Science.gov

Sample records for petroleum reservoir simulation

  1. Petroleum reservoir data for testing simulation models

    SciTech Connect

    Lloyd, J.M.; Harrison, W.

    1980-09-01

    This report consists of reservoir pressure and production data for 25 petroleum reservoirs. Included are 5 data sets for single-phase (liquid) reservoirs, 1 data set for a single-phase (liquid) reservoir with pressure maintenance, 13 data sets for two-phase (liquid/gas) reservoirs and 6 for two-phase reservoirs with pressure maintenance. Also given are ancillary data for each reservoir that could be of value in the development and validation of simulation models. A bibliography is included that lists the publications from which the data were obtained.

  2. Petroleum reservoir simulation in a virtual environment

    SciTech Connect

    Jacobsen, J.S.; Bethel, E.W.; Datta-Gupta, A.; Holland, P.J.

    1995-12-31

    In this paper, the authors describe an approach to combining a reservoir simulation with 3-D visualization and virtual reality technology. Their prototype VR/visualization system minimizes human-machine interface barriers and provides enhanced control over the simulation, thereby maximizing scientific judgment and use of intuition. They illustrate the practical advantage of using the VR/visualization prototype system in reservoir engineering by visualizing the results of a waterflood in an oil field with a three-dimensional, spatially correlated heterogeneous permeability field.

  3. Hydrodynamic modeling of petroleum reservoirs using simulator MUFITS

    NASA Astrophysics Data System (ADS)

    Afanasyev, Andrey

    2015-04-01

    MUFITS is new noncommercial software for numerical modeling of subsurface processes in various applications (www.mufits.imec.msu.ru). To this point, the simulator was used for modeling nonisothermal flows in geothermal reservoirs and for modeling underground carbon dioxide storage. In this work, we present recent extension of the code to petroleum reservoirs. The simulator can be applied in conventional black oil modeling, but it also utilizes a more complicated models for volatile oil and gas condensate reservoirs as well as for oil rim fields. We give a brief overview of the code by providing the description of internal representation of reservoir models, which are constructed of grid blocks, interfaces, stock tanks as well as of pipe segments and pipe junctions for modeling wells and surface networks. For conventional black oil approach, we present the simulation results for SPE comparative tests. We propose an accelerated compositional modeling method for sub- and supercritical flows subjected to various phase equilibria, particularly to three-phase equilibria of vapour-liquid-liquid type. The method is based on the calculation of the thermodynamic potential of reservoir fluid as a function of pressure, total enthalpy and total composition and storing its values as a spline table, which is used in hydrodynamic simulation for accelerated PVT properties prediction. We provide the description of both the spline calculation procedure and the flashing algorithm. We evaluate the thermodynamic potential for a mixture of two pseudo-components modeling the heavy and light hydrocarbon fractions. We develop a technique for converting black oil PVT tables to the potential, which can be used for in-situ hydrocarbons multiphase equilibria prediction under sub- and supercritical conditions, particularly, in gas condensate and volatile oil reservoirs. We simulate recovery from a reservoir subject to near-critical initial conditions for hydrocarbon mixture. We acknowledge

  4. Carbonate petroleum reservoirs

    SciTech Connect

    Roehl, P.O.; Choquette, P.W.

    1985-01-01

    This book presents papers on the geology of petroleum deposits. Topics considered include diagenesis, porosity, dolomite reservoirs, deposition, reservoir rock, reefs, morphology, fracture-controlled production, Cenozoic reservoirs, Mesozoic reservoirs, and Paleozoic reservoirs.

  5. Characterization and simulation of an exhumed fractured petroleum reservoir. Final report, March 18, 1996--September 30, 1998

    SciTech Connect

    Forster, C.B.; Nielson, D.L.; Deo, M.

    1998-12-01

    An exhumed fractured reservoir located near Alligator Ridge in central Nevada provides the basis for developing and testing different approaches for simulating fractured petroleum reservoirs. The fractured analog reservoir comprises a 90 m thickness of silty limestone and shaly interbeds within the Devonian Pilot Shale. A period of regional compression followed by ongoing basin and range extension has created faults and fractures that, in tern, have controlled the migration of both oil and gold ore-forming fluids. Open pit gold mines provide access for observing oil seepage, collecting the detailed fracture data needed to map variations in fracture intensity near faults, build discrete fracture network models and create equivalent permeability structures. Fault trace patterns mapped at the ground surface provide a foundation for creating synthetic fault trace maps using a stochastic procedure conditioned by the outcrop data. Conventional simulations of petroleum production from a 900 by 900 m sub-domain within the reservoir analog illustrate the possible influence of faults and fractures on production. The consequences of incorporating the impact of different stress states (e.g., extension, compression or lithostatic) are also explored. Simulating multiphase fluid flow using a discrete fracture, finite element simulator illustrates how faults acting as conduits might be poorly represented by the upscaling procedures used to assign equivalent permeability values within reservoir models. The parallelized reservoir simulators developed during this project provide a vehicle to evaluate when it might be necessary to incorporate very fine scale grid networks in conventional reservoir simulators or to use finely gridded discrete fracture reservoir simulators.

  6. FRACTURED PETROLEUM RESERVOIRS

    SciTech Connect

    Abbas Firoozabadi

    1999-06-11

    different from that of gas displacement processes. The work is of experimental nature and clarifies several misconceptions in the literature. Based on experimental results, it is established that the main reason for high efficiency of solution gas drive from heavy oil reservoirs is due to low gas mobility. Chapter III presents the concept of the alteration of porous media wettability from liquid-wetting to intermediate gas-wetting. The idea is novel and has not been introduced in the petroleum literature before. There are significant implications from such as proposal. The most direct application of intermediate gas wetting is wettability alteration around the wellbore. Such an alteration can significantly improve well deliverability in gas condensate reservoirs where gas well deliverability decreases below dewpoint pressure. Part I of Chapter III studies the effect of gravity, viscous forces, interfacial tension, and wettability on the critical condensate saturation and relative permeability of gas condensate systems. A simple phenomenological network model is used for this study, The theoretical results reveal that wettability significantly affects both the critical gas saturation and gas relative permeability. Gas relative permeability may increase ten times as contact angle is altered from 0{sup o} (strongly liquid wet) to 85{sup o} (intermediate gas-wetting). The results from the theoretical study motivated the experimental investigation described in Part II. In Part II we demonstrate that the wettability of porous media can be altered from liquid-wetting to gas-wetting. This part describes our attempt to find appropriate chemicals for wettability alteration of various substrates including rock matrix. Chapter IV provides a comprehensive treatment of molecular, pressure, and thermal diffusion and convection in porous media Basic theoretical analysis is presented using irreversible thermodynamics.

  7. Outer boundary effects in a petroleum reservoir

    NASA Astrophysics Data System (ADS)

    Nelson, Rhodri; Crowdy, Darren; Kropf, Everett; Zuo, Lihua; Weijermars, Ruud

    2016-11-01

    A new toolkit for potential theory based on the Schottky-Klein prime function is first introduced. This potential theory toolkit is then applied to study the fluid flow structures in bounded 2D petroleum reservoirs. In the model, reservoirs are assumed to be heterogeneous and isotropic porous medium and can thus be modelled using Darcy's equation. First, computations of flow contours are carried out on some 'test' domains and benchmarked against results from the ECLIPSE reservoir simulator. Following this, a case study of the Quitman oil field in Texas is presented.

  8. Fractured petroleum reservoirs

    SciTech Connect

    Firoozabadi, A.; Chang, E.; Tang, G.Q.

    2000-01-10

    Total compressibility in a fractured reservoir is estimated using the pressure response due to gravitational potential variations. Both the moon and the sun gravitational potentials are accounted for using the full expression by inclusion of longer-period components. The semi-diurnal and diurnal pressure data show substantial long-term variations. The gravitational potential also contains the same variation trend; the ratio between the potential and pressure has a fairly uniform value over successive cycles. The computed total compressibility is also fairly constant and independent of the cycle. Results show the effects of the time interval over which the pressure measurements are performed as well as the location.

  9. Petroleum and aqueous inclusions from deeply buried reservoirs: Experimental simulations and consequences for overpressure estimates

    NASA Astrophysics Data System (ADS)

    Pironon, Jacques; Bourdet, Julien

    2008-10-01

    Synthetic hydrocarbon and aqueous inclusions have been created in the laboratory batch reactors in order to mimic inclusion formation or re-equilibration in deeply buried reservoirs. Inclusions were synthesized in quartz and calcite using pure water and Mexican dead oil, or n-tetradecane (C 14H 30), at a temperature and pressure of 150 °C and 1 kbar. One-phase hydrocarbon inclusions are frequently observed at standard laboratory conditions leading to homogenization temperatures between 0 and 60 °C. UV epifluorescence of Mexican oil inclusions is not uniform; blue and green-yellow colored inclusions coexist; however, no clear evidence of variations in fluid chemistry were observed. Homogenization temperatures were recorded and the maxima of Th plotted on histograms are in good agreement with expected Th in a range of 6 °C. Broad histograms were reconstructed showing non-symmetrical Th distributions over a 20 °C temperature range centered on the expected Th. This histogram broadening is due to the fragility of the fluid inclusions that were created by re-filling of pre-existing microcavities. Such Th histograms are similar to Th histograms recorded on natural samples from deeply buried carbonate reservoirs. Th values lower than those expected were measured for hydrocarbon inclusions in quartz and calcite, and for aqueous inclusions in calcite. However, the results confirm the ability of fluid inclusions containing two immiscible fluids to lead to PT reconstructions, even in overpressured environments.

  10. Magnetic susceptibility of petroleum reservoir fluids

    NASA Astrophysics Data System (ADS)

    Ivakhnenko, Oleksandr P.; Potter, David K.

    A knowledge of the magnetic properties of petroleum reservoir fluids may provide new techniques for improved reservoir characterisation, petroleum exploration and production. However, magnetic information is currently scarce for the vast majority of reservoir fluids. For instance, there is little in the literature concerning basic magnetic susceptibility values of crude oils or formation waters. We have therefore measured the mass magnetic susceptibility ( χm) of several crude oils, refined oil fractions, and formation waters from local and world-wide sites. All the fluids measured were diamagnetic, however there were distinct differences in magnitude between the different fluid types. In particular, χm for the crude oils was more negative than for the formation waters of the same locality. The magnetic susceptibility of the oils appears to be related to their main physical and chemical properties. The results correlated with the density, residue content, API (American Petroleum Institute) gravity, viscosity, sulphur content and metal concentration of the fluids. Light fractions of crude oil were the most diamagnetic. The magnetic measurements potentially allow physical and chemical differences between the fluids to be rapidly characterised. The results suggest other possible applications, such as passive in situ magnetic susceptibility sensors for fluid monitoring (for example, the onset of water breakthrough, or the detection of migrating fines) in reservoirs, which would provide an environmentally friendly alternative to radioactive tracers. The mass magnetic susceptibilities of the fluids in relation to typical reservoir minerals may also play a role in fluid-rock interactions, such as studies of wettability. The χm of crude oil from the various world-wide oil provinces that were tested also showed some differences, possibly reflecting broad physical and chemical features of the geological history of each province.

  11. Application of multitracer technology to petroleum reservoir studies

    SciTech Connect

    Senum, G.I.

    1992-04-01

    The objectives of this research program are to: (1) improve the assessment of the character of petroleum reservoirs using tracer technology for the monitoring and improvement of EOR techniques, specifically, (a) To apply the presently available multitracer perfluorocarbon tracer (PFT) technology to the study of petroleum reservoirs in characterizing reservoir bulk subsurface flow transport and dispersion rates; and (b) to demonstrate that PFTs with differing physical properties will interact with differing rates of absorption and dispersion within such reservoirs, from which may be inferred difference in the character and/or extent of petroleum in those reservoirs. (2) To develop a data base of petroleum transport and dispersion properties from tracer experiments for use by modellers for developing, validating and extending petroleum reservoirs models used for characterizing petroleum reservoirs.

  12. Integrated methodology for constructing a quantified hydrodynamic model for application to clastic petroleum reservoirs

    SciTech Connect

    Honarpour, M. M.; Schatzinger, R. A.; Szpakiewicz, M. J.; Jackson, S. R.; Sharma, B.; Tomutsa, L.; Chang, M. M.

    1990-01-01

    A comprehensive, multidisciplinary, stepwise methodology is developed for constructing and integration geological and engineering information for predicting petroleum reservoir performance. This methodology is based on our experience in characterizing shallow marine reservoirs, but it should also apply to other deposystems. The methodology is presented as Part 1 of this report. Three major tasks that must be studied to facilitate a systematic approach for constructing a predictive hydrodynamic model for petroleum reservoirs are addressed: (1) data collection, organization, evaluation, and integration; (2) hydrodynamic model construction and verification; and (3) prediction and ranking of reservoir parameters by numerical simulation using data derived from the model. 39 refs., 62 figs., 13 tabs.

  13. Microbial dynamics in petroleum oilfields and their relationship with physiological properties of petroleum oil reservoirs.

    PubMed

    Varjani, Sunita J; Gnansounou, Edgard

    2017-08-09

    Petroleum is produced by thermal decay of buried organic material over millions of years. Petroleum oilfield ecosystems represent resource of reduced carbon which favours microbial growth. Therefore, it is obvious that many microorganisms have adapted to harsh environmental conditions of these ecosystems specifically temperature, oxygen availability and pressure. Knowledge of microorganisms present in ecosystems of petroleum oil reservoirs; their physiological and biological properties help in successful exploration of petroleum. Understanding microbiology of petroleum oilfield(s) can be used to enhance oil recovery, as microorganisms in oil reservoirs produce various metabolites viz. gases, acids, solvents, biopolymers and biosurfactants. The aim of this review is to discuss characteristics of petroleum oil reservoirs. This review also provides an updated literature on microbial ecology of these extreme ecosystems including microbial origin as well as various types of microorganisms such as methanogens; iron, nitrate and sulphate reducing bacteria, and fermentative microbes present in petroleum oilfield ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Petroleum recovery: Reservoir engineering and recovery methods. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-09-01

    The bibliography contains citations concerning field projects and supporting research on petroleum recovery and reservoir technology. Recovery agents and methods are discussed including responsive copolymers, microemulsions, surfactants, steam injection, gas injection, miscible displacement, and thermal processes. Reservoir modeling, simulation, and performance are examined. (Contains 250 citations and includes a subject term index and title list.)

  15. Geothermal reservoir simulation

    NASA Technical Reports Server (NTRS)

    Mercer, J. W., Jr.; Faust, C.; Pinder, G. F.

    1974-01-01

    The prediction of long-term geothermal reservoir performance and the environmental impact of exploiting this resource are two important problems associated with the utilization of geothermal energy for power production. Our research effort addresses these problems through numerical simulation. Computer codes based on the solution of partial-differential equations using finite-element techniques are being prepared to simulate multiphase energy transport, energy transport in fractured porous reservoirs, well bore phenomena, and subsidence.

  16. Reservoirs and petroleum systems of the Gulf Coast

    USGS Publications Warehouse

    Pitman, Janet

    2010-01-01

    This GIS product was designed to provide a quick look at the ages and products (oil or gas) of major reservoir intervals with respect to the different petroleum systems that have been identified in the Gulf Coast Region. The three major petroleum source-rock systems are the Tertiary (Paleocene-Eocene) Wilcox Formation, Cretaceous (Turonian) Eagle Ford Formation, and Jurassic (Oxfordian) Smackover Formation. The ages of the reservoir units extend from Jurassic to Pleistocene. By combining various GIS layers, the user can gain insights into the maximum extent of each petroleum system and the pathways for petroleum migration from the source rocks to traps. Interpretations based on these data should improve development of exploration models for this petroleum-rich province.

  17. Downhole fluid analysis and asphaltene science for petroleum reservoir evaluation.

    PubMed

    Mullins, Oliver C; Pomerantz, Andrew E; Zuo, Julian Y; Dong, Chengli

    2014-01-01

    Petroleum reservoirs are enshrouded in mysteries associated with all manner of geologic and fluid complexities that Mother Nature can inspire. Efficient exploitation of petroleum reservoirs mandates elucidation of these complexities; downhole fluid analysis (DFA) has proven to be indispensable for understanding both fluids and reservoir architecture. Crude oil consists of dissolved gases, liquids, and dissolved solids, known as the asphaltenes. These different fluid components exhibit fluid gradients vertically and laterally, which are best revealed by DFA, with its excellent precision and accuracy. Compositional gradient analysis falls within the purview of thermodynamics. Gas-liquid equilibria can be treated with a cubic equation of state (EoS), such as the Peng-Robinson EoS, a modified van der Waals EoS. In contrast, the first EoS for asphaltene gradients, the Flory-Huggins-Zuo (FHZ) EoS, was developed only recently. The resolution of the asphaltene molecular and nanocolloidal species in crude oil, which is codified in the Yen-Mullins model of asphaltenes, enabled the development of this EoS. The combination of DFA characterization of gradients of reservoir crude oil with the cubic EoS and FHZ EoS analyses brings into view wide-ranging reservoir concerns, such as reservoir connectivity, fault-block migration, heavy oil gradients, tar mat formation, huge disequilibrium fluid gradients, and even stochastic variations of reservoir fluids. New petroleum science and DFA technology are helping to offset the increasing costs and technical difficulties of exploiting ever-more-remote petroleum reservoirs.

  18. Interactive reservoir simulation

    SciTech Connect

    Regtien, J.M.M. Por, G.J.A.; Stiphout, M.T. van; Vlugt, F.F. van der

    1995-12-31

    Shell`s new Modular Reservoir Simulator (MoReS) has been equipped with a comprehensive and versatile user interface called FrontEnd. Apart from providing a user-friendly environment for interactive reservoir simulation, FrontEnd serves a software platform for other dynamic simulation and reservoir-engineering applications. It offers to all supported applications a common user interface, enables the re-use of code and reduces overall maintenance and support costs associated with the embedded applications. Because of its features, FrontEnd facilitates the transfer of research results in the form of operational software to end users. When coupled with MoReS, FrontEnd can be used for pre- and post-processing and interactive simulation. The pre-processing options allow data to be inputted by means of various OSF/Motif widgets containing a spreadsheet, text editors, dialogues and graphical input. The display of the input data as well as the post-processing of all simulation results is made possible by a variety of user-defined plot of tabular (e.g. timestep summary) and array (simulation grid) data. During a simulation user-defined plots can be displayed and edited, allowing a close inspection of the results as they are being calculated. FrontEnd has been equipped with a powerful input command language, which gives the batch user as much flexibility and control over the input as the interactive user.

  19. Application of multitracer technology to petroleum reservoir studies. [Perfluorocarbon tracer technology

    SciTech Connect

    Senum, G.I.

    1992-09-01

    The objectives of this research program are to: Improve the assessment of the character of petroleum reservoirs using tracer technology for the monitoring and improvement of EOR techniques, specifically, (a) to apply the presently available multitracer perfluorocarbon tracer (PFI) technology to the study of petroleum reservoirs in characterizing reservoir bulk subsurface flow transport and dispersion rates; and (b) to demonstrate that PFTs with differing physical properties will interact with differing rates of adsorption and dispersion within such reservoirs, from which may be inferred difference in the character and/or extent of petroleum in those reservoirs. Develop additional tracers, and tracer injection, sampling and analyses methodologies for use in petroleum reservoir characterization experiments. Develop a data base of petroleum transport and dispersion properties from tracer experiments for use by modellers for developing, validating and extending petroleum reservoirs models used for characterizing petroleum reservoirs. Technical progress is discussed according to the three ongoing field experiments at the Naval Petroleum Reserve in California (NPRC).

  20. Application of multitracer technology to petroleum reservoir studies. Quarterly progress report, April 1--June 30, 1992

    SciTech Connect

    Senum, G.I.

    1992-09-01

    The objectives of this research program are to: Improve the assessment of the character of petroleum reservoirs using tracer technology for the monitoring and improvement of EOR techniques, specifically, (a) to apply the presently available multitracer perfluorocarbon tracer (PFI) technology to the study of petroleum reservoirs in characterizing reservoir bulk subsurface flow transport and dispersion rates; and (b) to demonstrate that PFTs with differing physical properties will interact with differing rates of adsorption and dispersion within such reservoirs, from which may be inferred difference in the character and/or extent of petroleum in those reservoirs. Develop additional tracers, and tracer injection, sampling and analyses methodologies for use in petroleum reservoir characterization experiments. Develop a data base of petroleum transport and dispersion properties from tracer experiments for use by modellers for developing, validating and extending petroleum reservoirs models used for characterizing petroleum reservoirs. Technical progress is discussed according to the three ongoing field experiments at the Naval Petroleum Reserve in California (NPRC).

  1. Water propagation in two-dimensional petroleum reservoirs

    NASA Astrophysics Data System (ADS)

    Najafi, M. N.; Ghaedi, M.; Moghimi-Araghi, Saman

    2016-03-01

    In the present paper we investigate the problem of water propagation in 2 dimensional (2D) petroleum reservoir in which each site has the probability p of being occupied. We first analyze this propagation pattern described by Darcy equations by focusing on its geometrical features. We find that the domain-walls of this model at p =pc ≃ 0.59 are Schramm-Loewner evolution (SLE) curves with κ = 3.05 ∓ 0.1 consistent with the Ising universality class. We also numerically show that the fractal dimension of these domain-walls at p =pc is Df ≃ 1.38 consistent with SLEκ=3. Along with this analysis, we introduce a self-organized critical (SOC) model in which the water movement is modeled by a chain of topplings taking place when the water saturation exceeds the critical value. We present strong indications that it coincides with the reservoir simulation described by Darcy equation. We further analyze the SOC model and show numerically that for this model the spanning cluster probability has a maximum around p = 0.65.

  2. Reservoir Thermal Recover Simulation on Parallel Computers

    NASA Astrophysics Data System (ADS)

    Li, Baoyan; Ma, Yuanle

    The rapid development of parallel computers has provided a hardware background for massive refine reservoir simulation. However, the lack of parallel reservoir simulation software has blocked the application of parallel computers on reservoir simulation. Although a variety of parallel methods have been studied and applied to black oil, compositional, and chemical model numerical simulations, there has been limited parallel software available for reservoir simulation. Especially, the parallelization study of reservoir thermal recovery simulation has not been fully carried out, because of the complexity of its models and algorithms. The authors make use of the message passing interface (MPI) standard communication library, the domain decomposition method, the block Jacobi iteration algorithm, and the dynamic memory allocation technique to parallelize their serial thermal recovery simulation software NUMSIP, which is being used in petroleum industry in China. The parallel software PNUMSIP was tested on both IBM SP2 and Dawn 1000A distributed-memory parallel computers. The experiment results show that the parallelization of I/O has great effects on the efficiency of parallel software PNUMSIP; the data communication bandwidth is also an important factor, which has an influence on software efficiency. Keywords: domain decomposition method, block Jacobi iteration algorithm, reservoir thermal recovery simulation, distributed-memory parallel computer

  3. Wavelet based Simulation of Reservoir Flow

    NASA Astrophysics Data System (ADS)

    Siddiqi, A. H.; Verma, A. K.; Noor-E-Zahra, Noor-E.-Zahra; Chandiok, Ashish; Hasan, A.

    2009-07-01

    Petroleum reservoirs consist of hydrocarbons and other chemicals trapped in the pores of a rock. The exploration and production of hydrocarbon reservoirs is still the most important technology to develop natural energy resources. Therefore, fluid flow simulators play a key role in order to help oil companies. In fact, simulation is the most important tool to model changes in a reservoir over the time. The main problem in petroleum reservoir simulation is to model the displacement of one fluid by another within a porous medium. A typical problem is characterized by the injection of a wetting fluid, for example water into the reservoir at a particular location displacing to the non wetting fluid, for example oil, which is extracted or produced at another location. Buckley-Leverett equation [1] models this process and its numerical simulation and visualization is of paramount importance. There are several numerical methods applied for numerical solution of partial differential equations modeling real world problems. We review in this paper the numerical solution of Buckley-Leverett equation for flat and non flat structures with special focus on wavelet method. We also indicate a few new avenues for further research.

  4. Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs.

    PubMed

    Jones, D M; Head, I M; Gray, N D; Adams, J J; Rowan, A K; Aitken, C M; Bennett, B; Huang, H; Brown, A; Bowler, B F J; Oldenburg, T; Erdmann, M; Larter, S R

    2008-01-10

    Biodegradation of crude oil in subsurface petroleum reservoirs has adversely affected the majority of the world's oil, making recovery and refining of that oil more costly. The prevalent occurrence of biodegradation in shallow subsurface petroleum reservoirs has been attributed to aerobic bacterial hydrocarbon degradation stimulated by surface recharge of oxygen-bearing meteoric waters. This hypothesis is empirically supported by the likelihood of encountering biodegraded oils at higher levels of degradation in reservoirs near the surface. More recent findings, however, suggest that anaerobic degradation processes dominate subsurface sedimentary environments, despite slow reaction kinetics and uncertainty as to the actual degradation pathways occurring in oil reservoirs. Here we use laboratory experiments in microcosms monitoring the hydrocarbon composition of degraded oils and generated gases, together with the carbon isotopic compositions of gas and oil samples taken at wellheads and a Rayleigh isotope fractionation box model, to elucidate the probable mechanisms of hydrocarbon degradation in reservoirs. We find that crude-oil hydrocarbon degradation under methanogenic conditions in the laboratory mimics the characteristic sequential removal of compound classes seen in reservoir-degraded petroleum. The initial preferential removal of n-alkanes generates close to stoichiometric amounts of methane, principally by hydrogenotrophic methanogenesis. Our data imply a common methanogenic biodegradation mechanism in subsurface degraded oil reservoirs, resulting in consistent patterns of hydrocarbon alteration, and the common association of dry gas with severely degraded oils observed worldwide. Energy recovery from oilfields in the form of methane, based on accelerating natural methanogenic biodegradation, may offer a route to economic production of difficult-to-recover energy from oilfields.

  5. Cooperative Learning in Reservoir Simulation Classes: Overcoming Disparate Entry Skills

    ERIC Educational Resources Information Center

    Awang, Mariyamni

    2006-01-01

    Reservoir simulation is one of the core courses in the petroleum engineering curriculum and it requires knowledge and skills in three major disciplines, namely programming, numerical methods and reservoir engineering. However, there were often gaps in the students' readiness to undertake the course, even after completing the necessary…

  6. Cooperative Learning in Reservoir Simulation Classes: Overcoming Disparate Entry Skills

    ERIC Educational Resources Information Center

    Awang, Mariyamni

    2006-01-01

    Reservoir simulation is one of the core courses in the petroleum engineering curriculum and it requires knowledge and skills in three major disciplines, namely programming, numerical methods and reservoir engineering. However, there were often gaps in the students' readiness to undertake the course, even after completing the necessary…

  7. Different pressure grids for reservoir simulation in heterogeneous reservoirs

    SciTech Connect

    Guerillot, D.R.; Verdiere, S.

    1995-12-31

    Petroleum reservoirs are made of highly heterogeneous rocks. These reservoirs could be described by geostatistical models composed of millions of cells. Currently, fluid flow simulations performed within these media need upscaling (or averaging) techniques. Hence, their results are given by averaging on cells which are much larger than the geological model cells. To overcome this problem, the Dual Mesh Method is proposed here, whose purpose is to solve the pressure equation on a low resolution grid, and then to interpolate pressure over the fine mesh by taking into account small scale heterogeneities of the mediums. The aim of this paper is the interpolation step; its implementation is presented and illustrated in a five-spot pattern for three different rock characteristics.

  8. Application of multitracer technology to petroleum reservoir studies. Quarterly progress report, January 1--March 31, 1992

    SciTech Connect

    Senum, G.I.

    1992-04-01

    The objectives of this research program are to: (1) improve the assessment of the character of petroleum reservoirs using tracer technology for the monitoring and improvement of EOR techniques, specifically, (a) To apply the presently available multitracer perfluorocarbon tracer (PFT) technology to the study of petroleum reservoirs in characterizing reservoir bulk subsurface flow transport and dispersion rates; and (b) to demonstrate that PFTs with differing physical properties will interact with differing rates of absorption and dispersion within such reservoirs, from which may be inferred difference in the character and/or extent of petroleum in those reservoirs. (2) To develop a data base of petroleum transport and dispersion properties from tracer experiments for use by modellers for developing, validating and extending petroleum reservoirs models used for characterizing petroleum reservoirs.

  9. The microbiology of hydrocarbon degradation in subsurface petroleum reservoirs: perspectives and prospects.

    PubMed

    Röling, Wilfred F M; Head, Ian M; Larter, Steve R

    2003-06-01

    The majority of the Earth's petroleum resource is partly biodegraded. This is of considerable practical significance and can limit economic exploitation of petroleum reserves and lead to problems during petroleum production. Knowledge of the microorganisms present in petroleum reservoirs, their physiological properties and the biochemical potential for hydrocarbon degradation benefits successful petroleum exploration. Anaerobic conditions prevail in petroleum reservoirs and biological hydrocarbon degradation is apparently inhibited at temperatures above 80-90 degrees C. We summarise available knowledge and conjecture on the dominant biological processes active during subsurface petroleum biodegradation.

  10. Distribution, origin and prediction of carbon dioxide in petroleum reservoirs

    SciTech Connect

    Thrasher, J.; Fleet, A.J.

    1995-08-01

    High concentrations of carbon dioxide (CO{sub 2}) in petroleum reservoirs can significantly reduce the value of the discovery, by diluting any hydrocarbons, and by increasing production costs because of the increased likelihood of corrosion and scale formation. Huge volumes of CO{sub 2} have been found, for example in the Indonesian Natuna d-Alpha structure (estimated 240 tcf gas, of which around 70% is CO{sub 2}). This study reviews the possible sources of CO{sub 2} in the petroleum system, and the geological and geochemical data from some CO{sub 2} {open_quotes}polluted{close_quotes} reservoirs, to improve future predictions of the exploration risk of finding significant CO{sub 2}. A number of case studies show that the most common geological circumstances for the occurrence of high concentrations of CO{sub 2} include: carbonates associated with post-trap igneous activity (e.g. Ibleo Platform, Sicily); reservoir close to hot basement (e.g. Cooper-Eromanga Basin, Australia) and deep faults close to traps (e.g. Gulf of Thailand). Less common circumstances for high proportions of CO{sub 2} in gas include: post-trap igneous activity and coals (e.g. Taranaki, New Zealand) and reservoirs associated with pre-oil window coaly kerogen (e.g. Malay Trough), although the volumes of CO{sub 2} generated from kerogen are usually low relative to volumes of hydrocarbons generated from kerogen.

  11. RESEARCH PROGRAM ON FRACTURED PETROLEUM RESERVOIRS

    SciTech Connect

    Abbas Firoozabadi

    2002-04-12

    Numerical simulation of water injection in discrete fractured media with capillary pressure is a challenge. Dual-porosity models in view of their strength and simplicity can be mainly used for sugar-cube representation of fractured media. In such a representation, the transfer function between the fracture and the matrix block can be readily calculated for water-wet media. For a mixed-wet system, the evaluation of the transfer function becomes complicated due to the effect of gravity. In this work, they use a discrete-fracture model in which the fractures are discretized as one dimensional entities to account for fracture thickness by an integral form of the flow equations. This simple step greatly improves the numerical solution. Then the discrete-fracture model is implemented using a Galerkin finite element method. The robustness and the accuracy of the approach are shown through several examples. First they consider a single fracture in a rock matrix and compare the results of the discrete-fracture model with a single-porosity model. Then, they use the discrete-fracture model in more complex configurations. Numerical simulations are carried out in water-wet media as well as in mixed-wet media to study the effect of matrix and fracture capillary pressures.

  12. Bioremediation potential of microorganisms derived from petroleum reservoirs.

    PubMed

    Dellagnezze, Bruna Martins; de Sousa, Gabriel Vasconcelos; Martins, Laercio Lopes; Domingos, Daniela Ferreira; Limache, Elmer E G; de Vasconcellos, Suzan Pantaroto; da Cruz, Georgiana Feitosa; de Oliveira, Valéria Maia

    2014-12-15

    Bacterial strains and metagenomic clones, both obtained from petroleum reservoirs, were evaluated for petroleum degradation abilities either individually or in pools using seawater microcosms for 21 days. Gas Chromatography-Flame Ionization Detector (GC-FID) and Gas Chromatography-Mass Spectrometry (GC-MS) analyses were carried out to evaluate crude oil degradation. The results showed that metagenomic clones 1A and 2B were able to biodegrade n-alkanes (C14 to C33) and isoprenoids (phytane and pristane), with rates ranging from 31% to 47%, respectively. The bacteria Dietzia maris CBMAI 705 and Micrococcus sp. CBMAI 636 showed higher rates reaching 99% after 21 days. The metagenomic clone pool biodegraded these compounds at rates ranging from 11% to 45%. Regarding aromatic compound biodegradation, metagenomic clones 2B and 10A were able to biodegrade up to 94% of phenanthrene and methylphenanthrenes (3-MP, 2-MP, 9-MP and 1-MP) with rates ranging from 55% to 70% after 21 days, while the bacteria Dietzia maris CBMAI 705 and Micrococcus sp. CBMAI 636 were able to biodegrade 63% and up to 99% of phenanthrene, respectively, and methylphenanthrenes (3-MP, 2-MP, 9-MP and 1-MP) with rates ranging from 23% to 99% after 21 days. In this work, isolated strains as well as metagenomic clones were capable of degrading several petroleum compounds, revealing an innovative strategy and a great potential for further biotechnological and bioremediation applications.

  13. Evolution of analyzing reservoir simulation data

    SciTech Connect

    Phelps, R.E.; Huang, A.Y.

    1994-12-31

    Numerical Reservoir Simulation is routinely used by the petroleum producing companies world-wide as an engineering tool to efficiently manage their hydrocarbon reservoirs. The task of building models with a large number of grid-blocks is not easy, and to analyze the voluminous results produced by such models is even more difficult. This paper discusses the historical evolution of techniques used to analyze reservoir simulation data over the past decade. It outlines how the advancement of workstation technology and the introduction of X-Window System opened up an entirely new way of utilizing mainframe computing power and workstation graphical display capabilities, simultaneously. The paper also discusses Saudi Aramco`s experience in the development of sophisticated reservoir simulation post-processing packages. The need for direct communication between the programmer and end-users to facilitate a user-friendly package is emphasized. A practical example illustrating the benefit of these post-processing packages in the construction and history matching of a large model with approximately 52,000 cells is presented. Savings in manpower and computer resources using current technology are estimated.

  14. Evolution of analyzing reservoir simulation data

    SciTech Connect

    Phelps, R.E.; Huang, A.Y.

    1995-12-01

    Petroleum-producing companies world-wide routinely use numerical reservoir simulation as an engineering tool to manage their hydrocarbon reservoirs efficiently. The task of building models with a large number of gridblocks is not easy, and analyzing the voluminous results produced by such models is even more difficult. This paper discusses the historical evolution of techniques used to analyze reservoir simulation data over the past decade. It outlines how the advancement of workstation technology and the introduction of an X-Window system opened up an entirely new way of using mainframe computing power and workstation graphical display capabilities simultaneously. The paper also discusses Saudi Aramco`s experience in the development of sophisticated reservoir simulation postprocessing packages. The authors emphasize the need for direct communication between the programmer and end users to facilitate a user-friendly package. They present a practical example illustrating the benefit of these postprocessing packages in the construction and history matching of a large model with approximately 52,000 cells. They estimate savings in manpower and computer resources using current technology.

  15. Bacterial diversity characterization in petroleum samples from Brazilian reservoirs

    PubMed Central

    de Oliveira, Valéria Maia; Sette, Lara Durães; Simioni, Karen Christina Marques; dos Santos Neto, Eugênio Vaz

    2008-01-01

    This study aimed at evaluating potential differences among the bacterial communities from formation water and oil samples originated from biodegraded and non-biodegraded Brazilian petroleum reservoirs by using a PCR-DGGE based approach. Environmental DNA was isolated and used in PCR reactions with bacterial primers, followed by separation of 16S rDNA fragments in the DGGE. PCR products were also cloned and sequenced, aiming at the taxonomic affiliation of the community members. The fingerprints obtained allowed the direct comparison among the bacterial communities from oil samples presenting distinct degrees of biodegradation, as well as between the communities of formation water and oil sample from the non-biodegraded reservoir. Very similar DGGE band profiles were observed for all samples, and the diversity of the predominant bacterial phylotypes was shown to be low. Cloning and sequencing results revealed major differences between formation water and oil samples from the non-biodegraded reservoir. Bacillus sp. and Halanaerobium sp. were shown to be the predominant components of the bacterial community from the formation water sample, whereas the oil sample also included Alicyclobacillus acidoterrestris, Rhodococcus sp., Streptomyces sp. and Acidithiobacillus ferrooxidans. The PCR-DGGE technique, combined with cloning and sequencing of PCR products, revealed the presence of taxonomic groups not found previously in these samples when using cultivation-based methods and 16S rRNA gene library assembly, confirming the need of a polyphasic study in order to improve the knowledge of the extent of microbial diversity in such extreme environments. PMID:24031244

  16. The Bakken-An Unconventional Petroleum and Reservoir System

    SciTech Connect

    Sarg, Frederick

    2012-03-01

    An integrated geologic and geophysical study of the Bakken Petroleum System, in the Williston basin of North Dakota and Montana indicates that: (1) dolomite is needed for good reservoir performance in the Middle Bakken; (2) regional and local fractures play a significant role in enhancing permeability and well production, and it is important to recognize both because local fractures will dominate in on-structure locations; and (3) the organic-rich Bakken shale serves as both a source and reservoir rock. Results from the lithofacies, mineral, and fracture analyses of this study were used to construct a dual porosity Petrel geo-model for a portion of the Elm Coulee Field. In this field, dolomitization enhances reservoir porosity and permeability. First year cumulative production helps locate areas of high well productivity and in deriving fracture swarm distribution. A fracture model was developed based on high productivity well distribution, and regional fracture distribution, and was combined with favorable matrix properties to build a dual porosity geo-model.

  17. Organic geochemistry of recent marine ooids as a key to origin of petroleum in oolite reservoirs

    SciTech Connect

    Ibe, A.C.

    1983-03-01

    Organic geochemical investigation of recent marine ooids (457 +- 76 to 1516 +- 86 years) from the Schooner Cays area, Bahamas, has yielded data that suggest a probable source bed function for their ancient equivalents. Chromatographic analysis of gas desorbed from the ooids reveals the presence of C/sub 1/ to C/sub 5//sub +/ compounds believed to be authigenic. Total organic carbon (TOC) content varies between 1.23 and 4.13 wt. %, depending on the purity of the sample, with the lowest values reflecting an increased contribution of skeletal debris to the ooids. Total organic extract (TOE) values range from 550 to 650 ppM and show a slight transformation in the direction of oil formation. Additional experiments using a high pressure cell to simulate diagenesis in the ooids showed profound changes in their organic geochemistry with the contained organic matter following the predicted evolution path for type II kerogen. There is strong evidence that with deeper burial and prolonged exposure to higher temperatures, and perhaps to catalytic influence of the clay minerals (0.05%) and traces of metals (e.g., Ti, Mn, Sr, V) found in ooids, the organic matter will generate significant amounts of hydrocarbons. In those oolites with a favorable history of porosity development, the hydrocarbons would migrate along the continuous groundmass of organic matter within the ooids and into the pore spaces to accumulate as petroleum. The indigenous origin of petroleum in oolites affords an explanation for the exceptionally rich petroleum accumulations in such reservoirs. It is proposed that with the exception of leached oolites with oomoldic porosity, other petroleum-bearing oolites could be viewed as integrated source-reservoir beds.

  18. Molecular Biological Analysis of Microorganisms in Petroleum Reservoirs

    NASA Astrophysics Data System (ADS)

    Ko, J.; Son, H. A.; Im, K. C.; Back, K. H.; Kim, H. T.

    2014-12-01

    Microorganisms in petroleum reservoirs were analyzed to examine the potential to apply for microbial enhanced oil recovery (MEOR). Genomic DNA (16S rDNA) were extracted from two heavy oil samples from Canadian oil sand and six light oil samples from the Salin fore-arc basin in Myanmar, and amplified using a polymerase chain reaction (PCR) method. The microbes were identified by cloning the PCR products and pyrosequencing. Actinobacteria, Firmicutes, and Proteobacteria were common in both Canadian and Myanmar samples. Staphylococcus and Streptococcus belonging to the Firmicutes phylum are abundant in oil sands, while Propionibacteria belonging to the Actinobacteria phylum and Coprothermobacter, Streptococcus, and Clostridia belonging to the Frimicutes phylum are contained in Myanmar samples. Streptococcus is known to use crude oil as nutrient, and produce organic acid, bio-gas and polysaccharide that could reduce oil viscosity, improve permeability by dissolving carbonate cement from pores throat, and reduce interfacial tension between oil and rock/water surface. Clostridia produce acids and gases by methanogenesis that could improve oil recovery.

  19. Use and application of organic geochemical techniques related to exploration and production of petroleum reservoirs

    SciTech Connect

    Jensen, H.; Hall, P.B.; Bharati, S.

    1995-08-01

    Petroleum geochemical data are essential to many aspects of reservoir evaluation, for example, in the detection of barriers to fluid-flow and the identification of different reservoir compartments. The analytical techniques used in reservoir geochemistry include bulk screening analyses (e.g. Rock-Eval and Iatroscan TLC-FID), detailed gas chromatographic analyses (e.g. whole oil GC) and compound specific analyses (e.g. thermal extraction GC-MS and GC-IRMS). New techniques which have proved to be particularly useful include Iatroscan TLC-FID and GC-IRMS. Optimum sampling and analytical programs are crucial to acquiring sufficient data which are appropriate for specific reservoirs. Both fluid and rock samples are necessary for characterization of the petroleum populations present in the reservoir, as occasionally rock extracts are different in composition to the produced fluids. Sampling programs depend on the complexity of the reservoir, which can vary from simple {open_quote}tanks{close_quotes} with relatively uniform petroleum requiring a relatively small sampling density, to highly compartmentalized reservoirs with very heterogeneous petroleum types. In both cases, however, a range of compound specific analytical techniques will be needed to discriminate between different petroleum populations. Specific barriers to fluid flow such as tarmats and cemented intervals can be detected using screening techniques. Evaluation of filling point(s) and petroleum populations, reservoir compartmentalization etc. can be performed using quantitative and compound specific analysis data. Potential satellite field locations can also be identified based on the knowledge of filling directions and other geochemical data. The application of different analytical techniques in the assessment of reservoirs is demonstrated using examples from carbonate and clastic reservoirs of varying complexity.

  20. The Bakken - An Unconventional Petroleum and Reservoir System

    SciTech Connect

    Sarg, J.

    2011-12-31

    An integrated geologic and geophysical study of the Bakken Petroleum System, in the Williston basin of North Dakota and Montana indicates that: (1) dolomite is needed for good reservoir performance in the Middle Bakken; (2) regional and local fractures play a significant role in enhancing permeability and well production, and it is important to recognize both because local fractures will dominate in on-structure locations; and (3) the organic-rich Bakken shale serves as both a source and reservoir rock. The Middle Bakken Member of the Bakken Formation is the target for horizontal drilling. The mineralogy across all the Middle Bakken lithofacies is very similar and is dominated by dolomite, calcite, and quartz. This Member is comprised of six lithofacies: (A) muddy lime wackestone, (B) bioturbated, argillaceous, calcareous, very fine-grained siltstone/sandstone, (C) planar to symmetrically ripple to undulose laminated, shaly, very fine-grained siltstone/sandstone, (D) contorted to massive fine-grained sandstone, to low angle, planar cross-laminated sandstone with thin discontinuous shale laminations, (E) finely inter-laminated, bioturbated, dolomitic mudstone and dolomitic siltstone/sandstone to calcitic, whole fossil, dolomitic lime wackestone, and (F) bioturbated, shaly, dolomitic siltstone. Lithofacies B, C, D, and E can all be reservoirs, if quartz and dolomite-rich (facies D) or dolomitized (facies B, C, E). Porosity averages 4-8%, permeability averages 0.001-0.01 mD or less. Dolomitic facies porosity is intercrystalline and tends to be greater than 6%. Permeability may reach values of 0.15 mD or greater. This appears to be a determinant of high productive wells in Elm Coulee, Parshall, and Sanish fields. Lithofacies G is organic-rich, pyritic brown/black mudstone and comprises the Bakken shales. These shales are siliceous, which increases brittleness and enhances fracture potential. Mechanical properties of the Bakken reveal that the shales have similar

  1. Role of reservoir engineering in the assessment of undiscovered oil and gas resources in the National Petroleum Reserve, Alaska

    USGS Publications Warehouse

    Verma, M.K.; Bird, K.J.

    2005-01-01

    The geology and reservoir-engineering data were integrated in the 2002 U.S. Geological Survey assessment of the National Petroleum Reserve in Alaska (NPRA). VVhereas geology defined the analog pools and fields and provided the basic information on sizes and numbers of hypothesized petroleum accumulations, reservoir engineering helped develop necessary equations and correlations, which allowed the determination of reservoir parameters for better quantification of in-place petroleum volumes and recoverable reserves. Seismic- and sequence-stratigraphic study of the NPRA resulted in identification of 24 plays. Depth ranges in these 24 plays, however, were typically greater than depth ranges of analog plays for which there were available data, necessitating the need for establishing correlations. The basic parameters required were pressure, temperature, oil and gas formation volume factors, liquid/gas ratios for the associated and nonassociated gas, and recovery factors. Finally, the re sults of U.S. Geological Survey deposit simulation were used in carrying out an economic evaluation, which has been separately published. Copyright ?? 2005. The American Association of Petroleum Geologists. All rights reserved.

  2. Applications of aerospace technology to petroleum extraction and reservoir engineering

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Back, L. H.; Berdahl, C. M.; Collins, E. E., Jr.; Gordon, P. G.; Houseman, J.; Humphrey, M. F.; Hsu, G. C.; Ham, J. D.; Marte, J. E.; Owen, W. A.

    1977-01-01

    Through contacts with the petroleum industry, the petroleum service industry, universities and government agencies, important petroleum extraction problems were identified. For each problem, areas of aerospace technology that might aid in its solution were also identified, where possible. Some of the problems were selected for further consideration. Work on these problems led to the formulation of specific concepts as candidate for development. Each concept is addressed to the solution of specific extraction problems and makes use of specific areas of aerospace technology.

  3. Terrisporobacter petrolearius sp. nov., isolated from an oilfield petroleum reservoir.

    PubMed

    Deng, Yu; Guo, Xiang; Wang, Yanwei; He, Mingxiong; Ma, Kedong; Wang, Huimin; Chen, Xiaorong; Kong, Delong; Yang, Zhirong; Ruan, Zhiyong

    2015-10-01

    A Gram-staining-positive, spore-forming, strictly anaerobic bacterium, designated strain LAM0A37T, was isolated from enrichment samples collected from a petroleum reservoir in Shengli oilfield. Cells of strain LAM0A37T were rod-shaped and motile by peritrichous flagella. The optimal temperature and pH for growth were 40 °C and 7.0–7.5, respectively. The strain did not require NaCl for growth but tolerated up to 3 % (w/v) NaCl. Strain LAM0A37T was able to utilize glucose, fructose, maltose, xylose, sorbitol, cellobiose, melibiose and melezitose as sole carbon sources. Sulfite was used as an electron acceptor. The main products of glucose fermentation were acetate and CO2. The predominant fatty acid was C16 : 0 (23.6 %). The main polar lipid profile comprised of five glycolipids, six phospholipids and two lipids. No menaquinone was detected. The genomic DNA G+C content was 27.1 ± 0.2 mol% as determined by the T m method. Analysis of the 16S rRNA gene sequence indicated that the isolate was a member of the genus Terrisporobacter, and was most closely related to Terrisporobacter glycolicus JCM 1401T and Terrisporobacter mayombei DSM 6539T with 98.3 % 16S rRNA gene sequence similarity to both. DNA–DNA hybridization values between strain LAM0A37T and type strains of Terrisporobacter glycolicus and Terrisporobacter mayombei were 45.6 ± 0.3 % and 38.3 ± 0.4 %, respectively. Based on phenotypic, phylogenetic and chemotaxonomic characteristics, strain LAM0A37T is suggested to represent a novel species of the genus Terrisporobacter, for which the name Terrisporobacter petrolearius sp. nov. is proposed. The type strain is LAM0A37T ( = ACCC 00740T = JCM 19845T).

  4. Next generation oil reservoir simulations

    SciTech Connect

    Joubert, W.

    1996-04-01

    This paper describes a collaborative effort between Amoco Production Company, Los Alamos National Laboratory and Cray Research Inc. to develop a next-generation massively parallel oil reservoir simulation code. The simulator, code-named Falcon, enables highly detailed simulations to be performed on a range of platforms such as the Cray T3D and T3E. The code is currently being used by Amoco to perform a sophisticated field study using multiple geostatistical realizations on a scale of 2-5 million grid blocks and 1000-2000 wells. In this paper we discuss the nature of this collaborative effort, the software design and engineering aspects of the code, parallelization experiences, and performance studies. The code will be marketed to the oil industry by a third-party independent software vendor in mid-1996.

  5. A fully-coupled discontinuous Galerkin spectral element method for two-phase flow in petroleum reservoirs

    NASA Astrophysics Data System (ADS)

    Taneja, Ankur; Higdon, Jonathan

    2016-11-01

    A spectral element method (SEM) is presented to simulate two-phase fluid flow (oil and water phase) in petroleum reservoirs. Petroleum reservoirs are porous media with heterogeneous geologic features, and the flow of two immiscible phases involves sharp, moving interfaces. The governing equations of motion are time-dependent, non-linear PDEs with strong hyperbolic nature. A fully-coupled numerical scheme using discontinuous Galerkin (DG) method with nodal spectral element basis functions for spatial discretization, and an implicit Runge-Kutta type time-stepping is developed to solve the PDEs in a robust, stable manner. Isoparameteric mapping is used to generate grids for reservoir and well geometry. We present the performance capabilities of the DG scheme with high-order basis functions to accurately resolve sharp fluid interfaces and a variety of heterogeneous geologic features. High-order convergence of SEM is demonstrated. Numerical results are presented for reservoir flows with various injection-production patterns. Typical reservoir heterogeneities like low-permeable regions, impermeable shale barriers, etc. are included in the numerical tests. Comparisons with commonly used finite volume methods and linear and quadratic finite element methods are presented. ExxonMobil Upstream Research Co.

  6. Integrated petroleum engineering simulation and decision making teaching program

    SciTech Connect

    Cooper, G.A.; Mota, J.F.; Cooper, A.G.

    1996-12-31

    A course of exercises has been developed that trains the student in the different steps involved in discovering and evaluating the economic worth of an oil field. The objective is for the course to act as a link for several different aspects of petroleum engineering - seismic analysis, drilling and completion, logging, well testing, reservoir evaluation and economic analysis - that the student has been taught in detail in the specialist courses that he/she has attended during the course of his/her petroleum engineering education. To do this, a fictitious oil field has been invented, and its details incorporated into a simulator that allows drilling, logging and other operations to be carried out so that the student gradually learns about the properties of the field during the course of a series of {open_quotes}hands on{close_quotes} exercises. Once the investigation is complete, the student has enough information to make an economic evaluation of the field, and is in a position to determine the necessary economic criteria - investment required, net present value, return on investment etc. - that will allow the {open_quotes}company{close_quotes} owning the lease to decide whether to go ahead with developing the field.

  7. Fire flood method for recovering petroleum from oil reservoirs of low permeability and temperature

    DOEpatents

    Kamath, Krishna

    1984-08-14

    The present invention is directed to a method of enhanced oil recovery by fire flooding petroleum reservoirs characterized by a temperature of less than the critical temperature of carbon dioxide, a pore pressure greater than the saturated vapor pressure of carbon dioxide at said temperature (87.7.degree. F. at 1070 psia), and a permeability in the range of about 20 to 100 millidarcies. The in situ combustion of petroleum in the reservoir is provided by injecting into the reservoir a combustion supporting medium consisting essentially of oxygen, ozone, or a combination thereof. The heat of combustion and the products of this combustion which consist essentially of gaseous carbon dioxide and water vapor sufficiently decrease the viscosity of oil adjacent to fire front to form an oil bank which moves through the reservoir towards a recovery well ahead of the fire front. The gaseous carbon dioxide and the water vapor are driven into the reservoir ahead of the fire front by pressure at the injection well. As the gaseous carbon dioxide cools to less than about 88.degree. F. it is converted to liquid which is dissolved in the oil bank for further increasing the mobility thereof. By using essentially pure oxygen, ozone, or a combination thereof as the combustion supporting medium in these reservoirs the permeability requirements of the reservoirs are significantly decreased since the liquid carbon dioxide requires substantially less voidage volume than that required for gaseous combustion products.

  8. Petroleum, oil field waters, and authigenic mineral assemblages - Are they in metastable equilibrium in hydrocarbon reservoirs?

    NASA Astrophysics Data System (ADS)

    Helgeson, Harold C.; Knox, Annette M.; Owens, Christine E.; Shock, Everett L.

    1993-07-01

    The hypothesis that although the presence of carboxylic acids and carboxylate anions in oil field waters is commonly attributed to the thermal maturation of kerogen or bacterial degradation of hydrocarbons during water-washing of petroleum in relatively shallow reservoirs, they may have also been produced in deeper reservoirs by the hydrolysis of hydrocarbons in petroleum at the oil-water interface is tested. Calculations were carried out to determine the distribution of species with the minimum Gibbs free energy in overpressured oil field waters in the Texas Gulf Coast assuming metastable equilibrium among calcite, albite, and a representative spectrum of organic and inorganic aqueous species at reservoir temperatures and pressures. The hypothesis that homogeneous equilibrium obtains among carboxylate and carbonate species in oil field waters is confirmed.

  9. A chemical EOR benchmark study of different reservoir simulators

    NASA Astrophysics Data System (ADS)

    Goudarzi, Ali; Delshad, Mojdeh; Sepehrnoori, Kamy

    2016-09-01

    Interest in chemical EOR processes has intensified in recent years due to the advancements in chemical formulations and injection techniques. Injecting Polymer (P), surfactant/polymer (SP), and alkaline/surfactant/polymer (ASP) are techniques for improving sweep and displacement efficiencies with the aim of improving oil production in both secondary and tertiary floods. There has been great interest in chemical flooding recently for different challenging situations. These include high temperature reservoirs, formations with extreme salinity and hardness, naturally fractured carbonates, and sandstone reservoirs with heavy and viscous crude oils. More oil reservoirs are reaching maturity where secondary polymer floods and tertiary surfactant methods have become increasingly important. This significance has added to the industry's interest in using reservoir simulators as tools for reservoir evaluation and management to minimize costs and increase the process efficiency. Reservoir simulators with special features are needed to represent coupled chemical and physical processes present in chemical EOR processes. The simulators need to be first validated against well controlled lab and pilot scale experiments to reliably predict the full field implementations. The available data from laboratory scale include 1) phase behavior and rheological data; and 2) results of secondary and tertiary coreflood experiments for P, SP, and ASP floods under reservoir conditions, i.e. chemical retentions, pressure drop, and oil recovery. Data collected from corefloods are used as benchmark tests comparing numerical reservoir simulators with chemical EOR modeling capabilities such as STARS of CMG, ECLIPSE-100 of Schlumberger, REVEAL of Petroleum Experts. The research UTCHEM simulator from The University of Texas at Austin is also included since it has been the benchmark for chemical flooding simulation for over 25 years. The results of this benchmark comparison will be utilized to improve

  10. Hydrocarbon composition of authigenic inclusions: Application to elucidation of petroleum reservoir filling history

    NASA Astrophysics Data System (ADS)

    Karlsen, Dag A.; Nedkvitne, Tor; Larter, Steve R.; Bjørlykke, Knut

    1993-08-01

    Geochemical analysis of petroleum inclusions trapped in authigenic feldspar and quartz in the Ula Formation in the North Sea Ula oil field revealed a petroleum of markedly different composition than the oil presently in the reservoir. Using microthermometry and the burial history as a dating tools, it is concluded that the petroleum in the K-feldspar inclusions was present in the more porous and permeable parts of the Ula Formation as early as 45-75 My Bp when the field was at a depth of about 1.0-1.5 km, as compared with the current depth of 3.4 km. This early petroleum, which was trapped as inclusions in authigenic K-feldspar, shows a distinctly different distribution of tricyclic terpanes and pentacyclic triterpanes from that of the current petroleum charge in the Ula Formation, which was derived from the Mandal Formation source rock in late Neogene time. Molecular parameters show that the oil in the K-feldspar inclusions is significantly less mature than the crude oil in the present reservoir. The approximate 90°C temperature increase occurring after entrapment of the early petroleum in Kfeldspar (the field is currently at 143°C) appears not to have reset the low maturity signature of the oil in the K-feldspar inclusions. This could suggest that the temperature in the inclusions is too low for isomerization/selective thermal degradation to occur (lack of catalysts?), or that there are other controls on the ratio of some of these parameters. Still, parameters like the ratio of C 21 to C 28 triaromatic steroids, and those based on dimethyl- and trimethyl-naphthalenes, are comparatively similar in both the inclusions and in the reservoir crude. The oil inclusions in authigenic quartz and albite, formed from about 10 My BP (burial depth ≈ 2.5 km) until the present (burial depth = 3.4 km), are interpreted as representing a palaeo-petroleum charge having a composition intermediate between the oil found in K-feldspar inclusions and the oil charge in the present

  11. SMALL, GEOLOGICALLY COMPLEX RESERVOIRS CAN BENEFIT FROM RESERVOIR SIMULATION

    SciTech Connect

    Richard E. Bennett

    2002-06-24

    on, and an expansion of the scope of the reservoir simulation and modeling effort was initiated, using DOE's BOAST98 (a visual, dynamic, interactive update of BOAST3), 3D, black oil reservoir simulation package as the basis for developing the reservoir model. Reservoir characterization, modeling, and reservoir simulation resulted in a significant change in the depletion strategy. Information from the reservoir characterization and modeling effort indicate that in-fill drilling and relying on natural water influx from the aquifer could increase remaining reserves by 125,000 barrels of oil per well, and that up to 10 infill wells could be drilled in the field. Through this scenario, field production could be increased two to three times over the current 65 bopd. Based on the results of the study, permits have been applied for to drill a directional infill well to encounter the productive zone at a high angle in order to maximize the amount of pay and reservoirs encountered.

  12. Mechanisms of arsenic enrichment in geothermal and petroleum reservoirs fluids in Mexico.

    PubMed

    Birkle, Peter; Bundschuh, Jochen; Sracek, Ondra

    2010-11-01

    The lack of chemical similarity between thermal fluids in geothermal and petroleum reservoirs in Mexico indicates a distinct origin for arsenic in both types of reservoirs. Deep fluids from geothermal reservoirs along the Transmexican Volcanic Belt (TMVB) are characterized by elevated arsenic concentrations, within a range between 1 and 100 mg L(-1) at a depth from 600 to 3000 m b.s.l. Based on hierarchical cluster analysis (HCA), arsenic is linked to typical geothermal species like lithium, silica, and boron. The lack of correlation between arsenic and salinity reflects the importance of secondary water-rock interaction processes. The predominance of arsenic compared to Fe- and Cu-concentrations, and the occurrence of secondary minerals (sulfides and clay minerals) in temperature-dependent hydrothermal zones, supports this hypothesis. Neither magmatic fluids input, nor As mineralization is a prerequisite for As enrichment in Mexican geothermal fluids. In contrast, petroleum reservoir waters from sedimentary basins in SE-Mexico show maximum As concentrations of 2 mg L(-1), at depths from 2900 to 6100 m b.s.l. The linear chloride-arsenic correlation indicates that evaporated seawater represents the major source for aqueous arsenic in oil reservoirs, and only minor arsenic proportions are derived from interaction with carbonate host rock. Speciation modeling suggests the lack of arsenic solubility control in both geothermal and petroleum reservoirs, but precipitation/co-precipitation of As with secondary sulfides could occur in petroleum reservoirs with high iron concentrations. Geothermal fluids from magmatic-type reservoirs (Los Azufres and Los Humeros at the TMVB and Las Tres Vírgenes with a granodioritic basement) show relative constant arsenic concentrations through varying temperature conditions, which indicates that temperatures above 230-250 °C provide optimal and stable conditions for arsenic mobility. In contrast, temperature conditions for sedimentary

  13. Delta 37Cl and Characterisation of Petroleum-gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Woulé Ebongué, V.; Jendrzejewski, N.; Walgenwitz, F.; Pineau, F.; Javoy, M.

    2003-04-01

    The geochemical characterisation of formation waters from oil/gas fields is used to detect fluid-flow barriers in reservoirs and to reconstruct the system dynamic. During the progression of the reservoir filling, the aquifer waters are pushed by hydrocarbons toward the reservoir bottom and their compositions evolve due to several parameters such as water-rock interactions, mixing with oil-associated waters, physical processes etc. The chemical and isotopic evolution of these waters is recorded in irreducible waters that have been progressively "fossilised" in the oil/gas column. Residual salts precipitated from these waters were recovered. Chloride being the most important dissolved anion in these waters and not involved in diagenetic reactions, its investigation should give insights into the different transport or mixing processes taking place in the sedimentary basin and point out to the formation waters origins. The first aim of our study was to test the Cl-RSA technique (Chlorine Residual Salts Analysis) based on the well-established Sr-RSA technique. The main studied area is a turbiditic sandstone reservoir located in the Lower Congo basin in Angola. Present-day aquifer waters, irreducible waters from sandstone and shale layers as well as drilling mud and salt dome samples were analysed. Formation waters (aquifer and irreducible trapped in shale) show an overall increase of chlorinity with depth. Their δ37Cl values range from -1.11 ppm to +2.30 ppm ± 0.05 ppm/ SMOC. Most Cl-RSA data as well as the δ37Cl obtained on a set of water samples (from different aquifers in the same area) are lower than -0.13 ppm with lower δ37Cl values at shallower depths. In a δ37Cl versus chlorinity diagram, they are distributed along a large range of chlorinity: 21 to 139 g/l, in two distinct groups. (1) Irreducible waters from one of the wells display a positive correlation between chlorinity and the δ37Cl values. (2) In contrary, the majority of δ37Cl measured on aquifers

  14. Petroleum reservoir engineering support for the Office of Naval Petroleum and Oil Shale Reserves. Final technical report

    SciTech Connect

    Not Available

    1986-10-01

    In accordance with the ''Procedures for the Determination and Approval of Maximum Efficient Rates of Production from the Naval Petroleum Reserves'' issued by the Office of Naval Petroleum and Oil Shale Reserves, US Department of Energy, dated January 1985, the proposed MER for the NWS A4-A6 reservoirs is herewith submitted. The subject Task Assignment was explicit as to certain operational restraints within which the MER determinations were to be made. In the case of the NWS A4-A6 reservoirs, these restraints were limited to a specification of the water injection rates, i.e., gradually building up to and maintaining an injection rate of 22,000 barrels water per day. Accordingly, the proposed MER results in an average of 8575 BOA/D for the six-month period ending March 31, 1987, and 8662 BOA/D for the nine-month period ending mid-year 1987. We believe that these rates will be both attainable and sustainable, and will be a reasonable target which is justified in terms of both maximizing ultimate recovery and providing a suitable economic return. The study was performed in the manner prescribed by the Department of Energy. It was based on the reservoir study which was made by Evans, Carey and Crozier, and which had an effective date of May 1, 1986. The proposed MER differs from that in the study only as a result of injection rates which vary slightly from those assumed in the latter. Each of the sections of this MER proposal contains a discussion, if appropriate, plus such graphical or tabular presentations as are necessary to explain and/or support the conclusions contained therein.

  15. 13. Symposium on reservoir simulation: Proceedings

    SciTech Connect

    1995-12-31

    This is a conference proceedings which deals with the latest developments and trends in reservoir simulation techniques and modeling. It includes papers dealing with multiphase flow in oil and gas wells; flow calculation methods in deviated and horizontal wells; fluid flow in fractured reservoirs; and simulation techniques for enhanced recovery and well stimulation processes. Most papers provide case studies using the various computer models or computer systems, including numerous studies on parallel processing equipment.

  16. A petroleum system in search of a reservoir; the Palmyrid Region, Syria

    SciTech Connect

    Blanchard, D.C.; Dembicki, H. Jr.; Dow, W.G.

    1995-08-01

    World class accumulations of hydrocarbons have not been discovered in the Palmyrid region of central Syria despite the presence of all of the essential elements of a petroleum system such as source rock, seal rock, trap and, to a lesser extent, reservoir rock. Recent exploration has resulted in an appreciation of why the Palmyrid region has failed to yield significant hydrocarbon discoveries even though active source generation appears more than adequate to charge the basin. The early Triassic Mulussa E, D1 and C2 source-reservoir system is characterized by an overall shallowing up sequence capped by Mulussa C-1 salt rock. Source rock quality and facies distribution and subsequent oil and gas generation and migration are correctly placed in time and space to take advantage of the structural evolution of traps. The sub-salt system fails primarily because of poor reservoir quality although patchy, unpredictable porosity-permeability enhancement provides adequate reservoir quality for the Ash Shaer and Cherrife gas fields. The Palmyrid petroleum system illustrates a case where all of the processes and elements required to form large accumulations are present but for one essential element, the reservoir, is insufficiently developed to form major hydrocarbon accumulations.

  17. Improving Reservoir Simulation using Seismic Data

    NASA Astrophysics Data System (ADS)

    Shamsa, Amir

    The principal premise of this thesis is that the ambiguities of reservoir simulation can be and should be reduced by using time-lapse seismic data. Such data can be considered as a sort of reservoir dynamic data, with distinctive features compared to the typical reservoir production data. While well production data are sparse in space and dense in time, 4D timelapse seismic can be utilized to fill the spatial data gaps between wells. This provides an opportunity to constrain reservoir dynamic behaviour not only at well locations but also between them by honoring time lapse response of the reservoir. This means that seismic assisted history matching should involve a simultaneous minimization of the mismatch between all types of measured and simulated data including seismic data. This thesis is an effort to discuss critical aspects of integrating 4D time-lapse data in reservoir simulation and history matching. I have illustrated a detailed scheme of seismic assisted history matching with implications on real data, to emphasize the extra value that seismic data can bring into the conventional reservoir history matching. This goal was followed by developing a software application to assess the feasibility of the theory at industrial scales. In addition to the conventional oils, a significant effort has been devoted to extend the scope of the work to viscoelastic heavy oils and their fluid substitution models in thermal cases. I also studied the production/injection induced stresses impacts on anisotropic velocity variations, using coupled geomechanical-flow simulations. (Abstract shortened by UMI.).

  18. Succession in the petroleum reservoir microbiome through an oil field production lifecycle

    DOE PAGES

    Vigneron, Adrien; Alsop, Eric B.; Lomans, Bartholomeus P.; ...

    2017-05-19

    Subsurface petroleum reservoirs are an important component of the deep biosphere where indigenous microorganisms live under extreme conditions and in isolation from the Earth's surface for millions of years. However, unlike the bulk of the deep biosphere, the petroleum reservoir deep biosphere is subject to extreme anthropogenic perturbation, with the introduction of new electron acceptors, donors and exogenous microbes during oil exploration and production. Despite the fundamental and practical significance of this perturbation, there has never been a systematic evaluation of the ecological changes that occur over the production lifetime of an active offshore petroleum production system. Analysis of themore » entire Halfdan oil field in the North Sea (32 producing wells in production for 1-15 years) using quantitative PCR, multigenic sequencing, comparative metagenomic and genomic bins reconstruction revealed systematic shifts in microbial community composition and metabolic potential, as well as changing ecological strategies in response to anthropogenic perturbation of the oil field ecosystem, related to length of time in production. The microbial communities were initially dominated by slow growing anaerobes such as members of the Thermotogales and Clostridiales adapted to living on hydrocarbons and complex refractory organic matter. However, as seawater and nitrate injection (used for secondary oil production) delivered oxidants, the microbial community composition progressively changed to fast growing opportunists such as members of the Deferribacteres, Delta-, Epsilon- and Gammaproteobacteria, with energetically more favorable metabolism (for example, nitrate reduction, H2S, sulfide and sulfur oxidation). This perturbation has profound consequences for understanding the microbial ecology of the system and is of considerable practical importance as it promotes detrimental processes such as reservoir souring and metal corrosion. These findings provide a new

  19. Succession in the petroleum reservoir microbiome through an oil field production lifecycle.

    PubMed

    Vigneron, Adrien; Alsop, Eric B; Lomans, Bartholomeus P; Kyrpides, Nikos C; Head, Ian M; Tsesmetzis, Nicolas

    2017-09-01

    Subsurface petroleum reservoirs are an important component of the deep biosphere where indigenous microorganisms live under extreme conditions and in isolation from the Earth's surface for millions of years. However, unlike the bulk of the deep biosphere, the petroleum reservoir deep biosphere is subject to extreme anthropogenic perturbation, with the introduction of new electron acceptors, donors and exogenous microbes during oil exploration and production. Despite the fundamental and practical significance of this perturbation, there has never been a systematic evaluation of the ecological changes that occur over the production lifetime of an active offshore petroleum production system. Analysis of the entire Halfdan oil field in the North Sea (32 producing wells in production for 1-15 years) using quantitative PCR, multigenic sequencing, comparative metagenomic and genomic bins reconstruction revealed systematic shifts in microbial community composition and metabolic potential, as well as changing ecological strategies in response to anthropogenic perturbation of the oil field ecosystem, related to length of time in production. The microbial communities were initially dominated by slow growing anaerobes such as members of the Thermotogales and Clostridiales adapted to living on hydrocarbons and complex refractory organic matter. However, as seawater and nitrate injection (used for secondary oil production) delivered oxidants, the microbial community composition progressively changed to fast growing opportunists such as members of the Deferribacteres, Delta-, Epsilon- and Gammaproteobacteria, with energetically more favorable metabolism (for example, nitrate reduction, H2S, sulfide and sulfur oxidation). This perturbation has profound consequences for understanding the microbial ecology of the system and is of considerable practical importance as it promotes detrimental processes such as reservoir souring and metal corrosion. These findings provide a new

  20. Succession in the petroleum reservoir microbiome through an oil field production lifecycle

    PubMed Central

    Vigneron, Adrien; Alsop, Eric B; Lomans, Bartholomeus P; Kyrpides, Nikos C; Head, Ian M; Tsesmetzis, Nicolas

    2017-01-01

    Subsurface petroleum reservoirs are an important component of the deep biosphere where indigenous microorganisms live under extreme conditions and in isolation from the Earth’s surface for millions of years. However, unlike the bulk of the deep biosphere, the petroleum reservoir deep biosphere is subject to extreme anthropogenic perturbation, with the introduction of new electron acceptors, donors and exogenous microbes during oil exploration and production. Despite the fundamental and practical significance of this perturbation, there has never been a systematic evaluation of the ecological changes that occur over the production lifetime of an active offshore petroleum production system. Analysis of the entire Halfdan oil field in the North Sea (32 producing wells in production for 1–15 years) using quantitative PCR, multigenic sequencing, comparative metagenomic and genomic bins reconstruction revealed systematic shifts in microbial community composition and metabolic potential, as well as changing ecological strategies in response to anthropogenic perturbation of the oil field ecosystem, related to length of time in production. The microbial communities were initially dominated by slow growing anaerobes such as members of the Thermotogales and Clostridiales adapted to living on hydrocarbons and complex refractory organic matter. However, as seawater and nitrate injection (used for secondary oil production) delivered oxidants, the microbial community composition progressively changed to fast growing opportunists such as members of the Deferribacteres, Delta-, Epsilon- and Gammaproteobacteria, with energetically more favorable metabolism (for example, nitrate reduction, H2S, sulfide and sulfur oxidation). This perturbation has profound consequences for understanding the microbial ecology of the system and is of considerable practical importance as it promotes detrimental processes such as reservoir souring and metal corrosion. These findings provide a new

  1. Existing and emerging technologies that exploit sulfur cycling bacteria in subsurface petroleum reservoir microbial communities (Invited)

    NASA Astrophysics Data System (ADS)

    Hubert, C. R.

    2013-12-01

    Fossil fuels remain by far our most important energy resources, providing around 90% of global primary energy supply. In the coming decadal transition between petroleum reliance and a more sustainable energy future we must increasingly view our vital petroleum reserves as microbial ecosystems that can be engineered to responsibly and creatively meet the energy needs of societies worldwide. In this way, the bioenergy agenda must interface with the traditional geoenergy industry and the challenges it faces. Bioengineering and deep biosphere geomicrobiology focus on the ecophysiology and biogeography of microorganisms in subsurface habitats including marine sediments and petroleum reservoirs. Understanding microbial communities in fossil fuel deposits will allow their distribution and catalytic potential to be exploited as geobiotechnologies that target known problem areas including sulfur cycle management related to biodesulfurization of heavy oils and reservoir souring control via nitrate injection, as well as promising emerging directions such as understanding subsurface geofluid dispersal vectors that could enable microbes to be used as bio-indicators in offshore oil and gas exploration. Results related to different research themes within contemporary petroleum geomicrobiology and bioengineering at Newcastle University will be presented with a focus on microorganisms involved in sulfur cycling that are commonly detected in different oil field microbial communities including mesophilic sulfide-oxidizing Epsilonproteobacteria and thermophilic sulfate-reducers belonging to the genus Desulfotomaculum.

  2. Current Challenges in Geothermal Reservoir Simulation

    NASA Astrophysics Data System (ADS)

    Driesner, T.

    2016-12-01

    Geothermal reservoir simulation has long been introduced as a valuable tool for geothermal reservoir management and research. Yet, the current generation of simulation tools faces a number of severe challenges, in particular in the application for novel types of geothermal resources such as supercritical reservoirs or hydraulic stimulation. This contribution reviews a number of key problems: Representing the magmatic heat source of high enthalpy resources in simulations. Current practice is representing the deeper parts of a high enthalpy reservoir by a heat flux or temperature boundary condition. While this is sufficient for many reservoir management purposes it precludes exploring the chances of very high enthalpy resources in the deepest parts of such systems as well as the development of reliable conceptual models. Recent 2D simulations with the CSMP++ simulation platform demonstrate the potential of explicitly including the heat source, namely for understanding supercritical resources. Geometrically realistic incorporation of discrete fracture networks in simulation. A growing number of simulation tools can, in principle, handle flow and heat transport in discrete fracture networks. However, solving the governing equations and representing the physical properties are often biased by introducing strongly simplifying assumptions. Including proper fracture mechanics in complex fracture network simulations remains an open challenge. Improvements of the simulating chemical fluid-rock interaction in geothermal reservoirs. Major improvements have been made towards more stable and faster numerical solvers for multicomponent chemical fluid rock interaction. However, the underlying thermodynamic models and databases are unable to correctly address a number of important regions in temperature-pressure-composition parameter space. Namely, there is currently no thermodynamic formalism to describe relevant chemical reactions in supercritical reservoirs. Overcoming this

  3. Integration of reservoir simulation and geomechanics

    NASA Astrophysics Data System (ADS)

    Zhao, Nan

    Fluid production from tight and shale gas formations has increased significantly, and this unconventional portfolio of low-permeability reservoirs accounts for more than half of the gas produced in the United States. Stimulation and hydraulic fracturing are critical in making these systems productive, and hence it is important to understand the mechanics of the reservoir. When modeling fractured reservoirs using discrete-fracture network representation, the geomechanical effects are expected to have a significant impact on important reservoir characteristics. It has become more accepted that fracture growth, particularly in naturally fractured reservoirs with extremely low permeability, cannot be reliably represented by conventional planar representations. Characterizing the evolution of multiple, nonplanar, interconnected and possibly nonvertical hydraulic fractures requires hydraulic and mechanical characterization of the matrix, as well as existing latent or healed fracture networks. To solve these challenging problems, a reservoir simulator (Advanced Reactive Transport Simulator (ARTS)) capable of performing unconventional reservoir simulation is developed in this research work. A geomechanical model has been incorporated into the simulation framework with various coupling schemes and this model is used to understand the geomechanical effects in unconventional oil and gas recovery. This development allows ARTS to accept geomechanical information from external geomechanical simulators (soft coupling) or the solution of the geomechanical coupled problem (hard coupling). An iterative solution method of the flow and geomechanical equations has been used in implementing the hard coupling scheme. The hard coupling schemes were verified using one-dimensional and two-dimensional analytical solutions. The new reservoir simulator is applied to learn the influence of geomechanical impact on unconventional oil and gas production in a number of practical recovery scenarios

  4. An integrated data model for reservoir simulation

    SciTech Connect

    Aydelotte, S.R.

    1994-02-01

    This paper describes the capability of the Epicenter data model to manage reservoir-simulation information, including the spatial model used to describe the properties of the earth and the product-flow network mode used to describe production performance. In addition to data values, the data model describes data creation and quality and provides a reliable means of understanding the source. To use the data model, reservoir-simulation applications need to be rewritten to conform to the data-model nomenclature and conventions. While this is a significant task, the benefit to reservoir simulation practitioners and vendors includes integration of technical applications (such as mapping, well logging, and geophysical interpretation systems), data portability (allowing Vendor A's simulator to use data prepared by Vendor B's preprocessor), and interpretability such as using a third-party optimization package to conduct a series of simulations.

  5. Microbial diversity in degraded and non-degraded petroleum samples and comparison across oil reservoirs at local and global scales.

    PubMed

    Sierra-Garcia, Isabel Natalia; Dellagnezze, Bruna M; Santos, Viviane P; Chaves B, Michel R; Capilla, Ramsés; Santos Neto, Eugenio V; Gray, Neil; Oliveira, Valeria M

    2017-01-01

    Microorganisms have shown their ability to colonize extreme environments including deep subsurface petroleum reservoirs. Physicochemical parameters may vary greatly among petroleum reservoirs worldwide and so do the microbial communities inhabiting these different environments. The present work aimed at the characterization of the microbiota in biodegraded and non-degraded petroleum samples from three Brazilian reservoirs and the comparison of microbial community diversity across oil reservoirs at local and global scales using 16S rRNA clone libraries. The analysis of 620 16S rRNA bacterial and archaeal sequences obtained from Brazilian oil samples revealed 42 bacterial OTUs and 21 archaeal OTUs. The bacterial community from the degraded oil was more diverse than the non-degraded samples. Non-degraded oil samples were overwhelmingly dominated by gammaproteobacterial sequences with a predominance of the genera Marinobacter and Marinobacterium. Comparisons of microbial diversity among oil reservoirs worldwide suggested an apparent correlation of prokaryotic communities with reservoir temperature and depth and no influence of geographic distance among reservoirs. The detailed analysis of the phylogenetic diversity across reservoirs allowed us to define a core microbiome encompassing three bacterial classes (Gammaproteobacteria, Clostridia, and Bacteroidia) and one archaeal class (Methanomicrobia) ubiquitous in petroleum reservoirs and presumably owning the abilities to sustain life in these environments.

  6. New Hydrocarbon Degradation Pathways in the Microbial Metagenome from Brazilian Petroleum Reservoirs

    PubMed Central

    Sierra-García, Isabel Natalia; Correa Alvarez, Javier; Pantaroto de Vasconcellos, Suzan; Pereira de Souza, Anete; dos Santos Neto, Eugenio Vaz; de Oliveira, Valéria Maia

    2014-01-01

    Current knowledge of the microbial diversity and metabolic pathways involved in hydrocarbon degradation in petroleum reservoirs is still limited, mostly due to the difficulty in recovering the complex community from such an extreme environment. Metagenomics is a valuable tool to investigate the genetic and functional diversity of previously uncultured microorganisms in natural environments. Using a function-driven metagenomic approach, we investigated the metabolic abilities of microbial communities in oil reservoirs. Here, we describe novel functional metabolic pathways involved in the biodegradation of aromatic compounds in a metagenomic library obtained from an oil reservoir. Although many of the deduced proteins shared homology with known enzymes of different well-described aerobic and anaerobic catabolic pathways, the metagenomic fragments did not contain the complete clusters known to be involved in hydrocarbon degradation. Instead, the metagenomic fragments comprised genes belonging to different pathways, showing novel gene arrangements. These results reinforce the potential of the metagenomic approach for the identification and elucidation of new genes and pathways in poorly studied environments and contribute to a broader perspective on the hydrocarbon degradation processes in petroleum reservoirs. PMID:24587220

  7. New hydrocarbon degradation pathways in the microbial metagenome from Brazilian petroleum reservoirs.

    PubMed

    Sierra-García, Isabel Natalia; Correa Alvarez, Javier; de Vasconcellos, Suzan Pantaroto; Pereira de Souza, Anete; dos Santos Neto, Eugenio Vaz; de Oliveira, Valéria Maia

    2014-01-01

    Current knowledge of the microbial diversity and metabolic pathways involved in hydrocarbon degradation in petroleum reservoirs is still limited, mostly due to the difficulty in recovering the complex community from such an extreme environment. Metagenomics is a valuable tool to investigate the genetic and functional diversity of previously uncultured microorganisms in natural environments. Using a function-driven metagenomic approach, we investigated the metabolic abilities of microbial communities in oil reservoirs. Here, we describe novel functional metabolic pathways involved in the biodegradation of aromatic compounds in a metagenomic library obtained from an oil reservoir. Although many of the deduced proteins shared homology with known enzymes of different well-described aerobic and anaerobic catabolic pathways, the metagenomic fragments did not contain the complete clusters known to be involved in hydrocarbon degradation. Instead, the metagenomic fragments comprised genes belonging to different pathways, showing novel gene arrangements. These results reinforce the potential of the metagenomic approach for the identification and elucidation of new genes and pathways in poorly studied environments and contribute to a broader perspective on the hydrocarbon degradation processes in petroleum reservoirs.

  8. Models for naturally fractured, carbonate reservoir simulations

    SciTech Connect

    Tuncay, K.; Park, A.; Ozkan, G.; Zhan, X.; Ortoleva, P.; Hoak, T.; Sundberg, K.

    1998-12-31

    This report outlines the need for new tools for the simulation of fractured carbonate reservoirs. Several problems are identified that call for the development of new reservoir simulation physical models and numerical techniques. These include: karst and vuggy media wherein Darcy`s and traditional multi-phase flow laws do not apply; the need for predicting the preproduction state of fracturing and stress so that the later response of effective stress-dependent reservoirs can be predicted; and methods for predicting the fracturing and collapse of vuggy and karst reservoirs in response to draw-down pressure created during production. Specific research directions for addressing each problem are outlined and preliminary results are noted.

  9. Effective Stress Approximation using Geomechanical Formulation of Fracturing Technology (GFFT) in Petroleum Reservoirs

    NASA Astrophysics Data System (ADS)

    Haghi, A.; Asef, M.; Kharrat, R.

    2010-12-01

    Recently, rock mechanics and geophysics contribution in petroleum industry has been significantly increased. Wellbore stability analysis in horizontal wells, sand production problem while extracting hydrocarbon from sandstone reservoirs, land subsidence due to production induced reservoir compaction, reservoir management, casing shearing are samples of these contributions. In this context, determination of the magnitude and orientation of the in-situ stresses is an essential parameter. This paper is presenting new method to estimate the magnitude of in-situ stresses based on fracturing technology data. Accordingly, kirsch equations for the circular cavities and fracturing technology models in permeable formations have been used to develop an innovative Geomechanical Formulation (GFFT). GFFT introduces a direct reasonable relation between the reservoir stresses and the breakdown pressure of fracture, while the concept of effective stress was employed. Thus, this complex formula contains functions of some rock mechanic parameters such as poison ratio, Biot’s coefficient, Young’s modulus, rock tensile strength, depth of reservoir and breakdown/reservoir pressure difference. Hence, this approach yields a direct method to estimate maximum and minimum effective/insitu stresses in an oil field and improves minimum in-situ stress estimation compared to previous studies. In case of hydraulic fracturing; a new stress analysis method is developed based on well known Darcy equations for fluid flow in porous media which improves in-situ stress estimation using reservoir parameters such as permeability, and injection flow rate. The accuracy of the method would be verified using reservoir data of a case history. The concepts discussed in this research would eventually suggest an alternative methodology with sufficient accuracy to derive in-situ stresses in hydrocarbon reservoirs, while no extra experimental work is accomplished for this purpose.

  10. Dynamic processes of indigenous microorganisms from a low-temperature petroleum reservoir during nutrient stimulation.

    PubMed

    Gao, Pei-Ke; Li, Guo-Qiang; Zhao, Ling-Xia; Dai, Xue-Cheng; Tian, Hui-Mei; Dai, Liu-Bing; Wang, Hong-Bo; Huang, Hai-Dong; Chen, Yue-Hua; Ma, Ting

    2014-02-01

    Compared to medium-high temperature petroleum reservoirs (30°C-73°C), little is known about microbial regulation by nutrients in low-temperature reservoirs. In this study, we report the performance (oil emulsification and biogas production) and community structure of indigenous microorganisms from a low-temperature (22.6°C) petroleum reservoir during nutrient stimulation. Culture-dependent approaches indicated that the number of hydrocarbon-oxidizing bacteria (HOB), nitrate-reducing bacteria (NRB) and methane-producing bacteria (MPB) increased by between 10- and 1000-fold, while sulfate-reducing bacteria (SRB) were observed at low levels during stimulation. Phylogenetic analysis of the 16S rRNA gene indicated that Pseudomonas, Ochrobactrum, Acinetobacter, Halomonas and Marinobacter, which have the capability to produce surfactants, were selectively enriched. Methanoculleus, Methanosaeta, Methanocorpusculum and Methanocalculus showed the largest increase in relative abundance among archaea. Micro-emulsion formed with an average oil droplet diameter of 14.3 μm (ranging between 4.1 μm and 84.2 μm) during stimulation. Gas chromatographic analysis of gas production (186 mL gas/200 mL medium) showed the levels of CO2 and CH4 increased 8.97% and 6.21%, respectively. Similar to medium-high temperature reservoirs, HOB, NRB, SRB and MPB were ubiquitous in the low-temperature reservoir, and oil emulsification and gas production were the main phenomena observed during stimulation. Oil emulsification required a longer duration of time to occur in the low-temperature reservoir. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Profiles of Reservoir Properties of Oil-Bearing Plays for Selected Petroleum Provinces in the United States

    USGS Publications Warehouse

    Freeman, P.A.; Attanasi, E.D.

    2015-11-05

    Each province profile figure consists of five strip charts and a boxplot. The five strip charts display for individual plays the following reservoir-fluid and reservoir properties: A, oil density (American Petroleum Institute [API] gravity in degrees); B, computed pseudo-Dykstra-Parsons coefficient; C, reservoir porosity (in percent); D, reservoir permeability (in millidarcies); and E, estimates of the original oil in place (OOIP) per unit volume of reservoir rock (in barrels per acre-foot). The OOIP per unit volume of reservoir rock is an indicator of the relative richness of the oil reservoir and is derived from estimates in the CRD of OOIP, reservoir acreage, and net pay. The net pay is the interval of productive reservoir rock. The same data for OOIP per unit volume are graphed as a strip chart (E) and a boxplot (F).

  12. Massachusetts reservoir simulation tool—User’s manual

    USGS Publications Warehouse

    Levin, Sara B.

    2016-10-06

    IntroductionThe U.S. Geological Survey developed the Massachusetts Reservoir Simulation Tool to examine the effects of reservoirs on natural streamflows in Massachusetts by simulating the daily water balance of reservoirs. The simulation tool was developed to assist environmental managers to better manage water withdrawals in reservoirs and to preserve downstream aquatic habitats.

  13. Small County: Development of a Virtual Environment for Instruction in Geological Characterization of Petroleum Reservoirs

    NASA Astrophysics Data System (ADS)

    Banz, B.; Bohling, G.; Doveton, J.

    2008-12-01

    Traditional programs of geological education continue to be focused primarily on the evaluation of surface or near-surface geology accessed at outcrops and shallow boreholes. However, most students who graduate to careers in geology work almost entirely on subsurface problems, interpreting drilling records and petrophysical logs from exploration and production wells. Thus, college graduates commonly find themselves ill-prepared when they enter the petroleum industry and require specialized training in drilling and petrophysical log interpretation. To aid in this training process, we are developing an environment for interactive instruction in the geological aspects of petroleum reservoir characterization employing a virtual subsurface closely reflecting the geology of the US mid-continent, in the fictional setting of Small County, Kansas. Stochastic simulation techniques are used to generate the subsurface characteristics, including the overall geological structure, distributions of facies, porosity, and fluid saturations, and petrophysical logs. The student then explores this subsurface by siting exploratory wells and examining drilling and petrophysical log records obtained from those wells. We are developing the application using the Eclipse Rich Client Platform, which allows for the rapid development of a platform-agnostic application while providing an immersive graphical interface. The application provides an array of views to enable relevant data display and student interaction. One such view is an interactive map of the county allowing the student to view the locations of existing well bores and select pertinent data overlays such as a contour map of the elevation of an interesting interval. Additionally, from this view a student may choose the site of a new well. Another view emulates a drilling log, complete with drilling rate plot and iconic representation of examined drill cuttings. From here, students are directed to stipulate subsurface lithology and

  14. T-R Cycle Characterization and Imaging: Advanced Diagnostic Methodology for Petroleum Reservoir and Trap Detection and Delineation

    SciTech Connect

    Ernest A. Mancini; William C. Parcell; Bruce S. Hart

    2006-03-06

    The principal research effort for Year 3 of the project is to classify the known petroleum reservoirs in the Mississippi Interior Salt Basin by using a sequence stratigraphic framework based on T-R sequence terminology, to formulate exploration strategies for identifying specific facies with reservoir potential and for identifying possible stratigraphic traps using a sequence stratigraphic model in combination with the discovered reservoir classification, and to use these exploration strategies to assess the potential for underdeveloped and undiscovered petroleum resources in the Mississippi Interior Salt Basin.

  15. Geological input to reservoir simulation, Champion Field, offshore Brunei

    SciTech Connect

    Carter, R.; Salahudin, S.; Ho, T.C.

    1994-07-01

    Brunei Shell Petroleum's giant Champion field is in a mature stage of development with about 23 yr of production history to date. The field comprises a complex sequence of Miocene shallow marine and deltaic layered clastic reservoirs cut by numerous growth faults. This study was aimed at providing a quantified estimate of the effect of lateral and vertical discontinuities within the I and J reservoirs on the recovery for both depletion drive and in a waterflood, with a view to identifying the optimal method of completing the development of the oil reserves in this area. Geological input to the ECLIPSE simulator was aimed at quantifying two key parameters: (1) STOIIP connected to the well bore and (2) permeability contrast. Connected STOIIP is a function of the domain size of interconnected sand bodies, and this parameter was quantified by the use of detailed sedimentology resulting in sand-body facies maps for each reservoir sublayer. Permeability contrast was quantified by using a wireline-log based algorithm, calibrated against core data, which improved the existing accuracy of permeability estimates in this part of the field. Results of simulation runs illustrate the importance of quantifying geologic heterogeneity and provide valuable information for future field development planning.

  16. The evolution of the Piedemonte Llanero petroleum system, Cordillera Oriental, Colombia (2) Reservoir petrography & petroleum geochemistry

    SciTech Connect

    Piggott, N.; Vear, A.; Warren, E.A.

    1996-08-01

    Detailed quantification of cements and rock texture, fluid inclusion microthermometry, thermal maturity data, oil-source rock correlations and structural restorations have been integrated to reveal the porosity and hydrocarbon charge evolution of reservoirs in the Piedemonte Llanero thrustbelt of Colombia. Active exploration of deeply buried structures in different thrust sheets of the Piedemonte Llanero has encountered quartz arenites of widely varying average porosities (4-15%). Porosity has been reduced by mechanical compaction and quartz cementation during burial, and by pressure solution during structural deformation. The relative importance and timing of these processes varies between thrust sheets controlling the observed porosity variation. Thermal maturity data indicate that all thrust sheets have been deeply buried and uplifted in several stages of compression. Detailed structural restorations indicate significant differences in the burial histories of individual thrust sheets. Oil-source rock correlations suggest two major hydrocarbon components in the thrustbelt: a Late Cretaceous oil-prone source and a Tertiary oil- and gas-prone source. Initial generation charged early structures leading to partial inhibition of quartz cementation. For most structures quartz cementation predated major hydrocarbon migration. Average quartz cementation temperature is uniform within a structure, but varies between thrust sheets. These variations appear to reflect differences in burial depths during quartz cementation rather than variations in timing. Integration of all data reveals a complex but predictable evolution of porosity and hydrocarbon charge in both space and time which is being applied to current exploration in the Piedemonte Llanero and is relevant to thrustbelt exploration elsewhere.

  17. Life in the slow lane; biogeochemistry of biodegraded petroleum containing reservoirs and implications for energy recovery and carbon management

    PubMed Central

    Head, Ian M.; Gray, Neil D.; Larter, Stephen R.

    2014-01-01

    Our understanding of the processes underlying the formation of heavy oil has been transformed in the last decade. The process was once thought to be driven by oxygen delivered to deep petroleum reservoirs by meteoric water. This paradigm has been replaced by a view that the process is anaerobic and frequently associated with methanogenic hydrocarbon degradation. The thermal history of a reservoir exerts a fundamental control on the occurrence of biodegraded petroleum, and microbial activity is focused at the base of the oil column in the oil water transition zone, that represents a hotspot in the petroleum reservoir biome. Here we present a synthesis of new and existing microbiological, geochemical, and biogeochemical data that expands our view of the processes that regulate deep life in petroleum reservoir ecosystems and highlights interactions of a range of biotic and abiotic factors that determine whether petroleum is likely to be biodegraded in situ, with important consequences for oil exploration and production. Specifically we propose that the salinity of reservoir formation waters exerts a key control on the occurrence of biodegraded heavy oil reservoirs and introduce the concept of palaeopickling. We also evaluate the interaction between temperature and salinity to explain the occurrence of non-degraded oil in reservoirs where the temperature has not reached the 80–90°C required for palaeopasteurization. In addition we evaluate several hypotheses that might explain the occurrence of organisms conventionally considered to be aerobic, in nominally anoxic petroleum reservoir habitats. Finally we discuss the role of microbial processes for energy recovery as we make the transition from fossil fuel reliance, and how these fit within the broader socioeconomic landscape of energy futures. PMID:25426105

  18. Life in the slow lane; biogeochemistry of biodegraded petroleum containing reservoirs and implications for energy recovery and carbon management.

    PubMed

    Head, Ian M; Gray, Neil D; Larter, Stephen R

    2014-01-01

    Our understanding of the processes underlying the formation of heavy oil has been transformed in the last decade. The process was once thought to be driven by oxygen delivered to deep petroleum reservoirs by meteoric water. This paradigm has been replaced by a view that the process is anaerobic and frequently associated with methanogenic hydrocarbon degradation. The thermal history of a reservoir exerts a fundamental control on the occurrence of biodegraded petroleum, and microbial activity is focused at the base of the oil column in the oil water transition zone, that represents a hotspot in the petroleum reservoir biome. Here we present a synthesis of new and existing microbiological, geochemical, and biogeochemical data that expands our view of the processes that regulate deep life in petroleum reservoir ecosystems and highlights interactions of a range of biotic and abiotic factors that determine whether petroleum is likely to be biodegraded in situ, with important consequences for oil exploration and production. Specifically we propose that the salinity of reservoir formation waters exerts a key control on the occurrence of biodegraded heavy oil reservoirs and introduce the concept of palaeopickling. We also evaluate the interaction between temperature and salinity to explain the occurrence of non-degraded oil in reservoirs where the temperature has not reached the 80-90°C required for palaeopasteurization. In addition we evaluate several hypotheses that might explain the occurrence of organisms conventionally considered to be aerobic, in nominally anoxic petroleum reservoir habitats. Finally we discuss the role of microbial processes for energy recovery as we make the transition from fossil fuel reliance, and how these fit within the broader socioeconomic landscape of energy futures.

  19. The design and use of a field and reservoir data base for petroleum exploration

    SciTech Connect

    Nehring, R. )

    1991-03-01

    Field and reservoir data bases can have many valuable applications in petroleum exploration. Realizing this value requires careful attention to several general and specific design considerations. The primary general design considerations include (1) developing standard field and reservoir definitions that are applied uniformly across political boundaries (2) applying appropriate variable definitions consistently throughout the data base, (3) providing high rates of coverage for each variable, and (4) testing and editing the data thoroughly for consistency and correctness. Design considerations that are specific to intended uses of a field and reservoir data base include (1) the provision of complete field and reservoir size estimates, (2) the incorporation of a comprehensive set of play definitions, and (3) the use of cross-referencing variables to facilitate combined uses with the various well data bases. Well-designed field reservoir data bases provide a source of information between the often uninformative generality of aggregate statistics and the overwhelming detail of well data bases. They can be used as several different levels of aggregation. Their most valuable applications to exploration are found primarily in three areas: (1) basin, regional, and national reviews, (2) the generation of exploration concepts, and (3) evaluating prospects systematically within a play context.

  20. Microbial diversity and abundance in the Xinjiang Luliang long-term water-flooding petroleum reservoir

    PubMed Central

    Gao, Peike; Tian, Huimei; Li, Guoqiang; Sun, Hongwen; Ma, Ting

    2015-01-01

    Microbial populations associated with microbial enhanced oil recovery (MEOR) and their abundance in the Xinjiang Luliang water-flooding petroleum reservoir were investigated using 16S rRNA, nitrate reductases, dissimilatory sulfate reductase, and methyl coenzyme-M reductase-encoded genes to provide ecological information for the potential application of MEOR. 16S rRNA gene miseq sequencing revealed that this reservoir harbored large amounts of taxa, including 155 bacterial and 7 archeal genera. Among them, Arcobacter, Halomonas, Marinobacterium, Marinobacter, Sphingomonas, Rhodococcus, Pseudomonas, Dietzia, Ochrobactrum, Hyphomonas, Acinetobacter, and Shewanella were dominant, and have the potential to grow using hydrocarbons as carbon sources. Metabolic gene clone libraries indicated that the nitrate-reducing bacteria (NRB) mainly belonged to Pseudomonas, Azospirillum, Bradyrhizobium, Thauera, Magnetospirillum, Sinorhizobium, Azoarcus, and Rhodobacter; the sulfate-reducing bacteria (SRB) were Desulfarculus, Desulfomonile, Desulfosarcina, Desulfotignum, Desulfacinum, Desulfatibacillum, Desulfatibacillum, Desulfomicrobium, and Desulfovibrio; while the methanogens were archaea and belonged to Methanomethylovorans, Methanosaeta, Methanococcus, Methanolobus, and Methanobacterium. Real-time quantitative PCR analysis indicated that the number of bacterial 16S rRNA reached 106 copies/mL, while the metabolic genes of NRB, SRB, and methanogens reached 104 copies/mL. These results show that the Luliang reservoir has abundant microbial populations associated with oil recovery, suggesting that the reservoir has potential for MEOR. PMID:25641701

  1. Isolation and Characterization of Gram-Positive Biosurfactant-Producing Halothermophilic Bacilli From Iranian Petroleum Reservoirs

    PubMed Central

    Zargari, Saeed; Ramezani, Amin; Ostvar, Sassan; Rezaei, Rasool; Niazi, Ali; Ayatollahi, Shahab

    2014-01-01

    Background: Petroleum reservoirs have long been known as the hosts of extremophilic microorganisms. Some of these microorganisms are known for their potential biotechnological applications, particularly production of extra and intracellular polymers and enzymes. Objectives: Here, 14 petroleum liquid samples from southern Iranian oil reservoirs were screened for presence of biosurfactant‐producing halothermophiles. Materials and Methods: Mixture of the reservoir fluid samples with a minimal growth medium was incubated under an N2 atmosphere in 40°C; 0.5 mL samples were transferred from the aqueous phase to agar plates after 72 hours of incubation; 100 mL cell cultures were prepared using the MSS-1 (mineral salt solution 1) liquid medium with 5% (w/v) NaCl. The time-course samples were analyzed by recording the absorbance at 600 nm using a spectrophotometer. Incubation was carried out in 40°C with mild shaking in aerobic conditions. Thermotolerance was evaluated by growing the isolates at 40, 50, 60 and 70°C with varying NaCl concentrations of 5% and 10% (w/v). Halotolerance was evaluated using NaCl concentrations of 5%, 10%, 12.5% and 15% (w/v) and incubating them at 40°C under aerobic and anaerobic conditions. Different phenotypic characteristics were evaluated, as outlined in Bergey's manual of determinative bacteriology. Comparing 16S rDNA sequences is one of the most powerful tools for classification of microorganisms. Results: Among 34 isolates, 10 demonstrated biosurfactant production and growth at temperatures between 40°C and 70°C in saline media containing 5%‐15% w/v NaCl. Using partial 16S rDNA sequencing (and amplified ribosomal DNA restriction analysis [ARDRA]) and biochemical tests (API tests 20E and 50 CHB), all the 10 isolates proved to be facultative anaerobic, Gram-positive moderate thermohalophiles of the genus Bacillus (B. thermoglucosidasius, B. thermodenitrificans, B. thermoleovorans, B. stearothermophilus and B. licheniformis

  2. Could petroleum biodegradation be a joint achievement of aerobic and anaerobic microrganisms in deep sea reservoirs?

    PubMed Central

    2011-01-01

    Several studies suggest that petroleum biodegradation can be achieved by either aerobic or anaerobic microorganisms, depending on oxygen input or other electron acceptors and appropriate nutrients. Evidence from in vitro experiments with samples of petroleum formation water and oils from Pampo Field indicate that petroleum biodegradation is more likely to be a joint achievement of both aerobic and anaerobic bacterial consortium, refining our previous observations of aerobic degradation. The aerobic consortium depleted, in decreasing order, hydrocarbons > hopanes > steranes > tricyclic terpanes while the anaerobic consortium depleted hydrocarbons > steranes > hopanes > tricyclic terpanes. The oxygen content of the mixed consortia was measured from time to time revealing alternating periods of microaerobicity (O2 ~0.8 mg.L-1) and of aerobicity (O2~6.0 mg.L-1). In this experiment, the petroleum biodegradation changed from time to time, alternating periods of biodegradation similar to the aerobic process and periods of biodegradation similar to the anaerobic process. The consortia showed preferences for metabolizing hydrocarbons > hopanes > steranes > tricyclic terpanes during a 90-day period, after which this trend changed and steranes were more biodegraded than hopanes. The analysis of aerobic oil degrading microbiota by the 16S rRNA gene clone library detected the presence of Bacillus, Brevibacterium, Mesorhizobium and Achromobacter, and the analysis of the anaerobic oil degrading microbiota using the same technique detected the presence of Bacillus and Acinetobacter (facultative strains). In the mixed consortia Stenotrophomonas, Brevibacterium, Bacillus, Rhizobium, Achromobacter and 5% uncultured bacteria were detected. This is certainly a new contribution to the study of reservoir biodegradation processes, combining two of the more important accepted hypotheses. PMID:22196374

  3. Spatial isolation and environmental factors drive distinct bacterial and archaeal communities in different types of petroleum reservoirs in China

    NASA Astrophysics Data System (ADS)

    Gao, Peike; Tian, Huimei; Wang, Yansen; Li, Yanshu; Li, Yan; Xie, Jinxia; Zeng, Bing; Zhou, Jiefang; Li, Guoqiang; Ma, Ting

    2016-02-01

    To investigate the spatial distribution of microbial communities and their drivers in petroleum reservoir environments, we performed pyrosequencing of microbial partial 16S rRNA, derived from 20 geographically separated water-flooding reservoirs, and two reservoirs that had not been flooded, in China. The results indicated that distinct underground microbial communities inhabited the different reservoirs. Compared with the bacteria, archaeal alpha-diversity was not strongly correlated with the environmental variables. The variation of the bacterial and archaeal community compositions was affected synthetically, by the mining patterns, spatial isolation, reservoir temperature, salinity and pH of the formation brine. The environmental factors explained 64.22% and 78.26% of the total variance for the bacterial and archaeal communities, respectively. Despite the diverse community compositions, shared populations (48 bacterial and 18 archaeal genera) were found and were dominant in most of the oilfields. Potential indigenous microorganisms, including Carboxydibrachium, Thermosinus, and Neptunomonas, were only detected in a reservoir that had not been flooded with water. This study indicates that: 1) the environmental variation drives distinct microbial communities in different reservoirs; 2) compared with the archaea, the bacterial communities were highly heterogeneous within and among the reservoirs; and 3) despite the community variation, some microorganisms are dominant in multiple petroleum reservoirs.

  4. Spatial isolation and environmental factors drive distinct bacterial and archaeal communities in different types of petroleum reservoirs in China

    PubMed Central

    Gao, Peike; Tian, Huimei; Wang, Yansen; Li, Yanshu; Li, Yan; Xie, Jinxia; Zeng, Bing; Zhou, Jiefang; Li, Guoqiang; Ma, Ting

    2016-01-01

    To investigate the spatial distribution of microbial communities and their drivers in petroleum reservoir environments, we performed pyrosequencing of microbial partial 16S rRNA, derived from 20 geographically separated water-flooding reservoirs, and two reservoirs that had not been flooded, in China. The results indicated that distinct underground microbial communities inhabited the different reservoirs. Compared with the bacteria, archaeal alpha-diversity was not strongly correlated with the environmental variables. The variation of the bacterial and archaeal community compositions was affected synthetically, by the mining patterns, spatial isolation, reservoir temperature, salinity and pH of the formation brine. The environmental factors explained 64.22% and 78.26% of the total variance for the bacterial and archaeal communities, respectively. Despite the diverse community compositions, shared populations (48 bacterial and 18 archaeal genera) were found and were dominant in most of the oilfields. Potential indigenous microorganisms, including Carboxydibrachium, Thermosinus, and Neptunomonas, were only detected in a reservoir that had not been flooded with water. This study indicates that: 1) the environmental variation drives distinct microbial communities in different reservoirs; 2) compared with the archaea, the bacterial communities were highly heterogeneous within and among the reservoirs; and 3) despite the community variation, some microorganisms are dominant in multiple petroleum reservoirs. PMID:26838035

  5. Spatial isolation and environmental factors drive distinct bacterial and archaeal communities in different types of petroleum reservoirs in China.

    PubMed

    Gao, Peike; Tian, Huimei; Wang, Yansen; Li, Yanshu; Li, Yan; Xie, Jinxia; Zeng, Bing; Zhou, Jiefang; Li, Guoqiang; Ma, Ting

    2016-02-03

    To investigate the spatial distribution of microbial communities and their drivers in petroleum reservoir environments, we performed pyrosequencing of microbial partial 16S rRNA, derived from 20 geographically separated water-flooding reservoirs, and two reservoirs that had not been flooded, in China. The results indicated that distinct underground microbial communities inhabited the different reservoirs. Compared with the bacteria, archaeal alpha-diversity was not strongly correlated with the environmental variables. The variation of the bacterial and archaeal community compositions was affected synthetically, by the mining patterns, spatial isolation, reservoir temperature, salinity and pH of the formation brine. The environmental factors explained 64.22% and 78.26% of the total variance for the bacterial and archaeal communities, respectively. Despite the diverse community compositions, shared populations (48 bacterial and 18 archaeal genera) were found and were dominant in most of the oilfields. Potential indigenous microorganisms, including Carboxydibrachium, Thermosinus, and Neptunomonas, were only detected in a reservoir that had not been flooded with water. This study indicates that: 1) the environmental variation drives distinct microbial communities in different reservoirs; 2) compared with the archaea, the bacterial communities were highly heterogeneous within and among the reservoirs; and 3) despite the community variation, some microorganisms are dominant in multiple petroleum reservoirs.

  6. Marine petroleum source rocks and reservoir rocks of the Miocene Monterey Formation, California, U.S.A

    USGS Publications Warehouse

    Isaacs, C.M.

    1988-01-01

    The Miocene Monterey Formation of California, a biogenous deposit derived mainly from diatom debris, is important both as a petroleum source and petroleum reservoir. As a source, the formation is thought to have generated much of the petroleum in California coastal basins, which are among the most prolific oil provinces in the United States. Oil generated from the Monterey tends to be sulfur-rich and heavy (<20° API), and has chemical characteristics that more closely resemble immature source extracts than "normal" oil. Thermal-maturity indicators in Monterey kerogens appear to behave anomalously, and several lines of evidence indicate that the oil is generated at lower than expected levels of organic metamorphism. As a reservoir, the Monterey is important due both to conventional production from permeable sandstone beds and to fracture production from fine-grained rocks with low matrix permeability. Fractured reservoirs are difficult to identify, and conventional well-log analysis has not proven to be very useful in exploring for and evaluating these reservoirs. Lithologically similar rocks are broadly distributed throughout the Circum-Pacific region, but their petroleum potential is unlikely to be realized without recognition of the distinctive source and reservoir characteristics of diatomaceous strata and their diagenetic equivalents.

  7. Noble gas as tracers for CO2 deep input in petroleum reservoirs

    NASA Astrophysics Data System (ADS)

    Pujol, Magali; Stuart, Finlay; Gilfillan, Stuart; Montel, François; Masini, Emmanuel

    2016-04-01

    The sub-salt hydrocarbon reservoirs in the deep offshore part of the Atlantic Ocean passive margins are a new key target for frontier oil and gas exploration. Type I source rocks locally rich in TOC (Total Organic Carbon) combined with an important secondary connected porosity of carbonate reservoirs overlain by an impermeable salt layer gives rise to reservoirs with high petroleum potential. However, some target structures have been found to be mainly filled with CO2 rich fluids. δ13C of the CO2 is generally between -9 and -4 permil, compatible with a deep source (metamorphic or mantle). Understanding the origin of the CO2 and the relative timing of its input into reservoir layers in regard to the geodynamic context appears to be a key issue for CO2 risk evaluation. The inertness and ubiquity of noble gases in crustal fluids make them powerful tools to trace the origin and migration of mixed fluids (Ballentine and Burnard 2002). The isotopic signature of He, Ne and Ar and the elemental pattern (He to Xe) of reservoir fluid from pressurized bottom hole samples provide an insight into fluid source influences at each reservoir depth. Three main end-members can be mixed into reservoir fluids (e.g. Gilfillan et al., 2008): atmospheric signature due to aquifer recharge, radiogenic component from organic fluid ± metamorphic influence, and mantle input. Their relative fractionation provides insights into the nature of fluid transport (Burnard et al., 2012)and its relative migration timing. In the studied offshore passive margin reservoirs, from both sides of South Atlantic margin, a strong MORB-like magmatic CO2 influence is clear. Hence, CO2 charge must have occurred during or after lithospheric break-up. CO2 charge(s) history appears to be complex, and in some cases requires several inputs to generate the observed noble gas pattern. Combining the knowledge obtained from noble gas (origin, relative timing, number of charges) with organic geochemical and thermodynamic

  8. Rabi multi-sector reservoir simulation model

    SciTech Connect

    Bruijnzeels, C.; O`Halloran, C.

    1995-12-31

    To ensure optimum ultimate recovery of the 46 meter thick oil rim of the Rabi Field in Gabon, a full field simulation model was required. Due to it`s size and complexity, with local cusping, coning and geological circumstances dominating individual well behavior, a single full field model would be too large for existing hardware. A method was developed to simulate the full field with 5 separate sector models, whilst allowing the development in one sector model to have an effect on the boundary conditions of another sector. In this manner, the 13 x 4.5 km field could be simulated with a horizontal well spacing down to 175 meter. This paper focuses on the method used to attach single 3-phase tank cells to a sector simulation grid in order to represent non-simulated parts of the field. It also describes the history matching methodology and how to run a multisector model in forecasting mode. This method can be used for any reservoir, where size and complexity require large reservoir simulation models that normally could not be modeled within the constraints of available computer facilities. Detailed studies can be conducted on specific parts of a field, whilst allowing for dynamic flow and pressure effects caused by the rest of the field.

  9. Compositional reservoir simulation in parallel supercomputing environments

    SciTech Connect

    Briens, F.J.L. ); Wu, C.H. ); Gazdag, J.; Wang, H.H. )

    1991-09-01

    A large-scale compositional reservoir simulation ({gt}1,000 cells) is not often run on a conventional mainframe computer owing to excessive turnaround times. This paper presents programming and computational techniques that fully exploit the capabilities of parallel supercomputers for a large-scale compositional simulation. A novel algorithm called sequential staging of tasks (SST) that can take full advantage of parallel-vector processing to speed up the solution of a large linear system is introduced. The effectiveness of SST is illustrated with results from computer experiments conducted on an IBM 3090-600E.

  10. Improved storage efficiency through geologic modeling and reservoir simulation

    SciTech Connect

    Ammer, J.R.; Mroz, T.H.; Covatch, G.L.

    1997-11-01

    The US Department of Energy (DOE), through partnerships with industry, is demonstrating the importance of geologic modeling and reservoir simulation for optimizing the development and operation of gas storage fields. The geologic modeling and reservoir simulation study for the Natural Fuel Gas Supply Corporation CRADA was completed in September 1995. The results of this study were presented at the 1995 Society of Petroleum Engineers` (SPE) Eastern Regional Meeting. Although there has been no field verification of the modeling results, the study has shown the potential advantages and cost savings opportunities of using horizontal wells for storage enhancement. The geologic modeling for the Equitrans` CRADA was completed in September 1995 and was also presented at the 1995 SPE Eastern Regional Meeting. The reservoir modeling of past field performance was completed in November 1996 and prediction runs are currently being made to investigate the potential of offering either a 10 day or 30 day peaking service in addition to the existing 110 day base load service. Initial results have shown that peaking services can be provided through remediation of well damage and by drilling either several new vertical wells or one new horizontal well. The geologic modeling for the Northern Indiana Public Service Company CRADA was completed in November 1996 with a horizontal well being completed in January 1997. Based on well test results, the well will significantly enhance gas deliverability from the field and will allow the utilization of gas from an area of the storage field that was not accessible from their existing vertical wells. Results are presented from these three case studies.

  11. [Isolation of functional bacteria guided by PCR-DGGE technology from high temperature petroleum reservoirs].

    PubMed

    Wang, Jun; Ma, Ting; Liu, Jing; Liu, Qing-kun; Zhao, Ling-xia; Liang, Feng-lai; Liu, Ru-lin

    2008-02-01

    It is a brand-new method to isolate functional bacteria from high temperature petroleum reservoirs according to the sequence information obtained from PCR-DGGE patterns. Three-set primers of 16S rDNA high variable region, V3, V8, V9, were compared. The results showed that more microbial diversity information could be obtained from the PCR product of V9 region. Sequence analysis indicated that the dominant bacteria in the petroleum reservoir had high sequence similarity with bacteria from alpha, beta, gamma-Proteobacterias and Bacilli from the GenBank database. According to the sequences information, multi-cultivation technology including enrichment cultivation, special cultivation and direct cultivation methods were employed, and finally, five strains (three strains by traditional methods) were isolated from oil-water samples. Among them, three thermophilic hydrocarbon-degrading bacteria, which belonged to Bacillus sp., Geobacillus sp. and Petrobacter sp., respectively, could grow well under 55 degrees C in obligate anaerobic condition. The crude oil could be utilized by these strains with the degradation rate of 56.5%, 70.01% and 31.78% respectively along with the viscosity reduction rate of 40%, 54.55% and 29.09%, meanwhile the solidify points of crude oil were reduced by 3.7, 5.2 and 3.1 degrees C. Therefore, the combination of sequence information from PCR-DGGE and altering cultivation conditions is an available novel method to isolate more functional microorganisms which could be utilized for microbial enhanced oil recovery.

  12. Simulating Gas-Liquid-Water Partitioning and Fluid Properties of Petroleum under Pressure: Implications for Deep-Sea Blowouts.

    PubMed

    Gros, Jonas; Reddy, Christopher M; Nelson, Robert K; Socolofsky, Scott A; Arey, J Samuel

    2016-07-19

    With the expansion of offshore petroleum extraction, validated models are needed to simulate the behaviors of petroleum compounds released in deep (>100 m) waters. We present a thermodynamic model of the densities, viscosities, and gas-liquid-water partitioning of petroleum mixtures with varying pressure, temperature, and composition based on the Peng-Robinson equation-of-state and the modified Henry's law (Krychevsky-Kasarnovsky equation). The model is applied to Macondo reservoir fluid released during the Deepwater Horizon disaster, represented with 279-280 pseudocomponents, including 131-132 individual compounds. We define >n-C8 pseudocomponents based on comprehensive two-dimensional gas chromatography (GC × GC) measurements, which enable the modeling of aqueous partitioning for n-C8 to n-C26 fractions not quantified individually. Thermodynamic model predictions are tested against available laboratory data on petroleum liquid densities, gas/liquid volume fractions, and liquid viscosities. We find that the emitted petroleum mixture was ∼29-44% gas and ∼56-71% liquid, after cooling to local conditions near the broken Macondo riser stub (∼153 atm and 4.3 °C). High pressure conditions dramatically favor the aqueous dissolution of C1-C4 hydrocarbons and also influence the buoyancies of bubbles and droplets. Additionally, the simulated densities of emitted petroleum fluids affect previous estimates of the volumetric flow rate of dead oil from the emission source.

  13. Microbial abundance and community composition influence production performance in a low-temperature petroleum reservoir.

    PubMed

    Li, Guoqiang; Gao, Peike; Wu, Yunqiang; Tian, Huimei; Dai, Xuecheng; Wang, Yansen; Cui, Qingfeng; Zhang, Hongzuo; Pan, Xiaoxuan; Dong, Hanping; Ma, Ting

    2014-05-06

    Enhanced oil recovery using indigenous microorganisms has been successfully applied in the petroleum industry, but the role of microorganisms remains poorly understood. Here, we investigated the relationship between microbial population dynamics and oil production performance during a water flooding process coupled with nutrient injection in a low-temperature petroleum reservoir. Samples were collected monthly over a two-year period. The microbial composition of samples was determined using 16S rRNA gene pyrosequencing and real-time quantitative polymerase chain reaction analyses. Our results indicated that the microbial community structure in each production well microhabitat was dramatically altered during flooding with eutrophic water. As well as an increase in the density of microorganisms, biosurfactant producers, such as Pseudomonas, Alcaligenes, Rhodococcus, and Rhizobium, were detected in abundance. Furthermore, the density of these microorganisms was closely related to the incremental oil production. Oil emulsification and changes in the fluid-production profile were also observed. In addition, we found that microbial community structure was strongly correlated with environmental factors, such as water content and total nitrogen. These results suggest that injected nutrients increase the abundance of microorganisms, particularly biosurfactant producers. These bacteria and their metabolic products subsequently emulsify oil and alter fluid-production profiles to enhance oil recovery.

  14. Petroleum.

    ERIC Educational Resources Information Center

    McManus, T. R.; And Others

    1989-01-01

    This review of petroleum covers: crude oil; fuels, gaseous and liquid; lubricants, oils, and greases; asphalts, bitumens, tars, and pitches; hydrocarbons; physical properties; metals in oil; nonmetallic elements and heterocompounds; and analytical methods and apparatus. (MVL)

  15. Petroleum.

    ERIC Educational Resources Information Center

    McManus, T. R.; And Others

    1989-01-01

    This review of petroleum covers: crude oil; fuels, gaseous and liquid; lubricants, oils, and greases; asphalts, bitumens, tars, and pitches; hydrocarbons; physical properties; metals in oil; nonmetallic elements and heterocompounds; and analytical methods and apparatus. (MVL)

  16. Producing Light Oil from a Frozen Reservoir: Reservoir and Fluid Characterization of Umiat Field, National Petroleum Reserve, Alaska

    SciTech Connect

    Hanks, Catherine

    2012-12-31

    Umiat oil field is a light oil in a shallow, frozen reservoir in the Brooks Range foothills of northern Alaska with estimated oil-in-place of over 1 billion barrels. Umiat field was discovered in the 1940’s but was never considered viable because it is shallow, in the permafrost, and far from any transportation infrastructure. The advent of modern drilling and production techniques has made Umiat and similar fields in northern Alaska attractive exploration and production targets. Since 2008 UAF has been working with Renaissance Alaska Inc. and, more recently, Linc Energy, to develop a more robust reservoir model that can be combined with rock and fluid property data to simulate potential production techniques. This work will be used to by Linc Energy as they prepare to drill up to 5 horizontal wells during the 2012-2013 drilling season. This new work identified three potential reservoir horizons within the Cretaceous Nanushuk Formation: the Upper and Lower Grandstand sands, and the overlying Ninuluk sand, with the Lower Grandstand considered the primary target. Seals are provided by thick interlayered shales. Reserve estimates for the Lower Grandstand alone range from 739 million barrels to 2437 million barrels, with an average of 1527 million bbls. Reservoir simulations predict that cold gas injection from a wagon-wheel pattern of multilateral injectors and producers located on 5 drill sites on the crest of the structure will yield 12-15% recovery, with actual recovery depending upon the injection pressure used, the actual Kv/Kh encountered, and other geologic factors. Key to understanding the flow behavior of the Umiat reservoir is determining the permeability structure of the sands. Sandstones of the Cretaceous Nanushuk Formation consist of mixed shoreface and deltaic sandstones and mudstones. A core-based study of the sedimentary facies of these sands combined with outcrop observations identified six distinct facies associations with distinctive permeability

  17. Multigrid methods with applications to reservoir simulation

    SciTech Connect

    Xiao, Shengyou

    1994-05-01

    Multigrid methods are studied for solving elliptic partial differential equations. Focus is on parallel multigrid methods and their use for reservoir simulation. Multicolor Fourier analysis is used to analyze the behavior of standard multigrid methods for problems in one and two dimensions. Relation between multicolor and standard Fourier analysis is established. Multiple coarse grid methods for solving model problems in 1 and 2 dimensions are considered; at each coarse grid level we use more than one coarse grid to improve convergence. For a given Dirichlet problem, a related extended problem is first constructed; a purification procedure can be used to obtain Moore-Penrose solutions of the singular systems encountered. For solving anisotropic equations, semicoarsening and line smoothing techniques are used with multiple coarse grid methods to improve convergence. Two-level convergence factors are estimated using multicolor. In the case where each operator has the same stencil on each grid point on one level, exact multilevel convergence factors can be obtained. For solving partial differential equations with discontinuous coefficients, interpolation and restriction operators should include information about the equation coefficients. Matrix-dependent interpolation and restriction operators based on the Schur complement can be used in nonsymmetric cases. A semicoarsening multigrid solver with these operators is used in UTCOMP, a 3-D, multiphase, multicomponent, compositional reservoir simulator. The numerical experiments are carried out on different computing systems. Results indicate that the multigrid methods are promising.

  18. Representation of wells in numerical reservoir simulation

    SciTech Connect

    Ding, Y.; Renard, G.; Weill, L.

    1995-12-31

    In reservoir simulation, linear approximations are generally used for well modeling. However, this type of approximations can be inaccurate for fluid flow calculation in the vicinity of wells leading to incorrect well performance predictions. To overcome such problems, a new well representation has been proposed that uses a ``logarithmic`` type of approximation for vertical wells. In this paper, it is shown how the new well model can be easily implemented in existing simulator through the conventional PI. The relationship between wellbore pressure, wellblock pressure and flow rate is discussed in more detail, especially for the definition of wellblock pressure. Extension of the new approach to off-center wells and to flexible grids are both presented. Through this extension, the equivalence of various gridding techniques for the well model is emphasized. The key element is the accurate calculation of flow components in the vicinity of wells.

  19. Molecular phylogenetic diversity of the microbial community associated with a high-temperature petroleum reservoir at an offshore oilfield.

    PubMed

    Li, Hui; Yang, Shi-Zhong; Mu, Bo-Zhong; Rong, Zhao-Feng; Zhang, Jie

    2007-04-01

    The microbial community and its diversity in production water from a high-temperature, water-flooded petroleum reservoir of an offshore oilfield in China were characterized by 16S rRNA gene sequence analysis. The bacterial and archaeal 16S rRNA gene clone libraries were constructed from the community DNA and, using sequence analysis, 388 bacterial and 220 archaeal randomly selected clones were clustered with 60 and 28 phylotypes, respectively. The results showed that the 16S rRNA genes of bacterial clones belonged to the divisions Firmicutes, Thermotogae, Nitrospirae and Proteobacteria, whereas the archaeal library was dominated by methanogen-like rRNA genes (Methanothermobacter, Methanobacter, Methanobrevibacter and Methanococcus), with a lower percentage of clones belonging to Thermoprotei. Thermophilic microorganisms were found in the production water, as well as mesophilic microorganisms such as Pseudomonas and Acinetobacter-like clones. The thermophilic microorganisms may be common inhabitants of geothermally heated specialized subsurface environments, which have been isolated previously from a number of high-temperature petroleum reservoirs worldwide. The mesophilic microorganisms were probably introduced into the reservoir as it was being exploited. The results of this work provide further insight into the composition of microbial communities of high-temperature petroleum reservoirs at offshore oilfields.

  20. Activity of sulfate-reducing bacteria under simulated reservoir conditions

    SciTech Connect

    Rosnes, J.T.; Graue, A.; Lien, T. )

    1991-05-01

    This paper reports on sulfate-reducing bacteria (SRB) that have been isolated from hot oilfield waters from subsea oil reservoirs in the North Sea. Experiments with these bacteria in a reservoir simulator indicate that SRB may maintain their activity in the conditions found in most North Sea reservoirs and, if precautions are not taken, may contribute to souring of the oil and gas.

  1. Multi-Purpose, Multi-Reservoir Simulation on a PC

    DTIC Science & Technology

    1988-08-01

    The methodology and difficulties in converting a large, general purpose, mainframe, batch oriented computer program (for reservoir simulation ) to...work effectively in the PC environment are described in this paper. A brief overview of the present capabilities of the general purpose reservoir ... simulation program (HEC-5), that works on mainframe and MS DOS compatible computers, is also presented. Keywords: Simulation, Personal computer, Reservior

  2. T-R Cycle Characterization and Imaging: Advanced Diagnostic Methodology for Petroleum Reservoir and Trap Detection and Delineation

    SciTech Connect

    Ernest A. Mancini

    2006-08-30

    Characterization of stratigraphic sequences (T-R cycles or sequences) included outcrop studies, well log analysis and seismic reflection interpretation. These studies were performed by researchers at the University of Alabama, Wichita State University and McGill University. The outcrop, well log and seismic characterization studies were used to develop a depositional sequence model, a T-R cycle (sequence) model, and a sequence stratigraphy predictive model. The sequence stratigraphy predictive model developed in this study is based primarily on the modified T-R cycle (sequence) model. The T-R cycle (sequence) model using transgressive and regressive systems tracts and aggrading, backstepping, and infilling intervals or sections was found to be the most appropriate sequence stratigraphy model for the strata in the onshore interior salt basins of the Gulf of Mexico to improve petroleum stratigraphic trap and specific reservoir facies imaging, detection and delineation. The known petroleum reservoirs of the Mississippi Interior and North Louisiana Salt Basins were classified using T-R cycle (sequence) terminology. The transgressive backstepping reservoirs have been the most productive of oil, and the transgressive backstepping and regressive infilling reservoirs have been the most productive of gas. Exploration strategies were formulated using the sequence stratigraphy predictive model and the classification of the known petroleum reservoirs utilizing T-R cycle (sequence) terminology. The well log signatures and seismic reflector patterns were determined to be distinctive for the aggrading, backstepping and infilling sections of the T-R cycle (sequence) and as such, well log and seismic data are useful for recognizing and defining potential reservoir facies. The use of the sequence stratigraphy predictive model, in combination with the knowledge of how the distinctive characteristics of the T-R system tracts and their subdivisions are expressed in well log patterns

  3. Classification of mechanical heterogeneity of petroleum reservoir rocks optimal for radial drilling technology

    NASA Astrophysics Data System (ADS)

    Ivakhnenko, Aleksandr; Seitova, Nargiza; Dzhafarov, Tarlan

    2013-04-01

    The radial drilling technology involves drilling lateral horizontal boreholes of small diameter and up to one hundred meters long with the possibility of placing several wells within productive petroleum reservoirs. The usage of the radial drilling involves making small diameter horizontal perforations in the rock formation by using water jet and the jet propulsion which facilitate the penetration along the rock formation. In this study was reviewed the effectiveness of water jet propulsion for different mechanical heterogeneity of rocks. Experiments were carried out to investigate the variation in water jet penetration in different rock types, such as sandstones, carbonates, conglomerates, dolomites, limestone, etc., and their mechanical variations including unconsolidated and cemented members. There were also addressed cases when the pores of the rocks were filled with different minerals including clays and quartz. It was found that the method of penetration differ for mechanical heterogeneity of rocks. The results are shown for the different types of rocks and degree of their porosity variations. The efficiency of the rock penetration obtained by dividing the energy of the jet by the volume of hole created is discussed in relation to rock types and the method of rock failure.

  4. Compositions and Abundances of Sulfate-Reducing and Sulfur-Oxidizing Microorganisms in Water-Flooded Petroleum Reservoirs with Different Temperatures in China

    PubMed Central

    Tian, Huimei; Gao, Peike; Chen, Zhaohui; Li, Yanshu; Li, Yan; Wang, Yansen; Zhou, Jiefang; Li, Guoqiang; Ma, Ting

    2017-01-01

    Sulfate-reducing bacteria (SRB) have been studied extensively in the petroleum industry due to their role in corrosion, but very little is known about sulfur-oxidizing bacteria (SOB), which drive the oxidization of sulfur-compounds produced by the activity of SRB in petroleum reservoirs. Here, we surveyed the community structure, diversity and abundance of SRB and SOB simultaneously based on 16S rRNA, dsrB and soxB gene sequencing, and quantitative PCR analyses, respectively in petroleum reservoirs with different physicochemical properties. Similar to SRB, SOB were found widely inhabiting the analyzed reservoirs with high diversity and different structures. The dominant SRB belonged to the classes Deltaproteobacteria and Clostridia, and included the Desulfotignum, Desulfotomaculum, Desulfovibrio, Desulfobulbus, and Desulfomicrobium genera. The most frequently detected potential SOB were Sulfurimonas, Thiobacillus, Thioclava, Thiohalomonas and Dechloromonas, and belonged to Betaproteobacteria, Alphaproteobacteria, and Epsilonproteobacteria. Among them, Desulfovibrio, Desulfomicrobium, Thioclava, and Sulfurimonas were highly abundant in the low-temperature reservoirs, while Desulfotomaculum, Desulfotignum, Thiobacillus, and Dechloromonas were more often present in high-temperature reservoirs. The relative abundances of SRB and SOB varied and were present at higher proportions in the relatively high-temperature reservoirs. Canonical correspondence analysis also revealed that the SRB and SOB communities in reservoirs displayed high niche specificity and were closely related to reservoir temperature, pH of the formation brine, and sulfate concentration. In conclusion, this study extends our knowledge about the distribution of SRB and SOB communities in petroleum reservoirs. PMID:28210252

  5. Compositions and Abundances of Sulfate-Reducing and Sulfur-Oxidizing Microorganisms in Water-Flooded Petroleum Reservoirs with Different Temperatures in China.

    PubMed

    Tian, Huimei; Gao, Peike; Chen, Zhaohui; Li, Yanshu; Li, Yan; Wang, Yansen; Zhou, Jiefang; Li, Guoqiang; Ma, Ting

    2017-01-01

    Sulfate-reducing bacteria (SRB) have been studied extensively in the petroleum industry due to their role in corrosion, but very little is known about sulfur-oxidizing bacteria (SOB), which drive the oxidization of sulfur-compounds produced by the activity of SRB in petroleum reservoirs. Here, we surveyed the community structure, diversity and abundance of SRB and SOB simultaneously based on 16S rRNA, dsrB and soxB gene sequencing, and quantitative PCR analyses, respectively in petroleum reservoirs with different physicochemical properties. Similar to SRB, SOB were found widely inhabiting the analyzed reservoirs with high diversity and different structures. The dominant SRB belonged to the classes Deltaproteobacteria and Clostridia, and included the Desulfotignum, Desulfotomaculum, Desulfovibrio, Desulfobulbus, and Desulfomicrobium genera. The most frequently detected potential SOB were Sulfurimonas, Thiobacillus, Thioclava, Thiohalomonas and Dechloromonas, and belonged to Betaproteobacteria, Alphaproteobacteria, and Epsilonproteobacteria. Among them, Desulfovibrio, Desulfomicrobium, Thioclava, and Sulfurimonas were highly abundant in the low-temperature reservoirs, while Desulfotomaculum, Desulfotignum, Thiobacillus, and Dechloromonas were more often present in high-temperature reservoirs. The relative abundances of SRB and SOB varied and were present at higher proportions in the relatively high-temperature reservoirs. Canonical correspondence analysis also revealed that the SRB and SOB communities in reservoirs displayed high niche specificity and were closely related to reservoir temperature, pH of the formation brine, and sulfate concentration. In conclusion, this study extends our knowledge about the distribution of SRB and SOB communities in petroleum reservoirs.

  6. Suitable Conditions of Reservoir Simulation for Searching Rule Curves

    NASA Astrophysics Data System (ADS)

    Kangrang, Anongrit; Chaleeraktrakoon, Chavalit

    The objective of this study is to carry out a suitable length of inflow record using in the simulation model. The second objective is to find an effect of initial reservoir capacity of reservoir simulation for searching the optimal rule curves. The reservoir simulation model was connected with genetic algorithms to search the optimal rule curves quickly. The model has been applied to determine the optimal rule curves of the Bhumibol and Sirikit Reservoirs (the Chao Phraya River Basin, Thailand). The optimal rule curves of each condition were used to assess by a Monte Carlo simulation. The results show that the shortest period of dry inflow record using in the simulation model in order to search the optimal rule curves is 10 year. Furthermore, the minimum initial capacity of reservoir for searching optimal rule curves is 10% of full capacity.

  7. Compositional and black oil reservoir simulation

    SciTech Connect

    Coats, K.H.; Thomas, L.K.; Pierson, R.G.

    1995-12-31

    This paper describes a three-dimensional, three-phase reservoir simulation model for black oil and compositional applications. Both IMPES and fully implicit formulations are included. The model`s use of a relaxed volume balance concept effectively conserves both mass and volume and reduces Newton iterations. A new implicit well rate calculation method improves IMPES stability. It approximates wellbore crossflow effects with high efficiency and relative simplicity in both IMPES and fully implicit formulations. Multiphase flow in the tubing and near-well turbulent gas flow effects are treated implicitly. Initial saturations are calculated as a function of water-oil and gas-oil capillary pressures which are optimally dependent upon the Leverett J function or initial saturations may be entered as data arrays. A normalization of the relative permeability and capillary pressure curves is used to calculate these terms as a function of rock type and grid block residual saturations. Example problems are presented, including several of the SPE Comparative Solution problems and field simulations. 48 refs.

  8. A new optimization framework using genetic algorithm and artificial neural network to reduce uncertainties in petroleum reservoir models

    NASA Astrophysics Data System (ADS)

    Maschio, Célio; José Schiozer, Denis

    2015-01-01

    In this article, a new optimization framework to reduce uncertainties in petroleum reservoir attributes using artificial intelligence techniques (neural network and genetic algorithm) is proposed. Instead of using the deterministic values of the reservoir properties, as in a conventional process, the parameters of the probability density function of each uncertain attribute are set as design variables in an optimization process using a genetic algorithm. The objective function (OF) is based on the misfit of a set of models, sampled from the probability density function, and a symmetry factor (which represents the distribution of curves around the history) is used as weight in the OF. Artificial neural networks are trained to represent the production curves of each well and the proxy models generated are used to evaluate the OF in the optimization process. The proposed method was applied to a reservoir with 16 uncertain attributes and promising results were obtained.

  9. Conference on the topic: {open_quotes}Exploration and production of petroleum and gas from chalk reservoirs worldwide{close_quotes}

    SciTech Connect

    Kuznetsov, V.G.

    1995-07-01

    More than 170 delegates from 14 countries in Europe, North America, Africa, and Asia took part in a conference on the topic: Exploration and Production of Petroleum and Gas from Chalk Reservoirs Worldwide. The conference was held in Copenhagen, Denmark in September,1994, and was a joint meeting of the American Association of Petroleum Geologists (AAPG), and the European Association of Petroleum Geoscientists and Engineers (EAPG). In addition to the opening remarks, 25 oral and nine poster reports were presented. The topics included chalk deposits as reservoir rocks, the occurrence of chalk deposits worldwide, the North Sea oil and gas fields, and other related topics.

  10. Miocene marine shelf-bar and deltaic petroleum reservoirs of coastal Alabama and Mississippi/Alabama shelf

    SciTech Connect

    Mink, R.M.; Mancini, E.A.; Bearden, B.L.

    1989-03-01

    Middle and upper Miocene gas reservoirs found in coastal Alabama and the Mississippi/Alabama shelf are predominantly inner to middle neritic shelf-bar or deltaic sands. A Miocene delta system prograded from the west-northwest in offshore Louisiana-Mississippi into coastal Alabama and the Mississippi/Alabama shelf. Deltaic sedimentation primarily affected the western portion of the Mississippi/Alabama shelf, while neritic sedimentation predominated in the northeastern portion of the region in coastal Alabama. Basinal clays are prevalent in the southeastern portion of the Mississippi/Alabama shelf. The productive Miocene reservoir sands occur between depths of 1100 and 5100 ft and generally are from 10 to 200 ft thick. The quartz-rich sands range from fine to coarse grained and have subangular to rounded and moderately to well-sorted quartz grains. Reservoir porosity is primary intergranular and generally ranges from 21% to 35%, with permeabilities that may exceed 2000 md. The natural gas in these shallow reservoirs is primarily biogenic in origin. Productivity of the reservoirs is highly variable and is often characterized by high water saturation. Reservoir pressures, which generally range from 550 to 2300 psi, are also a major factor controlling productivity of these reservoirs. Middle Miocene reservoirs are most common in coastal Alabama, and upper Miocene reservoirs are most common in the Mississippi/Alabama shelf. Petroleum traps are principally sandstone porosity and permeability pinch-outs against regional dip with subtle closure and anticlinal nosing as secondary factors in many of the traps. These middle and upper Miocene gas sands are best delineated with relative amplitude seismic reflection data no which gas-charged sands are apparent as bright spots.

  11. New petrophysical magnetic methods MACC and MAFM in permeability characterisation of petroleum reservoir rock cleaning, flooding modelling and determination of fines migration in formation damage

    NASA Astrophysics Data System (ADS)

    Ivakhnenko, O. P.

    2012-04-01

    Potential applications of magnetic techniques and methods in petroleum engineering and petrophysics (Ivakhnenko, 1999, 2006; Ivakhnenko & Potter, 2004) reveal their vast advantages for the petroleum reservoir characterisation and formation evaluation. In this work author proposes for the first time developed systematic methods of the Magnetic Analysis of Core Cleaning (MACC) and Magnetic Analysis of Fines Migration (MAFM) for characterisation of reservoir core cleaning and modelling estimations of fines migration for the petroleum reservoir formations. Using example of the one oil field we demonstrate results in application of these methods on the reservoir samples. Petroleum reservoir cores samples have been collected within reservoir using routine technique of reservoir sampling and preservation for PVT analysis. Immediately before the MACC and MAFM studies samples have been exposed to atmospheric air for a few days. The selected samples have been in detailed way characterised after fluid cleaning and core flooding by their mineralogical compositions and petrophysical parameters. Mineralogical composition has been estimated utilizing XRD techniques. The petrophysical parameters, such as permeability and porosity have been measured on the basis of total core analysis. The results demonstrate effectiveness and importance of the MACC and MAFM methods for the routine core analysis (RCAL) and the special core analysis (SCAL) in the reservoir characterisation, core flooding and formation damage analysis.

  12. Application of a delumping procedure to compositional reservoir simulations

    SciTech Connect

    Stenby, E.H.; Christensen, J.R.; Knudsen, K.; Leibovici, C.

    1996-12-31

    Characterization and lumping are always performed when dealing with reservoir fluids. The number of pseudocomponents in a compositional reservoir simulation is normally between three and eight. In order to optimize the reservoir performance, it is necessary to know a detailed composition of the product stream from the reservoir. This paper deals with the problems of how to come from the lumped system (for which the reservoir simulation was performed) to a description of the full system (which is important in order to optimize the down-stream facilities). The equations of the delumping procedure are shown and the application of the method is illustrated through examples, including a constant volume depletion experiment and the fifth SPE Comparative example with a fluid description from a North Sea reservoir (with the calculated composition after a lumping, an experiment and a delumping).

  13. A general formulation for compositional reservoir simulation

    SciTech Connect

    Rodriguez, F.; Guzman, J.; Galindo-Nava, A. |

    1994-12-31

    In this paper the authors present a general formulation to solve the non-linear difference equations that arise in compositional reservoir simulation. The general approach here presented is based on newton`s method and provides a systematic approach to generate several formulations to solve the compositional problem, each possessing a different degree of implicitness and stability characteristics. The Fully-Implicit method is at the higher end of the implicitness spectrum while the IMPECS method, implicit in pressure-explicit in composition and saturation, is at the lower end. They show that all methods may be obtained as particular cases of the fully-implicit method. Regarding the matrix problem, all methods have a similar matrix structure; the composition of the Jacobian matrix is however unique in each case, being in some instances amenable to reductions for optimal solution of the matrix problem. Based on this, a different approach to derive IMPECS type methods is proposed; in this case, the whole set of 2nc + 6 equations, that apply in each gridblock, is reduced to a single pressure equation through matrix reduction operations; this provides a more stable numerical scheme, compared to other published IMPCS methods, in which the subset of thermodynamic equilibrium equations is arbitrarily decoupled form the set of gridblock equations to perform such reduction. The authors discuss how the general formulation here presented can be used to formulate and construct an adaptive-implicit compositional simulators. They also present results on the numerical performance of FI, IMPSEC and IMPECS methods on some test problems.

  14. Isolation and characterization of alkane degrading bacteria from petroleum reservoir waste water in Iran (Kerman and Tehran provenances).

    PubMed

    Hassanshahian, Mehdi; Ahmadinejad, Mohammad; Tebyanian, Hamid; Kariminik, Ashraf

    2013-08-15

    Petroleum products spill and leakage have become two major environmental challenges in Iran. Sampling was performed in the petroleum reservoir waste water of Tehran and Kerman Provinces of Iran. Alkane degrading bacteria were isolated by enrichment in a Bushnel-Hass medium, with hexadecane as sole source of carbon and energy. The isolated strains were identified by amplification of 16S rDNA gene and sequencing. Specific primers were used for identification of alkane hydroxylase gene. Fifteen alkane degrading bacteria were isolated and 8 strains were selected as powerful degradative bacteria. These 8 strains relate to Rhodococcus jostii, Stenotrophomonas maltophilia, Achromobacter piechaudii, Tsukamurella tyrosinosolvens, Pseudomonas fluorescens, Rhodococcus erythropolis, Stenotrophomonas maltophilia, Pseudomonas aeruginosa genera. The optimum concentration of hexadecane that allowed high growth was 2.5%. Gas chromatography results show that all strains can degrade approximately half of hexadecane in one week of incubation. All of the strains have alkane hydroxylase gene which are important for biodegradation. As a result, this study indicates that there is a high diversity of degradative bacteria in petroleum reservoir waste water in Iran. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Feasibility study of sedimentary enhanced geothermal systems using reservoir simulation

    NASA Astrophysics Data System (ADS)

    Cho, Jae Kyoung

    The objective of this research is to evaluate the preliminary feasibility of commercial geothermal projects, from a sedimentary reservoir with low permeability that requires productivity enhancement, using numerical reservoir simulation. The performance of a sedimentary geothermal reservoir is investigated in terms of reservoir hydraulics and thermal evolution. To build a reliable benchmark for simulation study, validation of the numerical reservoir model with respect to an analytical model is presented, and the process to achieve an acceptable match between the numerical and analytical solutions is described. The analytical model used in this study is based on the work of Gringarten (1978), which consists of a conceptual geothermal reservoir, considering an injection and production well doublet in a homogeneous porous media. A commercial thermal reservoir simulator (STARS from Computer Modeling Group, CMG) is used in this work for numerical modeling. In order to reproduce the analytical model results, the numerical simulation model is modified to include the same assumptions of the analytical model. Simulation model parameters that make the numerical results deviate from the analytical solution, such as the grid block size, time step and no-flow boundary are identified and investigated. An analytical tracer test model proposed by Shook (2000) is numerically modeled. This model allows us to predict the time when the temperature of the produced water decreases by capturing a tracer component at production well. Reservoir simulation models with different porosity and permeability distribution are tested to see the effects of reservoir inhomogeneity and anisotropy. In particular, premature thermal breakthrough due to the presence of high permeability streak in a reservoir model is simulated. In an effort to apply the knowledge we obtained from the analytical solutions, the effects of reservoir rock and water properties, as a function of pressure and temperature, are

  16. Compositional Space Parameterization Approach for Reservoir Flow Simulation

    NASA Astrophysics Data System (ADS)

    Voskov, D.

    2011-12-01

    Phase equilibrium calculations are the most challenging part of a compositional flow simulation. For every gridblock and at every time step, the number of phases and their compositions must be computed for the given overall composition, temperature, and pressure conditions. The conventional approach used in petroleum industry is based on performing a phase-stability test, and solving the fugacity constraints together with the coupled nonlinear flow equations when the gridblock has more than one phase. The multi-phase compositional space can be parameterized in terms of tie-simplexes. For example, a tie-triangle can be used such that its interior encloses the three-phase region, and the edges represent the boundary with specific two-phase regions. The tie-simplex parameterization can be performed for pressure, temperature, and overall composition. The challenge is that all of these parameters can change considerably during the course of a simulation. It is possible to prove that the tie-simplexes change continuously with respect to pressure, temperature, and overall composition. The continuity of the tie-simplex parameterization allows for interpolation using discrete representations of the tie-simplex space. For variations of composition, a projection to the nearest tie-simplex is used, and if the tie-simplex is within a predefined tolerance, it can be used directly to identify the phase-state of this composition. In general, our parameterization approach can be seen as the generalization of negative flash idea for systems with two or more phases. Theory of dispersion-free compositional displacements, as well as computational experience of general-purpose compositional flow simulation indicates that the displacement path in compositional space is determined by a limited number of tie-simplexes. Therefore, only few tie-simplex tables are required to parameterize the entire displacement. The small number of tie-simplexes needed in a course of a simulation motivates

  17. Upscaling of absolute permeability for a super element model of petroleum reservoir

    NASA Astrophysics Data System (ADS)

    Mazo, A. B.; Potashev, K. A.

    2016-11-01

    This paper presents a new method of local upscaling of absolute permeability for super element simulation of an oil reservoir. Upscaling was performed for each block of a super element unstructured grid. For this purpose, a set of problems of a one-phase steady-state flow was solved on a fine computational grid with the initial scalar field of absolute permeability with various boundary conditions. These conditions reflect the specific variants of filtrational flow through the super element and take into account the presence or absence of boreholes in the coarse block. The resulting components of the effective permeability tensor in each super element were found from the solution of the problem of minimizing the deviations of the normal flows through the super element faces, averaged on a detailed computational grid, from those approximated on a coarse super element grid. The results of using the method are demonstrated for reservoirs with river-type absolute permeability. The method is compared with the traditional methods of local upscaling.

  18. Probability theory versus simulation of petroleum potential in play analysis

    USGS Publications Warehouse

    Crovelli, R.A.

    1987-01-01

    An analytic probabilistic methodology for resource appraisal of undiscovered oil and gas resources in play analysis is presented. This play-analysis methodology is a geostochastic system for petroleum resource appraisal in explored as well as frontier areas. An objective was to replace an existing Monte Carlo simulation method in order to increase the efficiency of the appraisal process. Underlying the two methods is a single geologic model which considers both the uncertainty of the presence of the assessed hydrocarbon and its amount if present. The results of the model are resource estimates of crude oil, nonassociated gas, dissolved gas, and gas for a geologic play in terms of probability distributions. The analytic method is based upon conditional probability theory and a closed form solution of all means and standard deviations, along with the probabilities of occurrence. ?? 1987 J.C. Baltzer A.G., Scientific Publishing Company.

  19. Identification and quantification of fracture behavior through reservoir simulation

    SciTech Connect

    Cline, S. |

    1995-08-01

    This study demonstrated the use of reservoir simulation as a tool for quantifying and describing the relative significance of fracture and matrix flow units to overall reservoir storage capacity and transmissibility in a field development example. A high matrix porosity Pennsylvanian age sandstone oil reservoir, that is currently undergoing the early stages of secondary recovery by waterflood, was studied. Unexpected early water breakthrough indicated the presence of a high directional permeability fracture system superimposed on the high porosity matrix system. To further understand the reservoir behavior, improve field performance and to quantify the relative contributions of fracture and matrix units to permeability and storage capacity, a reservoir simulation and characterization project was initiated. Well test, well log, tracer and geologic data were integrated into the simulation project. The integrated study indicated that the fractures exhibited high directional permeability but low storage capacity relative to the matrix portion of the reservoir. Although fractures heavily influenced overall fluid flow behavior, they did not contain large storage capacity. The system had a low calculated fracture intensity index. Reservoir simulation enabled the quantification of the relative importance of the two flow systems which in turn had a large impact on total reserves estimates and production forecasting. Simulation results indicated a need to realign injector and producer patterns which improved production rates and ultimate recovery.

  20. Reservoir simulation with MUFITS code: Extension for double porosity reservoirs and flows in horizontal wells

    NASA Astrophysics Data System (ADS)

    Afanasyev, Andrey

    2017-04-01

    Numerical modelling of multiphase flows in porous medium is necessary in many applications concerning subsurface utilization. An incomplete list of those applications includes oil and gas fields exploration, underground carbon dioxide storage and geothermal energy production. The numerical simulations are conducted using complicated computer programs called reservoir simulators. A robust simulator should include a wide range of modelling options covering various exploration techniques, rock and fluid properties, and geological settings. In this work we present a recent development of new options in MUFITS code [1]. The first option concerns modelling of multiphase flows in double-porosity double-permeability reservoirs. We describe internal representation of reservoir models in MUFITS, which are constructed as a 3D graph of grid blocks, pipe segments, interfaces, etc. In case of double porosity reservoir, two linked nodes of the graph correspond to a grid cell. We simulate the 6th SPE comparative problem [2] and a five-spot geothermal production problem to validate the option. The second option concerns modelling of flows in porous medium coupled with flows in horizontal wells that are represented in the 3D graph as a sequence of pipe segments linked with pipe junctions. The well completions link the pipe segments with reservoir. The hydraulics in the wellbore, i.e. the frictional pressure drop, is calculated in accordance with Haaland's formula. We validate the option against the 7th SPE comparative problem [3]. We acknowledge financial support by the Russian Foundation for Basic Research (project No RFBR-15-31-20585). References [1] Afanasyev, A. MUFITS Reservoir Simulation Software (www.mufits.imec.msu.ru). [2] Firoozabadi A. et al. Sixth SPE Comparative Solution Project: Dual-Porosity Simulators // J. Petrol. Tech. 1990. V.42. N.6. P.710-715. [3] Nghiem L., et al. Seventh SPE Comparative Solution Project: Modelling of Horizontal Wells in Reservoir Simulation

  1. Evaluation of Gas Production Potential of Hydrate Deposits in Alaska North Slope using Reservoir Simulations

    NASA Astrophysics Data System (ADS)

    Nandanwar, M.; Anderson, B. J.

    2015-12-01

    Over the past few decades, the recognition of the importance of gas hydrates as a potential energy resource has led to more and more exploration of gas hydrate as unconventional source of energy. In 2002, U.S. Geological Survey (USGS) started an assessment to conduct a geology-based analysis of the occurrences of gas hydrates within northern Alaska. As a result of this assessment, many potential gas hydrate prospects were identified in the eastern National Petroleum Reserve Alaska (NPRA) region of Alaska North Slope (ANS) with total gas in-place of about 2 trillion cubic feet. In absence of any field test, reservoir simulation is a powerful tool to predict the behavior of the hydrate reservoir and the amount of gas that can be technically recovered using best suitable gas recovery technique. This work focuses on the advanced evaluation of the gas production potential of hydrate accumulation in Sunlight Peak - one of the promising hydrate fields in eastern NPRA region using reservoir simulations approach, as a part of the USGS gas hydrate development Life Cycle Assessment program. The main objective of this work is to develop a field scale reservoir model that fully describes the production design and the response of hydrate field. Due to the insufficient data available for this field, the distribution of the reservoir properties (such as porosity, permeability and hydrate saturation) are approximated by correlating the data from Mount Elbert hydrate field to obtain a fully heterogeneous 3D reservoir model. CMG STARS is used as a simulation tool to model multiphase, multicomponent fluid flow and heat transfer in which an equilibrium model of hydrate dissociation was used. Production of the gas from the reservoir is carried out for a period of 30 years using depressurization gas recovery technique. The results in terms of gas and water rate profiles are obtained and the response of the reservoir to pressure and temperature changes due to depressurization and hydrate

  2. Fractal distributions of reservoir properties and their use in reservoir simulation

    SciTech Connect

    Berta, D.; Hardy, H.H.; Beier, R.A.

    1994-12-31

    Geostatistics has become a popular way to distribute reservoir properties between wells. One of the geostatistical methods being used is fractal geostatistics. Most porosity well logs have been found to have a fractal character. An analysis of vertical and horizontal logs, core photos, and outcrop photos has led to a rather simple model to describe porosity and permeability distributions. This representation has been tested in reservoir simulation of a mature waterflood and found to match production history with very little history matching. Fractal distributions were found to require much less history matching than classical layer cake models. Conoco is now actively applying this new technology to a number of its reservoirs.

  3. Large eddy simulation of a pumped- storage reservoir

    NASA Astrophysics Data System (ADS)

    Launay, Marina; Leite Ribeiro, Marcelo; Roman, Federico; Armenio, Vincenzo

    2016-04-01

    The last decades have seen an increasing number of pumped-storage hydropower projects all over the world. Pumped-storage schemes move water between two reservoirs located at different elevations to store energy and to generate electricity following the electricity demand. Thus the reservoirs can be subject to important water level variations occurring at the daily scale. These new cycles leads to changes in the hydraulic behaviour of the reservoirs. Sediment dynamics and sediment budgets are modified, sometimes inducing problems of erosion and deposition within the reservoirs. With the development of computer performances, the use of numerical techniques has become popular for the study of environmental processes. Among numerical techniques, Large Eddy Simulation (LES) has arisen as an alternative tool for problems characterized by complex physics and geometries. This work uses the LES-COAST Code, a LES model under development in the framework of the Seditrans Project, for the simulation of an Upper Alpine Reservoir of a pumped-storage scheme. Simulations consider the filling (pump mode) and emptying (turbine mode) of the reservoir. The hydraulic results give a better understanding of the processes occurring within the reservoir. They are considered for an assessment of the sediment transport processes and of their consequences.

  4. The potential for hydrocarbon biodegradation and production of extracellular polymeric substances by aerobic bacteria isolated from a Brazilian petroleum reservoir.

    PubMed

    Vasconcellos, S P; Dellagnezze, B M; Wieland, A; Klock, J-H; Santos Neto, E V; Marsaioli, A J; Oliveira, V M; Michaelis, W

    2011-06-01

    Extracellular polymeric substances (EPS) can contribute to the cellular degradation of hydrocarbons and have a huge potential for application in biotechnological processes, such as bioremediation and microbial enhanced oil recovery (MEOR). Four bacterial strains from a Brazilian petroleum reservoir were investigated for EPS production, emulsification ability and biodegradation activity when hydrocarbons were supplied as substrates for microbial growth. Two strains of Bacillus species had the highest EPS production when phenanthrene and n-octadecane were offered as carbon sources, either individually or in a mixture. While Pseudomonas sp. and Dietzia sp., the other two evaluated strains, had the highest hydrocarbon biodegradation indices, EPS production was not detected. Low EPS production may not necessarily be indicative of an absence of emulsifier activity, as indicated by the results of a surface tension reduction assay and emulsification indices for the strain of Dietzia sp. The combined results gathered in this work suggest that a microbial consortium consisting of bacteria with interdependent metabolisms could thrive in petroleum reservoirs, thus overcoming the limitations imposed on each individual species by the harsh conditions found in such environments.

  5. Phylogenetic diversity of the archaeal community in a continental high-temperature, water-flooded petroleum reservoir.

    PubMed

    Li, Hui; Yang, Shi-Zhong; Mu, Bo-Zhong

    2007-11-01

    The diversity of an archaeal community was analyzed in the water from a continental high-temperature, long-term water-flooded petroleum reservoir in Huabei Oilfield in China. The archaea were characterized by their 16S rRNA genes. An archaeal 16S rDNA clone library was constructed from the DNA isolated from the formation water, and 237 randomly selected positive clones were clustered in 28 phylotypes by sequencing analyses. Phylogenetic analysis of these sequences indicated that the dominant members of the archaeal phylotypes were affiliated with the order Methanomicrobiales. Totally, the archaeal community was composed of methanogens belonging to four orders: Methanobacteriales, Methanococcales, Methanomicrobiales, and Methanosarcinales. Most of the clones clustered with sequences previously described for methanogens, but there was a difference in the relative distribution of sequences detected here as compared to that of previous studies. Some thermophilic methanogens detected had been previously isolated from a number of high-temperature petroleum reservoirs worldwide; thus, they might exhibit adaptations to the environments and be the common habitants of geothermally heated subsurface environments.

  6. Compositional reservoir simulation on CM-5 and KSR-1 parallel machines

    SciTech Connect

    Ghori, S.G.; Wang, C.H.; Lim, M.T.; Pope, G.A.; Sepehrnoori, K.; Wheeler, M.F.

    1995-12-31

    Recently, use of parallel machines in reservoir simulation has received considerable attention from the petroleum industry. This paper presents parallelization of a 3D compositional, equation-of-state reservoir simulator on the CM-5 and KSR-1. To the best of the authors` knowledge, this is the first time that the parallelization of a compositional reservoir simulator has been performed on both the CM-5 and KSR-1. For new users of the CM-5 machines, the software and hardware of CM-5 architecture is presented, as well as details of the parallelization techniques. For example, domain decomposition, I/O`s, phase equilibrium computations, and well model are described. The parallelism techniques on the KSR-1 are presented with the emphasis on the porting of the phase equilibrium calculation. The performance of each machine is evaluated by showing the speedup on different sets of processing nodes. Two test problems were used to explore the capability of the parallelized version of the code; one is a waterflood problem and the other is a CO{sub 2} multiple contact miscible flood, both in a West Texas oil field. These field problems were run on 1, 2, 4, 8, 16, and 32 processors to get insight into the locations of communication bottlenecks, generally occurring in the programming with distributed memory machines. The problems of latency and bandwidth which are associated with communication efficiency of the CM-5 are also addressed.

  7. Three dimensional simulation for Big Hill Strategic Petroleum Reserve (SPR).

    SciTech Connect

    Ehgartner, Brian L.; Park, Byoung Yoon; Sobolik, Steven Ronald; Lee, Moo Yul

    2005-07-01

    3-D finite element analyses were performed to evaluate the structural integrity of caverns located at the Strategic Petroleum Reserve's Big Hill site. State-of-art analyses simulated the current site configuration and considered additional caverns. The addition of 5 caverns to account for a full site and a full dome containing 31 caverns were modeled. Operations including both normal and cavern workover pressures and cavern enlargement due to leaching were modeled to account for as many as 5 future oil drawdowns. Under the modeled conditions, caverns were placed very close to the edge of the salt dome. The web of salt separating the caverns and the web of salt between the caverns and edge of the salt dome were reduced due to leaching. The impacts on cavern stability, underground creep closure, surface subsidence and infrastructure, and well integrity were quantified. The analyses included recently derived damage criterion obtained from testing of Big Hill salt cores. The results show that from a structural view point, many additional caverns can be safely added to Big Hill.

  8. Evaluation of gas production potential from gas hydrate deposits in National Petroleum Reserve Alaska using numerical simulations

    USGS Publications Warehouse

    Nandanwar, Manish S.; Anderson, Brian J.; Ajayi, Taiwo; Collett, Timothy S.; Zyrianova, Margarita V.

    2016-01-01

    An evaluation of the gas production potential of Sunlight Peak gas hydrate accumulation in the eastern portion of the National Petroleum Reserve Alaska (NPRA) of Alaska North Slope (ANS) is conducted using numerical simulations, as part of the U.S. Geological Survey (USGS) gas hydrate Life Cycle Assessment program. A field scale reservoir model for Sunlight Peak is developed using Advanced Processes & Thermal Reservoir Simulator (STARS) that approximates the production design and response of this gas hydrate field. The reservoir characterization is based on available structural maps and the seismic-derived hydrate saturation map of the study region. A 3D reservoir model, with heterogeneous distribution of the reservoir properties (such as porosity, permeability and vertical hydrate saturation), is developed by correlating the data from the Mount Elbert well logs. Production simulations showed that the Sunlight Peak prospect has the potential of producing 1.53 × 109 ST m3 of gas in 30 years by depressurization with a peak production rate of around 19.4 × 104 ST m3/day through a single horizontal well. To determine the effect of uncertainty in reservoir properties on the gas production, an uncertainty analysis is carried out. It is observed that for the range of data considered, the overall cumulative production from the Sunlight Peak will always be within the range of ±4.6% error from the overall mean value of 1.43 × 109 ST m3. A sensitivity analysis study showed that the proximity of the reservoir from the base of permafrost and the base of hydrate stability zone (BHSZ) has significant effect on gas production rates. The gas production rates decrease with the increase in the depth of the permafrost and the depth of BHSZ. From the overall analysis of the results it is concluded that Sunlight Peak gas hydrate accumulation behaves differently than other Class III reservoirs (Class III reservoirs are composed of a single layer of hydrate with no

  9. Geochemical relationships of petroleum in Mesozoic reservoirs to carbonate source rocks of Jurassic Smackover Formation, southwestern Alabama

    SciTech Connect

    Claypool, G.E.; Mancini, E.A.

    1989-07-01

    Algal carbonate mudstones of the Jurassic Smackover Formation are the main source rocks for oil and condensate in Mesozoic reservoir rocks in southwestern Alabama. This interpretation is based on geochemical analyses of oils, condensates, and organic matter in selected samples of shale (Norphlet Formation, Haynesville Formation, Trinity Group, Tuscaloosa Group) and carbonate (Smackover Formation) rocks. Potential and probable oil source rocks are present in the Tuscaloosa Group and Smackover Formation, respectively. Extractable organic matter from Smackover carbonates has molecular and isotopic similarities to Jurassic oil. Although the Jurassic oils and condensates in southwestern Alabama have genetic similarities, they show significant compositional variations due to differences in thermal maturity and organic facies/lithofacies. Organic facies reflect different depositional conditions for source rocks in the various basins. The Mississippi Interior Salt basin was characterized by more continuous marine to hypersaline conditions, whereas the Manila and Conecuh embayments periodically had lower salnity and greater input of clastic debris and terrestrial organic matter. Petroleum and organic matter in Jurassic rocks of southwestern Alabama show a range of thermal transformations. The gas content of hydrocarbons in reservoirs increases with increasing depth and temperature. In some reservoirs where the temperature is above 266/degrees/F(130/degrees/C), gas-condensate is enriched in isotopically heavy sulfur, apparently derived from thermochemical reduction of Jurassic evaporite sulfate. This process also resulted in increase H/sub 2/S and CO in the gas, and depletion of saturated hydrocarbons in the condensate liquids.

  10. A CUDA based parallel multi-phase oil reservoir simulator

    NASA Astrophysics Data System (ADS)

    Zaza, Ayham; Awotunde, Abeeb A.; Fairag, Faisal A.; Al-Mouhamed, Mayez A.

    2016-09-01

    Forward Reservoir Simulation (FRS) is a challenging process that models fluid flow and mass transfer in porous media to draw conclusions about the behavior of certain flow variables and well responses. Besides the operational cost associated with matrix assembly, FRS repeatedly solves huge and computationally expensive sparse, ill-conditioned and unsymmetrical linear system. Moreover, as the computation for practical reservoir dimensions lasts for long times, speeding up the process by taking advantage of parallel platforms is indispensable. By considering the state of art advances in massively parallel computing and the accompanying parallel architecture, this work aims primarily at developing a CUDA-based parallel simulator for oil reservoir. In addition to the initial reported 33 times speed gain compared to the serial version, running experiments showed that BiCGSTAB is a stable and fast solver which could be incorporated in such simulations instead of the more expensive, storage demanding and usually utilized GMRES.

  11. Hybrid-CVFE method for flexible-grid reservoir simulation

    SciTech Connect

    Fung, L.S.K.; Buchanan, L.; Sharma, R. )

    1994-08-01

    Well flows and pressures are the most important boundary conditions in reservoir simulation. In a typical simulation, rapid changes and large pressure, temperature, saturation, and composition gradients occur in near-well regions. Treatment of these near-well phenomena significantly affects the accuracy of reservoir simulation results; therefore, extensive efforts have been devoted to the numerical treatment of wells and near-well flows. The flexible control-volume finite-element (CVFE) method is used to construct hybrid grids. The method involves use of a local cylindrical or elliptical grid to represent near-well flow accurately while honoring complex reservoir boundaries. The grid transition is smooth without any special discretization approximation, which eliminates the grid transition problem experienced with Cartesian local grid refinement and hybrid Cartesian gridding techniques.

  12. Reservoir simulation and geochemical study of Cerro Prieto I wells

    SciTech Connect

    Lippmann, M.J. ); Truesdell, A.H. )

    1990-03-01

    Combined reservoir simulation and geochemical data analysis are used to investigate the effects of recharge and other reservoir processes occurring in the western part of the Cerro Prieto, Mexico, geothermal field (i.e., Cerro Prieto I area). Enthalpy-based temperatures and bottomhole temperatures are calculated based on simplified models of the system, considering different reservoir boundary conditions and zones of contrasting initial temperatures and reservoir properties. By matching the computed trends with geothermometer-based temperature and enthalpy histories of producing wells, the main processes active in the western area of Cerro Prieto are identified. This part of the geothermal system is strongly influenced by nearby groundwater aquifers; cooler waters readily recharge the reservoirs. In response to exploitation, the natural influx of cold water into the shallower alpha reservoir is mainly from the west and down Fault L, while the recharge to the deeper beta reservoir in this part of the field, seems to be only lateral, from the west and possibly south. 11 refs., 12 figs.

  13. A simulation-based reservoir management program

    SciTech Connect

    Voskanian, M.M.; Kendall, R.P.; Whitney, E.M.; Coombs, S.; Paul, R.G.; Ershaghi, I.

    1996-05-01

    There are more than 5,200 independent oil and gas producers operating in the US today (based on current IPAA membership figures). These companies are playing an increasingly important role in production of hydrocarbons in California and elsewhere in the US. Pacific Operators Offshore, Inc., in a historic collaboration with its government royalty owners, the California State Lands Commission and the Minerals Management Service of the US Department of Interior, is attempting to redevelop the Carpinteria Offshore Field after two-and-a-half decades of production and partial abandonment by a previous operator. This paper will describe a project which focuses on the distribution of advanced reservoir management technologies (geological, petrophysical, and engineering) to independent producers like Pacific Operators Offshore, Inc. The evolving information highway, specifically the World Wide Web (WWW), serves as the distribution medium. The project to be described in this paper is an example of the implementation of a reservoir management tool which is supported by distributed databases, incorporates a shared computing environment, and integrates stochastic, geological, and engineering modeling.

  14. Reservoir simulation of a high viscous crude and strong water drive reservoir in Sarawak, Malaysia

    SciTech Connect

    Ramli, A.

    1995-10-01

    The Bokor field is located offshore Sarawak, Malaysia and is one of the largest fields in the Baram Delta Province. The A3/6 group of reservoirs is the largest among the Bokor reservoir groups. The reservoir comprises a series of multiple, stacked, well-developed, fluviomarine sandstones connected to a large aquifer. Production from this reservoir started in 1983 and since then some 15 MMstb of oil have been produced. To better understand the production performance, displacement mechanism and further development opportunities in this high viscous crude (10 cP) and strong water drive reservoir, a 3D sector reservoir simulation has been carried out. The model comprises 8640 active grid blocks, with 14 strings completed on four reservoir units with separate fluid contacts. The layering system and grid dimensions were found to be critical in the history matching process, which was supported by a X-sectional study carried out prior to embarking on the 3D model. Based on the history match, remaining oil was identified on the eastern flank, at the top of each sand unit (due to water under-running) and in the downdip area due to the existing crestal oriented development. The history matched model was subsequently used to aid further development planning and to formulate a cost-effective reservoir management strategy. Various development scenarios were tested in this 3D model, which include infill drilling, horizontal wells and pressure maintenance by water injection. This paper describes the various steps taken to obtain a good history match over the 10 years of production history and discusses the findings of the prediction runs.

  15. Multimodal reservoir porosity simulation: An application to a tight oil reservoir

    NASA Astrophysics Data System (ADS)

    Sauvageau, Mathieu; Gloaguen, Erwan; Claprood, Maxime; Lefebvre, René; Bêche, Martin

    2014-08-01

    At appraisal stage of a reservoir characterization, a key step is the inference of the reservoir static properties, such as porosity. In this study, we present a new nested workflow that optimally integrates 3D acoustic impedance and geophysical log data for the estimation of the spatial distribution of reservoir porosity, which is applied to a tight sandstone oil reservoir located in Quebec, Canada. In this workflow, 3D seismic is the main source of spatial information. First, the statistical petrophysical relationship between acoustic impedance and reservoir porosity is established using collocated geophysical log data. Second, a conventional least-squares post-stack inversion of the impedance is computed on the seismic grid. The fit between well log data and numerically computed traces was found to be inaccurate. This leads to the third step, involving a post-stack stochastic impedance inversion using the same seismic traces not only to improve well and trace fit but also to estimate the uncertainty on the inverted impedances. Finally, a Bayesian simulation algorithm adapted to the estimation of a multi-modal porosity distribution is used to simulate realizations of porosity over the entire seismic grid. Results show that the over-smoothing effect of least-squares inversion has a major impact on resource evaluation, especially by not reproducing the high-valued tail of the porosity distribution. The adapted Bayesian algorithm combined with stochastic impedance inversion thus allows a better reproduction of the porosity distribution and improves estimation of the geophysical and geological uncertainty.

  16. The effect of carboxylic acid anions on the stability of framework mineral grains in petroleum reservoirs

    SciTech Connect

    MacGowan, D.B.; Surdam, R.C.; Ewing, R.E. )

    1990-06-01

    This paper presents experimental and empirical evidence to show that carboxylic acid anions (CAA's) are a major diagenetic control on first-cycle basins in Jurassic-to-Pleistocene reservoirs in the 80-to-120{degrees}C thermal window.

  17. Geomechanically Coupled Simulation of Flow in Fractured Reservoirs

    NASA Astrophysics Data System (ADS)

    Barton, C.; Moos, D.; Hartley, L.; Baxter, S.; Foulquier, L.; Holl, H.; Hogarth, R.

    2012-12-01

    Capturing the necessary and sufficient detail of reservoir hydraulics to accurately evaluate reservoir behavior remains a significant challenge to the exploitation and management of fracture-dominated geothermal reservoirs. In these low matrix permeability reservoirs, stimulation response is controlled largely by the properties of natural and induced fracture networks, which are in turn controlled by the in situ stresses, the fracture distribution and connectivity and the hydraulic behavior of the fractures. This complex interaction of fracture flow systems with the present-day stress field compounds the problem of developing an effective and efficient simulation to characterize, model and predict fractured reservoir performance. We discuss here a case study of the integration of geological, geophysical, geomechanical, and reservoir engineering data to characterize the in situ stresses, the natural fracture network and the controls on fracture permeability in geothermal reservoirs. A 3D geomechanical reservoir model includes constraints on stress magnitudes and orientations, and constraints on mechanical rock properties and the fractures themselves. Such a model is essential to understanding reservoir response to stimulation and production in low matrix permeability, fracture-dominated reservoirs. The geomechanical model for this study was developed using petrophysical, drilling, and wellbore image data along with direct well test measurements and was mapped to a 3D structural grid to facilitate coupled simulation of the fractured reservoir. Wellbore image and stimulation test data were used along with microseismic data acquired during the test to determine the reservoir fracture architecture and to provide control points for a realistic inter-connected discrete fracture network. As most fractures are stress-sensitive, their hydraulic conductivities will change with changes in bottomhole flowing and reservoir pressures, causing variations in production profiles

  18. Marine radiocarbon reservoir age simulations for the past 50000 years

    NASA Astrophysics Data System (ADS)

    Butzin, Martin; Köhler, Peter; Lohmann, Gerrit

    2016-04-01

    We present simulations of marine radiocarbon reservoir ages using the ocean general circulation model LSG-HAMOCC2s, and evaluate the results with Marine13 raw data records. Our model considers various climatic background states. Radiocarbon cycle boundary conditions are atmospheric Δ14C values according to IntCal13, a recent atmospheric CO2 reconstruction, and spatially variable concentrations of dissolved inorganic carbon derived from marine carbon cycle simulations. Our model reasonably agrees with glacial marine Δ14C records but indicates reservoir ages varying with time, different to the invariant reservoir age corrections applied to the observations and to Marine13. Modelled global-mean reservoir ages are in the range 400-800 years compared to the invariant Marine13 value of 405 years. Self-consistent simulations involving the Cariaco Basin record (which is the most continuous marine record contributing to IntCal13 for periods prior to about 30 kyears) amplify the temporal reservoir age variability with global-mean values of about 350-850 years, and improve the agreement with Δ14C observations in some areas.

  19. Exploration for fractured petroleum reservoirs using radar/Landsat merge combinations

    NASA Technical Reports Server (NTRS)

    Macdonald, H.; Waite, W.; Borengasser, M.; Tolman, D.; Elachi, C.

    1981-01-01

    Since fractures are commonly propagated upward and reflected at the earth's surface as subtle linears, detection of these surface features is extremely important in many phases of petroleum exploration and development. To document the usefulness of microwave analysis for petroleum exploration, the Arkansas part of the Arkoma basin is selected as a prime test site. The research plan involves comparing the aircraft microwave imagery and Landsat imagery in an area where significant subsurface borehole geophysical data are available. In the northern Arkoma basin, a positive correlation between the number of linears in a given area and production from cherty carbonate strata is found. In the southern part of the basin, little relationship is discernible between surface structure and gas production, and no correlation is found between gas productivity and linear proximity or linear density as determined from remote sensor data.

  20. Petroleum Systems of South Kara Basin: 3D stratigraphic simulation and basin modeling results

    NASA Astrophysics Data System (ADS)

    Malysheva, S.; Vasilyev, V.; Verzhbitsky, V.; Ananyev, V.; Murzin, R.; Komissarov, D.; Kosenkova, N.; Roslov, Yu.

    2012-04-01

    Petroleum systems of South Kara Basin are still poorly studied and hydrocarbon resource estimates vary depending on geological models and understanding of the basin evolution. The main purpose of the regional studies of South Kara Basin was to produce a consistent model, which would be able to explain the existence of the fields discovered in the area as well as to determine the most favorable hydrocarbon accumulation zones in the study area for further exploration. In the study 3D stratigraphic simulation and basin modeling of South Kara Basin was carried out. The stratigraphic simulation results, along with geological, geophysical and geochemical data for the inland areas of Yamal and Gydan peninsulas and South Kara islands enabled to predict the lithological composition and distribution of source rocks, reservoirs and seals in the Kara Sea offshore area. Based on the basin modeling results hydrocarbon accumulations may occur in the reservoir facies of the wide stratigraphic range from Jurrasic to Cretaceous. The main source for the hydrocarbons, accumulated in the South Kara Basin Neocomian and Cenomanian reservoirs are the J3-K1 (the northward extension of Bazhenov Formation and its analogs of West Siberia), as well as J1 and probably J2 shales with predominantly marine type of kerogen (type II). Thermal and burial history restorations show that Lower Cretaceous (Aptian-Albian) sediments enriched with terrigenous organic matter (kerogen of type III) and containing coaly layers could not produce the hydrocarbon volumes to fill the giant Rusanovskoye and Leningradskoye gas-condensate fields as the K1 source rocks are not mature enough. The modeling results, in particular, suggest that the geologic conditions in the South Kara Basin are favorable for further discoveries of giant fields. Although gas accumulations are predominating in the basin, oil-and-gascondensate fields (not a pure oil fields though) with sufficient part of liquid hydrocarbons might be present

  1. Predicting the natural state of fractured carbonate reservoirs: An Andector Field, West Texas test of a 3-D RTM simulator

    SciTech Connect

    Tuncay, K.; Romer, S.; Ortoleva, P.; Hoak, T.; Sundberg, K.

    1998-12-31

    The power of the reaction, transport, mechanical (RTM) modeling approach is that it directly uses the laws of geochemistry and geophysics to extrapolate fracture and other characteristics from the borehole or surface to the reservoir interior. The objectives of this facet of the project were to refine and test the viability of the basin/reservoir forward modeling approach to address fractured reservoir in E and P problems. The study attempts to resolve the following issues: role of fracturing and timing on present day location and characteristics; clarifying the roles and interplay of flexure dynamics, changing rock rheological properties, fluid pressuring and tectonic/thermal histories on present day reservoir location and characteristics; and test the integrated RTM modeling/geological data approach on a carbonate reservoir. Sedimentary, thermal and tectonic data from Andector Field, West Texas, were used as input to the RTM basin/reservoir simulator to predict its preproduction state. The results were compared with data from producing reservoirs to test the RTM modeling approach. The effects of production on the state of the field are discussed in a companion report. The authors draw the following conclusions: RTM modeling is an important new tool in fractured reservoir E and P analysis; the strong coupling of RTM processes and the geometric and tensorial complexity of fluid flow and stresses require the type of fully coupled, 3-D RTM model for fracture analysis as pioneered in this project; flexure analysis cannot predict key aspects of fractured reservoir location and characteristics; fracture history over the lifetime of a basin is required to understand the timing of petroleum expulsion and migration and the retention properties of putative reservoirs.

  2. An adaptive nonlinear solution scheme for reservoir simulation

    SciTech Connect

    Lett, G.S.

    1996-12-31

    Numerical reservoir simulation involves solving large, nonlinear systems of PDE with strongly discontinuous coefficients. Because of the large demands on computer memory and CPU, most users must perform simulations on very coarse grids. The average properties of the fluids and rocks must be estimated on these grids. These coarse grid {open_quotes}effective{close_quotes} properties are costly to determine, and risky to use, since their optimal values depend on the fluid flow being simulated. Thus, they must be found by trial-and-error techniques, and the more coarse the grid, the poorer the results. This paper describes a numerical reservoir simulator which accepts fine scale properties and automatically generates multiple levels of coarse grid rock and fluid properties. The fine grid properties and the coarse grid simulation results are used to estimate discretization errors with multilevel error expansions. These expansions are local, and identify areas requiring local grid refinement. These refinements are added adoptively by the simulator, and the resulting composite grid equations are solved by a nonlinear Fast Adaptive Composite (FAC) Grid method, with a damped Newton algorithm being used on each local grid. The nonsymmetric linear system of equations resulting from Newton`s method are in turn solved by a preconditioned Conjugate Gradients-like algorithm. The scheme is demonstrated by performing fine and coarse grid simulations of several multiphase reservoirs from around the world.

  3. Experiences with linear solvers for oil reservoir simulation problems

    SciTech Connect

    Joubert, W.; Janardhan, R.; Biswas, D.; Carey, G.

    1996-12-31

    This talk will focus on practical experiences with iterative linear solver algorithms used in conjunction with Amoco Production Company`s Falcon oil reservoir simulation code. The goal of this study is to determine the best linear solver algorithms for these types of problems. The results of numerical experiments will be presented.

  4. Characterization of fluvial sedimentology for reservoir simulation modeling

    SciTech Connect

    Henriquez, A.; Tyler, K.J.; Hurst, A. )

    1990-09-01

    This paper presents a critical study of 3D stochastic simulation of a fluvial reservoir and of the transfer of the geological model to a reservoir simulation grid. The stochastic model is conditioned by sand-body thickness and position in wellbores. Geological input parameters-sand-body orientation and width/thickness ratios-are often difficult to determine, and are invariably subject to interpretation. Net/gross ratio (NGR) and sand-body thickness are more easily estimated. Sand-body connectedness varies, depending on the modeling procedure; however, a sedimentary process-related model gives intermediate values for connectedness between the values for a regular packing model and the stochastic model. The geological model is transferred to a reservoir simulation grid by use of transmissibility multipliers and an NGR value for each block. The transfer of data smooths out much of the detailed geological information, and the calculated recovery factors are insensitive to the continuity measured in the geological model. Hence, the authors propose improvements to the interface between geological and reservoir simulation models.

  5. Reservoir simulation in a North Sea reservoir experiencing significant compaction drive

    SciTech Connect

    Cook, C.C.; Jewell, S.

    1995-12-31

    The Valhall field in the Norwegian North Sea is a high porosity chalk reservoir undergoing primary pressure depletion. Over the last ten years there have been a number of computer modeling studies of the field which have all assumed an original oil-in-place of approximately 2,000 MMSTB (318.0{times}10{sup 6}m{sup 3}) to the present due to the addition of wells and the optimization of completion techniques. However, the single most important and unique feature influencing Valhall long term production performance is reservoir rock compaction. This paper describes the mathematical model used to simulate reservoir performance in a compacting reservoir with specific discussion regarding the proportion of oil produced by each physical recovery process. An understanding of the recovery mechanisms and their relative importance is critical for the successful management of the field. This paper also presents an alternative method for evaluating the various recovery processes using a simple solution to the material balance equation. This is used to substantiate the magnitude of the various recovery mechanisms identified in the simulation model.

  6. Characterization of petroleum reservoirs in the Eocene Green River Formation, Central Uinta Basin, Utah

    USGS Publications Warehouse

    Morgan, C.D.; Bereskin, S.R.

    2003-01-01

    The oil-productive Eocene Green River Formation in the central Uinta Basin of northeastern Utah is divided into five distinct intervals. In stratigraphically ascending order these are: 1) Uteland Butte, 2) Castle Peak, 3) Travis, 4) Monument Butte, and 5) Beluga. The reservoir in the Uteland Butte interval is mainly lacustrine limestone with rare bar sandstone beds, whereas the reservoirs in the other four intervals are mainly channel and lacustrine sandstone beds. The changing depositional environments of Paleocene-Eocene Lake Uinta controlled the characteristics of each interval and the reservoir rock contained within. The Uteland Butte consists of carbonate and rare, thin, shallow-lacustrine sandstone bars deposited during the initial rise of the lake. The Castle Peak interval was deposited during a time of numerous and rapid lake-level fluctuations, which developed a simple drainage pattern across the exposed shallow and gentle shelf with each fall and rise cycle. The Travis interval records a time of active tectonism that created a steeper slope and a pronounced shelf break where thick cut-and-fill valleys developed during lake-level falls and rises. The Monument Butte interval represents a return to a gentle, shallow shelf where channel deposits are stacked in a lowstand delta plain and amalgamated into the most extensive reservoir in the central Uinta Basin. The Beluga interval represents a time of major lake expansion with fewer, less pronounced lake-level falls, resulting in isolated single-storied channel and shallow-bar sandstone deposits.

  7. Numerical Simulation for Natural State of Two-Phase Liquid Dominated Geothermal Reservoir with Steam Cap Underlying Brine Reservoir

    NASA Astrophysics Data System (ADS)

    Pratama, Heru Berian; Miryani Saptadji, Nenny

    2016-09-01

    Hydrothermal reservoir which liquid-dominated hydrothermal reservoir is a type of geothermal reservoir that most widely used for power plant. The exploitation of mass and heat from the geothermal fluid will decrease the pressure in the reservoir over time. Therefore the pressure drop in the reservoir will have an impact on the formation of boiling zones or boiling will increase. The impacts are an increase in the fraction of steam, dryness, in the reservoir and with good vertical permeability will form a steam cap underlying the brine reservoir. The two- phase liquid dominated reservoir is sensitive to the porosity and difficult to assign average properties of the entire reservoir when there is boiling zone in some area of the reservoir. These paper showed successful development of two-phase liquid dominated geothermal reservoir and discussed the formation of steam cap above brine reservoir through numerical simulation for state natural conditions. The natural state modeling in steam cap shows a match with the conceptual model of the vapor-dominated developed. These paper also proofed the presence of transition zone, boiling zone, between steam cap and brine reservoir.

  8. Geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Technical progress report, July 1, 1996--September 30, 1996

    SciTech Connect

    Allison, M.L.

    1996-10-01

    The objective of this project is to develop a comprehensive, interdisciplinary, and quantitative characterization of a fluvial-deltaic reservoir which will allow realistic inter-well and reservoir-scale modeling to be constructed for improved oil-field development in similar reservoirs world-wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined. Both new and existing data will be integrated into a three-dimensional representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Transfer of the project results to the petroleum industry is an integral component of the project.

  9. Geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Allison, M.L.

    1995-05-02

    The objective of this project is to develop a comprehensive, interdisciplinary, and quantitative characterization of a fluvial-deltaic reservoir which will allow realistic inter-well and reservoir-scale modeling to be developed for improved oil-field development in similar reservoirs world-wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined. Both new and existing data will be integrated into a three-dimensional representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Transfer of the project results to the petroleum industry is an integral component of the project.

  10. Research program on fractured petroleum reservoirs. Final report, January 1, 1996--December 31, 1996

    SciTech Connect

    Firoozabadi, A.

    1997-05-01

    Multiphase flow in fractured porous media is a complex problem. While the study of single phase flow in a fractured or a layered medium can be pursued by some kind of averaging process, there is no meaning to averaging two-phase flow when capillarity is an active force. For a two-layer system comprised of high and low permeable layers, the performance of gas-oil gravity can be less efficient than the homogeneous low permeable medium. On the other hand, heterogeneity may enhance water imbibition due to capillarity. Due to the above and various other complexities, current tools for predicting the performance of fractured hydrocarbon reservoirs are not reliable. Based on the research work carried out at the Reservoir Engineering Research Institute, and some other Institutions, a good deal of progress has been made in recent years. But still we are a long way from good predictive reservoir models. In this final report, we summarize some of our achievements in the understanding of multiphase flow in fractured media. Since some of the features of two-phase flow in fractured and layered many are similar due to the capillary forces, the work includes progress in both types of media. There are some basic issues of flow in both fractured and unfractured media that are currently unresolved. These issues include: (1) new phase formation such as the formation of liquid phase in gas condensate reservoirs, and gas phase formation in solution gas drive process and (2) composition variation due to thermal convection and diffusion processes. In the following, a brief summary of our findings in the last three years during the course of the project is presented.

  11. Rhamnolipids Produced by Indigenous Acinetobacter junii from Petroleum Reservoir and its Potential in Enhanced Oil Recovery.

    PubMed

    Dong, Hao; Xia, Wenjie; Dong, Honghong; She, Yuehui; Zhu, Panfeng; Liang, Kang; Zhang, Zhongzhi; Liang, Chuanfu; Song, Zhaozheng; Sun, Shanshan; Zhang, Guangqing

    2016-01-01

    Biosurfactant producers are crucial for incremental oil production in microbial enhanced oil recovery (MEOR) processes. The isolation of biosurfactant-producing bacteria from oil reservoirs is important because they are considered suitable for the extreme conditions of the reservoir. In this work, a novel biosurfactant-producing strain Acinetobacter junii BD was isolated from a reservoir to reduce surface tension and emulsify crude oil. The biosurfactants produced by the strain were purified and then identified via electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS). The biosurfactants generated by the strain were concluded to be rhamnolipids, the dominant rhamnolipids were C26H48O9, C28H52O9, and C32H58O13. The optimal carbon source and nitrogen source for biomass and biosurfactant production were NaNO3 and soybean oil. The results showed that the content of acid components increased with the progress of crude oil biodegradation. A glass micromodel test demonstrated that the strain significantly increased oil recovery through interfacial tension reduction, wettability alteration and the mobility of microorganisms. In summary, the findings of this study indicate that the newly developed BD strain and its metabolites have great potential in MEOR.

  12. Rhamnolipids Produced by Indigenous Acinetobacter junii from Petroleum Reservoir and its Potential in Enhanced Oil Recovery

    PubMed Central

    Dong, Hao; Xia, Wenjie; Dong, Honghong; She, Yuehui; Zhu, Panfeng; Liang, Kang; Zhang, Zhongzhi; Liang, Chuanfu; Song, Zhaozheng; Sun, Shanshan; Zhang, Guangqing

    2016-01-01

    Biosurfactant producers are crucial for incremental oil production in microbial enhanced oil recovery (MEOR) processes. The isolation of biosurfactant-producing bacteria from oil reservoirs is important because they are considered suitable for the extreme conditions of the reservoir. In this work, a novel biosurfactant-producing strain Acinetobacter junii BD was isolated from a reservoir to reduce surface tension and emulsify crude oil. The biosurfactants produced by the strain were purified and then identified via electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS). The biosurfactants generated by the strain were concluded to be rhamnolipids, the dominant rhamnolipids were C26H48O9, C28H52O9, and C32H58O13. The optimal carbon source and nitrogen source for biomass and biosurfactant production were NaNO3 and soybean oil. The results showed that the content of acid components increased with the progress of crude oil biodegradation. A glass micromodel test demonstrated that the strain significantly increased oil recovery through interfacial tension reduction, wettability alteration and the mobility of microorganisms. In summary, the findings of this study indicate that the newly developed BD strain and its metabolites have great potential in MEOR. PMID:27872613

  13. Numerical Simulation of Petroleum Generation and Migration in the Song Hong Basin, Vietnam

    NASA Astrophysics Data System (ADS)

    Son, Byeong-Kook; Thi Nguyen, Hong; Park, Mee-Sook

    2014-05-01

    The numerical modeling of petroleum systems is an effective tool to understand generation, migration and accumulation of hydrocarbons in a sedimentary basin and hence to determine future targets for the hydrocarbon exploration. The numerical modeling identifies two petroleum systems in the Song Hong Basin, which is a petroliferous Cenozoic basin, offshore eastern Vietnam. These petroleum systems were named DinhCao-PhuCu(.) Petroleum System and SongHuong-BienDong(.) Petroleum System. DinhCao-PhuCu(.) Petroleum System covers northern and central parts of the Song Hong basin with Oligocene shale and coaly shale source rocks of Dinh Cao formation, which are dominated by type II-III kerogens. The hydrocarbon generation starts at 13 Ma within deeply buried Oligocene strata located in the centre of the basin. The hydrocarbon expels from the Oligocene source rock and migrates laterally and then up dip toward marginal areas where Middle Miocene sandstones of Phu Cu formation are present as major reservoirs. The numerical model shows that the critical moment occurs at about 3.5 Ma. The DinhCao-PhuCu(.) petroleum system is confirmed by sparse occurrence of oil and gas along the coast of eastern Vietnam. SongHuong-BienDong(.) Petroleum System is identified in limited areas of the central and southern Song Hong basin. The major source rock of this petroleum system is Lower Miocene dark claystones of Song Huong formation which contain gas prone, type III kerogen. The migration model shows that hydrocarbons are generated from the Miocene source rocks in the center of the basin at about 12 Ma, and migrates updip through sand bodies of Quang Ngai formation to the major boundaries faults, and further moves into highly permeable up-dipping units, the Bien Dong formation. The best depiction of the generation-migration-accumulation of hydrocarbons occurs at about 2 Ma. The presence of the SongHuong-BienDong(.) Petroleum System is indicated by the large gas fields in the central and

  14. Parallelization of a Compositional Reservoir Simulator

    NASA Astrophysics Data System (ADS)

    Reme, Hilde; Åge Øye, Geir; Espedal, Magne S.; Fladmark, Gunnar E.

    A finite volume dicretization has been used to solve compositional flow in porous media. Secondary migration in fractured rocks has been the main motivation for the work. Multipoint flux approximation has been implemented and adaptive local grid refinement, based on domain decomposition, is used at fractures and faults. The parallelization method, which is described in this paper, strongly promotes code reuse and gives a very high level of parallelization despite low implementation costs. The programming framework is also portable to other platforms or other applications. We have presented computer experiments to examine the parallel efficiency of the implemented parallel simulator with respect to scalability and speedup. Keywords: porous media, multipoint flux approximation, domain decomposition, parallelization

  15. Mobility weighting in numerical reservoir simulation

    SciTech Connect

    Potempa, T.

    1983-11-01

    The sensitivity of a numeric steam flooding model with respect to mobility weighting is examined in depth. Three numeric discretization procedures are used in this investigation: a new numeric scheme, a 5-point finite difference method, and a procedure which, under certain assumptions, is equivalent to that introduced by McCracken and Yanosik. Three mobility weighting schemes also are investigated: (1) upstream mobility weighting; (2) harmonic total mobility weighting; and (3) upstream weighting of fractional flow terms. The approach introduced uses the kinematic viscosity in the total mobility and the fractional flow terms. The steam displacement model formed from the combination of this mobility weighting approach and the McCracken and Yanosik discretization procedure is shown to produce realistic simulations of an inverted 7-spot pattern under a continuous steam drive. 20 references.

  16. Simulation of Reservoir Systems with HEC-5 on a Personal Computer

    DTIC Science & Technology

    1990-03-01

    purpose, Multi- reservoir Simulation on a PC Technical Paper No. 123, Developing and Managing a Comprehensive Reservoir Analysis Model 2 INFIVE ORCOED...Program HEC-5..." and " Reservoir Simulation has begun:" (Figure 10). ’ l i ’ :I’ I , Figure 10. Interactive HEC-5: Main Screen 24 During simulation, an...April 1988. 14. U.S. Army Corps of Engineers, Hydrologic Engineering Center, "Multi-Purpose, Multi- Reservoir Simulation on a PC ", Technical Paper No

  17. Performance prediction using geostatistics and window reservoir simulation

    SciTech Connect

    Fontanilla, J.P.; Al-Khalawi, A.A.; Johnson, S.G.

    1995-11-01

    This paper is the first window model study in the northern area of a large carbonate reservoir in Saudi Arabia. It describes window reservoir simulation with geostatistics to model uneven water encroachment in the southwest producing area of the northern portion of the reservoir. In addition, this paper describes performance predictions that investigate the sweep efficiency of the current peripheral waterflood. A 50 x 50 x 549 (240 m. x 260 m. x 0.15 m. average grid block size) geological model was constructed with geostatistics software. Conditional simulation was used to obtain spatial distributions of porosity and volume of dolomite. Core data transforms were used to obtain horizontal and vertical permeability distributions. Simple averaging techniques were used to convert the 549-layer geological model to a 50 x 50 x 10 (240 m. x 260 m. x 8 m. average grid block size) window reservoir simulation model. Flux injectors and flux producers were assigned to the outermost grid blocks. Historical boundary flux rates were obtained from a coarsely-ridded full-field model. Pressure distribution, water cuts, GORs, and recent flowmeter data were history matched. Permeability correction factors and numerous parameter adjustments were required to obtain the final history match. The permeability correction factors were based on pressure transient permeability-thickness analyses. The prediction phase of the study evaluated the effects of infill drilling, the use of artificial lifts, workovers, horizontal wells, producing rate constraints, and tight zone development to formulate depletion strategies for the development of this area. The window model will also be used to investigate day-to-day reservoir management problems in this area.

  18. ADVANCED TECHNIQUES FOR RESERVOIR SIMULATION AND MODELING OF NONCONVENTIONAL WELLS

    SciTech Connect

    Louis J. Durlofsky; Khalid Aziz

    2004-08-20

    Nonconventional wells, which include horizontal, deviated, multilateral and ''smart'' wells, offer great potential for the efficient management of oil and gas reservoirs. These wells are able to contact larger regions of the reservoir than conventional wells and can also be used to target isolated hydrocarbon accumulations. The use of nonconventional wells instrumented with downhole inflow control devices allows for even greater flexibility in production. Because nonconventional wells can be very expensive to drill, complete and instrument, it is important to be able to optimize their deployment, which requires the accurate prediction of their performance. However, predictions of nonconventional well performance are often inaccurate. This is likely due to inadequacies in some of the reservoir engineering and reservoir simulation tools used to model and optimize nonconventional well performance. A number of new issues arise in the modeling and optimization of nonconventional wells. For example, the optimal use of downhole inflow control devices has not been addressed for practical problems. In addition, the impact of geological and engineering uncertainty (e.g., valve reliability) has not been previously considered. In order to model and optimize nonconventional wells in different settings, it is essential that the tools be implemented into a general reservoir simulator. This simulator must be sufficiently general and robust and must in addition be linked to a sophisticated well model. Our research under this five year project addressed all of the key areas indicated above. The overall project was divided into three main categories: (1) advanced reservoir simulation techniques for modeling nonconventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and for coupling the well to the simulator (which includes the accurate calculation of well index and the modeling of multiphase flow in the wellbore

  19. Molecular Detection of Anaerobic Ammonium-Oxidizing (Anammox) Bacteria in High-Temperature Petroleum Reservoirs

    PubMed Central

    Li, Hui; Chen, Shuo; Mu, Bo-Zhong

    2010-01-01

    Anaerobic ammonium-oxidizing (anammox) process plays an important role in the nitrogen cycle of the worldwide anoxic and mesophilic habitats. Recently, the existence and activity of anammox bacteria have been detected in some thermophilic environments, but their existence in the geothermal subterranean oil reservoirs is still not reported. This study investigated the abundance, distribution and functional diversity of anammox bacteria in nine out of 17 high-temperature oil reservoirs by molecular ecology analysis. High concentration (5.31–39.2 mg l−1) of ammonium was detected in the production water from these oilfields with temperatures between 55°C and 75°C. Both 16S rRNA and hzo molecular biomarkers indicated the occurrence of anammox bacteria in nine out of 17 samples. Most of 16S rRNA gene phylotypes are closely related to the known anammox bacterial genera Candidatus Brocadia, Candidatus Kuenenia, Candidatus Scalindua, and Candidatus Jettenia, while hzo gene phylotypes are closely related to the genera Candidatus Anammoxoglobus, Candidatus Kuenenia, Candidatus Scalindua, and Candidatus Jettenia. The total bacterial and anammox bacterial densities were 6.4 ± 0.5 × 103 to 2.0 ± 0.18 × 106 cells ml−1 and 6.6 ± 0.51 × 102 to 4.9 ± 0.36 × 104 cell ml−1, respectively. The cluster I of 16S rRNA gene sequences showed distant identity (<92%) to the known Candidatus Scalindua species, inferring this cluster of anammox bacteria to be a new species, and a tentative name Candidatus “Scalindua sinooilfield” was proposed. The results extended the existence of anammox bacteria to the high-temperature oil reservoirs. PMID:20740282

  20. Middle Jurassic incised valley fill (eolian/estuarine) and nearshore marine petroleum reservoirs, Powder River basin

    SciTech Connect

    Ahlbrandt, T.S.; Fox, J.E.

    1997-07-01

    Paleovalleys incised into the Triassic Spearfish Formation (Chugwater equivalent) are filled with a vertical sequence of eolian, estuarine, and marine sandstones of the Middle Jurassic (Bathonian age) Canyon Springs Sandstone Member of the Sundance Formation. An outcrop exemplifying this is located at Red Canyon in the southern Black Hills, Fall River County, South Dakota. These paleovalleys locally have more than 300 ft of relief and are as much as several miles wide. Because they slope in a westerly direction, and Jurassic seas transgressed into the area from the west there was greater marine-influence and more stratigraphic complexity in the subsurface, to the west, as compared to the Black Hills outcrops. In the subsurface two distinctive reservoir sandstone beds within the Canyon Springs Sandstone Member fill the paleovalleys. These are the eolian lower Canyon Springs unit (LCS) and the estuarine upper Canyon Springs unit (UCS), separated by the marine {open_quotes}Limestone Marker{close_quotes} and estuarine {open_quotes}Brown Shale{close_quotes}. The LCS and UCS contain significant proven hydrocarbon reservoirs in Wyoming (about 500 MMBO in-place in 9 fields, 188 MMBO produced through 1993) and are prospective in western South Dakota, western Nebraska and northern Colorado. Also prospective is the Callovian-age Hulett Sandstone Member which consists of multiple prograding shoreface to foreshore parasequences, as interpreted from the Red Canyon locality. Petrographic, outcrop and subsurface studies demonstrate the viability of both the Canyon Springs Sandstone and Hulett Sandstone members as superior hydrocarbon reservoirs in both stratigraphic and structural traps. Examples of fields with hydrocarbon production from the Canyon Springs in paleovalleys include Lance Creek field (56 MMBO produced) and the more recently discovered Red Bird field (300 MBO produced), both in Niobrara County, Wyoming.

  1. Middle Jurassic incised valley fill (eolian/estuarine) and nearshore marine petroleum reservoirs, Powder River Basin

    USGS Publications Warehouse

    Ahlbrandt, T.S.; Fox, J.E.

    1997-01-01

    Paleovalleys incised into the Triassic Spearfish Formation (Chugwater equivalent) are filled with a vertical sequence of eolian, estuarine, and marine sandstones of the Middle Jurassic (Bathonian age) Canyon Springs Sandstone Member of the Sundance Formation. An outcrop exemplifying this is located at Red Canyon in the southern Black Hills, Fall River County, South Dakota. These paleovalleys locally have more than 300 ft of relief and are as much as several miles wide. Because they slope in a westerly direction, and Jurassic seas transgressed into the area from the west there was greater marine-influence and more stratigraphic complexity in the subsurface, to the west, as compared to the Black Hills outcrops. In the subsurface two distinctive reservoir sandstone beds within the Canyon Springs Sandstone Member fill the paleovalleys. These are the eolian lower Canyon Springs unit (LCS) and the estuarine upper Canyon Springs unit (UCS), separated by the marine "Limestone Marker" and estuarine "Brown Shale". The LCS and UCS contain significant proven hydrocarbon reservoirs in Wyoming (about 500 MMBO in-place in 9 fields, 188 MMBO produced through 1993) and are prospective in western South Dakota, western Nebraska and northern Colorado. Also prospective is the Callovian-age Hulett Sandstone Member which consists of multiple prograding shoreface to foreshore parasequences, as interpreted from the Red Canyon locality. Petrographic, outcrop and subsurface studies demonstrate the viability of both the Canyon Springs Sandstone and Hulett Sandstone members as superior hydrocarbon reservoirs in both stratigraphic and structural traps. Examples of fields with hydrocarbon production from the Canyon Springs in paleovalleys include Lance Creek field (56 MMBO produced) and the more recently discovered Red Bird field (300 MBO produced), both in Niobrara County, Wyoming. At Red Bird field the primary exploration target was the Pennsylvanian "Leo sands" of the Minnelusa Formation, and

  2. Comparison of flash calculations in compositional reservoir simulation

    SciTech Connect

    Wang, P.; Barker, J.W.

    1995-12-31

    This paper compares several recent flash algorithms in the context of compositional reservoir simulation. We evaluate three reduced equation methods: (1) the 3-equation flash of Michelsen, which applies only when all binary interaction coefficients (k{sub ij}) are zero; (2) Hendricks and van Bergen; and (3) Kaul and Thrasher. We also evaluate; (4) the non-iterative flash; and (5) the method of Young. We find that these last two methods, which are similar in concept, work well for reservoir simulation where the flash must be closely coupled with the solution of the pressure equation, and where a good initial guess is generally available. The reduced equation flashes offer no significant improvement over these other methods; this is true even for the 3-equation flash which solves a simpler problem (with k{sub ij} = 0).

  3. Water-Balance Simulations of Runoff and Reservoir Storage for the Upper Helmand Watershed and Kajakai Reservoir, Central Afghanistan

    USGS Publications Warehouse

    Vining, Kevin C.; Vecchia, Aldo V.

    2007-01-01

    A study was performed to provide information on monthly historical and hypothetical future runoff for the Upper Helmand watershed and reservoir storage in Kajakai Reservoir that could be used by Afghanistan authorities to make economic and demographic decisions concerning reservoir design and operation, reservoir sedimentation, and development along the Helmand River. Estimated reservoir volume at the current spillway elevation of 1,033.5 meters decreased by about 365 million cubic meters from 1968 to 2006 because of sedimentation. Water-balance simulations indicated a good fit between modeled and recorded monthly runoff at the two gaging stations in the watershed for water years 1956-79 and indicated an excellent fit between modeled and recorded monthly changes in Kajakai Reservoir storage for water years 1956-79. Future simulations, which included low starting reservoir water levels and a spillway raised to an elevation of 1,045 meters, indicated that the reservoir is likely to fill within 2 years. Although Kajakai Reservoir is likely to fill quickly, multiyear deficits may still occur. If future downstream irrigation demand doubles but future precipitation, temperature, and reservoir sedimentation remain similar to historical conditions, the reservoir would have more than a 50-percent chance of being full during April or May of a typical year. Future simulations with a 10-percent reduction in precipitation indicated that supply deficits would occur more than 1 in 4 years, on average, during August, September, or October. The reservoir would be full during April or May fewer than 1 in 2 years, on average, and multiyear supply deficits could occur. Increased sedimentation had little effect on reservoir levels during April through July, but the frequency of deficits increased substantially during September and October.

  4. Use of XML and Java for collaborative petroleum reservoir modeling on the Internet

    NASA Astrophysics Data System (ADS)

    Victorine, John; Watney, W. Lynn; Bhattacharya, Saibal

    2005-11-01

    The GEMINI (Geo-Engineering Modeling through INternet Informatics) is a public-domain, web-based freeware that is made up of an integrated suite of 14 Java-based software tools to accomplish on-line, real-time geologic and engineering reservoir modeling. GEMINI facilitates distant collaborations for small company and academic clients, negotiating analyses of both single and multiple wells. The system operates on a single server and an enterprise database. External data sets must be uploaded into this database. Feedback from GEMINI users provided the impetus to develop Stand Alone Web Start Applications of GEMINI modules that reside in and operate from the user's PC. In this version, the GEMINI modules run as applets, which may reside in local user PCs, on the server, or Java Web Start. In this enhanced version, XML-based data handling procedures are used to access data from remote and local databases and save results for later access and analyses. The XML data handling process also integrates different stand-alone GEMINI modules enabling the user(s) to access multiple databases. It provides flexibility to the user to customize analytical approach, database location, and level of collaboration. An example integrated field-study using GEMINI modules and Stand Alone Web Start Applications is provided to demonstrate the versatile applicability of this freeware for cost-effective reservoir modeling.

  5. Use of XML and Java for collaborative petroleum reservoir modeling on the Internet

    USGS Publications Warehouse

    Victorine, J.; Watney, W.L.; Bhattacharya, S.

    2005-01-01

    The GEMINI (Geo-Engineering Modeling through INternet Informatics) is a public-domain, web-based freeware that is made up of an integrated suite of 14 Java-based software tools to accomplish on-line, real-time geologic and engineering reservoir modeling. GEMINI facilitates distant collaborations for small company and academic clients, negotiating analyses of both single and multiple wells. The system operates on a single server and an enterprise database. External data sets must be uploaded into this database. Feedback from GEMINI users provided the impetus to develop Stand Alone Web Start Applications of GEMINI modules that reside in and operate from the user's PC. In this version, the GEMINI modules run as applets, which may reside in local user PCs, on the server, or Java Web Start. In this enhanced version, XML-based data handling procedures are used to access data from remote and local databases and save results for later access and analyses. The XML data handling process also integrates different stand-alone GEMINI modules enabling the user(s) to access multiple databases. It provides flexibility to the user to customize analytical approach, database location, and level of collaboration. An example integrated field-study using GEMINI modules and Stand Alone Web Start Applications is provided to demonstrate the versatile applicability of this freeware for cost-effective reservoir modeling. ?? 2005 Elsevier Ltd. All rights reserved.

  6. NFFLOW: A reservoir simulator incorporating explicit fractures (SPE 153890)

    SciTech Connect

    Boyle, E.J.; Sams, W.N.

    2012-01-01

    NFFLOW is a research code that quickly and inexpensively simulates flow in moderately fractured reservoirs. It explicitly recognizes fractures separately from rock matrix. In NFFLOW fracture flow is proportional to the pressure gradient along the fracture, and flow in the rock matrix is determined by Darcy’s Law. The two flow mechanisms are coupled through the pressure gradient between a fracture and its adjacent rock matrix. Presented is a promising change to NFFLOW that allows for flow across a rock matrix block.

  7. Reservoir simulation studies: Wairakei Geothermal Field, New Zealand. Final report

    SciTech Connect

    Pritchett, J.W.; Rice, L.F.; Garg, S.K.

    1980-01-01

    Numerical reservoir simulation techniques were used to perform a history-match of the Wairakei geothermal system in New Zealand. First, a one-dimensional (vertical) model was chosen; realistic stratigraphy was incorporated and the known production history was imposed. The effects of surface and deep recharge were included. Good matches were obtained, both for the reservoir pressure decline history and changes in average discharge enthalpy with time. Next, multidimensional effects were incorporated by treating with a two-dimensional vertical section. Again, good history matches were obtained, although computed late-time discharge enthalpies were slightly high. It is believed that this disparity arises from inherently three-dimensional effects. Predictive calculations using the two-dimensional model suggest that continued future production will cause little additional reservoir pressure drop, but that thermal degradation will occur. Finally, ground subsidence data at Wairakei was examined. It was concluded that traditional elastic pore-collapse models based on classical soil-mechanics concepts are inadequate to explain the observed surface deformation. It is speculated that the measured subsidence may be due to structural effects such as aseismic slippage of a buried reservoir boundary fault.

  8. Improved oil recovery using bacteria isolated from North Sea petroleum reservoirs

    SciTech Connect

    Davey, R.A.; Lappin-Scott, H.

    1995-12-31

    During secondary oil recovery, water is injected into the formation to sweep out the residual oil. The injected water, however, follows the path of least resistance through the high-permeability zones, leaving oil in the low-permeability zones. Selective plugging of these their zones would divert the waterflood to the residual oil and thus increase the life of the well. Bacteria have been suggested as an alternative plugging agent to the current method of polymer injection. Starved bacteria can penetrate deeply into rock formations where they attach to the rock surfaces, and given the right nutrients can grow and produce exo-polymer, reducing the permeability of these zones. The application of microbial enhanced oil recovery has only been applied to shallow, cool, onshore fields to date. This study has focused on the ability of bacteria to enhance oil recovery offshore in the North Sea, where the environment can be considered extreme. A screen of produced water from oil reservoirs (and other extreme subterranean environments) was undertaken, and two bacteria were chosen for further work. These two isolates were able to grow and survive in the presence of saline formation waters at a range of temperatures above 50{degrees}C as facultative anaerobes. When a solution of isolates was passed through sandpacks and nutrients were added, significant reductions in permeabilities were achieved. This was confirmed in Clashach sandstone at 255 bar, when a reduction of 88% in permeability was obtained. Both isolates can survive nutrient starvation, which may improve penetration through the reservoir. Thus, the isolates show potential for field trials in the North Sea as plugging agents.

  9. Iterative Schemes for Time Parallelization with Application to Reservoir Simulation

    SciTech Connect

    Garrido, I; Fladmark, G E; Espedal, M S; Lee, B

    2005-04-18

    Parallel methods are usually not applied to the time domain because of the inherit sequentialness of time evolution. But for many evolutionary problems, computer simulation can benefit substantially from time parallelization methods. In this paper, they present several such algorithms that actually exploit the sequential nature of time evolution through a predictor-corrector procedure. This sequentialness ensures convergence of a parallel predictor-corrector scheme within a fixed number of iterations. The performance of these novel algorithms, which are derived from the classical alternating Schwarz method, are illustrated through several numerical examples using the reservoir simulator Athena.

  10. Galerkin finite-element simulation of a geothermal reservoir

    USGS Publications Warehouse

    Mercer, J.W.; Pinder, G.F.

    1973-01-01

    The equations describing fluid flow and energy transport in a porous medium can be used to formulate a mathematical model capable of simulating the transient response of a hot-water geothermal reservoir. The resulting equations can be solved accurately and efficiently using a numerical scheme which combines the finite element approach with the Galerkin method of approximation. Application of this numerical model to the Wairakei geothermal field demonstrates that hot-water geothermal fields can be simulated using numerical techniques currently available and under development. ?? 1973.

  11. Geological and Petrophysical Characterization of the Ferron Sandstone for 3-D Simulation of a Fluvial-Deltaic Reservoir

    SciTech Connect

    M. Lee Allison

    1997-03-01

    The objective of this project is to develop a comprehensive, interdisciplinary, and quantitative characterization of a fluvial-deltaic reser v oir which will allow realistic inter-well and reservoir-scale modeling to be constructed for improved oil-field development in similiar reservoirs world-wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined . Both new and existing data will be integrated into a three-dimensional representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations . Transfer of the project results to the petroleum industry is an integral component of the project. Four activities continued this quarter as part of the geological and petrophysical characterization of the fluvial-deltaic Ferron Sandstone in the Ivie Creek case-study area: (1) geostatistics, (2) field description of clinoform bounding surfaces, (3) reservoir modeling, and (4) technology transfer.

  12. Subtask 1.17 - Measurement of Hydrocarbon Evolution from Coal and Petroleum Reservoirs Under Carbon Dioxide Floods

    SciTech Connect

    Steven B. Hawthorne

    2006-12-31

    The project developed, built, and tested three apparatuses for studying different interactions of carbon dioxide with geologic materials. In Year 1, an online instrument was constructed by coupling a high-pressure carbon dioxide extraction system with a flame ionization detector that can yield a real-time profile and quantitative measurements of hydrocarbons removed from materials such as coal and petroleum reservoir rock. In Years 2 and 3, one instrument was built to measure the excess sorption of carbon dioxide in geologic materials such as coal and showed that measurable uptake of carbon dioxide into the coal matrix is rapid. The final apparatus was built to expose geologic materials to carbon dioxide for long periods of time (weeks to months) under the range of pressures and temperatures relevant to carbon dioxide sequestration. The apparatus allows as many as twenty gram-sized samples of geologic materials to be exposed simultaneously and can also include exposures with geologic brines. The system was used to demonstrate complete conversion of magnesium silicate to magnesium carbonate in less than 4 weeks when exposed to clean water or brine, compared to no measurable conversion of dry magnesium carbonate.

  13. Analysis of alkane-dependent methanogenic community derived from production water of a high-temperature petroleum reservoir.

    PubMed

    Mbadinga, Serge Maurice; Li, Kai-Ping; Zhou, Lei; Wang, Li-Ying; Yang, Shi-Zhong; Liu, Jin-Feng; Gu, Ji-Dong; Mu, Bo-Zhong

    2012-10-01

    Microbial assemblage in an n-alkanes-dependent thermophilic methanogenic enrichment cultures derived from production waters of a high-temperature petroleum reservoir was investigated in this study. Substantially higher amounts of methane were generated from the enrichment cultures incubated at 55 °C for 528 days with a mixture of long-chain n-alkanes (C(15)-C(20)). Stoichiometric estimation showed that alkanes-dependent methanogenesis accounted for about 19.8% of the total amount of methane expected. Hydrogen was occasionally detected together with methane in the gas phase of the cultures. Chemical analysis of the liquid cultures resulted only in low concentrations of acetate and formate. Phylogenetic analysis of the enrichment revealed the presence of several bacterial taxa related to Firmicutes, Thermodesulfobiaceae, Thermotogaceae, Nitrospiraceae, Dictyoglomaceae, Candidate division OP8 and others without close cultured representatives, and Archaea predominantly related to uncultured members in the order Archaeoglobales and CO(2)-reducing methanogens. Screening of genomic DNA retrieved from the alkanes-amended enrichment cultures also suggested the presence of new alkylsuccinate synthase alpha-subunit (assA) homologues. These findings suggest the presence of poorly characterized (putative) anaerobic n-alkanes degraders in the thermophilic methanogenic enrichment cultures. Our results indicate that methanogenesis of alkanes under thermophilic condition is likely to proceed via syntrophic acetate and/or formate oxidation linked with hydrogenotrophic methanogenesis.

  14. Numerical simulation of reservoir parameters' synergetic time-variability on development rules.

    PubMed

    Hou, Jian; Zhang, Yanhui; Wang, Daigang; Zhou, Kang

    2016-01-01

    Time variability of reservoir parameters in water flooding has an effect on oilfield development rules. Meanwhile, time variability of different reservoir macro-parameters has certain synergetic relationship with each other. Based on microscopic network simulation and reservoir numerical simulation, a new simulation method is presented, which can describe the influence of reservoir parameters' synergetic time-variability on oilfield development rules both in macroscopic and microscopic scales. Microscopic network simulation can effectively simulate the impact of micro-parameters' variation on macro-parameters, thus a comprehensive model is built to reflect the variability of reservoir parameters. On the basis of considering time variability of porosity, permeability, and relative permeability in water flooding, an improved reservoir numerical simulator is established, which can effectively simulate the effect of reservoir parameters' synergetic variation on oilfield development rules.

  15. Extracting Energy from Petroleum Reservoirs at Large Scale without CO2 Emissions -Is it possible? Is The Attempt Desirable?

    NASA Astrophysics Data System (ADS)

    Larter, Steve; Strous, Marc; Bryant, Steven

    2016-04-01

    One of our greatest challenges is the rapid transition to a carbon-neutral energy future. Alberta, with vast petroleum resources and a key role in Canada's current economy, embodies this global challenge of balancing environmental, economic and energy security goals - the "energy trilemma." The proposition that limiting future global warming requires holding atmospheric CO2 concentrations below a target value leads inexorably to the conclusion that the carbon in most of the world's fossil fuels, has to remain underground. Most fossil fuel resources would be stranded, as so would the economic wealth associated with those resources - unless resource development can be accomplished by maintaining a fossil fuel industry with a reduced and eventually eliminated environmental footprint. If achievable, there are potential political and economic benefits evident, that could greatly accelerate broader, desirable energy system changes. In this alternate paradigm, petroleum reservoirs might play a transitional role as storehouses of chemical energy, but instead of utilizing that energy by surface combustion, an alternative is to convert it into other forms of chemical or electrical energy. By carrying out this conversion in situ, CO2 can be left in the reservoir. By choosing energy forms such as hydrogen, hydrogen rich fuels or electricity, that emit no CO2 when used to power our machines and devices, we can in principle, continue to derive value from fossil fuel resources and provide economic drivers for a complete and rapid transformation of our energy supply systems and economies. We examine the technical and political aspects of this route emphasizing the need for safeguards against emergent issues that might slow a rapid transition towards dominant renewable energy sources in the medium and long terms. Technologies such as conventional carbon capture and storage can only have a small effect on oil related emissions, as downstream emissions dominate. So, dramatic

  16. Comparison of bacterial community in aqueous and oil phases of water-flooded petroleum reservoirs using pyrosequencing and clone library approaches.

    PubMed

    Wang, Li-Ying; Ke, Wen-Ji; Sun, Xiao-Bo; Liu, Jin-Feng; Gu, Ji-Dong; Mu, Bo-Zhong

    2014-05-01

    Bacterial communities in both aqueous and oil phases of water-flooded petroleum reservoirs were characterized by molecular analysis of bacterial 16S rRNA genes obtained from Shengli Oil Field using DNA pyrosequencing and gene clone library approaches. Metagenomic DNA was extracted from the aqueous and oil phases and subjected to polymerase chain reaction amplification with primers targeting the bacterial 16S rRNA genes. The analysis by these two methods showed that there was a large difference in bacterial diversity between the aqueous and oil phases of the reservoir fluids, especially in the reservoirs with lower water cut. At a high phylogenetic level, the predominant bacteria detected by these two approaches were identical. However, pyrosequencing allowed the detection of more rare bacterial species than the clone library method. Statistical analysis showed that the diversity of the bacterial community of the aqueous phase was lower than that of the oil phase. Phylogenetic analysis indicated that the vast majority of sequences detected in the water phase were from members of the genus Arcobacter within the Epsilonproteobacteria, which is capable of degrading the intermediates of hydrocarbon degradation such as acetate. The oil phase of reservoir fluid samples was dominated by members of the genus Pseudomonas within the Gammaproteobacteria and the genus Sphingomonas within the Alphaproteobacteria, which have the ability to degrade crude oil through adherence to hydrocarbons under aerobic conditions. In addition, many anaerobes that could degrade the component of crude oil were also found in the oil phase of reservoir fluids, mainly in the reservoir with lower water cut. These were represented by Desulfovibrio spp., Thermodesulfovibrio spp., Thermodesulforhabdus spp., Thermotoga spp., and Thermoanaerobacterium spp. This research suggested that simultaneous analysis of DNA extracted from both aqueous and oil phases can facilitate a better understanding of the

  17. Reservoir simulation studies on the Cerro Prieto geothermal field

    SciTech Connect

    Castaneda, M.; Abril, A.; Arellano, V.; Marquez, R.

    1982-01-01

    A reservoir engineering and simulation study is being carried out on the Cerro Prieto geothermal field. A preliminary material balance has been applied to the old part of this field. A single block with constant properties in the horizontal direction was used for this preliminary material balance. The vertical block column was subdivided in several levels in order to take into account the known lithologic column. From existing pressure and enthalpy field histories, a single phase (liquid) reservoir assumption was selected. Under this assumption, a lateral radial recharge was considered in obtaining the pressure and enthalpy history match. These preliminary results indicate that another type of recharge is probably taking place in this part of the field, rather than lateral radial.

  18. Scale Model Simulation of Enhanced Geothermal Reservoir Creation

    NASA Astrophysics Data System (ADS)

    Gutierrez, M.; Frash, L.; Hampton, J.

    2012-12-01

    Geothermal energy technology has successfully provided a means of generating stable base load electricity for many years. However, implementation has been spatially limited to limited availability of high quality traditional hydro-thermal resources possessing the combination of a shallow high heat flow anomaly and an aquifer with sufficient permeability and continuous fluid recharge. Enhanced Geothermal Systems (EGS) has been proposed as a potential solution to enable additional energy production from the non-conventional hydro-thermal resources. Hydraulic fracturing is considered the primary means of creating functional EGS reservoirs at sites where the permeability of the rock is too limited to allow cost effective heat recovery. EGS reservoir creation requires improved fracturing methodology, rheologically controllable fracturing fluids, and temperature hardened proppants. Although large fracture volumes (several cubic km) have been created in the field, circulating fluid through these full volumes and maintaining fracture volumes have proven difficult. Stimulation technology and methodology as used in the oil and gas industry for sedimentary formations are well developed; however, they have not sufficiently been demonstrated for EGS reservoir creation. Insufficient data and measurements under geothermal conditions make it difficult to directly translate experience from the oil and gas industries to EGS applications. To demonstrate the feasibility of EGS reservoir creation and subsequent geothermal energy production, and to improve the understanding of hydraulic and propping in EGS reservoirs, a heated true-triaxial load cell with a high pressure fluid injection system was developed to simulate an EGS system from stimulation to production. This apparatus is capable of loading a 30x30x30 cubic cm rock sample with independent principal stresses up to 13 MPa while simultaneously providing heating up to 180 degree C. Multiple orientated boreholes of 5 to 10 mm

  19. Research program on fractured petroleum reservoirs. Quarterly report, January 1--March 31, 1994

    SciTech Connect

    Firoozabadi, A.

    1994-04-30

    We have developed a simple method to account for reinfiltration and capillary continuity processes in a grid cell that may contain a large number of matrix blocks. This method requires fine grid simulation of a three-block stack. The proposed technique also takes into account the variation of capillary pressure, and even permeability and height variation among various matrix blocks reasonably well.

  20. Coupling of the reservoir simulator TOUGH and the wellbore simulator WFSA

    SciTech Connect

    Hadgu, T.; Zimmerman, R.W.; Bodvarsson

    1995-03-01

    The reservoir simulator TOUGH and the wellbore simulator WFSA have been coupled, so as to allow simultaneous modeling of the flow of geothermal brine in the reservoir as well as in the wellbore. A new module, COUPLE, allows WFSA to be called as a subroutine by TOUGH. The mass flowrate computed by WFSA now serves as a source/sink term for the TOUGH wellblocks. Sample problems are given to illustrate the use of the coupled codes. One of these problems compares the results of the new simulation method to those obtained using the deliverability option in TOUGH. The coupled computing procedure is shown to simulate more accurately the behavior of a geothermal reservoir under exploitation.

  1. Leasing policy and the rate of petroleum development: analysis with a Monte Carlo simulation model

    SciTech Connect

    Abbey, D; Bivins, R

    1982-03-01

    The study has two objectives: first, to consider whether alternative leasing systems are desirable to speed the rate of oil and gas exploration and development in frontier basins; second, to evaluate the Petroleum Activity and Decision Simulation model developed by the US Department of the Interior for economic and land use planning and for policy analysis. Analysis of the model involved structural variation of the geology, exploration, and discovery submodels and also involved a formal sensitivity analysis using the Latin Hypercube Sampling Method. We report the rate of exploration, discovery, and petroleum output under a variety of price, leasing policy, and tax regimes.

  2. Dilational and Compactional Shear Failure: Application to Siliciclastic Petroleum Reservoir rocks.

    NASA Astrophysics Data System (ADS)

    Casey, M.; Fisher, Q. J.; Knipe, R. J.

    2001-12-01

    Investigations related to the exploitation of oil reserves provide examples of brittle shear failure in rocks with well known burial, stress, temperature, compactional and diagenetic history. In addition, particular emphasis is placed on the dilational or compactional nature of the failure mode because of the influence this has on the permeability of the fault rocks. Microstructural investigations show that at shallow depths of less than 2.5 km failure during continued subsidence is by particulate flow and is usually compactional. At greater depths mechanical compaction may occur by particulate flow/ grain crushing or the rock may fail by dilational brittle failure. The main control on failure mode is the degree of cementation. At low cementation the rock fails by particulate flow (with or without fracture). Dilational shear failure occurs when the cementation has considerably reduced the porosity. We developed a model of cementation rate based on temperature controlled precipitation rate and used this to plot product of porosity and grain radius (a measure of susceptibility of the rock to crushing) against effective stress for some North Sea Reservoir rocks during their burial history. We found that the initially the low cementation rate held the crushing strength constant, causing the rocks to approach the empirical failure curve, but that at greater depths the increased cementation rate rapidly increased the strength, taking the rock mechanical state away from the failure line. Some deeply buried rocks were observed to have lower than expected amounts of cement and we ascribe this to the inhibition of precipitation by clay films. Deep, well cemented rocks, that failed by shear localised dilatant brittle shear were found to have higher permeabilities than expected on the basis of laboratory results. The natural specimens came from dilational jogs in a network of fault segments and we infer that the increased permeability is the result of deformation under

  3. Parallel computation for reservoir thermal simulation: An overlapping domain decomposition approach

    NASA Astrophysics Data System (ADS)

    Wang, Zhongxiao

    2005-11-01

    In this dissertation, we are involved in parallel computing for the thermal simulation of multicomponent, multiphase fluid flow in petroleum reservoirs. We report the development and applications of such a simulator. Unlike many efforts made to parallelize locally the solver of a linear equations system which affects the performance the most, this research takes a global parallelization strategy by decomposing the computational domain into smaller subdomains. This dissertation addresses the domain decomposition techniques and, based on the comparison, adopts an overlapping domain decomposition method. This global parallelization method hands over each subdomain to a single processor of the parallel computer to process. Communication is required when handling overlapping regions between subdomains. For this purpose, MPI (message passing interface) is used for data communication and communication control. A physical and mathematical model is introduced for the reservoir thermal simulation. Numerical tests on two sets of industrial data of practical oilfields indicate that this model and the parallel implementation match the history data accurately. Therefore, we expect to use both the model and the parallel code to predict oil production and guide the design, implementation and real-time fine tuning of new well operating schemes. A new adaptive mechanism to synchronize processes on different processors has been introduced, which not only ensures the computational accuracy but also improves the time performance. To accelerate the convergence rate of iterative solution of the large linear equations systems derived from the discretization of governing equations of our physical and mathematical model in space and time, we adopt the ORTHOMIN method in conjunction with an incomplete LU factorization preconditioning technique. Important improvements have been made in both ORTHOMIN method and incomplete LU factorization in order to enhance time performance without affecting

  4. CO2/ brine substitution experiments at simulated reservoir conditions

    NASA Astrophysics Data System (ADS)

    Kummerow, Juliane; Spangenberg, Erik

    2015-04-01

    Capillary properties of rocks affect the mobility of fluids in a reservoir. Therefore, the understanding of the capillary pressure behaviour is essential to assess the long-term behaviour of CO2 reservoirs. Beyond this, a calibration of the petrophysical properties on water saturation of reservoir rocks at simulated in situ conditions is crucial for a proper interpretation of field monitoring data. We present a set-up, which allows for the combined measurements of capillary pressure, electric resistivity, and elastic wave velocities under controlled reservoir conditions (pconf = 400 bar, ppore = 180 bar, T = 65 ° C) at different brine-CO2 saturations. The capillary properties of the samples are measured using the micropore membrane technique. The sample is jacketed with a Viton tube (thickness = 4 mm) and placed between two current electrode endcaps, which as well contain pore fluid ports and ultrasonic P and S wave transducers. Between the sample and the lower endcap the hydrophilic semi-permeable micro-pore membrane (pore size = 100 nm) is integrated. It is embedded into filter papers to establish a good capillary contact and to protect the highly sensitive membrane against mechanical damage under load. Two high-precision syringe pumps are used to displace a quantified volume of brine by CO2 and determine the corresponding sample saturation. The fluid displacement induces a pressure gradient along the sample, which corresponds to the capillary pressure at a particular sample saturation. It is measured with a differential pressure sensor in the range between 0 - 0.2 MPa. Drainage and imbibition cycles are performed to provide information on the efficiency of capillary trapping and to get a calibration of the petrophysical parameters of the sample.

  5. Laboratory simulation of hydrothermal petroleum formation from sediment in Escanaba Trough, offshore from northern California

    USGS Publications Warehouse

    Kvenvolden, K.A.; Rapp, J.B.; Hostettler, F.D.; Rosenbauer, R.J.

    1994-01-01

    Petroleum associated with sulfide-rich sediment is present in Escanaba Trough at the southern end of the Gorda Ridge spreading axis offshore from northern California within the Exclusive Economic Zone (EEZ) of the U.S. This location and occurrence are important for evaluation of the mineral and energy resource potential of the seafloor under U.S. jurisdiction. In Escanaba Trough, petroleum is believed to be formed by hydrothermal processes acting on mainly terrigenous organic material in Quaternary, river-derived sediment. To attempt to simulate these processes in the laboratory, portions of a Pleistocene gray-green mud, obtained from ??? 1.5 m below the seafloor at a water depth of ??? 3250 m in Escanaba Trough, were heated in the presence of water in four hydrous-pyrolysis experiments conducted at temperatures ranging from 250 to 350??C and at a pressure of 350 bar for 1.0-4.5 days. Distributions of n-alkanes, isoprenoid hydrocarbons, triterpanes, and steranes in the heated samples were compared with those in a sample of hydrothermal petroleum from the same area. Mud samples heated for less than 4.5 days at less than 350??C show changes in some, but not all, molecular marker ratios of organic compounds that are consistent with those expected during hydrothermal petroleum formation. Our results suggest that the organic matter in this type of sediment serves as one possible source for some of the compounds found in the hydrothermal petroleum. ?? 1994.

  6. Succession of Hydrocarbon Degradation and Microbial Diversity during a Simulated Petroleum Seepage in Caspian Sea Sediments

    NASA Astrophysics Data System (ADS)

    Mishra, S.; Stagars, M.; Wefers, P.; Schmidt, M.; Knittel, K.; Krueger, M.; Leifer, I.; Treude, T.

    2016-02-01

    Microbial degradation of petroleum was investigated in intact sediment cores of Caspian Sea during a simulated petroleum seepage using a sediment-oil-flow-through (SOFT) system. Over the course of the SOFT experiment (190 days), distinct redox zones established and evolved in the sediment core. Methanogenesis and sulfate reduction were identified to be important processes in the anaerobic degradation of hydrocarbons. C1 to C6 n-alkanes were completely exhausted in the sulfate-reducing zone and some higher alkanes decreased during the upward migration of petroleum. A diversity of sulfate-reducing bacteria was identified by 16s rRNA phylogenetic studies, some of which are associated with marine seeps and petroleum degradation. The δ13C signal of produced methane decreased from -33.7‰ to -49.5‰ indicating crude oil degradation by methanogenesis, which was supported by enrichment culturing of methanogens with petroleum hydrocarbons and presence of methanogenic archaea. The SOFT system is, to the best of our knowledge, the first system that simulates an oil-seep like condition and enables live monitoring of biogeochemical changes within a sediment core during petroleum seepage. During our presentation we will compare the Caspian Sea data with other sediments we studied using the SOFT system from sites such as Santa Barbara (Pacific Ocean), the North Alex Mud Volcano (Mediterranean Sea) and the Eckernfoerde Bay (Baltic Sea). This research was funded by the Deutsche Forschungsgemeinschaft (SPP 1319) and DEA Deutsche Erdoel AG. Further support came from the Helmholtz and Max Planck Gesellschaft.

  7. The parallel subdomain-levelset deflation method in reservoir simulation

    NASA Astrophysics Data System (ADS)

    van der Linden, J. H.; Jönsthövel, T. B.; Lukyanov, A. A.; Vuik, C.

    2016-01-01

    Extreme and isolated eigenvalues are known to be harmful to the convergence of an iterative solver. These eigenvalues can be produced by strong heterogeneity in the underlying physics. We can improve the quality of the spectrum by 'deflating' the harmful eigenvalues. In this work, deflation is applied to linear systems in reservoir simulation. In particular, large, sudden differences in the permeability produce extreme eigenvalues. The number and magnitude of these eigenvalues is linked to the number and magnitude of the permeability jumps. Two deflation methods are discussed. Firstly, we state that harmonic Ritz eigenvector deflation, which computes the deflation vectors from the information produced by the linear solver, is unfeasible in modern reservoir simulation due to high costs and lack of parallelism. Secondly, we test a physics-based subdomain-levelset deflation algorithm that constructs the deflation vectors a priori. Numerical experiments show that both methods can improve the performance of the linear solver. We highlight the fact that subdomain-levelset deflation is particularly suitable for a parallel implementation. For cases with well-defined permeability jumps of a factor 104 or higher, parallel physics-based deflation has potential in commercial applications. In particular, the good scalability of parallel subdomain-levelset deflation combined with the robust parallel preconditioner for deflated system suggests the use of this method as an alternative for AMG.

  8. The benefits of enhanced integration capabilities in 3-D reservoir modelling and simulation

    SciTech Connect

    O`Rourke, S.T.; Ikwumonu, A.

    1996-12-31

    The use of proprietary, closely linked 3-D geological and reservoir simulation software has greatly enhanced the reservoir modelling process by enabling complete integration of geological and engineering data in a 3-D manner. The software were used to model and simulate a deltaic sandstone reservoir in the Nigerian Forcados Yokri field in order to describe the reservoir sweep pattern. A simple simulation of the reservoir was first carried out to identify the main controls on the reservoir performance, which in this case were the intra-reservoir shales. As they are the only baffles or barriers to flow, proper modelling of them was critical to achieving a history match. Well logs, 3-D seismic, limited core data and sequence stratigraphic concepts were used to define a three dimensional depositional model which was then used to guide the 3-D reservoir architecture modelling. The reservoir model was evaluated in the 3-D simulator and, when the initial model did not yield a proper match with the historical production data, alternative models were easily generated and simulated until an acceptable match was achieved. The result was a 10% increase in predicted ultimate recovery, a better understanding of the reservoir and an optimized reservoir depletion plan.

  9. Simulation and optimization technologies for petroleum waste management and remediation process control.

    PubMed

    Qin, X S; Huang, G H; He, L

    2009-01-01

    Leakage and spill of petroleum hydrocarbons from underground storage tanks and pipelines have posed significant threats to groundwater resources across many petroleum-contaminated sites. Remediation of these sites is essential for protecting the soil and groundwater resources and reducing risks to local communities. Although many efforts have been made, effective design and management of various remediation systems are still challenging to practitioners. In recent years, the subsurface simulation model has been combined with techniques of optimization to address important problems of contaminated site management. The combined simulation-optimization system accounts for the complex behavior of the subsurface system and identifies the best management strategy under consideration of the management objectives and constraints. During the past decades, a large number of studies were conducted to simulate contaminant flow and transport in the subsurface and seek cost-effective remediation designs. This paper gives a comprehensive review on recent developments, advancements, challenges, and barriers associated with simulation and optimization techniques in supporting process control of petroleum waste management and site remediation. A number of related methodologies and applications were examined. Perspectives of effective site management were investigated, demonstrating many demanding areas for enhanced research efforts, which include issues of data availability and reliability, concerns in uncertainty, necessity of post-modeling analysis, and usefulness of development of process control techniques.

  10. CO/sub 2/ Huff-Puff simulation using a compositional reservoir simulator

    SciTech Connect

    Hsu, H.H.; Brugman, R.J.

    1986-01-01

    Increased field application of the CO/sub 2/ Huff-Puff process has resulted in increased laboratory and numerical simulation activity. This paper focuses on numerical simulation of the CO/sub 2/ Huff-Puff process in a light oil reservoir, using a fully-compositional reservoir simulator. A simulation model is first validated by successfully history-matching production data from two huff-puff cycles. A performance prediction is then conducted for a third cycle. A number of parametric runs are performed to determine oil recovery as affected by: 1. The number of cycles; 2. The timing of injection, soak and back-production operations; and 3. The quantity and composition of the injected solvent.

  11. Geological and petrophysical characterization of the ferron sandstone for 3-D simulation of a fluvial-deltaic reservoir. Annual report, October 1, 1994--September 30, 1995

    SciTech Connect

    Chidsey, T.C. Jr.; Allison, M.L.

    1996-05-01

    The objective of the Ferron Sandstone project is to develop a comprehensive, interdisciplinary, quantitative characterization of a fluvial-deltaic reservoir to allow realistic interwell and reservoir-scale models to be developed for improved oil-field development in similar reservoirs world-wide. Quantitative geological and petrophysical information on the Cretaceous Ferron Sandstone in east-central Utah was collected. Both new and existing data is being integrated into a three-dimensional model of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Simulation results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Transfer of the project results to the petroleum industry is an integral component of the project. This report covers research activities for fiscal year 1994-95, the second year of the project. Most work consisted of developing field methods and collecting large quantities of existing and new data. We also continued to develop preliminary regional and case-study area interpretations. The project is divided into four tasks: (1) regional stratigraphic analysis, (2) case studies, (3) reservoirs models, and (4) field-scale evaluation of exploration strategies.

  12. Fractured Petroleum Reservoirs

    SciTech Connect

    Firoozabadi, Dr. Abbas

    2000-01-18

    In this report the results of experiments of water injection in fractured porous media comprising a number of water-wet matrix blocks are reported for the first time. The blocks experience an advancing fracture-water level (FWL). Immersion-type experiments are performed for comparison; the dominant recovery mechanism changed from co-current to counter-current imbibition when the boundary conditions changed from advancing FWL to immersion-type. Single block experiments of co-current and counter-current imbibition was performed and co-current imbibition leads to more efficient recovery was found.

  13. Fractal characterization of geological fractures in an exposed analog of a petroleum reservoir and its application to fluid flow models

    NASA Astrophysics Data System (ADS)

    Vásquez, A.; Tolson, G.

    2012-12-01

    The quantification of fracture systems is important to understand the phenomenon of fluid flow in naturally fractured petroleum reservoirs. In this work, we present a case of detailed analysis of filled fracture networks (veins) covering four orders of magnitude of scale. For our analysis we selected rocks of the El Doctor platform in the state of Querétaro, Central Mexico, which is an exposed analog of naturally fractured carbonate reservoir rocks common in the near-offshore oil fields in southeast Mexico. The fractal properties of one and two dimensional natural fracture patterns mapped on limestone outcrops, are present and compared to the results obtained in other studies at different scales. The fractal dimension of different fracture properties, such as spacing, thickness, spatial distribution, density, connectivity and length are investigated and measured using different methods. The principal fractal parameters obtained in this study include the cumulative-frequency exponent of spacing and thickness, box-counting dimension, correlation dimension and Lyapunov exponent in 1D analysis; whereas the 2D analysis included the cumulative-length exponent (fragmentation dimension), box-counting dimension, mass dimension (mid and intersection points of fractures), lacunarity and connectivity. In addition, we analyzed the orientation, density and intensity of the fracture arrays. The results of the 1D analysis indicate that the fracture spacing can be characterised using the parameters mentioned before, but the best fractal parameter to characterize the distribution and array of fractures is the Lyapunov exponent, because it's value (1.06-1.42) can differentiate between different types of array. The fractal dimension obtained for cumulative-frequency of the spacing, shows a power law with a negative exponent between -1.08 and -0.70. In the case of box-counting and correlation dimensions, the values of dimension were 0.30-0.68 and 0.40-0.63 respectively. With respect

  14. A generalized well management scheme for reservoir simulation

    SciTech Connect

    Fang, W.Y.; Lo, K.K.

    1995-12-31

    A new generalized well management scheme has been formulated to maximize oil production under multiple facility constraints. The scheme integrates reserve performance, wellbore hydraulics, surface facility constraints and lift-gas allocation o maximize oil production. It predicts well performance based on up-to-date hydraulics and reservoir conditions. The scheme has been implemented in a black oil simulator by using Separable programming and Simplex algorithm. This production optimization scheme has been applied to two full-field models. The oil production of these two full-field models is limited by water, gas and liquid haling limits at both field- and flow station-levels. The gas production is limited by injectivity as well as gas handling limits. For a 12-year production forecast on Field A, the new scheme increased oil production by 3 to 9%. For a 12-year production forecast on field B, the new scheme increased oil production by 7 to 9%.

  15. Development of a compositional model fully coupled with geomechanics and its application to tight oil reservoir simulation

    NASA Astrophysics Data System (ADS)

    Xiong, Yi

    Tight oil reservoirs have received great attention in recent years as unconventional and promising petroleum resources; they are reshaping the U.S. crude oil market due to their substantial production. However, fluid flow behaviors in tight oil reservoirs are not well studied or understood due to the complexities in the physics involved. Specific characteristics of tight oil reservoirs, such as nano-pore scale and strong stress-dependency result in complex porous medium fluid flow behaviors. Recent field observations and laboratory experiments indicate that large effects of pore confinement and rock compaction have non-negligible impacts on the production performance of tight oil reservoirs. On the other hand, there are approximations or limitations for modeling tight oil reservoirs under the effects of pore confinement and rock compaction with current reservoir simulation techniques. Thus this dissertation aims to develop a compositional model coupled with geomechanics with capabilities to model and understand the complex fluid flow behaviors of multiphase, multi-component fluids in tight oil reservoirs. MSFLOW_COM (Multiphase Subsurface FLOW COMpositional model) has been developed with the capability to model the effects of pore confinement and rock compaction for multiphase fluid flow in tight oil reservoirs. The pore confinement effect is represented by the effect of capillary pressure on vapor-liquid equilibrium (VLE), and modeled with the VLE calculation method in MSFLOW_COM. The fully coupled geomechanical model is developed from the linear elastic theory for a poro-elastic system and formulated in terms of the mean stress. Rock compaction is then described using stress-dependent rock properties, especially stress-dependent permeability. Thus MSFLOW_COM has the capabilities to model the complex fluid flow behaviors of tight oil reservoirs, fully coupled with geomechanics. In addition, MSFLOW_COM is validated against laboratory experimental data, analytical

  16. Modeling of geothermal reservoirs: Fundamental processes, computer simulation, and field applications

    SciTech Connect

    Pruess, K.

    1988-09-01

    This article attempts to critically evaluate the present state of the art of geothermal reservoir simulation. Methodological aspects of geothermal reservoir modeling are briefly reviewed, with special emphasis on flow in fractured media. Then we examine applications of numerical simulation to studies of reservoir dynamics, well test design and analysis, and modeling of specific fields. Tangible impacts of reservoir simulation technology on geothermal energy development are pointed out. We conclude with considerations on possible future developments in the mathematical modeling of geothermal fields. 45 refs., 4 figs., 2 tabs.

  17. Cost Simulations of Geothermal Reservoir Insurance. Final report

    SciTech Connect

    1982-02-24

    Two of the primary results of the Geothermal Reservoir Insurance Study were the estimation of (1) insurance costs to geothermal developers and users and (2) cost to government of a reinsurance program. Because the cost to industry and government for any geothermal reinsurance program depends on numerous factors that are difficult to determine prior to the exact specification of a detailed program, they estimated these costs based on certain assumptions for several cost parameters. The objective of performing the cost simulations in this study is to provide the DOE with a range of insurance costs and costs to government, based on varying the assumptions reported in the GRIS final report for some of the major cost parameters. The Department of Energy selected the specific cost parameters and assumptions for inclusion in the cost simulation analysis. Section II of the report describes the specific parameters and assumptions that were varied, as well as the methodology used to estimate the resulting industry and government costs. In Section III they provide a detailed summary of the results of the cost simulations. Section IV is an appendix that includes, for each of thirty six different sets of assumptions considered, (1) the estimated expected losses and variance of losses for different geologic project types, (2) the estimated insurance premiums to cover losses, and (3) the resulting cost to government in terms of expected loss, probable maximum loss, and administrative expenses.

  18. Simulation studies to evaluate the effect of fracture closure on the performance of naturally fractured reservoirs

    SciTech Connect

    Dauben, D.L.

    1991-07-15

    The study has two principal objectives: (1) To evaluate the effects of fracture closure on the recovery of oil and gas reserves from naturally fractured petroleum or natural gas reservoirs. (2) To evaluate procedures for improving the recovery of these reserves using innovative fluid injection techniques to maintain reservoir pressure and mitigate the impact of fracture closure. The total scope of the study has been subdivided into three main tasks: (1) Baseline studies (non-pressure sensitive fractures); (2)studies with pressure sensitive fractures; and (3) innovative approaches for improving oil recovery.

  19. Geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Annual report, October 1, 1995--September 30, 1996

    SciTech Connect

    Chidsey, T.C. Jr.

    1997-05-01

    The objective of the Ferron Sandstone project is to develop a comprehensive, interdisciplinary, quantitative characterization of a fluvial-deltaic reservoir to allow realistic inter-well and reservoir-scale models to be developed for improved oil-field development in similar reservoirs world-wide. Quantitative geological and petrophysical information on the Cretaceous Ferron Sandstone in east-central Utah was collected. Both new and existing data is being integrated into a three-dimensional model of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Simulation results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Transfer of the project results to the petroleum industry is an integral component of the project. This report covers research activities for fiscal year 1995-96, the third year of the project. Most work consisted of interpreting the large quantity of data collected over two field seasons. The project is divided into four tasks: (1) regional stratigraphic analysis, (2) case studies, (3) reservoirs models, and (4) field-scale evaluation of exploration strategies. The primary objective of the regional stratigraphic analysis is to provide a more detailed interpretation of the stratigraphy and gross reservoir characteristics of the Ferron Sandstone as exposed in outcrop. The primary objective of the case-studies work is to develop a detailed geological and petrophysical characterization, at well-sweep scale or smaller, of the primary reservoir lithofacies typically found in a fluvial-dominated deltaic reservoir.

  20. Advanced Techniques for Reservoir Simulation and Modeling of Non-Conventional Wells

    SciTech Connect

    Durlofsky, Louis J.

    2000-08-28

    This project targets the development of (1) advanced reservoir simulation techniques for modeling non-conventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and well index (for use in simulation models), including the effects of wellbore flow; and (3) accurate approaches to account for heterogeneity in the near-well region.

  1. Multi-purpose, multi-reservoir simulation on a PC. Technical paper

    SciTech Connect

    Eichert, B.S.; Franke, C.

    1988-08-01

    The methodology and difficulties in converting a large, general-purpose, mainframe, batch-oriented computer program (for reservoir simulation) to work effectively in the PC environment are described in this paper. A brief overview of the present capabilities of the general purpose reservoir simulation program (HEC-5), which works on mainframe and MS DOS compatible computers, is also presented.

  2. Geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Quarterly progress report, July 1--September 30, 1995

    SciTech Connect

    Allison, M.L.

    1995-10-30

    The objective of this project is to develop a comprehensive, interdisciplinary, and quantitative characterization of a fluvial-deltaic reservoir which will allow realistic inter-well and reservoir-scale modeling to be constructed for improved oil-field development in similar reservoirs world-wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined. Both new and existing data will be integrated into a three-dimensional representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Transfer of the project results to the petroleum industry is an integral component of the project. Technical progress this quarter is divided into regional stratigraphy, case studies, stochastic modeling and fluid-flow simulation, and technology transfer activities. The regional stratigraphy of the Ferron Sandstone outcrop belt is being described and interpreted. Detailed geological and petrophysical characterization of the primary reservoir lithofacies typically found in a fluvial-dominated deltaic reservoir, is continuing at selected case-study areas. Interpretations of lithofacies, bounding surfaces, and other geologic information are being combined with permeability measurements from closely spaced traverses and from drill-hole cores (existing and two drilled during the quarter). Petrophysical and statistical analyses are being incorporated with the geological characterization to develop a three-dimensional model of the reservoirs through fluid-flow simulation.

  3. Modeling and Simulation of Petroleum Coke Calcination in Pot Calciner Using Two-Fluid Model

    NASA Astrophysics Data System (ADS)

    Xiao, Jin; Huang, Jindi; Zhong, Qifan; Zhang, Hongliang; Li, Jie

    2016-02-01

    The aim of this work was to establish a mathematical model for the analysis of calcining process of petroleum coke in a 24-pot calciner via computational fluid dynamics (CFD) numerical simulation method. The model can be divided into two main parts (1) heterogeneous reacting flow of petroleum coke calcination in the pot was simulated using a two-fluid model approach where the gas and solid phase are treated as a continuous phases; and (2) the standard turbulence equations combined with the finite rate/eddy-dissipation combustion model and discrete ordinates model were solved for the turbulent gas reacting flow in the flue. The model of the calcining process was implemented in ANSYS Fluent 15.0 (commercial CFD software) and validated by industrial production data. After the validation research, the model has been applied to inspect the distribution features of the temperature field in the furnace, the concentration field of residual moisture and volatiles in the petroleum coke, and the vector velocity field of gas and solid phases. This research can provide a theoretical basis for optimizing the structure and improving the automatic control level of a pot calciner.

  4. Comparison of Microbial Community Compositions of Injection and Production Well Samples in a Long-Term Water-Flooded Petroleum Reservoir

    PubMed Central

    Ren, Hong-Yan; Zhang, Xiao-Jun; Song, Zhi-yong; Rupert, Wieger; Gao, Guang-Jun; Guo, Sheng-xue; Zhao, Li-Ping

    2011-01-01

    Water flooding plays an important role in recovering oil from depleted petroleum reservoirs. Exactly how the microbial communities of production wells are affected by microorganisms introduced with injected water has previously not been adequately studied. Using denaturing gradient gel electrophoresis (DGGE) approach and 16S rRNA gene clone library analysis, the comparison of microbial communities is carried out between one injection water and two production waters collected from a working block of the water-flooded Gudao petroleum reservoir located in the Yellow River Delta. DGGE fingerprints showed that the similarities of the bacterial communities between the injection water and production waters were lower than between the two production waters. It was also observed that the archaeal composition among these three samples showed no significant difference. Analysis of the 16S rRNA gene clone libraries showed that the dominant groups within the injection water were Betaproteobacteria, Gammaproteobacteria and Methanomicrobia, while the dominant groups in the production waters were Gammaproteobacteria and Methanobacteria. Only 2 out of 54 bacterial operational taxonomic units (OTUs) and 5 out of 17 archaeal OTUs in the injection water were detected in the production waters, indicating that most of the microorganisms introduced by the injection water may not survive to be detected in the production waters. Additionally, there were 55.6% and 82.6% unique OTUs in the two production waters respectively, suggesting that each production well has its specific microbial composition, despite both wells being flooded with the same injection water. PMID:21858049

  5. Comparison of microbial community compositions of injection and production well samples in a long-term water-flooded petroleum reservoir.

    PubMed

    Ren, Hong-Yan; Zhang, Xiao-Jun; Song, Zhi-yong; Rupert, Wieger; Gao, Guang-Jun; Guo, Sheng-xue; Zhao, Li-Ping

    2011-01-01

    Water flooding plays an important role in recovering oil from depleted petroleum reservoirs. Exactly how the microbial communities of production wells are affected by microorganisms introduced with injected water has previously not been adequately studied. Using denaturing gradient gel electrophoresis (DGGE) approach and 16S rRNA gene clone library analysis, the comparison of microbial communities is carried out between one injection water and two production waters collected from a working block of the water-flooded Gudao petroleum reservoir located in the Yellow River Delta. DGGE fingerprints showed that the similarities of the bacterial communities between the injection water and production waters were lower than between the two production waters. It was also observed that the archaeal composition among these three samples showed no significant difference. Analysis of the 16S rRNA gene clone libraries showed that the dominant groups within the injection water were Betaproteobacteria, Gammaproteobacteria and Methanomicrobia, while the dominant groups in the production waters were Gammaproteobacteria and Methanobacteria. Only 2 out of 54 bacterial operational taxonomic units (OTUs) and 5 out of 17 archaeal OTUs in the injection water were detected in the production waters, indicating that most of the microorganisms introduced by the injection water may not survive to be detected in the production waters. Additionally, there were 55.6% and 82.6% unique OTUs in the two production waters respectively, suggesting that each production well has its specific microbial composition, despite both wells being flooded with the same injection water.

  6. National Petroleum Technology Office`s publication list for January--June 1998

    SciTech Connect

    1998-07-01

    This report lists 20 publications and 19 computer software and supporting documentation that are available from the National Petroleum Technology Office. Publications relate to environmental management, field demonstrations, general research, reservoir characterization, and supporting research for the petroleum industry. Many of the computer codes are for the simulation of enhanced recovery techniques.

  7. The energy-water nexus: Potential groundwater-quality degradation associated with petroleum production from shale and tight reservoirs

    NASA Astrophysics Data System (ADS)

    Kharaka, Y. K.; Gans, K. D.; Conaway, C. H.; Thordsen, J. J.; Thomas, B.

    2013-12-01

    Oil and natural gas are the main sources of primary energy in the USA, providing 63% of total energy consumption in 2011. Production of petroleum from shale and very low permeability reservoirs has increased substantially due to recent developments in deep horizontal drilling, downhole telemetry and massive multi-stage hydraulic fracturing using ';slick water'. Production of natural gas from shale has increased rapidly, from 0.4 Tcf in 2000, to 6.8 Tcf in 2011, almost 30% of gas production in USA; it is projected to increase to account for 49% of USA gas in 2035. U.S. crude oil production has also increased from 5.0 Mbpd in 2008 to 5.6 Mbpd in 2011; oil from unconventional sources in 2035 is projected to be 0.7 to 2.8 Mbpd, accounting for 36% of domestic production. Hydraulic fracturing is carried out by injecting large volumes (~10,000-50,000 m3/well) of fresh water with added proppant, and organic and inorganic chemicals at high fluid pressures. Approximately 500-5,000 m3/well of water are also used for drilling the wells. The total water used for shale gas wells is relatively low compared to the consumptive total water usage in wet regions (e.g. 0.06% of water for the Marcellus Shale); but is much higher in arid regions (e.g. 0.8% for the Haynesville Shale) where water used could be a significant constraint for gas development because its use could impact the available water supply. Fluid pressure is lowered following hydraulic fracturing, causing the ';flowback' brine, which is a mixture of fracturing fluid and formation water, to return to the surface through the casing. During the 2-3 weeks of the ';flowback' period for a Marcellus Shale well, 10-50% of the fracturing fluid returns to the surface, initially at high rates (~1,000 m3/day), decreasing finally to ~ 50 m3/day. The salinity of the ';flowback' water is initially moderate (45,000 mg/L TDS), reflecting the composition of the fracturing water, and increasing to ~200,000 mg/L TDS. Production of natural

  8. Multigrid Methods for Fully Implicit Oil Reservoir Simulation

    NASA Technical Reports Server (NTRS)

    Molenaar, J.

    1996-01-01

    In this paper we consider the simultaneous flow of oil and water in reservoir rock. This displacement process is modeled by two basic equations: the material balance or continuity equations and the equation of motion (Darcy's law). For the numerical solution of this system of nonlinear partial differential equations there are two approaches: the fully implicit or simultaneous solution method and the sequential solution method. In the sequential solution method the system of partial differential equations is manipulated to give an elliptic pressure equation and a hyperbolic (or parabolic) saturation equation. In the IMPES approach the pressure equation is first solved, using values for the saturation from the previous time level. Next the saturations are updated by some explicit time stepping method; this implies that the method is only conditionally stable. For the numerical solution of the linear, elliptic pressure equation multigrid methods have become an accepted technique. On the other hand, the fully implicit method is unconditionally stable, but it has the disadvantage that in every time step a large system of nonlinear algebraic equations has to be solved. The most time-consuming part of any fully implicit reservoir simulator is the solution of this large system of equations. Usually this is done by Newton's method. The resulting systems of linear equations are then either solved by a direct method or by some conjugate gradient type method. In this paper we consider the possibility of applying multigrid methods for the iterative solution of the systems of nonlinear equations. There are two ways of using multigrid for this job: either we use a nonlinear multigrid method or we use a linear multigrid method to deal with the linear systems that arise in Newton's method. So far only a few authors have reported on the use of multigrid methods for fully implicit simulations. Two-level FAS algorithm is presented for the black-oil equations, and linear multigrid for

  9. Multigrid Methods for Fully Implicit Oil Reservoir Simulation

    NASA Technical Reports Server (NTRS)

    Molenaar, J.

    1996-01-01

    In this paper we consider the simultaneous flow of oil and water in reservoir rock. This displacement process is modeled by two basic equations: the material balance or continuity equations and the equation of motion (Darcy's law). For the numerical solution of this system of nonlinear partial differential equations there are two approaches: the fully implicit or simultaneous solution method and the sequential solution method. In the sequential solution method the system of partial differential equations is manipulated to give an elliptic pressure equation and a hyperbolic (or parabolic) saturation equation. In the IMPES approach the pressure equation is first solved, using values for the saturation from the previous time level. Next the saturations are updated by some explicit time stepping method; this implies that the method is only conditionally stable. For the numerical solution of the linear, elliptic pressure equation multigrid methods have become an accepted technique. On the other hand, the fully implicit method is unconditionally stable, but it has the disadvantage that in every time step a large system of nonlinear algebraic equations has to be solved. The most time-consuming part of any fully implicit reservoir simulator is the solution of this large system of equations. Usually this is done by Newton's method. The resulting systems of linear equations are then either solved by a direct method or by some conjugate gradient type method. In this paper we consider the possibility of applying multigrid methods for the iterative solution of the systems of nonlinear equations. There are two ways of using multigrid for this job: either we use a nonlinear multigrid method or we use a linear multigrid method to deal with the linear systems that arise in Newton's method. So far only a few authors have reported on the use of multigrid methods for fully implicit simulations. Two-level FAS algorithm is presented for the black-oil equations, and linear multigrid for

  10. Numerical simulation of water injection into vapor-dominated reservoirs

    SciTech Connect

    Pruess, K.

    1995-01-01

    Water injection into vapor-dominated reservoirs is a means of condensate disposal, as well as a reservoir management tool for enhancing energy recovery and reservoir life. We review different approaches to modeling the complex fluid and heat flow processes during injection into vapor-dominated systems. Vapor pressure lowering, grid orientation effects, and physical dispersion of injection plumes from reservoir heterogeneity are important considerations for a realistic modeling of injection effects. An example of detailed three-dimensional modeling of injection experiments at The Geysers is given.

  11. Developing the aquatic-coupled reservoir model to simulate carbon dioxide emission from a young boreal hydroelectric reservoir

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Roulet, N. T.; Strachan, I. B.; Tremblay, A.

    2013-12-01

    We developed a process-based biogeochemical reservoir model, called AF-DNDC (Aquatic-coupled Forest-DNDC), to project carbon (C) flux from water surface of a recently created hydro-electric reservoir that flooded a boreal landscape. The basis of the reservoir model is Forest-DNDC, a biogeochemical model for C and nitrogen cycling in forests and wetlands. AF-DNDC was developed by coupling a lake C model to a flooded version of Forest-DNDC. AF-DNDC includes the C cycling through the aquatic carbon pools, such as DIC (dissolved inorganic C), DOC (dissolved organic C), and planktonic community as well as C exchange between air, water, and sediment. AF-DNDC was used to examine the net change in carbon dioxide (CO2) exchange between the surface and the atmosphere over the first seven years post flooding of the Eastmain-1 reservoir in northern Quebec. With present day climate and environmental conditions, simulated daily CO2 emissions from the flooded forest averaged 1.69 g C m-2 d-1 (range 0 to 20.49), and from the flooded peatland averaged 0.87 g C m-2 d-1 (range 0 to 6.86). Simulated CO2 emissions decreased with the age of reservoir. They were larger than eddy-covariance measured CO2 fluxes from the water surface over flooded forests, but compared well to the eddy-covariance fluxes during the open-water period. The simulated emissions were significantly correlated with the measured fluxes from the flooded forest (r2 = 0.33; p < 0.01) and flooded peatland (r2 = 0.41; p < 0.01). The patterns over the year were similar. AF-DNDC is suitable for use to assess the major changes in CO2 exchange due to the creation of reservoirs in boreal regions.

  12. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    SciTech Connect

    Wiggins, Michael L.; Brown, Raymon L.; Civan, Faruk; Hughes, Richard G.

    2003-02-11

    This research was directed toward developing a systematic reservoir characterization methodology which can be used by the petroleum industry to implement infill drilling programs and/or enhanced oil recovery projects in naturally fractured reservoir systems in an environmentally safe and cost effective manner. It was anticipated that the results of this research program will provide geoscientists and engineers with a systematic procedure for properly characterizing a fractured reservoir system and a reservoir/horizontal wellbore simulator model which can be used to select well locations and an effective EOR process to optimize the recovery of the oil and gas reserves from such complex reservoir systems.

  13. Numerical simulation of carbon dioxide effects in geothermal reservoirs

    SciTech Connect

    Moya, S.L.; Iglesias, E.R.

    1995-03-01

    We developed and coded a new equation of state (EOS) for water-carbon dioxide mixtures and coupled it to the TOUGH numerical simulator. This EOS is valid up to 350{degrees}C and 500 bar. Unlike previous thermodynamical models, it rigorously considers the non-ideal behavior of both components in the gaseous mixture and formally includes the effect of the compressibility of the liquid phase. We refer to the coupling of this EOS with TOUGH as TOUGH-DIOX. To complement this enhancement of TOUGH, we added indexed output files for easy selection and interpretation of results. We validated TOUGH-DIOX against published results. Furthermore we used TOUGH-DIOX to explore and compare mass and energy inflow performance relationships of geothermal wells with/without carbon dioxide (CO{sub 2}). Our results include the effects of a broad range of fluid and formation properties, initial conditions and history of reservoir production. This work contributes with generalized dimensionless inflow performance relationships appropriate for geothermal use.

  14. Simulating annual glacier flow with a linear reservoir model

    NASA Astrophysics Data System (ADS)

    Span, Norbert; Kuhn, Michael

    2003-05-01

    In this paper we present a numerical simulation of the observation that most alpine glaciers have reached peak velocities in the early 1980s followed by nearly exponential decay of velocity in the subsequent decade. We propose that similarity exists between precipitation and associated runoff hydrograph in a river basin on one side and annual mean specific mass balance of the accumulation area of alpine glaciers and ensuing changes in ice flow on the other side. The similarity is expressed in terms of a linear reservoir with fluctuating input where the year to year change of ice velocity is governed by two terms, a fraction of the velocity of the previous year as a recession term and the mean specific balance of the accumulation area of the current year as a driving term. The coefficients of these terms directly relate to the timescale, the mass balance/altitude profile, and the geometric scale of the glacier. The model is well supported by observations in the upper part of the glacier where surface elevation stays constant to within ±5 m over a 30 year period. There is no temporal trend in the agreement between observed and modeled horizontal velocities and no difference between phases of acceleration and phases of deceleration, which means that the model is generally valid for a given altitude on a given glacier.

  15. 3D scientific visualization of reservoir simulation post-processing

    SciTech Connect

    Sousa, M.C.; Miranda-Filho, D.N.

    1994-12-31

    This paper describes a 3D visualization software designed at PETROBRAS and TecGraf/PUC-RJ in Brazil for the analysis of reservoir engineering post-processing data. It offers an advanced functional environment on graphical workstations with intuitive and ergonomic interface. Applications to real reservoir models show the enriching features of the software.

  16. Long-term Reservoir Routing Simulations Using Data-Driven Approaches

    NASA Astrophysics Data System (ADS)

    Ashouri, H.; Chowdhary, H.; Chinnayakanahalli, K.; Dodov, B.

    2015-12-01

    Flood is a highly complex natural hazard that accounts for major losses to human societies worldwide. Dams built with the aim of mitigating the flood risk significantly modify river flow regimes but unavailability and/or inaccessibility of proper information about reservoir operational rules impose a big hurdle to global flood modeling. This is specifically critical for flood-prone regions where lack of proper representation of reservoir operation can lead to significant under- or overestimation of the flood magnitude, risk, and losses. With the availability of longer in-situ observational data records, as well as advancements in satellite altimetry techniques for measuring reservoir levels, operational rules can be indirectly deduced. In this study, the observed reservoir levels as well as the historical and forecast time series of inflows are incorporated into a stochastic autoregressive moving average statistical modeling scheme to simulate the releases from the dam at each time step. The resulting operational rule curve is used in a reservoir simulation model to simulate the outflows from the reservoirs. The efficiency of the model is examined for three case studies in the United States, including John Martin Reservoir (CO), Coralville Lake (IA, and specifically for the devastating 2008 flood in the state), and Boca Reservoir (CA). Statistical measures are derived and tested to evaluate the accuracy of the simulated hydrographs against USGS streamflow gauge observations. The results prove the capability of the developed model in simulating reasonably accurate outflows from dams and will be presented at the meeting.

  17. Simulating the gas hydrate production test at Mallik using the pilot scale pressure reservoir LARS

    NASA Astrophysics Data System (ADS)

    Heeschen, Katja; Spangenberg, Erik; Schicks, Judith M.; Priegnitz, Mike; Giese, Ronny; Luzi-Helbing, Manja

    2014-05-01

    LARS, the LArge Reservoir Simulator, allows for one of the few pilot scale simulations of gas hydrate formation and dissociation under controlled conditions with a high resolution sensor network to enable the detection of spatial variations. It was designed and built within the German project SUGAR (submarine gas hydrate reservoirs) for sediment samples with a diameter of 0.45 m and a length of 1.3 m. During the project, LARS already served for a number of experiments simulating the production of gas from hydrate-bearing sediments using thermal stimulation and/or depressurization. The latest test simulated the methane production test from gas hydrate-bearing sediments at the Mallik test site, Canada, in 2008 (Uddin et al., 2011). Thus, the starting conditions of 11.5 MPa and 11°C and environmental parameters were set to fit the Mallik test site. The experimental gas hydrate saturation of 90% of the total pore volume (70 l) was slightly higher than volumes found in gas hydrate-bearing formations in the field (70 - 80%). However, the resulting permeability of a few millidarcy was comparable. The depressurization driven gas production at Mallik was conducted in three steps at 7.0 MPa - 5.0 MPa - 4.2 MPa all of which were used in the laboratory experiments. In the lab the pressure was controlled using a back pressure regulator while the confining pressure was stable. All but one of the 12 temperature sensors showed a rapid decrease in temperature throughout the sediment sample, which accompanied the pressure changes as a result of gas hydrate dissociation. During step 1 and 2 they continued up to the point where gas hydrate stability was regained. The pressure decreases and gas hydrate dissociation led to highly variable two phase fluid flow throughout the duration of the simulated production test. The flow rates were measured continuously (gas) and discontinuously (liquid), respectively. Next to being discussed here, both rates were used to verify a model of gas

  18. Maps showing petroleum exploration intensity and production in major Cambrian to Ordovician reservoir rocks in the Anadarko Basin

    USGS Publications Warehouse

    Henry, Mitch; Hester, Tim

    1996-01-01

    The Anadarko basin is a large, deep, two-stage Paleozoic basin (Feinstein, 1981) that is petroleum rich and generally well explored. The Anadarko basin province, a geogrphic area used here mostly for the convenience of mapping and data management, is defined by political boundaries that include the Anadarko basin proper. The boundaries of the province are identical to those used by the U.S. Geological Survey (USGS) in the 1995 National Assessment of United Stated Oil and Gas Resources. The data in this report, also identical to those used in the national assessment, are from several computerized data bases including Nehring Research Group (NRG) Associates Inc., Significant Oil and Gas Fields of the United States (1992); Petroleum Information (PI), Inc., Well History Control System (1991); and Petroleum Information (PI), Inc., Petro-ROM: Production data on CD-ROM (1993). Although generated mostly in response to the national assessment, the data presented here arc grouped differently and arc displayed and described in greater detail. In addition, the stratigraphic sequences discussed may not necessarily correlate with the "plays" of the 1995 national assessment. This report uses computer-generated maps to show drilling intensity, producing wells, major fields, and other geologic information relevant to petroleum exploration and production in the lower Paleozoic part of the Anadarko basin province as defined for the U.S. Geological Survey's 1995 national petroleum assessment. Hydrocarbon accumulations must meet a minimum standard of 1 million barrels of oil (MMBO) or 6 billion cubic feet of gas (BCFG) estimated ultimate recovery to be included in this report as a major field or revoir. Mapped strata in this report include the Upper Cambrian to Lower Ordovician Arbuckle and Low Ordovician Ellenburger Groups, the Middle Ordovician Simpson Group, and the Middle to Upper Ordovician Viola Group.

  19. Environmental and petroleum resource conflicts: a simulation model to determine the benefits of petroleum production in the Arctic National Wildlife Refuge, Alaska

    SciTech Connect

    Goerold, W.T.

    1987-01-01

    The Arctic National Wildlife Refuge (ANWR), located on the Alaska North Slope, is believed to contain high petroleum production potential. This region also has outstanding wildlife and wilderness values. Currently ANWR is closed to oil and gas leasing. However, Congress is considering an Interior Department recommendation to open a portion of ANWR to oil and gas production. Environmentalists maintain that petroleum exploration and development will have severe environmental impacts. A draft study by the Interior Department reports values that are used to generate an expected present value of the net economic benefits of petroleum development in ANWR of $2.98 billion. Alternatively, using updated oil price projections and revised tax and financial assumptions, the Arctic National Wildlife Refuge Financial Analysis Simulation Model (AFAM) projects the expected present value of net economic benefits of oil production at between $0.32 and $1.39 billion. AFAM results indicate that, within most drilling cost scenarios, oil producers would earn an aftertax profit in 100% of the simulation trials. However, in a high-cost drilling scenario, AFAM projects aftertax losses to oil producers in 45% of the simulation trials. Although the Interior Department does not report a range of net economic benefits from oil development of ANWR, AFAM indicates that the distribution of net economic benefits across all scenarios is positively skewed. Net economic benefits from oil development range from $0 to $4.75 billion with a greater probability of benefits closer to the lower value. Decision makers considering whether or not to open ANWR to petroleum development can use these values to judge if the economic benefits outweigh the projected negative wilderness and wildlife impacts. 10 references, 9 figures, 6 tables.

  20. Which Microbial Communities Are Present? Application of Clone Libraries: Syntrophic Acetate Degradation to Methane in a High-Temperature Petroleum Reservoir - Culture-Based and 16S rRNA Genes Characterisation

    NASA Astrophysics Data System (ADS)

    Shestakova, Natalya M.; Ivoilov, Valeriy S.; Tourova, Tatiana P.; Belyaev, Sergey S.; Poltaraus, Andrei B.; Nazina, Tamara N.

    The presence of microorganisms in petroleum reservoirs has been established about 100 years ago. Microbiological, radioisotope, molecular biological and biogeochemical techniques have been used to investigate microbial diversity and activity in the oilfields. These techniques were applied separately and the composition of the microbial community and its geochemical activity remained poorly understood.

  1. Contributions in petroleum geology and engineering

    SciTech Connect

    Harvey, A.H.; Koederitz, L.; Honarpour, M. )

    1989-01-01

    This book discusses petroleum reservoir components and properties. The contents include: Systems of units. Reservoir Rocks. Reservoir fluids. Relative permeability and capillarity. Reservoir volume and fluid flow. Naturally fractured reservoirs. Natural production mechanisms. Prediction of oil and gas recovery. Analysis of well performance. Gas-condensate reservoirs. Enhanced oil recovery processes.

  2. Taxation, depletion, and welfare: A simulation study of the US petroleum resource

    SciTech Connect

    Deacon, R.T. )

    1993-03-01

    Exhaustible resources in the United States are subject to taxes on property value, production, and corporate income. As applied in practice each tax can cause high-grading - the elimination of incentives to explore, develop, and produce marginal resources - and each can tilt the time path of production toward the present or the future. The potential for such tax-induced distortions has been shown in the theoretical literature. Due to the dynamic nature of resource exploitation and the resulting complexity of models developed to study it, however, purely theoretical exercises have been unable to provide detailed results of a sort that could help guide tax policy. The present paper develops a simulation model of the US petroleum resource and uses it to study the effects of taxation on exploration and production. The model is partial equilibrium in scope and views the industry as a present value maximizing representative firm. Given expectations on the future time path of price, and a function that relates reserve additions to exploratory effort, the industry chooses time paths for exploration and production. Parameters of relevant functions are estimated with data for US petroleum operations in the onshore region of the lower 48 states. The simulated outcomes indicate that property and production (severance) taxes cause substantial deadweight losses, a tax on corporate income from extraction imposes a very small deadweight loss, and the property tax significantly biases utilization of the resource away from the future and toward the present. 33 refs., 6 figs., 3 tabs.

  3. Geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Quarterly report, April 1--June 30, 1998

    SciTech Connect

    Chidsey, T.C. Jr.

    1998-07-01

    The objective of this project is to develop a comprehensive, interdisciplinary, and quantitative characterization of a fluvial-deltaic reservoir which will allow realistic inter-well and reservoir-scale modeling to be constructed for improved oil-field development in similar reservoirs world-wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined. Both new and existing data will be integrated into a three-dimensional representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Transfer of the project results to the petroleum industry is an integral component of the project. Two activities continued this quarter as part of the geological and petrophysical characterization of the fluvial-deltaic Ferron Sandstone: (1) preparation of the project final report and (2) technology transfer.

  4. Using microstructure observations to quantify fracture properties and improve reservoir simulations. Final report, September 1998

    SciTech Connect

    Laubach, S.E.; Marrett, R.; Rossen, W.; Olson, J.; Lake, L.; Ortega, O.; Gu, Y.; Reed, R.

    1999-01-01

    The research for this project provides new technology to understand and successfully characterize, predict, and simulate reservoir-scale fractures. Such fractures have worldwide importance because of their influence on successful extraction of resources. The scope of this project includes creation and testing of new methods to measure, interpret, and simulate reservoir fractures that overcome the challenge of inadequate sampling. The key to these methods is the use of microstructures as guides to the attributes of the large fractures that control reservoir behavior. One accomplishment of the project research is a demonstration that these microstructures can be reliably and inexpensively sampled. Specific goals of this project were to: create and test new methods of measuring attributes of reservoir-scale fractures, particularly as fluid conduits, and test the methods on samples from reservoirs; extrapolate structural attributes to the reservoir scale through rigorous mathematical techniques and help build accurate and useful 3-D models of the interwell region; and design new ways to incorporate geological and geophysical information into reservoir simulation and verify the accuracy by comparison with production data. New analytical methods developed in the project are leading to a more realistic characterization of fractured reservoir rocks. Testing diagnostic and predictive approaches was an integral part of the research, and several tests were successfully completed.

  5. Simulations of Flow Circulations and Atrazine Concentrations in a Midwest U.S. Reservoir

    NASA Astrophysics Data System (ADS)

    Zhao, Xianggui; Gu, Roy R.; Guo, Chuling; Wang, Kui; Li, Shijie

    Atrazine is the most commonly used herbicide in the spring for pre-emergent weed control in the corn cropping area in the Midwestern United States. A frequent high level of herbicide concentrations in reservoirs is a great concern for public health and aquatic ecosystems. In this study, a two-dimensional hydrodynamics and toxic contaminant transport model was applied to Saylorville Reservoir, Iowa, USA. The model simulates physical, chemical, and biological processes and predicts unsteady vertical and longitudinal distributions of a toxic chemical. Model results were validated by measured temperatures and atrazine concentrations. Simulated flow velocities, water temperatures, and chemical concentrations demonstrated that the spatial variation of atrazine concentrations was largely affected by seasonal flow circulation patterns in the reservoir. In particular, the simulated fate and transport of atrazine showed the effect of flow circulation on spatial distribution of atrazine during summer months as the river flow formed an underflow within the reservoir and resulted in greater concentrations near the surface of the reservoir. Atrazine concentrations in the reservoir peaked around the end of May and early June. A thorough understanding of the fate and transport of atrazine in the reservoir can assist in developing operation and pollution prevention strategies with respect to timing, amount, and depth of withdrawal. The responses of atrazine transport to various boundary conditions provide useful information in assessing environmental impact of alternative upstream watershed management practices on the quality of reservoir water.

  6. The impact of lake and reservoir parameterization on global streamflow simulation.

    PubMed

    Zajac, Zuzanna; Revilla-Romero, Beatriz; Salamon, Peter; Burek, Peter; Hirpa, Feyera A; Beck, Hylke

    2017-05-01

    Lakes and reservoirs affect the timing and magnitude of streamflow, and are therefore essential hydrological model components, especially in the context of global flood forecasting. However, the parameterization of lake and reservoir routines on a global scale is subject to considerable uncertainty due to lack of information on lake hydrographic characteristics and reservoir operating rules. In this study we estimated the effect of lakes and reservoirs on global daily streamflow simulations of a spatially-distributed LISFLOOD hydrological model. We applied state-of-the-art global sensitivity and uncertainty analyses for selected catchments to examine the effect of uncertain lake and reservoir parameterization on model performance. Streamflow observations from 390 catchments around the globe and multiple performance measures were used to assess model performance. Results indicate a considerable geographical variability in the lake and reservoir effects on the streamflow simulation. Nash-Sutcliffe Efficiency (NSE) and Kling-Gupta Efficiency (KGE) metrics improved for 65% and 38% of catchments respectively, with median skill score values of 0.16 and 0.2 while scores deteriorated for 28% and 52% of the catchments, with median values -0.09 and -0.16, respectively. The effect of reservoirs on extreme high flows was substantial and widespread in the global domain, while the effect of lakes was spatially limited to a few catchments. As indicated by global sensitivity analysis, parameter uncertainty substantially affected uncertainty of model performance. Reservoir parameters often contributed to this uncertainty, although the effect varied widely among catchments. The effect of reservoir parameters on model performance diminished with distance downstream of reservoirs in favor of other parameters, notably groundwater-related parameters and channel Manning's roughness coefficient. This study underscores the importance of accounting for lakes and, especially, reservoirs and

  7. The impact of lake and reservoir parameterization on global streamflow simulation

    NASA Astrophysics Data System (ADS)

    Zajac, Zuzanna; Revilla-Romero, Beatriz; Salamon, Peter; Burek, Peter; Hirpa, Feyera A.; Beck, Hylke

    2017-05-01

    Lakes and reservoirs affect the timing and magnitude of streamflow, and are therefore essential hydrological model components, especially in the context of global flood forecasting. However, the parameterization of lake and reservoir routines on a global scale is subject to considerable uncertainty due to lack of information on lake hydrographic characteristics and reservoir operating rules. In this study we estimated the effect of lakes and reservoirs on global daily streamflow simulations of a spatially-distributed LISFLOOD hydrological model. We applied state-of-the-art global sensitivity and uncertainty analyses for selected catchments to examine the effect of uncertain lake and reservoir parameterization on model performance. Streamflow observations from 390 catchments around the globe and multiple performance measures were used to assess model performance. Results indicate a considerable geographical variability in the lake and reservoir effects on the streamflow simulation. Nash-Sutcliffe Efficiency (NSE) and Kling-Gupta Efficiency (KGE) metrics improved for 65% and 38% of catchments respectively, with median skill score values of 0.16 and 0.2 while scores deteriorated for 28% and 52% of the catchments, with median values -0.09 and -0.16, respectively. The effect of reservoirs on extreme high flows was substantial and widespread in the global domain, while the effect of lakes was spatially limited to a few catchments. As indicated by global sensitivity analysis, parameter uncertainty substantially affected uncertainty of model performance. Reservoir parameters often contributed to this uncertainty, although the effect varied widely among catchments. The effect of reservoir parameters on model performance diminished with distance downstream of reservoirs in favor of other parameters, notably groundwater-related parameters and channel Manning's roughness coefficient. This study underscores the importance of accounting for lakes and, especially, reservoirs and

  8. Complete genome sequence of a nonculturable Methanococcus maripaludis strain extracted in a metagenomic survey of petroleum reservoir fluids.

    PubMed

    Wang, Xiaoyi; Greenfield, Paul; Li, Dongmei; Hendry, Philip; Volk, Herbert; Sutherland, Tara D

    2011-10-01

    Extraction of genome sequences from metagenomic data is crucial for reconstructing the metabolism of microbial communities that cannot be mimicked in the laboratory. A complete Methanococcus maripaludis genome was generated from metagenomic data derived from a thermophilic subsurface oil reservoir. M. maripaludis is a hydrogenotrophic methanogenic species that is common in mesophilic saline environments. Comparison of the genome from the thermophilic, subsurface environment with the genome of the type species will provide insight into the adaptation of a methanogenic genome to an oil reservoir environment.

  9. Modeling dolomitized carbonate-ramp reservoirs: A case study of the Seminole San Andres unit. Part 2 -- Seismic modeling, reservoir geostatistics, and reservoir simulation

    SciTech Connect

    Wang, F.P.; Dai, J.; Kerans, C.

    1998-11-01

    In part 1 of this paper, the authors discussed the rock-fabric/petrophysical classes for dolomitized carbonate-ramp rocks, the effects of rock fabric and pore type on petrophysical properties, petrophysical models for analyzing wireline logs, the critical scales for defining geologic framework, and 3-D geologic modeling. Part 2 focuses on geophysical and engineering characterizations, including seismic modeling, reservoir geostatistics, stochastic modeling, and reservoir simulation. Synthetic seismograms of 30 to 200 Hz were generated to study the level of seismic resolution required to capture the high-frequency geologic features in dolomitized carbonate-ramp reservoirs. Outcrop data were collected to investigate effects of sampling interval and scale-up of block size on geostatistical parameters. Semivariogram analysis of outcrop data showed that the sill of log permeability decreases and the correlation length increases with an increase of horizontal block size. Permeability models were generated using conventional linear interpolation, stochastic realizations without stratigraphic constraints, and stochastic realizations with stratigraphic constraints. Simulations of a fine-scale Lawyer Canyon outcrop model were used to study the factors affecting waterflooding performance. Simulation results show that waterflooding performance depends strongly on the geometry and stacking pattern of the rock-fabric units and on the location of production and injection wells.

  10. Analysis of formation pressure test results in the Mount Elbert methane hydrate reservoir through numerical simulation

    USGS Publications Warehouse

    Kurihara, M.; Sato, A.; Funatsu, K.; Ouchi, H.; Masuda, Y.; Narita, H.; Collett, T.S.

    2011-01-01

    Targeting the methane hydrate (MH) bearing units C and D at the Mount Elbert prospect on the Alaska North Slope, four MDT (Modular Dynamic Formation Tester) tests were conducted in February 2007. The C2 MDT test was selected for history matching simulation in the MH Simulator Code Comparison Study. Through history matching simulation, the physical and chemical properties of the unit C were adjusted, which suggested the most likely reservoir properties of this unit. Based on these properties thus tuned, the numerical models replicating "Mount Elbert C2 zone like reservoir" "PBU L-Pad like reservoir" and "PBU L-Pad down dip like reservoir" were constructed. The long term production performances of wells in these reservoirs were then forecasted assuming the MH dissociation and production by the methods of depressurization, combination of depressurization and wellbore heating, and hot water huff and puff. The predicted cumulative gas production ranges from 2.16??106m3/well to 8.22??108m3/well depending mainly on the initial temperature of the reservoir and on the production method.This paper describes the details of modeling and history matching simulation. This paper also presents the results of the examinations on the effects of reservoir properties on MH dissociation and production performances under the application of the depressurization and thermal methods. ?? 2010 Elsevier Ltd.

  11. The abundance and distribution of diamondoids in biodegraded oils from the San Joaquin Valley: Implications for biodegradation of diamondoids in petroleum reservoirs

    USGS Publications Warehouse

    Wei, Z.; Moldowan, J.M.; Peters, K.E.; Wang, Y.; Xiang, W.

    2007-01-01

    The biodegradability of diamondoids was investigated using a collection of crude oil samples from the San Joaquin Valley, California, that had been biodegraded to varying extent in the reservoir. Our results show that diamondoids are subjected to biodegradation, which is selective as well as stepwise. Adamantanes are generally more susceptible to biodegradation than other diamondoids, such as diamantanes and triamantanes. We report a possible pathway for the microbial degradation of adamantane. This cage hydrocarbon possibly breaks down to a metabolic intermediate through the action of microbes at higher levels of biodegradation in petroleum reservoirs. Microbial alteration has only a minor effect on diamondoid abundance in oil at low levels of biodegradation. Our results suggest that most diamondoids (with the exception of adamantane) are resistant to biodegradation, like the polycyclic terpanes (e.g. C19-C24 tricyclic terpanes, hopanes, gammacerane, oleananes, Ts, Tm, C29 Ts), steranes and diasteranes. Microbial alteration of diamondoids has a negligible impact on the quantification of oil cracking achieved using the diamondoid-biomarker method. ?? 2007 Elsevier Ltd. All rights reserved.

  12. Self-priming Hemodynamic Reservoir and Inline Flow Meter for a Cardiopulmonary Bypass Simulation

    PubMed Central

    Raasch, David; Austin, Jon; Tallman, Richard

    2010-01-01

    Abstract: Simulator exercises are used at Midwestern University to augment academic and laboratory training toward consolidating particular skills, increasing situation awareness, and preparing the student for practice within the team environment of an operating room. This paper describes an enhanced cardiopulmonary bypass simulator consisting of a self-priming hemodynamic reservoir that includes an inline flow meter. A typical cardiopulmonary bypass adult perfusion circuit was assembled using a roller pump console and integrated oxygenator/heat exchanger/reservoir and primed with 2 liters of water. For patient simulation, a soft-sided reservoir bag was mounted onto an inclined platform. A 1-liter soft-sided bag was placed just above the reservoir, providing an overflow reservoir. The priming line extended to the head of the mannequin. The arterial, venous, and suction lines extended through the open chest. The primed perfusion circuit was connected to ports on the filled reservoir bag. To test the patient simulation, the arterial pump output was adjusted to flow rates ranging from 1–7 liters per minute, with a complete interruption (to zero flow) between each test run. An inline flow meter was added to the bypass circuit and an analog to digital converter board was used to pass flow data into the computer-based simulation program. The use of an inclined hemodynamic reservoir bag proved to be self-priming and functional without problems over a wide range of flows tested. By including a reservoir with the mannequin, plus processing and displaying real-time flow data using the CPB-Sim simulation program, a higher fidelity and more realistic simulation experience was created. PMID:20648900

  13. Self-priming hemodynamic reservoir and inline flow meter for a cardiopulmonary bypass simulation.

    PubMed

    Raasch, David; Austin, Jon; Tallman, Richard

    2010-06-01

    Simulator exercises are used at Midwestern University to augment academic and laboratory training toward consolidating particular skills, increasing situation awareness, and preparing the student for practice within the team environment of an operating room. This paper describes an enhanced cardiopulmonary bypass simulator consisting of a self-priming hemodynamic reservoir that includes an inline flow meter. A typical cardiopulmonary bypass adult perfusion circuit was assembled using a roller pump console and integrated oxygenator/heat exchanger/reservoir and primed with 2 liters of water. For patient simulation, a soft-sided reservoir bag was mounted onto an inclined platform. A 1-liter soft-sided bag was placed just above the reservoir, providing an overflow reservoir. The priming line extended to the head of the mannequin. The arterial, venous, and suction lines extended through the open chest. The primed perfusion circuit was connected to ports on the filled reservoir bag. To test the patient simulation, the arterial pump output was adjusted to flow rates ranging from 1-7 liters per minute, with a complete interruption (to zero flow) between each test run. An inline flow meter was added to the bypass circuit and an analog to digital converter board was used to pass flow data into the computer-based simulation program. The use of an inclined hemodynamic reservoir bag proved to be self-priming and functional without problems over a wide range of flows tested. By including a reservoir with the mannequin, plus processing and displaying real-time flow data using the CPB-Sim simulation program, a higher fidelity and more realistic simulation experience was created.

  14. Vortex formation in coalescence of droplets with a reservoir using molecular dynamics simulations.

    PubMed

    Taherian, Fereshte; Marcon, Valentina; Bonaccurso, Elmar; van der Vegt, Nico F A

    2016-10-01

    The flow patterns generated by the coalescence of aqueous ethanol droplets with a water reservoir are investigated using molecular dynamics simulations. The influence of surface tension gradient, which leads to the spreading of the droplet along the liquid-vapor interface of the reservoir, is studied by changing the ethanol concentration of the droplet. The internal circulation (vortex strength) of the droplet and the reservoir are analyzed separately. Simulation results reveal the formation of swirling flows within the droplet at early times when the radius of the coalescence neck due to the capillary forces increases rapidly with time. The vortex strength is found to be higher at lower concentrations of ethanol (higher liquid-vapor surface tension of the droplet), where the driving force for the contact line movement (capillary force) is stronger. The circulation diminishes by moving the center of mass of the droplet toward the reservoir. The lower surface tension of the droplet compared to the reservoir leads to surface tension gradient driven flow, which transports the droplet molecules along the liquid-vapor interface of the reservoir. Such a flow motion results in the generation of convective flows in the underlying water, which forms swirling flows within the reservoir. Therefore, the vortex strength of the reservoir is higher at higher ethanol concentrations of the droplet. The reservoir circulation decays to zero as soon as the ethanol concentration becomes homogeneous along the interface of the pool. The time evolution of circulation within the droplet and the reservoir are correlated with the center of mass motion of the droplet toward the surface, the time variation of the precursor film radius and the dynamic surface tension of the reservoir.

  15. Petroleum biodegradation studied in sediment-flow-through systems simulating natural oil seepage in marine sediments

    NASA Astrophysics Data System (ADS)

    Mishra, Sonakshi; Wefers, Peggy; Steeb, Philip; Schmidt, Mark; Treude, Tina

    2014-05-01

    The natural biodegradation of hydrocarbons depends on several environmental factors like nutrients, salinity, temperature, pressure, redox-conditions and composition of crude oil. Petroleum migrating from depth into marine surface sediments at natural seep sites could be subjected to a sequence of different kind of microbial processes which is controlled by a strong redox gradient within a thin sediment segment. Most studies on microbial degradation of petroleum have focused either only on selected hydrocarbon fractions or on cultured microbes. This study, however, attempts to investigate the natural microbial response of marine sediments to crude oil seepage with detailed analysis of sediment and porewater geochemistry, hydrocarbon degradation products, microbial activity, and microbial genetics. A sediment-oil-flow-through-system was established where crude oil migrated through the bottom of (approximately 30 cm long) intact marine sediment cores simulating a natural seepage scenario. Electron acceptor-rich oxic seawater was provided at the top of the core and anoxic conditions were established at the bottom of the cores. The intact sediment cores had been sampled from the Caspian Sea (near Baku) and the North Alex Mud Volcano in the Mediterranean Sea. The Caspian Sea and the North Alex Mud Volcano are both sites with active transport of hydrocarbons from depth by mud volcano activity. The geochemical changes in the sediment cores during oil seepage were monitored by using microelectrodes and porewater analyses. The geochemical analysis was later followed by hydrocarbon and molecular analyses at the end of the experiment by slicing the cores. First results based on the biogeochemistry of the sediment cores and hydrocarbon analyses are presented here. Porewater profiles of hydrogen sulfide and sulfate during the experimental runs gave first indications of microbial response and sulfate reduction due to the addition of crude oil. The core from North Alex Mud

  16. Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz

    SciTech Connect

    Yuan Zhang; Jin-hu Wu; Dong-ke Zhang

    2008-03-15

    The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only over the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.

  17. Functional and genetic characterization of hydrocarbon biodegrader and exopolymer-producing clones from a petroleum reservoir metagenomic library.

    PubMed

    Vasconcellos, Suzan P; Sierra-Garcia, Isabel N; Dellagnezze, Bruna M; Vicentini, Renato; Midgley, David; Silva, Cynthia C; Santos Neto, Eugenio V; Volk, Herbert; Hendry, Philip; Oliveira, Valéria M

    2017-05-01

    Microbial degradation of petroleum is a worldwide issue, which causes physico-chemical changes in its compounds, diminishing its commercial value. Biosurfactants are chemically diverse molecules that can be produced by several microorganisms and can enable microbial access to hydrocarbons. In order to investigate both microbial activities, function-driven screening assays for biosurfactant production and hydrocarbon biodegradation were carried out from a metagenomic fosmid library. It was constructed from the total DNA extracted from aerobic and anaerobic enrichments from a Brazilian biodegraded petroleum sample. A sum of 10 clones were selected in order to evaluate their ability to produce exopolymers (EPS) with emulsifying activity, as well as to characterize the gene sequences, harbored by the fosmid clones, through 454 pyrosequencing. Functional analyses confirmed the ability of some clones to produce surfactant compounds. Regarding hydrocarbon as microbial carbon sources, n-alkane (in mixture or not) and naphthalene were preferentially consumed as substrates. Analysis of sequence data set revealed the presence of genes related to xenobiotics biodegradation and carbohydrate metabolism. These data were corroborated by the results of hydrocarbon biodegradation and biosurfactant production detected in the evaluated clones.

  18. Simulation and resistivity modeling of a geothermal reservoir with waters of different salinity

    SciTech Connect

    Pruess, K.; Wilt, M.; Bodvarsson, G.S.; Goldstein, N.E.

    1982-10-01

    Apparent resistivities measured by means of repetitive dipole-dipole surveys show significant changes within the Cerro Prieto reservoir. The changes are attributed to production and natural recharge. To better understand the observed geophysical phenomena a simple reservoir simulation study combined with the appropriate DC resistivity calculations to determine the expected magnitude of apparent resistivity change. We consider production from a liquid-dominated reservoir with dimensions and parameters of the Cerro Prieto A reservoir and assume lateral and vertical recharge of colder and less saline waters. Based on rather schematic one- and two-dimensional reservoir simulations, we calculate changes in formation resistivity which we then transform into changes in apparent resistivity that would be observed at the surface. Simulated changes in apparent resistivities over the production zone show increases of 10 to 20% over a 3 year period at the current rate of fluid extraction. Changes of this magnitude are not only within our ability to discern using proper field techniques, but are consistent in magnitude with some of the observed effects. However, the patterns of apparent resistivity changes in the simulated dipole-dipole pseudosection only partially resemble the observed field data. This is explained by the fact that the actual fluid recharge into the A reservoir is more complicated than assumed in our simple, schematic recharge models.

  19. Comparisons of Simulated Hydrodynamics and Water Quality for Projected Demands in 2046, Pueblo Reservoir, Southeastern Colorado

    USGS Publications Warehouse

    Ortiz, Roderick F.; Galloway, Joel M.; Miller, Lisa D.; Mau, David P.

    2008-01-01

    Pueblo Reservoir is one of southeastern Colorado's most valuable water resources. The reservoir provides irrigation, municipal, and industrial water to various entities throughout the region. The reservoir also provides flood control, recreational activities, sport fishing, and wildlife enhancement to the region. The Bureau of Reclamation is working to meet its goal to issue a Final Environmental Impact Statement (EIS) on the Southern Delivery System project (SDS). SDS is a regional water-delivery project that has been proposed to provide a safe, reliable, and sustainable water supply through the foreseeable future (2046) for Colorado Springs, Fountain, Security, and Pueblo West. Discussions with the Bureau of Reclamation and the U.S. Geological Survey led to a cooperative agreement to simulate the hydrodynamics and water quality of Pueblo Reservoir. This work has been completed and described in a previously published report, U.S. Geological Survey Scientific Investigations Report 2008-5056. Additionally, there was a need to make comparisons of simulated hydrodynamics and water quality for projected demands associated with the various EIS alternatives and plans by Pueblo West to discharge treated water into the reservoir. Plans by Pueblo West are fully independent of the SDS project. This report compares simulated hydrodynamics and water quality for projected demands in Pueblo Reservoir resulting from changes in inflow and water quality entering the reservoir, and from changes to withdrawals from the reservoir as projected for the year 2046. Four of the seven EIS alternatives were selected for scenario simulations. The four U.S. Geological Survey simulation scenarios were the No Action scenario (EIS Alternative 1), the Downstream Diversion scenario (EIS Alternative 2), the Upstream Return-Flow scenario (EIS Alternative 4), and the Upstream Diversion scenario (EIS Alternative 7). Additionally, the results of an Existing Conditions scenario (water years 2000 through

  20. Numerical simulation of fluid implementing heat transfer in naturally fractured geothermal reservoir with DFN method

    NASA Astrophysics Data System (ADS)

    Lee, T.; Kim, K.; Lee, K.; Lee, H.; Lee, W.

    2015-12-01

    Natural fractures have an effect on the fluid flow and heat transfer in the naturally fractured geothermal reservoir. However, most of the previous works in this area assumed that reservoir systems are continuum model whether it is single continuum or dual continuum. Moreover, some people have studied without continuum model but, it was just pipeline model. In this paper, we developed a generalized discrete fracture network (DFN) geothermal reservoir simulator. In the model, 2D flow is possible within a rectangular fracture, which is important in thick naturally fractured reservoirs. The DFN model developed in this study was validated for two synthetic fracture systems using a commercial thermal model, TETRAD. Comparison results showed an excellent matching between both models. However, this model is only fracture model and it can't calculate simulation of fluid flow and heat transfer in matrix. Therefore, matrix flow model will be added to this model.

  1. Some mismatches occurred when simulating fractured reservoirs as homogeneous porous media

    SciTech Connect

    Mario Cesar Suarez Arriaga; Fernando Samaniego V.; Fernando Rodriguez

    1996-01-24

    The understanding of transport processes that occur in naturally fractured geothermal systems is far from being complete. Often, evaluation and numerical simulations of fractured geothermal reservoirs, are carried out by assuming equivalent porous media and homogeneous petrophysical properties within big matrix blocks. The purpose of this paper, is to present a comparison between results obtained from numerical studies of a naturally fractured reservoir treated as a simple porous medium and the simulation of some real aspects of the fractured reservoir. A general conclusion outlines the great practical importance of considering even approximately, the true nature of such systems. Our results show that the homogeneous simplified evaluation of the energy resource in a fractured system, could result in unrealistic estimates of the reservoir capacity to generate electricity.

  2. Ultrasonic and numerical modeling of reflections from simulated fractured reservoirs

    SciTech Connect

    Stephen, T.; Zhu, Xiang,

    1997-10-01

    In order to develop modeling techniques for the characterization of fracture properties in tight gas sands from surface seismic reflection data we examine seismic waves scattered from anisotropic heterogeneity with laboratory data and numerical modeling. Laboratory models representing features of a fractured reservoir were constructed using Phenolite embedded in a Lucite background, and seismic surveys were gathered over these models. In parallel with laboratory measurement, finite-difference modeling of reflections from a fractured medium were carried out. Fracture zone properties were calculated using an effective medium theory, the variation of fracture density produced a heterogeneous medium. The heterogeneity was modeled with a stochastic process, characterized by a probability density function and an auto-correlation function. Results from both modeling efforts show that prestacked AVO data can contain important information describing reservoir heterogeneity.

  3. Reservoir Characterization of Bridgeport and Cypress Sandstones in Lawrence Field Illinois to Improve Petroleum Recovery by Alkaline-Surfactant-Polymer Flood

    SciTech Connect

    Seyler, Beverly; Grube, John; Huff, Bryan; Webb, Nathan; Damico, James; Blakley, Curt; Madhavan, Vineeth; Johanek, Philip; Frailey, Scott

    2012-12-21

    Within the Illinois Basin, most of the oilfields are mature and have been extensively waterflooded with water cuts that range up to 99% in many of the larger fields. In order to maximize production of significant remaining mobile oil from these fields, new recovery techniques need to be researched and applied. The purpose of this project was to conduct reservoir characterization studies supporting Alkaline-Surfactant-Polymer Floods in two distinct sandstone reservoirs in Lawrence Field, Lawrence County, Illinois. A project using alkaline-surfactantpolymer (ASP) has been established in the century old Lawrence Field in southeastern Illinois where original oil in place (OOIP) is estimated at over a billion barrels and 400 million barrels have been recovered leaving more than 600 million barrels as an EOR target. Radial core flood analysis using core from the field demonstrated recoveries greater than 20% of OOIP. While the lab results are likely optimistic to actual field performance, the ASP tests indicate that substantial reserves could be recovered even if the field results are 5 to 10% of OOIP. Reservoir characterization is a key factor in the success of any EOR application. Reservoirs within the Illinois Basin are frequently characterized as being highly compartmentalized resulting in multiple flow unit configurations. The research conducted on Lawrence Field focused on characteristics that define reservoir compartmentalization in order to delineate preferred target areas so that the chemical flood can be designed and implemented for the greatest recovery potential. Along with traditional facies mapping, core analyses and petrographic analyses, conceptual geological models were constructed and used to develop 3D geocellular models, a valuable tool for visualizing reservoir architecture and also a prerequisite for reservoir simulation modeling. Cores were described and potential permeability barriers were correlated using geophysical logs. Petrographic analyses

  4. Waterflooding simulation of reservoir containing horizontal well stimulated by multistage hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Mazo, A. B.; Khamidullin, M. R.; Potashev, K. A.

    2016-11-01

    The article presents a three-dimensional mathematical model for two-phase fluid flow near a multistage hydraulically fractured horizontal well (MSHFHW). The flow in the reservoir and in the fractures is simulated separately, and the flow rate is governed by Darcy's law. Finite volume method is used for spatial approximation. The obtained systems of linear equations for pressure in the reservoir and in the fractures are solved simultaneously, which allows us to avoid using iterative process for solution adjustment both in the fractures and the reservoir. Saturation is calculated by the implicit adaptive scheme AIM.

  5. Numerical simulation of heterogeneous fractured gas reservoir systems with turbulence and closure stress effects

    SciTech Connect

    Allam, A.M.; Crichlow, H.B.; Soliman, M.Y.

    1981-01-01

    A numerical technique for analyzing the behavior of a fractured gas reservoir system is presented. The reservoir is simulated by a fully implicit three-dimensional model that incorporates the effects of turbulent flow and closure stress in a finite conductivity fracture. The model utilizes the real gas pseudo-pressure, two-point upstream transmissibilities and a stable iterative process based on a sparse matrix approach to solving the equation systems. This paper presents a description of the model and applications to various reservoirs to illustrate the effects of fracture heights, turbulence and closure pressure on well performance. 16 refs.

  6. Culture-Dependent and Culture-Independent Characterization of Microbial Assemblages Associated with High-Temperature Petroleum Reservoirs

    PubMed Central

    Orphan, V. J.; Taylor, L. T.; Hafenbradl, D.; Delong, E. F.

    2000-01-01

    Recent investigations of oil reservoirs in a variety of locales have indicated that these habitats may harbor active thermophilic prokaryotic assemblages. In this study, we used both molecular and culture-based methods to characterize prokaryotic consortia associated with high-temperature, sulfur-rich oil reservoirs in California. Enrichment cultures designed for anaerobic thermophiles, both autotrophic and heterotrophic, were successful at temperatures ranging from 60 to 90°C. Heterotrophic enrichments from all sites yielded sheathed rods (Thermotogales), pleomorphic rods resembling Thermoanaerobacter, and Thermococcus-like isolates. The predominant autotrophic microorganisms recovered from inorganic enrichments using H2, acetate, and CO2 as energy and carbon sources were methanogens, including isolates closely related to Methanobacterium, Methanococcus, and Methanoculleus species. Two 16S rRNA gene (rDNA) libraries were generated from total community DNA collected from production wellheads, using either archaeal or universal oligonucleotide primer sets. Sequence analysis of the universal library indicated that a large percentage of clones were highly similar to known bacterial and archaeal isolates recovered from similar habitats. Represented genera in rDNA clone libraries included Thermoanaerobacter, Thermococcus, Desulfothiovibrio, Aminobacterium, Acidaminococcus, Pseudomonas, Halomonas, Acinetobacter, Sphingomonas, Methylobacterium, and Desulfomicrobium. The archaeal library was dominated by methanogen-like rDNAs, with a lower percentage of clones belonging to the Thermococcales. Our results strongly support the hypothesis that sulfur-utilizing and methane-producing thermophilic microorganisms have a widespread distribution in oil reservoirs and the potential to actively participate in the biogeochemical transformation of carbon, hydrogen, and sulfur in situ. PMID:10653739

  7. Advanced Techniques for Reservoir Simulation and Modeling of Non-Conventional Wells

    SciTech Connect

    Durlofsky, Louis J.; Aziz, Khalid

    2001-08-23

    Research results for the second year of this project on the development of improved modeling techniques for non-conventional (e.g., horizontal, deviated or multilateral) wells were presented. The overall program entails the development of enhanced well modeling and general simulation capabilities. A general formulation for black-oil and compositional reservoir simulation was presented.

  8. Numerical simulation of a natural attenuation experiment with a petroleum hydrocarbon NAPL source.

    PubMed

    Brauner, J S; Widdowson, M A

    2001-01-01

    A three-dimensional solute transport model with biological reactions is presented for simulating the natural attenuation study (NATS) at the Columbus Air Force Base in eastern Mississippi. NATS consisted of the release of a petroleum-based nonaqueous phase liquid (NAPL) and subsequent monitoring of BTEX (benzene, toluene, ethylbenzene, p-xylene), naphthalene, decane, and bromide in a shallow, unconfined aquifer. Conceptual and mathematical models were developed for NAPL source release, sequential aerobic/anaerobic biodegradation, and sorption during NATS. A multiple species, solute transport code (SEAM3D) was used to simulate fully three-dimensional transport and aerobic, nitrate-reducing, ferrogenic, and methanogenic hydrocarbon biodegradation. Simulation results matched individual BTEX concentration distributions collected five- and nine-months following NAPL release. SEAM3D mass-balance calculations at t = nine months indicated that 49% of the hydrocarbon mass that dissolved into the aqueous phase was consumed by biodegradation, 13% of this mass was sorbed, and the remaining 38% was present in the aqueous phase. Mass calculations at t = nine months further indicated that aerobic biodegradation accounted for the majority of hydrocarbon biodegradation (46% of the biodegraded mass), followed by ferrogenesis (28%), nitrate-reduction (21%), and methanogenesis (5%). Model results were particularly sensitive to the NAPL release rate, the initial ferric iron (Fe[III]) concentration, hydrocarbon utilization rates, initial condition for the anaerobic microbial populations, and dispersivity.

  9. On-line Optimization-Based Simulators for Fractured and Non-fractured Reservoirs

    SciTech Connect

    Milind D. Deo

    2005-08-31

    Oil field development is a multi-million dollar business. Reservoir simulation is often used to guide the field management and development process. Reservoir characterization and geologic modeling tools have become increasingly sophisticated. As a result the geologic models produced are complex. Most reservoirs are fractured to a certain extent. The new geologic characterization methods are making it possible to map features such as faults and fractures, field-wide. Significant progress has been made in being able to predict properties of the faults and of the fractured zones. Traditionally, finite difference methods have been employed in discretizing the domains created by geologic means. For complex geometries, finite-element methods of discretization may be more suitable. Since reservoir simulation is a mature science, some of the advances in numerical methods (linear, nonlinear solvers and parallel computing) have not been fully realized in the implementation of most of the simulators. The purpose of this project was to address some of these issues. {sm_bullet} One of the goals of this project was to develop a series of finite-element simulators to handle problems of complex geometry, including systems containing faults and fractures. {sm_bullet} The idea was to incorporate the most modern computing tools; use of modular object-oriented computer languages, the most sophisticated linear and nonlinear solvers, parallel computing methods and good visualization tools. {sm_bullet} One of the tasks of the project was also to demonstrate the construction of fractures and faults in a reservoir using the available data and to assign properties to these features. {sm_bullet} Once the reservoir model is in place, it is desirable to find the operating conditions, which would provide the best reservoir performance. This can be accomplished by utilization optimization tools and coupling them with reservoir simulation. Optimization-based reservoir simulation was one of the

  10. Enhancement of the sweep efficiency of waterflooding operations by the in-situ microbial population of petroleum reservoirs

    SciTech Connect

    Brown, L.R.; Vadie, A.A.; Stephens, J.O.; Azadpour, A.

    1995-12-31

    Live cores were obtained from five reservoirs using special precautions to prevent contamination by exogenous microorganisms and minimize exposure to oxygen. The depths from which the cores were obtained ranged from 2,705 ft to 6,568 ft. Core plugs were cut radially from live cores, encased in heat-shrink plastic tubes, placed in core holders, and fitted with inlets and outlets. Nutrient additions stimulated the in-situ microbial population to increase, dissolve stratal material, produce gases, and release oil. Reduction in flow through the core plugs was observed in some cases, while in other cases flow was increased, probably due to the dissolution of carbonates in the formation. A field demonstration of the ability of the in-situ microbial population to increase oil recovery by blocking the more permeable zones of the reservoir is currently underway. This demonstration is being conducted in the North Blowhorn Creek Unit situated in Lamar County, Alabama. Live cores were obtained from a newly drilled well in the field and tested as described above. The field project involves four test patterns each including one injector, four to five producers, and a comparable control injector with its four to five producers. Nutrient injection in the field began November 1994.

  11. Application of advanced reservoir characterization, simulation and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Annual report

    SciTech Connect

    Dutton, S.P.; Asquith, G.B.; Barton, M.D.; Cole, A.G.; Gogas, J.; Malik, M.A.; Clift, S.J.; Guzman, J.I.

    1997-11-01

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. This project involves reservoir characterization of two Late Permian slope and basin clastic reservoirs in the Delaware Basin, West Texas, followed by a field demonstration in one of the fields. The fields being investigated are Geraldine Ford and Ford West fields in Reeves and Culberson Counties, Texas. Project objectives are divided into two major phases, reservoir characterization and implementation. The objectives of the reservoir characterization phase of the project were to provide a detailed understanding of the architecture and heterogeneity of the two fields, the Ford Geraldine unit and Ford West field. Reservoir characterization utilized 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once reservoir characterized was completed, a pilot area of approximately 1 mi{sup 2} at the northern end of the Ford Geraldine unit was chosen for reservoir simulation. This report summarizes the results of the second year of reservoir characterization.

  12. Coupling geostatistics to detailed reservoir description allows better visualization and more accurate characterization/simulation of turbidite reservoirs: Elk Hills oil field, California

    SciTech Connect

    Allan, M.E.; Wilson, M.L.; Wightman, J. )

    1996-01-01

    The Elk Hills giant oilfield, located in the southern San Joaquin Valley of California, has produced 1.1 billion barrels of oil from Miocene and shallow Pliocene reservoirs. 65% of the current 64,000 BOPD production is from the pressure-supported, deeper Miocene turbidite sands. In the turbidite sands of the 31 S structure, large porosity permeability variations in the Main Body B and Western 31 S sands cause problems with the efficiency of the waterflooding. These variations have now been quantified and visualized using geostatistics. The end result is a more detailed reservoir characterization for simulation. Traditional reservoir descriptions based on marker correlations, cross-sections and mapping do not provide enough detail to capture the short-scale stratigraphic heterogeneity needed for adequate reservoir simulation. These deterministic descriptions are inadequate to tie with production data as the thinly bedded sand/shale sequences blur into a falsely homogenous picture. By studying the variability of the geologic petrophysical data vertically within each wellbore and spatially from well to well, a geostatistical reservoir description has been developed. It captures the natural variability of the sands and shales that was lacking from earlier work. These geostatistical studies allow the geologic and petrophysical characteristics to be considered in a probabilistic model. The end-product is a reservoir description that captures the variability of the reservoir sequences and can be used as a more realistic starting point for history matching and reservoir simulation.

  13. Coupling geostatistics to detailed reservoir description allows better visualization and more accurate characterization/simulation of turbidite reservoirs: Elk Hills oil field, California

    SciTech Connect

    Allan, M.E.; Wilson, M.L.; Wightman, J.

    1996-12-31

    The Elk Hills giant oilfield, located in the southern San Joaquin Valley of California, has produced 1.1 billion barrels of oil from Miocene and shallow Pliocene reservoirs. 65% of the current 64,000 BOPD production is from the pressure-supported, deeper Miocene turbidite sands. In the turbidite sands of the 31 S structure, large porosity & permeability variations in the Main Body B and Western 31 S sands cause problems with the efficiency of the waterflooding. These variations have now been quantified and visualized using geostatistics. The end result is a more detailed reservoir characterization for simulation. Traditional reservoir descriptions based on marker correlations, cross-sections and mapping do not provide enough detail to capture the short-scale stratigraphic heterogeneity needed for adequate reservoir simulation. These deterministic descriptions are inadequate to tie with production data as the thinly bedded sand/shale sequences blur into a falsely homogenous picture. By studying the variability of the geologic & petrophysical data vertically within each wellbore and spatially from well to well, a geostatistical reservoir description has been developed. It captures the natural variability of the sands and shales that was lacking from earlier work. These geostatistical studies allow the geologic and petrophysical characteristics to be considered in a probabilistic model. The end-product is a reservoir description that captures the variability of the reservoir sequences and can be used as a more realistic starting point for history matching and reservoir simulation.

  14. Reservoir analysis study: Naval Petroleum Reserve No. 1, Elk Hills Field, Kern County, California: Phase 3 report, Recommended additional reservoir engineering analysis

    SciTech Connect

    Not Available

    1988-07-01

    The basis for completion of the Phase III tasks above were the reports of Phases I and II and the associated backup material. The Phase II report was reviewed to identify the major uncertainties in all of the reserve assignments. In addition to the Proved, Probable and Possible reserves of Phase II, ''potential reserves'' or those associated with a greater degree of risk than the Possible reserves included in the Phase II report, were also identified based on the work performed by Bergeson through the Phase II reporting date. Thirty-three specific studies were identified to address the major Phase II reserve uncertainties or these potential reserves. These studies are listed in Table 1 and are grouped by the Elk Hills pool designation. The basis and need for each study are elaborated in the discussion which follows. Where possible, the need for the study was quantified by associating the study with a particular reserve estimate which would be clarified by the analysis. This reserve value was either the Probable or Possible reserves which were being studied, the potential reserves that were identified, or simply the uncertainty inherent in the proved reserves as identified in the study purpose. The costs associated with performing the study are also shown in Table 1 and were estimated based on Bergeson's knowledge of the Elk Hills reservoirs and data base following Phases I and II, as well as the company's experience in performing similar studies in other fields. The cost estimates are considered reasonable for general budgeting purposes, but may require refinement prior to actual initiation of these studies. This is particularly true for studies involving field testing to obtain additional log, core or test information as the cost of such items is not considered in this report. 51 figs., 46 tabs.

  15. One-dimensional simulation of stratification and dissolved oxygen in McCook Reservoir, Illinois

    USGS Publications Warehouse

    Robertson, Dale M.

    2000-01-01

    As part of the Chicagoland Underflow Plan/Tunnel and Reservoir Plan, the U.S. Army Corps of Engineers, Chicago District, plans to build McCook Reservoir.a flood-control reservoir to store combined stormwater and raw sewage (combined sewage). To prevent the combined sewage in the reservoir from becoming anoxic and producing hydrogen sulfide gas, a coarse-bubble aeration system will be designed and installed on the basis of results from CUP 0-D, a zero-dimensional model, and MAC3D, a three-dimensional model. Two inherent assumptions in the application of MAC3D are that density stratification in the simulated water body is minimal or not present and that surface heat transfers are unimportant and, therefore, may be neglected. To test these assumptions, the previously tested, one-dimensional Dynamic Lake Model (DLM) was used to simulate changes in temperature and dissolved oxygen in the reservoir after a 1-in-100-year event. Results from model simulations indicate that the assumptions made in MAC3D application are valid as long as the aeration system, with an air-flow rate of 1.2 cubic meters per second or more, is operated while the combined sewage is stored in the reservoir. Results also indicate that the high biochemical oxygen demand of the combined sewage will quickly consume the dissolved oxygen stored in the reservoir and the dissolved oxygen transferred through the surface of the reservoir; therefore, oxygen must be supplied by either the rising bubbles of the aeration system (a process not incorporated in DLM) or some other technique to prevent anoxia.

  16. Simulation of irreversible rock compaction effects on geopressured reservoir response: Topical report

    SciTech Connect

    Riney, T.D.

    1986-12-01

    A series of calculations are presented which quantitatively demonstrate the effects of nonlinear stress-deformation properties on the behavior of geopressured reservoirs. The range of stress-deformation parameters considered is based on information available from laboratory rock mechanics tests performed at the University of Texas at Austin and at Terra Tek, Inc. on cores recovered from geopressured wells. The effects of irreversible formation rock compaction, associated permeability reduction, and repetitive load/unload cycling are considered. The formation rock and geopressured brine properties are incorporated into an existing reservoir simulator using a bilinear model for the irreversible compaction process. Pressure drawdown and buildup testing of a well producing from the geopressured formation is simulated for a suite of calculations covering the range of formation parameters. The results are presented and discussed in terms of the inference (e.g., permeability and reservoir volume) that would be drawn from the simulated test data by an analyst using conventional methods.

  17. [Identification of Hydrocarbon-Oxidizing Dietzia Bacteria from Petroleum Reservoirs Based on Phenotypic Properties and Analysis of the 16S rRNA and gyrB Genes].

    PubMed

    Nazina, T N; Shumkova, E S; Sokolova, D Sh; Babich, T L; Zhurina, M V; Xue, Yan-Fen; Osipov, G A; Poltaraus, A B; Tourova, T P

    2015-01-01

    The taxonomic position of hydrocarbon-oxidizing bacterial strains 263 and 32d isolated from formation water of the Daqing petroleum reservoir (PRC) was determined by polyphasic taxonomy techniques, including analysis of the 16S rRNA and the gyrB genes. The major chemotaxonomic characteristics of both strains, including the IV type cell wall, composition of cell wall fatty acids, mycolic acids, and menaquinones, agreed with those typical of Dietzia strains. The DNA G+C content of strains 263 and 32d were 67.8 and 67.6 mol%, respectively. Phylogenetic analysis of the 16S rRNA gene of strain 32d revealed 99.7% similarity to the gene of D. maris, making it possible to identify strain 32d as belonging to this species. The 16S rRNA gene sequence of strain 263 exhibited 99.7 and 99.9% similarity to those of D. natronolimnaea and D. cercidiphylli YIM65002(T), respectively. Analysis of the gyrB genes of the subterranean isolates and of a number of Dietzia type strains confirmed classiffication of strain 32d as a D. maris strain and of strain 263, as a D. natronolimnaea strain. A conclusion was made concerning higher resolving power of phylogenetic analysis of the gyrB gene compared to the 16S rRNA gene analysis in the case of determination of the species position of Dietzia isolates.

  18. Influence of tectonic terranes adjacent to Precambrian Wyoming province of petroleum source and reservoir rock stratigraphy in northern Rocky Mountain region

    SciTech Connect

    Tonnsen, J.J.

    1984-07-01

    The perimeter of the Archean Precambrian Wyoming province can be generally defined. A Proterozoic suture belt separates the province from the Archean Superior province to the east. The western margin of the Precambrian rocks lies under the western Overthrust belt, but the Precambrian province extends at least as far west as southwest Montana and southeast Idaho. The province is bounded on the north and south by more regionally extensive Proterozoic mobile belts. In the northern belt, Archean rocks have been remobilized by Proterozoic tectonic events, but the southern belt does not appear to contain rocks as old as Archean. The tectonic response of these Precambrian terranes to cratonic and continental margin vertical and horizontal forces has exerted a profound influence on Phanerozoic sedimentation and stratigraphic facies distributions. Petroleum source rock and reservoir rock stratigraphy of the Northern Rocky Mountain region has been correlated with this structural history. In particular, the Devonian, Permian, and Jurassic sedimentation patterns can be shown to have been influenced by articulation among the different terranes comprising the ancient substructure. Depositional patterns in the Chester-Morrow carbonate and clastic sequence in the Central Montana trough are also related to this substructure. Further, a correlation between these tectonic terranes and the localization of regional hydrocarbon accumulations has been observed and has been useful in basin analyses for exploration planning.

  19. Visualization of reservoir simulation data with an immersive virtual reality system

    SciTech Connect

    Williams, B.K.

    1996-10-01

    This paper discusses an investigation into the use of an immersive virtual reality (VR) system to visualize reservoir simulation output data. The hardware and software configurations of the test-immersive VR system are described and compared to a nonimmersive VR system and to an existing workstation screen-based visualization system. The structure of 3D reservoir simulation data and the actions to be performed on the data within the VR system are discussed. The subjective results of the investigation are then presented, followed by a discussion of possible future work.

  20. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Technical progress report

    SciTech Connect

    Dutton, S.P.

    1996-04-30

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. One the reservoir-characterization study of both field is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to: (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area; (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments; and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced recovery program (CO{sub 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill well will be drilled and cored. Technical progress is summarized for: geophysical characterization; reservoir characterization; outcrop characterization; and producibility problem characterization.

  1. Simulation of water temperature in two reservoirs with Delft3d

    NASA Astrophysics Data System (ADS)

    Yang, J. Y.; Zhou, L. Y.

    2016-08-01

    The proposeled Guanjingkou and Fengdou reservoir will be constructed at Chongqing city and Muling city in China respectively. The water temperature in the reservoir, in the downstream, and the aquatic ecosystem would be altered by the construction of the reservoirs. This paper simulates the water temperature in the two reservoirs by using the Delft3d z-layer model, which uses the fixed elevation for layers. According to the simulation results, the temperature profile in the reservoirs can be divided into three layers: the upmost epilimnion layer, the beneathed thermocline layer, and the constant tepmerature layer at bottom. The temperature effects can be reduced by measurements of stoplogs gates and mutiple gates, respectively. Based on the simulation results in the wet, nomal, and dry year, the temperature of water released from the stoplogs gates at Guanjingkou reservior can be respectively increased by 5.7°C, 6.8°C, 9.6°C, and 5.5°C in the irrigation season from May to August. The temperature of water released from the mutiple gates at Fengdou reservior can be respectively increased by 7.7 °C, 1.9 °C, 9.5 °C, and 10.1 °C from May to August. The negative impacts from the water with lower temperature on the related ecosystem can be significently alleviated.

  2. Simulation of Hydrodynamics at Stratified Reservoirs Using a Staged Modeling Approach

    SciTech Connect

    Khangaonkar, Tarang P.; Yang, Zhaoqing; Paik, Joongcheol; Sotiropoulos, Fotis

    2008-10-01

    Hydropower reservoirs impounded by high-head dams exhibit complex circulation that confuses the downstream migrating salmon and limits successful collection and passage of fish. Fish passage engineers attempt to modify the hydrothermal behavior at reservoirs through structural and operational modifications and often use hydrodynamic simulations to guide their actions. Simulation of key hydrothermal processes such as (a) development of a stable two-layer stratified system, (b) density-driven currents over a reservoir length scale, and (c) discharge hydraulics near the power generation and fish collection intakes requires highly specialized models applied at differing temporal and spatial scales. A staged modeling approach is presented that uses external coupling of models at varying temporal scales and spatial resolution to simulate the entire hydraulic regime from the mouth of the reservoir at the upstream end to the discharge at the dam. The staged modeling approach is illustrated using a case study where structural modifications were evaluated to improve reservoir stratification and density-driven currents. The model results provided input and valuable insight in the development of a new structure design and configuration for effective fish collection near the forebay of a high-head dam.

  3. Bacteria in the injection water differently impacts the bacterial communities of production wells in high-temperature petroleum reservoirs.

    PubMed

    Ren, Hongyan; Xiong, Shunzi; Gao, Guangjun; Song, Yongting; Cao, Gongze; Zhao, Liping; Zhang, Xiaojun

    2015-01-01

    Water flooding is widely used for oil recovery. However, how the introduction of bacteria via water flooding affects the subsurface ecosystem remains unknown. In the present study, the distinct bacterial communities of an injection well and six adjacent production wells were revealed using denaturing gradient gel electrophoresis (DGGE) and pyrosequencing. All sequences of the variable region 3 of the 16S rRNA gene retrieved from pyrosequencing were divided into 543 operational taxonomic units (OTUs) based on 97% similarity. Approximately 13.5% of the total sequences could not be assigned to any recognized phylum. The Unifrac distance analysis showed significant differences in the bacterial community structures between the production well and injection water samples. However, highly similar bacterial structures were shown for samples obtained from the same oil-bearing strata. More than 69% of the OTUs detected in the injection water sample were absent or detected in low abundance in the production wells. However, the abundance of two OTUs reached as high as 17.5 and 26.9% in two samples of production water, although the OTUs greatly varied among all samples. Combined with the differentiated water flow rate measured through ion tracing, we speculated that the transportation of injected bacteria was impacted through the varied permeability from the injection well to each of the production wells. Whether the injected bacteria predominate the production well bacterial community might depend both on the permeability of the strata and the reservoir conditions.

  4. Bacteria in the injection water differently impacts the bacterial communities of production wells in high-temperature petroleum reservoirs

    PubMed Central

    Ren, Hongyan; Xiong, Shunzi; Gao, Guangjun; Song, Yongting; Cao, Gongze; Zhao, Liping; Zhang, Xiaojun

    2015-01-01

    Water flooding is widely used for oil recovery. However, how the introduction of bacteria via water flooding affects the subsurface ecosystem remains unknown. In the present study, the distinct bacterial communities of an injection well and six adjacent production wells were revealed using denaturing gradient gel electrophoresis (DGGE) and pyrosequencing. All sequences of the variable region 3 of the 16S rRNA gene retrieved from pyrosequencing were divided into 543 operational taxonomic units (OTUs) based on 97% similarity. Approximately 13.5% of the total sequences could not be assigned to any recognized phylum. The Unifrac distance analysis showed significant differences in the bacterial community structures between the production well and injection water samples. However, highly similar bacterial structures were shown for samples obtained from the same oil-bearing strata. More than 69% of the OTUs detected in the injection water sample were absent or detected in low abundance in the production wells. However, the abundance of two OTUs reached as high as 17.5 and 26.9% in two samples of production water, although the OTUs greatly varied among all samples. Combined with the differentiated water flow rate measured through ion tracing, we speculated that the transportation of injected bacteria was impacted through the varied permeability from the injection well to each of the production wells. Whether the injected bacteria predominate the production well bacterial community might depend both on the permeability of the strata and the reservoir conditions. PMID:26052321

  5. Tight gas reservoir simulation: Modeling discrete irregular strata-bound fracture network flow, including dynamic recharge from the matrix

    SciTech Connect

    McKoy, M.L., Sams, W.N.

    1997-10-01

    The US Department of Energy, Federal Energy Technology Center, has sponsored a project to simulate the behavior of tight, fractured, strata-bound gas reservoirs that arise from irregular discontinuous, or clustered networks of fractures. New FORTRAN codes have been developed to generate fracture networks, or simulate reservoir drainage/recharge, and to plot the fracture networks and reservoirs pressures. Ancillary codes assist with raw data analysis.

  6. Sedimentology and petroleum geology

    SciTech Connect

    Bjorlykke, K.O. )

    1989-01-01

    This book presents an introduction to sedimentology as well as petroleum geology. It integrates both subjects, which are closely related but mostly treated separately. The author covers the basic aspects of sedimentology, sedimentary geochemistry and diagenesis. Principles of stratigraphy, seismic stratigraphy and basin modelling forms the base for the part on petroleum geology. Subjects discussed include the composition of kerogen and hydrocarbons, theories of migration and trapping of hydrocarbons and properties of reservoir rocks. Introductions to well logging and production geology are given.

  7. Simulation studies to evaluate the effect of fracture closure on the performance of fractured reservoirs; Final report

    SciTech Connect

    Howrie, I.; Dauben, D.

    1994-03-01

    A three-year research program to evaluate the effect of fracture closure on the recovery of oil and gas from naturally fractured reservoirs has been completed. The overall objectives of the study were to: (1) evaluate the reservoir conditions for which fracture closure is significant, and (2) evaluate innovative fluid injection techniques capable of maintaining pressure within the reservoir. The evaluations of reservoir performance were made by a modern dual porosity simulator, TETRAD. This simulator treats both porosity and permeability as functions of pore pressure. The Austin Chalk in the Pearsall Field in of South Texas was selected as the prototype fractured reservoir for this work. During the first year, simulations of vertical and horizontal well performance were made assuming that fracture permeability was insensitive to pressure change. Sensitivity runs indicated that the simulator was predicting the effects of critical reservoir parameters in a logical and consistent manner. The results confirmed that horizontal wells could increase both rate of oil recovery and total oil recovery from naturally fractured reservoirs. In the second year, the performance of the same vertical and horizontal wells was reevaluated with fracture permeability treated as a function of reservoir pressure. To investigate sensitivity to in situ stress, differing loading conditions were assumed. Simulated natural depletions confirm that pressure sensitive fractures degrade well performance. The severity of degradation worsens when the initial reservoir pressure approaches the average stress condition of the reservoir, such as occurs in over pressured reservoirs. Simulations with water injection indicate that degradation of permeability can be counteracted when reservoir pressure is maintained and oil recovery can be increased when reservoir properties are favorable.

  8. Evaluation of linear solvers for oil reservoir simulation problems. Part 2: The fully implicit case

    SciTech Connect

    Joubert, W.; Janardhan, R.

    1997-12-01

    A previous paper [Joubert/Biswas 1997] contained investigations of linear solver performance for matrices arising from Amoco`s Falcon parallel oil reservoir simulation code using the IMPES formulation (implicit pressure, explicit saturation). In this companion paper, similar issues are explored for linear solvers applied to matrices arising from more difficult fully implicit problems. The results of numerical experiments are given.

  9. Application of a new scale up methodology to the simulation of displacement processes in heterogeneous reservoirs

    SciTech Connect

    Durlofsky, L.J.; Milliken, W.J.; Dehghani, K.; Jones, R.C.

    1994-12-31

    A general method for the scale up of highly detailed, heterogeneous reservoir cross sections is presented and applied to the simulation of several recovery processes in a variety of geologic settings. The scale up technique proceeds by first identifying portions of the fine scale reservoir description which could potentially lead to high fluid velocities, typically regions of connected, high permeability. These regions are then modeled in detail while the remainder of the domain is coarsened using a general numerical technique for the calculation of effective permeability. The overall scale up method is applied to the cross sectional simulation of three actual fields. Waterflood, steamflood and miscible flood recovery processes are considered. In all these cases, the scale up technique is shown to give coarsened reservoir descriptions which provide simulation results in very good agreement with those of the detailed reservoir descriptions. For these simulations, speedups in computation times, for the coarsened models relative to their fine grid counterparts, range from a factor of 10 to a factor of 200.

  10. Estimation of discontinuous coefficients in parabolic systems: Applications to reservoir simulation

    NASA Technical Reports Server (NTRS)

    Lamm, P. D.

    1984-01-01

    Spline based techniques for estimating spatially varying parameters that appear in parabolic distributed systems (typical of those found in reservoir simulation problems) are presented. The problem of determining discontinuous coefficients, estimating both the functional shape and points of discontinuity for such parameters is discussed. Convergence results and a summary of numerical performance of the resulting algorithms are given.

  11. A combination of streamtube and geostatical simulation methodologies for the study of large oil reservoirs

    SciTech Connect

    Chakravarty, A.; Emanuel, A.S.; Bernath, J.A.

    1997-08-01

    The application of streamtube models for reservoir simulation has an extensive history in the oil industry. Although these models are strictly applicable only to fields under voidage balance, they have proved to be useful in a large number of fields provided that there is no solution gas evolution and production. These models combine the benefit of very fast computational time with the practical ability to model a large reservoir over the course of its history. These models do not, however, directly incorporate the detailed geological information that recent experience has taught is important. This paper presents a technique for mapping the saturation information contained in a history matched streamtube model onto a detailed geostatistically derived finite difference grid. With this technique, the saturation information in a streamtube model, data that is actually statistical in nature, can be identified with actual physical locations in a field and a picture of the remaining oil saturation can be determined. Alternatively, the streamtube model can be used to simulate the early development history of a field and the saturation data then used to initialize detailed late time finite difference models. The proposed method is presented through an example application to the Ninian reservoir. This reservoir, located in the North Sea (UK), is a heterogeneous sandstone characterized by a line drive waterflood, with about 160 wells, and a 16 year history. The reservoir was satisfactorily history matched and mapped for remaining oil saturation. A comparison to 3-D seismic survey and recently drilled wells have provided preliminary verification.

  12. Assessment of uncertainty and degasification efficiency in coal seam gas drainage through stochastic reservoir simulation

    NASA Astrophysics Data System (ADS)

    Özgen Karacan, C.

    2016-04-01

    Coal seam degasification improves coal mine safety by reducing the gas content of coal seams and also by generating added value as an energy source. Coal bed reservoir simulation, as a reservoir management and forecasting tool, is one of the most effective ways to help with these two main objectives. However, as in all modeling and simulation studies, reservoir description and whether observed productions can be predicted are important considerations. Using geostatistical realizations as spatial maps of different coal reservoir properties is a more realistic approach than assuming uniform properties across the field. In fact, this approach can help with simultaneous history matching of multiple wellbores to enhance the confidence in spatial models of different coal properties that are pertinent to degasification. The problem that still remains, however, is the uncertainty in geostatistical, and thus reservoir, simulations originating from partial sampling of the seam that does not properly reflect the stochastic nature of coal property realizations. This study demonstrates the use of geostatistical realizations generated through sequential Gaussian simulation and co-simulation techniques and assesses the uncertainty in coal seam reservoir simulations with history matching errors. 100 individual realizations of 10 coal properties were generated using geostatistical techniques. These realizations were used to create 100 realization bundles (property datasets). Each of these bundles was then used in coal seam reservoir simulations for simultaneous history matching of degasification wells. History matching errors for each bundle were evaluated and the single set of realizations that would minimize the error for all wells was defined. Errors were compared with those of E-type and the average realization of the best matches. The study helped to determine the realization bundle that consisted of the spatial maps of coal properties, which resulted in minimum error. In

  13. Quantum Simulation of Dissipative Processes without Reservoir Engineering.

    PubMed

    Di Candia, R; Pedernales, J S; del Campo, A; Solano, E; Casanova, J

    2015-05-29

    We present a quantum algorithm to simulate general finite dimensional Lindblad master equations without the requirement of engineering the system-environment interactions. The proposed method is able to simulate both Markovian and non-Markovian quantum dynamics. It consists in the quantum computation of the dissipative corrections to the unitary evolution of the system of interest, via the reconstruction of the response functions associated with the Lindblad operators. Our approach is equally applicable to dynamics generated by effectively non-Hermitian Hamiltonians. We confirm the quality of our method providing specific error bounds that quantify its accuracy.

  14. Quantum simulation of dissipative processes without reservoir engineering

    DOE PAGES

    Di Candia, R.; Pedernales, J. S.; del Campo, A.; ...

    2015-05-29

    We present a quantum algorithm to simulate general finite dimensional Lindblad master equations without the requirement of engineering the system-environment interactions. The proposed method is able to simulate both Markovian and non-Markovian quantum dynamics. It consists in the quantum computation of the dissipative corrections to the unitary evolution of the system of interest, via the reconstruction of the response functions associated with the Lindblad operators. Our approach is equally applicable to dynamics generated by effectively non-Hermitian Hamiltonians. We confirm the quality of our method providing specific error bounds that quantify its accuracy.

  15. Quantum Simulation of Dissipative Processes without Reservoir Engineering

    PubMed Central

    Di Candia, R.; Pedernales, J. S.; del Campo, A.; Solano, E.; Casanova, J.

    2015-01-01

    We present a quantum algorithm to simulate general finite dimensional Lindblad master equations without the requirement of engineering the system-environment interactions. The proposed method is able to simulate both Markovian and non-Markovian quantum dynamics. It consists in the quantum computation of the dissipative corrections to the unitary evolution of the system of interest, via the reconstruction of the response functions associated with the Lindblad operators. Our approach is equally applicable to dynamics generated by effectively non-Hermitian Hamiltonians. We confirm the quality of our method providing specific error bounds that quantify its accuracy. PMID:26024437

  16. Simulation of water-energy fluxes through small-scale reservoir systems under limited data availability

    NASA Astrophysics Data System (ADS)

    Papoulakos, Konstantinos; Pollakis, Giorgos; Moustakis, Yiannis; Markopoulos, Apostolis; Iliopoulou, Theano; Dimitriadis, Panayiotis; Koutsoyiannis, Demetris; Efstratiadis, Andreas

    2017-04-01

    Small islands are regarded as promising areas for developing hybrid water-energy systems that combine multiple sources of renewable energy with pumped-storage facilities. Essential element of such systems is the water storage component (reservoir), which implements both flow and energy regulations. Apparently, the representation of the overall water-energy management problem requires the simulation of the operation of the reservoir system, which in turn requires a faithful estimation of water inflows and demands of water and energy. Yet, in small-scale reservoir systems, this task in far from straightforward, since both the availability and accuracy of associated information is generally very poor. For, in contrast to large-scale reservoir systems, for which it is quite easy to find systematic and reliable hydrological data, in the case of small systems such data may be minor or even totally missing. The stochastic approach is the unique means to account for input data uncertainties within the combined water-energy management problem. Using as example the Livadi reservoir, which is the pumped storage component of the small Aegean island of Astypalaia, Greece, we provide a simulation framework, comprising: (a) a stochastic model for generating synthetic rainfall and temperature time series; (b) a stochastic rainfall-runoff model, whose parameters cannot be inferred through calibration and, thus, they are represented as correlated random variables; (c) a stochastic model for estimating water supply and irrigation demands, based on simulated temperature and soil moisture, and (d) a daily operation model of the reservoir system, providing stochastic forecasts of water and energy outflows. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students

  17. Interfingering sand-rich aprons and Var Fan lobe deposits off Corsica: Analog for thick and laterally extensive turbidite petroleum reservoirs

    SciTech Connect

    Nelson, C.H.; Escutia, C. ); Savoye, B. ); Rehault, J.P. )

    1996-01-01

    The sand-rich Var submarine fan initiates off Nice, France, extends 230 km to the southeast, and then deposits a distal lobe (80 x 40 km) that parallels the northwestern base of the Corsican continental slope. Interfingering with the lobe deposits are base-of-slope, sand-rich aprons derived from Corsica. Both the fan lobe and aprons onlap the outcropping steep (6-110) slopes of Corsica. The fan lobe is characterized by generally flat-bedded layers with the total percentage of sand beds in cores ranging from 60-94% of the Holocene deposits. The aprons are characterized by feeder canyons exhibiting common sediment failures and proximal regions with numerous chaotic layers. With increasing distance from the apron apexes, high amplitude wedging reflectors grade laterally to flatter ones, reflector continuity increases, chaotic layers thin, and some incipient channels form. Chaotic layers are the dominant deposit shown on seismic profiles of the aprons. The layers extend as much as 15 km laterally onto the fan lobe and maximum thicknesses of single layers reach 35-70 m, The prolonged echo character with poor penetration, together with irregular surfaces and possible large blocks seen in sidescan sonar records, suggest that apron deposits are coarse grained. Gravel is found in apron layers that extend 21 km onto the fan lobe and the total percentage of sand beds in cores ranges from 37-79% of the Holocene deposits. Because the estimated sand : shale ratio averages 8.6:1 in the Holocene highstand deposits of the interfingering Corsican aprons and Var Fan lobe, this combined environment is an intriguing setting that could provide large continuous reservoirs if it occurred in a suitable ancient petroleum province.

  18. Interfingering sand-rich aprons and Var Fan lobe deposits off Corsica: Analog for thick and laterally extensive turbidite petroleum reservoirs

    SciTech Connect

    Nelson, C.H.; Escutia, C.; Savoye, B.; Rehault, J.P.

    1996-12-31

    The sand-rich Var submarine fan initiates off Nice, France, extends 230 km to the southeast, and then deposits a distal lobe (80 x 40 km) that parallels the northwestern base of the Corsican continental slope. Interfingering with the lobe deposits are base-of-slope, sand-rich aprons derived from Corsica. Both the fan lobe and aprons onlap the outcropping steep (6-110) slopes of Corsica. The fan lobe is characterized by generally flat-bedded layers with the total percentage of sand beds in cores ranging from 60-94% of the Holocene deposits. The aprons are characterized by feeder canyons exhibiting common sediment failures and proximal regions with numerous chaotic layers. With increasing distance from the apron apexes, high amplitude wedging reflectors grade laterally to flatter ones, reflector continuity increases, chaotic layers thin, and some incipient channels form. Chaotic layers are the dominant deposit shown on seismic profiles of the aprons. The layers extend as much as 15 km laterally onto the fan lobe and maximum thicknesses of single layers reach 35-70 m, The prolonged echo character with poor penetration, together with irregular surfaces and possible large blocks seen in sidescan sonar records, suggest that apron deposits are coarse grained. Gravel is found in apron layers that extend 21 km onto the fan lobe and the total percentage of sand beds in cores ranges from 37-79% of the Holocene deposits. Because the estimated sand : shale ratio averages 8.6:1 in the Holocene highstand deposits of the interfingering Corsican aprons and Var Fan lobe, this combined environment is an intriguing setting that could provide large continuous reservoirs if it occurred in a suitable ancient petroleum province.

  19. Application of reservoir management and reservoir simulation to monitor and improve the performance of the M4/7/N1 reservoirs in the Samarang field, offshore Sabah, East Malaysia

    SciTech Connect

    Baxendale, D.

    1995-10-01

    The Samarang field was discovered in 1972, offshore southwest Sabah, East Malaysia. The field was declared commercial in 1974, and first production commenced in 1975. The M4/7/N1 cluster of reservoirs is one of the main groups of reservoirs in the Samarang field, containing some 23% of the field`s expected ultimate recovery. The observed basal/edge natural water drive and the gascap expansion drive are expected to recover about 50% of the M4/7/N1`s original oil in-place. However, the combined drive was not anticipated to fully sweep the reservoir. Hence, the need for a field wide review of the reservoir. To actively manage the remaining hydrocarbon resource a detailed 3D full field simulation project was initiated. A comprehensive geological study of the M4/7/N1 reservoirs was first conducted to formulate the geological input to the simulation model. The model was validated by history matching the reservoir`s seventeen years of production data. This model was then used to actively manage the hydrocarbon resource base by: predicting future oil recovery under various development options, locating potential infill well locations, and by optimizing the reservoir management strategy. Reservoir management of this mature field through the utilization of reservoir simulation tools, has helped to maximize hydrocarbon recovery by determining the optimum depletion strategy with respect to the remaining hydrocarbon resource. Future infill drilling locations have been identified and the results from the model have been used to support the operator`s development strategy for the pool.

  20. Deposition and simulation of sediment transport in the Lower Susquehanna River reservoir system

    USGS Publications Warehouse

    Hainly, R.A.; Reed, L.A.; Flippo, H.N.; Barton, G.J.

    1995-01-01

    The Susquehanna River drains 27,510 square miles in New York, Pennsylvania, and Maryland and is the largest tributary to the Chesapeake Bay. Three large hydroelectric dams are located on the river, Safe Harbor (Lake Clarke) and Holtwood (Lake Aldred) in southern Pennsylvania, and Conowingo (Conowingo Reservoir) in northern Maryland. About 259 million tons of sediment have been deposited in the three reservoirs. Lake Clarke contains about 90.7 million tons of sediment, Lake Aldred contains about 13.6 million tons, and Conowingo Reservoir contains about 155 million tons. An estimated 64.8 million tons of sand, 19.7 million tons of coal, 112 million tons of silt, and 63.3 million tons of clay are deposited in the three reservoirs. Deposition in the reservoirs is variable and ranges from 0 to 30 feet. Chemical analyses of sediment core samples indicate that the three reservoirs combined contain about 814,000 tons of organic nitrogen, 98,900 tons of ammonia as nitrogen, 226,000 tons of phosphorus, 5,610,000 1tons of iron, 2,250,000 tons of aluminum, and about 409,000 tons of manganese. Historical data indicate that Lake Clarke and Lake Aldred have reached equilibrium, and that they no longer store sediment. A comparison of cross-sectional data from Lake Clarke and Lake Aldred with data from Conowingo Reservoir indicates that Conowingo Reservoir will reach equilibrium within the next 20 to 30 years. As the Conowingo Reservoir fills with sediment and approaches equilibrium, the amount of sediment transported to the Chesapeake Bay will increase. The most notable increases will take place when very high flows scour the deposited sediment. Sediment transport through the reservoir system was simulated with the U.S. Army Corps of Engineers' HEC-6 computer model. The model was calibrated with monthly sediment loads for calendar year 1987. Calibration runs with options set for maximum trap efficiency and a "natural" particle-size distribution resulted in an overall computed trap

  1. Application of high-temperature simulated distillation to the residuum oil supercritical extraction process in petroleum refining

    PubMed

    Raia; Villalanti; Subramanian; Williams

    2000-01-01

    The gas chromatographic method of high-temperature simulated distillation (HTSD) is described, and the results are presented for the application of HTSD to the characterization of petroleum refinery feed and products from solvent deasphalting operations. Results are presented for refinery residual feed, deasphalted oil, and asphaltene fractions from the residual oil supercritical extraction process. Asphaltene removal from petroleum residuum using solvent deasphalting results in the improved quality and high recovery of deasphalted oil product for use as lube oil, fluid catalytic cracking, or hydrocracker feedstocks. The HTSD procedure presented here proves valuable for characterizing the fractions from the deasphalting process to obtain the percentage yield with boiling point data over the range from approximately 36 degrees C (97 degrees F) to 733 degrees C (1352 degrees F), which covers the boiling range of n-paraffins of carbon number C5 to C108.

  2. Analytical decoupling techniques for fully implicit reservoir simulation

    NASA Astrophysics Data System (ADS)

    Qiao, Changhe; Wu, Shuhong; Xu, Jinchao; Zhang, Chen-Song

    2017-05-01

    This paper examines linear algebraic solvers for a given general purpose compositional simulator. In particular, the decoupling stage of the constraint pressure residual (CPR) preconditioner for linear systems arising from the fully implicit scheme is evaluated. An asymptotic analysis of the convergence behavior is given when Δt approaches zero. Based on this analysis, we propose an analytical decoupling technique, from which the pressure equation is directly related to an elliptic equation and can be solved efficiently. We show that this method ensures good convergence behavior of the algebraic solvers in a two-stage CPR-type preconditioner. We also propose a semi-analytical decoupling strategy that combines the analytical method and alternate block factorization method. Numerical experiments demonstrate the superior performance of the analytical and semi-analytical decoupling methods compared to existing methods.

  3. Simulation of Hydrodynamics and Water Quality in Pueblo Reservoir, Southeastern Colorado, for 1985 through 1987 and 1999 through 2002

    USGS Publications Warehouse

    Galloway, Joel M.; Ortiz, Roderick F.; Bales, Jerad D.; Mau, David P.

    2008-01-01

    Pueblo Reservoir is west of Pueblo, Colorado, and is an important water resource for southeastern Colorado. The reservoir provides irrigation, municipal, and industrial water to various entities throughout the region. In anticipation of increased population growth, the cities of Colorado Springs, Fountain, Security, and Pueblo West have proposed building a pipeline that would be capable of conveying 78 million gallons of raw water per day (240 acre-feet) from Pueblo Reservoir. The U.S. Geological Survey, in cooperation with Colorado Springs Utilities and the Bureau of Reclamation, developed, calibrated, and verified a hydrodynamic and water-quality model of Pueblo Reservoir to describe the hydrologic, chemical, and biological processes in Pueblo Reservoir that can be used to assess environmental effects in the reservoir. Hydrodynamics and water-quality characteristics in Pueblo Reservoir were simulated using a laterally averaged, two-dimensional model that was calibrated using data collected from October 1985 through September 1987. The Pueblo Reservoir model was calibrated based on vertical profiles of water temperature and dissolved-oxygen concentration, and water-quality constituent concentrations collected in the epilimnion and hypolimnion at four sites in the reservoir. The calibrated model was verified with data from October 1999 through September 2002, which included a relatively wet year (water year 2000), an average year (water year 2001), and a dry year (water year 2002). Simulated water temperatures compared well to measured water temperatures in Pueblo Reservoir from October 1985 through September 1987. Spatially, simulated water temperatures compared better to measured water temperatures in the downstream part of the reservoir than in the upstream part of the reservoir. Differences between simulated and measured water temperatures also varied through time. Simulated water temperatures were slightly less than measured water temperatures from March to

  4. Reservoir Simulation on the Cerro Prieto Geothermal Field: A Continuing Study

    SciTech Connect

    Castaneda, M.; Marquez, R.; Arellano, V.; Esquer, C.A.

    1983-12-15

    The Cerro Prieto geothermal field is a liquid-dominated geothermal reservoir of complex geological and hydrological structure. It is located at the southern end of the Salton-Mexicali trough which includes other geothermal anomalies as Heber and East Mesa. Although in 1973, the initial power plant installed capacity was 75 MW of electrical power, this amount increased to 180 MW in 1981 as field development continued. It is expected to have a generating capacity of 620 MW by the end of 1985, when two new plants will be completely in operation. Questions about field deliverability, reservoir life and ultimate recovery related to planned installations are being presently asked. Numerical modeling studies can give very valuable answers to these questions, even at the early stages in the development of a field. An effort to simulate the Cerro Prieto geothermal reservoir has been undergoing for almost two years. A joint project among Comision Federal de Electricidad (CFE), Instituto de Investigaciones Electricas (IIE) and Intercomp of Houstin, Texas, was created to perform reservoir engineering and simulation studies on this field. The final project objective is tosimulate the behavior of the old field region when production from additional wells located in the undeveloped field zones will be used for feeding the new power plants.

  5. Large-scale three-dimensional geothermal reservoir simulation on PCs

    SciTech Connect

    Antunez, Emilio; Moridis, George; Pruess, Karsten

    1994-01-20

    TOUGH2, Lawrence Berkeley Laboratory's general purpose simulator for mass and heat flow and transport was enhanced with the addition of a set of preconditioned conjugate gradient solvers and ported to a PC. The code was applied to a number of large 3-D geothermal reservoir problems with up to 10,000 grid blocks. Four test problems were investigated. The first two involved a single-phase liquid system, and a two-phase system with regular Cartesian grids. The last two involved a two-phase field problem with irregular gridding with production from and injection into a single porosity reservoir, and a fractured reservoir. The code modifications to TOUGH2 and its setup in the PC environment are described. Algorithms suitable for solving large matrices that are generally non-symmetric and non-positive definite are reviewed. Computational work per time step and CPU time requirements are reported as function of problem size. The excessive execution time and storage requirements of the direct solver in TOUGH2 limits the size of manageable 3-D reservoir problems to a few hundred grid blocks. The conjugate gradient solvers significantly reduced the execution time and storage requirements making possible the execution of considerably larger problems (10,000+ grid blocks). It is concluded that the current PCs provide an economical platform for running large-scale geothermal field simulations that just a few years ago could only be executed on mainframe computers.

  6. Large-scale three-dimensional geothermal reservoir simulation on PCs

    SciTech Connect

    Antunez, E.; Moridis, G.; Pruess, K.

    1994-01-01

    TOUGH2, Lawrence Berkeley Laboratory`s general purpose simulator for mass and heat flow and transport was enhanced with the addition of a set of preconditioned conjugate gradient solvers and ported to a PC. The code was applied to a number of large 3-D geothermal reservoir problems with up to 10,000 grid blocks. Four test problems were investigated. The first two involved a single-phase liquid system, and a two-phase system with regular Cartesian grids. The last two involved a two-phase field problem with irregular gridding with production from and injection into a single porosity reservoir, and a fractured reservoir. The code modifications to TOUGH2 and its setup in the PC environment are described. Algorithms suitable for solving large matrices that are generally non-symmetric and non-positive definite are reviewed. Computational work per time step and CPU time requirements are reported as function of problem size. The excessive execution time and storage requirements of the direct solver in TOUGH2 limits the size of manageable 3-D reservoir problems to a few hundred grid blocks. The conjugate gradient solvers significantly reduced the execution time and storage requirements making possible the execution of considerably larger problems (10,000 + grid blocks). It is concluded that the current PCs provide an economical platform for running large-scale geothermal field simulations that just a few years ago could only be executed on mainframe computers.

  7. Simulating California reservoir operation using the classification and regression-tree algorithm combined with a shuffled cross-validation scheme

    NASA Astrophysics Data System (ADS)

    Yang, Tiantian; Gao, Xiaogang; Sorooshian, Soroosh; Li, Xin

    2016-03-01

    The controlled outflows from a reservoir or dam are highly dependent on the decisions made by the reservoir operators, instead of a natural hydrological process. Difference exists between the natural upstream inflows to reservoirs and the controlled outflows from reservoirs that supply the downstream users. With the decision maker's awareness of changing climate, reservoir management requires adaptable means to incorporate more information into decision making, such as water delivery requirement, environmental constraints, dry/wet conditions, etc. In this paper, a robust reservoir outflow simulation model is presented, which incorporates one of the well-developed data-mining models (Classification and Regression Tree) to predict the complicated human-controlled reservoir outflows and extract the reservoir operation patterns. A shuffled cross-validation approach is further implemented to improve CART's predictive performance. An application study of nine major reservoirs in California is carried out. Results produced by the enhanced CART, original CART, and random forest are compared with observation. The statistical measurements show that the enhanced CART and random forest overperform the CART control run in general, and the enhanced CART algorithm gives a better predictive performance over random forest in simulating the peak flows. The results also show that the proposed model is able to consistently and reasonably predict the expert release decisions. Experiments indicate that the release operation in the Oroville Lake is significantly dominated by SWP allocation amount and reservoirs with low elevation are more sensitive to inflow amount than others.

  8. Validation of the MUFITS reservoir simulator against standard industrial simulation tools for CO2 storage at the Ketzin pilot site

    NASA Astrophysics Data System (ADS)

    Afanasyev, Andrey; Kempka, Thomas; Kühn, Michael; Melnik, Oleg

    2016-04-01

    We give an overview of the reservoir simulator MUFITS capabilities for modelling underground carbon dioxide storage using the EOS-modules GASSTORE and BLACKOIL. The GASSTORE module covers three-phase solid-liquid-gas flows of water, carbon dioxide and salt components. The extended black-oil model is utilized in the BLACKOIL module, which can be applied in the CO2 storage scenarios to two-phase flows of CO2 and brine components. The modules allow comprehensive options including salt precipitation/dissolution, thermal processes, multiple properties regions, and complicated initial vertical equilibration. The PVT tables for the BLACKOIL module can be generated automatically from the GASSTORE module for a given reservoir temperature and brine salinity. We test the simulator against published benchmarking studies. We then consider an application case of CO2 storage at the Ketzin pilot site in Germany. For that purpose, we use a calibrated 3D geological reservoir model comprising a highly heterogeneous distribution of porosity and permeability in a fluvial geological setting. The simulation is conducted using the EOS-module BLACKOIL and the modelling results are in excellent agreement with the results of the industrial simulators applied in previous benchmarks. In particular, the bottom-hole pressure in the injection well, the total mass of dissolved CO2 and spatial CO2 distribution are identical with previously published results.

  9. Basic petroleum geology, 2nd ed. , revised

    SciTech Connect

    Link.

    1990-01-01

    This book contains revised and updated material, including approximately 200 additional illustrations and an extensive glossary of terms. A valuable reference for geology students and petroleum professionals, the text presents fundamental concepts of geology in terms of sedimentary deposition, petroleum occurrence, exploration, and recovery. This book contains information on geologic time, historical geology and stratigraphy; Minerals and rocks; Weathering erosion, and deposition; Marine erosion and deposition; Depositional basins; Lacustrine, desert and glacial environments; Subsurface water and diagenesis; Structural geology; petroleum traps; Petroleum and reservoirs; Geological considerations and engineering practices; Rocks, reservoirs, and recovery techniques; Exploration techniques for petroleum; Bibliography Glossary; Index.

  10. A methodology for incorporating geomechanically-based fault damage zones models into reservoir simulation

    NASA Astrophysics Data System (ADS)

    Paul, Pijush Kanti

    In the fault damage zone modeling study for a field in the Timor Sea, I present a methodology to incorporate geomechanically-based fault damage zones into reservoir simulation. In the studied field, production history suggests that the mismatch between actual production and model prediction is due to preferential fluid flow through the damage zones associated with the reservoir scale faults, which is not included in the baseline petrophysical model. I analyzed well data to estimate stress heterogeneity and fracture distributions in the reservoir. Image logs show that stress orientations are homogenous at the field scale with a strike-slip/normal faulting stress regime and maximum horizontal stress oriented in NE-SW direction. Observed fracture zones in wells are mostly associated with well scale fault and bed boundaries. These zones do not show any anomalies in production logs or well test data, because most of the fractures are not optimally oriented to the present day stress state, and matrix permeability is high enough to mask any small anomalies from the fracture zones. However, I found that fracture density increases towards the reservoir scale faults, indicating high fracture density zones or damage zones close to these faults, which is consistent with the preferred flow direction indicated by interference and tracer test done between the wells. It is well known from geologic studies that there is a concentration of secondary fractures and faults in a damage zone adjacent to larger faults. Because there is usually inadequate data to incorporate damage zone fractures and faults into reservoir simulation models, in this study I utilized the principles of dynamic rupture propagation from earthquake seismology to predict the nature of fractured/damage zones associated with reservoir scale faults. The implemented workflow can be used to more routinely incorporate damage zones into reservoir simulation models. Applying this methodology to a real reservoir utilizing

  11. Analysis of numerical simulations and influencing factors of seasonal manganese pollution in reservoirs.

    PubMed

    Peng, Hui; Zheng, Xilai; Chen, Lei; Wei, Yang

    2016-07-01

    Seasonal manganese pollution has become an increasingly pressing water quality issue for water supply reservoirs in recent years. Manganese is a redox-sensitive element and is released from sediment under anoxic conditions near the sediment-water interface during summer and autumn, when water temperature stratification occurs. The reservoir water temperature and water dynamic conditions directly influence the formation of manganese pollution. Numerical models are useful tools to quantitatively evaluate manganese pollution and its influencing factors. This paper presents a reservoir manganese pollution model by adding a manganese biogeochemical module to a water quality model-CE-QUAL-W2. The model is applied to the Wangjuan reservoir (Qingdao, China), which experiences manganese pollution during summer and autumn. Field data are used to verify the model, and the results show that the model can reproduce the main features of the thermal stratification and manganese distribution. The model is used to evaluate the manganese pollution process and its four influencing factors, including air temperature, water level, wind speed, and wind directions, through different simulation scenarios. The results show that all four factors can influence manganese pollution. High air temperature, high water level, and low wind speed aggravate manganese pollution, while low air temperature, low water level, and high wind speed reduce manganese pollution. Wind that travels in the opposite direction of the flow aggravates manganese pollution, while wind in the same direction as the flow reduces manganese pollution. This study provides useful information to improve our understanding of seasonal manganese pollution in reservoirs, which is important for reservoir manganese pollution warnings and control.

  12. Numerical Simulation of Injectivity Effects of Mineral Scaling and Clay Swelling in a Fractured Geothermal Reservoir

    SciTech Connect

    Xu, Tianfu; Pruess, Karsten

    2004-05-10

    A major concern in the development of hot dry rock (HDR) and hot fractured rock (HFR) reservoirs is achieving and maintaining adequate injectivity, while avoiding the development of preferential short-circuiting flow paths such as those caused by thermally-induced stress cracking. Past analyses of HDR and HFR reservoirs have tended to focus primarily on the coupling between hydrology (flow), heat transfer, and rock mechanics. Recent studies suggest that rock-fluid interactions and associated mineral dissolution and precipitation effects could have a major impact on the long-term performance of HFR reservoirs. The present paper uses recent European studies as a starting point to explore chemically-induced effects of fluid circulation in HFR systems. We examine ways in which the chemical composition of reinjected waters can be modified to improve reservoir performance by maintaining or even enhancing injectivity. Chemical manipulations considered here include pH modification and dilution with fresh water. We performed coupled thermo-hydrologic-chemical simulations in which the fractured medium was represented by a one-dimensional MINC model (multiple interacting continua), using the non-isothermal multi-phase reactive geochemical transport code TOUGHREACT. Results indicate that modifying the injection water chemistry can enhance mineral dissolution and reduce clay swelling. Chemical interactions between rocks and fluids will change a HFR reservoir over time, with some changes favorable and others not. A detailed, quantitative understanding of processes and mechanisms can suggest chemical methods for reservoir management, which may be employed to improve the performance of the geothermal system.

  13. Large-scale three-dimensional geothermal reservoir simulation on small computer systems

    SciTech Connect

    Antunez, E.; Moridis, G.; Pruess, K.

    1995-05-01

    The performance of TOUGH2, Lawrence Berkeley Laboratory`s general purpose simulator for mass and heat flow and transport enhanced with the addition of a set of preconditioned conjugate gradient solvers, was tested on three PCs (486-33, 486-66, Pentium-90), a MacIntosh Quadra 800, and a workstation IBM RISC 6000. A two-phase, single porosity, 3-D geothermal reservoir model with 1,411 irregular grid blocks, with production from and injection into the reservoir was used as the test model. The code modifications to TOUGH2 and its setup in each machine environment are described. Computational work per time step and CPU time requirements are reported for each of the machines used. It is concluded that the current PCs provide the best price/performance platform for running large-scale geothermal field simulations that just a few years ago could only be executed on mainframe computers and high-end workstations.

  14. [Regulation of geochemical activity of microorganisms in a petroleum reservoir by injection of H2O2 or water-air mixture].

    PubMed

    Nazina, T N; Pavlova, N K; Ni, F; Shestakova, N M; Ivoĭlov, V S; Feng, Q; Dongyun, Z; Prusakova, T S; Beliaev, S S; Ivanov, M V

    2008-01-01

    In the course of pilot trials of biotechnologies for the enhancement of oil recovery in the Gangxi bed of the Dagang oil field (China), microbiological processes were investigated. The biotechnologies were based on injection into the petroleum reservoir of different oxygen sources (H2O2 solution or a water-air mixture) with nitrogen and phosphorus salts. The injection of water-air mixture with nitrogen and phosphorus salts resulted in an increase in the number of aerobic and anaerobic organotrophic bacteria, rates of sulfate reduction and methanogenesis in formation water and also the content of CO2 (from 4.8-12 to 15-23.2%) and methane (from 86-88 to 91.8%) in the gas. The preferential consumption of isotopically light bicarbonate by methanogens resulted in a higher content of the light 12C in methane; the delta13C/CH4 value changed from -45.1...-48.3 to -50.7...-59.3 per thousand). At the same time, mineral carbonates of the formation water became isotopically heavier; the delta13C/Sigmacarbonates value increased from 3.4...4.0 to 5.4...9.6 per thousand. Growth of hydrocarbon-oxidizing bacteria was accompanied by production of biosurfactants and decreased interfacial tension of formation water. Injection of H2O2 solution resulted in the activation of aerobic processes and in suppression of both sulfate reduction and methanogenesis. Methane content in the gas decreased from 86-88 to 75.4-79.8%, probably due to its consumption by methanotrophs. Due to consumption of isotopically light methane, the residual methane carbon became heavier, with the delta13C/CH4 values from -39.0 to -44.3 per thousand. At the same time, mineral carbonates of the formation water became isotopically considerably lighter; the delta13C/Sigmacarbonates value decreased from 5.4... 9.6 to -1.4...2.7 per thousand). The additional amount of oil recovered during the trial of both variants of biotechnological treatment was 3819 t.

  15. Simulating California Reservoir Operation Using the Classification and Regression Tree Algorithm Combined with a Shuffled Cross-Validation Scheme

    NASA Astrophysics Data System (ADS)

    Yang, T.; Gao, X.; Sorooshian, S.; Li, X.

    2015-12-01

    The controlled outflows from a reservoir or dam are highly dependent on the decisions made by the reservoir operators, instead of a natural hydrological process. Difference exists between the natural upstream inflows to reservoirs, and the controlled outflows from reservoirs that supply the downstream users. With the decision maker's awareness of changing climate, reservoir management requires adaptable means to incorporate more information into decision making, such as the consideration of policy and regulation, environmental constraints, dry/wet conditions, etc. In this paper, a reservoir outflow simulation model is presented, which incorporates one of the well-developed data-mining models (Classification and Regression Tree) to predict the complicated human-controlled reservoir outflows and extract the reservoir operation patterns. A shuffled cross-validation approach is further implemented to improve model's predictive performance. An application study of 9 major reservoirs in California is carried out and the simulated results from different decision tree approaches are compared with observation, including original CART and Random Forest. The statistical measurements show that CART combined with the shuffled cross-validation scheme gives a better predictive performance over the other two methods, especially in simulating the peak flows. The results for simulated controlled outflow, storage changes and storage trajectories also show that the proposed model is able to consistently and reasonably predict the human's reservoir operation decisions. In addition, we found that the operation in the Trinity Lake, Oroville Lake and Shasta Lake are greatly influenced by policy and regulation, while low elevation reservoirs are more sensitive to inflow amount than others.

  16. CO/sub 2/ displacements of reservoir oils from long berea cores: Laboratory and simulation results

    SciTech Connect

    Kremesec, V.J. Jr.; Sebastian, H.M.

    1988-05-01

    CO/sub 2/ displacements of three different reservoir oils from long Berea cores were conducted over a wide range of reservoir conditions with the pressure always above the slim-tube minimum miscibility pressure (MMP). The detailed performance of these displacements is simulated with a fully compositional simulator and the Redlich-Kwong (RK) equation of state (EOS). Oil recovery, GOR, and effluent profiles are compared with experimental results. The EOS is observed to be capable of predicting the phase-behavior transitions that occur in situ when miscibility is generated by multiple contacts. The good comparison between experimental results and the simulation has led to specification of a minimum data set for which an EOS should be able to predict before a priori simulations of displacement experiments can be made. The simulation assumed a stable one-dimensional (1D) displacement and that phase-behavior effects play the primary role in the displacement, but the number of gridblocks had to be adjusted in a rough correlation with the CO/sub 2//oil-viscosity ratio. Experimentally, final oil saturation and CO/sub 2/ breakthrough time also correlate with the viscosity ratio. This suggests that viscous instabilities play a role in the experimental displacement, but is this geometry and under these displacement conditions, they can be simulated as numerical dispersion.

  17. Faults simulations for three-dimensional reservoir-geomechanical models with the extended finite element method

    NASA Astrophysics Data System (ADS)

    Prévost, Jean H.; Sukumar, N.

    2016-01-01

    Faults are geological entities with thicknesses several orders of magnitude smaller than the grid blocks typically used to discretize reservoir and/or over-under-burden geological formations. Introducing faults in a complex reservoir and/or geomechanical mesh therefore poses significant meshing difficulties. In this paper, we consider the strong-coupling of solid displacement and fluid pressure in a three-dimensional poro-mechanical (reservoir-geomechanical) model. We introduce faults in the mesh without meshing them explicitly, by using the extended finite element method (X-FEM) in which the nodes whose basis function support intersects the fault are enriched within the framework of partition of unity. For the geomechanics, the fault is treated as an internal displacement discontinuity that allows slipping to occur using a Mohr-Coulomb type criterion. For the reservoir, the fault is either an internal fluid flow conduit that allows fluid flow in the fault as well as to enter/leave the fault or is a barrier to flow (sealing fault). For internal fluid flow conduits, the continuous fluid pressure approximation admits a discontinuity in its normal derivative across the fault, whereas for an impermeable fault, the pressure approximation is discontinuous across the fault. Equal-order displacement and pressure approximations are used. Two- and three-dimensional benchmark computations are presented to verify the accuracy of the approach, and simulations are presented that reveal the influence of the rate of loading on the activation of faults.

  18. Chemical stimulation of gas condensate reservoirs: An experimental and simulation study

    NASA Astrophysics Data System (ADS)

    Kumar, Viren

    Well productivity in gas condensate reservoirs is reduced by condensate banking when the bottom hole flowing pressure drops below the dewpoint pressure. Several methods have been proposed to restore gas production rates after a decline due to condensate blocking. Gas injection, hydraulic fracturing, horizontal wells and methanol injection have been tried with limited success. These methods of well stimulation either offer only temporary productivity restoration or are applicable only in some situations. Wettability alteration of the rock in the near well bore region is an economic and efficient method for the enhancement of gas-well deliverability. Altering the wettability of porous media from strongly water-wet or oil-wet to intermediate-wet decreases the residual liquid saturations and results in an increase in the relative permeability to gas. Such treatments also increase the mobility and recovery of condensate from the reservoir. This study validates the above hypothesis and provides a simple and cost-efficient solution to the condensate blocking problem. Screening studies were carried out to identify the chemicals based on structure, solubility and reactivity at reservoir temperature and pressure. Experiments were performed to evaluate these chemicals to improve gas and condensate relative permeabilities. The improvement in relative permeability after chemical treatment was quantified by performing high pressure and high temperature coreflood experiments in Berea sandstone, Texas Cream limestone and reservoir cores using synthetic gas mixtures at reservoir conditions. Experiments were done at high flow rates and for long time periods to evaluate the durability of the treatment. Single well simulation studies were conducted to demonstrate the performance of the chemical treatment in the field. The experimental relative permeability data was modeled using a trapping number dependent relative permeability model and incorporated in the simulations. Effect of

  19. Computer simulation of reservoir depletion and oil flow from the Macondo well following the Deepwater Horizon blowout

    USGS Publications Warehouse

    Hsieh, Paul

    2010-01-01

    This report describes the application of a computer model to simulate reservoir depletion and oil flow from the Macondo well following the Deepwater Horizon blowout. Reservoir and fluid data used for model development are based on (1) information released in BP's investigation report of the incident, (2) information provided by BP personnel during meetings in Houston, Texas, and (3) calibration by history matching to shut-in pressures measured in the capping stack during the Well Integrity Test. The model is able to closely match the measured shut-in pressures. In the simulation of the 86-day period from the blowout to shut in, the simulated reservoir pressure at the well face declines from the initial reservoir pressure of 11,850 pounds per square inch (psi) to 9,400 psi. After shut in, the simulated reservoir pressure recovers to a final value of 10,300 psi. The pressure does not recover back to the initial pressure owing to reservoir depletion caused by 86 days of oil discharge. The simulated oil flow rate declines from 63,600 stock tank barrels per day just after the Deepwater Horizon blowout to 52,600 stock tank barrels per day just prior to shut in. The simulated total volume of oil discharged is 4.92 million stock tank barrels. The overall uncertainty in the simulated flow rates and total volume of oil discharged is estimated to be + or - 10 percent.

  20. Simulation studies to evaluate the effect of fracture closure on the performance of naturally fractured reservoirs. Annual report

    SciTech Connect

    Not Available

    1991-10-01

    The first of a three-year research program to evaluate the effect of fracture closure on the recovery of oil and gas from naturally fractured reservoirs has been completed. The objectives of the study are to (1) evaluate the reservoir conditions where fracture closure is significant, and (2) evaluate innovative fluid injection techniques capable of maintaining pressure within the reservoir. Simulation studies were conducted with a dual porosity simulator capable of simulating the performance of vertical and horizontal wells. Each simulator was initialized using properties typical of the Austin Chalk reservoir in Pearsall Field, Texas. Simulations of both vertical and horizontal well performance were made assuming that fracture permeability was insensitive to pressure change. Sensitivity runs indicate that the simulator is predicting the effects of critical reservoir parameters in a logical and consistent manner. The results to-date confirm that horizontal wells can increase both oil recovery rate and total oil recovery from naturally fractured reservoirs. The year one simulation results will provide the baseline for the ongoing study which will evaluate the performance degradation caused by the sensitivity of fracture permeability to pressure change, and investigate fluid injection pressure maintenance as a means to improve oil recovery performance. The study is likely to conclude that fracture closure decreases oil recovery and that pressure support achieved through fluid injection could be beneficial in improving recovery.

  1. Geological and Petrophysical Characterization of the Ferron Sandstone for 3-D Simulation of a Fluvial-Deltaic Reservoir

    SciTech Connect

    Chidsey, Jr, Thomas C.

    2001-10-31

    The objective of the Ferron Sandstone project was to develop a comprehensive, interdisciplinary, quantitative characterization f fluvial-deltaic reservoir to allow realistic interwell and reservoir-scale models to be developed for improved oil-field development in similar reservoirs world-wide. Quantitative geological and petrophysical information on the Cretaceous Ferron Sandstone in east-central Utah was collected. Both new and existing data was integrated into a three-dimensional model of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Simulation results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations.

  2. Simulation of extreme reservoir level distribution with the SCHADEX method (EXTRAFLO project)

    NASA Astrophysics Data System (ADS)

    Paquet, Emmanuel; Penot, David; Garavaglia, Federico

    2013-04-01

    The standard practice for the design of dam spillways structures and gates is to consider the maximum reservoir level reached for a given hydrologic scenario. This scenario has several components: peak discharge, flood volumes on different durations, discharge gradients etc. Within a probabilistic analysis framework, several scenarios can be associated with different return times, although a reference return level (e.g. 1000 years) is often prescribed by the local regulation rules or usual practice. Using continuous simulation method for extreme flood estimation is a convenient solution to provide a great variety of hydrological scenarios to feed a hydraulic model of dam operation: flood hydrographs are explicitly simulated by a rainfall-runoff model fed by a stochastic rainfall generator. The maximum reservoir level reached will be conditioned by the scale and the dynamics of the generated hydrograph, by the filling of the reservoir prior to the flood, and by the dam gates and spillway operation during the event. The simulation of a great number of floods will allow building a probabilistic distribution of maximum reservoir levels. A design value can be chosen at a definite return level. An alternative approach is proposed here, based on the SCHADEX method for extreme flood estimation, proposed by Paquet et al. (2006, 2013). SCHADEX is a so-called "semi-continuous" stochastic simulation method in that flood events are simulated on an event basis and are superimposed on a continuous simulation of the catchment saturation hazard using rainfall-runoff modelling. The SCHADEX process works at the study time-step (e.g. daily), and the peak flow distribution is deduced from the simulated daily flow distribution by a peak-to-volume ratio. A reference hydrograph relevant for extreme floods is proposed. In the standard version of the method, both the peak-to-volume and the reference hydrograph are constant. An enhancement of this method is presented, with variable peak

  3. Reservoir simulation and the in-house vector processor: experience for the first year. [CRAY-1S

    SciTech Connect

    Killough, J.E.; Levesque, J.M.

    1982-01-01

    This paper details the changes which have been made in ARCO Oil and Gas Company's reservoir simulation models to operate more efficiently with an in-house CRAY-1S vector processor. A unique method for vectorization of a compositional reservoir simulation model is presented. A method is described for utilizing the capabilities of the CRAY-1S I/O (Input/Output) processor for problems that are not contained in memory. 6 refs.

  4. SAG injection in a North Sea stratified reservoir: Flow experiment and simulation

    SciTech Connect

    Hanssen, J.E.; Surguchev, L.M.; Svorstoel, I.

    1994-12-31

    This paper is a study of a novel recovery process for stratified reservoirs with large permeability contrasts. A slug of foaming surfactant is injected alternately with gas, thus by analogy with WAG making this a SAG injection process. A combined experimental and numerical evaluation demonstrating effective diversion by foam and significant recovery potential over WAG of the method is reported. An experiment with the new process was performed in a visual 2-D porous medium flow model approximately scaled to the conditions of a North Sea reservoir that is characterized by high permeability contrast and limited interlayer communication. The experiment showed poor performance of conventional WAG, which swept mainly the high-permeable layer. Placement of a surfactant slug and later foam generation in the swept layer was successfully demonstrated and gave efficient injectant diversion into the other layers, resulting in complete sweep of the reservoir model by continued WAG. In summary the results of this paper show experimentally and by simulation on the same system that SAG injection as implemented here is superior to WAG injection and that the rich observations made in the experimental ca be matched with reasonable accuracy using a commercial simulator with only empirical parameters.

  5. Simplifying the task of grouping fluid components in compositional reservoir simulation

    SciTech Connect

    Lomeland, F.; Harstad, O.

    1995-04-01

    The main results from a compositional reservoir simulation are the production rates. Normally, these are stable oil and dry gas streams, but other streams may also be reported. The detailed description of the fluid compositions can therefore be reduced to some extent if the overall description of the fluid properties is acceptable. This is achieved by lumping the components into component groups called pseudocomponents. This reduces the computation time and the needed memory. The traditional way to prepare a fluid model with pseudocomponents is to group them based on personal experience and parameter regression. This requires a lot of experience and continues practice, and probably represents one of the greatest obstacles for a reservoir engineer confronted with compositional reservoir simulation for the first time. This paper presents an automatic method of selecting pseudocomponents. The authors will compare the new method with other existing methods that automatically group components into pseudocomponents. The existing methods used in the comparison follow: (1) the method of mole-weighted average with components grouped to have approximately equal mole fraction; (2) the method of mass-weighted average with components grouped to have approximately equal mass fraction; (3) the method of Newly et al.

  6. Simulated effects of proposed reservoir-development alternatives on streamflow quantity in the White River, Colorado and Utah

    USGS Publications Warehouse

    Kuhn, Gerhard; Ellis, S.R.

    1984-01-01

    Numerous reservoirs have been proposed for the White River basin in Colorado and Utah, primarily to provide water for oil-shale development. A multireservoir-flow model was used to simulate the effects of streamflow withdrawal at four of the proposed reservoirs using historical streamflow data from the 1932-81 water years. The proposed reservoirs considered in the study were Avery, Powell Park, Taylor Draw, and White River Reservoirs; construction of Taylor Draw Dam was completed during the study. Annual streamflow depletions from the White River ranging from about 93,000 to 226,000 acre-feet were simulated for the 50 year period. Simulated streamflow throughout the year generally became smaller and more constant as streamflow throughout the year generally became smaller and more constant as streamflow depletion increased. Minimum streamflow requirements would not have been met for a maximum of 13 years and water-use requirements associated with the proposed reservoirs would not have been met for a maximum of 3 years. The current water-use pattern, which depletes about 40,000 acre-feet per year and is dominated by irrigation of hay meadows and pastureland, was maintained in the simulation. Relations between reservoir active capacity and yield applicable to the White River also were developed. These relations show that reservoir storage of about 400,000 acre-feet is the maximum practicable for the White River. (USGS)

  7. Fully implicit mixed-hybrid finite-element discretization for general purpose subsurface reservoir simulation

    NASA Astrophysics Data System (ADS)

    Abushaikha, Ahmad S.; Voskov, Denis V.; Tchelepi, Hamdi A.

    2017-10-01

    We present a new fully-implicit, mixed-hybrid, finite-element (MHFE) discretization scheme for general-purpose compositional reservoir simulation. The locally conservative scheme solves the coupled momentum and mass balance equations simultaneously, and the fluid system is modeled using a cubic equation-of-state. We introduce a new conservative flux approach for the mass balance equations for this fully-implicit approach. We discuss the nonlinear solution procedure for the proposed approach, and we present extensive numerical tests to demonstrate the convergence and accuracy of the MHFE method using tetrahedral elements. We also compare the method to other advanced discretization schemes for unstructured meshes and tensor permeability. Finally, we illustrate the applicability and robustness of the method for highly heterogeneous reservoirs with unstructured grids.

  8. Marine radiocarbon reservoir age simulations for the past 50,000 years

    NASA Astrophysics Data System (ADS)

    Butzin, M.; Köhler, P.; Lohmann, G.

    2017-08-01

    Radiocarbon (14C) dating calibration for the last glacial period largely relies on cross-dated marine 14C records. However, marine reservoirs are isotopically depleted with respect to the atmosphere and therefore have to be corrected by the Marine Radiocarbon Ages of surface waters (MRAs), whose temporal variabilities are largely unknown. Here we present simulations of the spatial and temporal variability in MRAs using a three-dimensional ocean circulation model covering the past 50,000 years. Our simulations are compared to reconstructions of past surface ocean Δ14C. Running the model with different climatic boundary conditions, we find that low-latitude to midlatitude MRAs have varied between 400 and 1200 14C years, with values of about 780 14C years at the Last Glacial Maximum. Reservoir ages exceeding 2000 14C years are simulated in the polar oceans. Our simulation results can be used as first-order approximation of the MRA variability in future radiocarbon calibration efforts.

  9. Feasibility of steam injection process in a thin, low-permeability heavy oil reservoir of Arkansas -- a numerical simulation study

    SciTech Connect

    Sarkar, A.K.; Sarathi, P.S.

    1993-12-01

    This report details the findings of an in-depth study undertaken to assess the viability of the steam injection process in the heavy oil bearing Nacatoch sands of Arkansas. Published screening criteria and DOE`s steamflood predictive models were utilized to screen and select reservoirs for further scrutiny. Although, several prospects satisfied the steam injection screening criteria, only a single candidate was selected for detailed simulation studies. The selection was based on the availability of needed data for simulation and the uniqueness of the reservoir. The reservoir investigated is a shallow, thin, low-permeability reservoir with low initial oil saturation and has an underlying water sand. The study showed that the reservoir will respond favorably to steamdrive, but not to cyclic steaming. Steam stimulation, however, is necessary to improve steam injectivity during subsequent steamdrive. Further, in such marginal heavy oil reservoirs (i.e., reservoir characterized by thin pay zone and low initial oil saturation) conventional steamdrive (i.e., steam injection using vertical wells) is unlikely to be economical, and nonconventional methods must be utilized. It was found that the use of horizontal injectors and horizontal producers significantly improved the recovery and oil-steam ratio and improved the economics. It is recommended that the applicability of horizontal steam injection technology in this reservoir be further investigated.

  10. Numerical simulations of CO2 -assisted gas production from hydrate reservoirs

    NASA Astrophysics Data System (ADS)

    Sridhara, P.; Anderson, B. J.; Myshakin, E. M.

    2015-12-01

    A series of experimental studies over the last decade have reviewed the feasibility of using CO2 or CO2+N2 gas mixtures to recover CH4 gas from hydrates deposits. That technique would serve the dual purpose of CO2 sequestration and production of CH4 while maintaining the geo-mechanical stability of the reservoir. In order to analyze CH4 production process by means of CO2 or CO2+N2 injection into gas hydrate reservoirs, a new simulation tool, Mix3HydrateResSim (Mix3HRS)[1], was previously developed to account for the complex thermodynamics of multi-component hydrate phase and to predict the process of CH4 substitution by CO2 (and N2) in the hydrate lattice. In this work, Mix3HRS is used to simulate the CO2 injection into a Class 2 hydrate accumulation characterized by a mobile aqueous phase underneath a hydrate bearing sediment. That type of hydrate reservoir is broadly confirmed in permafrost and along seashore. The production technique implies a two-stage approach using a two-well design, one for an injector and one for a producer. First, the CO2 is injected into the mobile aqueous phase to convert it into immobile CO2 hydrate and to initiate CH4 release from gas hydrate across the hydrate-water boundary (generally designating the onset of a hydrate stability zone). Second, CH4 hydrate decomposition is induced by the depressurization method at a producer to estimate gas production potential over 30 years. The conversion of the free water phase into the CO2 hydrate significantly reduces competitive water production in the second stage, thereby improving the methane gas production. A base case using only the depressurization stage is conducted to compare with enhanced gas production predicted by the CO2-assisted technique. The approach also offers a possibility to permanently store carbon dioxide in the underground formation to greater extent comparing to a direct injection of CO2 into gas hydrate sediment. Numerical models are based on the hydrate formations at the

  11. Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.

    SciTech Connect

    Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick; Jakaboski, Blake Elaine; Normann, Randy Allen; Jennings, Jim; Gilbert, Bob; Lake, Larry W.; Weiss, Chester Joseph; Lorenz, John Clay; Elbring, Gregory Jay; Wheeler, Mary Fanett; Thomas, Sunil G.; Rightley, Michael J.; Rodriguez, Adolfo; Klie, Hector; Banchs, Rafael; Nunez, Emilio J.; Jablonowski, Chris

    2006-11-01

    survivability issues. Our findings indicate that packaging represents the most significant technical challenge associated with application of sensors in the downhole environment for long periods (5+ years) of time. These issues are described in detail within the report. The impact of successful reservoir monitoring programs and coincident improved reservoir management is measured by the production of additional oil and gas volumes from existing reservoirs, revitalization of nearly depleted reservoirs, possible re-establishment of already abandoned reservoirs, and improved economics for all cases. Smart Well monitoring provides the means to understand how a reservoir process is developing and to provide active reservoir management. At the same time it also provides data for developing high-fidelity simulation models. This work has been a joint effort with Sandia National Laboratories and UT-Austin's Bureau of Economic Geology, Department of Petroleum and Geosystems Engineering, and the Institute of Computational and Engineering Mathematics.

  12. [Coupling SWAT and CE-QUAL-W2 models to simulate water quantity and quality in Shanmei Reservoir watershed].

    PubMed

    Liu, Mei-Bing; Chen, Dong-Ping; Chen, Xing-Wei; Chen, Ying

    2013-12-01

    A coupled watershed-reservoir modeling approach consisting of a watershed distributed model (SWAT) and a two-dimensional laterally averaged model (CE-QUAL-W2) was adopted for simulating the impact of non-point source pollution from upland watershed on water quality of Shanmei Reservoir. Using the daily serial output from Shanmei Reservoir watershed by SWAT as the input to Shanmei Reservoir by CE-QUAL-W2, the coupled modeling was calibrated for runoff and outputs of sediment and pollutant at watershed scale and for elevation, temperature, nitrate, ammonium and total nitrogen in Shanmei Reservoir. The results indicated that the simulated values agreed fairly well with the observed data, although the calculation precision of downstream model would be affected by the accumulative errors generated from the simulation of upland model. The SWAT and CE-QUAL-W2 coupled modeling could be used to assess the hydrodynamic and water quality process in complex watershed comprised of upland watershed and downstream reservoir, and might further provide scientific basis for positioning key pollution source area and controlling the reservoir eutrophication.

  13. USGS Methodology for Assessing Continuous Petroleum Resources

    USGS Publications Warehouse

    Charpentier, Ronald R.; Cook, Troy A.

    2011-01-01

    The U.S. Geological Survey (USGS) has developed a new quantitative methodology for assessing resources in continuous (unconventional) petroleum deposits. Continuous petroleum resources include shale gas, coalbed gas, and other oil and gas deposits in low-permeability ("tight") reservoirs. The methodology is based on an approach combining geologic understanding with well productivities. The methodology is probabilistic, with both input and output variables as probability distributions, and uses Monte Carlo simulation to calculate the estimates. The new methodology is an improvement of previous USGS methodologies in that it better accommodates the uncertainties in undrilled or minimally drilled deposits that must be assessed using analogs. The publication is a collection of PowerPoint slides with accompanying comments.

  14. The big fat LARS - a LArge Reservoir Simulator for hydrate formation and gas production

    NASA Astrophysics Data System (ADS)

    Beeskow-Strauch, Bettina; Spangenberg, Erik; Schicks, Judith M.; Giese, Ronny; Luzi-Helbing, Manja; Priegnitz, Mike; Klump, Jens; Thaler, Jan; Abendroth, Sven

    2013-04-01

    Simulating natural scenarios on lab scale is a common technique to gain insight into geological processes with moderate effort and expenses. Due to the remote occurrence of gas hydrates, their behavior in sedimentary deposits is largely investigated on experimental set ups in the laboratory. In the framework of the submarine gas hydrate research project (SUGAR) a large reservoir simulator (LARS) with an internal volume of 425 liter has been designed, built and tested. To our knowledge this is presently a word-wide unique set up. Because of its large volume it is suitable for pilot plant scale tests on hydrate behavior in sediments. That includes not only the option of systematic tests on gas hydrate formation in various sedimentary settings but also the possibility to mimic scenarios for the hydrate decomposition and subsequent natural gas extraction. Based on these experimental results various numerical simulations can be realized. Here, we present the design and the experimental set up of LARS. The prerequisites for the simulation of a natural gas hydrate reservoir are porous sediments, methane, water, low temperature and high pressure. The reservoir is supplied by methane-saturated and pre-cooled water. For its preparation an external gas-water mixing stage is available. The methane-loaded water is continuously flushed into LARS as finely dispersed fluid via bottom-and-top-located sparger. The LARS is equipped with a mantle cooling system and can be kept at a chosen set temperature. The temperature distribution is monitored at 14 reasonable locations throughout the reservoir by Pt100 sensors. Pressure needs are realized using syringe pump stands. A tomographic system, consisting of a 375-electrode-configuration is attached to the mantle for the monitoring of hydrate distribution throughout the entire reservoir volume. Two sets of tubular polydimethylsiloxan-membranes are applied to determine gas-water ratio within the reservoir using the effect of permeability

  15. Investigation of oil injection into brine for the strategic petroleum reserve : hydrodynamics experiments with simulant liquids.

    SciTech Connect

    Castaneda, Jaime N.; Shollenberger, Kim Ann; Torczynski, John Robert; Cote, Raymond O.; Barney, Jeremy; O'Hern, Timothy John

    2003-10-01

    An experimental program is being conducted to study a proposed approach for oil reintroduction in the Strategic Petroleum Reserve (SPR). The goal is to assess whether useful oil is rendered unusable through formation of a stable oil-brine emulsion during reintroduction of degassed oil into the brine layer in storage caverns. This report documents the first stage of the program, in which simulant liquids are used to characterize the buoyant plume that is produced when a jet of crude oil is injected downward from a tube into brine. The experiment consists of a large transparent vessel that is a scale model of the proposed oil injection process at the SPR. An oil layer is floated on top of a brine layer. Silicon oil (Dow Corning 200{reg_sign} Fluid, 5 cSt) is used as the simulant for crude oil to allow visualization of the flow and to avoid flammability and related concerns. Sodium nitrate solution is used as the simulant for brine because it is not corrosive and it can match the density ratio between brine and crude oil. The oil is injected downward through a tube into the brine at a prescribed depth below the oil-brine interface. Flow rates are determined by scaling to match the ratio of buoyancy to momentum between the experiment and the SPR. Initially, the momentum of the flow produces a downward jet of oil below the tube end. Subsequently, the oil breaks up into droplets due to shear forces, buoyancy dominates the flow, and a plume of oil droplets rises to the interface. The interface is deflected upward by the impinging oil-brine plume. Two different diameter injection tubes were used (1/2-inch and 1-inch OD) to vary the scaling. Use of the 1-inch injection tube also assured that turbulent pipe flow was achieved, which was questionable for lower flow rates in the 1/2-inch tube. In addition, a 1/2-inch J-tube was used to direct the buoyant jet upwards rather than downwards to determine whether flow redirection could substantially reduce the oil-plume size and the

  16. Static and dynamic load-balancing strategies for parallel reservoir simulation

    SciTech Connect

    Anguille, L.; Killough, J.E.; Li, T.M.C.; Toepfer, J.L.

    1995-12-31

    Accurate simulation of the complex phenomena that occur in flow in porous media can tax even the most powerful serial computers. Emergence of new parallel computer architectures as a future efficient tool in reservoir simulation may overcome this difficulty. Unfortunately, major problems remain to be solved before using parallel computers commercially: production serial programs must be rewritten to be efficient in parallel environments and load balancing methods must be explored to evenly distribute the workload on each processor during the simulation. This study implements both a static load-balancing algorithm and a receiver-initiated dynamic load-sharing algorithm to achieve high parallel efficiencies on both the IBM SP2 and Intel IPSC/860 parallel computers. Significant speedup improvement was recorded for both methods. Further optimization of these algorithms yielded a technique with efficiencies as high as 90% and 70% on 8 and 32 nodes, respectively. The increased performance was the result of the minimization of message-passing overhead.

  17. Geothermal reservoir simulation to enhance confidence in predictions for nuclear waste disposal

    SciTech Connect

    Kneafsey, Timothy J.; Pruess, Karsten; O'Sullivan, Michael J.; Bodvarsson, Gudmundur S.

    2002-06-15

    Numerical simulation of geothermal reservoirs is useful and necessary in understanding and evaluating reservoir structure and behavior, designing field development, and predicting performance. Models vary in complexity depending on processes considered, heterogeneity, data availability, and study objectives. They are evaluated using computer codes written and tested to study single and multiphase flow and transport under nonisothermal conditions. Many flow and heat transfer processes modeled in geothermal reservoirs are expected to occur in anthropogenic thermal (AT) systems created by geologic disposal of heat-generating nuclear waste. We examine and compare geothermal systems and the AT system expected at Yucca Mountain, Nevada, and their modeling. Time frames and spatial scales are similar in both systems, but increased precision is necessary for modeling the AT system, because flow through specific repository locations will affect long-term ability radionuclide retention. Geothermal modeling experience has generated a methodology, used in the AT modeling for Yucca Mountain, yielding good predictive results if sufficient reliable data are available and an experienced modeler is involved. Codes used in geothermal and AT modeling have been tested extensively and successfully on a variety of analytical and laboratory problems.

  18. Revised Comparisons of Simulated Hydrodynamics and Water Quality for Projected Demands in 2046, Pueblo Reservoir, Southeastern Colorado

    USGS Publications Warehouse

    Ortiz, Roderick F.; Miller, Lisa D.

    2009-01-01

    Pueblo Reservoir is one of southeastern Colorado's most valuable water resources. The reservoir provides irrigation, municipal, and industrial water to various entities throughout the region. The reservoir also provides flood control, recreational activities, sport fishing, and wildlife enhancement to the region. The Southern Delivery System (SDS) project is a regional water-delivery project that has been proposed to provide a safe, reliable, and sustainable water supply through the foreseeable future (2046) for Colorado Springs, Fountain, Security, and Pueblo West. Discussions with the Bureau of Reclamation and the U.S. Geological Survey led to a cooperative agreement to simulate the hydrodynamics and water quality of Pueblo Reservoir. This work has been completed and described in a previously published report, U.S. Geological Survey Scientific Investigations Report 2008-5056. Additionally, there was a need to make comparisons of simulated hydrodynamics and water quality for projected demands associated with the various Environmental Impact Statements (EIS) alternatives and plans by Pueblo West to discharge treated wastewater into the reservoir. Wastewater plans by Pueblo West are fully independent of the SDS project. This report compares simulated hydrodynamics and water quality for projected demands in Pueblo Reservoir resulting from changes in inflow and water quality entering the reservoir, and from changes to withdrawals from the reservoir as projected for the year 2046. Four of the seven EIS alternatives were selected for scenario simulations. The four U.S. Geological Survey simulation scenarios were the No Action scenario (EIS Alternative 1), the Downstream Diversion scenario (EIS Alternative 2), the Upstream Return-Flow scenario (EIS Alternative 4), and the Upstream Diversion scenario (EIS Alternative 7). Additionally, the results of an Existing Conditions scenario (year 2006 demand conditions) were compared to the No Action scenario (projected demands in

  19. Hierarchical Acceleration of Multilevel Monte Carlo Methods for Computationally Expensive Simulations in Reservoir Modeling

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Lu, D.; Webster, C.

    2014-12-01

    The rational management of oil and gas reservoir requires an understanding of its response to existing and planned schemes of exploitation and operation. Such understanding requires analyzing and quantifying the influence of the subsurface uncertainties on predictions of oil and gas production. As the subsurface properties are typically heterogeneous causing a large number of model parameters, the dimension independent Monte Carlo (MC) method is usually used for uncertainty quantification (UQ). Recently, multilevel Monte Carlo (MLMC) methods were proposed, as a variance reduction technique, in order to improve computational efficiency of MC methods in UQ. In this effort, we propose a new acceleration approach for MLMC method to further reduce the total computational cost by exploiting model hierarchies. Specifically, for each model simulation on a new added level of MLMC, we take advantage of the approximation of the model outputs constructed based on simulations on previous levels to provide better initial states of new simulations, which will help improve efficiency by, e.g. reducing the number of iterations in linear system solving or the number of needed time-steps. This is achieved by using mesh-free interpolation methods, such as Shepard interpolation and radial basis approximation. Our approach is applied to a highly heterogeneous reservoir model from the tenth SPE project. The results indicate that the accelerated MLMC can achieve the same accuracy as standard MLMC with a significantly reduced cost.

  20. Block-preconditioned conjugate-gradient-like methods for numerical reservoir simulation

    SciTech Connect

    Eisenstat, S.C.; Elman, H.C.; Schultz, M.H.

    1985-02-01

    The authors describe a collection of block-preconditioners for use in solving large sparse linear systems of equations by iterative methods, and they compare their performance with several point-preconditioners in solving some systems arising in numerical reservoir simulation. They consider block-preconditioners that handle either lines or planes in an implicit manner, and pointwise incomplete LU factorizations combined with partial elimination preprocessors. Their conclusions are that the best of the pointwise methods are both more robust and faster, but that the best of the block methods are competitive for certain orderings of unknowns and require less storage.

  1. Estimation of discontinuous coefficients in parabolic systems - Applications to reservoir simulation

    NASA Technical Reports Server (NTRS)

    Lamm, Patricia K.

    1987-01-01

    Spline-based techniques for estimating spatially varying parameters that appear in parabolic distributed systems (typical of those found in reservoir simulation problems) are presented. In particular, the problem of determining discontinuous coefficients is discussed, estimating both the functional shape and points of discontinuity for such parameters. In addition, the ideas may also be applied to problems with unknown initial conditions and unknown parameters appearing in terms representing external forces. Convergence results and a summary of numerical performance of the resulting algorithms are given.

  2. Numerical simulation of gas hydrate exploitation from subsea reservoirs in the Black Sea

    NASA Astrophysics Data System (ADS)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2017-04-01

    Natural gas (methane) is the most environmental friendly source of fossil energy. When coal is replace by natural gas in power production the emission of carbon dioxide is reduced by 50 %. The vast amount of methane assumed in gas hydrate deposits can help to overcome a shortage of fossil energy resources in the future. To increase their potential for energy applications new technological approaches are being discussed and developed worldwide. Besides technical challenges that have to be overcome climate and safety issues have to be considered before a commercial exploitation of such unconventional reservoirs. The potential of producing natural gas from subsea gas hydrate deposits by various means (e. g. depressurization and/or carbon dioxide injection) is numerically studied in the frame of the German research project »SUGAR - Submarine Gas Hydrate Reservoirs«. In order to simulate the exploitation of hydrate-bearing sediments in the subsea, an in-house simulation model HyReS which is implemented in the general-purpose software COMSOL Multiphysics is used. This tool turned out to be especially suited for the flexible implementation of non-standard correlations concerning heat transfer, fluid flow, hydrate kinetics, and other relevant model data. Partially based on the simulation results, the development of a technical concept and its evaluation are the subject of ongoing investigations, whereby geological and ecological criteria are to be considered. The results illustrate the processes and effects occurring during the gas production from a subsea gas hydrate deposit by depressurization. The simulation results from a case study for a deposit located in the Black Sea reveal that the production of natural gas by simple depressurization is possible but with quite low rates. It can be shown that the hydrate decomposition and thus the gas production strongly depend on the geophysical properties of the reservoir, the mass and heat transport within the reservoir, and

  3. Prediction of effects of hydraulic fracturing using reservoir and well flow simulation

    SciTech Connect

    Mineyuki Hanano; Tayuki Kondo

    1992-01-01

    This paper presents a method to predict and evaluate effects of hydraulic fracturing jobs by using reservoir and well flow numerical simulation. The concept of the method i5 that steam production rate at the operating well head pressure is predicted with different fracture conditions which would be attained by the hydraulic fracturing jobs. Then, the effects of the hydraulic fracturing is evaluated by comparing the predicted steam production rate and that before the hydraulic fracturing. This course of analysis will suggest how large fracture should be created by the fracturing job to attain large enough increase in steam production at the operating condition and the best scheme of the hydraulic fracturing job.

  4. Multi-objective combined simulation-optimization of Lake Tana multi reservoir system, Ethiopia, using two different generalized reservoir system operation models

    NASA Astrophysics Data System (ADS)

    Müller, R.; Saliha, A. H.; Schütze, N.

    2012-04-01

    Finding optimal management strategies can be a challenging task when water resources systems serve multiple contrary goals. Reasonable trade offs among these goals has to be found. Multi-objective optimization (MOO) is able to obtain a so called Pareto front containing multiple trade off solutions (Pareto optimal solutions). An attractive and powerful MOO method is multi-objective combined simulation-optimization (MOCSO). Generally MOCSO model consists of mainly two components, a simulation model and a multi-objective optimization algorithm. Generalized reservoir system operation models (GRSOM) are commonly used as simulation models in water resources planning and management of multi-reservoir systems. The purpose of the GRSOM in MOCSO is to simulate a specific management in order to evaluate the objective functions for the multi-objective optimization algorithm. As the distribution of water in reservoir system is affected by the particular operation of the GRSOM model, the choice of the simulation model is a crucial step in MOCSO setup which may significantly affect the obtained results. In a case study of Lake Tana sub basin (Ethiopia) two MOCSO models are compared. The general reservoir operation simulation models HEC-5 and OASIS (Operational Analysis and Simulation of Integrated Systems) are combined with the Multi-Objective Covariance Matrix-Adaptation Evolution Strategy (MO-CMA-ES). HEC-5 is a pure simulation model which computes the distribution of water in the system sequentially and serially from upstream to downstream following an given algorithm. OASIS, a simulation-optimization model, incorporates a linear or nonlinear solver which distributes the water sequentially in the system according to objective function defined by the decision maker. Lake Tana is the largest fresh water lake in Ethiopia. Its water resources are controllable due to the Chara Chara weir. For hydropower production water is directly diverted from Lake Tana to Belles sub

  5. Parallel, Multigrid Finite Element Simulator for Fractured/Faulted and Other Complex Reservoirs based on Common Component Architecture (CCA)

    SciTech Connect

    Milind Deo; Chung-Kan Huang; Huabing Wang

    2008-08-31

    Black-oil, compositional and thermal simulators have been developed to address different physical processes in reservoir simulation. A number of different types of discretization methods have also been proposed to address issues related to representing the complex reservoir geometry. These methods are more significant for fractured reservoirs where the geometry can be particularly challenging. In this project, a general modular framework for reservoir simulation was developed, wherein the physical models were efficiently decoupled from the discretization methods. This made it possible to couple any discretization method with different physical models. Oil characterization methods are becoming increasingly sophisticated, and it is possible to construct geologically constrained models of faulted/fractured reservoirs. Discrete Fracture Network (DFN) simulation provides the option of performing multiphase calculations on spatially explicit, geologically feasible fracture sets. Multiphase DFN simulations of and sensitivity studies on a wide variety of fracture networks created using fracture creation/simulation programs was undertaken in the first part of this project. This involved creating interfaces to seamlessly convert the fracture characterization information into simulator input, grid the complex geometry, perform the simulations, and analyze and visualize results. Benchmarking and comparison with conventional simulators was also a component of this work. After demonstration of the fact that multiphase simulations can be carried out on complex fracture networks, quantitative effects of the heterogeneity of fracture properties were evaluated. Reservoirs are populated with fractures of several different scales and properties. A multiscale fracture modeling study was undertaken and the effects of heterogeneity and storage on water displacement dynamics in fractured basements were investigated. In gravity-dominated systems, more oil could be recovered at a given pore

  6. Three-dimensional geomechanical simulation of reservoir compaction and implications for well failures in the Belridge diatomite

    SciTech Connect

    Fredrich, J.T.; Argueello, J.G.; Thorne, B.J.; Wawersik, W.R. |

    1996-11-01

    This paper describes an integrated geomechanics analysis of well casing damage induced by compaction of the diatomite reservoir at the Belridge Field, California. Historical data from the five field operators were compiled and analyzed to determine correlations between production, injection, subsidence, and well failures. The results of this analysis were used to develop a three-dimensional geomechanical model of South Belridge, Section 33 to examine the diatomite reservoir and overburden response to production and injection at the interwell scale and to evaluate potential well failure mechanisms. The time-dependent reservoir pressure field was derived from a three-dimensional finite difference reservoir simulation and used as input to three-dimensional non-linear finite element geomechanical simulations. The reservoir simulation included -200 wells and covered 18 years of production and injection. The geomechanical simulation contained 437,100 nodes and 374,130 elements with the overburden and reservoir discretized into 13 layers with independent material properties. The results reveal the evolution of the subsurface stress and displacement fields with production and injection and suggest strategies for reducing the occurrence of well casing damage.

  7. Intergrated 3-D Ground-Penetrating Radar,Outcrop,and Boreholoe Data Applied to Reservoir Characterization and Flow Simulation.

    SciTech Connect

    McMechan et al.

    2001-08-31

    Existing reservoir models are based on 2-D outcrop;3-D aspects are inferred from correlation between wells,and so are inadequately constrained for reservoir simulations. To overcome these deficiencies, we initiated a multidimensional characterization of reservoir analogs in the Cretaceous Ferron Sandstone in Utah.The study was conducted at two sites(Corbula Gulch Coyote Basin); results from both sites are contained in this report. Detailed sedimentary facies maps of cliff faces define the geometry and distribution of potential reservoir flow units, barriers and baffles at the outcrop. High resolution 2-D and 3-D ground penetrating radar(GPR) images extend these reservoir characteristics into 3-D to allow development of realistic 3-D reservoir models. Models use geometric information from the mapping and the GPR data, petrophysical data from surface and cliff-face outcrops, lab analyses of outcrop and core samples, and petrography. The measurements are all integrated into a single coordinate system using GPS and laser mapping of the main sedimentologic features and boundaries. The final step is analysis of results of 3-D fluid flow modeling to demonstrate applicability of our reservoir analog studies to well siting and reservoir engineering for maximization of hydrocarbon production. The main goals of this project are achieved. These are the construction of a deterministic 3-D reservoir analog model from a variety of geophysical and geologic measurements at the field sites, integrating these into comprehensive petrophysical models, and flow simulation through these models. This unique approach represents a significant advance in characterization and use of reservoir analogs. To data,the team has presented five papers at GSA and AAPG meetings produced a technical manual, and completed 15 technical papers. The latter are the main content of this final report. In addition,the project became part of 5 PhD dissertations, 3 MS theses,and two senior undergraduate research

  8. Numerical Simulation of Subsurface Transport and Groundwater Impacts from Hydraulic Fracturing of Tight/Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Reagan, M. T.; Moridis, G. J.; Keen, N. D.

    2014-12-01

    The use of reservoir stimulation techniques, such as hydraulic fracturing, has grown tremendously over the last decade, and concerns have arisen that reservoir stimulation creates environmental threats through the creation of permeable pathways that could connect the stimulated reservoir to shallower groundwater aquifers. This study investigates, by numerical simulation, gas and water transport between a deeper tight-gas reservoir and a shallower overlying groundwater aquifer following hydraulic fracturing operations, assuming that the formation of a connecting pathway has already occurred. We focus on two general transport scenarios: 1) communication between the reservoir and aquifer via a connecting fracture or fault and 2) communication via a deteriorated, preexisting nearby well. The simulations explore a range of permeabilities and geometries over time scales, and evaluate the mechanisms and factors that could lead to the escape of gas or reservoir fluid and the contamination of groundwater resources. We also examine the effects of overpressured reservoirs, and explore long-term transport processes as part of a continuing study. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Gas production from the reservoir via a horizontal well is likely to mitigate release through the reduction of available free gas and the lowering of reservoir pressure. We also find that fractured tight-gas reservoirs are unlikely to act as a continuing source of large volumes of migrating gas, and incidents of gas escape are likely to be limited in duration and scope. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes.

  9. Integrated 3-D Ground-Penetrating Radar, Outcrop, and Borehole Data Applied to Reservoir Characterization and Flow Simulation

    SciTech Connect

    George McMechan; Rucsandra Corbeanu; Craig Forster; Kristian Soegaard; Xiaoxian Zeng; Carlos Aiken; Robert Szerbiak; Janok Bhattacharya; Michael Wizevich; Xueming Xu; Stephen Snelgrove; Karen Roche; Siang Joo Lim; Djuro Navakovic; Christopher White; Laura Crossey; Deming Wang; John Thurmond; William Hammon III; Mamadou BAlde; Ari Menitove

    2001-08-31

    OAK-B135 (IPLD Cleared) Existing reservoir models are based on 2-D outcrop studies; 3-D aspects are inferred from correlation between wells, and so are inadequately constrained for reservoir simulations. To overcome these deficiencies, we initiated a multidimensional characterization of reservoir analogs in the Cretaceous Ferron Sandstone in Utah. The study was conducted at two sites (Corbula Gulch and Coyote Basin); results from both sites are contained in this report. Detailed sedimentary facies maps of cliff faces define the geometry and distribution of potential reservoir flow units, barriers and baffles at the outcrop. High resolution 2-D and 3-D ground-penetrating radar (GPR) images extend these reservoir characteristics into 3-D, to allow development of realistic 3-D reservoir models. Models use geometric information from the mapping and the GPR data, petrophysical data from surface and cliff-face outcrops, lab analyses of outcrop and core samples, and petrography. The measurements are all integrated into a single coordinate system using GPS and laser mapping of the main sedimentological features and boundaries.The final step is analysis of results of 3-D fluid flow modeling to demonstrate applicability of our reservoir analog studies to well siting and reservoir engineering for maximization of hydrocarbon production. The main goals of the project are achieved. These are the construction of a deterministic 3-D reservoir analog model from a variety of geophysical and geologic measurements at the field sites, integrating these into comprehensive petrophysical models, and flow simulations through these models. This unique approach represents a significant advance in characterization and use of reservoir analogs.

  10. Simulation studies to evaluate the effect of fracture closure on the performance of naturally fractured reservoirs. Annual report

    SciTech Connect

    Not Available

    1992-11-01

    The second year of this three-year research program to evaluate the effect of fracture closure on the recovery of oil and gas from naturally fractured reservoirs has been completed. The overall objectives of the study are to: (1) evaluate the reservoir conditions where fracture closure is significant, and (2) evaluate innovative fluid injection techniques capable of maintaining pressure within the reservoir. Simulation studies have been conducted with a dual porosity simulator capable of simulating the performance of vertical and horizontal wells. Each simulation model has been initialized with properties typical of the Austin Chalk reservoir in Pearsall Field, Texas. During year one, simulations of both vertical and horizontal well performance were made assuming that fracture permeability was insensitive to pressure charge. The results confirmed that horizontal wells could increase both rate of oil recovery and total oil recovery from naturally fractured reservoirs. During the second year the performances of the same vertical and horizontal wells were evaluated with the assumption that fracture permeability was a function of reservoir pressure. This required repetition of most of the natural depletion cases simulated in year one while invoking the pressure-sensitive fracture permeability option. To investigate sensitivity to in situ stress, two stress conditions were simulated for each primary variable. The water injection cases, begun in year one, were extended to include most of the reservoir parameters investigated for natural depletion, including fracture permeability as a function of net stress and the use of horizontal wells. The results thus far confirm that pressure-sensitive fractures degrade well performance and that the degradation is reduced by water injection pressure maintenance. Furthermore, oil recovery can be significantly increased by water injection pressure maintenance.

  11. Coupling of geochemical and multiphase flow processes for validation of the MUFITS reservoir simulator against TOUGHREACT

    NASA Astrophysics Data System (ADS)

    De Lucia, Marco; Kempka, Thomas; Afanasyev, Andrey; Melnik, Oleg; Kühn, Michael

    2016-04-01

    Coupled reactive transport simulations, especially in heterogeneous settings considering multiphase flow, are extremely time consuming and suffer from significant numerical issues compared to purely hydrodynamic simulations. This represents a major hurdle in the assessment of geological subsurface utilization, since it constrains the practical application of reactive transport modelling to coarse spatial discretization or oversimplified geological settings. In order to overcome such limitations, De Lucia et al. [1] developed and validated a one-way coupling approach between geochemistry and hydrodynamics, which is particularly well suited for CO2 storage simulations, while being of general validity. In the present study, the models used for the validation of the one-way coupling approach introduced by De Lucia et al. (2015), and originally performed with the TOUGHREACT simulator, are transferred to and benchmarked against the multiphase reservoir simulator MUFITS [2]. The geological model is loosely inspired by an existing CO2 storage site. Its grid comprises 2,950 elements enclosed in a single layer, but reflecting a realistic three-dimensional anticline geometry. For the purpose of this comparison, homogeneous and heterogeneous scenarios in terms of porosity and permeability were investigated. In both cases, the results of the MUFITS simulator are in excellent agreement with those produced with the fully-coupled TOUGHREACT simulator, while profiting from significantly higher computational performance. This study demonstrates how a computationally efficient simulator such as MUFITS can be successfully included in a coupled process simulation framework, and also suggests ameliorations and specific strategies for the coupling of chemical processes with hydrodynamics and heat transport, aiming at tackling geoscientific problems beyond the storage of CO2. References [1] De Lucia, M., Kempka, T., and Kühn, M. A coupling alternative to reactive transport simulations

  12. Numerical simulation of groundwater movement and managed aquifer recharge from Sand Hollow Reservoir, Hurricane Bench area, Washington County, Utah

    USGS Publications Warehouse

    Marston, Thomas M.; Heilweil, Victor M.

    2012-01-01

    The Hurricane Bench area of Washington County, Utah, is a 70 square-mile area extending south from the Virgin River and encompassing Sand Hollow basin. Sand Hollow Reservoir, located on Hurricane Bench, was completed in March 2002 and is operated primarily as a managed aquifer recharge project by the Washington County Water Conservancy District. The reservoir is situated on a thick sequence of the Navajo Sandstone and Kayenta Formation. Total recharge to the underlying Navajo aquifer from the reservoir was about 86,000 acre-feet from 2002 to 2009. Natural recharge as infiltration of precipitation was approximately 2,100 acre-feet per year for the same period. Discharge occurs as seepage to the Virgin River, municipal and irrigation well withdrawals, and seepage to drains at the base of reservoir dams. Within the Hurricane Bench area, unconfined groundwater-flow conditions generally exist throughout the Navajo Sandstone. Navajo Sandstone hydraulic-conductivity values from regional aquifer testing range from 0.8 to 32 feet per day. The large variability in hydraulic conductivity is attributed to bedrock fractures that trend north-northeast across the study area.A numerical groundwater-flow model was developed to simulate groundwater movement in the Hurricane Bench area and to simulate the movement of managed aquifer recharge from Sand Hollow Reservoir through the groundwater system. The model was calibrated to combined steady- and transient-state conditions. The steady-state portion of the simulation was developed and calibrated by using hydrologic data that represented average conditions for 1975. The transient-state portion of the simulation was developed and calibrated by using hydrologic data collected from 1976 to 2009. Areally, the model grid was 98 rows by 76 columns with a variable cell size ranging from about 1.5 to 25 acres. Smaller cells were used to represent the reservoir to accurately simulate the reservoir bathymetry and nearby monitoring wells; larger

  13. Upgrading petroleum and petroleum fractions

    SciTech Connect

    Ferguson, S.; Reese, D.D.

    1988-06-21

    A method is described for neutralizing the organic naphthenic acids acidity present in petroleum and petroleum fractions to produce a neutralization number less than 1.0 whereby they are rendered suitable as lube oil feed stocks which consists essentially of treating the petroleum and petroleum fractions with a neutralizing amount of monoethanolamine to form an amine salt with the organic acids and then heating the thus-neutralized petroleum and petroleum fractions at a temperature at least about 25/sup 0/F greater than the boiling point of water and for a time sufficient to convert the amine salts to amides.

  14. Numerical simulations of highly buoyant flows in the Castel Giorgio - Torre Alfina deep geothermal reservoir

    NASA Astrophysics Data System (ADS)

    Volpi, Giorgio; Crosta, Giovanni B.; Colucci, Francesca; Fischer, Thomas; Magri, Fabien

    2017-04-01

    Geothermal heat is a viable source of energy and its environmental impact in terms of CO2 emissions is significantly lower than conventional fossil fuels. However, nowadays its utilization is inconsistent with the enormous amount of energy available underneath the surface of the earth. This is mainly due to the uncertainties associated with it, as for example the lack of appropriate computational tools, necessary to perform effective analyses. The aim of the present study is to build an accurate 3D numerical model, to simulate the exploitation process of the deep geothermal reservoir of Castel Giorgio - Torre Alfina (central Italy), and to compare results and performances of parallel simulations performed with TOUGH2 (Pruess et al. 1999), FEFLOW (Diersch 2014) and the open source software OpenGeoSys (Kolditz et al. 2012). Detailed geological, structural and hydrogeological data, available for the selected area since early 70s, show that Castel Giorgio - Torre Alfina is a potential geothermal reservoir with high thermal characteristics (120 ° C - 150 ° C) and fluids such as pressurized water and gas, mainly CO2, hosted in a carbonate formation. Our two steps simulations firstly recreate the undisturbed natural state of the considered system and then perform the predictive analysis of the industrial exploitation process. The three adopted software showed a strong numerical simulations accuracy, which has been verified by comparing the simulated and measured temperature and pressure values of the geothermal wells in the area. The results of our simulations have demonstrated the sustainability of the investigated geothermal field for the development of a 5 MW pilot plant with total fluids reinjection in the same original formation. From the thermal point of view, a very efficient buoyant circulation inside the geothermal system has been observed, thus allowing the reservoir to support the hypothesis of a 50 years production time with a flow rate of 1050 t

  15. Three-dimensional numerical reservoir simulation of the EGS Demonstration Project at The Geysers geothermal field

    NASA Astrophysics Data System (ADS)

    Borgia, Andrea; Rutqvist, Jonny; Oldenburg, Curt M.; Hutchings, Lawrence; Garcia, Julio; Walters, Mark; Hartline, Craig; Jeanne, Pierre; Dobson, Patrick; Boyle, Katie

    2013-04-01

    -isothermal porous media numerical flow simulator in order to model the evolution and injection-related operational dynamics of The Geysers geothermal field. At the bottom of the domain in the felsite, we impose a constant temperature, constant saturation, low-permeability boundary. Laterally we set no-flow boundaries (no mass or heat flow), while at the top we use a fully aqueous-phase-saturated constant atmospheric pressure boundary condition. We compute initial conditions for two different conceptual models. The first conceptual model has two phases (gas and aqueous) with decreasing proportions of gas from the steam zone downward; the second model has dry steam all the way from the steam zone to the bottom. The first may be more similar to a pre-exploitation condition, before production reduced pressure and dried out the system, while the second is calibrated to the pressure and temperature actually measured in the reservoir today. Our preliminary results are in reasonable agreement with the pressure monitoring at Prati State 31. These results will be used in hydrogeomechanical modeling to plan, design, and validate the effects of injection in the system.

  16. Numerical simulation of ultrasonic wave transmission experiments in rocks of shale gas reservoirs

    NASA Astrophysics Data System (ADS)

    Chen, Qiao; Yao, Guanghua; Zhu, Honglin; Tan, Yanhu; Xu, Fenglin

    2017-01-01

    Shale gas reservoirs have risen in importance in China's new power source exploration and development program. The investigation of the propagation of ultrasonic waves in shale forms the basis for the full waveform application of acoustic logging data to the exploration of shale gas. Using acoustic wave theory, initial conditions, vibration source conditions, and stability conditions are developed in combination with experimental background of ultrasonic wave transmission. With improved boundary conditions, we performed numerical simulations of the ultrasound transmission experiments in shale using the high-order staggered-grid finite difference method (second-order in the time domain and fourth-order in the space domain). With programs developed within MatLab, the results obtained from numerical simulations agree well with experimental results based on physical models. In addition, using snapshots of the wave field that give a microscopic perspective, the propagation laws for ultrasonic waves can be analyzed. Using this method, human error is avoided, transmission experiments costs can be reduced and efficiency improved. This method extends the scope of experimental investigations regarding the transmission of ultrasonic waves in a shale gas reservoir with increasing stratification, and thus has great theoretical value and practical significance.

  17. Simulation of the migration and transformation of petroleum pollutants in the soils of the Loess plateau: a case study in the Maling oil field of northwestern China.

    PubMed

    Pan, Feng; Ma, Jinzhu; Wang, Yunquan; Zhang, Yali; Chen, Lihua; Edmunds, W Mike

    2013-10-01

    We developed a coupled water-oil simulation model to simulate the migration and transformation of petroleum-derived contaminants in the soil of the Xifeng oil field. To do so, we used the HYDRUS-2D model, which simulates the diffusion, adsorption or desorption, and microbial degradation of petroleum-derived hydrocarbons in the soil-water system. The saturated soil hydraulic conductivity of petroleum-derived pollutants was 0.05 cm day(-1), which is about 1 to 2 % of the soil moisture permeability coefficient. Our numerical simulation results show that spilled crude oil was mainly concentrated in the surface horizons of the soil. The organic pollutant concentration tended to be highest nearest to the pollution source. The pollutant migration was generally concentrated within the top 20 to 30 cm of the soil, with the maximum concentration in the top 5 cm of the soil. With passing time, the pollutant accumulation increased and the adsorption and degradation functions reached a dynamic balance with the input rate at depths greater than 30 cm below the soil surface. The oil-derived pollutants totaled 50 to 100 mg kg(-1) under the dynamic balance condition, which occurred after 20 to 30 years. The petroleum-derived pollutant concentration in the loess soil was inversely correlated with the horizontal distance from the oil well, and the concentration decreased greatly at a distance greater than 40 m from the well.

  18. Hydrothermal simulation of a fractured carbonate reservoir in southern Italy and automated detections of optimal positions for geothermal doublet installations

    NASA Astrophysics Data System (ADS)

    Niederau, Jan; Gomez, Sergio; Ebigbo, Anozie; Inversi, Barbara; Marquart, Gabriele; Scrocca, Davide

    2015-04-01

    In this work, we present the results of hydrothermal simulations for assessing the geothermal potential of a fractured carbonate reservoir in Campania (Guardia Lombardi). Local surface heat flows of up to 90 mW/m² suggest that this area is a potential medium-enthalpy geothermal reservoir. The targeted reservoir rocks are fractured shallow-water carbonates (Jurassic to Cretaceous) of the Apulia Platform. During the Apennine orogeny, those carbonates were affected by at least two tectonic phases: Thrust-related folding of the carbonate platform due to compression followed by extension which caused major normal faulting. Based on seismic interpretation, a discretized structural model is set up, comprising the reservoir unit and the overlying sedimentary cover. The model comprises an area of 42 km × 28 km and extends to a depth of about six kilometers. Results of calibrated hydrothermal reservoir simulations suggest that free convection occurs in some parts of the reservoir. For assessing optimal locations for potential hydrothermal doublet systems, a tool was developed which uses the results of the reservoir simulationsin combination with predefined constraints. Those constraints or minimum requirements consider: a) minimum temperature for operating the doublet system, b) minimum matrix permeability allowing for a pumping rate of 40 L/s, and c) social constraints (location of cities or conservation areas, where the construction of a potential geothermal energy plant would be problematic). The optimization tool ranks possible doublet system locations by evaluating an objective function for the minimum requirements. Those locations are further used to extract smaller models from the big reservoir model and simulate the operation of a hypothetical geothermal doublet system. By assessing the optimized results, an optimal location of a geothermal energy plant would produce water with a temperature of 163 °C from a depth of almost 4 km.

  19. Mineral trapping of CO2 in operated geothermal reservoirs - Numerical simulations on various scales

    NASA Astrophysics Data System (ADS)

    Kühn, Michael; Stanjek, Helge; Peiffer, Stefan; Clauser, Christoph

    2013-04-01

    A novel approach to store CO2 not only by hydrodynamic trapping within a reservoir, but to convert dissolved CO2 into the geochemically more stable form of calcite in a reaction with calcium obtained from dissolution of sulphates and alkalinity from feldspars or fly ashes is described here. The presentation gives answers to the key questions: • Where are potential geothermal reservoirs with anhydrite abundant? • Does the transfer of anhydrite into calcite work at all and what are the reaction rates? • What are probable alkalinity sources and how fast are they available? Numerical simulation is a means to quantify the entire process of CO2 storage and to deepen the understanding of the detailed chemical processes. We performed numerical simulations on multiple scales. The relevant scales reach from the micro or thin section scale (ca. 1 cm) to the reservoir scale (ca. 10 km). The idea is to provide constraints for smaller scale models from the larger scale and derive functionality from smaller scale models of processes which cannot be resolved in larger scale models, due to restrictions of discretization of the applied numerical mesh. With regard to the 3 questions above we can conclude that the combination of CO2 storage and geothermal energy production is generally feasible because candidate sites are available, anhydrite is transformable into calcite and alkalinity can be provided by fly ashes (Back et al. 2010) or even in-situ (Kühn and Clauser 2006). Based on our laboratory investigations and numerical studies we are able to estimate the storage potential for mineral trapping of CO2 in geothermal reservoirs (Kühn et al. 2009). On the one hand the maximum is unfortunately less than a million tons over the life time of a geothermal heating plant. On the other hand significant storage capacities are available in geological formations with regard to hydrodynamic trapping for millions of tonnes of carbon dioxide. This is why under the current circumstances

  20. Phylogenetic diversity of microbial communities associated with the crude-oil, large-insoluble-particle and formation-water components of the reservoir fluid from a non-flooded high-temperature petroleum reservoir.

    PubMed

    Kobayashi, Hajime; Endo, Keita; Sakata, Susumu; Mayumi, Daisuke; Kawaguchi, Hideo; Ikarashi, Masayuki; Miyagawa, Yoshihiro; Maeda, Haruo; Sato, Kozo

    2012-02-01

    The diversity of microbial communities associated with non-water-flooded high-temperature reservoir of the Niibori oilfield was characterized. Analysis of saturated hydrocarbons revealed that n-alkanes in crude oil from the reservoir were selectively depleted, suggesting that crude oil might be mildly biodegraded in the reservoir. To examine if any specific microorganism(s) preferentially attached to the crude oil or the other components (large insoluble particles and formation water) of the reservoir fluid, 16S rRNA gene clone libraries were constructed from each component of the reservoir fluid. The clones in the archaeal libraries (414 clones in total) represented 16 phylotypes, many of which were closely related to methanogens. The bacterial libraries (700 clones in total) were composed of 49 phylotypes belonging to one of 16 phylum-level groupings, with Firmicutes containing the greatest diversity of the phylotypes. In the crude-oil- and large-insoluble-particle-associated communities, a Methanosaeta-related phylotype dominated the archaeal sequences, whereas hydrogenotrophic methanogens occupied a major portion of sequences in the library of the formation-water-associated community. The crude-oil associated bacterial community showed the largest diversity, containing 35 phylotypes, 16 of which were not detected in the other bacterial communities. Thus, although the populations associated with the reservoir-fluid components largely shared common phylogenetic context, a specific fraction of microbial species preferentially attached to the crude oil and insoluble particles.

  1. Hydrocarbon Degradation in Caspian Sea Sediment Cores Subjected to Simulated Petroleum Seepage in a Newly Designed Sediment-Oil-Flow-Through System

    PubMed Central

    Mishra, Sonakshi; Wefers, Peggy; Schmidt, Mark; Knittel, Katrin; Krüger, Martin; Stagars, Marion H.; Treude, Tina

    2017-01-01

    The microbial community response to petroleum seepage was investigated in a whole round sediment core (16 cm length) collected nearby natural hydrocarbon seepage structures in the Caspian Sea, using a newly developed Sediment-Oil-Flow-Through (SOFT) system. Distinct redox zones established and migrated vertically in the core during the 190 days-long simulated petroleum seepage. Methanogenic petroleum degradation was indicated by an increase in methane concentration from 8 μM in an untreated core compared to 2300 μM in the lower sulfate-free zone of the SOFT core at the end of the experiment, accompanied by a respective decrease in the δ13C signal of methane from -33.7 to -49.5‰. The involvement of methanogens in petroleum degradation was further confirmed by methane production in enrichment cultures from SOFT sediment after the addition of hexadecane, methylnapthalene, toluene, and ethylbenzene. Petroleum degradation coupled to sulfate reduction was indicated by the increase of integrated sulfate reduction rates from 2.8 SO42-m-2 day-1 in untreated cores to 5.7 mmol SO42-m-2 day-1 in the SOFT core at the end of the experiment, accompanied by a respective accumulation of sulfide from 30 to 447 μM. Volatile hydrocarbons (C2–C6 n-alkanes) passed through the methanogenic zone mostly unchanged and were depleted within the sulfate-reducing zone. The amount of heavier n-alkanes (C10–C38) decreased step-wise toward the top of the sediment core and a preferential degradation of shorter (C30) was seen during the seepage. This study illustrates, to the best of our knowledge, for the first time the development of methanogenic petroleum degradation and the succession of benthic microbial processes during petroleum passage in a whole round sediment core. PMID:28503172

  2. Hydrocarbon Degradation in Caspian Sea Sediment Cores Subjected to Simulated Petroleum Seepage in a Newly Designed Sediment-Oil-Flow-Through System.

    PubMed

    Mishra, Sonakshi; Wefers, Peggy; Schmidt, Mark; Knittel, Katrin; Krüger, Martin; Stagars, Marion H; Treude, Tina

    2017-01-01

    The microbial community response to petroleum seepage was investigated in a whole round sediment core (16 cm length) collected nearby natural hydrocarbon seepage structures in the Caspian Sea, using a newly developed Sediment-Oil-Flow-Through (SOFT) system. Distinct redox zones established and migrated vertically in the core during the 190 days-long simulated petroleum seepage. Methanogenic petroleum degradation was indicated by an increase in methane concentration from 8 μM in an untreated core compared to 2300 μM in the lower sulfate-free zone of the SOFT core at the end of the experiment, accompanied by a respective decrease in the δ(13)C signal of methane from -33.7 to -49.5‰. The involvement of methanogens in petroleum degradation was further confirmed by methane production in enrichment cultures from SOFT sediment after the addition of hexadecane, methylnapthalene, toluene, and ethylbenzene. Petroleum degradation coupled to sulfate reduction was indicated by the increase of integrated sulfate reduction rates from 2.8 SO4(2-)m(-2) day(-1) in untreated cores to 5.7 mmol SO4(2-)m(-2) day(-1) in the SOFT core at the end of the experiment, accompanied by a respective accumulation of sulfide from 30 to 447 μM. Volatile hydrocarbons (C2-C6 n-alkanes) passed through the methanogenic zone mostly unchanged and were depleted within the sulfate-reducing zone. The amount of heavier n-alkanes (C10-C38) decreased step-wise toward the top of the sediment core and a preferential degradation of shorter (C30) was seen during the seepage. This study illustrates, to the best of our knowledge, for the first time the development of methanogenic petroleum degradation and the succession of benthic microbial processes during petroleum passage in a whole round sediment core.

  3. Analysis of induced seismicity and heat transfer in geothermal reservoirs by coupled simulation

    NASA Astrophysics Data System (ADS)

    Gan, Quan

    . Conversely, at high relative non-dimensional flow rates the propagating pressure pulse is larger and migrates more quickly through the reservoir but the thermal drawdown is uniform across the reservoir and without the presence of a distinct thermal front, and less capable of triggering late-stage seismicity. In Chapter 2 we develop a dimensionless model to predict the thermal drawdown response, and quantify the relationship between the timing and magnitude of late stage seismic event and the induced thermal stress from thermal drawdown. We evaluate the uniformity of thermal drawdown as a function of a dimensionless flow rate QD that scales with fracture spacing s( m), injection rate q (kg/s), and the distance between the injector and the target point L* ( Qd ∝ qs2 / L*). By assuming the dominant heat transfer by heat conduction within the fractured medium, this model is either capable to predict the timing of induced seismicity by the thermal stress by the analytical formula. Due to the significant influence of fracture network geometry in heat transfer and induced seismicity, a discrete fracture network model is developed (Chapter 3) to couple stress and fluid flow in a discontinuous fractured mass represented as a continuum by coupling the continuum simulator TF_FLAC 3D with cell-by-cell discontinuum laws for deformation and flow. Both equivalent medium crack and permeability tensor approaches are employed to characterize preexisting discrete fractures. The evolution of fracture permeability accommodates stress-dependent aperture under different stress states, including normal closure, shear dilation, and for fracture walls out of contact under tensile loading. This discrete fracture network model is applied (Chapter 4) in a generic reservoir with an initial permeability in the range of 10-17 to 10-16 m2, fracture density of ~0.09m -1 and fractures oriented such that either none, one, or both sets of fractures are critically stressed. For a given reservoir with a pre

  4. Flow Characterization in Naturally Fractured Reservoirs

    NASA Astrophysics Data System (ADS)

    Alajmi, A.; Gharbi, R.

    2008-12-01

    Most hydrocarbon reservoirs are fractured in nature with various degrees of fracture intensities. With the current oil prices and growing demand for oil, a great interest is built in the petroleum industry to characterize partially fractured reservoirs and to develop an increased understanding of the physics of fluid flow in these types of reservoirs. This is due to the fact that fractured reservoirs have different performance behavior and high potential for oil recovery than conventional reservoirs. Therefore, prediction and understanding of fluid displacement in these reservoirs is very much critical in the decision on the applicability of oil recovery methods. Using a finite difference numerical simulator, this study investigated the effect of reservoir fracture intensities on the displacement behavior. Several heterogeneous permeable media, each with different probability of fracture intensity, were generated stochastically. The fracture intensity covers reservoirs with no fracture (zero fracture intensity) to fully fractured reservoirs (fracture intensity of 1). In order to better describe and model fractured reservoirs, a dual porosity-dual permeability model was built. Extensive simulations of water displacing oil were then performed in each of the generated fractured models for different well configurations. The objective was to determine the functional relationships between the displacement performance, fracture intensities, and well configurations. The study has resulted in significant new insights into the flow characterization in naturally fractured reservoirs. Results show that the reservoir fracture intensity has considerable effects on the efficiency of fluid displacement in naturally fractured reservoirs. A critical value of reservoir fracture intensity appears to sort favorable from unfavorable displacement, causing the displacement to be either fracture-dominated or matrix-dominated. The conditions under which fluid displacement may yield better

  5. Multiscale Snow/Icemelt Discharge Simulations into Alpine Reservoirs: adding Glacier Dynamics to a Hydrological Model

    NASA Astrophysics Data System (ADS)

    Schueller, Felix; Förster, Kristian; Hanzer, Florian; Huttenlau, Matthias; Marzeion, Ben; Strasser, Ulrich; Achleitner, Stefan; Kirnbauer, Robert

    2015-04-01

    Glacier and snow runoff in high alpine regions is an essential process in hydrological research for its high relevance on lower altitude areas and hydro-power generation. MUSICALS II (Multiscale Snow/Icemelt Discharge Simulations into Alpine Reservoirs) seeks to identify and quantify water availability and runoff in alpine headwater catchments. The focus is on future changes due to glacier retreat, altering the multi-day and seasonal runoff available for hydropower operations. Our aim is to investigate and improve runoff forecasts by coupling the semi-distributed hydrological model HQSim with a simple glacier evolution model. The glacier model MMBM (Marzeion Mass Balance Model) with its statistical nature allows for fast modelling of the dynamical properties of glaciers. We present the design of the coupled hydrological application for different hydro power headwater catchments in Tyrol. The capabilities of the glacier model to simulate the selected glaciers is shown. Simulated discharge with the original and the coupled model are compared to downstream gauge measurements. Using the multi-objective optimization algorithm AMALGAM (A Multi-ALgorithm, Genetically Adaptive Multiobjective model), we optimize the glacier module parameters fully automatically. The results show the improvements in runoff modelling for past periods, when altering of glaciated catchment parts is considered. This indicates consideration of this process is mandatory for simulating future developments.

  6. Non-equilibrium simulation of CH4 production through the depressurization method from gas hydrate reservoirs

    NASA Astrophysics Data System (ADS)

    Qorbani, Khadijeh; Kvamme, Bjørn

    2016-04-01

    Natural gas hydrates (NGHs) in nature are formed from various hydrate formers (i.e. aqueous, gas, and adsorbed phases). As a result, due to Gibbs phase rule and the combined first and second laws of thermodynamics CH4-hydrate cannot reach thermodynamic equilibrium in real reservoir conditions. CH4 is the dominant component in NGH reservoirs. It is formed as a result of biogenic degradation of biological material in the upper few hundred meters of subsurface. It has been estimated that the amount of fuel-gas reserve in NGHs exceed the total amount of fossil fuel explored until today. Thus, these reservoirs have the potential to satisfy the energy requirements of the future. However, released CH4 from dissociated NGHs could find its way to the atmosphere and it is a far more aggressive greenhouse gas than CO2, even though its life-time is shorter. Lack of reliable field data makes it difficult to predict the production potential, as well as safety of CH4 production from NGHs. Computer simulations can be used as a tool to investigate CH4 production through different scenarios. Most hydrate simulators within academia and industry treat hydrate phase transitions as an equilibrium process and those which employ the kinetic approach utilize simple laboratory data in their models. Furthermore, it is typical to utilize a limited thermodynamic description where only temperature and pressure projections are considered. Another widely used simplification is to assume only a single route for the hydrate phase transitions. The non-equilibrium nature of hydrate indicates a need for proper kinetic models to describe hydrate dissociation and reformation in the reservoir with respect to thermodynamics variables, CH4 mole-fraction, pressure and temperature. The RetrasoCodeBright (RCB) hydrate simulator has previously been extended to model CH4-hydrate dissociation towards CH4 gas and water. CH4-hydrate is added to the RCB data-base as a pseudo mineral. Phase transitions are treated

  7. Simulation of the mulltizones clastic reservoir: A case study of Upper Qishn Clastic Member, Masila Basin-Yemen

    NASA Astrophysics Data System (ADS)

    Khamis, Mohamed; Marta, Ebrahim Bin; Al Natifi, Ali; Fattah, Khaled Abdel; Lashin, Aref

    2017-06-01

    The Upper Qishn Clastic Member is one of the main oil-bearing reservoirs that are located at Masila Basin-Yemen. It produces oil from many zones with different reservoir properties. The aim of this study is to simulate and model the Qishn sandstone reservoir to provide more understanding of its properties. The available, core plugs, petrophysical, PVT, pressure and production datasets, as well as the seismic structural and geologic information, are all integrated and used in the simulation process. Eclipse simulator was used as a powerful tool for reservoir modeling. A simplified approach based on a pseudo steady-state productivity index and a material balance relationship between the aquifer pressure and the cumulative influx, is applied. The petrophysical properties of the Qishn sandstone reservoir are mainly investigated based on the well logging and core plug analyses. Three reservoir zones of good hydrocarbon potentiality are indicated and named from above to below as S1A, S1C and S2. Among of these zones, the S1A zone attains the best petrophysical and reservoir quality properties. It has an average hydrocarbon saturation of more than 65%, high effective porosity up to 20% and good permeability record (66 mD). The reservoir structure is represented by faulted anticline at the middle of the study with a down going decrease in geometry from S1A zone to S2 zone. It is limited by NE-SW and E-W bounding faults, with a weak aquifer connection from the east. The analysis of pressure and PVT data has revealed that the reservoir fluid type is dead oil with very low gas liquid ratio (GLR). The simulation results indicate heterogeneous reservoir associated with weak aquifer, supported by high initial water saturation and high water cut. Initial oil in place is estimated to be around 628 MM BBL, however, the oil recovery during the period of production is very low (<10%) because of the high water cut due to the fractures associated with many faults. Hence, secondary and

  8. Functional genes (dsr) approach reveals similar sulphidogenic prokaryotes diversity but different structure in saline waters from corroding high temperature petroleum reservoirs.

    PubMed

    Guan, Jing; Zhang, Bing-Liang; Mbadinga, Serge Maurice; Liu, Jin-Feng; Gu, Ji-Dong; Mu, Bo-Zhong

    2014-02-01

    Oil reservoirs and production facilities are generally contaminated with H2S resulting from the activity of sulphidogenic prokaryotes (SRP). Sulphidogenesis plays a major role in reservoir souring and microbial influenced corrosion in oil production systems. In the present study, sulphidogenic microbial diversity and composition in saline production fluids retrieved from three blocks of corroding high temperature (79 ~ 95 °C) oil reservoirs with high sulfate concentrations were investigated by phylogenetic analyses of gene fragments of the dissimilatory sulfite reductase (dsr). Analysis of dsr gene fragments revealed the presence of several clusters of sulphidogenic prokaryotes that cover the orders Desulfovibrionales (Desulfovibrio, Desulfomicrobium thermophilum), Desulfobacterales (Desulfobacterium, Desulfosarcina, Desulfococcus, Desulfotignum, Desulfobotulus, Desulfobulbus), Syntrophobacterales (Desulfacinum, Thermodesulforhabdus, Desulforhabdus), Clostridiales (Desulfotomaculum) and Archaeoglobales (Archaeoglobus); among which sequences affiliated to members of Desulfomicrobium, Desulfotomaculum and Desulfovibrio appeared to be the most encountered genera within the three blocks. Collectively, phylogenetic and non-metric multidimensional scaling analyses indicated similar but structurally different sulphidogenic prokaryotes communities within the waters retrieved from the three Blocks. This study show the diversity and composition of sulphidogenic prokaryotes that may play a role in the souring mediated corrosion of the oilfield and also provides a fundamental basis for further investigation to control oil reservoir souring and corrosion of pipelines and topside installations.

  9. Reservoir Modeling by Data Integration via Intermediate Spaces and Artificial Intelligence Tools in MPS Simulation Frameworks

    SciTech Connect

    Ahmadi, Rouhollah; Khamehchi, Ehsan

    2013-12-15

    Conditioning stochastic simulations are very important in many geostatistical applications that call for the introduction of nonlinear and multiple-point data in reservoir modeling. Here, a new methodology is proposed for the incorporation of different data types into multiple-point statistics (MPS) simulation frameworks. Unlike the previous techniques that call for an approximate forward model (filter) for integration of secondary data into geologically constructed models, the proposed approach develops an intermediate space where all the primary and secondary data are easily mapped onto. Definition of the intermediate space, as may be achieved via application of artificial intelligence tools like neural networks and fuzzy inference systems, eliminates the need for using filters as in previous techniques. The applicability of the proposed approach in conditioning MPS simulations to static and geologic data is verified by modeling a real example of discrete fracture networks using conventional well-log data. The training patterns are well reproduced in the realizations, while the model is also consistent with the map of secondary data.

  10. Assessment of a Hybrid Continuous/Discontinuous Galerkin Finite Element Code for Geothermal Reservoir Simulations

    DOE PAGES

    Xia, Yidong; Podgorney, Robert; Huang, Hai

    2016-03-17

    FALCON (“Fracturing And Liquid CONvection”) is a hybrid continuous / discontinuous Galerkin finite element geothermal reservoir simulation code based on the MOOSE (“Multiphysics Object-Oriented Simulation Environment”) framework being developed and used for multiphysics applications. In the present work, a suite of verification and validation (“V&V”) test problems for FALCON was defined to meet the design requirements, and solved to the interests of enhanced geothermal system (“EGS”) design. Furthermore, the intent for this test problem suite is to provide baseline comparison data that demonstrates the performance of the FALCON solution methods. The simulation problems vary in complexity from singly mechanical ormore » thermo process, to coupled thermo-hydro-mechanical processes in geological porous media. Numerical results obtained by FALCON agreed well with either the available analytical solution or experimental data, indicating the verified and validated implementation of these capabilities in FALCON. Some form of solution verification has been attempted to identify sensitivities in the solution methods, where possible, and suggest best practices when using the FALCON code.« less

  11. Assessment of a Hybrid Continuous/Discontinuous Galerkin Finite Element Code for Geothermal Reservoir Simulations

    SciTech Connect

    Xia, Yidong; Podgorney, Robert; Huang, Hai

    2016-03-17

    FALCON (“Fracturing And Liquid CONvection”) is a hybrid continuous / discontinuous Galerkin finite element geothermal reservoir simulation code based on the MOOSE (“Multiphysics Object-Oriented Simulation Environment”) framework being developed and used for multiphysics applications. In the present work, a suite of verification and validation (“V&V”) test problems for FALCON was defined to meet the design requirements, and solved to the interests of enhanced geothermal system (“EGS”) design. Furthermore, the intent for this test problem suite is to provide baseline comparison data that demonstrates the performance of the FALCON solution methods. The simulation problems vary in complexity from singly mechanical or thermo process, to coupled thermo-hydro-mechanical processes in geological porous media. Numerical results obtained by FALCON agreed well with either the available analytical solution or experimental data, indicating the verified and validated implementation of these capabilities in FALCON. Some form of solution verification has been attempted to identify sensitivities in the solution methods, where possible, and suggest best practices when using the FALCON code.

  12. Assessment of a Hybrid Continuous/Discontinuous Galerkin Finite Element Code for Geothermal Reservoir Simulations

    NASA Astrophysics Data System (ADS)

    Xia, Yidong; Podgorney, Robert; Huang, Hai

    2017-03-01

    FALCON (Fracturing And Liquid CONvection) is a hybrid continuous/discontinuous Galerkin finite element geothermal reservoir simulation code based on the MOOSE (Multiphysics Object-Oriented Simulation Environment) framework being developed and used for multiphysics applications. In the present work, a suite of verification and validation (V&V) test problems for FALCON was defined to meet the design requirements, and solved to the interests of enhanced geothermal system modeling and simulation. The intent for this test problem suite is to provide baseline comparison data that demonstrates the performance of FALCON solution methods. The test problems vary in complexity from a single mechanical or thermal process, to coupled thermo-hydro-mechanical processes in geological porous medium. Numerical results obtained by FALCON agreed well with either the available analytical solutions or experimental data, indicating the verified and validated implementation of these capabilities in FALCON. Whenever possible, some form of solution verification has been attempted to identify sensitivities in the solution methods, and suggest best practices when using the FALCON code.

  13. The aortic reservoir-wave as a paradigm for arterial haemodynamics: insights from three-dimensional fluid-structure interaction simulations in a model of aortic coarctation.

    PubMed

    Segers, Patrick; Taelman, Liesbeth; Degroote, Joris; Bols, Joris; Vierendeels, Jan

    2015-03-01

    The reservoir-wave paradigm considers aortic pressure as the superposition of a 'reservoir pressure', directly related to changes in reservoir volume, and an 'excess' component ascribed to wave dynamics. The change in reservoir pressure is assumed to be proportional to the difference between aortic inflow and outflow (i.e. aortic volume changes), an assumption that is virtually impossible to validate in vivo. The aim of this study is therefore to apply the reservoir-wave paradigm to aortic pressure and flow waves obtained from three-dimensional fluid-structure interaction simulations in a model of a normal aorta, aortic coarctation (narrowed descending aorta) and stented coarctation (stiff segment in descending aorta). We found no unequivocal relation between the intraaortic volume and the reservoir pressure for any of the simulated cases. When plotted in a pressure-volume diagram, hysteresis loops are found that are looped in a clockwise way indicating that the reservoir pressure is lower than the pressure associated with the change in volume. The reservoir-wave analysis leads to very high excess pressures, especially for the coarctation models, but to surprisingly little changes of the reservoir component despite the impediment of the buffer capacity of the aorta. With the observation that reservoir pressure is not related to the volume in the aortic reservoir in systole, an intrinsic assumption in the wave-reservoir concept is invalidated and, consequently, also the assumption that the excess pressure is the component of pressure that can be attributed to wave travel and reflection.

  14. Simulating reservoir releases to mitigate climate impacts on fish sustainability below Shasta Lake using stochastic and mechanistic modeling approaches

    NASA Astrophysics Data System (ADS)

    Sapin, J. R.; Saito, L.; Rajagopalan, B.; Caldwell, R. J.

    2013-12-01

    Preservation of the Chinook salmon fishery on the Sacramento River in California has been a major concern since the winter-run Chinook was listed as threatened in 1989. The construction of Shasta Dam and Reservoir in 1945 prevented the salmon from reaching their native cold-water spawning habitat, resulting in severe population declines. The temperature control device (TCD) installed at Shasta Dam in 1997 provides increased capabilities of supplying cold-water habitat downstream of the dam to stimulate salmon spawning. However, increased air temperatures due to climate change could make it more difficult to meet downstream temperature targets with the TCD. By coupling stochastic hydroclimatology generation with two-dimensional hydrodynamic modeling of the reservoir we can simulate TCD operations under extreme climate conditions. This is accomplished by stochastically generating climate and inflow scenarios (created with historical data from NOAA, USGS and USBR) as input into a CE-QUAL-W2 model of the reservoir that can simulate TCD operations. Simulations will investigate if selective withdrawal from multiple gates of the TCD are capable of meeting temperature targets downstream of the dam under extreme hydroclimatic conditions. Moreover, our non-parametric methods for stochastically generating climate and inflow scenarios are capable of producing statistically representative years of extreme wet or extreme dry conditions beyond what is seen in the historical record. This allows us to simulate TCD operations for unprecedented hydroclimatic conditions with implications for climate changes in the watershed. Preliminary results of temperature outputs from simulations of TCD operations under extreme climate conditions with CE-QUAL-W2 will be presented. The conditions chosen for simulation are grounded to real-world managerial concerns by utilizing collaborative workshops with reservoir managers to establish which hydroclimatic scenarios would be of most concern for

  15. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport.

    PubMed

    Reagan, Matthew T; Moridis, George J; Keen, Noel D; Johnson, Jeffrey N

    2015-04-01

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on two general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes.

  16. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport

    NASA Astrophysics Data System (ADS)

    Reagan, Matthew T.; Moridis, George J.; Keen, Noel D.; Johnson, Jeffrey N.

    2015-04-01

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on two general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes.

  17. Conformity assessment for seismic monitoring and reservoir simulation at the Ketzin pilot site - how much conformity can be reached?

    NASA Astrophysics Data System (ADS)

    Lüth, Stefan; Ivanova, Alexandra; Kempka, Thomas

    2016-04-01

    The EU CCS Directive defines three high-level criteria which have to be fulfilled by a site operator in the post closure phase of a storage site before liability can be transferred to the public after site closure. One of these high-level requirements is "Demonstrating conformity between observed and simulated plume behaviour". The observed plume behaviour is derived from geophysical and/or geochemical monitoring. Repeated 3D seismic observations have proven to provide the most comprehensive image of a CO2 plume in various projects such as Sleipner, Weyburn, or Ketzin. The simulated plume behaviour is derived from reservoir simulation using a model calibrated with monitoring results. Plume observations using any monitoring method are always affected by limited resolution and detection ability, and reservoir simulations will only be able to provide an approximated representation of the occurring reservoir processes. Therefore, full conformity between observed and simulated plume behaviour is difficult to achieve, if it is at all. It is therefore of crucial importance for each storage site to understand to what degree conformity can be achieved under realistic conditions, comprising noise affected monitoring data and reservoir models based on geological uncertainties. We applied performance criteria (plume footprint area, lateral migration distance, plume volume, and similarity index) for a comparison between monitoring results (4D seismic measurements) and reservoir simulations, considering a range of seismic amplitude values as noise threshold and a range of minimum thickness of the simulated CO2 plume. Relating the performance criteria to the noise and thickness threshold values allows assessing the quality of conformance between simulated and observed behaviour of a CO2 plume. The Ketzin site is provided with a comprehensive monitoring data set and a history-matched reservoir model. Considering the relatively high noise level, which is inherent for land

  18. Eos modeling and reservoir simulation study of bakken gas injection improved oil recovery in the elm coulee field, Montana

    NASA Astrophysics Data System (ADS)

    Pu, Wanli

    The Bakken Formation in the Williston Basin is one of the most productive liquid-rich unconventional plays. The Bakken Formation is divided into three members, and the Middle Bakken Member is the primary target for horizontal wellbore landing and hydraulic fracturing because of its better rock properties. Even with this new technology, the primary recovery factor is believed to be only around 10%. This study is to evaluate various gas injection EOR methods to try to improve on that low recovery factor of 10%. In this study, the Elm Coulee Oil Field in the Williston Basin was selected as the area of interest. Static reservoir models featuring the rock property heterogeneity of the Middle Bakken Member were built, and fluid property models were built based on Bakken reservoir fluid sample PVT data. By employing both compositional model simulation and Todd-Longstaff solvent model simulation methods, miscible gas injections were simulated and the simulations speculated that oil recovery increased by 10% to 20% of OOIP in 30 years. The compositional simulations yielded lower oil recovery compared to the solvent model simulations. Compared to the homogeneous model, the reservoir model featuring rock property heterogeneity in the vertical direction resulted in slightly better oil recovery, but with earlier CO2 break-through and larger CO2 production, suggesting that rock property heterogeneity is an important property for modeling because it has a big effect on the simulation results. Long hydraulic fractures shortened CO2 break-through time greatly and increased CO 2 production. Water-alternating-gas injection schemes and injection-alternating-shut-in schemes can provide more options for gas injection EOR projects, especially for gas production management. Compared to CO2 injection, separator gas injection yielded slightly better oil recovery, meaning separator gas could be a good candidate for gas injection EOR; lean gas generated the worst results. Reservoir

  19. Modeling naturally fractured reservoirs: From experimental rock mechanics to flow simulation

    NASA Astrophysics Data System (ADS)

    Rijken, Margaretha Catharina Maria

    Fractures have a big impact on reservoir production but are inherently difficult to quantify. This study gives a robust and practical workflow to obtain a mechanically consistent naturally fractured reservoir model without direct sampling of the fracture network. The three tiers of the workflow are: (1) subcritical testing, (2) geomechanical modeling, and (3) flow modeling. Subcritical fracture index, a rock property, has been shown to influence fracture attributes such as length, spacing and connectivity. Subcritical tests show that the average subcritical index for sandstones in ambient air is around 62, whereas the average value for microstructurally comparable carbonates samples is 120. Thin-section analysis shows that an increase in cement content increases the subcritical index. Furthermore, sandstone samples containing more than 15% carbonate cement, sandstone samples containing more than 40% clay, and pure carbonate samples exhibit a large drop in subcritical index when the environment is changed from ambient air or oil to fresh water or brine. Geomechanical modeling has shown that the mechanical bed thickness has a large influence on fracture pattern characteristics and has the potential to overshadow fracture pattern changes due to strain level, strain anisotropy and subcritical index. Furthermore, an increase in strain anisotropy reduces the number of dominant through-going fracture sets and decreases the fracture spacing between the through-going fractures. This spacing variation not only influences the preferential drainage direction, it can also enhance the drainage efficiency, because more rock is exposed to the through-going fractures which are more likely to be intersected by a borehole. The level of detail provided by the geomechanical model greatly exceeds the level of detail normally used in reservoir simulation. Therefore, upscaling of the geomechanically generated fracture patterns is necessary for practical flow modeling. This study shows

  20. Simulated Last Glacial Maximum Δ14CATM and the Deep Glacial Ocean Reservoir

    NASA Astrophysics Data System (ADS)

    Mariotti, V.; Paillard, D.; Roche, D. M.; Bouttes, N.; Bopp, L.

    2012-12-01

    Δ14Catm has been estimated at 420 ± 80‰ (INTCAL09) during the Last Glacial Maximum (LGM) compared to preindustrial times (0‰), but mechanisms explaining this difference are not yet resolved. Δ14Catm is a function of cosmogenic production in high atmosphere and of carbon cycling in the Earth system (through carbon exchange with the superficial reservoirs, ocean and continental biosphere). 10Be-based reconstructions show a contribution of the cosmogenic production term of only 200 ± 200‰ at the LGM. The remaining 220‰ of Δ14Catm variation between the LGM and preindustrial times have thus to be explained by changes in the carbon cycle. Recently, Bouttes et al. (2010) proposed to explain most of the difference in atmospheric pCO2 between glacial and interglacial times by brine-induced ocean stratification in the Southern Ocean. This mechanism involves the formation of very saline water masses that can store Dissolved Inorganic Carbon (DIC) in the deep ocean. During glacial times, the sinking of brines is enhanced and more DIC is stored in the deep ocean, lowering atmospheric pCO2. Such an isolated ocean reservoir would be characterized by a low Δ14C signature. Evidence of such 14C-depleted deep waters during the LGM has recently been found in the Southern Ocean (Skinner et al., 2010). The degassing of this carbon with low Δ14C would then reduce Δ14Catm throughout the deglaciation. We have further developed the CLIMBER-2 model to include a cosmogenic production of 14C as well as an interactive atmospheric 14C reservoir. We investigate the role of both sinking of brines and cosmogenic production, alongside iron and vertical diffusion mechanisms to explain changes in Δ14Catm during the last deglaciation. In our simulations, not only the sinking of brine mechanism is consistent with past Δ14C data but also it explains most of the differences in atmospheric pCO2 and Δ14C between LGM and preindustrial times.

  1. Numerical simulation of pore size dependent anhydrite precipitation in geothermal reservoirs

    NASA Astrophysics Data System (ADS)

    Mürmann, Mario; Kühn, Michael; Pape, Hansgeorg; Clauser, Christoph

    2013-04-01

    Porosity and permeability of reservoirs are key parameters for an economical use of hot water from geothermal installations and can be significantly reduced by precipitation of minerals, such as anhydrite. The borehole Allermöhe 1 near Hamburg (Germany) represents a failed attempt of geothermal heat mining due to anhydrite precipitation (Baermann et al. 2000). For a risk assessment of future boreholes it is essential to understand how and when anhydrite cementation occurred under reservoir conditions. From core samples of the Allermöhe borehole it was determined that anhydrite precipitation took place in regions of relatively high porosity while regions of low porosity remained uncemented (Wagner et al. 2005). These findings correspond to the fact that e.g. halite precipitation in porous media is found only in relatively large pores (Putnis and Mauthe 2001). This study and others underline that pore size controls crystallization and that it is therefore necessary to establish a relation between pore size and nucleation. The work presented here is based on investigations of Emmanuel and Berkowitz (2007) who present such a relation by applying a thermodynamic approach. However this approach cannot explain the heterogeneous precipitation observed in the Allermöhe core samples. We chose an advanced approach by considering electric system properties resulting in another relation between pore size and crystallization. It is well known that a high fluid supersaturation can be maintained in porous rocks (Putnis and Mauthe 2001). This clearly indicates that a supersaturation threshold exists exceeding thermodynamic equilibrium considerably. In order to quantify spatially heterogeneous anhydrite cementation a theoretical approach was chosen which considered the electric interaction between surface charges of the matrix and calcium and sulphate ions in the fluid. This approach was implemented into the numerical code SHEMAT (Clauser 2003) and used to simulate anhydrite

  2. Simulation of commercial scale CO2 injection into a fracture reservoir

    NASA Astrophysics Data System (ADS)

    Li, Y.; Li, S.; Zhang, Y.

    2011-12-01

    Geologic Carbon Sequestration is a proposed means to reduce atmospheric concentration of carbon dioxide (CO2). At Teapot Dome, Wyoming, CO2 will be injected into the Tensleep Formation, a depleted oil reservoir characterized with significant heterogeneity including facies, faults, and fractures. We've collected geological and engineering characterization data of the entire Teapot Dome field, including core data, well logs, seismic data, and production records. All data were screened for accuracy, before subsets of the data are used to build a geologic reservoir model. A formation structural model is created first by interpreting faults and stratigraphy from 3D seismic data. Formation MicroImager logs are analyzed for fracture characteristics to generate in-situ fracture intensity at wells, which is subsequently interpolated throughout the model with kriging. Based on the intensity and a set of geometric fracture parameters (constrained by outcrop and core measurements), a 3D stochastic Discrete Fracture Network (DFN) is created. One realization of the DFN is upscaled to a dual-porosity simulation model using a variant of the Oda's method. This method upscales the fracture network to an effective grid-block fracture permeability. To account for fluid transfer from matrix to fracture, a sigma factor is computed using average fracture spacings within the grid block. Matrix porosity is populated in the model by kriging interpolation of well-log-derived values. With the dual-porosity model, CO2 is injected near the crest of the dome (the proposed location) at a rate of 2.6 Mt/year for 50 years, with an injection bottomhole pressure set at 160% hydrostatic pressure. Boundary of the model is open except along one bounding fault assumed sealed. Results of the simulation suggest that provided that fluid pressure buildup is not an issue (simulated pressure buildup near the fault is minor), the Tensleep Formation at Teapot Dome can sustain commercial-scale injection over time

  3. Noble gas and hydrocarbon tracers in multiphase unconventional hydrocarbon systems: Toward integrated advanced reservoir simulators

    NASA Astrophysics Data System (ADS)

    Darrah, T.; Moortgat, J.; Poreda, R. J.; Muehlenbachs, K.; Whyte, C. J.

    2015-12-01

    Although hydrocarbon production from unconventional energy resources has increased dramatically in the last decade, total unconventional oil and gas recovery from black shales is still less than 25% and 9% of the totals in place, respectively. Further, the majority of increased hydrocarbon production results from increasing the lengths of laterals, the number of hydraulic fracturing stages, and the volume of consumptive water usage. These strategies all reduce the economic efficiency of hydrocarbon extraction. The poor recovery statistics result from an insufficient understanding of some of the key physical processes in complex, organic-rich, low porosity formations (e.g., phase behavior, fluid-rock interactions, and flow mechanisms at nano-scale confinement and the role of natural fractures and faults as conduits for flow). Noble gases and other hydrocarbon tracers are capably of recording subsurface fluid-rock interactions on a variety of geological scales (micro-, meso-, to macro-scale) and provide analogs for the movement of hydrocarbons in the subsurface. As such geochemical data enrich the input for the numerical modeling of multi-phase (e.g., oil, gas, and brine) fluid flow in highly heterogeneous, low permeability formations Herein we will present a combination of noble gas (He, Ne, Ar, Kr, and Xe abundances and isotope ratios) and molecular and isotopic hydrocarbon data from a geographically and geologically diverse set of unconventional hydrocarbon reservoirs in North America. Specifically, we will include data from the Marcellus, Utica, Barnett, Eagle Ford, formations and the Illinois basin. Our presentation will include geochemical and geological interpretation and our perspective on the first steps toward building an advanced reservoir simulator for tracer transport in multicomponent multiphase compositional flow (presented separately, in Moortgat et al., 2015).

  4. Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas.

    PubMed

    Oldenburg, Curtis M; Freifeld, Barry M; Pruess, Karsten; Pan, Lehua; Finsterle, Stefan; Moridis, George J

    2012-12-11

    In response to the urgent need for estimates of the oil and gas flow rate from the Macondo well MC252-1 blowout, we assembled a small team and carried out oil and gas flow simulations using the TOUGH2 codes over two weeks in mid-2010. The conceptual model included the oil reservoir and the well with a top boundary condition located at the bottom of the blowout preventer. We developed a fluid properties module (Eoil) applicable to a simple two-phase and two-component oil-gas system. The flow of oil and gas was simulated using T2Well, a coupled reservoir-wellbore flow model, along with iTOUGH2 for sensitivity analysis and uncertainty quantification. The most likely oil flow rate estimated from simulations based on the data available in early June 2010 was about 100,000 bbl/d (barrels per day) with a corresponding gas flow rate of 300 MMscf/d (million standard cubic feet per day) assuming the well was open to the reservoir over 30 m of thickness. A Monte Carlo analysis of reservoir and fluid properties provided an uncertainty distribution with a long tail extending down to 60,000 bbl/d of oil (170 MMscf/d of gas). The flow rate was most strongly sensitive to reservoir permeability. Conceptual model uncertainty was also significant, particularly with regard to the length of the well that was open to the reservoir. For fluid-entry interval length of 1.5 m, the oil flow rate was about 56,000 bbl/d. Sensitivity analyses showed that flow rate was not very sensitive to pressure-drop across the blowout preventer due to the interplay between gas exsolution and oil flow rate.

  5. Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas

    PubMed Central

    Oldenburg, Curtis M.; Freifeld, Barry M.; Pruess, Karsten; Pan, Lehua; Finsterle, Stefan; Moridis, George J.

    2012-01-01

    In response to the urgent need for estimates of the oil and gas flow rate from the Macondo well MC252-1 blowout, we assembled a small team and carried out oil and gas flow simulations using the TOUGH2 codes over two weeks in mid-2010. The conceptual model included the oil reservoir and the well with a top boundary condition located at the bottom of the blowout preventer. We developed a fluid properties module (Eoil) applicable to a simple two-phase and two-component oil-gas system. The flow of oil and gas was simulated using T2Well, a coupled reservoir-wellbore flow model, along with iTOUGH2 for sensitivity analysis and uncertainty quantification. The most likely oil flow rate estimated from simulations based on the data available in early June 2010 was about 100,000 bbl/d (barrels per day) with a corresponding gas flow rate of 300 MMscf/d (million standard cubic feet per day) assuming the well was open to the reservoir over 30 m of thickness. A Monte Carlo analysis of reservoir and fluid properties provided an uncertainty distribution with a long tail extending down to 60,000 bbl/d of oil (170 MMscf/d of gas). The flow rate was most strongly sensitive to reservoir permeability. Conceptual model uncertainty was also significant, particularly with regard to the length of the well that was open to the reservoir. For fluid-entry interval length of 1.5 m, the oil flow rate was about 56,000 bbl/d. Sensitivity analyses showed that flow rate was not very sensitive to pressure-drop across the blowout preventer due to the interplay between gas exsolution and oil flow rate. PMID:21730177

  6. Numerical Simulations and Tracer Studies as a Tool to Support Water Circulation Modeling in Breeding Reservoirs

    NASA Astrophysics Data System (ADS)

    Zima, Piotr

    2014-12-01

    The article presents a proposal of a method for computer-aided design and analysis of breeding reservoirs in zoos and aquariums. The method applied involves the use of computer simulations of water circulation in breeding pools. A mathematical model of a pool was developed, and a tracer study was carried out. A simplified model of two-dimensional flow in the form of a biharmonic equation for the stream function (converted into components of the velocity vector) was adopted to describe the flow field. This equation, supplemented by appropriate boundary conditions, was solved numerically by the finite difference method. Next, a tracer migration equation was solved, which was a two-dimensional advection-dispersion equation describing the unsteady transport of a non-active, permanent solute. In order to obtain a proper solution, a tracer study (with rhodamine WT as a tracer) was conducted in situ. The results of these measurements were compared with numerical solutions obtained. The results of numerical simulations made it possible to reconstruct water circulation in the breading pool and to identify still water zones, where water circulation was impeded.

  7. Geology for petroleum exploration, drilling and production

    SciTech Connect

    Hyne, N.J.

    1984-01-01

    This book provides a non-technical introduction to the subject of oil. The author guides the readers in logical sequence: How oil and gas form and accumulate; how to explore for oil; and how to drill and complete a well and produce the petroleum. The contents are: The earth's crust; identification of common rocks and minerals; weathering, erosion, and unconformities; deformation; geologic time; sandstone reservoirs; limestone reservoirs; subsurface fluids; sedimentary rock patterns; surface and subsurface maps; ocean environment - plate tectonics; hydrocarbons source rocks, generation, migration and accumulation; well logs, traps; petroleum exploration; drilling a well; completing a well; and petroleum production.

  8. Improving design factors of air diffuser systems based on field conditions of dam reservoirs: CFD simulation approach.

    PubMed

    Shin, Sangmin; Lee, Seungjae; Lee, Sangeun; Yum, Kyungtaek; Park, Heekyung

    2012-01-01

    This study aims to improve the design factors of air diffuser systems that have been analyzed in laboratory experiments, with consideration of the field conditions of dam reservoirs. In this study, the destratification number (D(N)), destratification radius, and efficiency are considered as design factors. The computational fluid dynamics (CFD) simulation experiment is performed in diverse field conditions in order to analyze these factors. The results illustrate the wider range of D(N) values in field conditions and the relationship of the destratification radius and efficiency to D(N). The results can lead to better performance of air diffuser systems and water quality management in dam reservoir sites.

  9. Petroleum characterization by perfluorocarbon tracers

    SciTech Connect

    Senum, G.I.; Fajer, R.W. ); Harris, B.R. Jr. ); DeRose, W.E. ); Ottaviani, W.L. )

    1992-02-01

    Perfluorocarbon tracers (PFTs), a class of six compounds, were used to help characterize the Shallow Oil Zone (SOZ) reservoir at the Naval Petroleum Reserve in California (NPRC) at Elk Hills. The SOZ reservoir is undergoing a pilot gas injection program to assess the technical feasibility and economic viability of injecting gas into the SOZ for improved oil recovery. PFTs were utilized in the pilot gas injection to qualitatively assess the extent of the pilot gas injection so as to determine the degree of gas containment within the SOZ reservoir.

  10. Simulation of reservoir storage and firm yields of three surface-water supplies, Ipswich River Basin, Massachusetts

    USGS Publications Warehouse

    Zarriello, Phillip J.

    2002-01-01

    A Hydrologic Simulation Program FORTRAN (HSPF) model previously developed for the Ipswich River Basin was modified to simulate the hydrologic response and firm yields of the water-supply systems of Lynn, Peabody, and Salem-Beverly. The updated model, expanded to include a portion of the Saugus River Basin that supplies water to Lynn, simulated reservoir system storage over a 35-year period (1961-95) under permitted withdrawals and hypothetical restrictions designed to maintain seasonally varied streamflow for aquatic habitat. A firm yield was calculated for each system and each withdrawal restriction by altering demands until the system failed. This is considered the maximum withdrawal rate that satisfies demands, but depletes reservoir storage. Simulations indicate that, under the permitted withdrawals, Lynn and Salem-Beverly were able to meet demands and generally have their reservoir system recover to full capacity during most years; reservoir storage averaged 83 and 82 percent of capacity, respectively. The firm yields for the Lynn and Salem-Beverly systems were 11.4 and 12.2 million gallons per day (Mgal/d), respectively, or 8 and 21 percent more than average 1998-2000 demands, respectively. Under permitted withdrawals and average 1998-2000 demands, the Peabody system failed in all years; thus Peabody purchased water to meet demands. The firm yield for the Peabody system is 3.70 Mgal/d, or 37 percent less than the average 1998-2000 demand. Simulations that limit withdrawals to levels recommended by the Ipswich River Fisheries Restoration Task Group (IRFRTG) indicate that under average 1998-2000 demands, reservoir storage was depleted in each of the three systems. Reservoir storage under average 1998-2000 demands and IRFRTG-recommended streamflow requirements averaged 15, 22, and 71 percent of capacity for the Lynn, Peabody, Salem-Beverly systems, respectively. The firm-yield estimates under the IRFRTG-recommended streamflow requirements were 6.02, 1.94, and 7

  11. Sedimentology and petroleum geology

    SciTech Connect

    Bjorlykke, K.

    1989-01-01

    In this introduction to sedimentology and petroleum geology the subjects, which are closely related but mostly treated separately, are integrated. The first part covers the basic aspects of sedimentology, sedimentary geochemistry and diagenesis, including brief discussions of flow in rivers and channels, types of sediment transport, lake and river deposits, deltas (river-dominated, tide-dominated, and wave-dominated) and the water budget. Principles of stratigraphy, seismic stratigraphy and basin modeling form the basis for the last part on petroleum geology. Here subjects include the composition of kerogen and hydrocarbons, theories of migration and trapping of hydrocarbons and properties of reservoir rocks. Finally, short introductions to well logging and production geology are given.

  12. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Quarterly report, April 1,1996 - June 30, 1996

    SciTech Connect

    Dutton, S.P.

    1996-07-01

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir- characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO{sub 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Progress to date is summarized for reservoir characterization.

  13. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Quarterly report, October 1 - December 31, 1996

    SciTech Connect

    Dutton, S.P.

    1997-01-01

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir-characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO{sub 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Technical progress is summarized for: geophysical characterization; reservoir characterization; outcrop characterization; and recovery technology identification and analysis.

  14. Simulation of Sediment Transport Caused by Landslide at Nanhua Reservoir Watershed in Southern Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Hsi; Huang, Cong-Gi; Lin, Huan-Hsuan

    2016-04-01

    As a result of heavy rainfall, steep topography, young and weak geological formations, earthquakes, loose soils, slope land cultivation and other human disturbance, much area in Taiwan are prone to the occurrence of disastrous mass movements such as landslides and sediment disasters. During recent years, the extreme rainfall events brought huge amounts of rainfall and triggered severe changes in watershed environments. Typhoon Morakot in August 2009 caused severe landslides, debris flow, flooding and sediment disasters induced by record-break rainfall. The maximum rainfall of mountain area in Chiayi, Tainan, Kaohsiung and Pingtung County were over 2,900 mm. The study area is located at Nanhua reservoir watershed in southern Taiwan. The numerical model (HEC-RAS 4.1 and FLO-2D) will be used to simulate the sediment transport caused by landslide and the study will find out the separating location of erosion and deposition in the river, the danger area of riverbank, and the safety of the river terrace village under the return period of 50-year, 100-year and 200-year (such as Typhoon Morakot). The results of this study can provide for the disaster risk management of administrative decisions to lessen the impacts of natural hazards and may also be useful for time-space variation of sediment disasters caused by Climate Change.

  15. Moving elements for reservoir transport processes

    SciTech Connect

    Carey, G.F.; Mueller, A.; Sepehrnoori, K.; Thrasher, R.L.

    1985-02-01

    The authors consider a class of convection-dominated flows fundamental to reservoir simulation, and their approximate solution using finite element techniques and moving meshes. Both the solution field and the coordinate functions enter as primary unknowns in the resulting problem statement. Hence the mesh evolves with the solution, and the method is particularly well-suited to those problems in which tracking of sharp solution fronts is important. Examples of particular interest related to petroleum reservoir simulation are the model convection diffusion, Burgers', and Buckley Leverett equations, which are considered in the numerical studies. They consider effective solution techniques and system integration, as well as questions related to the use of constraints for limiting the permissible distortion of the mesh.

  16. Techniques for mapping the types, volumes, and distribution of clays in petroleum reservoirs and for determining their effects on oil production. Final report

    SciTech Connect

    Sharma, B.

    1993-05-01

    This report presents the results of correlation of log signatures with information on distribution of the types and volumes of clays in sandstone pore spaces determined from detailed CT-scan, XRD, SEM, and thin section analyses of core samples from three sandstone reservoirs. The log signatures are then analyzed to determine if suitable mathematical/statistical parameter(s) could be calculated from the logs to determine their effects on permeability and oil production. The variability measures obtained from power spectral analysis of permeability and wireline log data in clayey formations have been correlated with oil production from two oil fields. Compared with the conventional measures of permeability variations like the Dykstra-Parsons coefficients, the new measure appears to correlate better with oil production.

  17. Techniques for mapping the types, volumes, and distribution of clays in petroleum reservoirs and for determining their effects on oil production

    SciTech Connect

    Sharma, B.

    1993-05-01

    This report presents the results of correlation of log signatures with information on distribution of the types and volumes of clays in sandstone pore spaces determined from detailed CT-scan, XRD, SEM, and thin section analyses of core samples from three sandstone reservoirs. The log signatures are then analyzed to determine if suitable mathematical/statistical parameter(s) could be calculated from the logs to determine their effects on permeability and oil production. The variability measures obtained from power spectral analysis of permeability and wireline log data in clayey formations have been correlated with oil production from two oil fields. Compared with the conventional measures of permeability variations like the Dykstra-Parsons coefficients, the new measure appears to correlate better with oil production.

  18. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport

    PubMed Central

    Reagan, Matthew T; Moridis, George J; Keen, Noel D; Johnson, Jeffrey N

    2015-01-01

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on two general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes. Key Points: Short-term leakage fractured reservoirs requires high-permeability pathways Production strategy affects the likelihood and magnitude of gas release Gas release is likely short-term, without additional driving forces PMID

  19. Incorporating a simple two-layer reservoir into a coupled land surface and river routing model to improve river temperature simulations in the Tennessee River Basin

    NASA Astrophysics Data System (ADS)

    Niemeyer, R. J.; Cheng, Y.; Mao, Y.; Yearsley, J. R.; Nijssen, B.

    2016-12-01

    Accurately simulating river temperatures is essential to predict the impact of land use and climate change on freshwater ecosystems. Coupled land cover, river routing, and river temperature models have been developed to this end. However, the majority of these models lack reservoir thermal stratification, which can decrease downstream temperature due to reservoirs providing a consistent source of cool water from deep layers. The objective of this research was to verify if incorporating a simple reservoir module improved the accuracy of river temperature simulations. We simulated river temperatures from 1949 to 2010 in the Tennessee River Basin in the U.S.A. We simulated surface hydrologic fluxes with the Variable Infiltration Capacity model and routed runoff fields from VIC with the RVIC routing model to produce streamflow estimates at multiple locations within the basin. We then used these streamflow estimates as well as meteorological variables as input to the River Basin Model (RBM) to produce river temperature estimates. Initial simulations demonstrated an ability of RBM to capture the seasonal variation in observed river temperature. However, these simulations overestimated summer temperatures, which we attributed to a lack of simulated temperature stratification in the reservoirs. We incorporated a new module into RBM to simulate reservoir stratification with a simple physically-based two-layer model. We compared river temperature simulations for RBM with and without this new reservoir module with continuous river temperature measurements and periodic reservoir measurements stratified at depth. Our simulations reveal that the two-layer module improves the model accuracy. The model also accurately simulated reservoir stratification improving its potential to estimate future impacts of climate and land cover change on river temperature.

  20. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Quarterly report, July 1 - September 30, 1996

    SciTech Connect

    Dutton, S.P.

    1996-10-01

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir- characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO{sup 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Accomplishments for this past quarter are discussed.

  1. Simulated monthly hydrologic data and estimated flood characteristics for Cherry Creek at a proposed reservoir site near Terry, Montana

    USGS Publications Warehouse

    Parrett, Charles; Johnson, D.R.

    1995-01-01

    A monthly hydrologic budget for water years 1937- 92 was developed for the proposed Cherry Creek Reservoir (maximum volume about 14,100 acre-feet). Monthly suspended-sediment loads and dissolved- solids concentrations in the reservoir and flood hydrographs and volumes having recurrence intervals of 25-, 50-, and 100-years were estimated. Monthly streamflow and precipitation were estimated using a mixed-station, record-extension procedure. Monthly suspended-sediment and dissolved-solids concentrations in the reservoir were estimated from regression relations between logarithms of concen- tration and streamflow. The simulation showed that flows that Cherry Creek generally were adequate to maintain the reservoir elevation above the minimum operating level for a seepage loss of 0 cubic ft per square. With a seepage loss rate of 3 cubic ft per square, diversions from the Yellowstone River were required for about on third of the months. Cumulative sediment deposition during the 56-year simulation period was about 138 acre-ft from Cherry Creek alone and was about 149 acre-ft when additional water was imported from the Yellowstone River. The concentration of dissolved solids in the reservoir reached a maximum value of about 2,540 mg/L for a seepage loss of 0 cubic ft per square. For a seepage loss of 3 cubic ft per square, water was imported from the Yellowstone River and the maximum concentration of dissolved solids was about 1,200 mg/L. Volumes for flood discharges were estimated from synthetic 24-hour duration storms that were used in a rainfall-runoff model (HEC-1).

  2. A reduced-order based CE-QUAL-W2 model for simulation of nitrate concentration in dam reservoirs

    NASA Astrophysics Data System (ADS)

    Noori, Roohollah; Yeh, Hund-Der; Ashrafi, Khosro; Rezazadeh, Najmeh; Bateni, Sayed M.; Karbassi, Abdulreza; Kachoosangi, Fatemeh Torabi; Moazami, Saber

    2015-11-01

    When the number of computational grids increases, water quality simulation complexities arise. Therefore, using a reduced order framework to express the variations of the objective parameter may facilitate the simulation task and also the interpretation of computational results. In this regard, a new reduced-order approach was proposed to link a water quality simulator model (CE-QUAL-W2, W2) with a data reduction technique (proper orthogonal decomposition, POD). The W2 model simulated spatio-temporal variations of nitrate in the Karkheh Reservoir, Iran. Thereafter, the POD model reduced the dimensions of simulated nitrate in the computational grids. The performance of the developed reduced-order model (ROM) results was evaluated through the comparison of the regenerated nitrate data by the model, and the simulated ones by W2. Findings indicated that the first four modes among 1825 computed ones by ROM conserved approximately over 91% of the nitrate variations. It means that the ROM was capable of showing the spatio-temporal variations of nitrate in the reservoir using the first few modes. Finally, confirmation of ROM indicated that the error of order of magnitude was less than 0.001, for nitrate ROM to regenerate nitrate data using 100 basis functions.

  3. Physical properties of rocks and aqueous fluids at conditions simulating near- and supercritical reservoirs

    NASA Astrophysics Data System (ADS)

    Kummerow, Juliane; Raab, Siegfried

    2016-04-01

    The growing interest in exploiting supercritical geothermal reservoirs calls for a thorough identification and understanding of physico-chemical processes occuring in geological settings with a high heat flow. In reservoir engineering, electrical sounding methods are common geophysical exploration and monitoring tools. However, a realistic interpretation of field measurements is based on the knowledge of both, the physical properties of the rock and those of the interacting fluid at defined temperature and pressure conditions. Thus, laboratory studies at simulated in-situ conditions provide a link between the field data and the material properties in the depth. The physico-chemical properties of fluids change dramatically above the critical point, which is for pure water 374.21 °C and 221.2 bar. In supercritical fluids mass transfer and diffusion-controlled chemical reactions are enhanced and cause mineral alterations. Also, ion mobility and ion concentration are affected by the change of physical state. All this cause changes in the electrical resistivity of supercritical fluids and may have considerable effects on the porosity and hydraulic properties of the rocks they are in contact with. While there are some datasets available for physical and chemical properties of water and single component salt solutions above their critical points, there exist nearly no data for electrical properties of mixed brines, representing the composition of natural geothermal fluids. Also, the impact of fluid-rock interactions on the electrical properties of multicomponent fluids in a supercritical region is scarcely investigated. For a better understanding of fluid-driven processes in a near- and supercritical geological environment, in the framework of the EU-funded FP7 program IMAGE we have measured (1) the electrical resistivity of geothermal fluids and (2) physical properties of fluid saturated rock samples at simulated in-situ conditions. The permeability and electrical

  4. Development of a microbial process for the recovery of petroleum oil from depleted reservoirs at 91-96°C.

    PubMed

    Arora, Preeti; Ranade, Dilip R; Dhakephalkar, Prashant K

    2014-08-01

    A consortium of bacteria growing at 91°C and above (optimally at 96°C) was developed for the recovery of crude oil from declining/depleted oil reservoirs having temperature of more than 91°C. PCR-DGGE-Sequencing analysis of 16S rRNA gene fragments of NJS-4 consortium revealed the presence of four strains identified as members of the genus Clostridium. The metabolites produced by NJS-4 consortium included volatile fatty acids, organic acids, surfactants, exopolysaccarides and CO2, which reduced viscosity, emulsified crude oil and increased the pressure that facilitated displacement of emulsified oil towards the surface. NJS-4 enhanced oil recovery by 26.7% and 10.1% in sand pack trials and core flood studies respectively in optimized nutrient medium comprised of sucrose and sodium acetate as carbon/energy source and urea as nitrogen source (pH 7-9, 96°C, and 4% salinity). Nutrient medium for MEOR was constituted using commercial grade cheap nutrients to improve the economic viability of MEOR process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Numerical simulation of fluid flow and heat transfer in naturally fractured geothermal reservoir using DFN method with matrix flow

    NASA Astrophysics Data System (ADS)

    Lee, Taehun; Lee, Kyungbook; Lee, Hyunsuk; Lee, Wonsuk

    2017-04-01

    Natural fractures have an effect on the fluid flow and heat transfer in the naturally fractured geothermal reservoir. However, most of the previous works in this area assumed that reservoir systems are continuum model whether it is single continuum or dual continuum. Moreover, some people have studied without continuum model but, it was just pipeline model or didn't calculate heat and fluid flow from matrix. In this paper, we developed a generalized discrete fracture network (DFN) geothermal reservoir simulator consiering fluid flow and heat transfer from matrix. In the model, 2D flow is possible within a rectangular fracture, which is important in thick naturally fractured reservoirs. Also, it can calculate heat conduction between matrix and fracture and matrix can increase temperature of injected water. The DFN model developed in this study was validated for two synthetic fracture systems using a commercial thermal model, TETRAD. Comparison results showed an excellent matching between both models. However, this model is conducted at simple fracture network. Therefore, developed model will be conducted a test in realistic fracture network.

  6. An improved multilevel Monte Carlo method for estimating probability distribution functions in stochastic oil reservoir simulations

    SciTech Connect

    Lu, Dan; Zhang, Guannan; Webster, Clayton G.; Barbier, Charlotte N.

    2016-12-30

    In this paper, we develop an improved multilevel Monte Carlo (MLMC) method for estimating cumulative distribution functions (CDFs) of a quantity of interest, coming from numerical approximation of large-scale stochastic subsurface simulations. Compared with Monte Carlo (MC) methods, that require a significantly large number of high-fidelity model executions to achieve a prescribed accuracy when computing statistical expectations, MLMC methods were originally proposed to significantly reduce the computational cost with the use of multifidelity approximations. The improved performance of the MLMC methods depends strongly on the decay of the variance of the integrand as the level increases. However, the main challenge in estimating CDFs is that the integrand is a discontinuous indicator function whose variance decays slowly. To address this difficult task, we approximate the integrand using a smoothing function that accelerates the decay of the variance. In addition, we design a novel a posteriori optimization strategy to calibrate the smoothing function, so as to balance the computational gain and the approximation error. The combined proposed techniques are integrated into a very general and practical algorithm that can be applied to a wide range of subsurface problems for high-dimensional uncertainty quantification, such as a fine-grid oil reservoir model considered in this effort. The numerical results reveal that with the use of the calibrated smoothing function, the improved MLMC technique significantly reduces the computational complexity compared to the standard MC approach. Finally, we discuss several factors that affect the performance of the MLMC method and provide guidance for effective and efficient usage in practice.

  7. An improved multilevel Monte Carlo method for estimating probability distribution functions in stochastic oil reservoir simulations

    DOE PAGES

    Lu, Dan; Zhang, Guannan; Webster, Clayton G.; ...

    2016-12-30

    In this paper, we develop an improved multilevel Monte Carlo (MLMC) method for estimating cumulative distribution functions (CDFs) of a quantity of interest, coming from numerical approximation of large-scale stochastic subsurface simulations. Compared with Monte Carlo (MC) methods, that require a significantly large number of high-fidelity model executions to achieve a prescribed accuracy when computing statistical expectations, MLMC methods were originally proposed to significantly reduce the computational cost with the use of multifidelity approximations. The improved performance of the MLMC methods depends strongly on the decay of the variance of the integrand as the level increases. However, the main challengemore » in estimating CDFs is that the integrand is a discontinuous indicator function whose variance decays slowly. To address this difficult task, we approximate the integrand using a smoothing function that accelerates the decay of the variance. In addition, we design a novel a posteriori optimization strategy to calibrate the smoothing function, so as to balance the computational gain and the approximation error. The combined proposed techniques are integrated into a very general and practical algorithm that can be applied to a wide range of subsurface problems for high-dimensional uncertainty quantification, such as a fine-grid oil reservoir model considered in this effort. The numerical results reveal that with the use of the calibrated smoothing function, the improved MLMC technique significantly reduces the computational complexity compared to the standard MC approach. Finally, we discuss several factors that affect the performance of the MLMC method and provide guidance for effective and efficient usage in practice.« less

  8. An improved multilevel Monte Carlo method for estimating probability distribution functions in stochastic oil reservoir simulations

    NASA Astrophysics Data System (ADS)

    Lu, Dan; Zhang, Guannan; Webster, Clayton; Barbier, Charlotte

    2016-12-01

    In this work, we develop an improved multilevel Monte Carlo (MLMC) method for estimating cumulative distribution functions (CDFs) of a quantity of interest, coming from numerical approximation of large-scale stochastic subsurface simulations. Compared with Monte Carlo (MC) methods, that require a significantly large number of high-fidelity model executions to achieve a prescribed accuracy when computing statistical expectations, MLMC methods were originally proposed to significantly reduce the computational cost with the use of multifidelity approximations. The improved performance of the MLMC methods depends strongly on the decay of the variance of the integrand as the level increases. However, the main challenge in estimating CDFs is that the integrand is a discontinuous indicator function whose variance decays slowly. To address this difficult task, we approximate the integrand using a smoothing function that accelerates the decay of the variance. In addition, we design a novel a posteriori optimization strategy to calibrate the smoothing function, so as to balance the computational gain and the approximation error. The combined proposed techniques are integrated into a very general and practical algorithm that can be applied to a wide range of subsurface problems for high-dimensional uncertainty quantification, such as a fine-grid oil reservoir model considered in this effort. The numerical results reveal that with the use of the calibrated smoothing function, the improved MLMC technique significantly reduces the computational complexity compared to the standard MC approach. Finally, we discuss several factors that affect the performance of the MLMC method and provide guidance for effective and efficient usage in practice.

  9. (National Institute for Petroleum and Energy Research) monthly progress report, July 1992

    SciTech Connect

    Not Available

    1992-09-01

    Accomplishments for the month of July are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; surfactant flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluids in porous media. Fuel Research includes: development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds. Supplement Government Program includes: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant-enhanced alkaline flooding field project; development of methods for mapping distribution of clays in petroleum reservoirs; summary of geological and production characteristics of class 1. unstructured, deltaic reservoirs; third international reservoir characterization technical conference; process-engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; analysis of the US oil resource base and estimate of future recoverable oil; DOE education initiative project; and technology transfer to independent producers.

  10. [National Institute for Petroleum and Energy Research] monthly progress report, July 1992

    SciTech Connect

    Not Available

    1992-09-01

    Accomplishments for the month of July are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; surfactant flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluids in porous media. Fuel Research includes: development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds. Supplement Government Program includes: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant-enhanced alkaline flooding field project; development of methods for mapping distribution of clays in petroleum reservoirs; summary of geological and production characteristics of class 1. unstructured, deltaic reservoirs; third international reservoir characterization technical conference; process-engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; analysis of the US oil resource base and estimate of future recoverable oil; DOE education initiative project; and technology transfer to independent producers.

  11. [National Institute for Petroleum and Energy Research] monthly progress report for June 1992

    SciTech Connect

    Not Available

    1992-08-01

    Accomplishments for this period are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; surfactant flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluid in porous media. Fuels research includes; development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds. Supplemental Government Program includes: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant-enhanced alkaline flooding field project; development of methods for mapping distribution of clays in petroleum reservoirs; summary of geological and production characteristics of class 1, unstructured, deltaic reservoirs; third international reservoir characterization technical conference; process-engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; and analysis of the U. S. oil resource base and estimate of future recoverable oil.

  12. (National Institute for Petroleum and Energy Research) monthly progress report for June 1992

    SciTech Connect

    Not Available

    1992-08-01

    Accomplishments for this period are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; surfactant flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluid in porous media. Fuels research includes; development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds. Supplemental Government Program includes: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant-enhanced alkaline flooding field project; development of methods for mapping distribution of clays in petroleum reservoirs; summary of geological and production characteristics of class 1, unstructured, deltaic reservoirs; third international reservoir characterization technical conference; process-engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; and analysis of the U. S. oil resource base and estimate of future recoverable oil.

  13. Geological history and petroleum system of the Mittelplate oil field, Northern Germany

    NASA Astrophysics Data System (ADS)

    Grassmann, S.; Cramer, B.; Delisle, G.; Messner, J.; Winsemann, J.

    2005-12-01

    The geological history of Germany’s largest and most productive petroleum accumulation, the Mittelplate oil field in Schleswig-Holstein (Northern Germany), is reconstructed by simulating the structural and thermal evolution along a 2D cross-section. The Mittelplate field is located at the western flank of the Büsum salt dome at the transition from the Schleswig-Holstein mainland to the German North Sea Sector. Organic geochemical data confirm the Lower Jurassic Posidonia Shale to be the predominant oil source rock in the Schleswig-Holstein area. The studied section is characterized by salt walls and salt domes built up by Permian evaporites. Reconstruction of the structural and thermal evolution of the Mittelplate field by means of basin modelling reveals the dominating influence of salt dynamics on the entire petroleum system: The development of secondary rim-synclines during salt rise provided accommodation space for the deposition of the Posidonia Shale as well as the deltaic Middle Jurassic reservoir sandstones. The rise of the nearby Oldenswort salt wall controlled the timing of maturation and petroleum generation during Cenozoic times. Hydrocarbon migration from the Posidonia Shale into the reservoirs occurred up-dip from the deeper subsiding rim-syncline into the structural trap with the Middle Jurassic reservoir sandstones pinching out at the flank of the Büsum salt dome. Along the modelled 2D section the field’s recent temperature field and its complex reservoir architecture are reconstructed.

  14. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport

    DOE PAGES

    Reagan, Matthew T.; Moridis, George J.; Keen, Noel D.; ...

    2015-04-18

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on twomore » general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes.« less

  15. Applications of soft computing in petroleum engineering

    NASA Astrophysics Data System (ADS)

    Sung, Andrew H.

    1999-11-01

    This paper describes several applications of neural networks and fuzzy logic in petroleum engineering that have been, or are being, developed recently at New Mexico Tech. These real-world applications include a fuzzy controller for drilling operation; a neural network model to predict the cement bonding quality in oil well completion; using neural networks and fuzzy logic to rank the importance of input parameters; and using fuzzy reasoning to interpret log curves. We also briefly describe two ongoing, large-scale projects on the development of a fuzzy expert system for prospect risk assessment in oil exploration; and on combining neural networks and fuzzy logic to tackle the large-scale simulation problem of history matching, a long- standing difficult problem in reservoir modeling.

  16. Simulation Study of CO2-EOR in Tight Oil Reservoirs with Complex Fracture Geometries

    NASA Astrophysics Data System (ADS)

    Zuloaga-Molero, Pavel; Yu, Wei; Xu, Yifei; Sepehrnoori, Kamy; Li, Baozhen

    2016-09-01

    The recent development of tight oil reservoirs has led to an increase in oil production in the past several years due to the progress in horizontal drilling and hydraulic fracturing. However, the expected oil recovery factor from these reservoirs is still very low. CO2-based enhanced oil recovery is a suitable solution to improve the recovery. One challenge of the estimation of the recovery is to properly model complex hydraulic fracture geometries which are often assumed to be planar due to the limitation of local grid refinement approach. More flexible methods like the use of unstructured grids can significantly increase the computational demand. In this study, we introduce an efficient methodology of the embedded discrete fracture model to explicitly model complex fracture geometries. We build a compositional reservoir model to investigate the effects of complex fracture geometries on performance of CO2 Huff-n-Puff and CO2 continuous injection. The results confirm that the appropriate modelling of the fracture geometry plays a critical role in the estimation of the incremental oil recovery. This study also provides new insights into the understanding of the impacts of CO2 molecular diffusion, reservoir permeability, and natural fractures on the performance of CO2-EOR processes in tight oil reservoirs.

  17. Simulation Study of CO2-EOR in Tight Oil Reservoirs with Complex Fracture Geometries

    PubMed Central

    Zuloaga-Molero, Pavel; Yu, Wei; Xu, Yifei; Sepehrnoori, Kamy; Li, Baozhen

    2016-01-01

    The recent development of tight oil reservoirs has led to an increase in oil production in the past several years due to the progress in horizontal drilling and hydraulic fracturing. However, the expected oil recovery factor from these reservoirs is still very low. CO2-based enhanced oil recovery is a suitable solution to improve the recovery. One challenge of the estimation of the recovery is to properly model complex hydraulic fracture geometries which are often assumed to be planar due to the limitation of local grid refinement approach. More flexible methods like the use of unstructured grids can significantly increase the computational demand. In this study, we introduce an efficient methodology of the embedded discrete fracture model to explicitly model complex fracture geometries. We build a compositional reservoir model to investigate the effects of complex fracture geometries on performance of CO2 Huff-n-Puff and CO2 continuous injection. The results confirm that the appropriate modelling of the fracture geometry plays a critical role in the estimation of the incremental oil recovery. This study also provides new insights into the understanding of the impacts of CO2 molecular diffusion, reservoir permeability, and natural fractures on the performance of CO2-EOR processes in tight oil reservoirs. PMID:27628131

  18. CO2 Sequestration in Coalbed Methane Reservoirs: Experimental Studies and Computer Simulations

    SciTech Connect

    Muhammad Sahimi; Theodore T. Tsotsis

    2002-12-15

    One of the approaches suggested for sequestering CO{sub 2} is by injecting it in coalbed methane (CBM) reservoirs. Despite its potential importance for CO{sub 2} sequestration, to our knowledge, CO{sub 2} injection in CBM reservoirs for the purpose of sequestration has not been widely studied. Furthermore, a key element missing in most of the existing studies is the comprehensive characterization of the CBM reservoir structure. CBM reservoirs are complex porous media, since in addition to their primary pore structure, generated during coal formation, they also contain a variety of fractures, which may potentially play a key role in CO{sub 2} sequestration, as they generally provide high permeability flow paths for both CO{sub 2} and CH{sub 4}. In this report we present an overview of our ongoing experimental and modeling efforts, which aim to investigate the injection, adsorption and sequestration of CO{sub 2} in CBM reservoirs, the enhanced CH{sub 4} production that results, as well as the main factors that affect the overall operation. We describe the various experimental techniques that we utilize, and discuss their range of application and the value of the data generated. We conclude with a brief overview of our modeling efforts aiming to close the knowledge gap and fill the need in this area.

  19. Simulation Study of CO2-EOR in Tight Oil Reservoirs with Complex Fracture Geometries.

    PubMed

    Zuloaga-Molero, Pavel; Yu, Wei; Xu, Yifei; Sepehrnoori, Kamy; Li, Baozhen

    2016-09-15

    The recent development of tight oil reservoirs has led to an increase in oil production in the past several years due to the progress in horizontal drilling and hydraulic fracturing. However, the expected oil recovery factor from these reservoirs is still very low. CO2-based enhanced oil recovery is a suitable solution to improve the recovery. One challenge of the estimation of the recovery is to properly model complex hydraulic fracture geometries which are often assumed to be planar due to the limitation of local grid refinement approach. More flexible methods like the use of unstructured grids can significantly increase the computational demand. In this study, we introduce an efficient methodology of the embedded discrete fracture model to explicitly model complex fracture geometries. We build a compositional reservoir model to investigate the effects of complex fracture geometries on performance of CO2 Huff-n-Puff and CO2 continuous injection. The results confirm that the appropriate modelling of the fracture geometry plays a critical role in the estimation of the incremental oil recovery. This study also provides new insights into the understanding of the impacts of CO2 molecular diffusion, reservoir permeability, and natural fractures on the performance of CO2-EOR processes in tight oil reservoirs.

  20. Numerical simulation of the electrical properties of shale gas reservoir rock based on digital core

    NASA Astrophysics Data System (ADS)

    Nie, Xin; Zou, Changchun; Li, Zhenhua; Meng, Xiaohong; Qi, Xinghua

    2016-08-01

    In this paper we study the electrical properties of shale gas reservoir rock by applying the finite element method to digital cores which are built based on an advanced Markov Chain Monte Carlo method and a combination workflow. Study shows that the shale gas reservoir rock has strong anisotropic electrical conductivity because the conductivity is significantly different in both horizontal and vertical directions. The Archie formula is not suitable for application in shale reservoirs. The formation resistivity decreases in two cases; namely (a) with the increase of clay mineral content and the cation exchange capacity of clay, and (b) with the increase of pyrite content. The formation resistivity is not sensitive to the solid organic matter but to the clay and gas in the pores.

  1. Corticostriatal response selection in sentence production: Insights from neural network simulation with reservoir computing.

    PubMed

    Hinaut, Xavier; Lance, Florian; Droin, Colas; Petit, Maxime; Pointeau, Gregoire; Dominey, Peter Ford

    2015-11-01

    Language production requires selection of the appropriate sentence structure to accommodate the communication goal of the speaker - the transmission of a particular meaning. Here we consider event meanings, in terms of predicates and thematic roles, and we address the problem that a given event can be described from multiple perspectives, which poses a problem of response selection. We present a model of response selection in sentence production that is inspired by the primate corticostriatal system. The model is implemented in the context of reservoir computing where the reservoir - a recurrent neural network with fixed connections - corresponds to cortex, and the readout corresponds to the striatum. We demonstrate robust learning, and generalization properties of the model, and demonstrate its cross linguistic capabilities in English and Japanese. The results contribute to the argument that the corticostriatal system plays a role in response selection in language production, and to the stance that reservoir computing is a valid potential model of corticostriatal processing.

  2. Petroleum geology of Arabian Peninsula

    SciTech Connect

    Billo, S.M.

    1982-05-01

    Petroleum activities in the Arabian Peninsula show new trends in the 1980s. Petroleum exploration is intensified and huge discoveries are anticipated. A giant Jurassic gas field along the coast of the Arabian Gulf discovered recently tops 150 tcf, the largest single reserve ever. Other giant oil fields in the area are undergoing expansion in development and productivity. Today, the Peninsula, with a total area that surpasses one million square miles, produces and exports more oil and gas and has greater reserves than any other area in the world. The excellent reservoir rocks are located in the Jurassic and Cretaceous formations between the Arabian Shield and the Tethyan Seaway. They represent porous and permeable marine cyclical beds sealed by impervious shales and anhydrites. Reservoir sedimentology was affected by 2 orogenies during late Cretaceous and Pliocene time portrayed by the Cratonic area to the southwest and the orthogeosynclinal area to the northeast. The eastern part was little deformed by these movements.

  3. Reservoir Characterization and Flow Simulation for CO 2-EOR in the Tensleep Formation Using Discrete Fracture Networks, Teapot Dome, Wyoming

    NASA Astrophysics Data System (ADS)

    Kavousi Ghahfarokhi, Payam

    The Tensleep oil reservoir at Teapot Dome, Wyoming, USA, is a naturally fractured tight sandstone reservoir that has been considered for carbon-dioxide enhanced oil recovery (CO2-EOR) and sequestration. CO2-EOR analysis requires a thorough understanding of the Tensleep fracture network. Wireline image logs from the field suggest that the reservoir fracture network is dominated by early formed structural hinge oblique fractures with interconnectivity enhanced by hinge parallel and hinge perpendicular fracture sets. Available post stack 3D seismic data are used to generate a seismic fracture intensity attribute for the reservoir fracture network. The resulting seismic fracture intensity is qualitatively correlated to the field production history. Wells located on hinge-oblique discontinuities are more productive than other wells in the field. We use Oda's method to upscale the fracture permeabilities in the discrete fracture network for use in a dual porosity fluid flow simulator. We analytically show that Oda's method is sensitive to the grid orientation relative to fracture set strike. Results show that the calculated permeability tensors have maximum geometric mean for the non-zero permeability components (kxx,kyy,kzz,kxy) when the dominant fracture set cuts diagonally through the grid cell at 45° relative to the grid cell principal directions (i,j). The geometric mean of the permeability tensor components falls to a minimum when the dominant fracture set is parallel to either grid wall (i or j principal directions). The latter case has off-diagonal permeability terms close to zero. We oriented the Tensleep reservoir grid to N72°W to minimize the off-diagonal permeability terms. The seismic fracture intensity attribute is then used to generate a realization of the reservoir fracture network. Subsequently, fracture properties are upscaled to the reservoir grid scale for a fully compositional flow simulation. We implemented a PVT analysis using CO2 swelling test

  4. Variability of wet troposphere delays over inland reservoirs as simulated by a high-resolution regional climate model

    NASA Astrophysics Data System (ADS)

    Clark, E.; Lettenmaier, D. P.

    2014-12-01

    Satellite radar altimetry is widely used for measuring global sea level variations and, increasingly, water height variations of inland water bodies. Existing satellite radar altimeters measure water surfaces directly below the spacecraft (approximately at nadir). Over the ocean, most of these satellites use radiometry to measure the delay of radar signals caused by water vapor in the atmosphere (also known as the wet troposphere delay (WTD)). However, radiometry can only be used to estimate this delay over the largest inland water bodies, such as the Great Lakes, due to spatial resolution issues. As a result, atmospheric models are typically used to simulate and correct for the WTD at the time of observations. The resolutions of these models are quite coarse, at best about 5000 km2 at 30˚N. The upcoming NASA- and CNES-led Surface Water and Ocean Topography (SWOT) mission, on the other hand, will use interferometric synthetic aperture radar (InSAR) techniques to measure a 120-km-wide swath of the Earth's surface. SWOT is expected to make useful measurements of water surface elevation and extent (and storage change) for inland water bodies at spatial scales as small as 250 m, which is much smaller than current altimetry targets and several orders of magnitude smaller than the models used for wet troposphere corrections. Here, we calculate WTD from very high-resolution (4/3-km to 4-km) simulations of the Weather Research and Forecasting (WRF) regional climate model, and use the results to evaluate spatial variations in WTD. We focus on six U.S. reservoirs: Lake Elwell (MT), Lake Pend Oreille (ID), Upper Klamath Lake (OR), Elephant Butte (NM), Ray Hubbard (TX), and Sam Rayburn (TX). The reservoirs vary in climate, shape, use, and size. Because evaporation from open water impacts local water vapor content, we compare time series of WTD over land and water in the vicinity of each reservoir. To account for resolution effects, we examine the difference in WRF-simulated

  5. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    NASA Astrophysics Data System (ADS)

    Nurhandoko, Bagus Endar B.; Susilowati

    2015-04-01

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir's layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir's character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia.

  6. Coupling Hydraulic Fracturing Propagation and Gas Well Performance for Simulation of Production in Unconventional Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, C.; Winterfeld, P. H.; Wu, Y. S.; Wang, Y.; Chen, D.; Yin, C.; Pan, Z.

    2014-12-01

    Hydraulic fracturing combined with horizontal drilling has made it possible to economically produce natural gas from unconventional shale gas reservoirs. An efficient methodology for evaluating hydraulic fracturing operation parameters, such as fluid and proppant properties, injection rates, and wellhead pressure, is essential for the evaluation and efficient design of these processes. Traditional numerical evaluation and optimization approaches are usually based on simulated fracture properties such as the fracture area. In our opinion, a methodology based on simulated production data is better, because production is the goal of hydraulic fracturing and we can calibrate this approach with production data that is already known. This numerical methodology requires a fully-coupled hydraulic fracture propagation and multi-phase flow model. In this paper, we present a general fully-coupled numerical framework to simulate hydraulic fracturing and post-fracture gas well performance. This three-dimensional, multi-phase simulator focuses on: (1) fracture width increase and fracture propagation that occurs as slurry is injected into the fracture, (2) erosion caused by fracture fluids and leakoff, (3) proppant subsidence and flowback, and (4) multi-phase fluid flow through various-scaled anisotropic natural and man-made fractures. Mathematical and numerical details on how to fully couple the fracture propagation and fluid flow parts are discussed. Hydraulic fracturing and production operation parameters, and properties of the reservoir, fluids, and proppants, are taken into account. The well may be horizontal, vertical, or deviated, as well as open-hole or cemented. The simulator is verified based on benchmarks from the literature and we show its application by simulating fracture network (hydraulic and natural fractures) propagation and production data history matching of a field in China. We also conduct a series of real-data modeling studies with different combinations of

  7. Terahertz-dependent identification of simulated hole shapes in oil-gas reservoirs

    NASA Astrophysics Data System (ADS)

    Bao, Ri-Ma; Zhan, Hong-Lei; Miao, Xin-Yang; Zhao, Kun; Feng, Cheng-Jing; Dong, Chen; Li, Yi-Zhang; Xiao, Li-Zhi

    2016-10-01

    Detecting holes in oil-gas reservoirs is vital to the evaluation of reservoir potential. The main objective of this study is to demonstrate the feasibility of identifying general micro-hole shapes, including triangular, circular, and square shapes, in oil-gas reservoirs by adopting terahertz time-domain spectroscopy (THz-TDS). We evaluate the THz absorption responses of punched silicon (Si) wafers having micro-holes with sizes of 20 μm-500 μm. Principal component analysis (PCA) is used to establish a model between THz absorbance and hole shapes. The positions of samples in three-dimensional spaces for three principal components are used to determine the differences among diverse hole shapes and the homogeneity of similar shapes. In addition, a new Si wafer with the unknown hole shapes, including triangular, circular, and square, can be qualitatively identified by combining THz-TDS and PCA. Therefore, the combination of THz-TDS with mathematical statistical methods can serve as an effective approach to the rapid identification of micro-hole shapes in oil-gas reservoirs. Project supported by the National Natural Science Foundation of China (Grant No. 61405259), the National Basic Research Program of China (Grant No. 2014CB744302), and the Specially Founded Program on National Key Scientific Instruments and Equipment Development, China (Grant No. 2012YQ140005).

  8. Preliminary Three-Dimensional Simulation of Sediment and Cesium Transport in the Ogi Dam Reservoir using FLESCOT – Task 6, Subtask 2

    SciTech Connect

    Onishi, Yasuo; Kurikami, Hiroshi; Yokuda, Satoru T.

    2014-03-28

    After the accident at the Fukushima Daiichi Nuclear Power Plant in March 2011, the Japan Atomic Energy Agency and the Pacific Northwest National Laboratory initiated a collaborative project on environmental restoration. In October 2013, the collaborative team started a task of three-dimensional modeling of sediment and cesium transport in the Fukushima environment using the FLESCOT (Flow, Energy, Salinity, Sediment Contaminant Transport) code. As the first trial, we applied it to the Ogi Dam Reservoir that is one of the reservoirs in the Japan Atomic Energy Agency’s (JAEA’s) investigation project. Three simulation cases under the following different temperature conditions were studied: • incoming rivers and the Ogi Dam Reservoir have the same water temperature • incoming rivers have lower water temperature than that of the reservoir • incoming rivers have higher water temperature than that of the reservoir. The preliminary simulations suggest that seasonal temperature changes influence the sediment and cesium transport. The preliminary results showed the following: • Suspended sand, and cesium adsorbed by sand, coming into the reservoirs from upstream rivers is deposited near the reservoir entrance. • Suspended silt, and cesium adsorbed by silt, is deposited farther in the reservoir. • Suspended clay, and cesium adsorbed by clay, travels the farthest into the reservoir. With sufficient time, the dissolved cesium reaches the downstream end of the reservoir. This preliminary modeling also suggests the possibility of a suitable dam operation to control the cesium migration farther downstream from the dam. JAEA has been sampling in the Ogi Dam Reservoir, but these data were not yet available for the current model calibration and validation for this reservoir. Nonetheless these preliminary FLESCOT modeling results were qualitatively valid and confirmed the applicability of the FLESCOT code to the Ogi Dam Reservoir, and in general to other reservoirs in

  9. Pennsylvania's contribution to petroleum geology

    SciTech Connect

    Dickey, P.A.

    1989-09-01

    John F. Carll of the Second Geological Survey of Pennsylvania laid the foundations of both petroleum geology and reservoir engineering. J. P. Lesley, director of the Second Survey, had introduced structure contours when he was working in the anthracite fields. He pointed out that the great oil fields of Pennsylvania were in the only part of the state where there were no anticlines. I. C. White, another geologist with the Second Survey, emphasized the anticlinal theory adopted as a method of prospecting until the discovery of the Cushing field in Oklahoma in 1912. George Ashley, state geologist of Pennsylvanian in the 1930s and 1940s, said that after the gas companies had drilled all the anticlines there would still be the synclines. David White in 1915 noticed the relation between the metamorphosis (rank) of coal and the occurrence of oil and gas. This method (vitrinite reflectance) is now widely applied in the evaluation of basins. In the late 1930s, the resurvey of the Pennsylvania oil regions showed that the reservoirs were shoreline sands, probably barrier islands. In the 1950s the AAPG recommended a study of the recent sediments of the Mississippi delta by Scripps Institute of Oceanography. The ability to recognize depositional environments has caused a revolution in petroleum geology, and recently has been recognized by petroleum engineers as the key to reservoir characterization.

  10. Assessing Reservoir Depositional Environments to Develop and Quantify Improvements in CO2 Storage Efficiency. A Reservoir Simulation Approach

    SciTech Connect

    Okwen, Roland; Frailey, Scott; Leetaru, Hannes; Moulton, Sandy

    2014-09-30

    The storage potential and fluid movement within formations are dependent on the unique hydraulic characteristics of their respective depositional environments. Storage efficiency (E) quantifies the potential for storage in a geologic depositional environment and is used to assess basinal or regional CO2 storage resources. Current estimates of storage resources are calculated using common E ranges by lithology and not by depositional environment. The objectives of this project are to quantify E ranges and identify E enhancement strategies for different depositional environments via reservoir simulation studies. The depositional environments considered include deltaic, shelf clastic, shelf carbonate, fluvial deltaic, strandplain, reef, fluvial and alluvial, and turbidite. Strategies considered for enhancing E include CO2 injection via vertical, horizontal, and deviated wells, selective completions, water production, and multi-well injection. Conceptual geologic and geocellular models of the depositional environments were developed based on data from Illinois Basin oil fields and gas storage sites. The geologic and geocellular models were generalized for use in other US sedimentary basins. An important aspect of this work is the development of conceptual geologic and geocellular models that reflect the uniqueness of each depositional environment. Different injection well completions methods were simulated to investigate methods of enhancing E in the presence of geologic heterogeneity specific to a depositional environment. Modeling scenarios included horizontal wells (length, orientation, and inclination), selective and dynamic completions, water production, and multiwell injection. A Geologic Storage Efficiency Calculator (GSECalc) was developed to calculate E from reservoir simulation output. Estimated E values were normalized to diminish their dependency on fluid relative permeability. Classifying depositional environments according to

  11. Numerical simulation of catastrophic flood: the case study of hypothetical failure of the Bielkowo hydro-power plant reservoir

    NASA Astrophysics Data System (ADS)

    Szydłowski, Michał; Szpakowski, Wojciech; Zima, Piotr

    2013-10-01

    The numerical modeling of flood wave propagation following the hypothetical breaks of the embankments of the Bielkowo hydro-power plant storage reservoir (Kolbudy II Reservoir) on the Radunia River in Poland has been presented. The results of computations were used to estimate the parameters of the flood waves, which are indispensable for the flood zone determination and mapping and then for the flood risk analysis. When estimating the reach and area of the inundation, related to the embankments failures, digital terrain model, and mathematical model of flood wave propagation are necessary. For the numerical simulations of flood, the mathematical model of free surface, two-dimensional unsteady water flow was applied. Four locations of potential breaks of the reservoir embankments were considered. The computed flood zones were presented on the flood hazard maps. The maps have been used by the local authorities and the dam owner to manage the flood risk related to hydro-power plants operations on the Radunia River. This type of research has been done for the first time for the water plant managed by the ENERGA Elektrownie Straszyn.

  12. A simulation research on evaluation of development in shale oil reservoirs by near-miscible CO2 flooding

    NASA Astrophysics Data System (ADS)

    Lai, Fengpeng; Li, Zhiping; Fu, Yingkun; Yang, Zhihao; Li, Hong

    2015-08-01

    Shale oil is a key resource that could mitigate the impending energy shortage in the future. Despite its abundance in China, studies on shale oil are still at the preliminary stage. Shale oil development through CO2 flooding has been successfully implemented in the United States. Therefore, the mechanics of CO2 flooding in shale oil reservoirs should be investigated. This study applies a simulation method to evaluate the development efficiency of CO2 flooding in shale oil reservoirs. Near-miscible CO2 flooding can effectively develop shale oil. After 20 years, recovery could improve by up to 9.56% as a result of depletion development under near-miscible CO2 flooding with 0.5% pore volume gas injection. Horizontal well injection is better than vertical well injection in terms of sweep efficiency and recovery. Cyclic gas injection is superior to continuous gas injection because the former reduces gas channelling. Thus, the use of horizontal wells with near-miscible cyclic gas injections has the potential to effectively develop shale oil reservoirs.

  13. Mathematical simulation of temperatures in deep impoundments: verification tests of the Water Resources Engineers, Inc. model - Horsetooth and Flaming Gorge Reservoirs

    USGS Publications Warehouse

    King, D.L.; Sartoris, Jim J.

    1973-01-01

    Successful use of predictive mathematical models requires verification of the accuracy of the models by applying them to existing situations where the prediction can be compared with reality. A Corps of Engineers' modification of a deep reservoir thermal stratification model developed by Water Resources Engineers, Inc., was applied to two existing Bureau of Reclamation reservoirs for verification. Diffusion coefficients used for the Corps' Detroit Reservoir were found to apply to Horsetooth Reservoir in Colorado, for which very food computer input data were available. The Detroit diffusion coefficients gave a reasonable simulation of Flaming Gorge Reservoir in Wyoming and Utah, which has very complex and variable physical characteristics and for which only average-quality computer input data were available.

  14. iTOUGH2-EOS1SC. Multiphase Reservoir Simulator for Water under Sub- and Supercritical Conditions. User's Guide

    SciTech Connect

    Magnusdottir, Lilja; Finsterle, Stefan

    2015-03-01

    Supercritical fluids exist near magmatic heat sources in geothermal reservoirs, and the high enthalpy fluid is becoming more desirable for energy production with advancing technology. In geothermal modeling, the roots of the geothermal systems are normally avoided but in order to accurately predict the thermal behavior when wells are drilled close to magmatic intrusions, it is necessary to incorporate the heat sources into the modeling scheme. Modeling supercritical conditions poses a variety of challenges due to the large gradients in fluid properties near the critical zone. This work focused on using the iTOUGH2 simulator to model the extreme temperature and pressure conditions in magmatic geothermal systems.

  15. The K/T-boundary carbonate breccia succession at the Cantarell Field, Campeche Bay area: a representative example of the influence of the Chicxulub meteorite-impact event on the formation of extraordinary petroleum reservoirs

    NASA Astrophysics Data System (ADS)

    Murillo-Muñeton, G.; Grajales-Nishimura, J. M.; Velasquillo-Martínez, L. G.; García-Hernández, J.

    2013-05-01

    Over the last decade, intense petroleum exploration and exploitation activities have been conducted in the Campeche Bay area. Detailed stratigraphic studies in this region based on seismic, well logs, and core data have allowed the documentation of numerous deep-water carbonate breccia deposits throughout the Cretaceous stratigraphic column. However, the uppermost carbonate breccia succession is very distinctive in terms of its sedimentological properties compared to the underlying and older calcareous breccia layers. The unique characteristics of this deposit include: its unusual thickness, stratigraphic position, distribution, and content of impact-metamorphic constituents. At the Cantarell field, this carbonate breccia sedimentary package is a representative example of how the Chuxulub meteorite-impact event influenced the formation of a remarkable carbonate reservoir. This deposit was the most important oil-producing stratigraphic horizon for long time in that field. Nevertheless, this reservoir is still important not only in that field but also in other fields in offshore Campeche. The K/T boundary carbonate breccia succession is a typical fining-upward deposit made up, from base to top, of three units. The 50 to 300-m thick, basal Unit 1 consists of a coarse-grained carbonate breccia. Unit 2 is a 10 to 20 m-thick, fine-grained carbonate breccia. The 25 to 30 m-thick, uppermost Unit 3 is a greenish interval of friable sand, silt and clay-sized constituents with abundant ejecta material. In some wells, a 10 to 20 m-thick, non-oil producing fine-grained calcareous breccia occurs interbedded within Unit 3. The K/T boundary carbonate sedimentary package is underlain and overlain by deep-water shaly calcareous facies of Upper Maastrichtian and Lower Paleocene age, respectively. Studies of cronostratigraphic-equivalent outcrop analogs of this K/T boundary carbonate reservoir carried out by the authors in the Sierra de Chiapas (El Guayal, Tabasco and Bochil, Chiapas

  16. PREDICTION OF GAS INJECTION PERFORMANCE FOR HETEROGENEOUS RESERVOIRS

    SciTech Connect

    Martin J. Blunt; Franklin M. Orr Jr

    2000-06-01

    This final report describes research carried out in the Department of Petroleum Engineering at Stanford University from September 1996--May 2000 under a three-year grant from the Department of Energy on the ''Prediction of Gas Injection Performance for Heterogeneous Reservoirs''. The advances from the research include: new tools for streamline-based simulation including the effects of gravity, changing well conditions, and compositional displacements; analytical solutions to 1D compositional displacements which can speed-up gas injection simulation still further; and modeling and experiments that delineate the physics that is unique to three-phase flow.

  17. Improved recovery from Gulf of Mexico reservoirs. Volume III (of 4): Characterization and simulation of representative resources. Final report, February 14, 1995--October 13, 1996

    SciTech Connect

    Kimbrell, W.C.; Bassiouni, Z.A.; Bourgoyne, A.T.

    1997-01-13

    Significant innovations have been made in seismic processing and reservoir simulation. In addition, significant advances have been made in deviated and horizontal drilling technologies. Effective application of these technologies along with improved integrated resource management methods offer opportunities to significantly increase Gulf of Mexico production, delay platform abandonments, and preserve access to a substantial remaining oil target for both exploratory drilling and advanced recovery processes. In an effort to illustrate the impact that these new technologies and sources of information can have upon the estimates of recoverable oil in the Gulf of Mexico, additional and detailed data was collected for two previously studied reservoirs: a South March Island reservoir operated by Taylor Energy and Gulf of Mexico reservoir operated by Mobil, whose exact location has been blind-coded at their request, and an additional third representative reservoir in the Gulf of Mexico, the KEKF-1 reservoir in West Delta Block 84 Field. The new data includes reprocessed 2-D seismic data, newly acquired 3-D data, fluid data, fluid samples, pressure data, well test data, well logs, and core data/samples. The new data was used to refine reservoir and geologic characterization of these reservoirs. Further laboratory investigation also provided additional simulation input data in the form of PVT properties, relative permeabilities, capillary pressures, and water compatibility. Geologic investigations were also conducted to refine the models of mud-rich submarine fan architectures used by seismic analysts and reservoir engineers. These results were also used, in part, to assist in the recharacterization of these reservoirs.

  18. Geology and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Annual report, October 1, 1996--September 30, 1997

    SciTech Connect

    Chidsey, T.C. Jr.; Anderson, P.B.; Morris, T.H.; Dewey, J.A. Jr.; Mattson, A.; Foster, C.B.; Snelgrove, S.H.; Ryer, T.A.

    1998-05-01

    The objective of the Ferron Sandstone (Utah) project is to develop a comprehensive, interdisciplinary, quantitative characterization of a fluvial-deltaic reservoir to allow realistic interwell and reservoir-scale models to be developed for improved oil-field development in similar reservoirs world-wide. Both new and existing data is being integrated into a 3-D model of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Simulation results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. The project is divided into four tasks: (1) regional stratigraphic analysis, (2) case studies, (3) reservoirs models, and (4) field-scale evaluation of exploration strategies. The primary objective of the regional stratigraphic analysis is to provide a more detailed interpretation of the stratigraphy and gross reservoir characteristics of the Ferron Sandstone as exposed in outcrop. The primary objective of the case-studies work is to develop a detailed geological and petrophysical characterization, at well-sweep scale or smaller, of the primary reservoir lithofacies typically found in a fluvial-dominated deltaic reservoir. Work on tasks 3 and 4 consisted of developing two- and three-dimensional reservoir models at various scales. The bulk of the work on these tasks is being completed primarily during the last year of the project, and is incorporating the data and results of the regional stratigraphic analysis and case-studies tasks.

  19. Prebiotic petroleum.

    PubMed

    Ali, Mekki-Berrada

    2014-12-01

    This short communication summarizes a global and continuous reflection on the origins of life. "Prebiotic Petroleum" assumes that "the class of most complex molecules of life that may have geochemical and abiotic origin is the class of fatty acids with long aliphatic chains" and proposes a physical process for the formation of liposomes. Developments following the workshop start from the idea that the liposomes also acquire ion exchange channels physically during their forming process.

  20. Prebiotic Petroleum

    NASA Astrophysics Data System (ADS)

    Ali, Mekki-Berrada

    2014-12-01

    This short communication summarizes a global and continuous reflection on the origins of life. "Prebiotic Petroleum" assumes that " the class of most complex molecules of life that may have geochemical and abiotic origin is the class of fatty acids with long aliphatic chains" and proposes a physical process for the formation of liposomes. Developments following the workshop start from the idea that the liposomes also acquire ion exchange channels physically during their forming process.

  1. Forward-Inverse Adaptive Techniques for Reservoir Characterization and Simulation: Theory and Applications

    SciTech Connect

    Doss, S D; Ezzedine, S; Gelinas, R; Chawathe, A

    2001-06-11

    A novel approach called Forward-Inverse Adaptive Techniques (FIAT) for reservoir characterization is developed and applied to three representative exploration cases. Inverse modeling refers to the determination of the entire reservoir permeability under steady state single-phase flow regime, given only field permeability, pressure and production well measurements. FIAT solves the forward and inverse partial differential equations (PDEs) simultaneously by adding a regularization term and filtering pressure gradients. An implicit adaptive-grid, Galerkin, numerical scheme is used to numerically solve the set of PDEs subject to pressure and permeability boundary conditions. Three examples are presented. Results from all three cases demonstrate attainable and reasonably accurate solutions and, more importantly, provide insights into the consequences of data undersampling.

  2. Geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Technical progress report, April 1--June 30, 1995

    SciTech Connect

    Allison, M.L.

    1995-07-28

    The objective of this project is to develop a comprehensive, interdisciplinary, and quantitative characterization of a fluvial-deltaic reservoir which will allow realistic inter-well and reservoir-scale modeling to be constructed for improved oil-field development in similar reservoirs world-wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined. Both new and existing data will be integrated into a three-dimensional representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Technical progress this quarter is divided into regional stratigraphy, case studies, stochastic modeling and fluid-flow simulation, and technology transfer activities. The regional stratigraphy of the Ferron Sandstone outcrop belt from Last Chance Creek to Ferron Creek is being described and interpreted. Photomosaics and a database of existing surface and subsurface data are being used to determine the extent and depositional environment of each parasequence, and the nature of the contacts with adjacent rocks or flow units. For the second field season, detailed geological and petrophysical characterization of the primary reservoir lithofacies typically found in a fluvial-dominated deltaic reservoir, is continuing at selected case-study areas.

  3. Prediction of Gas Injection Performance for Heterogeneous Reservoirs

    SciTech Connect

    Blunt, Martin J.; Orr, Jr., Franklin M.

    1999-12-20

    This report describes research carried out in the Department of Petroleum Engineering at Stanford University from September 1998 - September 1998 under the third year of a three-year Department of Energy (DOE) grant on the ''Prediction of Gas Injection Performance for Heterogeneous Reservoirs''. The research effort is an integrated study of the factors affecting gas injection, from the pore scale to the field scale, and involves theoretical analysis, laboratory experiments and numerical simulation. The research is divided into four main areas: (1) Pore scale modeling of three-phase flow in porous media; (2) Laboratory experiments and analysis of factors influencing gas injection performance at the core scale with an emphasis on the fundamentals of three-phase flow; (3) Benchmark simulations of gas injection at the field scale; and (4) Development of streamline-based reservoir simulator.

  4. Numerical simulation of the impacts of water level variation on water age in Dahuofang Reservoir

    NASA Astrophysics Data System (ADS)

    Li, Xinwen; Shen, Yongming

    2015-06-01

    The transport timescales were investigated in response to water level variation under different constant flow rates in Dahuofang Reservoir. The concept of water age was applied to quantify the transport timescales. A three-dimensional hydrodynamic model was developed based on the Environmental Fluid Dynamics Code (EFDC). The model was calibrated for water surface elevation and temperature profiles from April 1, 2008 to October 31, 2008. Comparisons of observed and modeled data showed that the model reproduced the water level fluctuation and thermal stratification during warm season and vertical mixing during cold season fairly well. The calibrated model was then applied to investigate the response of water age to water level changes in Dahuofang Reservoir. Model results showed that water age increases from confluence toward dam zone. In the vertical direction, the water age is relatively uniform at upstream and stratifies further downstream, with a larger value at bottom layer than at surface layer. Comparisons demonstrated that water level variation has a significant impact on transport timescales in the reservoir. The impact of water level drawdown on water age is stronger at bottom layer than at surface layer. Under high flow conditions, the water age decreases 0-20 days at surface layer and 15-25 days at bottom layer. Under mean flow conditions, the water age decreases 20-30 days at surface layer and 30-50 days at bottom layer. Furthermore, the impact is minor in the upstream and increases further downstream. The vertical stratification of water age weakens as the water level decreases. This study provides a numerical tool to quantify the transport timescale in Dahuofang Reservoir and supports adaptive management of regional water resources by local authorities.

  5. A new method for representing multiple wells with arbitrary rates in numerical reservoir simulation

    SciTech Connect

    Peaceman, D.W.

    1995-12-31

    A new equation is presented for calculating the equivalent wellblock radii for all N{sub w} wells in a reservoir. Arbitrary well rates and the interaction between wells are fully accounted for. The data required for the new equation may be obtained in a preprocessor by calculating N{sub w} single-phase pressure distributions. Then an accurate equivalent wellblock radius can be calculated for each well each time step, even under conditions where well rates vary with time.

  6. Control of Microbial Sulfide Production with Biocides and Nitrate in Oil Reservoir Simulating Bioreactors.

    PubMed

    Xue, Yuan; Voordouw, Gerrit

    2015-01-01

    Oil reservoir souring by the microbial reduction of sulfate to sulfide is unwanted, because it enhances corrosion of metal infrastructure used for oil production and processing. Reservoir souring can be prevented or remediated by the injection of nitrate or biocides, although injection of biocides into reservoirs is not commonly done. Whether combined application of these agents may give synergistic reservoir souring control is unknown. In order to address this we have used up-flow sand-packed bioreactors injected with 2 mM sulfate and volatile fatty acids (VFA, 3 mM each of acetate, propionate and butyrate) at a flow rate of 3 or 6 pore volumes (PV) per day. Pulsed injection of the biocides glutaraldehyde (Glut), benzalkonium chloride (BAC) and cocodiamine was used to control souring. Souring control was determined as the recovery time (RT) needed to re-establish an aqueous sulfide concentration of 0.8-1 mM (of the 1.7-2 mM before the pulse). Pulses were either for a long time (120 h) at low concentration (long-low) or for a short time (1 h) at high concentration (short-high). The short-high strategy gave better souring control with Glut, whereas the long-low strategy was better with cocodiamine. Continuous injection of 2 mM nitrate alone was not effective, because 3 mM VFA can fully reduce both 2 mM nitrate to nitrite and N2 and, subsequently, 2 mM sulfate to sulfide. No synergy was observed for short-high pulsed biocides and continuously injected nitrate. However, use of continuous nitrate and long-low pulsed biocide gave synergistic souring control with BAC and Glut, as indicated by increased RTs in the presence, as compared to the absence of nitrate. Increased production of nitrite, which increases the effectiveness of souring control by biocides, is the most likely cause for this synergy.

  7. Control of Microbial Sulfide Production with Biocides and Nitrate in Oil Reservoir Simulating Bioreactors

    PubMed Central

    Xue, Yuan; Voordouw, Gerrit

    2015-01-01

    Oil reservoir souring by the microbial reduction of sulfate to sulfide is unwanted, because it enhances corrosion of metal infrastructure used for oil production and processing. Reservoir souring can be prevented or remediated by the injection of nitrate or biocides, although injection of biocides into reservoirs is not commonly done. Whether combined application of these agents may give synergistic reservoir souring control is unknown. In order to address this we have used up-flow sand-packed bioreactors injected with 2 mM sulfate and volatile fatty acids (VFA, 3 mM each of acetate, propionate and butyrate) at a flow rate of 3 or 6 pore volumes (PV) per day. Pulsed injection of the biocides glutaraldehyde (Glut), benzalkonium chloride (BAC) and cocodiamine was used to control souring. Souring control was determined as the recovery time (RT) needed to re-establish an aqueous sulfide concentration of 0.8–1 mM (of the 1.7–2 mM before the pulse). Pulses were either for a long time (120 h) at low concentration (long-low) or for a short time (1 h) at high concentration (short-high). The short-high strategy gave better souring control with Glut, whereas the long-low strategy was better with cocodiamine. Continuous injection of 2 mM nitrate alone was not effective, because 3 mM VFA can fully reduce both 2 mM nitrate to nitrite and N2 and, subsequently, 2 mM sulfate to sulfide. No synergy was observed for short-high pulsed biocides and continuously injected nitrate. However, use of continuous nitrate and long-low pulsed biocide gave synergistic souring control with BAC and Glut, as indicated by increased RTs in the presence, as compared to the absence of nitrate. Increased production of nitrite, which increases the effectiveness of souring control by biocides, is the most likely cause for this synergy. PMID:26696994

  8. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect

    Dutton, Shirley P.; Flanders, William A.

    2001-11-04

    The objective of this Class III project was demonstrate that reservoir characterization and enhanced oil recovery (EOR) by CO2 flood can increase production from slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico. Phase 1 of the project, reservoir characterization, focused on Geraldine Ford and East Ford fields, which are Delaware Mountain Group fields that produce from the upper Bell Canyon Formation (Ramsey sandstone). The demonstration phase of the project was a CO2 flood conducted in East Ford field, which is operated by Orla Petco, Inc., as the East Ford unit.

  9. OGS#PETSc approach for robust and efficient simulations of strongly coupled hydrothermal processes in EGS reservoirs

    NASA Astrophysics Data System (ADS)

    Watanabe, Norihiro; Blucher, Guido; Cacace, Mauro; Kolditz, Olaf

    2016-04-01

    A robust and computationally efficient solution is important for 3D modelling of EGS reservoirs. This is particularly the case when the reservoir model includes hydraulic conduits such as induced or natural fractures, fault zones, and wellbore open-hole sections. The existence of such hydraulic conduits results in heterogeneous flow fields and in a strengthened coupling between fluid flow and heat transport processes via temperature dependent fluid properties (e.g. density and viscosity). A commonly employed partitioned solution (or operator-splitting solution) may not robustly work for such strongly coupled problems its applicability being limited by small time step sizes (e.g. 5-10 days) whereas the processes have to be simulated for 10-100 years. To overcome this limitation, an alternative approach is desired which can guarantee a robust solution of the coupled problem with minor constraints on time step sizes. In this work, we present a Newton-Raphson based monolithic coupling approach implemented in the OpenGeoSys simulator (OGS) combined with the Portable, Extensible Toolkit for Scientific Computation (PETSc) library. The PETSc library is used for both linear and nonlinear solvers as well as MPI-based parallel computations. The suggested method has been tested by application to the 3D reservoir site of Groß Schönebeck, in northern Germany. Results show that the exact Newton-Raphson approach can also be limited to small time step sizes (e.g. one day) due to slight oscillations in the temperature field. The usage of a line search technique and modification of the Jacobian matrix were necessary to achieve robust convergence of the nonlinear solution. For the studied example, the proposed monolithic approach worked even with a very large time step size of 3.5 years.

  10. Preparation of Northern Mid-Continent Petroleum Atlas

    SciTech Connect

    Gerhard, Lee C.; Carr, Timothy R.; Watney, W. Lynn

    2003-02-24

    This report covers the fourth year of the Digital Petroleum Atlas (DPA) Project. The DPA is a longterm effort to develop a new methodology for efficient and timely access to the latest petroleum data and technology for the domestic oil and gas industry, research organizations and local governmental units. The DPA is a new and evolving approach to generating and publishing petroleum reservoir, field, play and basin studies.

  11. Reviving Abandoned Reservoirs with High-Pressure Air Injection: Application in a Fractured and Karsted Dolomite Reservoir

    SciTech Connect

    Robert Loucks; Stephen C. Ruppel; Dembla Dhiraj; Julia Gale; Jon Holder; Jeff Kane; Jon Olson; John A. Jackson; Katherine G. Jackson

    2006-09-30

    Despite declining production rates, existing reservoirs in the United States contain vast volumes of remaining oil that is not being effectively recovered. This oil resource constitutes a huge target for the development and application of modern, cost-effective technologies for producing oil. Chief among the barriers to the recovery of this oil are the high costs of designing and implementing conventional advanced recovery technologies in these mature, in many cases pressure-depleted, reservoirs. An additional, increasingly significant barrier is the lack of vital technical expertise necessary for the application of these technologies. This lack of expertise is especially notable among the small operators and independents that operate many of these mature, yet oil-rich, reservoirs. We addressed these barriers to more effective oil recovery by developing, testing, applying, and documenting an innovative technology that can be used by even the smallest operator to significantly increase the flow of oil from mature U.S. reservoirs. The Bureau of Economic Geology and Goldrus Producing Company assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The Permian Basin, the largest oil-bearing basin in North America, contains more than 70 billion barrels of remaining oil in place and is an ideal venue to validate this technology. We have demonstrated the potential of HPAI for oil-recovery improvement in preliminary laboratory tests and a reservoir pilot project. To more completely test the technology, this project emphasized detailed characterization of reservoir properties, which were integrated to access the effectiveness and economics of HPAI. The characterization phase of the project utilized geoscientists and petroleum engineers from the Bureau of Economic Geology and the Department of Petroleum

  12. Direct simulation of groundwater transit-time distributions using the reservoir theory

    NASA Astrophysics Data System (ADS)

    Etcheverry, David; Perrochet, Pierre

    Groundwater transit times are of interest for the management of water resources, assessment of pollution from non-point sources, and quantitative dating of groundwaters by the use of environmental isotopes. The age of water is the time water has spent in an aquifer since it has entered the system, whereas the transit time is the age of water as it exits the system. Water at the outlet of an aquifer is a mixture of water elements with different transit times, as a consequence of the different flow-line lengths. In this paper, transit-time distributions are calculated by coupling two existing methods, the reservoir theory and a recent age-simulation method. Based on the derivation of the cumulative age distribution over the whole domain, the approach accounts for the whole hydrogeological framework. The method is tested using an analytical example and its applicability illustrated for a regional layered aquifer. Results show the asymmetry and multimodality of the transit-time distribution even in advection-only conditions, due to the aquifer geometry and to the velocity-field heterogeneity. Résumé Les temps de transit des eaux souterraines sont intéressants à connaître pour gérer l'évaluation des ressources en eau dans le cas de pollution à partir de sources non ponctuelles, et aussi pour dater quantitativement les eaux souterraines au moyen des isotopes du milieu. L'âge de l'eau est le temps qu'elle a passé dans un aquifère depuis qu'elle est entrée dans le système, alors que le temps de transit est l'âge de l'eau au moment où elle quitte le système. L'eau à la sortie d'un aquifère est un mélange d'eaux possédant différents temps de transit, du fait des longueurs différentes des lignes de courant suivies. Dans ce papier, les distributions des temps de transit sont calculées en couplant deux méthodes, la théorie du réservoir et une méthode récente de simulation des âges. Basée sur la dérivation de la distribution cumulées des âges sur

  13. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    SciTech Connect

    Nurhandoko, Bagus Endar B. E-mail: bagusnur@rock-fluid.com; Susilowati E-mail: bagusnur@rock-fluid.com

    2015-04-16

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia.

  14. Reservoir sedimentology

    SciTech Connect

    Tillman, R.W.; Weber, K.J.

    1987-01-01

    Collection of papers focuses on sedimentology of siliclastic sandstone and carbonate reservoirs. Shows how detailed sedimentologic descriptions, when combined with engineering and other subsurface geologic techniques, yield reservoir models useful for reservoir management during field development and secondary and tertiary EOR. Sections cover marine sandstone and carbonate reservoirs; shoreline, deltaic, and fluvial reservoirs; and eolian reservoirs. References follow each paper.

  15. Basin Analysis of Mississippi Interior Salt Basin and Petroleum System Modeling of the Jurassic Smackover Formation, Eastern Gulf Coastal Plain

    SciTech Connect

    Ernest Mancini

    2001-03-01

    Part 3 (Petroleum System Modeling of the Jurassic Smackover Formation) objectives are to provide an analysis of the Smackover petroleum system in Years 4 and 5 of the project and to transfer effectively the research results to producers through workshops and topical reports. Work Accomplished (Year 5): Task 1 - Basin Flow - Basin flow modeling has been completed and the topical report has been submitted to the U.S. DOE for review. Task 2 - Petroleum Source Rocks - Work on the characterization of Smackover petroleum source rocks has been integrated into the basin flow model. The information on the source rocks is being prepared for inclusion in the final report. Task 3 - Petroleum Reservoirs - Work on the characterization of Smackover petroleum reservoirs continues. The cores to be described have been identified and many of the cores for the eastern and western parts of the basin have been described. Task 4 - Reservoir Diagenesis - Work on reservoir diagenesis continues. Samples from the cores selected for the reservoir characterization are being used for this task. Task 5 - Underdeveloped Reservoirs - Two underdeveloped Smackover reservoirs have been identified. They are the microbial reef and shoal reservoirs. Work Planned (Year 5): Task 1 - Basin Flow - This task has been completed and the topical report has been submitted to the U.S. DOE. Task 2 - Petroleum Source Rocks - Petroleum source rock information will continue to be prepared for the final report. Task 3 - Petroleum Reservoirs - Characterization of petroleum reservoirs will continue through core studies. Task 4 - Reservoir Diagenesis - Characterization of reservoir diagenesis will continue through petrographic analysis. Task 5 - Underdeveloped Reservoirs - Study of Smackover underdeveloped reservoirs will continue with focus on the microbial reef and shoal reservoirs.

  16. 31 CFR 576.308 - Iraqi petroleum and petroleum products.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Iraqi petroleum and petroleum products... SANCTIONS REGULATIONS General Definitions § 576.308 Iraqi petroleum and petroleum products. The term Iraqi petroleum and petroleum products means any petroleum, petroleum products, or natural gas originating in...

  17. 31 CFR 576.308 - Iraqi petroleum and petroleum products.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Iraqi petroleum and petroleum products... SANCTIONS REGULATIONS General Definitions § 576.308 Iraqi petroleum and petroleum products. The term Iraqi petroleum and petroleum products means any petroleum, petroleum products, or natural gas originating in...

  18. 31 CFR 576.308 - Iraqi petroleum and petroleum products.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Iraqi petroleum and petroleum products... SANCTIONS REGULATIONS General Definitions § 576.308 Iraqi petroleum and petroleum products. The term Iraqi petroleum and petroleum products means any petroleum, petroleum products, or natural gas originating in...

  19. 31 CFR 576.308 - Iraqi petroleum and petroleum products.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Iraqi petroleum and petroleum products... SANCTIONS REGULATIONS General Definitions § 576.308 Iraqi petroleum and petroleum products. The term Iraqi petroleum and petroleum products means any petroleum, petroleum products, or natural gas originating in...

  20. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    SciTech Connect

    Ernest A. Mancini

    2002-09-25

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 2 of the project has been reservoir characterization, 3-D modeling and technology transfer. This effort has included six tasks: (1) the study of rockfluid interactions, (2) petrophysical and engineering characterization, (3) data integration, (4) 3-D geologic modeling, (5) 3-D reservoir simulation and (6) technology transfer. This work was scheduled for completion in Year 2. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions is near completion. Observations regarding the diagenetic processes influencing pore system development and

  1. The use of detailed reservoir description and simulation studies in investigating completion strategies, cormorant, UK North Sea

    SciTech Connect

    Stiles, J.H.; Valenti, N.P.

    1987-01-01

    A portion of the Cormorant field in the U.K. North Sea is being developed using a subsea production system. All layers in the stratified reservoir section are being waterflooded concurrently by perforating the entire interval in both producers and injectors. The permeability contrast among the layers is such that there is potential for severe imbalance in the movement of the waterflood fronts, resulting in large volumes of early water production from high permeability layers and incomplete displacement of oil from less permeable layers. With the high cost of expanding platform facilities or performing workovers on subsea wells to re-distribute production and/or injection, there is considerable incentive to optimise the completions in new wells. This paper describes studies undertaken by Esso Exploration and Production U.K. to evaluate various completion strategies for newe subsea wells. These studies were done to complement work done by the operator, Shell U.K. Explorations and Production. The studies included detailed reservoir description work to define the oil-in-pace and permeability distribution, followed by simulation of the waterflood for a representative reservoir cross-section. Wellbore, flowline and pipeline hydraulics for the complex productions and injection system were included to more accurately model well rates. The results provide general insight into the nature of the displacement when waterflooding a stratified section with a limited nuber of wells. They also provide specific guidance on: (1) dual vs. single completions, (2) perforating, testing and stimulation sequence and (3) the benefits of partially perforating high permeability sands.

  2. Stress field respond to massive injection of cold water into a geothermal reservoir study by geomechanical simulation

    NASA Astrophysics Data System (ADS)

    Jeanne, P.; Rutqvist, J.

    2015-12-01

    In this paper, we study the evolution and distribution of the stress tensor within the northwest part of The Geysers geothermal field during 9 years of injection (from 2003 to 2012). Based on a refined 3D structural model, developed by Calpine Corporation, where the horizon surfaces are mapped, we use the GMS™ GUI to construct a realistic three-dimensional geologic model of the Northwest Geysers geothermal field. This model includes a low permeability graywacke layer that forms the caprock for the reservoir, an isothermal steam zone (the Normal Temperature Reservoir) within metagraywacke, a hornfels zone (the High Temperature Reservoir), and a felsite layer that is assumed to extend downward to the magmatic heat source. This model is mapped into a rectangular grid for use with the TOUGH-FLAC numerical simulator. Then, we reproduce the injection history of seven active wells between 2003 and 2012. Finally, our results are compared with previous works where the stress tensor was studied from the inversion of focal plane mechanism in the same area and during the same period. As in these publications we find that: (1) changes in the orientation of principal horizontal stress are very small after one decade of injection, and (2) at injection depth significant rotations of the initially vertically oriented maximum compressive principal stress occur in response to changes in the fluid injection rates. As observed in the field, we found that σ1 tilted towards the σ2 direction by approximately 15° when injection rates were at their peak level. Such a rotation consequently results in a local change in the state stress from a normal stress regime (Sv > SHmax> > Shmin) to a strike slip regime (SHmax> Sv > > Shmin) above and below the injection zone. Our results show that thermal processes are the principal cause for the stress tensor rotation.

  3. High-boiling arenes of Paleozoic petroleum of West Siberia

    SciTech Connect

    Golovko, A.K.; Kam'yanov, V.F.; Korobitsina, L.L.; Kurakolova, E.A.; Rusinova, G.V.; Petrov, Al. A.

    1984-01-01

    A number of petroleum deposits have been found recently in the southern regions of West Siberia, in carbonate reservoirs of the Paleozoic age; certain aspects of increasing petroleum output in the field are related to these deposits. The general characteristics of Paleozoic petroleums of West Siberia are fairly varied, these petroleums usually have lower sulfur and resin contents but contain more was than petroleums from the Mesozoic deposits in the upper strata. No detailed study has so far, apparently, been carried out of the hydrocarbon composition of higher fractions of Paleozoic petroleums of the regio using physico-chemical methods. Accordingly, the composition of aromatic components of medium and high-boiling petroleum distillates of the Maloich deposit are examined since these are one of the first Paleozoic deposits put to industrial use.

  4. Sensitivity Studies of 3D Geothermal Reservoir Simulation: A Case Study in I-Lan Plain, Taiwan

    NASA Astrophysics Data System (ADS)

    Kuo, C. W.; Song, S. R.

    2015-12-01

    A large scale geothermal project conducted by Ministry of Science and Technology is initiated recently in I-Lan south area, northeastern Taiwan. The ultimate goal of this national project is to increase the percentage of renewable energy (ex. geothermal energy) to generate electricity. An integrated team which consists of various specialties are held together to investigate I-Lan area comprehensively. For example, I-Lan geological data, petrophysical analysis, seismicity, temperature gradient and distribution, hydrology, geochemistry, and heat source study etc. The geothermal gradient measured at one drilling well (1200m deep) is up to 50˚C/km and the prediction of temperature based on fluid inclusion analysis could be up to 300˚C. The geothermal reservoir is expected to occur at a fractured geological formation, Siling sandstone layer. A 3D subsurface geological model is built mainly based on the seismic exploration of the subsurface structure and well log data. According to the current conceptual model, the target area is bounded by two main faults, Jiaosi and Choshui faults. The preliminary results from all the investigations are integrated and used as input parameters to create a realistic numerical reservoir model. Numerical simulator TOUGH2 is used to study the geothermal energy potential. The initial state of temperature distribution is simulated and compared to the high resolution of magnetotelluric (MT) data. Simulation results show that they have similar pattern and therefore the prediction of geothermal potential in this area would be more reliable. Based on the realistic initial state, sensitivity studies are performed to investigate effects of relevant parameters on temperature distribution.

  5. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin)

    SciTech Connect

    Dutton, S.P.; Flanders, W.A.; Guzman, J.I.; Zirczy, H.

    1999-06-08

    The objective of this Class III project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover a higher percentage of the original oil in place through geologically based field development. This year the project focused on reservoir characterization of the East Ford unit, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey Sandstone). The field, discovered in 1960, is operated by Orla Petco, Inc., as the East Ford unit; it contained an estimated 19.8 million barrels (MMbbl) of original oil in place. Petrophysical characterization of the East Ford unit was accomplished by integrating core and log data and quantifying petrophysical properties from wireline logs. Most methods of petrophysical analysis that had been developed during an earlier study of the Ford Geraldine unit were successfully transferred to the East Ford unit. The approach that was used to interpret water saturation from resistivity logs, however, had to be modified because in some East Ford wells the log-calculated water saturation was too high and inconsistent with observations made during the actual production. Log-porosity to core-porosity transforms and core-porosity to core-permeability transforms were derived from the East Ford reservoir. The petrophysical data were used to map porosity, permeability, net pay, water saturation, mobil-oil saturation, and other reservoir properties.

  6. A Course in Fundamentals of Petroleum Production.

    ERIC Educational Resources Information Center

    Dullien, F. A. L.

    1982-01-01

    Describes a course designed to introduce the average chemical engineer, who has only a minimum familiarity with the concepts of capillarity and flow through porous media (and none at all with reservoir engineering concepts) to petroleum production engineering. Includes course outline indicating technical content of the course. (Author/JN)

  7. A Course in Fundamentals of Petroleum Production.

    ERIC Educational Resources Information Center

    Dullien, F. A. L.

    1982-01-01

    Describes a course designed to introduce the average chemical engineer, who has only a minimum familiarity with the concepts of capillarity and flow through porous media (and none at all with reservoir engineering concepts) to petroleum production engineering. Includes course outline indicating technical content of the course. (Author/JN)

  8. Fast parametric relationships for the large-scale reservoir simulation of mixed CH4-CO2 gas hydrate systems

    NASA Astrophysics Data System (ADS)

    Reagan, Matthew T.; Moridis, George J.; Seim, Katie S.

    2017-06-01

    A recent Department of Energy field test on the Alaska North Slope has increased interest in the ability to simulate systems of mixed CO2-CH4 hydrates. However, the physically realistic simulation of mixed-hydrate simulation is not yet a fully solved problem. Limited quantitative laboratory data leads to the use of various ab initio, statistical mechanical, or other mathematic representations of mixed-hydrate phase behavior. Few of these methods are suitable for inclusion in reservoir simulations, particularly for systems with large number of grid elements, 3D systems, or systems with complex geometric configurations. In this work, we present a set of fast parametric relationships describing the thermodynamic properties and phase behavior of a mixed methane-carbon dioxide hydrate system. We use well-known, off-the-shelf hydrate physical properties packages to generate a sufficiently large dataset, select the most convenient and efficient mathematical f