sp. nov., a floc-forming, petroleum hydrocarbon-degrading bacterium isolated from biofilm.

    PubMed

    Farkas, Milán; Táncsics, András; Kriszt, Balázs; Benedek, Tibor; Tóth, Erika M; Kéki, Zsuzsa; Veres, Péter G; Szoboszlay, Sándor

    2015-01-01

    A floc-forming, Gram-stain-negative, petroleum hydrocarbon-degrading bacterial strain, designated Buc(T), was isolated from a petroleum hydrocarbon-contaminated site in Hungary. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Buc(T) formed a distinct phyletic lineage within the genus Zoogloea. Its closest relative was found to be Zoogloea caeni EMB43(T) (97.2% 16S rRNA gene sequence similarity) followed by Zoogloea oryzae A-7(T) (95.9%), Zoogloea ramigera ATCC 19544(T) (95.5%) and Zoogloea resiniphila DhA-35(T) (95.4%). The level of DNA-DNA relatedness between strain Buc(T) and Z. caeni EMB43(T) was 31.6%. Cells of strain Buc(T) are facultatively aerobic, rod-shaped, and motile by means of a polar flagellum. The strain grew at temperatures of 5-35 °C (optimum 25-28 °C), and at pH 6.0-9.0 (optimum 6.5-7.5). The predominant fatty acids were C16:0, C10 : 0 3-OH, C12:0 and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH). The major respiratory quinone was ubiquinone-8 (Q-8) and the predominant polar lipid was phosphatidylethanolamine. The genomic DNA G+C content was 63.2 mol%. On the basis of the chemotaxonomic, molecular and phenotypic data, isolate Buc(T) is considered to represent a novel species of the genus Zoogloea, for which the name Zoogloea oleivorans sp. nov. is proposed. The type strain is Buc(T) ( =DSM 28387(T) =NCAIM B 02570(T)). © 2015 IUMS.

  15. Methodology for applying monitored natural attenuation to petroleum hydrocarbon-contaminated ground-water systems with examples from South Carolina

    USGS Publications Warehouse

    Chapelle, Frank H.; Robertson, John F.; Landmeyer, James E.; Bradley, Paul M.

    2000-01-01

    These two sites illustrate how the efficiency of natural attenuation processes acting on petroleum hydrocarbons can be systematically evaluated using hydrologic, geochemical, and microbiologic methods.  These methods, in turn, can be used to assess the role that the natural attenuation of petroleum hydrocarbons can play in achieving overall site remediation.

  16. Effect of biochar on the fate of volatile petroleum hydrocarbons in an aerobic sandy soil

    NASA Astrophysics Data System (ADS)

    Bushnaf, Khaled M.; Puricelli, Sara; Saponaro, Sabrina; Werner, David

    2011-11-01

    Biochar addition to soil is currently being investigated as a novel technology to remediate polluted sites. A critical consideration is the impact of biochar on the intrinsic microbial pollutant degradation, in particular at sites polluted with a mixture of readily biodegradable and more persistent organic pollutants. We therefore studied the impact of biochar (2% on dry weight basis) on the fate of volatile petroleum hydrocarbons in an aerobic sandy soil with batch and column studies. The soil-water partitioning coefficient, K d, was enhanced in the biochar-amended soil up to a factor 36, and petroleum hydrocarbon vapor migration was retarded accordingly. Despite increased sorption, in particular of monoaromatic hydrocarbons, the overall microbial respiration was comparable in the biochar-amended and unamended soil. This was due to more rapid biodegradation of linear, cyclic and branched alkanes in the biochar amended soil. We concluded that the total petroleum hydrocarbon degradation rate was controlled by a factor other than substrate availability and the reduced availability of monoaromatic hydrocarbons in the biochar amended soil led to greater biodegradation of the other petroleum compounds.

  17. Field study of in situ remediation of petroleum hydrocarbon contaminated soil on site using microwave energy.

    PubMed

    Chien, Yi-Chi

    2012-01-15

    Many laboratory-scale studies strongly suggested that remediation of petroleum hydrocarbon contaminated soil by microwave heating is very effective; however, little definitive field data existed to support the laboratory-scale observations. This study aimed to evaluate the performance of a field-scale microwave heating system to remediate petroleum hydrocarbon contaminated soil. A constant microwave power of 2 kW was installed directly in the contaminated area that applied in the decontamination process for 3.5h without water input. The C10-C40 hydrocarbons were destroyed, desorbed or co-evaporated with moisture from soil by microwave heating. The moisture may play an important role in the absorption of microwave and in the distribution of heat. The success of this study paved the way for the second and much larger field test in the remediation of petroleum hydrocarbon contaminated soil by microwave heating in place. Implemented in its full configuration for the first time at a real site, the microwave heating has demonstrated its robustness and cost-effectiveness in cleaning up petroleum hydrocarbon contaminated soil in place. Economically, the concept of the microwave energy supply to the soil would be a network of independent antennas which powered by an individual low power microwave generator. A microwave heating system with low power generators shows very flexible, low cost and imposes no restrictions on the number and arrangement of the antennas. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil.

    PubMed

    Singh, Anil Kumar; Cameotra, Swaranjit Singh

    2013-10-01

    This study describes the potential application of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from the soil samples collected from industrial dumping site. High concentrations of heavy metals (like iron, lead, nickel, cadmium, copper, cobalt and zinc) and petroleum hydrocarbons were present in the contaminated soil samples. Lipopeptide biosurfactant, consisting of surfactin and fengycin was obtained from Bacillus subtilis A21. Soil washing with biosurfactant solution removed significant amount of petroleum hydrocarbon (64.5 %) and metals namely cadmium (44.2 %), cobalt (35.4 %), lead (40.3 %), nickel (32.2 %), copper (26.2 %) and zinc (32.07 %). Parameters like surfactant concentration, temperature, agitation condition and pH of the washing solution influenced the pollutant removing ability of biosurfactant mixture. Biosurfactant exhibited substantial hydrocarbon solubility above its critical micelle concentration. During washing, 50 % of biosurfactant was sorbed to the soil particles decreasing effective concentration during washing process. Biosurfactant washed soil exhibited 100 % mustard seed germination contradictory to water washed soil where no germination was observed. The results indicate that the soil washing with mixture of lipopeptide biosurfactants at concentrations above its critical micelle concentration can be an efficient and environment friendly approach for removing pollutants (petroleum hydrocarbon and heavy metals) from contaminated soil.

  19. A simple method for calculating growth rates of petroleum hydrocarbon plumes

    USGS Publications Warehouse

    Bekins, B.A.; Cozzarelli, I.M.; Curtis, G.P.

    2005-01-01

    Consumption of aquifer Fe(III) during biodegradation of ground water contaminants may result in expansion of a contaminant plume, changing the outlook for monitored natural attenuation. Data from two research sites contaminated with petroleum hydrocarbons show that toluene and xylenes degrade under methanogenic conditions, but the benzene and ethylbenzene plumes grow as aquifer Fe(III) supplies are depleted. By considering a one-dimensional reaction front in a constant unidirectional flow field, it is possible to derive a simple expression for the growth rate of a benzene plume. The method balances the mass flux of benzene with the Fe(III) content of the aquifer, assuming that the biodegradation reaction is instantaneous. The resulting expression shows that the benzene front migration is retarded relative to the ground water velocity by a factor that depends on the concentrations of hydrocarbon and bioavailable Fe(III). The method provides good agreement with benzene plumes at a crude oil study site in Minnesota and a gasoline site in South Carolina. Compared to the South Carolina site, the Minnesota site has 25% higher benzene flux but eight times the Fe(III), leading to about one-sixth the expansion rate. Although it was developed for benzene, toluene, ethylbenzene, and xylenes, the growth-rate estimation method may have applications to contaminant plumes from other persistent contaminant sources. Copyright ?? 2005 National Ground Water Association.

  20. A simple method for calculating growth rates of petroleum hydrocarbon plumes.

    PubMed

    Bekins, Barbara A; Cozzarelli, Isabelle M; Curtis, Gary P

    2005-01-01

    Consumption of aquifer Fe(III) during biodegradation of ground water contaminants may result in expansion of a contaminant plume, changing the outlook for monitored natural attenuation. Data from two research sites contaminated with petroleum hydrocarbons show that toluene and xylenes degrade under methanogenic conditions, but the benzene and ethylbenzene plumes grow as aquifer Fe(III) supplies are depleted. By considering a one-dimensional reaction front in a constant unidirectional flow field, it is possible to derive a simple expression for the growth rate of a benzene plume. The method balances the mass flux of benzene with the Fe(III) content of the aquifer, assuming that the biodegradation reaction is instantaneous. The resulting expression shows that the benzene front migration is retarded relative to the ground water velocity by a factor that depends on the concentrations of hydrocarbon and bioavailable Fe(III). The method provides good agreement with benzene plumes at a crude oil study site in Minnesota and a gasoline site in South Carolina. Compared to the South Carolina site, the Minnesota site has 25% higher benzene flux but eight times the Fe(III), leading to about one-sixth the expansion rate. Although it was developed for benzene, toluene, ethylbenzene, and xylenes, the growth-rate estimation method may have applications to contaminant plumes from other persistent contaminant sources.

  1. Changes in toxicity during in situ bioremediation of weathered drill wastes contaminated with petroleum hydrocarbons.

    PubMed

    Steliga, Teresa; Jakubowicz, Piotr; Kapusta, Piotr

    2012-12-01

    Bioremediation of weathered drill wastes severely contaminated with total petroleum hydrocarbons (TPH) (90,000-170,000 mg kg(-1)) and BTEX (51.2-95.5 mg kg(-1)) to soil standards was achieved over a 3-year period in three phases: initial remediation, basic bioremediation and inoculation with a biopreparation. Fourteen non-pathogenic indigenous bacteria species belonging mainly to the Actinomycetales were identified and shown to be able to degrade 63-75% of nC(9)-nC(20), 36-51% of nC(21)-nC(36), 36% of BTEX and 20% of PAHs (polycyclic aromatic hydrocarbons). Addition of five non-pathogenic fungi species to the bacterial consortium allowed degradation of 69-89% of nC(9)-nC(20), 47-80% of nC(21)-nC(36), 76% of BTEX, and 68% of PAHs. Microtox, Ostacodtoxkit, Phytotoxkit and Ames tests indicated that changes in toxicity were not connected with the decrease in TPH contents, possibly due to the formation of toxic indirect metabolites during bioremediation. No toxicity was found in the soil after bioremediation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Bacterial Community Response to Petroleum Hydrocarbon Amendments in Freshwater, Marine, and Hypersaline Water-Containing Microcosms

    PubMed Central

    Jurelevicius, Diogo; Alvarez, Vanessa Marques; Marques, Joana Montezano; de Sousa Lima, Laryssa Ribeiro Fonseca; Dias, Felipe de Almeida

    2013-01-01

    Hydrocarbon-degrading bacterial communities from freshwater, marine, and hypersaline Brazilian aquatic ecosystems (with water salinities corresponding to 0.2%, 4%, and 5%, respectively) were enriched with different hydrocarbons (heptadecane, naphthalene, or crude oil). Changes within the different microcosms of bacterial communities were analyzed using cultivation approaches and molecular methods (DNA and RNA extraction, followed by genetic fingerprinting and analyses of clone libraries based on the 16S rRNA-coding gene). A redundancy analysis (RDA) of the genetic fingerprint data and a principal component analysis (PCA) of the clone libraries revealed hydrocarbon-enriched bacterial communities specific for each ecosystem studied. However, within the same ecosystem, different bacterial communities were selected according to the petroleum hydrocarbon used. In general, the results demonstrated that Acinetobacter and Cloacibacterium were the dominant genera in freshwater microcosms; the Oceanospirillales order and the Marinobacter, Pseudomonas, and Cycloclasticus genera predominated in marine microcosms; and the Oceanospirillales order and the Marinobacter genus were selected in the different hydrocarbon-containing microcosms in hypersaline water. Determination of total petroleum hydrocarbons (TPHs) in all microcosms after 32 days of incubation showed a decrease in the hydrocarbon concentration compared to that for the controls. A total of 50 (41.3%) isolates from the different hydrocarbon-contaminated microcosms were associated with the dominant operational taxonomic units (OTUs) obtained from the clone libraries, and their growth in the hydrocarbon contaminating the microcosm from which they were isolated as the sole carbon source was observed. These data provide insight into the general response of bacterial communities from freshwater, marine, and hypersaline aquatic ecosystems to petroleum hydrocarbon contamination. PMID:23872573

  3. Bacterial community response to petroleum hydrocarbon amendments in freshwater, marine, and hypersaline water-containing microcosms.

    PubMed

    Jurelevicius, Diogo; Alvarez, Vanessa Marques; Marques, Joana Montezano; de Sousa Lima, Laryssa Ribeiro Fonseca; Dias, Felipe de Almeida; Seldin, Lucy

    2013-10-01

    Hydrocarbon-degrading bacterial communities from freshwater, marine, and hypersaline Brazilian aquatic ecosystems (with water salinities corresponding to 0.2%, 4%, and 5%, respectively) were enriched with different hydrocarbons (heptadecane, naphthalene, or crude oil). Changes within the different microcosms of bacterial communities were analyzed using cultivation approaches and molecular methods (DNA and RNA extraction, followed by genetic fingerprinting and analyses of clone libraries based on the 16S rRNA-coding gene). A redundancy analysis (RDA) of the genetic fingerprint data and a principal component analysis (PCA) of the clone libraries revealed hydrocarbon-enriched bacterial communities specific for each ecosystem studied. However, within the same ecosystem, different bacterial communities were selected according to the petroleum hydrocarbon used. In general, the results demonstrated that Acinetobacter and Cloacibacterium were the dominant genera in freshwater microcosms; the Oceanospirillales order and the Marinobacter, Pseudomonas, and Cycloclasticus genera predominated in marine microcosms; and the Oceanospirillales order and the Marinobacter genus were selected in the different hydrocarbon-containing microcosms in hypersaline water. Determination of total petroleum hydrocarbons (TPHs) in all microcosms after 32 days of incubation showed a decrease in the hydrocarbon concentration compared to that for the controls. A total of 50 (41.3%) isolates from the different hydrocarbon-contaminated microcosms were associated with the dominant operational taxonomic units (OTUs) obtained from the clone libraries, and their growth in the hydrocarbon contaminating the microcosm from which they were isolated as the sole carbon source was observed. These data provide insight into the general response of bacterial communities from freshwater, marine, and hypersaline aquatic ecosystems to petroleum hydrocarbon contamination.

  4. Aspects of petroleum hydrocarbon metabolism in marine animals

    NASA Astrophysics Data System (ADS)

    Mironov, O. G.

    1980-03-01

    Studies on hydrocarbon composition of Black Sea mussels Mytilus galloprovincialis sampled from different habitats indicate that the quantity and composition of hydrocarbons distributed in the molluscs depend on season and sea-water quality. The data obtained under experimental conditions testify to the possibility of hydrocarbon concentration in mussel tissues after death. During filtration in sea water containing oil and oil products, these pollutants are bound into faeces and pseudofaeces which contain a greater percentage of aromatic compounds than the oil initially present in sea water. Quantitative data are presented on hydrocarbon changes in mussel excretory products during transfer from oil-polluted to clean sea water. When Black Sea crabs Eriphia verrucosa are fed with mussels containing fuel-oil components accumulated from sea water, the pollutants concentrate in the whole body of the crab. This is in contrast to parenteral oil uptake, which leads to a concentration of most of the hydrocarbon in the muscles.

  5. Potential of phytoremediation for the removal of petroleum hydrocarbons in contaminated salt marsh sediments.

    PubMed

    Ribeiro, Hugo; Mucha, Ana P; Almeida, C Marisa R; Bordalo, Adriano A

    2014-05-01

    Degradation of petroleum hydrocarbons in colonized and un-colonized sediments by salt marsh plants Juncus maritimus and Phragmites australis collected in a temperate estuary was investigated during a 5-month greenhouse experiment. The efficiency of two bioremediation treatments namely biostimulation (BS) by the addition of nutrients, and bioaugmentation (BA) by addition of indigenous microorganisms was tested in comparison with hydrocarbon natural attenuation in un-colonized and with rhizoremediation in colonized sediments. Hydrocarbon degrading microorganisms and root biomass were assessed as well as hydrocarbon degradation levels. During the study, hydrocarbon degradation in un-colonized sediments was negligible regardless of treatments. Rhizoremediation proved to be an effective strategy for hydrocarbon removal, yielding high rates in most experiments. However, BS treatments showed a negative effect on the J. maritimus potential for hydrocarbon degradation by decreasing the root system development that lead to lower degradation rates. Although both plants and their associated microorganisms presented a potential for rhizoremediation of petroleum hydrocarbons in contaminated salt marsh sediments, results highlighted that nutrient requirements may be distinct among plant species, which should be accounted for when designing cleanup strategies.

  6. DEMONSTRATION PLAN FIELD MEASUREMENT TECHNOLOGIES FOR TOTAL PETROLEUM HYDROCARBONS IN SOIL

    EPA Science Inventory



    The demonstration of innovative field measurement devices for total petroleum hydrocarbons (TPH) in soil is being conducted under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation Program in June 2000 at the Navy Base Ventura County...

  7. CONDUCTIVITY PROFILE RATE OF CHANGE FROM FIELD AND LABORATORY DATA WITHIN BIODEGRADING PETROLEUM HYDROCARBON

    EPA Science Inventory

    We present the results of long term (500 days) measurements of the bulk conductivity in a field and laboratory experiment. Our objective was to determine the rate of change in bulk conductivity and whether this rate of change correlated with the petroleum hydrocarbon degradation...

  8. EARLY WARNING MARINE WATER SUPPLY PROTECTION STRATEGY: THE THREAT OF OIL SPILL (PETROLEUM HYDROCARBON) CONTAMINATION

    EPA Science Inventory

    Oil spills resulting from the twice-grounded freighter New Carissa on the Central Oregon coast in the spring of 1999 caused substantial concern regarding potential petroleum hydrocarbon (PHC) contamination of Coos Bay, Alsea Bay and Yaquina Bay estuaries and resident seawater fac...

  9. EARLY WARNING MARINE WATER SUPPLY PROTECTION STRATEGY: THE THREAT OF OIL SPILL (PETROLEUM HYDROCARBON) CONTAMINATION

    EPA Science Inventory

    Oil spills resulting from the twice-grounded freighter New Carissa on the Central Oregon coast in the spring of 1999 caused substantial concern regarding potential petroleum hydrocarbon (PHC) contamination of Coos Bay, Alsea Bay and Yaquina Bay estuaries and resident seawater fac...

  10. LABORATORY AND FIELD RESULTS LINKING HIGH CONDUCTIVITIES TO THE MICROBIAL DEGRADATION OF PETROLEUM HYDROCARBONS

    EPA Science Inventory

    The results of a l6-month field and l6-month meso-scale laboratory investigation of unconsolidated sandy environments contaminated by petroleum hydrocarbons that are undergoing natural biodegradation is presented. The purpose was to understand the processes responsible for causin...

  11. LABORATORY AND FIELD RESULTS LINKING HIGH CONDUCTIVITIES TO THE MICROBIAL DEGRADATION OF PETROLEUM HYDROCARBONS

    EPA Science Inventory

    The results of a l6-month field and l6-month meso-scale laboratory investigation of unconsolidated sandy environments contaminated by petroleum hydrocarbons that are undergoing natural biodegradation is presented. The purpose was to understand the processes responsible for causin...

  12. CONDUCTIVITY PROFILE RATE OF CHANGE FROM FIELD AND LABORATORY DATA WITHIN BIODEGRADING PETROLEUM HYDROCARBON

    EPA Science Inventory

    We present the results of long term (500 days) measurements of the bulk conductivity in a field and laboratory experiment. Our objective was to determine the rate of change in bulk conductivity and whether this rate of change correlated with the petroleum hydrocarbon degradation...

  13. Microbial activity and soil organic matter decay in roadside soils polluted with petroleum hydrocarbons

    NASA Astrophysics Data System (ADS)

    Mykhailova, Larysa; Fischer, Thomas; Iurchenko, Valentina

    2015-04-01

    It has been demonstrated previously that hydrocarbon addition to soil provokes soil organic matter priming (Zyakun et al., 2011). It has further been shown that petroleum hydrocarbons deposit to roadside soils bound to fine mineral particles and together with vehicle spray (Mykhailova et al., 2014), and that hydrocarbon concentrations decrease to safe levels within the first 15 m from the road, reaching background concentrations at 60-100 m distance (Mykhailova et al., 2013). It was the aim of this study to (I) identify the bioavailability of different petroleum hydrocarbon fractions to degradation and to (II) identify the native (i.e. pedogenic) C fraction affected by hydrocarbon-mediated soil organic matter priming during decay. To address this aim, we collected soil samples at distances from 1 to 100 m (sampling depth 15 cm) near the Traktorostroiteley avenue and the Pushkinskaya street in Kharkov, as well as near the country road M18 near Kharkov, Ukraine. The roads have been under exploitation for several decades, so microbial adaptation to enhanced hydrocarbon levels and full expression of effects could be assumed. The following C fractions were quantified using 13C-CP/MAS-NMR: Carbohydrates, Proteins, Lignin, Aliphates, Carbonyl/Carboxyl as well as black carbon according to Nelson and Baldock (2005). Petroleum hydrocarbons were determind after hexane extraction using GC-MS and divided into a light fraction (chain-length C27, Mykhailova et al., 2013). Potential soil respiration was determined every 48 h by trapping of CO2 evolving from 20 g soil in NaOH at 20 ° C and at 60% of the maximum water holding capacity and titration after a total incubation period of 4 weeks in the lab. It was found that soil respiration positively correlated with the ratio of the light fraction to the sum of medium and heavy fractions of petroleum hydrocarbons, which indicates higher biodegradation primarily of the light petroleum hydrocarbon fraction. Further, soil respiration was

  14. Biodegradation of Petroleum Hydrocarbon in the Vadose Zone

    EPA Science Inventory

    There are two major impediments to a better understanding of the influence of biodegradation on the risk of intrusion of petroleum vapors. We describe the contribution of biodegradation as an attenuation factor between the source and the receptor. The use of attenuation factors...

  15. Biodegradation of Petroleum Hydrocarbon in the Vadose Zone

    EPA Science Inventory

    There are two major impediments to a better understanding of the influence of biodegradation on the risk of intrusion of petroleum vapors. We describe the contribution of biodegradation as an attenuation factor between the source and the receptor. The use of attenuation factors...

  16. Petroleum pollution in surface sediments of Daya Bay, South China, revealed by chemical fingerprinting of aliphatic and alicyclic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Gao, Xuelu; Chen, Shaoyong

    2008-10-01

    Nine surface sediments collected from Daya Bay have been Soxhlet-extracted with 2:1 (v/v) dichloromethane-methanol. The non-aromatic hydrocarbon (NAH) fraction of solvent extractable organic matter (EOM) and some bulk geochemical parameters have been analyzed to determine petroleum pollution of the bay. The NAH content varies from 32 to 276 μg g -1 (average 104 μg g -1) dry sediment and accounts for 5.8-64.1% (average 41.6%) of the EOM. n-Alkanes with carbon number ranging from 15 to 35 are identified to be derived from both biogenic and petrogenic sources in varying proportions. The contribution of marine authigenic input to the sedimentary n-alkanes is lower than the allochthonous input based on the average n-C 31/ n-C 19 alkane ratio. 25.6-46.5% of the n-alkanes, with a mean of 35.6%, are contributed by vascular plant wax. Results of unresolved complex mixture, isoprenoid hydrocarbons, hopanes and steranes also suggest possible petroleum contamination. There is strong evidence of a common petroleum contamination source in the bay.

  17. Mapping the petroleum system - An investigative technique to explore the hydrocarbon fluid system

    USGS Publications Warehouse

    Magoon, L.B.; Dow, W.G.

    2000-01-01

    Creating a petroleum system map includes a series of logical steps that require specific information to explain the origin in time and space of discovered hydrocarbon occurrences. If used creatively, this map provides a basis on which to develop complementary plays and prospects. The logical steps include the characterization of a petroleum system (that is, to identify, map, and name the hydrocarbon fluid system) and the summary of these results on a folio sheet. A petroleum system map is based on the understanding that there are several levels of certainty from "guessing" to "knowing" that specific oil and gas accumulations emanated from a particular pod of active source rock. Levels of certainty start with the close geographic proximity of two or more accumulations, continues with the close stratigraphic proximity, followed by the similarities in bulk properties, and then detailed geochemical properties. The highest level of certainty includes the positive geochemical correlation of the hydrocarbon fluid in the accumulations to the extract of the active source rock. A petroleum system map is created when the following logic is implemented. Implementation starts when the oil and gas accumulations of a petroleum province are grouped stratigraphically and geographically. Bulk and geochemical properties are used to further refine the groups through the determination of genetically related oil and gas types. To this basic map, surface seeps and well shows are added. Similarly, the active source rock responsible for these hydrocarbon occurrences are mapped to further define the extent of the system. A folio sheet constructed for a hypothetical case study of the Deer-Boar(.) petroleum system illustrates this methodology.

  18. The role of biodegradation in limiting the accumulation of petroleum hydrocarbons in raingarden soils.

    PubMed

    Lefevre, Gregory H; Hozalski, Raymond M; Novak, Paige J

    2012-12-15

    Previous studies have indicated that raingardens are effective at removing petroleum hydrocarbons from stormwater. There are concerns, however, that petroleum hydrocarbons could accumulate in raingarden soil, potentially resulting in liability for the site owner. In this work, 75 soil samples were collected from 58 raingardens and 4 upland (i.e., control) sites in the Minneapolis, Minnesota area, representing a range of raingarden ages and catchment land uses. Total petroleum hydrocarbon (TPH) concentrations in the samples were quantified, as were 16S rRNA genes for Bacteria and two functional genes that encode for enzymes used in the degradation of petroleum hydrocarbons. TPH levels in all of the raingarden soil samples were low (<3 μg/kg) and not significantly different from one another. The TPH concentration in raingarden soil samples was, however, significantly greater (p ≤ 0.002) than TPH levels in upland sites. In addition, the number of copies of Bacteria 16S rRNA genes and functional genes were greater in the raingardens planted with deeply-rooted natives and cultivars than in raingardens containing simply turf grass or mulch (p < 0.036), suggesting that planted raingardens may be better able to assimilate TPH inputs. The ability of microorganisms present in the soil samples to degrade a representative petroleum hydrocarbon (naphthalene) was also investigated in batch experiments. A sub-set of the field sites was selected for re-sampling, and all soil samples tested (n = 8) were able to mineralize naphthalene. In these experiments the initial mineralization rate correlated with the number of copies of Bacteria 16S rRNA genes present. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Biofuel components change the ecology of bacterial volatile petroleum hydrocarbon degradation in aerobic sandy soil.

    PubMed

    Elazhari-Ali, Abdulmagid; Singh, Arvind K; Davenport, Russell J; Head, Ian M; Werner, David

    2013-02-01

    We tested the hypothesis that the biodegradation of volatile petroleum hydrocarbons (VPHs) in aerobic sandy soil is affected by the blending with 10 percent ethanol (E10) or 20 percent biodiesel (B20). When inorganic nutrients were scarce, competition between biofuel and VPH degraders temporarily slowed monoaromatic hydrocarbon degradation. Ethanol had a bigger impact than biodiesel, reflecting the relative ease of ethanol compared to methyl ester biodegradation. Denaturing gradient gel electrophoresis (DGGE) of bacterial 16S rRNA genes revealed that each fuel mixture selected for a distinct bacterial community, each dominated by Pseudomonas spp. Despite lasting impacts on soil bacterial ecology, the overall effects on VHP biodegradation were minor, and average biomass yields were comparable between fuel types, ranging from 0.40 ± 0.16 to 0.51 ± 0.22 g of biomass carbon per gram of fuel carbon degraded. Inorganic nutrient availability had a greater impact on petroleum hydrocarbon biodegradation than fuel composition.

  20. A case study of the intrinsic bioremediation of petroleum hydrocarbons

    SciTech Connect

    Barker, G.W.; Raterman, K.T.; Fisher, J.B.; Corgan, J.M.

    1995-12-31

    Condensate liquids have been found to contaminate soil and groundwater at two gas production sites in the Denver Basin operated by Amoco Production Co. These sites have been closely monitored since July 1993 to determine whether intrinsic aerobic or anaerobic bioremediation of hydrocarbons occurs at a sufficient rate and to an adequate endpoint to support a no-intervention decision. Groundwater monitoring and analysis of soil cores suggest that intrinsic bioremediation is occurring at these sites by multiple pathways including aerobic oxidation, Fe{sup 3+} reduction, and sulfate reduction. In laboratory experiments the addition of gas condensate hydrocarbons to saturated soil from the gas production site stimulated sulfate reduction under anaerobic and oxygen-limiting conditions, and nitrate and Fe{sup 3+} reduction under oxygen-limiting conditions, compared to biotic controls that lacked hydrocarbon and sterile controls. The sulfate reduction corresponded to a reduction in the amount of toluene relative to other hydrocarbons. These results confirmed that subsurface soils at the gas production site have the potential for intrinsic bioremediation of hydrocarbons.

  1. Diagenesis of metabolites and a discussion of the origin of petroleum hydrocarbons

    USGS Publications Warehouse

    Breger, I.A.

    1960-01-01

    Proteins and carbohydrates are rapidly degraded to compounds of no direct interest in the problem of the origin of petroleum. Lignin, if carried into marine basins in the form of humic substances, is probably the major progenitor of kerogen rather than the precursor of petroleum. Pigments are but minor contributors to petroleum. The fate of fatty acids in a marine environment is not completely understood. Although they may not be directly decarboxylated biochemically, it is shown how they can be converted into oxygenated or dehydrogenated acids more reactive than the parent compounds. Illustrations are also given for Diels-Alder reactions that could account for the formation from these compounds of the alicyclic and aromatic hydrocarbons in petroleum. It is most likely that crude oil is generated in sediments containing concentrations of lipids, the character of which governs the nature of the oil that is formed. ?? 1960.

  2. Effects of petroleum mixture types on soil bacterial population dynamics associated with the biodegradation of hydrocarbons in soil environments.

    PubMed

    Hamamura, Natsuko; Ward, David M; Inskeep, William P

    2013-07-01

    Soil bacterial population dynamics were examined to assess patterns in microbial response to contamination by different petroleum mixtures with variation in n-alkane profiles or toxic constituents such as pentachlorophenol (PCP). Three soil types from distinct areas of the United States (Montana, Oregon, and Arizona) were used in controlled perturbation experiments containing crude oil, kerosene, diesel, or diesel plus PCP spiked with (14)C-hexadecane or (14)C-tridecane. After a 50-day incubation, 30-70% of added (14)C-alkanes were mineralized to (14)CO₂ in Montana and Oregon soils. In contrast, significantly lower mineralization was observed with diesel or kerosene (< 5%) compared to crude-oil treatment (~45%) in the Arizona soil. Different hydrocarbon mixtures selected both unique and common microbial populations across all three soils. Conversely, the contamination of different soils with the same mixture selected for distinct microbial populations. The most consistent genotype observed, a Rhodococcus-like population, was present in the Montana soil with all mixture types. The addition of PCP selected for PCP-tolerant alkane-degrading specialist populations. The results indicated that petroleum mixture type influenced hydrocarbon degradation rates and microbial population selection and that soil characteristics, especially organic content, could also be an important determinant of community responses to hydrocarbon perturbation. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  3. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    DOEpatents

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  4. Quantification of petroleum-type hydrocarbons in avian tissue

    USGS Publications Warehouse

    Gay, M.L.; Belisle, A.A.; Patton, J.F.

    1980-01-01

    Summary: Methods were developed for the analysis of 16 hydrocarbons in avian tissue. Mechanical extraction with pentane was followed by clean-up on Florisil and Silicar. Residues were determined by gas--liquid chromatography and gas-liquid, chromatography-mass spectrometry. The method was applied to the analysis of liver, kidney, fat, and brain tissue of mallard ducks (Anas platyrhynchos) fed a mixture of hydrocarbons. Measurable concentrations of all compounds analyzed were present in all tissues except brain. Highest concentrations were in fat.

  5. Petroleum alteration by thermochemical sulfate reduction - A comprehensive molecular study of aromatic hydrocarbons and polar compounds

    NASA Astrophysics Data System (ADS)

    Walters, Clifford C.; Wang, Frank C.; Qian, Kuangnan; Wu, Chunping; Mennito, Anthony S.; Wei, Zhibin

    2015-03-01

    Thermochemical sulfate reduction (TSR) alters petroleum composition as it proceeds towards the complete oxidation of hydrocarbons to CO2. The effects of TSR on the molecular and isotopic composition of volatile species are well known; however, the non-volatile higher molecular weight aromatic and polar species have not been well documented. To address this deficiency, a suite of onshore Gulf coast oils and condensates generated from and accumulating in Smackover carbonates was assembled to include samples that experienced varying levels of TSR alteration and in reservoir thermal cracking. The entire molecular composition of aromatic hydrocarbons and NSO species were characterized and semi-quantified using comprehensive GC × GC (FID and CSD) and APPI-FTICR-MS. The concentration of thiadiamondoids is a reliable indicator of the extent of TSR alteration. Once generated by TSR, thiadiamondoids remain thermally stable in all but the most extreme reservoir temperatures (>180 °C). Hydrocarbon concentrations and distributions are influenced by thermal cracking and TSR. With increasing TSR alteration, oils become enriched in monoaromatic hydrocarbons and the distribution of high molecular weight aromatic hydrocarbons shifts towards more condensed species with a decrease in the number of alkyl carbons. Organosulfur compounds are created by the TSR process. In addition to the increase in benzothiophenes and dibenzothiophenes noted in previous studies, TSR generates condensed species containing one or more sulfur atoms that likely are composed of a single or multiple thiophenic cores. We hypothesize that these species are generated from the partial oxidation of PAHs and dealkylation reactions, followed by sulfur incorporation and condensation reactions. The organosulfur species remaining in the TSR altered oils are "proto-solid bitumen" moieties that upon further condensation, oxidation or sulfur incorporation result in highly sulfur enriched solid bitumen, which is

  6. Promoted biodegradation and microbiological effects of petroleum hydrocarbons by Impatiens balsamina L. with strong endurance.

    PubMed

    Cai, Zhang; Zhou, Qixing; Peng, Shengwei; Li, Kenan

    2010-11-15

    Phytoremediation is a promising green technology for cleanup of petroleum hydrocarbons (PHCs) in contaminated environment. Based on the objective of identifying special ornamental plants for the effective biodegradation of PHCs, the efficacy of Impatiens balsamina L. to phytoremedy petroleum contaminated soil from the Shengli Oil Field in Dongying City, Shandong Province, China, was further examined in a field plot-culture experiment under greenhouse conditions. After a 4-month culture period, the average degradation rate of total petroleum hydrocarbons (TPHs) by the plant was up to 18.13-65.03%, greatly higher than that (only 10.20-35.61%) in their corresponding controls by natural degradation. Among petroleum compositions saturated hydrocarbons had the highest degradation. The release of polar metabolic byproducts during phytoremediation of contaminated soils with ≥20,000 mg/kg of PHCs by I. balsamina may occur. Some growth indexes of I. balsamina indicated that the plant had a good tolerance to contaminated soils with ≤10,000 mg/kg of PHCs. Moreover rhizosphere bacteria and fungi became the dominant microbial population in soils with 5000 and 10,000 mg/kg of PHCs and were probably responsible for TPH degradation. Thus, I. balsamina L. could be a potential ornamental plant for effective phytoremediation of contaminated soils with ≤10,000 mg/kg of PHCs. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Subsurface fate of spilled petroleum hydrocarbons in continuous permafrost

    USGS Publications Warehouse

    McCarthy, K.; Walker, L.; Vigoren, L.

    2004-01-01

    Accidental releases of approximately 2000 m3 of fuel have resulted in subsurface contamination adjacent to Imikpuk Lake, a drinking-water source near Barrow, AK. This paper presents a conceptual model of the distribution and transport of subsurface free-phase hydrocarbons at this site. The mean annual temperature in Barrow is -13 ??C, and average monthly temperatures exceed 0 ??C only during the months of June, July, and August. As a result, the region is underlain by areally continuous permafrost that extends to depths of up to 300 m and constrains subsurface hydrologic processes to a shallow zone that temporarily thaws each summer. During the 1993 and 1994 thaw seasons, the measured depth of thaw varied across the site from approximately 0.5 to 2 m. However, exploratory borings in 1995 showed that free-phase hydrocarbons were present at depths greater than 3 m, indicating that permafrost at this site is not a barrier to the vertical migration of nonaqueous-phase liquids. In 1996, a subsurface containment barrier was installed to prevent lateral movement of contaminated water to Imikpuk Lake, and a recovery trench was excavated upgradient of the barrier to facilitate removal of free-phase hydrocarbons. Free-phase hydrocarbons were recovered from the trench during 1996, 1997, and 1998. Recovery rates diminished over this time, and in 1999, no further product was recovered and the recovery operation was halted. Subsequent exploratory borings in 2001 and 2002 have revealed that some product remains in the subsurface. Data indicate that this remaining product exists in small discrete pockets or very thin layers of hydrocarbon floating on brine. These small reservoirs appear to be isolated from one another by relatively impermeable permafrost. Published by Elsevier B.V.

  8. [Compositions and residual properties of petroleum hydrocarbon in contaminated soil of the oilfields].

    PubMed

    Hu, Di; Li, Chuan; Dong, Qian-Qian; Li, Li-Ming; Li, Guang-He

    2014-01-01

    The aims of this study were to determine the compositions and residual properties of petroleum hydrocarbon in soil, as well as to identify the source and weathering degree of the pollution. A total of 5 producing wells in Gudao and Hekou oil producing region of Shengli oilfields were analyzed. More than 50 individual target compounds including straight-and branched-chain alkanes( n-alkanes, pristine and phytane) and polycyclic aromatic hydrocarbons (PAHs) in soil samples and crude oil were determined by gas chromatography-mass spectrometry (GC-MS). The percentages of chain alkanes and PAHs in total solvent extractable matters(TSEM) of soil samples were both much lower than those in the crude oil samples. The compositions of petroleum hydrocarbon in soil samples differed from those in crude oil, which indicated the n-alkanes with carbon numbers <12 were much easier to lose in contrast to the n-alkanes with high carbon numbers. With n-octadecane/phytane as index for the weathering rate of oil contaminated soils, the relationship between the index and petroleum hydrocarbon compounds was analyzed using principal component analysis (PCA). The results showed that the n-alkanes with carbon numbers > 33 and the PAHs with rings between 3 and 5 were much harder to degrade. PCA of 4 indexes for source identification revealed more than 50% of the soil samples were polluted by crude oil, which needs more attention during remediation.

  9. Bacterial biosurfactant in enhancing solubility and metabolism of petroleum hydrocarbons.

    PubMed

    Bordoloi, N K; Konwar, B K

    2009-10-15

    Biosurfactant can make hydrocarbon complexes more mobile with the potential use in oil recovery, pumping of crude oil and in bioremediation of crude oil contaminant. In the investigation, bacterial isolates capable of utilizing poly-cyclic aromatic hydrocarbons like phenanthrene, pyrene and fluorene were used. A gradual decrease of the supplemented hydrocarbons in the culture medium was observed with corresponding increase in bacterial biomass and protein. The medium having the combined application of fluorine and phenanthrene caused better biosurfactant production (0.45 g l(-1)) and (0.38 g l(-1)) by Pseudomonas aeruginosa strains MTCC7815 and MTCC7814. The biosurfactant from MTCC7815 (41.0 microg ml(-1)) and MTCC7812 (26 microg ml(-1)) exhibited higher solubilization of pyrene; whereas, MTCC8165 caused higher solubilization of phenanthrene; and that of MTCC7812 (24.45 microg ml(-1)) and MTCC8163 (24.49 microg ml(-1)) caused more solubilzation of fluorene. Higher solubilization of pyrene and fluorene by the biosurfactant of MTCC7815 and MTCC7812, respectively enhanced their metabolism causing sustained growth. Biosurfactants were found to be lipopeptide and protein-starch-lipid complex in nature and they could reduce the surface tension of pure water (72 m Nm(-1)) to 35 m Nm(-1). The critical micelle concentration (CMC) was also lower than the chemical surfactant sodium dodecyl sulphate (SDS). They differed in quantity and structure. The predominant rhamnolipids present in biosurfactants were Rha-C(8)-C(10) and Rha-C(10)-C(8).

  10. Petroleum hydrocarbon bioventing kinetics determined in soil core, microcosm, and tubing cluster studies

    SciTech Connect

    Moyer, E.E.; Ostendorf, D.W.; Richards, R.J.; Goodwin, S.

    1996-05-01

    Aerobic biodegradation of vapor-phase petroleum hydrocarbons was evaluated in an intact soil core from the site of an aviation gasoline release. An unsaturated zone soil core was subjected to a flow of nitrogen gas, oxygen, water vapor, and vapor-phase hydrocarbons in a configuration analogous to a biofilter or an in situ bioventing or sparging situation. The vertical profiles of vapor-phase hydrocarbon concentration in the soil core were determined by gas chromatography of vapor samples. Biodegradation reduced low influent hydrocarbon concentrations by 45 to 92% over a 0.6-m interval of an intact soil core. The estimated total hydrocarbon concentration was reduced by 75% from 26 to 7 parts per million. Steady-state concentrations were input to a simple analytical model balancing advection and first-order biodegradation of hydrocarbons. First-order rate constants for the major hydrocarbon compounds were used to calibrate the model to the concentration profiles. Rate constants for the seven individual hydrocarbon compounds varied by a factor of 4. Compounds with lower molecular weights, fewer methyl groups, and no quaternary carbons tended to have higher rate constants. The first-order rate constants were consistent with kinetic parameters determined from both microcosm and tubing cluster studies at the field site.

  11. [Influence of Mirabilis jalapa Linn. Growth on the Microbial Community and Petroleum Hydrocarbon Degradation in Petroleum Contaminated Saline-alkali Soil].

    PubMed

    Jiao, Hai-hua; Cui, Bing-jian; Wu, Shang-hua; Bai, Zhi-hui; Huang, Zhan-bin

    2015-09-01

    In order to explore the effect of Mirabilis jalapa Linn. growth on the structure characteristics of the microbial community and the degradation of petroleum hydrocarbon (TPH) in the petroleum-contaminated saline-alkali soil, Microbial biomass and species in the rhizosphere soils of Mirabilis jalapa Linn. in the contaminated saline soil were studied with the technology of phospholipid fatty acids (PLFAs) analysis. The results showed that comparing to CK soils without Mirabilis jalapa Linn., the ratio of PLFAs species varied were 71. 4%, 69. 2% and 33. 3% in the spring, summer and autumn season, respectively. In addition, there was distinct difference of the biomasses of the microbial community between the CK and rhizosphere soils and among the difference seasons of growth of Mirabilis jalapa Linn.. Compare to CK soil, the degradation rates of total petroleum hydrocarbon (TPH) was increased by 47. 6%, 28. 3%, and 18. 9% in spring, summer, and autumn rhizosphere soils, respectively. Correlation analysis was used to determine the correlation between TPH degradation and the soil microbial community. 77. 8% of the total soil microbial PLFAs species showed positive correlation to the TPH degradation (the correlation coefficient r > 0), among which, 55. 6% of PLFAs species showed high positive correlation(the correlation coefficient was r≥0. 8). In addition, the relative content of SAT and MONO had high correlation with TPH degradation in the CK sample soils, the corelation coefficient were 0. 92 and 0. 60 respectively; However, the percent of positive correlation was 42. 1% in the rhizosphere soils with 21. 1% of them had high positive correlation. The relative content of TBSAT, MONO and CYCLO had moderate or low correlation in rhizosphere soils, and the correlation coefficient were 0. 56, 0. 50, and 0. 07 respectively. Our study showed that the growth of mirabilis Mirabilis jalapa Linn. had a higher influence on the species and biomass of microbial community in the

  12. Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments

    PubMed Central

    Fathepure, Babu Z.

    2014-01-01

    Many hypersaline environments are often contaminated with petroleum compounds. Among these, oil and natural gas production sites all over the world and hundreds of kilometers of coastlines in the more arid regions of Gulf countries are of major concern due to the extent and magnitude of contamination. Because conventional microbiological processes do not function well at elevated salinities, bioremediation of hypersaline environments can only be accomplished using high salt-tolerant microorganisms capable of degrading petroleum compounds. In the last two decades, there have been many reports on the biodegradation of hydrocarbons in moderate to high salinity environments. Numerous microorganisms belonging to the domain Bacteria and Archaea have been isolated and their phylogeny and metabolic capacity to degrade a variety of aliphatic and aromatic hydrocarbons in varying salinities have been demonstrated. This article focuses on our growing understanding of bacteria and archaea responsible for the degradation of hydrocarbons under aerobic conditions in moderate to high salinity conditions. Even though organisms belonging to various genera have been shown to degrade hydrocarbons, members of the genera Halomonas Alcanivorax, Marinobacter, Haloferax, Haloarcula, and Halobacterium dominate the published literature. Despite rapid advances in understanding microbial taxa that degrade hydrocarbons under aerobic conditions, not much is known about organisms that carry out similar processes in anaerobic conditions. Also, information on molecular mechanisms and pathways of hydrocarbon degradation in high salinity is scarce and only recently there have been a few reports describing genes, enzymes and breakdown steps for some hydrocarbons. These limited studies have clearly revealed that degradation of oxygenated and non-oxygenated hydrocarbons by halophilic and halotolerant microorganisms occur by pathways similar to those found in non-halophiles. PMID:24795705

  13. Accumulation and distribution of petroleum hydrocarbons found in mussels (Mytilus galloprovincialis) in the canals of Venice, Italy.

    PubMed

    Wetzel, Dana L; Van Vleet, Edward S

    2004-05-01

    Petroleum contamination was assessed in indigenous and transplanted mussels for three types of environments within the Venice Lagoon and its associated interior canals. Indigenous and transplanted mussels were least impacted by petroleum contamination at open-water stations, but more affected in partially-enclosed areas indicating that physical processes of tidal or wind activities can remove organic contaminants such as petroleum from these areas more effectively. Limited tidal flushing of the interior canals resulted in contaminated locations unable to support indigenous mussels. Clean mussels transplanted to these highly impacted sites accumulated the highest levels of petroleum hydrocarbons. The distribution of polycyclic aromatic hydrocarbons (PAHs) indicated mainly combustion-related activities from sources such as the nearby industrial zones and boat traffic, with some evidence of fresher petroleum inputs. Total hydrocarbons found in all mussels could be related to concentrations found in the surrounding sediments as reported in an earlier study.

  14. Fate and transport of petroleum hydrocarbons in engineered biopiles in polar regions.

    PubMed

    Whelan, M J; Coulon, F; Hince, G; Rayner, J; McWatters, R; Spedding, T; Snape, I

    2015-07-01

    A dynamic multi-media model that includes temperature-dependency for partitioning and degradation was developed to predict the behaviour of petroleum hydrocarbons during biopiling at low temperature. The activation energy (Ea) for degradation was derived by fitting the Arrhenius equation to hydrocarbon concentrations from temperature-controlled soil mesocosms contaminated with crude oil and diesel. The model was then applied to field-scale biopiles containing soil contaminated with diesel and kerosene at Casey Station, Antarctica. Temporal changes of total petroleum hydrocarbons (TPH) concentrations were very well described and predictions for individual hydrocarbon fractions were generally acceptable (disparity between measured and predicted concentrations was less than a factor two for most fractions). Biodegradation was predicted to be the dominant loss mechanism for all but the lightest aliphatic fractions, for which volatilisation was most important. Summertime losses were significant, resulting in TPH concentrations which were about 25% of initial concentrations just 1 year after the start of treatment. This contrasts with the slow rates often reported for hydrocarbons in situ and suggests that relatively simple remediation techniques can be effective even in Antarctica.

  15. Polycyclic Aromatic Hydrocarbons in Fine Particulate Matter Emitted from Burning Kerosene, Liquid Petroleum Gas, and Wood Fuels in Household Cookstoves

    EPA Science Inventory

    This study measured polycyclic aromatic hydrocarbon (PAH) composition in particulate matter emissions from residential cookstoves. A variety of fuel and cookstove combinations were examined, including: (i) liquid petroleum gas (LPG), (ii) kerosene in a wick stove, (iii) wood (10%...

  16. A review on the phytoremediation of petroleum hydrocarbon.

    PubMed

    Ndimele, P E

    2010-08-01

    Oil spillage as a result of petroleum industry activities and pipe-line vandalization by saboteurs is a frequent occurrence in oil-producing regions of the world. Conventional oil spill clean-up techniques involve physical and chemical processes that do more damage to the aquatic ecosystem than the oil spill itself. Consequently, the need arises to evolve or develop a more environment-friendly technique that will not only clean-up the environment but also restore the aquatic ecosystem to its status before the oil spill. Phytoremediation, which involves the use of plant to detoxify polluted site, appears to be promising in this regard. It is environment-friendly as well as cost-effective but may take more time than the conventional methods because it is a natural process.

  17. Petroleum, oil field waters, and authigenic mineral assemblages - Are they in metastable equilibrium in hydrocarbon reservoirs?

    NASA Astrophysics Data System (ADS)

    Helgeson, Harold C.; Knox, Annette M.; Owens, Christine E.; Shock, Everett L.

    1993-07-01

    The hypothesis that although the presence of carboxylic acids and carboxylate anions in oil field waters is commonly attributed to the thermal maturation of kerogen or bacterial degradation of hydrocarbons during water-washing of petroleum in relatively shallow reservoirs, they may have also been produced in deeper reservoirs by the hydrolysis of hydrocarbons in petroleum at the oil-water interface is tested. Calculations were carried out to determine the distribution of species with the minimum Gibbs free energy in overpressured oil field waters in the Texas Gulf Coast assuming metastable equilibrium among calcite, albite, and a representative spectrum of organic and inorganic aqueous species at reservoir temperatures and pressures. The hypothesis that homogeneous equilibrium obtains among carboxylate and carbonate species in oil field waters is confirmed.

  18. Comparison of analytical methods used to measure petroleum hydrocarbons in soils and their applications to bioremediation

    SciTech Connect

    Douglas, G.S.; McMillen, S.J.

    1996-10-01

    Chemical measurements provide a means to evaluate crude oil and refined product bioremediation effectiveness in field and laboratory studies. These measurements are used to determine the net decrease in product or target compound concentrations in complex soil systems. The analytical methods used to evaluate these constituents will have a direct impact on the ability of the investigator to; (1) detect losses due to biodegradation, (2) understand the processes responsible for the hydrocarbon degradation and, (3) determine the rates of hydrocarbon degradation. The applications and limitations of standard EPA methodologies (EPA Methods 418.1, 8270, and modified 8015) will be evaluated in soil mesocosm petroleum biodegradation studies and compared to several new analytical methods currently being used by the petroleum industry [gross compositional analysis, TLC-FID analysis, and enhanced EPA Method 8270 (e.g., C30-17{alpha}(H),21{beta}(H)-hopane)] to evaluate bioremediation effectiveness in soils.

  19. Anoxic biodegradation of petroleum hydrocarbons in saline media using denitrifier biogranules.

    PubMed

    Moussavi, Gholamreza; Shekoohiyan, Sakine; Naddafi, Kazem

    2016-07-01

    The total petroleum hydrocarbons (TPH) biodegradation was examined using biogranules at different initial TPH concentration and contact time under anoxic condition in saline media. The circular compact biogranules having the average diameter between 2 and 3mm were composed of a dense population of Bacillus spp. capable of biodegrading TPH under anoxic condition in saline media were formed in first step of the study. The biogranules could biodegrade over 99% of the TPH at initial concentration up to 2g/L at the contact time of 22h under anoxic condition in saline media. The maximum TPH biodegradation rate of 2.6 gTPH/gbiomass.d could be obtained at initial TPH concentration of 10g/L. Accordingly, the anoxic biogranulation is a possible and promising technique for high-rate biodegradation of petroleum hydrocarbons in saline media. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Effect of petroleum aromatic hydrocarbons on monogeneids parasitizing Atlantic cod, Gadus morhua L

    SciTech Connect

    Khan, R.A.; Kiceniuk, J.W.

    1988-07-01

    Fish gills appear to be more susceptible than other tissues to toxicants. The latter include petroleum aromatic hydrocarbons, which can induce lesions characterized by excessive mucus secretion, hyperplasia, fusion of secondary gill lamellae and capillary dilation. Fish are also natural hosts to several species of ectoparasites, especially monogeneans which live among the gill filaments. A previous study on the interrelation of water quality, gill parasites and gill pathology provided evidence that fish living in habitats degraded by pollutants such as Biscayne Bay, Florida, were heavily infested with monogeneids especially when gill lesions were severe. Atlantic cod, Gadus morhua, are hosts to monogeneans. The authors reported previously that crude oil fractions induced gill lesions in cod and also affected some gastrointestinal parasites. In the light of these reports, a study was undertaken to ascertain whether any relationship existed between gill lesions and gill parasites in cod following chronic exposure to petroleum hydrocarbons.

  1. Petroleum hydrocarbons in sediment from the northern Gulf of Mexico shoreline, Texas to Florida

    USGS Publications Warehouse

    Rosenbauer, Robert J.; Campbell, Pamela L.; Lam, Angela; Lorenson, T.D.; Hostettler, Frances D.; Thomas, Burt; Wong, Florence L.

    2011-01-01

    Petroleum hydrocarbons were extracted and analyzed from shoreline sediment collected from the northern Gulf of Mexico (nGOM) coastline that could potentially be impacted by Macondo-1 (M-1) well oil. Sediment was collected before M-1 well oil made significant local landfall and analyzed for baseline conditions by a suite of diagnostic petroleum biomarkers. Oil residue in trace quantities was detected in 45 of 69 samples. With the aid of multivariate statistical analysis, three different oil groups, based on biomarker similarity, were identified that were distributed geographically along the nGOM from Texas to Florida. None of the sediment hydrocarbon extracts correlated with the M-1 well oil extract, however, the similarity of tarballs collected at one site (FL-18) with the M-1 well oil suggests that some oil from the Deepwater Horizon spill may have been transported to this site in the Florida Keys, perhaps by a loop current, before that site was sampled.

  2. Identification of ester metabolites from petroleum hydrocarbon biodegradation in groundwater using GC×GC-TOFMS.

    PubMed

    O'Reilly, Kirk T; Mohler, Rachel E; Zemo, Dawn A; Ahn, Sungwoo; Tiwary, Asheesh K; Magaw, Renae I; Devine, Catalina Espino; Synowiec, Karen A

    2015-09-01

    In an effort to understand the nature and toxicity of petroleum hydrocarbon degradation metabolites, 2-dimensional gas chromatography linked to a time-of-flight mass spectrometer (GC×GC-TOFMS) was used to conduct nontargeted analysis of the extracts of 61 groundwater samples collected from 10 fuel release sites. An unexpected result was the tentative identification of 197 unique esters. Although esters are known to be part of specific hydrocarbon degradative pathways, they are not commonly considered or evaluated in field studies of petroleum biodegradation. In addition to describing the compounds identified, the present study discusses the role for nontargeted analysis in environmental studies. Overall, the low toxicological profile of the identified esters, along with the limited potential for exposure, renders them unlikely to pose any significant health risk.

  3. Pollution by petroleum hydrocarbons in sediments from continental shelf of Tabasco State, Mexico

    SciTech Connect

    Botello, A.V.; Gonzalez, C.; Diaz, G. )

    1991-10-01

    The Wider Caribbean is potentially one of the largest oil producing areas in the world. Major petroleum production areas include Louisiana and Texas, USA; the Bay of Campeche, Mexico; Lake Maracaibo, Venezuela; and Gulf of Paria, Trinidad; all of which are classified as production accident high-risk zones. About 5 million of barrels are transported every day in the Caribbean, thus generating an intense tanker traffic. It has been estimated that oil discharges from tank washings within the Wider Caribbean could be as high as 7 million barrels/year. For all those reasons petroleum pollution is considered as the major environmental problem in the Wider Caribbean area and increasing day to day due to the use of petroleum as the main energy source. On the other hand, the continental shelf of Tabasco state actually represents one of the most productive areas for crude oil in the Gulf of Mexico. Sediments were collected from this area and analyzed for hydrocarbons.

  4. Evaluation of Empirical Data and Modeling Studies to Support Soil Vapor Intrusion Screening Criteria for Petroleum Hydrocarbon Compounds

    EPA Science Inventory

    This study is an evaluation of empirical data and select modeling studies of the behavior of petroleum hydrocarbon (PHC) vapors in subsurface soils and how they can affect subsurface-to-indoor air vapor intrusion (VI), henceforth referred to as petroleum vapor intrusion or “PVI” ...

  5. Succession of Hydrocarbon Degradation and Microbial Diversity during a Simulated Petroleum Seepage in Caspian Sea Sediments

    NASA Astrophysics Data System (ADS)

    Mishra, S.; Stagars, M.; Wefers, P.; Schmidt, M.; Knittel, K.; Krueger, M.; Leifer, I.; Treude, T.

    2016-02-01

    Microbial degradation of petroleum was investigated in intact sediment cores of Caspian Sea during a simulated petroleum seepage using a sediment-oil-flow-through (SOFT) system. Over the course of the SOFT experiment (190 days), distinct redox zones established and evolved in the sediment core. Methanogenesis and sulfate reduction were identified to be important processes in the anaerobic degradation of hydrocarbons. C1 to C6 n-alkanes were completely exhausted in the sulfate-reducing zone and some higher alkanes decreased during the upward migration of petroleum. A diversity of sulfate-reducing bacteria was identified by 16s rRNA phylogenetic studies, some of which are associated with marine seeps and petroleum degradation. The δ13C signal of produced methane decreased from -33.7‰ to -49.5‰ indicating crude oil degradation by methanogenesis, which was supported by enrichment culturing of methanogens with petroleum hydrocarbons and presence of methanogenic archaea. The SOFT system is, to the best of our knowledge, the first system that simulates an oil-seep like condition and enables live monitoring of biogeochemical changes within a sediment core during petroleum seepage. During our presentation we will compare the Caspian Sea data with other sediments we studied using the SOFT system from sites such as Santa Barbara (Pacific Ocean), the North Alex Mud Volcano (Mediterranean Sea) and the Eckernfoerde Bay (Baltic Sea). This research was funded by the Deutsche Forschungsgemeinschaft (SPP 1319) and DEA Deutsche Erdoel AG. Further support came from the Helmholtz and Max Planck Gesellschaft.

  6. Combination of biochar amendment and phytoremediation for hydrocarbon removal in petroleum-contaminated soil.

    PubMed

    Han, Tao; Zhao, Zhipeng; Bartlam, Mark; Wang, Yingying

    2016-11-01

    Remediation of soils contaminated with petroleum is a challenging task. Four different bioremediation strategies, including natural attenuation, biochar amendment, phytoremediation with ryegrass, and a combination of biochar and ryegrass, were investigated with greenhouse pot experiments over a 90-day period. The results showed that planting ryegrass in soil can significantly improve the removal rate of total petroleum hydrocarbons (TPHs) and the number of microorganisms. Within TPHs, the removal rate of total n-alkanes (45.83 %) was higher than that of polycyclic aromatic hydrocarbons (30.34 %). The amendment of biochar did not result in significant improvement of TPH removal. In contrast, it showed a clear negative impact on the growth of ryegrass and the removal of TPHs by ryegrass. The removal rate of TPHs was significantly lower after the amendment of biochar. The results indicated that planting ryegrass is an effective remediation strategy, while the amendment of biochar may not be suitable for the phytoremediation of soil contaminated with petroleum hydrocarbons.

  7. Investigation of the toxicokinetics of petroleum hydrocarbon distillates with the earthworm Eisenia andrei.

    PubMed

    Cermak, Janet; Stephenson, Gladys; Birkholz, Detlef; Dixon, D George

    2013-04-01

    The Canada-wide standards for petroleum hydrocarbons in soils regulate petroleum hydrocarbons based on four distillate ranges: F1 (C6-C10), F2 (>C10-C16), F3 (>C16-C34), and F4 (>C34). Previous toxicity tests with earthworms and F2, as well as two subfractions of F3, F3a (>C16-C23) and F3a (>C23-C34), indicate that test durations might not be sufficiently long to reach threshold effect concentrations, likely because of the differing toxicokinetics for each distillate. A study was conducted to determine the toxicokinetics of both aliphatic and aromatic fractions of F2, F3a, and F3b with the earthworm Eisenia andrei. Peak accumulation curves were observed for F2 aliphatics and aromatics and F3a aromatics, likely as a result of changes in exposure concentration over the test duration via loss or a decrease in the bioavailable fraction. Biota-soil accumulation factors were >1 for total F2 aliphatics and aromatics and F3a aromatics as well as for several individual polyaromatic hydrocarbons for each distillate. Aromatics were disproportionately accumulated over aliphatics and were the main contributors to toxicity; therefore, aromatics and aliphatics should be regulated separately. The toxicokinetics were used to interpret previous toxicity data. Higher molecular weight distillates need longer-than-standard test durations to determine toxicity, so toxicity test results from fixed, standard-duration tests are not strictly comparable for these petroleum distillates.

  8. Comparing Migration Pathways of Biodegradation Products from Petroleum Hydrocarbon Natural Attenuation

    NASA Astrophysics Data System (ADS)

    Hathaway, E.; de Sieyes, N. R.; Mackay, D. M.

    2014-12-01

    Petroleum hydrocarbons contaminants frequently exist in both the vadose and saturated zones at contaminated fuel sites. Natural biodegradation of petroleum hydrocarbon contaminants occur in in situ reactive zones present in both the vadose and saturated zones. Biodegradation of petroleum hydrocarbons results in a mass discharge of gaseous biodegradation products through the vadose zone and transport of dissolved gases through the saturated zone. While previous studies have focused solely on transport of degradation products or geochemical parameters in groundwater or efflux of gaseous byproducts from the vadose zone, this study examines both pathways for discharge of degradation products. Quantifying the mass discharge of the biodegradation products through these zones is important to estimate the rates of natural source attenuation, assess the success of monitored natural attenuation, and quantify and document contaminant mass loss. In this study, surface efflux and groundwater mass discharge rates of biodegradation products (carbon dioxide, methane, and other intermediates) were quantified using field data. Field and analytical methodologies will be presented along with the results of the data analysis and a discussion of the uncertainties. Based on the data analysis, the surface efflux pathway through the vadose was found to be the dominant pathway for carbon loss at the monitored field site.

  9. Permeable bio-reactive barriers to address petroleum hydrocarbon contamination at subantarctic Macquarie Island.

    PubMed

    Freidman, Benjamin L; Terry, Deborah; Wilkins, Dan; Spedding, Tim; Gras, Sally L; Snape, Ian; Stevens, Geoffrey W; Mumford, Kathryn A

    2017-05-01

    A reliance on diesel generated power and a history of imperfect fuel management have created a legacy of petroleum hydrocarbon contamination at subantarctic Macquarie Island. Increasing environmental awareness and advances in contaminant characterisation and remediation technology have fostered an impetus to reduce the environmental risk associated with legacy sites. A funnel and gate permeable bio-reactive barrier (PRB) was installed in 2014 to address the migration of Special Antarctic Blend diesel from a spill that occurred in 2002, as well as older spills and residual contaminants in the soil at the Main Power House. The PRB gate comprised of granular activated carbon and natural clinoptilolite zeolite. Petroleum hydrocarbons migrating in the soil water were successfully captured on the reactive materials, with concentrations at the outflow of the barrier recorded as being below reporting limits. The nutrient and iron concentrations delivered to the barrier demonstrated high temporal variability with significant iron precipitation observed across the bed. The surface of the granular activated carbon was largely free from cell attachment while natural zeolite demonstrated patchy biofilm formation after 15 months following PRB installation. This study illustrates the importance of informed material selection at field scale to ensure that adsorption and biodegradation processes are utilised to manage the environmental risk associated with petroleum hydrocarbon spills. This study reports the first installation of a permeable bio-reactive barrier in the subantarctic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Phytoremediation of petroleum hydrocarbon-contaminated saline-alkali soil by wild ornamental Iridaceae species.

    PubMed

    Cheng, Lijuan; Wang, Yanan; Cai, Zhang; Liu, Jie; Yu, Binbin; Zhou, Qixing

    2017-03-04

    As a green remediation technology, phytoremediation is becoming one of the most promising methods for treating petroleum hydrocarbons (PHCs)-contaminated soil. Pot culture experiments were conducted in this study to investigate phytoremediation potential of two representative Iridaceae species (Iris dichotoma Pall. and Iris lactea Pall.) in remediation of petroleum hydrocarbon-contaminated saline-alkali soil from the Dagang Oilfield in Tianjin, China. The results showed that I. lactea was more endurable to extremely high concentration of PHCs (about 40,000 mg/kg), with a relatively high degradation rate of 20.68%.The degradation rate of total petroleum hydrocarbons (TPHs) in soils contaminated with 10,000 and 20,000 mg/kg of PHCs was 30.79% and 19.36% by I. dichotoma, and 25.02% and 19.35% by I. lactea, respectively, which improved by 10-60% than the unplanted controls. The presence of I. dichotoma and I. lactea promoted degradation of PHCs fractions, among which saturates were more biodegradable than aromatics. Adaptive specialization was observed within the bacterial community. In conclusion, phytoremediation by I. dichotoma should be limited to soils contaminated with ≤20,000 mg/kg of PHCs, while I. lactea could be effectively applied to phytoremediation of contaminated soils by PHCs with at least 40,000 mg/kg.

  11. Cultivation of a bacterial consortium with the potential to degrade total petroleum hydrocarbon using waste activated sludge.

    PubMed

    Sivakumar, S; Song, Y C; Kim, S H; Jang, S H

    2015-11-01

    Waste activated sludge was aerobically treated to demonstrate multiple uses such as cultivating an oil degrading bacterial consortium; studying the influence of a bulking agent (peat moss) and total petroleum hydrocarbon concentration on bacterial growth and producing a soil conditioner using waste activated sludge. After 30 days of incubation, the concentration of oil-degrading bacteria was 4.3 x 10(8) CFU g(-1) and 4.5 x 10(8) CFU g(-1) for 5 and 10 g of total petroleum hydrocarbon, respectively, in a mixture of waste activated sludge (1 kg) and peat moss (0.1 kg). This accounts for approximately 88.4 and 91.1%, respectively, of the total heterotrophic bacteria (total-HB). The addition of bulking agent enhanced total-HB population and total petroleum hydrocarbon-degrading bacterial population. Over 90% of total petroleum hydrocarbon degradation was achieved by the mixture of waste activated sludge, bulking agent and total petroleum hydrocarbon. The results of physico-chemical parameters of the compost (waste activated sludge with and without added peat moss compost) and a substantial reduction in E. coli showed that the use of this final product did not exhibit risk when used as soil conditioner. Finally, the present study demonstrated that cultivation of total petroleum hydrocarbon-degrading bacterial consortium and production of compost from waste activated sludge by aerobic treatment was feasible.

  12. Evaluating the aquatic toxicity of complex organic chemical mixtures: lessons learned from polycyclic aromatic hydrocarbon and petroleum hydrocarbon case studies.

    PubMed

    Landrum, Peter F; Chapman, Peter M; Neff, Jerry; Page, David S

    2012-04-01

    Experimental designs for evaluating complex mixture toxicity in aquatic environments can be highly variable and, if not appropriate, can produce and have produced data that are difficult or impossible to interpret accurately. We build on and synthesize recent critical reviews of mixture toxicity using lessons learned from 4 case studies, ranging from binary to more complex mixtures of primarily polycyclic aromatic hydrocarbons and petroleum hydrocarbons, to provide guidance for evaluating the aquatic toxicity of complex mixtures of organic chemicals. Two fundamental requirements include establishing a dose-response relationship and determining the causative agent (or agents) of any observed toxicity. Meeting these 2 requirements involves ensuring appropriate exposure conditions and measurement endpoints, considering modifying factors (e.g., test conditions, test organism life stages and feeding behavior, chemical transformations, mixture dilutions, sorbing phases), and correctly interpreting dose-response relationships. Specific recommendations are provided. Copyright © 2011 SETAC.

  13. Potential of vetiver (vetiveria zizanioides (L.) Nash) for phytoremediation of petroleum hydrocarbon-contaminated soils in Venezuela.

    PubMed

    Brandt, Regine; Merkl, Nicole; Schultze-Kraft, Rainer; Infante, Carmen; Broll, Gabriele

    2006-01-01

    Venezuela is one of the largest oil producers in the world. For the rehabilitation of oil-contaminated sites, phytoremediation represents a promising technology whereby plants are used to enhance biodegradation processes in soil. A greenhouse study was conducted to determine the tolerance of vetiver (Vetiveria zizanioides (L.) Nash) to a Venezuelan heavy crude oil in soil. Additionally, the plant's potential for stimulating the biodegradation processes of petroleum hydrocarbons was tested under the application of two fertilizer levels. In the presence of contaminants, biomass and plant height were significantly reduced. As for fertilization, the lower fertilizer level led to higher biomass production. The specific root surface area was reduced under the effects of petroleum. However, vetiver was found to tolerate crude-oil contamination in a concentration of 5% (w/w). Concerning total oil and grease content in soil, no significant decrease under the influence of vetiver was detected when compared to the unplanted control. Thus, there was no evidence of vetiver enhancing the biodegradation of crude oil in soil under the conditions of this trial. However, uses of vetiver grass in relation to petroleum-contaminated soils are promising for amelioration of slightly polluted sites, to allow other species to get established and for erosion control.

  14. Bioremediation and reclamation of soil contaminated with petroleum oil hydrocarbons by exogenously seeded bacterial consortium: a pilot-scale study.

    PubMed

    Mukherjee, Ashis K; Bordoloi, Naba K

    2011-03-01

    Spillage of petroleum hydrocarbons causes significant environmental pollution. Bioremediation is an effective process to remediate petroleum oil contaminant from the ecosystem. The aim of the present study was to reclaim a petroleum oil-contaminated soil which was unsuitable for the cultivation of crop plants by using petroleum oil hydrocarbon-degrading microbial consortium. Bacterial consortium consisting of Bacillus subtilis DM-04 and Pseudomonas aeruginosa M and NM strains were seeded to 20% (v/w) petroleum oil-contaminated soil, and bioremediation experiment was carried out for 180 days under laboratory condition. The kinetics of hydrocarbon degradation was analyzed using biochemical and gas chromatographic (GC) techniques. The ecotoxicity of the elutriates obtained from petroleum oil-contaminated soil before and post-treatment with microbial consortium was tested on germination and growth of Bengal gram (Cicer aretinum) and green gram (Phaseolus mungo) seeds. Bacterial consortium showed a significant reduction in total petroleum hydrocarbon level in contaminated soil (76% degradation) as compared to the control soil (3.6% degradation) 180 days post-inoculation. The GC analysis confirmed that bacterial consortium was more effective in degrading the alkane fraction compared to aromatic fraction of crude petroleum oil hydrocarbons in soil. The nitrogen, sulfur, and oxygen compounds fraction was least degraded. The reclaimed soil supported the germination and growth of crop plants (C. aretinum and P. mungo). In contrast, seeds could not be germinated in petroleum oil-contaminated soil. The present study reinforces the application of bacterial consortium rather than individual bacterium for the effective bioremediation and reclamation of soil contaminated with petroleum oil.

  15. Estimation of ecotoxicity of petroleum hydrocarbon mixtures in soil based on HPLC-GCXGC analysis.

    PubMed

    Mao, Debin; Lookman, Richard; Van De Weghe, Hendrik; Weltens, Reinhilde; Vanermen, Guido; De Brucker, Nicole; Diels, Ludo

    2009-12-01

    Detailed HPLC-GCXGC/FID (high performance liquid chromatography followed by comprehensive two-dimensional gas chromatography with flame-ionization detection) analysis of oil-contaminated soils was performed to interpret results of selected acute ecotoxicity assays. For the five ecotoxicity assays tested, plant seed germination and Microtox were selected as most sensitive for evaluating ecotoxicity of the oil in the soil phase and in the leaching water, respectively. The measured toxicity for cress when testing the soil samples did not correspond to TPH concentration in the soil. A detailed chemical composition analysis of the oil contamination using HPLC-GCXGC/FID allows to better predict the ecotoxicological risk and leaching potential of petroleum hydrocarbons in soil. Cress biomass production per plant was well correlated to the total aromatic hydrocarbon concentration (R2=0.79, n=6), while cress seed germination was correlated (R2=0.82, n=6) with total concentration of "highly water-soluble aromatic hydrocarbons" (HSaromatics). The observed ecotoxicity of the leaching water for Microtox-bacteria related well to calculated (based on the HPLC-GCXGC/FID results) petroleum hydrocarbon equilibrium concentrations in water.

  16. Pilot-scale feasibility of petroleum hydrocarbon-contaminated soil in situ bioremediation

    SciTech Connect

    Walker, J.F. Jr.; Walker, A.B.

    1995-12-31

    An environmental project was conducted to evaluate in situ bioremediation of petroleum hydrocarbon-contaminated soils on Kwajalein Island, a US Army Kwajalein Atoll base in the Republic of the Marshall Islands. Results of laboratory column studies determined that nutrient loadings stimulated biodegradation rates and that bioremediation of hydrocarbon-contaminated soils at Kwajalein was possible using indigenous microbes. The column studies were followed by an {approximately}10-month on-site demonstration at Kwajalein to further evaluate in situ bioremediation and to determine design and operating conditions necessary to optimize the process. The demonstration site contained low levels of total petroleum hydrocarbons (diesel fuel) in the soil near the ground surface, with concentrations increasing to {approximately}10,000 mg/kg in the soil near the groundwater. The demonstration utilized 12 in situ plots to evaluate the effects of various combinations of water, air, and nutrient additions on both the microbial population and the hydrocarbon concentration within the treatment plots as a function of depth from the ground surface.

  17. Hydrocarbon shows and petroleum source rocks in sediments as old as 1.7 billion years

    NASA Astrophysics Data System (ADS)

    Jackson, M. J.; Powell, T. G.; Summons, R. E.; Sweet, I. P.

    1986-08-01

    The discovery of indigenous live oil in 1.4-Gyr-old rocks in the McArthur Basin of northern Australia is reported. Previously reported occurrences of indigenous Precambrian oil are less than 1 Gyr old. Potential petroleum source rocks in the McArthur Basin range in age from 1.4-1.7 Gyr and were deposited in marine and lacustrine environments. In parts of the basin they have been buried sufficiently deeply to have generated hydrocarbons. They span the period corresponding to the appearance of eukaryotic organisms, and because of their low degree of thermal alteration, they provide a valuable resource for the study of primitive biota through their hydrocarbon biomarkers. The hydrocarbon composition of the oil is consistent with a derivation from organic matter of prokaryotic origin. These results show that exploration of previously ignored mid-Proterozoic sediments may lead to the discovery of new reserves of oil.

  18. Transport and Degradation of Semivolatile Hydrocarbons in a Petroleum-Contaminated Aquifer, Bemidji, Minnesota

    USGS Publications Warehouse

    Furlong, E.T.; Koleis, J.C.; Aiken, G.R.

    1997-01-01

    Polycyclic aromatic hydrocarbons (PAH) were used as probes to identify the processes controlling the transport and fate of aqueous semivolatile hydrocarbons (SVHCs) in a petroleum-contaminated aquifer near Bemidji, Minnesota. PAH and other SVHCs were isolated from ground water by field solid-phase extraction and analyzed using gas chromatography/mass spectrometry. Close to the oil body, aqueous aliphatic hydrocarbon compositions are substantially different from the parent oil, suggesting microbial alteration prior to or during dissolution. Aqueous PAH concentrations are elevated above oil-water equilibrium concentrations directly beneath the oil and decrease dramatically at distances ranging from the 25 to 65 m downgradient from the leading edge of the oil body. Variations in downgradient distributions of naphthalene, fluorene and phenanthrene, coupled with their biodegradation, partitioning and volatility characteristics, suggest that the PAH are useful probes for distinguishing between the biogeochemical processes affecting SVHC transport and persistence in ground water.

  19. Responses of the sandprawn Callianassa kraussi to petroleum hydrocarbons

    SciTech Connect

    Jackson, L.F.

    1983-01-01

    As a burrowing, estuarine crustacean, Callianassa kraussi is considered to be particularly vulnerable to the effects of contamination by oil. In this study therefore, its responses to lethal and sublethal levels of a water-soluble fraction of Quater crude oil were investigated. Lethal toxicities for 96-hour exposures under flow-through conditions, at a salinity of 35 per thousand, were 3.26, 4.51, and 5.08 ppm for juveniles, and adult females and males respectively. Static determinations were considered to be unreliable due to rapid evaporation of the lighter aromatic components. Comparison of the sensitivity of the various life history stages was, therefore, inconclusive. C. kraussi showed very limited mortality in response to oil-contaminated sediments. Sublethal levels of oil were found to have a fairly drastic impact on reproductive success of C. kraussi. Effects included an increase in the occurrence of abnormal embyros; reduced hatching success, and a decline in the number of larvae successfully completing development to the juvenile stage. Exposed larvae also showed delayed moulting. The extent of these responses was related to both the oil concentration, and the duration of exposure. Bioaccumulation studies showed that C. kraussi took up hydrocarbons extremely rapidly, and continued to accumulate them more or less throughout the exposure period. Levels of uptake were related to both the concentration and duration of exposure, and were highest in the hepatopancreas and ovary. Depuration resulted in only limited loss of accumulated compounds.

  20. Biodegradation of petroleum hydrocarbons in the presence of nickel and cobalt.

    PubMed

    Oyetibo, Ganiyu Oladunjoye; Ilori, Matthew Olusoji; Obayori, Oluwafemi Sunday; Amund, Olukayode Oladipo

    2013-11-01

    Bioremediation of environments co-contaminated with hydrocarbons and heavy metals often pose a challenge as heavy metals exert toxicity to existing communities of hydrocarbon degraders. Multi-resistant bacterial strains were studied for ability to degrade hydrocarbons in chemically defined media amended with 5.0 mM Ni(2+), and Co(2+). The bacteria, Pseudomonas aeruginosa CA207Ni, Burkholderia cepacia AL96Co, and Corynebacterium kutscheri FL108Hg, utilized crude oil and anthracene without lag phase at specific growth rate spanning 0.3848-0.8259 per day. The bacterial populations grew in hydrocarbon media amended with nickel (Ni) and cobalt (Co) at 0.8393-1.801 days generation time (period of exponential growth, t = 15 days). The bacteria degraded 96.24-98.97, and 92.94-96.24% of crude oil, and anthracene, respectively, within 30 days without any impedance due to metal toxicity (at 5.0 mM). Rather, there was reduction of Ni and Co concentrations in the axenic culture 30 days post-inoculation to 0.08-0.12 and 0.11-0.15 mM, respectively. The metabolic functions of the bacteria are active in the presence of toxic metals (Ni and Co) while utilizing petroleum hydrocarbons for increase in biomass. These findings are useful to other baseline studies on decommissioning of sites co-contaminated with hydrocarbons and toxic metals.

  1. Catalytic conversion of alcohols to hydrocarbons with low benzene content

    DOEpatents

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2016-03-08

    A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.

  2. Catalytic conversion of alcohols to hydrocarbons with low benzene content

    DOEpatents

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2016-09-06

    A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.

  3. A soil flushing study for petroleum hydrocarbon removal

    SciTech Connect

    Dedek, K.S.; O`Connell, T.P.; Dell, L.R.

    1995-12-31

    A 5-week soil column treatability study was conducted to evaluate the feasibility of a closed-loop groundwater recovery and reinjection system to enhance soil flushing and biodegradation of petroleum contaminants. The site soil and groundwater are impacted with BTEX and PAH contaminants due to the release of No. 2 and No. 6 fuel oil from a UST. Nutrients and two nonionic surfactants, Tergitol NP-10 and Tween 80, were evaluated for the potential of enhancing soil flushing and biodegradation. The amendments were added to unimpacted oxygenated site groundwater which was continuously pumped to the top of the soil columns and allowed to percolate vertically downward through the columns to simulate unsaturated flow through the soil. Total heterotrophic microbial plate counts conducted at the end of the 5-week study were highest in soil amended with Tergitol NP-10 and nutrients (1.9 X 10{sup 8} CFU/dry gram soil) compared to 6.2 X 10{sup 6} CFU/dry gram soil in the initial soil sample. Initial concentrations of total BTEX (270 {mu}g/kg) and naphthalene (8,500 {mu}g/kg) were reduced to below detectable limits in all of the soil columns. Total PAH removal rates were 52% and 51% in unamended and nutrient-amended soils, respectively, from an initial total soil PAH concentration of-approximately 70 mg/kg. Amendment with nutrients and Tergitol NP-10 resulted in a 48% reduction in total soil PAHs compared to 39% in a microbially-inhibited Tergitol NP-10 + nutrient-amended soil. The Tween 80 + nutrient-amendment resulted in only a 34% reduction in total soil PAHs. TPH concentrations measured in the effluent groundwater were highest in the Tergitol NP-10 + nutrient-amended soil (37.6 mg/{ell}) after 1 week. However, after 5 weeks, the effluent TPH concentration had leveled off to 6.5 mg/1 compared to 29.4 mg/{ell} in the microbially-inhibited Tergitol NP-10 + nutrient-amended soil.

  4. QUANTIFICATION AND INTERPRETATION OF TOTAL PETROLEUM HYDROCARBONS IN SEDIMENT SAMPLES BY A GC/MS METHOD AND COMPARISON WITH EPA 418.1 AND A RAPID FIELD METHOD

    EPA Science Inventory

    ABSTRACT: Total Petroleum hydrocarbons (TPH) as a lumped parameter can be easily and rapidly measured or monitored. Despite interpretational problems, it has become an accepted regulatory benchmark used widely to evaluate the extent of petroleum product contamination. Three cu...

  5. QUANTIFICATION AND INTERPRETATION OF TOTAL PETROLEUM HYDROCARBONS IN SEDIMENT SAMPLES BY A GC/MS METHOD AND COMPARISON WITH EPA 418.1 AND A RAPID FIELD METHOD

    EPA Science Inventory

    ABSTRACT: Total Petroleum hydrocarbons (TPH) as a lumped parameter can be easily and rapidly measured or monitored. Despite interpretational problems, it has become an accepted regulatory benchmark used widely to evaluate the extent of petroleum product contamination. Three cu...

  6. Bioremediation of petroleum hydrocarbon-contaminated ground water: The perspectives of history and hydrology

    USGS Publications Warehouse

    Chapelle, F.H.

    1999-01-01

    Bioremediation, the use of microbial degradation processes to detoxify environmental contamination, was first applied to petroleum hydrocarbon-contaminated ground water systems in the early 1970s. Since that time, these technologies have evolved in some ways that were clearly anticipated early investigators, and in other ways that were not foreseen. The expectation that adding oxidants and nutrients to contaminated aquifers would enhance biodegradation, for example, has been born out subsequent experience. Many of the technologies now in common use such as air sparging, hydrogen peroxide addition, nitrate addition, and bioslurping, are conceptually similar to the first bioremediation systems put into operation. More unexpected, however, were the considerable technical problems associated with delivering oxidants and nutrients to heterogeneous ground water systems. Experience has shown that the success of engineered bioremediation systems depends largely on how effectively directions and rates of ground water flow can be controlled, and thus how efficiently oxidants and nutrients can be delivered to contaminated aquifer sediments. The early expectation that injecting laboratory-selected or genetically engineered cultures of hydrocarbon-degrading bacteria into aquifers would be a useful bioremediation technology has not been born out subsequent experience. Rather, it appears that petroleum hydrocarbon-degrading bacteria are ubiquitous in ground water systems and that bacterial addition is usually unnecessary. Perhaps the technology that was least anticipated early investigators was the development of intrinsic bioremediation. Experience has shown that natural attenuation mechanisms - biodegradation, dilution, and sorption - limit the migration of contaminants to some degree in all ground water systems. Intrinsic bioremediation is the deliberate use of natural attenuation processes to treat contaminated ground water to specified concentration levels at predetermined

  7. Aliphatic and polycyclic aromatic hydrocarbons in the surface sediments of the Mediterranean: assessment and source recognition of petroleum hydrocarbons.

    PubMed

    El Nemr, Ahmed; El-Sadaawy, Manal M; Khaled, Azza; Draz, Suzanne O

    2013-06-01

    Coastal marine sediment samples were collected from ten sampling stations along the Egyptian Mediterranean coast in April 2010. All sediment samples were analyzed for aliphatic (C7 to C34) and polycyclic aromatic hydrocarbons (PAHs) as well as total organic carbon (TOC) contents and grain size analysis. Total aliphatic hydrocarbons ranged from 1621.82 to 9069.99 ng/g (dry weight), while aromatic hydrocarbons (16 PAHs) varied between 208.69 and 1020.02 ng/g with an average of 530.68 ± 225.86 ng/g dwt. Good correlations observed between certain PAH concentrations allowed to identify its origin. The average TOC percent was varied from 0.13 to 1.46 %. Principal component analysis was used to determine the sources of hydrocarbon pollutants in sediments of Mediterranean. Additionally, special PAHs compound ratios suggest the petrogenic origins.

  8. Microbial community response to petroleum hydrocarbon contamination in the unsaturated zone at the experimental field site Vaerløse, Denmark.

    PubMed

    Kaufmann, Karin; Christophersen, Mette; Buttler, Alexandre; Harms, Hauke; Höhener, Patrick

    2004-06-01

    This study investigates the influence of petroleum hydrocarbons on a microbial community in the vadose zone under field conditions. An artificial hydrocarbon mixture consisting of volatile and semi-volatile compounds similar to jet-fuel was emplaced in a previously uncontaminated vadose zone in nutrient-poor glacial melt water sand. The experiment included monitoring of microbial parameters and CO(2) concentrations in soil gas over 3 months in and outside the hydrocarbon vapor plume that formed around the buried petroleum. Microbial and chemical analyses of soil and vadose zone samples were performed on samples from cores drilled to 3.3 m depth on three dates and three lateral distances from the buried petroleum mass. Significantly elevated CO(2) concentrations were observed after contamination. Total cell numbers as determined by fluorescence microscopy were strongly correlated with soil organic carbon and nitrogen content but varied little with contamination. Redundancy analysis (RDA) allowed direct analysis of effects of selected environmental variables or the artificial contamination on microbiological parameters. Variation in biomass and CO(2) production was explained by soil parameters, to 46%, and by the duration of contamination, to 39.8%. The microbial community structure was assessed by community level physiological profiles (CLPP) analysis using Biolog(TM) Eco-Plates. In the CLPP data only 35.9% of the variation could be linked to soil parameters and contamination, however, the samples with greatest exposure to hydrocarbons grouped together on RDA plots. It is concluded that, at this nutrient-poor site, the microbial community was dominated by natural heterogeneity and that the influence of petroleum hydrocarbon vapors was weak.

  9. Petroleum hydrocarbon remediation in frozen soil using a meat and bonemeal biochar plus fertilizer.

    PubMed

    Karppinen, Erin M; Stewart, Katherine J; Farrell, Richard E; Siciliano, Steven D

    2017-04-01

    Petroleum hydrocarbon (PHC) degradation slows significantly during the winter which substantially increases the time it takes to remediate soil in Arctic landfarms. The aim of this laboratory trial was to assess the potential of a meat and bonemeal (MBM) biochar to stimulate PHC degradation in contaminated soil collected from Iqaluit, Canada. Over 90 days, 3% (w/w) MBM biochar significantly increased F3- (equivalent nC16-C34) PHC degradation rate constants (k) in frozen soils when compared to the fertilizer (urea and monoammonium phosphate) control. Taking into consideration extensive variability within treatments and negative k values, this difference may not reflect significant remediation. Decreasing C17/Pr and C18/Ph ratios in the frozen soil suggest that this reduction is a result of microbial degradation rather than volatilization. Amendment type and application rate affected the immediate abiotic losses of F2 and F3-PHC in sterile soils, with the greatest losses occurring in compost-amended treatments in the first 24 h. In frozen soils, MBM biochar was found to increase liquid water content (θliquid) but not nutrient supply rates. Under frozen but not thawed conditions, genes for aromatic (C2,3O and nahAc) but not aliphatic (alkB) PHC degradation increased over time in both biochar-amended and control treatments but total viable PHC-degrading populations only increased in biochar-amended soils. Based on these results, it is possible that PHC degradation in biochar-amended soils is active and even enhanced under frozen conditions, but further investigation is required. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Influence of liquid water and soil temperature on petroleum hydrocarbon toxicity in Antarctic soil.

    PubMed

    Schafer, Alexis N; Snape, Ian; Siciliano, Steven D

    2009-07-01

    Fuel spills in Antarctica typically occur in rare ice-free oases along the coast, which are areas of extreme seasonal freezing. Spills often occur at subzero temperatures, but little is known of ecosystem sensitivity to pollutants, in particular the influence that soil liquid water and low temperature have on toxicity of petroleum hydrocarbons (PHC) in Antarctic soil. To evaluate PHC toxicity, 32 locations at an aged diesel spill site in Antarctica were sampled nine times to encompass frozen, thaw, and refreeze periods. Toxicity was assessed using potential activities of substrate-induced respiration, basal respiration, nitrification, denitrification, and metabolic quotient as well as microbial community composition and bacterial biomass. The most sensitive indicator was community composition with a PHC concentration effecting 25% of the population (EC25) of 800 mg/kg, followed by nitrification (2,000 mg/kg), microbial biomass (2,400 mg/kg), and soil respiration (3,500 mg/kg). Despite changes in potential microbial activities and composition over the frozen, thaw, and refreeze period, the sensitivity of these endpoints to PHC did not change with liquid water or temperature. However, the variability associated with ecotoxicity data increased at low liquid water contents. As a consequence of this variability, highly replicated (n = 50) experiments are needed to quantify a 25% ecological impairment by PHCs in Antarctic soils at a 95% level of significance. Increases in biomass and respiration associated with changes in community composition suggest that PHC contamination in Antarctic soils may have irrevocable effects on the ecosystem.

  11. Surface active properties of bacterial strains isolated from petroleum hydrocarbon-bioremediated soil.

    PubMed

    Płaza, Grazyna A; Ulfig, Krzysztof; Brigmon, Robin L

    2005-01-01

    Two bacterial strains identified as Ralstonia picketti (BP 20) and Alcaligenes piechaudii (CZOR L-1B) were isolated from petroleum hydrocarbon-contaminated soil following bioremediation treatment. The surface active properties, e.g. surface tension, emulsification and foamability of their culture filtrates were evaluated. Bacterial cell-surface hydrophobicity (BAH) as measured by analyzing cell affinity towards aliphatic and aromatic compounds was also determinated. The bacteria grew in liquid cultures containing 1% (v/v) of crude oil as carbon and energy source at 30 degrees C under aerobic conditions. The surface tensions were reduced to 61 mN/m and 55 mN/m by Ralstonia picketti and Alcaligenes piechaudii, respectively. The emulsification index (EI24) was almost 100% for all tested compounds except diesel oil. The stability of the emulsions was deteminated at 4 degrees C, 45 degrees C and 65 degrees C. The emulsions were stable at 4 degrees C. Ralstonia picketti was better foam inducer (FV = 50 ml) compared to Alcaligenes piechaudii (FV = 10 ml). The BAH measurements revealed higher adhesion of Alcaligenes piechaudii cells towards different hydrocarbons compared to Ralstonia picketti cells. The strains were found to have a surface hydrophobicity in the following order: aliphatic hydrocarbons, BTEX, and PAHs. The ability to adhere to bulk hydrocarbon is mostly a characteristic of hydrocarbon-degrading bacteria. The strains were found to be better emulsifiers than surface tension reducers. They produce water-soluble extracellular bioemulsifiers. Both bacterial isolates have good properties to use them, mainly in the petroleum industry, e.g. in enhanced oil recovery and in bioremediation processes-primarily due to their emulsification property, i.e. emulsion forming and stabilizing capacity.

  12. Assessment of the potential for biodegradation of petroleum hydrocarbons in the Railroad Industrial Area, Fairbanks, Alaska

    USGS Publications Warehouse

    Braddock, Joan F.; Catterall, Peter H.; Richmond, Sharon A.

    1998-01-01

    Many technologies for the clean-up of petroleum-hydrocarbon contaminated sites depend on microbial degradation of the pollutant. In these technologies the site may be modified to enhance microbial activity, or may simply be monitored for naturally occurring microbial activity. In either case, an important aspect of site assessment for these technologies is to determine if the microorganisms present at the site have the potential to break down contaminants under the prevailing environmental conditions. We examined the numbers and activity of hydrocarbon-degrading microorganisms in ground water collected from petroleum-hydrocarbon contaminated and uncontaminated wells at the Railroad Industrial Area near Fairbanks, Alaska. We found that the population of gasoline-degrading microorganisms in ground water was correlated to the degree of contamination by benzene, toluene, ethylbenzene and xylenes (BTEX). We also found that these organisms could actively mineralize these types of compounds in laboratory mineralization assays. Increasing temperature and adding nutrients both enhanced the rate of mineralization in the laboratory, but measurable degradation still occurred under conditions similar to those found in the field. Dissolved oxygen in ground water at this site ranged from 0 to 3.6 milligrams per liter. Therefore, oxygen may not always be available to microorganisms as a terminal electron acceptor. Preliminary geochemical evidence from the field indicates that alternative electron acceptors such as Fe(III), sulfate, or nitrate may be used, contributing to degradation of contaminants at this site.

  13. Dispersion, sorption and photodegradation of petroleum hydrocarbons in dispersant-seawater-sediment systems.

    PubMed

    Zhao, Xiao; Liu, Wen; Fu, Jie; Cai, Zhengqing; O'Reilly, S E; Zhao, Dongye

    2016-08-15

    This work examined effects of model oil dispersants on dispersion, sorption and photodegradation of petroleum hydrocarbons in simulated marine systems. Three dispersants (Corexit 9500A, Corexit 9527A and SPC 1000) were used to prepare dispersed water accommodated oil (DWAO). While higher doses of dispersants dispersed more n-alkanes and PAHs, Corexit 9500A preferentially dispersed C11-C20 n-alkanes, whereas Corexit 9527A was more favorable for smaller alkanes (C10-C16), and SPC 1000 for C12-C28 n-alkanes. Sorption of petroleum hydrocarbons on sediment was proportional to TPH types/fractions in the DWAOs. Addition of 18mg/L of Corexit 9500A increased sediment uptake of 2-3 ring PAHs, while higher dispersant doses reduced the uptake, due to micelle-enhanced solubilization effects. Both dispersed n-alkanes and PAHs were susceptible to photodegradation under simulated sunlight. For PAHs, both photodegradation and photo-facilitated alkylation were concurrently taking place. The information can facilitate sounder assessment of fate and distribution of dispersed oil hydrocarbons in marine systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. New Hydrocarbon Degradation Pathways in the Microbial Metagenome from Brazilian Petroleum Reservoirs

    PubMed Central

    Sierra-García, Isabel Natalia; Correa Alvarez, Javier; Pantaroto de Vasconcellos, Suzan; Pereira de Souza, Anete; dos Santos Neto, Eugenio Vaz; de Oliveira, Valéria Maia

    2014-01-01

    Current knowledge of the microbial diversity and metabolic pathways involved in hydrocarbon degradation in petroleum reservoirs is still limited, mostly due to the difficulty in recovering the complex community from such an extreme environment. Metagenomics is a valuable tool to investigate the genetic and functional diversity of previously uncultured microorganisms in natural environments. Using a function-driven metagenomic approach, we investigated the metabolic abilities of microbial communities in oil reservoirs. Here, we describe novel functional metabolic pathways involved in the biodegradation of aromatic compounds in a metagenomic library obtained from an oil reservoir. Although many of the deduced proteins shared homology with known enzymes of different well-described aerobic and anaerobic catabolic pathways, the metagenomic fragments did not contain the complete clusters known to be involved in hydrocarbon degradation. Instead, the metagenomic fragments comprised genes belonging to different pathways, showing novel gene arrangements. These results reinforce the potential of the metagenomic approach for the identification and elucidation of new genes and pathways in poorly studied environments and contribute to a broader perspective on the hydrocarbon degradation processes in petroleum reservoirs. PMID:24587220

  15. Monitored natural attenuation of a long-term petroleum hydrocarbon contaminated sites: a case study.

    PubMed

    Naidu, Ravi; Nandy, Subhas; Megharaj, Mallavarapu; Kumar, R P; Chadalavada, Sreenivasulu; Chen, Zuliang; Bowman, Mark

    2012-11-01

    This study evaluated the potential of monitored natural attenuation (MNA) as a remedial option for groundwater at a long-term petroleum hydrocarbon contaminated site in Australia. Source characterization revealed that total petroleum hydrocarbons (TPH) as the major contaminant of concern in the smear zone and groundwater. Multiple lines of evidence involving the geochemical parameters, microbiological analysis, data modelling and compound-specific stable carbon isotope analysis all demonstrated natural attenuation of hydrocarbons occurring in the groundwater via intrinsic biodegradation. Groundwater monitoring data by Mann-Kendall trend analysis using properly designed and installed groundwater monitoring wells shows the plume is stable and neither expanding nor shrinking. The reason for stable plume is due to the presence of both active source and natural attenuation on the edge of the plume. Assuming no retardation and no degradation the contaminated plume would have travelled a distance of 1,096 m (best case) to 11,496 m (worst case) in 30 years. However, the plume was extended only up to about 170 m from its source. The results of these investigations provide strong scientific evidence for natural attenuation of TPH in this contaminated aquifer. Therefore, MNA can be applied as a defensible management option for this site following significant reduction of TPH in the source zone.

  16. Inexpensive metagenomic DNA extraction protocol with high quality from marine sediments contaminated by petroleum hydrocarbons.

    PubMed

    García-Bautista, I; Toledano-Thompson, T; Dantán-González, E; González-Montilla, J; Valdez-Ojeda, R

    2017-09-21

    Marine environments are a reservoir of relevant information on dangerous contaminants such as hydrocarbons, as well as microbial communities with probable degradation skills. However, to access microbial diversity, it is necessary to obtain high-quality DNA. An inexpensive, reliable, and effective metagenomic DNA (mgDNA) extraction protocol from marine sediments contaminated with petroleum hydrocarbons was established in this study from modifications to Zhou's protocol. The optimization included pretreatment of sediment with saline solutions for the removal of contaminants, a second precipitation and enzymatic degradation of RNA, followed by purification of mgDNA extracted by electroelution. The results obtained indicated that the modifications applied to 12 sediments with total petroleum hydrocarbon (TPH) concentrations from 22.6-174.3 (µg/g dry sediment) yielded 20.3-321.3 ng/µL mgDNA with A260/A280 and A260/A230 ratios of 1.75 ± 0.08 and 1.19 ± 0.22, respectively. The 16S rRNA amplification confirmed the purity of the mgDNA. The suitability of this mgDNA extraction protocol lies in the fact that all chemical solutions utilized are common in all molecular biology laboratories, and the use of dialysis membrane does not require any sophisticated or expensive equipment, only an electrophoretic chamber.

  17. New hydrocarbon degradation pathways in the microbial metagenome from Brazilian petroleum reservoirs.

    PubMed

    Sierra-García, Isabel Natalia; Correa Alvarez, Javier; de Vasconcellos, Suzan Pantaroto; Pereira de Souza, Anete; dos Santos Neto, Eugenio Vaz; de Oliveira, Valéria Maia

    2014-01-01

    Current knowledge of the microbial diversity and metabolic pathways involved in hydrocarbon degradation in petroleum reservoirs is still limited, mostly due to the difficulty in recovering the complex community from such an extreme environment. Metagenomics is a valuable tool to investigate the genetic and functional diversity of previously uncultured microorganisms in natural environments. Using a function-driven metagenomic approach, we investigated the metabolic abilities of microbial communities in oil reservoirs. Here, we describe novel functional metabolic pathways involved in the biodegradation of aromatic compounds in a metagenomic library obtained from an oil reservoir. Although many of the deduced proteins shared homology with known enzymes of different well-described aerobic and anaerobic catabolic pathways, the metagenomic fragments did not contain the complete clusters known to be involved in hydrocarbon degradation. Instead, the metagenomic fragments comprised genes belonging to different pathways, showing novel gene arrangements. These results reinforce the potential of the metagenomic approach for the identification and elucidation of new genes and pathways in poorly studied environments and contribute to a broader perspective on the hydrocarbon degradation processes in petroleum reservoirs.

  18. Changes in bacterial communities from anaerobic digesters during petroleum hydrocarbon degradation.

    PubMed

    Scherr, Kerstin E; Lundaa, Tserennyam; Klose, Viviana; Bochmann, Günther; Loibner, Andreas P

    2012-02-20

    Anaerobic biodegradation of petroleum hydrocarbons (PHC) to methane has been recognized to occur in oil reservoirs and contaminated surface sites alike. This process could be employed efficiently for the treatment of contaminated materials, including petrochemical wastes and PHC-contaminated soil, since no external electron acceptor is required. Moreover, the controlled production of methane in digestion plants, similarly to the anaerobic digestion (AD) of energy crops or organic residues, would enable for energy recovery from these wastes. At present, little is known about the bacterial communities involved in and responsible for hydrocarbon fermentation, the initial step in PHC conversion to methane. In the present study, the fate of two different methanogenic communities derived from the AD of wastewater (WWT) and of biowaste, mixed with PHC-contaminated soil (SWT), was monitored during incubation with PHC using denaturing gradient gel electrophoresis (DGGE) of 16S rDNA genes amplified with Bacteria-specific primers. During 11 months of incubation, slight but significant degradation of PHC occurred in both sludges and distinct bacterial communities were developing. In both sludges, Bacteroidetes were found. In addition, in WWT, the bacterial community was found to be dominated by Synergistetes and Proteobacteria, while Firmicutes and unidentified members were abundant in SWT. These results indicate that bacterial communities from anaerobic digesters can adapt to and degrade petroleum hydrocarbons. The decontamination of PHC-containing waste via fermentative treatment appears possible. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Biodegradation of petroleum hydrocarbons by oleophilic strain of Pseudomonas aeruginosa NCIM 5514.

    PubMed

    Varjani, Sunita J; Upasani, Vivek N

    2016-12-01

    The aim of this work was to study the potential of an indigenous strain of Pseudomonas aeruginosa NCIM 5514, isolated from petroleum-polluted soil, for the biodegradation of crude petroleum oil. The isolate completely decolorized 2,6-dichlorophenol indophenol in 120h when grown at (37±1°C), indicating its hydrocarbon utilizing nature. Ex situ biodegradation study was performed to find out quantitative utilization and biodegradation of paraffin(s) present in crude oil. When the culture was grown in Bushnell-Hass medium containing crude oil (3%,v/v) at 37°C, 180rpm for 60days, the viscosity of the oil was reduced from 1883cp to 1002cp. Gravimetric and gas chromatographic analysis showed 61.03% and 60.63% of biodegradation of C8-C36+ hydrocarbons, respectively. These results indicated that the isolate has potential to be used for ex-situ and in-situ bioremediation of hydrocarbon pollutants and could have promising applications in petrochemical industry.

  20. Petroleum hydrocarbons in the surface water of two estuaries in the Southeastern united states

    NASA Astrophysics Data System (ADS)

    Bidleman, T. F.; Castleberry, A. A.; Foreman, W. T.; Zaranski, M. T.; Wall, D. W.

    1990-01-01

    Surface water samples from Charleston Harbor, SC and Winyah Bay, SC were analysed for total hydrocarbons by gas chromatography (GC) and for petroleum residues (expressed as crude oil equivalents) by fluorescence spectrometry. Cleanup by column chromatography and saponification was necessary to reduce the background from extraneous fluorescing materials. Oil concentrations determined by FS ranged from 0·5-25 μg l -1 in Charleston Harbor and <0·23-9·6 μg l -1 in Winyah Bay. Hydrocarbons determined by GC were significantly correlated ( P < 0·01) with crude oil equivalents determined by FS, but the data showed considerable scatter as indicated by r2 = 0·45. Polycyclic aromatic hydrocarbons were determined by gas chromatography—mass spectrometry for one set of Winyah Bay samples. The sum of nonalkylated polycyclic aromatic hydrocarbons having ≥ 3 rings ranged from 7-64 ng l -1 at different stations. Perylene, possibly originating from sediment dredging, was one of the more abundant polycyclic aromatic hydrocarbons.

  1. Horizontal arrangement of anodes of microbial fuel cells enhances remediation of petroleum hydrocarbon-contaminated soil.

    PubMed

    Zhang, Yueyong; Wang, Xin; Li, Xiaojing; Cheng, Lijuan; Wan, Lili; Zhou, Qixing

    2015-02-01

    With the aim of in situ bioremediation of soil contaminated by hydrocarbons, anodes arranged with two different ways (horizontal or vertical) were compared in microbial fuel cells (MFCs). Charge outputs as high as 833 and 762C were achieved in reactors with anodes horizontally arranged (HA) and vertically arranged (VA). Up to 12.5 % of the total petroleum hydrocarbon (TPH) was removed in HA after 135 days, which was 50.6 % higher than that in VA (8.3 %) and 95.3 % higher than that in the disconnected control (6.4 %). Hydrocarbon fingerprint analysis showed that the degradation rates of both alkanes and polycyclic aromatic hydrocarbons (PAHs) in HA were higher than those in VA. Lower mass transport resistance in the HA than that of the VA seems to result in more power and more TPH degradation. Soil pH was increased from 8.26 to 9.12 in HA and from 8.26 to 8.64 in VA, whereas the conductivity was decreased from 1.99 to 1.54 mS/cm in HA and from 1.99 to 1.46 mS/cm in VA accompanied with the removal of TPH. Considering both enhanced biodegradation of hydrocarbon and generation of charge in HA, the MFC with anodes horizontally arranged is a promising configuration for future applications.

  2. Methanogenic degradation of petroleum hydrocarbons in subsurface environments remediation, heavy oil formation, and energy recovery.

    PubMed

    Gray, N D; Sherry, A; Hubert, C; Dolfing, J; Head, I M

    2010-01-01

    Hydrocarbons are common constituents of surface, shallow, and deep-subsurface environments. Under anaerobic conditions, hydrocarbons can be degraded to methane by methanogenic microbial consortia. This degradation process is widespread in the geosphere. In comparison with other anaerobic processes, methanogenic hydrocarbon degradation is more sustainable over geological time scales because replenishment of an exogenous electron acceptor is not required. As a consequence, this process has been responsible for the formation of the world's vast deposits of heavy oil, which far exceed conventional oil assets such as those found in the Middle East. Methanogenic degradation is also a potentially important component of attenuation in hydrocarbon contamination plumes. Studies of the organisms, syntrophic partnerships, mechanisms, and geochemical signatures associated with methanogenic hydrocarbon degradation have identified common themes and diagnostic markers for this process in the subsurface. These studies have also identified the potential to engineer methanogenic processes to enhance the recovery of energy assets as biogenic methane from residual oils stranded in petroleum systems. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Effects of nutrient and temperature on degradation of petroleum hydrocarbons in contaminated sub-Antarctic soil.

    PubMed

    Coulon, Frédéric; Pelletier, Emilien; Gourhant, Lénaick; Delille, Daniel

    2005-03-01

    Mesocosm studies using sub-Antarctic soil artificially contaminated with diesel or crude oil were conducted in Kerguelen Archipelago (49 degrees 21' S, 70 degrees 13' E) in an attempt to evaluate the potential of a bioremediation approach in high latitude environments. All mesocosms were sampled on a regular basis over six months period. Soils responded positively to temperature increase from 4 degrees C to 20 degrees C, and to the addition of a commercial oleophilic fertilizer containing N and P. Both factors increased the hydrocarbon-degrading microbial abundance and total petroleum hydrocarbons (TPH) degradation. In general, alkanes were faster degraded than polyaromatic hydrocarbons (PAHs). After 180 days, total alkane losses of both oils reached 77-95% whereas total PAHs never exceeded 80% with optimal conditions at 10 degrees C and fertilizer added. Detailed analysis of naphthalenes, dibenzothiophenes, phenanthrenes, and pyrenes showed a clear decrease of their degradation rate as a function of the size of the PAH molecules. During the experiment there was only a slight decrease in the toxicity, whereas the concentration of TPH decreased significantly during the same time. The most significant reduction in toxicity occurred at 4 degrees C. Therefore, bioremediation of hydrocarbon-contaminated sub-Antarctic soil appears to be feasible, and various engineering strategies, such as heating or amending the soil can accelerate hydrocarbon degradation. However, the residual toxicity of contaminated soil remained drastically high before the desired cleanup is complete and it can represent a limiting factor in the bioremediation of sub-Antarctic soil.

  4. Risk-Based Evaluation of Total Petroleum Hydrocarbons in Vapor Intrusion Studies

    PubMed Central

    Brewer, Roger; Nagashima, Josh; Kelley, Michael; Heskett, Marvin; Rigby, Mark

    2013-01-01

    This paper presents a quantitative method for the risk-based evaluation of Total Petroleum Hydrocarbons (TPH) in vapor intrusion investigations. Vapors from petroleum fuels are characterized by a complex mixture of aliphatic and, to a lesser extent, aromatic compounds. These compounds can be measured and described in terms of TPH carbon ranges. Toxicity factors published by USEPA and other parties allow development of risk-based, air and soil vapor screening levels for each carbon range in the same manner as done for individual compounds such as benzene. The relative, carbon range makeup of petroleum vapors can be used to develop weighted, site-specific or generic screening levels for TPH. At some critical ratio of TPH to a targeted, individual compound, the overwhelming proportion of TPH will drive vapor intrusion risk over the individual compound. This is particularly true for vapors associated with diesel and other middle distillate fuels, but can also be the case for low-benzene gasolines or even for high-benzene gasolines if an adequately conservative, target risk is not applied to individually targeted chemicals. This necessitates a re-evaluation of the reliance on benzene and other individual compounds as a stand-alone tool to evaluate vapor intrusion risk associated with petroleum. PMID:23765191

  5. Risk-based evaluation of total petroleum hydrocarbons in vapor intrusion studies.

    PubMed

    Brewer, Roger; Nagashima, Josh; Kelley, Michael; Heskett, Marvin; Rigby, Mark

    2013-06-13

    This paper presents a quantitative method for the risk-based evaluation of Total Petroleum Hydrocarbons (TPH) in vapor intrusion investigations. Vapors from petroleum fuels are characterized by a complex mixture of aliphatic and, to a lesser extent, aromatic compounds. These compounds can be measured and described in terms of TPH carbon ranges. Toxicity factors published by USEPA and other parties allow development of risk-based, air and soil vapor screening levels for each carbon range in the same manner as done for individual compounds such as benzene. The relative, carbon range makeup of petroleum vapors can be used to develop weighted, site-specific or generic screening levels for TPH. At some critical ratio of TPH to a targeted, individual compound, the overwhelming proportion of TPH will drive vapor intrusion risk over the individual compound. This is particularly true for vapors associated with diesel and other middle distillate fuels, but can also be the case for low-benzene gasolines or even for high-benzene gasolines if an adequately conservative, target risk is not applied to individually targeted chemicals. This necessitates a re-evaluation of the reliance on benzene and other individual compounds as a stand-alone tool to evaluate vapor intrusion risk associated with petroleum.

  6. Degradation of Total Petroleum Hydrocarbon (TPH) in Contaminated Soil Using Bacillus pumilus MVSV3.

    PubMed

    Varma, Surendra Sheeba; Lakshmi, Mahalingam Brinda; Rajagopal, Perumalsam; Velan, Manickam

    2017-01-01

     A study on bioremediation of soil contaminated with petroleum sludge was performed using Bacillus pumilus/MVSV3 (Accession number JN089707). In this study, 5 kg of agricultural soil was mixed well with 5% oil sludge and fertilizers containing nitrogen, phosphorus and potassium (N:P:K). The treatment resulted in 97% removal of total petroleum hydrocarbon (TPH) in 122 d in bacteria mixed contaminated soil when compared to 12% removal of TPH in uninoculated contaminated soil. The population of the microorganism remained stable after introduced into the oil environment. The physical and chemical parameters of the soil mixed with sludge showed variation indicating improvement and the pH level decreased during the experiment period. Elemental analysis and Gas Chromatography-Mass Spectroscopy (GC-MS) analysis revealed the bacterial ability to degrade oil sludge components. Growth experiments with Trigonellafoenumgraecum (Fenugreek) showed the applicability of bioremediated soil for the production.

  7. The stability and utility of diagnostic ratio hydrocarbon fingerprinting for soils contaminated with petroleum hydrocarbons

    SciTech Connect

    Douglas, G.S.; Sara McMillen

    1996-12-31

    In order to recover costs for oil spill cleanup and restoration regulatory agencies and trustees of natural resources are interested in identifying parties responsible for hydrocarbon releases, and for associated environmental damages. Chemical analyses of contaminated soil and groundwater samples are currently used to identify the sources of contamination in soil and groundwater systems. However, conventional hydrocarbon fingerprinting approaches such as EPA Method 8015, EPA Method 8270, and ASTM Method 3328-91 afford a low resolution fingerprint that is easily degraded in the environment. The challenge to the hydrocarbon chemist is to develop an analytical approach that minimizes the impact of environmental weathering and biodegradation on the oil signature and improves the accuracy of oil source identification. An advanced chemical fingerprinting strategy is presented that combines sensitive and hydrocarbon specific analytical methods with a detailed interpretive strategy designed to minimize the impacts of environmental weathering and biodegradation. Data will be presented from a series of oil biodegradation studies in soil that clearly demonstrate the utility and stability of source ratio analysis over a wide range of oil degradation states and oil types. Using principal component analysis, stable source ratios of C{sub 3}-dibenzothiophenes/C{sub 3}-phenanthrenes, and C{sub 2}-dibenzothiophenes/C{sub 2}-phenanthrenes were identified and evaluated. These source ratios retain their characteristic source ratio signature even after 95 percent of the PAH and dibenzothiophene target analytes and 70 percent of the total oil has been biodegraded.

  8. The stability and utility of diagnostic ratio hydrocarbon fingerprinting for soils contaminated with petroleum hydrocarbons

    SciTech Connect

    Douglas, G.S.; Sara McMillen

    1996-01-01

    In order to recover costs for oil spill cleanup and restoration regulatory agencies and trustees of natural resources are interested in identifying parties responsible for hydrocarbon releases, and for associated environmental damages. Chemical analyses of contaminated soil and groundwater samples are currently used to identify the sources of contamination in soil and groundwater systems. However, conventional hydrocarbon fingerprinting approaches such as EPA Method 8015, EPA Method 8270, and ASTM Method 3328-91 afford a low resolution fingerprint that is easily degraded in the environment. The challenge to the hydrocarbon chemist is to develop an analytical approach that minimizes the impact of environmental weathering and biodegradation on the oil signature and improves the accuracy of oil source identification. An advanced chemical fingerprinting strategy is presented that combines sensitive and hydrocarbon specific analytical methods with a detailed interpretive strategy designed to minimize the impacts of environmental weathering and biodegradation. Data will be presented from a series of oil biodegradation studies in soil that clearly demonstrate the utility and stability of source ratio analysis over a wide range of oil degradation states and oil types. Using principal component analysis, stable source ratios of C[sub 3]-dibenzothiophenes/C[sub 3]-phenanthrenes, and C[sub 2]-dibenzothiophenes/C[sub 2]-phenanthrenes were identified and evaluated. These source ratios retain their characteristic source ratio signature even after 95 percent of the PAH and dibenzothiophene target analytes and 70 percent of the total oil has been biodegraded.

  9. The origin of light hydrocarbons in petroleum: A kinetic test of the steady-state catalytic hypothesis

    SciTech Connect

    Mango, F.D. )

    1990-05-01

    A kerogen-specific, steady-state catalytic process is proposed for the origin of light hydrocarbons in petroleum. The postulated parent-daughter scheme predicts a unique invariance in a ratio of isoheptanes and dimethylcyclopentanes. In theory this ratio should remain constant over the entire lifetime of a source-rock generating petroleum. To test this hypothesis, two very large petroleum deposits were extensively sampled giving two sample sets believed to represent large time-segments of petroleum generation. The sets display a remarkable invariance in the predicted ratio. Moreover, the ratios for the two sets are distinct and constitute the outer limits for the ratio in a large database of over 2,000 samples of petroleums. Thus, the ratio of isoheptanes and dimethylcyclopentanes remains constant over the course of petroleum generation.

  10. Total petroleum hydrocarbon distribution in soils and groundwater in Songyuan oilfield, Northeast China.

    PubMed

    Teng, Yanguo; Feng, Dan; Song, Liuting; Wang, Jinsheng; Li, Jian

    2013-11-01

    In order to investigate the distribution of the total petroleum hydrocarbons (TPH) in groundwater and soil, a total of 71 groundwater samples (26 unconfined groundwater samples, 37 confined groundwater samples, and 8 deeper confined groundwater samples) and 80 soil samples were collected in the Songyuan oilfield, Northeast China, and the vertical variation and spatial variability of TPH in groundwater and soil were assessed. For the groundwater from the unconfined aquifer, petroleum hydrocarbons were not detected in three samples, and for the other 23 samples, concentrations were in the range 0.01-1.74 mg/l. In the groundwater from the confined aquifer, petroleum hydrocarbons were not detected in two samples, and in the other 35 samples, the concentrations were 0.04-0.82 mg/l. The TPH concentration in unconfined aquifer may be influenced by polluted surface water and polluted soil; for confined aquifer, the injection wells leakage and left open hole wells may be mainly responsible for the pollution. For soils, the concentrations of TPH varied with sampling depth and were 0-15 cm (average concentration, 0.63 mg/g), >40-55 cm (average concentration, 0.36 mg/g), >100-115 cm (average concentration, 0.29 mg/g), and >500-515 cm (average concentration, 0.26 mg/g). The results showed that oil spillage and losses were possibly the main sources of TPH in soil. The consequences concluded here suggested that counter measures such as remediation and long-term monitoring should be commenced in the near future, and effective measures should be taken to assure that the oilfields area would not be a threat to human health.

  11. Soil biogeochemical toxicity end points for sub-Antarctic islands contaminated with petroleum hydrocarbons.

    PubMed

    Schafer, Alexis Nadine; Snape, Ian; Siciliano, Steven Douglas

    2007-05-01

    Sub-Antarctic islands have been subjected to petroleum hydrocarbon spills, yet no information is available regarding the toxicity of petroleum hydrocarbons to these subpolar soils. The purpose of the present study was to identify soil biogeochemical toxicity end points for petroleum hydrocarbon contamination in sub-Antarctic soil. Soil from Macquarie Island, a sub-Antarctic island south of Australia, was collected and exposed to 10 concentrations of Special Antarctic Blend (SAB) diesel fuel, ranging from 0 to 50,000 mg fuel/kg soil, for a 21-d period. The sensitivity of nitrification, denitrification, carbohydrate utilization, and total soil respiration to SAB fuel was assessed. Potential nitrification activity was the most sensitive indicator of SAB contamination assessed for nitrogen cycling, with an IC20 (concentration that results in a 20% change from the control response) of 190 mg fuel/ kg soil. Potential denitrification activity was not as sensitive to SAB contamination, with an IC20 of 950 mg fuel/kg soil for nitrous oxide production. Nitrous oxide consumption was unaffected by SAB contamination. Carbohydrate utilization (respiration caused by sucrose) was a more sensitive indicator (IC20, 16 mg fuel/kg soil) of SAB contamination than total respiration (IC20, 220 mg fuel/kg soil). However, total soil respiration was a more responsive measurement end point, increasing soil respiration over a 72-h period by 17 mg of CO2, compared to a change of only 2.1 mg of CO2 for carbohydrate utilization. Our results indicate that IC20s varied between 16 to 950 mg fuel/kg soil for Macquarie Island soil spiked with SAB diesel fuel. These results indicate that current cleanup levels derived from temperate zones may be too liberal for soil contamination in sub-Antarctic islands.

  12. Residues of petroleum hydrocarbons in tissues of sea turtles exposed to the IXTOC I oil spill

    USGS Publications Warehouse

    Hall, R.J.; Belisle, A.A.; Sileo, L.

    1983-01-01

    Sea turtles found dead when the Ixtoc I oil spill reached Texas waters were necropsied and tissues were analyzed for residues of petroleum hydrocarbons. Two of the three turtles were in poor flesh, but had no apparent oil-caused lesions. There was evidence of oil in all tissues examined and indications that the exposure had been chronic. Comparisons with results of studies done on birds indicate consumption of 50,000 ppm or more of oil in the diet. Some possible mechanisms of mortality are suggested.

  13. Residues of petroleum hydrocarbons in tissues of sea turtles exposed to the Ixtoc I oil spill

    SciTech Connect

    Hall, R.J.; Belisle, A.A.; Sileo, L.

    1983-04-01

    Sea turtles found dead when the Ixtoc I oil spill reached Texas waters were necropsied and tissues were analyzed for residues of petroleum hydrocarbons. Two of three turtles were in poor flesh, but had no apparent oil-caused lesions. There was evidence of oil in all tissues examined and indications that the exposure had been chronic. Comparisons with results of studies done on birds indicate consumption of 50,000 ppm or more of oil in the diet. Some possible mechanisms of mortality are suggested.

  14. Hydrocarbon groups type analysis of petroleum products by HPLC on specific stationary phases

    SciTech Connect

    Felix, G.; Thoumazeau, E.; Colin, J.M.; Vion, G.

    1987-01-01

    The hydrocarbon group types analysis of a large number of petroleum products by HPLC equipped with columns of suitable selectivity is described. An effective approach to the factors influencing the specificity of the columns was developed and stationary phases were synthetised in function of the products to be separated. All new phases were characterized by elemental, /sup 29/Si and /sup 13/C NMR analyses. The potentialities of these phases were illustrated by analysis of selected samples either of fundamental or of industrial interest.

  15. Using Ramped Pyrolysis - Gas Chromatography - Mass Spectrometry to Evaluate Petroleum Hydrocarbons Following the Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Evans, M.; Rosenheim, B. E.; Bacosa, H. P.; Liu, J.; Liu, Z.

    2016-02-01

    In summer of 2010, the Deepwater Horizon oil spill polluted hundreds of miles of coastline along the Gulf of Mexico. A combination of human-mediated and natural weathering processes then altered the chemical composition (i.e. toxicity) of this spilled crude oil over time and space. One of the most important, yet challenging, aspects of oil spill science is to quantify these chemical changes in natural environments. In this study, we develop ramped pyrolysis - gas chromatography - mass spectrometry (Py-GC-MS) to address this challenge. In this technique, 0.1mg of freeze-dried sample is pyrolyzed over a gradual temperature ramp (50-650°C). The eluded gas is cold-trapped over different thermal ranges (a.k.a. thermal slicing) and each range is individually analyzed via GC-MS, yielding quantifiable, compound-specific results. Py-GC-MS with thermal slicing has never been used for petroleum hydrocarbon analysis, but it has many advantages - it uses minimal sample, is time efficient and does not require sample preparation (minimizing compound loss and increasing the analytical window). During development of this method, we analyzed oiled sediments and tar collected on Grand Isle, Louisiana from 2010-2012. We quantified n-alkane (C10-C38), polycyclic aromatic hydrocarbon (PAH) and hopane content and confirmed these results with traditional solvent extraction, silica gel fractionation and mass spectrometry. Overall, we found rapid depletion of n-alkanes and PAHs (>90% depletion) in all samples within one year of Deepwater Horizon. After this, n-alkanes were almost 100% depleted by 2012, while PAH degradation continued to a maximum total degradation of 99% and 98% in sediment and tar, respectively. This not only describes the fate of petroleum compounds in salt marshes and beach deposits over time, but also complements previous radiocarbon studies of the same samples showing different rates of degradation in different micro-environments. In addition, the results presented

  16. Petroleum hydrocarbon persistence following the Deepwater Horizon oil spill as a function of shoreline energy.

    PubMed

    Evans, Meredith; Liu, Jiqing; Bacosa, Hernando; Rosenheim, Brad E; Liu, Zhanfei

    2017-02-15

    An important aspect of oil spill science is understanding how the compounds within spilled oil, especially toxic components, change with weathering. In this study we follow the evolution of petroleum hydrocarbons, including n-alkanes, polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs, on a Louisiana beach and salt marsh for three years following the Deepwater Horizon spill. Relative to source oil, we report overall depletion of low molecular weight n-alkanes and PAHs in all locations with time. The magnitude of depletion, however, depends on the sampling location, whereby sites with highest wave energy have highest compound depletion. Oiled sediment from an enclosed bay shows high enrichment of high molecular weight PAHs relative to 17α(H),21β(H)-hopane, suggesting the contribution from sources other than the Deepwater Horizon spill, such as fossil fuel burning. This insight into hydrocarbon persistence as a function of hydrography and hydrocarbon source can inform policy and response for future spills. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Abundance and diversity of soil petroleum hydrocarbon-degrading microbial communities in oil exploring areas.

    PubMed

    Yang, Yuyin; Wang, Jie; Liao, Jingqiu; Xie, Shuguang; Huang, Yi

    2015-02-01

    Alkanes and polycyclic aromatic hydrocarbons (PAHs) are the commonly detected petroleum hydrocarbon contaminants in soils in oil exploring areas. Hydrocarbon-degrading genes are useful biomarks for estimation of the bioremediation potential of contaminated sites. However, the links between environmental factors and the distribution of alkane and PAH metabolic genes still remain largely unclear. The present study investigated the abundances and diversities of soil n-alkane and PAH-degrading bacterial communities targeting both alkB and nah genes in two oil exploring areas at different geographic regions. A large variation in the abundances and diversities of alkB and nah genes occurred in the studied soil samples. Various environmental variables regulated the spatial distribution of soil alkane and PAH metabolic genes, dependent on geographic location. The soil alkane-degrading bacterial communities in oil exploring areas mainly consisted of Pedobacter, Mycobacterium, and unknown alkB-harboring microorganisms. Moreover, the novel PAH-degraders predominated in nah gene clone libraries from soils of the two oil exploring areas. This work could provide some new insights towards the distribution of hydrocarbon-degrading microorganisms and their biodegradation potential in soil ecosystems.

  18. Potential of the microbial community present in an unimpacted beach sediment to remediate petroleum hydrocarbons.

    PubMed

    Almeida, C Marisa R; Reis, Izabela; Couto, M Nazaré; Bordalo, Adriano A; Mucha, Ana P

    2013-05-01

    The potential of the microbial communities present in the intertidal zone of an unimpacted beach (a beach that did not suffer any significant oil spill) to degrade hydrocarbons was investigated. For that, laboratory-based microcosms (50-ml flasks) were set up with sandy beach sediment spiked with crude oil and incubated with local seawater for 15 days in the dark. Three bioremediation treatments were tested (biostimulation (BS), autochthonous bioaugmentation (AB), and combined treatment of biostimulation + bioaugmentation (BS + AB)) and the results were compared with natural attenuation (NA). Visual inspection showed clearly an oil solubility increase (confirmed by a higher hydrocarbons concentration in supernatant solutions) for all tested treatments when compared to NA. Significant degradation of the oil, shown by different profiles of petroleum hydrocarbons, was also observed for the different treatments particularly for BS + AB. Therefore, the microbial community of this unimpacted beach sediment could respond to an oil spill, degrading hydrocarbons. But to increase the natural attenuation pace, obtained results indicated that BS + AB is an appropriate approach for the bioremediation of beaches recently impacted by an oil spill. The autochthonous microbial cultures can be obtained "before" or "after" the contamination of the target site, being inoculated into the site right after it contamination.

  19. Numerical simulation of a natural attenuation experiment with a petroleum hydrocarbon NAPL source.

    PubMed

    Brauner, J S; Widdowson, M A

    2001-01-01

    A three-dimensional solute transport model with biological reactions is presented for simulating the natural attenuation study (NATS) at the Columbus Air Force Base in eastern Mississippi. NATS consisted of the release of a petroleum-based nonaqueous phase liquid (NAPL) and subsequent monitoring of BTEX (benzene, toluene, ethylbenzene, p-xylene), naphthalene, decane, and bromide in a shallow, unconfined aquifer. Conceptual and mathematical models were developed for NAPL source release, sequential aerobic/anaerobic biodegradation, and sorption during NATS. A multiple species, solute transport code (SEAM3D) was used to simulate fully three-dimensional transport and aerobic, nitrate-reducing, ferrogenic, and methanogenic hydrocarbon biodegradation. Simulation results matched individual BTEX concentration distributions collected five- and nine-months following NAPL release. SEAM3D mass-balance calculations at t = nine months indicated that 49% of the hydrocarbon mass that dissolved into the aqueous phase was consumed by biodegradation, 13% of this mass was sorbed, and the remaining 38% was present in the aqueous phase. Mass calculations at t = nine months further indicated that aerobic biodegradation accounted for the majority of hydrocarbon biodegradation (46% of the biodegraded mass), followed by ferrogenesis (28%), nitrate-reduction (21%), and methanogenesis (5%). Model results were particularly sensitive to the NAPL release rate, the initial ferric iron (Fe[III]) concentration, hydrocarbon utilization rates, initial condition for the anaerobic microbial populations, and dispersivity.

  20. Environmental magnetic and petroleum hydrocarbons records in sediment cores from the north east coast of Tamilnadu, Bay of Bengal, India.

    PubMed

    Venkatachalapathy, R; Veerasingam, S; Basavaiah, N; Ramkumar, T; Deenadayalan, K

    2011-04-01

    In this study, mineral magnetic properties and petroleum hydrocarbons were statistically analysed in four sediment cores (C1, A1, T1 and K1) from the north east coast of Tamilnadu, India to examine the feasibility of PHC concentrations assessment using magnetic susceptibility. The C1 and A1 cores reveal a clear horizon of increase in PHC above 35 and 50 cm respectively suggesting the excess anthropogenic loading occurred in the recent past. Magnetic properties which were enhanced in the upper part of the sediment cores were the result of ferrimagnetic minerals from anthropogenic sources. Factor analysis confirmed that the input of magnetic minerals and petroleum hydrocarbons in Chennai coastal sediments are derived from the same sources. The present study shows that instead of expensive and destructive PHC chemical methods, magnetic susceptibility is found to be a suitable, cheap and rapid method for detailed study of petroleum hydrocarbon contamination in marine sediments.

  1. Effects of petroleum hydrocarbon contaminated soil on germination, metabolism and early growth of green gram, Vigna radiata L.

    PubMed

    Masakorala, Kanaji; Yao, Jun; Chandankere, Radhika; Yuan, Haiyan; Liu, Haijun; Yu, Chan; Cai, Minmin

    2013-08-01

    The objective of the present study was to evaluate effects of petroleum hydrocarbon contaminated soil on the leguminous plant, Vigna radiata L. Seed germination, metabolism and early growth performance of V. radiata L. were studied as parameters by applying a combined approach. The employed combined method which included microcalorimetry and analysis of the root cross section revealed dose dependent effects of petroleum hydrocarbon contaminated soil on V. radiata L. for most parameters. Although significant reductions in measured parameters were observed even at low total petroleum hydrocarbon (TPH) levels such as 1 % and 1.5 %, calculated inhibitions, IC50 values and metabolic heat emission-time curves inferred that substantial negative effects can be expected on V. radiata L. in soils with comparatively high contamination levels, such as 2.5 % TPH and higher.

  2. A novel bioremediation strategy for petroleum hydrocarbon pollutants using salt tolerant Corynebacterium variabile HRJ4 and biochar.

    PubMed

    Zhang, Hairong; Tang, Jingchun; Wang, Lin; Liu, Juncheng; Gurav, Ranjit Gajanan; Sun, Kejing

    2016-09-01

    The present work aimed to develop a novel strategy to bioremediate the petroleum hydrocarbon contaminants in the environment. Salt tolerant bacterium was isolated from Dagang oilfield, China and identified as Corynebacterium variabile HRJ4 based on 16S rRNA gene sequence analysis. The bacterium had a high salt tolerant capability and biochar was developed as carrier for the bacterium. The bacteria with biochar were most effective in degradation of n-alkanes (C16, C18, C19, C26, C28) and polycyclic aromatic hydrocarbons (NAP, PYR) mixture. The result demonstrated that immobilization of C. variabile HRJ4 with biochar showed higher degradation of total petroleum hydrocarbons (THPs) up to 78.9% after 7-day of incubation as compared to the free leaving bacteria. The approach of this study will be helpful in clean-up of petroleum-contamination in the environments through bioremediation process using eco-friendly and cost effective materials like biochar.

  3. Bioaccumulation of petroleum hydrocarbons in arctic amphipods in the oil development area of the Alaskan Beaufort Sea.

    PubMed

    Neff, Jerry M; Durell, Gregory S

    2012-04-01

    An objective of a multiyear monitoring program, sponsored by the US Department of the Interior, Bureau of Ocean Energy Management was to examine temporal and spatial changes in chemical and biological characteristics of the Arctic marine environment resulting from offshore oil exploration and development activities in the development area of the Alaskan Beaufort Sea. To determine if petroleum hydrocarbons from offshore oil operations are entering the Beaufort Sea food web, we measured concentrations of hydrocarbons in tissues of amphipods, Anonyx nugax, sediments, Northstar crude oil, and coastal peat, collected between 1999 and 2006 throughout the development area. Mean concentrations of polycyclic aromatic hydrocarbons (PAH), saturated hydrocarbons (SHC), and sterane and triterpane petroleum biomarkers (StTr) were not significantly different in amphipods near the Northstar oil production facility, before and after it came on line in 2001, and in amphipods from elsewhere in the study area. Forensic analysis of the profiles (relative composition and concentrations) of the 3 hydrocarbon classes revealed that hydrocarbon compositions were different in amphipods, surface sediments where the amphipods were collected, Northstar crude oil, and peat from the deltas of 4 North Slope rivers. Amphipods and sediments contained a mixture of petrogenic, pyrogenic, and biogenic PAH. The SHC in amphipods were dominated by pristane derived from zooplankton, indicating that the SHC were primarily from the amphipod diet of zooplankton detritus. The petroleum biomarker StTr profiles did not resemble those in Northstar crude oil. The forensic analysis revealed that hydrocarbons in amphipod tissues were not from oil production at Northstar. Hydrocarbons in amphipod tissues were primarily from their diet and from river runoff and coastal erosion of natural diagenic and fossil terrestrial materials, including seep oils, kerogens, and peat. Offshore oil and gas exploration and development

  4. Hydrocarbon content of geopressured brines. Final report

    SciTech Connect

    Osif, T.L.

    1985-08-01

    Design Well data (bottomhole pressure minus wellhead pressure, GWR, and hydrocarbon composition) is presented as a function of producing conditions. These are examined in conjunction with the following models to attempt to deduce the reservoir brine saturation level: (1) reservoir contains gas dispersed in the pores and the gas saturation is greater than critical; (2) reservoir brine is gas-saturated; (3) bubble point below hydrostatic pressure; and (4) bubble point between hydrostatic pressure and reservoir pressure. 24 figs., 10 tabs. (ACR)

  5. Study on bioadsorption and biodegradation of petroleum hydrocarbons by a microbial consortium.

    PubMed

    Xu, Nana; Bao, Mutai; Sun, Peiyan; Li, Yiming

    2013-12-01

    A microbial consortium isolated from Shengli oilfield polluted sludge was capable of degrading naphthalene (NAP), phenanthrene (PHE), pyrene (PYR) and crude oil. It performed high biodegradation activity and emulsifiability for petroleum hydrocarbons, and was tolerant to 6.2mM Cu(2+), 2.7 mM Zn(2+) and 9.5mM Pb(2+). Biodegradation rates of NAP, PHE, PYR and crude oil were 53%, 21%, 32% and 44% in the presence of heavy metal (Cu(2+), 1.7 mM and Zn(2+), 2mM), respectively. Exploration on the adsorption and uptake of petroleum hydrocarbons by microbe suggested the stability of surface adsorption and cell uptake by live microbial consortium followed a decreasing order of NAP > PHE ≈ PYR > crude oil. The adsorption by heat-killed microbial consortium was constant for PAHs, while decreased for crude oil. Experiments on enzymatic degradation indicated that the metabolic efficiency of periplasmic, cytoplasmic and extracellular enzymes secreted by the microbial consortium for diverse substrates was different.

  6. Embryotoxic effects of benzo[a]pyrene, chrysene and 7,12-dimethylbenz[a]-anthracene in petroleum hydrocarbon mixtures in mallard ducks

    USGS Publications Warehouse

    Hoffman, D.J.; Gay, M.L.

    1981-01-01

    Studies with different avian species have revealed that surface applications of microliter amounts of some crude and fuel oils that coat less than 70% of the egg surface result in considerable reduction in hatching with teratogenicity and stunted growth. Other stUdies have shown that the embryo toxicity is dependent on the aromatic hydrocarbon content, further suggesting that the toxicity is due to causes other than asphyxia. In the present study the effects of three polycyclic aromatic hydrocarbons identified in petroleum were examined on mallard (Anas platyrhynchos) embryo development. Addition of benzo[a]pyrene (BaP), chrysene, or 7,7 2-dimethylbenz[ a]anthracene (DMBA) to a synthetic petroleum hydrocarbon mixture of known composition and relatively low embryotoxicity resulted in embryo toxicity that was enhanced or equal to that of crude oil when 10 :I was applied externally to eggs at 72 h of development. The order of ability to enhance embryo toxicity was DMBA > BaP > chrysene. The temporal pattern of embryonic death was similar to that reported after exposure to crude oil, with additional mortality occurring after outgrowth of the chorioallantois. Retarded growth, as reflected by embryonic body weight, crown-rump length, and bill length, was accompanied by teratogenicity. Abnormal embryos exhibited extreme stunting; eye, brain, and bill defects; and incomplete ossification. Gas chromatographic-mass spectral analysis of externally treated eggs showed the passage of aromatic hydrocarbons including chrysene through the shell and shell membranes to the developing embryos. These findings suggest that the presence of polycyclic aromatic hydrocarbons in petroleum, including BaP, chrysene, and DMBA, significantly enhances the overall embryotoxicity in avian species.

  7. Evaluation of electrochemical processes for the removal of several target aromatic hydrocarbons from petroleum contaminated water.

    PubMed

    Alsalka, Yamen; Karabet, François; Hashem, Shahir

    2011-03-01

    Ground and surface water contamination resulting from the leakage of crude oil and refined petroleum products is a serious and growing environmental problem throughout the world. Consequently, a study of the use of electrochemical treatment in the clean-up was undertaken with the aim of reducing the water contamination by aromatic pollutants to more acceptable levels. In the experiments described, water contamination by refined petroleum products was simulated under laboratory conditions. Electrochemical treatment, using aluminium electrodes, has been optimised by full factorial design and surface response analysis in term of BTEX and PAHs removal and energy consumption. The optimal conditions of pH, current density, electrolysis time, electrolyte type, and electrolyte concentration have then been applied in the treatment of real water samples which were monitored as petroleum contaminated samples. Treatment results have shown that electrochemical methods could achieve the concentration of these pollutants to undetectable levels in particular groundwater and surface water, hence, they can be highly effective in the remediation of water contaminated by aromatic hydrocarbons, and the use of these processes is therefore recommended.

  8. Phototoxicity of individual polycyclic aromatic hydrocarbons and petroleum to marine invertebrate larvae and juveniles

    SciTech Connect

    Pelletier, M.C.; Burgess, R.M.; Ho, K.T.; Kuhn, A.; McKinney, R.A.; Ryba, S.A.

    1997-10-01

    Phototoxicity resulting from photoactivated polycyclic aromatic hydrocarbons (PAHs) has been reported in the literature for a variety of freshwater organisms. The magnitude of increase in PAH toxicity often exceeds a factor of 100. In the marine environment phototoxicity to marine organisms has not been reported for individual or complex mixtures of PAHs. In this study, larvae and juveniles of the bivalve, Mulinia lateralis, and juveniles of the mysid shrimp, Mysidopsis bahia, were exposed to individual known phototoxic PAHs (anthracene, fluoranthene, pyrene), as well as the water-accommodated fractions of several petroleum products (Fuel Oil {number_sign}2, Arabian Light Crude, Prudhoe Bay Crude, Fuel Oil {number_sign}6) containing PAHs. Phototoxicity of individual PAHs was 12 to >50,000 times that of conventional toxicity. Three of the petroleum products demonstrated phototoxicity while the lightest product, Fuel Oil {number_sign}2, was not phototoxic at the concentrations tested. The phototoxicity of petroleum products appears to be dependent on the composition and concentrations of phototoxic PAHs present: lighter oils have fewer multiple aromatic ring, phototoxic compounds while heavier oils have higher levels of these types of molecules. This study shows that phototoxicity can occur in marine waters to marine species. Further, the occurrence of oil in marine waters presents the additional risk of phototoxicity not routinely assessed for during oil spills.

  9. Measurement of particulate phase polycyclic aromatic hydrocarbon (PAHs) around a petroleum refinery.

    PubMed

    Rao, Padma S; Ansari, M Faiyaz; Pipalatkar, P; Kumar, A; Nema, P; Devotta, S

    2008-02-01

    A study on concentrations of ambient particulates viz. total suspended particulate matters (TSP), respirable suspended particulate matter (RSPM) and polycyclic aromatic hydrocarbons (PAH) were carried out at six sites around the Asia's largest, 12 MMTPA, petroleum refinery in west coast of India. PAH concentrations are correlated with each other in these sites, suggesting that they have related sources and sinks. The present article discusses the monitoring aspects such as sample collection, pretreatment and analytical methods and compares the monitored levels for assessing the source receptor distribution pattern. The main sources of RSPM and PAHs in urban air are automobile exhaust (CPCB, Polycyclic aromatic hydrocarbons (PAHs) in air and their effects on human health. " http://www.cpcb.nic.in/ph/ch21103.htm ", 2003; Manuel et al., Environmental Science and Technology, 13: 227-231, 2004) and industrial emissions like petroleum refinery (Vo-Dinh, Chemical analysis of polycyclic aromatic hydrocarbons, Wiley: New York, 1989; Wagrowaski and Hites, Environmental Science and Technology, 31: 279-282, 1997). Polycyclic aromatic hydrocarbons (PAH) are ubiquitous constituents of urban airborne particulate mostly generated by anthropogenic activities (Li et al., Environmental Science and Technology, 37:1958-2965, 2003; Thorsen et al., Environmental Science and Technology, 38: 2029-2037, 2004; Ohura et al., Environmental Science and Technology, 32: 450-455, 2004) and some of them are of major health concern mainly due to their well-known carcinogenic and mutagenic properties (Soclo et al., Marine Pollution Bulletin, 40: 387-396, 2000; Chen et al., Environment International, 28: 659-668, 2003; Larsen and Baker, Environmental Science and Technology, 32: 450-455, 2003). Limited information is available on PAHs contributions from refineries to ambient air. Hence this study would not only create a database but also provide necessary inputs towards dose-response relationship for

  10. Heavy Metals and Petroleum Hydrocarbons Contamination of Bottom Sediments of Gulf of Oman area, United Arab Emirates

    NASA Astrophysics Data System (ADS)

    Musallam, A.; El Tokhi, M.; Abed, S. Al; Mahmoud, B.

    2012-04-01

    The concentrations of total petroleum hydrocarbons (TPH), total organic carbon (%TOC) and petroleum related heavy metals beside the grain size distribution of 4 stations in Gulf of Oman area (Khor Kalbaa , Debba ,Khor Fakan and Fujairah) , UAE were determined in the bottom sediment. Copper, zinc, nickel, lead, cadmium and vanadium concentration were found within the lowest effect, The contamination levels were found due to petrogenic origin and their sources are either weathered or highly weathered crude oils and or used lubricating oil. Their detection gives an indication of recent and continuous petroleum inputs.

  11. Enhanced Bioremediation of Soil Artificially Contaminated with Petroleum Hydrocarbons after Amendment with Capra aegagrus hircus (Goat) Manure

    PubMed Central

    Nwogu, T. P.; Azubuike, C. C.; Ogugbue, C. J.

    2015-01-01

    This study was carried out to evaluate the biostimulant potentials of Capra aegagrus hircus manure for bioremediation of crude oil contaminated soil (COCS) under tropical conditions. 1 kg of COCS sample was amended with 0.02 kg of C. a. hircus manure and monitored at 14-day intervals for total petroleum hydrocarbon (TPH), nutrient content, and changes in microbial counts. At the end of the study period, there was 62.08% decrease in the concentration of TPH in the amended sample compared to 8.15% decrease in the unamended sample, with significant differences (P < 0.05) in TPH concentrations for both samples at different time intervals. Similarly, there was a gradual decrease in the concentrations of total organic carbon, nitrogen, phosphorus, and potassium in both samples. The culturable hydrocarbon-utilizing bacteria (CHUB) increased steadily from 8.5 × 105 cfu/g to 2.70 × 106 cfu/g and from 8.0 × 105 cfu/g to 1.78 × 106 cfu/g for both samples. Acinetobacter, Achromobacter, Bacillus, Flavobacterium, Klebsiella, Micrococcus, Pseudomonas, and Staphylococcus were isolated from amended sample with Pseudomonas being the predominant isolated bacterial genus. This study demonstrated that C. a. hircus manure is a good biostimulant, which enhanced the activities of indigenous hydrocarbonoclastic bacteria resulting in significant decrease in TPH concentration of COCS. PMID:26770830

  12. Phytoremediation of petroleum hydrocarbons by using a freshwater fern species Azolla filiculoides Lam.

    PubMed

    Kösesakal, Taylan; Ünal, Muammer; Kulen, Oktay; Memon, Abdülrezzak; Yüksel, Bayram

    2016-01-01

    In this study, the phytoremediation capacity of Azolla filiculoides Lam. for the water resources contaminated with petroleum hydrocarbons was investigated. The plants were grown in nitrogen-free Hoagland nutrient solution containing 0.005%, 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, and 0.5% crude oil under greenhouse conditions for 15 days. Although the growth rate of the plants were not negatively influenced by the presence of crude oil in the media for the concentration of 0.005% and 0.01% v/v, a gradual impeding effect of crude oil in the growth media has been observed at concentrations 0.05-0.1%. More than 0.1% crude oil in the growth medium ostensibly retarded the growth. For example, 0.2% oil in the media reduced growth approximately 50% relative to the control, and the presence of crude oil at concentrations 0.3% or more were lethal. The data about the percentage of plant growth, fresh weight increase and root growth clearly indicated that the tolerance level of A. filiculoides plants to crude oil ranges between 0.1% and 0.2%. In comparison to control samples, the biodegradation rate of total aliphatic and aromatic (phenathrene) hydrocarbons at 0.05-0.2% oil concentrations, was 94-73% and 81-77%, respectively. On the other hand, in case of further increases in oil concentration in media, i.e.; 0.3-0.5%, the biodegradation rate was still higher in the experimental samples, respectively 71-63% and 75-71%. The high biodegradation rates of petroleum hydrocarbons in the experimental samples suggested that A. filiculoides plants could be a promising candidate to be used for the phytoremediation of low crude oil contaminated precious freshwater resources.

  13. Salinity and Conductivity Amendment of Soil Enhanced the Bioelectrochemical Degradation of Petroleum Hydrocarbons

    PubMed Central

    Li, Xiaojing; Wang, Xin; Zhang, Yueyong; Zhao, Qian; Yu, Binbin; Li, Yongtao; Zhou, Qixing

    2016-01-01

    The extreme salinity and high internal resistance of saline-alkali soil contaminated by petroleum hydrocarbons were two key limitations for using the bioelectrochemical remediation. In order to solve two problems, we simply rinsed soil, added carbon fiber to polluted soil. The charge output was enhanced by 110% with increase of the maximum current densities from 81 to 304 mA·m−2 while hydrocarbons degradation rate enhanced by 484%, especially the high molecular weight fractions (C28–C36 of n-alkanes and 4–6 rings of PAHs). These effects were possibly due to the selective enrichment of species belonged to δ-Proteobacteria (Proteobacteria), Flavobacteriia (Bacteroidetes) or Clostridia (Firmicutes), the activities of biological electron transfer and enzymes. As we know, oxygenase gene that directly decided the process of degradation, was surveyed for the first time in soil bioelectrochemical remediation system. The results confirmed that the bio-current stimulated the activities of naphthalene dioxygenase and xylene monooxygenase and thus the hydrocarbons degradation and the electricity generation. Given that electricity generation and the remediation performance are governed by multiple factors, understanding of microbial community and enzyme gene is crucial to promote the power yield and the bioelectrochemical remediation applicability. PMID:27597387

  14. Pressure sensitive adhesive using light color, low softening point petroleum hydrocarbon resins

    SciTech Connect

    Ahner, M.E.

    1987-07-28

    This patent describes an adhesive composition comprising from about 20% to about 80% by weight of a copolymer and, correspondingly, from about 80% to about 20% by weight of a tackifying petroleum hydrocarbon resin having a softening point of from 0/sup 0/C to about 40/sup 0/C. It has a number average molecular weight of from about 100 to about 600, and a Gardner color less than about 7 prepared by the aluminum chloride catalyzed Friedel Crafts polymerization of a hydrocarbon feed comprising: (a) from about 5% to about 75% by weight of C/sub 8/ to C/sub 10/ vinyl aromatic hydrocarbon stream; (b) from about 10% to about 35% by weight of a piperylene concentrate; and (c) from about 25% to about 70% by weight of a C/sub 4/ to C/sub 8/ monoolefin chain transfer agent of the formula RR'C=CHR'' where R and R' are C/sub 1/ to C/sub 5/ alkyl, and R'' is H or C/sub 1/ to C/sub 4/ alkyl group.

  15. Assessment of soil pollution based on total petroleum hydrocarbons and individual oil substances.

    PubMed

    Pinedo, J; Ibáñez, R; Lijzen, J P A; Irabien, Á

    2013-11-30

    Different oil products like gasoline, diesel or heavy oils can cause soil contamination. The assessment of soils exposed to oil products can be conducted through the comparison between a measured concentration and an intervention value (IV). Several national policies include the IV based on the so called total petroleum hydrocarbons (TPH) measure. However, the TPH assessment does not indicate the individual substances that may produce contamination. The soil quality assessment can be improved by including common hazardous compounds as polycyclic aromatic hydrocarbons (PAHs) and aromatic volatile hydrocarbons like benzene, toluene, ethylbenzene and xylenes (BTEX). This study, focused on 62 samples collected from different sites throughout The Netherlands, evaluates TPH, PAH and BTEX concentrations in soils. Several indices of pollution are defined for the assessment of individual variables (TPH, PAH, B, T, E, and X) and multivariables (MV, BTEX), allowing us to group the pollutants and simplify the methodology. TPH and PAH concentrations above the IV are mainly found in medium and heavy oil products such as diesel and heavy oil. On the other hand, unacceptable BTEX concentrations are reached in soils contaminated with gasoline and kerosene. The TPH assessment suggests the need for further action to include lighter products. The application of multivariable indices allows us to include these products in the soil quality assessment without changing the IV for TPH. This work provides useful information about the soil quality assessment methodology of oil products in soils, focussing the analysis into the substances that mainly cause the risk. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Thermal soil desorption for total petroleum hydrocarbon testing on gas chromatographs

    SciTech Connect

    Mott, J.

    1995-12-31

    Testing for total petroleum hydrocarbons (TPH) is one of the most common analytical tests today. A recent development in chromatography incorporates Thermal Soil Desorption technology to enable analyses of unprepared soil samples for volatiles such as BTEX components and semi-volatiles such as diesel, PCBs, PAHs and pesticides in the same chromatogram, while in the field. A gas chromatograph is the preferred method for determining TPH because the column in a GC separates the individual hydrocarbons compounds such as benzene and toluene from each other and measures each individually. A GC analysis will determine not only the total amount of hydrocarbon, but also whether it is gasoline, diesel or another compound. TPH analysis with a GC is typically conducted with a Flame Ionization Detector (FID). Extensive field and laboratory testing has shown that incorporation of a Thermal Soil Desorber offers many benefits over traditional analytical testing methods such as Headspace, Solvent Extraction, and Purge and Trap. This paper presents the process of implementing Thermal Soil Desorption in gas chromatography, including procedures for, and advantages of faster testing and analysis times, concurrent volatile and semi-volatile analysis, minimized sample manipulation, single gas (H{sub 2}) operation, and detection to the part-per billion levels.

  17. Salinity and Conductivity Amendment of Soil Enhanced the Bioelectrochemical Degradation of Petroleum Hydrocarbons.

    PubMed

    Li, Xiaojing; Wang, Xin; Zhang, Yueyong; Zhao, Qian; Yu, Binbin; Li, Yongtao; Zhou, Qixing

    2016-09-06

    The extreme salinity and high internal resistance of saline-alkali soil contaminated by petroleum hydrocarbons were two key limitations for using the bioelectrochemical remediation. In order to solve two problems, we simply rinsed soil, added carbon fiber to polluted soil. The charge output was enhanced by 110% with increase of the maximum current densities from 81 to 304 mA·m(-2) while hydrocarbons degradation rate enhanced by 484%, especially the high molecular weight fractions (C28-C36 of n-alkanes and 4-6 rings of PAHs). These effects were possibly due to the selective enrichment of species belonged to δ-Proteobacteria (Proteobacteria), Flavobacteriia (Bacteroidetes) or Clostridia (Firmicutes), the activities of biological electron transfer and enzymes. As we know, oxygenase gene that directly decided the process of degradation, was surveyed for the first time in soil bioelectrochemical remediation system. The results confirmed that the bio-current stimulated the activities of naphthalene dioxygenase and xylene monooxygenase and thus the hydrocarbons degradation and the electricity generation. Given that electricity generation and the remediation performance are governed by multiple factors, understanding of microbial community and enzyme gene is crucial to promote the power yield and the bioelectrochemical remediation applicability.

  18. Salinity and Conductivity Amendment of Soil Enhanced the Bioelectrochemical Degradation of Petroleum Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Li, Xiaojing; Wang, Xin; Zhang, Yueyong; Zhao, Qian; Yu, Binbin; Li, Yongtao; Zhou, Qixing

    2016-09-01

    The extreme salinity and high internal resistance of saline-alkali soil contaminated by petroleum hydrocarbons were two key limitations for using the bioelectrochemical remediation. In order to solve two problems, we simply rinsed soil, added carbon fiber to polluted soil. The charge output was enhanced by 110% with increase of the maximum current densities from 81 to 304 mA·m-2 while hydrocarbons degradation rate enhanced by 484%, especially the high molecular weight fractions (C28-C36 of n-alkanes and 4-6 rings of PAHs). These effects were possibly due to the selective enrichment of species belonged to δ-Proteobacteria (Proteobacteria), Flavobacteriia (Bacteroidetes) or Clostridia (Firmicutes), the activities of biological electron transfer and enzymes. As we know, oxygenase gene that directly decided the process of degradation, was surveyed for the first time in soil bioelectrochemical remediation system. The results confirmed that the bio-current stimulated the activities of naphthalene dioxygenase and xylene monooxygenase and thus the hydrocarbons degradation and the electricity generation. Given that electricity generation and the remediation performance are governed by multiple factors, understanding of microbial community and enzyme gene is crucial to promote the power yield and the bioelectrochemical remediation applicability.

  19. Assessment of three approaches of bioremediation (Natural Attenuation, Landfarming and Bioagumentation - Assistited Landfarming) for a petroleum hydrocarbons contaminated soil.

    PubMed

    Guarino, C; Spada, V; Sciarrillo, R

    2017-03-01

    Contamination with total petroleum hydrocarbons (TPH) subsequent to refining activities, is currently one of the major environmental problems. Among the biological remediation approaches, landfarming and in situ bioremediation strategies are of great interest. Purpose of this study was to verify the feasibility of a remediation process wholly based on biological degradation applied to contaminated soils from a decommissioned refinery. This study evaluated through a pot experiment three bioremediation strategies: a) Natural Attenuation (NA), b) Landfarming (L), c) Bioaugmentation-assisted Landfarming (LB) for the treatment of a contaminated soil with petroleum hydrocarbons (TPHs). After a 90-days trial, Bioagumentation - assistited Landfarming approach produced the best results and the greatest evident effect was shown with the most polluted samples reaching a reduction of about 86% of total petroleum hydrocarbons (TPH), followed by Landfarming (70%), and Natural Attenuation (57%). The results of this study demonstrated that the combined use of bioremediation strategies was the most advantageous option for the treatment of contaminated soil with petroleum hydrocarbons, as compared to natural attenuation, bioaugmentation or landfarming applied alone. Besides, our results indicate that incubation with an autochthonous bacterial consortium may be a promising method for bioremediation of TPH-contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Field trial on removal of petroleum-hydrocarbon pollutants using a microbial consortium for bioremediation and rhizoremediation.

    PubMed

    Pizarro-Tobías, Paloma; Niqui, José L; Roca, Amalia; Solano, Jennifer; Fernández, Matilde; Bastida, Felipe; García, Carlos; Ramos, Juan L

    2015-02-01

    Petroleum waste sludges are toxic and dangerous that is why environmental protection agencies have declared their treatment top priority. Physicochemical treatments are expensive and environmentally unfriendly, while alternative biological treatments are less costly but, in general, work at a slower pace. An in situ bioremediation and rhizoremediation field scale trial was performed in an area contaminated with oil refinery sludge under semiarid climate. The bioremediation and rhizoremediation treatments included the use of an artificial consortium made up of plant growth-promoting rhizobacteria and polycyclic aromatic hydrocarbon-degrading bacteria,and the combined use of the mentioned consortium along with pasture plants respectively. Rhizoremediation revealed that the development of vegetation favoured the evolution of indigenous microbiota with potential to remove petroleum wastes. This was inferred as the decline of total petroleum hydrocarbons 7 months after the biological treatment.

  1. Spatial and Seasonal Variations of Total Petroleum Hydrocarbon in Surface Water and Sediment in Pearl River Delta.

    PubMed

    Zhao, Jiandi; Yin, Pinghe; Zhao, Ling; Yu, Qiming; Lu, Gang

    2015-09-01

    A field study in the Pearl River Delta of China was conducted in order to describe to the spatial and seasonal variation of occurrence and concentrations of total petroleum hydrocarbon (TPH) in surface water and sediments. Petroleum hydrocarbons and isoprenoid alkanes were quantified by UV spectroscopy and gas chromatography with a mass selective detector. The concentrations of TPH ranged from 4.3 to 68.7 µg L(-1) in surface water, and from 66.6 to 1445 µg g(-1) in surface sediments. The ratios of pristine to phytane suggested that the main sources of TPH in the sediment were petroleum importation. The highest concentrations of TPH were present in the spring season. When compared with results from previous studies, it can be concluded that the Pearl River Delta was moderately polluted by TPH. No statistically significant correlations were observed between the concentrations of TPH in surface water and sediments.

  2. In situ thermally enhanced biodegradation of petroleum fuel hydrocarbons and halogenated organic solvents

    DOEpatents

    Taylor, R.T.; Jackson, K.J.; Duba, A.G.; Chen, C.I.

    1998-05-19

    An in situ thermally enhanced microbial remediation strategy and a method for the biodegradation of toxic petroleum fuel hydrocarbon and halogenated organic solvent contaminants are described. The method utilizes nonpathogenic, thermophilic bacteria for the thermal biodegradation of toxic and carcinogenic contaminants, such as benzene, toluene, ethylbenzene and xylenes, from fuel leaks and the chlorinated ethenes, such as trichloroethylene, chlorinated ethanes, such as 1,1,1-trichloroethane, and chlorinated methanes, such as chloroform, from past solvent cleaning practices. The method relies on and takes advantage of the pre-existing heated conditions and the array of delivery/recovery wells that are created and in place following primary subsurface contaminant volatilization efforts via thermal approaches, such as dynamic underground steam-electrical heating. 21 figs.

  3. In situ thermally enhanced biodegradation of petroleum fuel hydrocarbons and halogenated organic solvents

    DOEpatents

    Taylor, Robert T.; Jackson, Kenneth J.; Duba, Alfred G.; Chen, Ching-I

    1998-01-01

    An in situ thermally enhanced microbial remediation strategy and a method for the biodegradation of toxic petroleum fuel hydrocarbon and halogenated organic solvent contaminants. The method utilizes nonpathogenic, thermophilic bacteria for the thermal biodegradation of toxic and carcinogenic contaminants, such as benzene, toluene, ethylbenzene and xylenes, from fuel leaks and the chlorinated ethenes, such as trichloroethylene, chlorinated ethanes, such as 1,1,1-trichloroethane, and chlorinated methanes, such as chloroform, from past solvent cleaning practices. The method relies on and takes advantage of the pre-existing heated conditions and the array of delivery/recovery wells that are created and in place following primary subsurface contaminant volatilization efforts via thermal approaches, such as dynamic underground steam-electrical heating.

  4. Automated measurement of lysosomal structure alterations in oocytes of mussels exposed to petroleum hydrocarbons.

    PubMed

    Cajaraville, M P; Marigómez, J A; Angulo, E

    1991-09-01

    The present study examines the structure of the lysosomal system of mature oocytes in mussels, Mytilus galloprovincialis, after a 21 day exposure to the water accommodated fraction (WAF) of two crude oils (types Ural and Maya) and of a commercial lubricant oil. The automated image analysis indicates that lysosomes, showing cytochemically demonstrable beta-glucuronidase activity, are smaller and much more numerous in oocytes of mussels treated with a 40% dose of Ural- and Lubricant-WAF when compared to controls. It is suggested that the structure of the lysosomal system of oocytes is different from that of somatic cells (i.e., digestive cells) and that budding or "fission" into smaller bodies occurs in oocyte lysosomes under certain petroleum hydrocarbon-exposure conditions. These changes in the lysosomal compartment appear to be associated to the process of gamete release or spawning.

  5. Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil.

    PubMed

    Lai, Chin-Chi; Huang, Yi-Chien; Wei, Yu-Hong; Chang, Jo-Shu

    2009-08-15

    A screening method was developed to evaluate the oil removal capability of biosurfactants for oil-contaminated soils collected from a heavy oil-polluted site. The ability of removing total petroleum hydrocarbon (TPH) from soil by two biosurfactants was identified and compared with that of synthetic surfactants. The results show that biosurfactants exhibited much higher TPH removal efficiency than the synthetic ones examined. By using 0.2 mass% of rhamnolipids, surfactin, Tween 80, and Triton X-100, the TPH removal for the soil contaminated with ca. 3,000 mg TPH/kg dry soil was 23%, 14%, 6%, and 4%, respectively, while removal efficiency increased to 63%, 62%, 40%, and 35%, respectively, for the soil contaminated with ca. 9000 mg TPH/kg dry soil. The TPH removal efficiency also increased with an increase in biosurfactant concentration (from 0 to 0.2 mass%) but it did not vary significantly for the contact time of 1 and 7 days.

  6. Petroleum and chlorinated hydrocarbons in water from Lake Manzala and associated canals

    SciTech Connect

    Badawy, M.I.; Wahaab, R.A.; Abou Waly, H.F.

    1995-08-01

    Lake Manzala is located at the north eastern edge of Nile Delta in Egypt. It is separated from the Mediterranean sea by a sandy beach ridge. However, the lake is in connection with the sea through three opening nearby Port Said. The area of the lake is about 769 Km{sup 2} and relatively shallow with an average depth of 1.3 m. The lake is of high economic value as a natural resource, for fishery, reacreation and for migratory birds. The lake is highly polluted as it receives wastewaters discharged by several canal. The present investigation aimed to assess the residue levels of petroleum hydrocarbons, chlorinated insecticides and polychlorinated biphenyls in the lake water as well as in Hadous canal, Fariskur canal and Bahr-El-Baqar canal. 9 refs., 1 fig., 3 tabs.

  7. Isolation of a novel yeast strain Candida digboiensis TERI ASN6 capable of degrading petroleum hydrocarbons in acidic conditions.

    PubMed

    Sood, Nitu; Lal, Banwari

    2009-04-01

    A novel yeast species Candida digboiensis TERI ASN6 was isolated from soil samples contaminated with acidic oily sludge (pH 1-3) from the Digboi refinery (Northeast India). The strain TERI ASN6 could degrade 73% of the total petroleum hydrocarbons present in the medium at pH 3 in a week. This strain presents a dimorphic behaviour and showed mycelia morphology when grown under stressed conditions such as low pH and in a medium containing petroleum hydrocarbons. The C. digboiensis strain could efficiently degrade the aliphatic and aromatic fractions of the acidic oily sludge at pH 3 as confirmed by gas chromatography. During the growth of TERI ASN6 in dibenzothiophene (DBT), DBT-sulfone and biphenyl-2-ol were detected. An active cytochrome P450 system, implicated in hydrocarbon oxidation, was also detected in this yeast using degenerated primers based on its conserved regions. This yeast is a potential candidate for petroleum bioremediation treatment of hydrocarbon contaminated acidic soils. Its physiological behaviour allows the strain to work efficiently where other hydrocarbon-degrading bacteria may not survive.

  8. Assessment of five bioaccessibility assays for predicting the efficacy of petroleum hydrocarbon biodegradation in aged contaminated soils.

    PubMed

    Dandie, Catherine E; Weber, John; Aleer, Samuel; Adetutu, Eric M; Ball, Andy S; Juhasz, Albert L

    2010-11-01

    In this study, the bioaccessibility of petroleum hydrocarbons in aged contaminated soils (1.6-67gkg(-1)) was assessed using four non-exhaustive extraction techniques (100% 1-butanol, 100% 1-propanol, 50% 1-propanol in water and hydroxypropyl-β-cyclodextrin) and the persulfate oxidation method. Using linear regression analysis, residual hydrocarbon concentrations following bioaccessibility assessment were compared to residual hydrocarbon concentrations following biodegradation in laboratory-scale microcosms in order to determine whether bioaccessibility assays can predict the endpoint of hydrocarbon biodegradation. The relationship between residual hydrocarbon concentrations following microcosm biodegradation and bioaccessibility assessment was linear (r(2)=0.71-0.97) indicating that bioaccessibility assays have the potential to predict the extent of hydrocarbon biodegradation. However, the slope of best fit varied depending on the hydrocarbon fractional range assessed. For the C(10)-C(14) hydrocarbon fraction, the slope of best fit ranged from 0.12 to 0.27 indicating that the non-exhaustive or persulfate oxidation methods removed 3.5-8 times more hydrocarbons than biodegradation. Conversely, for the higher molecular weight hydrocarbon fractions (C(29)-C(36) and C(37)-C(40)), biodegradation removed up to 3.3 times more hydrocarbons compared to bioaccessibility assays with the resulting slope of best fit ranging from 1.0-1.9 to 2.0-3.3 respectively. For mid-range hydrocarbons (C(15)-C(28)), a slope of approximately one was obtained indicating that C(15)-C(28) hydrocarbon removal by these bioaccessibility assays may approximate the extent of biodegradation. While this study demonstrates the potential of predicting biodegradation endpoints using bioaccessibility assays, limitations of the study include a small data set and that all soils were collected from a single site, presumably resulting from a single contamination source. Further evaluation and validation is

  9. Rapid evolution of redox processes in a petroleum hydrocarbon-contaminated aquifer

    USGS Publications Warehouse

    Chapelle, F.H.; Bradley, P.M.; Lovley, D.R.; O'Neil, Kyle; Landmeyer, J.E.

    2002-01-01

    Ground water chemistry data collected over a six-year period show that the distribution of contaminants and redox processes in a shallow petroleum hydrocarbon-contaminated aquifer has changed rapidly over time. Shortly after a gasoline release occurred in 1990, high concentrations of benzene were present near the contaminant source area. In this contaminated zone, dissolved oxygen in ground water was depleted, and by 1994 Fe(III) reduction and sulfate reduction were the predominant terminal electron accepting processes. Significantly, dissolved methane was below measurable levels in 1994, indicating the absence of significant methanogenesis. By 1996, however, depletion of solid-phase Fe(III)-oxyhydroxides in aquifer sediments and depletion of dissolved sulfate in ground water resulted in the onset of methanogenesis. Between 1996 and 2000, water-chemistry data indicated that methanogenic metabolism became increasingly prevalent. Molecular analysis of 16S-rDNA extracted from sediments shows the presence of a more diverse methanogenic community inside as opposed to outside the plume core, and is consistent with water-chemistry data indicating a shift toward methanogenesis over time. This rapid evolution of redox processes reflects several factors including the large amounts of contaminants, relatively rapid ground water flow (???0.3 m/day [???1 foot/day]), and low concentrations of microbially reducible Fe(III) oxyhydroxides (???1 ??mol/g) initially present in aquifer sediments. These results illustrate that, under certain hydrologic conditions, redox conditions in petroleum hydrocarbon-contaminated aquifers can change rapidly in time and space, and that the availability of solid-phase Fe(III)-oxyhydroxides affects this rate of change.

  10. Distribution of oil and grease and petroleum hydrocarbons in the Straits of Johor, Peninsular Malaysia

    SciTech Connect

    Abdullah, A.R.; Bakar, R.A.; Woon, W.C.

    1996-07-01

    The Straits of Johor is a narrow stretch of water separating Peninsular Malaysia from Singapore. The two land masses bordering the Straits of Johor are characterized by a wide range of landscapes and activities. On the Malaysian side, which constitutes the state of Johor, lies the state capital as well as a rapidly developing international seaport, in the vicinity of a major industrial area. The eastern portion of the state bordering the straits is relatively undeveloped, comprising of wetland forests. On the Singapore side, apart from a power-generating facility, much of northern Singapore which borders the straits is undeveloped. The Straits of Johor and nearby-waters also represent an important area for fishing and aquaculture activities. Fish traps are a common sight along the length of the straits. Oil pollution has been identified as the major contribution to the deterioration of the marine water quality in the Straits of Johor. Shipping activities involving tankers and other vessels plying the Straits of Malacca, have been recognized as a source of petroleum hydrocarbons in these waters. Land-based industrial and urban sources also contribute to the overall oil pollution load in these waters. In recognizing the need for baseline data in assessing environmental pollution, the Department of Environment has been conducting pollution monitoring programs since 1976, at numerous sampling stations situated in the major river systems of the nation, as well as coastal areas,. including the Straits of Johor. However, as far as oil pollution is concerned, these programs have been restricted to measuring oil and grease. The present study was undertaken to determine petroleum hydrocarbons, as well as oil and grease in water and sediments along the near- coastal areas of the Straits of Johor and near-by waters. 12 refs., 2 figs., 2 tabs.

  11. An integrated bioremediation process for petroleum hydrocarbons removal and odor mitigation from contaminated marine sediment.

    PubMed

    Zhang, Zhen; Lo, Irene M C; Yan, Dickson Y S

    2015-10-15

    This study developed a novel integrated bioremediation process for the removal of petroleum hydrocarbons and the mitigation of odor induced by reduced sulfur from contaminated marine sediment. The bioremediation process consisted of two phases. In Phase I, acetate was dosed into the sediment as co-substrate to facilitate the sulfate reduction process. Meanwhile, akaganeite (β-FeOOH) was dosed in the surface layer of the sediment to prevent S(2-) release into the overlying seawater. In Phase II, NO3(-) was injected into the sediment as an electron acceptor to facilitate the denitrification process. After 20 weeks of treatment, the sequential integration of the sulfate reduction and denitrification processes led to effective biodegradation of total petroleum hydrocarbons (TPH), in which about 72% of TPH was removed. In Phase I, the release of S(2-) was effectively controlled by the addition of akaganeite. The oxidation of S(2-) by Fe(3+) and the precipitation of S(2-) by Fe(2+) were the main mechanisms for S(2-) removal. In Phase II, the injection of NO3(-) completely inhibited the sulfate reduction process. Most of residual AVS and S(0) were removed within 4 weeks after NO3(-) injection. The 16S rRNA clone library-based analysis revealed a distinct shift of bacterial community structure in the sediment over different treatment phases. The clones affiliated with Desulfobacterales and Desulfuromonadales were the most abundant in Phase I, while the clones related to Thioalkalivibrio sulfidophilus, Thiohalomonas nitratireducens and Sulfurimonas denitrificans predominated in Phase II. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Biodegradation of different petroleum hydrocarbons by free and immobilized microbial consortia.

    PubMed

    Shen, Tiantian; Pi, Yongrui; Bao, Mutai; Xu, Nana; Li, Yiming; Lu, Jinren

    2015-12-01

    The efficiencies of free and immobilized microbial consortia in the degradation of different types of petroleum hydrocarbons were investigated. In this study, the biodegradation rates of naphthalene, phenanthrene, pyrene and crude oil reached about 80%, 30%, 56% and 48% under the optimum environmental conditions of free microbial consortia after 7 d. We evaluated five unique co-metabolic substances with petroleum hydrocarbons, α-lactose was the best co-metabolic substance among glucose, α-lactose, soluble starch, yeast powder and urea. The orthogonal biodegradation analysis results showed that semi-coke was the best immobilized carrier followed by walnut shell and activated carbon. Meanwhile, the significance of various factors that contribute to the biodegradation of semi-coke immobilized microbial consortia followed the order of: α-lactose > semi-coke > sodium alginate > CaCl2. Moreover, the degradation rate of the immobilized microbial consortium (47%) was higher than that of a free microbial consortium (26%) under environmental conditions such as the crude oil concentration of 3 g L(-1), NaCl concentration of 20 g L(-1), pH at 7.2-7.4 and temperature of 25 °C after 5 d. SEM and FTIR analyses revealed that the structure of semi-coke became more porous and easily adhered to the microbial consortium; the functional groups (e.g., hydroxy and phosphate) were identified in the microbial consortium and were changed by immobilization. This study demonstrated that the ability of microbial adaptation to the environment can be improved by immobilization which expands the application fields of microbial remediation.

  13. Reduction of polycyclic aromatic hydrocarbons (PAHs) from petroleum-contaminated soil using thermal desorption technology

    SciTech Connect

    Silkebakken, D.M.; Davis, H.A.; Ghosh, S.B.; Beardsley, G.P.

    1995-12-31

    The remediation of petroleum-contaminated soil typically requires the selection of a treatment option that addresses the removal of both volatile and semi-volatile organic compounds. Volatile organic compounds (VOCs), primarily BTEX (benzene, toluene, ethylbenzene, and xylenes) compounds, can be readily removed from the soil by a variety of well-established technologies. The semivolatile organic compounds, especially the polycyclic aromatic hydrocarbons (PAHS) that are characteristic of petroleum-contaminated soil, are not as amenable to conventional treatment. Low temperature thermal volatilization (LTTV) can be a viable treatment technology depending on the initial contaminant concentrations present and applicable cleanup objectives that must be attained. A-two-phase treatability study was conducted at 14 former underground storage tank (UST) sites to evaluate the applicability and effectiveness of LTTV for remediation of approximately 31,000 tons of PAH-contaminated soil. The PAHs of primary concern included benzo(a)anthracene, chrysene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(g,h,i)perylene, dibenz(a,h) anthracene, and indeno(1,2,3-cd)pyrene. During Phase 1, LTTV operational parameters were varied by trial-and-error and changes in soil treatment effectiveness were monitored. Phase B of the treatability study incorporated the appropriate treatment regime established during Phase 1 to efficiently remediate the remaining contaminated soil.

  14. Experimental study of the reaction of methane with petroleum hydrocarbons in geological conditions

    SciTech Connect

    Gold, T.; Gordon, B.E.; Streett, W.; Bilson, E.; Patnaik, P.

    1986-11-01

    In order to assess the possible role of methane in petroleum formation, they studied the reaction of methane with liquid hydrocarbons representing the three main classes of compounds dominant in crude oil. The experimental reaction conditions simulated those of a geological setting for petroleum formations, at 1000 atm and 150-250/sup 0/C in the presence of montmorillonite, a natural clay catalyst. Since they expected very slow reaction rates and thus low yields, we used /sup 14/C labeled methane to trace the reaction products. They report here the detection of ethylbenzene and ethyltoluene formed by the interaction of methane with benzene and toluene, respectively. Instead of methylation of benzene, predominantly C/sub 2/ addition occurred, although very small amounts of products corresponding to C/sub 1/ addition were also detected. They propose that catalytic dissociation of methane occurred, forming ethylene which participated in a Friedel-Crafts type alkylation process of the aromatic ring on the catalyst surface. In addition to ring alkylation, side reactions such as polymerization of unsaturates (ethylene, acetylene) appeared to have occurred on the catalyst surface. The nature of these polymers is yet to be determined.

  15. Total petroleum hydrocarbon degradation by hybrid electrobiochemical reactor in oilfield produced water.

    PubMed

    Mousa, Ibrahim E

    2016-08-15

    The crude oil drilling and extraction operations are aimed to maximize the production may be counterbalanced by the huge production of contaminated produced water (PW). PW is conventionally treated through different physical, chemical, and biological technologies. The efficiency of suggested hybrid electrobiochemical (EBC) methods for the simultaneous removal of total petroleum hydrocarbon (TPH) and sulfate from PW generated by petroleum industry is studied. Also, the factors that affect the stability of PW quality are investigated. The results indicated that the effect of biological treatment is very important to keep control of the electrochemical by-products and more TPH removal in the EBC system. The maximum TPH and sulfate removal efficiency was achieved 75% and 25.3%, respectively when the detention time was about 5.1min and the energy consumption was 32.6mA/cm(2). However, a slight increasing in total bacterial count was observed when the EBC compact unit worked at a flow rate of average 20L/h. Pseudo steady state was achieved after 30min of current application in the solution. Also, the results of the study indicate that when the current intensity was increased above optimum level, no significant results occurred due to the release of gases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Petroleum Source Rock Maturation Data Constrain Predictions of Natural Hydrocarbon Seepage into the Atmosphere

    NASA Astrophysics Data System (ADS)

    Mansfield, M. L.

    2013-12-01

    Natural seepage of methane from the lithosphere to the atmosphere occurs in regions with large natural gas deposits. According to some authors, it accounts for roughly 5% of the global methane budget. I explore a new approach to estimate methane fluxes based on the maturation of kerogen, which is the hydrocarbon polymer present in petroleum source rocks, and whose pyrolysis leads to the formation of oil and natural gas. The temporal change in the atomic H/C ratio of kerogen lets us estimate the total carbon mass released by it in the form of oil and natural gas. Then the time interval of active kerogen pyrolysis lets us estimate the average annual formation rate of oil and natural gas in any given petroleum system. Obviously, this is an upper bound to the average annual rate at which natural gas seeps into the atmosphere. After adjusting for bio-oxidation of natural gas, I conclude that the average annual seepage rate in the Uinta Basin of eastern Utah is not greater than (3100 × 900) tonne/y. This is (0.5 × 0.15)% of the total flux of methane into the atmosphere over the Basin, as measured during aircraft flights. I speculate about the difference between the regional 0.5% and the global 5% estimates.

  17. Adsorption of polycyclic aromatic hydrocarbons from water using petroleum coke-derived porous carbon.

    PubMed

    Yuan, Mingjiang; Tong, Shitang; Zhao, Suoqi; Jia, Charles Q

    2010-09-15

    Porous carbons were prepared from petroleum coke by KOH chemical activation, characterized and used as adsorbents for uptaking a mixture of polycyclic aromatic hydrocarbons (PAHs): naphthalene, fluorene, phenanthrene, pyrene and fluoranthene from aqueous solutions. The specific surface area (SSA) of these carbons ranges from 562 to 1904 m2/g, while their point of zero charge (pH(PZC)) varies from 2.6 to 8.8. The equilibrium adsorption of PAHs on all four carbons follows the non-linear Freundlich equation well. For any given PAH in the group, the adsorption capacity parameter K(f), increases with the SSA and pH(PZC) of the carbons, confirming the roles of dispersive interactions. For any given carbon, the value of K(f) follows the order of naphthalene > fluorene > phenanthrene > pyrene. This dependence of K(f) on molecular size suggests a certain degree of molecular sieving behavior of these carbons toward large PAHs. Under the condition studied, the uptake process is likely controlled by diffusive transport processes. And, it is unlikely that the competitive adsorption played any important roles in determining equilibrium adsorption of the mixed PAHs. Overall, the petroleum coke-derived porous carbon is very effective in adsorbing these PAHs.

  18. MBBR system performance improvement for petroleum hydrocarbon removal using modified media with activated carbon.

    PubMed

    Sayyahzadeh, Amir Hossein; Ganjidoust, Hossein; Ayati, Bita

    2016-01-01

    Moving bed biofilm reactor (MBBR) system has a successful operation in the treatment of different types of wastewater. Since the media, i.e. the place of growth and formation of biofilm, play the main role in the treatment in this system, MBBR systems were operated in the present research with modified Bee-cell media. Activated carbon granules of almond or walnut shells were placed in media pores to improve the treatment of refinery oil wastewater and their operation with MBBR system was compared with the conventional Bee-cell media. In these experiments, the effects of organic loading rate, hydraulic retention time (HRT), media filling ratio (MFR), and activated carbon concentration (ACC) used in the media were investigated on the operation of MBBR systems. The analysis of results estimated the optimal values of HRT, MFR, and ACC used in the media between the studied levels, being equal to 22 h, 50%, and 7.5 g/L, respectively. Under these conditions, total petroleum hydrocarbons removal efficiencies for MBBR systems using Bee-cell media with carbon of almond, carbon of walnut shells, and a carbon-free system were 95 ± 1.17%, 91 ± 1.11%, and 57 ± 1.7%, respectively, which confirms the adsorption ability of systems with the media containing activated carbon in the removal of petroleum compounds from wastewater.

  19. Experimental study of the reaction of methane with petroleum hydrocarbons in geological conditions

    NASA Astrophysics Data System (ADS)

    Gold, Thomas; Gordon, Benjamin E.; Streett, William; Bilson, Elizabeth; Patnaik, Pradyot

    1986-11-01

    In order to assess the possible role of methane in petroleum formation, we studied the reaction of methane with liquid hydrocarbons representing the three main classes of compounds dominant in crude oil. The experimental reaction conditions simulated those of a geological setting for petroleum formations, at 1000 atm and 150-250°C in the presence of montmorillonite, a natural clay catalyst. Since we expected very slow reaction rates and thus low yields, we used 14C labeled methane to trace the reaction products. We report here the detection of ethylbenzene and ethyltoluene formed by the interaction of methane with benzene and toluene, respectively. Instead of methylation of benzene, predominantly C 2 addition occurred, although very small amounts of products corresponding to C 1 addition were also detected. We propose that catalytic dissociation of methane occurred, forming ethylene which participated in a Friedel-Crafts type alkylation process of the aromatic ring on the catalyst surface. In addition to ring alkylation, side reactions such as polymerization of unsaturates (ethylene, acetylene) appeared to have occurred on the catalyst surface. The nature of these polymers is yet to be determined.

  20. Concentration of Petroleum-Hydrocarbon Contamination Shapes Fungal Endophytic Community Structure in Plant Roots

    PubMed Central

    Bourdel, Guillaume; Roy-Bolduc, Alice; St-Arnaud, Marc; Hijri, Mohamed

    2016-01-01

    Plant-root inhabiting fungi are a universal phenomenon found in all ecosystems where plants are able to grow, even in harsh environments. Interactions between fungi and plant roots can vary widely from mutualism to parasitism depending on many parameters. The role of fungal endophytes in phytoremediation of polluted sites, and characterization of the endophytic diversity and community assemblages in contaminated areas remain largely unexplored. In this study, we investigated the composition of endophytic fungal communities in the roots of two plant species growing spontaneously in petroleum-contaminated sedimentation basins of a former petro-chemical plant. The three adjacent basins showed a highly heterogeneous pattern of pollutant concentrations. We combined a culture-based isolation approach with the pyrosequencing of fungal ITS ribosomal DNA. We selected two species, Eleocharis erythropoda Steud. and Populus balsamifera L., and sampled three individuals of each species from each of three adjacent basins, each with a different concentration of petroleum hydrocarbons. We found that contamination level significantly shaped endophytic fungal diversity and community composition in E. erythropoda, with only 9.9% of these fungal Operational Taxonomic Units (OTUs) retrieved in all three basins. However, fungal community structure associated with P. balsamifera remained unaffected by the contamination level with 28.2% of fungal OTUs shared among all three basins. This could be explained by the smaller differences of pollutant concentrations in the soil around our set of P. balsamifera sampless compared to that around our set of E. erythropoda samples. Our culture-based approach allowed isolation of 11 and 30 fungal endophytic species from surface-sterilized roots of E. erythropoda and P. balsamifera, respectively. These isolates were ribotyped using ITS, and all were found in pyrosequensing datasets. Our results demonstrate that extreme levels of pollution reduce fungal

  1. Concentration of Petroleum-Hydrocarbon Contamination Shapes Fungal Endophytic Community Structure in Plant Roots.

    PubMed

    Bourdel, Guillaume; Roy-Bolduc, Alice; St-Arnaud, Marc; Hijri, Mohamed

    2016-01-01

    Plant-root inhabiting fungi are a universal phenomenon found in all ecosystems where plants are able to grow, even in harsh environments. Interactions between fungi and plant roots can vary widely from mutualism to parasitism depending on many parameters. The role of fungal endophytes in phytoremediation of polluted sites, and characterization of the endophytic diversity and community assemblages in contaminated areas remain largely unexplored. In this study, we investigated the composition of endophytic fungal communities in the roots of two plant species growing spontaneously in petroleum-contaminated sedimentation basins of a former petro-chemical plant. The three adjacent basins showed a highly heterogeneous pattern of pollutant concentrations. We combined a culture-based isolation approach with the pyrosequencing of fungal ITS ribosomal DNA. We selected two species, Eleocharis erythropoda Steud. and Populus balsamifera L., and sampled three individuals of each species from each of three adjacent basins, each with a different concentration of petroleum hydrocarbons. We found that contamination level significantly shaped endophytic fungal diversity and community composition in E. erythropoda, with only 9.9% of these fungal Operational Taxonomic Units (OTUs) retrieved in all three basins. However, fungal community structure associated with P. balsamifera remained unaffected by the contamination level with 28.2% of fungal OTUs shared among all three basins. This could be explained by the smaller differences of pollutant concentrations in the soil around our set of P. balsamifera sampless compared to that around our set of E. erythropoda samples. Our culture-based approach allowed isolation of 11 and 30 fungal endophytic species from surface-sterilized roots of E. erythropoda and P. balsamifera, respectively. These isolates were ribotyped using ITS, and all were found in pyrosequensing datasets. Our results demonstrate that extreme levels of pollution reduce fungal

  2. Fingerprinting of petroleum hydrocarbons (PHC) and other biogenic organic compounds (BOC) in oil-contaminated and background soil samples.

    PubMed

    Wang, Zhendi; Yang, C; Yang, Z; Hollebone, B; Brown, C E; Landriault, M; Sun, J; Mudge, S M; Kelly-Hooper, F; Dixon, D G

    2012-09-01

    Total petroleum hydrocarbons (TPH) or petroleum hydrocarbons (PHC) are one of the most widespread soil contaminants in Canada, the United States and many other countries worldwide. Clean-up of PHC-contaminated soils costs the Canadian economy hundreds of millions of dollars annually. In Canada, most PHC-contaminated site evaluations are based on the methods developed by the Canadian Council of the Ministers of the Environment (CCME). However, the CCME method does not differentiate PHC from BOC (the naturally occurring biogenic organic compounds), which are co-extracted with petroleum hydrocarbons in soil samples. Consequently, this could lead to overestimation of PHC levels in soil samples. In some cases, biogenic interferences can even exceed regulatory levels (300 μg g(-1) for coarse soils and 1300 μg g(-1) for fine soils for Fraction 3, C(16)-C(34) range, in the CCME Soil Quality Level). Resulting false exceedances can trigger unnecessary and costly cleanup or remediation measures. Therefore, it is critically important to develop new protocols to characterize and quantitatively differentiate PHC and BOC in contaminated soils. The ultimate objective of this PERD (Program of Energy Research and Development) project is to correct the misconception that all detectable hydrocarbons should be regulated as toxic petroleum hydrocarbons. During 2009-2010, soil and plant samples were collected from over forty oil-contaminated and paired background sites in various provinces. The silica gel column cleanup procedure was applied to effectively remove all target BOC from the oil-contaminated sample extracts. Furthermore, a reliable GC-MS method in combination with the derivatization technique, developed in this laboratory, was used for identification and characterization of various biogenic sterols and other major biogenic compounds in these oil-contaminated samples. Both PHC and BOC in these samples were quantitatively determined. This paper reports the characterization

  3. Petroleum Weathering Associated with Hydrocarbon Migration and Seepage, a Case Study From the Santa Barbara Channel, CA.

    NASA Astrophysics Data System (ADS)

    Wardlaw, G. D.; Nelson, R. K.; Reddy, C. M.; Valentine, D. L.

    2005-12-01

    A 2003 report by the National Research Council estimates that 50 to 70 percent of oil that is released into the sea is from natural seeps (National Research Council, 2003), indicating that catastrophic oil spills or the runoff from roads and highways are not the major sources of oil in the marine environment. For example, approximately 37 tons of petroleum is emitted daily from seeps off the coast of Santa Barbara, California (Quigley et al. 1996). The Santa Barbara seeps are some of the most active in the world and have been releasing petroleum for thousands of years. Sheens of oil on the water surface and tar patches on the beaches are ubiquitous along the coastline of Santa Barbara and are continuing reminders of this natural process. Although the geochemistry of these seeps have been studied in the past, it has been hindered by the complexity of the petroleum hydrocarbons and the inability of traditional gas chromatography to separate, identify, and quantify each component of the oil. To expand on these previous efforts, we have begun to use comprehensive two-dimensional gas chromatography (GCxGC). This new technology provides at least an order of magnitude increase in the resolution and detection of petroleum hydrocarbons compared to traditional methods. Preliminary work using GCxGC has focused on examining the chemical composition of unrefined petroleum as it migrates up from depth through natural faults to the seafloor, from the seafloor to the sea surface, and from the sea surface to local beaches. Petroleum collected from a subsurface reservoir (Platform Holly Well 2342-15) is composed of a wide range of resolved petroleum hydrocarbons including n-alkanes, branched alkanes, cycloalkanes, linear alkane benzenes, polycyclic aromatic hydrocarbons, steranes, hopanes, cyclic isoprenoids, and very large branched biomarkers with 38 to 40 carbons. This product is significantly different than oil emerging from the seafloor at the Jackpot seep, which we believe is

  4. Measurement and modeling of activated carbon performance for the sequestration of parent- and alkylated-polycyclic aromatic hydrocarbons in petroleum-impacted sediments.

    PubMed

    Choi, Yongju; Cho, Yeo-Myoung; Gala, William R; Luthy, Richard G

    2013-01-15

    We present a first comprehensive set of experiments that demonstrate the performance of activated carbon (AC) to reduce the availability of polycyclic aromatic hydrocarbons (PAHs) including alkylated-PAHs in petroleum-impacted sediments. The uptake in polyethylene samplers for total PAHs in a well-mixed sediment slurry was reduced up to 99% and 98% for petroleum-impacted sediments with oil contents of 1% and 2%, respectively, by treatment with 5% AC. The AC showed similar efficiency for parent-PAHs and a suite of alkylated-PAHs, which predominate over parent-PAHs in petroleum-impacted sediments. A mass transfer model was used to simulate the AC performance in a slurry phase with site-specific mass transfer parameters determined in this study. Comparison between the experimental data and simulation results suggested that dissolved organic matter and/or oil phase may have attenuated the AC performance by a factor of 5-6 for 75-300 μm AC with 5% dose at one month. The attenuation in AC performance became negligible with increase in AC-sediment slurry contact time to 12 months and with decrease in AC particle size. The results show the potential for AC amendment to sequester PAHs in petroleum-impacted sediments and the effect of contact time and AC particle size on the efficiency of the treatment.

  5. Total petroleum hydrocarbon in the tissues of some commercially important fishes of the Bay of Bengal.

    PubMed

    Ansari, Zakir A; Desilva, Classy; Badesab, Shahin

    2012-11-01

    The present study reports the level of total petroleum hydrocarbon (TPH) in 27 commercially important fish, crustaceans and cephalopods from Orissa coast, Bay of Bengal to provide the baseline data for oil contamination in marine biota. The results showed significant differences in the TPH concentration in different species. Of all fish, Carangoides malabaricus showed the maximum TPH level (av. 13.70 μg g(-1)). In cephalopods, Loligo recorded the maximum TPH (av. 14.87 μg g(-1)) while Metapenaeus dobsoni recorded the maximum TPH (av. 13.18 μg g(-1)) among crustaceans. The concentration of TPH recorded in the present study were higher than the reported values from other studies in Bay of Bengal but were comparable with those of other Indian coast and Gulf water. The species recording maximum concentration and giving significant correlation coefficient may be of interest in oil pollution monitoring and can be used as indicator of hydrocarbon pollution in the region.

  6. Petroleum hydrocarbons in water from a Brazilian tropical estuary facing industrial and port development.

    PubMed

    Lemos, Rafael Thompson de Oliveira; de Carvalho, Paulo Sérgio Martins; Zanardi-Lamardo, Eliete

    2014-05-15

    A fast paced industrial and port development has occurred at Suape Estuary, Northeast Brazil, but no information about hydrocarbon concentrations in water is available to this area. Considering that, the contamination level of Suape was determined by UV-Fluorescence in terms of dissolved and/or dispersed petroleum hydrocarbons (DDPHs), during wet and dry seasons. DDPHs ranged between 0.05 and 4.59 μg L(-1) Carmópolis oil equivalents and 0.01-1.39 μg L(-1) chrysene equivalents, indicating DDPHs close to a baseline contamination level. Some relatively high concentrations (>1 μg L(-1)) were probably associated with shipyard operations (hull paintings and ship docking), pollutants remobilization by dredging operations, occasional industrial discharges and oil derivatives released by vessels. DDPHs concentrations were lower in the wet season suggesting that the increased dilution rates caused by rainfall dominated upon the wet deposition of atmospheric combustion-derived PAHs process. Results in this study may be used as baseline to further studies in this area.

  7. Hydrocarbons derived from petroleum in bottled drinking water from Mexico City.

    PubMed

    Vega, Salvador; Gutiérrez, Rey; Ortiz, Rutilio; Schettino, Beatriz; Ramírez, Maria de Lourdes; Pérez, José Jesus

    2011-06-01

    This paper describes the concentrations of polycyclic aromatic hydrocarbons (PAHs) and aliphatic hydrocarbons (AHs) derived from petroleum in bottled drinking water samples that were collected over 1 year from Mexico City in two bottle sizes (1.5 and 19 L), all brought in supermarkets. The analysis was by gas chromatography with flame ionization detection. -Concentrations of AHs (9.26-1.74 μg/L) were greater than PAHs (20.15-12.78 ng/L). Individual concentrations of PAHs such as fluoranthene, benzo(b)fluoranthene, benzo(k)fluoranthene, indeno(1,2,3-cd)pyrene and benzo(ghi)perylene were comparable with data reported by the World Health Organization (WHO). Total concentrations of PAHs for all samples (BDW1: 12.78 μg/L, BDW2: 16.72 μg/L, BDW3: 14.62 μg/L, BDW4: 20.15 μg/L and BDW5: 13.23 ng/L) were below the maximum permissible European level of 100 ng/L; no regulations exist for AHs although their values were greater than PAHs (BDW1: 3.11 μg/L, BDW2: 8.45 μg/L, BDW3: 1.74 μg/L, BDW4: 4.75 μg/L and BDW5: 9.26 μg/L).

  8. Seasonal effect on biomarkers of exposure to petroleum hydrocarbons in fish from Kuwait's marine area.

    PubMed

    Beg, M U; Al-Subiai, S N; Al-Jandal, N; Butt, S A; Beg, K R; Al-Husaini, M

    2015-11-30

    The aquatic biota of the Arabian Gulf deals with exposure to chronic oil pollution, several constituents of which cause induction of Cytochrome P450 1A that serves as a biomarker of AhR ligand exposure. In this study, fluorescent aromatic compounds (FACs) in bile and 7-ethoxyresorufin-o-deethylase (EROD) catalytic activity were determined as a measure of exposure biomarkers in two fish species, yellow fin seabream (Acanthopagrus latus) and tonguesole (Cynoglossus arel) captured from Kuwait Bay and outside the Bay area. FACs in fish bile determined by using fixed-wavelength fluorescence (FF) showed high fluorescence ratios between FF290/335 and FF380/430 indicating predominant exposure to low molecular weight, naphthalene-rich petroleum products (375±91.0 pg ml(-1)). Exposures to benzo(a)pyrene-type high-molecular weight polycyclic aromatic hydrocarbons (PAHs) originating from burnt fuel were also present in appreciable concentration in the bile. The ratio of petrogenic to pyrogenic hydrocarbon was twofold higher in winter compared to summer months in both species. Seasonal effect on EROD was significant in tonguesole in Auha site (P<0.05); whereas seabream resisted seasonal change. Tonguesole is considered to be a suitable bioindicator of oil pollution in Kuwait Bay area.

  9. Direct soil contact values for ecological receptors exposed to weathered petroleum hydrocarbon (PHC) fraction 2.

    PubMed

    Angell, Robin A; Kullman, Steve; Shrive, Emma; Stephenson, Gladys L; Tindal, Miles

    2012-11-01

    Ecological tier 1 Canada-wide standards (CWS) for petroleum hydrocarbon (PHC) fraction 2 (F2; >nC10-C16) in soil were derived using ecotoxicological assessment endpoints (effective concentrations [ECs]/lethal concentrations [LCs]/inhibitory concentrations, 25% [IC25s]) with freshly spiked (fresh) fine- and coarse-grained soils. These soil standards might be needlessly conservative when applied to field samples with weathered hydrocarbons. The purpose of the present study was to assess the degradation and toxicity of weathered PHC F2 in a fine-grained soil and to derive direct soil contact values for ecological receptors. Fine-grained reference soils were spiked with distilled F2 and weathered for 183 d. Toxicity tests using plants and invertebrates were conducted with the weathered F2-spiked soils. Endpoint EC/IC25s were calculated and used to derive soil standards for weathered F2 in fine-grained soil protective of ecological receptors exposed via direct soil contact. The values derived for weathered F2 were less restrictive than current ecological tier 1 CWS for F2 in soil.

  10. Bacterial community shift and hydrocarbon transformation during bioremediation of short-term petroleum-contaminated soil.

    PubMed

    Wu, Manli; Ye, Xiqiong; Chen, Kaili; Li, Wei; Yuan, Jing; Jiang, Xin

    2017-04-01

    A laboratory study was conducted to evaluate the impact of bioaugmentation plus biostimulation (BR, added both nutrients and bacterial consortia), and natural attenuation (NA) on hydrocarbon degradation efficiency and microflora characterization during remediation of a freshly contaminated soil. After 112 days of remediation, the initial level of total petroleum hydrocarbon (TPH) (61,000 mg/kg soil) was reduced by 4.5% and 5.0% in the NA and BR treatments, respectively. Bioremediation did not significantly enhance TPH biodegradation compared to natural attenuation. The degradation of the aliphatic fraction was the most active with the degradation rate of 30.3 and 28.7 mg/kg/day by the NA and BR treatments, respectively. Soil microbial activities and counts in soil were generally greater for bioremediation than for natural attenuation. MiSeq sequencing indicated that the diversity and structure of microbial communities were affected greatly by bioremediation. In response to bioremediation treatment, Promicromonospora, Pseudomonas, Microcella, Mycobacterium, Alkanibacter, and Altererythrobacter became dominant genera in the soil. The result indicated that combining bioaugmentation with biostimulation did not improve TPH degradation, but soil microbial activities and structure of microbial communities are sensitive to bioremediation in short-term and heavily oil-contaminated soil.

  11. Bio- and Phytoremediation of Total Petroleum Hydrocarbons (TPH) Under Various Conditions.

    PubMed

    McIntosh, Patrick; Schulthess, Cristian P; Kuzovkina, Yulia A; Guillard, Karl

    2017-02-06

    Remediation of contaminated soils is often studied using fine textured soils rather than low-fertility sandy soils, and few studies focus on recontamination events. This study compared aerobic and anaerobic treatments for remediation of freshly introduced used motor oil on a sandy soil previously phytoremediated and bioacclimated (microorganisms already adapted in the soil environment) with some residual total petroleum hydrocarbon (TPH) contamination. Vegetated and unvegetated conditions to remediate anthropogenic fill containing residual TPH that was spiked with non-aqueous phase liquids (NAPLs) were evaluated in a 90-day greenhouse pot study. Vegetated treatments used switchgrass (Panicum virgatum). Although bacteria CFU's were orders of magnitude higher in vegetated treatments compared to unvegetated, final TPH concentrations were low in all saturated soil treatments, and high in the presence of switchgrass. Concentrations were also low in unvegetated pots with fertilizer. Acclimated indigenous microbial communities were shown to be more effective in breaking down hydrocarbons than introducing microbes from the addition of plant treatments in sandy soils. Remediation of fresh introduced NAPLs on pre-phytoremediated and bioacclimated soil was most efficient in saturated, anaerobic environments, probably due to the already pre-established microbial associations, easily bioavailable contaminants, and optimized soil conditions for microbial establishment and survival.

  12. Enzymatic bioremediation of polyaromatic hydrocarbons by fungal consortia enriched from petroleum contaminated soil and oil seeds.

    PubMed

    Balaji, V; Arulazhagan, P; Ebenezer, P

    2014-05-01

    The present study focuses on fungal strains capable of secreting extracellular enzymes by utilizing hydrocarbons present in the contaminated soil. Fungal strains were enriched from petroleum hydrocarbons contaminated soil samples collected from Chennai city, India. The potential fungi were isolated and screened for their enzyme secretion such as lipase, laccase, peroxidase and protease and also evaluated fungal enzyme mediated PAHs degradation. Total, 21 potential PAHs degrading fungi were isolated from PAHs contaminated soil, which belongs to 9 genera such as Aspergillus, Curvularia, Drechslera, Fusarium, Lasiodiplodia, Mucor Penicillium, Rhizopus, Trichoderma, and two oilseed-associated fungal genera such as Colletotrichum and Lasiodiplodia were used to test their efficacy in degradation of PAHs in polluted soil. Maximum lipase production was obtained with P. chrysogenum, M. racemosus and L. theobromae VBE1 under optimized cultural condition, which utilized PAHs in contaminated soil as sole carbon source. Fungal strains, P. chrysogenum, M. racemosus and L. theobromae VBE1, as consortia, used in the present study were capable of degrading branched alkane isoprenoids such as pristine (C17) and pyrene (C18) present in PAHs contaminated soil with high lipase production. The fungal consortia acts as potential candidate for bioremediation of PAHs contaminated environments.

  13. Fate and transport of petroleum hydrocarbons in the subsurface near Cass Lake, Minnesota

    USGS Publications Warehouse

    Drennan, Dina M.; Bekins, Barbara A.; Warren, Ean; Cozzarelli, Isabelle M.; Baedecker, Mary Jo; Herkelrath, William N.; Delin, Geoffrey N.; Rosenbauer, Robert J.; Campbell, Pamela L.

    2010-01-01

    The U.S. Geological Survey (USGS) investigated the natural attenuation of subsurface petroleum hydrocarbons leaked over an unknown number of years from an oil pipeline under the Enbridge Energy Limited Partnership South Cass Lake Pumping Station, in Cass Lake, Minnesota. Three weeks of field work conducted between May 2007 and July 2008 delineated a dissolved plume of aromatic hydrocarbons and characterized the biodegradation processes of the petroleum. Field activities included installing monitoring wells, collecting sediment cores, sampling water from wells, and measuring water-table elevations. Geochemical measurements included concentrations of constituents in both spilled and pipeline oil, dissolved alkylbenzenes and redox constituents, sediment bioavailable iron, and aquifer microbial populations. Groundwater in this area flows east-southeast at approximately 26 meters per year. Results from the oil analyses indicate a high degree of biodegradation, characterized by nearly complete absence of n-alkanes. Cass Lake oil samples were more degraded than two oil samples collected in 2008 from the similarly contaminated USGS Bemidji, Minnesota, research site 40 kilometers away. Based on 19 ratios developed for comparing oil sources, the conclusion is that the oils at the two sites appear to be from the same hydrocarbon source. In the Cass Lake groundwater plume, benzene concentrations decrease by three orders of magnitude within 150 meters (m) downgradient from the oil body floating on the water table (between well MW-10 and USGS-4 well nest). The depths of the highest benzene concentrations increase with distance downgradient from the oil, a condition typical of plumes in shallow, unconfined aquifers. Background groundwater, which is nearly saturated with oxygen, becomes almost entirely anaerobic in the plume. As at the Bemidji site, the most important biodegradation processes are anaerobic and dominated by iron reduction. The similarity between the Cass Lake and

  14. Activity and Diversity of Methanogens in a Petroleum Hydrocarbon-Contaminated Aquifer

    PubMed Central

    Kleikemper, Jutta; Pombo, Silvina A.; Schroth, Martin H.; Sigler, William V.; Pesaro, Manuel; Zeyer, Josef

    2005-01-01

    Methanogenic activity was investigated in a petroleum hydrocarbon-contaminated aquifer by using a series of four push-pull tests with acetate, formate, H2 plus CO2, or methanol to target different groups of methanogenic Archaea. Furthermore, the community composition of methanogens in water and aquifer material was explored by molecular analyses, i.e., fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes amplified with the Archaea-specific primer set ARCH915 and UNI-b-rev, and sequencing of DNA from dominant DGGE bands. Molecular analyses were subsequently compared with push-pull test data. Methane was produced in all tests except for a separate test where 2-bromoethanesulfonate, a specific inhibitor of methanogens, was added. Substrate consumption rates were 0.11 mM day−1 for methanol, 0.38 mM day−1 for acetate, 0.90 mM day−1 for H2, and 1.85 mM day−1 for formate. Substrate consumption and CH4 production during all tests suggested that at least three different physiologic types of methanogens were present: H2 plus CO2 or formate, acetate, and methanol utilizers. The presence of 15 to 20 bands in DGGE profiles indicated a diverse archaeal population. High H2 and formate consumption rates agreed with a high diversity of methanogenic Archaea consuming these substrates (16S rRNA gene sequences related to several members of the Methanomicrobiaceae) and the detection of Methanomicrobiaceae by using FISH (1.4% of total DAPI [4′,6-diamidino-2-phenylindole]-stained microorganisms in one water sample; probe MG1200). Considerable acetate consumption agreed with the presence of sequences related to the obligate acetate degrader Methanosaeata concilii and the detection of this species by FISH (5 to 22% of total microorganisms; probe Rotcl1). The results suggest that both aceticlastic and CO2-type substrate-consuming methanogens are likely involved in the terminal step of hydrocarbon degradation, while

  15. Presence of Actinobacterial and Fungal Communities in Clean and Petroleum Hydrocarbon Contaminated Subsurface Soil

    PubMed Central

    Björklöf, Katarina; Karlsson, Sanja; Frostegård, Åsa; Jørgensen, Kirsten S

    2009-01-01

    Relatively little is known about the microbial communities adapted to soil environments contaminated with aged complex hydrocarbon mixtures, especially in the subsurface soil layers. In this work we studied the microbial communities in two different soil profiles down to the depth of 7 m which originated from a 30-year-old site contaminated with petroleum hydrocarbons (PHCs) and from a clean site next to the contaminated site. The concentration of oxygen in the contaminated soil profile was strongly reduced in soil layers below 1 m depth but not in the clean soil profile. Total microbial biomass and community composition was analyzed by phospholipid fatty acid (PLFA) measurements. The diversity of fungi and actinobacteria was investigated more in detail by construction of rDNA-based clone libraries. The results revealed that there was a significant and diverse microbial community in subsoils at depth below 2 m, also in conditions where oxygen was limiting. The diversity of actinobacteria was different in the two soil profiles; the contaminated soil profile was dominated by Mycobacterium -related sequences whereas sequences from the clean soil samples were related to other, generally uncultured organisms, some of which may represent two new subclasses of actinobacteria. One dominating fungal sequence which matched with the ascomycotes Acremonium sp. and Paecilomyces sp. was identified both in clean and in contaminated soil profiles. Thus, although the relative amounts of fungi and actinobacteria in these microbial communities were highest in the upper soil layers, many representatives from these groups were found in hydrocarbon contaminated subsoils even under oxygen limited conditions. PMID:19543551

  16. Bioinformatic Approaches Including Predictive Metagenomic Profiling Reveal Characteristics of Bacterial Response to Petroleum Hydrocarbon Contamination in Diverse Environments.

    PubMed

    Mukherjee, Arghya; Chettri, Bobby; Langpoklakpam, James S; Basak, Pijush; Prasad, Aravind; Mukherjee, Ashis K; Bhattacharyya, Maitree; Singh, Arvind K; Chattopadhyay, Dhrubajyoti

    2017-04-24

    Microbial remediation of oil polluted habitats remains one of the foremost methods for restoration of petroleum hydrocarbon contaminated environments. The development of effective bioremediation strategies however, require an extensive understanding of the resident microbiome of these habitats. Recent developments such as high-throughput sequencing has greatly facilitated the advancement of microbial ecological studies in oil polluted habitats. However, effective interpretation of biological characteristics from these large datasets remain a considerable challenge. In this study, we have implemented recently developed bioinformatic tools for analyzing 65 16S rRNA datasets from 12 diverse hydrocarbon polluted habitats to decipher metagenomic characteristics of the resident bacterial communities. Using metagenomes predicted from 16S rRNA gene sequences through PICRUSt, we have comprehensively described phylogenetic and functional compositions of these habitats and additionally inferred a multitude of metagenomic features including 255 taxa and 414 functional modules which can be used as biomarkers for effective distinction between the 12 oil polluted sites. Additionally, we show that significantly over-represented taxa often contribute to either or both, hydrocarbon degradation and additional important functions. Our findings reveal significant differences between hydrocarbon contaminated sites and establishes the importance of endemic factors in addition to petroleum hydrocarbons as driving factors for sculpting hydrocarbon contaminated bacteriomes.

  17. Improvement of phytoremediation of an aged petroleum hydrocarbon-contaminated soil by Rhodococcus erythropolis CD 106 strain.

    PubMed

    Płociniczak, Tomasz; Fic, Ewa; Pacwa-Płociniczak, Magdalena; Pawlik, Małgorzata; Piotrowska-Seget, Zofia

    2017-07-03

    The aim of this study was to assess the impact of soil inoculation with the Rhodococcus erythropolis CD 106 strain on the effectiveness of the phytoremediation of an aged hydrocarbon-contaminated [approx. 1% total petroleum hydrocarbon (TPH)] soil using ryegrass (Lolium perenne). The introduction of CD 106 into the soil significantly increased the biomass of ryegrass and the removal of hydrocarbons in planted soil. The fresh weight of the shoots and roots of plants inoculated with CD 106 increased by 49% and 30%, respectively. After 210 days of the experiment, the concentration of TPH was reduced by 31.2%, whereas in the planted, non-inoculated soil, it was reduced by 16.8%. By contrast, the concentration of petroleum hydrocarbon decreased by 18.7% in non-planted soil bioaugmented with the CD 106 strain. The rifampicin-resistant CD 106 strain survived after inoculation into soil and was detected in the soil during the entire experimental period, but the number of CD 106 cells decreased constantly during the enhanced phytoremediation and bioaugmentation experiments. The plant growth-promoting and hydrocarbon-degrading properties of CD 106, which are connected with its long-term survival and limited impact on autochthonous microflora, make this strain a good candidate for improving the phytoremediation efficiency of soil contaminated with hydrocarbons.

  18. High molecular weight polycyclic aromatic hydrocarbons in hydrothermal petroleums - indicators of high temperatures and water washing

    SciTech Connect

    Simoneit, B.R.T.; Fetzer, J.C.

    1995-06-01

    Hydrothermal petroleums from active sedimented oceanic spreading axes contain polycyclic aromatic hydrocarbons (PAH) as characteristic components of their rapid high temperature genesis. The unsubstituted PAH dominate over their alkyl-substituted homologs and occur at high concentrations relative to the aliphatic components, which distinguishes hydrothermal petroleums from conventional reservoir petroleums. Some of the samples contain PAH with higher molecular weights than coronene (M.W. 300) and here we describe the structures and distributions of these PAH in typical examples of petroleums from Guaymas Basin, Escanaba Trough and Middle Valley. Some of the aromatic fractions (F2) show PAH of up to nine rings [e.g., dibenzo-(e,ghi)perylene, benzo(a)coronene, benzo(pqr)naphtho(8,1,2-bcd)perylene, naphtho(8,1,2-abc)coronene]. Fraction 3 in some of these samples has ovalene, a condensed ten-ring PAH. These PAH are the most thermodynamically stable structures for each ring number, and are most likely indicative of a one-ring build-up mechanism. The samples also contain a few specific PAHs [e.g., the seven-ring PAH dibenzo(cd,lm)perylene] which are not members of this stable class. Its formation mechanism must be very specific through the condensation of a pair of the three-ring phenalene radicals or through the Scholl-condensation of pyrene to a nine-ring PAH with its subsequent hydrogenation and cracking down to dibenzo(cd,lm)-perylene. This is the first report of the occurrence of heavy PAH (M.W. >300) in geological samples. They are concentrated in the bitumens by removal of the lower molecular weight PAH due to mixing during hydrothermal fluid/oil transport and selective deposition/solidification of the heavy ends at the seabed with concurrent loss of the more water soluble and lower weight products to the ambient seawater. Additional post-depositional reworking by hot fluids and biodegradation further enhance the enrichment of the heavy PAH.

  19. Geochemistry of Dissolved Organic Matter in a Spatially Highly Resolved Groundwater Petroleum Hydrocarbon Plume Cross-Section.

    PubMed

    Dvorski, Sabine E-M; Gonsior, Michael; Hertkorn, Norbert; Uhl, Jenny; Müller, Hubert; Griebler, Christian; Schmitt-Kopplin, Philippe

    2016-06-07

    At numerous groundwater sites worldwide, natural dissolved organic matter (DOM) is quantitatively complemented with petroleum hydrocarbons. To date, research has been focused almost exclusively on the contaminants, but detailed insights of the interaction of contaminant biodegradation, dominant redox processes, and interactions with natural DOM are missing. This study linked on-site high resolution spatial sampling of groundwater with high resolution molecular characterization of DOM and its relation to groundwater geochemistry across a petroleum hydrocarbon plume cross-section. Electrospray- and atmospheric pressure photoionization (ESI, APPI) ultrahigh resolution mass spectrometry (FT-ICR-MS) revealed a strong interaction between DOM and reactive sulfur species linked to microbial sulfate reduction, i.e., the key redox process involved in contaminant biodegradation. Excitation emission matrix (EEM) fluorescence spectroscopy in combination with Parallel Factor Analysis (PARAFAC) modeling attributed DOM samples to specific contamination traits. Nuclear magnetic resonance (NMR) spectroscopy evaluated the aromatic compounds and their degradation products in samples influenced by the petroleum contamination and its biodegradation. Our orthogonal high resolution analytical approach enabled a comprehensive molecular level understanding of the DOM with respect to in situ petroleum hydrocarbon biodegradation and microbial sulfate reduction. The role of natural DOM as potential cosubstrate and detoxification reactant may improve future bioremediation strategies.

  20. Application of electrochemical technology for removing petroleum hydrocarbons from produced water using lead dioxide and boron-doped diamond electrodes.

    PubMed

    Gargouri, Boutheina; Gargouri, Olfa Dridi; Gargouri, Bochra; Trabelsi, Souhel Kallel; Abdelhedi, Ridha; Bouaziz, Mohamed

    2014-12-01

    Although diverse methods exist for treating polluted water, the most promising and innovating technology is the electrochemical remediation process. This paper presents the anodic oxidation of real produced water (PW), generated by the petroleum exploration of the Petrobras plant-Tunisia. Experiments were conducted at different current densities (30, 50 and 100 mA cm(-2)) using the lead dioxide supported on tantalum (Ta/PbO2) and boron-doped diamond (BDD) anodes in an electrolytic batch cell. The electrolytic process was monitored by the chemical oxygen demand (COD) and the residual total petroleum hydrocarbon [TPH] in order to know the feasibility of electrochemical treatment. The characterization and quantification of petroleum wastewater components were performed by gas chromatography mass spectrometry. The COD removal was approximately 85% and 96% using PbO2 and BDD reached after 11 and 7h, respectively. Compared with PbO2, the BDD anode showed a better performance to remove petroleum hydrocarbons compounds from produced water. It provided a higher oxidation rate and it consumed lower energy. However, the energy consumption and process time make useless anodic oxidation for the complete elimination of pollutants from PW. Cytotoxicity has shown that electrochemical oxidation using BDD could be efficiently used to reduce more than 90% of hydrocarbons compounds. All results suggest that electrochemical oxidation could be an effective approach to treat highly concentrated organic pollutants present in the industrial petrochemical wastewater and significantly reduce the cost and time of treatment.

  1. Microbial metabolism and community structure in response to bioelectrochemically enhanced remediation of petroleum hydrocarbon-contaminated soil.

    PubMed

    Lu, Lu; Huggins, Tyler; Jin, Song; Zuo, Yi; Ren, Zhiyong Jason

    2014-04-01

    This study demonstrates that electrodes in a bioelectrochemical system (BES) can potentially serve as a nonexhaustible electron acceptor for in situ bioremediation of hydrocarbon contaminated soil. The deployment of BES not only eliminates aeration or supplement of electron acceptors as in contemporary bioremediation but also significantly shortens the remediation period and produces sustainable electricity. More interestingly, the study reveals that microbial metabolism and community structure distinctively respond to the bioelectrochemically enhanced remediation. Tubular BESs with carbon cloth anode (CCA) or biochar anode (BCA) were inserted into raw water saturated soils containing petroleum hydrocarbons for enhancing in situ remediation. Results show that total petroleum hydrocarbon (TPH) removal rate almost doubled in soils close to the anode (63.5-78.7%) than that in the open circuit positive controls (37.6-43.4%) during a period of 64 days. The maximum current density from the BESs ranged from 73 to 86 mA/m(2). Comprehensive microbial and chemical characterizations and statistical analyses show that the residual TPH has a strongly positive correlation with hydrocarbon-degrading microorganisms (HDM) numbers, dehydrogenase activity, and lipase activity and a negative correlation with soil pH, conductivity, and catalase activity. Distinctive microbial communities were identified at the anode, in soil with electrodes, and soil without electrodes. Uncommon electrochemically active bacteria capable of hydrocarbon degradation such as Comamonas testosteroni, Pseudomonas putida, and Ochrobactrum anthropi were selectively enriched on the anode, while hydrocarbon oxidizing bacteria were dominant in soil samples. Results from genus or phylum level characterizations well agree with the data from cluster analysis. Data from this study suggests that a unique constitution of microbial communities may play a key role in BES enhancement of petroleum hydrocarbons

  2. A comparison of polycyclic aromatic hydrocarbon and petroleum hydrocarbon uptake by mussels (Perna viridis) and semi-permeable membrane devices (SPMDs) in Hong Kong coastal waters.

    PubMed

    Richardson, Bruce J; Zheng, Gene J; Tse, Edmund S C; De Luca-Abbott, Sharon B; Siu, Stanley Y M; Lam, Paul K S

    2003-01-01

    The ability of mussels (Perna viridis) and semi-permeable membrane devices (SPMDs) to accumulate polycyclic aromatic hydrocarbons (PAHs) and petroleum hydrocarbons (PHCs) from five sites in Hong Kong's coastal waters was compared. Mussels consistently had higher levels of contaminants, but their utility was limited at one highly polluted site due to mortality. Mussels and SPMDs ranked sites differently in terms of individual contaminant levels. Although SPMDs overcome many of the disadvantages of using living organisms to measure contaminants in marine waters, they cannot be used as "mimics" due to different PAH and PHC accumulation patterns.

  3. Interlaboratory evaluation of an off-line supercritical fluid extraction/infrared spectrometric method for determination of petroleum hydrocarbons in solid matrixes

    SciTech Connect

    Lopez-Avila, V.; Young, R.; Kim, R.; Beckert, W.F. )

    1993-05-01

    A collaborative study was conducted, with 14 laboratories participating, to determine the method accuracy and precision of the proposed U.S. Environmental Protection Agency Methods 3560 and 8440. These methods involve the extraction of petroleum hydrocarbons from solid matrixes with supercritical carbon dioxide at 340 atm and 80 degrees C for 30 min (dynamic), collection of the extracted materials in tetrachloroethene (Method 3560), and analysis of the extracts by infrared (IR) spectrometry (Method 8440). The study design was based on the AOAC blind replicate design with balanced replicates. The study samples consisted of 4 solid matrixes that had petroleum hydrocarbon contents ranging from 614 to 32,600 mg/kg. Each of the 4 matrixes was extracted in triplicate, and the extracts were analyzed with 2 different IR spectrometers. In addition, each of the participating laboratories extracted a sample of unspiked clay soil, the same clay soil spiked with corn oil and reference oil at 1000 mg/kg each, and the same clay soil wetted to 30% water content and spiked with motor oil at 10,000 mg/kg (the latter 3 samples were extracted only once). Results indicated that the overall method accuracy for concentrations ranging from 614 to 32,600 mg/kg was 82.9%; the mean recoveries of petroleum hydrocarbons for each of the 4 solid matrixes ranged from 77.9 to 107% for analyses performed with the Perkin-Elmer Fourier transform IR spectrometer and from 75.9 to 101% for analyses performed with the Buck-Scientific IR spectrometer; the differences between the 2 instruments on a sample-by-sample basis were less than 17% for the total petroleum hydrocarbon determinations. The interlaboratory method precisions (RSDR) appeared to be matrix-dependent and ranged from 17.3 to 45.4% for analyses performed with the Perkin-Elmer Fourier transform IR spectrometer and from 16.7 to 47.9% for the Buck-Scientific IR spectrometer.

  4. Development of bioreactors for comparative study of natural attenuation, biostimulation, and bioaugmentation of petroleum-hydrocarbon contaminated soil.

    PubMed

    Safdari, Mohammad-Saeed; Kariminia, Hamid-Reza; Rahmati, Mahmood; Fazlollahi, Farhad; Polasko, Alexandra; Mahendra, Shaily; Wilding, W Vincent; Fletcher, Thomas H

    2017-08-19

    Bioremediation of soil and groundwater sites contaminated by petroleum hydrocarbons is known as a technically viable, cost-effective, and environmentally sustainable technology. The purpose of this study is to investigate laboratory-scale bioremediation of petroleum-hydrocarbon contaminated soil through development of eight bioreactors, two bioreactors for each bioremediation mode. The modes were: (1) natural attenuation (NA); (2) biostimulation (BS) with oxygen and nutrients; (3) bioaugmentation (BA) with hydrocarbon degrading isolates; (4) a combination of biostimulation and bioaugmentation (BS-BA). Total petroleum hydrocarbons (TPH) mass balance over the bioreactors showed about 2% of initial 20,000mgkg-soil(-1) TPH was removed by advection due to synthetic groundwater which was flowing through the soil, and the rest of decrease in TPH was caused by biodegradation. The BS-BA mode showed the highest TPH biodegradation percentage (89.7±0.3%) compared to the NA (51.4±0.6%), BS (81.9±0.3%) and BA (62.9±0.5%) modes. Furthermore, an increase in microbial population was another evidence of TPH biodegradation by microorganism. Reaction rate data from each bioremediation mode were fitted with a first-order reaction rate model. The Monod kinetic constants including maximum specific growth rate of microorganisms (μmax) and substrate concentration at half-velocity constant (Ks) were estimated for each bioremediation modes. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Timing of hydrocarbon maturation and trap formation in the Cordillera Oriental and adjacent petroleum provinces of Colombia

    SciTech Connect

    Schamel, S.; Richardson, A.; Carlos, A.A.P.

    1996-08-01

    The timing of hydrocarbon generation relative to the closure of migration pathways and trap formation is key to characterization of the petroleum systems of the Cordillera Oriental and the prolific petroleum provinces of the Llanos and Magdalena. The exceptionally thick and organic rich Cretaceous source rock successions of the Cordillera Oriental had the potential to have generated vast quantities of liquid hydrocarbons. Yet due to unfavorable timing of hydrocarbon maturation vs. regional deformation, only a small portion of this oil may have migrated into traps beyond the limits of the Cordillera Oriental. Maturation modeling based on detailed stratigraphic and structural data for sites in the Cordillera Oriental, Llanos, and the Middle and Upper Magdalena basins reveal the essential temporal features of the petroleum system. Virtually all of the Cretaceous source rock succession was generating liquid hydrocarbons in the Late Cretaceous and Paleocene, long before the development of the main structural traps within and along the foothills belts marginal to the Cordillera Oriental. Only in the northeast quarter and extreme south of the Cordillera Oriental and in the deeper parts of the flanking basins was oil being generated simultaneous with trap formation. The maturation modeling serves as a basis for understanding the known distribution of oil pools and a guide to future discoveries.

  6. Compound-specific carbon and hydrogen isotope analysis of sub-parts per billion level waterborne petroleum hydrocarbons

    USGS Publications Warehouse

    Wang, Y.; Huang, Y.; Huckins, J.N.; Petty, J.D.

    2004-01-01

    Compound-specific carbon and hydrogen isotope analysis (CSCIA and CSHIA) has been increasingly used to study the source, transport, and bioremediation of organic contaminants such as petroleum hydrocarbons. In natural aquatic systems, dissolved contaminants represent the bioavailable fraction that generally is of the greatest toxicological significance. However, determining the isotopic ratios of waterborne hydrophobic contaminants in natural waters is very challenging because of their extremely low concentrations (often at sub-parts ber billion, or even lower). To acquire sufficient quantities of polycyclic aromatic hydrocarbons with 10 ng/L concentration for CSHIA, more than 1000 L of water must be extracted. Conventional liquid/liquid or solid-phase extraction is not suitable for such large volume extractions. We have developed a new approach that is capable of efficiently sampling sub-parts per billion level waterborne petroleum hydrocarbons for CSIA. We use semipermeable membrane devices (SPMDs) to accumulate hydrophobic contaminants from polluted waters and then recover the compounds in the laboratory for CSIA. In this study, we demonstrate, under a variety of experimental conditions (different concentrations, temperatures, and turbulence levels), that SPMD-associated processes do not induce C and H isotopic fractionations. The applicability of SPMD-CSIA technology to natural systems is further demonstrated by determining the ??13C and ??D values of petroleum hydrocarbons present in the Pawtuxet River, RI. Our results show that the combined SPMD-CSIA is an effective tool to investigate the source and fate of hydrophobic contaminants in the aquatic environments.

  7. Aliphatics hydrocarbon content in surface sediment from Jakarta Bay, Indonesia

    NASA Astrophysics Data System (ADS)

    YAzis, M.; Asia, L.; Piram, A.; Doumenq, P.; Syakti, A. D.

    2016-02-01

    Sedimentary aliphatic hydrocarbons content have been studied quantitatively and qualitatively using GC/MS method in eight coastal stations located in the Jakarta Bay, North of Jakarta, Indonesia. The total concentrations n-alkanes have ranged from 480 μg.kg-1to 1,935 μg.kg-1sediment dry weight. Several ratios (e.g. CPI24-32, NAR, TAR, Pr/Phy, n-C17/Pr, n- C18/Phyt,n-C29/n-C17, Ʃn-alkanes/n-C16LMW/HMW, Paq and TMD) were used to evaluate the possible sources of terrestrial-marine inputs of these hydrocarbons in the sediments. The various origins of aliphatic hydrocarbons were generally biogenic, including both terrigenous and marine, with an anthropogenic pyrolytic contribution (petrogenic and biogenic combustion). Two stations (G,H) were thehighest concentration and had potential risk to environment

  8. Evaluation of genotoxic responses of Chaetoceros tenuissimus and Skeletonema costatum to water accommodated fraction of petroleum hydrocarbons as biomarker of exposure.

    PubMed

    Desai, S R; Deasi, S R; Verlecar, X N; Ansari, Z A; Jagtap, T G; Sarkar, A; Vashistha, Deepti; Dalal, S G

    2010-04-01

    Genotoxic responses towards chronic exposure of Chaetoceros tenuissimus and Skeletonema costatum to water accommodated fraction of petroleum hydrocarbons (WAF-P) were evaluated as biomarkers of petroleum hydrocarbons pollution. The DNA damage caused by water accommodated fraction of petroleum hydrocarbons was assessed in terms of the DNA integrity measured by alkaline unwinding assay. The comparative study of the growth pattern of C. tenuissimus with respect to DNA integrity and the DNA strand breaks in different concentrations of WAF-P showed sufficient tolerance. However, its toxicity increased proportionately with exposure to elevated levels of WAF-P. Although DNA damage in S. costatum was similar to C. tenuissimus, its tolerance level to WAF-P was at least 5 times lower than that of C. tenuissimus indicating its high sensitivity to petroleum hydrocarbons. Active growth was exhibited by C. tenuissimus between 10 and 20% WAF-P (ranging from 0.59 to 1.18mg/L petroleum hydrocarbons) which can be related to the polluted regions only, suggesting the tolerant nature of this organism. Considering the degree of sensitivity to petroleum products and good growth under laboratory conditions, these two diatoms could be recommended as model species for evaluating ecogenotoxic effects of wide range of petroleum hydrocarbon pollutants using alkaline unwinding assays. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  9. Distribution and Sources of Petroleum Hydrocarbons in Recent Sediments of the Imo River, SE Nigeria.

    PubMed

    Oyo-Ita, Inyang O; Oyo-Ita, Orok E; Dosunmu, Miranda I; Domínguez, Carmen; Bayona, Josep M; Albaigés, Joan

    2016-02-01

    The distribution of aliphatic and aromatic hydrocarbons in surface sediments of the lower course of the Imo River (Nigeria) was investigated to determine the sources and fate of these compounds. The aliphatic fraction is characterized by a widespread contribution of highly weathered/biodegraded hydrocarbon residues (reflected in the absence of prominent n-alkane peaks coupled with the presence of 17α(H),21β(H)-25-norhopane, an indicator of heavy hydrocarbon biodegradation) of Nigerian crude oils (confirmed by the occurrence of 18α(H)-oleanane, a compound characteristic of oils of deltaic origin). The concentrations of polycyclic aromatic hydrocarbons (PAHs) ranging from 48 to 117 ng/g dry weight (dw; ∑13PAHs) indicate a moderate pollution, possibly lowered by the sandy lithology and low organic carbon (OC) content of the sediments. Concentrations slightly decrease towards the estuary of the river, probably due to the fact that these stations are affected by tidal flushing of pollutants adsorbed on sediment particles and carried away by occasional storm to the Atlantic Ocean. A number of PAH ratios, including parent/alkylated and isomeric compounds, indicates a predominance of petrogenic sources, with a low contribution of pyrolytic inputs, particularly of fossil fuel combustion. On the basis of OC/ON (>10) and Per/ΣPAHpenta- (>10) values, a diagenetic terrigenous OC was proposed as a source of perylene to the river.

  10. 40 CFR Table 6 to Subpart Vvvv of... - Default Organic HAP Contents of Petroleum Solvent Groups

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Contents of... Manufacturing Pt. 63, Subpt. VVVV, Table 6 Table 6 to Subpart VVVV of Part 63—Default Organic HAP Contents of Petroleum Solvent Groups As specified in § 63.5758(a)(6), when detailed organic HAP content data for...

  11. 40 CFR Table 6 to Subpart Vvvv of... - Default Organic HAP Contents of Petroleum Solvent Groups

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Contents of... Manufacturing Pt. 63, Subpt. VVVV, Table 6 Table 6 to Subpart VVVV of Part 63—Default Organic HAP Contents of Petroleum Solvent Groups As specified in § 63.5758(a)(6), when detailed organic HAP content data for solvent...

  12. Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation.

    PubMed

    Sarkar, Dibyendu; Ferguson, Michael; Datta, Rupali; Birnbaum, Stuart

    2005-07-01

    Two methods of biostimulation were compared in a laboratory incubation study with monitored natural attenuation (MNA) for total petroleum hydrocarbon (TPH) degradation in diesel-contaminated Tarpley clay soil with low carbon content. One method utilized rapid-release inorganic fertilizers rich in N and P, and the other used sterilized, slow-release biosolids, which added C in addition to N and P. After 8 weeks of incubation, both biostimulation methods degraded approximately 96% of TPH compared to MNA, which degraded 93.8%. However, in the first week of incubation, biosolids-amended soils showed a linear two orders of magnitude increase in microbial population compared to MNA, whereas, in the fertilizer-amended soils, only a one order of magnitude increase was noted. In the following weeks, microbial population in the fertilizer-amended soils dropped appreciably, suggesting a toxic effect owing to fertilizer-induced acidity and/or NH(3) overdosing. Results suggest that biosolids addition is a more effective soil amendment method for biostimulation than the commonly practiced inorganic fertilizer application, because of the abilities of biosolids to supplement carbon. No statistically significant difference was observed between the biostimulation methods and MNA, suggesting that MNA can be a viable remediation strategy in certain soils with high native microbial population.

  13. Changes in liquid water alter nutrient bioavailability and gas diffusion in frozen antarctic soils contaminated with petroleum hydrocarbons.

    PubMed

    Harvey, Alexis Nadine; Snape, Ian; Siciliano, Steven Douglas

    2012-02-01

    Bioremediation has been used to remediate petroleum hydrocarbon (PHC)-contaminated sites in polar regions; however, limited knowledge exists in understanding how frozen conditions influence factors that regulate microbial activity. We hypothesized that increased liquid water (θ(liquid) ) would affect nutrient supply rates (NSR) and gas diffusion under frozen conditions. If true, management practices that increase θ(liquid) should also increase bioremediation in polar soils by reducing nutrient and oxygen limitations. Influence of θ(liquid) on NSR was determined using diesel-contaminated soil (0-8,000 mg kg(-1)) from Casey Station, Antarctica. The θ(liquid) was altered between 0.007 and 0.035 cm(3) cm(-3) by packing soil cores at different bulk densities. The nutrient supply rate of NH 4+ and NO 3-, as well as gas diffusion coefficient, D(s), were measured at two temperatures, 21°C and -5°C, to correct for bulk density effects. Freezing decreased NSR of both NH 4+ and NO 3-, with θ(liquid) linked to nitrate and ammonia NSR in frozen soil. Similarly for D(s), decreases due to freezing were much more pronounced in soils with low θ(liquid) compared to soils with higher θ(liquid) contents. Additional studies are needed to determine the relationship between degradation rates and θ(liquid) under frozen conditions. Copyright © 2011 SETAC.

  14. Hydrocarbon contamination increases the liquid water content of frozen Antarctic soils.

    PubMed

    Siciliano, Steven D; Schafer, Alexis N; Forgeron, Michelle A M; Snape, Ian

    2008-11-15

    We do not yet understand why fuel spills can cause greater damage in polar soils than in temperate soils. The role of water in the freezing environment may partly be responsible for why polar soils are more sensitive to pollution. We hypothesized that hydrocarbons alter the liquid water in frozen soil, and we evaluated this hypothesis by conducting laboratory and field experiments at Casey Station, Antarctica. Liquid water content in frozen soils (theta(liquid)) was estimated by time domain reflectometry in laboratory, field collected soils, and in situ field measurements. Our results demonstrate an increase in liquid water associated with hydrocarbon contamination in frozen soils. The dependence of theta(liquid) on aged fuel and spiked fuel were almost identical,with a slope of 2.6 x 10(-6) mg TPH (total petroleum hydrocarbons) kg(-1) for aged fuel and 3.1 x 10(-6) mg TPH kg(-1) for spiked fuel. In situ measurements found theta(liquid) depends, r2 = 0.75, on fuel for silt loam soils (theta(liquid) = 0.094 + 7.8 x 10(-6) mg TPH kg(-1)) but not on fuel for silt clay loam soils. In our study, theta(liquid) doubled in field soils and quadrupled in laboratory soils contaminated with diesel which may have profound implications on frost heave models in contaminated soils.

  15. Field-scale investigation of enhanced petroleum hydrocarbon biodegradation in the vadose zone combining soil venting as an oxygen source with moisture and nutrient addition. Appendices. Doctoral thesis

    SciTech Connect

    Miller, R.N.

    1990-01-01

    This document contains appendices regarding a reprint on a field scale investigation of enhanced petroleum hydrocarbon biodegradation in the vadose zone combining soil venting as a oxygen source with moisture and nutrient addition.

  16. The Application of High-Performance Liquid Chromatography to the Analysis of Petroleum Materials. Part 2. Quantitative Hydrocarbon-Type Analysis.

    DTIC Science & Technology

    Quantitative hydrocarbon type analysis of middle distillate petroleum products, with emphasis on straight-run (olefin-free) diesel fuels has been accomplished by high performance liquid chromatography using silica gel absorbents.

  17. Temporal and spatial trends of total petroleum hydrocarbons in the seawater of Bohai Bay, China from 1996 to 2005.

    PubMed

    Li, Ye; Zhao, Yujie; Peng, Shitao; Zhou, Qixing; Ma, Lena Q

    2010-02-01

    The temporal and spatial distribution of total petroleum hydrocarbons (TPH) in the seawater of Tianjin Bohai Bay during 1996-2005 was investigated for the first time. TPH concentrations in 480 seawater samples collected from 16 stations during a 10-year span were quantified by ultra-violet fluorescence spectroscopy. Petroleum hydrocarbons were ubiquitous in the seawater, and their concentrations were highly variable, ranging from 23.7 to 508 microg L(-1). TPH concentrations in the seawater varied with seasons, showing a decreasing order of winter>spring>summer. Over the 10-year period, TPH at all stations steadily decreased. The highest values obtained were at stations near the port areas and Dagu outfall where shipping activities and land-based waste water discharges were the major sources of pollution. Our results provided the background information on the extent of TPH contamination in the seawater and highlighted the need to further control TPH pollution in Tianjin Bohai Bay.

  18. [Distributions of COD and petroleum hydrocarbons and their relationships with occurrence of red tide in East China Sea].

    PubMed

    Zhang, Chuansong; Wang, Xiulin; Shi, Xiaoyong; Han, Xiurong; Sun, Xia; Zhu, Chenjian; Lu, Rong

    2003-07-01

    Based on the data of COD and petroleum hydrocarbons collected in the cruise from April 25 to May 2, 2002 in intensive red tide occurrence areas in East China Sea, the distribution of COD, and petroleum hydrocarbons and the eutrophication index(EI) were analyzed. The results showed that the EI and COD value were both high in coastal water, and decreased gradually away from shore. After the preliminary study on the relationships between correlative factors and occurrence of red tide, it was found that high EI and COD were necessary. There would be great chances for the red tide to break out under conditions that the EI was between 2.5 and 15 and COD concentration was between 0.8 to 1.4 mg.L-1 in seawater, along with the favorable temperature and salinity.

  19. Evaluation of the potential use of microorganisms in the cleanup of petroleum hydrocarbon spills in soils. Final report

    SciTech Connect

    Gunnison, D.

    1991-09-01

    Soils and sediments at many military facilities have been contaminated with petroleum hydrocarbons (gasoline, lubricating oil, diesel fuel, aviation fuel), often as a consequence of spills occurring during storage and/or active use. Various elements of the military are required to clean up contamination resulting from any activity on lands under their jurisdiction. Leakage occurring in underground storage tanks near ground water aquifers can be a particularly serious problem, resulting in contamination of ground water. The presence of petroleum hydrocarbon contaminants in flooded soils and sediments can pose unacceptable toxic hazards to the environment. A study was undertaken to examine the feasibility of using native soil micro-flora to degrade diesel fuels, fuel oil, and motor oils within the soil matrix; to isolate and identify those environmental factors controlling the rate and extent of degradation; and to develop procedures to optimize the rate and extent of biodegradation achieved.

  20. Effects of petroleum hydrocarbons on plant litter microbiota in an artic lake

    SciTech Connect

    McKinley, V.L.; Federle, T.W.; Vestal, J.R.

    1982-01-01

    The effects of petroleum hydrocarbons on the microbial community associated with decomposing Carex leaf litter colonized in Toolik Lake, Alaska, were examined. Microbial metabolic activity, measured as the rate of acetate incorporation into lipid, did not vary significantly from controls over a 12-h period after exposure of colonized Carex litter to 3.0 ml of Prudhoe Bay crude oil, diesel fuel, or toluene per liter. ATP levels of the mirobiota became elevated within 2 h after the exposure of the litter to diesel fuel or toluene, but returned to control levels within 4 to 8 h. ATP levels of samples exposed to Prudhoe Baye crude oil did not vary from control levels. Mineralization of specificially labeled /sup 14/C-(lignin)-lignocellulose and /sup 14/C-(cellulose)-lignocellulose by Toolike Lake sediments, after the addition of 2% (vol/vol) Prudhoe Bay crude oil, motor oil, diesel fuel, gasoline, n-hexane, or toluene, was examined after 21 days of incubation at 10/sup 0/C. Diesel fuel, motor oil, gasoline and toluene inhibited /sup 14/C-(lignin)-lignocellulose mineralization by 58, 67, 67, and 86%, respectively. Hexane-treated samples displayed an increase in the rate of /sup 14/C-(lignin)-lignocellulose mineralization of 33%. /sup 14/C-(cellulose)-lignocellulose mineralization was inhibited by the addition of motor oil or toluene by 27 and 64%, respectively, whereas diesel fuel-treaated samples showed a 17% increase in mineralization rate. Mineralization of the labeled lignin component of lignocellulose appeared to be more sensitive to hydrocarbon perturbations than was the labeled cellulose component.

  1. Enhanced removal of petroleum hydrocarbons using a bioelectrochemical remediation system with pre-cultured anodes.

    PubMed

    Venkidusamy, Krishnaveni; Megharaj, Mallavarapu; Marzorati, Massimo; Lockington, Robin; Naidu, Ravi

    2016-01-01

    Bioelectrochemical remediation (BER) systems such as microbial fuel cells (MFCs) have recently emerged as a green technology for the effective remediation of petroleum hydrocarbon contaminants (PH) coupled with simultaneous energy recovery. Recent research has shown that biofilms previously enriched for substrate degrading bacteria resulted in excellent performance in terms of substrate removal and electricity generation but the effects on hydrocarbon contaminant degradation were not examined. Here we investigate the differences between enriched biofilm anodes and freshly inoculated new anodes in diesel fed single chamber mediatorless microbial fuel cells (DMFC) using various techniques for the enhancement of PH contaminant remediation with concomitant electricity generation. An anodophilic microbial consortium previously selected for over a year through continuous culturing with a diesel concentration of about 800mgl(-1) and which now showed complete removal of this concentration of diesel within 30days was compared to that of a freshly inoculated new anode MFC (showing 83.4% removal of diesel) with a simultaneous power generation of 90.81mW/m(2) and 15.04mW/m(2) respectively. The behaviour of pre-cultured anodes at a higher concentration of PH (8000mgl(-1)) was also investigated. Scanning electron microscopy observation revealed a thick biofilm covering the pre-cultured anodic electrode but not the anode from the freshly inoculated MFC. High resolution imaging showed the presence of thin 60nm diametre pilus-like projections emanating from the cells. Anodic microbial community profiling confirmed that the selection for diesel degrading exoelectrogenic bacteria had occurred. Identification of a biodegradative gene (alkB) provided strong evidence of the catabolic pathway used for diesel degradation in the DMFCs.

  2. Dominant petroleum hydrocarbon-degrading bacteria in the Archipelago Sea in South-West Finland (Baltic Sea) belong to different taxonomic groups than hydrocarbon degraders in the oceans.

    PubMed

    Reunamo, Anna; Riemann, Lasse; Leskinen, Piia; Jørgensen, Kirsten S

    2013-07-15

    The natural petroleum hydrocarbon degrading capacity of the Archipelago Sea water in S-W Finland was studied in a microcosm experiment. Pristine and previously oil exposed sites were examined. Bacterial community fingerprinting was performed using terminal restriction fragment length polymorphism (T-RFLP) and samples from selected microcosms were sequenced. The abundance of PAH degradation genes was measured by quantitative PCR. Bacterial communities in diesel exposed microcosms diverged from control microcosms during the experiment. Gram positive PAH degradation genes dominated at both sites in situ, whereas gram negative PAH degrading genes became enriched in diesel microcosms. The dominant bacterial groups after a 14 days of diesel exposure were different depending on the sampling site, belonging to the class Actinobacteria (32%) at a pristine site and Betaproteobacteria (52%) at a previously oil exposed site. The hydrocarbon degrading bacteria in the Baltic Sea differ from those in the oceans, where most hydrocarbon degraders belong to Gammaproteobacteria.

  3. Phytoremediation of a petroleum-hydrocarbon contaminated shallow aquifer in Elizabeth City, North Carolina, USA

    USGS Publications Warehouse

    Nichols, Elizabeth Guthrie; Cook, Rachel L.; Landmeyer, James E.; Atkinson, Brad; Malone, Donald R.; Shaw, George; Woods, Leilani

    2014-01-01

    A former bulk fuel terminal in North Carolina is a groundwater phytoremediation demonstration site where 3,250 hybrid poplars, willows, and pine trees were planted from 2006 to 2008 over approximately 579,000 L of residual gasoline, diesel, and jet fuel. Since 2011, the groundwater altitude is lower in the area with trees than outside the planted area. Soil-gas analyses showed a 95 percent mass loss for total petroleum hydrocarbons (TPH) and a 99 percent mass loss for benzene, toluene, ethylbenzene, and xylenes (BTEX). BTEX and methyl tert-butyl ether concentrations have decreased in groundwater. Interpolations of free-phase, fuel product gauging data show reduced thicknesses across the site and pooling of fuel product where poplar biomass is greatest. Isolated clusters of tree mortalities have persisted in areas with high TPH and BTEX mass. Toxicity assays showed impaired water use for willows and poplars exposed to the site's fuel product, but Populus survival was higher than the willows or pines on-site, even in a noncontaminated control area. All four Populus clones survived well at the site.

  4. Sources and Variability of Petroleum Hydrocarbon Residues in Sediments of Chilika Lagoon, East Coast of India.

    PubMed

    Mohanty, Bita; Muduli, Pradipta R; Cooper, Gregory; Barik, Saroja K; Mahapatro, Debasish; Behera, Alaya T; Pattnaik, Ajit K

    2017-07-01

    The spatio-temporal distribution and the controlling factors of petroleum hydrocarbons (PHCs) in sediments of Chilika lagoon was investigated. Samples were collected during three seasons and quantified using UV-fluorescence spectroscopy. Concentrations of PHCs in surface sediments varies from 0.18 to 12.13 ppm (mean 3.71 ± 3.94 ppm). Compared to the lagoon, the monitoring stations adjacent to jetties with high boating activities tend to have higher PHC concentrations, suggesting that the contribution is likely to be from fossil fuel combustion and accidental seepage. The sediment organic matter (OM) of Chilika ranges from 0.26% to 6.23%. PHC maintains a positive correlation with OM (p < 0.05; f = 0.334), indicating the long term deposition of PHC as sediment OM. However, there is no significant relation between PHC and sediment texture, indicating its negligible control over PHC. The recorded PHC concentrations are below the threshold limit (70 ppm) as classified by United States (US) National Academy of Sciences (NAS) and also lower than those reported from similar ecosystems in India and overseas. Since the long term deposition and the bioaccumulation of PHC cannot be avoided, it is essential to monitor these parameters periodically.

  5. Potential of fungal co-culturing for accelerated biodegradation of petroleum hydrocarbons in soil.

    PubMed

    Yanto, Dede Heri Yuli; Tachibana, Sanro

    2014-08-15

    The potential of fungal co-culture of the filamentous Pestalotiopsis sp. NG007 with four different basidiomycetes--Trametes versicolor U97, Pleurotus ostreatus PL1, Cerena sp. F0607, and Polyporus sp. S133--for accelerating biodegradation of petroleum hydrocarbons (PHCs) was studied using three different physicochemical characteristic PHCs in soil. All the combinations showed a mutual intermingling mycelial interaction on the agar plates. However, only NG007/S133 (50/50) exhibited an optimum growth rate and enzymatic activities that supported the degradation of asphalt in soil. The co-culture also degraded all fractions at even higher concentrations of the different PHCs. In addition, asphaltene, which is a difficult fraction for a single microorganism to degrade, was markedly degraded by the co-culture, which indicated that the simultaneous biodegradation of aliphatic, aromatic, resin, and asphaltene fractions had occurred in the co-culture. An examination of in-vitro degradation by the crude enzymes and the retrieval fungal culture from the soil after the experiment confirmed the accelerated biodegradation due to enhanced enzyme activities in the co-culture. The addition of piperonyl butoxide or AgNO3 inhibited biodegradation by 81-99%, which demonstrated the important role of P450 monooxygenases and/or dioxygenases in the initial degradation of the aliphatic and aromatic fractions in PHCs. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Biodegradation of petroleum hydrocarbon vapors: laboratory studies on rates and kinetics in unsaturated alluvial sand

    NASA Astrophysics Data System (ADS)

    Höhener, Patrick; Duwig, Céline; Pasteris, Gabriele; Kaufmann, Karin; Dakhel, Nathalie; Harms, Hauke

    2003-10-01

    Predictions of natural attenuation of volatile organic compounds (VOCs) in the unsaturated zone rely critically on information about microbial biodegradation kinetics. This study aims at determining kinetic rate laws for the aerobic biodegradation of a mixture of 12 volatile petroleum hydrocarbons and methyl tert-butyl ether (MTBE) in unsaturated alluvial sand. Laboratory column and batch experiments were performed at room temperature under aerobic conditions, and a reactive transport model for VOC vapors in soil gas coupled to Monod-type degradation kinetics was used for data interpretation. In the column experiment, an acclimatization of 23 days took place before steady-state diffusive vapor transport through the horizontal column was achieved. Monod kinetic parameters Ks and vmax could be derived from the concentration profiles of toluene, m-xylene, n-octane, and n-hexane, because substrate saturation was approached with these compounds under the experimental conditions. The removal of cyclic alkanes, isooctane, and 1,2,4-trimethylbenzene followed first-order kinetics over the whole concentration range applied. MTBE, n-pentane, and chlorofluorocarbons (CFCs) were not visibly degraded. Batch experiments suggested first-order disappearance rate laws for all VOCs except n-octane, which decreased following zero-order kinetics in live batch experiments. For many compounds including MTBE, disappearance rates in abiotic batch experiments were as high as in live batches indicating sorption. It was concluded that the column approach is preferable for determining biodegradation rate parameters to be used in risk assessment models.

  7. The development of a solvent-free approach for the determination of petroleum hydrocarbons in water

    SciTech Connect

    Ehntholt, D.J.; Bodek, I.; Miseo, E.V.

    1995-12-31

    Current analytical methods for analysis of total petroleum hydrocarbons or oil and grease in water use extraction of 1.5 liters of the aqueous sample with three aliquots of Freon 113, drying with silica gel and subsequent analysis by infrared spectroscopy at 2,930 cm{sup {minus}1}. The use of chlorofluorocarbons is unacceptable based on environmental concerns regarding the degradation of the ozone layer by photochemical reactions of halocarbons. Due to these environmental concerns, various international agreements have resulted in a plan to eliminate CFCs by the year 2000. A new approach relies on a solid/liquid extraction with thermal desorption of the analytes into a gas stream. The gas stream is analyzed by infrared spectroscopy and the analytes quantified. The steps in the analysis are presented. A known volume of aqueous sample (typically between 10 and 50 ml) is passed through a selectively absorbent resin such as XAD-16. The analytes are absorbed onto the resin, while the water passes through. The analytes are thermally desorbed using a stream of IR transparent gas such as N{sub 2}, At or He which flushes the analytes into a suitable gas cell. The spectrum of the sample is either collected using a Fourier transform spectrometer and commercially available GC/IR or kinetic data collection software or a single wavelength measurement is made using a filter or prism instrument. By integrating the area under the curve for the infrared response versus desorption time, the concentration of the analytes can be calculated.

  8. Screening of biosurfactant producers from petroleum hydrocarbon contaminated sources in cold marine environments.

    PubMed

    Cai, Qinhong; Zhang, Baiyu; Chen, Bing; Zhu, Zhiwen; Lin, Weiyun; Cao, Tong

    2014-09-15

    An overview of literature about isolating biosurfactant producers from marine sources indicated no such producers have been reported form North Atlantic Canada. Water and sediment samples were taken from petroleum hydrocarbon contaminated coastal and offshore areas in this region. Either n-hexadecane or diesel was used as the sole carbon source for the screening. A modified colony-based oil drop collapsing test was used to cover sessile biosurfactant producers. Fifty-five biosurfactant producers belong to genera of Alcanivorax, Exiguobacterium, Halomonas, Rhodococcus, Bacillus, Acinetobacter, Pseudomonas, and Streptomyces were isolated. The first three genera were established after 1980s with interesting characteristics and limited relevant publications. Some of the 55 isolated strains were found with properties such as greatly reducing surface tension, stabilizing emulsion and producing flocculant. Isolates P6-4P and P1-5P were selected to demonstrate the performance of biosurfactant production, and were found to reduce the surface tension of water to as low as 28 dynes/cm.

  9. Breakdown of low-level total petroleum hydrocarbons (TPH) in contaminated soil using grasses and willows.

    PubMed

    McIntosh, Patrick; Kuzovkina, Yulia A; Schulthess, Cristian P; Guillard, Karl

    2016-01-01

    A phytoremediation study targeting low-level total petroleum hydrocarbons (TPH) was conducted using cool- and warm-season grasses and willows (Salix species) grown in pots filled with contaminated sandy soil from the New Haven Rail Yard, CT. Efficiencies of the TPH degradation were assessed in a 90-day experiment using 20-8.7-16.6 N-P-K water-soluble fertilizer and fertilizer with molasses amendments to enhance phytoremediation. Plant biomass, TPH concentrations, and indigenous microbes quantified with colony-forming units (CFU), were assessed at the end of the study. Switchgrass grown with soil amendments produced the highest aboveground biomass. Bacterial CFU's were in orders of magnitude significantly higher in willows with soil amendments compared to vegetated treatments with no amendments. The greatest reduction in TPH occurred in all vegetated treatments with fertilizer (66-75%) and fertilizer/molasses (65-74%), followed sequentially by vegetated treatments without amendments, unvegetated treatments with amendments, and unvegetated treatments with no amendment. Phytoremediation of low-level TPH contamination was most efficient where fertilization was in combination with plant species. The same level of remediation was achievable through the addition of grasses and/or willow combinations without amendment, or by fertilization of sandy soil.

  10. Bioremediation of petroleum hydrocarbon contaminated soil by Rhodobacter sphaeroides biofertilizer and plants.

    PubMed

    Jiao, Haihua; Luo, Jinxue; Zhang, Yiming; Xu, Shengjun; Bai, Zhihui; Huang, Zhanbin

    2015-09-01

    Bio-augmentation is a promising technique for remediation of polluted soils. This study aimed to evaluate the bio-augmentation effect of Rhodobacter sphaeroides biofertilizer (RBF) on the bioremediation of total petroleum hydrocarbons (TPH) contaminated soil. A greenhouse pot experiment was conducted over a period of 120 days, three methods for enhancing bio-augmentation were tested on TPH contaminated soils, including single addition RBF, planting, and combining of RBF and three crop species, such as wheat (W), cabbage (C) and spinach (S), respectively. The results demonstrated that the best removal of TPH from contaminated soil in the RBF bio-augmentation rhizosphere soils was found to be 46.2%, 65.4%, 67.5% for W+RBF, C+RBF, S+RBF rhizosphere soils respectively. RBF supply impacted on the microbial community diversity (phospholipid fatty acids, PLFA) and the activity of soil enzymes, such as dehydrogenase (DH), alkaline phosphatase (AP) and urease (UR). There were significant difference among the soil only containing crude oil (CK), W, C and S rhizosphere soils and RBF bio-augmentation soils. Moreover, the changes were significantly distinct depended on crops species. It was concluded that the RBF is a valuable material for improving effect of remediation of TPH polluted soils.

  11. Suitability of Scirpus maritimus for petroleum hydrocarbons remediation in a refinery environment.

    PubMed

    Couto, M Nazaré P F S; Basto, M Clara P; Vasconcelos, M Teresa S D

    2012-01-01

    In the ambit of a project searching for appropriate biological approaches for recovering a refinery soil contaminated with petroleum hydrocarbons (PHC), we compared results obtained in the absence and in the presence of the salt marsh plant Scirpus maritimus or Juncus maritimus or an association of these two plants, which were tested in the refinery environment. Synergistic effects caused by addition of a non-ionic surfactant and/or a bioaugmentation product were also investigated. Major challenges of this study were: field conditions and weathered contamination. Transplants of the plants were carried out in individual containers filled with a weathered contaminated soil, which was recontaminated with turbine oil with two purposes: for increasing PHC level and allowing a comparison of the potential of plants for remediation of ancient and recent contamination. Analysis of total PHC led to the conclusion that, after 24-month exposure, neither J. maritimus nor the association caused any improvement in remediation. In contrast, S. maritimus revealed potential for PHC remediation, favoring degradation of both recent and older contamination (which was refractory to natural attenuation). About 15% of remediation improvement was found in the soil layer with higher root density (5-10 cm). A more marked improvement in that layer (28%) was observed when non-ionic surfactant amendment and bioaugmentation were used jointly. The fact that S. maritimus has demonstrated capability for PHC remediation, leads to admit that it has potential to be also used for recovering sediments that have suffered accidental oil spills.

  12. Biotransformation of petroleum asphaltenes and high molecular weight polycyclic aromatic hydrocarbons by Neosartorya fischeri.

    PubMed

    Hernández-López, E Lorena; Perezgasga, Lucia; Huerta-Saquero, Alejandro; Mouriño-Pérez, Rosa; Vazquez-Duhalt, Rafael

    2016-06-01

    Neosartorya fischeri, an Aspergillaceae fungus, was evaluated in its capacity to transform high molecular weight polycyclic aromatics hydrocarbons (HMW-PAHs) and the recalcitrant fraction of petroleum, the asphaltenes. N. fischeri was able to grow in these compounds as sole carbon source. Coronene, benzo(g,h,i)perylene, and indeno(1,2,3-c,d)pyrene, together with the asphaltenes, were assayed for fungal biotransformation. The transformation of the asphaltenes and HMW-PAHs was confirmed by reverse-phase high-performance liquid chromatography (HPLC), nano-LC mass spectrometry, and IR spectrometry. The formation of hydroxy and ketones groups on the PAH molecules suggest a biotransformation mediated by monooxygenases such as cytochrome P450 system (CYP). A comparative microarray with the complete genome from N. fischeri showed three CYP monooxygenases and one flavin monooxygenase genes upregulated. These findings, together with the internalization of aromatic substrates into fungal cells and the microsomal transformation of HMW-PAHs, strongly support the role of CYPs in the oxidation of these recalcitrant compounds.

  13. Environmental capacity of petroleum hydrocarbon pollutants in Jiaozhou Bay, China: Modeling and calculation

    NASA Astrophysics Data System (ADS)

    Li, Keqiang; Su, Ying; Ying, Jun; Wang, Xiulin; Mu, Jinbo

    2013-03-01

    An environmental capacity model for the petroleum hydrocarbon pollutions (PHs) in Jiaozhou Bay is constructed based on field surveys, mesocosm, and parallel laboratory experiments. Simulated results of PHs seasonal successions in 2003 match the field surveys of Jiaozhou Bay resaonably well with a highest value in July. The Monte Carlo analysis confirms that the variation of PHs concentration significantly correlates with the river input. The water body in the bay is reasonably subjected to self-purification processes, such as volatilization to the atmosphere, biodegradation by microorganism, and transport to the Yellow Sea by water exchange. The environmental capacity of PHs in Jiaozhou Bay is 1500 tons per year IF the seawater quality criterion (Grade I/II, 0.05 mgL-1) in the region is to be satisfied. The contribution to self-purification by volatilization, biodegradation, and transport to the Yellow Sea accounts for 48%, 28%, and 23%, respectively, which make these three processes the main ways of PHs purification in Jiaozhou Bay.

  14. Bioaccumulation of PAH by oysters (Crassostrea virginica) from estuarine sediments contaminated with petroleum hydrocarbons

    SciTech Connect

    McMillin, D.; Sarradet, K.; Means, J.

    1995-12-31

    Produced water discharges contain polycyclic aromatic hydrocarbons (PAH), typical of petroleum sources, which sorb to sediments and have been shown to accumulate to high levels in the sediments. Oysters were exposed to four dilutions, 0%, 6%, 12%, and 25%, of a sediment collected at Pass Fourchon, LA, a site severely impacted by long-term produced water discharges. Over a six year period concentrations of total PAH ranged from 14--60 ppm at this site. Alkylated PAH constituted around 92% of the total PAH measured in sediment collected 400 m from the actual discharge. Dilutions of the contaminated sediment were prepared using sediment from a nearby reference site, Lake Champagne. Following acclimation in the lab, oysters were exposed to the sediment dilutions for periods up to 28 days, with mortality recorded and alternate-day feeding and water changes. Depuration was measured in oysters removed to clean tanks for 10 days following 28-day exposure. The oysters from each tank were pooled, homogenized and analyzed for 62 individual parent, alkylated and heterocyclic PAH by GC/MS. Accumulation factors (AF) may be used to predict bioaccumulation using sediment characteristics.

  15. Remediation of spilled petroleum hydrocarbons by in situ landfarming at an arctic site

    USGS Publications Warehouse

    McCarthy, K.; Walker, L.; Vigoren, L.; Bartel, J.

    2004-01-01

    A simple, economical landfarming operation was implemented to treat 3600 m3 of soil at a site just northeast of Barrow, AK (latitude 71.3 ??N). Prior to landfarming, diesel-range organics (DRO) and trimethylbenzenes (TMB) were present in the soil at concentrations more than an order of magnitude greater than the established cleanup goals, and moderate levels of gasoline-range organics (GRO) and BTEX compounds were also present. The landfarming operation included application of a commercial fertilizer mix at a rate designed to approach, but not exceed, soil concentrations of 100 mg N/kg soil and 50 mg P/kg soil, and an aggressive schedule of soil tilling using heavy equipment that was readily available from a local source. The operation was designed to continue through the brief thaw season-a scheduled duration of 70 days-but was successfully completed more than 2 weeks ahead of schedule. This work demonstrates that even in extremely harsh climates, soils that are moderately contaminated with petroleum hydrocarbons can be effectively and economically remediated within reasonable time frames via landfarming. ?? 2004 Elsevier B.V. All rights reserved.

  16. Performance of deep-rooted phreatophytic trees at a site containing total petroleum hydrocarbons.

    PubMed

    Ferro, Ari M; Adham, Tareq; Berra, Brett; Tsao, David

    2013-01-01

    Poplar and willow tree stands were installed in 2003 at a site in Raleigh, North Carolina containing total petroleum hydrocarbon - contaminated groundwater. The objective was groundwater uptake and plume control. The water table was 5 to 6 m below ground surface (bgs) and therefore methods were used to encourage deep root development. Growth rates, rooting depth and sap flow were measured for trees in Plot A located in the center of the plume and in Plot B peripheral to the plume. The trees were initially sub-irrigated with vertically installed drip-lines and by 2005 had roots 4 to 5 m bgs. Water balance calculations suggested groundwater uptake. In 2007, the average sap flow was higher for Plot B (approximately 59 L per day per tree) than for Plot A (approximately 23 L per day per tree), probably as a result of TPH-induced stress in Plot A. Nevertheless, the estimated rate of groundwater uptake for Plot A was sufficient, relative to the calculated rate of groundwater flux beneath the stand, that a high level of plume control was achieved based on MODFLOW modeling results. Down-gradient groundwater monitoring wells installed in late 2011 should provide quantitative data for plume control.

  17. Retrospective benzene and total hydrocarbon exposure assessment for a petroleum marketing and distribution worker epidemiology study.

    PubMed

    Armstrong, T W; Pearlman, E D; Schnatter, A R; Bowes, S M; Murray, N; Nicolich, M J

    1996-04-01

    A quantitative exposure-estimating algorithm for benzene and total hydrocarbons was developed for a case control study of petroleum marketing and distribution workers. The algorithm used a multiplicative model to adjust recently measured quantitative exposure data to past scenarios for which representative exposure measurement data did not exist. This was accomplished through the development of exposure modifiers to account for differences in the workplace, the materials handled, the environmental conditions, and the tasks performed. Values for exposure modifiers were obtained empirically and through physical/chemical relationships. Dates for changes that altered exposure potential were obtained from archive records, retired employee interviews, and from current operations personnel. Exposure modifiers were used multiplicatively, adjusting available measured data to represent the relevant exposure scenario and time period. Changes in exposure modifiers translated to step changes in exposure estimates. Though limited by availability of data, a validation exercise suggested that the algorithm provided accurate exposure estimates for benzene (compared with measured data in industrial hygiene survey reports); the estimates generally differed by an average of less than 20% from the measured values. This approach is proposed to quantify exposures retrospectively where there are sufficient data to develop reliable current era estimates and where a historical accounting of key exposure modifiers can be developed, but where there are insufficient historic exposure measurements to directly assess historic exposures.

  18. Biodegradation of petroleum hydrocarbon vapors: laboratory studies on rates and kinetics in unsaturated alluvial sand.

    PubMed

    Höhener, Patrick; Duwig, Céline; Pasteris, Gabriele; Kaufmann, Karin; Dakhel, Nathalie; Harms, Hauke

    2003-10-01

    Predictions of natural attenuation of volatile organic compounds (VOCs) in the unsaturated zone rely critically on information about microbial biodegradation kinetics. This study aims at determining kinetic rate laws for the aerobic biodegradation of a mixture of 12 volatile petroleum hydrocarbons and methyl tert-butyl ether (MTBE) in unsaturated alluvial sand. Laboratory column and batch experiments were performed at room temperature under aerobic conditions, and a reactive transport model for VOC vapors in soil gas coupled to Monod-type degradation kinetics was used for data interpretation. In the column experiment, an acclimatization of 23 days took place before steady-state diffusive vapor transport through the horizontal column was achieved. Monod kinetic parameters Ks and vmax could be derived from the concentration profiles of toluene, m-xylene, n-octane, and n-hexane, because substrate saturation was approached with these compounds under the experimental conditions. The removal of cyclic alkanes, isooctane, and 1,2,4-trimethylbenzene followed first-order kinetics over the whole concentration range applied. MTBE, n-pentane, and chlorofluorocarbons (CFCs) were not visibly degraded. Batch experiments suggested first-order disappearance rate laws for all VOCs except n-octane, which decreased following zero-order kinetics in live batch experiments. For many compounds including MTBE, disappearance rates in abiotic batch experiments were as high as in live batches indicating sorption. It was concluded that the column approach is preferable for determining biodegradation rate parameters to be used in risk assessment models.

  19. Field Investigation of Natural Attenuation of a Petroleum Hydrocarbon Contaminated Aquifer, Gyeonggi Province, Korea

    NASA Astrophysics Data System (ADS)

    Yang, J.; Lee, K.; Bae, G.

    2004-12-01

    In remediation of a petroleum hydrocarbon contaminated aquifer, natural attenuation may be significant as a remedial alternative. Therefore, natural attenuation should be investigated in the field in order to effectively design and evaluate the remediation strategy at the contaminated site. This study focused on evaluating the natural attenuation for benzene, toluene, ethylbenzene, and xylene (BTEX) at a contaminated site in South Korea. At the study site, the aquifer is composed of a high permeable gravel layer and relatively low permeable sandy-silt layers. Groundwater level vertically fluctuated between 1m and 2m throughout the year (April, 2003~June, 2004) and showed direct response to rainfall events. Chemical analyses of sampled groundwater were performed to investigate the concentrations of various chemical species which are associated with the natural attenuation processes. To evaluate the degree of the biodegradation, the expressed biodegradation capacity (EBC) analysis was done using aerobic respiration, nitrate reduction, manganese reduction, ferric iron reduction, and sulfate reduction as an indicator. High EBC value of sulfate indicate that anaerobic biodegradation by sulfate reduction was a dominant process of mineralization of BTEX at this site. The EBC values decrease sensitively when heavy rainfall occurs due to the dilution and inflow of electron acceptors through a gravel layer. The first-order biodegradation rates of BTEX were estimated by means of the Buscheck and Alcantar method (1995). Results show that the natural attenuation rate of benzene was the highest among the BTEX.

  20. Hydrogen isotopic enrichment: an indicator of biodegradation at a petroleum hydrocarbon contaminated field site.

    PubMed

    Mancini, Silvia A; Lacrampe-Couloume, Georges; Jonker, Hendrikus; van Breukelen, Boris M; Groen, Jacobus; Volkering, Frank; Lollar, Barbara Sherwood

    2002-06-01

    Compound-specific carbon and hydrogen isotope analysis was used to investigate biodegradation of benzene and ethylbenzene in contaminated groundwater at Dow Benelux BV industrial site. delta13C values for dissolved benzene and ethylbenzene in downgradient samples were enriched by up to 2+/-0.5 per thousand, in 13C, compared to the delta13C value of the source area samples. delta2H values for dissolved benzene and ethylbenzene in downgradient samples exhibited larger isotopic enrichments of up to 27+/-5 per thousand for benzene and up to 50+/-5 per thousand for ethylbenzene relative to the source area. The observed carbon and hydrogen isotopic fractionation in downgradient samples provides evidence of biodegradation of both benzene and ethylbenzene within the study area at Dow Benelux BV. The estimated extents of biodegradation of benzene derived from carbon and hydrogen isotopic compositions for each sample are in agreement, supporting the conclusion that biodegradation is the primary control on the observed differences in carbon and hydrogen isotope values. Combined carbon and hydrogen isotope analyses provides the ability to compare biodegradation in the field based on two different parameters, and hence provides a stronger basis for assessment of biodegradation of petroleum hydrocarbon contaminants.

  1. Utilization of the PHOSter {trademark} process to improve in situ bioremediation of petroleum hydrocarbons

    SciTech Connect

    Looney, B.B.; Easton, S.; Haselow, J.; Klemm, D.

    1996-12-31

    PHOSter{trademark} is a patented gas-phase nutrient delivery system that can be used to control the addition of vapor phase phosphorus and improve in situ bioremediation processes. PHOSter{trademark} can be easily and cost-effectively added to most existing biosparging or bioventing systems to provide the phosphorus that is often lacking for an optimally healthy microbial environment. Traditional approaches for adding phosphate to sites are based on addition of liquid fertilizer or phosphoric acid vapors. Such systems have been shown to influence very small areas and often result in overstimulation of the microbial population, which can lead to undesirable effects such as formation clogging. The PHOSter{trademark} system uses a relatively safe form of organic phosphate, triethylphosphate or TEP. TEP is added to an air injection stream by contacting or infusing the vapors from the liquid. With PHOSter{trademark}, the presence of the ethyl groups on the phosphate reduces the nutrient`s dissolution rate into water and provides a {open_quotes}time released{close_quotes} stimulation and prevents clogging, and because the phosphorus is in a gas form, it is more readily dispersed in the formation. PHOSter{trademark} has been successfully utilized in three states (South Carolina, Michigan, and New York) on petroleum hydrocarbon and trichloroethane contamination. A goal of a fourth test that is underway in Panama City, Florida at a gasoline distribution terminal is to improve the in situ remediation of BTEX and eliminate fugitive emissions from a multipoint airsparging process.

  2. Design and implementation of a highly integrated and automated in situ bioremediation system for petroleum hydrocarbons

    SciTech Connect

    Dey, J.C.; Rosenwinkel, P.; Norris, R.D.

    1996-12-31

    The proposed sale of an industrial property required that an environmental investigation be conducted as part of the property transfer agreement. The investigation revealed petroleum hydrocarbon compounds (PHCs) in the subsurface. Light nonaqueous phase liquids (LNAPLs) varsol (a gasoline like solvent), gasoline, and fuel oil were found across a three (3) acre area and were present as liquid phase PHCs, as dissolved phase PHCs, and as adsorbed phase PHCs in both saturated and unsaturated soils. Fuel oil was largely present in the unsaturated soils. Fuel oil was largely present in the unsaturated soils. Varsol represented the majority of the PHCs present. The presence of liquid phase PHCs suggested that any remedial action incorporate free phase recovery. The volatility of varsol and gasoline and the biodegradability of the PHCs present in the subsurface suggested that bioremediation, air sparging, and soil vapor extraction/bioventing were appropriate technologies for incorporation in a remedy. The imminent conversion of the impacted area to a retail facility required that any long term remedy be unobtrusive and require minimum activity across much of the impacted area. In the following sections the site investigation, selection and testing of remedial technologies, and design and implementation of an integrated and automated remedial system is discussed.

  3. Utilization of the PHOSter [trademark] process to improve in situ bioremediation of petroleum hydrocarbons

    SciTech Connect

    Looney, B.B. ); Easton, S. ); Haselow, J. ); Klemm, D. )

    1996-01-01

    PHOSter[trademark] is a patented gas-phase nutrient delivery system that can be used to control the addition of vapor phase phosphorus and improve in situ bioremediation processes. PHOSter[trademark] can be easily and cost-effectively added to most existing biosparging or bioventing systems to provide the phosphorus that is often lacking for an optimally healthy microbial environment. Traditional approaches for adding phosphate to sites are based on addition of liquid fertilizer or phosphoric acid vapors. Such systems have been shown to influence very small areas and often result in overstimulation of the microbial population, which can lead to undesirable effects such as formation clogging. The PHOSter[trademark] system uses a relatively safe form of organic phosphate, triethylphosphate or TEP. TEP is added to an air injection stream by contacting or infusing the vapors from the liquid. With PHOSter[trademark], the presence of the ethyl groups on the phosphate reduces the nutrient's dissolution rate into water and provides a [open quotes]time released[close quotes] stimulation and prevents clogging, and because the phosphorus is in a gas form, it is more readily dispersed in the formation. PHOSter[trademark] has been successfully utilized in three states (South Carolina, Michigan, and New York) on petroleum hydrocarbon and trichloroethane contamination. A goal of a fourth test that is underway in Panama City, Florida at a gasoline distribution terminal is to improve the in situ remediation of BTEX and eliminate fugitive emissions from a multipoint airsparging process.

  4. Ecotoxicological assessment of bioremediation of a petroleum hydrocarbon-contaminated soil

    SciTech Connect

    Renoux, A.Y.; Tyagi, R.D.; Roy, Y.; Samson, R.

    1995-12-31

    A battery of bioassays [barley seed germination, barley plant growth, lettuce seed germination, worm mortality, Microtox{reg_sign}, lettuce root elongation, algae Selenastrum capricornutum growth, Daphnia magna mortality, and SOS Chromotest ({+-}S9)] was used to assess an above-ground heap pile treatment of a soil contaminated with aliphatic petroleum hydrocarbons (12 to 24 carbons). Despite an initial oil and grease concentration of 2,000 mg/kg, no significant (geno)toxicity was apparent in the soil sample before treatment. During the treatment, which decreased oil and grease concentrations to 800 mg/kg, slight toxicity was revealed by three bioassays (barley seed germination, worm mortality, Daphnia magna mortality), and a significant increase in genotoxicity was measured with the SOS Chromotest ({+-} S9). It appears that ecotoxicological evaluation revealed harmful condition(s) that were not detected by chemical assessment. This suggests that the remediation had ceased before complete detoxification occurred. This phenomenon must be further investigated, however, to furnish solid conclusions on the toxicological effectiveness of the biotreatment.

  5. Characterization and distribution of petroleum hydrocarbons and heavy metals in groundwater from three Italian tank farms.

    PubMed

    Riccardi, Carmela; Di Filippo, Patrizia; Pomata, Donatella; Incoronato, Federica; Di Basilio, Marco; Papini, Marco Petrangeli; Spicaglia, Sergio

    2008-04-01

    The present paper highlights the utility of petroleum chemical fingerprinting in investigating known or suspected tank farm releases. A detailed characterization of groundwater was carried out in three tank farms located in north, central and south Italy. Eighteen parent polycyclic aromatic hydrocarbons (naphthalene through coronene), n-alkanes (n-C(10) through n-C(36)), isoprenoids pristane and phytane, vanadium, nickel and lead were determined. Distribution profiles and diagnostic ratios of specific fuel constituents were studied in order to identify contamination sources. Data analysis shows that in the study sites multiple pollutant sources affecting the tank farms and the surrounding industrial areas are present. Both high concentrations of contaminants coming from fuel releases and noticeable concentrations of biogenic compounds were found. A detailed data analysis suggests the origin and the level of pollution of the three sites. The results demonstrate that threshold concentration approach is not always sufficient and it is necessary to carry out studies of contaminant distribution and their diagnostic ratios in order to perform a successful forensic investigation.

  6. The Interaction between Plants and Bacteria in the Remediation of Petroleum Hydrocarbons: An Environmental Perspective.

    PubMed

    Gkorezis, Panagiotis; Daghio, Matteo; Franzetti, Andrea; Van Hamme, Jonathan D; Sillen, Wouter; Vangronsveld, Jaco

    2016-01-01

    Widespread pollution of terrestrial ecosystems with petroleum hydrocarbons (PHCs) has generated a need for remediation and, given that many PHCs are biodegradable, bio- and phyto-remediation are often viable approaches for active and passive remediation. This review focuses on phytoremediation with particular interest on the interactions between and use of plant-associated bacteria to restore PHC polluted sites. Plant-associated bacteria include endophytic, phyllospheric, and rhizospheric bacteria, and cooperation between these bacteria and their host plants allows for greater plant survivability and treatment outcomes in contaminated sites. Bacterially driven PHC bioremediation is attributed to the presence of diverse suites of metabolic genes for aliphatic and aromatic hydrocarbons, along with a broader suite of physiological properties including biosurfactant production, biofilm formation, chemotaxis to hydrocarbons, and flexibility in cell-surface hydrophobicity. In soils impacted by PHC contamination, microbial bioremediation generally relies on the addition of high-energy electron acceptors (e.g., oxygen) and fertilization to supply limiting nutrients (e.g., nitrogen, phosphorous, potassium) in the face of excess PHC carbon. As an alternative, the addition of plants can greatly improve bioremediation rates and outcomes as plants provide microbial habitats, improve soil porosity (thereby increasing mass transfer of substrates and electron acceptors), and exchange limiting nutrients with their microbial counterparts. In return, plant-associated microorganisms improve plant growth by reducing soil toxicity through contaminant removal, producing plant growth promoting metabolites, liberating sequestered plant nutrients from soil, fixing nitrogen, and more generally establishing the foundations of soil nutrient cycling. In a practical and applied sense, the collective action of plants and their associated microorganisms is advantageous for remediation of PHC

  7. The Interaction between Plants and Bacteria in the Remediation of Petroleum Hydrocarbons: An Environmental Perspective

    PubMed Central

    Gkorezis, Panagiotis; Daghio, Matteo; Franzetti, Andrea; Van Hamme, Jonathan D.; Sillen, Wouter; Vangronsveld, Jaco

    2016-01-01

    Widespread pollution of terrestrial ecosystems with petroleum hydrocarbons (PHCs) has generated a need for remediation and, given that many PHCs are biodegradable, bio- and phyto-remediation are often viable approaches for active and passive remediation. This review focuses on phytoremediation with particular interest on the interactions between and use of plant-associated bacteria to restore PHC polluted sites. Plant-associated bacteria include endophytic, phyllospheric, and rhizospheric bacteria, and cooperation between these bacteria and their host plants allows for greater plant survivability and treatment outcomes in contaminated sites. Bacterially driven PHC bioremediation is attributed to the presence of diverse suites of metabolic genes for aliphatic and aromatic hydrocarbons, along with a broader suite of physiological properties including biosurfactant production, biofilm formation, chemotaxis to hydrocarbons, and flexibility in cell-surface hydrophobicity. In soils impacted by PHC contamination, microbial bioremediation generally relies on the addition of high-energy electron acceptors (e.g., oxygen) and fertilization to supply limiting nutrients (e.g., nitrogen, phosphorous, potassium) in the face of excess PHC carbon. As an alternative, the addition of plants can greatly improve bioremediation rates and outcomes as plants provide microbial habitats, improve soil porosity (thereby increasing mass transfer of substrates and electron acceptors), and exchange limiting nutrients with their microbial counterparts. In return, plant-associated microorganisms improve plant growth by reducing soil toxicity through contaminant removal, producing plant growth promoting metabolites, liberating sequestered plant nutrients from soil, fixing nitrogen, and more generally establishing the foundations of soil nutrient cycling. In a practical and applied sense, the collective action of plants and their associated microorganisms is advantageous for remediation of PHC

  8. Assessment of Bioavailability Limitations During Slurry Biodegradation of Petroleum Hydrocarbons in Aged Soils

    SciTech Connect

    Huesemann, Michael H.; Hausmann, Tom S.; Fortman, Timothy J.

    2003-12-01

    In an effort to determine whether bioavailability limitations are responsible for the slow or incomplete hydrocarbon biodegradation in aged soils, both the rate of desorption (rdes) and biodegradation (rbio) was measured for n-alkanes and polynuclear aromatic hydrocarbons (PAHs) at different times during the slurry biotreatment of six different soils. While all n-alkanes were biodegraded to various degrees depending on their respective carbon number and the soil organic matter content, none of them were desorbed to a significant extent indicating that these saturated hydrocarbons do not need to be transferred from the soil particles into the aqueous phase in order to be metabolized by microorganisms. Most 2 and 3 ring PAHs biodegraded as fast as they were desorbed (rbio=rdes), i.e., desorption rates controlled biodegradation rates. By contrast, the biodegradation kinetics of 4, 5, and 6 ring PAHs was limited by microbial factors during the initial phase (rbio < rdes) while becoming mass-transfer rate limited during the final phase of bioremediation treatment (rbio=rdes). Whenever PAH biodegradation stalled or did not occur at all (rbio=0), it was never due to bioavailability limitations (rdes >> 0) but was more likely caused by microbial factors such as the absence of specific PAH degraders or cometabolic substrates. Consequently, PAHs that are found to be microbially recalcitrant in aged soils may not be so because of limited bioavailability and thus could pose a greater risk to the environment than previously thought.

  9. 40 CFR Table 6 to Subpart Vvvv of... - Default Organic HAP Contents of Petroleum Solvent Groups

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Contents of... Boat Manufacturing Pt. 63, Subpt. VVVV, Table 6 Table 6 to Subpart VVVV of Part 63—Default Organic HAP Contents of Petroleum Solvent Groups As specified in § 63.5758(a)(6), when detailed organic HAP...

  10. 40 CFR Table 6 to Subpart Vvvv of... - Default Organic HAP Contents of Petroleum Solvent Groups

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Contents of... Boat Manufacturing Pt. 63, Subpt. VVVV, Table 6 Table 6 to Subpart VVVV of Part 63—Default Organic HAP Contents of Petroleum Solvent Groups As specified in § 63.5758(a)(6), when detailed organic HAP...

  11. Functional and genetic characterization of hydrocarbon biodegrader and exopolymer-producing clones from a petroleum reservoir metagenomic library.

    PubMed

    Vasconcellos, Suzan P; Sierra-Garcia, Isabel N; Dellagnezze, Bruna M; Vicentini, Renato; Midgley, David; Silva, Cynthia C; Santos Neto, Eugenio V; Volk, Herbert; Hendry, Philip; Oliveira, Valéria M

    2017-05-01

    Microbial degradation of petroleum is a worldwide issue, which causes physico-chemical changes in its compounds, diminishing its commercial value. Biosurfactants are chemically diverse molecules that can be produced by several microorganisms and can enable microbial access to hydrocarbons. In order to investigate both microbial activities, function-driven screening assays for biosurfactant production and hydrocarbon biodegradation were carried out from a metagenomic fosmid library. It was constructed from the total DNA extracted from aerobic and anaerobic enrichments from a Brazilian biodegraded petroleum sample. A sum of 10 clones were selected in order to evaluate their ability to produce exopolymers (EPS) with emulsifying activity, as well as to characterize the gene sequences, harbored by the fosmid clones, through 454 pyrosequencing. Functional analyses confirmed the ability of some clones to produce surfactant compounds. Regarding hydrocarbon as microbial carbon sources, n-alkane (in mixture or not) and naphthalene were preferentially consumed as substrates. Analysis of sequence data set revealed the presence of genes related to xenobiotics biodegradation and carbohydrate metabolism. These data were corroborated by the results of hydrocarbon biodegradation and biosurfactant production detected in the evaluated clones.

  12. Role of nutrients and illuminance in predicting the fate of fungal mediated petroleum hydrocarbon degradation and biomass production.

    PubMed

    Ali Khan, Aqib Hassan; Tanveer, Sundus; Anees, Mariam; Muhammad, Yousaf Shad; Iqbal, Mazhar; Yousaf, Sohail

    2016-07-01

    Biodegradation and biomass production are affected by numerous environmental factors including pH, oxygen availability and presence of pollutants. The present study, for the first time, elucidated the effects of nutrients and light on mycodegradation of petroleum hydrocarbons in diesel oil. Seven fungal strains (Aspergillus terreus FA3, Aspergillus niger FA5, Aspergillus terreus FA6, Penicillium chrysogenum FP4, Aspergillus terreus FP6, Aspergillus flavus FP10, and Candida sp. FG1) were used for hydrocarbon degradation under static conditions, in four combinations of nutrient media and illuminance for 45 days. Highest degradation was achieved by Aspergillus terreus FA6 and Candida sp. FG1 under both conditions of light and dark, with nutrient deprived HAF (Hydrocarbon adopted fungi) broth. Under HAF/Dark diesel oil degradation by FA6 and FG1 was 87.3% and 84.3% respectively, while under HAF/Light both FA6 and FG1 performed 84.3% biodegradation. The highest biomass was produced by Aspergillus flavus FP10 in PDB (Potato dextrose broth)/Dark (109.3 mg). Fungal degradation of petroleum hydrocarbons was negatively affected by the presence of other simpler-to-degrade carbon sources in the medium. The biomass production was enhanced by improved nutrient availability and diminished by illuminance.

  13. Stimulating in situ surfactant production to increase contaminant bioavailability and augment bioremediation of petroleum hydrocarbons

    NASA Astrophysics Data System (ADS)

    Haws, N. W.; Bentley, H. W.; Yiannakakis, A.; Bentley, A. J.; Cassidy, D. P.

    2006-12-01

    The effectiveness of a bioremediation strategy is largely dependent on relationships between contaminant sequestration (geochemical limitations) and microbial degradation potential (biological limitations). As contaminant bioavailability becomes mass transfer limited, contaminant removal will show less sensitivity to biodegradation enhancements without concurrent enhancements to rates of mass transfer into the bioavailable phase. Implementing a strategy that can simultaneously address geochemical and biological limitations is motivated by a subsurface zone of liquid petroleum hydrocarbons (LPH) contamination that is in excess of 10 acres (40,000 sq. meters). Biodegradation potential at the site is high; however, observed biodegradation rates are generally low, indicative of bioavailability limitations (e.g., low aqueous solubilities, nutrient deficiencies, and/or mass transfer limitations), and estimates indicate that bioremediation (i.e., biosparging/bioventing) with unaugmented biodegradation may be unable to achieve the remedial objectives within an acceptable time. Bench-scale experiments using soils native to the site provide evidence that, in addition to nutrient additions, a pulsed oxygen delivery can increase biodegradation rates by stimulating the microbial production of biosurfactants (rhamnolipids), leading to a reduction in surface tension and an increase in contaminant bioavailability. Pilot-scale tests at the field site are evaluating the effectiveness of stimulating in situ biosurfactant production using cyclic biosparging. The cyclic sparging creates extended periods of alternating aerobic and oxygen-depleted conditions in the submerged smear zone. The increased bioavailability of LPH and the resulting biodegradation enhancements during the test are evaluated using measurements of surface tension (as confirmation of biosurfactant accumulation) and nitrate concentrations (as substantiation of anaerobic biodegradation during shut-off periods). The

  14. Response of the microbial community to seasonal groundwater level fluctuations in petroleum hydrocarbon-contaminated groundwater.

    PubMed

    Zhou, Ai-xia; Zhang, Yu-ling; Dong, Tian-zi; Lin, Xue-yu; Su, Xiao-si

    2015-07-01

    The effects of seasonal groundwater level fluctuations on the contamination characteristics of total petroleum hydrocarbons (TPH) in soils, groundwater, and the microbial community were investigated at a typical petrochemical site in northern China. The measurements of groundwater and soil at different depths showed that significant TPH residue was present in the soil in this study area, especially in the vicinity of the pollution source, where TPH concentrations were up to 2600 mg kg(-1). The TPH concentration in the groundwater fluctuated seasonally, and the maximum variation was 0.8 mg L(-1). The highest TPH concentrations were detected in the silty clay layer and lied in the groundwater level fluctuation zones. The groundwater could reach previously contaminated areas in the soil, leading to higher groundwater TPH concentrations as TPH leaches into the groundwater. The coincident variation of the electron acceptors and TPH concentration with groundwater-table fluctuations affected the microbial communities in groundwater. The microbial community structure was significantly different between the wet and dry seasons. The canonical correspondence analysis (CCA) results showed that in the wet season, TPH, NO3(-), Fe(2+), TMn, S(2-), and HCO3(-) were the major factors correlating the microbial community. A significant increase in abundance of operational taxonomic unit J1 (97% similar to Dechloromonas aromatica sp.) was also observed in wet season conditions, indicating an intense denitrifying activity in the wet season environment. In the dry season, due to weak groundwater level fluctuations and low temperature of groundwater, the microbial activity was weak. But iron and sulfate-reducing were also detected in dry season at this site. As a whole, groundwater-table fluctuations would affect the distribution, transport, and biodegradation of the contaminants. These results may be valuable for the control and remediation of soil and groundwater pollution at this site

  15. Natural attenuation of MTBE at two petroleum-hydrocarbon spill sites.

    PubMed

    Chen, K F; Kao, C M; Wang, J Y; Chen, T Y; Chien, C C

    2005-10-17

    Methyl tert-butyl ether (MTBE) has been used as a gasoline additive to improve the combustion efficiency and to replace lead since 1978. Because it is widely used and it has been disposed inappropriately, MTBE has become a prevalent groundwater contaminant worldwide. In this study, two petroleum-hydrocarbon contaminated sites (Sites A and B) were selected to evaluate the occurrence and effectiveness of natural attenuation of MTBE at these two sites. Field investigation results indicate that the natural attenuation mechanisms of MTBE at both sites were occurring with the first-order attenuation rates of 0.0021 and 0.0048 1day(-1) at Sites A and B, respectively. Results also reveal that the intrinsic biodegradation pattern was the most important mechanism among the natural attenuation processes at both sites. Results from BIOSCREEN simulation suggest that biodegradation was responsible for 78 and 59% of MTBE mass reduction at Sites A and B, respectively. Investigation results show that MTBE plume at Site B could be effectively controlled via natural attenuation processes. However, MTBE plume at Site A has migrated to a farther downgradient area and passed the boundary line of the site. Thus, more active groundwater remedial technologies should be applied at Site A to protect the downgradient environment. Results from this study suggest that natural attenuation might be feasible to be used as a remedial option for the remediation of MTBE-contaminated site on the premise that (1) detailed site characterization has been conducted and (2) the occurrence and effectiveness of natural attenuation processes have been confirmed.

  16. Intrinsic bioremediation of MTBE-contaminated groundwater at a petroleum-hydrocarbon spill site

    NASA Astrophysics Data System (ADS)

    Chen, K. F.; Kao, C. M.; Chen, T. Y.; Weng, C. H.; Tsai, C. T.

    2006-06-01

    An oil-refining plant site located in southern Taiwan has been identified as a petroleum-hydrocarbon [mainly methyl tert-butyl ether (MTBE) and benzene, toluene, ethylbenzene, and xylenes (BTEX)] spill site. In this study, groundwater samples collected from the site were analyzed to assess the occurrence of intrinsic MTBE biodegradation. Microcosm experiments were conducted to evaluate the feasibility of biodegrading MTBE by indigenous microorganisms under aerobic, cometabolic, iron reducing, and methanogenic conditions. Results from the field investigation and microbial enumeration indicate that the intrinsic biodegradation of MTBE and BTEX is occurring and causing the decrease in MTBE and BTEX concentrations. Microcosm results show that the indigenous microorganisms were able to biodegrade MTBE under aerobic conditions using MTBE as the sole primary substrate. The detected biodegradation byproduct, tri-butyl alcohol (TBA), can also be biodegraded by the indigenous microorganisms. In addition, microcosms with site groundwater as the medium solution show higher MTBE biodegradation rate. This indicates that the site groundwater might contain some trace minerals or organics, which could enhance the MTBE biodegradation. Results show that the addition of BTEX at low levels could also enhance the MTBE removal. No MTBE removal was detected in iron reducing and methanogenic microcosms. This might be due to the effects of low dissolved oxygen (approximately 0.3 mg/L) within the plume. The low iron reducers and methanogens (<1.8×103 cell/g of soil) observed in the aquifer also indicate that the iron reduction and methanogenesis are not the dominant biodegradation patterns in the contaminant plume. Results from the microcosm study reveal that preliminary laboratory study is required to determine the appropriate substrates and oxidation-reduction conditions to enhance the biodegradation of MTBE. Results suggest that in situ or on-site aerobic bioremediation using indigenous

  17. An assessment of natural biotransformation of petroleum hydrocarbons and chlorinated solvents at an aquifer plume transect

    NASA Astrophysics Data System (ADS)

    Skubal, Karen L.; Barcelona, Michael J.; Adriaens, Peter

    2001-05-01

    Field biogeochemical characterization and laboratory microcosm studies were performed to assess the potential for future biotransformation of trichloroethylene (TCE) and toluene in a plume containing petroleum hydrocarbons and chlorinated solvents at the former Wurtsmith Air Force Base in Oscoda, MI. In situ terminal electron accepting processes (TEAPs), contaminant composition and microbial phylogeny were studied at a plume transect 100 m downgradient of the source. The presence of reduced electron acceptors, relevant microbial communities, and elevated dissolved methane and carbon dioxide concentrations at the transect, as well as downgradient accumulation of BTEX metabolites and dechlorination products, indicated that past or current reductive dechlorination at the transect was likely driven by BTEX biodegradation in the methanogenic zone. However, TCE and toluene mineralization in sediment-groundwater microcosms without added electron acceptors did not exceed 5% during 300 days of incubation and was nearly invariant with original sediment TEAP, even following amendments of nitrogen and phosphorus. Mineralization rates were on the order of 0.0015-0.03 μmol/g day. After 8 months, microcosms showed evidence of methanogenesis, but CH 4 and CO 2 production arose from the degradation of contaminants other than toluene. Cis-dichloroethylene was observed in only one methanogenic microcosm after more than 500 days. It appears likely that spatially and temporally dynamic redox zonation at the plume transect will prevent future sustained reductive dehalogenation of highly chlorinated solvents, for during the course of a year, the predominant TEAP at the highly contaminated water table shifted from methanogenesis to iron- and sulfate-reduction. It is recommended that biotransformation studies combine considerations of long-term, spatially relevant changes in redox zonation with laboratory-scale studies of electron donor utilization and cometabolic substrate transformation

  18. [Oil pollution status expressed as the fraction of dissolved and dispersed petroleum hydrocarbons].

    PubMed

    Acuña-González, Jenaro; Vargas-Zamora, José A; Gómez-Ramírez, Eddy; García-Céspedes, Jairo

    2004-12-01

    Four coastal ecosystems with contrasting characteristics were sampled in Costa Rica (2000-2002). Oil pollution status, expressed as the fraction of dissolved/dispersed petroleum hydrocarbons related to chrysene equivalents, was determined by the molecular fluorescence analytical technique. A total of 130 water samples were taken, from the Caribbean (Moín Bay), and from the Pacific (Bahía Culebra, Gulf of Nicoya and Dulce Gulf). On one occasion, seven samples along the Puntarenas estuary were also analysed. In Moín the mean and standard deviation were 0.10 microg x L(-1) +/- 0.18 micro x L(-1), ranging from non detectable (nd) to 0.65 microg x L(-1). For the Pacific ecosystems the total range was from nd to 0.37 microg x L(-1). In Bahia Culebra no fluorescence signals were obtained. In the Gulf of Nicoya the mean and standard deviation were 0.04 microg x L(-1) +/- 0.09 microg x L(-1), from nd to 0.33 microg x L(-1). Values in Dulce Gulf were 0.05 microg x L(-1) +/- 0.11 microg x L(-1), from nd to 0.37 microg x L(-1). Along the Puntarenas estuary the range was 0.17 to 5.91 microg x L(-1), with a mean of 1.21 microg x L(-1) and a standard deviation of +/- 2.10 microg x L(-1). The four coastal ecosystems had concentrations below the 10 microg x L(-1) limit for polluted oceanic areas. The Puntarenas estuary reflects the influence of antropogenic activities from and around the City of Puntarenas. These levels are considered low for inshore waters.

  19. Bioremediation of petroleum hydrocarbons from crude oil-contaminated soil with the earthworm: Hyperiodrilus africanus.

    PubMed

    Ekperusi, O A; Aigbodion, F I

    2015-12-01

    A study on the bioremediation potentials of the earthworm Hyperiodrilus africanus (Beddard) in soil contaminated with crude oil was investigated. Dried and sieved soils were contaminated with 5 ml each of crude oil with replicates and inoculated with earthworms and monitored daily for 12 weeks. Physicochemical parameters such as pH, total organic carbon, sulfate, nitrate, phosphate, sodium, potassium, calcium and magnesium were determined using standard procedures. Total petroleum hydrocarbon (TPH) was determined using atomic absorption spectrophotometer (AAS), while BTEX constituents and earthworms tissues were analyzed using Gas Chromatography with Flame Ionization Detector (GC-FID). The results showed that the earthworm significantly enhanced the physicochemical parameters of the contaminated soil resulting in a decrease of the total organic carbon (56.64 %), sulfate (57.66 %), nitrate (57.69 %), phosphate (57.73 %), sodium (57.69 %), potassium (57.68 %), calcium (57.69 %) and magnesium (57.68 %) except pH (3.90 %) that slightly increased. There was a significant decrease in the TPH (84.99 %), benzene (91.65 %), toluene (100.00 %), ethylbenzene (100.00 %) and xylene (100.00 %). Analyses of the tissues of the earthworm at the end of the experiment showed that the earthworms bioaccumulated/biodegraded 57.35/27.64 % TPH, 38.91/52.73 % benzene, 27.76/72.24 % toluene, 42.16/57.85 % ethylbenzene and 09.62/90.38 % xylene. The results showed that the earthworms H. africanus could be used to bioremediate moderately polluted soil with crude oil contamination in the Niger Delta region of Nigeria.

  20. Hydrous pyrolysis of polycyclic aromatic hydrocarbons and implications for the origin of PAH in hydrothermal petroleum

    NASA Technical Reports Server (NTRS)

    McCollom, T. M.; Simoneit, B. R.; Shock, E. L.

    1999-01-01

    Polycyclic aromatic hydrocarbons (PAH) are found at high concentrations in thermally altered organic matter and hydrothermally generated petroleum from sediment-covered seafloor hydro-thermal systems. To better understand the factors controlling the occurrence of PAH in thermally altered environments, the reactivities of two PAH, phenanthrene and anthracene, were investigated in hydrothermal experiments. The compounds were heated with water at 330 degrees C in sealed reaction vessels for durations ranging from 1 to 17 days. Iron oxide and sulfide minerals, formic acid, or sodium for-mate were included in some experiments to vary conditions within the reaction vessel. Phenanthrene was unreactive both in water alone and in the presence of minerals for up to 17 days, while anthracene was partially hydrogenated (5-10%) to di- and tetrahydroanthracene. In the presence of 6-21 vol % formic acid, both phenanthrene and anthracene reacted extensively to form hydrogenated and minor methylated derivatives, with the degree of hydrogenation and methylation increasing with the amount of formic acid. Phenanthrene was slightly hydrogenated in sodium formate solutions. The hydrogenation reactions could be readily reversed; heating a mixture of polysaturated phenanthrenes resulted in extensive dehydrogenation (aromatization) after 3 days at 330 degrees C. While the experiments demonstrate that reaction pathways for the hydrogenation of PAH under hydrothermal conditions exist, the reactions apparently require higher concentrations of H2 than are typical of geologic settings. The experiments provide additional evidence that PAH may be generated in hydrothermal systems from progressive aromatization and dealkylation of biologically derived polycyclic precursors such as steroids and terpenoids. Furthermore, the results indicate that PAH initially present in sediments or formed within hydrothermal systems are resistant to further thermal degradation during hydrothermal alteration.

  1. Hydrous pyrolysis of polycyclic aromatic hydrocarbons and implications for the origin of PAH in hydrothermal petroleum.

    PubMed

    McCollom, T M; Simoneit, B R; Shock, E L

    1999-01-01

    Polycyclic aromatic hydrocarbons (PAH) are found at high concentrations in thermally altered organic matter and hydrothermally generated petroleum from sediment-covered seafloor hydro-thermal systems. To better understand the factors controlling the occurrence of PAH in thermally altered environments, the reactivities of two PAH, phenanthrene and anthracene, were investigated in hydrothermal experiments. The compounds were heated with water at 330 degrees C in sealed reaction vessels for durations ranging from 1 to 17 days. Iron oxide and sulfide minerals, formic acid, or sodium for-mate were included in some experiments to vary conditions within the reaction vessel. Phenanthrene was unreactive both in water alone and in the presence of minerals for up to 17 days, while anthracene was partially hydrogenated (5-10%) to di- and tetrahydroanthracene. In the presence of 6-21 vol % formic acid, both phenanthrene and anthracene reacted extensively to form hydrogenated and minor methylated derivatives, with the degree of hydrogenation and methylation increasing with the amount of formic acid. Phenanthrene was slightly hydrogenated in sodium formate solutions. The hydrogenation reactions could be readily reversed; heating a mixture of polysaturated phenanthrenes resulted in extensive dehydrogenation (aromatization) after 3 days at 330 degrees C. While the experiments demonstrate that reaction pathways for the hydrogenation of PAH under hydrothermal conditions exist, the reactions apparently require higher concentrations of H2 than are typical of geologic settings. The experiments provide additional evidence that PAH may be generated in hydrothermal systems from progressive aromatization and dealkylation of biologically derived polycyclic precursors such as steroids and terpenoids. Furthermore, the results indicate that PAH initially present in sediments or formed within hydrothermal systems are resistant to further thermal degradation during hydrothermal alteration.

  2. Oceanobacter-related bacteria are important for the degradation of petroleum aliphatic hydrocarbons in the tropical marine environment.

    PubMed

    Teramoto, Maki; Suzuki, Masahito; Okazaki, Fumiyoshi; Hatmanti, Ariani; Harayama, Shigeaki

    2009-10-01

    Petroleum-hydrocarbon-degrading bacteria were obtained after enrichment on crude oil (as a 'chocolate mousse') in a continuous supply of Indonesian seawater amended with nitrogen, phosphorus and iron nutrients. They were related to Alcanivorax and Marinobacter strains, which are ubiquitous petroleum-hydrocarbon-degrading bacteria in marine environments, and to Oceanobacter kriegii (96.4-96.5 % similarities in almost full-length 16S rRNA gene sequences). The Oceanobacter-related bacteria showed high n-alkane-degrading activity, comparable to that of Alcanivorax borkumensis strain SK2. On the other hand, Alcanivorax strains exhibited high activity for branched-alkane degradation and thus could be key bacteria for branched-alkane biodegradation in tropical seas. Oceanobacter-related bacteria became most dominant in microcosms that simulated a crude oil spill event with Indonesian seawater. The dominance was observed in microcosms that were unamended or amended with fertilizer, suggesting that the Oceanobacter-related strains could become dominant in the natural tropical marine environment after an accidental oil spill, and would continue to dominate in the environment after biostimulation. These results suggest that Oceanobacter-related bacteria could be major degraders of petroleum n-alkanes spilt in the tropical sea.

  3. Petroleum hydrocarbon biodegradation under seasonal freeze-thaw soil temperature regimes in contaminated soils from a sub-Arctic site.

    PubMed

    Chang, Wonjae; Klemm, Sara; Beaulieu, Chantale; Hawari, Jalal; Whyte, Lyle; Ghoshal, Subhasis

    2011-02-01

    Several studies have shown that biostimulation in ex situ systems such as landfarms and biopiles can facilitate remediation of petroleum hydrocarbon contaminated soils at sub-Arctic sites during summers when temperatures are above freezing. In this study, we examine the biodegradation of semivolatile (F2: C10-C16) and nonvolatile (F3: C16-C34) petroleum hydrocarbons and microbial respiration and population dynamics at post- and presummer temperatures ranging from -5 to 14 °C. The studies were conducted in pilot-scale tanks with soils obtained from a historically contaminated sub-Arctic site in Resolution Island (RI), Canada. In aerobic, nutrient-amended, unsaturated soils, the F2 hydrocarbons decreased by 32% during the seasonal freeze-thaw phase where soils were cooled from 2 to -5 °C at a freezing rate of -0.12 °C d(-1) and then thawed from -5 to 4 °C at a thawing rate of +0.16 °C d(-1). In the unamended (control) tank, the F2 fraction only decreased by 14% during the same period. Biodegradation of individual hydrocarbon compounds in the nutrient-amended soils was also confirmed by comparing their abundance over time to that of the conserved diesel biomarker, bicyclic sesquiterpanes (BS). During this period, microbial respiration was observed, even at subzero temperatures when unfrozen liquid water was detected during the freeze-thaw period. An increase in culturable heterotrophs and 16S rDNA copy numbers was noted during the freezing phase, and the (14)C-hexadecane mineralization in soil samples obtained from the nutrient-amended tank steadily increased. Hydrocarbon degrading bacterial populations identified as Corynebacterineae- and Alkanindiges-related strains emerged during the freezing and thawing phases, respectively, indicating there were temperature-based microbial community shifts.

  4. Use of dissolved and vapor-phase gases to investigate methanogenic degradation of petroleum hydrocarbon contamination in the subsurface

    USGS Publications Warehouse

    Amos, R.T.; Mayer, K.U.; Bekins, B.A.; Delin, G.N.; Williams, R.L.

    2005-01-01

    [1] At many sites contaminated with petroleum hydrocarbons, methanogenesis is a significant degradation pathway. Techniques to estimate CH4 production, consumption, and transport processes are needed to understand the geochemical system, provide a complete carbon mass balance, and quantify the hydrocarbon degradation rate. Dissolved and vapor-phase gas data collected at a petroleum hydrocarbon contaminated site near Bemidji, Minnesota, demonstrate that naturally occurring nonreactive or relatively inert gases such as Ar and N2 can be effectively used to better understand and quantify physical and chemical processes related to methanogenic activity in the subsurface. In the vadose zone, regions of Ar and N2 depletion and enrichment are indicative of methanogenic and methanotrophic zones, and concentration gradients between the regions suggest that reaction-induced advection can be an important gas transport process. In the saturated zone, dissolved Ar and N2 concentrations are used to quantify degassing driven by methanogenesis and also suggest that attenuation of methane along the flow path, into the downgradient aquifer, is largely controlled by physical processes. Slight but discernable preferential depletion of N2 over Ar, in both the saturated and unsaturated zones near the free-phase oil, suggests reactivity of N2 and is consistent with other evidence indicating that nitrogen fixation by microbial activity is taking place at this site. Copyright 2005 by the American Geophysical Union.

  5. The potential for hydrocarbon biodegradation and production of extracellular polymeric substances by aerobic bacteria isolated from a Brazilian petroleum reservoir.

    PubMed

    Vasconcellos, S P; Dellagnezze, B M; Wieland, A; Klock, J-H; Santos Neto, E V; Marsaioli, A J; Oliveira, V M; Michaelis, W

    2011-06-01

    Extracellular polymeric substances (EPS) can contribute to the cellular degradation of hydrocarbons and have a huge potential for application in biotechnological processes, such as bioremediation and microbial enhanced oil recovery (MEOR). Four bacterial strains from a Brazilian petroleum reservoir were investigated for EPS production, emulsification ability and biodegradation activity when hydrocarbons were supplied as substrates for microbial growth. Two strains of Bacillus species had the highest EPS production when phenanthrene and n-octadecane were offered as carbon sources, either individually or in a mixture. While Pseudomonas sp. and Dietzia sp., the other two evaluated strains, had the highest hydrocarbon biodegradation indices, EPS production was not detected. Low EPS production may not necessarily be indicative of an absence of emulsifier activity, as indicated by the results of a surface tension reduction assay and emulsification indices for the strain of Dietzia sp. The combined results gathered in this work suggest that a microbial consortium consisting of bacteria with interdependent metabolisms could thrive in petroleum reservoirs, thus overcoming the limitations imposed on each individual species by the harsh conditions found in such environments.

  6. Efficiency of Indigenous Filamentous Fungi for Biodegradation of Petroleum Hydrocarbons in Medium and Soil: Laboratory Study from Ecuador.

    PubMed

    Maddela, N R; Scalvenzi, L; Pérez, M; Montero, C; Gooty, J M

    2015-09-01

    The competence of two fungal isolates for degrading petroleum hydrocarbons was evaluated. The filamentous fungi were isolated from a crude oil-contaminated soil in northeastern Ecuador, and were 99 %-100 % similar in 18S rDNA sequence to the genus Geomyces. Their efficiencies of degradation were tested in vitro for 30 days, using medium and soil microcosm. Residual hydrocarbons were tracked by gas liquid chromatography with a flame ionization detector. The maximum removal percentages of total petroleum hydrocarbons were 77.3 % and 79.9 % for experiments in the medium and soil microcosm, respectively. The percent germination of cow pea (Vigna unguiculata) seeds was increased from 20 % to 100 % upon bioremediation. Isolates sporulated optimally on minimal salts agar medium at pH 5, 25°C temperature, 1 %-1.5 % substrate (crude oil) and 4-6 g L(-1) N-P-K. These findings suggest that these fungal isolates are potential degraders for bioremediation in crude oil-contaminated areas in Ecuador.

  7. Multi-Year Analysis of Hydrocarbon-Degrading Microbial Communities at the Petroleum-Contaminated site in Bemidji, Minn.

    NASA Astrophysics Data System (ADS)

    Rossbach, S.; Beaver, C. L.; Atekwana, E. A.; Enright, A. M.; Ntarlagiannis, D.; Lund, A.; Slater, L. D.

    2016-12-01

    The purpose of this study was the synchronized geophysical and microbiological analysis of the subsurface petroleum spill in Bemidji, MN. Initially, the center of the free-phase hydrocarbon plume exhibited high magnetic susceptibility (MS) around the water table, however, the MS values decreased in subsequent years. To monitor the composition of the microbial community over time, sediment cores were collected in five consecutive years from the free-phase petroleum plume. Assisted by the sample-freezing drive shoe, continuous cores were collected that stretched below the water table. High-throughput DNA sequencing based on the 16S rRNA gene was applied to closely-spaced samples from the cores, and MS was measured in situ and from the cores. Exactly around the fluctuating water table, where the magnetic susceptibility anomaly had been measured, a methanogenic microbial community was found. The main microbial populations in this community were, besides the hydrocarbon-degrading Firmicutes, the syntrophic propionate oxidizer Smithella and the methanogenic Archaeon Methanoregula. Both genera, Smithella and Methanoregula, were consistently present in samples from all five years, and seem to follow the fluctuating water table. A high water table coincided with high MS and the presence of magnetite, whereas a lower water table may have resulted in the oxidation of magnetite resulting in the measurements of lower MS. Augmented by laboratory analyses of iron oxide minerals and microcosm studies, we are evaluating how certain microbial populations influence the geophysical characteristics of the surrounding sediments during microbial hydrocarbon degradation.

  8. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs.

    PubMed

    Chen, Ming; Xu, Piao; Zeng, Guangming; Yang, Chunping; Huang, Danlian; Zhang, Jiachao

    2015-11-01

    Increasing soil pollution problems have caused world-wide concerns. Large numbers of contaminants such as polycyclic aromatic hydrocarbons (PAHs), petroleum and related products, pesticides, chlorophenols and heavy metals enter the soil, posing a huge threat to human health and natural ecosystem. Chemical and physical technologies for soil remediation are either incompetent or too costly. Composting or compost addition can simultaneously increase soil organic matter content and soil fertility besides bioremediation, and thus is believed to be one of the most cost-effective methods for soil remediation. This paper reviews the application of composting/compost for soil bioremediation, and further provides a critical view on the effects of this technology on microbial aspects in contaminated soils. This review also discusses the future research needs for contaminated soils. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Genome sequence of obligate marine polycyclic aromatic hydrocarbons-degrading bacterium Cycloclasticus sp. 78-ME, isolated from petroleum deposits of the sunken tanker Amoco Milford Haven, Mediterranean Sea.

    PubMed

    Messina, Enzo; Denaro, Renata; Crisafi, Francesca; Smedile, Francesco; Cappello, Simone; Genovese, Maria; Genovese, Lucrezia; Giuliano, Laura; Russo, Daniela; Ferrer, Manuel; Golyshin, Peter; Yakimov, Michail M

    2016-02-01

    Cycloclasticus sp. 78-ME isolated from petroleum deposits of the sunken tanker “Amoco Milford Haven” (Gulf of Genoa, Ligurian Sea, Italy) could effectively degrade polycyclic aromatic hydrocarbons of up to five condensed rings. The genome of 78-ME was sequenced and analysed to gain insights into its remarkable degrading capacities. It comprises two circular replicons, the 2,613,078 bp chromosome and the plasmid of 42,347 bp, with 41.84% and 53.28% of the G + C content respectively. A total of 2585 protein-coding genes were obtained, and three large operons with more than fifteen enzymes belonging to four different classes of ring-cleavage dioxygenases were found.

  10. Enrichment and characterization of hydrocarbon-degrading bacteria from petroleum refinery waste as potent bioaugmentation agent for in situ bioremediation.

    PubMed

    Sarkar, Poulomi; Roy, Ajoy; Pal, Siddhartha; Mohapatra, Balaram; Kazy, Sufia K; Maiti, Mrinal K; Sar, Pinaki

    2017-10-01

    Intrinsic biodegradation potential of bacteria from petroleum refinery waste was investigated through isolation of cultivable strains and their characterization. Pseudomonas and Bacillus spp. populated the normal cultivable taxa while prolonged enrichment with hydrocarbons and crude oil yielded hydrocarbonoclastic bacteria of genera Burkholderia, Enterobacter, Kocuria, Pandoraea, etc. Strains isolated through enrichment showed assemblages of superior metabolic properties: utilization of aliphatic (C6-C22) and polyaromatic compounds, anaerobic growth with multiple terminal electron acceptors and higher biosurfactant production. Biodegradation of dodecane was studied thoroughly by GC-MS along with detection of gene encoding alkane hydroxylase (alkB). Microcosms bioaugmented with Enterobacter, Pandoraea and Burkholderia strains showed efficient biodegradation (98% TPH removal) well fitted in first order kinetic model with low rate constants and decreased half-life. This study proves that catabolically efficient bacteria resides naturally in complex petroleum refinery wastes and those can be useful for bioaugmentation based bioremediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Detailed analysis of petroleum hydrocarbon attenuation in biopiles by high-performance liquid chromatography followed by comprehensive two-dimensional gas chromatography.

    PubMed

    Mao, Debin; Lookman, Richard; Van De Weghe, Hendrik; Van Look, Dirk; Vanermen, Guido; De Brucker, Nicole; Diels, Ludo

    2009-02-27

    Enhanced bioremediation of petroleum hydrocarbons in two biopiles was quantified by high-performance liquid chromatography (HPLC) followed by comprehensive two-dimensional gas chromatography (GCXGC). The attenuation of 34 defined hydrocarbon classes was calculated by HPLC-GCXGC analysis of representative biopile samples at start-up and after 18 weeks of biopile operation. In general, a-cyclic alkanes were most efficiently removed from the biopiles, followed by monoaromatic hydrocarbons. Cycloalkanes and polycyclic aromatic hydrocarbons (PAHs) were more resistant to degradation. A-cyclic biomarkers farnesane, trimethyl-C13, norpristane, pristane and phytane dropped to only about 10% of their initial concentrations. On the other hand, C29-C31 hopane concentrations remained almost unaltered after 18 weeks of biopile operation, confirming their resistance to biodegradation. They are thus reliable indicators to estimate attenuation potential of petroleum hydrocarbons in biopile processed soils.

  12. Removal of polycyclic aromatic hydrocarbons in soil spiked with model mixtures of petroleum hydrocarbons and heterocycles using biosurfactants from Rhodococcus ruber IEGM 231.

    PubMed

    Ivshina, Irina; Kostina, Ludmila; Krivoruchko, Anastasiya; Kuyukina, Maria; Peshkur, Tatyana; Anderson, Peter; Cunningham, Colin

    2016-07-15

    Removal of polycyclic aromatic hydrocarbons (PAHs) in soil using biosurfactants (BS) produced by Rhodococcus ruber IEGM 231 was studied in soil columns spiked with model mixtures of major petroleum constituents. A crystalline mixture of single PAHs (0.63g/kg), a crystalline mixture of PAHs (0.63g/kg) and polycyclic aromatic sulfur heterocycles (PASHs), and an artificially synthesized non-aqueous phase liquid (NAPL) containing PAHs (3.00g/kg) dissolved in alkanes C10-C19 were used for spiking. Percentage of PAH removal with BS varied from 16 to 69%. Washing activities of BS were 2.5 times greater than those of synthetic surfactant Tween 60 in NAPL-spiked soil and similar to Tween 60 in crystalline-spiked soil. At the same time, amounts of removed PAHs were equal and consisted of 0.3-0.5g/kg dry soil regardless the chemical pattern of a model mixture of petroleum hydrocarbons and heterocycles used for spiking. UV spectra for soil before and after BS treatment were obtained and their applicability for differentiated analysis of PAH and PASH concentration changes in remediated soil was shown. The ratios A254nm/A288nm revealed that BS increased biotreatability of PAH-contaminated soils.

  13. Proceedings of petroleum hydrocarbons and organic chemicals in ground water: Prevention, detection, and restoration

    SciTech Connect

    Not Available

    1990-01-01

    This proceedings contains papers focusing on prevention of contamination, detection, and monitoring of hydrocarbons in soils and ground water, transport and fate, free-phase hydrocarbon recovery, defining remediation levels, remediation of residual phase hydrocarbons (by vapor extraction and bioventing), and biodegradation.

  14. Distribution of petroleum hydrocarbons and organochlorinated contaminants in marine biota and coastal sediments from the ROPME Sea Area during 2005.

    PubMed

    de Mora, Stephen; Tolosa, Imma; Fowler, Scott W; Villeneuve, Jean-Pierre; Cassi, Roberto; Cattini, Chantal

    2010-12-01

    The composition and spatial distribution of various petroleum hydrocarbons (PHs), comprising both aliphatic and polycyclic aromatic hydrocarbons (PAHs), and selected chlorinated pesticides and PCBs were measured in biota and coastal sediments from seven countries in the Persian Gulf and the Gulf of Oman (Bahrain, Iran, Kuwait, Oman, Qatar, Saudi Arabia and the United Arab Emirates). Evidence of extensive marine contamination with respect to organochlorinated compounds and PHs was not observed. Only one site, namely the BAPCO oil refinery in Bahrain, was considered to be chronically contaminated. Comparison of the results from this survey for Σ DDTs and Σ PCBs in rock oysters from the Gulf of Oman with similar measurements made at the same locations over the past two decades indicates a temporal trend of overall decreasing Σ PCB concentrations in oysters, whereas Σ DDTs levels have little changed during that period.

  15. Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways.

    PubMed Central

    Whyte, L G; Bourbonniére, L; Greer, C W

    1997-01-01

    Three hydrocarbon-degrading psychrotrophic bacteria were isolated from petroleum-contaminated Arctic soils and characterized. Two of the strains, identified as Pseudomonas spp., degraded C5 to C12 n-alkanes, toluene, and naphthalene at both 5 and 25 degrees C and possessed both the alk catabolic pathway for alkane biodegradation and the nah catabolic pathway for polynuclear aromatic hydrocarbon biodegradation. One of these strains contained both a plasmid slightly smaller than the P. oleovorans OCT plasmid, which hybridized to an alkB gene probe, and a NAH plasmid similar to NAH7, demonstrating that both catabolic pathways, located on separate plasmids, can naturally coexist in the same bacterium. PMID:9293024

  16. Determination of organochlorinated compounds and petroleum hydrocarbons in sediment sample IAEA-408. Results from a world-wide intercalibration exercise.

    PubMed

    Villeneuve, J P; de Mora, S J; Cattini, C; Carvalho, F P

    2000-10-01

    A sediment sample from the intertidal mudflats of the Tagus estuary was prepared, homogenised and distributed globally to laboratories as the IAEA-408 intercomparison material for the analyses of organochlorinated pesticides, PCBs and petroleum hydrocarbons (PHs). A total of 48 laboratories from 36 countries reported their results. The data from participants show that there still remain some difficulties with the accurate determination of organic contaminants such as pesticides and polycyclic aromatic hydrocarbons (PAHs). More consistent interlaboratory results were obtained for PCBs congeners. The final results of this intercomparison exercise enable individual participants to assess their performance and, where necessary, to introduce appropriate modifications in their analytical procedures. Furthermore, as a series of statistical criteria was fulfilled for a number of compounds, the sample IAEA-408 can now be used as a reference material for quality control in the determination of some persistant organic pollutants (POPs) in marine sediment samples.

  17. In situ oxidation of petroleum-hydrocarbon contaminated groundwater using passive ISCO system.

    PubMed

    Liang, S H; Kao, C M; Kuo, Y C; Chen, K F; Yang, B M

    2011-04-01

    petroleum-hydrocarbon contaminated aquifers. Results from this study will be useful in designing a scale-up system for field application.

  18. Anaerobic, sulfate-dependent degradation of polycyclic aromatic hydrocarbons in petroleum-contaminated harbor sediment.

    PubMed

    Rothermich, Mary M; Hayes, Lory A; Lovley, Derek R

    2002-11-15

    It has previously been demonstrated that [14C]-labeled polycyclic aromatic hydrocarbons (PAHs) can be oxidized to 14CO2 in anoxic, PAH-contaminated, marine harbor sediments in which sulfate reduction is the terminal electron-accepting process. However, it has not previously been determined whether this degradation of [14C]-PAHs accurately reflects the degradation of the in situ pools of contaminant PAHs. In coal tar-contaminated sediments from Boston Harbor, [14C]-naphthalene was readily oxidized to 14CO2, but, after 95 d of incubation under anaerobic conditions, there was no significant decrease in the detectable pool of in situ naphthalene in these sediments. Therefore, to better evaluate the anaerobic biodegradation of the in situ PAH pools, the concentrations of these contaminants were monitored for ca. 1 year during which the sediments were incubated under conditions that mimicked those found in situ. There was loss of all of the PAHs that were monitored (2-5 ring congeners), including high molecular weight PAHs, such as benzo[a]pyrene, that have not previously been shown to be degraded under anaerobic conditions. There was no significant change in the PAH levels in the sediments amended with molybdate to inhibit sulfate-reducing bacteria or in sediments in which all microorganisms had been killed with glutaraldehyde. In some instances, over half of the detectable pools of in situ 2-3 ring PAHs were degraded. In general, the smaller PAHs were degraded more rapidly than the larger PAHs. A distinct exception in the Boston Harbor sediment was naphthalene which was degraded very slowly at a rate comparable to the larger PAHs. In a similar in situ-like study of fuel-contaminated sediments from Liepaja Harbor, Latvia, there was no decline in PAH levels in samples that were sulfate-depleted. However, when the Latvia sediments were supplemented with sufficient sodium sulfate or gypsum to elevate pore water levels of sulfate to approximately 14-25 mM there was a 90

  19. Anaerobic hydrocarbon degradation in petroleum-contaminated harbor sediments under sulfate-reducing and artificially imposed iron-reducing conditions

    USGS Publications Warehouse

    Coates, J.D.; Anderson, R.T.; Woodward, J.C.; Phillips, E.J.P.; Lovley, D.R.

    1996-01-01

    The potential use of iron(III) oxide to stimulate in-situ hydrocarbon degradation in anaerobic petroleum-contaminated harbor sediments was investigated. Previous studies have indicated that Fe(III)-reducing bacteria (FeRB) can oxidize some electron donors more effectively than sulfate- reducing bacteria (SRB). In contrast to previous results in freshwater sediments, the addition of Fe(III) to marine sediments from San Diego Bay, CA did not switch the terminal electron-accepting process (TEAP) from sulfate reduction to Fe-(III) reduction. Addition of Fe(III) also did not stimulate anaerobic hydrocarbon oxidation. Exposure of the sediment to air [to reoxidize Fe(II) to Fe(III)] followed by anaerobic incubation of the sediments, resulted in Fe-(III) reduction as the TEAP, but contaminant degradation was not stimulated and in some instances was inhibited. The difference in the ability of FeRB to compete with the SRB in the different sediment treatments was related to relative population sizes. Although the addition of Fe(III) did not stimulate hydrocarbon degradation, the results presented here as well as other recent studies demonstrate that there may be significant anaerobic hydrocarbon degradation under sulfate-reducing conditions in harbor sediments.

  20. Determination of petroleum hydrocarbons in contaminated soils using solid-phase microextraction with gas chromatography-mass spectrometry.

    PubMed

    Cam, D; Gagni, S

    2001-11-01

    Manual solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry is investigated as a possible alternative for the determination of petroleum hydrocarbons in soils. Spiked onto an agricultural soil is a commercial diesel fuel (DF) with the following composition by weight: 12% linear alkanes, 52% saturated hydrocarbons (branched and cyclic), 21% alkylated aromatic hydrocarbons, 6% polycyclic aromatic hydrocarbons, and 9% unidentified compounds. The spiked soil samples are aged three days at room temperature before analysis. The optimal conditions for the SPME of DF from soils are examined and maximum sensitivity is obtained using a 100-microm polydimethylsiloxane fiber at a sampling temperature of 47 degrees C by sonication both in the headspace and directly through a water medium. The reproducibility of the whole technique showed a relative standard deviation of 10%. The parameters that can influence the recovery of DF (such as the time of SPME extraction, the presence of organic solvent and water, and the matrix) are investigated. The linearity is verified in the range of 40 to 1200 mg/L for the direct injection of DF, 0.1 to 1 mg/L for the SPME of DF from water, and 1 to 50 mg/Kg of dry soil for the SPME of DF from soils. The detection limits are respectively 0.5 mg/L, 0.02 mg/L, and 0.1 mg/Kg of dry soil. The method is corroborated by comparing the results with those obtained by the traditional way.

  1. Evaluation of Pluronic Polyol F127 as a vehicle for petroleum hydrocarbons in the Salmonella/microsomal assay

    SciTech Connect

    Marino, D.J.

    1987-01-01

    Complex hydrocarbon mixtures have proven difficult to evaluate in in vitro mutagenicity assays owing to their insolubility in aqueous environments. Pluronic Polyol F127 (BASF Wyandotte, Parsippany, NJ), prepared as a 50% (w/w) solution in absolute ethanol, proved effective in emulsifying various petroleum hydrocarbon fractions. Its effectiveness in the Salmonella/microsomal assay was evaluated using model solutions each comprising a polycyclic aromatic hydrocarbon (PAH) dissolved in mineral oil. The PAHs used were benzo(a)pyrene, 3-methylcholanthrene, and 7,12-dimethylbenz(a)anthracene. Model solutions were evaluated neat and as emulsions with the Pluronic F127 solution or Tween 80. Similar levels of each PAH were prepared in dimethyl sulfoxide (DMSO) for comparison. Cytotoxicity and mutagenesis were evaluated in the preincubation technique using strain TA97. Little or no cytotoxicity or mutagenesis was evident for model solutions tested neat. However, emulsification of these PAH-laden mixtures with the Pluronic F127 solution yielded cytotoxic and mutagenic responses similar to, or greater than, those observed for PAHs delivered in DMSO. Model mixtures emulsified with Tween 80 were less active. Study results demonstrate that Pluronic F127, prepared as a 50% (w/w) solution in absolute ethanol, is an effective vehicle for evaluating the mutagenic potential of complex hydrocarbon mixtures containing PAHs in the Salmonella/microsomal assay.

  2. Total hydrocarbon content (THC) testing in liquid oxygen (LOX) systems

    NASA Astrophysics Data System (ADS)

    Meneghelli, B. J.; Obregon, R. E.; Ross, H. R.; Hebert, B. J.; Sass, J. P.; Dirschka, G. E.

    2015-12-01

    The measured Total Hydrocarbon Content (THC) levels in liquid oxygen (LOX) systems at Stennis Space Center (SSC) have shown wide variations. Examples of these variations include the following: 1) differences between vendor-supplied THC values and those obtained using standard SSC analysis procedures; and 2) increasing THC values over time at an active SSC test stand in both storage and run vessels. A detailed analysis of LOX sampling techniques, analytical instrumentation, and sampling procedures will be presented. Additional data obtained on LOX system operations and LOX delivery trailer THC values during the past 12-24 months will also be discussed. Field test results showing THC levels and the distribution of the THC's in the test stand run tank, modified for THC analysis via dip tubes, will be presented.

  3. Total Hydrocarbon Content (THC) Testing in Liquid Oxygen (LOX)

    NASA Technical Reports Server (NTRS)

    Meneghelli, B. J.; Obregon, R. E.; Ross, H. R.; Hebert, B. J.; Sass, J. P.; Dirschka, G. E.

    2016-01-01

    The measured Total Hydrocarbon Content (THC) levels in liquid oxygen (LOX) systems at Stennis Space Center (SSC) have shown wide variations. Examples of these variations include the following: 1) differences between vendor-supplied THC values and those obtained using standard SSC analysis procedures; and 2) increasing THC values over time at an active SSC test stand in both storage and run vessels. A detailed analysis of LOX sampling techniques, analytical instrumentation, and sampling procedures will be presented. Additional data obtained on LOX system operations and LOX delivery trailer THC values during the past 12-24 months will also be discussed. Field test results showing THC levels and the distribution of the THC's in the test stand run tank, modified for THC analysis via dip tubes, will be presented.

  4. Spatial distribution and concentration assessment of total petroleum hydrocarbons in the intertidal zone surface sediment of Todos os Santos Bay, Brazil.

    PubMed

    Silva, Carine S; Moreira, Icaro T A; de Oliveira, Olivia M C; Queiroz, Antonio F S; Garcia, Karina S; Falcão, Brunno A; Escobar, Narayana F C; Rios, Mariana Cruz

    2014-02-01

    The primary objective of this study was to investigate the concentrations and spatial distribution of the total petroleum hydrocarbons (TPHs) in the intertidal zone surface sediment of Todos os Santos Bay, Brazil, to assess the distribution and degree of contamination by TPHs, measure the level of TPH degradation in the surface sediment, and identify the organic matter sources. The surface sediment used in this study was collected in 50 stations, and TPHs, isoprenoid alkanes (pristane and phytane), and unresolved complex mixture (UCM) were analyzed by gas chromatography with a flame ionization detector. The total concentrations ranged from 0.22 to 40,101 μg g(-1) dry weight and showed a strong correlation with the total organic carbon (TOC) content. The highest TPH concentrations were observed in samples from the mangrove sediments of a river located near a petroleum refinery. Compared with other studies in the world, the TPH concentrations in the intertidal surface sediment of Todos os Santos Bay were below average in certain stations and above average in others. An analysis of the magnitude of UCM (0.11 to 17,323 μg g(-1) dry weight) and the ratios nC17/Pr and nC18/Ph suggest that an advanced state of oil weathering, which indicates previous contamination. The molar C/N ratios varied between 5 and 43, which indicate organic matter with a mixed origin comprising marine and continental contributions.

  5. Risk assessment of nitrate and petroleum-derived hydrocarbon addition on Contricriba weissflogii biomass, lifetime, and nutritional value.

    PubMed

    Shun-Xing, Li; Feng-Jiao, Liu; Feng-Ying, Zheng; Xu-Guang, Huang; Yue-Gang, Zuo

    2014-03-15

    Coastal diatoms are often exposed to both petroleum-derived hydrocarbon pollution and eutrophication. How these exposures influence on algal biomass, lifetime, and nutritional value are unknown. To examine a more accurate risk assessment of the pollutants on the role of diatoms in coastal ecosystem functions, Conticribra weissflogii was maintained at different concentrations of nitrate (N) and/or water-soluble fractions of No.0 diesel oil (WSF). Algal density, cell growth cycle, protein, chlorophyll a, superoxide dismutase (SOD) activity, and malonaldehyde (MDA) were determined for the assessment of algal biomass, lifetime, nutritional value, photosynthesis and respiration, antioxidant capacity, and lipid peroxidation, respectively.When N addition was combined with WSF pollution, the cell growth cycles were shortened by 27-44%; SOD activities were decreased by 1-64%; algal density, the concentrations of chlorophyll a, protein, and MDA were varied between 38 and 310%, 62 and 712%, 4 and 124%, and 19 and 233% of the values observed in N addition experiments, respectively. Coastal ecosystem functions were severely weakened by N and WSF additions, and the influence was increased in the order: Npetroleum-derived hydrocarbon on coastal ecosystem functions.

  6. Concentrations in human blood of petroleum hydrocarbons associated with the BP/Deepwater Horizon oil spill, Gulf of Mexico.

    PubMed

    Sammarco, Paul W; Kolian, Stephan R; Warby, Richard A F; Bouldin, Jennifer L; Subra, Wilma A; Porter, Scott A

    2016-04-01

    During/after the BP/Deepwater Horizon oil spill, cleanup workers, fisherpersons, SCUBA divers, and coastal residents were exposed to crude oil and dispersants. These people experienced acute physiological and behavioral symptoms and consulted a physician. They were diagnosed with petroleum hydrocarbon poisoning and had blood analyses analyzed for volatile organic compounds; samples were drawn 5-19 months after the spill had been capped. We examined the petroleum hydrocarbon concentrations in the blood. The aromatic compounds m,p-xylene, toluene, ethylbenzene, benzene, o-xylene, and styrene, and the alkanes hexane, 3-methylpentane, 2-methylpentane, and iso-octane were detected. Concentrations of the first four aromatics were not significantly different from US National Health and Nutritional Examination Survey/US National Institute of Standards and Technology 95th percentiles, indicating high concentrations of contaminants. The other two aromatics and the alkanes yielded equivocal results or significantly low concentrations. The data suggest that single-ring aromatic compounds are more persistent in the blood than alkanes and may be responsible for the observed symptoms. People should avoid exposure to crude oil through avoidance of the affected region, or utilizing hazardous materials suits if involved in cleanup, or wearing hazardous waste operations and emergency response suits if SCUBA diving. Concentrations of alkanes and PAHs in the blood of coastal residents and workers should be monitored through time well after the spill has been controlled.

  7. Influence of electron donor on the minimum sulfate concentration required for sulfate reduction in a petroleum hydrocarbon-contaminated aquifer

    USGS Publications Warehouse

    Vroblesky, D.A.; Bradley, P.M.; Chapelle, F.H.

    1996-01-01

    Fluctuations in the availability of electron donor (petroleum hydrocarbons) affected the competition between sulfate-reducing bacteria (SRB) and methanogenic bacteria (MB) for control of electron flow in a petroleum hydrocarbon-contaminated aquifer. The data suggest that abundant electron donor availability allowed MB to sequester a portion of the electron flow even when sulfate was present in sufficient concentrations to support sulfate reduction. For example, in an area of abundant electron-donor availability, SRB appeared to be unable to sequester the electron flow from MB in the presence of 1.4 mg/L sulfate. The data also suggest that when electron-donor availability was limited, SRB outcompeted MB for available substrate at a lower concentration of sulfate than when electron donor was plentiful. For example, in an area of limited electron-donor availability, SRB appeared to maintain dominance of electron flow at sulfate concentrations less than 1 mg/L. The presence of abundant electron donor and a limited amount of sulfate reduced competition for available substrate, allowing both SRB and MB to metabolize available substrates concurrently.

  8. Subsurface screening of petroleum hydrocarbons in soils via laser-induced fluorometry over optical fibers with a cone penetrometer system

    NASA Astrophysics Data System (ADS)

    Lieberman, Stephen H.; Apitz, Sabine E.; Borbridge, Lisa M.; Theriault, Gregory A.

    1993-03-01

    A novel field screening method is described that couples a fiber optic based chemical sensor system to a truck mounted cone penetrometer. The system provides the capability for real- time, in situ measurement of petroleum hydrocarbon contamination and soil type to depths of 50 m. The technique uses a hydraulic ram in a truck with a 20 ton reaction mass to push an instrumented probe into the ground. Fluorescence is excited through a sapphire window in the probe by 337 nm light from a pulsed nitrogen laser. The excitation pulse is transmitted down the probe over a 100 m silica clad silica optical fiber. The resulting fluorescence from aromatic hydrocarbons in the soil is returned to the surface over a second fiber, dispersed with a spectrograph, and quantified with an intensified linear photodiode array. Field test data is presented that demonstrates how the system can be used for rapid three-dimensional delineation of a POL (Petroleum-Oil-Lubricant) contaminant plume at a hazardous waste site. Fluorescent fingerprints from 14 samples of 9 fuel types are used to show how spectral differences can be used for identifying contaminant sources. The effects of volatilization of different fuel types on the measured fluorescent signal are discussed.

  9. Report of EPA efforts to replace freon for the determination of oil and grease and total petroleum hydrocarbons: Phase 2

    SciTech Connect

    1995-04-01

    The Environmental Protection Agency (EPA) initiated a multiphase study to determine a suitable replacement solvent for Freon-113, a class I CFC used in several EPA wastewater and solid waste methods for the determination of oil and grease and petroleum hydrocarbons. Conclusions from the Phase I study were used to narrow the list of alternative solvents to be considered in Phase II to n-hexane and cyclohexane. These solvents were evaluated for separatory funnel extraction and gravimetric determination of both oil and grease and total petroleum hydrocarbons (TPH) in aqueous samples. Triplicate analyses were performed for each of the solvents tested (i.e Freon-113, n-hexane, and cyclohexane) on each of 34 samples from a combination of inprocess and effluent waste streams collected from 25 facilities encompassing 16 different industrial categories. The objectives of Phase II were to find the alternative solvent that produced results closest to the results produced by Freon-113 and to develop an analytical method that incorporated this extraction solvent. In addition to studies of alternative solvents, solid phase disk extraction, solid phase cartridge extraction (also known as solid phase column extraction), non-dispersive infra-red spectroscopy, and immunoassay were voluntarily evaluated by vendors of the products using splits of each sample collected as part of the Phase II study.

  10. Petroleum Hydrocarbon Fingerprints of Water and Sediment Samples of Buffalo River Estuary in the Eastern Cape Province, South Africa

    PubMed Central

    Okoh, A. I.

    2017-01-01

    Petroleum hydrocarbon status of the Buffalo River Estuary in East London, South Africa, was evaluated from January to May, 2016. Surface water and sediment samples were collected from five points in the estuary and extracted using standard methods. The extracts were subsequently analyzed by gas chromatography-flame ionization detection. Results showed that total petroleum hydrocarbon (TPH) varied from 7.65 to 477 μg/L in the water and 12.59 to 1,100 mg/kg in the sediments, with mean values of 146.50 ± 27.96 μg/L and 209.81 ± 63.82 mg/kg, respectively. Concentrations of TPH in the sediments correlated significantly with organic carbon (OC) in both seasons. TPH and OC levels were slightly lower in summer than in autumn in the two environmental matrices, and the average amount of TPH in the water samples collected from all the sampling stations was generally lower than the EU standard limit of 300 μg/L. However, the levels in the sediments exceeded the EGASPIN target value (50 mg/kg) for mineral oil but were below the intervention value (5,000 mg/kg), indicating a serious impact of industrial growth and urbanization on the area, although the n-alkane ratios and indexes used for source tracking revealed excessive flow from both natural and anthropogenic sources. PMID:28638675

  11. Biosurfactant production by Pseudomonas aeruginosa DSVP20 isolated from petroleum hydrocarbon-contaminated soil and its physicochemical characterization.

    PubMed

    Sharma, Deepak; Ansari, Mohammad Javed; Al-Ghamdi, Ahmad; Adgaba, Nuru; Khan, Khalid Ali; Pruthi, Vikas; Al-Waili, Noori

    2015-11-01

    Among 348 microbial strains isolated from petroleum hydrocarbon-contaminated soil, five were selected for their ability to produce biosurfactant based on battery of screening assay including hemolytic activity, surface tension reduction, drop collapse assay, emulsification activity, and cell surface hydrophobicity studies. Of these, bacterial isolate DSVP20 was identified as Pseudomonas aeruginosa (NCBI GenBank accession no. GQ865644) based on biochemical characterization and the 16S rDNA analysis, and it was found to be a potential candidate for biosurfactant production. Maximum biosurfactant production recorded by P. aeruginosa DSVP20 was 6.7 g/l after 72 h at 150 rpm and at a temperature of 30 °C. Chromatographic analysis and high-performance liquid chromatography-mass spectrometry (HPLC-MS) revealed that it was a glycolipid in nature which was further confirmed by nuclear magnetic resonance (NMR) spectroscopy. Bioremediation studies using purified biosurfactant showed that P. aeruginosa DSVP20 has the ability to degrade eicosane (97%), pristane (75%), and fluoranthene (47%) when studied at different time intervals for a total of 7 days. The results of this study showed that the P. aeruginosa DSVP20 and/or biosurfactant produced by this isolate have the potential role in bioremediation of petroleum hydrocarbon-contaminated soil.

  12. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation.

    PubMed

    Agnello, A C; Bagard, M; van Hullebusch, E D; Esposito, G; Huguenot, D

    2016-09-01

    Biological remediation technologies are an environmentally friendly approach for the treatment of polluted soils. This study evaluated through a pot experiment four bioremediation strategies: a) natural attenuation, b) phytoremediation with alfalfa (Medicago sativa L.), c) bioaugmentation with Pseudomonas aeruginosa and d) bioaugmentation-assisted phytoremediation, for the treatment of a co-contaminated soil presenting moderate levels of heavy metals (Cu, Pb and Zn at 87, 100 and 110mgkg(-1) DW, respectively) and petroleum hydrocarbons (3800mgkg(-1) DW). As demonstrated by plant biomass and selected physiological parameters alfalfa plants were able to tolerate and grow in the co-contaminated soil, especially when soil was inoculated with P. aeruginosa, which promoted plant growth (56% and 105% increase for shoots and roots, respectively) and appeared to alleviate plant stress. The content of heavy metals in alfalfa plants was limited and followed the order: Zn>Cu>Pb. Heavy metals were mainly concentrated in plant roots and were poorly translocated, favouring their stabilization in the root zone. Bioaugmentation of planted soil with P. aeruginosa generally led to a decrease of plant metal concentration and translocation. The highest degree of total petroleum hydrocarbon removal was obtained for bioaugmentation-assisted phytoremediation treatment (68%), followed by bioaugmentation (59%), phytoremediation (47%) and natural attenuation (37%). The results of this study demonstrated that the combined use of plant and bacteria was the most advantageous option for the treatment of the present co-contaminated soil, as compared to natural attenuation, bioaugmentation or phytoremediation applied alone. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Effect of petroleum hydrocarbons in copper phytoremediation by a salt marsh plant (Juncus maritimus) and the role of autochthonous bioaugmentation.

    PubMed

    Montenegro, I P F M; Mucha, A P; Reis, I; Rodrigues, P; Almeida, C M R

    2016-10-01

    This work aimed to investigate, under controlled but environmental relevant conditions, the effects of the presence of both inorganic and organic contaminants (copper and petroleum hydrocarbons) on phytoremediation potential of the salt marsh plant Juncus maritimus. Moreover, bioaugmentation, with an autochthonous microbial consortium (AMC) resistant to Cu, was tested, aiming an increase in the remediation potential of this plant in the presence of a co-contamination. Salt marsh plants with sediment attached to their roots were collected, placed in vessels, and kept in greenhouses, under tidal simulation. Sediments were contaminated with Cu and petroleum, and the AMC was added to half of the vessels. After 5 months, plants accumulated significant amounts of Cu but only in belowground structures. The amount of Cu was even higher in the presence of petroleum. AMC addition increased Cu accumulation in belowground tissues, despite decreasing Cu bioavailability, promoting J. maritimus phytostabilization potential. Therefore, J. maritimus has potential to phytoremediate co-contaminated sediments, and autochthonous bioaugmentation can be a valuable strategy for the recovery and management of moderately impacted estuaries. This approach can contribute for a sustainable use of the environmental resources. Graphical abstract ᅟ.

  14. The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: current knowledge and future directions.

    PubMed

    Martin, Belinda C; George, Suman J; Price, Charles A; Ryan, Megan H; Tibbett, Mark

    2014-02-15

    Rhizoremediation is a bioremediation technique whereby enhanced microbial degradation of organic contaminants occurs within the plant root zone (rhizosphere). It is considered an effective and affordable 'green technology' for remediating soils contaminated with petroleum hydrocarbons (PHCs). This paper critically reviews the potential role of root exuded compounds in rhizoremediation, with emphasis on commonly exuded low molecular weight aliphatic organic acid anions (carboxylates). The extent to which remediation is achieved shows wide disparity among plant species. Therefore, plant selection is crucial for the advancement and widespread adoption of this technology. Root exudation is speculated to be one of the predominant factors leading to microbial changes in the rhizosphere and thus the potential driver behind enhanced petroleum biodegradation. Carboxylates can form a significant component of the root exudate mixture and are hypothesised to enhance petroleum biodegradation by: i) providing an easily degradable energy source; ii) increasing phosphorus supply; and/or iii) enhancing the contaminant bioavailability. These differing hypotheses, which are not mutually exclusive, require further investigation to progress our understanding of plant-microbe interactions with the aim to improve plant species selection and the efficacy of rhizoremediation.

  15. Vapor extraction, air sparging, and bioventing in combination form a technically and cost effective scenario to remediate petroleum hydrocarbons

    SciTech Connect

    Brown, D.A.; Baker, J.N.; Mailloux, M.P.

    1995-12-31

    When the appropriate site conditions exist, air sparging, vapor extraction and bioventing can be combined to form a technically and cost effective scenario to remediate petroleum hydrocarbon contaminated soils. A former Gulf Terminal in Upstate New York meets these conditions. The site geology consists of highly permeable sands and gravels with only trace amounts of silt. The groundwater table is approximately 15 feet below the ground surface which provides an ideal vadose zone. The site contaminants are petroleum fuel residuals primarily from the former storage and transfer of gasoline distillates. A series of pilot studies were conducted at the site in July, August, and September of 1994 to determine the validity of the proposed technologies. Based on the pilot study results, it was determined that the combined technologies of soil vapor extraction, air sparging, and bioventing could be used to effectively remediate the site. Using the pilot study data as the design basis, Parsons ES designed and installed a full-scale remediation system to address both the vadose and phreatic zone contaminants. The SVE portion of the system was placed into operation in April of 1995, and to date has removed over 12,000 pounds of petroleum hydrocarbons, including over 30 pounds of benzene. The overall costs for remediating the site including pilot studies, detailed design, system installation, and one year of operation are estimated at $5.60 per cubic yard for the estimated 35,000 cubic yards of contaminated soil at the site. The pilot study, full-scale operational results, and projected remediation costs are the focus of this paper.

  16. Simultaneous species-specific PCR detection and viability testing of poly(vinyl alcohol) cryogel-entrapped Rhodococcus spp. after their exposure to petroleum hydrocarbons.

    PubMed

    Kuyukina, Maria S; Ivshina, Irena B; Serebrennikova, Marina K; Rubtsova, Ekaterina V; Krivoruchko, Anastasiya V

    2013-08-01

    A method of simultaneous species-specific PCR detection and viability testing of poly(vinyl alcohol) cryogel-entrapped Rhodococcus spp. was developed that allowed the estimation of immobilized Rhodococcus opacus and Rhodococcus ruber survival after their exposure to petroleum hydrocarbon mixture. Spectrophotometric INT assay revealed high tolerance of gel-immobilized rhodococci to petroleum hydrocarbons, while among two Rhodococcus strains studied, R. ruber tolerated better to hydrocarbons compared to R. opacus. These findings were confirmed by respirometry results that showed increased respiratory activity of gel-immobilized Rhodococcus strains after 10-day incubation with 3% (v/v) petroleum hydrocarbon mixture. Moreover, jointly incubated rhodococcal strains demonstrated higher oxidative activities toward petroleum hydrocarbons than individual strains. Both Rhodococcus species were recovered successfully in cryogel granules using 16S rDNA-targeted PCR, even though the granules were previously stained with INT and extracted with ethanol. The method developed can be used for rapid detection and monitoring of gel-immobilized bacterial inocula in bioreactors or contaminated soil systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Can two-dimensional gas chromatography/mass spectrometric identification of bicyclic aromatic acids in petroleum fractions help to reveal further details of aromatic hydrocarbon biotransformation pathways?

    PubMed

    West, Charles E; Pureveen, Jos; Scarlett, Alan G; Lengger, Sabine K; Wilde, Michael J; Korndorffer, Frans; Tegelaar, Erik W; Rowland, Steven J

    2014-05-15

    The identification of key acid metabolites ('signature' metabolites) has allowed significant improvements to be made in our understanding of the biodegradation of petroleum hydrocarbons, in reservoir and in contaminated natural systems, such as aquifers and seawater. On this basis, anaerobic oxidation is now more widely accepted as one viable mechanism, for instance. However, identification of metabolites in the complex acid mixtures from petroleum degradation is challenging and would benefit from use of more highly resolving analytical methods. Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GCxGC/TOFMS) with both nominal mass and accurate mass measurement was used to study the complex mixtures of aromatic acids (as methyl esters) in petroleum fractions. Numerous mono- and di-aromatic acid isomers were identified in a commercial naphthenic acids fraction from petroleum and in an acids fraction from a biodegraded petroleum. In many instances, compounds were identified by comparison of mass spectral and retention time data with those of authentic compounds. The identification of a variety of alkyl naphthalene carboxylic and alkanoic and alkyl tetralin carboxylic and alkanoic acids, plus identifications of a range of alkyl indane acids, provides further evidence for 'signature' metabolites of biodegradation of aromatic petroleum hydrocarbons. Identifications such as these now offer the prospect of better differentiation of metabolites of bacterial processes (e.g. aerobic, methanogenic, sulphate-reducing) in polar petroleum fractions. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Does equilibrium passive sampling reflect actual in situ bioaccumulation of PAHs and petroleum hydrocarbon mixtures in aquatic worms?

    PubMed

    Muijs, Barry; Jonker, Michiel T O

    2012-01-17

    Over the past couple of years, several analytical methods have been developed for assessing the bioavailability of environmental contaminants in sediments and soils. Comparison studies suggest that equilibrium passive sampling methods generally provide the better estimates of internal concentrations in organisms and thus of subsequent risks. However, field studies to validate the potential of passive sampling to predict actual in situ bioaccumulation are scarce and limited information only exists on selected, individual compounds. The present study investigated whether bioaccumulation of PAH and complex petroleum hydrocarbon mixtures in field-exposed aquatic worms could be predicted properly with passive samplers. To this end, in situ bioaccumulation in aquatic worms at 6 PAH-contaminated locations and 8 petroleum hydrocarbon (oil)-contaminated locations was compared with the results of in situ solid phase micro extraction (SPME) applications. For the oil-contaminated sediments, bioaccumulation was also assessed in the lab with polyoxymethylene solid phase extraction (POM-SPE). Actual PAH bioaccumulation was generally predicted within a factor of 4 with in situ SPME, using temperature-adjusted SPME fiber-water partition coefficients and lab-derived bioaccumulation factors (BAFs) for the worm species used, demonstrating the method's potential under field conditions. In situ SPME appeared to be less suitable for predicting bioaccumulation of oil however, in contrast to POM-SPE in the lab, which assessed in situ oil bioaccumulation within a factor of 3, while also closely reflecting the actual distribution of oil boiling point fractions (the hydrocarbon block profile) as accumulated by the worms. All in all, the results indicated that (specific) equilibrium passive samplers, either applied in the field or the lab, have great potential for assessing bioaccumulation of environmental contaminant mixtures from field-contaminated sediments.

  19. Environmental Effects of Dredging Programs. Regulatory Identification of Petroleum Hydrocarbons in Dredged Material. Proceedings of a Workshop Held in Vicksburg, Mississippi on 13-15 May 1986.

    DTIC Science & Technology

    1987-03-01

    culminated in the recommendation of specific hydrocarbon compounds and the development of a suggested tiered testing approach for regulatory evaluation of...Based on these tests, the USAED, New York, has estab- lished "matrix values" for certain contaminants such as PCB. Matrix values were developed to...workshop, on developing a reliable regulatory test for petroleum hydrocarbons that could be performed by contract laboratories. 14. In contrast to the

  20. Distributions and sources of petroleum, aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) in surface sediments from Bohai Bay and its adjacent river, China.

    PubMed

    Wang, Min; Wang, Chuanyuan; Hu, Xiaoke; Zhang, Haijiang; He, Shijie; Lv, Shuangyan

    2015-01-15

    Surface sediment samples from Bohai Bay and its adjacent river, China, were analyzed for aliphatic hydrocarbon, PAHs and biomarkers in order to determine the distribution, composition and source of organic matter in a coastal environment. Results suggested that the input of organic matter from anthropogenic activities has a more significant influence on its distribution than that from natural processes. Petroleum contamination, mainly from offshore oil exploration and discharge of pollutants from rivers, was the main source of n-alkanes. PAHs were mostly of pyrogenic origin; while some sites in Yellow River Estuary were derived mainly from the petrogenic sources. The toxic assessment suggested that the PAHs in surface sediments will not cause immediately adverse biological effects in sediments from Bohai Bay and its adjacent river, China.

  1. Using variances in hydrocarbon concentration and carbon stable isotope to determine the important influence of irrigated water on petroleum accumulation in surface soil.

    PubMed

    Zhang, Juan; Wang, Renqing; Yang, Juncheng; Hou, Hong; Du, Xiaoming; Dai, Jiulan

    2013-05-01

    Hunpu is a wastewater-irrigated area southwest of Shenyang. To evaluate petroleum contamination and identify its sources at the area, the aliphatic hydrocarbons and compound-specific carbon stable isotopes of n-alkanes in the soil, irrigation water, and atmospheric deposition were analyzed. The analyses of hydrocarbon concentrations and geochemical characteristics reveal that the water is moderately contaminated by degraded heavy oil. According to the isotope analysis, inputs of modern C3 plants and degraded petroleum are present in the water, air, and soil. The similarities and dissimilarities among the water, air, and soil samples were determined by concentration, isotope, and multivariate statistical analyses. Hydrocarbons from various sources, as well as the water/atmospheric deposition samples, are more effectively differentiated through principal component analysis of carbon stable isotope ratios (δ(13)C) relative to hydrocarbon concentrations. Redundancy analysis indicates that 57.1 % of the variance in the δ(13)C of the soil can be explained by the δ(13)C of both the water and air, and 35.5 % of the variance in the hydrocarbon concentrations of the soil can be explained by hydrocarbon concentrations of both the water and the air. The δ(13)C in the atmospheric deposition accounts for 28.2 % of the δ(13)C variance in the soil, which is considerably higher than the variance in hydrocarbon concentrations of the soil explained by hydrocarbon concentrations of the atmospheric deposition (7.7 %). In contrast to δ(13)C analysis, the analysis of hydrocarbon concentrations underestimates the effect of petroleum contamination in the irrigated water and air on the surface soil. Overall, the irrigated water exerts a larger effect on the surface soil than does the atmospheric deposition.

  2. Removal of petroleum hydrocarbons from contaminated groundwater by the combined technique of adsorption onto perlite followed by the O3/H2O2 process.

    PubMed

    Moussavi, Gholamreza; Bagheri, Amir

    2012-09-01

    Groundwater contaminated with petroleum hydrocarbons was treated using a combined system of adsorption onto powdered expanded perlite (PEP) followed by the O3/H2O2 process. The pretreatment investigations indicated a high capacity for PEP to remove petroleum hydrocarbons from the contaminated water. An experimental total petroleum hydrocarbon (TPH) adsorption capacity of 275 mg/g PEP was obtained at the natural pH of water. The experimental data fit best with the Freundlich isotherm model and pseudo-second-order adsorption model. The second phase of the experiment evaluated the performance of the O3/H2O2 process in the removal of residual TPH from pretreated water and compared the results with that of raw water. The O3/H202 process attained a maximum TPH removal rate for the pretreated water after 70 min, when 93% of the residual TPH in the effluent of the adsorption system was removed. Overall, the combination of adsorption onto PEP for 100 min and the subsequent treatment with the O3/H2O2 process for 70min eliminated over 99% of the TPH of highly petroleum-contaminated groundwater, with initial values of 162 mg/L. Therefore, we can conclude that the developed treatment system is an appropriate method of remediation for petroleum-contaminated waters.

  3. Hydrocarbon fuel cells. Citations from the American Petroleum Institute data base

    NASA Astrophysics Data System (ADS)

    Cavagnaro, D. M.

    1980-10-01

    This bibliography cites worldwide research on hydrocarbon fuel cells. The citations cover applications, design, performance, fabrication, catalysts, and electrochemistry. This updated bibliography contains 130 citations, 2 of which are new entries to the previous edition.

  4. Clonal variation in survival and growth of hybrid poplar and willow in an in situ trial on soils heavily contaminated with petroleum hydrocarbons

    Treesearch

    Ronald S., Jr. Zalesny; Edmund O. Bauer; Richard B. Hall; Jill A. Zalesny; Joshua Kunzman; Chris J. Rog; Don E. Riemenschneider

    2005-01-01

    Species and hybrids between species belonging to the genera Populus (poplar) and Salix (willow) have been used successfully for phytoremediation of contaminated soils. Our objectives were to: 1) evaluate the potential for establishing genotypes of poplar and willow on soils heavily contaminated with petroleum hydrocarbons and 2)...

  5. Uptake of Total Petroleum Hydrocarbon (TPH) and Polycyclic Aromatic Hydrocarbons (PAHs) by Oryza sativa L. Grown in Soil Contaminated with Crude Oil.

    PubMed

    Patowary, Rupshikha; Patowary, Kaustuvmani; Devi, Arundhuti; Kalita, Mohan Chandra; Deka, Suresh

    2017-01-01

    The purpose of this study was to determine whether total petroleum hydrocarbon (TPH) and polycyclic aromatic hydrocarbons (PAHs) present in crude oil contaminated sites are transferred to roots, shoots and finally the grains of rice crops (Oryza sativa L.) grown in those sites. Soil was artificially contaminated with crude oil at concentrations of 0, 1000, 5000, 10,000, and 15,000 mg/kg, followed by planting of rice seedlings. After harvest, TPH in plant samples were measured, and it was determined that the uptake of TPH by the plants gradually increased as the concentration of oil in soil increased. Further, from GC-MS analysis, it was observed that PAHs including naphthalene and phenanthrene bioaccumulated in rice plant parts. Vital physico-chemical properties of soil were also altered due to crude oil contamination. Our study revealed that rice plants grown in crude oil polluted sites can uptake TPH including PAHs, thus emphasising the importance of prior investigation of soil condition before cultivation of crops.

  6. [Comparison of polycyclic aromatic hydrocarbons (PAHS) contents in bakery products].

    PubMed

    Ciemniak, Artur; Witczak, Agata

    2010-01-01

    Polycyclic aromatic hydrocarbons are a group of well-known chemical carcinogens with a wide distribution in the environment and formed by the incomplete combustion of organic substances. PAHs have attracted most attention because of their carcinogenic potential. PAHs have been found as contaminants in different food categories such as dairy products, smoked and barbecued meat, vegetables, fruits, oils, coffee, tea, and cereals. Processing of food at high temperatures increases the amount of PAHs in the food Diet is the major source of human exposure to PAHs. The major dietary source of PAH are oils and fats, cereals products and vegetables. The aims of this study were to determine the content levels of 23 PAHs in various sorts of bread. The analytical procedure was based Soxhlet extraction with n--hexane and cleaned up in aflorisil cartridge. Chromatographic separation was performed using gas chromatography (HP 6890) coupled to mass spectrometry (HP 5973). The total concentration of PAHs was low end varied between 2.61 microg/kg to 43.4 microg/kg. Furthermore, the results revealed differences in concentrations of PAHs between rind and bread-crumb.

  7. Occurrence and distribution of polycyclic aromatic hydrocarbons in organo-mineral particles of alluvial sandy soil profiles at a petroleum-contaminated site.

    PubMed

    Lu, Zhe; Zeng, Fangang; Xue, Nandong; Li, Fasheng

    2012-09-01

    The occurrence and the distribution of 16 USEPA priority pollutants polycyclic aromatic hydrocarbons (PAHs) were investigated in two alluvial sandy soil profiles and in their four sizes of organo-mineral particles (<2 μm clay, 2-20 μm silt, 20-200 μm fine sand, and >200 μm coarse sand) beside a typical oil sludge storage site in eastern China. PAHs were mainly enriched in the surface soil (0-20 cm) and the concentrations declined in deeper soils, from 3.68 to 0.128 μg/g in profile 1 and 10.8 to 0.143 μg/g in profile 2 (dry wt.). The PAHs in the upper soil layers of this study site mainly came from combustion pollution, whereas in the lower soil layers petroleum contamination became the major source of PAHs. The content of different sized organo-mineral particles of this alluvial sandy soil decreased in the following order: fine sand>coarse sand>silt>clay. X-ray diffraction (XRD) results showed that all the different sized soil fractions of this study site were dominated by quartz, calcite and feldspar. The particle surface became smoother with size increasing as shown by scanning electron microscope (SEM) images. PAH concentrations varied largely in different sized soil fractions. The highest PAH concentration was associated with clay and decreased in the order: clay>silt>coarse sand>fine sand. Soil organic matter (SOM) content, mineral composition and particle surface characteristics were suggested as three main factors affecting the distribution of PAHs in different sized organo-mineral particles. This study will help to understand the distribution and transport characteristics of PAHs in soil profiles at petroleum-contaminated sites.

  8. Microbial Deterioration of Hydrocarbon Fuels from Oil Shale, Coal, and Petroleum. I. Exploratory Experiments.

    DTIC Science & Technology

    1979-08-20

    Cladosporium resinae , a yeast (Candida) and a bacterium (Pseudomonas) which normally grow well in association with petroleum JP-5 were used as test organisms...microorganisms that could thrive in the presence of synthetic fuels. This endeavor produced a strain of C. resinae that grew as well with oil shale JP-5

  9. Hydrocarbon composition of authigenic inclusions: Application to elucidation of petroleum reservoir filling history

    NASA Astrophysics Data System (ADS)

    Karlsen, Dag A.; Nedkvitne, Tor; Larter, Steve R.; Bjørlykke, Knut

    1993-08-01

    Geochemical analysis of petroleum inclusions trapped in authigenic feldspar and quartz in the Ula Formation in the North Sea Ula oil field revealed a petroleum of markedly different composition than the oil presently in the reservoir. Using microthermometry and the burial history as a dating tools, it is concluded that the petroleum in the K-feldspar inclusions was present in the more porous and permeable parts of the Ula Formation as early as 45-75 My Bp when the field was at a depth of about 1.0-1.5 km, as compared with the current depth of 3.4 km. This early petroleum, which was trapped as inclusions in authigenic K-feldspar, shows a distinctly different distribution of tricyclic terpanes and pentacyclic triterpanes from that of the current petroleum charge in the Ula Formation, which was derived from the Mandal Formation source rock in late Neogene time. Molecular parameters show that the oil in the K-feldspar inclusions is significantly less mature than the crude oil in the present reservoir. The approximate 90°C temperature increase occurring after entrapment of the early petroleum in Kfeldspar (the field is currently at 143°C) appears not to have reset the low maturity signature of the oil in the K-feldspar inclusions. This could suggest that the temperature in the inclusions is too low for isomerization/selective thermal degradation to occur (lack of catalysts?), or that there are other controls on the ratio of some of these parameters. Still, parameters like the ratio of C 21 to C 28 triaromatic steroids, and those based on dimethyl- and trimethyl-naphthalenes, are comparatively similar in both the inclusions and in the reservoir crude. The oil inclusions in authigenic quartz and albite, formed from about 10 My BP (burial depth ≈ 2.5 km) until the present (burial depth = 3.4 km), are interpreted as representing a palaeo-petroleum charge having a composition intermediate between the oil found in K-feldspar inclusions and the oil charge in the present

  10. Assessment of petroleum-hydrocarbon contamination in the surficial sediments and ground water at three former underground storage tank locations, Fort Jackson, South Carolina, 1995

    USGS Publications Warehouse

    Robertson, J.F.

    1996-01-01

    Ground-water and sediment contamination by petroleum hydrocarbons resulting from leaks and overfills was detected during tank removal activities at three former underground storage tank locations at Fort Jackson, near Columbia, South Carolina. Investigations were initiated to assess the effect of contamination to the surficial aquifer at Sites 1062, 2438, and 2444. These investigations involved the installation of permanent monitoring wells and the collection and analysis of sediment and ground-water samples at the three sites. Water-level data were collected at all sites to determine hydraulic gradients and the direction of ground-water flow. In addition, aquifer tests were made at Site 1062 to determine the hydraulic conductivity of the surficial aquifer at that site. Sediment borings were made at the three sites to collect subsurface-sediment samples for lithologic description and laboratory analyses, and for the installation of ground-water monitoring wells. Laboratory analyses of sediment samples collected from boreholes at Site 1062 indicated elevated concentrations of petroleum hydrocarbons at three locations. Total Petroleum Hydrocarbons - Diesel Range Organics were detected at one borehole at a concentration of 388,000 micrograms per kilogram. Total benzene, toluene, ethylbenzene, and xylene concentrations in sediment from the site ranged from less than 350 to over 100,000 micrograms per kilogram. Total lead was detected at concentrations ranging from 2,900 to 5,900 micrograms per kilogram. Petroleum hydrocarbons were detected at Site 2438 in one borehole at a trace concentration of 112 micrograms per kilogram of para- and meta-xylenes. No concentrations exceeding the detection limits were reported for petroleum hydrocarbons in sediment samples collected from Site 2444; however, total lead was detected in sediment samples from two boreholes, each at concentrations of 600 micrograms per kilogram. Ground-water samples were collected from each site for

  11. Parasitism in marine fish after chronic exposure to petroleum hydrocarbons in the laboratory and to the Exxon Valdez oil spill

    SciTech Connect

    Khan, R.A. )

    1990-05-01

    Crude oil or its water soluble components are known to induce histopathological effects in fish following chronic exposure. Fish tend to harbor a variety of parasites, most of which under natural conditions cause little or no apparent harm. However, after chronic exposure to petroleum hydrocarbons, the prevalence and intensity of parasitism increases substantially. Trichodinid ciliates are mainly ectoparasitic protozoans on the fills of fish. Since a previous study showed that chronic exposure to crude oil fractions resulted in increased parasitism, a study was initiated to ascertain the relationship between trichodinid infections and exposure of fish to crude oil or its fractions in the laboratory and subsequently, in the Gulf of Alaska following the Exxon Valdez oil spill.

  12. High molecular weight polycyclic aromatic hydrocarbons in hydrothermal petroleums from the Gulf of California and Northeast Pacific Ocean.

    PubMed

    Simoneit, B R; Fetzer, J C

    1996-01-01

    Hydrothermal petroleums and heavy tars have been analyzed for polycyclic aromatic hydrocarbons (PAH) with molecular weights greater than that of coronene (300 da). Samples from the hydrothermal systems in the Guaymas Basin (Gulf of California) and in the Escanaba Trough and Middle Valley (Northeastern Pacific) were analyzed by gas chromatography-mass spectrometry and high pressure liquid chromatography with diode-array absorbance detection. Mass spectra and fluorescence spectra were used to characterize the compounds. Several large PAHs with six and more rings were identified among the heavy PAH. Production routes via one-ring build-up and Scholl-condensation are proposed to explain the observed structures. The variations in PAH concentrations and distributions between samples from different locales are a consequence of the hydrothermal conditions of generation, migration, and post-depositional alteration.

  13. Determination of microbial carbon sources and cycling during remediation of petroleum hydrocarbon impacted soil using natural abundance (14)C analysis of PLFA.

    PubMed

    Cowie, Benjamin R; Greenberg, Bruce M; Slater, Gregory F

    2010-04-01

    In a petroleum impacted land-farm soil in Sarnia, Ontario, compound-specific natural abundance radiocarbon analysis identified biodegradation by the soil microbial community as a major pathway for hydrocarbon removal in a novel remediation system. During remediation of contaminated soils by a plant growth promoting rhizobacteria enhanced phytoremediation system (PEPS), the measured Delta(14)C of phospholipid fatty acid (PLFA) biomarkers ranged from -793 per thousand to -897 per thousand, directly demonstrating microbial uptake and utilization of petroleum hydrocarbons (Delta(14)C(PHC) = -1000 per thousand). Isotopic mass balance indicated that more than 80% of microbial PLFA carbon was derived from petroleum hydrocarbons (PHC) and a maximum of 20% was obtained from metabolism of more modern carbon sources. These PLFA from the contaminated soils were the most (14)C-depleted biomarkers ever measured for an in situ environmental system, and this study demonstrated that the microbial community in this soil was subsisting primarily on petroleum hydrocarbons. In contrast, the microbial community in a nearby uncontaminated control soil maintained a more modern Delta(14)C signature than total organic carbon (Delta(14)C(PLFA) = +36 per thousand to -147 per thousand, Delta(14)C(TOC) = -148 per thousand), indicating preferential consumption of the most modern plant-derived fraction of soil organic carbon. Measurements of delta(13)C and Delta(14)C of soil CO(2) additionally demonstrated that mineralization of PHC contributed to soil CO(2) at the contaminated site. The CO(2) in the uncontaminated control soil exhibited substantially more modern Delta(14)C values, and lower soil CO(2) concentrations than the contaminated soils, suggesting increased rates of soil respiration in the contaminated soils. In combination, these results demonstrated that biodegradation in the soil microbial community was a primary pathway of petroleum hydrocarbon removal in the PEPS system. This study

  14. Biostimulation of petroleum-hydrocarbon-contaminated marine sediment with co-substrate: involved metabolic process and microbial community.

    PubMed

    Zhang, Zhen; Lo, Irene M C

    2015-07-01

    This study investigated the effect of acetate and methanol as co-substrates on anaerobic biodegradation of total petroleum hydrocarbons (TPHs, C10-C40) in marine sediment. The findings evidenced that the degradation of TPH can be enhanced by adding acetate or methanol. The addition of acetate was generally more favorable than the addition of methanol for the TPH degradation. Both sulfate reduction and methanogenesis occurred in the acetate-treated sediment. However, the depletion of SO4 (2-) inhibited sulfate reduction over the incubation period. Only methanogenesis was prevalent in the methanol-treated sediment within the whole incubation period. The degradation of TPH fractions with higher carbon number ranges (C31-C40) was speculated to be more favored under sulfate-reducing condition, while TPH fractions with lower carbon number ranges (C10-C20) were preferentially degraded under methanogenic condition. The 16S rRNA clone library-based analysis revealed that the addition of different co-substrates led to distinct structures of the microbial community. Clones related to sulfate-reducing Desulfobacterales were the most abundant in the sediment dosed with acetate. Clones related to Clostridiales predominated in the sediment dosed with methanol. Acetoclastic methanogens were found to be the predominant archaeal species in the sediment dosed with acetate, while both acetoclastic methanogens and hydrogenotrophic methanogens accounted for large proportions in the sediment dosed with methanol. The results obtained in this study will contribute to more comprehensive knowledge on the role of acetate and methanol as co-substrates in biostimulation of petroleum-hydrocarbon-contaminated marine sediment.

  15. The effect of salinity, redox mediators and temperature on anaerobic biodegradation of petroleum hydrocarbons in microbial fuel cells.

    PubMed

    Adelaja, Oluwaseun; Keshavarz, Tajalli; Kyazze, Godfrey

    2015-01-01

    Microbial fuel cells (MFCs) need to be robust if they are to be applied in the field for bioremediation. This study investigated the effect of temperature (20-50°C), salinity (0.5-2.5% (w/v) as sodium chloride), the use of redox mediators (riboflavin and anthraquinone-2-sulphonate, AQS) and prolonged fed-batch operation (60 days) on biodegradation of a petroleum hydrocarbon mix (i.e. phenanthrene and benzene) in MFCs. The performance criteria were degradation efficiency, % COD removal and electrochemical performance. Good electrochemical and degradation performance were maintained up to a salinity of 1.5% (w/v) but deteriorated by 35-fold and 4-fold respectively as salinity was raised to 2.5%w/v. Degradation rates and maximum power density were both improved by approximately 2-fold at 40°C compared to MFC performance at 30°C but decreased sharply by 4-fold when operating temperature was raised to 50°C. The optimum reactor performance obtained at 40°C was 1.15 mW/m(2) maximum power density, 89.1% COD removal and a degradation efficiency of 97.10%; at moderately saline (1% w/v) conditions the maximum power density was 1.06 mW/m(2), 79.1% COD removal and 91.6% degradation efficiency. This work suggests the possible application of MFC technology in the effective treatment of petroleum hydrocarbons contaminated site and refinery effluents.

  16. Biodegradation of low and high molecular weight hydrocarbons in petroleum refinery wastewater by a thermophilic bacterial consortium.

    PubMed

    Pugazhendi, Arulazhagan; Abbad Wazin, Hadeel; Qari, Huda; Basahi, Jalal Mohammad Al-Badry; Godon, Jean Jacques; Dhavamani, Jeyakumar

    2017-10-01

    Clean-up of contaminated wastewater remains to be a major challenge in petroleum refinery. Here, we describe the capacity of a bacterial consortium enriched from crude oil drilling site in Al-Khobar, Saudi Arabia, to utilize polycyclic aromatic hydrocarbons (PAHs) as sole carbon source at 60°C. The consortium reduced low molecular weight (LMW; naphthalene, phenanthrene, fluorene and anthracene) and high molecular weight (HMW; pyrene, benzo(e)pyrene and benzo(k)fluoranthene) PAH loads of up to 1.5 g/L with removal efficiencies of 90% and 80% within 10 days. PAH biodegradation was verified by the presence of PAH metabolites and evolution of carbon dioxide (90 ± 3%). Biodegradation led to a reduction of the surface tension to 34 ± 1 mN/m thus suggesting biosurfactant production by the consortium. Phylogenetic analysis of the consortium revealed the presence of the thermophilic PAH degrader Pseudomonas aeruginosa strain CEES1 (KU664514) and Bacillus thermosaudia (KU664515) strain CEES2. The consortium was further found to treat petroleum wastewater in continuous stirred tank reactor with 96 ± 2% chemical oxygen demand removal and complete PAH degradation in 24 days.

  17. Determination of hydrocarbon types in petroleum and coal-derived products by thin-layer chromatography/densitometry.

    PubMed

    Cebolla, V L; Membrado, L; Vela, J; Garriga, R; Henrion, P; Domingo, M P; González, P

    2000-01-01

    Different methodologies based on thin-layer chromatography (TLC)/densitometry were used to separate and quantitate hydrocarbon types in middle distillates (gas oil), heavy distillates (lubricant) from petroleum, and coal-derived products. Thus, petroleum products were separated into saturates and aromatics by development, using n-hexane (9 min) followed by dichloromethane (4.5 min), of silica gel plates impregnated with berberine sulfate. Detection of saturates and aromatics was performed by fluorescence scanning using 365 nm as the excitation wavelength. Alternative detection of aromatics can be performed on either silica gel or berberine-impregnated plates by using ultraviolet (UV) densitometry at 250 nm. On the other hand, polar coal-derived products were separated into aromatics, polar compounds, and uneluted components by using silica gel plates and development with toluene (12 min), followed by dichloromethane-methanol (95 + 5, v/v), with detection by UV densitometry at 250 nm. In all cases, external standard calibration was used for quantitation. Results were validated by using standard methods or well-established techniques of the petrochemical industry. The potential usefulness of TLC/densitometry is discussed.

  18. From Rare to Dominant: a Fine-Tuned Soil Bacterial Bloom during Petroleum Hydrocarbon Bioremediation.

    PubMed

    Fuentes, Sebastián; Barra, Bárbara; Caporaso, J Gregory; Seeger, Michael

    2015-11-20

    Hydrocarbons are worldwide-distributed pollutants that disturb various ecosystems. The aim of this study was to characterize the short-lapse dynamics of soil microbial communities in response to hydrocarbon pollution and different bioremediation treatments. Replicate diesel-spiked soil microcosms were inoculated with either a defined bacterial consortium or a hydrocarbonoclastic bacterial enrichment and incubated for 12 weeks. The microbial community dynamics was followed weekly in microcosms using Illumina 16S rRNA gene sequencing. Both the bacterial consortium and enrichment enhanced hydrocarbon degradation in diesel-polluted soils. A pronounced and rapid bloom of a native gammaproteobacterium was observed in all diesel-polluted soils. A unique operational taxonomic unit (OTU) related to the Alkanindiges genus represented ∼ 0.1% of the sequences in the original community but surprisingly reached >60% after 6 weeks. Despite this Alkanindiges-related bloom, inoculated strains were maintained in the community and may explain the differences in hydrocarbon degradation. This study shows the detailed dynamics of a soil bacterial bloom in response to hydrocarbon pollution, resembling microbial blooms observed in marine environments. Rare community members presumably act as a reservoir of ecological functions in high-diversity environments, such as soils. This rare-to-dominant bacterial shift illustrates the potential role of a rare biosphere facing drastic environmental disturbances. Additionally, it supports the concept of "conditionally rare taxa," in which rareness is a temporary state conditioned by environmental constraints.

  19. From Rare to Dominant: a Fine-Tuned Soil Bacterial Bloom during Petroleum Hydrocarbon Bioremediation

    PubMed Central

    Fuentes, Sebastián; Barra, Bárbara; Caporaso, J. Gregory

    2015-01-01

    Hydrocarbons are worldwide-distributed pollutants that disturb various ecosystems. The aim of this study was to characterize the short-lapse dynamics of soil microbial communities in response to hydrocarbon pollution and different bioremediation treatments. Replicate diesel-spiked soil microcosms were inoculated with either a defined bacterial consortium or a hydrocarbonoclastic bacterial enrichment and incubated for 12 weeks. The microbial community dynamics was followed weekly in microcosms using Illumina 16S rRNA gene sequencing. Both the bacterial consortium and enrichment enhanced hydrocarbon degradation in diesel-polluted soils. A pronounced and rapid bloom of a native gammaproteobacterium was observed in all diesel-polluted soils. A unique operational taxonomic unit (OTU) related to the Alkanindiges genus represented ∼0.1% of the sequences in the original community but surprisingly reached >60% after 6 weeks. Despite this Alkanindiges-related bloom, inoculated strains were maintained in the community and may explain the differences in hydrocarbon degradation. This study shows the detailed dynamics of a soil bacterial bloom in response to hydrocarbon pollution, resembling microbial blooms observed in marine environments. Rare community members presumably act as a reservoir of ecological functions in high-diversity environments, such as soils. This rare-to-dominant bacterial shift illustrates the potential role of a rare biosphere facing drastic environmental disturbances. Additionally, it supports the concept of “conditionally rare taxa,” in which rareness is a temporary state conditioned by environmental constraints. PMID:26590285

  20. Salt Marsh Sediment Mixing Following Petroleum Hydrocarbon Exposure from the Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Hatch, R. S.; Yeager, K. M.; Brunner, C. A.; Wade, T. L.; Briggs, K. B.; Schindler, K. J.

    2013-12-01

    Tidal marshes support valuable ecosystems, but their coastal locations make them susceptible to oil spills. Oil spilled in the ocean is easily transported via tidal and wind-driven currents to the shore and incorporated into sediments. The primary goal of this research was to determine how deeply oil from the 2010 Deepwater Horizon spill has penetrated sediments along the Gulf Coast, and whether oil has quantifiably affected benthic ecosystems at these sites. Sediment cores were taken from three marsh environments at sites classified as unoiled, lightly oiled, and heavily oiled based on data from NOAA's Environmental Response Management Application (ERMA). These classifications have been verified by measurements of total polycyclic aromatic hydrocarbons ([TPAH] without perylene). Bioturbators, such as polychaetes and oligochaetes, constantly rework sediments as they burrow into them. In this way, bioturbators can play a role in the fate of organic contaminants, either by allowing for natural remediation of contaminants via enhanced microbial degradation, or by mixing oil from the surface deeper into the sediment column. The constant fallout radionuclide 7Be was measured to determine short-term sediment mixing depths. However, there was a conspicuous absence of 7Be at most sites. This could be due to sediment composition constraints on 7Be sorption (coarse-grained sediment, high organic matter contents), or rapid erosion of the marsh surface. Instead, minimum mixing depths were derived from 234Thxs profiles. Thorium-234 is a lithogenic isotope that has widely been used to trace particle mixing on short time scales near that of its mean life (36 days). Penetration depths of 234Thxs ranged between 0.25 and 4.5 cm. Sediment accumulation rates will be determined using 210Pb, with verification from an independent tracer, 137Cs, in selected cores. Preliminary results from 210Pb profiles reveal thorough, long-term (decadal) sediment mixing to at least 40 cm at all sites

  1. IR detector for hydrocarbons concentration measurement in emissions during petroleum and oil products storage and transportation

    NASA Astrophysics Data System (ADS)

    Vasilyev, Andrey O.; Shemanin, Valeriy G.; Chartiy, Pavel V.

    2011-10-01

    A double beam IR detector is developed for light hydrocarbons concentration measurement in emissions from storage vessels during oil and oil products storage and transportation. It was concluded on the basis of chromatogram that main crude losses from evaporation are the share of hydrocarbons light ends from methane to decane. Detector operation is based on spectral transparency measurement in the infrared spectra absorption range. Operational wavelength of infrared radiation makes 3.4 μm. measurement principle is based on concentration calculation proceed from molecule absorption cross-section, optical path length between light emitted diode and reference and signal photodiodes as well as from value of measured signal transmitted through gaging volume. The novel of offering device is an actual paraffin hydrocarbons concentration measurement in emissions and continuous and automatic environment quality control.

  2. Marine Oil-Degrading Microorganisms and Biodegradation Process of Petroleum Hydrocarbon in Marine Environments: A Review.

    PubMed

    Xue, Jianliang; Yu, Yang; Bai, Yu; Wang, Liping; Wu, Yanan

    2015-08-01

    Due to the toxicity of petroleum compounds, the increasing accidents of marine oil spills/leakages have had a significant impact on our environment. Recently, different remedial techniques for the treatment of marine petroleum pollution have been proposed, such as bioremediation, controlled burning, skimming, and solidifying. (Hedlund and Staley in Int J Syst Evol Microbiol 51:61-66, 2001). This review introduces an important remedial method for marine oil pollution treatment-bioremediation technique-which is considered as a reliable, efficient, cost-effective, and eco-friendly method. First, the necessity of bioremediation for marine oil pollution was discussed. Second, this paper discussed the species of oil-degrading microorganisms, degradation pathways and mechanisms, the degradation rate and reaction model, and the factors affecting the degradation. Last, several suggestions for the further research in the field of marine oil spill bioremediation were proposed.

  3. Advanced fuel hydrocarbon remediation national test location - biocell treatment of petroleum contaminated soils

    SciTech Connect

    Heath, J.; Lory, E.

    1997-03-01

    Biocells are engineered systems that use naturally occurring microbes to degrade fuels and oils into simpler, nonhazardous, and nontoxic compounds. Biocells are able to treat soils contaminated with petroleum based fuels and lubricants, including diesel, jet fuel, and lubricating and hydraulic oils. The microbes use the contaminants as a food source and thus destroy them. By carefully monitoring and controlling air and moisture levels, degradation rates can be increased and total treatment time reduced over natural systems.

  4. Fate and transport of petroleum hydrocarbons in soil and ground water at Big South Fork National River and Recreation Area, Tennessee and Kentucky, 2002-2003

    USGS Publications Warehouse

    Williams, Shannon D.; Ladd, David E.; Farmer, James

    2006-01-01

    In 2002 and 2003, the U.S. Geological Survey (USGS), by agreement with the National Park Service (NPS), investigated the effects of oil and gas production operations on ground-water quality at Big South Fork National River and Recreation Area (BISO) with particular emphasis on the fate and transport of petroleum hydrocarbons in soils and ground water. During a reconnaissance of ground-water-quality conditions, samples were collected from 24 different locations (17 springs, 5 water-supply wells, 1 small stream, and 1 spring-fed pond) in and near BISO. Benzene, toluene, ethylbenzene, and xylene (BTEX) compounds were not detected in any of the water samples, indicating that no widespread contamination of ground-water resources by dissolved petroleum hydrocarbons probably exists at BISO. Additional water-quality samples were collected from three springs and two wells for more detailed analyses to obtain additional information on ambient water-quality conditions at BISO. Soil gas, soil, water, and crude oil samples were collected at three study sites in or near BISO where crude oil had been spilled or released (before 1993). Diesel range organics (DRO) were detected in soil samples from all three of the sites at concentrations greater than 2,000 milligrams per kilogram. Low concentrations (less than 10 micrograms per kilogram) of BTEX compounds were detected in lab-analyzed soil samples from two of the sites. Hydrocarbon-degrading bacteria counts in soil samples from the most contaminated areas of the sites were not greater than counts for soil samples from uncontaminated (background) sites. The elevated DRO concentrations, the presence of BTEX compounds, and the low number of -hydrocarbon-degrading bacteria in contaminated soils indicate that biodegradation of petroleum hydrocarbons in soils at these sites is incomplete. Water samples collected from the three study sites were analyzed for BTEX and DRO. Ground-water samples were collected from three small springs at the

  5. Distribution and concentrations of petroleum hydrocarbons associated with the BP/Deepwater Horizon Oil Spill, Gulf of Mexico.

    PubMed

    Sammarco, Paul W; Kolian, Steve R; Warby, Richard A F; Bouldin, Jennifer L; Subra, Wilma A; Porter, Scott A

    2013-08-15

    We examined the geographic extent of petroleum hydrocarbon contamination in sediment, seawater, biota, and seafood during/after the BP/Deepwater Horizon Oil Spill (April 20-July 15, 2010; 28.736667°N, -88.386944°W). TPH, PAHs, and 12 compound classes were examined, particularly C1-benzo(a)anthracenes/chrysenes, C-2-/C-4-phenanthrenes/anthracenes, and C3-naphthalenes. Sediment TPH, PAHs, and all classes peaked near Pensacola, Florida, and Galveston, Texas. Seawater TPH peaked off Pensacola; all of the above classes peaked off the Mississippi River, Louisiana and Galveston. Biota TPH and PAHs peaked near the Mississippi River; C-3 napthalenes peaked near the spill site. Seafood TPH peaked near the spill site, with PAHs and all classes peaking near Pensacola. We recommend that oil concentrations continued to be monitored in these media well after the spill has ceased to assist in defining re-opening dates for fisheries; closures should be maintained until hydrocarbon levels are deemed within appropriate limits. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. The Willow Microbiome Is Influenced by Soil Petroleum-Hydrocarbon Concentration with Plant Compartment-Specific Effects

    PubMed Central

    Tardif, Stacie; Yergeau, Étienne; Tremblay, Julien; Legendre, Pierre; Whyte, Lyle G.; Greer, Charles W.

    2016-01-01

    The interaction between plants and microorganisms, which is the driving force behind the decontamination of petroleum hydrocarbon (PHC) contamination in phytoremediation technology, is poorly understood. Here, we aimed at characterizing the variations between plant compartments in the microbiome of two willow cultivars growing in contaminated soils. A field experiment was set-up at a former petrochemical plant in Canada and after two growing seasons, bulk soil, rhizosphere soil, roots, and stems samples of two willow cultivars (Salix purpurea cv. FishCreek, and Salix miyabeana cv. SX67) growing at three PHC contamination concentrations were taken. DNA was extracted and bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) regions were amplified and sequenced using an Ion Torrent Personal Genome Machine (PGM). Following multivariate statistical analyses, the level of PHC-contamination appeared as the primary factor influencing the willow microbiome with compartment-specific effects, with significant differences between the responses of bacterial, and fungal communities. Increasing PHC contamination levels resulted in shifts in the microbiome composition, favoring putative hydrocarbon degraders, and microorganisms previously reported as associated with plant health. These shifts were less drastic in the rhizosphere, root, and stem tissues as compared to bulk soil, probably because the willows provided a more controlled environment, and thus, protected microbial communities against increasing contamination levels. Insights from this study will help to devise optimal plant microbiomes for increasing the efficiency of phytoremediation technology. PMID:27660624

  7. CO2-efflux measurements for evaluating source zone natural attenuation rates in a petroleum hydrocarbon contaminated aquifer.

    PubMed

    Sihota, Natasha J; Singurindy, Olga; Mayer, K Ulrich

    2011-01-15

    In order to gain regulatory approval for source zone natural attenuation (SZNA) at hydrocarbon-contaminated sites, knowledge regarding the extent of the contamination, its tendency to spread, and its longevity is required. However, reliable quantification of biodegradation rates, an important component of SZNA, remains a challenge. If the rate of CO(2) gas generation associated with contaminant degradation can be determined, it may be used as a proxy for the overall rate of subsurface biodegradation. Here, the CO(2)-efflux at the ground surface is measured using a dynamic closed chamber (DCC) method to evaluate whether this technique can be used to assess the areal extent of the contaminant source zone and the depth-integrated rate of contaminant mineralization. To this end, a field test was conducted at the Bemidji, MN, crude oil spill site. Results indicate that at the Bemidji site the CO(2)-efflux method is able to both delineate the source zone and distinguish between the rates of natural soil respiration and contaminant mineralization. The average CO(2)-efflux associated with contaminant degradation in the source zone is estimated at 2.6 μmol m(-2) s(-1), corresponding to a total petroleum hydrocarbon mineralization rate (expressed as C(10)H(22)) of 3.3 g m(-2) day(-1).

  8. Hydrologic and microbiological factors affecting persistence and migration of petroleum hydrocarbons spilled in a continuous-permafrost region

    USGS Publications Warehouse

    Braddock, J.F.; McCarthy, K.A.

    1996-01-01

    Fuel spills, totaling about 1300 m3, occurred between 1976 and 1978 adjacent to Imikpuk Lake, a drinking water source near Barrow, AK. Substantial contamination of soils and groundwater near the lake persists. We examined the magnitude and direction of groundwater flux and the microbial activity at this site to understand the persistence of contamination and its effect on the lake. We found that groundwater flux is small due to shallow permafrost, which restricts the cross-sectional area available for flow, and to the short annual thaw season (ca. 90 days). The small flux and limited depth also constrain contaminant transport and dispersion, resulting in persistent, shallow contamination. The numbers of hydrocarbon-oxidizing microorganisms and their laboratory mineralization potentials for benzene (at 10 ??C) were higher in samples from contaminated areas than in reference samples. Benzene mineralization potentials in groundwater samples were comparable to more temperate systems (0.1-0.5 mg of benzene mineralized L-1 day-1) and were stimulated by nutrient additions. Field measurements of dissolved oxygen, nitrate, ferrous iron, and sulfide in groundwater provided evidence that biodegradation of petroleum hydrocarbons is occurring in situ. Despite evidence of an active microbial population, microbial processes, like contaminant transport, are likely limited at this site by the short annual thaw season.

  9. Evaluation of the Potential Use of Microorganisms in the Cleanup of Petroleum Hydrocarbon Spills in Soils

    DTIC Science & Technology

    1991-09-01

    are capable of producing biosurfactants that form emulsions which enhance the susceptibility of hydrocarbons to microbial attack. Microorganisms...Environmental Research Labora- tory, Ada, OK. Zajick, J. E., and Mahomedy, A. Y. 1984. " Biosurfactants : Intermediates in the Biosynthesis of Amphipathic

  10. MODELS AND METHODS FOR PETROLEUM HYDROCARBON RISK ASSESSMENT: ONSITE, LUSTRISK, AND HSSM

    EPA Science Inventory

    U.S. EPA has developed three tiers of models for analysis of fuel releases from underground storage tank (UST) systems: 1) OnSite; 2) LUSTRisk, and 3) the Hydrocarbon Spill Screening Model (HSSM). The tiered approach to modeling allows users to select a model based upon the amoun...

  11. Accumulation of petroleum hydrocarbons in intracellular lipid bodies of the freshwater diatom Synedra acus subsp. radians.

    PubMed

    Shishlyannikov, Sergey M; Nikonova, Alyona A; Klimenkov, Igor V; Gorshkov, Alexander G

    2017-01-01

    The accumulation of hydrophobic compounds by phytoplankton plays a crucial role in the biogeochemical cycle of persistent organic pollutants (POPs) in aquatic environments. We studied the accumulation of polycyclic aromatic hydrocarbons (PAHs) in the freshwater diatom Synedra acus subsp. radians during its cultivation with crude oil hydrocarbons, using epifluorescent and laser confocal microscopy as well as gas chromatography-mass spectrometry (GC/MS) analysis. Our results revealed that in the presence of crude oil or an extract of a crude oil/n-hexane solution (light oil), S. acus subsp. radians accumulated PAHs in its lipid bodies. During cultivation in the presence of a crude oil/n-hexane solution, the cells selectively accumulated C12-C18 alkanes, with a preference for C15 and C16 homologues. The length of n-alkane hydrocarbon chains accumulated in cells was similar to the acyl chains of fatty acids of the diatom. We therefore suggest that the insertion of n-alkanes into the membrane lipid bilayer promotes the transmembrane transport of PAH in diatoms. Our results confirm the hypothesis that diatoms play a role in the elimination of hydrophobic hydrocarbons from aquatic systems.

  12. MODELS AND METHODS FOR PETROLEUM HYDROCARBON RISK ASSESSMENT: ONSITE, LUSTRISK, AND HSSM

    EPA Science Inventory

    U.S. EPA has developed three tiers of models for analysis of fuel releases from underground storage tank (UST) systems: 1) OnSite; 2) LUSTRisk, and 3) the Hydrocarbon Spill Screening Model (HSSM). The tiered approach to modeling allows users to select a model based upon the amoun...

  13. Polycyclic hydrocarbon biomarkers confirm selective incorporation of petroleum in soil and kangaroo rat liver samples near an oil well blowout site in the western San Joaquin Valley, California

    SciTech Connect

    Kaplan, I.; Lu, S.T.; Lee, R.P.; Warrick, G.

    1996-05-01

    Following an accidental oil well blow out at an oil field in the western part of the San Joaquin Valley, soil samples and specimens of Heermann`s kangaroo rats (Dipodomys heermanni) were collected from two oil-impacted areas and one control area. Fingerprinting by GC-MS and quantitative evaluation of metabolized petroleum hydrocarbons was performed on oil, soil extracts, and rat livers. A liver from a domestically raised rabbit was used as an experimental control. The results show that there is no significant incorporation of PAHs or low molecular weight n-alkanes (C{sub 13}--C{sub 25}) into the liver tissues. The C{sub 25}--C{sub 35} n-alkane range for all soil samples, kangaroo rat livers, and rabbit liver, is dominated by a high abundance of C{sub 27}, C{sub 29}, C{sub 31}, and C{sub 33} hydrocarbons typical of epicuticular plant waxes. In all liver tissue samples, squalene, the cholesterol precursor, is the dominant hydrocarbon. Although evidence is lacking for metabolism of PAHs and paraffinic petroleum hydrocarbons, very strong evidence is available for incorporation of a set of polycyclic hydrocarbons (biomarkers) belonging to the terpane, sterane, and monoaromatic and triaromatic sterane families, identified by ion monitoring at 191, 217, 253, and 231 m/z, respectively. Because these hydrocarbons are not known to exist in the biosphere, but are only synthesized during oil- and coal-forming processes, their presence in the liver samples constitutes proof for crude oil incorporation into tissues. This conclusion is further substantiated by the selective incorporation of only the 20S enantiomer of C{sub 28} and C{sub 29} steranes and aromatic steranes into the livers, with the exclusion of the 20R enantiomer. The results from the study conclusively demonstrate that polycyclic hydrocarbon biomarkers provide excellent indices for proof of petroleum exposure and metabolism in some terrestrial herbivores.

  14. Embryotoxic effects of benzo(. cap alpha. )pyrene, chrysene, and 7,12-dimethylbenz(. cap alpha. )anthracene in petroleum hydrocarbon mixtures in mallard ducks

    SciTech Connect

    Hoffman, D.J.; Gay, M.L.

    1981-05-01

    In the present study the effects of three polycyclic aromatic hydrocarbons identified in petroleum were examined on mallard (Anas platyrhynchos) embryo development. Addition of benzo(a)pyrene (BaP), chrysene, or 7,12-dimethylbenz(a)anthracene (DMBA) to a synthetic petroleum hydrocarbon mixture of known composition and relatively low embryotoxicity resulted in embryotoxicity that was enhanced or equal to that of crude oil when 10 ..mu../ was applied externally to eggs at 72 h of development. The order of ability to enhance embryotoxicity was DMBA > BaP > chrysene. The temporal pattern of embryonic death was similar to that reported after exposure to crude oil. Retarded growth was accompanied by teratogenicity. Gas chromatographic-mass spectral analysis of externally treated eggs showed the passage of aromatic hydrocarbons including chrysene through the shell and shell membranes to the developing embryos. These findings suggest that the presence of polycyclic aromatic hydrocarbons in petroleum, including BaP, chrysene, and DMBA, significantly enhances the overall embryotoxicity in avian species.

  15. Effects of diurnal temperature variation on microbial community and petroleum hydrocarbon biodegradation in contaminated soils from a sub-Arctic site.

    PubMed

    Akbari, Ali; Ghoshal, Subhasis

    2015-12-01

    Contaminated soils are subject to diurnal and seasonal temperature variations during on-site ex-situ bioremediation processes. We assessed how diurnal temperature variations similar to that in summer at the site from which petroleum hydrocarbon-contaminated soil was collected affect the soil microbial community and the extent of biodegradation of petroleum hydrocarbons compared with constant temperature regimes. Microbial community analyses for 16S rRNA and alkB genes by pyrosequencing indicated that the microbial community for soils incubated under diurnal temperature variation from 5°C to 15°C (VART5-15) evolved similarly to that for soils incubated at constant temperature of 15°C (CST15). In contrast, under a constant temperature of 5°C (CST5), the community evolved significantly different. The extent of biodegradation of C10-C16 hydrocarbons in the VART5-15 systems was 48%, comparable with the 41% biodegradation in CST15 systems, but significantly higher than CST5 systems at 11%. The enrichment of Gammaproteobacteria was observed in the alkB gene-harbouring communities in VART5-15 and CST15 but not in CST5 systems. However, the Actinobacteria was abundant at all temperature regimes. The results suggest that changes in microbial community composition as a result of diurnal temperature variations can significantly influence petroleum hydrocarbon bioremediation performance in cold regions.

  16. Hydrocarbon Degradation in Caspian Sea Sediment Cores Subjected to Simulated Petroleum Seepage in a Newly Designed Sediment-Oil-Flow-Through System

    PubMed Central

    Mishra, Sonakshi; Wefers, Peggy; Schmidt, Mark; Knittel, Katrin; Krüger, Martin; Stagars, Marion H.; Treude, Tina

    2017-01-01

    The microbial community response to petroleum seepage was investigated in a whole round sediment core (16 cm length) collected nearby natural hydrocarbon seepage structures in the Caspian Sea, using a newly developed Sediment-Oil-Flow-Through (SOFT) system. Distinct redox zones established and migrated vertically in the core during the 190 days-long simulated petroleum seepage. Methanogenic petroleum degradation was indicated by an increase in methane concentration from 8 μM in an untreated core compared to 2300 μM in the lower sulfate-free zone of the SOFT core at the end of the experiment, accompanied by a respective decrease in the δ13C signal of methane from -33.7 to -49.5‰. The involvement of methanogens in petroleum degradation was further confirmed by methane production in enrichment cultures from SOFT sediment after the addition of hexadecane, methylnapthalene, toluene, and ethylbenzene. Petroleum degradation coupled to sulfate reduction was indicated by the increase of integrated sulfate reduction rates from 2.8 SO42-m-2 day-1 in untreated cores to 5.7 mmol SO42-m-2 day-1 in the SOFT core at the end of the experiment, accompanied by a respective accumulation of sulfide from 30 to 447 μM. Volatile hydrocarbons (C2–C6 n-alkanes) passed through the methanogenic zone mostly unchanged and were depleted within the sulfate-reducing zone. The amount of heavier n-alkanes (C10–C38) decreased step-wise toward the top of the sediment core and a preferential degradation of shorter (C30) was seen during the seepage. This study illustrates, to the best of our knowledge, for the first time the development of methanogenic petroleum degradation and the succession of benthic microbial processes during petroleum passage in a whole round sediment core. PMID:28503172

  17. Hydrocarbon Degradation in Caspian Sea Sediment Cores Subjected to Simulated Petroleum Seepage in a Newly Designed Sediment-Oil-Flow-Through System.

    PubMed

    Mishra, Sonakshi; Wefers, Peggy; Schmidt, Mark; Knittel, Katrin; Krüger, Martin; Stagars, Marion H; Treude, Tina

    2017-01-01

    The microbial community response to petroleum seepage was investigated in a whole round sediment core (16 cm length) collected nearby natural hydrocarbon seepage structures in the Caspian Sea, using a newly developed Sediment-Oil-Flow-Through (SOFT) system. Distinct redox zones established and migrated vertically in the core during the 190 days-long simulated petroleum seepage. Methanogenic petroleum degradation was indicated by an increase in methane concentration from 8 μM in an untreated core compared to 2300 μM in the lower sulfate-free zone of the SOFT core at the end of the experiment, accompanied by a respective decrease in the δ(13)C signal of methane from -33.7 to -49.5‰. The involvement of methanogens in petroleum degradation was further confirmed by methane production in enrichment cultures from SOFT sediment after the addition of hexadecane, methylnapthalene, toluene, and ethylbenzene. Petroleum degradation coupled to sulfate reduction was indicated by the increase of integrated sulfate reduction rates from 2.8 SO4(2-)m(-2) day(-1) in untreated cores to 5.7 mmol SO4(2-)m(-2) day(-1) in the SOFT core at the end of the experiment, accompanied by a respective accumulation of sulfide from 30 to 447 μM. Volatile hydrocarbons (C2-C6 n-alkanes) passed through the methanogenic zone mostly unchanged and were depleted within the sulfate-reducing zone. The amount of heavier n-alkanes (C10-C38) decreased step-wise toward the top of the sediment core and a preferential degradation of shorter (C30) was seen during the seepage. This study illustrates, to the best of our knowledge, for the first time the development of methanogenic petroleum degradation and the succession of benthic microbial processes during petroleum passage in a whole round sediment core.

  18. Community dynamics of a mixed-bacterial culture growing on petroleum hydrocarbons in batch culture.

    PubMed

    Van Hamme, J D; Odumeru, J A; Ward, O P

    2000-05-01

    The effects of various hydrocarbon substrates, and a chemical surfactant capable of enhancing crude-oil biodegradation, on the community structure of a mixed-bacterial inoculum were examined in batch culture. Of 1000 TSA-culturable isolates, 68.6% were identified at the genus level or better by phospholipid fatty acid analysis over 7-day time course experiments. Cultures were exposed to 20 g/L Bow River crude oil with and without 0.625 g/L Igepal CO-630 (a nonylphenol ethoxylate surfactant), 5 g/L saturates, 5 g/L aromatics, or 125 g/L refinery sludge. A group of six genera dominated the cultures: Acinetobacter, Alcaligenes, Ochrobactrum, Pseudomonas/Flavimonas, Stenotrophomonas, and Yersinia. Species from four of the genera were shown to be capable of hydrocarbon degradation, and counts of hydrocarbon degrading and total heterotrophic bacteria over time were nearly identical. Pseudomonas/Flavimonas and Stenotrophomonas normally dominated during the early portions of cultures, although the lag phase of Stenotrophomonas appears to have been increased by surfactant addition. Acinetobacter calcoaceticus was the most frequently isolated microorganism during exposure to the saturate fraction of crude oil. Regardless of substrate, the culture medium supported a greater variety of organisms during the latter portions of cultures. Understanding the community structure and dynamics of mixed bacterial cultures involved in treatment of heterogeneous waste substrates may assist in process development and optimization studies.

  19. A digital atlas of hydrocarbon accumulations within and adjacent to the National Petroleum Reserve - Alaska (NPRA)

    USGS Publications Warehouse

    Kumar, Naresh; Bird, Kenneth J.; Nelson, Philip H.; Grow, John A.; Evans, Kevin R.

    2002-01-01

    The United States Geological Survey (USGS) has initiated a project to reassess the hydrocarbon potential of the NPRA. Although exploration for hydrocarbons in the NPRA was initiated in 1944, it has taken fifty years for the first commercial discovery to be made. That discovery, the Alpine field (projected recoverable reserves of 430 million barrels), was made in 1994 along the eastern boundary of the NPRA. This field produces from a formation heretofore considered to be mostly a source rock. The Alpine discovery made such a reassessment necessary. As part of this assessment, we have compiled stratigraphic, structural, petrophysical, and seismic data related to nineteen accumulations within and nearby the NPRA. The goal is to provide basic documentation and a set of analog accumulations for the new assessment. The first two displays of this atlas consist of a location map and a stratigraphic column showing the stratigraphic settings for the primary reservoir and source rocks for these accumulations. The third display is a table listing each accumulation and providing the hydrocarbon fluid type, reservoir, operator, status, and discovery well and date for each. Compilation of basic information for each individual accumulation follows these displays. A typical compilation includes a structurecontour map on or near the reservoir horizon, a log display of the discovery well with reservoir characteristics along with figures for recoverable volumes, and one or two seismic lines across or near the accumulation.

  20. Hydrocarbon wastes at petroleum- and creosote-contaminated sites. Rapid characterization of component classes by thin-layer chromatography with flame ionization detection

    SciTech Connect

    Pollard, S.J.; Hrudey, S.E. ); Fuhr, B.J.; Alex, R.F.; Holloway, L.R.; Tosto, F. )

    1992-12-01

    Adaptation of thin-layer chromatography with flame ionization detection for the semiquantitative characterization of residual hydrocarbon contamination at petroleum and wood-preserving hazardous waste sites is described. Soils collected from an abandoned oilfield battery site and a former creosote wood treatment facility in Alberta were solvent extracted and the residues characterized using two mobile-phase systems, one capable of separating polar waste components and the other of separating constituent aromatics according to ring number. The method provides a rapid component class fingerprint of the saturate, aromatic, and polar components of heavy hydrocarbon wastes, is analogous to column chromatography, and is useful for estimating the extent of weathering experienced by aged hydrocarbon wastes in the soil environment. As such, it can be useful for preliminary screening of the potential biotreatability or inherent recalcitrance of hydrocarbon waste mixtures. 34 refs., 7 figs., 4 tabs.

  1. Method for reducing the sulfur content of a sulfur-containing hydrocarbon stream

    DOEpatents

    Mahajan, Devinder

    2004-12-28

    The sulfur content of a liquid hydrocarbon stream is reduced under mild conditions by contracting a sulfur-containing liquid hydrocarbon stream with transition metal particles containing the transition metal in a zero oxidation state under conditions sufficient to provide a hydrocarbon product having a reduced sulfur content and metal sulfide particles. The transition metal particles can be produced in situ by adding a transition metal precursor, e.g., a transition metal carbonyl compound, to the sulfur-containing liquid feed stream and sonicating the feed steam/transition metal precursor combination under conditions sufficient to produce the transition metal particles.

  2. [Identification of Hydrocarbon-Oxidizing Dietzia Bacteria from Petroleum Reservoirs Based on Phenotypic Properties and Analysis of the 16S rRNA and gyrB Genes].

    PubMed

    Nazina, T N; Shumkova, E S; Sokolova, D Sh; Babich, T L; Zhurina, M V; Xue, Yan-Fen; Osipov, G A; Poltaraus, A B; Tourova, T P

    2015-01-01

    The taxonomic position of hydrocarbon-oxidizing bacterial strains 263 and 32d isolated from formation water of the Daqing petroleum reservoir (PRC) was determined by polyphasic taxonomy techniques, including analysis of the 16S rRNA and the gyrB genes. The major chemotaxonomic characteristics of both strains, including the IV type cell wall, composition of cell wall fatty acids, mycolic acids, and menaquinones, agreed with those typical of Dietzia strains. The DNA G+C content of strains 263 and 32d were 67.8 and 67.6 mol%, respectively. Phylogenetic analysis of the 16S rRNA gene of strain 32d revealed 99.7% similarity to the gene of D. maris, making it possible to identify strain 32d as belonging to this species. The 16S rRNA gene sequence of strain 263 exhibited 99.7 and 99.9% similarity to those of D. natronolimnaea and D. cercidiphylli YIM65002(T), respectively. Analysis of the gyrB genes of the subterranean isolates and of a number of Dietzia type strains confirmed classiffication of strain 32d as a D. maris strain and of strain 263, as a D. natronolimnaea strain. A conclusion was made concerning higher resolving power of phylogenetic analysis of the gyrB gene compared to the 16S rRNA gene analysis in the case of determination of the species position of Dietzia isolates.

  3. Plant Family-Specific Impacts of Petroleum Pollution on Biodiversity and Leaf Chlorophyll Content in the Amazon Rainforest of Ecuador

    PubMed Central

    Arellano, Paul; Tansey, Kevin; Balzter, Heiko; Tellkamp, Markus

    2017-01-01

    In recent decades petroleum pollution in the tropical rainforest has caused significant environmental damage in vast areas of the Amazon region. At present the extent of this damage is not entirely clear. Little is known about the specific impacts of petroleum pollution on tropical vegetation. In a field expedition to the Ecuadorian Amazon over 1100 leaf samples were collected from tropical trees in polluted and unpolluted sites. Plant families were identified for 739 of the leaf samples and compared between sites. Plant biodiversity indices show a reduction of the plant biodiversity when the site was affected by petroleum pollution. In addition, reflectance and transmittance were measured with a field spectroradiometer for every leaf sample and leaf chlorophyll content was estimated using reflectance model inversion with the radiative tranfer model PROSPECT. Four of the 15 plant families that are most representative of the ecoregion (Melastomataceae, Fabaceae, Rubiaceae and Euphorbiaceae) had significantly lower leaf chlorophyll content in the polluted areas compared to the unpolluted areas. This suggests that these families are more sensitive to petroleum pollution. The polluted site is dominated by Melastomataceae and Rubiaceae, suggesting that these plant families are particularly competitive in the presence of pollution. This study provides evidence of a decrease of plant diversity and richness caused by petroleum pollution and of a plant family-specific response of leaf chlorophyll content to petroleum pollution in the Ecuadorian Amazon using information from field spectroscopy and radiative transfer modelling. PMID:28103307

  4. Plant Family-Specific Impacts of Petroleum Pollution on Biodiversity and Leaf Chlorophyll Content in the Amazon Rainforest of Ecuador.

    PubMed

    Arellano, Paul; Tansey, Kevin; Balzter, Heiko; Tellkamp, Markus

    2017-01-01

    In recent decades petroleum pollution in the tropical rainforest has caused significant environmental damage in vast areas of the Amazon region. At present the extent of this damage is not entirely clear. Little is known about the specific impacts of petroleum pollution on tropical vegetation. In a field expedition to the Ecuadorian Amazon over 1100 leaf samples were collected from tropical trees in polluted and unpolluted sites. Plant families were identified for 739 of the leaf samples and compared between sites. Plant biodiversity indices show a reduction of the plant biodiversity when the site was affected by petroleum pollution. In addition, reflectance and transmittance were measured with a field spectroradiometer for every leaf sample and leaf chlorophyll content was estimated using reflectance model inversion with the radiative tranfer model PROSPECT. Four of the 15 plant families that are most representative of the ecoregion (Melastomataceae, Fabaceae, Rubiaceae and Euphorbiaceae) had significantly lower leaf chlorophyll content in the polluted areas compared to the unpolluted areas. This suggests that these families are more sensitive to petroleum pollution. The polluted site is dominated by Melastomataceae and Rubiaceae, suggesting that these plant families are particularly competitive in the presence of pollution. This study provides evidence of a decrease of plant diversity and richness caused by petroleum pollution and of a plant family-specific response of leaf chlorophyll content to petroleum pollution in the Ecuadorian Amazon using information from field spectroscopy and radiative transfer modelling.

  5. Historical changes in trace metals and hydrocarbons in nearshore sediments, Alaskan Beaufort Sea, prior and subsequent to petroleum-related industrial development: part II. Hydrocarbons.

    PubMed

    Venkatesan, M Indira; Naidu, A Sathy; Blanchard, Arny L; Misra, Debasmita; Kelley, John J

    2013-12-15

    Composition and concentration of hydrocarbons (normal and isoprenoid alkanes, triterpenoids, steranes, and PAHs) in nearshore surface sediments from Elson Lagoon (EL), Colville Delta-Prudhoe Bay (CDPB) and Beaufort Lagoon (BL), Alaskan Beaufort Sea, were assessed for spatio-temporal variability. Principal component analysis of the molecules/biomarkers concentrations delineated CDPB and BL samples into two groups, and cluster analysis identified three station groups in CDPB. Overall there was no geographic distribution pattern in the groups. The diversities between groups and individual samples are attributed to differences in n-alkanes and PAHs contents, which are influenced predominantly by sediment granulometry and sitespecific fluvial input. The predominant hydrocarbon source is biogenic, mainly terrigenous, with hardly any contribution from natural oil seeps, oil drill effluents and/or refined crude. The terrigenous source is corroborated by δ(13)C, δ(15)N, and OC/N of sediment organic matter. Time interval (1976-1977, 1984 and 1997) changes in hydrocarbon compositions and concentrations in CDPB are not significant. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Meta-transcriptomics indicates biotic cross-tolerance in willow trees cultivated on petroleum hydrocarbon contaminated soil.

    PubMed

    Gonzalez, Emmanuel; Brereton, Nicholas J B; Marleau, Julie; Guidi Nissim, Werther; Labrecque, Michel; Pitre, Frederic E; Joly, Simon

    2015-10-12

    High concentrations of petroleum hydrocarbon (PHC) pollution can be hazardous to human health and leave soils incapable of supporting agricultural crops. A cheap solution, which can help restore biodiversity and bring land back to productivity, is cultivation of high biomass yielding willow trees. However, the genetic mechanisms which allow these fast-growing trees to tolerate PHCs are as yet unclear. Salix purpurea 'Fish Creek' trees were pot-grown in soil from a former petroleum refinery, either lacking or enriched with C10-C50 PHCs. De novo assembled transcriptomes were compared between tree organs and impartially annotated without a priori constraint to any organism. Over 45% of differentially expressed genes originated from foreign organisms, the majority from the two-spotted spidermite, Tetranychus urticae. Over 99% of T. urticae transcripts were differentially expressed with greater abundance in non-contaminated trees. Plant transcripts involved in the polypropanoid pathway, including phenylalanine ammonia-lyase (PAL), had greater expression in contaminated trees whereas most resistance genes showed higher expression in non-contaminated trees. The impartial approach to annotation of the de novo transcriptomes, allowing for the possibility for multiple species identification, was essential for interpretation of the crop's response treatment. The meta-transcriptomic pattern of expression suggests a cross-tolerance mechanism whereby abiotic stress resistance systems provide improved biotic resistance. These findings highlight a valuable but complex biotic and abiotic stress response to real-world, multidimensional contamination which could, in part, help explain why crops such as willow can produce uniquely high biomass yields on challenging marginal land.

  7. Combining HPLC-GCXGC, GCXGC/ToF-MS, and selected ecotoxicity assays for detailed monitoring of petroleum hydrocarbon degradation in soil and leaching water.

    PubMed

    Mao, Debin; Lookman, Richard; Van De Weghe, Hendrik; Weltens, Reinhilde; Vanermen, Guido; De Brucker, Nicole; Diels, Ludo

    2009-10-15

    HPLC-GCXGC/FID (high-performance liquid chromatography followed by comprehensive two-dimensional gas chromatography with flame-ionization detection) and GCXGC/ToF-MS (comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry) were used to study the biodegradation of petroleum hydrocarbons in soil microcosms during 20 weeks. Two soils were studied: one spiked with fresh diesel and one field sample containing weathered diesel-like oil. Nutrient amended and unamended samples were included. Total petroleum hydrocarbon (TPH) levels in spiked soil decreased from 15,000 to 7,500 mg/kg d.m. and from 12,0O0 to 4,000 mg/kg d.m. in the field soil. Linear alkanes and aromatic hydrocarbons were better biodegradable (>60% degraded) than iso-alkanes; cycloalkanes were least degradable (<40%). Aromatic hydrocarbons up to three rings showed better degradability than n-alkanes. GCXGC/ToF-MS analysis of leaching water showed that initially various oxygenated hydrocarbons were produced. Compound peaks seemed to move up and rightward in the GCXGC chromatograms, indicating that more polar and heavier compounds were formed as biodegradation proceeded. Nutrient amendment can increase TPH removal rates, but had adverse effects on ecotoxicity and leaching potential in our experiment This was explained by observed shifts in the soil microbial community. Ecotoxicity assays showed that residual TPH still inhibited cress (Lepidium sativum) seed germination, but the leaching water was no longer toxic toward luminescent bacteria (Vibrio fischeri).

  8. Effect of salt on aerobic biodegradation of petroleum hydrocarbons in contaminated groundwater.

    PubMed

    Ulrich, Ania C; Guigard, Selma E; Foght, Julia M; Semple, Kathleen M; Pooley, Kathryn; Armstrong, James E; Biggar, Kevin W

    2009-02-01

    Hydrocarbon-contaminated soil and groundwater at oil and gas production sites may be additionally impacted by salts due to release of produced waters. However, little is known about the effect of salt on the in-situ biodegradation of hydrocarbons by terrestrial microbes, especially at low temperatures. To study this effect, we prepared a groundwater-soil slurry from two sites in Canada: a former flare pit site contaminated with flare pit residue (Site A), and a natural gas processing facility contaminated with natural gas condensate (Site B). The slurry with its indigenous microbes was amended with radiolabeled hydrocarbons dissolved in free product plus nutrients and/or NaCl, and incubated in aerobic biometer flasks with gyrotory shaking at either 25 or 10 degrees C for up to 5 weeks. Cumulative production of (14)CO(2) was measured and the lag time, rate and extent of mineralization were calculated. For Site A, concentrations of NaCl >or=1% (w/v) delayed the onset of mineralization of both (14)C-hexadecane and (14)C-phenanthrene under nutrient-amended conditions, but once biodegradation began the degradation rates were similar over the range of salt concentrations tested (0-5% NaCl). For Site B, increasing concentrations of NaCl >or=1% (w/v) increased the lag time and decreased the rate and extent of mineralization of aliphatic and aromatic substrates. Of particular interest is the observation that low concentrations of salt (

  9. Field study of pulsed air sparging for remediation of petroleum hydrocarbon contaminated soil and groundwater.

    PubMed

    Yang, Xiaomin; Beckmann, Dennis; Fiorenza, Stephanie; Niedermeier, Craig

    2005-09-15

    Recent laboratory-scale studies strongly suggested an advantage to operating air-sparging systems in a pulsed mode; however, little definitive field data existed to support the laboratory-scale observations. This study aimed to evaluate the performance of a field-scale pulsed air-sparging system during a short-term pilot test and during long-term system operation. The air-sparging system consisted of 32 sparging points and had been previously operated in a continuous mode for two years before the field study was performed. The field study used instruments with continuous data logging capabilities to monitor the dynamic responses of groundwater and soil vapor parameters to air injection. The optimum pulsing frequency was based on the evidence that the hydrocarbon volatilization and oxygen dissolution rates dramatically dropped after the air-sparging system reached steady state. The short-term pilot test results indicated a substantial increase in hydrocarbon volatilization and biodegradation in pulsed operation. On the basis of the results of the pilottest, the air-sparging system was set to operate in a pulsed mode at an optimum pulsing frequency. Operation parameters were collected 2, 8, and 12 months after the start of the pulsed operation. The long-term monitoring results showed thatthe pulsed operation increased the average hydrocarbon removal rate (kg/day) by a factor of up to 3 as compared to the previous continuous operation. The pulsed air sparging has resulted in higher reduction rates of dissolved benzene, toluene, ethylbenzene, and xylenes (BTEX) than were observed during the continuous operation. Among BTEX, benzene's reduction rate was the highest during the pulsed air-sparging operation.

  10. Identifying the source of petroleum pollution in sediment cores of southwest of the Caspian Sea using chemical fingerprinting of aliphatic and alicyclic hydrocarbons.

    PubMed

    Shirneshan, Golshan; Bakhtiari, Alireza Riyahi; Memariani, Mahmoud

    2017-02-15

    In this study, the concentration and sources of aliphatic and petroleum markers were investigated in 105 samples of Anzali, Rezvanshahr and Astara cores from the southwest of Caspian Sea. Petroleum importation was diagnosed as a main source in most depths of cores by the results of unresolved complex mixture, carbon preference index and hopanes and steranes. From the chemical diagnostic parameters, petroleum inputs in sediment of cores were determined to be different during years and the sources of hydrocarbons in some sections differed than Anzali and Turkmenistan and Azerbaijan oils. Diagenic ratios in most sediments of upper and middle sections in Astara core were determined to be highly similar to those of Azerbaijan oil, while the presence of Turkmenistan and Anzali oils were detected in a few sections of Anzali and Rezvanshahr cores and only five layers of downer section in Anzali core, respectively. Copyright © 2016. Published by Elsevier Ltd.

  11. Bioaccumulation of petroleum hydrocarbons in fiddler crabs (Uca minax) exposed to weathered MC-252 crude oil alone and in mixture with an oil dispersant.

    PubMed

    Chase, Darcy A; Edwards, Donn S; Qin, Guangqiu; Wages, Mike R; Willming, Morgan M; Anderson, Todd A; Maul, Jonathan D

    2013-02-01

    The Deepwater Horizon accident in the Gulf of Mexico resulted in a sustained release of crude oil, and weathered oil was reported to have washed onto shorelines and marshes along the Gulf coast. One strategy to minimize effects of tarballs, slicks, and oil sheen, and subsequent risk to nearshore ecosystem resources was to use oil dispersants (primarily Corexit® 9500) at offshore surface and deepwater locations. Data have been generated reporting how Corexit® 9500 and other dispersants may alter the acute toxicity of crude oil (Louisiana sweet crude) to marine organisms. However, it remains unknown how oil dispersants may influence bioaccumulation of petroleum hydrocarbons in nearshore crustaceans. We compare bioaccumulation of petroleum hydrocarbons in fiddler crabs (Uca minax) from exposures to the water accommodated fraction (WAF) of weathered Mississippi Canyon 252 oil (~30 d post spill) and chemically-enhanced WAF when mixed with Corexit® EC9500A. Whole body total petroleum hydrocarbon (TPH) concentrations were greater than background for both treatments after 6h of exposure and reached steady state at 96 h. The modeled TPH uptake rate was greater for crabs in the oil only treatment (k(u)=2.51 mL/g/h vs. 0.76 mL/g/h). Furthermore, during the uptake phase TPH patterns in tissues varied between oil only and oil+dispersant treatments. Steady state bioaccumulation factors (BAFs) were 19.0 mL/g and 14.1 mL/g for the oil only and oil+Corexit treatments, respectively. These results suggest that the toxicokinetic mechanisms of oil may be dependent on oil dispersion (e.g., smaller droplet sizes). The results also indicate that multiple processes and functional roles of species should be considered for understanding how dispersants influence bioavailability of petroleum hydrocarbons.

  12. Petroleum hydrocarbon residues in the marine environment of Bassein-Mumbai.

    PubMed

    Chouksey, Mithlesh Kumar; Kadam, A N; Zingde, M D

    2004-10-01

    The paper reports PHc contamination in water, sediment and biota of the coastal area of Bassein-Mumbai in relation to relatively less polluted sites (Dabhol and Ratnagiri) off the west coast of India. To facilitate inter-comparison three standards have been used though the results are reported in terms of SAM (Residue of Saudi Arabian Mix crude). The concentration of PHc in water off Bassein-Mumbai varies widely (2.9-39.2 microg l(-1)) as compared to the average baseline (2.8 microg l(-1)) with higher values generally confined to creeks and estuaries. The higher concentration of PHc in the bottom water of shallow areas is attributed to the contribution from the sediment-associated petroleum residue. High concentration of PHc in the surficial sediment of inshore area Ratnagiri (107.7 ppm, dry wt) is perhaps the remnants of an oil spill that occurred in the Bombay High region on May 17, 1993. The majority of values of PHc concentration in the surficial sediment of the Bassein-Mumbai region exceed 15 ppm (dry wt) against the expected background (<3 ppm, dry wt) and the trend is indicative of transfer of PHc loads from the inshore areas to the open-shore sediments. The PHc concentration of 0.8-2.6 ppm (dry wt) in sediment deposited prior to the first global commercial use of petroleum in core R5 represents the biogenic background. Based on the period of industrialisation and the horizon of PHc accumulation, a sedimentation rate of 0.2 and 1.0 cm y(-1) respectively is estimated for cores U11 and U12. Substantial increase in the concentration of PHc in sediment after 1950 in cores T8 and T10 correlates well with the establishment of refineries on the western shore of the Thane Creek in 1955-1960. A minor peak in most cores in the top 10 cm sediment probably results from biological transfer of PHc lower into the sediment by benthic organisms. Excess of PHc retained in the sediment of the Bassein-Mumbai region over the biogenic background is estimated at 40,000 t. The PHc

  13. Microbial biomass in a shallow, urban aquifer contaminated with aromatic hydrocarbons: analysis by phospholipid fatty acid content and composition.

    PubMed

    Franzmann, P D; Patterson, B M; Power, T R; Nichols, P D; Davis, G B

    1996-06-01

    The city of Perth contains a number of sites that have been contaminated with hydrocarbons due to leakage from petroleum underground storage tanks. Microbial biomass in groundwater and sediment cores from above and below the water table, and from within and outside a plume of hydrocarbon contamination, was examined using phospholipid fatty acid methyl ester analysis. Microbial numbers, calculated from the phospholipid content, ranged from 0.9 x 10(6) to 7.8 x 10(6) 'Escherichia coli equivalent cells' g-1 dry wt of sediment. Over 96% of the microbial biomass was attached to the sediment and the proportion of attached cells did not decrease within the plume of contaminants. The amount of biomass within aquifer samples seemed to be related more to the proximity of the rhizosphere to the shallow aquifer, and other unknown urban inputs, rather than to the effects of the plume of contaminants. Fatty acids common to many bacterial groups dominated within the plume, and as such the analyses gave limited insight into microbial community structure. For site assessment of intrinsic remediation of shallow aquifers in urban areas, estimates of microbial biomass may not provide information that is readily applicable to plume management.

  14. Biodepuration of petroleum-derived polynuclear aromatic hydrocarbons from a bivalve mollusc

    SciTech Connect

    Tanacredi, J.T.

    1988-01-01

    Two species of bivalves, Mya arenaria and Mercenaria mercenaria were analyzed to identify and quantify nine polynuclear aromatic hydrocarbons attributable to either natural environmental accumulation, or attributable to exposure in controlled laboratory aquarium system, respectively. Extracts from naturally occurring (e.g. Jamaica bay) and laboratory maintained organism samples were characterized using a 9-PAH reference exposure standard. The results clearly show that in-vitro exposed Mercenaria mercenaria sampled over a 45-day depuration period, do not depurate the 9-PAH's but rather bioaccumulate them at detectable levels. Due to the commercial importance of these clam species for human consumption, and the fact that these PAH's are toxic, mutagenic and carcinogenic, the practice of clam depuration and clam relaying must be re-evaluated in light of potential public health implications.

  15. Petroleum hydrocarbon contamination in Nelson Lagoon, Alaska, sampling three different matrices.

    PubMed

    Lance, Ellen W; Matz, Angela C; Reeves, Mari K; Verbrugge, Lori A

    2012-10-01

    Polycyclic aromatic hydrocarbon (PAH) levels were measured in sediments, bivalves and semi-permeable membrane devices (SPMDs) in the relatively pristine marine environment of Nelson Lagoon, Alaska. Most PAH levels in Nelson Lagoon were low, and similar to global background concentrations. Sampling media type can significantly influence conclusions of PAH contamination in the environment. Concentration of a broad size range of PAHs was observed in the tissues of blue mussels (Mytilus edulis). SPMDs collected some two- to three-ring PAHs from the dissolved water phase, while sediments collected five- to six-ring PAHs that were likely adsorbed onto particulate matter. Benzo(a)pyrene, a potent carcinogen, was found in mussels at levels similar to more industrialized harbors in Alaska.

  16. [Effect of petroleum hydrocarbons on the viability of cyanobacteria in association with oil-oxidizing bacteria].

    PubMed

    Gusev, M V; Lin'kova, M A; Koronelli, T V

    1982-01-01

    An important aspect in the problem of interactions between microorganisms in the conditions of oil pollution is how to preserve the viability of phototrophic organisms if active oil-oxidizing microflora is present in the environment. As was illustrated using a closed model ecosystem, the association 'cyanobacteria--oil-oxidizing bacteria' is capable of withstanding the negative effect of oil pollution, but within the range of hydrocarbon concentrations which can be oxidized by oil-oxidizing bacteria during a very short time. The biological equilibrium in the ecosystem was maintained and the number of viable cells of the phototrophic component in the ecosystem increased if the oil-oxidizing bacteria started to function at the same time as toxic compounds commenced to produce their effect on the microorganisms.

  17. The use of sensory perception indicators for improving the characterization and modelling of total petroleum hydrocarbon (TPH) grade in soils.

    PubMed

    Roxo, Sónia; de Almeida, José António; Matias, Filipa Vieira; Mata-Lima, Herlander; Barbosa, Sofia

    2016-03-01

    This paper proposes a multistep approach for creating a 3D stochastic model of total petroleum hydrocarbon (TPH) grade in potentially polluted soils of a deactivated oil storage site by using chemical analysis results as primary or hard data and classes of sensory perception variables as secondary or soft data. First, the statistical relationship between the sensory perception variables (e.g. colour, odour and oil-water reaction) and TPH grade is analysed, after which the sensory perception variable exhibiting the highest correlation is selected (oil-water reaction in this case study). The probabilities of cells belonging to classes of oil-water reaction are then estimated for the entire soil volume using indicator kriging. Next, local histograms of TPH grade for each grid cell are computed, combining the probabilities of belonging to a specific sensory perception indicator class and conditional to the simulated values of TPH grade. Finally, simulated images of TPH grade are generated by using the P-field simulation algorithm, utilising the local histograms of TPH grade for each grid cell. The set of simulated TPH values allows several calculations to be performed, such as average values, local uncertainties and the probability of the TPH grade of the soil exceeding a specific threshold value.

  18. A safe, efficient and cost effective process for removing petroleum hydrocarbons from a highly heterogeneous and relatively inaccessible shoreline.

    PubMed

    Guerin, Turlough F

    2015-10-01

    A rocky, intractable and highly heterogeneous, intertidal zone, was contaminated from a diesel fuel spill that occurred during refuelling of a grader used in road construction, on an operational mine's shiploading facility. A practical, cost-effective, and safer (to personnel by avoiding drilling and earthworks), and non-invasive sampling and remediation strategy was designed and implemented since the location and nature of the impacted geology (rock fill) and sediment, precluded conventional ex-situ and any in-situ treatment where drilling would be required. Enhanced biostimulation with surfactant, available N & P (which were highly constrained), and increased aeration, increased the degradation rate from no discernable change for 2 years post-spill, to 170 mg/kg/day; the maximum degradation rate after intervention. While natural attenuation was ineffective in this application, the low-cost, biostimulation intervention proved successful, allowing the site owner to meet their regulatory obligations. Petroleum hydrocarbons (aliphatic fraction) decreased from ∼20,000 mg/kg to <200 mg/kg at the completion of 180 weeks of treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Numerical modelling on fate and transport of petroleum hydrocarbons in an unsaturated subsurface system for varying source scenario

    NASA Astrophysics Data System (ADS)

    Berlin, M.; Vasudevan, M.; Kumar, G. Suresh; Nambi, Indumathi M.

    2015-04-01

    The vertical transport of petroleum hydrocarbons from a surface spill through an unsaturated subsurface system is of major concern in assessing the vulnerability of groundwater contamination. A realistic representation on fate and transport of volatile organic compounds at different periods after spill is quite challenging due to the variation in the source behaviour at the surface of spill as well as the variation in the hydrodynamic parameters and the associated inter-phase partitioning coefficients within the subsurface. In the present study, a one dimensional numerical model is developed to simulate the transport of benzene in an unsaturated subsurface system considering the effect of volatilization, dissolution, adsorption and microbial degradation of benzene for (i) constant continuous source, (ii) continuous decaying source, and (iii) residual source. The numerical results suggest that volatilization is the important sink for contaminant removal considering the soil air migration within the unsaturated zone. It is also observed that the coupled effect of dissolution and volatilization is important for the decaying source at the surface immediately after the spill, whereas rate-limited dissolution from residually entrapped source is responsible for the extended contamination towards later period.

  20. Subtask 1.17 - Measurement of Hydrocarbon Evolution from Coal and Petroleum Reservoirs Under Carbon Dioxide Floods

    SciTech Connect

    Steven B. Hawthorne

    2006-12-31

    The project developed, built, and tested three apparatuses for studying different interactions of carbon dioxide with geologic materials. In Year 1, an online instrument was constructed by coupling a high-pressure carbon dioxide extraction system with a flame ionization detector that can yield a real-time profile and quantitative measurements of hydrocarbons removed from materials such as coal and petroleum reservoir rock. In Years 2 and 3, one instrument was built to measure the excess sorption of carbon dioxide in geologic materials such as coal and showed that measurable uptake of carbon dioxide into the coal matrix is rapid. The final apparatus was built to expose geologic materials to carbon dioxide for long periods of time (weeks to months) under the range of pressures and temperatures relevant to carbon dioxide sequestration. The apparatus allows as many as twenty gram-sized samples of geologic materials to be exposed simultaneously and can also include exposures with geologic brines. The system was used to demonstrate complete conversion of magnesium silicate to magnesium carbonate in less than 4 weeks when exposed to clean water or brine, compared to no measurable conversion of dry magnesium carbonate.

  1. Monitoring the effect of poplar trees on petroleum-hydrocarbon and chlorinated-solvent contaminated ground water

    USGS Publications Warehouse

    Landmeyer, James E.

    2001-01-01

    At contaminated groundwater sites, poplar trees can be used to affect ground-water levels, flow directions, and ultimately total groundwater and contaminant flux to areas downgradient of the trees. The magnitude of the hydrologic changes can be monitored using fundamental concepts of groundwater hydrology, in addition to plant physiology-based approaches, and can be viewed as being almost independent of the contaminant released. The affect of poplar trees on the fate of groundwater contaminants, however, is contaminant dependent. Some petroleum hydrocarbons or chlorinated solvents may be mineralized or transformed to innocuous compounds by rhizospheric bacteria associated with the tree roots, mineralized or transformed by plant tissues in the transpiration stream or leaves after uptake, or passively volatilized and rapidly dispersed or oxidized in the atmosphere. These processes also can be monitored using a combination of physiological- or geochemical-based field or laboratory approaches. When combined, such hydrologic and contaminant monitoring approaches can result in a more accurate assessment of the use of poplar trees to meet regulatory goals at contaminated groundwater sites, verify that these goals continue to be met in the future, and ultimately lead to a consensus on how the performance of plant-based remedial strategies (phytoremediation) is to be assessed.

  2. The effects of Fenton process on the removal of petroleum hydrocarbons from oily sludge in Shiraz oil refinery, Iran

    PubMed Central

    2014-01-01

    Background Due to the high concentrations of total petroleum hydrocarbons (TPH) in oily sludge and their environmental hazards, the concern regarding their effects on health and the environment has increased. The main objective of this research was focused on evaluating the feasibility of using Fenton process in removing TPH in oily sludge from Shiraz oil refinery, Southern Iran. Results To determine optimum conditions, four different parameters were assessed at four different levels using Taguchi method. According to data, the optimum conditions were as follows: the reaction time of 1 hour, H2O2 to sample mass ratio of 15, H2O2 to Fe (II) molar ratio of 10 and pH of 5. The maximum TPH reduction rate was 36.47%. Because of the semi-solid nature of the sample and the hydroxyl radicals mainly generated in the aqueous solution, TPH reduction rate greatly improved by adding water. Ultimately, by adding 40 ml water per gram of the oily sludge under optimized conditions, the reduction rate of 73.07% was achieved. Conclusions The results demonstrated that this method can be used as a pre-treatment method for the oily sludge. Moreover, a complementary treatment is necessary to reach the standard limit. PMID:24422994

  3. Petroleum hydrocarbon contamination, plant identity and arbuscular mycorrhizal fungal (AMF) community determine assemblages of the AMF spore-associated microbes.

    PubMed

    Iffis, Bachir; St-Arnaud, Marc; Hijri, Mohamed

    2016-09-01

    The root-associated microbiome is a key determinant of pollutant degradation, soil nutrient availability and plant biomass productivity, but could not be examined in depth prior to recent advances in high-throughput sequencing. Arbuscular mycorrhizal fungi (AMF) form symbioses with the majority of vascular plants. They are known to enhance mineral uptake and promote plant growth and are postulated to influence the processes involved in phytoremediation. Amplicon sequencing approaches have previously shown that petroleum hydrocarbon pollutant (PHP) concentration strongly influences AMF community structure in in situ phytoremediation experiments. We examined how AMF communities and their spore-associated microbiomes were structured within the rhizosphere of three plant species growing spontaneously in three distinct waste decantation basins of a former petrochemical plant. Our results show that the AMF community was only affected by PHP concentrations, while the AMF-associated fungal and bacterial communities were significantly affected by both PHP concentrations and plant species identity. We also found that some AMF taxa were either positively or negatively correlated with some fungal and bacterial groups. Our results suggest that in addition to PHP concentrations and plant species identity, AMF community composition may also shape the community structure of bacteria and fungi associated with AMF spores. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Monitoring the effect of poplar trees on petroleum-hydrocarbon and chlorinated-solvent contaminated ground water

    USGS Publications Warehouse

    Landmeyer, J.E.

    2001-01-01

    At contaminated groundwater sites, poplar trees can be used to affect groundwater levels, flow directions, and ultimately total groundwater and contaminant flux to areas downgradient of the trees. The magnitude of the hydrologic changes can be monitored using fundamental concepts of groundwater hydrology, in addition to plant physiology-based approaches, and can be viewed as being almost independent of the contaminant released. The affect of poplar trees on the fate of groundwater contaminants, however, is contaminant dependent. Some petroleum hydrocarbons or chlorinated solvents may be mineralized or transformed to innocuous compounds by rhizospheric bacteria associated with the tree roots, mineralized or transformed by plant tissues in the transpiration stream or leaves after uptake, or passively volatilized and rapidly dispersed or oxidized in the atmosphere. These processes also can be monitored using a combination of physiological- or geochemical-based field or laboratory approaches. When combined, such hydrologic and contaminant monitoring approaches can result in a more accurate assessment of the use of poplar trees to meet regulatory goals at contaminated groundwater sites, verify that these goals continue to be met in the future, and ultimately lead to a consensus on how the performance of plant-based remedial strategies (phytoremediation) is to be assessed.

  5. Investigation of ethyl lactate as a green solvent for desorption of total petroleum hydrocarbons (TPH) from contaminated soil.